Powered by Deep Web Technologies
Note: This page contains sample records for the topic "opportunities basic energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Opportunities for discovery: Theory and computation in Basic Energy Sciences  

SciTech Connect

New scientific frontiers, recent advances in theory, and rapid increases in computational capabilities have created compelling opportunities for theory and computation to advance the scientific mission of the Office of Basic Energy Sciences (BES). The prospects for success in the experimental programs of BES will be enhanced by pursuing these opportunities. This report makes the case for an expanded research program in theory and computation in BES. The Subcommittee on Theory and Computation of the Basic Energy Sciences Advisory Committee was charged with identifying current and emerging challenges and opportunities for theoretical research within the scientific mission of BES, paying particular attention to how computing will be employed to enable that research. A primary purpose of the Subcommittee was to identify those investments that are necessary to ensure that theoretical research will have maximum impact in the areas of importance to BES, and to assure that BES researchers will be able to exploit the entire spectrum of computational tools, including leadership class computing facilities. The Subcommittee s Findings and Recommendations are presented in Section VII of this report.

Harmon, Bruce; Kirby, Kate; McCurdy, C. William

2005-01-11T23:59:59.000Z

2

Energy Basics  

Energy.gov (U.S. Department of Energy (DOE))

The EERE Energy Basics website contains basics about renewable energy and energy efficiency technologies. Learn how they work, what they're used for, and how they can improve our lives, homes,...

3

Energy Basics  

Energy.gov (U.S. Department of Energy (DOE))

The basics about renewable energy and energy efficiency technologies: learn how they work, what they're used for, and how they can improve our lives, homes, businesses, vehicles, and industries.

4

Energy Basics: Tidal Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Ocean Thermal Energy Conversion Tidal Energy Wave Energy...

5

Energy Basics: Wave Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Ocean Thermal Energy Conversion Tidal Energy Wave Energy...

6

Funding Opportunities | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Funding Opportunities Funding Opportunities Nuclear Energy Advisory Committee Funding Opportunities Document Library Funding Opportunities FUNDING OPPORTUNITIES AND SOLICITATIONS...

7

Energy Basics: Ocean Resources  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Ocean Thermal Energy Conversion Tidal Energy Wave Energy...

8

Energy Basics: Contacts  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Skip to Content U.S. Department of Energy Energy Efficiency and Renewable Energy EERE Home | Programs & Offices | Consumer Information Energy Basics Search Search Help Energy...

9

Energy Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Services » Energy Basics Services » Energy Basics Energy Basics The basics about renewable energy and energy efficiency technologies: learn how they work, what they're used for, and how they can improve our lives, homes, businesses, and industries. The basics about renewable energy and energy efficiency technologies: learn how they work, what they're used for, and how they can improve our lives, homes, businesses, and industries. RENEWABLE ENERGY TECHNOLOGIES Biomass Technology Basics Geothermal Technology Basics Hydrogen and Fuel Cell Technology Basics Hydropower Technology Basics Ocean Energy Technology Basics Solar Energy Technology Basics Wind Energy Technology Basics More HOME & BUILDING TECHNOLOGIES Lighting and Daylighting Basics Passive Solar Building Design Basics Space Heating and Cooling Basics

10

Energy Basics: Photovoltaic Cells  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Photovoltaics Cells Systems Concentrating Solar...

11

Energy Basics: Geothermal Resources  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Direct Use Electricity Production Geothermal Resources Hydrogen Hydropower Ocean...

12

Energy Basics: Photovoltaics  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Photovoltaics Cells Systems Concentrating Solar...

13

Energy Basics: Hydropower Resources  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Large-Scale Hydropower Microhydropower Hydropower Resources...

14

Energy Basics: Photovoltaic Systems  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Photovoltaics Cells Systems Concentrating Solar...

15

Energy Basics: Microhydropower  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Large-Scale Hydropower Microhydropower Water Conveyance &...

16

Energy Basics: Hydropower Technologies  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Large-Scale Hydropower Microhydropower Hydropower Resources...

17

Energy Basics: Geothermal Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Direct Use Electricity Production Geothermal Resources Hydrogen Hydropower Ocean...

18

Lesson 1 Energy Basics ENERGY BASICS  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Table of Contents Table of Contents Lesson 1 - Energy Basics Lesson 2 - Electricity Basics Lesson 3 - Atoms and Isotopes Lesson 4 - Ionizing Radiation Lesson 5 - Fission, Chain Reactions Lesson 6 - Atom to Electricity Lesson 7 - Waste from Nuclear Power Plants Lesson 8 - Concerns Lesson 9 - Energy and You 1 Lesson 1 Energy Basics ENERGY BASICS What is energy? Energy is the ability to do work. But what does that really mean? You might think of work as cleaning your room, cutting the grass, or studying for a test. And all these require energy. To a scientist, "work" means something more exact. Work is causing a change. It can be a change in position, like standing up or moving clothes from the floor to the laundry basket. It can be a change in temperature, like heating water for a cup

19

Basic Energy Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

of Energy's Office of Basic Energy Sciences (BES), Office of Advanced Scientific Computing Research (ASCR), and the National Energy Research Scientific Computing Center...

20

Energy Basics: Ocean Energy Technologies  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Ocean Thermal Energy Conversion Tidal Energy Wave Energy...

Note: This page contains sample records for the topic "opportunities basic energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Basic Energy Sciences  

Office of Science (SC) Website

http:science.energy.govbesaboutjobs Below is a list of currently open federal employment opportunities in the Office of Science. Prospective applicants should follow the...

22

Energy Basics: Solar Energy Technologies  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Photovoltaics Concentrating Solar Power Solar...

23

Energy Basics: Solar Energy Resources  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Photovoltaics Concentrating Solar Power Solar...

24

Energy Basics: Renewable Energy Technologies  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Wind Renewable Energy Technologies Renewable energy...

25

Energy Basics: Wind Turbines  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Wind Wind Turbines Wind Resources Wind Turbines...

26

Energy Basics: Fuel Cells  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydrogen Fuel Fuel Cells Hydropower Ocean Solar Wind Fuel Cells Photo of...

27

Energy Basics: Hydrogen Fuel  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydrogen Fuel Fuel Cells Hydropower Ocean Solar Wind Hydrogen Fuel Hydrogen...

28

Energy Basics | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

can improve our lives, homes, businesses, and industries. RENEWABLE ENERGY TECHNOLOGIES Biomass Technology Basics Geothermal Technology Basics Hydrogen and Fuel Cell Technology...

29

Energy Basics: Wind Energy Resources  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Wind Wind Turbines Wind Resources Wind Energy...

30

Energy Basics: Wind Energy Technologies  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Wind Wind Turbines Wind Resources Wind Energy...

31

Energy Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

INDUSTRIAL TECHNOLOGIES Industrial Energy Efficiency Basics More Additional Links Glossary of Energy-Related Terms Here you'll find a glossary of energy-related terms. Related...

32

Energy Basics: Geothermal Resources  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

EERE: Energy Basics Geothermal Resources Although geothermal heat pumps can be used almost anywhere, most direct-use and electrical production facilities in the United States are...

33

Energy Basics: Geothermal Technologies  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

EERE: Energy Basics Geothermal Technologies Photo of steam pouring out of a geothermal plant. Geothermal technologies use the clean, sustainable heat from the Earth. Geothermal...

34

Energy Basics: Biodiesel  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

EERE: Energy Basics Biodiesel Biodiesel is a domestically produced, renewable fuel that can be manufactured from vegetable oils, animal fats, or recycled restaurant greases. What...

35

Energy Basics: Air Conditioning  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

the same operating principles and basic components as refrigerators. Refrigerators use energy (usually electricity) to transfer heat from the cool interior of the refrigerator to...

36

Energy Basics: Hydrogen Fuel  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

EERE: Energy Basics Hydrogen Fuel Hydrogen is a clean fuel that, when consumed, produces only water. Hydrogen can be produced from a variety of domestic sources, such as coal,...

37

Energy Basics: Fuel Cells  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

EERE: Energy Basics Fuel Cells Photo of two hydrogen fuel cells. Fuel cells are an emerging technology that can provide heat and electricity for buildings and electrical power for...

38

Financial Opportunities - Energy Innovation Portal  

Financial Opportunities. The Office of Energy Efficiency and Renewable Energy (EERE) works with business, industry, universities, and others to ...

39

Nanostructured Basic Catalysts: Opportunities for Renewable Fuels  

SciTech Connect

This research studied and developed novel basic catalysts for production of renewable chemicals and fuels from biomass. We focused on the development of unique porous structural-base catalysts zeolites. These catalysts were compared to conventional solid base materials for aldol condensation, that were being commercialized for production of fuels from biomass and would be pivotal in future biomass conversion to fuels and chemicals. Specifically, we had studied the aldolpyrolysis over zeolites and the trans-esterification of vegetable oil with methanol over mixed oxide catalysts. Our research has indicated that the base strength of framework nitrogen in nitrogen substituted zeolites (NH-zeolites) is nearly twice as strong as in standard zeolites. Nitrogen substituted catalysts have been synthesized from several zeolites (including FAU, MFI, BEA, and LTL) using NH3 treatment.

Conner, William C; Huber, George; Auerbach, Scott

2009-06-30T23:59:59.000Z

40

Energy Basics: Wave Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

niche markets. Once built, they have low operation and maintenance costs because their fuel-seawater-is free. Contacts | Web Site Policies | U.S. Department of Energy | USA.gov...

Note: This page contains sample records for the topic "opportunities basic energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Energy Basics: Tidal Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

the cost per kilowatt-hour of tidal power is not competitive with conventional fossil fuel power. Contacts | Web Site Policies | U.S. Department of Energy | USA.gov Content Last...

42

Funding Opportunities | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Efficiency and Renewable Energy Funding Opportunity Exchange Alaska Energy Authority Alaska Renewable Energy Grant Fund Database of State Incentives for Renewables &...

43

Renewable Energy Technology Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Renewable Energy Technology Basics Renewable Energy Technology Basics Renewable energy technologies produce sustainable, clean energy from sources such as the sun, the wind,...

44

Funding Opportunities | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Funding Opportunities Funding Opportunities Funding Opportunities November 1, 2013 - 11:40am Addthis The primary strategy of the Advanced Manufacturing Office (AMO) is to invest in high-risk, high-value research and development that will reduce the energy requirements of manufacturing while stimulating economic productivity and growth. Opportunities exist for industry to participate in cost-shared research and development projects. In addition, AMO makes available information and resources on other financial assistance and research opportunities. Advanced Manufacturing Office AMO awards cost-shared funding to collaborative R&D partnerships that address top opportunities for saving energy in industrial distributed energy. Competitive solicitations are the principal mechanism used to

45

Funding Opportunities | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Funding Opportunities Funding Opportunities Funding Opportunities November 1, 2013 - 11:40am Addthis The primary strategy of the Advanced Manufacturing Office (AMO) is to invest in high-risk, high-value research and development that will reduce the energy requirements of manufacturing while stimulating economic productivity and growth. Opportunities exist for industry to participate in cost-shared research and development projects. In addition, AMO makes available information and resources on other financial assistance and research opportunities. Advanced Manufacturing Office AMO awards cost-shared funding to collaborative R&D partnerships that address top opportunities for saving energy in industrial distributed energy. Competitive solicitations are the principal mechanism used to

46

Energy Basics: Geothermal Electricity Production  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Direct Use Electricity Production Geothermal Resources Hydrogen Hydropower Ocean...

47

Energy Basics: Photovoltaic Cell Structures  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Photovoltaics Cells Systems Concentrating Solar...

48

Energy Basics: Photovoltaic Cell Performance  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Photovoltaics Cells Systems Concentrating Solar...

49

Energy Basics: Concentrator Photovoltaic Systems  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Photovoltaics Cells Systems Concentrating Solar...

50

Energy Basics: Photovoltaic System Performance  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Photovoltaics Cells Systems Concentrating Solar...

51

Energy Basics: Concentrating Solar Power  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Photovoltaics Concentrating Solar Power Linear...

52

Energy Basics: Photovoltaic Cell Materials  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Photovoltaics Cells Systems Concentrating Solar...

53

Financial Opportunities | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Financial Opportunities Financial Opportunities Financial Opportunities The Water Power Program focuses on technological development and deployment of innovative technologies capable of generating electricity from water. The program funds research and development activities through competitive solicitations. The program does not fund the purchase or installation of water energy systems by individuals or companies. For information on federal grants and tax incentives for the purchase and operation of water energy systems, please see the Related Opportunities page. To explore current financial opportunity solicitations, click on the opportunity titles in the table below. To sort the list, click on the arrows in the column headings. Technology Solicitation Title Open Date Close Date

54

Industrial Energy Efficiency:Policy, Initiatives, & Opportunities...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Efficiency:Policy, Initiatives, & Opportunities Industrial Energy Efficiency:Policy, Initiatives, & Opportunities presentation Industrial Energy Efficiency:Policy, Initiatives, &...

55

Future Science Needs and Opportunities for Electron Scattering: Next-Generation Instrumentation and Beyond. Report of the Basic Energy Sciences Workshop on Electron Scattering for Materials Characterization, March 1-2, 2007  

SciTech Connect

To identify emerging basic science and engineering research needs and opportunities that will require major advances in electron-scattering theory, technology, and instrumentation.

Miller, D. J.; Williams, D. B.; Anderson, I. M.; Schmid, A. K.; Zaluzec, N. J.

2007-03-02T23:59:59.000Z

56

Basic Energy Sciences  

Office of Science (SC) Website

aboutjobs Below is a list of currently open federal employment opportunities in the Office of Science. Prospective applicants should follow the links to the formal position...

57

Energy Basics: Ocean Thermal Energy Conversion  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Ocean Thermal Energy Conversion Tidal Energy Wave Energy...

58

Energy Basics: Geothermal Electricity Production  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

EERE: Energy Basics Geothermal Electricity Production A photo of steam emanating from geothermal power plants at The Geysers in California. Geothermal energy originates from deep...

59

Energy Basics: Wind Power Animation  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Wind Wind Turbines Wind Resources Wind Power...

60

NREL: Learning - Geothermal Energy Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

About Renewable Energy Search More Search Options Site Map Printable Version Geothermal Energy Basics Photo of a hot spring. The Earth's heat-called geothermal...

Note: This page contains sample records for the topic "opportunities basic energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Funding Opportunities | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Services » Funding Opportunities Services » Funding Opportunities Funding Opportunities Funding Opportunities FUNDING OPPORTUNITIES AND SOLICITATIONS Cost-Shared Development of Innovative Small Modular Reactor Designs The Small Modular Reactor (SMR) Licensing Technical Support (LTS) program, sponsored by the U.S. Department of Energy (DOE) Office of Nuclear Energy (DOE-NE), through this Funding Opportunity Announcement (FOA) seeks to facilitate the development of innovative SMR designs that have the potential to address the nation's economic, environmental and energy security goals. Specifically, the Department is soliciting applications for SMR designs that offer unique and innovative solutions for achieving the objectives of enhanced safety, operations, and performance relative to currently certified designs. This FOA focuses on design development and

62

Research Opportunities | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Research Opportunities Research Opportunities Research Opportunities Research opportunities at Energy Department labs and facilities: Argonne Nuclear Science Educational Programs The mission of Innovate to Educate is to take a leadership role to champion Argonne's mission to transform scientific discovery into innovation, develop and enable education programs that reflect Argonne's strategic engineering, science, and computational initiatives, and to develop new educational programs based on transformative scientific discovery. Faculty and Student Teams Program The Faculty and Student Teams (FaST) Program is a cooperative effort between the Department of Energy (DOE) Office of Science and the National Science Foundation (NSF). Faculty from colleges and universities with limited research facilities, and from those institutions serving

63

Solar Energy Technology Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar Energy Technology Basics Solar Energy Technology Basics August 16, 2013 - 4:37pm Addthis Solar energy technologies produce electricity from the energy of the sun. Small solar...

64

Basic Energy Sciences at NREL  

DOE Green Energy (OSTI)

NREL's Center for Basic Sciences performs fundamental research for DOE's Office of Science. Our mission is to provide fundamental knowledge in the basic sciences and engineering that will underpin new and improved renewable energy technologies.

Moon, S.

2000-12-04T23:59:59.000Z

65

Motor Energy Saving Opportunities in an Industrial Plant  

E-Print Network (OSTI)

Industrial plants have enormous energy saving opportunities with electric motors. Improving motor efficiency is a conventional wisdom to save energy. Re-engineering affords far greater savings opportunities than motor efficiency improvement. Motor energy saving techniques and basics are discussed. A case study is presented where 63% motor energy savings were realized.

Kumar, B.; Elwell, A.

1999-05-01T23:59:59.000Z

66

Energy Basics: Biofuels  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

The biomass-derived ethyl or methyl esters can be blended with conventional diesel fuel or used as a neat fuel (100% biodiesel). Learn more about biodiesel basics. Biofuel...

67

Wind Energy Resource Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Resource Basics Wind Energy Resource Basics July 30, 2013 - 3:11pm Addthis Wind energy can be produced anywhere in the world where the wind blows with a strong and...

68

Energy Basics: Geothermal Heat Pumps  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

EERE: Energy Basics Geothermal Heat Pumps Geothermal heat pumps use the constant temperature of the earth as an exchange medium for heat. Although many parts of the country...

69

NREL: Energy Storage - Technology Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

Technology Basics Photo of an ultracapacitor. Electrochemical energy storage devices provide the power for many everyday devices-from cars, trains, and laptops to personal digital...

70

Lesson 1- Energy Basics  

Energy.gov (U.S. Department of Energy (DOE))

This lesson covers the states and forms of energy, where energy comes from, as well as how the way we live is tied to our energy supply and what that means for the future.

71

Energy Basics: Heating Systems  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

of energy sources, including electricity, boilers, solar energy, and wood and pellet-fuel heating. Small Space Heaters Used when the main heating system is inadequate or when...

72

Energy Basics: Solar Air Heating  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

EERE: Energy Basics Solar Air Heating Solar air heating systems use air as the working fluid for absorbing and transferring solar energy. Solar air collectors (devices to heat air...

73

Department of Energy Research Opportunities for Historically...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Department of Energy Research Opportunities for Historically Black Colleges and Universities Department of Energy Research Opportunities for Historically Black Colleges and...

74

Energy Basics: LED Lighting  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

positivenegative junction of the diode, the electrons slow down to orbit at a lower energy level. The electrons emit the excess energy as photons of light. LEDs are often used...

75

Federal Energy Management Program: Greenhouse Gas Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

Basics to someone by E-mail Share Federal Energy Management Program: Greenhouse Gas Basics on Facebook Tweet about Federal Energy Management Program: Greenhouse Gas Basics on...

76

Energy Basics: Evaporative Cooling  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

absorbent material. Evaporative cooling uses evaporated water to naturally and energy-efficiently cool. How Evaporative Coolers Work There are two types of evaporative...

77

Energy Basics: Ventilation Systems  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

building through the roof, walls, and windows. Heat-reflecting roofs, insulation, and energy efficient windows will help to reduce that heat conduction. Radiation is heat...

78

Energy Basics: Incandescent Lighting  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

The three most common types of incandescent lamps are: Standard incandescent lamps Energy-Saving Incandescent (or Halogen) Reflector lamps Standard Incandescent Lamps Known as...

79

Energy Basics: Cooling Systems  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

or "swamp cooling" provides an experience like air conditioning, but with much lower energy use. An evaporative cooler uses the outside air's heat to evaporate water inside the...

80

Energy Basics: Radiant Heating  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

very low heat capacity and have the quickest response time of any heating technology. More Information Visit the Energy Saver website for more information about radiant heating...

Note: This page contains sample records for the topic "opportunities basic energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Energy Basics: Daylighting  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Daylighting in schools has even improved student grades and attendance. Today's highly energy-efficient windows, as well as advances in lighting design, allow efficient use of...

82

Energy Basics: Ocean Resources  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Resources Although the potential for ocean energy technologies is believed to be very large, no comprehensive studies have been conducted to date to determine an accurate resource...

83

Energy Basics: Fluorescent Lighting  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

& Cooling Water Heating Fluorescent Lighting Fluorescent lamps use 25%-35% of the energy used by incandescent lamps to provide the same amount of illumination (efficacy of...

84

Energy Basics: Hydropower Technologies  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

expensive source of renewable electricity in the United States today. According to the Energy Information Administration, more than 6% of the country's electricity was produced...

85

Energy Basics: Radiant Heating  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

low heat capacity and have the quickest response time of any heating technology. More Information Visit the Energy Saver website for more information about radiant heating in homes...

86

Energy Basics: Photovoltaics  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Photovoltaics Photovoltaic (PV) materials and devices convert sunlight into electrical energy, and PV cells are commonly known as solar cells. Photovoltaics can literally be...

87

Basic Energy Sciences Directorate  

NLE Websites -- All DOE Office Websites (Extended Search)

andor outreach to the following initiatives: NY State Smart Grid Consortium, NY Battery and Energy Storage Technology (NY-BEST) Teams, and the SBUNYS Small Business...

88

Top 10 Energy Efficiency Opportunities  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Top 10 Energy Efficiency Top 10 Energy Efficiency Opportunities Federal Utility Partnership Working Group San Francisco, 5/22/2013 Siva Sethuraman Customer Energy Solutions PG&E 2 Whole Building A comprehensive, performance-based approach to achieving 15+% energy savings in existing commercial buildings - quantification of energy use baselines and estimate savings at the whole building level leveraging the power of interval meter data. Behavioral Operational Retrofit Types of Energy Savings * Simplified, integrated offering * Bigger incentives tied to performance * Flexibility to pursue a range of measures overtime * Transparent and credible bill savings Baseline Analytics, Examples 3 Small Commercial EMS * Energy management system (EMS) products that offer integrated

89

Energy Basics: Electric Vehicles  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Photo of an electric bus driving up a hill. Electricity can be used as a transportation fuel to power battery electric vehicles (EVs). EVs store electricity in an energy storage...

90

Energy Basics: Anaerobic Digestion  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

of heat energy per cubic foot (0.028 cubic meters) when burned. Natural gas is a fossil fuel that was created eons ago by the anaerobic decomposition of organic materials. It is...

91

Energy Basics: Fluorescent Lighting  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Fluorescent Lighting Fluorescent lamps use 25%-35% of the energy used by incandescent lamps to provide the same amount of illumination (efficacy of 30-110 lumens per watt). They...

92

Energy Basics: Wind Turbines  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Photo of a crane lifting the blades onto a wind turbine that reads 'U.S. Department of Energy, NREL.' You can learn more about horizontal axis turbines from the EERE Wind Program's...

93

Energy Basics: Photovoltaic Systems  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

an entire PV system. This system is usually everything needed to meet a particular energy demand, such as powering a water pump, the appliances and lights in a home, or-if the...

94

Energy Basics: Webmaster  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

or URL of that page. Your name: Your email address: Your message: Send Message Contacts | Web Site Policies | U.S. Department of Energy | USA.gov Content Last Updated: 0814...

95

Energy Basics: Microhydropower  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

are small hydroelectric power systems of less than 100 kW used to produce mechanical energy or electricity for farms, ranches, homes, and villages. How a Microhydropower System...

96

Energy Basics: Photovoltaic Cells  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

mounting hardware, power-conditioning equipment, and batteries that store solar energy for use when the sun is not shining. When light shines on a PV cell, it may be...

97

Energy Basics: Lighting  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Standard "A" 10-17 750-2,500 98-100 (excellent) 2,700-2,800 (warm) Indoorsoutdoors Energy-Saving Incandescent (or Halogen) 12-22 1,000-4,000 98-100 (excellent) 2,900-3,200...

98

Energy Basics: Solar Liquid Heating  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

EERE: Energy Basics Solar Liquid Heating Solar liquid heating systems use a collector with a heat transfer or "working" fluid such as water, antifreeze (usually non-toxic propylene...

99

Energy Basics: Wind Power Animation  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

EERE: Energy Basics Wind Power Animation This animation discusses the advantages of wind power, the workings of a wind turbine, and wind resources in the United States. It also...

100

Energy Basics: Flexible Fuel Vehicles  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

EERE: Energy Basics Flexible Fuel Vehicles Photo of a gray van with 'E85 Ethanol' written on the side. Flexible fuel vehicles (FFVs) are capable of operating on gasoline, E85 (85%...

Note: This page contains sample records for the topic "opportunities basic energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Energy Basics: Fuel Cell Vehicles  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

EERE: Energy Basics Fuel Cell Vehicles Photo of a blue car with 'The Road to Hydrogen' written on it, filling up at a hydrogen fueling station. Fuel cell vehicles, powered by...

102

NREL: Learning - Solar Energy Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Basics Photo of a solar electric system in Colorado with snow-covered mountain peaks in the background. Solar panels installed on a home in Colorado. Solar is the Latin word...

103

Energy Basics: Solar Energy Technologies  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Technologies Solar energy technologies produce electricity from the energy of the sun. Small solar energy systems can provide electricity for homes, businesses, and remote power...

104

Energy efficiency standards for equipment: Additional opportunities...  

NLE Websites -- All DOE Office Websites (Extended Search)

efficiency standards for equipment: Additional opportunities in the residential and commercial sectors Title Energy efficiency standards for equipment: Additional opportunities in...

105

Energy Development Opportunities for Wyoming  

Science Conference Proceedings (OSTI)

The Wyoming Business Council, representing the states interests, is participating in a collaborative evaluation of energy development opportunities with the NGNP Industry Alliance (an industry consortium), the University of Wyoming, and the US Department of Energys Idaho National Laboratory. Three important energy-related goals are being pursued by the State of Wyoming: Ensuring continued reliable and affordable sources of energy for Wyomings industries and people Restructuring the coal economy in Wyoming Restructuring the natural gas economy in Wyoming

Larry Demick

2012-11-01T23:59:59.000Z

106

Energy Basics: Renewable Energy Technologies  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

quality, and contribute to a strong energy economy. Learn more about: Biomass Geothermal Hydrogen Hydropower Ocean Solar Energy Wind Contacts | Web Site Policies | U.S....

107

Energy Basics: Wind Energy Technologies  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Photo of a hilly field, with six visible wind turbines spinning in the wind. Wind energy technologies use the energy in wind for practical purposes such as generating...

108

Career Opportunities | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Career Opportunities Career Opportunities Career Opportunities A Multifaceted Mission Requires Many Disciplines Energy is a crucial aspect in virtually every area of daily life, the economy, and national security. Because of the pervasive scope of the DOE's mission, we require a wide range of technical and business skills. DOE professionals include scientists, engineers, mathematicians, accountants and contract specialists, computer scientists, technologists, specialists in national security and international affairs, as well as professionals with a wide range of skills in business, communications/information technology, and administrative disciplines. Whether you are a recent graduate seeking your first job, a mid-career expert, a senior-level executive, or just looking for a career change,

109

Opportunity  

NLE Websites -- All DOE Office Websites (Extended Search)

Reduction of Viscosity and Refractory Corrosion Opportunity Research is active on the patent pending technology, titled "Basic Refractory and Slag Management for Petcoke Carbon...

110

Daylighting Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Daylighting Basics Daylighting Basics Daylighting Basics August 16, 2013 - 11:24am Addthis Energy 101: Daylighting Basics This video explains how homeowners and businesses can use highly efficient, strategically placed windows to save money. Text Version Daylighting is the use of windows and skylights to bring sunlight into buildings. Daylighting in businesses and commercial buildings can result in substantial savings on electric bills, and not only provides a higher quality of light but also improves productivity and health. Daylighting in schools has even improved student grades and attendance. Today's highly energy-efficient windows, as well as advances in lighting design, allow efficient use of windows to reduce the need for artificial lighting during daylight hours without causing heating or cooling problems.

111

Bidding Opportunities for Energy Efficiency  

E-Print Network (OSTI)

With the adoption of a rule requiring electric utility solicitation for new resources, the Public Utility Commission of Texas set the stage in 1992 for demand-side bidding. Regulated electric utilities are now required to issue a request for proposals for energy efficiency and load management options from energy service companies and utility customers. Competitive bidding presents industrial customers with a new menu of energy services. Customers have opportunities to develop proposals for on-site energy savings and to bid for payments up to the system avoided costs in much the same fashion as qualifying facilities have been able to secure contracts for power generation. Self-service wheeling may also be formally considered as an alternative to new capacity additions. The breadth of the new markets which might develop and the nature of the opportunities for large industrial customers is unclear at this time. Competitive bidding opportunities for industrial customers may improve our industrial competitiveness, increase customer participation in utility resource planning, improve the equity of demand-side management programs, and help regulators to insure that regulated electric utilities provide low-cost, reliable energy services. Demand-side bidding is likely to bring fresh new perspectives to the regulation of planning and licensing in Texas. The experiences gained in the current solicitations will aide in the refinement of the process within the context of an integrated resource planning rulemaking.

Treadway, N.

1994-04-01T23:59:59.000Z

112

Energy Basics: Industrial Energy Efficiency  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

fuels supplied to a manufacturing plant from off-site power plants, gas companies, and fuel distributors. Energy then flows to either a central energy generation utility system or...

113

Energy Basics: Wind Energy Resources  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Resources Wind energy can be produced anywhere in the world where the wind blows with a strong and consistent force. Windier locations produce more energy, which lowers the cost of...

114

NREL: Learning - Energy Storage Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Storage Basics Energy Storage Basics The demand for electricity is seldom constant over time. Excess generating capacity available during periods of low demand can be used to energize an energy storage device. The stored energy can then be used to provide electricity during periods of high demand, helping to reduce power system loads during these times. Energy storage can improve the efficiency and reliability of the electric utility system by reducing the requirements for spinning reserves to meet peak power demands, making better use of efficient baseload generation, and allowing greater use of renewable energy technologies. A "spinning reserve" is a generator that is spinning and synchronized with the grid, ready for immediate power generation - like a car engine running with the gearbox

115

NREL: Learning - Distributed Energy Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

Distributed Energy Basics Distributed Energy Basics Photo of transmission towers and lines extending for miles towards a pink sunset in the distance. Distributed energy technologies can relieve transmission bottlenecks by reducing the amount of electricity that must be sent long distances down high-voltage power lines. Distributed energy refers to a variety of small, modular power-generating technologies that can be combined with load management and energy storage systems to improve the quality and/or reliability of the electricity supply. They are "distributed" because they are placed at or near the point of energy consumption, unlike traditional "centralized" systems, where electricity is generated at a remotely located, large-scale power plant and then transmitted down power lines to the consumer.

116

Ocean Energy Technology Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ocean Energy Technology Basics Ocean Energy Technology Basics Ocean Energy Technology Basics August 16, 2013 - 4:18pm Addthis Text Version Photo of low waves in the ocean. A dock is visible in the background. Oceans cover more than 70% of the Earth's surface. As the world's largest solar collectors, oceans contain thermal energy from the sun and produce mechanical energy from tides and waves. Even though the sun affects all ocean activity, the gravitational pull of the moon primarily drives tides, and wind powers ocean waves. Learn more about: Ocean Thermal Energy Conversion Tidal Energy Wave Energy Ocean Resources Addthis Related Articles Energy Department Releases New Energy 101 Video on Ocean Power A map generated by Georgia Tech's tidal energy resource database shows mean current speed of tidal streams. The East Coast, as shown above, has strong tides that could be tapped to produce energy. | Photo courtesy of Georgia Institute of Technology

117

Federal Energy Management Program: Sustainable Building Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

Sustainable Building Basics to someone by E-mail Share Federal Energy Management Program: Sustainable Building Basics on Facebook Tweet about Federal Energy Management Program:...

118

Federal Energy Management Program: Institutional Change Basics...  

NLE Websites -- All DOE Office Websites (Extended Search)

Basics for Sustainability to someone by E-mail Share Federal Energy Management Program: Institutional Change Basics for Sustainability on Facebook Tweet about Federal Energy...

119

Energy Basics: Ocean Energy Technologies  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Technologies Photo of low waves in the ocean. A dock is visible in the background. Oceans cover more than 70% of the Earth's surface. As the world's largest solar...

120

Energy Basics: Solar Energy Resources  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

emitted by the sun. Solar radiation can be captured and turned into useful forms of energy, such as heat and electricity, using a variety of technologies. However, the technical...

Note: This page contains sample records for the topic "opportunities basic energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Wave Energy Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wave Energy Basics Wave Energy Basics Wave Energy Basics August 16, 2013 - 4:30pm Addthis Photo of a large wave. Wave energy technologies extract energy directly from surface waves or from pressure fluctuations below the surface. Renewable energy analysts believe there is enough energy in ocean waves to provide up to 2 terawatts of electricity. (A terawatt is equal to a trillion watts.) However, wave energy cannot be harnessed everywhere. Wave power-rich areas of the world include the western coasts of Scotland, northern Canada, southern Africa, and Australia as well as the northeastern and northwestern coasts of the United States. In the Pacific Northwest alone, it is feasible that wave energy could produce 40-70 kilowatts (kW) per 3.3 feet (1 meter) of western coastline. Wave Energy Technologies

122

Industrial Energy Efficiency Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Industrial Energy Efficiency Basics Industrial Energy Efficiency Basics Industrial Energy Efficiency Basics The industrial sector is vital to the U.S. economy, but at the same time consumes the most energy in the country to manufacture products we use every day. Among the most energy-intensive industries are aluminum, chemicals, forest product, glass, metal casting, mining, petroleum refining, and steel. The energy supply chain begins with electricity, steam, natural gas, coal, and other fuels supplied to a manufacturing plant from off-site power plants, gas companies, and fuel distributors. Energy then flows to either a central energy generation utility system or is distributed immediately for direct use. Energy is then processed using a variety of highly energy-intensive systems, including steam, process heating, and

123

NIST Announces Funding Opportunity to Increase Energy ...  

Science Conference Proceedings (OSTI)

NIST Announces Funding Opportunity to Increase Energy Efficiency in Commercial Buildings. From NIST Tech Beat: February 16, 2012. ...

2012-02-21T23:59:59.000Z

124

Biofuel Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Biofuel Basics Biofuel Basics Biofuel Basics July 30, 2013 - 11:38am Addthis Text Version Photo of a woman in goggles handling a machine filled with biofuels. Biofuels are liquid or gaseous fuels produced from biomass. Most biofuels are used for transportation, but some are used as fuels to produce electricity. The expanded use of biofuels offers an array of benefits for our energy security, economic growth, and environment. Current biofuels research focuses on new forms of biofuels such as ethanol and biodiesel, and on biofuels conversion processes. Ethanol Ethanol-an alcohol-is made primarily from the starch in corn grain. It is most commonly used as an additive to petroleum-based fuels to reduce toxic air emissions and increase octane. Today, roughly half of the gasoline sold in the United States includes 5%-10% ethanol.

125

Microhydropower Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Basics Basics Microhydropower Basics August 15, 2013 - 3:09pm Addthis Microhydropower systems are small hydroelectric power systems of less than 100 kilowatts (kW) used to produce mechanical energy or electricity for farms, ranches, homes, and villages. How a Microhydropower System Works All hydropower systems use the energy of flowing water to produce electricity or mechanical energy. Although there are several ways to harness moving water to produce energy, "run-of-the-river systems," which do not require large storage reservoirs, are most often used for microhydropower systems. Illustration of an example microhydropower system. A river flows down from some hills. The river first flows through an intake, which is indicated as two white walls on each side of the river. The intake diverts water to a canal. From the canal, the water travels to a forebay, which looks like a white, rectangular, aboveground pool. A pipeline, called a penstock, extends from the forebay to a building, called the powerhouse. You can see inside the powerhouse, which contains a turbine and other electric generation equipment. The water flows in and out of the powerhouse, returning to the river. Power lines also extend from the powerhouse, along and through two electrical towers, to a house that sits near the river's edge.

126

Energy Basics: Microhydropower Water Conveyance and Filters  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Large-Scale Hydropower Microhydropower Water Conveyance &...

127

Energy Basics: Flat-Plate Photovoltaic Systems  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Photovoltaics Cells Systems Concentrating Solar...

128

Energy Basics: Photovoltaic Cell Quantum Efficiency  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Photovoltaics Cells Systems Concentrating Solar...

129

Energy Basics: Crystalline Silicon Photovoltaic Cells  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Photovoltaics Cells Systems Concentrating Solar...

130

Energy Basics: Linear Concentrator Systems for Concentrating...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Photovoltaics Concentrating Solar Power Linear...

131

Energy Basics: Photovoltaic Cell Conversion Efficiency  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Photovoltaics Cells Systems Concentrating Solar...

132

Energy Basics: Microhydropower Turbines, Pumps, and Waterwheels  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Large-Scale Hydropower Microhydropower Water Conveyance &...

133

Energy Basics: Flat-Plate Photovoltaic Modules  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Photovoltaics Cells Systems Concentrating Solar...

134

Energy Basics: Large-Scale Hydropower  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Large-Scale Hydropower Microhydropower Hydropower Resources...

135

Wind Energy Technology Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wind Energy Technology Basics Wind Energy Technology Basics Wind Energy Technology Basics August 15, 2013 - 4:10pm Addthis Photo of a hilly field, with six visible wind turbines spinning in the wind. Wind energy technologies use the energy in wind for practical purposes such as generating electricity, charging batteries, pumping water, and grinding grain. Most wind energy technologies can be used as stand-alone applications, connected to a utility power grid, or even combined with a photovoltaic system. For utility-scale sources of wind energy, a large number of turbines are usually built close together to form a wind farm that provides grid power. Several electricity providers use wind farms to supply power to their customers. Stand-alone turbines are typically used for water pumping or

136

Department of Energy Business Opportunity Session  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

James Quinn James Quinn Title: Supervisor, Technology Delivery Office: Industrial Technologies Program E-Mail: james.quinn@ee.doe.gov Phone: 202-586-5725 Website: http://www.eere.energy.gov/industry/ EERE- Industrial Technologies Program Department of Energy's Business Opportunity Session Program Thrusts Develop technologies addressing top energy saving opportunities in the industrial sector * Industry-specific * Crosscutting Energy Efficiency R&D Help plants save energy today by assessing opportunities and facilitating adoption of best energy management practices and efficient new technologies Technology Delivery and Deployment Drive a 25% reduction in industrial energy intensity over 10 years EERE- Industrial Technologies Program Department of Energy's Business Opportunity Session

137

Solar Energy Resource Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar Energy Resource Basics Solar Energy Resource Basics Solar Energy Resource Basics August 21, 2013 - 11:40am Addthis Solar radiation, often called the solar resource, is a general term for the electromagnetic radiation emitted by the sun. Solar radiation can be captured and turned into useful forms of energy, such as heat and electricity, using a variety of technologies. However, the technical feasibility and economical operation of these technologies at a specific location depends on the available solar resource. Basic Principles Every location on Earth receives sunlight at least part of the year. The amount of solar radiation that reaches any one spot on the Earth's surface varies according to: Geographic location Time of day Season Local landscape Local weather. Because the Earth is round, the sun strikes the surface at different

138

BASIC RESEARCH NEEDS IN ENERGY CONSERVATION  

E-Print Network (OSTI)

on Energy Demand and Conservation. 1979 (in press). Brooks.Look at Energy Conservation," Papers and Proceedings,Research Opportunities," in Conservation and Public Policy,

Hollander, Jack M.

2011-01-01T23:59:59.000Z

139

Department of Energy Issues Funding Opportunity Announcements to Enhance  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Department of Energy Issues Funding Opportunity Announcements to Department of Energy Issues Funding Opportunity Announcements to Enhance Nuclear Energy Education Department of Energy Issues Funding Opportunity Announcements to Enhance Nuclear Energy Education March 24, 2010 - 12:17pm Addthis Washington, D.C. - The U.S. Department of Energy today announced two new Funding Opportunity Announcements (FOAs) to support university and college efforts to build or expand their school's nuclear science and engineering basic research or education capabilities. Under the Nuclear Energy University Programs, the Department will provide approximately $14.5 million to upgrade university level research reactors and purchase general scientific equipment and instrumentation. "There is a critical need for a trained workforce as the nation moves

140

Tidal Energy Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tidal Energy Basics Tidal Energy Basics Tidal Energy Basics August 16, 2013 - 4:26pm Addthis Photo of the ocean rising along the beach. Some of the oldest ocean energy technologies use tidal power. All coastal areas experience two high tides and two low tides over a period of slightly more than 24 hours. For those tidal differences to be harnessed into electricity, the difference between high and low tides must be more than 16 feet (or at least 5 meters). However, there are only about 40 sites on Earth with tidal ranges of this magnitude. Currently, there are no tidal power plants in the United States, but conditions are good for tidal power generation in the Pacific Northwest and the Atlantic Northeast regions. Tidal Energy Technologies Tidal energy technologies include barrages or dams, tidal fences, and tidal

Note: This page contains sample records for the topic "opportunities basic energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Hydropower Resource Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

potential from the EERE Wind and Water Power Technologies Office. Addthis Related Articles Hydropower Technology Basics Glossary of Energy-Related Terms Microhydropower Basics...

142

Geothermal Technology Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Or read more about EERE's geothermal technologies research. Addthis Related Articles Geothermal Direct-Use Basics Glossary of Energy-Related Terms Geothermal Resource Basics...

143

Basic Research Needs: Catalysis for Energy  

DOE Green Energy (OSTI)

The report presents results of a workshop held August 6-8, 2007, by DOE SC Basic Energy Sciences to determine the basic research needs for catalysis research.

Bell, Alexis T.; Gates, Bruce C.; Ray, Douglas; Thompson, Michael R.

2008-03-11T23:59:59.000Z

144

Infrared Basics | Open Energy Information  

Open Energy Info (EERE)

2013 DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Infrared Basics Citation Protherm. Infrared Basics Internet. 2013. cited...

145

PROGRAM OPPORTUNITY NOTICE Community Scale Renewable Energy  

E-Print Network (OSTI)

PROGRAM OPPORTUNITY NOTICE Community Scale Renewable Energy Development, Deployment and Integration optimized community-specific renewable energy systems; develop the tools and models to quantify the impacts and benefits of increasing local renewable energy penetrations in California's communities; and develop

146

Department of Energy Issues Funding Opportunity Announcement...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Announcement to U.S. Universities for Nuclear Research Infrastructure Needs Department of Energy Issues Funding Opportunity Announcement to U.S. Universities for Nuclear Research...

147

Basic Energy SciencesBasic Energy Sciences DOE/EERE Hydrogen Storage  

E-Print Network (OSTI)

Basic Energy SciencesBasic Energy Sciences DOE/EERE Hydrogen Storage Pre-Solicitation Meeting, June Energy SciencesBasic Energy Sciences Workshop on Hydrogen Production, Storage, and Use Energy SciencesBasic Energy Sciences Workshop on Hydrogen Production, Storage, and Use

148

Energy Basics: Space Heating and Cooling  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

in common, such as thermostats and ducts, which provide opportunities for saving energy. Learn how these technologies and systems work. Learn about: Cooling Systems Heating...

149

Basic Energy SciencesBasic Energy Sciences DOE Hydrogen and Fuel Cells  

E-Print Network (OSTI)

" #12;Basic Energy SciencesBasic Energy Sciences Workshop on Hydrogen Production, Storage, and Use SciencesBasic Energy Sciences Workshop on Hydrogen Production, Storage, and UseWorkshop on Hydrogen Energy SciencesBasic Energy Sciences Workshop on Hydrogen Production, Storage, and Use

150

Energy Basics: Wind Power Animation (Text Version)  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Wind Wind Turbines Wind Resources Wind Power...

151

Energy Basics: Hydrogen and Fuel Cell Technologies  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydrogen Fuel Fuel Cells Hydropower Ocean Solar Wind Hydrogen and Fuel Cell...

152

BASIC Solar | Open Energy Information  

Open Energy Info (EERE)

Name BASIC Solar Place Bulgaria Product Project development SPV focused on utility-scale PV projects. References BASIC Solar1 LinkedIn Connections CrunchBase Profile No...

153

NREL: Learning - Energy Delivery and Storage Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Delivery and Storage Basics Helping secure a clean energy future for the nation and the world isn't just about reducing energy usage or producing clean energy. It is about...

154

Employment Opportunity Highlights | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Careers » Working Here » Employment Opportunity Highlights Careers » Working Here » Employment Opportunity Highlights Employment Opportunity Highlights National Energy Technology Laboratory The National Energy Technology Laboratory (NETL), part of DOE's national laboratory system, is owned and operated by the U.S. Department of Energy (DOE). NETL supports DOE's mission to advance the national, economic, and energy security of the United States. NETL has expertise in coal, natural gas, and oil technologies, contract and project management, analysis of energy systems, and international energy issues and has sites in Morgantown, WV; Pittsburgh, PA; Sugar Land, TX; Albany, OR; and Fairbanks, AK. Employment Opportunities & Fellowships Job search via USAJobs NETL News Office of Fossil Energy The Office of Fossil Energy (FE) ensures that Americans can continue to

155

Launched in 2006, the Energy Management Concentration at the Haskayne School of Business provides students with basic  

E-Print Network (OSTI)

for favorable forward buying opportunities Perform market analysis including information gathering, database students with basic concepts, principles, and information for managing energy operations. Developed the energy market, identify growth opportunities, and forecast future demands liaise with outside parties

Calgary, University of

156

Business Opportunity Sessions | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Business Opportunity Business Opportunity Sessions Business Opportunity Sessions Business Opportunity Sessions Our Business Opportunity Sessions bring small business owners and Departmental small business advocates together to talk about the best ways we can be partnering with the small business community. Small businesses are where ideas are born, innovation is born, and where people get hired.Small businesses are at the top of President Obama's agenda because they are the engine of growth for our Nation. Our job is to reduce barriers for your small business, listen, and get ideas. Our Business Opportunity Sessions are a great way for us to meet in person with small businesses and open up the doors to the Department of Energy procurement process. At these events, we run through a complete 101 of working with us, and bring in

157

Energy Challenge! Learn about opportunities to  

E-Print Network (OSTI)

Energy Challenge! Q: MSU N 9 o. Learn about opportunities to participate in upcoming science activities and events at MSU by visiting Montana.edu/outreach Energy is the ability to do work. Almost everything around us needs energy in order to do things. You need energy to read, play, or just to be alive

158

STEM Education Opportunities: Teachers | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

STEM Education Opportunities: Teachers STEM Education Opportunities: Teachers STEM Education Opportunities: Teachers Energy Literacy: Essential Principles and Fundamental Concepts for Energy Education identifies seven Essential Principles and a set of Fundamental Concepts that, if understood and applied, will help individuals and communities make informed energy decisions. The intended audience is anyone involved in energy education from K-Gray and is meant to inform the improvement and development of energy curriculum to more broadly cover the Fundamental Concepts. The Energy Literacy Framework is free to download from the website and up to five hard copies can be ordered. The Office of Energy Efficiency and Renewable Energy also offers lesson plans, labs, projects, and ideas for other activities for grades K-12 on

159

Energy Basics: Electricity as a Transportation Fuel  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

EERE: Energy Basics Electricity as a Transportation Fuel Electricity used to power vehicles is generally provided by the electricity grid and stored in the vehicle's batteries....

160

Energy Basics: Hydrogen and Fuel Cell Technologies  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

EERE: Energy Basics Hydrogen and Fuel Cell Technologies Photo of a woman scientist using a machine that is purifying biological catalysts for hydrogen production. Hydrogen is the...

Note: This page contains sample records for the topic "opportunities basic energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Energy Basics: Hydrogen as a Transportation Fuel  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

EERE: Energy Basics Hydrogen as a Transportation Fuel Hydrogen (H2) is a potentially emissions-free alternative fuel that can be produced from domestic resources. Although not...

162

Photovoltaic Cell Performance Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Photovoltaic Cell Performance Basics August 19, 2013 - 4:55pm Addthis Photovoltaic (PV), or solar cells use the energy in sunlight to produce electricity. However, the amount...

163

Small Business Opportunity Tool | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Small Business Opportunity Small Business Opportunity Tool Small Business Opportunity Tool Small business contracting is difficult to navigate. Every day, the staff of the Office of Small and Disadvantaged Business Utilization work to ensure small businesses have the access and information they need to provide goods and services for the federal government. We've built the Small Business Opportunity Tool to expand access and enrich the diversity of our procurement partners at the Department of Energy. With the Small Business Opportunity Tool, you can: Learn more about the Department of Energy's organization, business model, facilities, and goods/services we procure to accomplish the agency's mission. Search through historical procurement information (what a facility has bought in the past, not a record of what they will buy in the future)

164

Project Opportunities Tracker | Open Energy Information  

Open Energy Info (EERE)

Project Opportunities Tracker Project Opportunities Tracker Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Project Opportunities Tracker Agency/Company /Organization: U.S. DOE Energy Efficiency and Renewable Energy Sector: Energy Focus Area: Industry Phase: Evaluate Options Topics: Implementation Resource Type: Dataset User Interface: Website Website: ecenter.ee.doe.gov/EM/tools/Pages/PortfolioToolHome.aspx Country: United States Web Application Link: ecenter.ee.doe.gov/EM/tools/Pages/PortfolioToolHome.aspx Cost: Free OpenEI Keyword(s): Industrial Northern America Language: English The Project Opportunities Tracker provides a central location for viewing, comparing and prioritizing energy-saving projects. It allows users to sort, edit, and save their recommendations from assessments and tools in one

165

Department of Energy Issues Funding Opportunity Announcements to Enhance  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Announcements to Announcements to Enhance Nuclear Energy Education Department of Energy Issues Funding Opportunity Announcements to Enhance Nuclear Energy Education March 24, 2010 - 12:00am Addthis Washington, D.C. - The U.S. Department of Energy today announced two new Funding Opportunity Announcements (FOAs) to support university and college efforts to build or expand their school's nuclear science and engineering basic research or education capabilities. Under the Nuclear Energy University Programs, the Department will provide approximately $14.5 million to upgrade university level research reactors and purchase general scientific equipment and instrumentation. "There is a critical need for a trained workforce as the nation moves toward greater use of nuclear energy to meet our energy needs and reduce

166

Department of Energy Issues Funding Opportunity Announcements to Enhance  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Announcements to Announcements to Enhance Nuclear Energy Education Department of Energy Issues Funding Opportunity Announcements to Enhance Nuclear Energy Education March 24, 2010 - 12:17pm Addthis Washington, D.C. - The U.S. Department of Energy today announced two new Funding Opportunity Announcements (FOAs) to support university and college efforts to build or expand their school's nuclear science and engineering basic research or education capabilities. Under the Nuclear Energy University Programs, the Department will provide approximately $14.5 million to upgrade university level research reactors and purchase general scientific equipment and instrumentation. "There is a critical need for a trained workforce as the nation moves toward greater use of nuclear energy to meet our energy needs and reduce

167

REPORT OF THE BASIC ENERGY SCIENCES ADVISORY COMMITTEE PANEL  

NLE Websites -- All DOE Office Websites (Extended Search)

BASIC ENERGY SCIENCES BASIC ENERGY SCIENCES ADVISORY COMMITTEE PANEL ON D.O.E. SYNCHROTRON RADIATION SOURCES AND SCIENCE NOVEMBER 1997 EPRI Electric Power Research Institute Powering Progress through Innovative Solutions January 14th, 1998 Dr. Martha A. Krebs, Director Office of Energy Research United States Department of Energy Washington, DC 20585 Dear Martha, The purpose of this letter is to summarize the discussions of the Basic Energy Sciences Advisory Committee at its meeting on October 8 - 9, 1997 at the Holiday Inn in Gaithersburg as they related to the report from our Panel on Synchrotron Radiation Sources and Science. This Panel was assembled in response to the Charge presented to BESAC in your letter of October 9th, 1996 to reassess the need for and the opportunities presented by each of the four synchrotron

168

Key Renewable Energy Opportunities for Oklahoma Tribes  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

TRIBAL LEADER FORUM SERIES TRIBAL LEADER FORUM SERIES KEY RENEWABLE ENERGY OPPORTUNITIES FOR OKLAHOMA TRIBES August 13, 2012 COX CONVENTION CENTER 100 West Sheridan Avenue, Oklahoma City, OK 73102 (405) 602-8500 The fifth in a series of planned U.S. DOE Office of Indian Energy-sponsored strategic energy development & investment forums, this forum is designed to give Oklahoma tribal leaders the opportunity to receive the latest updates on DOE's energy development efforts in Indian Country. The Forum will provide a venue for tribal leaders to discuss best practices in renewable energy development, including project development and finance, issues related to Oklahoma land ownership, and energy planning and energy markets. Tribal leaders will also have the opportunity to directly converse with each other by participating in a roundtable

169

Biodiesel Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Biodiesel Basics Biodiesel Basics Biodiesel Basics July 30, 2013 - 2:43pm Addthis Looking for Biodiesel stations? Checkout the Alternative Fuels Data Center station locator. Biodiesel station locator Biodiesel is a domestically produced, renewable fuel that can be manufactured from vegetable oils, animal fats, or recycled restaurant greases. What is Biodiesel? Biodiesel is a liquid fuel made up of fatty acid alkyl esters, fatty acid methyl esters, or long-chain mono alkyl esters. It is produced from renewable sources such as new and used vegetable oils and animal fats and is a cleaner-burning replacement for petroleum-based diesel fuel. It is nontoxic and biodegradable. Like petroleum diesel, biodiesel is used to fuel compression-ignition (diesel) engines. B20, which is 20% biodiesel and 80% petroleum diesel, is

170

Biopower Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Biopower Basics Biopower Basics Biopower Basics August 14, 2013 - 12:35pm Addthis Biopower is the production of electricity or heat from biomass resources. With 10 gigawatts of installed capacity, biopower technologies are proven options in the United States today. Biopower technologies include direct combustion, co-firing, and anaerobic digestion. Direct Combustion Most electricity generated from biomass is produced by direct combustion using conventional boilers. These boilers primarily burn waste wood products from the agriculture and wood-processing industries. When burned, the wood produces steam, which spins a turbine. The spinning turbine then activates a generator that produces electricity. Co-Firing Co-firing involves replacing a portion of the petroleum-based fuel in

171

Lighting Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lighting Basics Lighting Basics Lighting Basics August 15, 2013 - 5:12pm Addthis Text Version There are many different types of artificial lights, all of which have different applications and uses. Types of lighting include: Fluorescent Lighting High-intensity Discharge Lighting Incandescent Lighting LED Lighting Low-pressure Sodium Lighting. Which type is best depends on the application. See the chart below for a comparison of lighting types. Lighting Comparison Chart Lighting Type Efficacy (lumens/watt) Lifetime (hours) Color Rendition Index (CRI) Color Temperature (K) Indoors/Outdoors Fluorescent Straight Tube 30-110 7000-24,000 50-90 (fair to good) 2700-6500 (warm to cold) Indoors/outdoors Compact Fluorescent 50-70 10,000 65-88 (good) 2700-6500 (warm to cold) Indoors/outdoors

172

Biopower Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Biopower Basics Biopower Basics Biopower Basics August 14, 2013 - 12:35pm Addthis Biopower is the production of electricity or heat from biomass resources. With 10 gigawatts of installed capacity, biopower technologies are proven options in the United States today. Biopower technologies include direct combustion, co-firing, and anaerobic digestion. Direct Combustion Most electricity generated from biomass is produced by direct combustion using conventional boilers. These boilers primarily burn waste wood products from the agriculture and wood-processing industries. When burned, the wood produces steam, which spins a turbine. The spinning turbine then activates a generator that produces electricity. Co-Firing Co-firing involves replacing a portion of the petroleum-based fuel in

173

Broad Overview of Energy Efficiency and Renewable Energy Opportunities...  

NLE Websites -- All DOE Office Websites (Extended Search)

Broad Overview of Energy Efficiency and Renewable Energy Opportunities for Department of Defense Installations E. Anderson, M. Antkowiak, R. Butt, J. Davis, J. Dean, M. Hillesheim,...

174

Renewable Energy Technology Opportunities: Responding to Global Energy Challenges (Presentation)  

SciTech Connect

Presentation by Dr. Dan Arvizu of the National Renewable Energy Laboratory (NREL) to the Clean-Tech Investors Summit on January 23, 2007 overviews renewable energy technology opportunities.

Arvizu, D.

2007-01-23T23:59:59.000Z

175

Identifying Opportunities for Industrial Energy Conservation  

E-Print Network (OSTI)

The Energy Productivity Center of the Mellon Institute is engaged in a 2-year study to identify opportunities for improved U.S. industrial energy productivity. A distinguishing feature is the focus on energy services provided when fuels are consumed. The paper describes the Center's Least-Cost Energy Strategy, the Industrial Energy Productivity Project, and presents least-cost results for 1978 and for energy markets over the next two decades.

Hoffman, A. R.

1981-01-01T23:59:59.000Z

176

Energy Basics: Photovoltaic System Performance  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

regulator, specified either as peak power or average power produced during one day. Energy output The energy (watt-hour or Wh) output. This indicates the amount of energy...

177

Energy Basics: Concentrating Solar Power  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

use mirrors to reflect and concentrate sunlight onto receivers that collect solar energy and convert it to heat. This thermal energy can then be used to produce electricity...

178

Runtime Identification of Microprocessor Energy Saving Opportunities  

E-Print Network (OSTI)

scaling (DVS). Also, future work in improving energy efficiency is motivated by a detailed analysis analysis of processor energy efficiency for the SPEC CPU 2000 benchmark suite. We motivate the developmentRuntime Identification of Microprocessor Energy Saving Opportunities W. L. Bircher, M. Valluri, J

John, Lizy Kurian

179

Energy Efficiency Improvement and Cost Saving Opportunities for...  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Efficiency Improvement and Cost Saving Opportunities for the Baking Industry Title Energy Efficiency Improvement and Cost Saving Opportunities for the Baking Industry...

180

Opportunities for Energy Efficiency and Demand Response in the...  

NLE Websites -- All DOE Office Websites (Extended Search)

Opportunities for Energy Efficiency and Demand Response in the California Cement Industry Title Opportunities for Energy Efficiency and Demand Response in the California Cement...

Note: This page contains sample records for the topic "opportunities basic energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Analysis of Energy-Efficiency Opportunities for the Cement Industry...  

NLE Websites -- All DOE Office Websites (Extended Search)

Analysis of Energy-Efficiency Opportunities for the Cement Industry in Shandong Province, China Title Analysis of Energy-Efficiency Opportunities for the Cement Industry in...

182

Energy Efficiency Opportunities in Federal High Performance Computing...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Efficiency Opportunities in Federal High Performance Computing Data Centers Energy Efficiency Opportunities in Federal High Performance Computing Data Centers Case study...

183

Energy Efficiency Improvement and Cost Saving Opportunities for...  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Efficiency Improvement and Cost Saving Opportunities for the Glass Industry Title Energy Efficiency Improvement and Cost Saving Opportunities for the Glass Industry...

184

Energy Efficiency Improvement and Cost Saving Opportunities for...  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Efficiency Improvement and Cost Saving Opportunities for the Dairy Processing Industry Title Energy Efficiency Improvement and Cost Saving Opportunities for the Dairy...

185

Key Renewable Energy Opportunities for Oklahoma Tribes | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Key Renewable Energy Opportunities for Oklahoma Tribes Key Renewable Energy Opportunities for Oklahoma Tribes August 13, 2012 Oklahoma City, Oklahoma Cox Convention Center The...

186

Energy Basics: Concentrator Photovoltaic Systems  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

inexpensive materials such as plastic lenses and metal housings to capture the solar energy shining on a fairly large area and focus that energy onto a smaller area-the solar...

187

EERE: Energy Basics Home Page  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

businesses, and industries. Technologies Renewable Energy Technologies Biomass Geothermal Hydrogen Hydropower Ocean Solar Wind Home and Building Technologies Lighting and...

188

Energy Efficiency Improvement Opportunities for the Cement Industry  

E-Print Network (OSTI)

An ENERGY STAR Guide for Energy and Plant Managers.Institute. 2001. Energy Efficiency Opportunity Guide in the

Worrell, Ernst

2008-01-01T23:59:59.000Z

189

Department of Energy Business Opportunity Session  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Maria M. Mitchell Maria M. Mitchell Title: Contracting Officer/Small Business Program Manager E-Mail: mitchemm@id.doe.gov Phone: 208-526-8600 Website: http://www.id.doe.gov/ DOE - Idaho Operations Office Department of Energy's Business Opportunity Session DOE - Idaho Operations Office DOE-ID Goals for Mission Success: 1. Laboratory Management * Nuclear energy and national security research and development 2. Environmental Management * Safe and cost effective cleanup 3. Corporate Management * Efficient, reliable and safe completion of DOE/INL Site missions The U.S. Department of Energy (DOE) is committed to increasing the contracting opportunities awarded to small and disadvantaged businesses at the prime contracting level. Department of Energy's Business Opportunity Session DOE - Idaho Operations Office

190

Energy Basics: Electric Resistance Heating  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

or by heaters in each room. Electric resistance heating converts nearly all of the energy in the electricity to heat. Types of Electric Resistance Heaters Electric resistance...

191

Energy Basics: Small Space Heaters  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

storage, allowing the heater to cycle less and to provide a more constant heat source. More Information Visit the Energy Saver website for more information about portable heaters...

192

Energy Basics: Photovoltaic Cell Performance  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Performance Photovoltaic (PV), or solar cells use the energy in sunlight to produce electricity. However, the amount of electricity produced depends on the quality of the light...

193

Energy Basics: Biofuel Conversion Processes  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

from the EERE Bioenergy Technologies Office. Thermochemical Conversion Processes Heat energy and chemical catalysts can be used to break down biomass into intermediate compounds...

194

Renewable energy opportunities in China  

Science Conference Proceedings (OSTI)

Rapid growth in economic development coupled with the absence of an electric grid in large areas of rural China have created a need for new energy sources both in urban centers and the rural countryside. Electric capacity expansion plans call for increased use of coal?fired steam turbines for electricity production that will contribute to increased concerns over environmental pollution. China is rich in renewable energy resources

William L. Wallace; Y. Simon Tsuo

1996-01-01T23:59:59.000Z

195

Heating and Cooling System Support Equipment Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Heating and Cooling System Support Equipment Basics Heating and Cooling System Support Equipment Basics Heating and Cooling System Support Equipment Basics July 30, 2013 - 3:28pm Addthis Thermostats and ducts provide opportunities for saving energy. Dehumidifying heat pipes provide a way to help central air conditioners and heat pumps dehumidify air. Electric and gas meters allow users to track energy use. Thermostats Programmable thermostats can store and repeat multiple daily settings. Users can adjust the times heating or air-conditioning is activated according to a pre-set schedule. Visit the Energy Saver website for more information about thermostats and control systems in homes. Ducts Efficient and well-designed duct systems distribute air properly throughout a building, without leaking, to keep all rooms at a comfortable

196

Energy and Development: Is Energy a Basic Human Right?  

E-Print Network (OSTI)

Energy and Development: Is Energy a Basic Human Right? Skype/Video presentation for senior pupils national Laboratory/DTU Denmark #12;Is energy a basic human right? · What is energy? ­ the ability to make something happen · Different kinds of energy ­ or energy carriers - fuels · What do we use energy for

197

Energy Efficiency Opportunities in Healthcare Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Efficiency Opportunities in Healthcare Facilities Energy Efficiency Opportunities in Healthcare Facilities Speaker(s): John Pappas Date: February 9, 2006 - 12:00pm Location: 90-3122 Hospitals operate 24/7/365 and remain one of the highest energy consumers per building type. In today's Hospital environment we are seeing demand for energy continue to rise. Advanced technologies for diagnostics and treatment, increased areas where invasive procedures take place, doctor demands for lower temperatures, increased air quantities and filtration measures for improved indoor environmental quality, infection control strategies, and large data centers that power the digital world has led to an escalation in energy demand. How do we improve energy efficiency and lower energy consumption? Our discussion will explore current trends of

198

Department of Energy Business Opportunity Session  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pafe Pafe Title: Deputy Director, Office of Budget and Financial Management Office: Office of Fossil Energy E-Mail: Robert.Pafe@hq.doe.gov Phone: 202-586-4026 Website: http://fe.doe.gov/ Office of Fossil Energy Department of Energy's Business Opportunity Session Fossil Energy Locations DOE Headquarters Washington, DC and Germantown, M.D. National Energy Technology Laboratory Pittsburgh, PA; Morgantown, WV; Tulsa, OK;Albany, OR; and Fairbanks, AK Strategic Petroleum Reserve New Orleans, LA Rocky Mountain Oilfield Testing Center Casper, WY Department of Energy's Business Opportunity Session Fossil Energy Services Offered * Facility Management * Construction * R&D * Management/Scientific Consulting * Administrative Services * IT & Data Processing * Security * Engineering * Waste Treatment & Disposal

199

Department of Energy Business Opportunity Session  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lange Lange Title: DAS for Corporate Business Operations Office: Office of Nuclear Energy (NE) E-Mail: robert.lange@hq.doe.gov Phone: (301) 903-5241 Website: http://www.nuclear.energy.gov Office of Nuclear Energy Department of Energy's Business Opportunity Session Office of Nuclear Energy (NE) Strategic Goals * Extend the lifetime and improve performance of the current fleet of nuclear power plants * Enable new nuclear plant construction by improving economics * Reduce carbon footprint in transportation and industrial sectors using nuclear energy * Develop a sustainable nuclear fuel cycle * Understand and avoid the risks of nuclear weapons proliferation Department of Energy's Business Opportunity Session NE Recent Achievements FY 2009 * In 2009, NE nominated the winning recipient of the Department of

200

Energy Basics: Heat Pump Systems  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

of air-source heat pumps. Absorption Heat Pump Uses heat as its energy source. Geothermal Heat Pumps Use the constant temperature of the earth as the exchange medium instead...

Note: This page contains sample records for the topic "opportunities basic energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Energy Basics: Active Solar Heating  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

systems based on the type of fluid-either liquid or air-that is heated in the solar energy collectors. The collector is the device in which a fluid is heated by the sun....

202

Energy Basics: Solar Water Heaters  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

solar storage in one tank. Types of Solar Collectors Solar collectors gather the sun's energy, transform its radiation into heat, and then transfer that heat to water or solar...

203

Energy Basics: Passive Solar Design  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

using a building's windows, walls, and floors to collect, store, and distribute solar energy in the form of heat in the winter and reject solar heat in the summer. Learn how...

204

Energy Basics: Photovoltaic Cell Materials  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

one crystal to another. Bandgap The bandgap of a semiconductor material is the minimum energy needed to move an electron from its bound state within an atom to a free state. This...

205

Energy Basics: Small Space Heaters  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

allowing the heater to cycle less and to provide a more constant heat source. More Information Visit the Energy Saver website for more information about portable heaters in homes...

206

Energy Basics: Photovoltaic Cell Structures  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

the middle, is Eg2; and Cell 3, at the bottom, is Eg3. The top cell captures the high-energy photons and passes the rest of the photons on to be absorbed by lower-bandgap cells. A...

207

NREL: Learning - Renewable Energy Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

The United States currently relies heavily on coal, oil, and natural gas for its energy. Fossil fuels are nonrenewable, that is, they draw on finite resources that will eventually...

208

Employment Opportunities at EERE | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Employment Opportunities at EERE Employment Opportunities at EERE Employment Opportunities at EERE Photo of two people sitting at a table; their bodies are only partially seen as they rest their hands on the table, presumably conducting a meeting. The one on the left, a man, has a pad of paper and pen, while the person on the right, a woman, is punching keys on a handheld electronic device. We are looking for people who can help us to formulate and direct programs designed to increase the production and utilization of renewable energy and improve energy efficiency through support of research, development, and technology transfer. Ideal applicants will help us to administer statutorily mandated assistance programs and ensure the implementation of energy efficiency measures required by legislation and Executive Orders.

209

Small Business Opportunities | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Small Business Opportunities Small Business Opportunities Small Business Opportunities The Office of Environmental Management (EM) has a long history of support to the Department of Energy's (DOE) Small Business Program and a strong commitment to increasing small business awards to prime contractors and subcontractors to perform EM mission-critical work. In Fiscal Years 2010, 2011, and 2012, EM awarded over $1 Billion to small businesses. To further EM's commitment to small business, we are providing a series of informative links pertaining to small business, including direct links to Small Business Program Managers for each EM site conducting work for the Department of Energy. We suggest that each small business with interest in working for the Department of Energy review the information provided and

210

Energy Efficiency Opportunities in Federal High Performance Computing Data Centers  

Energy.gov (U.S. Department of Energy (DOE))

Case study describes an outline of energy efficiency opportunities in federal high performance computing data centers.

211

Energy Basics: Wood and Pellet Heating  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

EERE: Energy Basics Wood and Pellet Heating Wood-burning and pellet fuel appliances use biomass or waste resources to heat homes or buildings. Types of Wood- and Pellet-Burning...

212

Energy Basics: Propane as a Transportation Fuel  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

EERE: Energy Basics Propane as a Transportation Fuel Photo of a man standing next to a propane fuel pump with a tank in the background. Propane, also known as liquefied petroleum...

213

Seizing a Clean Energy Opportunity | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Seizing a Clean Energy Opportunity Seizing a Clean Energy Opportunity Seizing a Clean Energy Opportunity August 10, 2012 - 12:08pm Addthis Turbines on the Shirley Wind Farm near Green Bay, Wisconsin. Renewable energy represents one of the biggest economic opportunities for the global economy, and with a few small changes in how we finance projects like these, we can help make it easier and more affordable to bring clean energy to families and businesses nationwide. | Photo courtesy of Nordex USA. Turbines on the Shirley Wind Farm near Green Bay, Wisconsin. Renewable energy represents one of the biggest economic opportunities for the global economy, and with a few small changes in how we finance projects like these, we can help make it easier and more affordable to bring clean energy to families and businesses nationwide. | Photo courtesy of Nordex USA.

214

Seizing a Clean Energy Opportunity | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Seizing a Clean Energy Opportunity Seizing a Clean Energy Opportunity Seizing a Clean Energy Opportunity August 10, 2012 - 12:08pm Addthis Turbines on the Shirley Wind Farm near Green Bay, Wisconsin. Renewable energy represents one of the biggest economic opportunities for the global economy, and with a few small changes in how we finance projects like these, we can help make it easier and more affordable to bring clean energy to families and businesses nationwide. | Photo courtesy of Nordex USA. Turbines on the Shirley Wind Farm near Green Bay, Wisconsin. Renewable energy represents one of the biggest economic opportunities for the global economy, and with a few small changes in how we finance projects like these, we can help make it easier and more affordable to bring clean energy to families and businesses nationwide. | Photo courtesy of Nordex USA.

215

Energy Department Announces New Funding Opportunity for Innovative...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Funding Opportunity for Innovative Small Modular Reactors Energy Department Announces New Funding Opportunity for Innovative Small Modular Reactors March 11, 2013 - 2:45pm Addthis...

216

Energy Efficiency Improvement and Cost Saving Opportunities for...  

NLE Websites -- All DOE Office Websites (Extended Search)

Improvement and Cost Saving Opportunities for the Pulp and Paper Industry Title Energy Efficiency Improvement and Cost Saving Opportunities for the Pulp and Paper Industry...

217

Wind Turbine Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wind Turbine Basics Wind Turbine Basics Wind Turbine Basics July 30, 2013 - 2:58pm Addthis Energy 101: Wind Turbines Basics This video explains the basics of how wind turbines operate to produce clean power from an abundant, renewable resource-the wind. Text Version Wind turbine assembly Although all wind turbines operate on similar principles, several varieties are in use today. These include horizontal axis turbines and vertical axis turbines. Horizontal Axis Turbines Horizontal axis turbines are the most common turbine configuration used today. They consist of a tall tower, atop which sits a fan-like rotor that faces into or away from the wind, a generator, a controller, and other components. Most horizontal axis turbines built today are two- or three-bladed. Horizontal axis turbines sit high atop towers to take advantage of the

218

Wind Turbine Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Turbine Basics Turbine Basics Wind Turbine Basics July 30, 2013 - 2:58pm Addthis Energy 101: Wind Turbines Basics This video explains the basics of how wind turbines operate to produce clean power from an abundant, renewable resource-the wind. Text Version Wind turbine assembly Although all wind turbines operate on similar principles, several varieties are in use today. These include horizontal axis turbines and vertical axis turbines. Horizontal Axis Turbines Horizontal axis turbines are the most common turbine configuration used today. They consist of a tall tower, atop which sits a fan-like rotor that faces into or away from the wind, a generator, a controller, and other components. Most horizontal axis turbines built today are two- or three-bladed. Horizontal axis turbines sit high atop towers to take advantage of the

219

WIP Small Business Opportunity- Energy Efficiency and Renewable...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Efficiency and Renewable Energy WIP Small Business Opportunity- Energy Efficiency and Renewable Energy More Documents & Publications US-China Clean Energy Forum 2010 Recovery...

220

Energy Efficiency Improvement and Cost Saving Opportunities for...  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Efficiency Improvement and Cost Saving Opportunities for the U.S. Iron and Steel Industry: An ENERGY STAR Guide for Energy and Plant Managers Title Energy Efficiency...

Note: This page contains sample records for the topic "opportunities basic energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Energy-Efficiency Improvement Opportunities for the Textile Industry  

NLE Websites -- All DOE Office Websites (Extended Search)

3970E Energy-Efficiency Improvement Opportunities for the Textile Industry Ali Hasanbeigi China Energy Group Energy Analysis Department Environmental Energy Technologies Division...

222

Federal Energy Management Program: Sustainable Building Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

Basics Basics Image of the side of a sustainable building Sustainable building design results in energy savings and environment stewardship. Sustainable building design and operation strategies demonstrate a commitment to energy efficiency, and environmental stewardship. These approaches result in an optimal balance of energy, cost, environmental, and societal benefits, while still meeting the mission of a Federal agency and the function of the facility or infrastructure. For buildings and facilities, responsible resource management and the assessment of operational impacts encompass the principles of sustainability. Sustainable development aims to meet the needs of the present without compromising future needs. Learn more about the: Benefits of sustainable building design

223

Sustainable Building Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sustainable Sustainable Building Basics Sustainable Building Basics October 4, 2013 - 4:21pm Addthis Image of the side of a sustainable building Sustainable building design results in energy savings and environment stewardship. Sustainable building design and operation strategies demonstrate a commitment to energy efficiency and environmental stewardship. These approaches result in an optimal balance of energy, cost, environmental, and societal benefits, while still meeting the mission of a Federal agency and the function of the facility or infrastructure. For buildings and facilities, responsible resource management and the assessment of operational impacts encompass the principles of sustainability. Sustainable development aims to meet the needs of the present without compromising future needs.

224

Geothermal Electricity Production Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electricity Production Basics Electricity Production Basics Geothermal Electricity Production Basics August 14, 2013 - 1:49pm Addthis A photo of steam emanating from geothermal power plants at The Geysers in California. Geothermal energy originates from deep within the Earth and produces minimal emissions. Photo credit: Pacific Gas & Electric Heat from the earth-geothermal energy-heats water that has seeped into underground reservoirs. These reservoirs can be tapped for a variety of uses, depending on the temperature of the water. The energy from high-temperature reservoirs (225°-600°F) can be used to produce electricity. In the United States, geothermal energy has been used to generate electricity on a large scale since 1960. Through research and development, geothermal power is becoming more cost-effective and competitive with

225

Air-Conditioning Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Air-Conditioning Basics Air-Conditioning Basics Air-Conditioning Basics August 16, 2013 - 1:59pm Addthis Air conditioning is one of the most common ways to cool homes and buildings. How Air Conditioners Work Air conditioners employ the same operating principles and basic components as refrigerators. Refrigerators use energy (usually electricity) to transfer heat from the cool interior of the refrigerator to the relatively warm surroundings; likewise, an air conditioner uses energy to transfer heat from the interior space to the relatively warm outside environment. An air conditioner uses a cold indoor coil called the evaporator. The condenser, a hot outdoor coil, releases the collected heat outside. The evaporator and condenser coils are serpentine tubing surrounded by aluminum fins. This tubing is usually made of copper.

226

Energy Basics: Ocean Thermal Energy Conversion  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Thermal Energy Conversion A process called ocean thermal energy conversion (OTEC) uses the heat energy stored in the Earth's oceans to generate electricity. OTEC works best when...

227

Moving to a Clean Energy Economy:Opportunities for Colorado ...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Moving to a Clean Energy Economy:Opportunities for Colorado Moving to a Clean Energy Economy:Opportunities for Colorado A report on the ways in which moving towards a clean energy...

228

Audit Report - Opportunities for Energy Savings at Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Report - Opportunities for Energy Savings at Department of Report - Opportunities for Energy Savings at Department of Energy Facilities, DOE/IG-0869 Audit Report - Opportunities for Energy Savings at Department of Energy Facilities, DOE/IG-0869 Our review disclosed that the Department had not always effectively identified and implemented energy-saving opportunities through facility evaluations and electricity metering. Three of the five sites we reviewed (Brookhaven National Laboratory, Oak Ridge National Laboratory, and Los Alamos National Laboratory) had not always identified or implemented low- and no-cost, quick payback energy conservation measures discovered during facility evaluations. In addition, two of the five sites (Oak Ridge National Laboratory and the Y-12 National Security Complex) had not fully

229

Renewable Energy Opportunities by Renovation Type | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Renewable Energy Opportunities by Renovation Type Renewable Energy Opportunities by Renovation Type Renewable Energy Opportunities by Renovation Type October 16, 2013 - 4:56pm Addthis Renewable energy opportunities should be considered and identified in the earliest stages of Federal project planning and the team should assess the renewable energy options based on the type of renovation for the facility prior to making any significant decisions about the building design and goals. Integrating renewable energy into major renovations follows the same processes in design as for other construction projects. However, renovations will necessarily be more limited in some design choices related to renewable energy, such as site selection and building orientation. This section of the Guide attempts to give a first step in understanding the

230

Missourian Finds New Opportunity in Energy Industry | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Missourian Finds New Opportunity in Energy Industry Missourian Finds New Opportunity in Energy Industry Missourian Finds New Opportunity in Energy Industry July 1, 2010 - 4:15pm Addthis David Pollack didn't want to settle. After graduating from college in May 2008 with a bachelor's degree in mechanical engineering, David Pollack became frustrated by the scarcity of quality job opportunities. He wanted something that would challenge him professionally. He took action and launched Cornerstone Energy Solutions, a company that improves energy efficiency in residential, commercial and industrial settings. The inspiration for the company came from his father, a retired history teacher, who often talked about the energy crisis he believed America was facing. "For a long time, I listened to my father talk about the energy

231

Biomass Resource Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Biomass Resource Basics Biomass Resource Basics Biomass Resource Basics August 14, 2013 - 1:22pm Addthis Biomass resources include any plant-derived organic matter that is available on a renewable basis. These materials are commonly referred to as feedstocks. Biomass Feedstocks Biomass feedstocks include dedicated energy crops, agricultural crops, forestry residues, aquatic crops, biomass processing residues, municipal waste, and animal waste. Dedicated energy crops Herbaceous energy crops are perennials that are harvested annually after taking 2 to 3 years to reach full productivity. These include such grasses as switchgrass, miscanthus (also known as elephant grass or e-grass), bamboo, sweet sorghum, tall fescue, kochia, wheatgrass, and others. Short-rotation woody crops are fast-growing hardwood trees that are

232

Photovoltaic Technology Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Technology Basics Technology Basics Photovoltaic Technology Basics August 16, 2013 - 4:47pm Addthis Text Version Photovoltaic (PV) materials and devices convert sunlight into electrical energy, and PV cells are commonly known as solar cells. Photovoltaics can literally be translated as light-electricity. First used in about 1890, "photovoltaic" has two parts: photo, derived from the Greek word for light, and volt, relating to electricity pioneer Alessandro Volta. And this is what photovoltaic materials and devices do-they convert light energy into electrical energy, as French physicist Edmond Becquerel discovered as early as 1839. Becquerel discovered the process of using sunlight to produce an electric current in a solid material. But it took more than another century to truly

233

Electric Vehicle Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electric Vehicle Basics Electric Vehicle Basics Electric Vehicle Basics July 30, 2013 - 4:45pm Addthis Text Version Photo of an electric bus driving up a hill. Electricity can be used as a transportation fuel to power battery electric vehicles (EVs). EVs store electricity in an energy storage device, such as a battery. The electricity powers the vehicle's wheels via an electric motor. EVs have limited energy storage capacity, which must be replenished by plugging into an electrical source. In an electric vehicle, a battery or other energy storage device is used to store the electricity that powers the motor. EV batteries must be replenished by plugging the vehicle to a power source. Some EVs have onboard chargers; others plug into a charger located outside the vehicle. Both types use electricity that comes from the power grid. Although

234

Hydrogen Fuel Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hydrogen Fuel Basics Hydrogen Fuel Basics Hydrogen Fuel Basics August 14, 2013 - 2:06pm Addthis Hydrogen is a clean fuel that, when consumed, produces only water. Hydrogen can be produced from a variety of domestic sources, such as coal, natural gas, nuclear power, and renewable power. These qualities make it an attractive fuel option for transportation and electricity generation applications. Hydrogen is an energy carrier that can be used to store, move, and deliver energy produced from other sources. The energy in hydrogen fuel is derived from the fuels and processes used to produce the hydrogen. Today, hydrogen fuel can be produced through several methods. The most common methods are thermal, electrolytic, and photolytic processes. Thermal Processes Thermal processes for hydrogen production typically involve steam

235

Biomass Technology Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Biomass Technology Basics Biomass Technology Basics Biomass Technology Basics August 14, 2013 - 11:31am Addthis Photo of a pair of hands holding corn stover, the unused parts of harvested corn. There are many types of biomass-organic matter such as plants, residue from agriculture and forestry, and the organic component of municipal and industrial wastes-that can now be used to produce fuels, chemicals, and power. Wood has been used to provide heat for thousands of years. This flexibility has resulted in increased use of biomass technologies. According to the Energy Information Administration, 53% of all renewable energy consumed in the United States was biomass-based in 2007. Biomass technologies break down organic matter to release stored energy from the sun. The process used depends on the type of biomass and its

236

Photovoltaic Technology Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Photovoltaic Technology Basics Photovoltaic Technology Basics Photovoltaic Technology Basics August 16, 2013 - 4:47pm Addthis Text Version Photovoltaic (PV) materials and devices convert sunlight into electrical energy, and PV cells are commonly known as solar cells. Photovoltaics can literally be translated as light-electricity. First used in about 1890, "photovoltaic" has two parts: photo, derived from the Greek word for light, and volt, relating to electricity pioneer Alessandro Volta. And this is what photovoltaic materials and devices do-they convert light energy into electrical energy, as French physicist Edmond Becquerel discovered as early as 1839. Becquerel discovered the process of using sunlight to produce an electric current in a solid material. But it took more than another century to truly

237

Concentrating Solar Power Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Basics Basics Concentrating Solar Power Basics August 20, 2013 - 4:38pm Addthis Text Version This solar concentrator has a fixed-focus faceted dish with a concentration of about 250 suns. This system can be used for large fields connected to the utility grid, hydrogen generation, or water pumping. Credit: Science Applications International Corporation / PIX 13464 Concentrating solar power (CSP) technologies use mirrors to reflect and concentrate sunlight onto receivers that collect solar energy and convert it to heat. This thermal energy can then be used to produce electricity via a steam turbine or heat engine that drives a generator. Concentrating solar power offers a utility-scale, firm, dispatchable renewable energy option that can help meet our nation's demand for

238

Biomass Technology Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Biomass Technology Basics Biomass Technology Basics Biomass Technology Basics August 14, 2013 - 11:31am Addthis Photo of a pair of hands holding corn stover, the unused parts of harvested corn. There are many types of biomass-organic matter such as plants, residue from agriculture and forestry, and the organic component of municipal and industrial wastes-that can now be used to produce fuels, chemicals, and power. Wood has been used to provide heat for thousands of years. This flexibility has resulted in increased use of biomass technologies. According to the Energy Information Administration, 53% of all renewable energy consumed in the United States was biomass-based in 2007. Biomass technologies break down organic matter to release stored energy from the sun. The process used depends on the type of biomass and its

239

Hydrogen Fuel Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hydrogen Fuel Basics Hydrogen Fuel Basics Hydrogen Fuel Basics August 14, 2013 - 2:06pm Addthis Hydrogen is a clean fuel that, when consumed, produces only water. Hydrogen can be produced from a variety of domestic sources, such as coal, natural gas, nuclear power, and renewable power. These qualities make it an attractive fuel option for transportation and electricity generation applications. Hydrogen is an energy carrier that can be used to store, move, and deliver energy produced from other sources. The energy in hydrogen fuel is derived from the fuels and processes used to produce the hydrogen. Today, hydrogen fuel can be produced through several methods. The most common methods are thermal, electrolytic, and photolytic processes. Thermal Processes Thermal processes for hydrogen production typically involve steam

240

Biomass Resource Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Biomass Resource Basics Biomass Resource Basics Biomass Resource Basics August 14, 2013 - 1:22pm Addthis Biomass resources include any plant-derived organic matter that is available on a renewable basis. These materials are commonly referred to as feedstocks. Biomass Feedstocks Biomass feedstocks include dedicated energy crops, agricultural crops, forestry residues, aquatic crops, biomass processing residues, municipal waste, and animal waste. Dedicated energy crops Herbaceous energy crops are perennials that are harvested annually after taking 2 to 3 years to reach full productivity. These include such grasses as switchgrass, miscanthus (also known as elephant grass or e-grass), bamboo, sweet sorghum, tall fescue, kochia, wheatgrass, and others. Short-rotation woody crops are fast-growing hardwood trees that are

Note: This page contains sample records for the topic "opportunities basic energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

New Energy Basics Site: Check It Out! | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

New Energy Basics Site: Check It Out! New Energy Basics Site: Check It Out! New Energy Basics Site: Check It Out! August 23, 2010 - 7:30am Addthis Allison Casey Senior Communicator, NREL Interested in energy efficiency and renewable energy but a little confused by all the terms? Wondering how the technologies actually work? Maybe you're doing some research or working on a paper and just need a little background info. EERE's new Energy Basics site is the place for you. There you can learn things like how a wind turbine works and all about the different types of fuel cells. If you just need a quick definition of a term you've heard, check out the glossary. Energy Basics is not meant to replace Energy Savers or any of the program sites throughout the Office of Energy Efficiency and Renewable Energy.

242

Cooling System Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cooling System Basics Cooling System Basics Cooling System Basics August 16, 2013 - 1:08pm Addthis Cooling technologies used in homes and buildings include ventilation, evaporative cooling, air conditioning, absorption cooling, and radiant cooling. Learn more about how these technologies work. Ventilation Ventilation allows air to move into and out of homes and buildings either by natural or mechanical means. Evaporative Cooling In dry climates, evaporative cooling or "swamp cooling" provides an experience like air conditioning, but with much lower energy use. An evaporative cooler uses the outside air's heat to evaporate water inside the cooler. The heat is drawn out of the air and the cooled air is blown into the space by the cooler's fan. Air Conditioning Air conditioners, which employ the same operating principles and basic

243

Basic Instructor Training | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Basic Instructor Training Basic Instructor Training Basic Instructor Training December 5, 2013 - 12:03pm Addthis The Emergency Operations Training Academy, NA 40.2, Readiness and Training, Albuquerque, NM is pleased to announce site certification by the National Training Center for conduct of the Basic Instructor Training class. This one -week, 40 hour course is offered to ensure the quality and consistency of classroom instruction provided at Department of Energy facilities nationwide. The purpose is to equip DOE federal and contractor instructors with best methods and techniques and deliver instruction and practice in classroom activitives that promote student success. The Emergency Operations Training Academy will be offering this class three (3) times per year starting in 2014.

244

Absorption Cooling Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cooling Basics Cooling Basics Absorption Cooling Basics August 16, 2013 - 2:26pm Addthis Absorption coolers use heat rather than electricity as their energy source. Because natural gas is the most common heat source for absorption cooling, it is also referred to as gas-fired cooling. Other potential heat sources include propane, solar-heated water, or geothermal-heated water. Although mainly used in industrial or commercial settings, absorption coolers are commercially available for large residential homes. How Absorption Cooling Works An absorption cooling cycle relies on three basic principles: When a liquid is heated it boils (vaporizes) and when a gas is cooled it condenses Lowering the pressure above a liquid reduces its boiling point Heat flows from warmer to cooler surfaces.

245

Cooling System Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cooling System Basics Cooling System Basics Cooling System Basics August 16, 2013 - 1:08pm Addthis Cooling technologies used in homes and buildings include ventilation, evaporative cooling, air conditioning, absorption cooling, and radiant cooling. Learn more about how these technologies work. Ventilation Ventilation allows air to move into and out of homes and buildings either by natural or mechanical means. Evaporative Cooling In dry climates, evaporative cooling or "swamp cooling" provides an experience like air conditioning, but with much lower energy use. An evaporative cooler uses the outside air's heat to evaporate water inside the cooler. The heat is drawn out of the air and the cooled air is blown into the space by the cooler's fan. Air Conditioning Air conditioners, which employ the same operating principles and basic

246

Active Solar Heating Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Active Solar Heating Basics Active Solar Heating Basics Active Solar Heating Basics August 16, 2013 - 3:23pm Addthis There are two basic types of active solar heating systems based on the type of fluid-either liquid or air-that is heated in the solar energy collectors. The collector is the device in which a fluid is heated by the sun. Liquid-based systems heat water or an antifreeze solution in a "hydronic" collector, whereas air-based systems heat air in an "air collector." Both of these systems collect and absorb solar radiation, then transfer the solar heat directly to the interior space or to a storage system, from which the heat is distributed. If the system cannot provide adequate space heating, an auxiliary or back-up system provides the additional heat. Liquid systems are more often used when storage is included, and are well

247

Basic Research Needs for Solar Energy Utilization  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

the Cover: the Cover: One route to harvesting the energy of the sun involves learning to mimic natural photosynthesis. Here, sunlight falls on a porphyrin, one member of a family of molecules that includes the chlorophylls, which play a central role in capturing light and using its energy for photosynthesis in green plants. Efficient light-harvesting of the solar spectrum by porphyrins and related molecules can be used to power synthetic molecular assemblies and solid- state devices - applying the principles of photosynthesis to the produc- tion of hydrogen, methane, ethanol, and methanol from sunlight, water, and atmospheric carbon dioxide. BASIC RESEARCH NEEDS FOR SOLAR ENERGY UTILIZATION Report on the Basic Energy Sciences Workshop on Solar Energy Utilization

248

Large Scale Computing and Storage Requirements for Basic Energy...  

NLE Websites -- All DOE Office Websites (Extended Search)

at NERSC HPC Requirements Reviews Requirements for Science: Target 2014 Basic Energy Sciences (BES) Large Scale Computing and Storage Requirements for Basic Energy...

249

Federal Energy Management Program: Combined Heat and Power Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

Combined Heat and Power Basics to someone by E-mail Share Federal Energy Management Program: Combined Heat and Power Basics on Facebook Tweet about Federal Energy Management...

250

Audit Report on "Cost Sharing at Basic Energy Sciences' User...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Report on "Cost Sharing at Basic Energy Sciences' User Facilities", DOEIG-0441 Audit Report on "Cost Sharing at Basic Energy Sciences' User Facilities", DOEIG-0441 The Department...

251

Basic Research Needs for Advanced Nuclear Energy Systems - TMS  

Science Conference Proceedings (OSTI)

Feb 12, 2007 ... Report of the Basic Energy Sciences Workshop on Basic Research Needs for Advanced Nuclear Energy Systems. Summarizes current status...

252

Energy Efficiency Improvement Opportunities for the Cement Industry  

E-Print Network (OSTI)

Lime Institute. 2001. Energy Efficiency Opportunity Guide inIndustry, Office of Energy Efficiency, Natural Resourcesof a Cement Kiln, Energy Efficiency Demonstration Scheme,

Worrell, Ernst

2008-01-01T23:59:59.000Z

253

Hydropower Technology Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hydropower Technology Basics Hydropower Technology Basics Hydropower Technology Basics August 14, 2013 - 3:03pm Addthis Text Version Photo of the reservoir in front of a hydropower dam. Hydropower, or hydroelectric power, is the most common and least expensive source of renewable electricity in the United States today. According to the Energy Information Administration, more than 6% of the country's electricity was produced from hydropower resources in 2008, and about 70% of all renewable electricity generated in the United States came from hydropower resources. Hydropower technologies have a long history of use because of their many benefits, including high availability and lack of emissions. Hydropower technologies use flowing water to create energy that can be captured and turned into electricity. Both large and small-scale power

254

LED Lighting Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

LED Lighting Basics LED Lighting Basics LED Lighting Basics August 16, 2013 - 10:07am Addthis Light-emitting diodes (LEDs) are light sources that differ from more traditional sources of light in that they are semiconductor devices that produce light when an electrical current is applied. Applying electrical current causes electrons to flow from the positive side of a diode to the negative side. Then, at the positive/negative junction of the diode, the electrons slow down to orbit at a lower energy level. The electrons emit the excess energy as photons of light. LEDs are often used as small indicator lights on various electronic devices. Because of their long life, durability, and efficiency, LEDs are becoming more common in residential, commercial, and outdoor area lighting

255

Concentrator Photovoltaic System Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Concentrator Photovoltaic System Basics Concentrator Photovoltaic System Basics Concentrator Photovoltaic System Basics August 20, 2013 - 4:12pm Addthis Concentrator photovoltaic (PV) systems use less solar cell material than other PV systems. PV cells are the most expensive components of a PV system, on a per-area basis. A concentrator makes use of relatively inexpensive materials such as plastic lenses and metal housings to capture the solar energy shining on a fairly large area and focus that energy onto a smaller area-the solar cell. One measure of the effectiveness of this approach is the concentration ratio-in other words, how much concentration the cell is receiving. Concentrator PV systems have several advantages over flat-plate systems. First, concentrator systems reduce the size or number of cells needed and

256

Heat Pump System Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Heat Pump System Basics Heat Pump System Basics Heat Pump System Basics August 19, 2013 - 11:02am Addthis Like a refrigerator, heat pumps use electricity to move heat from a cool space into a warm space, making the cool space cooler and the warm space warmer. Because they move heat rather than generate heat, heat pumps can provide up to four times the amount of energy they consume. Air-Source Heat Pump Transfers heat between the inside of a building and the outside air. Ductless Mini-Split Heat Pump Ductless versions of air-source heat pumps. Absorption Heat Pump Uses heat as its energy source. Geothermal Heat Pumps Use the constant temperature of the earth as the exchange medium instead of the outside air temperature. Addthis Related Articles A heat pump can provide an alternative to using your air conditioner. | Photo courtesy of iStockPhoto/LordRunar.

257

Hydropower Technology Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hydropower Technology Basics Hydropower Technology Basics Hydropower Technology Basics August 14, 2013 - 3:03pm Addthis Text Version Photo of the reservoir in front of a hydropower dam. Hydropower, or hydroelectric power, is the most common and least expensive source of renewable electricity in the United States today. According to the Energy Information Administration, more than 6% of the country's electricity was produced from hydropower resources in 2008, and about 70% of all renewable electricity generated in the United States came from hydropower resources. Hydropower technologies have a long history of use because of their many benefits, including high availability and lack of emissions. Hydropower technologies use flowing water to create energy that can be captured and turned into electricity. Both large and small-scale power

258

Vehicle Battery Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vehicle Battery Basics Vehicle Battery Basics Vehicle Battery Basics November 22, 2013 - 1:58pm Addthis Batteries are essential for electric drive technologies such as hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and all-electric vehicles (AEVs). What is a Battery? A battery is a device that stores chemical energy and converts it on demand into electrical energy. It carries out this process through an electrochemical reaction, which is a chemical reaction involving the transfer of electrons. Batteries have three main parts, each of which plays a different role in the electrochemical reaction: the anode, cathode, and electrolyte. The anode is the "fuel" electrode (or "negative" part), which gives up electrons to the external circuit to create a flow of electrons, otherwise

259

All Eyes on Eastport: Tidal Energy Project Brings Change, Opportunity...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tidal Energy Project Brings Change, Opportunity to Local Community All Eyes on Eastport: Tidal Energy Project Brings Change, Opportunity to Local Community July 24, 2012 - 2:40pm...

260

Analysis of Energy-Efficiency Opportunities for the Pulp and...  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy-Efficiency Opportunities for the Pulp and Paper Industry in China Title Analysis of Energy-Efficiency Opportunities for the Pulp and Paper Industry in China Publication Type...

Note: This page contains sample records for the topic "opportunities basic energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Energy-conservation opportunities in lighting  

SciTech Connect

Technologies and techniques which can be employed by your existing personnel - without the need for consultants - to reduce your lighting costs by as much as 70% are discussed. Four basic steps to reduce energy costs and improve the effectiveness of the lighting system discussed are: get acquainted with some of the basic terminology and energy efficient lamps and fixtures which are on the market; conduct a survey of the building to determine where and how much energy and money can be saved in the process; implement the simple, low-cost or no-cost measures immediately; and calculate the payback period for capital investment modifications, and implement those which make economic sense. Case studies are used to illustrate the recommendations. (MCW)

1981-04-01T23:59:59.000Z

262

Energy Efficiency Opportunities in EPA's Boiler Rules  

NLE Websites -- All DOE Office Websites (Extended Search)

Opportunities in EPA's Boiler Rules Opportunities in EPA's Boiler Rules On December 20, 2012, the US Environmental Protection Agency (EPA) finalized new regulations to control emissions of hazardous air pollutants (HAP) from commercial, industrial, and institutional boilers and process heaters. These new rules, known as the Boiler MACT (major sources) and Boiler Area Source Rule (smaller sources), will reduce the amount of HAPS such as mercury, heavy metals, and other toxics that enter the environment. Since emissions from boilers are linked to fuel consumption, energy efficiency is an important strategy for complying with the new Boiler rules. Who is affected? Most existing industrial, commercial and institutional (ICI) boilers will not be affected by the Boiler MACT. These unaffected boilers are mostly small natural gas-fired boilers. Only about 14% of all existing

263

Overview of Energy Development Opportunities for Wyoming  

SciTech Connect

An important opportunity exists for the energy future of Wyoming that will Maintain its coal industry Add substantive value to its indigenous coal and natural gas resources Improve dramatically the environmental impact of its energy production capability Increase its Gross Domestic Product These can be achieved through development of a carbon conversion industry that transforms coal and natural gas to synthetic transportation fuels, chemical feedstocks, and chemicals that are the building blocks for the chemical industry. Over the longer term, environmentally clean nuclear energy can provide the substantial energy needs of a carbon conversion industry and be part of the mix of replacement technologies for the current fleet of aging coal-fired electric power generating stations.

Larry Demick

2012-11-01T23:59:59.000Z

264

Sustainable Building Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Program Areas » Sustainable Buildings & Campuses » Sustainable Program Areas » Sustainable Buildings & Campuses » Sustainable Building Basics Sustainable Building Basics October 4, 2013 - 4:21pm Addthis Image of the side of a sustainable building Sustainable building design results in energy savings and environment stewardship. Sustainable building design and operation strategies demonstrate a commitment to energy efficiency and environmental stewardship. These approaches result in an optimal balance of energy, cost, environmental, and societal benefits, while still meeting the mission of a Federal agency and the function of the facility or infrastructure. For buildings and facilities, responsible resource management and the assessment of operational impacts encompass the principles of sustainability. Sustainable development aims to meet the needs of the

265

Ocean Energy Resource Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

resource-assessment projects for advanced water power. Addthis Related Articles Glossary of Energy-Related Terms Frequently Asked Questions Pamela Sydelko is the Deputy...

266

Electric Resistance Heating Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electric Resistance Heating Basics Electric Resistance Heating Basics Electric Resistance Heating Basics August 16, 2013 - 3:10pm Addthis Electric resistance heat can be supplied by centralized forced-air electric furnaces or by heaters in each room. Electric resistance heating converts nearly all of the energy in the electricity to heat. Types of Electric Resistance Heaters Electric resistance heat can be provided by electric baseboard heaters, electric wall heaters, electric radiant heat, electric space heaters, electric furnaces, or electric thermal storage systems. Electric Furnaces With electric furnaces, heated air is delivered throughout the home through supply ducts and returned to the furnace through return ducts. Blowers (large fans) in electric furnaces move air over a group of three to seven

267

Evaporative Cooling Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Evaporative Cooling Basics Evaporative Cooling Basics Evaporative Cooling Basics August 16, 2013 - 1:53pm Addthis Evaporative cooling uses evaporated water to naturally and energy-efficiently cool. An illustration of an evaporative cooler. In this example of an evaporative cooler, a small motor (top) drives a large fan (center) which blows air out the bottom and into your home. The fan sucks air in through the louvers around the box, which are covered with water-saturated absorbent material. How Evaporative Coolers Work There are two types of evaporative coolers: direct and indirect. Direct evaporative coolers, also called swamp coolers, work by cooling outdoor air by passing it over water-saturated pads, causing the water to evaporate into it. The 15°-40°F-cooler air is then directed into the home

268

Electric Resistance Heating Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electric Resistance Heating Basics Electric Resistance Heating Basics Electric Resistance Heating Basics August 16, 2013 - 3:10pm Addthis Electric resistance heat can be supplied by centralized forced-air electric furnaces or by heaters in each room. Electric resistance heating converts nearly all of the energy in the electricity to heat. Types of Electric Resistance Heaters Electric resistance heat can be provided by electric baseboard heaters, electric wall heaters, electric radiant heat, electric space heaters, electric furnaces, or electric thermal storage systems. Electric Furnaces With electric furnaces, heated air is delivered throughout the home through supply ducts and returned to the furnace through return ducts. Blowers (large fans) in electric furnaces move air over a group of three to seven

269

Fuel Cell Vehicle Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fuel Cell Vehicle Basics Fuel Cell Vehicle Basics Fuel Cell Vehicle Basics August 20, 2013 - 9:11am Addthis Photo of a blue car with 'The Road to Hydrogen' written on it, filling up at a hydrogen fueling station. Fuel cell vehicles, powered by hydrogen, have the potential to revolutionize our transportation system. They are more efficient than conventional internal combustion engine vehicles and produce no harmful tailpipe exhaust-their only emission is water. Fuel cell vehicles and the hydrogen infrastructure to fuel them are in an early stage of development. The U.S. Department of Energy is leading government and industry efforts to make hydrogen-powered vehicles an affordable, environmentally friendly, and safe transportation option. Visit the Alternative Fuels and Advanced Vehicles Data Center to learn more

270

Transportation Fuel Basics - Electricity | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Transportation Fuel Basics - Electricity Transportation Fuel Basics - Electricity Transportation Fuel Basics - Electricity August 19, 2013 - 5:44pm Addthis Electricity used to power vehicles is generally provided by the electricity grid and stored in the vehicle's batteries. Fuel cells are being explored as a way to use electricity generated on board the vehicle to power electric motors. Unlike batteries, fuel cells convert chemical energy from hydrogen into electricity. Vehicles that run on electricity have no tailpipe emissions. Emissions that can be attributed to electric vehicles are generated in the electricity production process at the power plant. Home recharging of electric vehicles is as simple as plugging them into an electric outlet. Electricity fueling costs for electric vehicles are

271

Evaporative Cooling Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Evaporative Cooling Basics Evaporative Cooling Basics Evaporative Cooling Basics August 16, 2013 - 1:53pm Addthis Evaporative cooling uses evaporated water to naturally and energy-efficiently cool. An illustration of an evaporative cooler. In this example of an evaporative cooler, a small motor (top) drives a large fan (center) which blows air out the bottom and into your home. The fan sucks air in through the louvers around the box, which are covered with water-saturated absorbent material. How Evaporative Coolers Work There are two types of evaporative coolers: direct and indirect. Direct evaporative coolers, also called swamp coolers, work by cooling outdoor air by passing it over water-saturated pads, causing the water to evaporate into it. The 15°-40°F-cooler air is then directed into the home

272

Heating System Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Heating System Basics Heating System Basics Heating System Basics August 16, 2013 - 2:32pm Addthis A variety of heating technologies are available today. You can learn more about what heating systems and heat pumps are commonly used today and how they work below. To learn how to use these technologies in your own home, see the Home Heating Systems section on Energy Saver. Furnaces and Boilers Furnaces heat air and distribute the heated air through a building using ducts. Boilers heat water, providing either hot water or steam for heating. Wood and Pellet Heating Provides a way to heat a building using biomass or waste sources. Electric Resistance Heating Can be supplied by centralized electric furnaces or by heaters in each room. Active Solar Heating Uses the sun to heat either air or liquid and can serve as a supplemental

273

Fuel Cell Vehicle Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vehicle Basics Vehicle Basics Fuel Cell Vehicle Basics August 20, 2013 - 9:11am Addthis Photo of a blue car with 'The Road to Hydrogen' written on it, filling up at a hydrogen fueling station. Fuel cell vehicles, powered by hydrogen, have the potential to revolutionize our transportation system. They are more efficient than conventional internal combustion engine vehicles and produce no harmful tailpipe exhaust-their only emission is water. Fuel cell vehicles and the hydrogen infrastructure to fuel them are in an early stage of development. The U.S. Department of Energy is leading government and industry efforts to make hydrogen-powered vehicles an affordable, environmentally friendly, and safe transportation option. Visit the Alternative Fuels and Advanced Vehicles Data Center to learn more

274

Anaerobic Digestion Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Anaerobic Digestion Basics Anaerobic Digestion Basics Anaerobic Digestion Basics August 14, 2013 - 1:07pm Addthis Anaerobic digestion is a common technology in today's agriculture, municipal waste, and brewing industries. It uses bacteria to break down waste organic materials into methane and other gases, which can be used to produce electricity or heat. Methane and Anaerobic Bacteria Methane is a gas that contains molecules of methane with one atom of carbon and four atoms of hydrogen (CH4). It is the major component of the natural gas used in many homes for cooking and heating. It is odorless, colorless, and yields about 1,000 British thermal units (Btu) [252 kilocalories (kcal)] of heat energy per cubic foot (0.028 cubic meters) when burned. Natural gas is a fossil fuel that was created eons ago by the anaerobic

275

Water Efficiency Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Basics Basics Water Efficiency Basics October 7, 2013 - 2:38pm Addthis Training Available Graphic of the eTraining logo Managing Water Assessment in Federal Facilities: Learn how to manage the Water Assessment process in Federal facilities by taking this FEMP eTraining course. Although two-thirds of the Earth's surface is water, less than one-half of one percent of that water is currently available for our use. As the U.S. population increases, so does our water use, making water resources increasingly scarce. Many regions feel the strain. The Federal Government uses an estimated 148 to 165 billion gallons of potable water annually. This is equal to the annual water use of a state the size of New Jersey or almost 8 million people1. This is, in part, because water requires significant energy input for treatment, pumping,

276

Heating System Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Heating System Basics Heating System Basics Heating System Basics August 16, 2013 - 2:32pm Addthis A variety of heating technologies are available today. You can learn more about what heating systems and heat pumps are commonly used today and how they work below. To learn how to use these technologies in your own home, see the Home Heating Systems section on Energy Saver. Furnaces and Boilers Furnaces heat air and distribute the heated air through a building using ducts. Boilers heat water, providing either hot water or steam for heating. Wood and Pellet Heating Provides a way to heat a building using biomass or waste sources. Electric Resistance Heating Can be supplied by centralized electric furnaces or by heaters in each room. Active Solar Heating Uses the sun to heat either air or liquid and can serve as a supplemental

277

Department of Energy Business Opportunity Session  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Alan Perry Alan Perry Title: Administrative Officer Office: Office of the Chief Human Capital Officer E-Mail: Alan.Perry@hq.doe.gov Phone: 202-586-4484 Website: http://humancapital.doe.gov/ Office of the Chief Human Capital Officer Department of Energy's Business Opportunity Session OCHCO Overview OCHCO supports DOE Program and Staff Offices at Headquarters & Field Main Services Offered * Human Capital and Human Resource Guidance * Human Capital Strategic Planning * Policy Development * Corporate HR Information Systems * Workforce Training & Development * Human Resource Operations * Employee Management Labor Relations * Recruitment and Outreach * Executive Resources * Business Support * Drug-Testing Program * Employee Assistance Program * Occupational Health Services * Disability Services

278

Energy Efficiency and Value: Opportunities for Investors | ENERGY STAR  

NLE Websites -- All DOE Office Websites (Extended Search)

Efficiency and Value: Opportunities for Investors Efficiency and Value: Opportunities for Investors Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In This Section Campaigns Commercial building design Communications resources Energy management guidance Financial resources Portfolio Manager Products and purchasing Recognition Research and reports Service and product provider (SPP) resources Success stories

279

Screening Pumping Systems for Energy Savings Opportunities  

E-Print Network (OSTI)

In most industrial settings, energy consumed by pumping systems is responsible for a major part of the overall electricity bill. In some cases, the energy is used quite efficiently; in others, it is not. Facility operators may be very familiar with pumping system equipment controllability, reliability, and availability, but only marginally aware of system efficiency. But there are some good reasons to increase that awareness: 1) As budgets shrink and the intensity of both domestic and international competition increases, the pressure to find additional ways of reducing costs will grow. 2) The reliability of pumps correlates with pump efficiency; that is, pumps operated near the design, or best efficiency point, will tend to perform more reliably and with greater availability. 3) The questions of whether global warming is truly occurring, and if it is, whether humankind's activities play a significant role may both be debatable. But there is no debating the fact that there are finite energy resources, particularly of the fossil fuel variety, on the earth. If we are to be counted as good stewards, then careful, if not frugal resource use is important. The cost of energy consumed by pumps usually dominates the pump life cycle cost. But many end users, already stretched to support day-to-day facility operations, lack the time and resources to perform a methodical engineering study of, in some cases, hundreds of pumps within their facilities to understand the energy costs and the potential opportunity for reduction. Under the auspices of the Department of Energy's (DOE) Motor Challenge Program, prescreening guidance documents and a computer program called PSAT (Pumping System Assessment Tool) have been developed to help end users, consultants, and equipment distributors recognize, both qualitatively and quantitatively, pumping system efficiency improvement opportunities. This paper describes the general methodologies employed and shows case study examples of the prescreening and software application.

Casada, D.

1999-05-01T23:59:59.000Z

280

Energy Basics: Power Tower Systems for Concentrating Solar Power  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Photovoltaics Concentrating Solar Power Linear...

Note: This page contains sample records for the topic "opportunities basic energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Energy Basics: Polycrystalline Thin Film Used in Photovoltaics  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Photovoltaics Cells Systems Concentrating Solar...

282

Energy Basics: Flat-Plate Photovoltaic Balance of System  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Photovoltaics Cells Systems Concentrating Solar...

283

Energy Basics: Thermal Storage Systems for Concentrating Solar...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Photovoltaics Concentrating Solar Power Linear...

284

Energy Basics: Direct-Use of Geothermal Technologies  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Direct Use Electricity Production Geothermal Resources Hydrogen Hydropower Ocean...

285

Energy Basics: Photovoltaic Electrical Contacts and Cell Coatings  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Photovoltaics Cells Systems Concentrating Solar...

286

Energy Basics: Single-Crystalline Thin Film Used in Photovoltaics  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Photovoltaics Cells Systems Concentrating Solar...

287

Energy Basics: Types of Silicon Used in Photovoltaics  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Photovoltaics Cells Systems Concentrating Solar...

288

Energy Basics: Dish/Engine Systems for Concentrating Solar Power  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Photovoltaics Concentrating Solar Power Linear...

289

Energy Basics: Semiconductors and the Built-In Electric Field...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Photovoltaics Cells Systems Concentrating Solar...

290

Federal Energy Management Program: Water Efficiency Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

Basics Basics Graphic of the eTraining logo Training Available Managing Water Assessment in Federal Facilities: Learn how to manage the Water Assessment process in Federal facilities by taking this FEMP eTraining course. Although two-thirds of the Earth's surface is water, less than one-half of one percent of that water is currently available for our use. As the U.S. population increases, so does our water use, making water resources increasingly scarce. Many regions feel the strain. The Federal Government uses an estimated 148 to 165 billion gallons of potable water annually. This is equal to the annual water use of a state the size of New Jersey or almost 8 million people1. This is, in part, because water requires significant energy input for treatment, pumping, heating, and process uses. Water is integral to the cooling of power plants that provide energy to Federal facilities.

291

IndianEnergySummitBasicFactSHEET  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SUMMIT BASIC FACTS SHEET SUMMIT BASIC FACTS SHEET WHAT: DOE TRIBAL LEADERS ROUNDTABLES AND ENERGY SUMMIT WHO: Tribal Leadership and Tribal Policy Makers Secretary Chu and DOE Senior Leadership DOE Office of Indian Energy Policy and Programs WHEN: MAY 4 th and 5 th , 2011 WHERE: WASHINGTON, D.C., AREA Summit Location CRYSTAL GATEWAY MARRIOTT www.marriott.com/hotels/.../wasgw-crystal-gateway-marriott/ 1700 Jefferson Davis Highway Arlington, Virginia (703) 920-3230 REGISTRATION: There are NO registration fees to participate. Tribal Leaders will have to make their own arrangements for travel and accomodations. Summit Working Session meals/refreshments (limited) are included by the hotel. Please confirm your attendance by completing the registration form (WEB link to

292

Clean Energy Finance: Challenges and Opportunities of Early-Stage...  

NLE Websites -- All DOE Office Websites (Extended Search)

2 Executive Summary Clean Energy Finance-Challenges and Opportunities of Early-Stage Energy Investing - Executive Summary NREL Industry Growth Forum The premier event for clean...

293

Clean Energy Finance: Challenges and Opportunities of Early-Stage...  

NLE Websites -- All DOE Office Websites (Extended Search)

1 Clean Energy Finance-Challenges and Opportunities of Early-Stage Energy Investing Disclaimer: the analysis and recommendations presented are solely those of the researchers...

294

Identifying Cost-Effective Residential Energy Efficiency Opportunities...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Identifying Cost-Effective Residential Energy Efficiency Opportunities for the Kauai Island Utility Cooperative Identifying Cost-Effective Residential Energy Efficiency...

295

Energy Efficiency Improvement and Cost Saving Opportunities for...  

NLE Websites -- All DOE Office Websites (Extended Search)

LBNL-54036-Revision Energy Efficiency Improvement ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY and Cost Saving Opportunities for Cement Making An ENERGY STAR Guide for...

296

Energy Efficiency Improvement and Cost Saving Opportunities for...  

NLE Websites -- All DOE Office Websites (Extended Search)

268E ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY Energy Efficiency Improvement and Cost Saving Opportunities for the Pulp and Paper Industry An ENERGY STAR Guide for...

297

Energy Efficiency Improvement and Cost Saving Opportunities for...  

NLE Websites -- All DOE Office Websites (Extended Search)

i LBNL-5342E ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY Energy Efficiency Improvement and Cost Saving Opportunities for the Concrete Industry An ENERGY STAR Guide for...

298

Energy Efficiency Improvement and Cost Saving Opportunities for...  

NLE Websites -- All DOE Office Websites (Extended Search)

12E ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY Energy Efficiency Improvement and Cost Saving Opportunities for the Baking Industry An ENERGY STAR Guide for Plant and...

299

Energy Efficiency Improvement and Cost Saving Opportunities for...  

NLE Websites -- All DOE Office Websites (Extended Search)

9-Revision ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY Energy Efficiency Improvement and Cost Saving Opportunities for the Vehicle Assembly Industry An ENERGY STAR ...

300

FINANCIAL ASSISTANCE FUNDING OPPORTUNITY ANNOUNCEMENT U. S. Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ASSISTANCE FUNDING OPPORTUNITY ANNOUNCEMENT U. S. Department of Energy Idaho Operations Office Fiscal Year 2014 Scientific Infrastructure Support for Consolidated Innovative Nuclear Research Funding Opportunity Announcement: DE-FOA-0000999 Announcement Type: Initial CFDA Number: 81.121 Issue Date: October 31, 2013 Application Due Date: April 3, 2014 at 8:00 PM ET Page 2 of 29 Table of Contents PART I - FUNDING OPPORTUNITY ANNOUNCMENT DESCRIPTION ............................. 6 A. STATEMENT OF OBJECTIVES .......................................................................................... 6 B. RELATED COLLABORATIVE OPPORTUNITIES ............................................................ 8 C. FUNDING OPPORTUNITIES ............................................................................................... 9

Note: This page contains sample records for the topic "opportunities basic energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Home and Building Technology Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Home and Building Technology Basics Home and Building Technology Basics Homes and other buildings use energy every day for space heating and cooling, for lighting and hot water,...

302

Basic Energy Sciences Advisory Committee (BESAC) Homepage | U.S. DOE Office  

Office of Science (SC) Website

BESAC Home BESAC Home Basic Energy Sciences Advisory Committee (BESAC) BESAC Home Meetings Members Charges/Reports Charter .pdf file (41KB) BES Committees of Visitors BES Home Print Text Size: A A A RSS Feeds FeedbackShare Page The Basic Energy Sciences Advisory Committee (BESAC) - established on September 4, 1986 - provides valuable, independent advice to the Department of Energy on the Basic Energy Sciences program regarding the complex scientific and technical issues that arise in the planning, management, and implementation of the program. BESAC's recommendations include advice on establishing research and facilities priorities; determining proper program balance among disciplines; and identifying opportunities for interlaboratory collaboration, program integration, and

303

Business Opportunity Session Materials | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Materials Materials Business Opportunity Session Materials Presentations from our Washington DC Business Opportunity Session, held March 3, 2011 How to do Business with DOE Nickolas (Nick) Demer Senior Procurement Analyst OSDBU NNSA Opportunities Gary Lyttek Small Business Program Manager, NNSA Sandia National Laboratories Opportunities Don Devoti, Small Business Program Manager, Sandia National Laboratories Office of Science SBIR/STTR, Chris O'Gwin, Program Analyst, SBIR/STTR Program Office/Office of Science Opportunities with DOE Laboratories, Larry Thompson, Small Business Program Manager/Contract Specialist, Chicago Operations Office (Office of Science) Opportunities with the Office of Environmental Management, Kay Rash, Small Business Program Manager, Office of Environmental

304

Ocean Thermal Energy Conversion Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Thermal Energy Conversion Basics Thermal Energy Conversion Basics Ocean Thermal Energy Conversion Basics August 16, 2013 - 4:22pm Addthis A process called ocean thermal energy conversion (OTEC) uses the heat energy stored in the Earth's oceans to generate electricity. OTEC works best when the temperature difference between the warmer, top layer of the ocean and the colder, deep ocean water is about 36°F (20°C). These conditions exist in tropical coastal areas, roughly between the Tropic of Capricorn and the Tropic of Cancer. To bring the cold water to the surface, ocean thermal energy conversion plants require an expensive, large-diameter intake pipe, which is submerged a mile or more into the ocean's depths. Some energy experts believe that if ocean thermal energy conversion can become cost-competitive with conventional power technologies, it could be

305

Ocean Thermal Energy Conversion Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Thermal Energy Conversion Basics Thermal Energy Conversion Basics Ocean Thermal Energy Conversion Basics August 16, 2013 - 4:22pm Addthis A process called ocean thermal energy conversion (OTEC) uses the heat energy stored in the Earth's oceans to generate electricity. OTEC works best when the temperature difference between the warmer, top layer of the ocean and the colder, deep ocean water is about 36°F (20°C). These conditions exist in tropical coastal areas, roughly between the Tropic of Capricorn and the Tropic of Cancer. To bring the cold water to the surface, ocean thermal energy conversion plants require an expensive, large-diameter intake pipe, which is submerged a mile or more into the ocean's depths. Some energy experts believe that if ocean thermal energy conversion can become cost-competitive with conventional power technologies, it could be

306

Municipalities and Renewable Energy Opportunities | Open Energy Information  

Open Energy Info (EERE)

Municipalities and Renewable Energy Opportunities Municipalities and Renewable Energy Opportunities Jump to: navigation, search BUILDING COMMUNITIES WITH RENEWABLE ENERGY --Rsiegent 20:06, 20 January 2010 (UTC) BC communities and renewable energy walk hand-in-hand. "Investments made today in established renewable energy technologies can reduce building operating costs, the savings of which can be allocated [for instance] to community programs." Municipal buildings are ideally suited, as they are built for the long-term with quality and durability, and social and environmental responsibility in mind. Renewable energy systems such as GeoExchange (geothermal heat pumps) and Solar Hot Water ("Solar") are common renewable energy technologies used in commercial scale buildings. They are durable, proven, and low

307

Department of Energy Issues Funding Opportunity Announcement...  

NLE Websites -- All DOE Office Websites (Extended Search)

for research reactors and other nuclear science and engineering laboratories and facilities. "This Funding Opportunity Announcement demonstrates our continued commitment...

308

Water Heating Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Heaters Solar Water Heaters Tankless Coil and Indirect Water Heaters Addthis Related Articles Tankless Demand Water Heater Basics Solar Water Heater Basics Heat Pump Water Heater...

309

REScheck Basics | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Basics This training covers the basics of using the REScheck(tm) software, and is geared toward the beginning user. Estimated Length: 1 hour, 8 minutes Presenters: Rosemarie...

310

Geothermal Electricity Production Basics | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Electricity Production Basics Geothermal Electricity Production Basics August 14, 2013 - 1:49pm Addthis A photo of steam emanating from geothermal power plants at The Geysers in...

311

Moving to a Clean Energy Economy:Opportunities for North Carolina...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Moving to a Clean Energy Economy:Opportunities for North Carolina Moving to a Clean Energy Economy:Opportunities for North Carolina A report detailling the economic opportunities...

312

Basic research opportunities to support LNG technology. Topical report, July 1989-December 1990  

Science Conference Proceedings (OSTI)

As additional gas reserves come on production during the next decade in areas with limited local markets, worldwide LNG trade is expected to expand. The availability of dedicated LNG tankers may well determine the rate at which this growth occurs. Plans are being made now to bring the four U.S. import terminals up to capacity during this period. As LNG becomes a more significant factor in the domestic natural gas market, consideration should be given to applications other than simply regassifying and comingling it with other supplies entering the pipeline grid. The higher energy density and the low temperature of LNG offer opportunities for expanding the use of natural gas into the industrial and transportation sectors. Greater use of LNG in peak shaving and intermediate storage may also provide benefits in increased reliability and performance of the gas transmission and distribution grid. In order to provide new and more cost-effective technologies to respond to these opportunities, it is recommended that GRI broaden the range of research it is currently performing on LNG.

Groten, B.

1991-03-01T23:59:59.000Z

313

Basic Energy Sciences (BES) Homepage | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

BES Home BES Home Basic Energy Sciences (BES) BES Home About Research Facilities Science Highlights Benefits of BES Funding Opportunities Basic Energy Sciences Advisory Committee (BESAC) News & Resources Contact Information Basic Energy Sciences U.S. Department of Energy SC-22/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3081 F: (301) 903-6594 E: sc.bes@science.doe.gov More Information » Science for Energy Discovery science solves mysteries, sparks innovation, and stimulates future technologies. This principle provides the inspiration for the fundamental energy research and the remarkable collection of major scientific user facilities supported by Basic Energy Sciences.Read More Discovery Science Materials Sciences and Engineering Understanding, predicting, and controlling materials and their

314

Opportunities to Reduce Energy and Water Intensity of Mining ...  

Science Conference Proceedings (OSTI)

Presentation Title, Opportunities to Reduce Energy and Water Intensity of Mining ... bearing on the value of mining projects and the image of the mining industry;...

315

Energy Efficiency Improvement and Cost Saving Opportunities for...  

NLE Websites -- All DOE Office Websites (Extended Search)

289-Revision ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY Energy Efficiency Improvement and Cost Saving Opportunities for the Fruit and Vegetable Processing Industry An...

316

Oklahoma Opportunity Fund (Oklahoma) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oklahoma Opportunity Fund (Oklahoma) Oklahoma Opportunity Fund (Oklahoma) Oklahoma Opportunity Fund (Oklahoma) < Back Eligibility Agricultural Commercial Construction Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Oklahoma Program Type Grant Program Provider Commerce The Oklahoma Opportunity Fund was established to promote economic development and related infrastructure development. Eligible applicants are

317

Opportunities for R&D Partnerships - Energy  

239 Opportunities for R&D Partnerships Small Business Innovation Research (SBIR) Small Business Technology Transfer (STTR) Venture Capital Technology Showcase Larry S ...

318

Energy Department Announces Technical Assistance Opportunity for Tribal  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Technical Assistance Opportunity for Technical Assistance Opportunity for Tribal Clean Energy Deployment Energy Department Announces Technical Assistance Opportunity for Tribal Clean Energy Deployment December 2, 2011 - 2:40pm Addthis Washington, D.C. - The U.S. Department of Energy (DOE) launched today the Strategic Technical Assistance Response Team (START) initiative aimed at advancing clean energy generation in Indian Country and providing federally recognized Native American and Alaska Native governments with technical assistance to accelerate clean energy project deployment. This effort furthers the Administration and Department's commitment to provide Tribes with the tools and resources they need to foster tribal energy self-sufficiency and sustainability, advancing economic competitiveness and

319

Videos on Clean Energy That Give You the Basics and More | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Videos on Clean Energy That Give You the Basics and More Videos on Clean Energy That Give You the Basics and More Videos on Clean Energy That Give You the Basics and More October 11, 2011 - 6:37am Addthis Eric Barendsen Energy Technology Program Specialist, Office of Energy Efficiency and Renewable Energy One of the most exciting things about the work that I do is having the opportunity to get out of the office and talk with the public about energy efficiency and renewable energy. Last month, we held the U.S. Department of Energy Solar Decathlon 2011 here in Washington, D.C. at the National Mall's West Potomac Park. Talking with visitors to the event, I got to meet people from many walks of life, some of whom are already very knowledgeable about clean energy technologies and some who are curious and eager to learn more. One of the things I always tell people who ask me for

320

Energy Basics: Supporting Equipment for Heating and Cooling Systems  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

for Heating and Cooling Systems Thermostats and ducts provide opportunities for saving energy. Dehumidifying heat pipes provide a way to help central air conditioners and heat...

Note: This page contains sample records for the topic "opportunities basic energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Retail: An Overview of Energy Use and Energy Efficiency Opportunities  

NLE Websites -- All DOE Office Websites (Extended Search)

Retail: An Overview of Energy Use and Retail: An Overview of Energy Use and Energy Efficiency Opportunities Of the almost 5 million commercial buildings in the U.S. 1 , retail buildings account for the largest energy costs - nearly $20 billion each year 1 - and are also responsible for the second largest percentage of greenhouse gas emissions, leading to global climate change. By becoming more energy efficient, retailers can increase the comfort of customers and productivity of employees, and achieve cost savings that enhance corporate profitability. By using the Environmental Protection Agency's (EPA) ENERGY STAR tools and resources, retailers can save money and fight global climate change by reducing their energy use through energy efficiency measures. Energy Efficiency Tips

322

Energy Efficiency Improvement and Cost Saving Opportunities for Breweries: An ENERGY STAR(R) Guide for Energy and Plant Managers  

E-Print Network (OSTI)

Vollhals, B. (1994). Energy Saving in the Brewhouse. MBAACogeneration; an Energy Saving Opportunity for Breweriesidentify and evaluate energy-saving opportunities, recommend

Galitsky, Christina; Martin, Nathan; Worrell, Ernst; Lehman, Bryan

2003-01-01T23:59:59.000Z

323

Transportation Fuel Basics - Electricity | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electricity Electricity Transportation Fuel Basics - Electricity August 19, 2013 - 5:44pm Addthis Electricity used to power vehicles is generally provided by the electricity grid and stored in the vehicle's batteries. Fuel cells are being explored as a way to use electricity generated on board the vehicle to power electric motors. Unlike batteries, fuel cells convert chemical energy from hydrogen into electricity. Vehicles that run on electricity have no tailpipe emissions. Emissions that can be attributed to electric vehicles are generated in the electricity production process at the power plant. Home recharging of electric vehicles is as simple as plugging them into an electric outlet. Electricity fueling costs for electric vehicles are reasonable compared to gasoline, especially if consumers take advantage of

324

Transportation Fuel Basics - Propane | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Propane Propane Transportation Fuel Basics - Propane July 30, 2013 - 4:31pm Addthis Photo of a man standing next to a propane fuel pump with a tank in the background. Propane, also known as liquefied petroleum gas (LPG or LP-gas), or autogas in Europe, is a high-energy alternative fuel. It has been used for decades to fuel light-duty and heavy-duty propane vehicles. Propane is a three-carbon alkane gas (C3H8). Stored under pressure inside a tank, propane turns into a colorless, odorless liquid. As pressure is released, the liquid propane vaporizes and turns into gas that is used for combustion. An odorant, ethyl mercaptan, is added for leak detection. Propane has a high octane rating and excellent properties for spark-ignited internal combustion engines. It is nontoxic and presents no threat to soil,

325

Solar Water Heater Basics | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Solar Water Heater Basics Solar Water Heater Basics August 19, 2013 - 3:01pm Addthis Illustration of an active, closed loop solar water heater. A large, flat panel called a flat...

326

Photovoltaic Cell Basics | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Cell Basics Photovoltaic Cell Basics August 16, 2013 - 4:53pm Addthis Photovoltaic (PV) cells, or solar cells, take advantage of the photoelectric effect to produce electricity. PV...

327

Opportunities for discovery: Theory and computation in Basic Energy Sciences  

E-Print Network (OSTI)

Linac Coherent Light Source (LCLS) at the Stanford Linearwith such pulses. The LCLS will take ultrafast science to apulses. Two aspects of proposed LCLS experiments offer great

Harmon, Bruce; Kirby, Kate; McCurdy, C. William

2005-01-01T23:59:59.000Z

328

Equal Employment Opportunity -Title VII | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Equal Employment Opportunity Equal Employment Opportunity -Title VII Equal Employment Opportunity -Title VII The Department of Energy does not discriminate on the basis of race, color, sex (including sexual harassment), religion, national origin, age, disability (physical or mental), sexual orientation, reprisal, parental status, protected genetic information, or any other non-merit factor. We are committed to equal employment opportunity principles and practices in all of our management decisions and personnel practices. To learn more about the Equal Employment Opportuity complaint process and mediation options, please view and download the links below: Equal Employment Opportunity Policy Statement & Harassment Policy Statement EEO Intake Form EEO/Diversity Managers Office Locations

329

Small Business Opportunity Tool | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

will buy in the future) by your location, NAICS code, or industry. Check out upcoming forecast opportunities (what a facility might buy based on requirements, not what they will...

330

Energy Efficiency Improvement and Cost Saving Opportunities for...  

NLE Websites -- All DOE Office Websites (Extended Search)

Cost Saving Opportunities for Breweries Energy consumption is equal to 3-8 percent of the production costs of beer, making energy efficiency improvement an important way to reduce...

331

Active Solar Heating Basics | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

NREL Active Solar Heating Linear Concentrator System Basics for Concentrating Solar Power Rooftop solar water heaters need regular maintenance to operate at peak efficiency. |...

332

Federal Energy Management Program: Institutional Change Basics...  

NLE Websites -- All DOE Office Websites (Extended Search)

Basics for Sustainability Graphic of the eTraining logo Training Available Sustainable Institutional Change for Federal Facility Managers: Learn strategies to change behavior to...

333

U.S. Department of Energy Issues Fiscal Year 2011 Funding Opportunity  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Issues Fiscal Year 2011 Funding Issues Fiscal Year 2011 Funding Opportunity Announcements to Enhance Nuclear Energy Education Infrastructure U.S. Department of Energy Issues Fiscal Year 2011 Funding Opportunity Announcements to Enhance Nuclear Energy Education Infrastructure February 28, 2011 - 5:02pm Addthis The U.S. Department of Energy (DOE) today announced two new fiscal year (FY) 2011 Funding Opportunity Announcements (FOAs) to support university and college efforts to build or expand their school's nuclear science and engineering basic research or education capabilities. Under the Nuclear Energy University Programs (NEUP), DOE will provide up to $13.5 million to upgrade university level research reactors and purchase general scientific equipment and instrumentation, although this funding estimate may be

334

Commercial Building Partnership Opportunities with the Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Building Partnership Opportunities with the Department Building Partnership Opportunities with the Department of Energy Commercial Building Partnership Opportunities with the Department of Energy Working with industry representatives and partners is critical to achieving significant improvements in the energy efficiency of new and existing commercial buildings. Here you will learn more about the government-industry partnerships that move us toward that goal. Key alliances and partnerships include: Better Buildings Challenge Photo of downtown Pittsburgh, Pennsylvania, a municipal Better Buildings Challenge partner, at dusk. This national leadership initiative calls on corporate officers, university presidents, and local leaders to progess towards the goal of making American buildings 20 percent more energy-efficient by 2020.

335

Energy Use and Energy Efficiency Opportunities in Restaurants  

NLE Websites -- All DOE Office Websites (Extended Search)

Use and Energy Efficiency Use and Energy Efficiency Opportunities in Restaurants Restaurant Energy Use Restaurants Making a Difference Tripp's Grill & Six Pack: North Bend Pennsylvania - Michael and Susan Tripp opened their 1,400 square-foot restaurant and grill in North Bend, PA in 2002, knowing that restaurants are among the most energy intensive businesses for their size and sales. That is why they purchased new ENERGY STAR qualified freezers to replace older freezers in their restaurant. With this smart purchase, Tripp's Grill & Six Pack is saving more than $1,900 a year in electricity costs due to reducing usage by more than 31,700 kWh, which is also preventing nearly 50,800 pounds of CO 2 emissions. The Reedville Café: Oregon - Reedville Café's growth in the past few years has

336

Public Comment Opportunities | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Public Comment Opportunities Public Comment Opportunities Public Comment Opportunities Below are links to information about how to comment on DOE NEPA projects with open comment periods, including comment periods on the proposed scope of planned NEPA documents and on draft NEPA documents (e.g., draft environmental assessments and draft environmental impacts statements). The end of each comment period is indicated below. EIS-0496: San Luis Transmission Project, Alameda, Merced, San Joaquin and Stanislaus Counties, California Scoping: Comment Period Ends 01/21/14 DOE's Western Area Power Administration, with the Bureau of Reclamation as a cooperating agency, is preparing a joint EIS and environmental impact report (under the California Environmental Quality Act) to evaluate the potential environmental impacts of the proposed interconnection of certain

337

Carbon Opportunity Group | Open Energy Information  

Open Energy Info (EERE)

Opportunity Group Opportunity Group Jump to: navigation, search Name Carbon Opportunity Group Place Chicago, Illinois Zip 60606 Sector Carbon, Services Product Chicago-based firm that provides expertise in private equity investments, carbon asset development, financial risk management as well as advisory services. Coordinates 41.88415°, -87.632409° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.88415,"lon":-87.632409,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

338

Basic Research for an Era of Nuclear Energy at LBNL, LLNL, AND LANL | U.S.  

Office of Science (SC) Website

Basic Research for an Era of Nuclear Basic Research for an Era of Nuclear Energy at LBNL, LLNL, AND LANL Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Spinoff Applications Spinoff Archives SBIR/STTR Applications of Nuclear Science and Technology Funding Opportunities Nuclear Science Advisory Committee (NSAC) News & Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3613 F: (301) 903-3833 E: sc.np@science.doe.gov More Information » Spinoff Archives Basic Research for an Era of Nuclear Energy at LBNL, LLNL, AND LANL Print Text Size: A A A RSS Feeds FeedbackShare Page Application/instrumentation: Basic Research for an Era of Nuclear Energy Developed at: Lawrence Berkeley National Laboratory, Lawrence Livermore National

339

BASIC RESEARCH NEEDS IN ENERGY CONSERVATION  

E-Print Network (OSTI)

achievable at given energy prices, It is extremely importantin societies where energy prices are higher or lower than inof changes in lifestyle, energy prices, or energy-related

Hollander, Jack M.

2011-01-01T23:59:59.000Z

340

Department of Energy Issues $14 Million in Funding Opportunity  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Department of Energy Issues $14 Million in Funding Opportunity Department of Energy Issues $14 Million in Funding Opportunity Announcements to U.S. Universities for Nuclear Research Department of Energy Issues $14 Million in Funding Opportunity Announcements to U.S. Universities for Nuclear Research March 28, 2007 - 12:17pm Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) today announced two new Funding Opportunity Announcements (FOA), valued up to $14 million to better integrate the United States' universities into DOE's nuclear research and development (R&D) programs; and contribute to assuring a new generation of engineers and scientists necessary for pursuing nuclear power - a safe, reliable, affordable and emissions-free source of energy. These FOAs support the Global Nuclear Energy Partnership (GNEP) University

Note: This page contains sample records for the topic "opportunities basic energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Energy Efficiency Improvement and Cost Saving Opportunities for the Dairy Processing Industry  

E-Print Network (OSTI)

Refrigeration: Introducing Energy Saving Opportunities forManufacturing Produces Energy-Saving Opportunities. http://Demonstration of Energy Savings of Cool Roofs. Lawrence

Brush, Adrian

2012-01-01T23:59:59.000Z

342

Exploring the Business Link Opportunity: Transmission & Clean Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Exploring the Business Link Opportunity: Transmission & Clean Exploring the Business Link Opportunity: Transmission & Clean Energy Development in the West Exploring the Business Link Opportunity: Transmission & Clean Energy Development in the West The Office of Indian Energy Tribal Leader Energy Forum on transmission took place February 7-8, 2012, in Denver, Colorado. Photo by Dennis Schroeder, NREL The Office of Indian Energy Tribal Leader Energy Forum on transmission took place February 7-8, 2012, in Denver, Colorado. Photo by Dennis Schroeder, NREL Travis Stone, Shoshone Bannock Tribe, and Rebecca Kauffman, Southern Ute Alternative Energy Investment Fund, speaking at the Office of Indian Energy Tribal Leader Energy Forum on transmission. Photo by Dennis Schroeder, NREL Travis Stone, Shoshone Bannock Tribe, and Rebecca Kauffman, Southern Ute

343

Exploring the Business Link Opportunity: Transmission & Clean Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Exploring the Business Link Opportunity: Transmission & Clean Exploring the Business Link Opportunity: Transmission & Clean Energy Development in the West Exploring the Business Link Opportunity: Transmission & Clean Energy Development in the West The Office of Indian Energy Tribal Leader Energy Forum on transmission took place February 7-8, 2012, in Denver, Colorado. Photo by Dennis Schroeder, NREL The Office of Indian Energy Tribal Leader Energy Forum on transmission took place February 7-8, 2012, in Denver, Colorado. Photo by Dennis Schroeder, NREL Travis Stone, Shoshone Bannock Tribe, and Rebecca Kauffman, Southern Ute Alternative Energy Investment Fund, speaking at the Office of Indian Energy Tribal Leader Energy Forum on transmission. Photo by Dennis Schroeder, NREL Travis Stone, Shoshone Bannock Tribe, and Rebecca Kauffman, Southern Ute

344

Photovoltaic System Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

System Basics System Basics Photovoltaic System Basics August 20, 2013 - 4:00pm Addthis A photovoltaic (PV), or solar electric system, is made up of several photovoltaic solar cells. An individual PV cell is usually small, typically producing about 1 or 2 watts of power. To boost the power output of PV cells, they are connected together to form larger units called modules. Modules, in turn, can be connected to form even larger units called arrays, which can be interconnected to produce more power, and so on. In this way, PV systems can be built to meet almost any electric power need, small or large. Illustration of solar cells combined to make a module and modules combined to make an array. The basic PV or solar cell produces only a small amount of power. To produce more power, cells can be interconnected to

345

Greenhouse Gas Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Program Areas » Greenhouse Gases » Greenhouse Gas Basics Program Areas » Greenhouse Gases » Greenhouse Gas Basics Greenhouse Gas Basics October 7, 2013 - 10:01am Addthis Federal agencies must understand key terms and management basics to successfully manage greenhouse gas (GHG) emissions. Greenhouse gases are trace gases in the lower atmosphere that trap heat through a natural process called the "greenhouse effect." This process keeps the planet habitable. International research has linked human activities to a rapid increase in GHG concentrations in the atmosphere, contributing to major shifts in the global climate. Graphic of the top half of earth depicting current arctic sea ice. A red outline depicts arctic sea ice boundaries in 1979. Current arctic sea ice is shown roughly 50% smaller than the 1979 depiction.

346

Photovoltaic Cell Structure Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Structure Basics Structure Basics Photovoltaic Cell Structure Basics August 19, 2013 - 4:50pm Addthis The actual structural design of a photovoltaic (PV), or solar cell, depends on the limitations of the material used in the PV cell. The four basic device designs are: Homojunction Devices Crystalline silicon is the primary example of this kind of cell. A single material-crystalline silicon-is altered so that one side is p-type, dominated by positive holes, and the other side is n-type, dominated by negative electrons. The p/n junction is located so that the maximum light is absorbed near it. The free electrons and holes generated by light deep in the silicon diffuse to the p/n junction and then separate to produce a current if the silicon is of sufficiently high quality. In this homojunction design, these aspects of the cell may be varied to

347

Lesson 2 - Electricity Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2 - Electricity Basics 2 - Electricity Basics Lesson 2 - Electricity Basics It's difficult to imagine life without convenient electricity. You just flip a switch or plug in an appliance, and it's there. But how did it get there? Many steps go into providing the reliable electricity we take for granted. This lesson takes a closer look at electricity. It follows the path of electricity from the fuel source to the home, including the power plant and the electric power grid. It also covers the role of electric utilities in the generation, transmission, and distribution of electricity. Topcis addressed include: Basics of electricity Generating electricity Using steam, turbines, generator Similarities of power plants Distributing Electricity Generation Transmission Distribution Power grid

348

Lesson 2 - Electricity Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Basics It's difficult to imagine life without convenient electricity. You just flip a switch or plug in an appliance, and it's there. But how did it get there? Many steps...

349

BASIC RESEARCH NEEDS IN ENERGY CONSERVATION  

E-Print Network (OSTI)

on Nuclear and Alternative Energy Systems (CONAES). Chapterand allocation of alternative energy supply resources andJ. M. "United States Energy Alternatives to 2010 and Beyond:

Hollander, Jack M.

2011-01-01T23:59:59.000Z

350

BASIC RESEARCH NEEDS IN ENERGY CONSERVATION  

E-Print Network (OSTI)

human dimensions of the energy problem: impacts of energyenergy and materials use energy problem. is an important andresource- A central problem in energy conservation is the

Hollander, Jack M.

2011-01-01T23:59:59.000Z

351

BASIC RESEARCH NEEDS IN ENERGY CONSERVATION  

E-Print Network (OSTI)

a "perfect" economic market, energy prices would reflect thehave produced an energy market with a price structure veryhow energy use responds to price signals from the market and

Hollander, Jack M.

2011-01-01T23:59:59.000Z

352

Sustainable and Energy Efficient Urban and Built Infrastructure Development: Opportunities  

E-Print Network (OSTI)

loads); less than half of typical German energy usage and a third of those in U.S. · Most buildings have energy buildings · The buildings typically targeted energy intensity of 100 kWh/m2/year (excludes plugSustainable and Energy Efficient Urban and Built Infrastructure Development: Opportunities

de Weck, Olivier L.

353

Space Heating and Cooling Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Systems Supporting Equipment for Heating and Cooling Systems Addthis Related Articles Glossary of Energy-Related Terms Water Heating Basics Heating and Cooling System Support...

354

New Year, New Certification Opportunities for Home Energy Workers |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

New Year, New Certification Opportunities for Home Energy Workers New Year, New Certification Opportunities for Home Energy Workers New Year, New Certification Opportunities for Home Energy Workers January 2, 2014 - 10:23am Addthis Trainees practice techniques on miniature model homes at the New River Center for Energy Research & Training in Christiansburg, Virginia. The Energy Department has developed a new certification program for quality control inspectors, energy auditors, crew leaders, and retrofit installer technicians, as part of the Weatherization Assistance Program's Guidelines for Home Energy Professionals project. | Photo courtesy of Weatherization Assistance Program Technical Assistance Center Trainees practice techniques on miniature model homes at the New River Center for Energy Research & Training in Christiansburg, Virginia. The

355

Property:Geothermal/FundingOpportunityAnnouncemt | Open Energy Information  

Open Energy Info (EERE)

Geothermal/FundingOpportunityAnnouncemt Geothermal/FundingOpportunityAnnouncemt Jump to: navigation, search Property Name Geothermal/FundingOpportunityAnnouncemt Property Type String Description Funding Opportunity Announcement Pages using the property "Geothermal/FundingOpportunityAnnouncemt" Showing 25 pages using this property. (previous 25) (next 25) A A 3D-3C Reflection Seismic Survey and Data Integration to Identify the Seismic Response of Fractures and Permeable Zones Over a Known Geothermal Resource at Soda Lake, Churchill Co., NV Geothermal Project + DE-FOA-0000109 + A Demonstration System for Capturing Geothermal Energy from Mine Waters beneath Butte, MT Geothermal Project + DE-FOA-0000116 + A Geothermal District-Heating System and Alternative Energy Research Park on the NM Tech Campus Geothermal Project + DE-FOA-0000109 +

356

Energy Department Announces New Funding Opportunity for Innovative Small  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

New Funding Opportunity for Innovative New Funding Opportunity for Innovative Small Modular Reactors Energy Department Announces New Funding Opportunity for Innovative Small Modular Reactors March 11, 2013 - 2:45pm Addthis News Media Contact (202) 586-4940 WASHINGTON - As part of the Obama Administration's all-of-the-above energy strategy to speed the transition to more sustainable sources of energy, the Energy Department today issued a new funding opportunity announcement to help U.S. industry design and certify innovative small modular nuclear reactors (SMRs). Building off the cost-share agreement announced in November 2012, this follow-on solicitation is open to other companies and manufacturers and is focused on furthering small modular reactor efficiency, operations and design. "As President Obama said in the State of the Union, the Administration is

357

U.S. Energy Technology Policy Issues and Opportunities  

NLE Websites -- All DOE Office Websites (Extended Search)

U.S. Energy Technology Policy Issues and Opportunities Speaker(s): Holmes Hummel Date: December 14, 2010 - 12:00pm Location: 90-3122 How can existing authorities be leveraged to...

358

Energy Efficiency Opportunities and Challenges Faced by India  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Efficiency Opportunities and Challenges Faced by India Speaker(s): Satish Kumar Date: June 22, 2007 - 12:00pm Location: 90-3122 Seminar HostPoint of Contact: Galen Barbose...

359

Finding Cost-Effective Opportunities for Energy Storage on the...  

NLE Websites -- All DOE Office Websites (Extended Search)

Finding Cost-Effective Opportunities for Energy Storage on the Electric Grid Speaker(s): Ben Kaun Date: January 17, 2014 - 12:00pm - 1:00pm Location: 90-3122 Seminar HostPoint of...

360

Miscellaneous and Electronic Loads Energy Efficiency Opportunities for  

NLE Websites -- All DOE Office Websites (Extended Search)

Miscellaneous and Electronic Loads Energy Efficiency Opportunities for Miscellaneous and Electronic Loads Energy Efficiency Opportunities for Commercial Buildings: A Collaborative Study by the United States and India Title Miscellaneous and Electronic Loads Energy Efficiency Opportunities for Commercial Buildings: A Collaborative Study by the United States and India Publication Type Report Refereed Designation Unknown LBNL Report Number LBNL-6287E Year of Publication 2013 Authors Ghatikar, Girish, Iris H. Y. Cheung, and Steven Lanzisera Secondary Authors Wardell, Bob, Manoj Deshpande, Jayraj Ugarkar, and Infosys Technologies Limited Date Published 04/2013 Keywords Electronic loads, energy efficiency opportunities for commercial buildings Short Title MELs Refereed Designation Unknown Attachment Size PDF 1.44 MB Google Scholar BibTex

Note: This page contains sample records for the topic "opportunities basic energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Basic research needs to assure a secure energy future. A report from the Basic Energy Sciences Advisory Committee  

SciTech Connect

This report has highlighted many of the possible fundamental research areas that will help our country avoid a future energy crisis. The report may not have adequately captured the atmosphere of concern that permeated the discussions at the workshop. The difficulties facing our nation and the world in meeting our energy needs over the next several decades are very challenging. It was generally felt that traditional solutions and approaches will not solve the total energy problem. Knowledge that does not exist must be obtained to address both the quantity of energy needed to increase the standard of living world-wide and the quality of energy generation needed to preserve the environment. In terms of investments, it was clear that there is no single research area that will secure the future energy supply. A diverse range of economic energy sources will be required--and a broad range of fundamental research is needed to enable these. Many of the issues fall into the traditional materials and chemical sciences research areas, but with specific emphasis on understanding mechanisms, energy related phenomena, and pursuing novel directions in, for example, nanoscience and integrated modeling. An important result from the discussions, which is hopefully apparent from the brief presentations above, is that the problems that must be dealt with are truly multidisciplinary. This means that they require the participation of investigators with different skill sets. Basic science skills have to be complemented by awareness of the overall nature of the problem in a national and world context, and with knowledge of the engineering, design, and control issues in any eventual solution. It is necessary to find ways in which this can be done while still preserving the ability to do first-class basic science. The traditional structure of research, with specific disciplinary groupings, will not be sufficient. This presents great challenges and opportunities for the funders of the research that must be done. For example, the applied research programs in the DOE need a greater awareness of the user facilities and an understanding of how to use them to solve their unique problems. The discussions reinforced what all of the participants already knew: the issue of energy security is of major importance both for the U.S. and for the world. Furthermore, it is clear that major changes in the primary energy sources, in energy conversion, and in energy use, must be achieved within the next fifty years. This time scale is determined by two drivers: increasing world population and increasing expectations of that population. Much of the research and development currently being done are concerned with incremental improvements in what has been done in the immediate past; and it is necessary to take this path because improvements will be needed across the board. These advances extend the period before the radical changes have to be made; however, they will not solve the underlying, long-range problem. The Subpanel recommends that a major program be funded to conduct a multidisciplinary research program to address the issues to ensure a secure energy future for the U.S. It is necessary to recognize that this program must be ensured of a long-term stability. It is also necessary that a management and funding structure appropriate for such an approach be developed. The Department of Energy's Office of Basic Energy Sciences is well positioned to support this initiative by enhancement of their already world-class scientific research programs and user facilities.

2003-02-01T23:59:59.000Z

362

Basic research needs to assure a secure energy future. A report from the Basic Energy Sciences Advisory Committee  

SciTech Connect

This report has highlighted many of the possible fundamental research areas that will help our country avoid a future energy crisis. The report may not have adequately captured the atmosphere of concern that permeated the discussions at the workshop. The difficulties facing our nation and the world in meeting our energy needs over the next several decades are very challenging. It was generally felt that traditional solutions and approaches will not solve the total energy problem. Knowledge that does not exist must be obtained to address both the quantity of energy needed to increase the standard of living world-wide and the quality of energy generation needed to preserve the environment. In terms of investments, it was clear that there is no single research area that will secure the future energy supply. A diverse range of economic energy sources will be required--and a broad range of fundamental research is needed to enable these. Many of the issues fall into the traditional materials and chemical sciences research areas, but with specific emphasis on understanding mechanisms, energy related phenomena, and pursuing novel directions in, for example, nanoscience and integrated modeling. An important result from the discussions, which is hopefully apparent from the brief presentations above, is that the problems that must be dealt with are truly multidisciplinary. This means that they require the participation of investigators with different skill sets. Basic science skills have to be complemented by awareness of the overall nature of the problem in a national and world context, and with knowledge of the engineering, design, and control issues in any eventual solution. It is necessary to find ways in which this can be done while still preserving the ability to do first-class basic science. The traditional structure of research, with specific disciplinary groupings, will not be sufficient. This presents great challenges and opportunities for the funders of the research that must be done. For example, the applied research programs in the DOE need a greater awareness of the user facilities and an understanding of how to use them to solve their unique problems. The discussions reinforced what all of the participants already knew: the issue of energy security is of major importance both for the U.S. and for the world. Furthermore, it is clear that major changes in the primary energy sources, in energy conversion, and in energy use, must be achieved within the next fifty years. This time scale is determined by two drivers: increasing world population and increasing expectations of that population. Much of the research and development currently being done are concerned with incremental improvements in what has been done in the immediate past; and it is necessary to take this path because improvements will be needed across the board. These advances extend the period before the radical changes have to be made; however, they will not solve the underlying, long-range problem. The Subpanel recommends that a major program be funded to conduct a multidisciplinary research program to address the issues to ensure a secure energy future for the U.S. It is necessary to recognize that this program must be ensured of a long-term stability. It is also necessary that a management and funding structure appropriate for such an approach be developed. The Department of Energy's Office of Basic Energy Sciences is well positioned to support this initiative by enhancement of their already world-class scientific research programs and user facilities.

None

2003-02-01T23:59:59.000Z

363

Geothermal Heat Pump Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Heat Pump Basics Heat Pump Basics Geothermal Heat Pump Basics August 19, 2013 - 11:12am Addthis Text Version Geothermal heat pumps use the constant temperature of the earth as an exchange medium for heat. Although many parts of the country experience seasonal temperature extremes-from scorching heat in the summer to sub-zero cold in the winter-the ground a few feet below the earth's surface remains at a relatively constant temperature. Depending on the latitude, ground temperatures range from 45°F (7°C) to 75°F (21°C). So, like a cave's, the ground's temperature is warmer than the air above it during winter and cooler than the air above it in summer. Geothermal heat pumps take advantage of this by exchanging heat with the earth through a ground heat exchanger. Geothermal heat pumps are able to heat, cool, and, if so equipped, supply

364

Small Space Heater Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Small Space Heater Basics Small Space Heater Basics Small Space Heater Basics August 19, 2013 - 10:38am Addthis Small space heaters, also called portable heaters, are typically used when the main heating system is inadequate or when central heating is too costly to install or operate. Space heater capacities generally range between 10,000 Btu to 40,000 Btu per hour. Common fuels used for this purpose are electricity, propane, natural gas, and kerosene. Although most space heaters rely on convection (the circulation of air in a room), some rely on radiant heating; that is, they emit infrared radiation that directly heats up objects and people that are within their line of sight. Combustion Space Heaters Space heaters are classified as vented and unvented, or "vent free." Unvented combustion units are not recommended for inside use, as they

365

Federal Energy Management Program: Greenhouse Gas Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

Basics Basics Federal agencies must understand key terms and management basics to successfully manage greenhouse gas (GHG) emissions. Graphic of the top half of earth depicting current arctic sea ice. A red outline depicts arctic sea ice boundaries in 1979. Current arctic sea ice is shown roughly 50% smaller than the 1979 depiction. Greenhouse gases correlate directly to global warming, which impacts arctic sea ice. This image shows current arctic sea ice formation. The red outline depicts arctic sea ice boundaries in 1979. Greenhouse gases are trace gases in the lower atmosphere that trap heat through a natural process called the "greenhouse effect." This process keeps the planet habitable. International research has linked human activities to a rapid increase in GHG concentrations in the atmosphere, contributing to major shifts in the global climate.

366

Vehicle Emission Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vehicle Emission Basics Vehicle Emission Basics Vehicle Emission Basics November 22, 2013 - 2:07pm Addthis Vehicle emissions are the gases emitted by the tailpipes of vehicles powered by internal combustion engines, which include gasoline, diesel, natural gas, and propane vehicles. Vehicle emissions are composed of varying amounts of: water vapor carbon dioxide (CO2) nitrogen oxygen pollutants such as: carbon monoxide (CO) nitrogen oxides (NOx) unburned hydrocarbons (UHCs) volatile organic compounds (VOCs) particulate matter (PM) A number of factors determine the composition of emissions, including the vehicle's fuel, the engine's technology, the vehicle's exhaust aftertreatment system, and how the vehicle operates. Emissions are also produced by fuel evaporation during fueling or even when vehicles are

367

Incandescent Lighting Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Incandescent Lighting Basics Incandescent Lighting Basics Incandescent Lighting Basics August 16, 2013 - 10:00am Addthis Incandescent lamps operate simply by heating a metal filament inside a bulb filled with inert gas. Because they operate directly on variety of common power types including common household alternating current or direct current such as batteries or automobiles, they do not require a special power supply or ballast. They turn on up instantly, providing a warm light with excellent color rendition because the light is produced in much the same way as the light from the sun. They can also be easily dimmed using inexpensive controls and are available in a staggering variety of shapes and sizes. However, incandescent lamps have a low efficacy (10-17 lumens per watt) compared with other lighting options and a short average

368

Ventilation System Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ventilation System Basics Ventilation System Basics Ventilation System Basics August 16, 2013 - 1:33pm Addthis Ventilation is the process of moving air into and out of an interior space by natural or mechanical means. Ventilation is necessary for the health and comfort of occupants of all buildings. Ventilation supplies air for occupants to breathe and removes moisture, odors, and indoor pollutants like carbon dioxide. Too little ventilation may result in poor indoor air quality, while too much may cause unnecessarily higher heating and cooling loads. Natural Ventilation Natural ventilation occurs when outdoor air is drawn inside through open windows or doors. Natural ventilation is created by the differences in the distribution of air pressures around a building. Air moves from areas of

369

Solar Water Heater Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar Water Heater Basics Solar Water Heater Basics Solar Water Heater Basics August 19, 2013 - 3:01pm Addthis Illustration of an active, closed loop solar water heater. A large, flat panel called a flat plate collector is connected to a tank called a solar storage/backup water heater by two pipes. One of these pipes runs through a cylindrical pump into the bottom of the tank, where it becomes a coil called a double-wall heat exchanger. This coil runs up through the tank and out again to the flat plate collector. Antifreeze fluid runs only through this collector loop. Two pipes run out the top of the water heater tank; one is a cold water supply into the tank, and the other sends hot water to the house. Solar water heaters use the sun's heat to provide hot water for a home or

370

Transportation Fuel Basics - Hydrogen | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Transportation Fuel Basics - Hydrogen Transportation Fuel Basics - Hydrogen Transportation Fuel Basics - Hydrogen August 19, 2013 - 5:45pm Addthis Hydrogen (H2) is a potentially emissions-free alternative fuel that can be produced from domestic resources. Although not widely used today as a transportation fuel, government and industry research and development are working toward the goal of clean, economical, and safe hydrogen production and hydrogen-powered fuel cell vehicles. Hydrogen is the simplest and most abundant element in the universe. However, it is rarely found alone in nature. Hydrogen is locked up in enormous quantities in water (H2O), hydrocarbons (such as methane, CH4), and other organic matter. Efficiently producing hydrogen from these compounds is one of the challenges of using hydrogen as a fuel. Currently,

371

Radiant Heating Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Radiant Heating Basics Radiant Heating Basics Radiant Heating Basics August 19, 2013 - 10:33am Addthis Radiant heating systems involve supplying heat directly to the floor or to panels in the walls or ceiling of a house. The systems depend largely on radiant heat transfer: the delivery of heat directly from the hot surface to the people and objects in the room via the radiation of heat, which is also called infrared radiation. Radiant heating is the effect you feel when you can feel the warmth of a hot stovetop element from across the room. When radiant heating is located in the floor, it is often called radiant floor heating or simply floor heating. Despite the name, radiant floor heating systems also depend heavily on convection, the natural circulation of heat within a room, caused by heat rising from the floor. Radiant floor

372

Absorption Heat Pump Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Absorption Heat Pump Basics Absorption Heat Pump Basics Absorption Heat Pump Basics August 19, 2013 - 11:11am Addthis Absorption heat pumps are essentially air-source heat pumps driven not by electricity, but by a heat source such as natural gas, propane, solar-heated water, or geothermal-heated water. Because natural gas is the most common heat source for absorption heat pumps, they are also referred to as gas-fired heat pumps. There are also absorption coolers available that work on the same principal, but are not reversible and cannot serve as a heat source. These are also called gas-fired coolers. How Absorption Heat Pumps Work Residential absorption heat pumps use an ammonia-water absorption cycle to provide heating and cooling. As in a standard heat pump, the refrigerant (in this case, ammonia) is condensed in one coil to release its heat; its

373

Geothermal Resource Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Resource Basics Resource Basics Geothermal Resource Basics August 14, 2013 - 1:58pm Addthis Although geothermal heat pumps can be used almost anywhere, most direct-use and electrical production facilities in the United States are located in the west, where the geothermal resource base is concentrated. Current drilling technology limits the development of geothermal resources to relatively shallow water- or steam-filled reservoirs, most of which are found in the western part of the United States. But researchers are developing new technologies for capturing the heat in deeper, "dry" rocks, which would support drilling almost anywhere. Geothermal Resources Map This map shows the distribution of geothermal resources across the United States. If you have trouble accessing this information because of a

374

Fluorescent Lighting Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fluorescent Lighting Basics Fluorescent Lighting Basics Fluorescent Lighting Basics October 17, 2013 - 5:39pm Addthis Light from a fluorescent lamp is first created by an electric current conducted through an inert gas producing ultraviolet light that is invisible to the human eye. The ultraviolet light in turn interacts with special blends of phosphors coating the interior surface of the fluorescent lamp tube that efficiently converts the invisible light into useful white light. Fluorescent lamps require a special power supply called a ballast that is needed to regulate lamp operating current and provide a compatible start-up voltage. Electronic ballasts perform the same function as a magnetic ballast but outperform the outdated magnetic products by operating at a very high frequency that eliminates flicker and noise while

375

Photovoltaic System Performance Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

System Performance Basics System Performance Basics Photovoltaic System Performance Basics August 20, 2013 - 4:17pm Addthis Photovoltaic (PV) systems are usually composed of numerous solar arrays, which in turn, are composed of numerous PV cells. The performance of the system is therefore dependent on the performance of its components. Reliability The reliability of PV arrays is an important factor in the cost of PV systems and in consumer acceptance. However, the building blocks of arrays, PV cells, are considered "solid-state" devices with no moving parts and, therefore, are highly reliable and long-lived. Therefore, reliability measurements of PV systems are usually focused not on cells but on modules and whole systems. Reliability can be improved through fault-tolerant circuit design, which

376

Fuel Cell Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Basics Basics Fuel Cell Basics August 14, 2013 - 2:09pm Addthis Photo of two hydrogen fuel cells. Fuel cells are an emerging technology that can provide heat and electricity for buildings and electrical power for vehicles and electronic devices. How Fuel Cells Work Fuel cells work like batteries, but they do not run down or need recharging. They produce electricity and heat as long as fuel is supplied. A fuel cell consists of two electrodes-a negative electrode (or anode) and a positive electrode (or cathode)-sandwiched around an electrolyte. A fuel, such as hydrogen, is fed to the anode, and air is fed to the cathode. Activated by a catalyst, hydrogen atoms separate into protons and electrons, which take different paths to the cathode. The electrons go through an external circuit, creating a flow of electricity. The protons

377

Furnace and Boiler Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Furnace and Boiler Basics Furnace and Boiler Basics Furnace and Boiler Basics August 16, 2013 - 2:50pm Addthis Furnaces heat air and distribute the heated air through a building using ducts; boilers heat water, providing either hot water or steam for heating. Furnaces Furnaces are the most common heating systems used in homes in the United States. They can be all electric, gas-fired (including propane or natural gas), or oil-fired. Boilers Boilers consist of a vessel or tank where heat produced from the combustion of such fuels as natural gas, fuel oil, or coal is used to generate hot water or steam. Many buildings have their own boilers, while other buildings have steam or hot water piped in from a central plant. Commercial boilers are manufactured for high- or low-pressure applications.

378

Radiant Heating Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Radiant Heating Basics Radiant Heating Basics Radiant Heating Basics August 19, 2013 - 10:33am Addthis Radiant heating systems involve supplying heat directly to the floor or to panels in the walls or ceiling of a house. The systems depend largely on radiant heat transfer: the delivery of heat directly from the hot surface to the people and objects in the room via the radiation of heat, which is also called infrared radiation. Radiant heating is the effect you feel when you can feel the warmth of a hot stovetop element from across the room. When radiant heating is located in the floor, it is often called radiant floor heating or simply floor heating. Despite the name, radiant floor heating systems also depend heavily on convection, the natural circulation of heat within a room, caused by heat rising from the floor. Radiant floor

379

Hybrid Electric Vehicle Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hybrid Electric Vehicle Basics Hybrid Electric Vehicle Basics Hybrid Electric Vehicle Basics August 20, 2013 - 9:13am Addthis Photo of hands holding a battery pack (grey rectangular box) for a hybrid electric vehicle. Hybrid electric vehicles (HEVs) combine the benefits of high fuel economy and low emissions with the power, range, and convenience of conventional diesel and gasoline fueling. HEV technologies also have potential to be combined with alternative fuels and fuel cells to provide additional benefits. Future offerings might also include plug-in hybrid electric vehicles. Hybrid electric vehicles typically combine the internal combustion engine of a conventional vehicle with the battery and electric motor of an electric vehicle. The combination offers low emissions and convenience-HEVs never need to be plugged in.

380

Hybrid Electric Vehicle Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hybrid Electric Vehicle Basics Hybrid Electric Vehicle Basics Hybrid Electric Vehicle Basics August 20, 2013 - 9:13am Addthis Photo of hands holding a battery pack (grey rectangular box) for a hybrid electric vehicle. Hybrid electric vehicles (HEVs) combine the benefits of high fuel economy and low emissions with the power, range, and convenience of conventional diesel and gasoline fueling. HEV technologies also have potential to be combined with alternative fuels and fuel cells to provide additional benefits. Future offerings might also include plug-in hybrid electric vehicles. Hybrid electric vehicles typically combine the internal combustion engine of a conventional vehicle with the battery and electric motor of an electric vehicle. The combination offers low emissions and convenience-HEVs never need to be plugged in.

Note: This page contains sample records for the topic "opportunities basic energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Photovoltaic Cell Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cell Basics Cell Basics Photovoltaic Cell Basics August 16, 2013 - 4:53pm Addthis Photovoltaic (PV) cells, or solar cells, take advantage of the photoelectric effect to produce electricity. PV cells are the building blocks of all PV systems because they are the devices that convert sunlight to electricity. Commonly known as solar cells, individual PV cells are electricity-producing devices made of semiconductor materials. PV cells come in many sizes and shapes, from smaller than a postage stamp to several inches across. They are often connected together to form PV modules that may be up to several feet long and a few feet wide. Modules, in turn, can be combined and connected to form PV arrays of different sizes and power output. The modules of the array make up the major part of a PV system, which can also include electrical connections,

382

Incandescent Lighting Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Incandescent Lighting Basics Incandescent Lighting Basics Incandescent Lighting Basics August 16, 2013 - 10:00am Addthis Incandescent lamps operate simply by heating a metal filament inside a bulb filled with inert gas. Because they operate directly on variety of common power types including common household alternating current or direct current such as batteries or automobiles, they do not require a special power supply or ballast. They turn on up instantly, providing a warm light with excellent color rendition because the light is produced in much the same way as the light from the sun. They can also be easily dimmed using inexpensive controls and are available in a staggering variety of shapes and sizes. However, incandescent lamps have a low efficacy (10-17 lumens per watt) compared with other lighting options and a short average

383

Ventilation System Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ventilation System Basics Ventilation System Basics Ventilation System Basics August 16, 2013 - 1:33pm Addthis Ventilation is the process of moving air into and out of an interior space by natural or mechanical means. Ventilation is necessary for the health and comfort of occupants of all buildings. Ventilation supplies air for occupants to breathe and removes moisture, odors, and indoor pollutants like carbon dioxide. Too little ventilation may result in poor indoor air quality, while too much may cause unnecessarily higher heating and cooling loads. Natural Ventilation Natural ventilation occurs when outdoor air is drawn inside through open windows or doors. Natural ventilation is created by the differences in the distribution of air pressures around a building. Air moves from areas of

384

Photovoltaic Silicon Cell Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Silicon Cell Basics Silicon Cell Basics Photovoltaic Silicon Cell Basics August 20, 2013 - 2:19pm Addthis Silicon-used to make some the earliest photovoltaic (PV) devices-is still the most popular material for solar cells. Silicon is also the second-most abundant element in the Earth's crust (after oxygen). However, to be useful as a semiconductor material in solar cells, silicon must be refined to a purity of 99.9999%. In single-crystal silicon, the molecular structure-which is the arrangement of atoms in the material-is uniform because the entire structure is grown from the same crystal. This uniformity is ideal for transferring electrons efficiently through the material. To make an effective PV cell, however, silicon has to be "doped" with other elements to make n-type and p-type layers.

385

Photovoltaic Cell Material Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Material Basics Material Basics Photovoltaic Cell Material Basics August 19, 2013 - 4:43pm Addthis Although crystalline silicon cells are the most common type, photovoltaic (PV), or solar cells, can be made of many semiconductor materials. Each material has unique strengths and characteristics that influence its suitability for specific applications. For example, PV cell materials may differ based on their crystallinity, bandgap, absorbtion, and manufacturing complexity. Learn more about each of these characteristics below or learn about these solar cell materials: Silicon (Si)-including single-crystalline Si, multicrystalline Si, and amorphous Si Polycrystalline Thin Films-including copper indium diselenide (CIS), cadmium telluride (CdTe), and thin-film silicon Single-Crystalline Thin Films-including high-efficiency material

386

Natural Gas Vehicle Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Natural Gas Vehicle Basics Natural Gas Vehicle Basics Natural Gas Vehicle Basics August 20, 2013 - 9:15am Addthis Photo of a large truck stopped at a gas station that reads 'Natural Gas for Vehicles.' Natural gas vehicles (NGVs) are either fueled exclusively with compressed natural gas or liquefied natural gas (dedicated NGVs) or are capable of natural gas and gasoline fueling (bi-fuel NGVs). Dedicated NGVs are designed to run only on natural gas. Bi-fuel NGVs have two separate fueling systems that enable the vehicle to use either natural gas or a conventional fuel (gasoline or diesel). In general, dedicated natural gas vehicles demonstrate better performance and have lower emissions than bi-fuel vehicles because their engines are optimized to run on natural gas. In addition, the vehicle does not have to

387

Transportation Fuel Basics - Hydrogen | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Transportation Fuel Basics - Hydrogen Transportation Fuel Basics - Hydrogen Transportation Fuel Basics - Hydrogen August 19, 2013 - 5:45pm Addthis Hydrogen (H2) is a potentially emissions-free alternative fuel that can be produced from domestic resources. Although not widely used today as a transportation fuel, government and industry research and development are working toward the goal of clean, economical, and safe hydrogen production and hydrogen-powered fuel cell vehicles. Hydrogen is the simplest and most abundant element in the universe. However, it is rarely found alone in nature. Hydrogen is locked up in enormous quantities in water (H2O), hydrocarbons (such as methane, CH4), and other organic matter. Efficiently producing hydrogen from these compounds is one of the challenges of using hydrogen as a fuel. Currently,

388

Ethanol Fuel Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ethanol Fuel Basics Ethanol Fuel Basics Ethanol Fuel Basics July 30, 2013 - 12:00pm Addthis biomass in beekers Ethanol is a renewable fuel made from various plant materials, which collectively are called "biomass." Ethanol contains the same chemical compound (C2H5OH) found in alcoholic beverages. Studies have estimated that ethanol and other biofuels could replace 30% or more of U.S. gasoline demand by 2030. Nearly half of U.S. gasoline contains ethanol in a low-level blend to oxygenate the fuel and reduce air pollution. Ethanol is also increasingly available in E85, an alternative fuel that can be used in flexible fuel vehicles. Several steps are required to make ethanol available as a vehicle fuel. Biomass feedstocks are grown and transported to ethanol production

389

Biofuel Conversion Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Biofuel Conversion Basics Biofuel Conversion Basics Biofuel Conversion Basics August 14, 2013 - 12:31pm Addthis The conversion of biomass solids into liquid or gaseous biofuels is a complex process. Today, the most common conversion processes are biochemical- and thermochemical-based. However, researchers are also exploring photobiological conversion processes. Biochemical Conversion Processes In biochemical conversion processes, enzymes and microorganisms are used as biocatalysts to convert biomass or biomass-derived compounds into desirable products. Cellulase and hemicellulase enzymes break down the carbohydrate fractions of biomass to five- and six-carbon sugars in a process known as hydrolysis. Yeast and bacteria then ferment the sugars into products such as ethanol. Biotechnology advances are expected to lead to dramatic

390

Tribal and Utility Partnership Opportunities Webinar | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tribal and Utility Partnership Opportunities Webinar Tribal and Utility Partnership Opportunities Webinar Tribal and Utility Partnership Opportunities Webinar September 25, 2013 11:00AM MDT Webinar The U.S. Department of Energy (DOE) Office of Indian Energy Policy and Programs, Office of Energy Efficiency and Renewable Energy Tribal Energy Program, and Western Area Power Administration are pleased to continue their sponsorship of the Tribal Renewable Energy Webinar Series. Tribes and utilities can be a nexus of renewable energy project development. The future utility likely will have a resource portfolio that is a hybrid of centralized power plants, distributed generation, microgrids, and demand response programs that result in a more efficient system of both generation and consumption. This webinar focuses on the

391

Secretary Chu Highlights Clean Energy Opportunities in Montana | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Clean Energy Opportunities in Montana Clean Energy Opportunities in Montana Secretary Chu Highlights Clean Energy Opportunities in Montana September 16, 2010 - 11:04am Addthis John Schueler John Schueler Former New Media Specialist, Office of Public Affairs What are the key facts? Montana received $26.5 million going toward their weatherization assistance program. The state energy program received $25.9 million. Montana also received an additional $15.2 million for the Energy Efficiency and Conservation Block Grant program. On Tuesday, Secretary Chu took the stage at the Montana Economic Development summit to highlight how the Recovery Act has boosted energy projects across the state and why the state is in prime position to benefit from the shift towards a clean energy economy. The Secretary noted that the Recovery Act has made an historic investment

392

Energy Education for Engineers: Needs and Opportunities  

Science Conference Proceedings (OSTI)

Abstract Scope, Meeting the world's demand for energy is a complex ... the efficiencies of current energy production technologies and in developing new more...

393

Energy Basics: Microhydropower Turbines, Pumps, and Waterwheels  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

A microhydropower system needs a turbine, pump, or waterwheel to transform the energy of flowing water into rotational energy, which is then converted into electricity....

394

Opportunities for K-12 Students | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Opportunities for K-12 Students Opportunities for K-12 Students Opportunities for K-12 Students Younger competitors can demonstrate their skill in converting a gasoline car to electric power, designing the "School of the Future" and more in these competitions sponsored by the U.S. Department of Energy (DOE) and other organizations. DOE-Sponsored America's Home Energy Education Challenge Sponsored by DOE and administered by the National Science Teachers Association, the Challenge is designed to 1) educate students across the United States in grades 3-8 about energy and the benefits of energy efficiency, 2) teach students to recognize that lowering their home energy use saves money and 3) engage students and their families in a save energy, save money initiative. The challenge application will be available in

395

ENERGY RECOVERY FROM SOLID WASTES: OPPORTUNITIES AND PROBLEMS  

E-Print Network (OSTI)

, proper type of energy load (no extreme variations in need or usage), and matching of manufacturing plantENERGY RECOVERY FROM SOLID WASTES: OPPORTUNITIES AND PROBLEMS · CHARLES O. VELZY Charles R Velzy in the energy from refuse field is survey ed including mass-burn, modular combustion, RDF combustion, pyrolysis

Columbia University

396

Integrating Renewable Energy Using Data Analytics Systems: Challenges and Opportunities  

E-Print Network (OSTI)

Integrating Renewable Energy Using Data Analytics Systems: Challenges and Opportunities Andrew and intermittent nature of many renewable energy sources makes integrating them into the electric grid challenging-following loads adjust their power consumption to match the avail- able renewable energy supply. We show Internet

California at Berkeley, University of

397

Small Buildings = Big Opportunity for Energy Savings (Fact Sheet)  

SciTech Connect

Small buildings have a big impact on energy use. In the United States, 44.6 million small buildings consume 44% of the overall energy used in buildings, presenting an enormous opportunity to cut costs, energy use, and greenhouse gas emissions.

Not Available

2013-12-01T23:59:59.000Z

398

Tribal Renewable Energy Foundational Course: Electricity Grid Basics  

Energy.gov (U.S. Department of Energy (DOE))

Watch the U.S. Department of Energy Office of Indian Energy foundational course webinar on electricity grid basics by clicking on the .swf link below. You can also download the PowerPoint slides...

399

BASIC RESEARCH NEEDS IN ENERGY CONSERVATION  

E-Print Network (OSTI)

thermal activation for use with solar systems, is very important to increasing the energy efficiency

Hollander, Jack M.

2011-01-01T23:59:59.000Z

400

Office of Basic Energy Sciences 1990 summary report  

SciTech Connect

Basic research is an important investment in the future which will help the US maintain and enhance its economic strength. The Office of Basic Energy Sciences (BES) basic research activities, carried out mainly in universities and Department of Energy (DOE) laboratories, are critical to the Nation's leadership in science, for training future scientists, and to fortify the Nation's foundations for social and economic well-being. Attainment of the national goals -- energy self-sufficiency, improved health and quality of life for all, economic growth, national security -- depends on both technological research achievements and the ability to exploit them rapidly. Basic research is a necessary element for technology development and economic growth. This report presents the Department of Energy's Office of Basic Energy Sciences program. The BES mission is to develop understanding and to stimulate innovative thinking needed to fortify the Department's missions.

Not Available

1990-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "opportunities basic energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Office of Basic Energy Sciences 1990 summary report  

SciTech Connect

Basic research is an important investment in the future which will help the US maintain and enhance its economic strength. The Office of Basic Energy Sciences (BES) basic research activities, carried out mainly in universities and Department of Energy (DOE) laboratories, are critical to the Nation's leadership in science, for training future scientists, and to fortify the Nation's foundations for social and economic well-being. Attainment of the national goals -- energy self-sufficiency, improved health and quality of life for all, economic growth, national security -- depends on both technological research achievements and the ability to exploit them rapidly. Basic research is a necessary element for technology development and economic growth. This report presents the Department of Energy's Office of Basic Energy Sciences program. The BES mission is to develop understanding and to stimulate innovative thinking needed to fortify the Department's missions.

1990-10-01T23:59:59.000Z

402

Introduction to the Cash Flow Opportunity Calculator Spreadsheet | ENERGY  

NLE Websites -- All DOE Office Websites (Extended Search)

the Cash Flow Opportunity Calculator Spreadsheet the Cash Flow Opportunity Calculator Spreadsheet Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In This Section Campaigns Commercial building design Communications resources Energy management guidance Financial resources Portfolio Manager Products and purchasing Recognition Research and reports Service and product provider (SPP) resources Success stories

403

Global Solar Opportunity Tool: A Tool for Policy Makers and Energy...  

Open Energy Info (EERE)

Global Solar Opportunity Tool: A Tool for Policy Makers and Energy Analysts Jump to: navigation, search Name Global Solar Opportunity Tool: A Tool for Policy Makers and Energy...

404

Energy Basics: Photovoltaic Cell Conversion Efficiency  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

efficiency of a photovoltaic (PV) cell, or solar cell, is the percentage of the solar energy shining on a PV device that is converted into electrical energy, or electricity....

405

Bioconversion energy systems: new developments and opportunities  

Science Conference Proceedings (OSTI)

A discussion on bioconversion applications in beneficiation, direct conversion, and biotreatment is presented. Bioconversion constitutes an important element in meeting the nation's near-term energy goals. Anaerobic digestion is preferred over other biological processes because it produces a clean fuel, it has commercial applications, it produces an energy product and by-product, pretreatment is not necessary, product gases are easily separated, and it has a higher net energy production efficiency than fermentation. Advanced anaerobic digestion systems are described. (DMC)

Ghosh, S.

1981-01-01T23:59:59.000Z

406

Energy Education and Workforce Development: Opportunities for...  

NLE Websites -- All DOE Office Websites (Extended Search)

and industrial building owners by providing technical assistance and proven solutions to energy efficiency. The program also provides a forum for matching Partners and...

407

Understand the risks & opportunities | ENERGY STAR  

NLE Websites -- All DOE Office Websites (Extended Search)

by improving efficiency. Anticipate disruptions to energy supply. Enable participation in demand-response programs. Reduce your carbon foot print. Quickly respond to stakeholder...

408

AMO Industrial Distributed Energy: Funding Opportunities  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Incentives for Renewables & Efficiency (DSIRE). News Energy Department Invests in Next Generation Efficient Lighting June 19, 2013 More News Subscribe to News Updates Events...

409

Connecticut Light & Power - Energy Opportunities Efficiency Program...  

Open Energy Info (EERE)

Furnaces, Boilers, Central Air conditioners, Compressed air, Programmable Thermostats, Energy Mgmt. SystemsBuilding Controls, Motors, Motor VFDs, CustomOthers pending approval...

410

Venture Capital and the New Energy Opportunity  

NLE Websites -- All DOE Office Websites (Extended Search)

venture capital is increasingly providing expansion capital for new companies in the energy sector. The result is a dramatic increase of private capital flows supporting an...

411

Renewable Energy Opportunities Saginaw Chippewa Indian Tribe  

DOE Green Energy (OSTI)

The Saginaw Chippewa Indian Tribe has a vision to become self-sufficient in its energy needs and to maintain its culture and protect Mother Earth with respect and honor for the next seven generations. To achieve this vision, green energy sources such as solar, wind and biomass energy are the best energy paths to travel. In this feasibility study the Tribe has analyzed and provided data on the nature of the renewable resources available to the Tribe and the costs of implementing these technologies.

Saginaw Chippewa Indian Tribe Planning Department; Smiley, Steve; Bennett, Keith, DOE Project Officer

2008-10-22T23:59:59.000Z

412

Energy Efficiency Improvement Opportunities for the Petroleum...  

NLE Websites -- All DOE Office Websites (Extended Search)

News Latest News Videos Community Relations Past Projects Rebuilding Together Energy Teams Events Past Events For The Media Seminars Past Seminars Speakers Distinguished...

413

Energy Opportunities in the Aluminum Processing Industry  

Science Conference Proceedings (OSTI)

As carbon management has grown in importance and project payback becomes ... overall energy within a plant and within the aluminum processing industry.

414

Energy Department Announces Technical Assistance Opportunity...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

energy self-sufficiency and sustainability, advancing economic competitiveness and job creation. "By leveraging our technical resources and expertise we will help Tribal...

415

Energy Education & Workforce Development: Opportunities for University...  

NLE Websites -- All DOE Office Websites (Extended Search)

Adult competitors can immerse themselves in competitions such as designing a more energy-efficient paper industry and constructing a solar-powered house. Buildings Better...

416

STEM Education Opportunities: Grads & Researchers | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

STEM Education Opportunities: Grads & Researchers STEM Education Opportunities: Grads & Researchers STEM Education Opportunities: Grads & Researchers Graduate Automotive Technology Education This DOE program helps universities sponsor student fellowships and develop graduate-level curricula, with accompanying research, in five critical technology areas: fuel cells, hybrid drive trains and control systems, lightweight materials, direct-injection engines, and advanced energy storage. In 2005, DOE began held a second competition to form new, or expand, existing GATE Centers of Excellence. Award recipients receive funds to support graduate fellowships and to establish and/or upgrade and expand course study work and laboratory work to support a graduate engineering degree with a focus or certificate

417

A Basic Overview of the Energy Employees Occupational Illness Compensation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

A Basic Overview of the Energy Employees Occupational Illness A Basic Overview of the Energy Employees Occupational Illness Compensation Program A Basic Overview of the Energy Employees Occupational Illness Compensation Program July 2009 A Basic Overview of the Energy Employees Occupational Illness Compensation Program This pamphlet is developed by the Department of Energy (DOE) as an outreach and awareness tool to assist former and current DOE Federal, contractor, and subcontractor employees to become familiar with and utilize the services and benefits authorized under the Energy Employees Occupational Illness Compensation Program Act (EEOIPCA). There are several Federal entities that support implementation of EEOICPA. Each of these entities serves a critical and unique role in this process. Briefly, the Department of Labor's (DOL) Office of Workers'

418

COMcheck Basics | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

International Energy Conservation Code (IECC) Software: COMcheck Target Audience: ArchitectDesigner Builder Code Official Contractor Engineer State Official Contacts Web Site...

419

REScheck Basics | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

International Energy Conservation Code (IECC) Software: REScheck Target Audience: ArchitectDesigner Builder Code Official Contractor Engineer State Official Contacts Web Site...

420

Energy Basics: Air-Source Heat Pumps  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

from ductwork that protrudes through a wall or roof. More Information Visit the Energy Saver website for more information about the selection and performance of air-source...

Note: This page contains sample records for the topic "opportunities basic energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Energy Basics: Home and Building Technologies  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Home and Building Technologies Homes and other buildings use energy every day for space heating and cooling, for lighting and hot water, and for appliances and electronics. Today's...

422

Energy Basics: Home and Building Technologies  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

& Cooling Water Heating Home and Building Technologies Homes and other buildings use energy every day for space heating and cooling, for lighting and hot water, and for...

423

Energy Basics: Crystalline Silicon Photovoltaic Cells  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

(PV) cell's semiconductors. This section describes the atomic structure and bandgap energy of these cells. Atomic Structure All matter is composed of atoms, which are made up of...

424

Energy Efficiency Improvement and Cost Saving Opportunities for Breweries: An ENERGY STAR(R) Guide for Energy and Plant Managers  

E-Print Network (OSTI)

to Improve Energy Efficiency and Reduce Greenhouse GasIn: Energy Guide. Energy Efficiency Opportunities in theS. (2000). Barriers to Energy Efficiency in the UK Brewing

Galitsky, Christina; Martin, Nathan; Worrell, Ernst; Lehman, Bryan

2003-01-01T23:59:59.000Z

425

Basic Research Needs for Advanced Nuclear Systems. Report of the Basic Energy Sciences Workshop on Basic Research Needs for Advanced Nuclear Energy Systems, July 31-August 3, 2006  

Science Conference Proceedings (OSTI)

The global utilization of nuclear energy has come a long way from its humble beginnings in the first sustained nuclear reaction at the University of Chicago in 1942. Today, there are over 440 nuclear reactors in 31 countries producing approximately 16% of the electrical energy used worldwide. In the United States, 104 nuclear reactors currently provide 19% of electrical energy used nationally. The International Atomic Energy Agency projects significant growth in the utilization of nuclear power over the next several decades due to increasing demand for energy and environmental concerns related to emissions from fossil plants. There are 28 new nuclear plants currently under construction including 10 in China, 8 in India, and 4 in Russia. In the United States, there have been notifications to the Nuclear Regulatory Commission of intentions to apply for combined construction and operating licenses for 27 new units over the next decade. The projected growth in nuclear power has focused increasing attention on issues related to the permanent disposal of nuclear waste, the proliferation of nuclear weapons technologies and materials, and the sustainability of a once-through nuclear fuel cycle. In addition, the effective utilization of nuclear power will require continued improvements in nuclear technology, particularly related to safety and efficiency. In all of these areas, the performance of materials and chemical processes under extreme conditions is a limiting factor. The related basic research challenges represent some of the most demanding tests of our fundamental understanding of materials science and chemistry, and they provide significant opportunities for advancing basic science with broad impacts for nuclear reactor materials, fuels, waste forms, and separations techniques. Of particular importance is the role that new nanoscale characterization and computational tools can play in addressing these challenges. These tools, which include DOE synchrotron X-ray sources, neutron sources, nanoscale science research centers, and supercomputers, offer the opportunity to transform and accelerate the fundamental materials and chemical sciences that underpin technology development for advanced nuclear energy systems. The fundamental challenge is to understand and control chemical and physical phenomena in multi-component systems from femto-seconds to millennia, at temperatures to 1000?C, and for radiation doses to hundreds of displacements per atom (dpa). This is a scientific challenge of enormous proportions, with broad implications in the materials science and chemistry of complex systems. New understanding is required for microstructural evolution and phase stability under relevant chemical and physical conditions, chemistry and structural evolution at interfaces, chemical behavior of actinide and fission-product solutions, and nuclear and thermomechanical phenomena in fuels and waste forms. First-principles approaches are needed to describe f-electron systems, design molecules for separations, and explain materials failure mechanisms. Nanoscale synthesis and characterization methods are needed to understand and design materials and interfaces with radiation, temperature, and corrosion resistance. Dynamical measurements are required to understand fundamental physical and chemical phenomena. New multiscale approaches are needed to integrate this knowledge into accurate models of relevant phenomena and complex systems across multiple length and time scales.

Roberto, J.; Diaz de la Rubia, T.; Gibala, R.; Zinkle, S.; Miller, J.R.; Pimblott, S.; Burns, C.; Raymond, K.; Grimes, R.; Pasamehmetoglu, K.; Clark, S.; Ewing, R.; Wagner, A.; Yip, S.; Buchanan, M.; Crabtree, G.; Hemminger, J.; Poate, J.; Miller, J.C.; Edelstein, N.; Fitzsimmons, T.; Gruzalski, G.; Michaels, G.; Morss, L.; Peters, M.; Talamini, K.

2006-10-01T23:59:59.000Z

426

Sustainable energy policies: research challenges and opportunities  

Science Conference Proceedings (OSTI)

Designing sustainable energy policies heavily impacts the economic development, environmental resource management and social acceptance. There are four main steps in the policy making process: planning, environmental assessment, implementation and monitoring. ...

Michela Milano

2013-03-01T23:59:59.000Z

427

Small Buildings = Big Opportunity for Energy Savings (Fact Sheet)  

SciTech Connect

This fact sheet describes the Small Buildings and Small Portfolios roadmap, which outlines approaches and strategic priorities for the U.S. Department of Energy's Building Technologies Office to pursue over the next three to five years that will support the implementation of high-potential energy efficiency opportunities for small business and building owners and operators.

Not Available

2013-09-01T23:59:59.000Z

428

Energy conservation opportunities in small commercial buildings  

SciTech Connect

As part of a joint project between Duke Power Co. and Oak Ridge National Laboratory (ORNL), a study was performed to determine the energy savings potential of small commercial buildings, located in the Duke Power service territory. This relatively untouched portion of the commercial sector has the potential for reducing energy consumption by 13% - 25%, which corresponds to a reduction in average annual operating costs of $500 - $1000 per building. A database of over sixty customers was used to target five buildings with unusually high levels of energy consumption and/or peak demand. Conservation measures in these buildings were selected on the basis of cost-effectiveness and relative non-intrusiveness on the occupants. Together, ORNL and Duke Power representatives worked on data analysis, site-audits, and measure recommendations. Duke Power supplied hourly and monthly utility data, customer survey information and participated in site-audits. ORNL analyzed the data, developed targeting indices, performed site-audits and corresponding first-order energy simulations on candidate buildings, and recommended individualized conservation retrofits. For the five buildings examined, retrofits including lighting, controls, and HVAC systems accounted for a total reduction in consumption of 32%, and in peak demand of 22%. In addition, the study emphasizes the importance of continuous attention to the operating conditions of HVAC equipment and controls, in order to ensure long-term sustainability of these energy savings.

Abraham, M.M.; MacDonald, J.M.

1995-08-01T23:59:59.000Z

429

Opportunities for energy conservation through biotechnology  

DOE Green Energy (OSTI)

The purpose of this study is to identify and quantify potential energy savings available through the development and application of biotechnologies. This information is required in support of ECUT research planning efforts as an aid in identifying promising areas needing further consideration and development. It is also intended as background information for a companion ECUT study being conducted by the National Academy of Science to evaluate the use of bioprocessing methods to conserve energy. Several studies have been conducted recently to assess the status and implications of the development of biotechnology. The Office of Technology Assessment (OTA) considered institutional, economic, and scientific problems and barriers. The National Science Foundation sponsored a study to examine regulatory needs for this new and expanding technology. Somewhat in contrast to these studies, this report covers principally the technical issues. It should be emphasized that the practicality of many developments in biotechnology is not evaluated solely on the basis of energy considerations. Bioprocesses must often compete with well-established coal, petroleum, and natural gas technologies. A complete evaluation of the technical, economical, and ecological impacts of the large-scale applications discussed in this report is not possible within the scope of this study. Instead, this report assesses the potential of biotechnology to save energy so that research into all aspects of implementation will be stimulated for those industries with significant energy savings potential. 92 references, 6 figures, 24 tables.

Young, J.K.; Griffin, E.A.; Russell, J.A.

1984-11-01T23:59:59.000Z

430

FINANCIAL ASSISTANCE FUNDING OPPORTUNITY ANNOUNCEMENT U. S. Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

U. S. Department of Energy Office of the Under Secretary The DOE FY2010 Phase III Xlerator Program for Energy Efficiency and Renewable Energy, Electricity Delivery and Energy Reliability, Fossil Energy, and Nuclear Energy Funding Opportunity Number: DE-FOA-0000397 Announcement Type: Initial CFDA Number: 81.122, 81.089, 81.121 and 81.087 Issue Date: July 9, 2010 Letter of Intent Due Date: Not Applicable Pre-Application Due Date: Not Applicable Application Due Date: August 4, 2010 at 11:59 PM Eastern Time FOA APPLICATION INSTRUCTIONS ELIGIBLE APPLICANTS: Only DOE Small Business Innovation Research (hereafter SBIR) or Small Business Technology Transfer (hereafter STTR) Phase I and Phase II grantees from FY 2005 to FY 2009 are eligible to apply to this U. S. Department of Energy Phase III Funding Opportunity

431

Renewable Energy Opportunities at Fort Hood, Texas  

Science Conference Proceedings (OSTI)

This report presents the results of Pacific Northwest National Laboratory's (PNNL) follow-on renewable energy (RE) assessment of Fort Hood. Fort Hood receives many solicitations from renewable energy vendors who are interested in doing projects on site. Based on specific requests from Fort Hood staff so they can better understand these proposals, and the results of PNNL's 2008 RE assessment of Fort Hood, the following resources were examined in this assessment: (1) Municipal solid waste (MSW) for waste-to-energy (WTE); (2) Wind; (3) Landfill gas; (4) Solar photovoltaics (PV); and (5) Shale gas. This report also examines the regulatory issues, development options, and environmental impacts for the promising RE resources, and includes a review of the RE market in Texas.

Solana, Amy E.; Warwick, William M.; Orrell, Alice C.; Russo, Bryan J.; Parker, Kyle R.; Weimar, Mark R.; Horner, Jacob A.; Manning, Anathea

2011-11-14T23:59:59.000Z

432

Electric Vehicle Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

bus driving up a hill. Electricity can be used as a transportation fuel to power battery electric vehicles (EVs). EVs store electricity in an energy storage device, such as a...

433

Supporting Advanced Scientific Computing Research * Basic Energy...  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy S ciences N etwork Enabling Virtual Science June 9, 2009 Steve C oer steve@es.net Dept. H ead, E nergy S ciences N etwork Lawrence B erkeley N aDonal L ab The E nergy S...

434

Energy Basics: Flat-Plate Photovoltaic Systems  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

is usually at an angle that is less than optimal. Therefore, fixed arrays collect less energy per unit area of array than tracking arrays. However, this drawback must be balanced...

435

Energy Basics: Low-Pressure Sodium Lighting  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Low-Pressure Sodium Lighting Low-pressure sodium lighting provides more energy-efficient outdoor lighting than high-intensity discharge lighting, but it has very poor color...

436

Energy Basics: Photovoltaic Cell Quantum Efficiency  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

by a photovoltaic (PV) cell to the number of photons-or packets of light-of a given energy shining on the solar cell. Quantum efficiency therefore relates to the response of a...

437

Energy Basics: Tankless Demand Water Heaters  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

only as needed and without the use of a storage tank. They don't produce the standby energy losses associated with storage water heaters. How Demand Water Heaters Work Demand...

438

Energy Basics: Bio-Based Products  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

products, are not only made from renewable sources, but they also often require less energy to produce than petroleum-based ones. Researchers have discovered that the process for...

439

Energy Basics: High-Intensity Discharge Lighting  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and longest service life of any lighting type. It can save 75%-90% of lighting energy when it replaces incandescent lighting. HID lamps use an electric arc to produce...

440

Renewable Energy Opportunities for the Army  

Science Conference Proceedings (OSTI)

The Department of Defense (DoD) has a goal of obtaining 25% of its domestic electricity from renewable sources by 2025, and also must meet federal renewable energy mandates and schedules. This report describes the analyses undertaken to study the renewable resource potential at 15 Army sites, focusing on grid-connected generation of electricity. The resources analyzed at each site include solar, wind, geothermal, biomass, waste-to-energy, and ground source heat pumps (GSHPs). For each renewable generation resource, an assessment was completed to determine the level of resource availability, and the price at which that resource would be available for electricity generation. Various design alternatives and available technologies were considered in order to determine the best way to utilize each resource and maximize cost-effective electricity generation. Economic analysis used multiple funding options, including investment by an independent power producer (IPP), Energy Savings Performance Contract (ESPC), and Energy Conservation Investment Program (ECIP), and considered tax incentives, renewable energy credits, and other economic factors to reveal the most realistic costs possible. Where resource options proved to be economically viable, implementation approaches were recommended. The intention was to focus each installations efforts on realistic projects, moving them from initial assessment through the design and financing to implementation. Many Army sites enjoy very low costs of electricity, limiting the number of cost-effective renewable energy options where resources are available. Waste-to-energy was often a viable option due to the additional revenue gathered from transferred tipping fees. GSHPs were also commonly cost-effective options for replacement in inefficient buildings. Geothermal, wind, and solar resources are found to be more available in certain parts of the country over others, reducing overall potential for use. Wind is variable and often most available in remote areas far from transmission lines, greatly increasing costs. Capital costs for solar energy are high, and the resource is also variable. Table 1 shows which resources are promising for each installation studied. Not all analyses are complete at this point, so some resource potential is still unknown.

Solana, Amy E.; States, Jennifer C.; Chvala, William D.; Weimar, Mark R.; Dixon, Douglas R.

2008-08-13T23:59:59.000Z

Note: This page contains sample records for the topic "opportunities basic energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Energy At Work: Plant Expansion Creates Job Opportunities in Ohio |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy At Work: Plant Expansion Creates Job Opportunities in Ohio Energy At Work: Plant Expansion Creates Job Opportunities in Ohio Energy At Work: Plant Expansion Creates Job Opportunities in Ohio May 24, 2012 - 5:08pm Addthis Wade Reichelderfer is among the recent hires at DuPont's newly expanded solar manufacturing plant in Circleville, Ohio. | Photo courtesy of DuPont. Wade Reichelderfer is among the recent hires at DuPont's newly expanded solar manufacturing plant in Circleville, Ohio. | Photo courtesy of DuPont. Erin R. Pierce Erin R. Pierce Digital Communications Specialist, Office of Public Affairs What does this project do? DuPont's newly expanded solar manufacturing plant in Circleville, Ohio, produces thin film materials to strengthen the durability of solar panels. To support the expansion project, DuPont created 70 new operational

442

Energy At Work: Plant Expansion Creates Job Opportunities in Ohio |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy At Work: Plant Expansion Creates Job Opportunities in Ohio Energy At Work: Plant Expansion Creates Job Opportunities in Ohio Energy At Work: Plant Expansion Creates Job Opportunities in Ohio May 24, 2012 - 5:08pm Addthis Wade Reichelderfer is among the recent hires at DuPont's newly expanded solar manufacturing plant in Circleville, Ohio. | Photo courtesy of DuPont. Wade Reichelderfer is among the recent hires at DuPont's newly expanded solar manufacturing plant in Circleville, Ohio. | Photo courtesy of DuPont. Erin R. Pierce Erin R. Pierce Digital Communications Specialist, Office of Public Affairs What does this project do? DuPont's newly expanded solar manufacturing plant in Circleville, Ohio, produces thin film materials to strengthen the durability of solar panels. To support the expansion project, DuPont created 70 new operational

443

Global Energy Demand, Supply, Consequences, Opportunities  

E-Print Network (OSTI)

/Joule Population-Energy Equation Power = N x (GDP/N) x (Watts/GDP) C Emission Rate = Power x (Carbon/J) #12;d HVAC Onsite Power & Heat Natural Ventilation, Indoor Environment Building Materials Appliances Thermal · Building Materials Tenants · Lease space from Developer or Property Manager · Professional firms, retailers

Knowles, David William

444

Energy efficiency improvement and cost saving opportunities forpetroleum refineries  

Science Conference Proceedings (OSTI)

The petroleum refining industry in the United States is the largest in the world, providing inputs to virtually any economic sector,including the transport sector and the chemical industry. The industry operates 146 refineries (as of January 2004) around the country,employing over 65,000 employees. The refining industry produces a mix of products with a total value exceeding $151 billion. Refineries spend typically 50 percent of cash operating costs (i.e., excluding capital costs and depreciation) on energy, making energy a major cost factor and also an important opportunity for cost reduction. Energy use is also a major source of emissions in the refinery industry making energy efficiency improvement an attractive opportunity to reduce emissions and operating costs. Voluntary government programs aim to assist industry to improve competitiveness through increased energy efficiency and reduced environmental impact. ENERGY STAR (R), a voluntary program managed by the U.S. Environmental Protection Agency, stresses the need for strong and strategic corporate energy management programs. ENERGY STAR provides energy management tools and strategies for successful corporate energy management programs. This Energy Guide describes research conducted to support ENERGY STAR and its work with the petroleum refining industry.This research provides information on potential energy efficiency opportunities for petroleum refineries. This Energy Guide introduces energy efficiency opportunities available for petroleum refineries. It begins with descriptions of the trends, structure, and production of the refining industry and the energy used in the refining and conversion processes. Specific energy savings for each energy efficiency measure based on case studies of plants and references to technical literature are provided. If available, typical payback periods are also listed. The Energy Guide draws upon the experiences with energy efficiency measures of petroleum refineries worldwide. The findings suggest that given available resources and technology, there are opportunities to reduce energy consumption cost-effectively in the petroleum refining industry while maintaining the quality of the products manufactured. Further research on the economics of the measures, as well as the applicability of these to individual refineries, is needed to assess the feasibility of implementation of selected technologies at individual plants.

Worrell, Ernst; Galitsky, Christina

2005-02-15T23:59:59.000Z

445

Renewable Energy Opportunities at Fort Hood, Texas  

DOE Green Energy (OSTI)

The document provides an overview of renewable resource potential at Fort Hood based primarily upon analysis of secondary data sources supplemented with limited on-site evaluations. The effort was funded by the U.S. Army Installation Management Command (IMCOM) as follow-on to the 2005 DoD Renewables Assessment. This effort focuses on grid-connected generation of electricity from renewable energy sources and also ground source heat pumps for heating and cooling buildings, as directed by IMCOM.

Chvala, William D.; Warwick, William M.; Dixon, Douglas R.; Solana, Amy E.; Weimar, Mark R.; States, Jennifer C.; Reilly, Raymond W.

2008-06-30T23:59:59.000Z

446

Federal Opportunities to Leverage the Commercial Building Energy Alliance  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

| Building Technologies Program | Building Technologies Program buildings.energy.gov Federal Opportunities to Leverage the Commercial Building Energy Alliance Brian Holuj Building Technologies Program March 15, 2012 IATF Technology Deployment Working Group - Commercial Building Energy Alliance Building owners and operators, efficiency organizations and DOE target common energy efficiency challenges and opportunities Retail and Food Commercial Real Estate Hospitals Service and Hospitality * 55 members * 2.2+ billion ft 2 * 95 members * 5.3+ billion ft 2 * 51 members * 0.5+ billion ft 2 Strength in numbers → Higher Ed sector added in 2011; new members join regularly www.commercialbuildings.energy.gov/alliances 1 | Building Technologies Program buildings.energy.gov Approx. market % from member reported ft

447

Federal Opportunities to Leverage the Commercial Building Energy Alliance  

NLE Websites -- All DOE Office Websites (Extended Search)

| Building Technologies Program | Building Technologies Program buildings.energy.gov Federal Opportunities to Leverage the Commercial Building Energy Alliance Brian Holuj Building Technologies Program March 15, 2012 IATF Technology Deployment Working Group - Commercial Building Energy Alliance Building owners and operators, efficiency organizations and DOE target common energy efficiency challenges and opportunities Retail and Food Commercial Real Estate Hospitals Service and Hospitality * 55 members * 2.2+ billion ft 2 * 95 members * 5.3+ billion ft 2 * 51 members * 0.5+ billion ft 2 Strength in numbers → Higher Ed sector added in 2011; new members join regularly www.commercialbuildings.energy.gov/alliances 1 | Building Technologies Program buildings.energy.gov Approx. market % from member reported ft

448

Energy Management: Back to the Basics  

E-Print Network (OSTI)

In 2005, Texas Petrochemicals LP achieved a reduction in energy usage of 6.2 percent when compared to 2004. This is based on the but per pound of plant-wide production. Also, halfway through 2006, the company has achieved a reduction in energy usage of 11.6 percent when compared to 2005. This was accomplished in spite of the fact that market conditions forced plant-wide production to be reduced by 2.5 percent. The following projects and procedures were implemented to achieve these results: Overall energy management system with top-down support Conversion of 2 boilers to a CO control strategy Using combustion analysis metrics to drive boiler pre-heater cleanings Deaerator optimization Utility leak repair program Steam trap management program Insulation program Distillation targets assessment and optimization Advanced and regulatory process control improvements Conversion of steam turbines (vented to atmosphere) to high-efficiency motors Diversity of natural gas suppliers The company is initially targeting an energy reduction goal of 5 percent year over year.

Diamond, S.

2007-01-01T23:59:59.000Z

449

Energy Basics: Direct-Use of Geothermal Technologies  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

EERE: Energy Basics Direct-Use of Geothermal Technologies Hot water near the surface of the Earth can be used for heat for a variety of commercial and industrial uses. Direct-use...

450

Energy Basics: Ultra-Low Sulfur Diesel Fuel  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

EERE: Energy Basics Ultra-Low Sulfur Diesel Fuel Ultra-low sulfur diesel (ULSD) is diesel fuel with 15 parts per million or lower sulfur content. The U.S. Environmental Protection...

451

Energy Basics: Natural Gas as a Transportation Fuel  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

EERE: Energy Basics Natural Gas as a Transportation Fuel Only about one tenth of one percent of all of the natural gas in the United States is currently used for transportation...

452

Assessment of Biomass Energy Opportunities for the Red Lake Band of Chippewa Indians  

Science Conference Proceedings (OSTI)

Assessment of biomass energy and biobased product manufacturing opportunities for the Red Lake Tribe.

Scott Haase (McNeil Technologies, Inc)

2005-09-30T23:59:59.000Z

453

Clean Energy Opportunity Forum - Creating the New Energy Economy (Presentation)  

SciTech Connect

A presentation at the 22nd Industry Growth Forum by Marty Murphy about making connections and business opportunities in the cleantech industry.

Murphy, L. M.

2009-11-05T23:59:59.000Z

454

Industrial Energy Audit Basics by an Energy Auditor  

E-Print Network (OSTI)

The purpose of an energy audit is the first step in energy cost control. There are two types of energy audits - Traditional and Investment grades. The process of an energy audit consists of collecting and then processing data, specifying changes, and finally producing an action plan. Before visiting the site utility bills need to be obtained. Building information and weather data should be gathered and any information on major equipment should be gathered. When the auditor goes to the site, safety if of prime importance. Before starting a walk-thru, a meeting with plant managers and equipment operators should take place, then the collecting of data. After returning to the office the data is analyzed and energy conservation opportunities are developed and a report written. A Traditional energy audit is technical. It is a snapshot that assumes all conditions stay the same. It is about 75 percent accurate. It consists of all the steps above but its weaknesses is that it is focused on equipment, ignoring the human element, and is generic in its recommendations. No commitment is obtained from management and no measurement or verification is established. The Investment Grade audit is the Traditional audit plus Risk Assessment. It reduces uncertainty, increases consistency, and produces a 95 to 115 percent accuracy. It looks at ancillary equipment, provides a maintenance program, and looks at future plans. The Investment Grade audit considers the PEOPLE factor which includes management commitment, operator training, budget, and maintenance. It also considers Financial and Legal factors as well as Air Quality issues. Generally, utility bills should exceed $500,000 to justify an Investment Grade audit. Time is also an issue in that money is going out in fees and expenses and not coming in as savings. There must also be a project manager assigned to coordinate communications. The Investment Grade audit makes continuous commissioning and performance contracting possible. With the high cost of energy today, energy audits are a worthwhile consideration for any business. Know what is available in the market and who is qualified. You are loosing money every hour equipment is operating inefficiently.

Phillips, J.

2011-01-01T23:59:59.000Z

455

Renewable Energy Opportunities at Fort Sill, Oklahoma  

DOE Green Energy (OSTI)

This document provides an overview of renewable resource potential at Fort Sill, based primarily upon analysis of secondary data sources supplemented with limited on-site evaluations. This effort focuses on grid-connected generation of electricity from renewable energy sources and on ground source heat pumps for heating and cooling buildings. The effort was funded by the U.S. Army Installation Management Command (IMCOM) as follow-on to the 2005 Department of Defense (DoD) Renewables Assessment. The site visit to Fort Sill took place on June 10, 2010.

Boyd, Brian K.; Hand, James R.; Horner, Jacob A.; Orrell, Alice C.; Russo, Bryan J.; Weimar, Mark R.; Nesse, Ronald J.

2011-03-31T23:59:59.000Z

456

Lithium-ion Energy Storage Market Opportunities  

Science Conference Proceedings (OSTI)

Lithium-ion (Li-ion) batteries have garnered major investment in R&D and manufacturing as the initial chemistry of choice for the electric transportation industry. This report presents granular cost/benefit analysis for Li-ion based energy storage systems for utility and customer-side of the meter stationary applications. Li-ion batteries have desirable performance characteristics with the potential for kW- and MW-scale systems with flexible functionality to address multiple benefit streams from a single...

2010-12-31T23:59:59.000Z

457

Energy Efficiency Improvement and Cost Saving Opportunities for the Glass Industry. An ENERGY STAR Guide for Energy and Plant Managers  

E-Print Network (OSTI)

identify and evaluate energy-saving opportunities, recommendDemonstration of Energy Savings of Cool Roofs. LawrenceT60. Backhausen, J. (2000). Energy Saving and Emission

Worrell, Ernst

2008-01-01T23:59:59.000Z

458

Energy Efficiency Improvement and Cost Saving Opportunities for the Glass Industry. An ENERGY STAR Guide for Energy and Plant Managers  

E-Print Network (OSTI)

opportunities, recommend energy efficiency actions, developM. Kushler (1997). Energy Efficiency in Automotive and Steelthe ACEEE Summer Study on Energy Efficiency in Industry, Rye

Worrell, Ernst

2008-01-01T23:59:59.000Z

459

ENERGY EFFICIENCY OPPORTUNITIES IN THE U.S. PULP AND PAPER INDUSTRY  

E-Print Network (OSTI)

and Cost Saving Opportunities. Office of Energy Efficiency and RenewableProduction Costs. Office of Energy Efficiency and Renewable

Kramer, Klaas Jan

2010-01-01T23:59:59.000Z

460

Photovoltaic Cell Conversion Efficiency Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Conversion Efficiency Basics Conversion Efficiency Basics Photovoltaic Cell Conversion Efficiency Basics August 20, 2013 - 2:58pm Addthis The conversion efficiency of a photovoltaic (PV) cell, or solar cell, is the percentage of the solar energy shining on a PV device that is converted into electrical energy, or electricity. Improving this conversion efficiency is a key goal of research and helps make PV technologies cost-competitive with more traditional sources of energy. Factors Affecting Conversion Efficiency Much of the energy from sunlight reaching a PV cell is lost before it can be converted into electricity. But certain characteristics of solar cell materials also limit a cell's efficiency to convert the sunlight it receives. Wavelength of Light Light is composed of photons-or packets of energy-that range in

Note: This page contains sample records for the topic "opportunities basic energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Large Scale Computing and Storage Requirements for Basic Energy Sciences Research  

E-Print Network (OSTI)

COMPUTING AND STORAGE REQUIREMENTS Basic Energy SciencesEnergy Sciences 8.2.1.4 Computational and Storage Computing and Storage Requirements for Basic Energy

Gerber, Richard

2012-01-01T23:59:59.000Z

462

Emerging Markets for Renewable Energy Certificates: Opportunities and Challenges  

NLE Websites -- All DOE Office Websites (Extended Search)

Markets for Markets for Renewable Energy Certificates: Opportunities and Challenges January 2005 * NREL/TP-620-37388 Ed Holt Ed Holt and Associates Inc. Lori Bird National Renewable Energy Laboratory National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov Operated for the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy by Midwest Research Institute * Battelle Contract No. DE-AC36-99-GO10337 National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov Operated for the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy by Midwest Research Institute * Battelle Contract No. DE-AC36-99-GO10337

463

FINANCIAL ASSISTANCE FUNDING OPPORTUNITY ANNOUNCEMENT U. S. Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

U. S. Department of Energy Idaho Operations Office Fiscal Year 2014 Consolidated Innovative Nuclear Research Funding Opportunity Announcement: DE-FOA-0000998 Announcement Type: Initial CFDA Number: 81.121 Issue Date: October 31, 2013 Pre-Application (Mandatory) Due Date: December 2, 2013 at 8:00 PM ET Application Due Date: April 3, 2014 at 8:00 PM ET Page 2 of 87 Table of Contents PART I - FUNDING OPPORTUNITY DESCRIPTIONS ................................................................. 7 A. STATEMENT OF OBJECTIVES....................................................................................... 7 1. Background and Objectives ................................................................................................. 7

464

Energy Efficiency Opportunities in Federal High Performance Computing Data Centers  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Efficiency Efficiency Opportunities in Federal High Performance Computing Data Centers Prepared for the U.S. Department of Energy Federal Energy Management Program By Lawrence Berkeley National Laboratory Rod Mahdavi, P.E. LEED A.P. September 2013 2 Contacts Rod Mahdavi, P.E. LEED AP Lawrence Berkeley National Laboratory (510) 495-2259 rmahdavi@lbl.gov For more information on FEMP: Will Lintner, P.E. Federal Energy Management Program U.S. Department of Energy (202) 586-3120 william.lintner@ee.doe.gov 3 Contents Executive Summary .................................................................................................... 6 Overview .................................................................................................................... 7

465

Environmental Protection through Energy Efficiency: Catalyzing New Opportunities  

E-Print Network (OSTI)

Increasing attention to environmental issues at home and abroad is providing a new impetus for companies to improve energy efficiency. In doing so, this attention is creating new market opportunities for energy efficient products. There is increasing recognition that energy, environment, and economic issues are closely linked. In this era of increasing environmental awareness, U.S. companies are finding that improving energy efficiency provides a cost effective means to reduce the environmental impact of their operations, improve compliance with environment standards, and promote a better image.

Silbiger, A.; Smith, J. B.

1992-04-01T23:59:59.000Z

466

FWP executive summaries: Basic energy sciences materials sciences programs  

Science Conference Proceedings (OSTI)

This report provides an Executive Summary of the various elements of the Materials Sciences Program which is funded by the Division of Materials Sciences, Office of Basic Energy Sciences, U.S. Department of Energy at Sandia National Laboratories, New Mexico.

Samara, G.A.

1996-02-01T23:59:59.000Z

467

Opportunities for Energy Efficiency and Demand Response in the California  

NLE Websites -- All DOE Office Websites (Extended Search)

Opportunities for Energy Efficiency and Demand Response in the California Opportunities for Energy Efficiency and Demand Response in the California Cement Industry Title Opportunities for Energy Efficiency and Demand Response in the California Cement Industry Publication Type Report LBNL Report Number LBNL-4849E Year of Publication 2010 Authors Olsen, Daniel, Sasank Goli, David Faulkner, and Aimee T. McKane Date Published 12/2010 Publisher CEC/LBNL Keywords cement industry, cement sector, demand response, electricity use, energy efficiency, market sectors, mineral manufacturing, technologies Abstract This study examines the characteristics of cement plants and their ability to shed or shift load to participate in demand response (DR). Relevant factors investigated include the various equipment and processes used to make cement, the operational limitations cement plants are subject to, and the quantities and sources of energy used in the cement-making process. Opportunities for energy efficiency improvements are also reviewed. The results suggest that cement plants are good candidates for DR participation. The cement industry consumes over 400 trillion Btu of energy annually in the United States, and consumes over 150 MW of electricity in California alone. The chemical reactions required to make cement occur only in the cement kiln, and intermediate products are routinely stored between processing stages without negative effects. Cement plants also operate continuously for months at a time between shutdowns, allowing flexibility in operational scheduling. In addition, several examples of cement plants altering their electricity consumption based on utility incentives are discussed. Further study is needed to determine the practical potential for automated demand response (Auto-DR) and to investigate the magnitude and shape of achievable sheds and shifts.

468

CSP: Perspectives and Opportunities Webinar | Open Energy Information  

Open Energy Info (EERE)

CSP: Perspectives and Opportunities Webinar CSP: Perspectives and Opportunities Webinar Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Concentrating Solar Power Overview Webinar Agency/Company /Organization: National Renewable Energy Laboratory, United States Department of Energy, Centro de Energías Renovables (CER) Sector: Energy Focus Area: Solar, - Concentrating Solar Power Resource Type: Webinar, Training materials Website: www.nrel.gov/csp/ References: Concentrating Solar Power Overview [1] Webinar Video Click here to watch the webinar https://mmancusa.webex.com/mmancusa/ldr.php?AT=pb&SP=MC&rID=42294577&rKey=2b8c3800c9c1c824 Presentation Speaker Biography Craig S. Turchi-Senior Engineer II Ph.D. Chemical Engineering, North Carolina State University B.S. Chemical Engineering, Texas A&M University

469

Opportunities and Domestic Barriers to Clean Energy Investment in Chile |  

Open Energy Info (EERE)

Opportunities and Domestic Barriers to Clean Energy Investment in Chile Opportunities and Domestic Barriers to Clean Energy Investment in Chile Jump to: navigation, search Tool Summary Name: Opportunities and Domestic Barriers to Clean Energy Investment in Chile Agency/Company /Organization: International Institute for Sustainable Development (IISD) Sector: Energy Focus Area: Renewable Energy Topics: Finance, Market analysis, Background analysis Website: www.iisd.org/pdf/2010/bali_2_copenhagen_Chile_Jun2010.pdf Country: Chile UN Region: Latin America and the Caribbean Coordinates: -35.675147°, -71.542969° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":-35.675147,"lon":-71.542969,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

470

NREL: Learning - Wind Energy Basics: How Wind Turbines Work  

NLE Websites -- All DOE Office Websites (Extended Search)

Wind Energy Basics: How Wind Turbines Work Wind Energy Basics: How Wind Turbines Work We have been harnessing the wind's energy for hundreds of years. From old Holland to farms in the United States, windmills have been used for pumping water or grinding grain. Today, the windmill's modern equivalent-a wind turbine-can use the wind's energy to generate electricity. Wind turbines, like windmills, are mounted on a tower to capture the most energy. At 100 feet (30 meters) or more aboveground, they can take advantage of the faster and less turbulent wind. Turbines catch the wind's energy with their propeller-like blades. Usually, two or three blades are mounted on a shaft to form a rotor. A blade acts much like an airplane wing. When the wind blows, a pocket of low-pressure air forms on the downwind side of the blade. The low-pressure

471

Photovoltaic Cell Quantum Efficiency Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cell Quantum Efficiency Basics Cell Quantum Efficiency Basics Photovoltaic Cell Quantum Efficiency Basics August 20, 2013 - 3:05pm Addthis Quantum efficiency (QE) is the ratio of the number of charge carriers collected by a photovoltaic (PV) cell to the number of photons-or packets of light-of a given energy shining on the solar cell. Quantum efficiency therefore relates to the response of a solar cell to the various wavelengths in the spectrum of light shining on the cell. The QE is given as a function of either wavelength or energy. If all the photons of a certain wavelength are absorbed and the resulting minority carriers (for example, electrons in a p-type material) are collected, then the QE at that particular wavelength has a value of one. The QE for photons with energy below the bandgap is zero.

472

Microhydropower Turbine, Pump, and Waterwheel Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Microhydropower Turbine, Pump, and Waterwheel Basics Microhydropower Turbine, Pump, and Waterwheel Basics Microhydropower Turbine, Pump, and Waterwheel Basics August 16, 2013 - 3:58pm Addthis A microhydropower system needs a turbine, pump, or waterwheel to transform the energy of flowing water into rotational energy, which is then converted into electricity. Turbines Turbines are commonly used to power microhydropower systems. The moving water strikes the turbine blades, much like a waterwheel, to spin a shaft. But turbines are more compact in relation to their energy output than waterwheels. They also have fewer gears and require less material for construction. There are two general types of turbines: impulse and reaction. Impulse Turbines Impulse turbines, which have the least complex design, are most commonly

473

Microhydropower Turbine, Pump, and Waterwheel Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Microhydropower Turbine, Pump, and Waterwheel Basics Microhydropower Turbine, Pump, and Waterwheel Basics Microhydropower Turbine, Pump, and Waterwheel Basics August 16, 2013 - 3:58pm Addthis A microhydropower system needs a turbine, pump, or waterwheel to transform the energy of flowing water into rotational energy, which is then converted into electricity. Turbines Turbines are commonly used to power microhydropower systems. The moving water strikes the turbine blades, much like a waterwheel, to spin a shaft. But turbines are more compact in relation to their energy output than waterwheels. They also have fewer gears and require less material for construction. There are two general types of turbines: impulse and reaction. Impulse Turbines Impulse turbines, which have the least complex design, are most commonly

474

Basic research needed for the development of geothermal energy  

DOE Green Energy (OSTI)

Basic research needed to facilitate development of geothermal energy is identified. An attempt has been made to make the report representative of the ideas of productive workers in the field. The present state of knowledge of geothermal energy is presented and then specific recommendations for further research, with status and priorities, are listed. Discussion is limited to a small number of applicable concepts, namely: origin of geothermal flux; transport of geothermal energy; geothermal reservoirs; rock-water interactions, and geophysical and geochemical exploration.

Aamodt, R.L.; Riecker, R.E.

1980-10-01T23:59:59.000Z

475

Energy 101 Videos: Learn More About the Basics! | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy 101 Videos: Learn More About the Basics! Energy 101 Videos: Learn More About the Basics! Energy 101 Videos: Learn More About the Basics! August 30, 2010 - 4:42pm Addthis Elizabeth Spencer Communicator, National Renewable Energy Laboratory Okay, so we already pointed out the Energy Basics Web site last week. Because I'm going to talk about something on the site, I wanted to remind you all of what it is: a brand new Web site on EERE that talks about the basics of how energy efficiency and renewable energy technologies work. A little place to find out the "What is it, and how does it work?" nuggets of information, basically. But I wanted to point out something in particular: the Energy 101 series of videos! There are two so far, although more will be posted in the future. The two that are there now, Wind Turbines Basics and Concentrating Solar Power

476

Energy Efficiency Improvement and Cost Saving Opportunities for the Fruit and Vegetable Processing Industry. An ENERGY STAR Guide for Energy and Plant Managers  

E-Print Network (OSTI)

Refrigeration: Introducing Energy Saving Opportunities forPotential for Electric Energy Savings in the ManufacturingManufacturing Produces Energy- Saving Opportunities. http://

Masanet, Eric

2008-01-01T23:59:59.000Z

477

BIT101 - EOTA Basic Instructor Training | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

BIT101 - EOTA Basic Instructor Training BIT101 - EOTA Basic Instructor Training BIT101 - EOTA Basic Instructor Training April 4, 2014 7:30AM MDT to April 18, 2014 5:00PM MDT Registration link: EOTA Registration Course Type: Classroom Training (Instructor-Led) Course Location: Phillips Technlogoy Institute (PTi) Kirtland Air Force Base, Building 1900 (Maxwell) Course Description: This course is offered to instructors who provide training to site personnel. The mission is to assure the quality and consistency of training provided to the Department of Energy facilities nationwide. The purpose is to train DOE and DOE contractor instructors in the basic teaching tools needed to provide effecitve and current training techniques, as well as make classroom activities a valuable learning experience.

478

Energy Conservation Opportunities in Hydrocarbon Resin Manufacturing Facilities  

E-Print Network (OSTI)

"The results of a plant-wide assessment of the manufacturing facilities of Neville Chemical Company, a manufacturer of hydrocarbon resins will be presented in this paper. The project was co-funded by US Department of Energy under its Plant-Wide Opportunity Assessment Program. Resin manufacturing is a highly energy intensive process. The process needs extensive heating accomplished through steam boilers and thermal oil heaters, and cooling which is accomplished through refrigeration as well as process cooling water systems. Detailed energy assessment of Neville Chemical plants has shown significant energy conservation opportunities. For the less capital-intensive measures, energy cost savings of 20% to 30% with paybacks of less than two years were identified. The identified measures can be easily replicated in similar facilities. In this paper, details of the processes in hydrocarbon resin production from an energy consumption viewpoint will be discussed, current prevalent practices in the industry will be elaborated, and potential measures for energy use and cost savings will be outlined."

Ganji, A. R.

2003-05-01T23:59:59.000Z

479

Combined Heat and Power Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Combined Heat and Power Basics Combined Heat and Power Basics Combined Heat and Power Basics November 1, 2013 - 11:40am Addthis Combined heat and power (CHP), also known as cogeneration, is: A process flow diagram showing efficiency benefits of CHP CHP Process Flow Diagram The concurrent production of electricity or mechanical power and useful thermal energy (heating and/or cooling) from a single source of energy. A type of distributed generation, which, unlike central station generation, is located at or near the point of consumption. A suite of technologies that can use a variety of fuels to generate electricity or power at the point of use, allowing the heat that would normally be lost in the power generation process to be recovered to provide needed heating and/or cooling. CHP technology can be deployed quickly, cost-effectively, and with few

480

Crystalline Silicon Photovolatic Cell Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Crystalline Silicon Photovolatic Cell Basics Crystalline Silicon Photovolatic Cell Basics Crystalline Silicon Photovolatic Cell Basics August 19, 2013 - 4:58pm Addthis Crystalline silicon cells are made of silicon atoms connected to one another to form a crystal lattice. This lattice comprises the solid material that forms the photovoltaic (PV) cell's semiconductors. This section describes the atomic structure and bandgap energy of these cells. Atomic Structure Illustration of a silicon crystal with its 14 electrons orbiting a nucleus of protons and neutrons. As depicted in this simplified diagram, silicon has 14 electrons. The four electrons that orbit the nucleus in the outermost "valence" energy level are given to, accepted from, or shared with other atoms. All matter is composed of atoms, which are made up of positively charged

Note: This page contains sample records for the topic "opportunities basic energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Opportunities for Energy Efficiency and Demand Response in the California Cement Industry  

E-Print Network (OSTI)

OpportunitiesforEnergy EfficiencyandDemandResponseinAgricultural/WaterEnd?UseEnergyEfficiencyProgram. i1 4.0 EnergyEfficiencyandDemandResponse

Olsen, Daniel

2012-01-01T23:59:59.000Z

482

Energy-Efficiency Improvement Opportunities for the Textile Industry  

SciTech Connect

The textile industry is one of the most complicated manufacturing industries because it is a fragmented and heterogeneous sector dominated by small and medium enterprises (SMEs). Energy is one of the main cost factors in the textile industry. Especially in times of high energy price volatility, improving energy efficiency should be a primary concern for textile plants. There are various energy-efficiency opportunities that exist in every textile plant, many of which are cost-effective. However, even cost-effective options often are not implemented in textile plants mostly because of limited information on how to implement energy-efficiency measures, especially given the fact that a majority of textile plants are categorized as SMEs and hence they have limited resources to acquire this information. Know-how on energy-efficiency technologies and practices should, therefore, be prepared and disseminated to textile plants. This guidebook provides information on energy-efficiency technologies and measures applicable to the textile industry. The guidebook includes case studies from textile plants around the world and includes energy savings and cost information when available. First, the guidebook gives a brief overview of the textile industry around the world, with an explanation of major textile processes. An analysis of the type and the share of energy used in different textile processes is also included in the guidebook. Subsequently, energy-efficiency improvement opportunities available within some of the major textile sub-sectors are given with a brief explanation of each measure. The conclusion includes a short section dedicated to highlighting a few emerging technologies in the textile industry as well as the potential for the use of renewable energy in the textile industry.

China Energy Group; Hasanbeigi, Ali

2010-09-29T23:59:59.000Z

483

Energy Efficiency and Value: Opportunities for Investors | ENERGY...  

NLE Websites -- All DOE Office Websites (Extended Search)

providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors...

484

Energy Efficiency Opportunities in EPA's Boiler Rules | ENERGY...  

NLE Websites -- All DOE Office Websites (Extended Search)

providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors...

485

Energy 101 Videos: Learn More About the Basics! | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Videos: Learn More About the Basics! Videos: Learn More About the Basics! Energy 101 Videos: Learn More About the Basics! August 30, 2010 - 4:42pm Addthis Elizabeth Spencer Communicator, National Renewable Energy Laboratory Okay, so we already pointed out the Energy Basics Web site last week. Because I'm going to talk about something on the site, I wanted to remind you all of what it is: a brand new Web site on EERE that talks about the basics of how energy efficiency and renewable energy technologies work. A little place to find out the "What is it, and how does it work?" nuggets of information, basically. But I wanted to point out something in particular: the Energy 101 series of videos! There are two so far, although more will be posted in the future. The two that are there now, Wind Turbines Basics and Concentrating Solar Power

486

Financing Opportunities for Renewable Energy Development in Alaska  

SciTech Connect

This technical report provides an overview of existing and potential financing structures for renewable energy project development in Alaska with a focus on four primary sources of project funding: government financed or supported (the most commonly used structure in Alaska today), developer equity capital, commercial debt, and third-party tax-equity investment. While privately funded options currently have limited application in Alaska, their implementation is theoretically possible based on successful execution in similar circumstances elsewhere. This report concludes that while tax status is a key consideration in determining appropriate financing structure, there are opportunities for both taxable and tax-exempt entities to participate in renewable energy project development.

Ardani, K.; Hillman, D.; Busche, S.

2013-04-01T23:59:59.000Z

487

Energy efficiency standards for residential and commercial equipment: Additional opportunities  

SciTech Connect

Energy efficiency standards set minimum levels of energy efficiency that must be met by new products. Depending on the dynamics of the market and the level of the standard, the effect on the market for a given product may be small, moderate, or large. Energy efficiency standards address a number of market failures that exist in the buildings sector. Decisions about efficiency levels often are made by people who will not be responsible for the energy bill, such as landlords or developers of commercial buildings. Many buildings are occupied for their entire lives by very temporary owners or renters, each unwilling to make long-term investments that would mostly reward subsequent users. And sometimes what looks like apathy about efficiency merely reflects inadequate information or time invested to evaluate it. In addition to these sector-specific market failures, energy efficiency standards address the endemic failure of energy prices to incorporate externalities. In the U.S., energy efficiency standards for consumer products were first implemented in California in 1977. National standards became effective starting in 1988. By the end of 2001, national standards were in effect for over a dozen residential appliances, as well as for a number of commercial sector products. Updated standards will take effect in the next few years for several products. Outside the U.S., over 30 countries have adopted minimum energy performance standards. Technologies and markets are dynamic, and additional opportunities to improve energy efficiency exist. There are two main avenues for extending energy efficiency standards. One is upgrading standards that already exist for specific products. The other is adopting standards for products that are not covered by existing standards. In the absence of new and upgraded energy efficiency standards, it is likely that many new products will enter the stock with lower levels of energy efficiency than would otherwise be the case. Once in the stock, it is either impossible or more costly to improve the energy efficiency. Therefore, by not expanding or upgrading energy efficiency standards, opportunities for saving energy would be lost. In the past two decades, standards have significantly raised the level of energy efficiency for new products. How much more might be gained by making standards more stringent on products already subject to them, or by extending standards to products not yet covered? The main goal of this study is to estimate key national impacts of new and upgraded energy efficiency standards for residential and commercial equipment. These impacts approximate the opportunity for national benefits that may be lost if standards are not upgraded and expanded from current levels. This study also identifies the end uses where the largest opportunities exist. This analysis was prepared for the National Commission on Energy Policy (NCEP). It uses an analytical approach that is similar in concept to that used by the U.S. Department of Energy (DOE) to set standard levels. It relies on much less data and uses more simplified assumptions than the detailed and complex formulations used in DOE's standard-setting process. The results of this analysis should thus be viewed as a first approximation of the impacts that would actually be achieved by new standards. All monetary values in this report are in 2002 dollars.

Rosenquist, Greg; McNeil, Michael; Iyer, Maithili; Meyers, Steve; McMahon, Jim

2004-08-02T23:59:59.000Z

488

Energy efficiency standards for residential and commercial equipment: Additional opportunities  

SciTech Connect

Energy efficiency standards set minimum levels of energy efficiency that must be met by new products. Depending on the dynamics of the market and the level of the standard, the effect on the market for a given product may be small, moderate, or large. Energy efficiency standards address a number of market failures that exist in the buildings sector. Decisions about efficiency levels often are made by people who will not be responsible for the energy bill, such as landlords or developers of commercial buildings. Many buildings are occupied for their entire lives by very temporary owners or renters, each unwilling to make long-term investments that would mostly reward subsequent users. And sometimes what looks like apathy about efficiency merely reflects inadequate information or time invested to evaluate it. In addition to these sector-specific market failures, energy efficiency standards address the endemic failure of energy prices to incorporate externalities. In the U.S., energy efficiency standards for consumer products were first implemented in California in 1977. National standards became effective starting in 1988. By the end of 2001, national standards were in effect for over a dozen residential appliances, as well as for a number of commercial sector products. Updated standards will take effect in the next few years for several products. Outside the U.S., over 30 countries have adopted minimum energy performance standards. Technologies and markets are dynamic, and additional opportunities to improve energy efficiency exist. There are two main avenues for extending energy efficiency standards. One is upgrading standards that already exist for specific products. The other is adopting standards for products that are not covered by existing standards. In the absence of new and upgraded energy efficiency standards, it is likely that many new products will enter the stock with lower levels of energy efficiency than would otherwise be the case. Once in the stock, it is either impossible or more costly to improve the energy efficiency. Therefore, by not expanding or upgrading energy efficiency standards, opportunities for saving energy would be lost. In the past two decades, standards have significantly raised the level of energy efficiency for new products. How much more might be gained by making standards more stringent on products already subject to them, or by extending standards to products not yet covered? The main goal of this study is to estimate key national impacts of new and upgraded energy efficiency standards for residential and commercial equipment. These impacts approximate the opportunity for national benefits that may be lost if standards are not upgraded and expanded from current levels. This study also identifies the end uses where the largest opportunities exist. This analysis was prepared for the National Commission on Energy Policy (NCEP). It uses an analytical approach that is similar in concept to that used by the U.S. Department of Energy (DOE) to set standard levels. It relies on much less data and uses more simplified assumptions than the detailed and complex formulations used in DOE's standard-setting process. The results of this analysis should thus be viewed as a first approximation of the impacts that would actually be achieved by new standards. All monetary values in this report are in 2002 dollars.

Rosenquist, Greg; McNeil, Michael; Iyer, Maithili; Meyers, Steve; McMahon, Jim

2004-08-02T23:59:59.000Z

489

Energy conservation opportunities in commercial appliances. Final report  

SciTech Connect

This study establishes a data base of energy-consuming appliances in the commercial sector, and identifies and rates the most-promising development opportunities that would save significant amounts of energy on a national level. A detailed national inventory of 45 major appliances and their energy consumption was established for the year 1975. Thirty-four potential appliance improvements were identified, evaluated, and ranked. The opportunities are identified by means of a literature search and contact with industry representatives. The commercial sector is defined in terms of the divisions prescribed in the S.I.C. Manual (1972) of the OMB. These groups are recombined into the commercial subsectors of communications; utilities; wholesale; retail; finance, insurance, real estate, and services; hospital; schools; and public administration. The major energy-consuming appliances in the following six functional-use categories were identified: space heating and cooling; water heating; refrigeration; cooking; and lighting. The equipment in these categories was estimated to consume 87% of the total energy used in the commercial sector, with the remaining 13% consumed by equipment such as computers, business machines, laundry equipment, dishwashing, and other food-service equipment. (MCW)

Hurley, J.R.; Searight, E.F.; Wong, A.

1978-12-01T23:59:59.000Z

490

Energy Dept. Awards $22.7 Million for Basic Solar Energy Research |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Dept. Awards $22.7 Million for Basic Solar Energy Research Energy Dept. Awards $22.7 Million for Basic Solar Energy Research Energy Dept. Awards $22.7 Million for Basic Solar Energy Research May 22, 2007 - 1:24pm Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) today announced $22.7 million in basic research projects aimed at improving the capture, conversion and use of solar energy. The research will help increase the amount of solar power in the nation's energy supply. "These projects are part of our aggressive basic research in the physical sciences--what I call 'transformational science'--aimed at achieving a new generation of breakthrough technologies that will push the cost-effectiveness of renewable energy sources to levels comparable to petroleum and natural gas sources," Under Secretary for Science Dr. Raymond

491

Institutional Change Basics for Sustainability | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Program Areas » Institutional Change » Institutional Change Program Areas » Institutional Change » Institutional Change Basics for Sustainability Institutional Change Basics for Sustainability October 8, 2013 - 10:55am Addthis Training Available Graphic of the eTraining logo Sustainable Institutional Change for Federal Facility Managers: Learn strategies to change behavior to meet sustainability goals by completing this FEMP eTraining course. Institutional change integrates technology, policy, and behavior to make new sustainability practices and perspectives become a typical part of how an agency operates. For example: Technology provides means to decrease energy and resource use. Policy provides directives to decrease energy and resource use. Institutional and individual behaviors provide avenues to ensure technologies, and policies are used effectively in meeting energy and

492

Energy Savings Certificate Markets: Opportunities and Implementation Barriers  

NLE Websites -- All DOE Office Websites (Extended Search)

6A2-45970 6A2-45970 July 2009 Energy Savings Certificate Markets: Opportunities and Implementation Barriers Barry Friedman and Lori Bird National Renewable Energy Laboratory Galen Barbose Lawrence Berkeley National Laboratory Presented at the American Society of Mechanical Engineers (ASME) Third International Conference on Energy Sustainability San Francisco, California July 19-23, 2009 NOTICE The submitted manuscript has been offered by an employee of the Alliance for Sustainable Energy, LLC (ASE), a contractor of the US Government under Contract No. DE-AC36-08-GO28308. Accordingly, the US Government and ASE retain a nonexclusive royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for US Government purposes.

493

Passive Solar Building Design Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Passive Solar Building Design Basics Passive Solar Building Design Basics Passive Solar Building Design Basics July 30, 2013 - 3:20pm Addthis The difference between a passive solar home and a conventional home is design. Passive solar homes and other buildings are designed to take advantage of the local climate. Passive solar design-also known as climatic design-involves using a building's windows, walls, and floors to collect, store, and distribute solar energy in the form of heat in the winter and reject solar heat in the summer. Learn how passive solar design techniques work. Direct Gain Direct gain is the process by which sunlight directly enters a building through the windows and is absorbed and temporarily stored in massive floors or walls. Indirect Gain Indirect gain is the process by which the sun warms a heat storage

494

Bio-Based Product Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Bio-Based Product Basics Bio-Based Product Basics Bio-Based Product Basics August 14, 2013 - 1:19pm Addthis Almost all of the products we currently make from fossil fuels can also be made from biomass. These bioproducts, or bio-based products, are not only made from renewable sources, but they also often require less energy to produce than petroleum-based ones. Researchers have discovered that the process for making biofuels also can be used to make antifreeze, plastics, glues, artificial sweeteners, and gel for toothpaste. Other important building blocks for bio-based products are carbon monoxide and hydrogen. When biomass is heated with a small amount of oxygen, these two gases are produced in abundance. Scientists call this mixture biosynthesis gas. Biosynthesis gas can be used to make plastics and acids,

495

High-Intensity Discharge Lighting Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

High-Intensity Discharge Lighting Basics High-Intensity Discharge Lighting Basics High-Intensity Discharge Lighting Basics August 15, 2013 - 5:59pm Addthis High-intensity discharge (HID) lighting provides the highest efficacy and longest service life of any lighting type. It can save 75%-90% of lighting energy when it replaces incandescent lighting. Illustration of a high-intensity discharge (HID) lIllustration amp. The lamp is a tall cylindrical shape, and a cutout of the outer tube shows the materials inside. A long, thin cylinder called the arc tube runs through the lamp between two electrodes. The space around the arc tube is labeled as a vacuum. In a high-intensity discharge lamp, electricity arcs between two electrodes, creating an intensely bright light. Mercury, sodium, or metal halide gas

496

Low-Pressure Sodium Lighting Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Low-Pressure Sodium Lighting Basics Low-Pressure Sodium Lighting Basics Low-Pressure Sodium Lighting Basics August 16, 2013 - 10:17am Addthis Low-pressure sodium lighting provides more energy-efficient outdoor lighting than high-intensity discharge lighting, but it has very poor color rendition. Typical applications include highway and security lighting, where color is not important. Low-pressure sodium lamps work somewhat like fluorescent lamps. Like high-intensity discharge lighting, low-pressure sodium lamps require up to 10 minutes to start and have to cool before they can restart. Therefore, they are most suitable for applications in which they stay on for hours at a time. They are not suitable for use with motion detectors. The chart below compares low-pressure sodium lamps and high-intensity

497

Bio-Based Product Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Bio-Based Product Basics Bio-Based Product Basics Bio-Based Product Basics August 14, 2013 - 1:19pm Addthis Almost all of the products we currently make from fossil fuels can also be made from biomass. These bioproducts, or bio-based products, are not only made from renewable sources, but they also often require less energy to produce than petroleum-based ones. Researchers have discovered that the process for making biofuels also can be used to make antifreeze, plastics, glues, artificial sweeteners, and gel for toothpaste. Other important building blocks for bio-based products are carbon monoxide and hydrogen. When biomass is heated with a small amount of oxygen, these two gases are produced in abundance. Scientists call this mixture biosynthesis gas. Biosynthesis gas can be used to make plastics and acids,

498

Industrial Energy Audit Basics by an Energy Auditor  

E-Print Network (OSTI)

The purpose of an energy audit is the first step in energy cost control. There are two types of energy audits Traditional and Investment grades. The process of an energy audit consists of collecting and then processing data, specifying changes, and finally producing an action plan. With the high cost of energy today, energy audits are a worthwhile consideration for any business. Know what is available in the market and who is qualified. You are loosing money every hour equipment is operating inefficiently.

Phillips, J.

2007-01-01T23:59:59.000Z

499

Energy Efficiency Opportunities in California Food Processing Facilities  

E-Print Network (OSTI)

California industry consumes over one-third of the states energy that is not used for electricity generating purposes. The California Energy Commissions (Energy Commission) industrial energy efficiency program has delivered technical assistance to the states industrial sector to reduce their operating costs and help them to remain competitive in a global economy. BestPractices training workshops offered by the local utilities with sponsorship from the United States Department of Energy (DOE) and the Energy Commission cover process steam, process heating, compressed air, motor, pump, and fan systems. Technical services provided consist of conducting both targeted and plant-wide assessments of energy-consuming plant equipment and systems. Since 2004 the Commission has conducted 10 targeted and plant-wide assessments in industrial facilities associated with the food processing industry. Two of these assessments were Energy Savings Assessments (ESA) funded under the DOEs Save Energy Now Program. All the assessments used DOE software tools such as SSST, SSAT and 3E+ for steam system assessment and AirMaster+ for compressed air system assessment. Some of these audits are one-day walk through assessments. This paper summarizes the saving opportunities identified in these assessments with the focus on steam system assessments.

Wong, T.; Kazama, D; Wang, J.

2008-01-01T23:59:59.000Z

500

Equal Employment Opportunity -Title VII | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Equal Employment Opportunity -Title VII Equal Employment Opportunity -Title VII Diversity and Inclusion Supporting Small Businesses Minority Economic Impact Partnering with...