Powered by Deep Web Technologies
Note: This page contains sample records for the topic "opportunities nuclear science" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Scientific Opportunities to Reduce Risk in Nuclear Process Science  

SciTech Connect

Cleaning up the nations nuclear weapons complex remains as one of the most technologically challenging and financially costly problems facing the U.S. Department of Energy (DOE). Safety, cost, and technological challenges have often delayed progress in retrieval, processing, and final disposition of high-level waste, spent nuclear fuel, and challenging materials. Some of the issues result from the difficulty and complexity of the technological issues; others have programmatic bases, such as contracting strategies that may provide undue focus on near-term, specific clean-up goals or difficulty in developing and maintaining stakeholder confidence in the proposed solutions. We propose that independent basic fundamental science research focused on the full cleanup life-cycle offers an opportunity to help address these challenges by providing 1) scientific insight into the fundamental mechanisms involved in currently selected processing and disposal options, 2) a rational path to the development of alternative technologies should the primary options fail, 3) confidence that models that predict long-term performance of different disposal options are based upon the best available science, 4) fundamental science discovery that enables transformational solutions to revolutionize the current baseline processes.

Bredt, Paul R.; Felmy, Andrew R.; Gauglitz, Phillip A.; Hobbs, David T.; Krahn, Steve; Machara, N.; Mcilwain, Michael; Moyer, Bruce A.; Poloski, Adam P.; Subramanian, K.; Vienna, John D.; Wilmarth, B.

2008-07-18T23:59:59.000Z

2

Funding Opportunities | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Closed Funding Opportunity Announcements (FOAs) Closed Lab Announcements Award Search Reviews NP Early Career Opportunities & Awardees Nuclear Science Advisory Committee...

3

Fusion Nuclear Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Systems Modeling, Simulation & Validation Nuclear Systems Technology Reactor Technology Nuclear Science Home | Science & Discovery | Nuclear Science | Research...

4

Nuclear Science  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Science Science and Engineering Education Sourcebook 2013 American Nuclear Society US Department of Energy Nuclear Science & Engineering Education Sourcebook 2013 North American Edition American Nuclear Society Education, Training, and Workforce Division US Department of Energy Office of Nuclear Energy Editor and Founder John Gilligan Professor of Nuclear Engineering North Carolina State University Version 5.13 Welcome to the 2013 Edition of the Nuclear Science and Engineering Education (NS&EE) Sourcebook. We have evolved and improved! The core mission of the Sourcebook has not changed, however. Our purpose is to facilitate interaction among faculty, students, industry, and government agencies to accomplish nuclear research, teaching and service activities. Since 1986 we have compiled critical information on nuclear

5

Nuclear Science at NERSC  

NLE Websites -- All DOE Office Websites (Extended Search)

Accelerator Science Accelerator Science Astrophysics Biological Sciences Chemistry & Materials Science Climate & Earth Science Energy Science Engineering Science Environmental Science Fusion Science Math & Computer Science Nuclear Science Science Highlights NERSC Citations HPC Requirements Reviews Home » Science at NERSC » Nuclear Science Nuclear Science Experimental and theoretical nuclear research carried out at NERSC is driven by the quest for improving our understanding of the building blocks of matter. This includes discovering the origins of nuclei and identifying the forces that transform matter. Specific topics include: Nuclear astrophysics and the synthesis of nuclei in stars and elsewhere in the cosmos; Nuclear forces and quantum chromodynamics (QCD), the quantum field

6

Research opportunities in photochemical sciences  

DOE Green Energy (OSTI)

The workshop entitled {open_quotes}Research Opportunities in Photochemical Sciences{close_quotes} was initiated by the U.S. Department of Energy (DOE), Office of Energy Research (ER), Office of Basic Energy Sciences (BES), Division of Chemical Sciences. The National Renewable Energy Laboratory (NREL) in Golden, Colorado was requested by ER to host the workshop. It was held February 5-8, 1996 at the Estes Park Conference Center, Estes Park, CO, and attended by about 115 leading scientists and engineers from the U.S., Japan, and Europe; program managers for the DOE ER and Energy Efficiency and Renewable Energy (EERE) programs also attended. The purpose of the workshop was to bridge the communication gap between the practioneers and supporters of basic research in photochemical science and the practioneers and supporters of applied research and development in technologies related to photochemical science. For the purposes of the workshop the definition of the term {open_quotes}photochemical science{close_quotes} was broadened to include homogeneous photochemistry, heterogeneous photochemistry, photoelectrochemistry, photocatalysis, photobiology (for example, the light-driven processes of biological photosynthesis and proton pumping), artificial photosynthesis, solid state photochemistry, and solar photochemistry. The technologies under development through DOE support that are most closely related to photochemical science, as defined above, are the renewable energy technologies of photovoltaics, biofuels, hydrogen energy, carbon dioxide reduction and utilization, and photocatalysis for environmental cleanup of water and air. Individual papers were processed separately for the United states Department of Energy databases.

NONE

1996-07-01T23:59:59.000Z

7

Nuclear Sciences | More Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemistry Chemistry Advanced Materials Nuclear Forensics Climate & Environment Biology and Soft Matter Chemical and Engineering Materials Quantum Condensed Matter Computational Chemistry Nuclear Sciences More Science Home | Science & Discovery | More Science | Chemistry | Nuclear Sciences SHARE Nuclear Sciences In World War II's Manhattan Project, ORNL helped usher in the nuclear age. Today, laboratory scientists are leaders in using nuclear technologies and systems to improve human health; explore safer, more environmentally friendly power; and better understand the structure of matter. Thanks to its nuclear heritage, ORNL is a world leader in the production of isotopes for medical purposes and research. The lab's High Flux Isotope Reactor (HFIR) and Radiochemical Engineering Development Center (REDC)

8

Security Science & Technology | Nuclear Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Security Treaty Verification Nuclear Systems Modeling, Simulation & Validation Nuclear Systems Technology Reactor Technology Nuclear Science Home | Science & Discovery |...

9

Nuclear Science & Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Science & Technology Nuclear Science & Technology Nuclear Science & Technology1354608000000Nuclear Science & TechnologySome of these resources are LANL-only and will require Remote Access. /No/ Nuclear Science & Technology Some of these resources are LANL-only and will require Remote Access. Key Resources Databases Organizations Journals Key Resources International Atomic Energy Agency IAEA scientific and technical publications cover areas of nuclear power, radiation therapy, nuclear security, nuclear law, and emergency repose. Search under Publications/Books and Reports for scientific books, standards, technical guides and reports National Nuclear Data Center Nuclear physics data for basic nuclear research and for applied nuclear technologies, operated by Brookhaven.

10

Nuclear Systems Modeling, Simulation & Validation | Nuclear Science...  

NLE Websites -- All DOE Office Websites (Extended Search)

Research Areas Fuel Cycle Science & Technology Fusion Nuclear Science Isotope Development and Production Nuclear Security Science & Technology Nuclear Systems Modeling, Simulation...

11

Reactor Technology | Nuclear Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Research Areas Fuel Cycle Science & Technology Fusion Nuclear Science Isotope Development and Production Nuclear Security Science & Technology Nuclear Systems Modeling, Simulation...

12

Opportunities for Students | National Nuclear Security Administration  

NLE Websites -- All DOE Office Websites (Extended Search)

Opportunities for Students | National Nuclear Security Administration Opportunities for Students | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Opportunities for Students Home > Federal Employment > Our Jobs > Opportunities for Students Opportunities for Students Would you like to get a head start on your career and gain hands-on experience while you're still in school? NNSA offers a variety of

13

Opportunities for Students | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Opportunities for Students | National Nuclear Security Administration Opportunities for Students | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Opportunities for Students Home > Federal Employment > Our Jobs > Opportunities for Students Opportunities for Students Would you like to get a head start on your career and gain hands-on experience while you're still in school? NNSA offers a variety of

14

Employment Opportunities | ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Open Positions Job openings in ORNL's Neutron Sciences Directorate, including SNS and HFIR, can be found at http:www.ornl.govcareers. Select "View Open Positions" in the left...

15

Challenges and opportunities for computer science in services science  

Science Conference Proceedings (OSTI)

Information technology is playing more vital roles as service businesses increasingly dominate the world's economy. Computer science, which has evolved over the past 50 years, faces new opportunities and challenges to solve critical problems in services ... Keywords: computer science, services science

Hiroshi Maruyama

2008-05-01T23:59:59.000Z

16

Nuclear Science Series: Radiochemistry  

NLE Websites -- All DOE Office Websites (Extended Search)

Radiochemistry Nuclear Science Series: Radiochemistry These volumes are publicly accessible via the Library Catalog or the links below. Question? 667-5809 Email Scope This...

17

Nuclear Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Educational Outreach Educational Outreach Publications and Reports News and Awards Home | Science & Discovery | Nuclear Science Nuclear Science | Nuclear Science SHARE In World War II's Manhattan Project, ORNL helped usher in the nuclear age. Today, laboratory scientists are leaders in using nuclear technologies and systems to improve human health; explore safer, more environmentally friendly power; and better understand the structure of matter. Thanks to its nuclear heritage, ORNL is a world leader in the production of isotopes for medical purposes and research. The lab's High Flux Isotope Reactor (HFIR) and Radiochemical Engineering Development Center (REDC) together provide the western world's sole supply of californium-252, an isotope instrumental in a wide variety of uses including cancer therapy,

18

Nuclear Science Research Facilities Nuclear Science User Guide  

E-Print Network (OSTI)

LANSCE User Guide Nuclear Science Research Facilities #12;#12;Nuclear Science User Guide Table of Contents Introduction 3 Nuclear Science Research Facilities 3 The LANSCE Accelerator 4 Time structure techniques 8 Nuclear Science User Program 11 Proposal Process 13 Information for Prospective Users 14

19

Western Nuclear Science Alliance  

SciTech Connect

The primary objective of the INIE program is to strengthen nuclear science and engineering programs at the member institutions and to address the long term goal of the University Reactor Infrastructure and Education Assistance Program.

Steve Reese; George Miller; Stephen Frantz; Denis Beller; Denis Beller; Ed Morse; Melinda Krahenbuhl; Bob Flocchini; Jim Elliston

2010-12-07T23:59:59.000Z

20

Nuclear Forensics | More Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Science and Engineering Materials Science and Engineering Advanced Materials Clean Energy Materials Theory and Simulation Neutron Science Nuclear Forensics Nuclear Science Supercomputing Theory, Modeling and Simulation More Science Home | Science & Discovery | More Science | Materials Science and Engineering | Nuclear Forensics SHARE Nuclear Forensics image Tools, techniques, and expertise in nuclear fuel cycle research gained over seven decades help ORNL scientists control and track nuclear bomb-grade materials to be sure they don't fall into the wrong hands. Among the leading-edge technologies used by researchers are high-resolution techniques that allow analysis of radiation detector data in stunning detail. Researchers are also developing aerosol sampling systems to collect

Note: This page contains sample records for the topic "opportunities nuclear science" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Nuclear Science References Database  

E-Print Network (OSTI)

The Nuclear Science References (NSR) database together with its associated Web interface, is the world's only comprehensive source of easily accessible low- and intermediate-energy nuclear physics bibliographic information for more than 210,000 articles since the beginning of nuclear science. The weekly-updated NSR database provides essential support for nuclear data evaluation, compilation and research activities. The principles of the database and Web application development and maintenance are described. Examples of nuclear structure, reaction and decay applications are specifically included. The complete NSR database is freely available at the websites of the National Nuclear Data Center http://www.nndc.bnl.gov/nsr and the International Atomic Energy Agency http://www-nds.iaea.org/nsr.

B. Pritychenko; E. B?tk; B. Singh; J. Totans

2013-02-27T23:59:59.000Z

22

Nuclear Science | Publications and Reports | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

NSED Monthly Reports Reactor and Nuclear Systems Publications News and Awards Nuclear Science Home | Science & Discovery | Nuclear Science | Publications and Reports SHARE...

23

Nuclear Systems Technology | Nuclear Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Fuel Cycle Systems Criticality Safety Irradiation Experiment Development and Execution Robotics & Remote Systems Engineering and Applications Thermal & Hydraulic Experiments & Analysis Used Nuclear Fuel Storage, Transportation, and Disposal Reactor Technology Nuclear Science Home | Science & Discovery | Nuclear Science | Research Areas | Nuclear Systems Technology SHARE Nuclear Systems Technology Nuclear Systems Technology Image 2 ORNL has had historic involvement in a broad set of nuclear research areas: irradiated materials and isotopes R&D, fission and fusion reactors development, neutron scattering, fuel enrichment, used fuel recycling and disposal, etc. The skills and knowledge required to succeed in these research areas often cultivated core areas of expertise in which ORNL is

24

Nuclear Data | More Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Computer Science Computer Science Theory, Modeling and Simulation Cyber Security Bioinformatics Climate & Environment Systems Biology Neutron Data Analysis and Visualization Nuclear Data Nuclear Systems Modeling and Simulation Supercomputing and Computation More Science Home | Science & Discovery | More Science | Computer Science | Nuclear Data SHARE Nuclear Data Nuclear Data ORNL is a recognized, international leader in nuclear data research and development (R&D) to support nuclear applications analyses. For more than 40 years, ORNL has provided neutron resonance region nuclear data evaluations to the US Evaluated Nuclear Data File (ENDF/B) database, and many of the key ORNL resonance evaluations have also been adopted by international nuclear databases in Europe, Japan, China, and Russia. ORNL

25

Global Security, Medical Isotopes, and Nuclear Science  

Science Conference Proceedings (OSTI)

Over the past century basic nuclear science research has led to the use of radioactive isotopes into a wide variety of applications that touch our lives everyday. Some are obvious, such as isotopes for medical diagnostics and treatment. Others are less so, such as National/Global security issues. And some we take for granted, like the small amount of 241Am that is in every smoke detector. At the beginning of this century, we are in a position where the prevalence and importance of some applications of nuclear science are pushing the basic nuclear science community for improved models and nuclear data. Yet, at the same time, the push by the basic nuclear science community to study nuclei that are farther and farther away from stability also offer new opportunities for many applications. This talk will look at several global security applications of nuclear science, summarizing current R&D and need for improved nuclear data It will also look at how applications of nuclear science, such as to medicine, will benefit from the push for more and more powerful radioactive ion beam facilities.

Ahle, L E

2007-09-17T23:59:59.000Z

26

Chemical Sciences Division: Student & Postdoctoral Opportunities  

NLE Websites -- All DOE Office Websites (Extended Search)

STUDENT & POSTDOCTORAL OPPORTUNITIES NEWS & EVENTS CSD CONTACTS LBNL HOME Privacy & Security Notice DOE UC Berkeley Student and Postdoctoral Opportunities Current Job...

27

Funding Opportunities | U.S. DOE Office of Science (SC)  

NLE Websites -- All DOE Office Websites (Extended Search)

Funding Opportunities Funding Opportunities Basic Energy Sciences (BES) BES Home About Research Facilities Science Highlights Benefits of BES Funding Opportunities Closed Funding Opportunity Announcements (FOAs) Closed Lab Announcements Award Search Peer Review Policies EFRCs FOA Applications from Universities and Other Research Institutions Construction Review EPSCoR DOE Office of Science Graduate Fellowship (DOE SCGF) External link Early Career Research Program Basic Energy Sciences Advisory Committee (BESAC) News & Resources Contact Information Basic Energy Sciences U.S. Department of Energy SC-22/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3081 F: (301) 903-6594 E: sc.bes@science.doe.gov More Information » Funding Opportunities Print Text Size: A A A

28

Nuclear Science Day live webinar (National Nuclear Science Week) - Argonne  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Science Day live webinar Nuclear Science Day live webinar Search Go Home Postdocs Students Student Outreach Resources for Schools U.S.-based International (English) International (Other) Events IGED 2013 Science Careers in Search of Women Girls, choose a career in Nuclear Science and Technology! Argonne Nuclear Engineers tell why they chose a Nuclear Career Resources Contact Us Recent Events Science Careers in Search of Women, Apr. 18, 2013 Junior Girl Scout Workshop 'Atomic Fission Fun with the American Nuclear Society', Jan. 26, 2013 Getting to know nuclear energy: the past, the present & the future - free public lecture (Nov. 15, 2012, Argonne National Laboratory) On January 26, 2013, Argonne staff members participated in the Junior Girl Scout Workshop 'Atomic Fission Fun with the American Nuclear Society'

29

Funding Opportunities | U.S. DOE Office of Science (SC)  

NLE Websites -- All DOE Office Websites (Extended Search)

Funding Opportunities Funding Opportunities High Energy Physics (HEP) HEP Home About Research Facilities Science Highlights Benefits of HEP Funding Opportunities Closed Funding Opportunity Announcements (FOAs) Closed Lab Announcements Award Search Peer Merit / Review Policies Early Career Research Opportunities in High Energy Physics Graduate Fellows in High Energy Theory Guidelines Advisory Committees News & Resources Contact Information High Energy Physics U.S. Department of Energy SC-25/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3624 F: (301) 903-2597 E: sc.hep@science.doe.gov More Information » Funding Opportunities Print Text Size: A A A Subscribe FeedbackShare Page The Following is a list of funding opportunities in the Office of High Energy Physics (HEP). Not all Funding Opportunity Announcements (FOA) are

30

The ABC's of Nuclear Science  

NLE Websites -- All DOE Office Websites (Extended Search)

Basic Nuclear Science Basic Nuclear Science Cosmic Connection Presentations Experiments Antimatter Make a Nucleus Glossary Safety Credits Praise CPEP Speak With Us Boy Scout Merit Badge Translations Guide to the Nuclear Wall Chart About the Nuclear Wall Chart Privacy and Security Notice Other Interesting Sites Last updated: September 26, 2013 Contact Us The ABC's Of Nuclear Science The ABC's of Nuclear Science is a brief introduction to Nuclear Science. We look at Antimatter, Beta rays, Cosmic connection and much more. Visit here and learn about radioactivity - alpha, beta and gamma decay. Find out the difference between fission and fusion. Learn about the structure of the atomic nucleus. Learn how elements on the earth were produced. Do you know that you are being bombarded constantly by nuclear radiation from the

31

GARS | Nuclear Science and Technology Department  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Science and Technology Department Exploring Nuclear Technologies for Our Energy Future Brookhaven National Laboratory's Department of Nuclear Science and Technology...

32

Educational Outreach | Nuclear Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Science Research Areas Research Highlights Facilities and Capabilities Educational Outreach University Engagement STEM Outreach Publications and Reports News and Awards...

33

Applications of Nuclear Science and Technology| U.S. DOE Office of Science  

Office of Science (SC) Website

Applications of Nuclear Science and Technology Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Spinoff Applications SBIR/STTR Applications of Nuclear Science and Technology Funding Opportunities Nuclear Science Advisory Committee (NSAC) News & Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3613 F: (301) 903-3833 E: sc.np@science.doe.gov More Information » Benefits of NP Applications of Nuclear Science and Technology Print Text Size: A A A RSS Feeds FeedbackShare Page Applications of Nuclear Science and Technology (ANS&T) Exchange Meeting: August 22-23, 2011 Hilton Washington DC/Rockville Hotel & Executive Meeting Center

34

Small Business Opportunity Sessions | National Nuclear Security...  

National Nuclear Security Administration (NNSA)

Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

35

Science Challenges & Opportunities for an Advanced X-ray Free...  

NLE Websites -- All DOE Office Websites (Extended Search)

Science Challenges & Opportunities for an Advanced X-ray Free-electron Laser Wednesday, October 2, 2013 - 3:00pm SLAC, Kavli 3rd Floor Conference Room Robert Schoenlein, Lawrence...

36

National Science Foundation Opportunities for Collaborative Research  

Science Conference Proceedings (OSTI)

This results from the recognition that significant science and engineering ... with universities as part of the NSF Small Business activity. competitive R&D.

37

Promethean Boldness - Argonne's Nuclear Science and Technology...  

NLE Websites -- All DOE Office Websites (Extended Search)

Reactor Argonne Reactor Tree CP-1 70th Anniversary CP-1 70th Anniversary Argonne's Nuclear Science and Technology Legacy Argonne's Nuclear Science and Technology Legacy...

38

Health Sciences Fellowship, Grant and Prize Opportunities  

E-Print Network (OSTI)

, 393­396. Chouinard, S., Poulin, J., Stip, E., and Godbout, R. (2004). Sleep in untreated patients. An opportunity for prevention? JAMA 262, 1479­1484. Forest, G., Poulin, J., Daoust, A. M., Lussier, I., Stip, E. M., Forest, G., Stip, E.,andGodbout,R.(2003).Sleep architecture and its clinical correlates in first

Abagyan, Ruben

39

Fuel Cycle Science & Technology | Nuclear Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Fuel Cycle Systems Radiochemical Separation & Processing Recycle & Waste Management Uranium Enrichment Used Nuclear Fuel Storage, Transportation, and Disposal Fusion Nuclear Science Isotope Development and Production Nuclear Security Science & Technology Nuclear Systems Modeling, Simulation & Validation Nuclear Systems Technology Reactor Technology Nuclear Science Home | Science & Discovery | Nuclear Science | Research Areas | Fuel Cycle Science & Technology SHARE Fuel Cycle Science and Technology The ORNL expertise and experience across the entire nuclear fuel cycle is underpinned by extensive facilities and a comprehensive modeling and simulation capability ORNL supports the understanding, development, evaluation and deployment of

40

Isotope Development & Production | Nuclear Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Medical Radioisotope Radiochemical Separation & Processing Strategic Isotope Production Super Heavy Element Discovery Nuclear Security Science & Technology Nuclear Systems...

Note: This page contains sample records for the topic "opportunities nuclear science" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Index to Nuclear Science Wall Chart  

NLE Websites -- All DOE Office Websites (Extended Search)

The Nucleus Chart of the Nuclides Radioactivity Expansion of the Universe Phases of Nuclear Matter Unstable Nuclei Nuclear Energy Applications of Nuclear Science Chapter 2 The...

42

R&D Opportunities for HBCUs, from the National Nuclear Security...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

R&D Opportunities for HBCUs, from the National Nuclear Security Administration R&D Opportunities for HBCUs, from the National Nuclear Security Administration A guide to working...

43

Office of Nuclear Threat Science | National Nuclear Security Administration  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Threat Science | National Nuclear Security Administration Nuclear Threat Science | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog The National Nuclear Security Administration Office of Nuclear Threat Science Home > About Us > Our Programs > Counterterrorism and Counterproliferation > Office of Nuclear Threat Science Office of Nuclear Threat Science

44

Challenges and Opportunities for Women in Science  

Science Conference Proceedings (OSTI)

The program covered the cost of having one parent take a quarter off, and ... The trend could self-perpetuate, Hogan said, and the NSF wanted to stop the cycle. .... in the world of science fundingEnergy, NASA, and NSFwould provide an...

45

Funding Opportunities | U.S. DOE Office of Science (SC)  

NLE Websites -- All DOE Office Websites (Extended Search)

Opportunities Opportunities Funding Opportunities Grants & Contracts Support Award Search Find Funding Early Career Research Program Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 JGI Illumina Genome Sequencers BNL Joint Genome Institute genome sequencers. Lawrence Berkeley National Laboratory Print Text Size: A A A RSS Feeds FeedbackShare Page The Office of Science issues two types of funding announcements: Funding Opportunity Announcements (FOAs), which may be open to one or more institution types (please read the eligibility requirements in a given FOA for details); and DOE National Laboratory Announcements, which are open only to DOE Laboratories. FOAs and DOE National Laboratory Announcements may be issued either as

46

Science Opportunities at ORNL's Neutron Sources  

Science Conference Proceedings (OSTI)

The Neutron Sciences Directorate at Oak Ridge National Laboratory (ORNL) operates two of the world's most advanced neutron scattering research facilities: the Spallation Neutron Source (SNS) and the High Flux Isotope Reactor (HFIR). Our vision is to provide unprecedented capabilities for understanding structure and properties across the spectrum of biology, chemistry, physics, and engineering, and to stay at the leading edge of neutron science by developing new instruments, tools, and services. This talk will provide an update on the operations of the two research facilities and highlight the significant research that is emerging. For example, scientists from ORNL are at the forefront of research on a new class of iron-based superconductors based on experiments performed at the Triple-Axis Spectrometer at HFIR and ARCS at SNS. The complementary nature of neutron and x-ray techniques will be discussed to spark discussion among attendees.

Anderson, Ian [ORNL, SNS

2010-02-03T23:59:59.000Z

47

The Nuclear Science References Database  

E-Print Network (OSTI)

The Nuclear Science References (NSR) database together with its associated Web interface, is the world's only comprehensive source of easily accessible low- and intermediate-energy nuclear physics bibliographic information for more than 210,000 articles since the beginning of nuclear science. The weekly-updated NSR database provides essential support for nuclear data evaluation, compilation and research activities. The principles of the database and Web application development and maintenance are described. Examples of nuclear structure, reaction and decay applications are specifically included. The complete NSR database is freely available at the websites of the National Nuclear Data Center http://www.nndc.bnl.gov/nsr and the International Atomic Energy Agency http://www-nds.iaea.org/nsr.

Pritychenko, B; Singh, B; Totans, J

2013-01-01T23:59:59.000Z

48

Public to have rare opportunity to tour Neutron Science Center  

NLE Websites -- All DOE Office Websites (Extended Search)

Rosenfest: celebrate Louis Rosen, tour LANSCE Rosenfest: celebrate Louis Rosen, tour LANSCE Public to have rare opportunity to tour Neutron Science Center Tour attendees can expect to see many facets of the LANSCE, including areas along the linear accelerator beam line, the control room area, and one or more experimental areas. May 10, 2011 Aerial View of Neutron Science Center Aerial View of Neutron Science Center Contact James Rickman Communicatons Office (505) 665-9203 Email LANL Rosenfest will celebrate life of LANSCE founder Louis Rosen and offer tour LOS ALAMOS, New Mexico, May 10, 2011-Members of the public will have an unusual opportunity to tour the Los Alamos Neutron Science Center from 1 to 5 p.m. on Friday, May 20, 2011, as part of Rosenfest, a celebration of LANSCE founder Louis Rosen and the remarkable facility he conceived. In

49

Office of Nuclear Threat Science | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Threat Science | National Nuclear Security Administration Threat Science | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog The National Nuclear Security Administration Office of Nuclear Threat Science Home > About Us > Our Programs > Counterterrorism and Counterproliferation > Office of Nuclear Threat Science Office of Nuclear Threat Science

50

Basic Nuclear Science Information  

NLE Websites -- All DOE Office Websites (Extended Search)

element. Only through such radioactive decays or nuclear reactions can transmutation, the age-old dream of the alchemists, actually occur. The mass number, A, of an a particle is...

51

Fusion Nuclear Science and Technology (FNST)Fusion Nuclear Science and Technology (FNST) Challenges and Facilities  

E-Print Network (OSTI)

Fusion Nuclear Science and Technology (FNST)Fusion Nuclear Science and Technology (FNST) Challenges these issues. 2 #12;FNST is the science, engineering, technology and materials Fusion Nuclear Science & Technology (FNST) FNST is the science, engineering, technology and materials for the fusion nuclear

Abdou, Mohamed

52

Nuclear Science-A Guide to the Nuclear Science Wall Chart  

NLE Websites -- All DOE Office Websites (Extended Search)

12 Tools of Nuclear Science Presently, the most commonly used tools of nuclear science are accelerators (see Chapter 11), reactors, detectors, and computers. The technological...

53

Nuclear Science and Engineering - Divisions  

NLE Websites -- All DOE Office Websites (Extended Search)

Home Home NSED Divisions The Nuclear Science and Engineering Directorate (NSED) organization is composed of ORNL's only DOE Energy Innovation Hub, a program office, and the following five divisions. Fuel Cycle and Isotopes Division (FCID) FCID focuses on advancing the applications of medical, industrial, and research isotopes (developing separation processes for the processing of radioisotopes and spent nuclear fuels) and designing robotic systems and unique facilities for the safe handling of nuclear materials. Fusion Energy Division (FE) FE is developing the understanding required for an attractive fusion energy source through integrated research, and is pursuing near term applications of plasma science and technology in support of national goals. Global Nuclear Security Technology Division (GNSTD)

54

Nuclear Science & Engineering Directorate  

E-Print Network (OSTI)

, and allowable fuel burn-up Typical crud loading in a PWR fuel assembly ( NEI, 2012) CASL is advancing power plant with high-fidelity R&D capabilities · Provide analysis capability on a spatial scale never extremely large problems challenging the U.S. nuclear power industry · Software validation against measured

Pennycook, Steve

55

WEB RESOURCE: Glossary of Nuclear Science  

Science Conference Proceedings (OSTI)

Feb 16, 2007 ... Topic Summary: An animated glossary of nuclear science terms ... A number of animations have been created to illustrate nuclear decay and...

56

Department of Energy Issues Funding Opportunity Announcement...  

NLE Websites -- All DOE Office Websites (Extended Search)

for research reactors and other nuclear science and engineering laboratories and facilities. "This Funding Opportunity Announcement demonstrates our continued commitment...

57

Materials Science of Nuclear Waste Management I  

Science Conference Proceedings (OSTI)

Mar 6, 2013 ... Separation of the nuclear waste stream into actinides and fission products offers new opportunities for development of ceramic waste forms.

58

Research Highlights | Nuclear Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

News and Awards News and Awards Nuclear Science Home | Science & Discovery | Nuclear Science | Research Highlights SHARE Research Highlights 1-3 of 3 Results Neutron scattering continues as a vital tool in superconductivity studies January 01, 2011 - In 2008, the totally unexpected discovery of a New class of superconductors, the iron pnictides, set off A Feverish international effort to understand them. Fabrication and Characterization of Uranium-based High Temperature Reactor Fuel June 01, 2013 - The Uranium Fuel Development Laboratory is a modern R&D scale lab for the fabrication and characterization of uranium-based high temperature reactor fuel. Light Water Reactor Fuel Cladding Research June 01, 2013 - ORNL is the focus point for Light Water Reactor (LWR)

59

Argonne's Nuclear Science and Technology Legacy  

NLE Websites -- All DOE Office Websites (Extended Search)

Achievements > Argonne's Nuclear Science and Technology Legacy About Director's Welcome Organization Achievements Highlights Fact Sheets, Brochures & Other Documents Multimedia...

60

Savannah River Remediation Intern Sees Nuclear Industry as Job Opportunity  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Savannah River Remediation Intern Sees Nuclear Industry as Job Savannah River Remediation Intern Sees Nuclear Industry as Job Opportunity Savannah River Remediation Intern Sees Nuclear Industry as Job Opportunity July 9, 2012 - 10:00am Addthis Spencer Isom, second year engineering intern for Savannah River Remediation (SRR) and fourth summer at Savannah River Site (SRS), performs a standard equipment check at Saltstone Production Facility. | Photo courtesy of Savannah River Site Spencer Isom, second year engineering intern for Savannah River Remediation (SRR) and fourth summer at Savannah River Site (SRS), performs a standard equipment check at Saltstone Production Facility. | Photo courtesy of Savannah River Site Maddie M. Blair Public Affairs Intern, Savannah River Remediation Why does she keep coming back? "There are so many fascinating processes, people, and work

Note: This page contains sample records for the topic "opportunities nuclear science" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Savannah River Remediation Intern Sees Nuclear Industry as Job Opportunity  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Savannah River Remediation Intern Sees Nuclear Industry as Job Savannah River Remediation Intern Sees Nuclear Industry as Job Opportunity Savannah River Remediation Intern Sees Nuclear Industry as Job Opportunity July 9, 2012 - 10:00am Addthis Spencer Isom, second year engineering intern for Savannah River Remediation (SRR) and fourth summer at Savannah River Site (SRS), performs a standard equipment check at Saltstone Production Facility. | Photo courtesy of Savannah River Site Spencer Isom, second year engineering intern for Savannah River Remediation (SRR) and fourth summer at Savannah River Site (SRS), performs a standard equipment check at Saltstone Production Facility. | Photo courtesy of Savannah River Site Maddie M. Blair Public Affairs Intern, Savannah River Remediation Why does she keep coming back? "There are so many fascinating processes, people, and work

62

Opportunities for discovery: Theory and computation in Basic Energy Sciences  

SciTech Connect

New scientific frontiers, recent advances in theory, and rapid increases in computational capabilities have created compelling opportunities for theory and computation to advance the scientific mission of the Office of Basic Energy Sciences (BES). The prospects for success in the experimental programs of BES will be enhanced by pursuing these opportunities. This report makes the case for an expanded research program in theory and computation in BES. The Subcommittee on Theory and Computation of the Basic Energy Sciences Advisory Committee was charged with identifying current and emerging challenges and opportunities for theoretical research within the scientific mission of BES, paying particular attention to how computing will be employed to enable that research. A primary purpose of the Subcommittee was to identify those investments that are necessary to ensure that theoretical research will have maximum impact in the areas of importance to BES, and to assure that BES researchers will be able to exploit the entire spectrum of computational tools, including leadership class computing facilities. The Subcommittee s Findings and Recommendations are presented in Section VII of this report.

Harmon, Bruce; Kirby, Kate; McCurdy, C. William

2005-01-11T23:59:59.000Z

63

National Nuclear Science Week live talks today | National Nuclear Security  

NLE Websites -- All DOE Office Websites (Extended Search)

Science Week live talks today | National Nuclear Security Science Week live talks today | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > NNSA Blog > National Nuclear Science Week live talks today National Nuclear Science Week live talks today Posted By Office of Public Affairs National Nuclear Science Week Students and teachers today will get the chance to talk live with nuclear

64

National Nuclear Science Week live talks today | National Nuclear Security  

National Nuclear Security Administration (NNSA)

Science Week live talks today | National Nuclear Security Science Week live talks today | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > NNSA Blog > National Nuclear Science Week live talks today National Nuclear Science Week live talks today Posted By Office of Public Affairs National Nuclear Science Week Students and teachers today will get the chance to talk live with nuclear

65

Multimedia Resources related to Argonne's Nuclear Science and...  

NLE Websites -- All DOE Office Websites (Extended Search)

Science and Technology Legacy > Multimedia Director's Welcome Organization Achievements Nuclear Energy Nuclear Reactors CP-1 70th Anniversary Argonne's Nuclear Science and...

66

Nuclear Materials Science:Materials Science Technology:MST-16...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Materials Science (MST-16) Home About Us MST Related Links Research Highlights Focus on Facilities MST e-News Experimental Physical Sciences Vistas MaRIE: Matter-Radiation...

67

Nuclear Science and Technology Division - Home page  

NLE Websites -- All DOE Office Websites (Extended Search)

image image image - mural in bldg 5200 image image Fuels, Isotopes, and Nuclear Materials image Fuels, Isotopes, and Nuclear Materials Nuclear System Analysis, Design, and Safety image Nuclear System Analysis, Design, and Safety WELCOME Performing basic and applied R&D for the Department of Energy, the National Nuclear Security Administration, and other government agencies, as well as supporting and leveraging industrial partnerships Mission Statement The Nuclear Science and Technology Division at Oak Ridge National Laboratory will provide leading-edge science, technology, and engineering research that support our Nation's nuclear science and technology enterprise across a broad spectrum of applications including but not limited to advanced nuclear power systems, nuclear medicine,and nuclear

68

Nuclear Data | More Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Data SHARE Nuclear Data Nuclear Data ORNL is a recognized, international leader in nuclear data research and development (R&D) to support nuclear applications analyses. For more...

69

WEB RESOURCE: Nuclear Science and Technology  

Science Conference Proceedings (OSTI)

Feb 19, 2007 ... This page offers lecture notes and presentations from a course on nuclear science and technology. Presentation slides and audio files are also...

70

Nuclear Science-A Guide to the Nuclear Science Wall Chart  

NLE Websites -- All DOE Office Websites (Extended Search)

Science-A Guide to the Nuclear Science Wall Chart 2004 Contemporary Physics Education Project (CPEP) 9-1 Chapter 9 Phases of Nuclear Matter As we know, water (H 2 O) can exist as...

71

Fusion Nuclear Science and Technology ProgramFusion Nuclear Science and Technology Program Issues and Strategy for Fusion Nuclear Science Facility (FNSF)  

E-Print Network (OSTI)

Need for Fusion Nuclear Science and Technology ProgramFusion Nuclear Science and Technology Program ­Issues and Strategy for Fusion Nuclear Science Facility (FNSF) ­Key R&D Areas to begin NOW (modeling 12, 2010 #12;Fusion Nuclear Science and Technology (FNST) FNST is the science engineering technology

Abdou, Mohamed

72

Nuclear Science Division: 1993 Annual report  

Science Conference Proceedings (OSTI)

This report describes the activities of the Nuclear Science Division for the 1993 calendar year. This was another significant year in the history of the Division with many interesting and important accomplishments. Activities for the following programs are covered here: (1) nuclear structure and reactions program; (2) the Institute for Nuclear and Particle Astrophysics; (3) relativistic nuclear collisions program; (4) nuclear theory program; (5) nuclear data evaluation program, isotope project; and (6) 88-inch cyclotron operations.

Myers, W.D. [ed.

1994-06-01T23:59:59.000Z

73

NUCLEAR SCIENCE REFERENCES CODING MANUAL  

Science Conference Proceedings (OSTI)

This manual is intended as a guide for Nuclear Science References (NSR) compilers. The basic conventions followed at the National Nuclear Data Center (NNDC), which are compatible with the maintenance and updating of and retrieval from the Nuclear Science References (NSR) file, are outlined. The NSR database originated at the Nuclear Data Project (NDP) at Oak Ridge National Laboratory as part of a project for systematic evaluation of nuclear structure data.1 Each entry in this computer file corresponds to a bibliographic reference that is uniquely identified by a Keynumber and is describable by a Topic and Keywords. It has been used since 1969 to produce bibliographic citations for evaluations published in Nuclear Data Sheets. Periodic additions to the file were published as the ''Recent References'' issues of Nuclear Data Sheets prior to 2005. In October 1980, the maintenance and updating of the NSR file became the responsibility of the NNDC at Brookhaven National Laboratory. The basic structure and contents of the NSR file remained unchanged during the transfer. In Chapter 2, the elements of the NSR file such as the valid record identifiers, record contents, and text fields are enumerated. Relevant comments regarding a new entry into the NSR file and assignment of a keynumber are also given in Chapter 2. In Chapter 3, the format for keyword abstracts is given followed by specific examples; for each TOPIC, the criteria for inclusion of an article as an entry into the NSR file as well as coding procedures are described. Authors preparing Keyword abstracts either to be published in a Journal (e.g., Nucl. Phys. A) or to be sent directly to NNDC (e.g., Phys. Rev. C) should follow the illustrations in Chapter 3. The scope of 1See W.B.Ewbank, ORNL-5397 (1978). the literature covered at the NNDC, the categorization into Primary and Secondary sources, etc., is discussed in Chapter 4. Useful information regarding permitted character sets, recommended abbreviations, etc., is given in the Appendices. The NSR database has been in existence for decades, and responsibility for its upkeep has passed through many hands. Those familiar with the contents of NSR will note that not all of the formats and conventions discussed in this manual have always been adhered to. In recent years, however, these conventions have been followed fairly consistently, and it is expected that the preparation of new entries will follow these guidelines. The most up-to-date information about NSR contents and policies can be found at the NSR web site: http://www.nndc.bnl.gov/nsr. This manual is an update to BNL-NCS-51800 (Rev. 08/96) by S. Ramavataram and C.L. Dunford. Discussions with Mark Kellett of the IAEA are gratefully acknowledged, as are comments and suggestions from the NNDC staff and members of the U.S. Nuclear Data Program. This manuscript has been authored by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH1-886 with the U.S.Department of Energy.

WINCHELL,D.F.

2007-04-01T23:59:59.000Z

74

NUCLEAR SCIENCE ANNUAL REPORT 1975  

E-Print Network (OSTI)

Gove and A. H. Wapstra, Nuclear Data Tables 11, 127 (1972).P. Jackson, Chalk River Nuclear Laboratories Report (1975)national Conference on Nuclear Structure and Spec troscopy,

Authors, Various

2010-01-01T23:59:59.000Z

75

Stewardship Science Academic Alliances | National Nuclear Security  

National Nuclear Security Administration (NNSA)

| National Nuclear Security | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Stewardship Science Academic Alliances Stewardship Science Academic Alliances Home > About Us > Our Programs > Defense Programs > Office of Research, Development, Test, and Evaluation > University Partnerships / Academic Alliances > Stewardship Science Academic Alliances

76

Nuclear Wallet Cards at BNL | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Wallet Cards at BNL Wallet Cards at BNL Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Spinoff Applications Spinoff Archives SBIR/STTR Applications of Nuclear Science and Technology Funding Opportunities Nuclear Science Advisory Committee (NSAC) News & Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3613 F: (301) 903-3833 E: sc.np@science.doe.gov More Information » Spinoff Archives Nuclear Wallet Cards at BNL Print Text Size: A A A RSS Feeds FeedbackShare Page Application/instrumentation: Nuclear Wallet Cards Developed at: National Nuclear Data Center, BNL Developed in: 2000-current Result of NP research: DOE-NP nuclear data program Application currently being supported by:

77

Global Nuclear Energy Initiative at LBNL | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Global Nuclear Energy Initiative at Global Nuclear Energy Initiative at LBNL Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Spinoff Applications Spinoff Archives SBIR/STTR Applications of Nuclear Science and Technology Funding Opportunities Nuclear Science Advisory Committee (NSAC) News & Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3613 F: (301) 903-3833 E: sc.np@science.doe.gov More Information » Spinoff Archives Global Nuclear Energy Initiative at LBNL Print Text Size: A A A RSS Feeds FeedbackShare Page Application/instrumentation: Global nuclear energy initiative Developed at: 88-inch Cyclotron, Lawrence Berkeley National Laboratory Developed in:

78

BES Funding Opportunities | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

BES Funding Opportunities BES Funding Opportunities Materials Sciences and Engineering (MSE) Division MSE Home About Research Areas Energy Frontier Research Centers (EFRCs) DOE Energy Innovation Hubs BES Funding Opportunities The Computational Materials and Chemical Sciences Network (CMCSN) Theoretical Condensed Matter Physics Scientific Highlights Reports and Activities Principal Investigators' Meetings BES Home Research Areas BES Funding Opportunities Print Text Size: A A A RSS Feeds FeedbackShare Page There are no funding opportunities specific to the Materials Sciences and Engineering Division at this time. Please visit the BES Funding Opportunities Page (link below) for general information on preparing applications to BES programs and for information on Funding Opportunities available to broader audiences than Materials

79

Los Alamos Neutron Science Center | National Nuclear Security...  

National Nuclear Security Administration (NNSA)

Neutron Science Center | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response...

80

2013 NNSA Science Council | National Nuclear Security Administration  

NLE Websites -- All DOE Office Websites (Extended Search)

NNSA Science Council | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response...

Note: This page contains sample records for the topic "opportunities nuclear science" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Department of Energy Issues FY 2012 Funding Opportunity Announcements for U.S. Universities to Support Nuclear Energy Education and Infrastructure  

Energy.gov (U.S. Department of Energy (DOE))

The U.S. Department of Energys Office of Nuclear Energy today announced two new fiscal year 2012 Funding Opportunity Announcements to support university and college efforts to build or expand their nuclear science and engineering research and education capabilities.

82

Department of Energy Issues FY 2012 Funding Opportunity Announcements for U.S. Universities to Support Nuclear Energy Education and Infrastructure  

Energy.gov (U.S. Department of Energy (DOE))

The U.S. Department of Energys Office of Nuclear Energy today announced two new fiscal year (FY) 2012 Funding Opportunity Announcements (FOAs) to support university and college efforts to build or expand their nuclear science and engineering research and education capabilities.

83

Opportunities for Multimodal CARS Microscopy in Materials Science  

Science Conference Proceedings (OSTI)

Symposium, Optical and X-ray Imaging Techniques for Material Characterization. Presentation Title, Opportunities for Multimodal CARS Microscopy in Materials...

84

Funding Opportunities | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Closed Funding Opportunity Announcements (FOAs) Closed Lab Announcements Award Search Peer Review Policy Grants & Contracts Guidance Laboratory Scientific Focus Area...

85

DOE-NSF-NIH Workshop on Opportunities in THz Science, February 12-14, 2004  

SciTech Connect

This is the report of the Workshop on Opportunities in THz Science, held on February 12-14, 2004 in Arlington, VA. This workshop brought together researchers who use or produce THz radiation for physics, chemistry, biology, medicine, and materials science to discuss new research opportunities and common resource needs. The charge from the sponsors of the workshop was to focus on basic science questions within these disciplines that have and can be answered using THz radiation.

Sherwin, M.A.; Bucksbaum, P.H.; Schmuttenmaer, C. A.; Allen, J.; Biedron, S.; Carr, L.; Chamberlain, M.; Crowe, T.; DeLucia, F.; Hu, Q.; Jones, B.; Noordham, B.; Norris, T.; Orenstein, J.; Unterrainer, K.; Van der Meer, L.; Wilke, I.; Williams, G.; Zhang, X.-C.; Cheville, A.; Markelz, A.; Parks, B.; Plancken, P.; Shan, J.; Austin, B.; Basov, D.; Citrin, D.; Grundfest, W.; Heinz, T.; Kono, J.; Mittleman, D.; Siegel, P.; Taylor, T.; Jones, B.; Markelz, A.; Martin, M.; Nelson, K.; Smith, T.; Williams, G.; Allen, M.; Averitt, R.; Brunel, L.; Heilweil, T.; Heyman, J.; Jepsen, P.; Kaind, R.; Leemans, W.; Mihaly, L.; Rangan, C.; Tom, H.; Wallace, V.; Zimdars, D.

2004-02-14T23:59:59.000Z

86

Funding Opportunities | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Funding Opportunities Funding Opportunities Nuclear Energy Advisory Committee Funding Opportunities Document Library Funding Opportunities FUNDING OPPORTUNITIES AND SOLICITATIONS...

87

Preparing the Nuclear Security Science Minds of Tomorrow | National...  

National Nuclear Security Administration (NNSA)

the Nuclear Security Science Minds of Tomorrow | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy...

88

Fusion Nuclear Science Pathways Assessment  

Science Conference Proceedings (OSTI)

With the strong commitment of the US to the success of the ITER burning plasma mission, and the project overall, it is prudent to consider how to take the most advantage of this investment. The production of energy from fusion has been a long sought goal, and the subject of several programmatic investigations and time line proposals [1]. The nuclear aspects of fusion research have largely been avoided experimentally for practical reasons, resulting in a strong emphasis on plasma science. Meanwhile, ITER has brought into focus how the interface between the plasma and engineering/technology, presents the most challenging problems for design. In fact, this situation is becoming the rule and no longer the exception. ITER will demonstrate the deposition of 0.5 GW of neutron heating to the blanket, deliver a heat load of 10-20 MW/m2 or more on the divertor, inject 50-100 MW of heating power to the plasma, all at the expected size scale of a power plant. However, in spite of this, and a number of other technologies relevant power plant, ITER will provide a low neutron exposure compared to the levels expected to a fusion power plant, and will purchase its tritium entirely from world reserves accumulated from decades of CANDU reactor operations. Such a decision for ITER is technically well founded, allowing the use of conventional materials and water coolant, avoiding the thick tritium breeding blankets required for tritium self-sufficiency, and allowing the concentration on burning plasma and plasma-engineering interface issues. The neutron fluence experienced in ITER over its entire lifetime will be ~ 0.3 MW-yr/m2, while a fusion power plant is expected to experience 120-180 MW-yr/m2 over its lifetime. ITER utilizes shielding blanket modules, with no tritium breeding, except in test blanket modules (TBM) located in 3 ports on the midplane [2], which will provide early tests of the fusion nuclear environment with very low tritium production (a few g per year).

C.E. Kessel, et. al.

2012-02-23T23:59:59.000Z

89

Nuclear Science-A Guide to the Nuclear Science Wall Chart  

NLE Websites -- All DOE Office Websites (Extended Search)

fields, nuclear scientists generally work with a great interest and excitement for the science. Understanding the building blocks of nature and the physical laws that govern them...

90

Early Career Research Opportunities | U.S. DOE Office of Science (SC)  

NLE Websites -- All DOE Office Websites (Extended Search)

Early Career Research Opportunities in High Energy Physics Early Career Research Opportunities in High Energy Physics High Energy Physics (HEP) HEP Home About Research Facilities Science Highlights Benefits of HEP Funding Opportunities Closed Funding Opportunity Announcements (FOAs) Closed Lab Announcements Award Search Peer Merit / Review Policies Early Career Research Opportunities in High Energy Physics Graduate Fellows in High Energy Theory Guidelines Advisory Committees News & Resources Contact Information High Energy Physics U.S. Department of Energy SC-25/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3624 F: (301) 903-2597 E: sc.hep@science.doe.gov More Information » Funding Opportunities Early Career Research Opportunities in High Energy Physics Print Text Size: A A A RSS Feeds FeedbackShare Page

91

Nuclear Physics Related Brochures | U.S. DOE Office of Science (SC)  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Nuclear Physics Related Brochures and Videos Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Funding Opportunities Nuclear Science Advisory Committee (NSAC) News & Resources NP Workforce Survey Results .pdf file (258KB) Links Databases Workshop Reports Nuclear Physics Related Brochures and Videos Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3613 F: (301) 903-3833 E: sc.np@science.doe.gov More Information » News & Resources Nuclear Physics Related Brochures and Videos Print Text Size: A A A RSS Feeds FeedbackShare Page Brochures Accelerating Innovation NP Highlights Image Accelerating Innovation (2011) .pdf file (1.2MB): How nuclear physics benefits us all

92

Research Areas | Nuclear Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Simulation & Validation Nuclear Systems Technology Reactor Technology Research Highlights Facilities and Capabilities Educational Outreach Publications and Reports News and Awards...

93

Opportunity  

NLE Websites -- All DOE Office Websites (Extended Search)

Reduction of Viscosity and Refractory Corrosion Opportunity Research is active on the patent pending technology, titled "Basic Refractory and Slag Management for Petcoke Carbon...

94

Nuclear Science and Engineering Education Sourcebook | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Science and Engineering Education Sourcebook Science and Engineering Education Sourcebook Nuclear Science and Engineering Education Sourcebook The Nuclear Science and Engineering Education Sourcebook is a repository of critial information on nuclear engineering programs at U.S. colleges and universities. It includes detailed information such as nuclear engineering enrollments, degrees, and faculty expertise. In this latest edition, science faculty and programs relevant to nuclear energy are also included. NuclearScienceEngineeringSourcebook2013.pdf More Documents & Publications University Research Reactor Task Force to the Nuclear Energy Research Advisory Committee The Future of University Nuclear Engineering Programs and University Research and Training Reactors Clark Atlanta Universities (CAU) Energy Related Research Capabilities

95

New Horizons on the Nuclear Landscape | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Science Highlights » 2012 Science Highlights » 2012 » New Horizons on the Nuclear Landscape Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Funding Opportunities Nuclear Science Advisory Committee (NSAC) News & Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3613 F: (301) 903-3833 E: sc.np@science.doe.gov More Information » June 2012 New Horizons on the Nuclear Landscape New calculations have quantified the boundaries and uncertainties of the 'chart of the nuclides'-the extended periodic table of all matter. Print Text Size: A A A Subscribe FeedbackShare Page Click to enlarge photo. Enlarge Photo Image courtesy of University of Tennessee/ORNL

96

Nuclear Science Division Annual Report 1995-1996  

E-Print Network (OSTI)

Saladin5, and C.H. Yu6 Nuclear Science Division, LawrenceMoretto, G.J. Wozniak, Nuclear Science Division, LawrenceComment on Probing the Nuclear Liquid-Gas Phase Transition

Authors, Various

2010-01-01T23:59:59.000Z

97

Nuclear Resonance Fluorescence at MIT | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Resonance Fluorescence at MIT Resonance Fluorescence at MIT Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Spinoff Applications Spinoff Archives SBIR/STTR Applications of Nuclear Science and Technology Funding Opportunities Nuclear Science Advisory Committee (NSAC) News & Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3613 F: (301) 903-3833 E: sc.np@science.doe.gov More Information » Spinoff Archives Nuclear Resonance Fluorescence at MIT Print Text Size: A A A RSS Feeds FeedbackShare Page Application/instrumentation: Material Identification and Object Imaging Using Nuclear Resonance Fluorescence Developed at: Massachusetts Institute of Technology

98

Nuclear Medicine | More Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Medicine Nuclear Medicine SHARE Nuclear Medicine The Medical Isotope Program is focused on the development of: improved reactor production and processing methods to provide medical radioisotopes; new radionuclide generator systems; design and evaluation of new radiopharmaceuticals for applications in nuclear medicine and oncology; and association with Medical Cooperative Programs throughout the world for the further pre-clinical testing and clinical evaluation of agents developed at ORNL. In the United States, only ORNL has the combined resources of a stable isotope inventory, the High Flux Isotope Reactor (HFIR), hot cell processing capabilities, and a wide range of support functions required for such research. These collective resources provide unique capabilities for

99

Opportunities and Challenges to Careers in Materials Science and ...  

Science Conference Proceedings (OSTI)

... employer (job location (domestic or foreign, staff versus management, etc.) ... Materials Science and Engineering in the Canadian Oil Sands - Challenges &...

100

New Funding Opportunities | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

New » New Funding Opportunities New » New Funding Opportunities Chemical Sciences, Geosciences, & Biosciences (CSGB) Division CSGB Home About Staff Listings/Contact Information What's New Research Areas Scientific Highlights Reports & Activities Principal Investigators' Meetings BES Home What's New New Funding Opportunities Print Text Size: A A A RSS Feeds FeedbackShare Page New Grant Applications from Universities and Other Research Institutions NEW FUNDING OPPORTUNITY Computational Materials and Chemical Sciences Network (CMCSN) Program (Closed) In FY 2011, the U.S. Department of Energy, Office of Basic Energy Sciences, will provide support for starting new Computational Materials and Chemical Sciences Network (CMCSN) projects. The CMCSN program supports fundamental research activities in theory and computation relevant to the BES mission.

Note: This page contains sample records for the topic "opportunities nuclear science" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Nuclear Science--A Guide to the Nuclear Science Wall Chart 2003 Contemporary Physics Education Project (CPEP)  

E-Print Network (OSTI)

Nuclear Science--A Guide to the Nuclear Science Wall Chart ©2003 Contemporary Physics Education Project (CPEP) 7-1 Chapter 7 Nuclear Reactions Nuclear reactions and nuclear scattering are used, protons, alphas, or "heavy ions"), creates these reactions when they strike a target nucleus. Nuclear

102

Media Mentions | Nuclear Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

nuclear security and safeguards at the Safeguards Laboratory at Oak Ridge National Laboratory (ORNL) from October 15-19, 2012. Faculty members Dr. Craig Marianno from NSSPI and Dr...

103

New Funding Opportunities | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

New Funding Opportunities New Funding Opportunities Materials Sciences and Engineering (MSE) Division MSE Home About Staff Listings/Contact Information What's New Research Areas Scientific Highlights Reports and Activities Principal Investigators' Meetings BES Home What's New New Funding Opportunities Print Text Size: A A A RSS Feeds FeedbackShare Page New Grant Applications from Universities and Other Research Institutions - Follow link to Office of Science Annual Notice of Availability of Grants and Cooperative Agreements Computational Materials and Chemical Sciences Network (CMCSN) Program (Closed) In FY 2011, the U.S. Department of Energy, Office of Basic Energy Sciences, will provide support for starting new Computational Materials and Chemical Sciences Network (CMCSN) projects. The CMCSN program supports fundamental

104

Nuclear Science References Coding Manual D.F. Winchell  

E-Print Network (OSTI)

Nuclear Science References Coding Manual D.F. Winchell National Nuclear Data Center Brookhaven and coding procedures for specific topics . . 18 3.2.1 NUCLEAR REACTIONS . . . . . . . . . . . . . . . . 19 3.2.2 RADIOACTIVITY . . . . . . . . . . . . . . . . . . . . 20 3.2.3 NUCLEAR STRUCTURE

Homes, Christopher C.

105

Plasma Science Committee (PLSC) and the Panel on Opportunities in Plasma Science and Technology (OPST)  

SciTech Connect

The Plasma Science Committee (PLSC) of the National Research Council (NRC) is charged with monitoring the health of the field of plasma science in the United States and identifies and examines both broad and specific issues affecting the field. Regular meetings, teleconferences, briefings from agencies and the scientific community, the formation of study panels to prepare reports, and special symposia are among the mechanisms used by the PLSC to meet its charge. During July 1992, the PLSC sponsored a workshop on nonneutral plasmas in traps. Although no written report on the workshop results, was prepared for public distribution, a summary of highlights was provided to the OPST Subpanel on Nonneutral Plasmas. The PLSC also continued its follow-up briefings and discussions on the results of the results of the report Plasma Processing of materials. Scientific and Technological Opportunities. As a result of these activities, the Committee is now working with the NRC Committee on Atomic, Molecular, and Optical Sciences (CAMOS) to organize a symposium on database needs in plasma processing of materials.

1993-01-01T23:59:59.000Z

106

Opportunities for discovery: Theory and computation in Basic Energy Sciences  

E-Print Network (OSTI)

Linac Coherent Light Source (LCLS) at the Stanford Linearwith such pulses. The LCLS will take ultrafast science to apulses. Two aspects of proposed LCLS experiments offer great

Harmon, Bruce; Kirby, Kate; McCurdy, C. William

2005-01-01T23:59:59.000Z

107

Nuclear Physics (NP) Homepage | U.S. DOE Office of Science (SC)  

NLE Websites -- All DOE Office Websites (Extended Search)

NP Home NP Home Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Funding Opportunities Nuclear Science Advisory Committee (NSAC) News & Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3613 F: (301) 903-3833 E: sc.np@science.doe.gov More Information » Accelerating Innovation .pdf file (1.2MB) Nuclear Physics supports the experimental and theoretical research needed to create a roadmap of matter that will help unlock the secrets of how the universe and everything in it is put together.Read More .pdf file (1.2MB) Accelerating Innovation What is Nuclear Physics? .pdf file (1.2MB) Nuclear physicists study the fundamental building blocks of matter, from

108

Los Alamos Neutron Science Center | National Nuclear Security...  

National Nuclear Security Administration (NNSA)

sponsors of LANSCE include the DOE, NNSA, Office of Science and Office of Nuclear Energy, Science and Technology. Users conduct research at state-of-the-art facilities...

109

Nuclear Science-A Guide to the Nuclear Science Wall Chart  

NLE Websites -- All DOE Office Websites (Extended Search)

both to solve problems and to search for new understandings of the world around us. In nuclear science the concept of symmetry plays a key role in gaining an understanding of the...

110

Midwest Nuclear Science and Engineering Consortium  

SciTech Connect

The objective of the Midwest Nuclear Science and Engineering Consortium (MNSEC) is to enhance the scope, quality and integration of educational and research capabilities of nuclear sciences and engineering (NS/E) programs at partner schools in support of the U.S. nuclear industry (including DOE laboratories). With INIE support, MNSEC had a productive seven years and made impressive progress in achieving these goals. Since the past three years have been no-cost-extension periods, limited -- but notable -- progress has been made in FY10. Existing programs continue to be strengthened and broadened at Consortium partner institutions. The enthusiasm generated by the academic, state, federal, and industrial communities for the MNSEC activities is reflected in the significant leveraging that has occurred for our programs.

Dr. Wynn Volkert; Dr. Arvind Kumar; Dr. Bryan Becker; Dr. Victor Schwinke; Dr. Angel Gonzalez; Dr. DOuglas McGregor

2010-12-08T23:59:59.000Z

111

Medical Radioisotope | Nuclear Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Medical Medical Radioisotope SHARE Medical Radioisotope Staff members preparing Ac-225 in glove boxes for shipment to hospitals to support radiotherapy cancer clinical trials in multiple locations around the world. ORNL's Medical Radioisotope Program is focused on the development of improved reactor production and processing methods to provide medical radioisotopes, the development of new radionuclide generator systems, the design and evaluation of new radiopharmaceuticals for applications in nuclear medicine and oncology, and association with Medical Cooperative Programs throughout the world for further preclinical testing and clinical evaluation of agents developed at ORNL. The collective resources of ORNL, including access to the enriched stable isotope inventory, a High Flux

112

Research Opportunities | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Research Opportunities Research Opportunities Research Opportunities Research opportunities at Energy Department labs and facilities: Argonne Nuclear Science Educational Programs The mission of Innovate to Educate is to take a leadership role to champion Argonne's mission to transform scientific discovery into innovation, develop and enable education programs that reflect Argonne's strategic engineering, science, and computational initiatives, and to develop new educational programs based on transformative scientific discovery. Faculty and Student Teams Program The Faculty and Student Teams (FaST) Program is a cooperative effort between the Department of Energy (DOE) Office of Science and the National Science Foundation (NSF). Faculty from colleges and universities with limited research facilities, and from those institutions serving

113

AAAS Office of Opportunities in Science The Double Bind  

E-Print Network (OSTI)

of scientists regardless of race, ethnicity or gender. Conserving of their time and energies, they tackled. Science careers in the context of gender and race or ethnic bias have been a major part of our lives of biases related to both their race or ethnicity and gender, constituting a double bind. Programs

Ortiz, Christine

114

Graphite in Science and Nuclear Technique  

E-Print Network (OSTI)

The monograph is devoted to the application of graphite and graphite composites in science and technology. The structure and electrical properties, the technological aspects of production of high-strength synthetic graphites, the dynamics of the graphite destruction, traditionally used in the nuclear industry are discussed. It is focuses on the characteristics of graphitization and properties of graphite composites based on carbon isotope 13C. The book is based, generally, on the original results, and concentrated on the actual problems of application and testing of graphite materials in modern nuclear physics, in scientific and technical applications. For scientists and engineers specializing in nuclear physics and engineering, physics of nuclear reactors, condensed matter, for undergraduate, graduate and post-graduate students of universities physical specialties.

Zhmurikov, E I; Pokrovsky, A S; Harkov, D V; Dremov, V V; Samarin, S I

2013-01-01T23:59:59.000Z

115

Graphite in Science and Nuclear Technique  

E-Print Network (OSTI)

The monograph is devoted to the application of graphite and graphite composites in science and technology. The structure and electrical properties, the technological aspects of production of high-strength synthetic graphites, the dynamics of the graphite destruction, traditionally used in the nuclear industry are discussed. It is focuses on the characteristics of graphitization and properties of graphite composites based on carbon isotope 13C. The book is based, generally, on the original results, and concentrated on the actual problems of application and testing of graphite materials in modern nuclear physics, in scientific and technical applications. For scientists and engineers specializing in nuclear physics and engineering, physics of nuclear reactors, condensed matter, for undergraduate, graduate and post-graduate students of universities physical specialties.

E. I. Zhmurikov; I. A. Bubnenkov; A. S. Pokrovsky; D. V. Harkov; V. V. Dremov; S. I. Samarin

2013-07-07T23:59:59.000Z

116

Paid Nuclear and Radiochemistry Summer School Opportunities for...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

any questions about this program, please contact David Robertson, National Director of ACS Summer Schools in Nuclear and Radiochemistry, at robertsonjo@missouri.edu. Addthis...

117

NUCLEAR SCIENCE DIVISION ANNUAL REPORT 1979-1980  

E-Print Network (OSTI)

1979). {Laboratory for Nuclear Studies, Osaka University,D. Loveland, and G. T. Seaborg, Nuclear Science Div. AnnualBohr and B. R. Hottel son. Nuclear Structure Vol. 1 (W. A.

Cerny, J.

2010-01-01T23:59:59.000Z

118

Opportunities for X-ray Science in Future Computing Architectures  

Science Conference Proceedings (OSTI)

The world of computing continues to evolve rapidly. In just the past 10 years, we have seen the emergence of petascale supercomputing, cloud computing that provides on-demand computing and storage with considerable economies of scale, software-as-a-service methods that permit outsourcing of complex processes, and grid computing that enables federation of resources across institutional boundaries. These trends show no sign of slowing down. The next 10 years will surely see exascale, new cloud offerings, and other terabit networks. This talk reviews various of these developments and discusses their potential implications for x-ray science and x-ray facilities.

Foster, Ian [Argonne National Laboratory

2011-02-09T23:59:59.000Z

119

Reactors: Modern-Day Alchemy - Argonne's Nuclear Science and Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

Achievements > Achievements > Legacy > Reactors: Modern-Day Alchemy About Director's Welcome Organization Achievements Highlights Fact Sheets, Brochures & Other Documents Multimedia Library Visit Argonne Work with Argonne Contact us Nuclear Energy Why Nuclear Energy? Why are some people afraid of Nuclear Energy? How do nuclear reactors work? Cheaper & Safer Nuclear Energy Helping to Solve the Nuclear Waste Problem Nuclear Reactors Nuclear Reactors Early Exploration Training Reactors Basic and Applied Science Research LWR Technology Development BORAX-III lighting Arco, Idaho (Press Release) Heavy Water and Graphite Reactors Fast Reactor Technology Integral Fast Reactor Argonne Reactor Tree CP-1 70th Anniversary CP-1 70th Anniversary Argonne's Nuclear Science and Technology Legacy

120

Education: The Effort Is Global - Argonne's Nuclear Science and Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

Achievements > Achievements > Argonne Reactors > Education: The Effort Is Global About Director's Welcome Organization Achievements Highlights Fact Sheets, Brochures & Other Documents Multimedia Library Visit Argonne Work with Argonne Contact us Nuclear Energy Why Nuclear Energy? Why are some people afraid of Nuclear Energy? How do nuclear reactors work? Cheaper & Safer Nuclear Energy Helping to Solve the Nuclear Waste Problem Nuclear Reactors Nuclear Reactors Early Exploration Training Reactors Basic and Applied Science Research LWR Technology Development BORAX-III lighting Arco, Idaho (Press Release) Heavy Water and Graphite Reactors Fast Reactor Technology Integral Fast Reactor Argonne Reactor Tree CP-1 70th Anniversary CP-1 70th Anniversary Argonne's Nuclear Science and Technology Legacy

Note: This page contains sample records for the topic "opportunities nuclear science" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Stewardship Science Academic Alliances Program | National Nuclear Security  

National Nuclear Security Administration (NNSA)

Program | National Nuclear Security Program | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Stewardship Science Academic Alliances Program Home > Stewardship Science Academic Alliances Program Stewardship Science Academic Alliances Program Stewardship Science Academic Alliances (SSAA) Program Overview Established in 2002, the Stewardship Science Academic Alliances Program

122

Student Opportunities in Nuclear Energy R&D  

E-Print Network (OSTI)

for decommissioning. · ITER parties met in Barcelona, Feb. 7-11, to complete the technical level negotiations construction, & costs for operation, deactivation, and decommissioning required much interaction with all · Last issue is the complicated matter of P&I and waiver thereto, involving French Nuclear Safety

Kemner, Ken

123

Funding Opportunity Announcements (FOAs) | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Funding Opportunity Funding Opportunity Announcements (FOAs) Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) SBIR/STTR Home About Funding Opportunity Announcements (FOAs) FY 2006-2012 FY 2013 FY 2014 FY 2015 Applicant and Awardee Resources Commercialization Assistance Other Resources Awards SBIR/STTR Highlights Reporting Fraud Contact Information Small Business Innovation Research and Small Business Technology Transfer U.S. Department of Energy SC-29/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-5707 F: (301) 903-5488 E: sbir-sttr@science.doe.gov More Information » Funding Opportunity Announcements (FOAs) Print Text Size: A A A RSS Feeds FeedbackShare Page Fiscal Year: FY06-12, FY13, FY14, FY15 FY 2014 Phase I Release 1

124

Cooling Water Issues and Opportunities at U.S. Nuclear Power Plants,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cooling Water Issues and Opportunities at U.S. Nuclear Power Cooling Water Issues and Opportunities at U.S. Nuclear Power Plants, December 2010 Cooling Water Issues and Opportunities at U.S. Nuclear Power Plants, December 2010 Energy and water are both essential to sustainable development and economic productivity. Ample supplies of water are essential to energy production, and water management is dependent on ample supplies of energy for water treatment and transportation. The critical nexus between energy and water has been recognized in a variety of recent studies, but the policy and regulatory machinery that this nexus depends on is not keeping up with the growing challenges. Population growth and societal demand for improved quality of life will require more clean water for drinking and sanitation, more water for

125

Stewardship Science Graduate Fellowship Program | National Nuclear...  

National Nuclear Security Administration (NNSA)

Fellowship Program Stewardship Science Graduate Fellowship Program The Computational Science Graduate Fellowship (CSGF) The Department of Energy Computational Science Graduate...

126

Middle School Energy and Nuclear Science Curriculum Now Available |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Middle School Energy and Nuclear Science Curriculum Now Available Middle School Energy and Nuclear Science Curriculum Now Available Middle School Energy and Nuclear Science Curriculum Now Available October 30, 2013 - 1:18pm Addthis Andrea Duskas Public Affairs Specialist for the Office of Nuclear Energy A new middle school science, technology, engineering, and math (STEM) curriculum called The Harnessed Atom is now available on the Office of Nuclear Energy website. This new curriculum offers accurate, unbiased, and up-to-date information on the roles that energy and nuclear science play in our lives. The essential principles and fundamental concepts in The Harnessed Atom address the latest science standards for crosscutting concepts about energy and matter. The Harnessed Atom teacher's kit is an updated and expanded edition of the

127

National Museum of Nuclear Science & History Opens WIPP Exhibit |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Museum of Nuclear Science & History Opens WIPP Exhibit Museum of Nuclear Science & History Opens WIPP Exhibit National Museum of Nuclear Science & History Opens WIPP Exhibit November 22, 2011 - 3:17pm Addthis To celebrate the WIPP's 10,000th shipment of defense-related TRU waste, the National Museum of Nuclear Science & History added a new exhibit, which includes one the receptacles, pictured above, used by the Energy Department to ship transuranic (TRU) waste from sites located across the country to the Waste Isolation Pilot Plant in New Mexico. | Photo courtesy of the National Museum of Nuclear Science & History To celebrate the WIPP's 10,000th shipment of defense-related TRU waste, the National Museum of Nuclear Science & History added a new exhibit, which includes one the receptacles, pictured above, used by the Energy Department

128

The Italian Navigator Lands - Argonne's Nuclear Science and Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

The Italian Navigator Lands The Italian Navigator Lands About Director's Welcome Organization Achievements Highlights Fact Sheets, Brochures & Other Documents Multimedia Library Visit Argonne Work with Argonne Contact us Nuclear Energy Why Nuclear Energy? Why are some people afraid of Nuclear Energy? How do nuclear reactors work? Cheaper & Safer Nuclear Energy Helping to Solve the Nuclear Waste Problem Nuclear Reactors Nuclear Reactors Early Exploration Training Reactors Basic and Applied Science Research LWR Technology Development BORAX-III lighting Arco, Idaho (Press Release) Heavy Water and Graphite Reactors Fast Reactor Technology Integral Fast Reactor Argonne Reactor Tree CP-1 70th Anniversary CP-1 70th Anniversary Argonne's Nuclear Science and Technology Legacy Argonne's Nuclear Science and Technology Legacy

129

Predictive Science Academic Alliance Program | National Nuclear Security  

National Nuclear Security Administration (NNSA)

Predictive Science Academic Alliance Program | National Nuclear Security Predictive Science Academic Alliance Program | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Predictive Science Academic Alliance Program Home > About Us > Our Programs > Defense Programs > Future Science & Technology Programs > Office of Advanced Simulation and Computing and

130

Forefront Questions in Nuclear Science and the Role of High  

E-Print Network (OSTI)

Forefront Questions in Nuclear Science and the Role of High Performance Computing January 26-28, 2009 · Washington D.C. Major Issues in Nuclear Physics Aided by Massive Computation David B. Kaplan ~ Institute for Nuclear Theory #12;The challenge of nuclear theory · Many-body problem of interaction nucleons

Washington at Seattle, University of - Department of Physics, Electroweak Interaction Research Group

131

Department of Energy Issues Requests for Nuclear Science and Engineering  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nuclear Science and Nuclear Science and Engineering Scholarships and Fellowships Applications Department of Energy Issues Requests for Nuclear Science and Engineering Scholarships and Fellowships Applications May 7, 2009 - 1:46pm Addthis The U.S. Department of Energy (DOE) today announced two new Requests for Application (RFA) as part of the Department's efforts to recruit and train the next generation of nuclear scientists and engineers - a critical need as the nation moves toward greater use of nuclear energy to meet our energy needs and address the global climate crisis. Under the Nuclear Energy University Program, DOE will provide approximately $2.9 million to fund scholarships and fellowships for students enrolled in two or four year nuclear science and engineering programs at accredited

132

Development of new business opportunities for minorities in nuclear energy. Final report  

Science Conference Proceedings (OSTI)

In Part I of this report the basis for the optimal development of new business opportunities for minorities in nuclear energy programs is defined within the successful completion of all contract tasks. The basis presented consists of an identification of a set of qualified minority-owned small businesses, a defined reservoir of highly trained minorities with applicable expertise, a policy context for the development of opportunities, and a proposed networking structure for information transfer/professional development. In Part II a contractor-focused analysis of the structure of the nuclear industry, a breakdown of the DOE nuclear program by region and functional area, and a directory of minority-owned small businesses by region are presented.

Spight, C.

1980-12-15T23:59:59.000Z

133

Thomas Miller Office of Nuclear Energy, Science and Technology  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Miller Miller Office of Nuclear Energy, Science and Technology U.S. Department of Energy September 30, 2002 Presentation at the Nuclear Energy Research Advisory Committee Nuclear Power 2010 Program Strategy to Deploy New Nuclear Power Plants Nuclear Power 2010 Program Strategy to Deploy New Nuclear Power Plants Office of Nuclear Energy, Science and Technology TMiller/Sept11_02 ESE Project.ppt ( 2) Nuclear Power 2010: Overview Nuclear Power 2010: Overview Goal 6 Achieve industry decision by 2005 to deploy at least one new advanced nuclear power plant by 2010 Cooperative Activities 6 Regulatory Demonstration Projects * Early Site Permit (ESP) * Combined Construction and Operating License (COL) 6 Reactor Technology Development Projects * NRC Design Certification (DC) * First-of-a-kind engineering for a standardized plant

134

MISSION AND NEED FOR A FUSION NUCLEAR SCIENCE FACILITY  

E-Print Network (OSTI)

MISSION AND NEED FOR A FUSION NUCLEAR SCIENCE FACILITY Mission Gerald Navratil Need Mohamed Abdou and Symposium 1-2 December 2010 #12;FUSION NUCLEAR SCIENCE FACILITY: COMMENTS ON MISSION Gerald A. Navratil Component Test Facility Theory & Simulation FESAC/Snowmass Report: ITER-Based Development Path #12;FUSION

135

NUCLEAR SCIENCE ANNUAL REPORT 1977-1978  

E-Print Network (OSTI)

A Relation Between Nuclear Dynamics and the RenormalizationMultiplicity Distributions in Nuclear Collision M. GyulassyHigh Energy Nuclear Collisions in the Resonance Dominated

Schroeder, L.S.

2011-01-01T23:59:59.000Z

136

Nuclear Science: a survey of funding, facilities, and manpower  

SciTech Connect

In 1973 the Committee on Nuclear Science of the National Research Council initiated a re-examination of aspects (funding, manpower, and facilities) of the organization and operation of nuclear science research in order to evaluate any changes in the preceding four years and implications of such changes. The reports of the three ad hoc panels established for this purpose (funding and level of effort, nuclear facilities, manpower and education) are presented. Although they identify current problems in nuclear science, these reports do not provide simple solutions; rather, they attempt to provide updated information for use as background for continuing decisions. (RWR)

1975-01-01T23:59:59.000Z

137

2013 NNSA Defense Programs Science Council | National Nuclear Security  

National Nuclear Security Administration (NNSA)

3 NNSA Defense Programs Science Council | National Nuclear Security 3 NNSA Defense Programs Science Council | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > NNSA Blog > 2013 NNSA Defense Programs Science Council 2013 NNSA Defense Programs Science Council Posted By Office of Public Affairs 2013 NNSA Defense Programs Science Council Members of the 2013 NNSA Defense Programs Science Council include, from

138

Molecular forensic science of nuclear materials  

SciTech Connect

We are interested in applying our understanding of actinide chemical structure and bonding to broaden the suite of analytical tools available for nuclear forensic analyses. Uranium- and plutonium-oxide systems form under a variety of conditions, and these chemical species exhibit some of the most complex behavior of metal oxide systems known. No less intriguing is the ability of AnO{sub 2} (An: U, Pu) to form non-stoichiometric species described as AnO{sub 2+x}. Environmental studies have shown the value of utilizing the chemical signatures of these actinide oxides materials to understand transport following release into the environment. Chemical speciation of actinide-oxide samples may also provide clues as to the age, source, process history, or transport of the material. The scientific challenge is to identify, measure and understand those aspects of speciation of actinide analytes that carry information about material origin and history most relevant to forensics. Here, we will describe our efforts in material synthesis and analytical methods development that we will use to provide the fundamental science required to characterize actinide oxide molecular structures for forensics science. Structural properties and initial results to measure structural variability of uranium oxide samples using synchrotron-based X-ray Absorption Fine Structure will be discussed.

Wilkerson, Marianne Perry [Los Alamos National Laboratory

2010-01-01T23:59:59.000Z

139

Argonne Chemical Sciences & Engineering - Nuclear & Environmental...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Fuel Cycle * Overview * Fissile Material * Chemical Process Models * Chemistry at Interfaces * Improved Safeguards Nuclear & Environmental Processes Home Closing the...

140

Nuclear science. Annual report, July 1, 1980-June 30, 1981  

Science Conference Proceedings (OSTI)

This annual report describes the scientific research carried out within the Nuclear Science Division between July 1, 1980 and June 30, 1981. The principal activity of the division continues to be the experimental and theoretical investigation of the interaction of heavy ions with target nuclei. Complementary research programs in light-ion nuclear science, in nuclear data evaluations, and in the development of advanced instrumentation are also carried out.

Friedlander, E.M. (ed.)

1982-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "opportunities nuclear science" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

NUCLEAR SCIENCE PUBLICATIONS OF ROBERT B. WEISENMILLER, PH.D.  

E-Print Network (OSTI)

1 NUCLEAR SCIENCE PUBLICATIONS OF ROBERT B. WEISENMILLER, PH.D. 1. Two-proton Pickup Studies, K. H. Wilcox, G. J. Wozniak, M. S. Zisman, and J. Cerny. Nuclear Physics A 280, 217. 1977. 3 Spectroscopic Measurement via Exotic Nuclear Rearrangement: The Reaction 26 Mg (7 Li, 8 B), 25 Ne. With K. H

142

Nuclear Science and Technology, November 2000. NEUTRON CROSS SECTION EVALUATIONS  

E-Print Network (OSTI)

Nuclear Science and Technology, November 2000. 1 NEUTRON CROSS SECTION EVALUATIONS FOR 238 U UP and Power Engineering, 249020 Obninsk, Russia A.Ventura ENEA, Nuclear Data Center and INFN, Bologna Section of the statistical description that includes direct, pre-equilibrium and equilibrium mechanisms of nuclear reactions

143

Nuclear Wallet Cards at BNL | U.S. DOE Office of Science (SC...  

Office of Science (SC) Website

Wallet Cards at BNL Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Spinoff Applications SBIRSTTR Applications of Nuclear Science and...

144

Predictive Science Academic Alliance Program | National Nuclear...  

National Nuclear Security Administration (NNSA)

for Our Jobs Our Jobs Working at NNSA Blog Predictive Science Academic Alliance Program Home > About Us > Our Programs > Defense Programs > Future Science & Technology Programs >...

145

Future Science & Technology Programs | National Nuclear Security...  

National Nuclear Security Administration (NNSA)

Apply for Our Jobs Our Jobs Working at NNSA Blog Future Science & Technology Programs Home > About Us > Our Programs > Defense Programs > Future Science & Technology Programs...

146

Stewardship Science Academic Programs Annual | National Nuclear...  

National Nuclear Security Administration (NNSA)

Alliances Annual 2011 Stewardship Science Academic Alliances Annual Banner photo: The Texas Petawatt laser bay at the University of Texas, Center for High Intensity Laser Science...

147

NNSA conference showcases complex science, engineering | National Nuclear  

National Nuclear Security Administration (NNSA)

conference showcases complex science, engineering | National Nuclear conference showcases complex science, engineering | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > NNSA Blog > NNSA conference showcases complex science, engineering NNSA conference showcases complex science, engineering Posted By Office of Public Affairs NNSA Stewardship Science Graduate Fellowship (SSGF) annual fellows' conference

148

NNSA/CEA Cooperation in Computer Science | National Nuclear Security  

NLE Websites -- All DOE Office Websites (Extended Search)

NNSA/CEA Cooperation in Computer Science | National Nuclear Security NNSA/CEA Cooperation in Computer Science | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog The National Nuclear Security Administration NNSA/CEA Cooperation in Computer Science Home > About Us > Our Programs > Defense Programs > Future Science & Technology Programs > Office of Advanced Simulation and Computing and

149

NNSA/CEA Cooperation in Computer Science | National Nuclear Security  

National Nuclear Security Administration (NNSA)

NNSA/CEA Cooperation in Computer Science | National Nuclear Security NNSA/CEA Cooperation in Computer Science | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog The National Nuclear Security Administration NNSA/CEA Cooperation in Computer Science Home > About Us > Our Programs > Defense Programs > Future Science & Technology Programs > Office of Advanced Simulation and Computing and

150

Nuclear Science Division annual report for 1991  

Science Conference Proceedings (OSTI)

This paper discusses research being conducted under the following programs: Low energy research program; bevalac research program; ultrarelativistic research program; nuclear theory program; nuclear theory program; nuclear data evaluation program; and 88-inch cyclotron operations.

Myers, W.D. (ed.)

1992-04-01T23:59:59.000Z

151

Materials Science Challenges for Nuclear Applications  

Science Conference Proceedings (OSTI)

Aladar A. Csontos, U.S. Nuclear Regulatory Commission. Scope, Worldwide expansion of nuclear energy has been proposed to address rising global energy ...

152

Chemical Sciences & Engineering - Nuclear and Environmental Processes...  

NLE Websites -- All DOE Office Websites (Extended Search)

commercially viable electrochemical processes for the back end of the nuclear fuel cycle. This work covers the full scope of the nuclear fuel cycle for metal, oxide,...

153

Scientific Grand Challenges: Forefront Questions in Nuclear Science and the Role of High Performance Computing  

SciTech Connect

This report is an account of the deliberations and conclusions of the workshop on "Forefront Questions in Nuclear Science and the Role of High Performance Computing" held January 26-28, 2009, co-sponsored by the U.S. Department of Energy (DOE) Office of Nuclear Physics (ONP) and the DOE Office of Advanced Scientific Computing (ASCR). Representatives from the national and international nuclear physics communities, as well as from the high performance computing community, participated. The purpose of this workshop was to 1) identify forefront scientific challenges in nuclear physics and then determine which-if any-of these could be aided by high performance computing at the extreme scale; 2) establish how and why new high performance computing capabilities could address issues at the frontiers of nuclear science; 3) provide nuclear physicists the opportunity to influence the development of high performance computing; and 4) provide the nuclear physics community with plans for development of future high performance computing capability by DOE ASCR.

Khaleel, Mohammad A.

2009-10-01T23:59:59.000Z

154

Drell receives National Medal of Science | National Nuclear Security  

National Nuclear Security Administration (NNSA)

Drell receives National Medal of Science | National Nuclear Security Drell receives National Medal of Science | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > NNSA Blog > Drell receives National Medal of Science Drell receives National Medal of Science Posted By Office of Public Affairs NNSA Blog Sidney Drell, physicist, arms control expert and adviser, is one

155

Celebrating Innovation with National Nuclear Science Week | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Celebrating Innovation with National Nuclear Science Week Celebrating Innovation with National Nuclear Science Week Celebrating Innovation with National Nuclear Science Week January 25, 2012 - 2:54pm Addthis Assistant Secretary for Nuclear Energy Dr. Peter Lyons meets with students from the California Institute of Technology to discuss how the Energy Department is working to ensure that the next generation is trained to lead innovation in the industry. | Photo courtesy of CalTech. Assistant Secretary for Nuclear Energy Dr. Peter Lyons meets with students from the California Institute of Technology to discuss how the Energy Department is working to ensure that the next generation is trained to lead innovation in the industry. | Photo courtesy of CalTech. Kate Bannan Communications and Outreach Specialist How can I participate?

156

Predictive Science Academic Alliance Program | National Nuclear...  

National Nuclear Security Administration (NNSA)

> Our Programs > Defense Programs > Future Science & Technology Programs > Office of Advanced Simulation and Computing Institutional Research & Development > University...

157

Nuclear Science Division 1994 annual report  

Science Conference Proceedings (OSTI)

This report describes the activities of the Nuclear Science Division for the period of January 1, 1994, to December 31, 1994. This was a time of significant accomplishment for all of the programs in the Division. Assembly of the solar neutrino detector at the Sudbury Neutrino Observatory is well under way. All of the components fabricated by LBL were shipped to Sudbury early in the year and our efforts are now divided between assisting the assembly of the detector and preparing software for data analysis once the detector is operational in 1996. Much of the activity at the 88-Inch Cyclotron centered on Gammasphere. The {open_quotes}early implementation{close_quotes} phase of the detector ended in September. This phase was extremely successful, involving over 60 experiments with nearly 200 users from 37 institutions worldwide. The mechanical structure was installed and the final electronic system is expected to operate in March 1995. The Division concurrently hosted a conference on physics for large {gamma}-ray detector arrays at the Clark Kerr Campus at UC Berkeley in August. This was a very successful meeting, reflecting the enthusiasm for this field worldwide. Also at the Cyclotron, the progress toward weak interaction experiments using ultra-thin sources passed a major milestone with the trapping of radioactive {sup 21}Na atoms. We are now engaged in a major upgrade of the experimental area and the outlook is very promising for these novel experiments. Another highlight of research at the Cyclotron was the confirmation of element 106. This development allowed the original LLNL/LBL discovery team to move forward with their proposal to name this element seaborgium.

Myers, W.D. [ed.

1995-06-01T23:59:59.000Z

158

Chemical Sciences and Engineering - Nuclear and Environmental...  

NLE Websites -- All DOE Office Websites (Extended Search)

Simulation & Equipment Design * Members * Overview * Chemical Process Models * Chemistry at Interfaces Nuclear & Environmental Processes Home Process Simulation and Equipment...

159

Nuclear Test-Experimental Science: Annual report, fiscal year 1988  

Science Conference Proceedings (OSTI)

Fiscal year 1988 has been a significant, rewarding, and exciting period for Lawrence Livermore National Laboratory's nuclear testing program. It was significant in that the Laboratory's new director chose to focus strongly on the program's activities and to commit to a revitalized emphasis on testing and the experimental science that underlies it. It was rewarding in that revolutionary new measurement techniques were fielded on recent important and highly complicated underground nuclear tests with truly incredible results. And it was exciting in that the sophisticated and fundamental problems of weapons science that are now being addressed experimentally are yielding new challenges and understanding in ways that stimulate and reward the brightest and best of scientists. During FY88 the program was reorganized to emphasize our commitment to experimental science. The name of the program was changed to reflect this commitment, becoming the Nuclear Test-Experimental Science (NTES) Program.

Struble, G.L.; Donohue, M.L.; Bucciarelli, G.; Hymer, J.D.; Kirvel, R.D.; Middleton, C.; Prono, J.; Reid, S.; Strack, B. (eds.)

1988-01-01T23:59:59.000Z

160

Stewardship Science Graduate Fellowship Program | National Nuclear...  

National Nuclear Security Administration (NNSA)

to students pursuing doctoral degrees in fields of study that use high performance computing to solve complex science and engineering problems. The program fosters a...

Note: This page contains sample records for the topic "opportunities nuclear science" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Future Science & Technology Programs | National Nuclear Security...  

National Nuclear Security Administration (NNSA)

efforts and the long-term vitality of science and engineering at NNSA. NNSA is focused on developing and maintaining the critical scientific and technical capabilities that are...

162

Nuclear Criticality Safety | More Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Criticality Safety Criticality Safety SHARE Criticality Safety Nuclear Criticality Safety ORNL is the lead national laboratory responsible for supporting the National Nuclear Security Administration (NNSA) in managing the US Nuclear Criticality Safety Program. NCSP is chartered to maintain the technical infrastructure (integral experiments, computational tools, training, data, etc.) needed to support safe, efficient fissionable material operations. ORNL has extensive expertise in the area of nuclear criticality safety (NCS) based upon years of experience in the following areas: Operations Support: providing fissionable material operations support for enrichment, fabrication, production, and research; Critical Experiments: performing experiments at the Y-12 Critical Experiment Facility;

163

Argonne Chemical Sciences & Engineering - People - Nuclear and...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear and Environmental Processes Analytical Chemistry Laboratory Vivian S. Sullivan, Physical and Analytical Chemist and Manager, Analytical Chemistry Laboratory phone: 630...

164

Argonne Chemical Sciences & Engineering - People - Nuclear and...  

NLE Websites -- All DOE Office Websites (Extended Search)

Spent nuclear fuel reprocessing Process monitoring for reprocessing safeguards Non-proliferation-based research: medical isotope production John F. Krebs, Chemist phone: 630...

165

Argonne Chemical Sciences & Engineering - People - Nuclear and...  

NLE Websites -- All DOE Office Websites (Extended Search)

Loyola University Design of liquid-liquid extraction systems for actinide and fission product separations Nuclear fuel and target dissolution Chemical processes for...

166

Materials Science of Nuclear Waste Management  

Science Conference Proceedings (OSTI)

The intent is to provide a forum for researchers from national laboratories, universities, and nuclear industry to discuss current understanding of materials...

167

Chemical Sciences & Engineering - Nuclear & Environmental Processes...  

NLE Websites -- All DOE Office Websites (Extended Search)

processing of these fuels. In addition to evaluating degradation and radionuclide release from used nuclear fuels, group researchers are developing metal alloy waste...

168

Argonne Chemical Sciences & Engineering - People - Nuclear and...  

NLE Websites -- All DOE Office Websites (Extended Search)

fax 630972-4456, e-mail: ebert@anl.gov Ph.D., Chemistry, Northwestern University Nuclear waste material formulation, testing, and modeling Test method development and...

169

Nuclear Systems Modeling & Simulation | More Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

from single processors to the world's largest supercomputers. The DOE Nuclear Energy Hub (CASL, the Consortium for Advanced Simulation of Light Water Reactors) is a prominent...

170

Argonne Chemical Sciences & Engineering - Nuclear & Environmental...  

NLE Websites -- All DOE Office Websites (Extended Search)

with other fuel processing steps and facilities, and are economically feasible. Two other key areas of interest are: Pyrochemical Process Research Closing the Nuclear Fuel Cycle...

171

Argonne Chemical Sciences & Engineering - Nuclear & Environmental...  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy's Advanced Fuel Cycle Research and Development Program. More Closing the nuclear fuel cycle Recycling long-lived fissile materials as fuel Developing chemical process models...

172

Hanford Site Cleanup Challenges and Opportunities for Science and Technology--A Strategic Assessment  

SciTech Connect

The sheer expanse of the Hanford Site, the inherent hazards associated with the significant inventory of nuclear materials and wastes, the large number of aging contaminated facilities, the diverse nature and extent of environmental contamination, and the proximity to the Columbia River make Hanford perhaps the world's largest and most complex environmental cleanup project. It is not possible to address the more complex elements of this enormous challenge in a cost-effective manner without strategic investments in science and technology. Success requires vigorous and sustained efforts to enhance the science and technology basis, develop and deploy innovative solutions, and provide firm scientific bases to support site cleanup and closure decisions at Hanford.

Wood, Thomas W.; Johnson, Wayne L.; Kreid, Dennis K.; Walton, Terry L.

2001-02-01T23:59:59.000Z

173

Nuclear Science-A Guide to the Nuclear Science Wall Chart  

NLE Websites -- All DOE Office Websites (Extended Search)

Chapter 7 Nuclear Reactions Nuclear reactions and nuclear scattering are used to measure the properties of nuclei. Reactions that exchange energy or nucleons can be used to measure...

174

The Nuclear Education and Staffing Challenge: Rebuilding Critical Skills in Nuclear Science and Technology.  

SciTech Connect

The United States, the Department of Energy (DOE) and its National Laboratories, including the Pacific Northwest National Laboratory (PNNL), are facing a serious attrition of nuclear scientists and engineers and their capabilities through the effects of aging staff. Within the DOE laboratories, 75% of nuclear personnel will be eligible to retire by 2010. It is expected that there will be a significant loss of senior nuclear science and technology staff at PNNL within five years. PNNL's nuclear legacy is firmly rooted in the DOE Hanford site, the World War II Manhattan Project, and subsequent programs. Historically, PNNL was a laboratory where 70% of its activities were nuclear/radiological, and now just under 50% of its current business science and technology are nuclear and radiologically oriented. Programs in the areas of Nuclear Legacies, Global Security, Nonproliferation, Homeland Security and National Defense, Radiobiology and Nuclear Energy still involve more than 1,000 of the 3,800 current laboratory staff, and these include more than 420 staff who are certified as nuclear/radiological scientists and engineers. This paper presents the current challenges faced by PNNL that require an emerging strategy to solve the nuclear staffing issues through the maintenance and replenishment of the human nuclear capital needed to support PNNL nuclear science and technology programs.

Wogman, Ned A.; Bond, Leonard J.; Waltar, Alan E.; Leber, R. E.

2005-01-01T23:59:59.000Z

175

The Nuclear Education and Staffing Challenge: Rebuilding Critical Skills in Nuclear Science and Technology  

SciTech Connect

The United States, the Department of Energy (DOE) and its National Laboratories, including the Pacific Northwest National Laboratory (PNNL), are facing a serious attrition of nuclear scientists and engineers and their capabilities through the effects of aging staff. Within the DOE laboratories, 75% of nuclear personnel will be eligible to retire by 2010. It is expected that there will be a significant loss of senior nuclear science and technology staff at PNNL within five years. PNNL's nuclear legacy is firmly rooted in the DOE Hanford site, the World War II Manhattan Project, and subsequent programs. Historically, PNNL was a laboratory were 70% of its activities were nuclear/radiological, and now just under 50% of its current business science and technology are nuclear and radiologically oriented. Programs in the areas of Nuclear Legacies, Global Security, Nonproliferation, Homeland Security and National Defense, Radiobiology and Nuclear Energy still involve more than 1,000 of the 3,800 current laboratory staff, and these include more than 420 staff who are certified as nuclear/radiological scientists and engineers. This paper presents the current challenges faced by PNNL that require an emerging strategy to solve the nuclear staffing issues through the maintenance and replenishment of the human nuclear capital needed to support PNNL nuclear science and technology programs.

Wogman, Ned A.; Bond, Leonard J.; Waltar, Alan E.; Leber, R E.

2005-01-01T23:59:59.000Z

176

The Nuclear Education and Staffing Challenge: Rebuilding Critical Skills in Nuclear Science and Technology.  

SciTech Connect

The United States, the Department of Energy (DOE) and its National Laboratories, including the Pacific Northwest National Laboratory (PNNL), are facing a serious attrition of nuclear scientists and engineers and their capabilities through the effects of aging staff. Within the DOE laboratories, 75% of nuclear personnel will be eligible to retire by 2010. It is expected that there will be a significant loss of senior nuclear science and technology staff at PNNL within five years. PNNL's nuclear legacy is firmly rooted in the DOE Hanford site, the World War II Manhattan Project, and subsequent programs. Historically, PNNL was a laboratory where 70% of its activities were nuclear/radiological, and now just under 50% of its current business science and technology are nuclear and radiologically oriented. Programs in the areas of Nuclear Legacies, Global Security, Nonproliferation, Homeland Security and National Defense, Radiobiology and Nuclear Energy still involve more than 1,000 of the 3,800 current laboratory staff, and these include more than 420 staff who are certified as nuclear/radiological scientists and engineers. This paper presents the current challenges faced by PNNL that require an emerging strategy to solve the nuclear staffing issues through the maintenance and replenishment of the human nuclear capital needed to support PNNL nuclear science and technology programs.

Wogman, Ned A.; Bond, Leonard J.; Waltar, Alan E.; Leber, R. E.

2005-01-01T23:59:59.000Z

177

Margaret Butler Fellowship in Computational Science | Argonne...  

NLE Websites -- All DOE Office Websites (Extended Search)

offers computational scientists an opportunity to work at the forefront of high-performance computing. A pioneering researcher in both computer science and nuclear energy, Butler...

178

Stewardship Science Academic Alliances Program | National Nuclear...  

National Nuclear Security Administration (NNSA)

17, 2013 NNSA, Republic of Korea Ministry Agree to Minimize Use of HEU in Nuclear Reactors Sep 3, 2013 NNSA Conducts Two Emergency Response Training Courses in Armenia Aug 29, 2013...

179

Argonne Chemical Sciences & Engineering - Nuclear & Environmental...  

NLE Websites -- All DOE Office Websites (Extended Search)

Uranium Nuclear & Environmental Processes Home Eliminating the Use of Highly-Enriched Uranium The mission of the U.S. non-proliferation policy is to minimize and, to the...

180

COOLING WATER ISSUES AND OPPORTUNITIES AT U.S. NUCLEAR POWER PLANTS  

SciTech Connect

This report has been prepared for the Department of Energy, Office of Nuclear Energy (DOE-NE), for the purpose of providing a status report on the challenges and opportunities facing the U.S. commercial nuclear energy industry in the area of plant cooling water supply. The report was prompted in part by recent Second Circuit and Supreme Court decisions regarding cooling water system designs at existing thermo-electric power generating facilities in the U.S. (primarily fossil and nuclear plants). At issue in the courts have been Environmental Protection Agency regulations that define what constitutes Best Technology Available for intake structures that withdraw cooling water that is used to transfer and reject heat from the plants steam turbine via cooling water systems, while minimizing environmental impacts on aquatic life in nearby water bodies used to supply that cooling water. The report was also prompted by a growing recognition that cooling water availability and societal use conflicts are emerging as strategic energy and environmental issues, and that research and development (R&D) solutions to emerging water shortage issues are needed. In particular, cooling water availability is an important consideration in siting decisions for new nuclear power plants, and is an under-acknowledged issue in evaluating the pros and cons of retrofitting cooling towers at existing nuclear plants. Because of the significant ongoing research on water issues already being performed by industry, the national laboratories and other entities, this report relies heavily on ongoing work. In particular, this report has relied on collaboration with the Electric Power Research Institute (EPRI), including its recent work in the area of EPA regulations governing intake structures in thermoelectric cooling water systems.

Gary Vine

2010-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "opportunities nuclear science" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Research in the nuclear sciences: summaries of FY 1978  

SciTech Connect

Programs funded in fiscal year 1978 by the Division of Nuclear Sciences/Office of Basic Energy Sciences are summarized. Each summary is preceded by a heading that includes institution, title, principal investigators, budget reporting category, and operating funds provided in FY 1978. The summaries are presented in alphabetical order by institution. Indexes are appended to facilitate the location of a summary according to an investigator's name or a budget reporting category. (RWR)

1978-06-01T23:59:59.000Z

182

Experience from the Short Course on Introduction to Nuclear Chemistry and Fuel Cycle Separations and Future Educational Opportunities  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Short Course - Short Course - Overview & Lessons Learned David Kosson, Vanderbilt & CRESP Introduction to Nuclear Chemistry and Fuel Cycle Separations December 16-18, 2008 Vanderbilt University Vanderbilt University Dept. of Civil and Environmental Engineering safety performance cleanup closure M E Environmental Management Environmental Management 1 Course Objective To provide an introduction to the chemistry and p y separations processes of importance to entire nuclear fuel cycle. Targeted Audience: * Professionals in management, oversight and regulation of nuclear processes and facilities. * Graduate students in engineering and sciences planning a career focused on nuclear processes. focused on nuclear processes. * As an introduction for professionals that will be engaged in nuclear

183

Studies in Low-Energy Nuclear Science  

Science Conference Proceedings (OSTI)

This report presents a summary of research projects in the area of low energy nuclear reactions and structure, carried out between March 1, 2006 and October 31, 2009 which were supported by U.S. DOE grant number DE-FG52-06NA26187.

Carl R. Brune; Steven M. Grimes

2010-01-13T23:59:59.000Z

184

Future Science Needs and Opportunities for Electron Scattering: Next-Generation Instrumentation and Beyond. Report of the Basic Energy Sciences Workshop on Electron Scattering for Materials Characterization, March 1-2, 2007  

SciTech Connect

To identify emerging basic science and engineering research needs and opportunities that will require major advances in electron-scattering theory, technology, and instrumentation.

Miller, D. J.; Williams, D. B.; Anderson, I. M.; Schmid, A. K.; Zaluzec, N. J.

2007-03-02T23:59:59.000Z

185

Nuclear Science Division, 1995--1996 annual report  

Science Conference Proceedings (OSTI)

This report describes the activities of the Nuclear Science Division (NSD) for the two-year period, January 1, 1995 to January 1, 1997. This was a time of major accomplishments for all research programs in the Division-many of which are highlighted in the reports of this document.

Poskanzer, A.M. [ed.

1997-02-01T23:59:59.000Z

186

NNS computing facility manual P-17 Neutron and Nuclear Science  

SciTech Connect

This document describes basic policies and provides information and examples on using the computing resources provided by P-17, the Neutron and Nuclear Science (NNS) group. Information on user accounts, getting help, network access, electronic mail, disk drives, tape drives, printers, batch processing software, XSYS hints, PC networking hints, and Mac networking hints is given.

Hoeberling, M.; Nelson, R.O.

1993-11-01T23:59:59.000Z

187

Standards in nuclear science and technology. A bibliography  

SciTech Connect

Abstracts of 1803 U. S. and non-U. S. publications concerning a broad range of standards used in nuclear science and technology are included. The publication dates span the period 1962 through 1972, inclusive. Abstracts are arranged chronologically within four categories entitled Reactors and Engineering, Instruments and Calibration, Radiation and Radiation Protection, and Miscellaneous. A subject index is also included. (auth)

1973-09-01T23:59:59.000Z

188

Notices DEPARTMENT OF ENERGY DOE/NSF Nuclear Science Advisory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

58 Federal Register 58 Federal Register / Vol. 78, No. 224 / Wednesday, November 20, 2013 / Notices DEPARTMENT OF ENERGY DOE/NSF Nuclear Science Advisory Committee AGENCY: Department of Energy, Office of Science. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the DOE/NSF Nuclear Science Advisory Committee (NSAC). The Federal Advisory Committee Act (Pub. L. 92-463, 86 Stat. 770) requires that public notice of these meetings be announced in the Federal Register. DATES: Thursday, December 19, 2013, 9:00 a.m.-5:00 p.m. ADDRESSES: Gaithersburg Marriott Washingtonian Center, 9751 Washingtonian Boulevard, Gaithersburg, Maryland 20878, (301) 590-0044. FOR FURTHER INFORMATION CONTACT: Brenda L. May, U.S. Department of Energy; SC-26/Germantown Building,

189

Nuclear science. Annual report, July 1, 1979-June 30, 1980  

SciTech Connect

This annual report describes the scientific research carried out within the Nuclear Science Division (NSD) during the period between July 1, 1979 and June 30, 1980. The principal objective of the division continues to be the experimental and theoretical investigation of the interactions of heavy ions with target nuclei, complemented with programs in light ion nuclear science, in nuclear data compilations, and in advanced instrumentation development. The division continues to operate the 88 Inch Cyclotron as a major research facility that also supports a strong outside user program. Both the SuperHILAC and Bevalac accelerators, operated as national facilities by LBL's Accelerator and Fusion Research Division, are also important to NSD experimentalists. (WHK)

Myers, W.D.; Friedlander, E.M.; Nitschke, J.M.; Stokstad, R.G. (eds.)

1981-03-01T23:59:59.000Z

190

Institute for Critical Technology and Applied Science Seminar Series Emerging Technologies in Nuclear  

E-Print Network (OSTI)

in Nuclear Science & Engineering ­ Development of novel techniques/tools using particle transport theory including reactors, nuclear security and safeguards systems and medical devices. His work is recognized methodologies with Alireza Haghighat, Nuclear Engineering Program, Mechanical Engineering Department Virginia

Beex, A. A. "Louis"

191

Nuclear Science-A Guide to the Nuclear Science Wall Chart  

NLE Websites -- All DOE Office Websites (Extended Search)

Chapter 6 Nuclear Energy Levels The nucleus, like the atom, has discrete energy levels whose location and properties are governed by the rules of quantum mechanics. The locations...

192

Basic science research to support the nuclear material focus area  

SciTech Connect

The Department of Energy's (DOE'S) Office of Environmental Management (EM) is responsible for managing more than 760,000 metric tons of nuclear material that is excess to the current DOE weapons program, as a result of shutdown of elements of the weapons program, mainly during the 1990s. EMowned excess nuclear material comprises a variety of material types, including uranium, plutonium, other actinides and other radioactive elements in numerous forms, all of which must be stabilized for storage and ultimate disposition. Much of this quantity has been in storage for many years. Shutdown of DOE sites and facilities requires removal of nuclear material and consolidation at other sites, and may be delayed by the lack of available technology. Within EM, the Office of Science and Technology (OST) is dedicated to providing timely, relevant technology to accelerate completion and reduce cleanup cost of the DOE environmental legacy. OST is organized around five focus areas, addressing crucial areas of end-user-defined technology need. The Focus Areas regularly identify potential technical solutions for which basic scientific research is needed to determine if the technical solution can be developed and deployed. To achieve a portfolio of projects that is balanced between near-term priorities driven by programmatic risks (such as site closure milestones) and long-term, high-consequence needs that depend on extensive research and development, OST has established the Environmental Management Science Program (EMSP) to develop the scientific basis for solutions to long-term site needs. The EMSP directs calls for proposals to address scientific needs of the focus areas. Needs are identified and validated annually by individual sites in workshops conducted across the complex. The process captures scope and schedule requirements of the sites, so that focus areas can identify technology that can be delivered to sites in time to complete site cleanup. The Nuclear Material Focus Area (NMFA) has identified over two hundred science and technology needs, of which more than thirty are science needs.

Boak, J. M. (Jeremy M.); Eller, P. Gary; Chipman, N. A.; Castle, P. M.

2002-01-01T23:59:59.000Z

193

Basic Science Research to Support the Nuclear Materials Focus Area  

SciTech Connect

The Department of Energy's (DOE's) Office of Environmental Management (EM) is responsible for managing more than 760,000 metric tons of nuclear material that is excess to the current DOE weapons program, as a result of shutdown of elements of the weapons program, mainly during the 1990s. EMowned excess nuclear material comprises a variety of material types, including uranium, plutonium, other actinides and other radioactive elements in numerous forms, all of which must be stabilized for storage and ultimate disposition. Much of this quantity has been in storage for many years. Shutdown of DOE sites and facilities requires removal of nuclear material and consolidation at other sites, and may be delayed by the lack of available technology. Within EM, the Office of Science and Technology (OST) is dedicated to providing timely, relevant technology to accelerate completion and reduce cleanup cost of the DOE environmental legacy. OST is organized around five focus areas, addressing crucial areas of end-user-defined technology need. The Focus Areas regularly identify potential technical solutions for which basic scientific research is needed to determine if the technical solution can be developed and deployed. To achieve a portfolio of projects that is balanced between near-term priorities driven by programmatic risks (such as site closure milestones) and long-term, high-consequence needs that depend on extensive research and development, OST has established the Environmental Management Science Program (EMSP) to develop the scientific basis for solutions to long-term site needs. The EMSP directs calls for proposals to address scientific needs of the focus areas. Needs are identified and validated annually by individual sites in workshops conducted across the complex. The process captures scope and schedule requirements of the sites, so that focus areas can identify technology that can be delivered to sites in time to complete site cleanup. The Nuclear Material Focus Area (NMFA) has identified over two hundred science and technology needs, of which more than thirty are science needs.

Chipman, N. A.; Castle, P. M.; Boak, J. M.; Eller, P. G.

2002-02-26T23:59:59.000Z

194

Basic Research Needs for Advanced Nuclear Systems. Report of the Basic Energy Sciences Workshop on Basic Research Needs for Advanced Nuclear Energy Systems, July 31-August 3, 2006  

Science Conference Proceedings (OSTI)

The global utilization of nuclear energy has come a long way from its humble beginnings in the first sustained nuclear reaction at the University of Chicago in 1942. Today, there are over 440 nuclear reactors in 31 countries producing approximately 16% of the electrical energy used worldwide. In the United States, 104 nuclear reactors currently provide 19% of electrical energy used nationally. The International Atomic Energy Agency projects significant growth in the utilization of nuclear power over the next several decades due to increasing demand for energy and environmental concerns related to emissions from fossil plants. There are 28 new nuclear plants currently under construction including 10 in China, 8 in India, and 4 in Russia. In the United States, there have been notifications to the Nuclear Regulatory Commission of intentions to apply for combined construction and operating licenses for 27 new units over the next decade. The projected growth in nuclear power has focused increasing attention on issues related to the permanent disposal of nuclear waste, the proliferation of nuclear weapons technologies and materials, and the sustainability of a once-through nuclear fuel cycle. In addition, the effective utilization of nuclear power will require continued improvements in nuclear technology, particularly related to safety and efficiency. In all of these areas, the performance of materials and chemical processes under extreme conditions is a limiting factor. The related basic research challenges represent some of the most demanding tests of our fundamental understanding of materials science and chemistry, and they provide significant opportunities for advancing basic science with broad impacts for nuclear reactor materials, fuels, waste forms, and separations techniques. Of particular importance is the role that new nanoscale characterization and computational tools can play in addressing these challenges. These tools, which include DOE synchrotron X-ray sources, neutron sources, nanoscale science research centers, and supercomputers, offer the opportunity to transform and accelerate the fundamental materials and chemical sciences that underpin technology development for advanced nuclear energy systems. The fundamental challenge is to understand and control chemical and physical phenomena in multi-component systems from femto-seconds to millennia, at temperatures to 1000?C, and for radiation doses to hundreds of displacements per atom (dpa). This is a scientific challenge of enormous proportions, with broad implications in the materials science and chemistry of complex systems. New understanding is required for microstructural evolution and phase stability under relevant chemical and physical conditions, chemistry and structural evolution at interfaces, chemical behavior of actinide and fission-product solutions, and nuclear and thermomechanical phenomena in fuels and waste forms. First-principles approaches are needed to describe f-electron systems, design molecules for separations, and explain materials failure mechanisms. Nanoscale synthesis and characterization methods are needed to understand and design materials and interfaces with radiation, temperature, and corrosion resistance. Dynamical measurements are required to understand fundamental physical and chemical phenomena. New multiscale approaches are needed to integrate this knowledge into accurate models of relevant phenomena and complex systems across multiple length and time scales.

Roberto, J.; Diaz de la Rubia, T.; Gibala, R.; Zinkle, S.; Miller, J.R.; Pimblott, S.; Burns, C.; Raymond, K.; Grimes, R.; Pasamehmetoglu, K.; Clark, S.; Ewing, R.; Wagner, A.; Yip, S.; Buchanan, M.; Crabtree, G.; Hemminger, J.; Poate, J.; Miller, J.C.; Edelstein, N.; Fitzsimmons, T.; Gruzalski, G.; Michaels, G.; Morss, L.; Peters, M.; Talamini, K.

2006-10-01T23:59:59.000Z

195

Nuclear Science-A Guide to the Nuclear Science Wall Chart  

NLE Websites -- All DOE Office Websites (Extended Search)

The proton distribution can be characterized by an average radius. It is found that nuclear radii range from 1-10 10 -15 m. This radius is much smaller than that of the atom,...

196

Nuclear Science-A Guide to the Nuclear Science Wall Chart  

NLE Websites -- All DOE Office Websites (Extended Search)

and about 250 kg of 239 Pu. Some 40% of the energy produced in the course of a nuclear fuel cycle comes from 239 Pu. Since about 20% of the electricity generated in the United...

197

Putting the Genie Back in the Bottle: The Science of Nuclear Non-Proliferation  

E-Print Network (OSTI)

by the Soviets. Nuclear Non-Proliferation Treaty (NPT) enters into force (1970). Prevent the spread of nuclear and eliminate nuclear weapons (1953). Vetoed by the Soviets. Nuclear Non-Proliferation Treaty (NPT) entersPutting the Genie Back in the Bottle: The Science of Nuclear Non-Proliferation Jerry Gilfoyle

Gilfoyle, Jerry

198

Technical cooperation on nuclear security between the United States and China : review of the past and opportunities for the future.  

Science Conference Proceedings (OSTI)

The United States and China are committed to cooperation to address the challenges of the next century. Technical cooperation, building on a long tradition of technical exchange between the two countries, can play an important role. This paper focuses on technical cooperation between the United States and China in the areas of nonproliferation, arms control and other nuclear security topics. It reviews cooperation during the 1990s on nonproliferation and arms control under the U.S.-China Arms Control Exchange, discusses examples of ongoing activities under the Peaceful Uses of Technology Agreement to enhance security of nuclear and radiological material, and suggests opportunities for expanding technical cooperation between the defense nuclear laboratories of both countries to address a broader range of nuclear security topics.

Pregenzer, Arian Leigh

2011-12-01T23:59:59.000Z

199

COMPUTATIONAL SCIENCE CENTER  

SciTech Connect

The Brookhaven Computational Science Center brings together researchers in biology, chemistry, physics, and medicine with applied mathematicians and computer scientists to exploit the remarkable opportunities for scientific discovery which have been enabled by modern computers. These opportunities are especially great in computational biology and nanoscience, but extend throughout science and technology and include for example, nuclear and high energy physics, astrophysics, materials and chemical science, sustainable energy, environment, and homeland security.

DAVENPORT,J.

2004-11-01T23:59:59.000Z

200

Closed Funding Opportunity Announcements (FOAs) | U.S. DOE Office of  

NLE Websites -- All DOE Office Websites (Extended Search)

Funding Opportunity Announcements (FOAs) Funding Opportunity Announcements (FOAs) Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Funding Opportunities Closed Funding Opportunity Announcements (FOAs) Closed Lab Announcements Award Search Reviews NP Early Career Opportunities & Awardees Nuclear Science Advisory Committee (NSAC) News & Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3613 F: (301) 903-3833 E: sc.np@science.doe.gov More Information » Funding Opportunities Closed Funding Opportunity Announcements (FOAs) Print Text Size: A A A RSS Feeds FeedbackShare Page Fiscal Year: Select 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2000 1999 1998 1997 1996 GO

Note: This page contains sample records for the topic "opportunities nuclear science" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Nuclear Physics Science Network Requirements Workshop, May 2008 - Final Report  

E-Print Network (OSTI)

the Directors of the Office of Science, Office of AdvancedProgram Office, DOE Office of Science Energy SciencesDepartment of Energy, Office of Science, Advanced Scientific

Tierney, Ed., Brian L

2008-01-01T23:59:59.000Z

202

Nuclear Physics Science Network Requirements Workshop, May 2008 - Final Report  

Science Conference Proceedings (OSTI)

The Energy Sciences Network (ESnet) is the primary provider of network connectivity for the US Department of Energy Office of Science, the single largest supporter of basic research in the physical sciences in the United States of America. In support of the Office of Science programs, ESnet regularly updates and refreshes its understanding of the networking requirements of the instruments, facilities, scientists, and science programs that it serves. This focus has helped ESnet to be a highly successful enabler of scientific discovery for over 20 years. In May 2008, ESnet and the Nuclear Physics (NP) Program Office of the DOE Office of Science organized a workshop to characterize the networking requirements of the science programs funded by the NP Program Office. Most of the key DOE sites for NP related work will require significant increases in network bandwidth in the 5 year time frame. This includes roughly 40 Gbps for BNL, and 20 Gbps for NERSC. Total transatlantic requirements are on the order of 40 Gbps, and transpacific requirements are on the order of 30 Gbps. Other key sites are Vanderbilt University and MIT, which will need on the order of 20 Gbps bandwidth to support data transfers for the CMS Heavy Ion program. In addition to bandwidth requirements, the workshop emphasized several points in regard to science process and collaboration. One key point is the heavy reliance on Grid tools and infrastructure (both PKI and tools such as GridFTP) by the NP community. The reliance on Grid software is expected to increase in the future. Therefore, continued development and support of Grid software is very important to the NP science community. Another key finding is that scientific productivity is greatly enhanced by easy researcher-local access to instrument data. This is driving the creation of distributed repositories for instrument data at collaborating institutions, along with a corresponding increase in demand for network-based data transfers and the tools to manage those transfers effectively. Network reliability is also becoming more important as there is often a narrow window between data collection and data archiving when transfer and analysis can be done. The instruments do not stop producing data, so extended network outages can result in data loss due to analysis pipeline stalls. Finally, as the scope of collaboration continues to increase, collaboration tools such as audio and video conferencing are becoming ever more critical to the productivity of scientific collaborations.

Tierney, Ed., Brian L; Dart, Ed., Eli; Carlson, Rich; Dattoria, Vince; Ernest, Michael; Hitchcock, Daniel; Johnston, William; Kowalski, Andy; Lauret, Jerome; Maguire, Charles; Olson, Douglas; Purschke, Martin; Rai, Gulshan; Watson, Chip; Vale, Carla

2008-11-10T23:59:59.000Z

203

Argonne Chemical Sciences & Engineering - People - Nuclear and  

NLE Websites -- All DOE Office Websites (Extended Search)

Processes Processes Areas Heavy Element Separations Science Interfacial Processes Process Safeguards Environmental Science Radiochemistry Process Simulation and Equipment Design Pyroprocess Development Management and Support Mark A. Williamson, Chemist and Department Manager phone: 630/252-9627, fax: 630/252-5246, e-mail: williamson@anl.gov Ph.D., Physical Chemistry, University of Kansas Advanced nuclear fuel cycles Pyrochemical process research and development Actinide thermodynamics and inorganic chemistry High-temperature chemistry Monica C. Regalbuto, Senior Chemical Engineer phone:630/252-4616, e-mail: regalbuto@anl.gov George F. Vandegrift, Argonne Distinguished Fellow phone: 630/252-4513, fax: 630/972-4513, e-mail: vandegrift@anl.gov Ph.D., Inorganic Chemistry, Iowa State University

204

Glenn T. Seaborg and heavy ion nuclear science  

Science Conference Proceedings (OSTI)

Radiochemistry has played a limited but important role in the study of nucleus-nucleus collisions. Many of the important radiochemical studies have taken place in Seaborg's laboratory or in the laboratories of others who have spent time in Berkeley working with Glenn T. Seaborg. I will discuss studies of low energy deep inelastic reactions with special emphasis on charge equilibration, studies of the properties of heavy residues in intermediate energy nuclear collisions and studies of target fragmentation in relativistic and ultrarelativistic reactions. The emphasis will be on the unique information afforded by radiochemistry and the physical insight derived from radiochemical studies. Future roles of radiochemistry in heavy ion nuclear science also will be discussed.

Loveland, W. (Oregon State Univ., Corvallis, OR (United States). Dept. of Chemistry Lawrence Berkeley Lab., CA (United States))

1992-04-01T23:59:59.000Z

205

Glenn T. Seaborg and heavy ion nuclear science  

Science Conference Proceedings (OSTI)

Radiochemistry has played a limited but important role in the study of nucleus-nucleus collisions. Many of the important radiochemical studies have taken place in Seaborg`s laboratory or in the laboratories of others who have spent time in Berkeley working with Glenn T. Seaborg. I will discuss studies of low energy deep inelastic reactions with special emphasis on charge equilibration, studies of the properties of heavy residues in intermediate energy nuclear collisions and studies of target fragmentation in relativistic and ultrarelativistic reactions. The emphasis will be on the unique information afforded by radiochemistry and the physical insight derived from radiochemical studies. Future roles of radiochemistry in heavy ion nuclear science also will be discussed.

Loveland, W. [Oregon State Univ., Corvallis, OR (United States). Dept. of Chemistry]|[Lawrence Berkeley Lab., CA (United States)

1992-04-01T23:59:59.000Z

206

Argonne Chemical Sciences & Engineering - People - Nuclear and  

NLE Websites -- All DOE Office Websites (Extended Search)

Simulation and Equipment Design Simulation and Equipment Design Candido Pereira, Chemical Engineer and Group Leader phone: 630/252-9832, fax: 630/972-4448, e-mail: pereira@anl.gov Ph.D., Chemical Engineering, University of Pennsylvania Aqueous separations Solvent extraction and ion exchange Process modeling and design Spent nuclear fuel processing High-level waste treatment Jacqueline M. Copple, Computer Scientist phone: 630/252-4555, fax 630/972-4555, e-mail, copple@anl.gov MS, Computer Science, Illinois Institute of Technology Modeling and simulation (UREX+ process for recovering key radionuclides from commercial spent nuclear fuel) Laura E. Maggos, Scientific Associate phone: 630/252-4701, e-mail: maggos@anl.gov BS, Chemistry, University of Chicago Aqueous separations (UREX+) Solvent extraction modeling

207

ANNOUNCEMENT OF FEDERAL FUNDING OPPORTUNITY (FFO) Graduate Student Measurement Science and Engineering (GMSE) Fellowship Program  

E-Print Network (OSTI)

/grants_management/policy/documents/DOC_Standard_Terms_and_C onditions_01_10_2013.pdf), the following reporting requirements shall apply: (1) Financial Reports. Each) Fellowship Program Announcement Type: Initial Funding Opportunity Number: 2013-NIST-GMSE-01 Catalog 15, 2013. Paper applications must be received by 5:00 p.m. Eastern Time, Friday, February 15, 2013

208

Program Overview Shane Johnson Office of Nuclear Energy, Science and Technology  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Program Overview Program Overview Shane Johnson Office of Nuclear Energy, Science and Technology April 15, 2002 Presentation to the Nuclear Energy Research Advisory Committee Office of Nuclear Energy, Science and Technology Johnson/April15_02 NP 2010 to NERAC.ppt 2 Nuclear Power 2010 Overview Nuclear Power 2010 Overview Goals 6 Orders for one or more new nuclear plants by 2005 6 Operation of new nuclear power plants by 2010 6 New program initiative unveiled February 2002 6 Based on Near-Term Deployment Roadmap 6 Public/private partnership to: ! Develop advanced reactor technologies ! Explore sites that could host new nuclear power plants ! Demonstrate new Nuclear Regulatory Commission (NRC) regulatory processes Office of Nuclear Energy, Science and Technology Johnson/April15_02 NP 2010 to NERAC.ppt 3

209

A Home for Heffalump and Pooh - Argonne's Nuclear Science and Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

A Home for Heffalump and Pooh A Home for Heffalump and Pooh About Director's Welcome Organization Achievements Highlights Fact Sheets, Brochures & Other Documents Multimedia Library Visit Argonne Work with Argonne Contact us Nuclear Energy Why Nuclear Energy? Why are some people afraid of Nuclear Energy? How do nuclear reactors work? Cheaper & Safer Nuclear Energy Helping to Solve the Nuclear Waste Problem Nuclear Reactors Nuclear Reactors Early Exploration Training Reactors Basic and Applied Science Research LWR Technology Development BORAX-III lighting Arco, Idaho (Press Release) Heavy Water and Graphite Reactors Fast Reactor Technology Integral Fast Reactor Argonne Reactor Tree CP-1 70th Anniversary CP-1 70th Anniversary Argonne's Nuclear Science and Technology Legacy Argonne's Nuclear Science and Technology Legacy

210

288 Int. J. Nuclear Energy Science and Technology, Vol. 7, No. 4, 2013 Multi-physics modelling of nuclear reactors  

E-Print Network (OSTI)

288 Int. J. Nuclear Energy Science and Technology, Vol. 7, No. 4, 2013 Multi-physics modelling of nuclear reactors: current practices in a nutshell Christophe Demazière Department of Applied Physics, Division of Nuclear Engineering, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden Email

Demazière, Christophe

211

Nuclear Physics Science Network Requirements Workshop, May 2008 - Final Report  

E-Print Network (OSTI)

Requirements Workshop Nuclear Physics Program Office, DOEDOE Nuclear Physics Programs .. 6 Nuclear Physics Network Requirementsbandwidth and services requirements. 3 DOE Nuclear Physics

Tierney, Ed., Brian L

2008-01-01T23:59:59.000Z

212

Paid Nuclear and Radiochemistry Summer School Opportunities for Undergraduates - Applications Due Feb 1.  

Energy.gov (U.S. Department of Energy (DOE))

Are you an undergradutate student interested in a career in nuclear or radiochemistry? From now until February 1, 2013, applications are open for the Nuclear and Radiochemistry Summer School...

213

Proposal for Reviews | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Proposal for Reviews Nuclear Physics (NP) NP Home About NP Research Facilities Science Highlights Benefits of NP Funding Opportunities Award Search Reviews Proposal for Reviews NP...

214

Bachelor of Science in Nuclear Medicine Technology NAME:________________________________ OLD DOMINION UNIVERSITY UID___________________________________  

E-Print Network (OSTI)

Bachelor of Science in Nuclear Medicine Technology NAME:________________________________ OLD________________________________ Entrance Writing Sample Placement Test:_________________ LOWER DIVISION GENERAL EDUCATION Credits/Grade A____________________ Students must complete the following courses (or equivalent) prior to entering the nuclear medicine

215

Development of Students Metacognitive Strategies In Science Learning Regarding Nuclear Energy  

Science Conference Proceedings (OSTI)

This research aimed to develop 48 Grade 10 students learning process and metacognitive strategies in the Nuclear Energy topic through the Science

Warawun Siriuthen; Chokchai Yuenyong

2010-01-01T23:59:59.000Z

216

COURSE NOTES: Nuclear Science and Technology Part I/II - TMS  

Science Conference Proceedings (OSTI)

Oct 22, 2007 ... Citation: W. Udo Schrder, "Nuclear Science and Technology Part I/II Chm466/ 566/Phy446/546," University of Rochester, 2007. Access Course

217

Compelling Research Opportunities using Isotopes  

SciTech Connect

Isotopes are vital to the science and technology base of the US economy. Isotopes, both stable and radioactive, are essential tools in the growing science, technology, engineering, and health enterprises of the 21st century. The scientific discoveries and associated advances made as a result of the availability of isotopes today span widely from medicine to biology, physics, chemistry, and a broad range of applications in environmental and material sciences. Isotope issues have become crucial aspects of homeland security. Isotopes are utilized in new resource development, in energy from bio-fuels, petrochemical and nuclear fuels, in drug discovery, health care therapies and diagnostics, in nutrition, in agriculture, and in many other areas. The development and production of isotope products unavailable or difficult to get commercially have been most recently the responsibility of the Department of Energy's Nuclear Energy program. The President's FY09 Budget request proposed the transfer of the Isotope Production program to the Department of Energy's Office of Science in Nuclear Physics and to rename it the National Isotope Production and Application program (NIPA). The transfer has now taken place with the signing of the 2009 appropriations bill. In preparation for this, the Nuclear Science Advisory Committee (NSAC) was requested to establish a standing subcommittee, the NSAC Isotope Subcommittee (NSACI), to advise the DOE Office of Nuclear Physics. The request came in the form of two charges: one, on setting research priorities in the short term for the most compelling opportunities from the vast array of disciplines that develop and use isotopes and two, on making a long term strategic plan for the NIPA program. This is the final report to address charge 1. NSACI membership is comprised of experts from the diverse research communities, industry, production, and homeland security. NSACI discussed research opportunities divided into three areas: (1) medicine, pharmaceuticals, and biology, (2) physical sciences and engineering, and (3) national security and other applications. In each area, compelling research opportunities were considered and the subcommittee as a whole determined the final priorities for research opportunities as the foundations for the recommendations. While it was challenging to prioritize across disciplines, our order of recommendations reflect the compelling research prioritization along with consideration of time urgency for action as well as various geopolitical market issues. Common observations to all areas of research include the needs for domestic availability of crucial stable and radioactive isotopes and the education of the skilled workforce that will develop new advances using isotopes in the future. The six recommendations of NSACI reflect these concerns and the compelling research opportunities for potential new discoveries. The science case for each of the recommendations is elaborated in the respective chapters.

None

2009-04-23T23:59:59.000Z

218

Physics opportunities with PILAC  

SciTech Connect

In the Long Range Plan prepared in 1989 for nuclear science in the 1990's, this nation's ability to maintain nuclear science at the intellectual cutting edge'' was addressed. In this document a number of facilities designed to do this were cited, including the CEBAF electron accelerator and the RHIC heavy ion accelerator. Beyond these facilities the Report noted the scientific opportunities available with a high intensity hadron facility and emphasized the importance of studies of the strong force which determines nuclear dynamics. My object in this brief survey is to discuss the physics research available in this area based on a relatively modest--at least by current standards--upgrade of the Los Alamos Meson Physics Facility, which will provide an important new tool for hadronic studies: that is PILAC, a source of pions with momenta in excess of 1 GeV/c. With PILAC a host of new opportunities for physics with pions free of the dominance of the P{sub 33} resonance is available.

Chrien, R.E.

1991-01-01T23:59:59.000Z

219

Nuclear Science References (NSR) from the National Nuclear Data Center (NNDC)  

DOE Data Explorer (OSTI)

The Nuclear Science References (NSR) database is an indexed bibiliography of primary and secondary references in nuclear physics research. About 80 journals are regularly scanned for articles. Recent references are added on a weekly basis. Approximately 4300 entries are added to the database annually. In general, articles are included in NSR if they include measured, calculated, or deduced quantitative nuclear structure or reaction data. Papers that apply previously known data are generally not included. Examples of this include neutron activation analysis using known cross sections or radiological dating using known half-lives. The database can be searched like a normal bibliographic database but can also be searched by the data that distinguishes it, data such as the nuclide, target/parent/daughter, reaction, incident particles, and outgoing particles. (Specialized Interface) [Taken from the NSR Help pages at http://www.nndc.bnl.gov/nsr/nsr_help.jsp

220

Editorial: Management and decision sciences, challenge and opportunities for control and optimization applications  

Science Conference Proceedings (OSTI)

In these pages I intend to illustrate the different components of the area management and decision sciences that I will be in charge of, as an area editor, for the coming years. To do so I will rely mostly on some research topics I know well for having ...

Alain B. Haurie

1998-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "opportunities nuclear science" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Synchrotron x-ray sources and new opportunities in the soil and environmental sciences  

Science Conference Proceedings (OSTI)

This report contains the following papers: characteristics of the advanced photon source and comparison with existing synchrotron facilities; x-ray absorption spectroscopy: EXAFS and XANES -- A versatile tool to study the atomic and electronic structure of materials; applications of x-ray spectroscopy and anomalous scattering experiments in the soil and environmental sciences; X-ray fluorescence microprobe and microtomography.

Schulze, D. (Purdue Univ., Lafayette, IN (USA)); Anderson, S. (Michigan State Univ., East Lansing, MI (USA)); Mattigod, S. (Pacific Northwest Lab., Richland, WA (USA))

1990-07-01T23:59:59.000Z

222

Argonne Chemical Sciences & Engineering - Nuclear & Environmental Processes  

NLE Websites -- All DOE Office Websites (Extended Search)

f-Element Polyoxoanion Chemistry f-Element Polyoxoanion Chemistry PuPreyssler The trans-uranium chemistry of the Preyssler heteropolyanion was extended to include the synthesis of the Pu(III) complex, [PuP5W30O110]12-, whose electroanalytical characterization reveals dual redox activity involving the 1-electron Pu(III)/Pu(IV) couple of the guest ion at +0.96 V vs. Ag/AgCl and the 5 × 2-electron reductive electrochemistry of the P-W-O host framework at potentials between -0.6 and 0 V, and electrostatic ion solvation behavior. Details are presented in the article by Antonio and Chiang, Inorg. Chem. 2008, 47, 8285. Polyoxoanions of general composition [XaMbOc]d- (X º P, Si; M º W, Mo) have applications in various disciplines including medicine, catalysis, and separations science. In prospective applications relating to nuclear waste

223

Argonne Chemical Sciences & Engineering - Nuclear & Environmental Processes  

NLE Websites -- All DOE Office Websites (Extended Search)

HESS HESS * Members * Publications * Overview * Recent Research Results Nuclear & Environmental Processes Home Heavy Element and Separations Science (HESS) Three dimensional reconstruction of the structure of a plutonium-containing protein in solution from small angle X-ray scattering (SAXS) data. Three-dimensional reconstruction of the structure of a plutonium-containing protein in solution from small-angle X-ray scattering (SAXS) data. Except for ultra-trace amounts of neptunium (Np) and plutonium (Pu) naturally generated by neutrons in uranium ores, all of the elements heavier than uranium (with atomic number 92) found in the geosphere are man made. The study of their chemistries began with the synthetic production of Np by Edwin McMillan and Philip H. Abelson in 1940. Since that time, much

224

Dynamic Processes in Biology, Chemistry, and Materials Science: Opportunities for UltraFast Transmission Electron Microscopy - Workshop Summary Report  

SciTech Connect

This report summarizes a 2011 workshop that addressed the potential role of rapid, time-resolved electron microscopy measurements in accelerating the solution of important scientific and technical problems. A series of U.S. Department of Energy (DOE) and National Academy of Science workshops have highlighted the critical role advanced research tools play in addressing scientific challenges relevant to biology, sustainable energy, and technologies that will fuel economic development without degrading our environment. Among the specific capability needs for advancing science and technology are tools that extract more detailed information in realistic environments (in situ or operando) at extreme conditions (pressure and temperature) and as a function of time (dynamic and time-dependent). One of the DOE workshops, Future Science Needs and Opportunities for Electron Scattering: Next Generation Instrumentation and Beyond, specifically addressed the importance of electron-based characterization methods for a wide range of energy-relevant Grand Scientific Challenges. Boosted by the electron optical advancement in the last decade, a diversity of in situ capabilities already is available in many laboratories. The obvious remaining major capability gap in electron microscopy is in the ability to make these direct in situ observations over a broad spectrum of fast (s) to ultrafast (picosecond [ps] and faster) temporal regimes. In an effort to address current capability gaps, EMSL, the Environmental Molecular Sciences Laboratory, organized an Ultrafast Electron Microscopy Workshop, held June 14-15, 2011, with the primary goal to identify the scientific needs that could be met by creating a facility capable of a strongly improved time resolution with integrated in situ capabilities. The workshop brought together more than 40 leading scientists involved in applying and/or advancing electron microscopy to address important scientific problems of relevance to DOEs research mission. This workshop built on previous workshops and included three breakout sessions identifying scientific challenges in biology, biogeochemistry, catalysis, and materials science frontier areas of fundamental science that underpin energy and environmental science that would significantly benefit from ultrafast transmission electron microscopy (UTEM). In addition, the current status of time-resolved electron microscopy was examined, and the technologies that will enable future advances in spatio-temporal resolution were identified in a fourth breakout session.

Kabius, Bernd C.; Browning, Nigel D.; Thevuthasan, Suntharampillai; Diehl, Barbara L.; Stach, Eric A.

2012-07-25T23:59:59.000Z

225

Student Opportunities in Nuclear Energy R&D_11-12  

NLE Websites -- All DOE Office Websites (Extended Search)

capabili es are helping counter the threats of terrorism. At the same me, we are also conscious of our responsibility to help the public understand science and to enhance...

226

Nuclear Science Advisory Committee (NSAC) Homepage | U.S. DOE Office of  

Office of Science (SC) Website

NSAC Home NSAC Home Nuclear Science Advisory Committee (NSAC) NSAC Home Meetings Members Charges/Reports Charter .pdf file (629KB) NP Committees of Visitors NP Home The Frontiers of Nuclear Science .pdf file (11.7MB) Nuclear Science Advisory Committee's December 2007 Long Range Plan.Read More .pdf file (11.7MB) The Frontiers of Nuclear Science 1 of 2 Print Text Size: A A A RSS Feeds FeedbackShare Page Additional Information Contact NSAC: Email: sc.np@science.doe.gov Phone: 301-903-3613 NSAC DFO: Dr. Timothy J. Hallman Committee Manager: Mrs. Brenda May Committee Chair: Dr. Donald Geesaman Associate Director - NP: Dr. Timothy J. Hallman NSAC is an advisory committee that provides official advice to the Department of Energy (DOE) and the National Science Foundation (NSF) External link

227

Plasma Science Committee (PLSC) and the Panel on Opportunities in Plasma Science and Technology (OPST). Technical progress report, June 1, 1992--May 31, 1993  

SciTech Connect

The Plasma Science Committee (PLSC) of the National Research Council (NRC) is charged with monitoring the health of the field of plasma science in the United States and identifies and examines both broad and specific issues affecting the field. Regular meetings, teleconferences, briefings from agencies and the scientific community, the formation of study panels to prepare reports, and special symposia are among the mechanisms used by the PLSC to meet its charge. During July 1992, the PLSC sponsored a workshop on nonneutral plasmas in traps. Although no written report on the workshop results, was prepared for public distribution, a summary of highlights was provided to the OPST Subpanel on Nonneutral Plasmas. The PLSC also continued its follow-up briefings and discussions on the results of the results of the report Plasma Processing of materials. Scientific and Technological Opportunities. As a result of these activities, the Committee is now working with the NRC Committee on Atomic, Molecular, and Optical Sciences (CAMOS) to organize a symposium on database needs in plasma processing of materials.

1993-08-01T23:59:59.000Z

228

Conference on Advances in Materials Science | National Nuclear...  

National Nuclear Security Administration (NNSA)

Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

229

Potential opportunities for nano materials to help enable enhanced nuclear fuel performance  

Science Conference Proceedings (OSTI)

This presentation is an overview of the technical challenges for development of nuclear fuels with enhanced performance and accident tolerance. Key specific aspects of improved fuel performance are noted. Examples of existing nanonuclear projects and concepts are presented and areas of potential focus are suggested. The audience for this presentation includes representatives from: DOE-NE, other national laboratories, industry and academia. This audience is a mixture of nanotechnology experts and nuclear energy researchers and managers.

McClellan, Kenneth J. [Los Alamos National Laboratory

2012-06-06T23:59:59.000Z

230

The "Last Universal Scientist" Takes Charge - Argonne's Nuclear Science  

NLE Websites -- All DOE Office Websites (Extended Search)

The "Last Universal Scientist" Takes Charge The "Last Universal Scientist" Takes Charge About Director's Welcome Organization Achievements Highlights Fact Sheets, Brochures & Other Documents Multimedia Library Visit Argonne Work with Argonne Contact us Nuclear Energy Why Nuclear Energy? Why are some people afraid of Nuclear Energy? How do nuclear reactors work? Cheaper & Safer Nuclear Energy Helping to Solve the Nuclear Waste Problem Nuclear Reactors Nuclear Reactors Early Exploration Training Reactors Basic and Applied Science Research LWR Technology Development BORAX-III lighting Arco, Idaho (Press Release) Heavy Water and Graphite Reactors Fast Reactor Technology Integral Fast Reactor Argonne Reactor Tree CP-1 70th Anniversary CP-1 70th Anniversary Argonne's Nuclear Science and Technology Legacy

231

Progress in Nuclear Energy 53 (2011) 618 625 Contents lists available at ScienceDirect  

E-Print Network (OSTI)

Progress in Nuclear Energy 53 (2011) 618 625 Contents lists available at ScienceDirect Progress in Nuclear Energy journal homepage: www.elsevier.com/locate/pnucene Comparison of thorium-based fuels. / Progress in Nuclear Energy 53 (2011) 618 625 3. Methodology 3.1. Determining the initial average fissile

Demazière, Christophe

232

Putting the Genie Back in the Bottle: The Science of Nuclear Non-Proliferation  

E-Print Network (OSTI)

of Richmond, Virginia Outline: 1. Some Bits of History. 2. Nuclear Weapons 101. 3. The Comprehensive Test BanPutting the Genie Back in the Bottle: The Science of Nuclear Non-Proliferation Jerry Gilfoyle Physics Department, University of Richmond, Virginia Outline: 1. Some Bits of History. 2. Nuclear Weapons

Gilfoyle, Jerry

233

Putting the Genie Back in the Bottle: The Science of Nuclear Non-Proliferation  

E-Print Network (OSTI)

Outline: 1. Some Bits of History. 2. Nuclear Weapons 101. 3. The Comprehensive Test Ban Treaty. 4. TestingPutting the Genie Back in the Bottle: The Science of Nuclear Non-Proliferation Jerry Gilfoyle Physics Department, University of Richmond, Virginia Outline: 1. Some Bits of History. 2. Nuclear Weapons

Gilfoyle, Jerry

234

Putting the Genie Back in the Bottle: The Science of Nuclear Non-Proliferation  

E-Print Network (OSTI)

. Some Bits of History. 2. Nuclear Weapons 101. 3. The Comprehensive Test Ban Treaty. 4. Testing The TestPutting the Genie Back in the Bottle: The Science of Nuclear Non-Proliferation Jerry Gilfoyle Physics Department, University of Richmond, Virginia Outline: 1. Some Bits of History. 2. Nuclear Weapons

Gilfoyle, Jerry

235

Putting the Genie Back in the Bottle: The Science of Nuclear Non-Proliferation  

E-Print Network (OSTI)

weapons (1953). Vetoed by the Soviets. Nuclear Non-Proliferation Treaty (NPT) enters into force (1970Putting the Genie Back in the Bottle: The Science of Nuclear Non-Proliferation Jerry Gilfoyle of Nuclear Non-Proliferation Jerry Gilfoyle Physics Department, University of Richmond, Virginia Outline: 1

Gilfoyle, Jerry

236

ENDF/B-VII.0: Next Generation Evaluated Nuclear Data Library for Nuclear Science and Technology  

SciTech Connect

We describe the next generation general purpose Evaluated Nuclear Data File, ENDF/B-VII.0, of recommended nuclear data for advanced nuclear science and technology applications. The library, released by the U.S. Cross Section Evaluation Working Group (CSEWG) in December 2006, contains data primarily for reactions with incident neutrons, protons, and photons on almost 400 isotopes. The new evaluations are based on both experimental data and nuclear reaction theory predictions. The principal advances over the previous ENDF/B-VI library are the following: (1) New cross sections for U, Pu, Th, Np and Am actinide isotopes, with improved performance in integral validation criticality and neutron transmission benchmark tests; (2) More precise standard cross sections for neutron reactions on H, {sup 6}Li, {sup 10}B, Au and for {sup 235,238}U fission, developed by a collaboration with the IAEA and the OECD/NEA Working Party on Evaluation Cooperation (WPEC); (3) Improved thermal neutron scattering; (4) An extensive set of neutron cross sections on fission products developed through a WPEC collaboration; (5) A large suite of photonuclear reactions; (6) Extension of many neutron- and proton-induced reactions up to an energy of 150 MeV; (7) Many new light nucleus neutron and proton reactions; (8) Post-fission beta-delayed photon decay spectra; (9) New radioactive decay data; and (10) New methods developed to provide uncertainties and covariances, together with covariance evaluations for some sample cases. The paper provides an overview of this library, consisting of 14 sublibraries in the same, ENDF-6 format, as the earlier ENDF/B-VI library. We describe each of the 14 sublibraries, focusing on neutron reactions. Extensive validation, using radiation transport codes to simulate measured critical assemblies, show major improvements: (a) The long-standing underprediction of low enriched U thermal assemblies is removed; (b) The {sup 238}U, {sup 208}Pb, and {sup 9}Be reflector biases in fast systems are largely removed; (c) ENDF/B-VI.8 good agreement for simulations of highly enriched uranium assemblies is preserved; (d) The underprediction of fast criticality of {sup 233,235}U and {sup 239}Pu assemblies is removed; and (e) The intermediate spectrum critical assemblies are predicted more accurately. We anticipate that the new library will play an important role in nuclear technology applications, including transport simulations supporting national security, nonproliferation, advanced reactor and fuel cycle concepts, criticality safety, medicine, space applications, nuclear astrophysics, and nuclear physics facility design. The ENDF/B-VII.0 library is archived at the National Nuclear Data Center, BNL. The complete library, or any part of it, may be retrieved from www.nndc.bnl.gov.

Chadwick, M B; Oblozinsky, P; Herman, M; Greene, N M; McKnight, R D; Smith, D L; Young, P G; MacFarlane, R E; Hale, G M; Haight, R C; Frankle, S; Kahler, A C; Kawano, T; Little, R C; Madland, D G; Moller, P; Mosteller, R; Page, P; Talou, P; Trellue, H; White, M; Wilson, W B; Arcilla, R; Dunford, C L; Mughabghab, S F; Pritychenko, B; Rochman, D; Sonzogni, A A; Lubitz, C; Trumbull, T H; Weinman, J; Brown, D; Cullen, D E; Heinrichs, D; McNabb, D; Derrien, H; Dunn, M; Larson, N M; Leal, L C; Carlson, A D; Block, R C; Briggs, B; Cheng, E; Huria, H; Kozier, K; Courcelle, A; Pronyaev, V; der Marck, S

2006-10-02T23:59:59.000Z

237

Conference on Advances in Materials Science | National Nuclear...  

National Nuclear Security Administration (NNSA)

in Materials Science Home > About Us > Our Programs > Defense Programs > Future Science & Technology Programs > Office of Advanced Simulation and Computing Institutional Research...

238

Nuclear science abstracts (NSA) database 1948--1974 (on the Internet)  

SciTech Connect

Nuclear Science Abstracts (NSA) is a comprehensive abstract and index collection of the International Nuclear Science and Technology literature for the period 1948 through 1976. Included are scientific and technical reports of the US Atomic Energy Commission, US Energy Research and Development Administration and its contractors, other agencies, universities, and industrial and research organizations. Coverage of the literature since 1976 is provided by Energy Science and Technology Database. Approximately 25% of the records in the file contain abstracts. These are from the following volumes of the print Nuclear Science Abstracts: Volumes 12--18, Volume 29, and Volume 33. The database contains over 900,000 bibliographic records. All aspects of nuclear science and technology are covered, including: Biomedical Sciences; Metals, Ceramics, and Other Materials; Chemistry; Nuclear Materials and Waste Management; Environmental and Earth Sciences; Particle Accelerators; Engineering; Physics; Fusion Energy; Radiation Effects; Instrumentation; Reactor Technology; Isotope and Radiation Source Technology. The database includes all records contained in Volume 1 (1948) through Volume 33 (1976) of the printed version of Nuclear Science Abstracts (NSA). This worldwide coverage includes books, conference proceedings, papers, patents, dissertations, engineering drawings, and journal literature. This database is now available for searching through the GOV. Research Center (GRC) service. GRC is a single online web-based search service to well known Government databases. Featuring powerful search and retrieval software, GRC is an important research tool. The GRC web site is at http://grc.ntis.gov.

NONE

1999-02-01T23:59:59.000Z

239

Topics in nuclear and radiochemistry for college curricula and high school science programs  

Science Conference Proceedings (OSTI)

The concern with the current status and trends of nuclear chemistry and radiochemistry education in academic institutions was addressed in a recent workshop. The 1988 workshop considered the important contributions that scientist with nuclear and radiochemistry backgrounds have made and are continuing to make to other sciences and to various applied fields. Among the areas discussed were environmental studies, life sciences, materials science, separation technology, hot atom chemistry, cosmochemistry, and the rapidly growing field of nuclear medicine. It is intent of the organizer and participants of this symposium entitled Topics in Nuclear and Radiochemistry for College Curricula and High School Science Program'' to provide lecture material on topics related to nuclear and radiochemistry to educators. It is our hope that teachers, who may or may not be familiar with the field, will find this collections of articles useful and incorporate some of them into their lectures.

Not Available

1990-01-01T23:59:59.000Z

240

Nuclear Science Division Annual Report 1995-1996  

E-Print Network (OSTI)

Times in 3He Induced Nuclear Fission Th. Rubehn, K.X. Jing,of the discovery of nuclear fission. Many review papers andtimes in 3He induced nuclear fission* Th. Rubehn, K.X. Jing,

Authors, Various

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "opportunities nuclear science" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Nuclear Science Division Annual Report 1984-85  

E-Print Network (OSTI)

and J.R. Huizenga, Nuclear Fission (Academic, New York,and J.R. Huizenga, Nuclear Fission (Academic, N.Y. , 1973).is well known from nuclear fission where it can be related

Mahoney Editor, Jeannette

2010-01-01T23:59:59.000Z

242

Nuclear Science Division Annual Report 1984-85  

E-Print Network (OSTI)

3. Nuclear Collisions at Relativistic Energies The theory6 Nuclear Theory 1. Hadronic and Quark Matter at High Energytheory group to calculate whether such energy densities could be generated in nuclear collisions at ultra-relativistic energies.

Mahoney Editor, Jeannette

2010-01-01T23:59:59.000Z

243

NUCLEAR SCIENCE DIVISION ANNUAL REPORT 1979-1980  

E-Print Network (OSTI)

high energy nuclear collisions. Application of HFB theory totheory that accounts for the known bulk properties of nuclear matter, i t s saturation energyenergy options. Sane neutron star physics involving nuclear theory.

Cerny, J.

2010-01-01T23:59:59.000Z

244

Nuclear Science Division Annual Report 1995-1996  

E-Print Network (OSTI)

Nuclear Theory Study of Medium-induced Parton Energy LossTransport theory With a view towards high-energy nuclearNuclear Theory Study of Medium-induced Parton Energy Loss

Authors, Various

2010-01-01T23:59:59.000Z

245

Nuclear Science Division Annual Report 1984-85  

E-Print Network (OSTI)

M. Xcssi. and W. Wolf. Nuclear-Reaction-Time Studies of U +K Produced in Relativistic Nuclear Collisions Phys. Lett.Momentum Distributions of Nuclear Fragments in im Collisions

Mahoney Editor, Jeannette

2010-01-01T23:59:59.000Z

246

DOE Science Showcase - DOE Nuclear Physics R&D Info | OSTI, US Dept of  

Office of Scientific and Technical Information (OSTI)

DOE Nuclear Physics R&D Info DOE Nuclear Physics R&D Info While quarks and gluons are fairly well understood, how they fit together to create different types of matter is still a mystery. The DOE Nuclear Physics program's mission is to solve this mystery through theoretical and experimental research; the benefits to society range from fighting cancer to ensuring food safety to border protection. Find DOE research information on this topic from the OSTI databases and read about the Department's Nuclear Physics program. From the Databases Select a database to initiate a search. DOE Information Bridge DOE R&D Accomplishments Energy Citations Database ScienceCinema Science.gov WorldWideScience.org More information Accelerating Innovation: How nuclear physics benefits us all About DOE's Nuclear Physics Program

247

U.S. Department of Energy Office of Nuclear Energy, Science and Technology  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

One the cover: One the cover: Albert Einstein (1879-1955) U.S. Department of Energy Office of Nuclear Energy, Science and Technology Washington, D.C. 20585 The History of Nuclear Energy Table of Contents Preface ................................................................... 1 Introduction .......................................................... 3 The Discovery of Fission ...................................... 4 The First Self-Sustaining Chain Reaction ............ 5 The Development of Nuclear Energy for Peaceful Applications ..................................... 7 Chronology of Nuclear Research and Development, 1942-1994 .................................... 13 Selected References ............................................. 23 Glossary ..............................................................

248

Girls, choose a career in Nuclear Science and Technology!  

NLE Websites -- All DOE Office Websites (Extended Search)

'Atomic Fission Fun with the American Nuclear Society', Jan. 26, 2013 Getting to know nuclear energy: the past, the present & the future - free public lecture (Nov. 15, 2012,...

249

Einstein's Letter- Argonne's Nuclear Science and Technology Legacy  

NLE Websites -- All DOE Office Websites (Extended Search)

Highlights Fact Sheets, Brochures & Other Documents Multimedia Library Visit Argonne Work with Argonne Contact us Nuclear Energy Why Nuclear Energy? Why are some people...

250

Economics of Nuclear and Renewable Electricity Energy Science Coalition  

E-Print Network (OSTI)

Nuclear energy arose as a spin-off from nuclear weapons. Its use grew rapidly during the 1960s, nurtured by huge subsidies and the belief that nuclear electricity would soon become too cheap to meter. According to the International Atomic Energy Agency, at the end of 2009 there were 438 operating nuclear power reactors in the world, total

Dr Mark Diesendorf

2010-01-01T23:59:59.000Z

251

Department of Energy Issues Funding Opportunity Announcements to Enhance  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Department of Energy Issues Funding Opportunity Announcements to Department of Energy Issues Funding Opportunity Announcements to Enhance Nuclear Energy Education Department of Energy Issues Funding Opportunity Announcements to Enhance Nuclear Energy Education March 24, 2010 - 12:17pm Addthis Washington, D.C. - The U.S. Department of Energy today announced two new Funding Opportunity Announcements (FOAs) to support university and college efforts to build or expand their school's nuclear science and engineering basic research or education capabilities. Under the Nuclear Energy University Programs, the Department will provide approximately $14.5 million to upgrade university level research reactors and purchase general scientific equipment and instrumentation. "There is a critical need for a trained workforce as the nation moves

252

Y-12 gives students a taste of science | National Nuclear Security  

National Nuclear Security Administration (NNSA)

gives students a taste of science | National Nuclear Security gives students a taste of science | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > NNSA Blog > Y-12 gives students a taste of science Y-12 gives students a taste of science Posted By Office of Public Affairs During a recent visit to the Y-12 National Security Complex, eighth graders

253

Chemical Sciences & Engineering - Nuclear & Environmental Processes -  

NLE Websites -- All DOE Office Websites (Extended Search)

Safeguards Safeguards * Members * Overview Nuclear & Environmental Processes Home Process Safeguards Process Safeguards is the application of chemical and engineering expertise to improve safeguards and nonproliferation of nuclear materials in complex facilities. Researchers in this group are developing novel approaches that integrate process modeling, process monitoring, and radiochemistry to understand, track and confirm the movement of nuclear materials through multistage chemical processes. Recent work includes Describing system response and observables of relevant process changes Developing detectors for nuclear materials Developing techniques for safeguarding nuclear materials More Closing the Nuclear Fuel Cycle Improved Safeguards for Spent Fuel Treatment Systems

254

Science Education | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

April 23, 2009 April 23, 2009 103 Teams to Head to DOE's National Science Bowl in Washington, D.C. High School and Middle School Regional Champions from Around the Country to Compete at National Championship April 3, 2009 Department of Energy Issues Funding Opportunity Announcement to U.S. Universities for Nuclear Science and Engineering Fellowships and Scholarships The U.S. Department of Energy (DOE) today issued a new Funding Opportunity Announcement (FOA) to provide approximately $2.4 million in university nuclear science and engineering fellowships and scholarships. March 11, 2009 Department of Energy Issues Funding Opportunity Announcement to U.S. Universities for Nuclear Research Infrastructure Needs The U.S. Department of Energy (DOE) today issued a new Funding Opportunity

255

Energy Frontier Research Center, Center for Materials Science of Nuclear Fuels  

SciTech Connect

This is a document required by Basic Energy Sciences as part of a mid-term review, in the third year of the five-year award period and is intended to provide a critical assessment of the Center for Materials Science of Nuclear Fuels (strategic vision, scientific plans and progress, and technical accomplishments).

Todd R. Allen

2011-12-01T23:59:59.000Z

256

Impact of contributions of Glenn T. Seaborg on nuclear science  

E-Print Network (OSTI)

the negotiation of the Non-Proliferation Treaty and took thetalks were begun. The non- proliferation treaty (NPT) wasban treaty, nuclear non-proliferation and the use of nuclear

Hoffman, Darleane C.

2000-01-01T23:59:59.000Z

257

A,B,C`s of nuclear science  

SciTech Connect

This introductory level presentation contains information on nuclear structure, radioactivity, alpha decay, beta decay, gamma decay, half-life, nuclear reactions, fusion, fission, cosmic rays, and radiation protection. Nine experiments with procedures and test questions are included.

Noto, V.A. [Mandeville High School, LA (United States); Norman, E.B.; Chan, Yuen-Dat; Dairiki, J.; Matis, H.S.; McMahan, M.A.; Otto, R. [Lawrence Berkeley Lab., CA (United States)

1995-08-07T23:59:59.000Z

258

Office of Nuclear Energy, Science and Technology Executive Summary  

E-Print Network (OSTI)

-effective, advanced nuclear plant designs and develop gas-cooled reactor technologies in order to pave the way projects to usher forth next-generation nuclear reactors and fuel cycles based on the results that enable used nuclear fuels to be recycled back into the reactors as fresh fuel. The Advanced Fuel Cycle

259

NUCLEAR SCIENCE AND TECHNOLOGY DIVISION OAK RIDGE NATIONAL LABORATORY  

E-Print Network (OSTI)

, engineering, construction. operation, transmission and distribution of nuclear electricity, decommissioning from $O.Ol/kWh ($1982) at l%/yr to $O.O165/kWh in year 50, decommissioning and nuclear waste reserved Copyright 0 1988 Pergamon Journals Ltd THE NET-ENERGY YIELD OF NUCLEAR POWER GENETYNER SR,~ ROBERT

McDonald, Kirk

260

Int. J. Nuclear Energy Science and Technology, Vol. 4, No. 4, 2009 287 Development of computational methods and their  

E-Print Network (OSTI)

Int. J. Nuclear Energy Science and Technology, Vol. 4, No. 4, 2009 287 Development of computational plants', Int. J. Nuclear Energy Science and Technology, Vol. 4, No. 4, pp.287­298. Biographical notes, energy and temporal distribution of the neutron density throughout the nuclear core depends

Demazière, Christophe

Note: This page contains sample records for the topic "opportunities nuclear science" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 54, NO. 4, AUGUST 2007 843 A Prototype Three-Dimensional Position Sensitive  

E-Print Network (OSTI)

for homeland security and nuclear non-proliferation applications. Mechanically cooled HPGe detectorsIEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 54, NO. 4, AUGUST 2007 843 A Prototype Three of Nuclear Engineering and Radi- ological Sciences, University of Michigan, Ann Arbor, MI 48109 USA (e

He, Zhong

262

Nuclear Physics Science Network Requirements Workshop, May 2008 - Final Report  

E-Print Network (OSTI)

Office of Advanced Scientific Computing Research, Facilitiesof Science, Advanced Scientific Computing Research (ASCR)Office of Advanced Scientific Computing Research, Facilities

Tierney, Ed., Brian L

2008-01-01T23:59:59.000Z

263

16 years of successful projects in16 years of successful projects in Nuclear Science & TechnologyNuclear Science & Technology  

E-Print Network (OSTI)

of operating NPP; · NPP decommissioning and waste treatment; · Novel reactor concepts and Nuclear Fuel Cycle

264

Argonne Chemical Sciences & Engineering - Nuclear & Environmental Processes  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Technology Nuclear Technology * Members * Contact * Publications * Overview * Pyrochemical Process Research * Closing the Nuclear Fuel Cycle Nuclear & Environmental Processes Home Pyrochemical Process Research Our department is also interested in pyrochemical process research and its development and demonstration for the U.S. Department of Energy's Generation IV (GEN IV) and Advanced Fuel Cycle Initiative (AFCI) programs. Through these initiatives, we are working to contribute to the development of next generation of advanced nuclear systems, to meet future needs for safe, economic, proliferation-resistant and environmentally responsible fuel cycles and energy production. Argonne research efforts in this area include: developing a novel electrochemical method for the conversion of spent oxide nuclear fuel to its metallic form for subsequent treatment by pyrochemical methods

265

Piglet and the Pumpkin Field - Argonne's Nuclear Science and...  

NLE Websites -- All DOE Office Websites (Extended Search)

scientists describe the historic events which brought them to understand nuclear fission Anniversary - 80 years ago, Leo Szilard envisioned neutron chain reaction blog...

266

Program Overview Shane Johnson Office of Nuclear Energy, Science...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

(COL) 6 Design Completion Tasks * Material, component and system testing * Fuel irradiation and testing * First-of-a-kind engineering 6 Nuclear Plant Business Case Study...

267

Oak Ridge National Laboratory - Nuclear Science and Engineering  

NLE Websites -- All DOE Office Websites (Extended Search)

supercomputer research such as this simulation of a Westinghouse PWR900 pressurized water reactor core. Visualization by Tom Evans, ORNL Nuclear Energy Innovation Hub ORNL will...

268

Impact of contributions of Glenn T. Seaborg on nuclear science  

E-Print Network (OSTI)

the negotiation of the Non-Proliferation Treaty and took thebegun. The non- proliferation treaty (NPT) was negotiatedtest ban treaty, nuclear non-proliferation and the use of

Hoffman, Darleane C.

2000-01-01T23:59:59.000Z

269

COMPUTATIONAL SCIENCE CENTER  

SciTech Connect

The Brookhaven Computational Science Center brings together researchers in biology, chemistry, physics, and medicine with applied mathematicians and computer scientists to exploit the remarkable opportunities for scientific discovery which have been enabled by modern computers. These opportunities are especially great in computational biology and nanoscience, but extend throughout science and technology and include, for example, nuclear and high energy physics, astrophysics, materials and chemical science, sustainable energy, environment, and homeland security. To achieve our goals we have established a close alliance with applied mathematicians and computer scientists at Stony Brook and Columbia Universities.

DAVENPORT, J.

2005-11-01T23:59:59.000Z

270

ORISE: Employment Opportunities for Current Employees  

NLE Websites -- All DOE Office Websites (Extended Search)

Careers Career Opportunities Diversity Our Culture Scholarships, Fellowships, or Other Research Opportunities for Students and Faculty Oak Ridge Institute for Science Education...

271

Nuclear Energy Governance and the Politics of Social Justice: Technology, Public Goods, and Redistribution in Russia and France  

E-Print Network (OSTI)

IEA. "Innovative Nuclear Reactor Development: OpportunitiesIEA. "Innovative Nuclear Reactor Development: OpportunitiesIEA. "Innovative Nuclear Reactor Development: Opportunities

Grigoriadis, Theocharis N

2009-01-01T23:59:59.000Z

272

PNNL's Community Science & Technology Seminar Series Nuclear Power in a  

E-Print Network (OSTI)

Entropy and black holes Binney, Prof James ES21 Winter, Emma Balliol The importance of energy storage22 Colman, Jake St Peter's Accelerator driven Nuclear Reactors Jelley, Prof Nick CO38 Cullen, Emma Podsiadlowski, Prof Philipp ES0305 Ghelani, Shanil University The Challenges and Promise of Nuclear Fusion

273

884 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 52, NO. 4, AUGUST 2005 Distributed Computing Grid Experiences in CMS  

E-Print Network (OSTI)

884 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 52, NO. 4, AUGUST 2005 Distributed Computing Grid is with National University of Science and Technology, Pakistan (e-mail: Ashiq.Anjum@cern.ch). T. Barrass, S

Low, Steven H.

274

A Clean Nuclear Energy Using Hydrogen and Condensed Matter Nuclear Science  

Science Conference Proceedings (OSTI)

Other Concepts and Assessments / Proceedings of the Fifteenth International Conference on Emerging Nuclear Energy Systems

Xing Z. Li; Zhan M. Dong; Chang L. Liang; Han Yi; Yun P. Fu

275

Fusion Nuclear Science Facility - Advanced Tokamak Option (A26932)  

E-Print Network (OSTI)

Proc. Of 19th Technology Of Fusion Energy, Las Vegas, Nevada, 2010; To Be Published In Fusion Science And Technology19th Topical Meeting on Technology Fusion Energy Las Vegas Nevada, US, 2010999618795

Wong, C.P.C.

2010-04-13T23:59:59.000Z

276

Nuclear Theory and Science of the Facility for Rare Isotope Beams  

E-Print Network (OSTI)

The Facility for Rare Isotope Beams (FRIB) will be a world-leading laboratory for the study of nuclear structure, reactions and astrophysics. Experiments with intense beams of rare isotopes produced at FRIB will guide us toward a comprehensive description of nuclei, elucidate the origin of the elements in the cosmos, help provide an understanding of matter in neutron stars, and establish the scientific foundation for innovative applications of nuclear science to society. FRIB will be essential for gaining access to key regions of the nuclear chart, where the measured nuclear properties will challenge established concepts, and highlight shortcomings and needed modifications to current theory. Conversely, nuclear theory will play a critical role in providing the intellectual framework for the science at FRIB, and will provide invaluable guidance to FRIB's experimental programs. This article overviews the broad scope of the FRIB theory effort, which reaches beyond the traditional fields of nuclear structure and reactions, and nuclear astrophysics, to explore exciting interdisciplinary boundaries with other areas. \\keywords{Nuclear Structure and Reactions. Nuclear Astrophysics. Fundamental Interactions. High Performance Computing. Rare Isotopes. Radioactive Beams.

A. B Balantekin; J. Carlson; D. J. Dean; G. M. Fuller; R. J. Furnstahl; M. Hjorth-Jensen; R. V. F. Janssens; Bao-An Li; W. Nazarewicz; F. M. Nunes; W. E. Ormand; S. Reddy; B. M. Sherrill

2014-01-24T23:59:59.000Z

277

NNSA/CEA Cooperation in Computer Science | National Nuclear Security...  

National Nuclear Security Administration (NNSA)

models for each stage of operation of a nuclear weapon and a high level of computing power and complex software to integrate these models along with experimental validation of...

278

Department of Energy Issues Funding Opportunity Announcement to U.S.  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Department of Energy Issues Funding Opportunity Announcement to Department of Energy Issues Funding Opportunity Announcement to U.S. Universities for Nuclear Research Infrastructure Needs Department of Energy Issues Funding Opportunity Announcement to U.S. Universities for Nuclear Research Infrastructure Needs March 11, 2009 - 12:00am Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) today issued a new Funding Opportunity Announcement (FOA), valued at least $2.25 million for equipment and infrastructure upgrades at U.S. universities enhancing their ability to conduct cutting-edge nuclear research and development. Infrastructure includes equipment and instrumentation for research reactors and other nuclear science and engineering laboratories and facilities. "This Funding Opportunity Announcement demonstrates our continued

279

The Need for a Strong Science and Technology Program in the Nuclear Weapons Complex for the 21st Century  

Science Conference Proceedings (OSTI)

In this paper I argue for the need for a strong Science and Technology program in the Nuclear Weapons Complex as the basis for maintaining a credible deterrence capability. The current Nuclear Posture Review establishes a New Triad as the basis for the United States deterrence strategy in a changing security environment. A predictive science capability is at the core of a credible National Nuclear Weapons program in the 21st Century. In absence of nuclear testing, the certification of our current Nuclear Weapons relies on predictive simulations and quantification of the associated simulation uncertainties. In addition, a robust nuclear infrastructure needs an active research and development program that considers all the required nuclear scenarios, including new configurations for which there is no nuclear test data. This paper also considers alternative positions to the need for a Science and Technology program in the Nuclear Weapons complex.

Garaizar, X

2010-01-06T23:59:59.000Z

280

An Equal Opportunity Employer / Operated by Los Alamos National Security LLC for DOE/NNSA Bradbury Science Museum  

E-Print Network (OSTI)

An Equal Opportunity Employer / Operated by Los Alamos National Security LLC for DOE/NNSA Bradbury Alamos National Security LLC for DOE/NNSA The historical museum in town (http

Note: This page contains sample records for the topic "opportunities nuclear science" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Materials Science | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Economy Funding Opportunities State & Local Government Science & Innovation Science & Technology Science Education Innovation Energy Sources Energy Usage Energy Efficiency...

282

Career Opportunities | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

computing tools for transformative science Job Opportunities Are you interested in developing new technologies for solving our nation's most complex scientific and...

283

Chemical Sciences & Engineering - Nuclear and Environmental Processes -  

NLE Websites -- All DOE Office Websites (Extended Search)

Radiochemistry Radiochemistry * Members * Overview * Eliminating Uranium * Medical Isotopes Nuclear & Environmental Processes Home Radiochemistry radiochemistry The Radiochemistry Group studies the chemistry of radioactive materials involved in the nuclear fuel cycle and medical isotope production. Our research is aimed at developing a comprehensive understanding of radiochemical processes via experimental determination and modeling of the underlying kinetics, thermodynamics, and mechanisms of the relevant chemistries. A thorough understanding of these parameters enables the development of potentially transformational used fuel processing techniques, and the optimization and scale-up of known techniques. Current research goals: Design a single-step process, replacing TRUEX and TALSPEAK

284

Argonne Chemical Sciences & Engineering - People - Nuclear and  

NLE Websites -- All DOE Office Websites (Extended Search)

Interfacial Processes Interfacial Processes Paul Fenter, Physicist and Group Leader phone: 630/252-7053, fax: 630/252-9570, e-mail: fenter@anl.gov Ph.D., Physics, University of Pennsylvania Interfacial science Interfacial geochemistry (mineral / fluid interfaces) Phase-sensitive interfacial x-ray scattering Sang Soo Lee, Assistant Geochemist phone: 630/252-6679, fax: 630/252-9570, e-mail: sslee@anl.gov Ph.D., Earth and Environmental Sciences, University of Illinois at Chicago Mineral-solution interfacial process Sorption of heavy metal and organic matter on minerals Ion-exchange and swelling of clay minerals X-ray reflectivity, resonant anomalous X-ray reflectivity, resonant anomalous X-ray diffraction Tim Fister, Assistant Materials Scientist Fax: 630/252-9570, e-mail: fister@anl.gov

285

Argonne Chemical Sciences & Engineering - Publications - Nuclear &  

NLE Websites -- All DOE Office Websites (Extended Search)

Heavy Element and Separations Science Heavy Element and Separations Science 2009 Antonio, M. R., M. Nyman, and T. M. Anderson, Direct observation of contact ion-pair formation in aqueous solution, Angew. Chem., Int. Ed. 48(33), 6136-6140 (2009) Antonio, M. R., M.-H. Chiang, S. Seifert, D. M. Tiede, and P. Thiyagarajan, In situ measurement of the Preyssler polyoxometalate morphology upon electrochemical reduction: A redox system with Born electrostatic ion salvation. J. Electroanal. Chem. 626(1-2), 103-110 (2009) Meridiano, Y., L. Berthon, X. Crozes, C. Sorel, P. Dannus, M. R. Antonio, R. Chiarizia, and T. Zemb,Aggregation in organic solutions of malonamides: Consequences for water extraction, Solvent Extr. Ion Exch., in press (2009) Pan, Y. X., W. Wang, G. K. Liu, S. Skanthakumar, R. A. Rosenberg, X. Z. Guo, K. K. Li , Correlation between structure variation and luminescence red shift in YAG:Ce, J. Alloy Comp., in press (2009)

286

Argonne Chemical Sciences & Engineering - People - Nuclear and  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Technology Nuclear Technology Mark A. Williamson, Chemist and Department Head phone: 630/252-9627, fax: 630/252-5246, e-mail: williamson@anl.gov Pyroprocess Development James L. Willit, Physical Chemist and Group Leader Phone: 630/252-4384, fax 630/972-4416, e-mail: willit@anl.gov Ph.D., Physical Chemistry, North Carolina State University Molten salt electrochemistry High-temperature actinide chemistry Electrochemical separations chemistry Pyroprocess development Robert J. Blaskovitz, Engineering Specialist phone: 630/252-4441, fax: 630/972-4421, blaskovitz@anl.gov Javier Figueroa, Chemical Engineer phone: 630/252-4248, fax 630/52-9917, e-mail: figueroa@anl.gov M.S., Chemical Engineering, Illinois Institute of Technology Pyroprocessing technology Plant modeling Terry R. Johnson, STA, Senior Chemical Engineer

287

Science based integrated approach to advanced nuclear fuel development - vision, approach, and overview  

SciTech Connect

Advancing the performance of Light Water Reactors, Advanced Nuclear Fuel Cycles, and Advanced Rcactors, such as the Next Generation Nuclear Power Plants, requires enhancing our fundamental understanding of fuel and materials behavior under irradiation. The capability to accurately model the nuclear fuel systems is critical. In order to understand specific aspects of the nuclear fuel, fully coupled fuel simulation codes are required to achieve licensing of specific nuclear fuel designs for operation. The backbone of these codes, models, and simulations is a fundamental understanding and predictive capability for simulating the phase and microstructural behavior of the nuclear fuel system materials and matrices. The purpose of this paper is to identify the modeling and simulation approach in order to deliver predictive tools for advanced fuels development. The coordination between experimental nuclear fuel design, development technical experts, and computational fuel modeling and simulation technical experts is a critical aspect of the approach and naturally leads to an integrated, goal-oriented science-based R & D approach and strengthens both the experimental and computational efforts. The Advanced Fuels Campaign (AFC) and Nuclear Energy Advanced Modeling and Simulation (NEAMS) Fuels Integrated Performance and Safety Code (IPSC) are working together to determine experimental data and modeling needs. The primary objective of the NEAMS fuels IPSC project is to deliver a coupled, three-dimensional, predictive computational platform for modeling the fabrication and both normal and abnormal operation of nuclear fuel pins and assemblies, applicable to both existing and future reactor fuel designs. The science based program is pursuing the development of an integrated multi-scale and multi-physics modeling and simulation platform for nuclear fuels. This overview paper discusses the vision, goals and approaches how to develop and implement the new approach.

Unal, Cetin [Los Alamos National Laboratory; Pasamehmetoglu, Kemal [IDAHO NATIONAL LAB; Carmack, Jon [IDAHO NATIONAL LAB

2010-01-01T23:59:59.000Z

288

Department of Energy Issues Funding Opportunity Announcements to Enhance  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Announcements to Announcements to Enhance Nuclear Energy Education Department of Energy Issues Funding Opportunity Announcements to Enhance Nuclear Energy Education March 24, 2010 - 12:00am Addthis Washington, D.C. - The U.S. Department of Energy today announced two new Funding Opportunity Announcements (FOAs) to support university and college efforts to build or expand their school's nuclear science and engineering basic research or education capabilities. Under the Nuclear Energy University Programs, the Department will provide approximately $14.5 million to upgrade university level research reactors and purchase general scientific equipment and instrumentation. "There is a critical need for a trained workforce as the nation moves toward greater use of nuclear energy to meet our energy needs and reduce

289

Department of Energy Issues Funding Opportunity Announcements to Enhance  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Announcements to Announcements to Enhance Nuclear Energy Education Department of Energy Issues Funding Opportunity Announcements to Enhance Nuclear Energy Education March 24, 2010 - 12:17pm Addthis Washington, D.C. - The U.S. Department of Energy today announced two new Funding Opportunity Announcements (FOAs) to support university and college efforts to build or expand their school's nuclear science and engineering basic research or education capabilities. Under the Nuclear Energy University Programs, the Department will provide approximately $14.5 million to upgrade university level research reactors and purchase general scientific equipment and instrumentation. "There is a critical need for a trained workforce as the nation moves toward greater use of nuclear energy to meet our energy needs and reduce

290

Energy Frontier Research Center, Center for Materials Science of Nuclear Fuels  

SciTech Connect

The Office of Science, Basic Energy Sciences, has funded the INL as one of the Energy Frontier Research Centers in the area of material science of nuclear fuels. This document is the required annual report to the Office of Science that outlines the accomplishments for the period of May 2010 through April 2011. The aim of the Center for Material Science of Nuclear Fuels (CMSNF) is to establish the foundation for predictive understanding of the effects of irradiation-induced defects on thermal transport in oxide nuclear fuels. The science driver of the centers investigation is to understand how complex defect and microstructures affect phonon mediated thermal transport in UO2, and achieve this understanding for the particular case of irradiation-induced defects and microstructures. The centers research thus includes modeling and measurement of thermal transport in oxide fuels with different levels of impurities, lattice disorder and irradiation-induced microstructure, as well as theoretical and experimental investigation of the evolution of disorder, stoichiometry and microstructure in nuclear fuel under irradiation. With the premise that thermal transport in irradiated UO2 is a phonon-mediated energy transport process in a crystalline material with defects and microstructure, a step-by-step approach will be utilized to understand the effects of types of defects and microstructures on the collective phonon dynamics in irradiated UO2. Our efforts under the thermal transport thrust involved both measurement of diffusive phonon transport (an approach that integrates over the entire phonon spectrum) and spectroscopic measurements of phonon attenuation/lifetime and phonon dispersion. Our distinct experimental efforts dovetail with our modeling effort involving atomistic simulation of phonon transport and prediction of lattice thermal conductivity using the Boltzmann transport framework.

Todd R. Allen, Director

2011-04-01T23:59:59.000Z

291

Department of Energy Issues Funding Opportunity Announcement...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Announcement to U.S. Universities for Nuclear Research Infrastructure Needs Department of Energy Issues Funding Opportunity Announcement to U.S. Universities for Nuclear Research...

292

Nuclear Engineering and Design 257 (2013) 3144 Contents lists available at SciVerse ScienceDirect  

E-Print Network (OSTI)

Nuclear Engineering and Design 257 (2013) 31­44 Contents lists available at SciVerse ScienceDirect Nuclear Engineering and Design journal homepage: www.elsevier.com/locate/nucengdes Validation of PARCS Bánáti, Mathias Stålek, Christophe Demazière Division of Nuclear Engineering, Department of Applied

Demazière, Christophe

293

Department of Energy Issues Funding Opportunity Announcement to U.S.  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Science and Engineering Fellowships and Science and Engineering Fellowships and Scholarships Department of Energy Issues Funding Opportunity Announcement to U.S. Universities for Nuclear Science and Engineering Fellowships and Scholarships April 3, 2009 - 1:52pm Addthis The U.S. Department of Energy (DOE) today issued a new Funding Opportunity Announcement (FOA) to provide approximately $2.4 million in university nuclear science and engineering fellowships and scholarships. Over 100 scholarships and 10 fellowships are expected to be awarded to U.S. students through this FOA. Undergraduates will receive scholarships that average $5,000 per year. The maximum award for fellowships is anticipated to be $50,000 per year over three years. "This Funding Opportunity Announcement demonstrates our commitment to

294

Nuclear Science Division annual report, July 1, 1981-September 30, 1982  

Science Conference Proceedings (OSTI)

This report summarizes the scientific research carried out within the Nuclear Science Division between July 1, 1981, and September 30, 1982. Heavy-ion investigations continue to dominate the experimental and theoretical research efforts. Complementary programs in light-ion nuclear science, in nuclear data evaluation, and in the development of advanced instrumentation are also carried out. Results from Bevalac experiments employing a wide variety of heavy ion beams, along with new or upgraded detector facilities (HISS, the Plastic Ball, and the streamer chamber) are contained in this report. These relativistic experiments have shed important light on the degree of equilibration for central collisions, the time evolution of a nuclear collision, the nuclear density and compressional energy of these collisions, and strange particle production. Reaction mechanism work dominates the heavy-ion research at the 88-Inch Cyclotron and the SuperHILAC. Recent experiments have contributed to our understanding of the nature of light-particle emission in deep-inelastic collisions, of peripheral reactions, incomplete fusion, fission, and evaporation. Nuclear structure investigations at these accelerators continue to be directed toward the understanding of the behavior of nuclei at high angular momentum. Research in the area of exotic nuclei has led to the observation at the 88-Inch Cyclotron of the ..beta..-delayed proton decay of odd-odd T/sub z/ = -2 nuclides; ..beta..-delayed proton emitters in the rare earth region are being investigated at the SuperHILAC.

Mahoney, J. (ed.)

1983-06-01T23:59:59.000Z

295

Argonne Chemical Sciences & Engineering - Nuclear & Environmental Processes  

NLE Websites -- All DOE Office Websites (Extended Search)

Developing Medical Isotopes from Low-Enriched Uranium Developing Medical Isotopes from Low-Enriched Uranium Argonne researchers are contributing to the security and welfare of our nation by developing means to produce a reliable domestic supply of an important medical agent using low-enriched uranium. Technetium-99m is a vital isotope that is commonly used for cardiac and mammogram imaging. However, the U.S. currently has no domestic source of molybdenum-99, which is the parent nuclide for technetium-99m, so we are particularly susceptible to supply interruptions. Through the National Nuclear Security Administration's Global Threat Reduction Initiative, Argonne researchers are supporting three separate approaches for domestic molybdenum-99 production from low-enriched uranium. Argonne is currently working with University of Missouri Research Reactor, and has already demonstrated one approach by irradiating 5g of low-enriched uranium metal foil. Argonne is also working with Babcock and Wilcox to design a molybdenum-99 production system based on fission of uranium-235 in a liquid fuel reactor. Argonne and NorthStar Nuclear Medicine, LLC are exploring an accelerator-based method for the production of molybdenum-99 by irradiating molybdenum targets

296

from Savannah River Nuclear Solutions, LLC NEWS Area High School Teams Compete during DOE's National Science  

NLE Websites -- All DOE Office Websites (Extended Search)

High School Teams Compete during DOE's National Science High School Teams Compete during DOE's National Science Bowl® Regional Championship: Lakeside and Evans High School Finish Second and Third - Dorman Wins AIKEN, S.C. - Feb. 25, 2013 - Using a format similar to the television show "Jeopardy," America's next generation of scientists and engineers put their knowledge to the test at the University of South Carolina Aiken during the DOE National Science Bowl regional compe- tition this past weekend. High School teams from across South Carolina and the greater Augusta, Ga. area relied on their collective knowledge as they participated in one of the coun- try's largest science tournaments. This regional competition, managed by Savannah River Nuclear Solutions, LLC (SRNS), hosted 120 high school students from 12 high schools. It is the only educational event

297

High Flux Isotope Reactor (HFIR) | Nuclear Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

High Flux Isotope Reactor High Flux Isotope Reactor May 30, 2013 The High Flux Isotope Reactor (HFIR) first achieved criticality on August 25, 1965, and achieved full power in August 1966. It is a versatile 85-MW isotope production, research, and test reactor with the capability and facilities for performing a wide variety of irradiation experiments and a world-class neutron scattering science program. HFIR is a beryllium-reflected, light water-cooled and moderated flux-trap type swimming pool reactor that uses highly enriched uranium-235 as fuel. HFIR typically operates seven 23-to-27 day cycles per year. Irradiation facility capabilities include Flux trap positions: Peak thermal flux of 2.5X1015 n/cm2/s with similar epithermal and fast fluxes (Highest thermal flux available in the

298

Research Opportunities  

Science Conference Proceedings (OSTI)

*. Bookmark and Share. Research Opportunities. ... NRC Postdoctoral Research Associateships Program; NIST NRC Program Description. ...

2013-04-22T23:59:59.000Z

299

Technical Considerations for the Nuclear Regulatory Commission/ National Academy of Sciences Proposed Study: Cancer in Populations L iving Near Nuclear Facilities  

Science Conference Proceedings (OSTI)

The U.S. Nuclear Regulatory Commission (NRC), through the National Academy of Sciences (NAS), is updating the 1990 U.S. National Institutes of Health - National Cancer Institute (NCI) report, Cancer in Populations Living near Nuclear Facilities. The Electric Power Research Institute (EPRI) formed a committee of scientists and professionals in the fields of epidemiology, radiation biology, nuclear plant effluents, and environmental risk assessment to provide study design considerations to the NAS committe...

2011-11-04T23:59:59.000Z

300

Neutron Transfer Reactions: Surrogates for Neutron Capture for Basic and Applied Nuclear Science  

SciTech Connect

Neutron capture reactions on unstable nuclei are important for both basic and applied nuclear science. A program has been developed at the Holifield Radioactive Ion Beam Facility at Oak Ridge National Laboratory to study single-neutron transfer (d,p) reactions with rare isotope beams to provide information on neutron-induced reactions on unstable nuclei. Results from (d,p) studies on {sup 130,132}Sn, {sup 134}Te and {sup 75}As are discussed.

Cizewski, J. A.; Peters, W. A.; Allen, J.; Hatarik, R.; Matthews, C.; O'Malley, P. [Department of Physics and Astronomy, Rutgers University, New Brunswick, NJ 08903 (United States); Jones, K. L. [Department of Physics and Astronomy, Rutgers University, New Brunswick, NJ 08903 (United States); Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996 (United States); Kozub, R. L.; Howard, J.; Patterson, N.; Paulauskas, S. V.; Rogers, J.; Sissom, D. J. [Department of Physics, Tennessee Technological University, Cookeville, TN 38505 (United States); Pain, S. D. [Department of Physics and Astronomy, Rutgers University, New Brunswick, NJ 08903 (United States); Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Adekola, A. [Department of Physics and Astronomy, Ohio University, Athens, OH 45703 (United States); Bardayan, D. W.; Blackmon, J. C.; Liang, F.; Nesaraja, C. D.; Pittman, S. T. [Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States)] (and others)

2009-03-10T23:59:59.000Z

Note: This page contains sample records for the topic "opportunities nuclear science" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Los Alamos neutron science center nuclear weapons stewardship and unique national scientific capabilities  

Science Conference Proceedings (OSTI)

This presentation gives an overview of the Los Alamos Neutron Science Center (LANSCE) and its contributions to science and the nuclear weapons program. LANSCE is made of multiple experimental facilities (the Lujan Center, the Weapons Neutron Research facility (WNR), the Ultra-Cold Neutron facility (UCN), the proton Radiography facility (pRad) and the Isotope Production Facility (IPF)) served by the its kilometer long linear accelerator. Several research areas are supported, including materials and bioscience, nuclear science, materials dynamics, irradiation response and medical isotope production. LANSCE is a national user facility that supports researchers worldwide. The LANSCE Risk Mitigation program is currently in progress to update critical accelerator equipment to help extend the lifetime of LANSCE as a key user facility. The Associate Directorate of Business Sciences (ADBS) plays an important role in the continued success of LANSCE. This includes key procurement support, human resource support, technical writing support, and training support. LANSCE is also the foundation of the future signature facility MARIE (Matter-Radiation Interactions in Extremes).

Schoenberg, Kurt F [Los Alamos National Laboratory

2010-12-15T23:59:59.000Z

302

Future of Nuclear Data for Nuclear Astrophysics  

Science Conference Proceedings (OSTI)

Nuclear astrophysics is an exciting growth area in nuclear science. Because of the enormous nuclear data needs of this field

Michael S. Smith

2005-01-01T23:59:59.000Z

303

Safeguarding Nuclear Fuel Processing | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Safeguarding Nuclear Safeguarding Nuclear Fuel Processing Laboratory Policy and Evaluation (LPE) LPE Home Staff M&O Contracts SC Laboratory Appraisal Process Laboratory Planning Process Work for Others in the Office of Science Laboratory Directed Research and Development (LDRD) DOE's Philosophy on LDRD Frequently Asked Questions Success Stories Brochures Additional Information LDRD Program Contacts Technology Transfer DOE National Laboratories Contact Information Laboratory Policy and Evaluation U.S. Department of Energy SC-32/Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5447 F: (202) 586-3119 Success Stories Safeguarding Nuclear Fuel Processing Print Text Size: A A A RSS Feeds FeedbackShare Page Idaho National Laboratory Develops International Nonproliferation

304

Business Opportunity Session Materials | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Materials Materials Business Opportunity Session Materials Presentations from our Washington DC Business Opportunity Session, held March 3, 2011 How to do Business with DOE Nickolas (Nick) Demer Senior Procurement Analyst OSDBU NNSA Opportunities Gary Lyttek Small Business Program Manager, NNSA Sandia National Laboratories Opportunities Don Devoti, Small Business Program Manager, Sandia National Laboratories Office of Science SBIR/STTR, Chris O'Gwin, Program Analyst, SBIR/STTR Program Office/Office of Science Opportunities with DOE Laboratories, Larry Thompson, Small Business Program Manager/Contract Specialist, Chicago Operations Office (Office of Science) Opportunities with the Office of Environmental Management, Kay Rash, Small Business Program Manager, Office of Environmental

305

Reviews | U.S. DOE Office of Science (SC)  

NLE Websites -- All DOE Office Websites (Extended Search)

Reviews Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Funding Opportunities Closed Funding Opportunity Announcements (FOAs) Closed Lab Announcements Award Search Reviews NP Early Career Opportunities & Awardees Nuclear Science Advisory Committee (NSAC) News & Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3613 F: (301) 903-3833 E: sc.np@science.doe.gov More Information » Funding Opportunities Reviews Print Text Size: A A A RSS Feeds FeedbackShare Page To ensure that funding is allocated as efficiently as possible, the NP program has developed a system of planning and priority setting that relies heavily on input from groups of outside experts. NP has also instituted a

306

FES Open Funding Opportunities  

Office of Science (SC) Website

- and is the principal federal funding agency of - the Nation's research programs in high-energy physics, nuclear physics, and fusion energy sciences. en 6E0BF60A-A50B-4201-AC3E-A...

307

NP Open Funding Opportunities  

Office of Science (SC) Website

- and is the principal federal funding agency of - the Nation's research programs in high-energy physics, nuclear physics, and fusion energy sciences. en 6E0BF60A-A50B-4201-AC3E-A...

308

BES Open Funding Opportunities  

Office of Science (SC) Website

- and is the principal federal funding agency of - the Nation's research programs in high-energy physics, nuclear physics, and fusion energy sciences. en 6E0BF60A-A50B-4201-AC3E-A...

309

BER Open Funding Opportunities  

Office of Science (SC) Website

- and is the principal federal funding agency of - the Nation's research programs in high-energy physics, nuclear physics, and fusion energy sciences. en 6E0BF60A-A50B-4201-AC3E-A...

310

ASCR Open Funding Opportunities  

Office of Science (SC) Website

- and is the principal federal funding agency of - the Nation's research programs in high-energy physics, nuclear physics, and fusion energy sciences. en 6E0BF60A-A50B-4201-AC3E-A...

311

HEP Open Funding Opportunities  

Office of Science (SC) Website

- and is the principal federal funding agency of - the Nation's research programs in high-energy physics, nuclear physics, and fusion energy sciences. en 6E0BF60A-A50B-4201-AC3E-A...

312

International Conference on Mathematics and Computational Methods Applied to Nuclear Science & Engineering (M&C 2013) Sun Valley, Idaho, USA, May 5-9, 2013, on CD-ROM, American Nuclear Society, LaGrange Park, IL (2013)  

E-Print Network (OSTI)

and Simulation of Nuclear Reactors under U.S. Department of Energy Contract No. DE-AC05-00OR22725, National for Solving k-Eigenvalue Problems in Neutron Diffusion Theory," Nuclear Science and Engineering, 167, pp. 141International Conference on Mathematics and Computational Methods Applied to Nuclear Science

Kelley, C. T. "Tim"

313

Nuclear Physics User Facilities | U.S. DOE Office of Science (SC)  

NLE Websites -- All DOE Office Websites (Extended Search)

NP User Facilities NP User Facilities User Facilities ASCR User Facilities BES User Facilities BER User Facilities FES User Facilities HEP User Facilities NP User Facilities User Facilities Frequently Asked Questions User Facility Science Highlights Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 NP User Facilities Print Text Size: A A A RSS Feeds FeedbackShare Page The Nuclear Physics program supports the operation of the following national scientific user facilities: Relativistic Heavy Ion Collider (RHIC): External link RHIC at Brookhaven National Laboratory External link is a world-class scientific research facility that began operation in 2000, following 10 years of development and construction. Hundreds of physicists from around

314

Fusion Science at NERSC  

NLE Websites -- All DOE Office Websites (Extended Search)

Rotating Plasma Finding is Key for ITER Heavy-Ion Fusion Science (HIFS) Math & Computer Science Nuclear Science Science Highlights HPC Requirements Reviews NERSC HPC Achievement...

315

U.S. Department of Energy Issues Fiscal Year 2011 Funding Opportunity  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Issues Fiscal Year 2011 Funding Issues Fiscal Year 2011 Funding Opportunity Announcements to Enhance Nuclear Energy Education Infrastructure U.S. Department of Energy Issues Fiscal Year 2011 Funding Opportunity Announcements to Enhance Nuclear Energy Education Infrastructure February 28, 2011 - 5:02pm Addthis The U.S. Department of Energy (DOE) today announced two new fiscal year (FY) 2011 Funding Opportunity Announcements (FOAs) to support university and college efforts to build or expand their school's nuclear science and engineering basic research or education capabilities. Under the Nuclear Energy University Programs (NEUP), DOE will provide up to $13.5 million to upgrade university level research reactors and purchase general scientific equipment and instrumentation, although this funding estimate may be

316

Department of Energy Issues Funding Opportunity Announcement to U.S.  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Announcement to Announcement to U.S. Universities for Nuclear Research Infrastructure Needs Department of Energy Issues Funding Opportunity Announcement to U.S. Universities for Nuclear Research Infrastructure Needs March 11, 2009 - 1:54pm Addthis The U.S. Department of Energy (DOE) today issued a new Funding Opportunity Announcement (FOA), valued at least $2.25 million for equipment and infrastructure upgrades at U.S. universities enhancing their ability to conduct cutting-edge nuclear research and development. Infrastructure includes equipment and instrumentation for research reactors and other nuclear science and engineering laboratories and facilities. "This Funding Opportunity Announcement demonstrates our continued commitment to support educational institutions essential to ensure the

317

Department of Energy Issues Funding Opportunity Announcement to U.S.  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Announcement to Announcement to U.S. Universities for Nuclear Research Infrastructure Needs Department of Energy Issues Funding Opportunity Announcement to U.S. Universities for Nuclear Research Infrastructure Needs March 11, 2009 - 12:00am Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) today issued a new Funding Opportunity Announcement (FOA), valued at least $2.25 million for equipment and infrastructure upgrades at U.S. universities enhancing their ability to conduct cutting-edge nuclear research and development. Infrastructure includes equipment and instrumentation for research reactors and other nuclear science and engineering laboratories and facilities. "This Funding Opportunity Announcement demonstrates our continued commitment to support educational institutions essential to ensure the

318

Nuclear reactor and materials science research: Technical report, May 1, 1985-September 30, 1986  

Science Conference Proceedings (OSTI)

Throughout the 17-month period of its grant, May 1, 1985-September 30, 1986, the MIT Research Reactor (MITR-II) was operated in support of research and academic programs in the physical and life sciences and in related engineering fields. The reactor was operated 4115 hours during FY 1986 and for 6080 hours during the entire 17-month period, an average of 82 hours per week. Utilization of the reactor during that period may be classified as follows: neutron beam tube research; nuclear materials research and development; radiochemistry and trace analysis; nuclear medicine; radiation health physics; computer control of reactors; dose reduction in nuclear power reactors; reactor irradiations and services for groups outside MIT; MIT Research Reactor. Data on the above utilization for FY 1986 show that the MIT Nuclear Reactor Laboratory (NRL) engaged in joint activities with nine academic departments and interdepartmental laboratories at MIT, the Charles Stark Draper Laboratory in Cambridge, and 22 other universities and nonprofit research institutions, such as teaching hospitals.

Not Available

1987-05-11T23:59:59.000Z

319

Bio Hallman | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Staff » Bio Staff » Bio Hallman Nuclear Physics (NP) NP Home About Staff Organization Chart .pdf file (32KB) NP Budget NP Committees of Visitors Directions Jobs Labs & Universities Nuclear Physics Related Brochures Research Facilities Science Highlights Benefits of NP Funding Opportunities Nuclear Science Advisory Committee (NSAC) News & Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3613 F: (301) 903-3833 E: sc.np@science.doe.gov More Information » Staff Bio Hallman Print Text Size: A A A RSS Feeds FeedbackShare Page Associate Director of Science for Nuclear Physics Timothy J. Hallman Dr. Timothy J. Hallman has served as the Associate Director for Nuclear Physics of the Office of Science since November 23, 2009. With an annual

320

Employment / Research Opportunities in Cell Systems ...  

Science Conference Proceedings (OSTI)

NIST-NRC Postdoctoral Opportunities in the Cell Systems Science Group. ... Resonance Imaging as a Quantitative Microscopy of Live Cells and their ...

2013-06-06T23:59:59.000Z

Note: This page contains sample records for the topic "opportunities nuclear science" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Nuclear Science Division annual report, October 1, 1984-September 30, 1985  

SciTech Connect

This report summarizes the activities of the Nuclear Science Division during the period October 1, 1984 to September 30, 1985. As in previous years, experimental research has for the most part been carried out using three local accelerators, the Bevalac, the SuperHILAC and the 88-Inch Cyclotron. However, during this time, preparations began for a new generation of relativistic heavy-ion experiments at CERN. The Nuclear Science Division is involved in three major experiments at CERN and several smaller ones. The report is divided into 5 sections. Part I describes the research programs and operations, and Part II contains condensations of experimental papers arranged roughly according to program and in order of increasing energy, without any further subdivisions. Part III contains condensations of theoretical papers, again ordered according to program but in order of decreasing energy. Improvements and innovations in instrumentation and in experimental or analytical techniques are presented in Part IV. Part V consists of appendices, the first listing publications by author for this period, in which the LBL report number only is given for papers that have not yet appeared in journals; the second contains abstracts of PhD theses awarded during this period; and the third gives the titles and speakers of the NSD Monday seminars, the Bevatron Research Meetings and the theory seminars that were given during the report period. The last appendix is an author index for this report.

Mahoney, J. (ed.)

1986-09-01T23:59:59.000Z

322

Brookhaven Women In Science (BWIS)  

NLE Websites -- All DOE Office Websites (Extended Search)

Career Day Promoting Careers for Women in Science Women in Science (BWIS) hosts an annual High School Career Day to promote professional opportunities in science to local...

323

Equal Employment Opportunity: Collaborating for Mission Success  

National Nuclear Security Administration (NNSA)

Equal Employment Opportunity: Collaborating for Mission Success U.S. DEPARTMENT OF ENERGY National Nuclear Security Administration 2012 EEO Report of Accomplishment 2012 NNSA...

324

Science Against Stress: Research Shows Way to Some Cellular Relief...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Economy Funding Opportunities State & Local Government Science & Innovation Science & Technology Science Education Innovation Energy Sources Energy Usage Energy Efficiency...

325

Nuclear Science Division annual report, October 1, 1986--September 30, 1987  

Science Conference Proceedings (OSTI)

This report summarizes the activities of the Nuclear Science Division during the period October 1, 1986 to September 30, 1987. A highlight of the experimental program during this time was the completion of the first round of heavy-ion running at CERN with ultrarelativistic oxygen and sulfur beams. Very rapid progress is being made in the analysis of these important experiments and preliminary results are presented in this report. During this period, the Bevalac also continued to produce significant new physics results, while demand for beam time remained high. An important new community of users has arrived on the scene, eager to exploit the unique low-energy heavy-beam capabilities of the Bevalac. Another major highlight of the program has been the performance of the Dilepton Spectrometer which has entered into production running. Dileptons have been observed in the p + Be and Ca + Ca reactions at several bombarding energies. New data on pion production with heavy beams measured in the streamer chamber to shed light on the question of nuclear compressibility, while posing some new questions concerning the role of Coulomb forces on the observed pion spectra. In another quite different area, the pioneering research with radioactive beams is continuing and is proving to be one of the fastest growing programs at the Bevalac. Exotic secondary beams (e.g., 8He, 11Li, and 14Be) have been produced for fundamental nuclear physics studies. In order to further enhance the scientific research program and ensure the continued vitality of the facility, the Laboratory has proposed an upgrade of the existing Bevalac. Specifically, the Upgrade would replace the Bevatron with a modern, strong-focusing synchrotron to provide higher intensity and higher quality beams to continue the forefront research program. Other papers on nuclear physics research are included in this report.

Mahoney, J. (ed.)

1988-09-01T23:59:59.000Z

326

FY 2007 LDRD Director's R&D Progress SummaryProposal Title: Developing a Science Base for Fuel Reprocessing Separations in the Global Nuclear Energy Program  

SciTech Connect

This work is aimed at developing an experimentally validated computational capability for understanding the complex processes governing the performance of solvent extraction devices used for separations in nuclear fuel reprocessing. These applications pose a grand challenge due to the combination of complicating factors in a three-dimensional, turbulent, reactive, multicomponent, multiphase/interface fluid flow system. The currently limited process simulation and scale-up capabilities provides uncertainty in the ability to select and design the separations technology for the demonstration plan of the Global Nuclear Energy Partnership (GNEP) program. We anticipate the development of science-based models for technology development and design. This project will position ORNL to address the emerging opportunity by creating an expandable process model validated experimentally. This project has three major thrusts, namely, a prototype experimental station, a continuum modeling and simulation effort, and molecular modeling and kinetics support. Excellent progress has been made in corresponding activities in this first year in: (1) defining, assembling, and operating a relevant prototype system for model validation; (2) establishing a mathematical model for fluid flow and transport; (3) deploying sub-scale molecular modeling.

de Almeida, Valmor F [ORNL; Tsouris, Costas [ORNL; Birdwell Jr, Joseph F [ORNL; D'Azevedo, Ed F [ORNL; Jubin, Robert Thomas [ORNL; DePaoli, David W [ORNL; Moyer, Bruce A [ORNL

2011-01-01T23:59:59.000Z

327

Program Objectives | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Program Objectives Program Objectives Home > Stewardship Science Academic Alliances Program > Program Objectives Program Objectives Stewardship Science Academic Alliances (SSAA) Program Objectives Support the U.S. scientific community by funding research projects at universities that conduct fundamental science and technology research that is of relevance to Stockpile Stewardship, namely; materials under extreme conditions (condensed matter physics and materials science, hydrodynamics, and fluid dynamics); low energy nuclear science, high energy density physics, and radiochemistry. Provide opportunities for intellectual challenge and collaboration by promoting scientific interactions between the academic community and scientists at the DOE/NNSA's laboratories. Develop and maintain a long-term recruiting pipeline to the DOE/NNSA

328

ORISE: Faculty Research Opportunities  

NLE Websites -- All DOE Office Websites (Extended Search)

Faculty Research Opportunities Faculty Research Opportunities ORISE sponsors research positions for university faculty at national laborties and federal research facilities nationwide The Oak Ridge Institute for Science and Education (ORISE) provides short- and long-term collaborations for faculty or faculty-student teams with ORISE's world-class science and engineering partners. Our complete catalog of faculty research programs will help you find a program that best matches your qualifications as well as your needs for a position in a specific region of the country or starting on a particular date. Use the button below to connect to the catalog now. View All Faculty Research Programs » Current Openings for Faculty Researchers Searching for a new challenge or an off-campus research experience right

329

New Opportunities for Materials Science  

Science Conference Proceedings (OSTI)

Aug 8, 2013 ... O. Advanced Neutron and Synchrotron Studies of Materials: New ... Status of China Spallation Neutron Source and Perspectives of Neutron...

330

ANST 2011 Presentations | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Applications of Nuclear Science and Technology » ANST 2011 Presentations Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Spinoff Applications SBIR/STTR Applications of Nuclear Science and Technology Funding Opportunities Nuclear Science Advisory Committee (NSAC) News & Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3613 F: (301) 903-3833 E: sc.np@science.doe.gov More Information » Applications of Nuclear Science and Technology ANST 2011 Presentations Print Text Size: A A A RSS Feeds FeedbackShare Page DOE-NP ANS&T Exchange Meeting August 22-23, 2011 Monday, August 22, 2011 Presentation Title Speaker Organization

331

Basic Energy Sciences  

Office of Science (SC) Website

http:science.energy.govbesaboutjobs Below is a list of currently open federal employment opportunities in the Office of Science. Prospective applicants should follow the...

332

Fusion Energy Sciences  

Office of Science (SC) Website

http:science.energy.govfesaboutjobs Below is a list of currently open federal employment opportunities in the Office of Science. Prospective applicants should follow the...

333

The Rhode Island Nuclear Science Center conversion from HEU to LEU fuel  

SciTech Connect

The 2-MW Rhode Island Nuclear Science Center (RINSC) open pool reactor was converted from 93% UAL-High Enriched Uranium (HEU) fuel to 20% enrichment U3Si2-AL Low Enriched Uranium (LEU) fuel. The conversion included redesign of the core to a more compact size and the addition of beryllium reflectors and a beryllium flux trap. A significant increase in thermal flux level was achieved due to greater neutron leakage in the new compact core configuration. Following the conversion, a second cooling loop and an emergency core cooling system were installed to permit operation at 5 MW. After re-licensing at 2 MW, a power upgrade request will be submitted to the NRC.

Tehan, Terry

2000-09-27T23:59:59.000Z

334

Graduate Opportunities | ornl.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Graduate Opportunities Graduate Opportunities SHARE Graduate Opportunities Advanced Short-Term Research Opportunity (ASTRO) The ORNL Advanced Short-Term Research Opportunity Program is a highly selective program and offers challenging short-term research opportunities to recent recipients of master's and doctoral degrees to conduct research in areas that support ORNL missions in the basic and applied sciences, energy, and environment. Appointments are available in all current research and development programs at the laboratory. There are no citizenship requirements. The program will accept applications at any time. Appointments are for six months and may be renewed one time for up to three months. http://orau.org/ornl/astro/default.htm Higher Education Research Experiences (HERE) for Students

335

Nonreactor Nuclear Facilities Division  

NLE Websites -- All DOE Office Websites (Extended Search)

role in developing science and technology for nuclear power programs, nuclear propulsion, nuclear medicine, and the nation's nuclear weapon program among others. Many...

336

Closed Lab Announcements | U.S. DOE Office of Science (SC)  

NLE Websites -- All DOE Office Websites (Extended Search)

Lab Announcements Lab Announcements Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Funding Opportunities Closed Funding Opportunity Announcements (FOAs) Closed Lab Announcements Award Search Reviews NP Early Career Opportunities & Awardees Nuclear Science Advisory Committee (NSAC) News & Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3613 F: (301) 903-3833 E: sc.np@science.doe.gov More Information » Funding Opportunities Closed Lab Announcements Print Text Size: A A A RSS Feeds FeedbackShare Page Fiscal Year: Select 2013 2012 2011 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2000 1999 1998 1996 GO Sort by: Post Date | Close Date

337

Spinoff Archives | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Spinoff Spinoff Applications » Spinoff Archives Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Spinoff Applications Spinoff Archives SBIR/STTR Applications of Nuclear Science and Technology Funding Opportunities Nuclear Science Advisory Committee (NSAC) News & Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3613 F: (301) 903-3833 E: sc.np@science.doe.gov More Information » Spinoff Applications Spinoff Archives Print Text Size: A A A RSS Feeds FeedbackShare Page The Office of Nuclear Physics funds a community of scientists to do basic nuclear physics research that seeks to uncover the fundamental nature of matter. As a consequence of this basic research, many ideas and instruments

338

Spinoff Applications | U.S. DOE Office of Science (SC)  

NLE Websites -- All DOE Office Websites (Extended Search)

Benefits of NP » Spinoff Benefits of NP » Spinoff Applications Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Spinoff Applications Spinoff Archives SBIR/STTR Applications of Nuclear Science and Technology Funding Opportunities Nuclear Science Advisory Committee (NSAC) News & Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3613 F: (301) 903-3833 E: sc.np@science.doe.gov More Information » Benefits of NP Spinoff Applications Print Text Size: A A A Subscribe FeedbackShare Page The Office of Nuclear Physics funds a community of scientists to do basic nuclear physics research that seeks to uncover the fundamental nature of matter. As a consequence of this basic research, many ideas and instruments

339

Biology | More Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Bioinformatics Nuclear Medicine Climate and Environment Systems Biology Computational Biology Chemistry Engineering Computer Science Earth and Atmospheric Sciences Materials...

340

Funding Opportunities | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Services » Funding Opportunities Services » Funding Opportunities Funding Opportunities Funding Opportunities FUNDING OPPORTUNITIES AND SOLICITATIONS Cost-Shared Development of Innovative Small Modular Reactor Designs The Small Modular Reactor (SMR) Licensing Technical Support (LTS) program, sponsored by the U.S. Department of Energy (DOE) Office of Nuclear Energy (DOE-NE), through this Funding Opportunity Announcement (FOA) seeks to facilitate the development of innovative SMR designs that have the potential to address the nation's economic, environmental and energy security goals. Specifically, the Department is soliciting applications for SMR designs that offer unique and innovative solutions for achieving the objectives of enhanced safety, operations, and performance relative to currently certified designs. This FOA focuses on design development and

Note: This page contains sample records for the topic "opportunities nuclear science" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

The development of a remote monitoring system for the Nuclear Science Center reactor  

E-Print Network (OSTI)

With funding provided by Nuclear Energy Research Initiative (NERI), design of Secure, Transportable, Autonomous Reactors (STAR) to aid countries with insufficient energy supplies is underway. The development of a new monitoring system that allows remote access to data from the reactor site is an important part of this project. The two goals of this monitoring system are to control the use of nuclear materials and to monitor the performance of the facility from a remote location. I have designed a prototype system for this NERI project that utilizes LabVIEW software and global network technologies to monitor the Nuclear Science Center (NSC) reactor at Texas A&M University. LabVIEW and its applications have all the needed features to build a monitoring system for many types of facilities, including STAR reactors. This system takes data from reactor cooling systems, power monitoring channels, fuel temperature indicators, control rod drives, security alarm sensors and stores it on local and remote hard drives, sends it through an output port to remote clients, and graphically displays these data in the reactor control room. Data from NSC TRIGA reactor is fed to a computer program that analyzes and predicts reactor performance in real time. To provide a remote observation of the working area and fissile material, this system uses cameras, triggered by alarm sensors and LabVIEW vision applications. Operators at the local and remote control stations may view and store all the images from these cameras. The system has been in operation for many months at the NSC with outstanding results and further development is continuing.

Jiltchenkov, Dmitri Victorovich

2002-01-01T23:59:59.000Z

342

Nuclear Physics  

Office of Science (SC) Website

aboutjobs Below is a list of currently open federal employment opportunities in the Office of Science. Prospective applicants should follow the links to the formal position...

343

About | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

About About Nuclear Physics (NP) NP Home About Staff Organization Chart .pdf file (32KB) NP Budget NP Committees of Visitors Directions Jobs Labs & Universities Nuclear Physics Related Brochures Research Facilities Science Highlights Benefits of NP Funding Opportunities Nuclear Science Advisory Committee (NSAC) News & Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3613 F: (301) 903-3833 E: sc.np@science.doe.gov More Information » About Print Text Size: A A A RSS Feeds FeedbackShare Page Mission Statement The mission of the Nuclear Physics (NP) program is to discover, explore, and understand all forms of nuclear matter. The fundamental particles that compose nuclear matter - quarks and gluons - are relatively well

344

International Conference on Mathematics and Computational Methods Applied to Nuclear Science & Engineering (M&C 2013) Sun Valley, Idaho, USA, May 5-9, 2013, on CD-ROM, American Nuclear Society, LaGrange Park, IL (2013)  

E-Print Network (OSTI)

Monte Carlo simulation to model nuclear reactor dynamics. These Monte Carlo methods can be extremely://www.energy.gov/hubs) for Modeling and Simulation of Nuclear Reactors under U.S. Department of Energy Contract No. DE-AC05-00OR22725 for Solving k-Eigenvalue Problems in Neutron Diffusion Theory," Nuclear Science and Engineering, 167, pp. 141

Kelley, C. T. "Tim"

345

Fusion Nuclear Science Facility (FNSF) before Upgrade to Component Test Facility (CTF)  

SciTech Connect

The compact (R0~1.2-1.3m) Fusion Nuclear Science Facility (FNSF) is aimed at providing a fully integrated, continuously driven fusion nuclear environment of copious fusion neutrons. This facility would be used to test, discover, understand, and innovate scientific and technical solutions for the challenges facing DEMO, by addressing the multi-scale synergistic interactions involving fusion plasma material interactions, tritium fuel cycle, power extraction, and the nuclear effects on materials. Such a facility properly designed would provide, initially at the JET-level plasma pressure (~30%T2) and conditions (e.g., Hot-Ion H-Mode), an outboard fusion neutron flux of 0.25 MW/m2 while requiring a fusion power of 19 MW. If and when this research operation is successful, its performance can be extended to 1 MW/m2 and 76 MW by reaching for twice the JET plasma pressure and Q. High-safety factor q and moderate- plasmas would minimize plasma-induced disruptions, helping to deliver reliably a neutron fluence of 1 MW-yr/m2 and a duty factor of 10% presently anticipated for the FNS research. Success of this research will depend on achieving time-efficient installation and replacement of all components using extensive remote handling (RH). This in turn requires modular designs for all internal components, including the single-turn toroidal field coil center-post with RH-compatible bi-directional sliding joints. Such device goals would further dictate placement of support structures and vacuum seal welds behind the internal and shielding components. If these further goals could be achieved, the FNSF would provide a ready upgrade path to the Component Test Facility (CTF), which would aim to test, at higher neutron fluence and duty cycle, the demanding fusion nuclear engineering and technologies for DEMO. This FNSF-CTF strategy would be complementary to the ITER and the Broader Approach programs, and thereby help mitigate the risks of an aggressive world fusion DEMO R&D Program. The key physics and technology research needed in the next decade to manage the potential risks of this FNSF are identified.

Peng, Yueng Kay Martin [ORNL

2010-01-01T23:59:59.000Z

346

Civilian Nuclear Programs, SPO-CNP: LANL  

NLE Websites -- All DOE Office Websites (Extended Search)

Civilian Nuclear Programs, SPO-CNP Science Program Office Applied Energy Civilian Nuclear Office of Science Civilian Nuclear Programs Home Advanced Nuclear Energy Programs Yucca...

347

BMD Postdoctoral Research Opportunities  

Science Conference Proceedings (OSTI)

Biomolecular Measurement Division NRC Postdoctoral Research Opportunities. ... NIST NRC Postdoctoral Research Opportunities. ...

2013-05-16T23:59:59.000Z

348

DFC Opportunities  

NLE Websites -- All DOE Office Websites (Extended Search)

FuelCell Energy, Inc. FuelCell Energy, Inc. 3 Great Pasture Road Danbury, Ct 06813 DFC Opportunities Direct Fuel Cell Challenges * Baseline products cost-competitive with government subsidy at locations with very high cost-of-electricity * Company sponsored R&D focusing on marginal gains to make the DFC products cost-competitive in regions with high cost-of-electricity Direct FuelCell Opportunities * Needs large scale market penetration to enjoy the fruits of this transformational technology * Needs drastic reduction in cost-of-electricity to achieve large scale deployment * Requires high risk research to achieve the required COE reduction (increase power density, enhance life and lower cost) * Increase stack power from 350 net kW to 500 net kW * Enhance stack service life from 5-yr to 10-yr

349

Physics Opportunities  

NLE Websites -- All DOE Office Websites (Extended Search)

Opportunities Opportunities with e+A Collisions at an Electron Ion Collider e+A White Paper EIC Collaboration April 4, 2007 DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, not any of their contractors, subcon- tractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or any third party's use or the results of such use of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily con- stitute or imply its endoresement, recommendation,

350

Basic Research for an Era of Nuclear Energy at LBNL, LLNL, AND LANL | U.S.  

Office of Science (SC) Website

Basic Research for an Era of Nuclear Basic Research for an Era of Nuclear Energy at LBNL, LLNL, AND LANL Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Spinoff Applications Spinoff Archives SBIR/STTR Applications of Nuclear Science and Technology Funding Opportunities Nuclear Science Advisory Committee (NSAC) News & Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3613 F: (301) 903-3833 E: sc.np@science.doe.gov More Information » Spinoff Archives Basic Research for an Era of Nuclear Energy at LBNL, LLNL, AND LANL Print Text Size: A A A RSS Feeds FeedbackShare Page Application/instrumentation: Basic Research for an Era of Nuclear Energy Developed at: Lawrence Berkeley National Laboratory, Lawrence Livermore National

351

Improved Design of Nuclear Reactor Control System | U.S. DOE Office of  

Office of Science (SC) Website

Improved Design of Nuclear Reactor Improved Design of Nuclear Reactor Control System Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Spinoff Applications Spinoff Archives SBIR/STTR Applications of Nuclear Science and Technology Funding Opportunities Nuclear Science Advisory Committee (NSAC) News & Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3613 F: (301) 903-3833 E: sc.np@science.doe.gov More Information » Spinoff Archives Improved Design of Nuclear Reactor Control System Print Text Size: A A A RSS Feeds FeedbackShare Page Application/instrumentation: Improved Design of Nuclear Reactor Control System Developed at: Oak Ridge National Laboratory, Holifield Radioactive Ion Beam Facility (HRIBF)

352

Nuclear Energy Advisory Committee | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Services Nuclear Energy Advisory Committee Nuclear Energy Advisory Committee Nuclear Energy Advisory Committee Funding Opportunities Document Library The Nuclear Energy Advisory...

353

Links | U.S. DOE Office of Science (SC)  

NLE Websites -- All DOE Office Websites (Extended Search)

Links Links Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Funding Opportunities Nuclear Science Advisory Committee (NSAC) News & Resources NP Workforce Survey Results .pdf file (258KB) Links Databases Workshop Reports Nuclear Physics Related Brochures and Videos Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3613 F: (301) 903-3833 E: sc.np@science.doe.gov More Information » News & Resources Links Print Text Size: A A A RSS Feeds FeedbackShare Page Related Websites Agencies and Institutions American Physical Society - Division of Nuclear Physics External link American Institute of Physics - FYI, Science Policy Briefs External link

354

PROBING DENSE NUCLEAR MATTER VIA NUCLEAR COLLISIONS  

E-Print Network (OSTI)

University of California. LBL-12095 Probing Dense NuclearMatter Nuclear Collisions* v~a H. Stocker, M.Gyulassy and J. Boguta Nuclear Science Division Lawrence

Stocker, H.

2012-01-01T23:59:59.000Z

355

IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 58, NO. 1, FEBRUARY 2011 277 Anomaly Detection in Nuclear Power Plants via  

E-Print Network (OSTI)

applications (e.g., nuclear power reactor plants, petroleum industry and micro-gravity flow systems and Seungjin Kim Department of Mechanical and Nuclear Engineering, The Pennsylvania State University sensing. The underlying algorithm is built upon the recently reported theory of a statistical pattern

Ray, Asok

356

ORISE: Postdoc Research Opportunities  

NLE Websites -- All DOE Office Websites (Extended Search)

Postdoctoral Research Opportunities Postdoctoral Research Opportunities Postdoc fellowships and research positions available at national labs and federal research facilities nationwide For scientists who have recently completed their Ph.D. in a science or engineering discipline, a postdoc research position can make an excellent start to a career at a national laboratory or other research facility. ORISE sponsors more than 50 postdocal research programs across the United States, many of which have immediate openings for qualified candidates. Our complete catalog of postdoctoral fellowships will let you search for a program that best suits your qualifications and preferences for location and starting date. Click the button below to view all of our postdoc research programs and sort them by sponsor, length of appointment or

357

Nuclear Analytical Methods  

Science Conference Proceedings (OSTI)

... Nuclear Analytical Methods. Research activities in the Nuclear Analytical Methods Group are focused on the science that ...

358

Low Energy Nuclear Reactions: Exciting New Science and Potential Clean Energy  

Science Conference Proceedings (OSTI)

Other Concepts and Assessments / Proceedings of the Fifteenth International Conference on Emerging Nuclear Energy Systems

David J. Nagel; Kamron C. Fazel

359

Staff | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

About » Staff About » Staff Nuclear Physics (NP) NP Home About Staff Organization Chart .pdf file (32KB) NP Budget NP Committees of Visitors Directions Jobs Labs & Universities Nuclear Physics Related Brochures Research Facilities Science Highlights Benefits of NP Funding Opportunities Nuclear Science Advisory Committee (NSAC) News & Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3613 F: (301) 903-3833 E: sc.np@science.doe.gov More Information » About Staff Print Text Size: A A A RSS Feeds FeedbackShare Page Contact Info Regular Mail: Express Mail: Office of Nuclear Physics, Office of Nuclear Physics, SC-26 SC-26/Germantown Building U.S. Department of Energy U.S. Department of Energy 19901 Germantown Road

360

The on-line charge breeding program at TRIUMF's Ion Trap For Atomic and Nuclear Science for precision mass measurements  

Science Conference Proceedings (OSTI)

TRIUMF's Ion Trap for Atomic and Nuclear science (TITAN) constitutes the only high precision mass measurement setup coupled to a rare isotope facility capable of increasing the charge state of short-lived nuclides prior to the actual mass determination in a Penning trap. Recent developments around TITAN's charge breeder, the electron beam ion trap, form the basis for several successful experiments on radioactive isotopes with half-lives as low as 65 ms and in charge states as high as 22+.

Simon, M. C.; Eberhardt, B.; Jang, F.; Luichtl, M.; Robertson, D.; Chaudhuri, A.; Delheij, P.; Grossheim, A.; Kwiatkowski, A. A.; Mane, E.; Pearson, M. R.; Schultz, B. E. [TRIUMF, Vancouver, British Columbia V6T 2A3 (Canada); Bale, J. C. [TRIUMF, Vancouver, British Columbia V6T 2A3 (Canada); Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6 (Canada); Chowdhury, U. [TRIUMF, Vancouver, British Columbia V6T 2A3 (Canada); Department of Physics and Astronomy, University of Manitoba, Winnipeg, Manitoba R3T 2N2 (Canada); Ettenauer, S.; Gallant, A. T.; Dilling, J. [TRIUMF, Vancouver, British Columbia V6T 2A3 (Canada); Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia V6T 1Z1 (Canada); Lennarz, A. [TRIUMF, Vancouver, British Columbia V6T 2A3 (Canada); Institut fuer Kernphysik, Westfaelische Wilhelms-Universitaet, D-48149 Muenster (Germany); Ma, T.; Andreoiu, C. [Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6 (Canada); and others

2012-02-15T23:59:59.000Z

Note: This page contains sample records for the topic "opportunities nuclear science" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Open Funding Opportunity Announcements (FOAs)  

Office of Science (SC) Website

- and is the principal federal funding agency of - the Nation's research programs in high-energy physics, nuclear physics, and fusion energy sciences. en 6E0BF60A-A50B-4201-AC3E-A...

362

Rapid Sampling Tools - Nuclear Engineering Multimedia  

NLE Websites -- All DOE Office Websites (Extended Search)

Nonproliferation and National Security Nonproliferation and National Security > Multimedia > Rapid Sampling Tools Director's Welcome Organization Achievements Highlights Fact Sheets, Brochures & Other Documents Multimedia Library About Nuclear Energy Nuclear Reactors Designed by Argonne Argonne's Nuclear Science and Technology Legacy Opportunities within NE Division Visit Argonne Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Celebrating the 70th Anniversary of Chicago Pile 1 (CP-1) Argonne OutLoud on Nuclear Energy Argonne Energy Showcase 2012 Nonproliferation and National Security - Multimedia Bookmark and Share NPNS Multimedia, a collection of videos and audios featuring activities related to Nonproliferation and National Security

363

WEB RESOURCE: Nuclear Materials and Nuclear Fuel/Waste  

Science Conference Proceedings (OSTI)

Feb 12, 2007 ... Select, Sandbox, Open Discussion Regarding Materials for Nuclear ... Trends in Nuclear Power, The Nuclear Fuel Cycle, Nuclear Science...

364

American Nuclear Society recognizes Roger W. Tilbrook  

NLE Websites -- All DOE Office Websites (Extended Search)

American Nuclear Society recognizes Roger W. Tilbrook Director's Welcome Organization Achievements Highlights Fact Sheets, Brochures & Other Documents Multimedia Library About Nuclear Energy Nuclear Reactors Designed by Argonne Argonne's Nuclear Science and Technology Legacy Opportunities within NE Division Visit Argonne Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Celebrating the 70th Anniversary of Chicago Pile 1 (CP-1) Argonne OutLoud on Nuclear Energy Argonne Energy Showcase 2012 Highlights Bookmark and Share American Nuclear Society recognizes Roger W. Tilbrook Roger W. Tilbrook, Argonne National Laboratory Nuclear Engineer Roger W. Tilbrook has been recognized for his decades of dedicated service to the American Nuclear Society.

365

Topical Area MFE Title: Burning Plasma Science_____________________________________________ Description Fusion energy is released by burning light elements using nuclear reactions which consume mass and  

E-Print Network (OSTI)

Page 1 Topical Area MFE Title: Burning Plasma Science_____________________________________________ · Description Fusion energy is released by burning light elements using nuclear reactions which consume mass-sustained purely by its alpha particle heating. The science of burning plasmas consists of: (1) the physics

366

SBIR STTR Exchange Meeting 2011 | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Meeting 2011 Meeting 2011 Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Spinoff Applications SBIR/STTR Applications of Nuclear Science and Technology Funding Opportunities Nuclear Science Advisory Committee (NSAC) News & Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3613 F: (301) 903-3833 E: sc.np@science.doe.gov More Information » SBIR/STTR SBIR STTR Exchange Meeting 2011 Print Text Size: A A A RSS Feeds FeedbackShare Page SBIR/STTR Exchange Meeting: October 24-25, 2011 Hilton Washington DC North/Gaithersburg .pdf file (56KB) Sponsored by the Department of Energy Office of Science, Office of Nuclear Physics Registration Form .pdf file (71KB) Agenda .pdf file (74KB) Presentation

367

sbir sttr exchange mtg 2012 | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

October 1-2, 2012 October 1-2, 2012 Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Spinoff Applications SBIR/STTR Applications of Nuclear Science and Technology Funding Opportunities Nuclear Science Advisory Committee (NSAC) News & Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3613 F: (301) 903-3833 E: sc.np@science.doe.gov More Information » SBIR/STTR SBIR/STTR Exchange Meeting October 1-2, 2012 Print Text Size: A A A RSS Feeds FeedbackShare Page SBIR/STTR Exchange Meeting: October 1-2, 2012 Hilton Washington DC North/Gaithersburg .pdf file (56KB) Sponsored by the Department of Energy Office of Science, Office of Nuclear Physics

368

SBIR STTR Exchange Mtg 2010 | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Mtg 2010 Mtg 2010 Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Spinoff Applications SBIR/STTR Applications of Nuclear Science and Technology Funding Opportunities Nuclear Science Advisory Committee (NSAC) News & Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3613 F: (301) 903-3833 E: sc.np@science.doe.gov More Information » SBIR/STTR SBIR STTR Exchange Mtg 2010 Print Text Size: A A A RSS Feeds FeedbackShare Page SBIR/STTR Exchange Meeting: September 13-14, 2010 Hilton Washington DC North/Gaithersburg Sponsored by the Department of Energy Office of Science, Office of Nuclear Physics Agenda .pdf file (71KB) Participation List .pdf file (58KB)

369

Nuclear Science Division, Annual report, October 1, 1988--December 31, 1990  

Science Conference Proceedings (OSTI)

This report contains short papers of research conducted in the following areas: Low energy research program; bevalac research program; ultrarelativistic research program; nuclear theory program; nuclear data evaluation; and, 88-inch cyclotron operations.

Poskanzer, A.M.; Deleplanque, M.A.; Firestone, R.B.; Lofdahl, J.B. (eds.)

1991-04-01T23:59:59.000Z

370

ALL AGREEMENT STATES OPPORTUNITY TO PROVIDE INPUT ON THE U.S. NUCLEAR REGULATORY COMMISSIONS MANUAL CHAPTER FOR THE MATERIALS INSPECTION PROGRAM- INSPECTION MANUAL CHAPTER 2800 (FSME-10-013)  

E-Print Network (OSTI)

Purpose: To provide an opportunity for Agreement States to review and comment on recommended changes addressing the U.S. Nuclear Regulatory Commissions (NRC) materials inspection program. This is an opportunity to provide input * on Inspection Manual Chapter (IMC) 2800. Background: The last revision to Inspection Manual Chapter 2800 (IMC 2800) occurred in September 2005. Since that time, the NRC and Agreement States have implemented new security requirements. This revision provides inspection guidance in regards to some of the more urgent new security requirements, including changes from the Government Accountability Office action plan, as well as to update the previous version in regard to other, lower priority changes. This request supersedes letter RCPD-08-013 dated August 20, 2008, which requested a similar review of IMC 2800. This revision incorporates the comments received from Agreement States that responded to RCPD-08-013.

unknown authors

2010-01-01T23:59:59.000Z

371

Nuclear | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Science & Innovation Energy Sources Nuclear Nuclear Radioisotope Power Systems, a strong partnership between the Energy Department's Office of Nuclear Energy and NASA, has...

372

Putting the Genie Back in the Bottle: The Science of Nuclear Non-Proliferation  

E-Print Network (OSTI)

to IAEA inspectors and withdrawal from the Non-Proliferation Treaty are evidence of an active and advanced proliferation of nuclear weapons. The first conclusion is that proliferation is easy and inevitable. The second-backed conventional attacks on non-nuclear states which are not securely under a great power's nuclear umbrella

Gilfoyle, Jerry

373

ABOUT THE DEGREE The Master of Nuclear Science degree is a coursework  

E-Print Network (OSTI)

by the Nuclear Non- Proliferation Treaty (NPT), or the so-called P-5 countries, to play a leadership role ourselves to the goal of eliminating nuclear weapons under the Treaty on the Non-Proliferation of Nuclear build on but broaden the periodic dialogue on non- proliferation issues among the United States, Russia

Chen, Ying

374

Department of Energy Business Opportunity Session  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lange Lange Title: DAS for Corporate Business Operations Office: Office of Nuclear Energy (NE) E-Mail: robert.lange@hq.doe.gov Phone: (301) 903-5241 Website: http://www.nuclear.energy.gov Office of Nuclear Energy Department of Energy's Business Opportunity Session Office of Nuclear Energy (NE) Strategic Goals * Extend the lifetime and improve performance of the current fleet of nuclear power plants * Enable new nuclear plant construction by improving economics * Reduce carbon footprint in transportation and industrial sectors using nuclear energy * Develop a sustainable nuclear fuel cycle * Understand and avoid the risks of nuclear weapons proliferation Department of Energy's Business Opportunity Session NE Recent Achievements FY 2009 * In 2009, NE nominated the winning recipient of the Department of

375

NP Committees of Visitors | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Committees of Committees of Visitors Nuclear Physics (NP) NP Home About Staff Organization Chart .pdf file (32KB) NP Budget NP Committees of Visitors Directions Jobs Labs & Universities Nuclear Physics Related Brochures Research Facilities Science Highlights Benefits of NP Funding Opportunities Nuclear Science Advisory Committee (NSAC) News & Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3613 F: (301) 903-3833 E: sc.np@science.doe.gov More Information » About NP Committees of Visitors Print Text Size: A A A RSS Feeds FeedbackShare Page Office of Nuclear Physics (NP) DOE/NSF Nuclear Science Advisory Committee (NSAC) 2013 NSAC COV Report on NP Program .pdf file (1.8MB)

376

SBIR STTR Exchange Mtg 2010 Presentations | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

0 Presentations 0 Presentations Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Spinoff Applications SBIR/STTR Applications of Nuclear Science and Technology Funding Opportunities Nuclear Science Advisory Committee (NSAC) News & Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3613 F: (301) 903-3833 E: sc.np@science.doe.gov More Information » SBIR/STTR SBIR STTR Exchange Mtg 2010 Presentations Print Text Size: A A A RSS Feeds FeedbackShare Page SBIR/STTR Exchange Meeting: September 13-14, 2010 Presentations September 13, 2010 Presentation Title Speaker Organization Welcome Remarks Timothy J. Hallman DOE, Office of Nuclear Physics Nuclear Physics Program Overview

377

European Labs | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

European European Labs Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Spinoff Applications SBIR/STTR Applications of Nuclear Science and Technology Funding Opportunities Nuclear Science Advisory Committee (NSAC) News & Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3613 F: (301) 903-3833 E: sc.np@science.doe.gov More Information » Benefits of NP European Labs Print Text Size: A A A RSS Feeds FeedbackShare Page European User Facilities: Catania National Laboratory of the South External link , Italy CELSIUS Storage Ring at The Svedberg Laboratory External link , Uppsala University, Sweden COSY Cooler Synchrotron External link , Jülich Research Center, Germany

378

Life Sciences & Genomics Division Diversity  

NLE Websites -- All DOE Office Websites (Extended Search)

Sciences & Genomics Diversity imagemap Workforce Diversity Action Plans title Diversity Committee Employment Opportunities Community Outreach Activities htmlempopps.html Read...

379

Databases | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Databases Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Funding Opportunities Nuclear Science Advisory Committee (NSAC) News & Resources NP Workforce Survey Results .pdf file (258KB) Links Databases Workshop Reports Nuclear Physics Related Brochures and Videos Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3613 F: (301) 903-3833 E: sc.np@science.doe.gov More Information » News & Resources Databases Print Text Size: A A A RSS Feeds FeedbackShare Page Databases / Preprints Preprints Los Alamos Repository For Theory Preprints External link Los Alamos Repository For Experimental Preprints External link Nuclear Physics Databases

380

Jobs | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Jobs Jobs Nuclear Physics (NP) NP Home About Staff Organization Chart .pdf file (32KB) NP Budget NP Committees of Visitors Directions Jobs Labs & Universities Nuclear Physics Related Brochures Research Facilities Science Highlights Benefits of NP Funding Opportunities Nuclear Science Advisory Committee (NSAC) News & Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3613 F: (301) 903-3833 E: sc.np@science.doe.gov More Information » About Jobs Print Text Size: A A A Subscribe FeedbackShare Page Current Open Federal Positions The Office of Nuclear Physics is located in Germantown, Maryland. All open federal positions listed below are posted on USAJobs.gov External link .

Note: This page contains sample records for the topic "opportunities nuclear science" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Project Development | U.S. DOE Office of Science (SC)  

NLE Websites -- All DOE Office Websites (Extended Search)

Facilities » Project Facilities » Project Development Nuclear Physics (NP) NP Home About Research Facilities Research Facilities Project Development Science Highlights Benefits of NP Funding Opportunities Nuclear Science Advisory Committee (NSAC) News & Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3613 F: (301) 903-3833 E: sc.np@science.doe.gov More Information » Facilities Project Development Print Text Size: A A A RSS Feeds FeedbackShare Page Project Development in the Office of Nuclear Physics Kern Proposals for Nuclear Physics projects and initiatives vary widely in their scope and complexity. The review and approval process, as well as the means by which support is provided, can differ and is dependent on several

382

Fuel Cell Technologies Office: Related Financial Opportunities  

NLE Websites -- All DOE Office Websites (Extended Search)

is a partnership among these DOE program offices: Energy Efficiency and Renewable Energy, Fossil Energy, Nuclear Energy, and Science. These DOE offices provide useful...

383

Technetium production: a feasibility study for Texas A&M University nuclear science center  

E-Print Network (OSTI)

The affordability and feasibility of the production of the metastable nuclide of technetium (Tc-99m) by neutron capture activation of molybdenum trioxide (with a subsequent solvent extraction) has been explored for the Texas A&M University, Nuclear Science Center (NSC). The primary impetus for exploring the possibility of producing Tc-99m is the interest expressed by the University's College of Veterinary Medicine (CVM). Currently, the CVM receives partially depleted Tc-99m generators from a local vendor, free-of-charge. However, the future status of this supply is unclear and the need for an alternative source needs to be addressed. Also, the CVM expects sufficient growth so that the donated generators cannot meet their anticipated need. Two experiments performed at the NSC explored the ability to produce Tc99m for the CVM and provided data for estimating production costs. These experiments entailed the irradiation of molybdenum trioxide and the separation of Tc99m from the irradiated targets. In addition, the experiments determined the optimum solvent volumes, the effects of a subsequent extraction, and measured the loss in recovery when an oxidizing agent (hydrogen peroxide) was eliminated from the extraction procedure. These results have not previously been reported. The feasibility of production was determined by comparing a local hospital's cost for Tc-99m, delivered by a local vendor, to the production costs at the NSC. The production cost for Tc-99m is based on a modified NSC irradiation price listing, chemical costs, and miscellaneous costs based upon the Tc-99m activity requirement of 1 1. I GBq per day by the CVM. A cost for initial setup was also determined. This research also revealed additional obtaining Tc-99m. A low activity separation showed a mean recovery of 66.9 ?1. 1 % for Tc-99m over a five-day extraction period. The optimum solvent volume to aqueous volume ratio for a first and second extraction was determined from an additional separation experiment to be 0.6 and 0.2, respectively. The second experiment also demonstrated a 20.9 % reduction in percent-recovery when the oxidizing agent was eliminated.

Hearne, David Douglass

1997-01-01T23:59:59.000Z

384

Advanced neutron irradiation system using Texas A&M University Nuclear Science Center Reactor  

E-Print Network (OSTI)

A heavily filtered fast neutron irradiation system (FNIS) was developed for a variety of applications, including the study of long-term health effects of fast neutrons by evaluating the biological mechanisms of damage in cultured cells and living animals such as rats or mice. This irradiation system includes an exposure cave made with a lead-bismuth alloy, a cave positioning system, a gamma and neutron monitoring system, a sample transfer system, and interchangeable filters. This system was installed in the irradiation cell of the Texas A&M University Nuclear Science Center Reactor (NSCR). By increasing the thickness of the lead-bismuth alloy, the neutron spectra were shifted into lower energies by the scattering interactions of fast neutrons with the alloy. It is possible, therefore, by changing the alloy thickness, to produce distinctly different dose weighted neutron spectra inside the exposure cave of the FNIS. The calculated neutron spectra showed close agreement with the results of activation foil measurements, unfolded by SAND-II close to the cell window. However, there was a considerable less agreement for locations far away from the cell window. Even though the magnitude of values such as neutron flux and tissue kerma rates in air differed, the weighted average neutron energies showed close agreement between the MCNP and SAND-II since the normalized neutron spectra were in a good agreement each other. A paired ion chamber system was constructed, one with a tissue equivalent plastic (A-150) and propane gas for total dose monitoring, and another with graphite and argon for photon dose monitoring. Using the pair of detectors, the neutron to gamma ratio can be inferred. With the 20 cm-thick FNIS, the absorbed dose rates of neutrons measured with the paired ion chamber method and calculated with the SAND-II results were 13.7 ?? 0.02 Gy/min and 15.5 Gy/min, respectively. The absorbed dose rate of photons and the gamma contribution to total dose were 6.7??10-1 ?? 1.3??10-1 Gy/min and 4.7%, respectively. However, the estimated gamma contribution to total dose varied between 3.6 % to 6.6 % as the assumed neutron sensitivity to the graphite detector was changed from 0.01 to 0.03.

Jang, Si Young

2004-08-01T23:59:59.000Z

385

NEHRP - Opportunity for Public Comment on Development of ...  

Science Conference Proceedings (OSTI)

... Opportunity for Public Comment on Development of NIST Measurement Science R&D Roadmap Deadline was 5 pm EDT on Friday, June 28, 2013. ...

386

ORISE: K-12 Student and Teacher Research Opportunities  

NLE Websites -- All DOE Office Websites (Extended Search)

K-12 Student and Teacher Research Opportunities ORISE offers research programs and STEM education resources for teachers and students at every level Science education begins when...

387

John Negele Awarded Feshbach Prize | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Resources » John Resources » John Negele (MIT) Awarded Feshbach Prize for Theoretical Nuclear Physics Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Funding Opportunities Nuclear Science Advisory Committee (NSAC) News & Resources NP Workforce Survey Results .pdf file (258KB) Links Databases Workshop Reports Nuclear Physics Related Brochures and Videos Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3613 F: (301) 903-3833 E: sc.np@science.doe.gov More Information » News & Resources John Negele (MIT) Awarded Feshbach Prize for Theoretical Nuclear Physics Print Text Size: A A A RSS Feeds FeedbackShare Page The Feshbach Prize in Theoretical Nuclear Physics was established this year

388

The Radiation Safety Information Computational Center (RSICC): A Resource for Nuclear Science Applications  

Science Conference Proceedings (OSTI)

The Radiation Safety Information Computational Center (RSICC) has been in existence since 1963. RSICC collects, organizes, evaluates and disseminates technical information (software and nuclear data) involving the transport of neutral and charged particle radiation, and shielding and protection from the radiation associated with: nuclear weapons and materials, fission and fusion reactors, outer space, accelerators, medical facilities, and nuclear waste management. RSICC serves over 12,000 scientists and engineers from about 100 countries.

Kirk, Bernadette Lugue [ORNL

2009-01-01T23:59:59.000Z

389

Nuclear Science and Physics Data from the Isotopes Project, Lawrence Berkeley National Laboratory (LBNL)  

DOE Data Explorer (OSTI)

The Isotopes Project pages at Lawrence Berkeley National Laboratory have been a source of nuclear data and reference information since the mid-nineties. Almost all of the data, the results of analyses, the specialized charts and interfaces, and the extensive bibiographic references are fed to the National Nuclear Data Center (NNDC) at Brookhaven National Laboratory and maintained there. The Isotope Project pages at LBNL provide a glimpse of early versions for many of the nuclear data resources.

None

390

Neutron Detectors for Detection of Nuclear Materials at LANL| U.S. DOE  

Office of Science (SC) Website

Neutron Detectors for Detection of Neutron Detectors for Detection of Nuclear Materials at LANL Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Spinoff Applications Spinoff Archives SBIR/STTR Applications of Nuclear Science and Technology Funding Opportunities Nuclear Science Advisory Committee (NSAC) News & Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3613 F: (301) 903-3833 E: sc.np@science.doe.gov More Information » Spinoff Archives Neutron Detectors for Detection of Nuclear Materials at LANL Print Text Size: A A A RSS Feeds FeedbackShare Page Application/instrumentation: Very Large Array Neutron Detector (VLAND); Development of large volume efficient neutron detectors for use in detection of small amounts (~ 1 gm)

391

Nuclear Reaction Cross Sections Database at BNL | U.S. DOE Office of  

Office of Science (SC) Website

Reaction Cross Sections Reaction Cross Sections Database at BNL Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Spinoff Applications Spinoff Archives SBIR/STTR Applications of Nuclear Science and Technology Funding Opportunities Nuclear Science Advisory Committee (NSAC) News & Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3613 F: (301) 903-3833 E: sc.np@science.doe.gov More Information » Spinoff Archives Nuclear Reaction Cross Sections Database at BNL Print Text Size: A A A RSS Feeds FeedbackShare Page Application/instrumentation: Generation and maintenance of database containing evaluated (recommended) nuclear reaction cross sections for all nuclei relevant to applied

392

FINANCIAL ASSISTANCE FUNDING OPPORTUNITY ANNOUNCEMENT: The DOE FY2010 Phase  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FINANCIAL ASSISTANCE FUNDING OPPORTUNITY ANNOUNCEMENT: The DOE FINANCIAL ASSISTANCE FUNDING OPPORTUNITY ANNOUNCEMENT: The DOE FY2010 Phase III Xlerator Program for Energy Efficiency and Renewable Energy, Electricity Delivery and Energy Reliability, Fossil Energy, and Nuclear Energy FINANCIAL ASSISTANCE FUNDING OPPORTUNITY ANNOUNCEMENT: The DOE FY2010 Phase III Xlerator Program for Energy Efficiency and Renewable Energy, Electricity Delivery and Energy Reliability, Fossil Energy, and Nuclear Energy FINANCIAL ASSISTANCE FUNDING OPPORTUNITY ANNOUNCEMENT FINANCIAL ASSISTANCE FUNDING OPPORTUNITY ANNOUNCEMENT: The DOE FY2010 Phase III Xlerator Program for Energy Efficiency and Renewable Energy, Electricity Delivery and Energy Reliability, Fossil Energy, and Nuclear Energy More Documents & Publications Microsoft Word - hDE-FOA-0000092.rtf

393

Patents: Nuclear Engineering Division (Argonne)  

NLE Websites -- All DOE Office Websites (Extended Search)

About the Division > Patents About the Division > Patents Director's Welcome Organization Achievements Awards Patents Professional Societies Highlights Fact Sheets, Brochures & Other Documents Multimedia Library About Nuclear Energy Nuclear Reactors Designed by Argonne Argonne's Nuclear Science and Technology Legacy Opportunities within NE Division Visit Argonne Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Celebrating the 70th Anniversary of Chicago Pile 1 (CP-1) Argonne OutLoud on Nuclear Energy Argonne Energy Showcase 2012 Patents Bookmark and Share Printable Patents List ( PDF PDF file, 225 KB) Over 50 patents have been issued to Nuclear Engineering Division staff members by the US Patent Office from 2000 to present. The table below features a complete list of patents (2000-present) issued

394

Conference on Nuclear Energy and Science for the 21st Century: Atoms for Peace Plus Fifty - Washington, D.C., October 2003  

SciTech Connect

This conference's focus was the peaceful uses of the atom and their implications for nuclear science, energy security, nuclear medicine and national security. The conference also provided the setting for the presentation of the prestigious Enrico Fermi Prize, a Presidential Award which recognizes the contributions of distinguished members of the scientific community for a lifetime of exceptional achievement in the science and technology of nuclear, atomic, molecular, and particle interactions and effects. An impressive group of distinguished speakers addressed various issues that included: the impact and legacy of the Eisenhower Administration??s ??Atoms for Peace? concept, the current and future role of nuclear power as an energy source, the challenges of controlling and accounting for existing fissile material, and the horizons of discovery for particle or high-energy physics. The basic goal of the conference was to examine what has been accomplished over the past fifty years as well as to peer into the future to gain insights into what may occur in the fields of nuclear energy, nuclear science, nuclear medicine, and the control of nuclear materials.

Pfaltzgraff, Robert L [Institute for Foreign Policy Analysis

2006-10-22T23:59:59.000Z

395

FINANCIAL ASSISTANCE FUNDING OPPORTUNITY ANNOUNCEMENT U. S. Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ASSISTANCE FUNDING OPPORTUNITY ANNOUNCEMENT U. S. Department of Energy Idaho Operations Office Fiscal Year 2014 Scientific Infrastructure Support for Consolidated Innovative Nuclear Research Funding Opportunity Announcement: DE-FOA-0000999 Announcement Type: Initial CFDA Number: 81.121 Issue Date: October 31, 2013 Application Due Date: April 3, 2014 at 8:00 PM ET Page 2 of 29 Table of Contents PART I - FUNDING OPPORTUNITY ANNOUNCMENT DESCRIPTION ............................. 6 A. STATEMENT OF OBJECTIVES .......................................................................................... 6 B. RELATED COLLABORATIVE OPPORTUNITIES ............................................................ 8 C. FUNDING OPPORTUNITIES ............................................................................................... 9

396

Clean Energy | More Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

sciences, advanced materials, neutron sciences, nuclear sciences, and high-performance computing, and brings multidisciplinary teams together to address key issues. That...

397

Berkeley Lab Science Articles Archive  

NLE Websites -- All DOE Office Websites (Extended Search)

History of the Laboratory Human Genome & DNA Research Life Sciences Materials Sciences Medical & Risk-related Research Nuclear Science Physics Reports on Distinguished Lecturers...

398

Detecting Nuclear Threats | U.S. DOE Office of Science (SC)  

NLE Websites -- All DOE Office Websites (Extended Search)

Detecting Nuclear Threats Detecting Nuclear Threats Stories of Discovery & Innovation Detecting Nuclear Threats Enlarge Photo Photo: Denise Applewhite The MINDS device was invented by a team of engineers at the Princeton Plasma Physics Laboratory, including, from left: Kenny Silber, Henry Carnevale, Charles Gentile, Dana Mastrovito, and Bill Davis. Enlarge Photo 03.28.11 Detecting Nuclear Threats Plasma physics challenge yields portable nuclear detector for homeland security. In 1999, faced with the task of decommissioning the legendary Tokamak Fusion Test Reactor (TFTR), officials at the U.S. Department of Energy's Princeton Plasma Physics Laboratory (PPPL) realized they needed something that didn't yet exist-a non-destructive, real time device to detect certain "hot" elements lacing the inner vessel of the doughnut-

399

Earth and Atmospheric Sciences | More Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Forensics Climate & Environment Sensors and Measurements Chemical & Engineering Materials Computational Earth Science Systems Modeling Geographic Information Science and Technology Materials Science and Engineering Mathematics Physics More Science Home | Science & Discovery | More Science | Earth and Atmospheric Sciences SHARE Earth and Atmospheric Sciences At ORNL, we combine our capabilities in atmospheric science, computational science, and biological and environmental systems science to focus in the cross-disciplinary field of climate change science. We use computer models to improve climate change predications and to measure the impact of global warming on the cycling of chemicals in earth systems. Our Climate Change Science Institute uses models to explore connections among atmosphere,

400

SBIR/STTR Exchange Meeting November 6-7, 2013 | U.S. DOE Office of Science  

Office of Science (SC) Website

November 6-7, 2013 November 6-7, 2013 Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Spinoff Applications SBIR/STTR Applications of Nuclear Science and Technology Funding Opportunities Nuclear Science Advisory Committee (NSAC) News & Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3613 F: (301) 903-3833 E: sc.np@science.doe.gov More Information » SBIR/STTR SBIR/STTR Exchange Meeting November 6-7, 2013 Print Text Size: A A A RSS Feeds FeedbackShare Page SBIR/STTR Exchange Meeting November 6-7, 2013 Sponsored by the Department of Energy Office of Science, Office of Nuclear Physics Registration Form .doc file (28KB) Agenda .pdf file (89KB)

Note: This page contains sample records for the topic "opportunities nuclear science" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Science  

NLE Websites -- All DOE Office Websites (Extended Search)

149802 149802 , 1291 (2007); 318 Science et al. L. Ozyuzer, Superconductors Emission of Coherent THz Radiation from www.sciencemag.org (this information is current as of November 29, 2007 ): The following resources related to this article are available online at http://www.sciencemag.org/cgi/content/full/318/5854/1291 version of this article at: including high-resolution figures, can be found in the online Updated information and services, http://www.sciencemag.org/cgi/content/full/318/5854/1291/DC1 can be found at: Supporting Online Material found at: can be related to this article A list of selected additional articles on the Science Web sites http://www.sciencemag.org/cgi/content/full/318/5854/1291#related-content http://www.sciencemag.org/cgi/content/full/318/5854/1291#otherarticles

402

SCience  

NLE Websites -- All DOE Office Websites (Extended Search)

all all SCience Chicago Office Environment, Safety and Health Functions, Responsibilities, and Authorities Manual December 2012 ~5 {?JI-- l L-H1- I Roxanne E. Purucker, Manager Date SC-CH FRAM Revision 7 Office of Science - Chicago Office SC-CH Revision History TITLE: SC-CH Functions, Responsibilities, and Authorities Manual POINT OF CONTACT: Karl Moro SCMS MANAGEMENT SYSTEM: Environment, Safety and Health (ES&H) TO BE UPDATED: December 31, 2013 Revision Date Reason/Driver Description 5 Oct 10 Annual review and revision of the SC-CH ES&H Functions, Responsibilities, and Authorities Manual Changes were primarily made to address administrative and organizational changes and general improvement of text and presentation. I 6 Nov 11 Annual review and revision of

403

Volunteer Opportunities - You Can  

Science Conference Proceedings (OSTI)

You Can Drive our industry have a voice, join the discussion, share the knowledge. A listing of volunteer opportunities with AOCS. Volunteer Opportunities - You Can Volunteer Opportunities aocs Author authors. speakers awards call for papers commi

404

SBIR/Sttr | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

SBIR/STTR SBIR/STTR Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Spinoff Applications SBIR/STTR Applications of Nuclear Science and Technology Funding Opportunities Nuclear Science Advisory Committee (NSAC) News & Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3613 F: (301) 903-3833 E: sc.np@science.doe.gov More Information » Benefits of NP SBIR/STTR Print Text Size: A A A RSS Feeds FeedbackShare Page Small Business Innovation / Technology Transfer Courtesy of Agiltron Inc.: SEM images of a Nanowire device after last step of fabrication. NP SBIR/STTR Exchange Meeting In October 2012, the Office of Nuclear Physics (NP) organized a two day

405

Silicon Photomultiplier Arrays at TJNAF| U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Silicon Photomultiplier Arrays at TJNAF Silicon Photomultiplier Arrays at TJNAF Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Spinoff Applications Spinoff Archives SBIR/STTR Applications of Nuclear Science and Technology Funding Opportunities Nuclear Science Advisory Committee (NSAC) News & Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3613 F: (301) 903-3833 E: sc.np@science.doe.gov More Information » Spinoff Archives Silicon Photomultiplier Arrays at TJNAF Print Text Size: A A A RSS Feeds FeedbackShare Page Application/instrumentation: Detectors for Nuclear Physics and Biological Systems Imaging based on Silicon Photomultiplier Arrays Developed at: Thomas Jefferson National Accelerator Facility

406

SBIR STTR Exchange Mtg 2011 Presentations | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

1 Presentations 1 Presentations Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Spinoff Applications SBIR/STTR Applications of Nuclear Science and Technology Funding Opportunities Nuclear Science Advisory Committee (NSAC) News & Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3613 F: (301) 903-3833 E: sc.np@science.doe.gov More Information » SBIR/STTR SBIR STTR Exchange Mtg 2011 Presentations Print Text Size: A A A RSS Feeds FeedbackShare Page DOE-NP SBIR/STTR Exchange Meeting October 24-25, 2011 October 24 Presentation Title Speaker Organization Welcome and Introductory Remarks Tim Hallman/Jehanne Gillo DOE, Office of Nuclear Physics

407

SBIR STTR Exchange Mtg 2012 Presentations | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

2 Presentations 2 Presentations Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Spinoff Applications SBIR/STTR Applications of Nuclear Science and Technology Funding Opportunities Nuclear Science Advisory Committee (NSAC) News & Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3613 F: (301) 903-3833 E: sc.np@science.doe.gov More Information » SBIR/STTR SBIR STTR Exchange Mtg 2012 Presentations Print Text Size: A A A RSS Feeds FeedbackShare Page DOE-NP SBIR/STTR Exchange Meeting October 1-2, 2012 Monday, October 1, 2012 Presentation Title Speaker Organization Welcome and Introductory Remarks Tim Hallman/Jehanne Gillo DOE, Office of Nuclear Physics

408

Education of First Responders at Yale | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Education of First Responders at Yale Education of First Responders at Yale Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Spinoff Applications Spinoff Archives SBIR/STTR Applications of Nuclear Science and Technology Funding Opportunities Nuclear Science Advisory Committee (NSAC) News & Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3613 F: (301) 903-3833 E: sc.np@science.doe.gov More Information » Spinoff Archives Education of First Responders at Yale Print Text Size: A A A RSS Feeds FeedbackShare Page Application/instrumentation: Course on Basic Radiation Physics for First Responders Developed at: Yale University/Wright Nuclear Structure Laboratory

409

SBIR STTR Exchange Mtg 2013 Presentations | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

3 Presentations 3 Presentations Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Spinoff Applications SBIR/STTR Applications of Nuclear Science and Technology Funding Opportunities Nuclear Science Advisory Committee (NSAC) News & Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3613 F: (301) 903-3833 E: sc.np@science.doe.gov More Information » SBIR/STTR SBIR STTR Exchange Mtg 2013 Presentations Print Text Size: A A A RSS Feeds FeedbackShare Page DOE-NP SBIR/STTR Exchange Meeting November 6-7, 2013 Wednesday, November 6, 2013 Presentation Title Speaker Organization Welcome and Introductory Remarks Jehanne Gillo DOE, Office of Nuclear Physics

410

Development of Real-Time Fuel Management Capability at the Texas A&M Nuclear Science Center  

E-Print Network (OSTI)

For the Texas A&M University Nuclear Science Center reactor a fuel depletion code was created to develop real-time fuel management capability. This code package links MCNP8 and ORIGEN26 and is interfaced through a Visual Basic code. Microsoft Visual Basic was used to create a user interface and for pre-and post-processing of MCNP and ORIGEN2 output. MCNP was used to determine the flux for all fuel and control rods within the core while ORIGEN2 used this flux along with the power history to calculate buildup and depletion for tracking the fuel isotopic evolution through time. A comparison of MCNP calculated fluxes and measured flux values were used to confirm the validity of the MCNP model. A comparison to Monteburns was used to add confidence to the correctness of the calculated fuel isotopics. All material isotopics were stored in a Microsoft Access database for integration with the Visual Basic code to allow for isotopics report generation for the Nuclear Science Center staff. This fuel management code performs its function with reasonable accuracy. It gathers minimal information from the user and burns the core over daily operation. After execution it stores all material data to the database for further use within NSCRFM or for isotopic report generation.

Parham, Neil A.

2010-05-01T23:59:59.000Z

411

Chemical Sciences Division  

NLE Websites -- All DOE Office Websites (Extended Search)

& CENTERS RESEARCH STUDENT & POSTDOCTORAL OPPORTUNITIES NEWS & EVENTS CSD CONTACTS LBNL HOME logo Privacy & Security Notice DOE UC Berkeley Chemical Sciences Division imagemap...

412

Fusion Energy Sciences  

Office of Science (SC) Website

aboutjobs Below is a list of currently open federal employment opportunities in the Office of Science. Prospective applicants should follow the links to the formal position...

413

Basic Energy Sciences  

Office of Science (SC) Website

aboutjobs Below is a list of currently open federal employment opportunities in the Office of Science. Prospective applicants should follow the links to the formal position...

414

ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

ORNL's Neutron Science Future: Integrating Neutron Scattering Across the Laboratory Greg Smith, HFIR Center for Neutron Scattering Upgrade Status and Scientific Opportunities...

415

Nuclear Wallet Cards at BNL | U.S. DOE Office of Science (SC...  

Office of Science (SC) Website

decay modes. Its 7th edition has been published in 2005. In March 2002, DOE Office of Security, Nuclear Management & Safeguards System has accepted the 6th edition, published in...

416

Texas A and M University student/professional nuclear science and engineering conference  

SciTech Connect

Abstracts of papers presented at the meeting are included. Topics discussed include: reactor engineering; space nuclear power systems; health physics and dosimetry; fusion engineering and physics; and reactor physics and theory.

1984-03-12T23:59:59.000Z

417

The Radiation Safety Information Computational Center (RSICC): A Resource for Nuclear Science Applications  

SciTech Connect

The Radiation Safety Information Computational Center (RSICC) has been in existence since 1963. RSICC collects, organizes, evaluates and disseminates technical information (software and nuclear data) involving the transport of neutral and charged particle radiation, and shielding and protection from the radiation associated with: nuclear weapons and materials, fission and fusion reactors, outer space, accelerators, medical facilities, and nuclear waste management. RSICC serves over 12,000 scientists and engineers from about 100 countries. An important activity of RSICC is its participation in international efforts on computational and experimental benchmarks. An example is the Shielding Integral Benchmarks Archival Database (SINBAD), which includes shielding benchmarks for fission, fusion and accelerators. RSICC is funded by the United States Department of Energy, Department of Homeland Security and Nuclear Regulatory Commission.

Kirk, Bernadette Lugue [ORNL

2009-01-01T23:59:59.000Z

418

2012 | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Funding Opportunities Nuclear Science Advisory Committee (NSAC) News & Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3613 F: (301) 903-3833 E: sc.np@science.doe.gov More Information » Science Highlights 2012 Print Text Size: A A A RSS Feeds FeedbackShare Page Filter by Performer Or press Esc Key to close. close Select all that apply. University DOE Laboratory Industry SC User Facilities ASCR User Facilities [+] Options « ASCR User Facilities National Energy Research Scientific Computing Center (NERSC) Argonne Leadership Computing Facility (ALCF) Oak Ridge Leadership Computing Facility (OLCF)

419

2013 | U.S. DOE Office of Science (SC)  

NLE Websites -- All DOE Office Websites (Extended Search)

3 3 Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Funding Opportunities Nuclear Science Advisory Committee (NSAC) News & Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3613 F: (301) 903-3833 E: sc.np@science.doe.gov More Information » Science Highlights 2013 Print Text Size: A A A RSS Feeds FeedbackShare Page Filter by Performer Or press Esc Key to close. close Select all that apply. University DOE Laboratory Industry SC User Facilities ASCR User Facilities [+] Options « ASCR User Facilities National Energy Research Scientific Computing Center (NERSC) Argonne Leadership Computing Facility (ALCF) Oak Ridge Leadership Computing Facility (OLCF)

420

NP Budget | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Budget Budget Nuclear Physics (NP) NP Home About Staff Organization Chart .pdf file (32KB) NP Budget NP Committees of Visitors Directions Jobs Labs & Universities Nuclear Physics Related Brochures Research Facilities Science Highlights Benefits of NP Funding Opportunities Nuclear Science Advisory Committee (NSAC) News & Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3613 F: (301) 903-3833 E: sc.np@science.doe.gov More Information » About NP Budget Print Text Size: A A A RSS Feeds FeedbackShare Page The following links contain NP's budget request to Congress for current and prior years: FY2014 Budget Request to Congress .pdf file (874KB) FY2013 Budget Request to Congress .pdf file (358KB)

Note: This page contains sample records for the topic "opportunities nuclear science" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Local Map | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Directions » Directions » Local Map Nuclear Physics (NP) NP Home About Staff Organization Chart .pdf file (32KB) NP Budget NP Committees of Visitors Directions Local Map Jobs Labs & Universities Nuclear Physics Related Brochures Research Facilities Science Highlights Benefits of NP Funding Opportunities Nuclear Science Advisory Committee (NSAC) News & Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3613 F: (301) 903-3833 E: sc.np@science.doe.gov More Information » Directions Local Map Print Text Size: A A A RSS Feeds FeedbackShare Page On the map are markers corresponding to: DOE office complex North lobby Express bus 100 External link to Shady Grove Metro station Fairfield Inn External link

422

Directions | U.S. DOE Office of Science (SC)  

NLE Websites -- All DOE Office Websites (Extended Search)

Directions Directions Nuclear Physics (NP) NP Home About Staff Organization Chart .pdf file (32KB) NP Budget NP Committees of Visitors Directions Local Map Jobs Labs & Universities Nuclear Physics Related Brochures Research Facilities Science Highlights Benefits of NP Funding Opportunities Nuclear Science Advisory Committee (NSAC) News & Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3613 F: (301) 903-3833 E: sc.np@science.doe.gov More Information » About Directions Print Text Size: A A A RSS Feeds FeedbackShare Page Related Links View local map The DOE office in Germantown, MD are located northwest of Washington, DC. The region is served by 3 airports: BWI - Baltimore-Washington External link

423

Bio Atcher | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Staff » Bio Staff » Bio Atcher Nuclear Physics (NP) NP Home About Staff Organization Chart .pdf file (32KB) NP Budget NP Committees of Visitors Directions Jobs Labs & Universities Nuclear Physics Related Brochures Research Facilities Science Highlights Benefits of NP Funding Opportunities Nuclear Science Advisory Committee (NSAC) News & Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3613 F: (301) 903-3833 E: sc.np@science.doe.gov More Information » Staff Bio Atcher Print Text Size: A A A RSS Feeds FeedbackShare Page Director of NIDC Robert Atcher On December 11, 2009, Dr. Jehanne Simon-Gillo issued the following statement: Dear Colleagues, I would like to announce the appointment of Robert W. Atcher as Director of

424

Facilities | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Facilities Facilities Nuclear Physics (NP) NP Home About Research Facilities Research Facilities Project Development Science Highlights Benefits of NP Funding Opportunities Nuclear Science Advisory Committee (NSAC) News & Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3613 F: (301) 903-3833 E: sc.np@science.doe.gov More Information » Facilities Print Text Size: A A A RSS Feeds FeedbackShare Page Facilities and Project Management Division FRIB Tunnel The Facilities and Project Management Division is responsible for planning, constructing, upgrading and operating the Office of Nuclear Physics (NP) program's user facilities. These facilities include the ATLAS facility at

425

Nuclear Weapons  

NLE Websites -- All DOE Office Websites (Extended Search)

nuclear science that has had a significant global influence. Following the observation of fission products of uranium by Hahn and Strassmann in 1938, a uranium fission weapon...

426

Workshop Reports | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Reports Workshop Reports Basic Energy Sciences (BES) BES Home About BES Research Facilities Science Highlights Benefits of BES Funding Opportunities Basic Energy Sciences...

427

Siberian Branch of Russian Academy of Sciences BUDKER INSTITUTE OF NUCLEAR PHYSICS  

E-Print Network (OSTI)

and taxes See page 5 for details. shmuelthaler #12;Industry leader creates endowed chair A$1 million gift that shaped plans for the library project. A retired technology industry executive, Mura-smith has also made Professor, Earth Sciences, and Vice Provost and Dean, Graduate Studies Virginia Steel University Librarian

428

Peer Review Policies | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Peer Review Policies Basic Energy Sciences (BES) BES Home About Research Facilities Science Highlights Benefits of BES Funding Opportunities Closed Funding Opportunity...

429

Materials Science & Engineering | More Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Materials Clean Energy Materials Theory and Simulation Neutron Science Nuclear Forensics Nuclear Science Supercomputing Theory, Modeling and Simulation Mathematics Physics More Science Home | Science & Discovery | More Science | Materials Science and Engineering SHARE Materials Science and Engineering ORNL's core capability in applied materials science and engineering directly supports missions in clean energy, national security, and industrial competitiveness. A key strength of ORNL's materials science program is the close coupling of basic and applied R&D. Programs building on this core capability are focused on (1) innovations and improvements in materials synthesis, processing, and design; (2) determination and manipulation of critical structure-property relationships, and (3)

430

Awards: Nuclear Engineering Division (Argonne)  

NLE Websites -- All DOE Office Websites (Extended Search)

Awards Awards Director's Welcome Organization Achievements Awards Patents Professional Societies Highlights Fact Sheets, Brochures & Other Documents Multimedia Library About Nuclear Energy Nuclear Reactors Designed by Argonne Argonne's Nuclear Science and Technology Legacy Opportunities within NE Division Visit Argonne Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Celebrating the 70th Anniversary of Chicago Pile 1 (CP-1) Argonne OutLoud on Nuclear Energy Argonne Energy Showcase 2012 Awards Bookmark and Share Printable Awards List (252 KB) NE employees received several honors and awards for their contributions to scientific research. Below is a list of awards from 1980 until today. The list is also available in PDF format.

431

Highlights: Nuclear Engineering Division (Argonne)  

NLE Websites -- All DOE Office Websites (Extended Search)

About the Division > Highlights About the Division > Highlights Director's Welcome Organization Achievements Awards Patents Professional Societies Highlights Fact Sheets, Brochures & Other Documents Multimedia Library About Nuclear Energy Nuclear Reactors Designed by Argonne Argonne's Nuclear Science and Technology Legacy Opportunities within NE Division Visit Argonne Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Celebrating the 70th Anniversary of Chicago Pile 1 (CP-1) Argonne OutLoud on Nuclear Energy Argonne Energy Showcase 2012 Highlights Bookmark and Share Click on the "Date" header to sort the NE highlights in chronological order (ascending or descending). You may also search through the NE highlights for a specific keyword/year;

432

CP-1: the Past, Present & Future of Nuclear Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

CP-1: the Past, Present & Future of Nuclear Energy CP-1: the Past, Present & Future of Nuclear Energy Director's Welcome Organization Achievements Highlights Fact Sheets, Brochures & Other Documents Multimedia Library About Nuclear Energy Nuclear Reactors Designed by Argonne Argonne's Nuclear Science and Technology Legacy Opportunities within NE Division Visit Argonne Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Celebrating the 70th Anniversary of Chicago Pile 1 (CP-1) Argonne OutLoud on Nuclear Energy Argonne Energy Showcase 2012 Highlights Bookmark and Share CP-1: the Past, Present & Future of Nuclear Energy Jan. 29, 2013 On January 25, 2013, a lunch program to commemorate the 70th anniversary of the world's first self-sustaining, controlled nuclear chain reaction was

433

Tiny device can detect hidden nuclear weapons, materials  

NLE Websites -- All DOE Office Websites (Extended Search)

Tiny Tiny device can detect hidden nuclear weapons, materials Director's Welcome Organization Achievements Highlights Fact Sheets, Brochures & Other Documents Multimedia Library About Nuclear Energy Nuclear Reactors Designed by Argonne Argonne's Nuclear Science and Technology Legacy Opportunities within NE Division Visit Argonne Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Celebrating the 70th Anniversary of Chicago Pile 1 (CP-1) Argonne OutLoud on Nuclear Energy Argonne Energy Showcase 2012 Highlights Bookmark and Share Tiny device can detect hidden nuclear weapons, materials This tiny wafer can detect hidden nuclear weapons and materials NUCLEAR DETECTOR -- This small wafer could become the key component in

434

Nuclear Separations Technologies Workshop Report | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nuclear Separations Technologies Workshop Report Nuclear Separations Technologies Workshop Report Nuclear Separations Technologies Workshop Report The Department of Energy (DOE) sponsored a workshop on nuclear separations technologies in Bethesda, Maryland, on July 27 and 28, 2011, to (1) identify common needs and potential requirements in separations technologies and opportunities for program partnerships, and (2) evaluate the need for a DOE nuclear separations center of knowledge to improve cross- program collaboration in separations technology. The workshop supported Goal 3 of the DOE Strategic Plan1 to enhance nuclear security through defense, nonproliferation, and environmental management. The Office of Environmental Management (EM), Office of Nuclear Energy (NE), and National Nuclear Security Administration (NNSA) jointly sponsored the workshop. The Office of Science

435

Science Program Office, Los Alamos National Laboratory, Home  

NLE Websites -- All DOE Office Websites (Extended Search)

Office Science Program Office Applied Energy Civilian Nuclear Office of Science Applied Energy Programs Office of Science Civilian Nuclear Program Directors Applied Energy Programs...

436

Mercury-Free Dissolution of Aluminum-Based Nuclear Material: From Basic Science to the Plant  

Science Conference Proceedings (OSTI)

Conditions were optimized for the first plant-scale dissolution of an aluminum-containing nuclear material without using mercury as a catalyst. This nuclear material was a homogeneous mixture of plutonium oxide and aluminum metal that had been compounded for use as the core matrix in Mark 42 nuclear fuel. Because this material had later failed plutonium distribution specifications, it was rejected for use in the fabrication of Mark 42 fuel tubes, and was stored at the Savannah River Site (SRS) awaiting disposition. This powder-like material was composed of a mixture of approximately 80 percent aluminum and 11 percent plutonium. Historically, aluminum-clad spent nuclear fuels [13] have been dissolved using a mercuric nitrate catalyst in a nitric acid (HNO3) solution to facilitate the dissolution of the bulk aluminum cladding. Developmental work at SRS indicated that the plutonium oxide/aluminum compounded matrix could be dissolved without mercury. Various mercury-free conditions were studied to evaluate the rate of dissolution of the Mark 42 compact material and to assess the corrosion rate to the stainless steel dissolver. The elimination of mercury from the dissolution process fit with waste minimization and industrial hygiene goals to reduce the use of mercury in the United States. The mercury-free dissolution technology was optimized for Mark 42 compact material in laboratory-scale tests, and successfully implemented at the plant.

Crooks, W.J. III

2003-05-14T23:59:59.000Z

437

FUNDAMENTALS IN THE OPERATION OF NUCLEAR TEST REACTORS. VOLUME 1. REACTOR SCIENCE AND TECHNOLOGY  

SciTech Connect

A resume of nuclear physics basic to reactor operation precedes discussion of aspects of reactor physics, engineering, chemistry, metallurgy, instrumentation, control, kinetics, and safety. The object is to provide an approach to and understanding of problems in irradiation test programs in the Materials Testing and Engineering Test Reactors. (D.C.W.)

1963-06-01T23:59:59.000Z

438

WEB RESOURCE: Transport Properties (Nuclear Materials)  

Science Conference Proceedings (OSTI)

Feb 12, 2007 ... Select, Sandbox, Open Discussion Regarding Materials for Nuclear ... Trends in Nuclear Power, The Nuclear Fuel Cycle, Nuclear Science...

439

Nuclear reactor and materials science research: Final technical report, May 1, 1985-September 30, 1986. [Academic and research utilization of reactor  

SciTech Connect

Throughout the 17-month period of the grant, May 1, 1985 - September 30, 1986, the MIT Research Reactor (MITR-II) was operated in support of research and academic programs in the physical and life sciences and in related engineering fields. The period encompassed MIT's fiscal year utilization of the reactor during that period may be classified as follows: neutron beam tube research, nuclear materials research and development, radiochemistry and trace analysis, nuclear medicine, radiation health physics, computer control of reactors, dose reduction in nuclear power reactors, reactor irradiations and services for groups outside MIT, and MIT research reactor. This paper provides detailed information on this research academic utilization.

Harling, O.K.

1987-05-11T23:59:59.000Z

440

The conversion of the 2 MW reactor at the Rhode Island Nuclear Science Center  

Science Conference Proceedings (OSTI)

The 2 MW Rhode Island Atomic Energy Commission reactor is required to convert from the use of High Enriched Uranium (HEU) fuel to the use of Low Enriched Uranium (LEU) fuel using a standard LEU fuel plate which is thinner and contains more U-235 than the current HEU plate. These differences, coupled with a desire to upgrade the characteristics and capability of the reactor, have resulted in core design studies and thermal hydraulic studies not only at the current 2 MW but also at the maximum power level of the reactor, 5 MW. In addition, during 23 years of operation, it has become clear that the main uses of the reactor have been neutron scattering and neutron activation analysis. The requirement to convert to LEU presents and opportunity to optimize the core for the utilization and to restudy the thermal hydraulics using modern techniques. This paper presents the current conclusions of both aspects. 2 refs., 9 figs.

DiMeglio, A.F.; Matos, J.E.; Freese, K.E.; Spring, E.F. (Rhode Island Atomic Energy Commission, Narragansett, RI (USA). Rhode Island Nuclear Science Center; Argonne National Lab., IL (USA); Rhode Island Atomic Energy Commission, Narragansett, RI (USA). Rhode Island Nuclear Science Center)

1989-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "opportunities nuclear science" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

JGI - Emerging Technologies Opportunity Program (ETOP)  

NLE Websites -- All DOE Office Websites (Extended Search)

Funding Opportunity: DOE JGI Emerging Technologies Opportunity Program Funding Opportunity: DOE JGI Emerging Technologies Opportunity Program (ETOP) Overview | Eligible Applicants | Anticipated Funding | Applications and Submission Information : Pre-proposals, ETOP Full Application, Proposal Review Overview The DOE JGI is a genome science user facility focused on providing scientists access to state-of-the-art large-scale genomic technologies to address important energy and environmental problems. A core philosophy of the DOE JGI is that our suite of technical and analytical capabilities needs to evolve continuously in order to maximally enable our users' science. This occurs by building new scientific capabilities at the DOE JGI itself, and by enlisting partners to develop and provide specialized and critical capabilities that complement the activities in its Walnut Creek

442

J. H. Scofield and D. M. Fleetwood, IEEE Transactions on Nuclear Science NS-38, 1567-77 (December 1991). PHYSICAL BASIS FOR NONDESTRUCTIVE TESTS OF MOS RADIATION HARDNESS*  

E-Print Network (OSTI)

J. H. Scofield and D. M. Fleetwood, IEEE Transactions on Nuclear Science NS-38, 1567-77 (December 1991). PHYSICAL BASIS FOR NONDESTRUCTIVE TESTS OF MOS RADIATION HARDNESS* John H. Scofield Department noise and channel mobility measurements may be useful in defining nondestructive hardness assurance test

Scofield, John H.

443

Nuclear Science Division annual report for the period October 1, 1987--September 30, 1988  

Science Conference Proceedings (OSTI)

Highlights of the low energy research program included the identification of new super-deformed bands in gadolinium and palladium isotopes using the HERA array. Other work at the 88-Inch Cyclotron involved studies of the fragmentation of light nuclei; the spectroscopy of nuclear far from stability and interesting new experiments on the properties of the heaviest elements. Two other programs deserve special mention, the new program in Nuclear Astrophysics and the spectroscopic studies being carried out at OASIS. This isotope separator is now in full operation at the SuperHILAC after many yeas of development. At the Bevalac, important new results were obtained on the properties of hot dense nuclear matter produced in central collisions of heavy ions. First measurements were made using the di-lepton spectrometer which provide the most direct access to the conditions at the earliest stage of the reaction. New results on pion interferometry have been obtained using the Janus spectrometer and surprises continue to be found in careful analysis of data from the Plastic Ball detector, most recently the identification of a new component of hydrodynamic flow. Also at the Bevalac the intermediate energy program continued to grow, studying the evolution of the reaction mechanism from incomplete fusion to the fireball regime, as did the spectroscopic studies using secondary radioactive beams. The third major component of the experimental program is the study of ultra-relativistic nuclear collisions using the CERN SPS. This year saw the completing of analysis of the first round of experiments with important results being obtained on general particle production, the space-time evolution of the system and strangeness production.

Mahoney, J. (ed.)

1989-10-01T23:59:59.000Z

444

Experimental and phenomenological comparison between Piezonuclear reactions and Condensed Matter Nuclear Science phenomenology  

E-Print Network (OSTI)

The purpose of this paper is to place side by side the experimental results of Piezonu- clear reactions, which have been recently unveiled, and those collected during the last twenty years of experiments on low energy nuclear reactions (LENR). We will briefy re- port the results of our campaign of piezonuclear reactions experiments where ultrasounds and cavitation were applied to solutions of stable elements. These outcomes will be shown to be compatible with the results and evidences obtained from low energy nuclear reac- tion experiments. Some theoretical concepts and ideas, on which our experiments are grounded, will be sketched and it will be shown that, in order to trigger our measured effects, it exists an energy threshold, that has to be overcome, and a maximum inter- val of time for this energy to be released to the nuclear system. Eventually, a research hypothesis will be put forward about the chance to raise the level of analogy from the mere comparison of results up to the phenomenological level. Here, among the various evidences collected in LENR experiments, we will search for hints about the overcome of the energy threshold and about the mechanism that releases the loaded energy in a suitable interval of time.

F. Cardone; R. Mignani; A. Petrucci

2011-03-06T23:59:59.000Z

445

ENDF/B-VII.1 Nuclear Data for Science and Technology: Cross Sections, Covariances, Fission Product Yields and Decay Data  

SciTech Connect

The ENDF/B-VII.1 library is our latest recommended evaluated nuclear data file for use in nuclear science and technology applications, and incorporates advances made in the five years since the release of ENDF/B-VII.0. These advances focus on neutron cross sections, covariances, fission product yields and decay data, and represent work by the US Cross Section Evaluation Working Group (CSEWG) in nuclear data evaluation that utilizes developments in nuclear theory, modeling, simulation, and experiment. The principal advances in the new library are: (1) An increase in the breadth of neutron reaction cross section coverage, extending from 393 nuclides to 418 nuclides; (2) Covariance uncertainty data for 185 of the most important nuclides, as documented in companion papers in this edition; (3) R-matrix analyses of neutron reactions on light nuclei, including isotopes of He, Li, and Be; (4) Resonance parameter analyses at lower energies and statistical high energy reactions at higher energies for isotopes of F, Cl, K, Ti, V, Mn, Cr, Ni, Zr and W; (5) Modifications to thermal neutron reactions on fission products (isotopes of Mo, Tc, Rh, Ag, Cs, Nd, Sm, Eu) and neutron absorber materials (Cd, Gd); (6) Improved minor actinide evaluations for isotopes of U, Np, Pu, and Am (we are not making changes to the major actinides 235,238U and 239Pu at this point, except for delayed neutron data, and instead we intend to update them after a further period of research in experiment and theory), and our adoption of JENDL-4.0 evaluations for isotopes of Cm, Bk, Cf, Es, Fm, and some other minor actinides; (7) Fission energy release evaluations; (8) Fission product yield advances for fission-spectrum neutrons and 14 MeV neutrons incident on 239Pu; and (9) A new Decay Data sublibrary. Integral validation testing of the ENDF/B-VII.1 library is provided for a variety of quantities: For nuclear criticality, the VII.1 library maintains the generally-good performance seen for VII.0 for a wide range of MCNP simulations of criticality benchmarks, with improved performance coming from new structural material evaluations, especially for Ti, Mn, Cr, Zr and W. For Be we see some improvements although the fast assembly data appear to be mutually inconsistent. Actinide cross section updates are also assessed through comparisons of fission and capture reaction rate measurements in critical assemblies and fast reactors. We describe the cross section evaluations that have been updated for ENDF/B-VII.1 and the measured data and calculations that motivated the changes, and therefore this paper augments the ENDF/B-VII.0 publication [1].

G. Palmiotti

2011-12-01T23:59:59.000Z

446

Boron-Nitride (BN) Nanotubes (BNNT) at TJNAF| U.S. DOE Office of Science  

Office of Science (SC) Website

Boron-Nitride (BN) Nanotubes (BNNT) at Boron-Nitride (BN) Nanotubes (BNNT) at TJNAF Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Spinoff Applications Spinoff Archives SBIR/STTR Applications of Nuclear Science and Technology Funding Opportunities Nuclear Science Advisory Committee (NSAC) News & Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3613 F: (301) 903-3833 E: sc.np@science.doe.gov More Information » Spinoff Archives Boron-Nitride (BN) Nanotubes (BNNT) at TJNAF Print Text Size: A A A RSS Feeds FeedbackShare Page Application/instrumentation: Boron-Nitride (BN) Nanotubes (BNNT) Developed at: Jefferson Lab Free Electron Facility Developed in: 2008-2011

447

Proton Radiography at LANL | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Proton Radiography at LANL Proton Radiography at LANL Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Spinoff Applications Spinoff Archives SBIR/STTR Applications of Nuclear Science and Technology Funding Opportunities Nuclear Science Advisory Committee (NSAC) News & Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3613 F: (301) 903-3833 E: sc.np@science.doe.gov More Information » Spinoff Archives Proton Radiography at LANL Print Text Size: A A A RSS Feeds FeedbackShare Page Application/instrumentation: Use of high energy (1-12 GeV) protons for radiography of dynamic systems Developed at: Los Alamos National Laboratory and Lawrence Livermore National Laboratory

448

Awake Animal Imaging at BNL | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Awake Animal Imaging at BNL Awake Animal Imaging at BNL Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Spinoff Applications Spinoff Archives SBIR/STTR Applications of Nuclear Science and Technology Funding Opportunities Nuclear Science Advisory Committee (NSAC) News & Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3613 F: (301) 903-3833 E: sc.np@science.doe.gov More Information » Spinoff Archives Awake Animal Imaging at BNL Print Text Size: A A A RSS Feeds FeedbackShare Page Application/instrumentation: Awake Animal Imaging at BNL - micro PET Developed at: BNL Developed in: 2002- current Result of NP research: Basic NP research - Relativistic Heavy Ion Collider

449

Land Mine Detection at TJNAF | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Land Mine Detection at TJNAF Land Mine Detection at TJNAF Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Spinoff Applications Spinoff Archives SBIR/STTR Applications of Nuclear Science and Technology Funding Opportunities Nuclear Science Advisory Committee (NSAC) News & Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3613 F: (301) 903-3833 E: sc.np@science.doe.gov More Information » Spinoff Archives Land Mine Detection at TJNAF Print Text Size: A A A RSS Feeds FeedbackShare Page Application/instrumentation: Land Mine detection and security imaging using THz radiation Developed at: Thomas Jefferson National Laboratory Developed in: 1998 - 2007 Result of NP research:

450

Free Electron Laser Program Program at TJNAF| U.S. DOE Office of Science  

Office of Science (SC) Website

Free Electron Laser Program Program at Free Electron Laser Program Program at TJNAF Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Spinoff Applications Spinoff Archives SBIR/STTR Applications of Nuclear Science and Technology Funding Opportunities Nuclear Science Advisory Committee (NSAC) News & Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3613 F: (301) 903-3833 E: sc.np@science.doe.gov More Information » Spinoff Archives Free Electron Laser Program Program at TJNAF Print Text Size: A A A RSS Feeds FeedbackShare Page Application/instrumentation: Free Electron Laser (FEL) Program Developed at: Thomas Jefferson National Laboratory Developed in: 1990's - 2010

451

Energy Recovery Linac cavity at BNL | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Energy Recovery Linac cavity at BNL Energy Recovery Linac cavity at BNL Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Spinoff Applications Spinoff Archives SBIR/STTR Applications of Nuclear Science and Technology Funding Opportunities Nuclear Science Advisory Committee (NSAC) News & Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3613 F: (301) 903-3833 E: sc.np@science.doe.gov More Information » Spinoff Archives Energy Recovery Linac cavity at BNL Print Text Size: A A A RSS Feeds FeedbackShare Page Application/instrumentation: Energy Recovery Linac cavity Developed at: Brookhaven National Laboratory, New York and Advanced Energy Systems, New York Developed in:

452

Accelerator Mass Spectrometry | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Accelerator Mass Spectrometry at ANL Accelerator Mass Spectrometry at ANL and ORNL Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Spinoff Applications Spinoff Archives SBIR/STTR Applications of Nuclear Science and Technology Funding Opportunities Nuclear Science Advisory Committee (NSAC) News & Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3613 F: (301) 903-3833 E: sc.np@science.doe.gov More Information » Spinoff Archives Accelerator Mass Spectrometry at ANL and ORNL Print Text Size: A A A RSS Feeds FeedbackShare Page Application/instrumentation: Accelerator Mass Spectrometry at ANL and ORNL Developed at: Argonne National Laboratory (ANL), Oak Ridge National Laboratory (ORNL)

453

Protons and Neutrons for Testing at LBNL | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Protons and Neutrons for Testing at Protons and Neutrons for Testing at LBNL Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Spinoff Applications Spinoff Archives SBIR/STTR Applications of Nuclear Science and Technology Funding Opportunities Nuclear Science Advisory Committee (NSAC) News & Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3613 F: (301) 903-3833 E: sc.np@science.doe.gov More Information » Spinoff Archives Protons and Neutrons for Testing at LBNL Print Text Size: A A A RSS Feeds FeedbackShare Page Application/instrumentation: Use of protons and neutrons for testing of microelectronics, optical components and nanostructures for advanced accelerators, ground and space

454

QCDOC -Quantum Chromodynamics on a Chip at BNL | U.S. DOE Office of Science  

Office of Science (SC) Website

QCDOC -Quantum Chromodynamics on a Chip QCDOC -Quantum Chromodynamics on a Chip at BNL Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Spinoff Applications Spinoff Archives SBIR/STTR Applications of Nuclear Science and Technology Funding Opportunities Nuclear Science Advisory Committee (NSAC) News & Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3613 F: (301) 903-3833 E: sc.np@science.doe.gov More Information » Spinoff Archives QCDOC -Quantum Chromodynamics on a Chip at BNL Print Text Size: A A A RSS Feeds FeedbackShare Page Application/instrumentation: Advanced high capacity computing for quantum chromodynamics Developed at: Brookhaven National Laboratory, Columbia, IBM, RIKEN

455

High Purity Germanium Detectors at LBNL | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Purity Germanium Detectors at LBNL Purity Germanium Detectors at LBNL Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Spinoff Applications Spinoff Archives SBIR/STTR Applications of Nuclear Science and Technology Funding Opportunities Nuclear Science Advisory Committee (NSAC) News & Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3613 F: (301) 903-3833 E: sc.np@science.doe.gov More Information » Spinoff Archives High Purity Germanium Detectors at LBNL Print Text Size: A A A RSS Feeds FeedbackShare Page Application/instrumentation: Highly Segmented Hyper-Pure Germanium Detectors Developed at: LBNL, LLNL Developed in: 1998-current Result of NP research: Gamma Ray Energy Tracking Array project and Majorana double beta decay

456

Atom Trap Trace Analysis at ANL | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Atom Trap Trace Analysis at ANL Atom Trap Trace Analysis at ANL Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Spinoff Applications Spinoff Archives SBIR/STTR Applications of Nuclear Science and Technology Funding Opportunities Nuclear Science Advisory Committee (NSAC) News & Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3613 F: (301) 903-3833 E: sc.np@science.doe.gov More Information » Spinoff Archives Atom Trap Trace Analysis at ANL Print Text Size: A A A RSS Feeds FeedbackShare Page Application/instrumentation: Atom Trap Trace Analysis (ATTA) to determine isotopic abundances. Developed at: Argonne National Laboratory Developed in: 1999-current

457

Diamond Amplified Photocathode at BNL | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Diamond Amplified Photocathode at BNL Diamond Amplified Photocathode at BNL Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Spinoff Applications Spinoff Archives SBIR/STTR Applications of Nuclear Science and Technology Funding Opportunities Nuclear Science Advisory Committee (NSAC) News & Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3613 F: (301) 903-3833 E: sc.np@science.doe.gov More Information » Spinoff Archives Diamond Amplified Photocathode at BNL Print Text Size: A A A RSS Feeds FeedbackShare Page Application/instrumentation: Diamond amplified photocathode Developed at: Brookhaven National Laboratory, New York Developed in: 2004-2007 Result of NP research:

458

Muon Radiography at LANL | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Muon Radiography at LANL Muon Radiography at LANL Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Spinoff Applications Spinoff Archives SBIR/STTR Applications of Nuclear Science and Technology Funding Opportunities Nuclear Science Advisory Committee (NSAC) News & Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3613 F: (301) 903-3833 E: sc.np@science.doe.gov More Information » Spinoff Archives Muon Radiography at LANL Print Text Size: A A A RSS Feeds FeedbackShare Page Application/instrumentation: Application of tracking chambers and algorithms to observe deflections of cosmic ray muons as they pass through heavy materials Developed at: Los Alamos National Laboratory

459

Electron cooling simulation software at BNL | U.S. DOE Office of Science  

Office of Science (SC) Website

Electron cooling simulation software at Electron cooling simulation software at BNL Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Spinoff Applications Spinoff Archives SBIR/STTR Applications of Nuclear Science and Technology Funding Opportunities Nuclear Science Advisory Committee (NSAC) News & Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3613 F: (301) 903-3833 E: sc.np@science.doe.gov More Information » Spinoff Archives Electron cooling simulation software at BNL Print Text Size: A A A RSS Feeds FeedbackShare Page Application/instrumentation: Electron cooling simulation software Developed at: Brookhaven National Laboratory,New York andTech-X, Colorado

460

High Current Energy Recovery Linac at BNL | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

High Current Energy Recovery Linac at High Current Energy Recovery Linac at BNL Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Spinoff Applications Spinoff Archives SBIR/STTR Applications of Nuclear Science and Technology Funding Opportunities Nuclear Science Advisory Committee (NSAC) News & Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3613 F: (301) 903-3833 E: sc.np@science.doe.gov More Information » Spinoff Archives High Current Energy Recovery Linac at BNL Print Text Size: A A A RSS Feeds FeedbackShare Page Application/instrumentation: High Current Energy Recovery Linac Developed at: Brookhaven National Laboratory, New York and Advanced Energy Systems, New

Note: This page contains sample records for the topic "opportunities nuclear science" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

High Performance Computing at TJNAF| U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Performance Computing at TJNAF Performance Computing at TJNAF Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Spinoff Applications Spinoff Archives SBIR/STTR Applications of Nuclear Science and Technology Funding Opportunities Nuclear Science Advisory Committee (NSAC) News & Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3613 F: (301) 903-3833 E: sc.np@science.doe.gov More Information » Spinoff Archives High Performance Computing at TJNAF Print Text Size: A A A RSS Feeds FeedbackShare Page Application/instrumentation: High Performance Computing Developed at: Thomas Jefferson National Laboratory Developed in: 1998 - 2010 Result of NP research: NP computational studies in LQCD

462

Nasa Space Radiation Laboratory (NSRL) | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Nasa Space Radiation Laboratory (NSRL) Nasa Space Radiation Laboratory (NSRL) Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Spinoff Applications Spinoff Archives SBIR/STTR Applications of Nuclear Science and Technology Funding Opportunities Nuclear Science Advisory Committee (NSAC) News & Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3613 F: (301) 903-3833 E: sc.np@science.doe.gov More Information » Spinoff Archives Nasa Space Radiation Laboratory (NSRL) Print Text Size: A A A RSS Feeds FeedbackShare Page Application/Instrumentation: NASA Space Radiation Laboratory (NSRL) Developed at: Brookhaven National Laboratory, Collider-Accelerator Department (C-AD)

463

Clean Cities: Current Financial Opportunities  

NLE Websites -- All DOE Office Websites (Extended Search)

Financial Opportunities Financial Opportunities Printable Version Share this resource Send a link to Clean Cities: Current Financial Opportunities to someone by E-mail Share Clean Cities: Current Financial Opportunities on Facebook Tweet about Clean Cities: Current Financial Opportunities on Twitter Bookmark Clean Cities: Current Financial Opportunities on Google Bookmark Clean Cities: Current Financial Opportunities on Delicious Rank Clean Cities: Current Financial Opportunities on Digg Find More places to share Clean Cities: Current Financial Opportunities on AddThis.com... Current Opportunities Related Opportunities Funded Projects Current Financial Opportunities Current transportation-related financial opportunities, including Clean Cities funding opportunity announcements (FOAs) issued by the U.S.

464

Nuclear Science | More Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

of isotopes for medical purposes and research. The lab's High Flux Isotope Reactor (HFIR) and Radiochemical Engineering Development Center (REDC) together provide the western...

465

Roadmapping - A Tool for Resolving Science and Technology Issues Related to Processing, Packaging, and Shipping Nuclear Materials and Waste  

DOE Green Energy (OSTI)

Roadmapping is an effective methodology to identify and link technology development and deployment efforts to a program's or project's needs and requirements. Roadmapping focuses on needed technical support to the baselines (and to alternatives to the baselines) where the probability of success is low (high uncertainty) and the consequences of failure are relatively high (high programmatic risk, higher cost, longer schedule, or higher ES&H risk). The roadmap identifies where emphasis is needed, i.e., areas where investments are large, the return on investment is high, or the timing is crucial. The development of a roadmap typically involves problem definition (current state versus the desired state) and major steps (functions) needed to reach the desired state. For Nuclear Materials (NM), the functions could include processing, packaging, storage, shipping, and/or final disposition of the material. Each function is examined to determine what technical development would be needed to make the function perform as desired. This requires a good understanding of the current state of technology and technology development and validation activities to ensure the viability of each step. In NM disposition projects, timing is crucial! Technology must be deployed within the project window to be of value. Roadmaps set the stage to keep the technology development and deployment focused on project milestones and ensure that the technologies are sufficiently mature when needed to mitigate project risk and meet project commitments. A recent roadmapping activity involved a 'cross-program' effort, which included NM programs, to address an area of significant concern to the Department of Energy (DOE) related to gas generation issues, particularly hydrogen. The roadmap that was developed defined major gas generation issues within the DOE complex and research that has been and is being conducted to address gas generation concerns. The roadmap also provided the basis for sharing ''lessons learned'' from R&D efforts across DOE programs to increase efficiency and effectiveness in addressing gas generation issues. The gas generation roadmap identified pathways that have significant risk, indicating where more emphasis should be placed on contingency planning. Roadmapping further identified many opportunities for sharing of information and collaboration. Roadmapping will continue to be useful in keeping focused on the efforts necessary to mitigate the risk in the disposition pathways and to respond to the specific needs of the sites. Other areas within NM programs, including transportation and disposition of orphan and other nuclear materials, are prime candidates for additional roadmapping to assure achievement of timely and cost effective solutions for the processing, packaging, shipping, and/or final disposition of nuclear materials.

Luke, Dale Elden; Dixon, Brent Wayne; Murphy, James Anthony

2002-06-01T23:59:59.000Z

466

Roadmapping - A Tool for Resolving Science and Technology Issues Related to Processing, Packaging, and Shipping Nuclear Materials and Waste  

SciTech Connect

Roadmapping is an effective methodology to identify and link technology development and deployment efforts to a program's or project's needs and requirements. Roadmapping focuses on needed technical support to the baselines (and to alternatives to the baselines) where the probability of success is low (high uncertainty) and the consequences of failure are relatively high (high programmatic risk, higher cost, longer schedule, or higher ES&H risk). The roadmap identifies where emphasis is needed, i.e., areas where investments are large, the return on investment is high, or the timing is crucial. The development of a roadmap typically involves problem definition (current state versus the desired state) and major steps (functions) needed to reach the desired state. For Nuclear Materials (NM), the functions could include processing, packaging, storage, shipping, and/or final disposition of the material. Each function is examined to determine what technical development would be needed to make the function perform as desired. This requires a good understanding of the current state of technology and technology development and validation activities to ensure the viability of each step. In NM disposition projects, timing is crucial! Technology must be deployed within the project window to be of value. Roadmaps set the stage to keep the technology development and deployment focused on project milestones and ensure that the technologies are sufficiently mature when needed to mitigate project risk and meet project commitments. A recent roadmapping activity involved a 'cross-program' effort, which included NM programs, to address an area of significant concern to the Department of Energy (DOE) related to gas generation issues, particularly hydrogen. The roadmap that was developed defined major gas generation issues within the DOE complex and research that has been and is being conducted to address gas generation concerns. The roadmap also provided the basis for sharing ''lessons learned'' from R&D efforts across DOE programs to increase efficiency and effectiveness in addressing gas generation issues. The gas generation roadmap identified pathways that have significant risk, indicating where more emphasis should be placed on contingency planning. Roadmapping further identified many opportunities for sharing of information and collaboration. Roadmapping will continue to be useful in keeping focused on the efforts necessary to mitigate the risk in the disposition pathways and to respond to the specific needs of the sites. Other areas within NM programs, including transportation and disposition of orphan and other nuclear materials, are prime candidates for additional roadmapping to assure achievement of timely and cost effective solutions for the processing, packaging, shipping, and/or final disposition of nuclear materials.

Luke, Dale Elden; Dixon, Brent Wayne; Murphy, James Anthony

2002-06-01T23:59:59.000Z

467

News & Resources | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Resources Resources Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Funding Opportunities Nuclear Science Advisory Committee (NSAC) News & Resources NP Workforce Survey Results .pdf file (258KB) Links Databases Workshop Reports Nuclear Physics Related Brochures and Videos Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3613 F: (301) 903-3833 E: sc.np@science.doe.gov More Information » News & Resources Print Text Size: A A A RSS Feeds FeedbackShare Page What's New 2014 DOE NP Competitive Review of New Proposals As part of its ongoing effort to steward a research program of the highest quality and impact, the DOE Office of Nuclear Physics (NP) is planning to

468

Investigation of the low enrichment conversion of the Texas A and M Nuclear Science Center Reactor  

SciTech Connect

The use of highly enriched uranium as a fuel research reactors is of concern due to the possibility of diversion for nuclear weapons applications. The Texas A M TRIGA reactor currently uses 70% enriched uranium in a FLIP (Fuel Life Improvement Program) fuel element manufactured by General Atomics. Thus fuel also contains 1.5 weight percent of erbium as a burnable poison to prolong useful core life. US university reactors that use highly enriched uranium will be required to covert to 20% or less enrichment to satisfy Nuclear Regulatory Commission requirements for the next core loading if the fuel is available. This investigation examined the feasibility of a material alternate to uranium-zirconium hydride for LEU conversion of a TRIGA reactor. This material is a beryllium oxide uranium dioxide based fuel. The theoretical aspects of core physics analyses were examined to assess the potential advantages of the alternative fuel. A basic model was developed for the existing core configuration since it is desired to use the present fuel element grid for the replacement core. The computing approach was calibrated to the present core and then applied to a core of BeO-UO{sub 2} fuel elements. Further calculations were performed for the General Atomics TRIGA low-enriched uranium zirconium hydride fuel.

Reuscher, J.A.

1988-01-01T23:59:59.000Z

469

New Window of Opportunity:  

Science Conference Proceedings (OSTI)

Page 1. New Window of Opportunity: Certificate Transparency - A Certification Authority's Perspective Ben Wilson, SVP DigiCert ...

2013-04-10T23:59:59.000Z

470

Clean Cities: Related Financial Opportunities  

NLE Websites -- All DOE Office Websites (Extended Search)

Financial Opportunities Financial Opportunities Printable Version Share this resource Send a link to Clean Cities: Related Financial Opportunities to someone by E-mail Share Clean Cities: Related Financial Opportunities on Facebook Tweet about Clean Cities: Related Financial Opportunities on Twitter Bookmark Clean Cities: Related Financial Opportunities on Google Bookmark Clean Cities: Related Financial Opportunities on Delicious Rank Clean Cities: Related Financial Opportunities on Digg Find More places to share Clean Cities: Related Financial Opportunities on AddThis.com... Current Opportunities Related Opportunities Funded Projects Related Financial Opportunities Transportation-related financial opportunities from organizations and federal agencies outside Clean Cities are listed below. Some of the

471

Computer simulations help design new nuclear reactors  

NLE Websites -- All DOE Office Websites (Extended Search)

Computer simulations help design new nuclear reactors Director's Welcome Organization Achievements Highlights Fact Sheets, Brochures & Other Documents Multimedia Library About Nuclear Energy Nuclear Reactors Designed by Argonne Argonne's Nuclear Science and Technology Legacy Opportunities within NE Division Visit Argonne Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Celebrating the 70th Anniversary of Chicago Pile 1 (CP-1) Argonne OutLoud on Nuclear Energy Argonne Energy Showcase 2012 Highlights Bookmark and Share Reprinted from "Argonne Now" - Spring 2008 Physicist Won-Sik Yang and computer scientist Andrew Siegel hold a fuel rod assembly in front of a model of the Experimental Breeder Reactor-II

472

Professional Societies: Nuclear Engineering Division (Argonne)  

NLE Websites -- All DOE Office Websites (Extended Search)

About the Division > Professional About the Division > Professional Societies Director's Welcome Organization Achievements Awards Patents Professional Societies Highlights Fact Sheets, Brochures & Other Documents Multimedia Library About Nuclear Energy Nuclear Reactors Designed by Argonne Argonne's Nuclear Science and Technology Legacy Opportunities within NE Division Visit Argonne Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Celebrating the 70th Anniversary of Chicago Pile 1 (CP-1) Argonne OutLoud on Nuclear Energy Argonne Energy Showcase 2012 Professional Societies Bookmark and Share Employees of the Nuclear Engineering Division are actively involved in many Professional Societies. Some of these are listed below. In addition, some NE employees have received the distinction of being named

473

Nuclear Energy Panel Discussion at University of Chicago  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Energy Panel Discussion at University of Chicago Nuclear Energy Panel Discussion at University of Chicago Director's Welcome Organization Achievements Highlights Fact Sheets, Brochures & Other Documents Multimedia Library About Nuclear Energy Nuclear Reactors Designed by Argonne Argonne's Nuclear Science and Technology Legacy Opportunities within NE Division Visit Argonne Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Celebrating the 70th Anniversary of Chicago Pile 1 (CP-1) Argonne OutLoud on Nuclear Energy Argonne Energy Showcase 2012 Highlights Bookmark and Share Nuclear Energy Panel Discussion at University of Chicago Did you miss this event? Watch recording of "Lessons from Fukushima" The event's webcast is over, but you can still watch and/or download the

474

Full Program | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Agenda / Agenda / Presentations Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Funding Opportunities Nuclear Science Advisory Committee (NSAC) News & Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3613 F: (301) 903-3833 E: sc.np@science.doe.gov More Information » Workshop on The Nation's Needs for Isotopes: Present and Future Agenda / Presentations Print Text Size: A A A RSS Feeds FeedbackShare Page Monday, August 4 19:00 p.m. Poster Session Room open for mounting posters - Regency Randolph Room 19:15 -21:00 p.m. Meeting of Work Session Chairs - Adam Room Tuesday August 5 - Plenary Session: Plaza I & II Ballroom Chair: Jehanne Simon-Gillo

475

United States Department of Energy Nuclear Materials Stewardship  

Science Conference Proceedings (OSTI)

The Department of Energy launched the Nuclear Materials Stewardship Initiative in January 2000 to accelerate the work of achieving integration and cutting long-term costs associated with the management of the Department's nuclear materials, with the principal focus on excess materials. Management of nuclear materials is a fundamental and enduring responsibility that is essential to meeting the Department's national security, nonproliferation, energy, science, and environmental missions into the distant future. The effective management of nuclear materials is important for a set of reasons: (1) some materials are vital to our national defense; (2) the materials pose physical and security risks; (3) managing them is costly; and (4) costs are likely to extend well into the future. The Department currently manages nuclear materials under eight programs, with offices in 36 different locations. Through the Nuclear Materials Stewardship Initiative, progress was during calendar year 20 00 in achieving better coordination and integration of nuclear materials management responsibilities and in evaluating opportunities to further coordinate and integrate cross-program responsibilities for the treatment, storage, and disposition of excess nuclear materials. During CY 2001 the Departmental approach to nuclear materials stewardship changed consistent with the business processes followed by the new administration. This paper reports on the progress of the Nuclear Materials Stewardship Initiative in evaluating and implementing these opportunities, and the remaining challenges in integrating the long-term management of nuclear materials.

Newton, J. W.

2002-02-27T23:59:59.000Z

476

Nuclear Science Division: Annual report for the period October 1, 1985-September 30, 1986  

Science Conference Proceedings (OSTI)

Research has for the most part been carried out using three local accelerators, the Bevalac, the SuperHILAC and the 88-Inch Cyclotron. However, at CERN, oxygen-16 beams were accelerated to 3.2 TeV using the LBL-GSI heavy ion injector into the CERN SPS. First results obtained during the beam test period are presented in this report. Bevalac research has probed new regions of the nuclear matter equation of state. Studies of collisions between the most massive nuclei have revealed rich new phenomena such as collective flow, where the pressures generated force the emerging particles away from the beam direction. Experiments on dileptons e/sup +/e/sup -/ pairs) utilizing the newly completed Dilepton Spectrometer (DLS) are being carried out to glean new insights into the hot, high-density stage of the collision. Major new results on the nuclear structure of exotic, very neutron-rich light nuclei are being obtained by exploiting the projectile fragmentation process to produce secondary radioactive beams. The Laboratory has proposed the Bevalac Upgrade Project to replace the Bevalac's weak-focusing synchrotron with a modern, strong-focusing synchrotron to provide higher intensity and higher quality beams. The significant enhancement of the heavy ion capability at the 88-Inch Cyclotron as a result of the recent development of the ECR source has led to a renaissance of the cyclotron as indicated by the increased demand for beam time. A variety of other scientific activities were also carried out during this period. The Isotopes Project published the first edition of a new radioactivity reference book for applied users-The Table of Radioactive Isotopes and division members organized several major scientific meetings.

Mahoney, J. (ed.)

1987-07-01T23:59:59.000Z