Sample records for opportunities advanced scientific

  1. Scientific opportunities with advanced facilities for neutron scattering

    SciTech Connect (OSTI)

    Lander, G.H.; Emery, V.J. (eds.)

    1984-01-01T23:59:59.000Z

    The present report documents deliberations of a large group of experts in neutron scattering and fundamental physics on the need for new neutron sources of greater intensity and more sophisticated instrumentation than those currently available. An additional aspect of the Workshop was a comparison between steady-state (reactor) and pulsed (spallation) sources. The main conclusions were: (1) the case for a new higher flux neutron source is extremely strong and such a facility will lead to qualitatively new advances in condensed matter science and fundamental physics; (2) to a large extent the future needs of the scientific community could be met with either a 5 x 10/sup 15/ n cm/sup -2/s/sup -1/ steady state source or a 10/sup 17/ n cm/sup -2/s/sup -1/ peak flux spallation source; and (3) the findings of this Workshop are consistent with the recommendations of the Major Materials Facilities Committee.

  2. Webinar: Systems Performance Advancement II Funding Opportunity...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Webinar: Systems Performance Advancement II Funding Opportunity Announcement Webinar: Systems Performance Advancement II Funding Opportunity Announcement January 22, 2015 2:00PM to...

  3. Laser Direct Drive: Scientific Advances,

    E-Print Network [OSTI]

    1 Laser Direct Drive: Scientific Advances, Technical Achievements, and the Road To Fusion Energy energy gain ( 40) at 1 MJ laser energy · Advanced lasers/ target designs overcome uniformity requirements, medical applications) Gas laser medium is easy to cool (tough to break gas) Nike single beam focus #12

  4. Getting Started Advanced Search for Funding Opportunities

    E-Print Network [OSTI]

    Duchowski, Andrew T.

    Getting Started Advanced Search for Funding Opportunities For Assistance Delete Criteria to Update Search Funding ­ Finding Additional Sources Saving and Printing SPIN Search Results Past funding opportunities can be searched in InfoEd to: · find opportunities that were added prior to your account set

  5. Advanced Offshore Wind Tech: Accelerating New Opportunities for...

    Broader source: Energy.gov (indexed) [DOE]

    Advanced Offshore Wind Tech: Accelerating New Opportunities for Clean Energy Advanced Offshore Wind Tech: Accelerating New Opportunities for Clean Energy May 7, 2014 - 12:11pm...

  6. Apply: Funding Opportunity - Advancing Solutions to Improve Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Apply: Funding Opportunity - Advancing Solutions to Improve Energy Efficiency of Commercial Buildings Apply: Funding Opportunity - Advancing Solutions to Improve Energy Efficiency...

  7. PIA - Advanced Test Reactor National Scientific User Facility...

    Energy Savers [EERE]

    Advanced Test Reactor National Scientific User Facility Users Week 2009 PIA - Advanced Test Reactor National Scientific User Facility Users Week 2009 PIA - Advanced Test Reactor...

  8. Theory and Advanced Scientific Presentation to

    E-Print Network [OSTI]

    Theory and Advanced Scientific Computing Presentation to Dr. Walt Polansky Acting Director, MICS Laboratory August 29, 2002 #12;PPPL THEORY PROGRAM Has Well-Defined Target & Approach · TARGET --- RELIABLE systems (longer-term impact) #12;PPPL THEORY/ADVANCED SCIENTIFIC COMPUTING PROGRAM Emphasizes

  9. advanced scientific computing: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    22 23 24 25 Next Page Last Page Topic Index 1 Advanced Scientific Computing Research Computer Science Plasma Physics and Fusion Websites Summary: Advanced Scientific Computing...

  10. Educational Interventions to Advance Children's Scientific Thinking

    E-Print Network [OSTI]

    Klahr, David

    , and an assessment process. Here we describe some ways in which re- search in cognitive development has advanced our for Classifying Interventions in Science Education Scientific thinking can be characterized in terms of two of the scientific enter- prise" (row 2). (6). Research on domain-specific hypotheses (cell A) assesses young

  11. Advanced Scientific Computing Research Computer Science

    E-Print Network [OSTI]

    Geddes, Cameron Guy Robinson

    Advanced Scientific Computing Research Computer Science FY 2006 Accomplishment High Performance collections of scientific data. In recent years, much of the work in computer and computational science has problem. It is generally accepted that as sciences move into the tera- and peta-scale regimes that one

  12. Advanced Scientific Computing Research Computer Science

    E-Print Network [OSTI]

    Geddes, Cameron Guy Robinson

    Advanced Scientific Computing Research Computer Science FY 2006 Accomplishment HDF5-Fast fundamental Computer Science technologies and their application in production scientific research tools. Our technology ­ index, query, storage and retrieval ­ and use of such technology in computational and computer

  13. Funding Opportunity Announcement: Solar Bankability Data to Advance...

    Energy Savers [EERE]

    Data to Advance Transactions and Access (SB-DATA) Funding Opportunity Announcement: Solar Bankability Data to Advance Transactions and Access (SB-DATA) Funding Number:...

  14. Advanced Scientific Computing Research Jobs

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,, ,Development1USummerNews &OfficeAdvanced

  15. advancing prosperity opportunity: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    France 3 EPFL, Lausanne, Switzerland. Abstract- 3D De Micheli, Giovanni 16 Texas Tech University FY2014 Internal Competitive Funding Opportunity to Advance Scholarship in the...

  16. Upcoming Funding Opportunity to Advance Low-Impact Hydropower...

    Energy Savers [EERE]

    to Advance Low-Impact Hydropower Technologies Upcoming Funding Opportunity to Advance Low-Impact Hydropower Technologies March 18, 2015 - 11:27am Addthis On March 18, EERE's Water...

  17. DOE Issues Funding Opportunity for Advanced Computational and Modeling Research for the Electric Power System

    Broader source: Energy.gov [DOE]

    The objective of this Funding Opportunity Announcement (FOA) is to leverage scientific advancements in mathematics and computation for application to power system models and software tools, with the long-term goal of enabling real-time protection and control based on wide-area sensor measurements.

  18. Advanced Scientific Computing Research Network Requirements

    SciTech Connect (OSTI)

    Dart, Eli; Tierney, Brian

    2013-03-08T23:59:59.000Z

    The Energy Sciences Network (ESnet) is the primary provider of network connectivity for the U.S. Department of Energy (DOE) Office of Science (SC), the single largest supporter of basic research in the physical sciences in the United States. In support of SC programs, ESnet regularly updates and refreshes its understanding of the networking requirements of the instruments, facilities, scientists, and science programs that it serves. This focus has helped ESnet to be a highly successful enabler of scientific discovery for over 25 years. In October 2012, ESnet and the Office of Advanced Scientific Computing Research (ASCR) of the DOE SC organized a review to characterize the networking requirements of the programs funded by the ASCR program office. The requirements identified at the review are summarized in the Findings section, and are described in more detail in the body of the report.

  19. Scientific Opportunities for Monitoring at Environmental Remediation Sites (SOMERS): Integrated Systems-Based Approaches to Monitoring

    SciTech Connect (OSTI)

    Bunn, Amoret L.; Wellman, Dawn M.; Deeb, Rula A.; Hawley, Elizabeth L.; Truex, Michael J.; Peterson, Mark; Freshley, Mark D.; Pierce, Eric M.; McCord, John; Young, Michael H.; Gilmore, Tyler J.; Miller, Rick; Miracle, Ann L.; Kaback, Dawn; Eddy-Dilek, Carol; Rossabi, Joe; Lee, Michelle H.; Bush, Richard P.; Beam , Paul; Chamberlain, G. M.; Marble, Justin; Whitehurst, Latrincy; Gerdes, Kurt D.; Collazo, Yvette

    2012-05-15T23:59:59.000Z

    Through an inter-disciplinary effort, DOE is addressing a need to advance monitoring approaches from sole reliance on cost- and labor-intensive point-source monitoring to integrated systems-based approaches such as flux-based approaches and the use of early indicator parameters. Key objectives include identifying current scientific, technical and implementation opportunities and challenges, prioritizing science and technology strategies to meet current needs within the DOE complex for the most challenging environments, and developing an integrated and risk-informed monitoring framework.

  20. Unique Aspects and Scientific Challenges - Advanced R and D|...

    Office of Science (SC) Website

    Advanced R and D Unique Aspects and Scientific Challenges High Energy Physics (HEP) HEP Home About Research Science Drivers of Particle Physics Energy Frontier Intensity Frontier...

  1. Advanced Test Reactor National Scientific User Facility

    SciTech Connect (OSTI)

    Frances M. Marshall; Jeff Benson; Mary Catherine Thelen

    2011-08-01T23:59:59.000Z

    The Advanced Test Reactor (ATR), at the Idaho National Laboratory (INL), is a large test reactor for providing the capability for studying the effects of intense neutron and gamma radiation on reactor materials and fuels. The ATR is a pressurized, light-water, high flux test reactor with a maximum operating power of 250 MWth. The INL also has several hot cells and other laboratories in which irradiated material can be examined to study material irradiation effects. In 2007 the US Department of Energy (DOE) designated the ATR as a National Scientific User Facility (NSUF) to facilitate greater access to the ATR and the associated INL laboratories for material testing research by a broader user community. This paper highlights the ATR NSUF research program and the associated educational initiatives.

  2. Advanced Engine Trends, Challenges and Opportunities

    Broader source: Energy.gov (indexed) [DOE]

    Petroleum (Conventional and Alternative Sources) Alternative Fuels (Ethanol, Biodiesel, CNG, LPG) Electricity (Conv. and Alternative Sources) Hydrogen Time ADVANCED...

  3. Advanced Reactor Research and Development Funding Opportunity...

    Broader source: Energy.gov (indexed) [DOE]

    of research, development, and demonstration related to advanced non-light water reactor concepts. A goal of the program is to facilitate greater engagement between DOE and...

  4. Advancements and Opportunities for Fuel Cells

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of1 AAcceleratedDepartmentDepartment2 DOE HydrogenAdvanced,Advancements

  5. Scientific Opportunities to Reduce Risk in Nuclear Process Science

    SciTech Connect (OSTI)

    Bredt, Paul R.; Felmy, Andrew R.; Gauglitz, Phillip A.; Hobbs, David T.; Krahn, Steve; Machara, N.; Mcilwain, Michael; Moyer, Bruce A.; Poloski, Adam P.; Subramanian, K.; Vienna, John D.; Wilmarth, B.

    2008-07-18T23:59:59.000Z

    Cleaning up the nation’s nuclear weapons complex remains as one of the most technologically challenging and financially costly problems facing the U.S. Department of Energy (DOE). Safety, cost, and technological challenges have often delayed progress in retrieval, processing, and final disposition of high-level waste, spent nuclear fuel, and challenging materials. Some of the issues result from the difficulty and complexity of the technological issues; others have programmatic bases, such as contracting strategies that may provide undue focus on near-term, specific clean-up goals or difficulty in developing and maintaining stakeholder confidence in the proposed solutions. We propose that independent basic fundamental science research focused on the full cleanup life-cycle offers an opportunity to help address these challenges by providing 1) scientific insight into the fundamental mechanisms involved in currently selected processing and disposal options, 2) a rational path to the development of alternative technologies should the primary options fail, 3) confidence that models that predict long-term performance of different disposal options are based upon the best available science, 4) fundamental science discovery that enables transformational solutions to revolutionize the current baseline processes.

  6. Scientific Opportunity to Reduce Risk in Groundwater and Soil Remediation

    SciTech Connect (OSTI)

    Pierce, Eric M.; Freshley, Mark D.; Hubbard, Susan S.; Looney, Brian B.; Zachara, John M.; Liang, Liyuan; Lesmes, D.; Chamberlain, G. M.; Skubal, Karen L.; Adams, V.; Denham, Miles E.; Wellman, Dawn M.

    2009-08-25T23:59:59.000Z

    In this report, we start by examining previous efforts at linking science and DOE EM research with cleanup activities. Many of these efforts were initiated by creating science and technology roadmaps. A recurring feature of successfully implementing these roadmaps into EM applied research efforts and successful cleanup is the focus on integration. Such integration takes many forms, ranging from combining information generated by various scientific disciplines, to providing technical expertise to facilitate successful application of novel technology, to bringing the resources and creativity of many to address the common goal of moving EM cleanup forward. Successful projects identify and focus research efforts on addressing the problems and challenges that are causing “failure” in actual cleanup activities. In this way, basic and applied science resources are used strategically to address the particular unknowns that are barriers to cleanup. The brief descriptions of the Office of Science basic (Environmental Remediation Science Program [ERSP]) and EM’s applied (Groundwater and Soil Remediation Program) research programs in subsurface science provide context to the five “crosscutting” themes that have been developed in this strategic planning effort. To address these challenges and opportunities, a tiered systematic approach is proposed that leverages basic science investments with new applied research investments from the DOE Office of Engineering and Technology within the framework of the identified basic science and applied research crosscutting themes. These themes are evident in the initial portfolio of initiatives in the EM groundwater and soil cleanup multi-year program plan. As stated in a companion document for tank waste processing (Bredt et al. 2008), in addition to achieving its mission, DOE EM is experiencing a fundamental shift in philosophy from driving to closure to enabling the long-term needs of DOE and the nation.

  7. Sandia National Laboratories: Helping Advance the Scientific...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Major Efficiency Improvements The goal of our SSLS EFRC is not to work on advancing SSL technology itself; that is something that industry is extremely good at. Our goal...

  8. Sandia Energy - Advanced Scientific Computing Research (ASCR)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear Press ReleasesIn theTreatmentSRSSafetyAdvancedAdvanced

  9. Supporting Advanced Scientific Computing Research Basic Energy Sciences Biological

    E-Print Network [OSTI]

    Supporting Advanced Scientific Computing Research · Basic Energy Sciences · Biological and Environmental Research · Fusion Energy Sciences · High Energy Physics · Nuclear Physics What my students Code ­http://code.google.com/p/net-almanac/ ­Beta release this week #12;Contact Information Jon Dugan

  10. Postdoctoral Opportunities World-Class Scientific Research Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible forPortsmouth/Paducah Project Office PressPostdoctoral Opportunities World-Class

  11. Scientific Opportunities with the Long-Baseline Neutrino Experiment

    SciTech Connect (OSTI)

    Adams, C.; et al.,

    2013-07-28T23:59:59.000Z

    In this document, we describe the wealth of science opportunities and capabilities of LBNE, the Long-Baseline Neutrino Experiment. LBNE has been developed to provide a unique and compelling program for the exploration of key questions at the forefront of particle physics. Chief among the discovery opportunities are observation of CP symmetry violation in neutrino mixing, resolution of the neutrino mass hierarchy, determination of maximal or near-maximal mixing in neutrinos, searches for nucleon decay signatures, and detailed studies of neutrino bursts from galactic supernovae. To fulfill these and other goals as a world-class facility, LBNE is conceived around four central components: (1) a new, intense wide-band neutrino source at Fermilab, (2) a fine-grained `near' neutrino detector just downstream of the source, (3) the Sanford Underground Research Facility (SURF) in Lead, South Dakota at an optimal distance (~1300 km) from the neutrino source, and (4) a massive liquid argon time-projection chamber (LArTPC) deployed there as a 'far' detector. The facilities envisioned are expected to enable many other science opportunities due to the high event rates and excellent detector resolution from beam neutrinos in the near detector and atmospheric neutrinos in the far detector. This is a mature, well developed, world class experiment whose relevance, importance, and probability of unearthing critical and exciting physics has increased with time.

  12. Using Advanced Scientific Diving Technologies to Assess the Underwater Environment

    SciTech Connect (OSTI)

    Southard, John A.; Williams, Greg D.; Sargeant, Susan L.; Diefenderfer, Heida L.; Blanton, Michael L.

    2003-03-31T23:59:59.000Z

    Scientific diving can provide unique information for addressing complex environmental issues in the marine environment and is applied to a variety of increasingly important issues throughout Puget Sound, including habitat degradation, endangered species, biological availability of contaminants, and the effects of overwater structures and shoreline protection features. The Pacific Northwest National Laboratory, Battelle Marine Sciences Laboratory uses trained scientific divers in conjunction with advanced technologies to collect in-situ information best obtained through direct observation and requiring minimal environmental disturbance. For example, advances in underwater communications allow divers to discuss observations and data collection techniques in real time, both with each other and with personnel on the surface. Other examples include the use of Dual frequency IDentification SONar (DIDSON), an underwater camera used to capture digital images of benthic structures, fish, and organisms during low light and high turbidity levels; the use of voice-narrated underwater video; and the development of sediment collection methods yielding one-meter cores. The combination of using trained scientific SCUBA divers and advanced underwater technologies is a key element in addressing multifaceted environmental problems, resulting in a more comprehensive understanding of the underwater environment and more reliable data with which to make resource management decisions.

  13. Advanced Test Reactor National Scientific User Facility: Addressing advanced nuclear materials research

    SciTech Connect (OSTI)

    John Jackson; Todd Allen; Frances Marshall; Jim Cole

    2013-03-01T23:59:59.000Z

    The Advanced Test Reactor National Scientific User Facility (ATR NSUF), based at the Idaho National Laboratory in the United States, is supporting Department of Energy and industry research efforts to ensure the properties of materials in light water reactors are well understood. The ATR NSUF is providing this support through three main efforts: establishing unique infrastructure necessary to conduct research on highly radioactive materials, conducting research in conjunction with industry partners on life extension relevant topics, and providing training courses to encourage more U.S. researchers to understand and address LWR materials issues. In 2010 and 2011, several advanced instruments with capability focused on resolving nuclear material performance issues through analysis on the micro (10-6 m) to atomic (10-10 m) scales were installed primarily at the Center for Advanced Energy Studies (CAES) in Idaho Falls, Idaho. These instruments included a local electrode atom probe (LEAP), a field-emission gun scanning transmission electron microscope (FEG-STEM), a focused ion beam (FIB) system, a Raman spectrometer, and an nanoindentor/atomic force microscope. Ongoing capability enhancements intended to support industry efforts include completion of two shielded, irradiation assisted stress corrosion cracking (IASCC) test loops, the first of which will come online in early calendar year 2013, a pressurized and controlled chemistry water loop for the ATR center flux trap, and a dedicated facility intended to house post irradiation examination equipment. In addition to capability enhancements at the main site in Idaho, the ATR NSUF also welcomed two new partner facilities in 2011 and two new partner facilities in 2012; the Oak Ridge National Laboratory, High Flux Isotope Reactor (HFIR) and associated hot cells and the University California Berkeley capabilities in irradiated materials analysis were added in 2011. In 2012, Purdue University’s Interaction of Materials with Particles and Components Testing (IMPACT) facility and the Pacific Northwest Nuclear Laboratory (PNNL) Radiochemistry Processing Laboratory (RPL) and PIE facilities were added. The ATR NSUF annually hosts a weeklong event called User’s Week in which students and faculty from universities as well as other interested parties from regulatory agencies or industry convene in Idaho Falls, Idaho to see presentations from ATR NSUF staff as well as select researchers from the materials research field. User’s week provides an overview of current materials research topics of interest and an opportunity for young researchers to understand the process of performing work through ATR NSUF. Additionally, to increase the number of researchers engaged in LWR materials issues, a series of workshops are in progress to introduce research staff to stress corrosion cracking, zirconium alloy degradation, and uranium dioxide degradation during in-reactor use.

  14. Advanced Test Reactor National Scientific User Facility Progress

    SciTech Connect (OSTI)

    Frances M. Marshall; Todd R. Allen; James I. Cole; Jeff B. Benson; Mary Catherine Thelen

    2012-10-01T23:59:59.000Z

    The Advanced Test Reactor (ATR) at the Idaho National Laboratory (INL) is one of the world’s premier test reactors for studying the effects of intense neutron radiation on reactor materials and fuels. The ATR began operation in 1967, and has operated continuously since then, averaging approximately 250 operating days per year. The combination of high flux, large test volumes, and multiple experiment configuration options provide unique testing opportunities for nuclear fuels and material researchers. The ATR is a pressurized, light-water moderated and cooled, beryllium-reflected highly-enriched uranium fueled, reactor with a maximum operating power of 250 MWth. The ATR peak thermal flux can reach 1.0 x1015 n/cm2-sec, and the core configuration creates five main reactor power lobes (regions) that can be operated at different powers during the same operating cycle. In addition to these nine flux traps there are 68 irradiation positions in the reactor core reflector tank. The test positions range from 0.5” to 5.0” in diameter and are all 48” in length, the active length of the fuel. The INL also has several hot cells and other laboratories in which irradiated material can be examined to study material radiation effects. In 2007 the US Department of Energy (DOE) designated the ATR as a National Scientific User Facility (NSUF) to facilitate greater access to the ATR and the associated INL laboratories for material testing research by a broader user community. Goals of the ATR NSUF are to define the cutting edge of nuclear technology research in high temperature and radiation environments, contribute to improved industry performance of current and future light water reactors, and stimulate cooperative research between user groups conducting basic and applied research. The ATR NSUF has developed partnerships with other universities and national laboratories to enable ATR NSUF researchers to perform research at these other facilities, when the research objectives cannot be met using the INL facilities. The ATR NSUF program includes a robust education program enabling students to participate in their research at INL and the partner facilities, attend the ATR NSUF annual User Week, and compete for prizes at sponsored conferences. Development of additional research capabilities is also a key component of the ATR NSUF Program; researchers are encouraged to propose research projects leading to these enhanced capabilities. Some ATR irradiation experiment projects irradiate more specimens than are tested, resulting in irradiated materials available for post irradiation examination by other researchers. These “extra” specimens comprise the ATR NSUF Sample Library. This presentation will highlight the ATR NSUF Sample Library and the process open to researchers who want to access these materials and how to propose research projects using them. This presentation will provide the current status of all the ATR NSUF Program elements. Many of these were not envisioned in 2007, when DOE established the ATR NSUF.

  15. APS and Synchrotron-related Employment Opportunities | Advanced...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Synchrotron-related Employment Opportunities Groundbreaking science and engineering at the APS has a real and positive impact on our technologies, our health, our economy, and...

  16. advancing scientific understanding: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Interventions in Science Education Scientific thinking can be characterized in terms of two of the scientific enter- prise" (row 2). (6). Research on domain-specific...

  17. advanced scientific component: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Interventions in Science Education Scientific thinking can be characterized in terms of two of the scientific enter- prise" (row 2). (6). Research on domain-specific...

  18. Advanced Test Reactor National Scientific User Facility Partnerships

    SciTech Connect (OSTI)

    Frances M. Marshall; Todd R. Allen; Jeff B. Benson; James I. Cole; Mary Catherine Thelen

    2012-03-01T23:59:59.000Z

    In 2007, the United States Department of Energy designated the Advanced Test Reactor (ATR), located at Idaho National Laboratory, as a National Scientific User Facility (NSUF). This designation made test space within the ATR and post-irradiation examination (PIE) equipment at INL available for use by researchers via a proposal and peer review process. The goal of the ATR NSUF is to provide researchers with the best ideas access to the most advanced test capability, regardless of the proposer's physical location. Since 2007, the ATR NSUF has expanded its available reactor test space, and obtained access to additional PIE equipment. Recognizing that INL may not have all the desired PIE equipment, or that some equipment may become oversubscribed, the ATR NSUF established a Partnership Program. This program enables and facilitates user access to several university and national laboratories. So far, seven universities and one national laboratory have been added to the ATR NSUF with capability that includes reactor-testing space, PIE equipment, and ion beam irradiation facilities. With the addition of these universities, irradiation can occur in multiple reactors and post-irradiation exams can be performed at multiple universities. In each case, the choice of facilities is based on the user's technical needs. Universities and laboratories included in the ATR NSUF partnership program are as follows: (1) Nuclear Services Laboratories at North Carolina State University; (2) PULSTAR Reactor Facility at North Carolina State University; (3) Michigan Ion Beam Laboratory (1.7 MV Tandetron accelerator) at the University of Michigan; (4) Irradiated Materials at the University of Michigan; (5) Harry Reid Center Radiochemistry Laboratories at University of Nevada, Las Vegas; (6) Characterization Laboratory for Irradiated Materials at the University of Wisconsin-Madison; (7) Tandem Accelerator Ion Beam. (1.7 MV terminal voltage tandem ion accelerator) at the University of Wisconsin-Madison; (8) Illinois Institute of Technology (IIT) Materials Research Collaborative Access Team (MRCAT) beamline at Argonne National Laboratory's Advanced Photon Source; and (9) Nanoindenter in the University of California at Berkeley (UCB) Nuclear Engineering laboratory Materials have been analyzed for ATR NSUF users at the Advanced Photon Source at the MRCAT beam, the NIST Center for Neutron Research in Gaithersburg, MD, the Los Alamos Neutron Science Center, and the SHaRE user facility at Oak Ridge National Laboratory (ORNL). Additionally, ORNL has been accepted as a partner facility to enable ATR NSUF users to access the facilities at the High Flux Isotope Reactor and related facilities.

  19. advanced technology opportunities: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    modern day high technology society. I have identified in Table 1, for various biomass feedstocks, the barriers... Waller, J. 12 SCANNING THE TECHNOLOGY Scanning Advanced...

  20. Advanced Offshore Wind Tech: Accelerating New Opportunities for Clean Energy

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Energy Department today announced the selection of three projects that aim to advance the offshore wind industry and lower the cost of offshore wind technologies. Learn more about these technological innovations.

  1. ADVANCED MODERN PHYSICS -Theoretical Foundations World Scientific Publishing Co. Pte. Ltd.

    E-Print Network [OSTI]

    California at Santa Cruz, University of

    ADVANCED MODERN PHYSICS - Theoretical Foundations © World Scientific Publishing Co. Pte. Ltd. http://www.worldscibooks.com/physics . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.5.1 Coordinate Space . . . . . . . . . . . . . . . . . . . 23 ix #12;ADVANCED MODERN PHYSICS.html x Advanced Modern Physics 2.5.2 Abstract Form . . . . . . . . . . . . . . . . . . . . . 25 2

  2. NERSC Role in Advanced Scientific Computing Research Katherine...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Computing Center (NERSC) is to accelerate the pace of scientific discovery by providing high performance computing, information, data, and communications services for all DOE...

  3. Opportunities Opportunities

    E-Print Network [OSTI]

    Barrash, Warren

    to be considered. Members of our Engineering staff will be on site to answer your questions as well! For more and advance. We currently are seeking motivated Engineering interns interested in exploring career opportunities in the electric utility industry. Electrical, Mechanical, and Civil engineering students

  4. Advancing Equipment Reliability via a Natural Disaster Opportunities for Thinking Outside the Box

    E-Print Network [OSTI]

    Stephens, R.

    2006-01-01T23:59:59.000Z

    Advancing Equipment Reliability via a Natural Disaster, Opportunities for Thinking Outside the Box Robert Stephens, Senior Electrical Engineer, ExxonMobil, Chalmette Abstract As the equipment assessments came in after hurricane Katrina... was driven by the desire to harden equipment against future hurricanes, not just replace the equipment in kind. Pre-Katrina reliability teams had defined the architecture of the future. The devastation provided an opportunity for the vision to become...

  5. Advancements and Opportunities for Fuel Cells | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube platform is alwaysISO 50001EnergyNewsletter AdvancedWindow and

  6. Advanced Test Reactor National Scientific User Facility (ATR NSUF) Monthly Report October 2014

    SciTech Connect (OSTI)

    Dan Ogden

    2014-10-01T23:59:59.000Z

    Advanced Test Reactor National Scientific User Facility (ATR NSUF) Monthly Report October 2014 Highlights • Rory Kennedy, Dan Ogden and Brenden Heidrich traveled to Germantown October 6-7, for a review of the Infrastructure Management mission with Shane Johnson, Mike Worley, Bradley Williams and Alison Hahn from NE-4 and Mary McCune from NE-3. Heidrich briefed the group on the project progress from July to October 2014 as well as the planned path forward for FY15. • Jim Cole gave two invited university seminars at Ohio State University and University of Florida, providing an overview of NSUF including available capabilities and the process for accessing facilities through the peer reviewed proposal process. • Jim Cole and Rory Kennedy co-chaired the NuMat meeting with Todd Allen. The meeting, sponsored by Elsevier publishing, was held in Clearwater, Florida, and is considered one of the premier nuclear fuels and materials conferences. Over 340 delegates attended with 160 oral and over 200 posters presented over 4 days. • Thirty-one pre-applications were submitted for NSUF access through the NE-4 Combined Innovative Nuclear Research Funding Opportunity Announcement. • Fourteen proposals were received for the NSUF Rapid Turnaround Experiment Summer 2014 call. Proposal evaluations are underway. • John Jackson and Rory Kennedy attended the Nuclear Fuels Industry Research meeting. Jackson presented an overview of ongoing NSUF industry research.

  7. Funding Opportunity Webinar- Advancing Solutions To Improve the Energy Efficiency of US Commercial Buildings

    Broader source: Energy.gov [DOE]

    This webinar provides an overview of the DOE Funding Opportunity Announcement DE-FOA-0001168, "Advancing Solutions to Improve the Energy Efficiency of U.S. Commercial Buildings," which seeks to fund the scale-up of promising solutions to the market barriers that hinder the growth of energy efficiency in the commercial building sector.

  8. Apply: Funding Opportunity- Advancing Solutions to Improve Energy Efficiency of Commercial Buildings

    Broader source: Energy.gov [DOE]

    Closed Application Deadline: January 20, 2015 The Building Technologies Office (BTO) Commercial Buildings Integration Program has announced the availability of nearly $9 million for Funding Opportunity Announcement (FOA) DE-FOA-0001168, “Advancing Solutions to Improve the Energy Efficiency of U.S. Commercial Buildings.”

  9. EXTERNAL MENTORS PROGRAM The SU ADVANCE External Mentors Program creates opportunity for women in Science, Technology,

    E-Print Network [OSTI]

    Doyle, Robert

    EXTERNAL MENTORS PROGRAM The SU ADVANCE External Mentors Program creates opportunity for women of women faculty by supporting the creation of mentoring relationships with science and engineering leaders from other universities. The external mentors program can also assist by providing resources to engage

  10. Grant Title: ADVANCING HOME VISITING RESEARCH TO INFORM PUBLIC POLICY Funding Opportunity Number: N/A

    E-Print Network [OSTI]

    Farritor, Shane

    Center on the States, promotes smart state investments in quality, home-based programs for newGrant Title: ADVANCING HOME VISITING RESEARCH TO INFORM PUBLIC POLICY Funding Opportunity Number: N Charitable Trusts. Area of Research: Home-based programs for new and expectant families. Release

  11. Center for Technology for Advanced Scientific Component Software (TASCS) Consolidated Progress Report July 2006 - March 2009

    SciTech Connect (OSTI)

    Bernholdt, D E; McInnes, L C; Govindaraju, M; Bramley, R; Epperly, T; Kohl, J A; Nieplocha, J; Armstrong, R; Shasharina, S; Sussman, A L; Sottile, M; Damevski, K

    2009-04-14T23:59:59.000Z

    A resounding success of the Scientific Discovery through Advanced Computing (SciDAC) program is that high-performance computational science is now universally recognized as a critical aspect of scientific discovery [71], complementing both theoretical and experimental research. As scientific communities prepare to exploit unprecedented computing capabilities of emerging leadership-class machines for multi-model simulations at the extreme scale [72], it is more important than ever to address the technical and social challenges of geographically distributed teams that combine expertise in domain science, applied mathematics, and computer science to build robust and flexible codes that can incorporate changes over time. The Center for Technology for Advanced Scientific Component Software (TASCS) tackles these issues by exploiting component-based software development to facilitate collaborative high-performance scientific computing.

  12. Advanced Test Reactor National Scientific User Facility 2010 Annual Report

    SciTech Connect (OSTI)

    Mary Catherine Thelen; Todd R. Allen

    2011-05-01T23:59:59.000Z

    This is the 2010 ATR National Scientific User Facility Annual Report. This report provides an overview of the program for 2010, along with individual project reports from each of the university principal investigators. The report also describes the capabilities offered to university researchers here at INL and at the ATR NSUF partner facilities.

  13. Final Scientific Report - Wireless and Sensing Solutions Advancing Industrial Efficiency

    SciTech Connect (OSTI)

    Budampati, Rama; McBrady, Adam; Nusseibeh, Fouad

    2009-09-28T23:59:59.000Z

    The project team's goal for the Wireless and Sensing Solution Advancing Industrial Efficiency award (DE-FC36-04GO14002) was to develop, demonstrate, and test a number of leading edge technologies that could enable the emergence of wireless sensor and sampling systems for the industrial market space. This effort combined initiatives in advanced sensor development, configurable sampling and deployment platforms, and robust wireless communications to address critical obstacles in enabling enhanced industrial efficiency.

  14. #WomenInSTEM: A Physicist Focuses on Scientific Advancement

    ScienceCinema (OSTI)

    Capece, Angela

    2014-07-21T23:59:59.000Z

    Dr. Capece first became interested in science after learning about NASA's Voyager missions at an early age. In this video, Dr. Capece provides advice for women and girls interested in pursuing careers in STEM fields, like focusing on physics, biology and chemistry at the high school level. This video is part of the Energy Department's #WomenInSTEM video series. At the Energy Department, we're committed to supporting a diverse talent pool of STEM innovators ready to address the challenges and opportunities of our growing clean energy economy.

  15. #WomenInSTEM: A Physicist Focuses on Scientific Advancement

    SciTech Connect (OSTI)

    Capece, Angela

    2014-07-17T23:59:59.000Z

    Dr. Capece first became interested in science after learning about NASA's Voyager missions at an early age. In this video, Dr. Capece provides advice for women and girls interested in pursuing careers in STEM fields, like focusing on physics, biology and chemistry at the high school level. This video is part of the Energy Department's #WomenInSTEM video series. At the Energy Department, we're committed to supporting a diverse talent pool of STEM innovators ready to address the challenges and opportunities of our growing clean energy economy.

  16. Advanced Scientific Computing Research Funding Profile by Subprogram

    E-Print Network [OSTI]

    results in mathematics, high performance computing and advanced networks and a Excludes $1 applications. High-performance computing provides a new window for researchers to observe the natural world in applied mathematics, computer science and high-performance networks and providing the high-performance

  17. Advanced Scientific Computing Advisory Committee (ASCAC) Homepage | U.S.

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,, ,Development1USummerNews &OfficeAdvanced

  18. Advanced I/O for large-scale scientific applications.

    SciTech Connect (OSTI)

    Klasky, Scott (Oak Ridge National Laboratory, Oak Ridge, TN); Schwan, Karsten (Georgia Institute of Technology, Atlanta, GA); Oldfield, Ron A.; Lofstead, Gerald F., II (Georgia Institute of Technology, Atlanta, GA)

    2010-01-01T23:59:59.000Z

    As scientific simulations scale to use petascale machines and beyond, the data volumes generated pose a dual problem. First, with increasing machine sizes, the careful tuning of IO routines becomes more and more important to keep the time spent in IO acceptable. It is not uncommon, for instance, to have 20% of an application's runtime spent performing IO in a 'tuned' system. Careful management of the IO routines can move that to 5% or even less in some cases. Second, the data volumes are so large, on the order of 10s to 100s of TB, that trying to discover the scientifically valid contributions requires assistance at runtime to both organize and annotate the data. Waiting for offline processing is not feasible due both to the impact on the IO system and the time required. To reduce this load and improve the ability of scientists to use the large amounts of data being produced, new techniques for data management are required. First, there is a need for techniques for efficient movement of data from the compute space to storage. These techniques should understand the underlying system infrastructure and adapt to changing system conditions. Technologies include aggregation networks, data staging nodes for a closer parity to the IO subsystem, and autonomic IO routines that can detect system bottlenecks and choose different approaches, such as splitting the output into multiple targets, staggering output processes. Such methods must be end-to-end, meaning that even with properly managed asynchronous techniques, it is still essential to properly manage the later synchronous interaction with the storage system to maintain acceptable performance. Second, for the data being generated, annotations and other metadata must be incorporated to help the scientist understand output data for the simulation run as a whole, to select data and data features without concern for what files or other storage technologies were employed. All of these features should be attained while maintaining a simple deployment for the science code and eliminating the need for allocation of additional computational resources.

  19. Advanced Test Reactor National Scientific User Facility (ATR NSUF) Monthly Report November 2014

    SciTech Connect (OSTI)

    Renae Soelberg

    2014-11-01T23:59:59.000Z

    Advanced Test Reactor National Scientific User Facility (ATR NSUF) Monthly Report November 2014 Highlights Rory Kennedy and Sarah Robertson attended the American Nuclear Society Winter Meeting and Nuclear Technology Expo in Anaheim, California, Nov. 10-13. ATR NSUF exhibited at the technology expo where hundreds of meeting participants had an opportunity to learn more about ATR NSUF. Dr. Kennedy briefed the Nuclear Engineering Department Heads Organization (NEDHO) on the workings of the ATR NSUF. • Rory Kennedy, James Cole and Dan Ogden participated in a reactor instrumentation discussion with Jean-Francois Villard and Christopher Destouches of CEA and several members of the INL staff. • ATR NSUF received approval from the NE-20 office to start planning the annual Users Meeting. The meeting will be held at INL, June 22-25. • Mike Worley, director of the Office of Innovative Nuclear Research (NE-42), visited INL Nov. 4-5. Milestones Completed • Recommendations for the Summer Rapid Turnaround Experiment awards were submitted to DOE-HQ Nov. 12 (Level 2 milestone due Nov. 30). Major Accomplishments/Activities • The University of California, Santa Barbara 2 experiment was unloaded from the GE-2000 at HFEF. The experiment specimen packs will be removed and shipped to ORNL for PIE. • The Terrani experiment, one of three FY 2014 new awards, was completed utilizing the Advanced Photon Source MRCAT beamline. The experiment investigated the chemical state of Ag and Pd in SiC shell of irradiated TRISO particles via X-ray Absorption Fine Structure (XAFS) spectroscopy. Upcoming Meetings/Events • The ATR NSUF program review meeting will be held Dec. 9-10 at L’Enfant Plaza. In addition to NSUF staff and users, NE-4, NE-5 and NE-7 representatives will attend the meeting. Awarded Research Projects Boise State University Rapid Turnaround Experiments (14-485 and 14-486) Nanoindentation and TEM work on the T91, HT9, HCM12A and 9Cr ODS specimens has been completed at CAES by Boise State PI Janelle Wharry and Cory Dolph. PI Corey Dolph returned in early November to complete their research by performing nanoindentation on unirradiated specimens that will be used as a baseline for their research.

  20. The Advanced Test Reactor National Scientific User Facility Advancing Nuclear Technology

    SciTech Connect (OSTI)

    T. R. Allen; J. B. Benson; J. A. Foster; F. M. Marshall; M. K. Meyer; M. C. Thelen

    2009-05-01T23:59:59.000Z

    To help ensure the long-term viability of nuclear energy through a robust and sustained research and development effort, the U.S. Department of Energy (DOE) designated the Advanced Test Reactor and associated post-irradiation examination facilities a National Scientific User Facility (ATR NSUF), allowing broader access to nuclear energy researchers. The mission of the ATR NSUF is to provide access to world-class nuclear research facilities, thereby facilitating the advancement of nuclear science and technology. The ATR NSUF seeks to create an engaged academic and industrial user community that routinely conducts reactor-based research. Cost free access to the ATR and PIE facilities is granted based on technical merit to U.S. university-led experiment teams conducting non-proprietary research. Proposals are selected via independent technical peer review and relevance to DOE mission. Extensive publication of research results is expected as a condition for access. During FY 2008, the first full year of ATR NSUF operation, five university-led experiments were awarded access to the ATR and associated post-irradiation examination facilities. The ATR NSUF has awarded four new experiments in early FY 2009, and anticipates awarding additional experiments in the fall of 2009 as the results of the second 2009 proposal call. As the ATR NSUF program mature over the next two years, the capability to perform irradiation research of increasing complexity will become available. These capabilities include instrumented irradiation experiments and post-irradiation examinations on materials previously irradiated in U.S. reactor material test programs. The ATR critical facility will also be made available to researchers. An important component of the ATR NSUF an education program focused on the reactor-based tools available for resolving nuclear science and technology issues. The ATR NSUF provides education programs including a summer short course, internships, faculty-student team projects and faculty/staff exchanges. In June of 2008, the first week-long ATR NSUF Summer Session was attended by 68 students, university faculty and industry representatives. The Summer Session featured presentations by 19 technical experts from across the country and covered topics including irradiation damage mechanisms, degradation of reactor materials, LWR and gas reactor fuels, and non-destructive evaluation. High impact research results from leveraging the entire research infrastructure, including universities, industry, small business, and the national laboratories. To increase overall research capability, ATR NSUF seeks to form strategic partnerships with university facilities that add significant nuclear research capability to the ATR NSUF and are accessible to all ATR NSUF users. Current partner facilities include the MIT Reactor, the University of Michigan Irradiated Materials Testing Laboratory, the University of Wisconsin Characterization Laboratory, and the University of Nevada, Las Vegas transmission Electron Microscope User Facility. Needs for irradiation of material specimens at tightly controlled temperatures are being met by dedication of a large in-pile pressurized water loop facility for use by ATR NSUF users. Several environmental mechanical testing systems are under construction to determine crack growth rates and fracture toughness on irradiated test systems.

  1. Final Technical Report - Center for Technology for Advanced Scientific Component Software (TASCS)

    SciTech Connect (OSTI)

    Sussman, Alan [University of Maryland

    2014-10-21T23:59:59.000Z

    This is a final technical report for the University of Maryland work in the SciDAC Center for Technology for Advanced Scientific Component Software (TASCS). The Maryland work focused on software tools for coupling parallel software components built using the Common Component Architecture (CCA) APIs. Those tools are based on the Maryland InterComm software framework that has been used in multiple computational science applications to build large-scale simulations of complex physical systems that employ multiple separately developed codes.

  2. Modeling, Simulation and Analysis of Complex Networked Systems: A Program Plan for DOE Office of Advanced Scientific Computing Research

    SciTech Connect (OSTI)

    Brown, D L

    2009-05-01T23:59:59.000Z

    Many complex systems of importance to the U.S. Department of Energy consist of networks of discrete components. Examples are cyber networks, such as the internet and local area networks over which nearly all DOE scientific, technical and administrative data must travel, the electric power grid, social networks whose behavior can drive energy demand, and biological networks such as genetic regulatory networks and metabolic networks. In spite of the importance of these complex networked systems to all aspects of DOE's operations, the scientific basis for understanding these systems lags seriously behind the strong foundations that exist for the 'physically-based' systems usually associated with DOE research programs that focus on such areas as climate modeling, fusion energy, high-energy and nuclear physics, nano-science, combustion, and astrophysics. DOE has a clear opportunity to develop a similarly strong scientific basis for understanding the structure and dynamics of networked systems by supporting a strong basic research program in this area. Such knowledge will provide a broad basis for, e.g., understanding and quantifying the efficacy of new security approaches for computer networks, improving the design of computer or communication networks to be more robust against failures or attacks, detecting potential catastrophic failure on the power grid and preventing or mitigating its effects, understanding how populations will respond to the availability of new energy sources or changes in energy policy, and detecting subtle vulnerabilities in large software systems to intentional attack. This white paper outlines plans for an aggressive new research program designed to accelerate the advancement of the scientific basis for complex networked systems of importance to the DOE. It will focus principally on four research areas: (1) understanding network structure, (2) understanding network dynamics, (3) predictive modeling and simulation for complex networked systems, and (4) design, situational awareness and control of complex networks. The program elements consist of a group of Complex Networked Systems Research Institutes (CNSRI), tightly coupled to an associated individual-investigator-based Complex Networked Systems Basic Research (CNSBR) program. The CNSRI's will be principally located at the DOE National Laboratories and are responsible for identifying research priorities, developing and maintaining a networked systems modeling and simulation software infrastructure, operating summer schools, workshops and conferences and coordinating with the CNSBR individual investigators. The CNSBR individual investigator projects will focus on specific challenges for networked systems. Relevancy of CNSBR research to DOE needs will be assured through the strong coupling provided between the CNSBR grants and the CNSRI's.

  3. Perspective on Advances in Resonance-Region Nuclear Modeling and Opportunities for Future Research

    SciTech Connect (OSTI)

    Dunn, Michael E [ORNL; Larson, Nancy M [ORNL; Derrien, Herve [ORNL; Leal, Luiz C [ORNL

    2007-01-01T23:59:59.000Z

    The advent of high-fidelity radiation-transport modeling capabilities, coupled with the need to analyze complex nuclear systems, has served to emphasize the importance of high-precision cross section data, including the associated covariance information. Due to the complex nature of resonance-region interactions, cross section data cannot be calculated directly from theory; rather, high-precision resonance-region cross section measurements must be made at facilities such as the Oak Ridge Electron Linear Accelerator (ORELA) at Oak Ridge National Laboratory (ORNL), Geel Electron Linear Accelerator (GELINA), Rensselaer Polytechnic Institute (RPI). To extract accurate cross section data from these measurements, detailed nuclear modeling of the measured data is performed to parameterize the cross section behavior in the resonance range. The objective of this paper is to highlight recent advances in resonance-region nuclear modeling with particular emphasis on the covariance analysis capabilities. Opportunities for future research are identified in an effort to stimulate further advances in the state of the art nuclear modeling capabilities.

  4. National facility for advanced computational science: A sustainable path to scientific discovery

    SciTech Connect (OSTI)

    Simon, Horst; Kramer, William; Saphir, William; Shalf, John; Bailey, David; Oliker, Leonid; Banda, Michael; McCurdy, C. William; Hules, John; Canning, Andrew; Day, Marc; Colella, Philip; Serafini, David; Wehner, Michael; Nugent, Peter

    2004-04-02T23:59:59.000Z

    Lawrence Berkeley National Laboratory (Berkeley Lab) proposes to create a National Facility for Advanced Computational Science (NFACS) and to establish a new partnership between the American computer industry and a national consortium of laboratories, universities, and computing facilities. NFACS will provide leadership-class scientific computing capability to scientists and engineers nationwide, independent of their institutional affiliation or source of funding. This partnership will bring into existence a new class of computational capability in the United States that is optimal for science and will create a sustainable path towards petaflops performance.

  5. Operational Philosophy for the Advanced Test Reactor National Scientific User Facility

    SciTech Connect (OSTI)

    J. Benson; J. Cole; J. Jackson; F. Marshall; D. Ogden; J. Rempe; M. C. Thelen

    2013-02-01T23:59:59.000Z

    In 2007, the Department of Energy (DOE) designated the Advanced Test Reactor (ATR) as a National Scientific User Facility (NSUF). At its core, the ATR NSUF Program combines access to a portion of the available ATR radiation capability, the associated required examination and analysis facilities at the Idaho National Laboratory (INL), and INL staff expertise with novel ideas provided by external contributors (universities, laboratories, and industry). These collaborations define the cutting edge of nuclear technology research in high-temperature and radiation environments, contribute to improved industry performance of current and future light-water reactors (LWRs), and stimulate cooperative research between user groups conducting basic and applied research. To make possible the broadest access to key national capability, the ATR NSUF formed a partnership program that also makes available access to critical facilities outside of the INL. Finally, the ATR NSUF has established a sample library that allows access to pre-irradiated samples as needed by national research teams.

  6. Integrated Advanced Reciprocating Internal Combustion Engine System for Increased Utilization of Gaseous Opportunity Fuels

    SciTech Connect (OSTI)

    Pratapas, John; Zelepouga, Serguei; Gnatenko, Vitaliy; Saveliev, Alexei; Jangale, Vilas; Li, Hailin; Getz, Timothy; Mather, Daniel

    2013-08-31T23:59:59.000Z

    The project is addressing barriers to or opportunities for increasing distributed generation (DG)/combined heat and power (CHP) use in industrial applications using renewable/opportunity fuels. This project brings together novel gas quality sensor (GQS) technology with engine management for opportunity fuels such as landfill gas, digester gas and coal bed methane. By providing the capability for near real-time monitoring of the composition of these opportunity fuels, the GQS output can be used to improve the performance, increase efficiency, raise system reliability, and provide improved project economics and reduced emissions for engines used in distributed generation and combined heat and power.

  7. To advance and share knowledge, discover solutions and promote opportunities in food and agriculture, bioenergy, health, the environment and human well-

    E-Print Network [OSTI]

    Sheridan, Jennifer

    and agriculture, bioenergy, health, the environment and human well- being. Vision: To lead in science, innovationMission: To advance and share knowledge, discover solutions and promote opportunities in food

  8. The Advanced Test Reactor Irradiation Capabilities Available as a National Scientific User Facility

    SciTech Connect (OSTI)

    S. Blaine Grover

    2008-09-01T23:59:59.000Z

    The Advanced Test Reactor (ATR) is one of the world’s premiere test reactors for performing long term, high flux, and/or large volume irradiation test programs. The ATR is a very versatile facility with a wide variety of experimental test capabilities for providing the environment needed in an irradiation experiment. These capabilities include simple capsule experiments, instrumented and/or temperature-controlled experiments, and pressurized water loop experiment facilities. Monitoring systems have also been utilized to monitor different parameters such as fission gases for fuel experiments, to measure specimen performance during irradiation. ATR’s control system provides a stable axial flux profile throughout each reactor operating cycle, and allows the thermal and fast neutron fluxes to be controlled separately in different sections of the core. The ATR irradiation positions vary in diameter from 16 mm to 127 mm over an active core height of 1.2 m. This paper discusses the different irradiation capabilities with examples of different experiments and the cost/benefit issues related to each capability. The recent designation of ATR as a national scientific user facility will make the ATR much more accessible at very low to no cost for research by universities and possibly commercial entities.

  9. Solar Electric Grid Integration- Advanced Concepts (SEGIS-AC) Funding Opportunity

    Broader source: Energy.gov [DOE]

    Through the Solar Electric Grid Integration – Advanced Concepts (SEGIS-AC) program, DOE is funding solar projects that are targeting ways to develop power electronics and build smarter, more...

  10. State Bioenergy Primer: Information and Resources for States on Issues, Opportunities, and Options for Advancing Bioenergy

    SciTech Connect (OSTI)

    Byrnett, D. S.; Mulholland, D.; Zinsmeister, E.; Doris, E.; Milbrandt, A.; Robichaud. R.; Stanley, R.; Vimmerstedt, L.

    2009-09-01T23:59:59.000Z

    One renewable energy option that states frequently consider to meet their clean energy goals is the use of biomass resources to develop bioenergy. Bioenergy includes bioheat, biopower, biofuels, and bioproducts. This document provides an overview of biomass feedstocks, basic information about biomass conversion technologies, and a discussion of benefits and challenges of bioenergy options. The Primer includes a step-wise framework, resources, and tools for determining the availability of feedstocks, assessing potential markets for biomass, and identifying opportunities for action at the state level. Each chapter contains a list of selected resources and tools that states can use to explore topics in further detail.

  11. ARM - Employment Opportunities Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    31, 2014 Employment Opportunities Scientific Data Management Help Needed at Brookhaven Bookmark and Share The Environmental and Climate Sciences Department of Brookhaven National...

  12. ARM - Employment Opportunities Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5, 2014 Employment Opportunities Brookhaven National Laboratory Inviting Applicants for Scientific Associate Bookmark and Share The Environmental and Climate Sciences Department...

  13. New Sensors for In-Pile Temperature Measurement at the Advanced Test Reactor National Scientific User Facility

    SciTech Connect (OSTI)

    J. L. Rempe; D. L. Knudson; J. E. Daw; K. G. Condie

    2011-09-01T23:59:59.000Z

    The U.S. Department of Energy (DOE) designated the Advanced Test Reactor (ATR) a National Scientific User Facility (NSUF) in April 2007 to support U.S. research in nuclear science and technology. As a user facility, the ATR is supporting new users from universities, laboratories, and industry, as they conduct basic and applied nuclear research and development to advance the nation’s energy security needs. A key component of the ATR NSUF effort is to develop and evaluate new in-pile instrumentation techniques that are capable of providing measurements of key parameters during irradiation. This paper describes the strategy for determining what instrumentation is needed and the program for developing new or enhanced sensors that can address these needs. Accomplishments from this program are illustrated by describing new sensors now available and under development for in-pile detection of temperature at various irradiation locations in the ATR.

  14. New Sensors for In-Pile Temperature Detection at the Advanced Test Reactor National Scientific User Facility

    SciTech Connect (OSTI)

    J. L. Rempe; D. L. Knudson; J. E. Daw; K. G. Condie; S. Curtis Wilkins

    2009-09-01T23:59:59.000Z

    The Department of Energy (DOE) designated the Advanced Test Reactor (ATR) as a National Scientific User Facility (NSUF) in April 2007 to support U.S. leadership in nuclear science and technology. As a user facility, the ATR is supporting new users from universities, laboratories, and industry, as they conduct basic and applied nuclear research and development to advance the nation’s energy security needs. A key component of the ATR NSUF effort is to develop and evaluate new in-pile instrumentation techniques that are capable of providing measurements of key parameters during irradiation. This paper describes the strategy for determining what instrumentation is needed and the program for developing new or enhanced sensors that can address these needs. Accomplishments from this program are illustrated by describing new sensors now available and under development for in-pile detection of temperature at various irradiation locations in the ATR.

  15. Stakeholder identification of advanced technology opportunities at international ports of entry

    SciTech Connect (OSTI)

    Parker, S.K. [Sandia National Labs., Albuquerque, NM (United States). Energy Policy and Planning Dept.; Icerman, L. [Icerman and Associates, Santa Fe, NM (United States)

    1997-01-01T23:59:59.000Z

    As part of the Advanced Technologies for International and Intermodal Ports of Entry (ATIPE) Project, a diverse group of stakeholders was engaged to help identify problems experienced at inland international border crossings, particularly those at the US-Mexican border. The fundamental issue at international ports of entry is reducing transit time through the required documentation and inspection processes. Examples of other issues or problems, typically manifested as time delays at border crossings, repeatedly mentioned by stakeholders include: (1) lack of document standardization; (2) failure to standardize inspection processes; (3) inadequate information and communications systems; (4) manual fee and tariff collection; (5) inconsistency of processes and procedures; and (6) suboptimal cooperation among governmental agencies. Most of these issues can be addressed to some extent by the development of advanced technologies with the objective of allowing ports of entry to become more efficient while being more effective. Three categories of technologies were unambiguously of high priority to port of entry stakeholders: (1) automated documentation; (2) systems integration; and (3) vehicle and cargo tracking. Together, these technologies represent many of the technical components necessary for pre-clearance of freight approaching international ports of entry. Integration of vehicle and cargo tracking systems with port of entry information and communications systems, as well as existing industry legacy systems, should further enable border crossings to be accomplished consistently with optimal processing times.

  16. Scientific Discovery through Advanced Computing (SciDAC) | U.S. DOE Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol HomeFacebook Twitter Principalfuel cells"03,ScientificScientificDataof

  17. New DOE-Sponsored Study Helps Advance Scientific Understanding of Potential CO2 Storage Impacts

    Broader source: Energy.gov [DOE]

    In another step forward toward improved scientific understanding of potential geologic carbon dioxide storage impacts, a new U.S. Department of Energy sponsored study has confirmed earlier research showing that proper site selection and monitoring is essential for helping anticipate and mitigate possible risks.

  18. EWEC 2006 Scientific Track Advanced Forecast Systems for the Grid Integration of 25 GW

    E-Print Network [OSTI]

    Heinemann, Detlev

    forecasts, smoothing effects Abstract The economic success of offshore wind farms in liberalised electricity of offshore wind farms, their electricity production must be known well in advance to allow an efficient Oldenburg, Germany Key words: Offshore wind power, grid integration, short-term prediction, regional

  19. The Center for Technology for Advanced Scientific Component Software (TASCS) Lawrence Livermore National Laboratory - Site Status Update

    SciTech Connect (OSTI)

    Epperly, T W

    2008-12-03T23:59:59.000Z

    This report summarizes LLNL's progress for the period April through September of 2008 for the Center for Technology for Advanced Scientific Component Software (TASCS) SciDAC. The TASCS project is organized into four major thrust areas: CCA Environment (72%), Component Technology Initiatives (16%), CCA Toolkit (8%), and User and Application Outreach & Support (4%). The percentage of LLNL's effort allocation is shown in parenthesis for each thrust area. Major thrust areas are further broken down into activity areas, LLNL's effort directed to each activity is shown in Figure 1. Enhancements, Core Tools, and Usability are all part of CCA Environment, and Software Quality is part of Component Technology Initiatives. The balance of this report will cover our accomplishments in each of these activity areas.

  20. ARM - Employment Opportunities Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    17, 2014 Employment Opportunities Brookhaven National Laboratory Seeking Advanced Applications Engineer Bookmark and Share The Environmental and Climate Sciences Department of...

  1. New Sensors for the Advanced Test Reactor National Scientific User Facility

    SciTech Connect (OSTI)

    Joy L. Rempe; Darrell L. Knudson; Keith G. Condie; Joshua E. Daw; Heng Ban; Brandon Fox; Gordon Kohse

    2009-06-01T23:59:59.000Z

    A key component of the ATR NSUF effort is to develop and evaluate new in-pile instrumentation techniques that are capable of providing real-time measurements of key parameters during irradiation. This paper describes the selection strategy of what instrumentation is needed, and the program generated for developing new or enhanced sensors that can address these needs. Accomplishments from this program are illustrated by describing new sensors now available to users of the ATR NSUF with data from irradiation tests using these sensors. In addition, progress is reported on current research efforts to provide users advanced methods for detecting temperature, fuel thermal conductivity, and changes in sample geometry.

  2. Advanced Artificial Science. The development of an artificial science and engineering research infrastructure to facilitate innovative computational modeling, analysis, and application to interdisciplinary areas of scientific investigation.

    SciTech Connect (OSTI)

    Saffer, Shelley (Sam) I.

    2014-12-01T23:59:59.000Z

    This is a final report of the DOE award DE-SC0001132, Advanced Artificial Science. The development of an artificial science and engineering research infrastructure to facilitate innovative computational modeling, analysis, and application to interdisciplinary areas of scientific investigation. This document describes the achievements of the goals, and resulting research made possible by this award.

  3. Nationwide Buildings Energy Research enabled through an integrated Data Intensive Scientific Workflow and Advanced Analysis Environment

    SciTech Connect (OSTI)

    Kleese van Dam, Kerstin; Lansing, Carina S.; Elsethagen, Todd O.; Hathaway, John E.; Guillen, Zoe C.; Dirks, James A.; Skorski, Daniel C.; Stephan, Eric G.; Gorrissen, Willy J.; Gorton, Ian; Liu, Yan

    2014-01-31T23:59:59.000Z

    Modern workflow systems enable scientists to run ensemble simulations at unprecedented scales and levels of complexity, allowing them to study system sizes previously impossible to achieve, due to the inherent resource requirements needed for the modeling work. However as a result of these new capabilities the science teams suddenly also face unprecedented data volumes that they are unable to analyze with their existing tools and methodologies in a timely fashion. In this paper we will describe the ongoing development work to create an integrated data intensive scientific workflow and analysis environment that offers researchers the ability to easily create and execute complex simulation studies and provides them with different scalable methods to analyze the resulting data volumes. The integration of simulation and analysis environments is hereby not only a question of ease of use, but supports fundamental functions in the correlated analysis of simulation input, execution details and derived results for multi-variant, complex studies. To this end the team extended and integrated the existing capabilities of the Velo data management and analysis infrastructure, the MeDICi data intensive workflow system and RHIPE the R for Hadoop version of the well-known statistics package, as well as developing a new visual analytics interface for the result exploitation by multi-domain users. The capabilities of the new environment are demonstrated on a use case that focusses on the Pacific Northwest National Laboratory (PNNL) building energy team, showing how they were able to take their previously local scale simulations to a nationwide level by utilizing data intensive computing techniques not only for their modeling work, but also for the subsequent analysis of their modeling results. As part of the PNNL research initiative PRIMA (Platform for Regional Integrated Modeling and Analysis) the team performed an initial 3 year study of building energy demands for the US Eastern Interconnect domain, which they are now planning to extend to predict the demand for the complete century. The initial study raised their data demands from a few GBs to 400GB for the 3year study and expected tens of TBs for the full century.

  4. Advanced Communication and Control for Distributed Energy Resource Integration: Phase 2 Scientific Report

    SciTech Connect (OSTI)

    BPL Global

    2008-09-30T23:59:59.000Z

    The objective of this research project is to demonstrate sensing, communication, information and control technologies to achieve a seamless integration of multivendor distributed energy resource (DER) units at aggregation levels that meet individual user requirements for facility operations (residential, commercial, industrial, manufacturing, etc.) and further serve as resource options for electric and natural gas utilities. The fully demonstrated DER aggregation system with embodiment of communication and control technologies will lead to real-time, interactive, customer-managed service networks to achieve greater customer value. Work on this Advanced Communication and Control Project (ACCP) consists of a two-phase approach for an integrated demonstration of communication and control technologies to achieve a seamless integration of DER units to reach progressive levels of aggregated power output. Phase I involved design and proof-of-design, and Phase II involves real-world demonstration of the Phase I design architecture. The scope of work for Phase II of this ACCP involves demonstrating the Phase I design architecture in large scale real-world settings while integrating with the operations of one or more electricity supplier feeder lines. The communication and control architectures for integrated demonstration shall encompass combinations of software and hardware components, including: sensors, data acquisition and communication systems, remote monitoring systems, metering (interval revenue, real-time), local and wide area networks, Web-based systems, smart controls, energy management/information systems with control and automation of building energy loads, and demand-response management with integration of real-time market pricing. For Phase II, BPL Global shall demonstrate the Phase I design for integrating and controlling the operation of more than 10 DER units, dispersed at various locations in one or more Independent System Operator (ISO) Control Areas, at an aggregated scale of more than 1 MW, to provide grid support. Actual performance data with respect to each specified function above is to be collected during the Phase II field demonstration. At a minimum, the Phase II demonstration shall span one year of field operations. The demonstration performance will need to be validated by the target customer(s) for acceptance and subsequent implementation. An ISO must be involved in demonstration planning and execution. As part of the Phase II work, BPL Global shall develop a roadmap to commercialization that identifies and quantifies the potential markets for the integrated, aggregated DER systems and for the communication and control technologies demonstrated in Phase I. In addition, the roadmap must identify strategies and actions, as well as the regional and national markets where the aggregated DER systems with communication and control solutions will be introduced, along with a timeline projected for introduction into each identified market. In Phase I of this project, we developed a proof-of-concept ACCP system and architecture and began to test its functionality at real-world sites. These sites had just over 10 MW of DERs and allowed us to identify what needed to be done to commercialize this concept. As a result, we started Phase II by looking at our existing platform and identified its strengths and weaknesses as well as how it would need to evolve for commercialization. During this process, we worked with different stakeholders in the market including: Independent System Operators, DER owners and operators, and electric utility companies to fully understand the issues from all of the different perspectives. Once we had an understanding of the commercialized ACCP system, we began to document and prepare detailed designs of the different system components. The components of the system with the most significant design improvements were: the on-site remote terminal unit, the communication technology between the remote site and the data center, and the scalability and reliability of the data center application.

  5. Advanced Scientific Computing Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    research along with supporting narratives, illustrated by specific science-based case studies. Findings from the review will guide NERSC procurements and service offerings...

  6. Advanced Scientific Computing Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWP TWP Related LinksATHENAAdministrative80-AAAdvanced

  7. Advanced Scientific Computing Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWP TWP Related LinksATHENAAdministrative80-AAAdvanced Large Scale

  8. EXTERNAL MENTORS AND COLLABORATORS PROGRAM -2015 The SU ADVANCE External Mentors and Collaborators Program creates opportunity for women in

    E-Print Network [OSTI]

    Doyle, Robert

    EXTERNAL MENTORS AND COLLABORATORS PROGRAM - 2015 The SU ADVANCE External Mentors universities. Mentors and collaborators will provide assistance, facilitate research efforts, and, where appropriate, be themselves examples of accomplished, senior women role models. Selected mentors

  9. Advanced Analysis Software Key to New, Energy-Efficient Technologies: Leveraging Scientific and Engineering Know-How to Advance Sources of Renewable Energy

    Energy Innovation Portal (Marketing Summaries) [EERE]

    2011-04-05T23:59:59.000Z

    Supported by funding from the U.S. Department of Energy, other federal agencies, and industry sponsors, Argonne is providing broad-based scientific and engineering expertise to create analytical software tools that will enable the United States to make substantive enhancements in energy efficiency and serve the growing demand for renewable energy....

  10. Opportunities for discovery: Theory and computation in Basic Energy Sciences

    SciTech Connect (OSTI)

    Harmon, Bruce; Kirby, Kate; McCurdy, C. William

    2005-01-11T23:59:59.000Z

    New scientific frontiers, recent advances in theory, and rapid increases in computational capabilities have created compelling opportunities for theory and computation to advance the scientific mission of the Office of Basic Energy Sciences (BES). The prospects for success in the experimental programs of BES will be enhanced by pursuing these opportunities. This report makes the case for an expanded research program in theory and computation in BES. The Subcommittee on Theory and Computation of the Basic Energy Sciences Advisory Committee was charged with identifying current and emerging challenges and opportunities for theoretical research within the scientific mission of BES, paying particular attention to how computing will be employed to enable that research. A primary purpose of the Subcommittee was to identify those investments that are necessary to ensure that theoretical research will have maximum impact in the areas of importance to BES, and to assure that BES researchers will be able to exploit the entire spectrum of computational tools, including leadership class computing facilities. The Subcommittee s Findings and Recommendations are presented in Section VII of this report.

  11. Compelling Research Opportunities using Isotopes

    SciTech Connect (OSTI)

    None

    2009-04-23T23:59:59.000Z

    Isotopes are vital to the science and technology base of the US economy. Isotopes, both stable and radioactive, are essential tools in the growing science, technology, engineering, and health enterprises of the 21st century. The scientific discoveries and associated advances made as a result of the availability of isotopes today span widely from medicine to biology, physics, chemistry, and a broad range of applications in environmental and material sciences. Isotope issues have become crucial aspects of homeland security. Isotopes are utilized in new resource development, in energy from bio-fuels, petrochemical and nuclear fuels, in drug discovery, health care therapies and diagnostics, in nutrition, in agriculture, and in many other areas. The development and production of isotope products unavailable or difficult to get commercially have been most recently the responsibility of the Department of Energy's Nuclear Energy program. The President's FY09 Budget request proposed the transfer of the Isotope Production program to the Department of Energy's Office of Science in Nuclear Physics and to rename it the National Isotope Production and Application program (NIPA). The transfer has now taken place with the signing of the 2009 appropriations bill. In preparation for this, the Nuclear Science Advisory Committee (NSAC) was requested to establish a standing subcommittee, the NSAC Isotope Subcommittee (NSACI), to advise the DOE Office of Nuclear Physics. The request came in the form of two charges: one, on setting research priorities in the short term for the most compelling opportunities from the vast array of disciplines that develop and use isotopes and two, on making a long term strategic plan for the NIPA program. This is the final report to address charge 1. NSACI membership is comprised of experts from the diverse research communities, industry, production, and homeland security. NSACI discussed research opportunities divided into three areas: (1) medicine, pharmaceuticals, and biology, (2) physical sciences and engineering, and (3) national security and other applications. In each area, compelling research opportunities were considered and the subcommittee as a whole determined the final priorities for research opportunities as the foundations for the recommendations. While it was challenging to prioritize across disciplines, our order of recommendations reflect the compelling research prioritization along with consideration of time urgency for action as well as various geopolitical market issues. Common observations to all areas of research include the needs for domestic availability of crucial stable and radioactive isotopes and the education of the skilled workforce that will develop new advances using isotopes in the future. The six recommendations of NSACI reflect these concerns and the compelling research opportunities for potential new discoveries. The science case for each of the recommendations is elaborated in the respective chapters.

  12. Amendment to Funding Opportunity Announcement, DE-FOA-0000522...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Amendment to Funding Opportunity Announcement, DE-FOA-0000522: Geothermal Technology Advancement for Rapid Development of Resources in the U.S. Amendment to Funding Opportunity...

  13. Advances

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProducts (VAP) VAP7-0973 1BP-14Scripting for Advanced Workflows Jack

  14. The scientific case for eInfrastructure in Norway

    E-Print Network [OSTI]

    Helgaker, Trygve

    The scientific case for eInfrastructure in Norway The eInfrastructure Scientific Opportunities Panel #12;2 3 The scientific case for eInfrastructure in Norway The eInfrastructure Scientific Opportunities Panel Appointed by the Research Council of Norway Galen Gisler (chair) Physics of Geological

  15. Mining Scientific Data Naren Ramakrishnan

    E-Print Network [OSTI]

    Southern California, University of

    -scale data repositories. Advances in networking technology have en- abled communication of large volumesMining Scientific Data Naren Ramakrishnan Department of Computer Science Virginia Tech, VA 24061 rapid advances in high performance computing and tools for data acquisition in a variety of scientific

  16. advance science research: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    that one Geddes, Cameron Guy Robinson 3 Advanced Scientific Computing Research Computer Science Engineering Websites Summary: Advanced Scientific Computing Research Computer...

  17. advancing computational science: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a novel Geddes, Cameron Guy Robinson 7 Advanced Scientific Computing Research Computer Science Engineering Websites Summary: Advanced Scientific Computing Research Computer...

  18. advanced computational science: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a novel Geddes, Cameron Guy Robinson 7 Advanced Scientific Computing Research Computer Science Engineering Websites Summary: Advanced Scientific Computing Research Computer...

  19. advanced computer science: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a novel Geddes, Cameron Guy Robinson 7 Advanced Scientific Computing Research Computer Science Engineering Websites Summary: Advanced Scientific Computing Research Computer...

  20. Mathematical and Statistical Opportunities in Cyber Security

    SciTech Connect (OSTI)

    Meza, Juan; Campbell, Scott; Bailey, David

    2009-03-23T23:59:59.000Z

    The role of mathematics in a complex system such as the Internet has yet to be deeply explored. In this paper, we summarize some of the important and pressing problems in cyber security from the viewpoint of open science environments. We start by posing the question 'What fundamental problems exist within cyber security research that can be helped by advanced mathematics and statistics'? Our first and most important assumption is that access to real-world data is necessary to understand large and complex systems like the Internet. Our second assumption is that many proposed cyber security solutions could critically damage both the openness and the productivity of scientific research. After examining a range of cyber security problems, we come to the conclusion that the field of cyber security poses a rich set of new and exciting research opportunities for the mathematical and statistical sciences.

  1. ADVANCED SCIENTIFIC COMPUTING ADVISORY COMMITTEE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76) (See the EnergyTAMANG, APIL. AProvenanceG

  2. Sandia National Laboratories: Our SSLS EFRC's Scientific Research...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    works to advance the scientific foundation that underlies current and potential-future SSL technology, and to ultimately enable significant advances in the efficiency with which...

  3. New results in atomic physics at the Advanced Light Source

    SciTech Connect (OSTI)

    Schlachter, A.S.

    1995-01-01T23:59:59.000Z

    The Advanced Light Source is the world's first low-energy third-generation synchrotron radiation source. It has been running reliably and exceeding design specifications since it began operation in October 1993. It is available to a wide community of researchers in many scientific fields, including atomic and molecular science and chemistry. Here, new results in atomic physics at the Advanced Light Source demonstrate the opportunities available in atomic and molecular physics at this synchrotron light source. The unprecedented brightness allows experiments with high flux, high spectral resolution, and nearly 100% linear polarization.

  4. address scientific challenges: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    or economic sectors. The aim of this thesis is to show that the design of climate change policy has 13 Provenance and scientific workflows: challenges and opportunities...

  5. Opportunities in the Fusion Energy Sciences Program [Includes Appendix C: Topical Areas Characterization

    SciTech Connect (OSTI)

    None

    1999-06-01T23:59:59.000Z

    Recent years have brought dramatic advances in the scientific understanding of fusion plasmas and in the generation of fusion power in the laboratory. Today, there is little doubt that fusion energy production is feasible. The challenge is to make fusion energy practical. As a result of the advances of the last few years, there are now exciting opportunities to optimize fusion systems so that an attractive new energy source will be available when it may be needed in the middle of the next century. The risk of conflicts arising from energy shortages and supply cutoffs, as well as the risk of severe environmental impacts from existing methods of energy production, are among the reasons to pursue these opportunities.

  6. Opportunities in the Fusion Energy Sciences Program. Appendix C: Topical Areas Characterization

    SciTech Connect (OSTI)

    none,

    1999-06-30T23:59:59.000Z

    Recent years have brought dramatic advances in the scientific understanding of fusion plasmas and in the generation of fusion power in the laboratory. Today, there is little doubt that fusion energy production is feasible. The challenge is to make fusion energy practical. As a result of the advances of the last few years, there are now exciting opportunities to optimize fusion systems so that an attractive new energy source will be available when it may be needed in the middle of the next century. The risk of conflicts arising from energy shortages and supply cutoffs, as well as the risk of severe environmental impacts from existing methods of energy production, are among the reasons to pursue these opportunities.

  7. BidOpportunity Bid Opportunity

    E-Print Network [OSTI]

    Qian, Ning

    Additional Subcontracting & Supplier Opportunities: If your company does not meet the qualifications to bid systems is also part of this contract. Qualifications Union firms with successful track records Sinckler at (212) 854-4142 to receive more information and a pre- qualification form. All prequalification

  8. BidOpportunity Bid Opportunity

    E-Print Network [OSTI]

    Qian, Ning

    . Qualifications Union firms with successful track records of applying intumescent coating and spray applied- qualification form. All prequalification forms must be returned by Monday, May 23, 2011 in order to be considered for this opportunity. Please forward pre-qualification forms to: Columbia University

  9. BidOpportunity Bid Opportunity

    E-Print Network [OSTI]

    Qian, Ning

    Street to the south side of 133rd Street. Subcontracting & Supplier Opportunities Concrete, structural-back, cutting, welding, plumbing, demolition, and temporary electric. Subcontractor Qualification Union firms/welding. Auxiliary Functions Qualifications Union firms with successful track records of work with large nations

  10. BidOpportunity Bid Opportunity

    E-Print Network [OSTI]

    Qian, Ning

    and the fabrication and erection of interior staircases is also part of this contract. Qualifications Union firms- qualification form. All prequalification forms must be returned by Monday, February 18, 2010. Please forward pre-qualification: Serena Sinckler Additional Subcontracting & Supplier Opportunities: If your company does not meet

  11. Scientific/Techical Report

    SciTech Connect (OSTI)

    Dr. Chris Leighton, Neutron Scattering Society of American; Mr. J. Ardie (Butch) Dillen, MRS Director of Finance and Administration

    2012-11-07T23:59:59.000Z

    The ACNS provides a focal point for the North American neutron user community, strengthening ties within this diverse group, and promoting neutron research in related disciplines. The conference thus serves a dual role as both a national user meeting and a scientific meeting. As a venue for scientific exchange, the ACNS showcases recent results and provides a forum for scientific discussion of neutron-enabled research in fields as diverse as hard and soft condensed matter, liquids, biology, magnetism, engineering materials, chemical spectroscopy, crystal structure, elementary excitations, fundamental physics, and development of neutron instrumentation. This is achieved through a combination of invited oral presentations, contributed oral presentations, and poster sessions. Adequate opportunity for spontaneous discussion and collaboration is also built into the ACNS program in order to foster free exchange of new scientific ideas and the potential for use of powerful neutron scattering methods beyond the current realms of application. The sixth American Conference on Neutron Scattering (ACNS 2012) provided essential information on the breadth and depth of current neutron-related research worldwide. A strong program of plenary, invited and contributed talks showcased recent scientific results in neutron science in a wide range of fields, including soft and hard condensed matter, biology, chemistry, energy and engineering applications, and neutron physics.

  12. NETL Business Opportunities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Business Opportunities Business Forms Contacts NETL offers many business opportunities, using a variety of contract and funding vehicles. Solicitations and Funding Opportunities...

  13. Funding Opportunity Announcement for a Marine and Hydrokinetic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    University Consortium." This funding opportunity is supporting the advancement of wave and tidal energy technologies while developing a globally competitive MHK workforce....

  14. Buildings-to-Grid Technical Opportunities: From the Buildings...

    Energy Savers [EERE]

    Opportunities: From the Buildings Perspective Technological advances in demand response and energy efficiency have increased the utility of residential and commercial...

  15. Upcoming Funding Opportunity for Technology Incubator for Wind...

    Energy Savers [EERE]

    opportunity encompasses applications for any and all ideas that have a significant potential to advance the mission of the Wind Program. While all high-impact applications...

  16. ADVANCE! Leadership Experience Project Guidelines

    E-Print Network [OSTI]

    Hone, James

    ADVANCE! Leadership Experience Project Guidelines Fieldwork Practicum Description: The fieldwork component of the ADVANCE! leadership program offers students the opportunity to integrate theory exposure to that industry. Together, they design a leadership project in which the student takes an active

  17. Bidding Opportunities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced Materials Find MoreLawrenceDepartment ofBicycle Safety Task

  18. Research Opportunities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear Press Releases 2014ReferencesStereoEnergyOpportunities

  19. Bidding Opportunities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWP TWPAlumniComplexMaterial Science | StanfordBidding Opportunities

  20. Business Opportunities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWPSuccess Stories Siteandscience, and8 FY 2009422Business Opportunities

  1. Advanced Materials Center of Excellence Jason Boehm

    E-Print Network [OSTI]

    Advanced Materials Center of Excellence Webinar Jason Boehm Program Coordination Office National · Materials Genome Initiative · Advanced Materials Center of Excellence · Overview Federal Funding Opportunity one Center focused on Advanced Materials Depending on FY2014 Funding NIST expects to announce

  2. advanced atpg flow: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    OPPORTUNITIES ADVANCE THE UNDERSTANDING OF AUTISM 12;Marcus Autism Center Adams, Mark 126 Advanced Review Emerging applications Biology and Medicine Websites Summary:...

  3. ITP Metal Casting: Advanced Melting Technologies: Energy Saving...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Melting Technologies: Energy Saving Concepts and Opportunities for the Metal Casting Industry ITP Metal Casting: Advanced Melting Technologies: Energy Saving Concepts and...

  4. History of Resistance Welding Oxide Dispersion Strengthened Cladding and other High Temperature Materials at Center for Advanced Energy Studies

    SciTech Connect (OSTI)

    Larry Zirker; Nathan Jerred; Dr. Indrajit Charit; James Cole

    2012-03-01T23:59:59.000Z

    Research proposal 08-1079, 'A Comparative Study of Welded ODS Cladding Materials for AFCI/GNEP,' was funded in 2008 under an Advanced Fuel Cycle Initiative (AFCI) Research and Development Funding Opportunity, number DE-PS07-08ID14906. Th proposal sought to conduct research on joining oxide dispersion strengthen (ODS) tubing material to a solid end plug. This document summarizes the scientific and technical progress achieved during the project, which ran from 2008 to 2011.

  5. Opportunity for feedback Opportunity for updates

    E-Print Network [OSTI]

    Opportunity for feedback Opportunity for updates Opportunity to find out all of the things I don) What do these all mean? Vision (1) Values (5-10) Strategic Priorities (5-7) Education, scholarship update Research Plan Pinnacles or not? Focus on impact Update every 3 yrs Capital Plan Existing

  6. Scientific Bio

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol HomeFacebook Twitter Principalfuel cells"03,ScientificScientific

  7. Secretary Bodman in Illinois Highlights Scientific Research Investment...

    Energy Savers [EERE]

    Bodman in Illinois Highlights Scientific Research Investments to Advance America's Innovation April 11, 2007 - 12:36pm Addthis ROMEOVILLE, IL - U.S. Secretary of Energy...

  8. Funding Opportunity: Technology Advancement for Rapid Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    data to prepare their application. GTP's goal is to address the high exploration and drilling risks and costs for geothermal development and key technical barriers for enhanced...

  9. EXCITING OPPORTUNITIES TO ADVANCE FUSION ENERGY

    E-Print Network [OSTI]

    Concepts Spheromak Reversed- Field Pinch Spherical Torus Tokamak Stellarator Self- Organized External Stellarator RFP FRC Spheromak Other Magnetic T E C H N O L O G I E S EC: D. Barnes #12;MFEWG Snowmass 99

  10. Opportunities with the Advanced Technology Group

    E-Print Network [OSTI]

    or improved NetApp® products that deliver real business value to our customers. · Patents: Describe of problem areas. Some of the key product areas where we have been making an impact include: · Virtualization the future of storage and data management. #12;Join NetApp ­ Listed on Fortune's "100 Best Companies to Work

  11. Funding Opportunity Announcement: Concentrating Solar Power: Advanced

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaefer To: Congestion Study CommentsStolar,NEACEnergy AviationThisProjects

  12. Opportunities to advance the physics of transients

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for RenewableSpeeding accessSpeedingOctoberResearchOpen→and Technology, AOT:into

  13. Scientific and Technical Information Management

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2010-12-13T23:59:59.000Z

    The purpose of this directive is to ensure that STI is appropriately managed as part of the DOE mission to enable the advancement of scientific knowledge and technological innovation. Cancels DOE O 241.1A and DOE O 241.1A Chg 1.

  14. Data Mining for Scientific & Engineering Applications

    E-Print Network [OSTI]

    Kumar, Vipin

    Data Mining for Scientific & Engineering Applications Robert Grossman, Laboratory for Advanced Kumar, Army High Performance Research Center, University of Minnesota #12;Chapter 10 ­ Data Mining. Grossman, C. Kamath, V. Kumar Data Mining for Scientific and Engineering Applications Ch 10/ 3 Goals

  15. Scientific Highlights

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementingnpitcheResearch BriefsTenney,ScienceScientific

  16. Scientific Highlights

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementingnpitcheResearch BriefsTenney,ScienceScientific

  17. Advancing Concentrating Solar Power Research (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-02-01T23:59:59.000Z

    Researchers at the National Renewable Energy Laboratory (NREL) provide scientific, engineering, and analytical expertise to help advance innovation in concentrating solar power (CSP). This fact sheet summarizes how NREL is advancing CSP research.

  18. Geothermal Industry Partnership Opportunities

    Broader source: Energy.gov [DOE]

    Here you'll find links to information about partnership opportunities and programs for the geothermal industry.

  19. DOE Office of Advanced Scientific Computing Research

    E-Print Network [OSTI]

    . Interconnect technology: Increasing the performance and energy efficiency of data movement. 3. Memory Facilities ­ Leadership Computing ­ National Energy Research Supercomputing Center (NERSC) ­ High. Energy efficiency: Creating more energy efficient circuit, power, and cooling technologies. 2

  20. Advanced Scientific Computing Research Network Requirements

    E-Print Network [OSTI]

    Dart, Eli

    2014-01-01T23:59:59.000Z

    that have a high-performance computing (HPC) component (with an emphasis on high performance computing facilities.develop and deploy high- performance computing hardware and

  1. Educating Scientifically - Advances in Physics Education Research

    ScienceCinema (OSTI)

    Finkelstein, Noah [University of Colorado, Colorado, USA

    2009-09-01T23:59:59.000Z

    It is now fairly well documented that traditionally taught, large-scale introductory physics courses fail to teach our students the basics. In fact, often these same courses have been found to teach students things we do not want. Building on a tradition of research in physics, the physics education research community has been researching the effects of educational practice and reforms at the undergraduate level for many decades. From these efforts and those within the fields of education, cognitive science, and psychology we have learned a great deal about student learning and environments that support learning for an increasingly diverse population of students in the physics classroom. This talk will introduce some of the ideas from physics education research, discuss a variety of effective classroom practices/ surrounding educational structures, and begin to examine why these do (and do not) work. I will present both a survey of physics education research and some of the exciting theoretical and experimental developments emerging from the University of Colorado.

  2. Scientific Software Projects | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    obtain the orientation or strain information within an inhomogeneous material Grains in a polycrystalline sample MIDAS: Microstructural Imaging using Diffraction Analysis Software...

  3. Energy Department Requests Proposals for Advanced Scientific...

    Broader source: Energy.gov (indexed) [DOE]

    These results were incorporated into the design of ITER, the planned international fusion energy experiment. In another SciDAC effort, the sophistication of climate research...

  4. Advanced Scientific Computing Research Computer Science

    E-Print Network [OSTI]

    as production-quality, parallel-capable AMR visual data analysis infrastructure. This effort will help science-quality visualization of an AMR simulation of a hydrogen flame (Sample data courtesy J. Bell and M. Day, Center Infrastructure Center (APDEC) has begun to transition away from their in-house ChomboVis application to Vis

  5. Advanced Scientific Computing Research Computer Science

    E-Print Network [OSTI]

    Geddes, Cameron Guy Robinson

    contacts a normal web server, downloads the map file, then begins navigation through the ordered sequence of images. The client requests images through the web server as needed to satisfy a particular viewpoint

  6. DOE Supercomputing Resources Available for Advancing Scientific

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613PortsmouthBartlesvilleAbout »DepartmentLaboratory | DepartmentCoalRules

  7. Physics Opportunities with Meson Beams

    E-Print Network [OSTI]

    Briscoe, William J; Haberzettl, Helmut; Manley, D Mark; Naruki, Megumi; Strakovsky, Igor I; Swanson, Eric S

    2015-01-01T23:59:59.000Z

    Over the past two decades, meson photo- and electro-production data of unprecedented quality and quantity have been measured at electromagnetic facilities worldwide. By contrast, the meson-beam data for the same hadronic final states are mostly outdated and largely of poor quality, or even nonexistent, and thus provide inadequate input to help interpret, analyze, and exploit the full potential of the new electromagnetic data. To reap the full benefit of the high-precision electromagnetic data, new high-statistics data from measurements with meson beams, with good angle and energy coverage for a wide range of reactions, are critically needed to advance our knowledge in baryon and meson spectroscopy and other related areas of hadron physics. To address this situation, a state of-the-art meson-beam facility needs to be constructed. The present paper summarizes unresolved issues in hadron physics and outlines the vast opportunities and advances that only become possible with such a facility.

  8. Dynamic Processes in Biology, Chemistry, and Materials Science: Opportunities for UltraFast Transmission Electron Microscopy - Workshop Summary Report

    SciTech Connect (OSTI)

    Kabius, Bernd C.; Browning, Nigel D.; Thevuthasan, Suntharampillai; Diehl, Barbara L.; Stach, Eric A.

    2012-07-25T23:59:59.000Z

    This report summarizes a 2011 workshop that addressed the potential role of rapid, time-resolved electron microscopy measurements in accelerating the solution of important scientific and technical problems. A series of U.S. Department of Energy (DOE) and National Academy of Science workshops have highlighted the critical role advanced research tools play in addressing scientific challenges relevant to biology, sustainable energy, and technologies that will fuel economic development without degrading our environment. Among the specific capability needs for advancing science and technology are tools that extract more detailed information in realistic environments (in situ or operando) at extreme conditions (pressure and temperature) and as a function of time (dynamic and time-dependent). One of the DOE workshops, Future Science Needs and Opportunities for Electron Scattering: Next Generation Instrumentation and Beyond, specifically addressed the importance of electron-based characterization methods for a wide range of energy-relevant Grand Scientific Challenges. Boosted by the electron optical advancement in the last decade, a diversity of in situ capabilities already is available in many laboratories. The obvious remaining major capability gap in electron microscopy is in the ability to make these direct in situ observations over a broad spectrum of fast (µs) to ultrafast (picosecond [ps] and faster) temporal regimes. In an effort to address current capability gaps, EMSL, the Environmental Molecular Sciences Laboratory, organized an Ultrafast Electron Microscopy Workshop, held June 14-15, 2011, with the primary goal to identify the scientific needs that could be met by creating a facility capable of a strongly improved time resolution with integrated in situ capabilities. The workshop brought together more than 40 leading scientists involved in applying and/or advancing electron microscopy to address important scientific problems of relevance to DOE’s research mission. This workshop built on previous workshops and included three breakout sessions identifying scientific challenges in biology, biogeochemistry, catalysis, and materials science frontier areas of fundamental science that underpin energy and environmental science that would significantly benefit from ultrafast transmission electron microscopy (UTEM). In addition, the current status of time-resolved electron microscopy was examined, and the technologies that will enable future advances in spatio-temporal resolution were identified in a fourth breakout session.

  9. Undergraduate Opportunities | ornl.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Undergraduate Opportunities SHARE Undergraduate Opportunities DOE Community College Internship (CCI) This program places students from community colleges into paid internships...

  10. Oklahoma Opportunity Fund (Oklahoma)

    Broader source: Energy.gov [DOE]

    The Oklahoma Opportunity Fund was established to promote economic development and related infrastructure development. Eligible applicants are for-profit entities; non-profit entities; and state and...

  11. ARM - Employment Opportunities Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5, 2014 Employment Opportunities Seeking Lead Mentor for the ARM Soil Water and Temperature System (SWATS) Bookmark and Share The ARM Climate Research Facility is seeking an ARM...

  12. ARM - Employment Opportunities Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    August 19, 2014 Employment Opportunities Radar Engineer for ARM Facility at PNNL Bookmark and Share Pacific Northwest National Laboratory is currently seeking a radar engineer...

  13. ARM - Employment Opportunities Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    January 29, 2014 Employment Opportunities Research Position Available at Brookhaven National Laboratory Bookmark and Share The Environmental Sciences Department of Brookhaven...

  14. ARM - Employment Opportunities Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    25, 2015 Employment Opportunities DOE Seeking ASR Program Manager Bookmark and Share DOE's Office of Biological and Environmental Research is hiring a second federal program...

  15. ARM - Employment Opportunities Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    December 27, 2014 Employment Opportunities Postdoctoral Researcher Position Available at the University of Reading Bookmark and Share University of Reading Logo The University of...

  16. ARM - Employment Opportunities Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    26, 2014 Employment Opportunities Supporting Scientist Positon for ARM at Lawrence Livermore National Laboratory Bookmark and Share llnl-logo The Cloud Processes Research (CPR)...

  17. ARM - Employment Opportunities Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    March 13, 2015 Employment Opportunities NOAA Environmental Modeling Center seeking Support Scientist Bookmark and Share I.M. Systems Group (IMSG), a federal contractor, is...

  18. ARM - Employment Opportunities Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5, 2014 Employment Opportunities University of Chicago's Computation Institute Seeks Postdoc Bookmark and Share The University of Chicago's Computation Institute is seeking a...

  19. ARM - Employment Opportunities Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7, 2014 Employment Opportunities University of Miami seeking Faculty in the Department of Atmospheric Sciences Bookmark and Share The Department of Atmospheric Sciences at the...

  20. ARM - Employment Opportunities Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7, 2014 Employment Opportunities LANL Seeking Radar Engineer for ARM Facility Bookmark and Share Los Alamos National Laboratory (LANL) is currently seeking a radar engineer...

  1. ARM - Employment Opportunities Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    February 27, 2015 Employment Opportunities Columbia University Seeking Postdoctoral Research Scientist Bookmark and Share columbia Columbia University invites applications for a...

  2. ARM - Employment Opportunities Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Opportunities Postdoctoral Position Available at Lund University Bookmark and Share The Department of Physical Geography and Ecosystem Science, Lund University, invites...

  3. ARM - Employment Opportunities Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4, 2014 Employment Opportunities Postdoctoral Researcher with National Center for Environmental Prediction Bookmark and Share The National Center for Environmental Prediction...

  4. ARM - Employment Opportunities Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3, 2014 Employment Opportunities LecturerAssociate Professor in Clouds available at the University of Reading Bookmark and Share The University of Reading is seeking a scientist...

  5. ARM - Employment Opportunities Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Opportunities, Facility News AGU Journal Seeks Editor in Chief Bookmark and Share The American Geophysical Union (AGU) is seeking a dynamic, well-organized scientist with high...

  6. ARM - Employment Opportunities Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    9, 2014 Employment Opportunities Postdoctoral Position Available at LLNL Bookmark and Share The Cloud Processes Research Group at Lawrence Livermore National Laboratory (LLNL)...

  7. ARM - Employment Opportunities Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    November 7, 2011 Employment Opportunities, Facility News DOE Graduate Fellowship Program Accepting Applications for 2012 Bookmark and Share The DOE Office of Science Graduate...

  8. ARM - Employment Opportunities Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    June 12, 2014 Employment Opportunities University of Wyoming Seeking Assistant Professor Bookmark and Share The Department of Atmospheric Science at the University of Wyoming...

  9. Slide16 | OSTI, US Dept of Energy, Office of Scientific and Technical...

    Office of Scientific and Technical Information (OSTI)

    The Internet and advanced Web tools have created wonderful opportunities But also great challenges for those along the leading edge in information dissemination Speaker Notes: As...

  10. Postdoctoral Opportunities World-Class Scientific Research Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    materials science, plasma physics, astrophysics, biology, climate research, nuclear fission, computer science, or applied mathematics. Neutron Science ORNL is home to two of...

  11. COLLOQUIUM: Facility for Rare Isotope Beams - Scientific Opportunities...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    them by e-mail regarding any possible speakers or topics for future colloquia. Carol Ann Austin caustin@pppl.gov Dennis Mueller, Chair mueller@pppl.gov Elena Belova,...

  12. Scientific Opportunities and Challenges in the Upgraded National Spherical

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol HomeFacebook Twitter PrincipalfuelTorus Experiment | Princeton Plasma Physics

  13. COLLOQUIUM: Facility for Rare Isotope Beams - Scientific Opportunities and

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWPSuccess Stories Siteandscience,InstitutePlasmaPhysics

  14. Undergraduate Student Employment Opportunities

    E-Print Network [OSTI]

    opportunities for networking and professional development, and student researchers are expected to takeUndergraduate Student Employment Opportunities Are you interested in spending your summer doing research in the Northwoods? Bioeconomics of Aquatic Invasive Species Our NSF-funded research project

  15. Advance Network Reservation and Provisioning for Science

    SciTech Connect (OSTI)

    Balman, Mehmet; Chaniotakis, Evangelos; Shoshani, Arie; Sim, Alex

    2009-07-10T23:59:59.000Z

    We are witnessing a new era that offers new opportunities to conduct scientific research with the help of recent advancements in computational and storage technologies. Computational intensive science spans multiple scientific domains, such as particle physics, climate modeling, and bio-informatics simulations. These large-scale applications necessitate collaborators to access very large data sets resulting from simulations performed in geographically distributed institutions. Furthermore, often scientific experimental facilities generate massive data sets that need to be transferred to validate the simulation data in remote collaborating sites. A major component needed to support these needs is the communication infrastructure which enables high performance visualization, large volume data analysis, and also provides access to computational resources. In order to provide high-speed on-demand data access between collaborating institutions, national governments support next generation research networks such as Internet 2 and ESnet (Energy Sciences Network). Delivering network-as-a-service that provides predictable performance, efficient resource utilization and better coordination between compute and storage resources is highly desirable. In this paper, we study network provisioning and advanced bandwidth reservation in ESnet for on-demand high performance data transfers. We present a novel approach for path finding in time-dependent transport networks with bandwidth guarantees. We plan to improve the current ESnet advance network reservation system, OSCARS [3], by presenting to the clients, the possible reservation options and alternatives for earliest completion time and shortest transfer duration. The Energy Sciences Network (ESnet) provides high bandwidth connections between research laboratories and academic institutions for data sharing and video/voice communication. The ESnet On-Demand Secure Circuits and Advance Reservation System (OSCARS) establishes guaranteed bandwidth of secure virtual circuits at a certain time, for a certain bandwidth and length of time. Though OSCARS operates within the ESnet, it also supplies end-to-end provisioning between multiple autonomous network domains. OSCARS gets reservation requests through a standard web service interface, and conducts a Quality-of-service (QoS) path for bandwidth guarantees. Multi-protocol Label Switching (MPLS) and the Resource Reservation Protocol (RSVP) enable to create a virtual circuit using Label Switched Paths (LSP's). It contains three main components: a reservation manager, a bandwidth scheduler, and a path setup subsystem. The bandwidth scheduler needs to have information about the current and future states of the network topology in order to accomplish end-to-end bandwidth guaranteed paths.

  16. $60 Million to Fund Projects Advancing Concentrating Solar Power

    Broader source: Energy.gov [DOE]

    The SunShot initiative announces a $60 million funding opportunity (FOA) to advance concentrating solar power in the United States.

  17. Proceedings of the first users meeting for the Advanced Photon Source

    SciTech Connect (OSTI)

    Not Available

    1988-02-01T23:59:59.000Z

    The first national users meeting for the Advanced Photon Source (APS) at Argonne National Laboratory - held November 13-14, 1986, at Argonne - brought together scientists and engineers from industry, universities, and national laboratories to exchange information on the design of the facility and expectations for its use. Presented papers and potential participating research team (PRT) plans are documented in these proceedings. Topics covered include the current status of the project, an overview of the APS conceptual design, scientific opportunities offered by the facility for synchrotron-radiation-related research, current proposals and funding mechanisms for beam lines, and user policies. A number of participants representing universities and private industry discussed plans for the possible formation of PRTs to build and use beam lines at the APS site. The meeting also provided an opportunity for potential users to organize their efforts to support and guide the facility's development.

  18. MECH 502: Advanced/Additive Manufacturing Engineering COURSE DESCRIPTION

    E-Print Network [OSTI]

    Schumacher, Russ

    MECH 502: Advanced/Additive Manufacturing Engineering COURSE DESCRIPTION In this course you product development and innovation. You will develop a rich knowledge of additive manufacturing processes enabling advanced/additive manufacturing and personal fabrication. You will have the opportunity

  19. Slide07 | OSTI, US Dept of Energy, Office of Scientific and Technical...

    Office of Scientific and Technical Information (OSTI)

    & Advancement Areas of active innovations include: Federation of distributed collections with simultaneous, ranked, full text search. Modeling scientific exchange in the...

  20. Slide05 | OSTI, US Dept of Energy, Office of Scientific and Technical...

    Office of Scientific and Technical Information (OSTI)

    tools such as federated deep Web searching of multiple databases and relevancy ranking to advance awareness of a broad array of scientific information related to DOE missions...

  1. Business Opportunities Session Office of Environmental Management...

    Broader source: Energy.gov (indexed) [DOE]

    Business Opportunities Session Office of Environmental Management Business Opportunities Session Office of Environmental Management Environmental Clean up Business Opportunities...

  2. Energy Department Seeks Proposals to Use Scientific Computing...

    Energy Savers [EERE]

    DOE's missions," said Secretary Bodman. "This program opens up the world of high-performance computing to a broad array of scientific users. Through the use of these advanced...

  3. X-RAY POWDER DIFFRACTION (XPD-1) SCIENTIFIC SCOPE

    E-Print Network [OSTI]

    Ohta, Shigemi

    are implicated in novel electronic properties from high temperature superconductivity to high performance properties. SCIENTIFIC APPLICATIONS Nuclear Applications: · High throughput, combinatorial approach, unmanned storage, CO2 sequestration, advanced structural ceramics, catalysis, and materials processing. ENDSTATION

  4. Scientific Data Management (SDM) Center for Enabling Technologies

    SciTech Connect (OSTI)

    Lud?scher, Bertram [Professor

    2013-09-06T23:59:59.000Z

    Our contributions to advancing the state?of?the?art in scientific workflows have focused on the following areas: Workflow development; Generic workflow components and templates; Provenance collection and analysis; Workflow reliability and fault tolerance.

  5. Airborne Internet : market & opportunity

    E-Print Network [OSTI]

    Bhadouria, Anand

    2007-01-01T23:59:59.000Z

    The purpose of this thesis to evaluate the opportunity for service provider entry and of the airborne internet, to analyze the disruptive impact technology used by AirCell and AeroSat has had on the development of an ...

  6. Identifying Savings Opportunities

    E-Print Network [OSTI]

    Chari, S.

    In this paper, guidelines for identifying energy savings opportunities in industrial plants are discussed. The analytical approach used in this discussion stems from the fundamental principle that the total energy into and out of any process...

  7. INDUSTRIAL ENGINEER APPRENTICE OPPORTUNITY

    E-Print Network [OSTI]

    Pohl, Karsten

    INDUSTRIAL ENGINEER APPRENTICE OPPORTUNITY SUMMER 2013 Industrial Engineering COOP Student needed-Fri, for summer 2013. Student must be enrolled in BS Engineering program. (Preferably completed 2-3 yrs

  8. Locating Heat Recovery Opportunities 

    E-Print Network [OSTI]

    Waterland, A. F.

    1981-01-01T23:59:59.000Z

    Basic concepts of heat recovery are defined as they apply to the industrial community. Methods for locating, ranking, and developing heat recovery opportunities are presented and explained. The needs for useful heat 'sinks' are emphasized as equal...

  9. Locating Heat Recovery Opportunities

    E-Print Network [OSTI]

    Waterland, A. F.

    1981-01-01T23:59:59.000Z

    Basic concepts of heat recovery are defined as they apply to the industrial community. Methods for locating, ranking, and developing heat recovery opportunities are presented and explained. The needs for useful heat 'sinks' are emphasized as equal...

  10. Keystone Opportunity Zones (Pennsylvania)

    Broader source: Energy.gov [DOE]

    Keystone Opportunity Zones allows businesses located within designated areas to qualify for a tax exemption, deduction, credit, or abatement of state and local taxes such as sales and use tax,...

  11. Geothermal Technologies Office: Financial Opportunities

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Financial Opportunities Printable Version Share this resource Send a link to Geothermal Technologies Office: Financial Opportunities to someone by E-mail Share Geothermal...

  12. OCEAN DRILLING PROGRAM LEG 196 SCIENTIFIC PROSPECTUS

    E-Print Network [OSTI]

    OCEAN DRILLING PROGRAM LEG 196 SCIENTIFIC PROSPECTUS LOGGING WHILE DRILLING AND ADVANCED CORKS Deputy Director of Science Operations Ocean Drilling Program Texas A&M University 1000 Discovery Drive Scientist Ocean Drilling Program Texas A&M University 1000 Discovery Drive College Station TX 77845-9547 USA

  13. Safeguards Professional Development Opportunities

    SciTech Connect (OSTI)

    Gilligan, Kimberly V [ORNL

    2010-01-01T23:59:59.000Z

    Across the international field of safeguards there has been a rising awareness of the need for development of the next generation of safeguards professionals. The 2010 International Atomic Energy Agency Safeguards Symposium includes a suggested topic of 'developing safeguards professionals.' This can first be addressed by making university students and young professionals aware of safeguards and the unique career opportunities it encompasses. Then, once someone decides to go into safeguards he/she needs to be offered professional development opportunities in order to become a more effective member of the international safeguards community. This paper begins to do that by reviewing opportunities currently available. There are not many opportunities that are well advertised and this paper will serve to raise awareness of what does already exist and therefore benefit the international safeguards community. The current opportunities that will be discussed include training programs, graduate degrees, organizational outreach, professional networks, and intensive topic specific programs. The paper will also identify current needs and holes in the current offerings of professional development opportunities and suggest ways they can be filled. In the conclusion the paper addresses what types of programs are still needed.

  14. Overview of energy-conservation research opportunities

    SciTech Connect (OSTI)

    Hopp, W.J.; Hauser, S.G.; Hane, G.J.; Gurwell, W.E.; Bird, S.P.; Cliff, W.C.; Williford, R.E.; Williams, T.A.; Ashton, W.B.

    1981-12-01T23:59:59.000Z

    This document is a study of research opportunities that are important to developing advanced technologies for efficient energy use. The study's purpose is to describe a wide array of attractive technical areas from which specific research and development programs could be implemented. Research areas are presented for potential application in each of the major end-use sectors. The study develops and applies a systematic approach to identifying and screening applied energy conservation research opportunities. To broadly cover the energy end-use sectors, this study develops useful information relating to the areas where federally-funded applied research will most likely play an important role in promoting energy conservation. This study is not designed to produce a detailed agenda of specific recommended research activities. The general information presented allows uniform comparisons of disparate research areas and as such provides the basis for formulating a cost-effective, comprehensive federal-applied energy conservation research strategy. Chapter 2 discusses the various methodologies that have been used in the past to identify research opportunities and details the approach used here. In Chapters 3, 4, and 5 the methodology is applied to the buildings, transportation, and industrial end-use sectors and the opportunities for applied research in these sectors are discussed.Chapter 6 synthesizes the results of the previous three chapters to give a comprehensive picture of applied energy conservation research opportunities across all end-use sectors and presents the conclusions to the report.

  15. DOE Awards 265 Million Hours of Supercomputing Time to Advance...

    Office of Environmental Management (EM)

    Institute of Standards and Technology; the Max-Planck Institute for Quantum Optics in Germany; CERFACS, the European Center for Research and Advanced Training in Scientific...

  16. 2014 Advanced Grid Modeling Program Peer Review Presentations...

    Broader source: Energy.gov (indexed) [DOE]

    Modeling Research Program leverages scientific research in mathematics for application to power system models and software tools. 17 projects were presented at the 2014 Advanced...

  17. BROOKHAVEN NATIONAL LABORATORYS CAPABILITIES FOR ADVANCED ANALYSES OF CYBER THREATS

    SciTech Connect (OSTI)

    DePhillips M. P.

    2014-06-06T23:59:59.000Z

    BNL has several ongoing, mature, and successful programs and areas of core scientific expertise that readily could be modified to address problems facing national security and efforts by the IC related to securing our nation’s computer networks. In supporting these programs, BNL houses an expansive, scalable infrastructure built exclusively for transporting, storing, and analyzing large disparate data-sets. Our ongoing research projects on various infrastructural issues in computer science undoubtedly would be relevant to national security. Furthermore, BNL frequently partners with researchers in academia and industry worldwide to foster unique and innovative ideas for expanding research opportunities and extending our insights. Because the basic science conducted at BNL is unique, such projects have led to advanced techniques, unlike any others, to support our mission of discovery. Many of them are modular techniques, thus making them ideal for abstraction and retrofitting to other uses including those facing national security, specifically the safety of the nation’s cyber space.

  18. Critical technologies research: Opportunities for DOE

    SciTech Connect (OSTI)

    Not Available

    1992-12-01T23:59:59.000Z

    Recent studies have identified a number of critical technologies that are essential to the nation`s defense, economic competitiveness, energy independence, and betterment of public health. The National Critical Technologies Panel (NCTP) has identified the following critical technology areas: Aeronautics and Surface Transportation; Biotechnology and Life Sciences; Energy and Environment; Information and Communications; Manufacturing; and Materials. Sponsored by the Department of Energy`s Office of Energy Research (OER), the Critical Technologies Research Workshop was held in May 1992. Approximately 100 scientists, engineers, and managers from the national laboratories, industry, academia, and govemment participated. The objective of the Berkeley Workshop was to advance the role of the DOE multiprogram energy laboratories in critical technologies research by describing, defining, and illustrating research areas, opportunities, resources, and key decisions necessary to achieve national research goals. An agenda was developed that looked at DOE`s capabilities and options for research in critical technologies and provided a forum for industry, academia, govemment, and the national laboratories to address: Critical technology research needs; existing research activities and resources; capabilities of the national laboratories; and opportunities for national laboratories, industries, and universities. The Workshop included plenary sessions in which presentations by technology and policy leaders set the context for further inquiry into critical technology issues and research opportunities. Separate sessions then focused on each of the following major areas of technology: Advanced materials; biotechnology and life sciences; energy and environment; information and communication; and manufacturing and transportation.

  19. Critical technologies research: Opportunities for DOE

    SciTech Connect (OSTI)

    Not Available

    1992-12-01T23:59:59.000Z

    Recent studies have identified a number of critical technologies that are essential to the nation's defense, economic competitiveness, energy independence, and betterment of public health. The National Critical Technologies Panel (NCTP) has identified the following critical technology areas: Aeronautics and Surface Transportation; Biotechnology and Life Sciences; Energy and Environment; Information and Communications; Manufacturing; and Materials. Sponsored by the Department of Energy's Office of Energy Research (OER), the Critical Technologies Research Workshop was held in May 1992. Approximately 100 scientists, engineers, and managers from the national laboratories, industry, academia, and govemment participated. The objective of the Berkeley Workshop was to advance the role of the DOE multiprogram energy laboratories in critical technologies research by describing, defining, and illustrating research areas, opportunities, resources, and key decisions necessary to achieve national research goals. An agenda was developed that looked at DOE's capabilities and options for research in critical technologies and provided a forum for industry, academia, govemment, and the national laboratories to address: Critical technology research needs; existing research activities and resources; capabilities of the national laboratories; and opportunities for national laboratories, industries, and universities. The Workshop included plenary sessions in which presentations by technology and policy leaders set the context for further inquiry into critical technology issues and research opportunities. Separate sessions then focused on each of the following major areas of technology: Advanced materials; biotechnology and life sciences; energy and environment; information and communication; and manufacturing and transportation.

  20. Autumn 2014 Unlocking opportunities

    E-Print Network [OSTI]

    development. Our team reports strong interest in our Local Management Agreements, which help deliver coastal in the world. There are more than 30 sites in development in Scottish waters (including two managed by localAutumn 2014 Scotland Bulletin Unlocking opportunities in wave & tidal energy Empowering coastal

  1. Opportunities for high aspect ratio micro-electro-magnetic-mechanical systems (HAR-MEMMS) at Lawrence Berkeley Laboratory

    SciTech Connect (OSTI)

    Hunter, S. [ed.

    1993-10-01T23:59:59.000Z

    This report contains viewgraphs on the following topics: Opportunities for HAR-MEMMS at LBL; Industrial Needs and Opportunities; Deep Etch X-ray Lithography; MEMS Activities at BSAC; DNA Amplification with Microfabricated Reaction Chamber; Electrochemistry Research at LBL; MEMS Activities at LLNL; Space Microsensors and Microinstruments; The Advanced Light Source; Institute for Micromaching; IBM MEMS Interests; and Technology Transfer Opportunities at LBL.

  2. Advanced Light Source Activity Report 2000

    SciTech Connect (OSTI)

    Greiner, A.; Moxon, L.; Robinson, A.; Tamura, L.

    2001-04-01T23:59:59.000Z

    This is an annual report, detailing activities at the Advanced Light Source for the year 2000. It includes highlights of scientific research by users of the facility as well as information about the development of the facility itself.

  3. The choice: evaluating and selecting scientific proposals

    E-Print Network [OSTI]

    Navarra, Antonio

    2015-01-01T23:59:59.000Z

    The selection process of proposals is a crucial component of scientific progress and innovations. Limited resources must be allocated in the most effective way to maximise advancements and the production of new knowledge, especially as it is becoming increasingly clear that technological and scientific innovation and creativity is an instrument of economic policy and social development. The traditional approach based on merit evaluation by experts has been the preferred method, but there is an issue regarding to what extent such a method can also be an instrument of effective policy. This paper discuss some of the basic processes involved in the evaluation and selection of proposals, indicating some criterion for an optimal solution.

  4. Global Climate Change: Why Understanding the Scientific Enterprise Matters

    E-Print Network [OSTI]

    Howat, Ian M.

    Global Climate Change: Why Understanding the Scientific Enterprise Matters Ellen MosleyPolar/ByrdPolarhttp://bprc.osu.edu/ Understanding Climate Change Risks and Identifying Opportunities for Mitigation & Adaptation in Ohio Ohio State University, May 15, 2014 #12;Key Points Earth's climate is changing - the world is warming ­ that debate

  5. DUSEL-related Science at LBNL -- Program and Opportunities

    SciTech Connect (OSTI)

    Bauer, Christian; Detweiler, Jason; Freedman, Stuart; Gilchriese, Murdock; Kadel, Richard; Koch, Volker; Kolomensky, Yury; Lesko, Kevin; von der Lippe, Henrik; Marks, Steve; Nomura, Yasunori; Plate, David; Roe, Natalie; Sichtermann, Ernst; Ligeti, Zoltan

    2009-08-01T23:59:59.000Z

    The National Science Foundation is advancing the design of a Deep Underground Science and Engineering Laboratory (DUSEL) at the former Homestake mine in South Dakota. UC Berkeley and LBNL are leading the design effort for the facility and coordinating the definition and integration of the suite of experiments to be coupled to the facility design in the creation of an MREFC (Major Research Equipment and Facility Construction) proposal. The State of South Dakota has marshaled $120M to prepare the site and begin a modest science program at the 4850 ft level. The first physics experiment is anticipated to begin installation in 2009. The current timetable calls for the MREFC Preliminary Design to be assembled by 2010 to be presented to the National Science Board in 2011. This, in turn, indicates that the earliest DUSEL construction start would be FY2013. The MREFC is estimated (before the inclusion of the long baseline neutrino components) at $500--600M, roughly divided evenly between the experimental program and support for the facility. Construction was estimated at 6--8 years. The DOE and NSF are establishing a Joint Oversight Group (JOG) to coordinate the experimental programs and participation in DUSEL. It is anticipated that the JOG would mirror the similar function for the NSF and DOE participation in the LHC, and that DOE-HEP, DOE-NP, and NSF will all participate in the JOG. In parallel with the NSF efforts, DOE-HEP plans to develop a long baseline neutrino program with neutrino beams created at FNAL and aimed at DUSEL. In the P5 report the focus of the program is to pursue CP violation in the lepton sector. The same detectors can also be used for nucleon decay experiments. DOE has indicated that FNAL would be the ''lead lab'' for the long baseline neutrino program and be charged with designing and implementing the neutrino beamline. BNL is to be charged with designing and implementing the detector. The P5 report also emphasizes the importance of dark matter and neutrinoless double beta decay searches. The Nuclear Physics Long Range Plan strongly endorses DUSEL and the associated nuclear physics programs. It mentions, in particular, neutrinoless double beta decay, and accelerator-based nuclear astrophysics measurements as key elements of the DUSEL nuclear physics experimental program. There are numerous fundamental scientific questions that experiments which can naturally be sited at DUSEL can address. LBNL has a long tradition and track record of successful experiments in all of these areas: neutrino physics, dark matter searches, and nuclear astrophysics. Clearly, DUSEL presents many scientific opportunities, and the committee was charged to present a roadmap for LBNL participation, the impact that LBNL is likely to have on experiments at the present level of effort, the value of additional manpower, and opportunities for synergistic Detector R&D activities. The Berkeley community is already deeply involved in a number of experiments and/or proposals, shown in Table 1, that will be relevant to science at DUSEL. The approximate time lines for all projects considered in this report are shown in Table 2. For the DUSEL-related experiments the depth at which they would be located is also shown. Section 2 of this report deals with nuclear astrophysics. Section 3 discusses neutrinoless double beta decays. Section 4 focuses on neutrino oscillations, including the search for CP violation and proton decay. Section 5 deals with dark matter searches. In each section we give a brief overview of that field, review the present Berkeley efforts, and discuss the opportunities going into the future. Section 6 contains our recommendations.

  6. Edison Electrifies Scientific Computing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    recently accepted "Edison," a new flagship supercomputer designed for scientific productivity. Named in honor of American inventor Thomas Alva Edison, the Cray XC30 will be...

  7. Superposition, A Unique Cogeneration Opportunity 

    E-Print Network [OSTI]

    Viar, W. L.

    1985-01-01T23:59:59.000Z

    Industrial steam systems provide opportunities for the economic cogeneration of heat energy and shaft power. Progressive plant owners and managers have utilized these potentials. Too often opportunities are not exploited. A plant that is expanding...

  8. HEP Open Funding Opportunities

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,,ofOpportunities

  9. Commercial Building Funding Opportunity Webinar

    Broader source: Energy.gov [DOE]

    This webinar provide an overview of the Commercial Building Technology Demonstrations Funding Opportunity Announcement DE-FOA-0001084.

  10. Data Mining: Opportunities and Challenges

    E-Print Network [OSTI]

    Wu, Xindong

    1 Data Mining: Opportunities and Challenges Xindong Wu University of Vermont, USA; Hefei University Systems 2004 ...... #12;3 Outline 1.1. Data Mining OpportunitiesData Mining Opportunities Major Conferences and Journals in Data Mining Main Topics in Data Mining Some Research Directions in Data Mining 2

  11. Mathematical and Statistical Opportunities in Cyber Security Scott Campbell

    E-Print Network [OSTI]

    Bailey, David H.

    Mathematical and Statistical Opportunities in Cyber Security Juan Meza Scott Campbell David Bailey problems exist within cyber security research that can be helped by advanced mathematics and statistics large and complex systems like the Internet. Our second assumption is that many proposed cyber security

  12. Biofuels Market Opportunities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biofuels Market Opportunities Biofuels Market Opportunities Breakout Session 2C-Fostering Technology Adoption II: Expanding the Pathway to Market Biofuels Market Opportunities John...

  13. Natural Gas and Hydrogen Infrastructure Opportunities Workshop...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Opportunities Workshop Agenda Natural Gas and Hydrogen Infrastructure Opportunities Workshop Agenda Agenda for the Natural Gas and Hydrogen Infrastructure Opportunities Workshop...

  14. Scientific Meetings Database: A New Tool for CTBT-Related International Cooperation

    SciTech Connect (OSTI)

    Knapik, Jerzy F.; Girven, Mary L.

    1999-08-20T23:59:59.000Z

    The mission of international cooperation is defined in the Comprehensive Nuclear-Test-Ban Treaty (CTBT). Ways and means of implementation were the subject of discussion during the International Cooperation Workshop held in Vienna in November 1998, and during the Regional Workshop for CTBTO International Cooperation held in Cairo, Egypt in June 1999. In particular, a database of ''Scientific and Technical Meetings Directly or Indirectly Related to CTBT Verification-Related Technologies'' was developed by the CTBTO PrepCom/PTS/International Cooperation section and integrated into the organization's various web sites in cooperation with the U.S. Department of Energy CTBT Research and Development Program. This database, the structure and use of which is described in this paper/presentation is meant to assist the CTBT-related scientific community in identifying worldwide expertise in the CTBT verification-related technologies and should help experts, particularly those of less technologically advanced States Signatories, to strengthen contacts and to pursue international cooperation under the Tredy regime. Specific opportunities for international cooperation, in particular those provided by active participation in the use and further development of this database, are presented in this paper and/or presentation.

  15. Scientific Grand Challenges: Forefront Questions in Nuclear Science and the Role of High Performance Computing

    SciTech Connect (OSTI)

    Khaleel, Mohammad A.

    2009-10-01T23:59:59.000Z

    This report is an account of the deliberations and conclusions of the workshop on "Forefront Questions in Nuclear Science and the Role of High Performance Computing" held January 26-28, 2009, co-sponsored by the U.S. Department of Energy (DOE) Office of Nuclear Physics (ONP) and the DOE Office of Advanced Scientific Computing (ASCR). Representatives from the national and international nuclear physics communities, as well as from the high performance computing community, participated. The purpose of this workshop was to 1) identify forefront scientific challenges in nuclear physics and then determine which-if any-of these could be aided by high performance computing at the extreme scale; 2) establish how and why new high performance computing capabilities could address issues at the frontiers of nuclear science; 3) provide nuclear physicists the opportunity to influence the development of high performance computing; and 4) provide the nuclear physics community with plans for development of future high performance computing capability by DOE ASCR.

  16. Scientific Motivation Project Overview

    E-Print Network [OSTI]

    van Dyk, David

    and Tracking of Solar Features David Stenning1 Vinay Kashyap2 Thomas Lee3 David van Dyk4 C. Alex Young5 1 Flight Center Stenning, David Automatic Classifying and Tracking of Solar Features #12;Scientific Classifying and Tracking of Solar Features #12;Scientific Motivation Project Overview Methodology Results

  17. Big Data Ecosystems Enable Scientific Discovery

    SciTech Connect (OSTI)

    Critchlow, Terence J.; Kleese van Dam, Kerstin

    2011-11-01T23:59:59.000Z

    Over the past 5 years, advances in experimental, sensor and computational technologies have driven the exponential growth in the volumes, acquisition rates, variety and complexity of scientific data. As noted by Hey et al in their 2009 e-book The Fourth Paradigm, this availability of large-quantities of scientifically meaningful data has given rise to a new scientific methodology - data intensive science. Data intensive science is the ability to formulate and evaluate hypotheses using data and analysis to extend, complement and, at times, replace experimentation, theory, or simulation. This new approach to science no longer requires scientists to interact directly with the objects of their research; instead they can utilize digitally captured, reduced, calibrated, analyzed, synthesized and visualized results - allowing them carry out 'experiments' in data.

  18. Final Scientific Report

    SciTech Connect (OSTI)

    Suzanne Lutwick; Helen Cunning

    2011-05-25T23:59:59.000Z

    Hackensack University Medical Center's major initiative to create a cleaner healthier and safer environment for patients, employees and the community served by the medical center is built on its commitment to protect the environment and conserve precious energy resources. Since 2004 the Medical Center launched a long term campaign to temper the negative environmental impact of proposed and existing new construction at the medical center and to improve campus wide overall energy efficiency. The plan was to begin by implementing a number of innovative and eco-friendly enhancements to the Gabrellian Women's and Children's Pavilion, in construction at the time, which would lead to Certification by the US Green Building Councils Leadership & Environmental Design (LEED) program. In addition the medical center would evaluate the feasibility of implementing a photovoltaic system in the new construction (in development and planned) to provide clean pollution free electricity. The steps taken to achieve this included conducting a feasibility study complete with architectural and engineering assessments to determine the potential for implementation of a photovoltaic system on the campus and also to conduct an energy survey that would focus on determining specific opportunities and upgrades that would lead to a healthier energy efficient interior environment at the medical center. The studies conducted by the medical center to determine the viability of installing a photovoltaic system identified two key issues that factored into leaderships decision not to implement the solar powered system. These factors were related to the advanced phase of construction of the women's and children's pavilion and the financial considerations to redesign and implement in the ambulatory cancer center. The medical center, in spite of their inability to proceed with the solar aspect of the project upheld their commitment to create a healthier environment for the patients and the community. To achieve a healthier energy efficient interior environment the medical center made substantive upgrades and improvements to the HVAC, plumbing electrical and other operating systems. Measures that were implemented range from use of lighting and plumbing fixture sensors, to reduce electrical and water usage, to use of refrigerants containing hydrochlorofluorocarbons (HCFCs) which cause significantly less depletion of the ozone layer than the refrigerants more commonly used. Additional appropriate energy efficiency component upgrades include the installation of Chiller plants with variable frequency drives (VFDs) and harmonic filters, high efficiency motors, solar window glazing, and lighting/motion sensors.

  19. Turning requirements into opportunities

    SciTech Connect (OSTI)

    Wood, A.M. [Tenneco Gas, Houston, TX (United States); Brenner, R. [Environmental Protection Agency, Washington, DC (United States)

    1995-05-01T23:59:59.000Z

    The current emphasis on regulatory reinvention at the US Environmental Protection Agency (EPA) provides opportunities for companies to work with government to devise innovative and cost-effective solutions to meet environmental challenges. A good example of this is the current, cooperative working relationship between Tenneco Gas, EPA and certain state environmental agencies. Through this program, Tenneco has the flexibility necessary to implement an efficient and cost-effective strategy to enhance air quality and achieve greater environmental protection. This is illustrated by Tenneco`s attempts to comply with the Clean Air Act Amendments of 1990 by reducing its emission of NO{sub x}.

  20. Emerging Threats and Opportunities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMFormsGasRelease Date:researchEmerging Threats and Opportunities

  1. BES Open Funding Opportunities

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,, ,Development1USummerNewsDOEfunding-opportunities/ The

  2. New Project Opportunities

    E-Print Network [OSTI]

    Michelson, David G.

    and heavy mineral concentrates. Basic and advanced mineral characterization of various PIMS minerals has, the next phase of this project has started and MDRU are looking for industry partners. Exploring Lithocaps with industry partners for 2014 and beyond. We are looking for Expressions of Interest from potential partners

  3. Research opportunities to improve DSM impact estimates

    SciTech Connect (OSTI)

    Misuriello, H.; Hopkins, M.E.F. [Fleming Group, Washington, DC (United States)

    1992-03-01T23:59:59.000Z

    This report was commissioned by the California Institute for Energy Efficiency (CIEE) as part of its research mission to advance the energy efficiency and productivity of all end-use sectors in California. Our specific goal in this effort has been to identify viable research and development (R&D) opportunities that can improve capabilities to determine the energy-use and demand reductions achieved through demand-side management (DSM) programs and measures. We surveyed numerous practitioners in California and elsewhere to identify the major obstacles to effective impact evaluation, drawing on their collective experience. As a separate effort, we have also profiled the status of regulatory practices in leading states with respect to DSM impact evaluation. We have synthesized this information, adding our own perspective and experience to those of our survey-respondent colleagues, to characterize today`s state of the art in impact-evaluation practices. This scoping study takes a comprehensive look at the problems and issues involved in DSM impact estimates at the customer-facility or site level. The major portion of our study investigates three broad topic areas of interest to CIEE: Data analysis issues, field-monitoring issues, issues in evaluating DSM measures. Across these three topic areas, we have identified 22 potential R&D opportunities, to which we have assigned priority levels. These R&D opportunities are listed by topic area and priority.

  4. Waste Heat Recovery Opportunities for Thermoelectric Generators...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Waste Heat Recovery Opportunities for Thermoelectric Generators Waste Heat Recovery Opportunities for Thermoelectric Generators Thermoelectrics have unique advantages for...

  5. Financial Assistance Funding Opportunity Announcement

    Broader source: Energy.gov [DOE]

    Funding Opportunity Announcement (FOA) for the initial Weatherization Innovation Pilot Program grant, issued in April 2010 and closed in June 2010.

  6. Opportunity and Enterprise Zones (Oklahoma)

    Broader source: Energy.gov [DOE]

    Opportunity and Enterprise Zones provide enhanced financial incentives for businesses located in such zones aimed at stimulating economic expansion in rural and disadvantaged communities...

  7. NREL: Business Opportunities Home Page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The National Renewable Energy Laboratory (NREL) offers numerous procurement opportunities to help commercialize renewable energy technologies and to supply the lab with essential...

  8. Clinical Training Opportunities in NINDS Clinical Training Opportunities

    E-Print Network [OSTI]

    Levin, Judith G.

    Clinical Training Opportunities in NINDS #12;Clinical Training Opportunities National Institute of Neurological Disorders and Stroke (NINDS) National Institutes of Health (NIH) The NINDS intramural clinical in Basic Science Laboratories and Clinical Branches of the nineteen NIH institutes and centers. The campus

  9. Slide19 | OSTI, US Dept of Energy, Office of Scientific and Technical...

    Office of Scientific and Technical Information (OSTI)

    for advancing science and U.S. competitiveness DOE has opportunity to double Science budget by 2016 Education as a Cornerstone to Maintain U.S. Pre-Eminence in Science Academic...

  10. Adventures in supercomputing: Scientific exploration in an era of change

    SciTech Connect (OSTI)

    Gentry, E. [Univ. of Alabama, Huntsville, AL (United States); Helland, B. [Krell Institute, Ames, IA (United States); Summers, B. [Oak Ridge National Lab., TN (United States)

    1997-11-01T23:59:59.000Z

    Students deserve the opportunity to explore the world of science surrounding them. Therefore it is important that scientific exploration and investigation be a part of each student`s educational career. The Department of Energy`s Adventures in Superconducting (AiS) takes students beyond mere scientific literacy to a rich embodiment of scientific exploration. AiS provides today`s science and math students with a greater opportunity to investigate science problems, propose solutions, explore different methods of solving the problem, organize their work into a technical paper, and present their results. Students learn at different rates in different ways. Science classes with students having varying learning styles and levels of achievement have always been a challenge for teachers. The AiS {open_quotes}hands-on, minds-on{close_quotes} project-based method of teaching science meets the challenge of this diversity heads on! AiS uses the development of student chosen projects as the means of achieving a lifelong enthusiasm for scientific proficiency. One goal of AiS is to emulate the research that takes place in the everyday environment of scientists. Students work in teams and often collaborate with students nationwide. With the help of mentors from the academic and scientific community, students pose a problem in science, investigate possible solutions, design a mathematical and computational model for the problem, exercise the model to achieve results, and evaluate the implications of the results. The students then have the opportunity to present the project to their peers, teachers, and scientists. Using this inquiry-based technique, students learn more than science skills, they learn to reason and think -- going well beyond the National Science Education Standard. The teacher becomes a resource person actively working together with the students in their quest for scientific knowledge.

  11. Exploring nanoscale magnetism in advanced materials with polarized X-rays

    E-Print Network [OSTI]

    Fischer, Peter

    2012-01-01T23:59:59.000Z

    Stoehr and H.C. Siegmann, „Magnetism”, Springer (2006) [93]Exploring nanoscale magnetism in advanced materials withABSTRACT Nanoscale magnetism is of paramount scientific

  12. Upcoming Funding Opportunity to Advance Low-Impact Hydropower Technologies

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group current C3E AmbassadorsUS-EU-Japan-JapanHighlyFromInnovations |Energy|

  13. Funding Opportunity Announcement Webinar: Technology Advancement for Rapid

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport inEnergy0.pdfTechnologies ProgramOutfittedof Energydetails to Module

  14. Funding Opportunity: Technology Advancement for Rapid Development of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport inEnergy0.pdfTechnologies ProgramOutfittedof Energydetails

  15. Funding Opportunity Announcement: Solar Bankability Data to Advance

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2: FinalOffers3.pdf0-45.pdf0 Budget Fossil EnergyFull Text Glossary Module 1.01Transactions

  16. Advanced Reactor Research and Development Funding Opportunity Announcement

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015ofDepartmentDepartment of2Partners in the Spotlight Novelis2 U.S.| Department of

  17. Advanced Engine Trends, Challenges and Opportunities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of1 AAccelerated agingDepartment ofEnergyDepartmentEnergyEngine

  18. Natural gas vehicles : Status, barriers, and opportunities.

    SciTech Connect (OSTI)

    Rood Werpy, M.; Santini, D.; Burnham, A.; Mintz, M.; Energy Systems

    2010-11-29T23:59:59.000Z

    In the United States, recent shale gas discoveries have generated renewed interest in using natural gas as a vehicular fuel, primarily in fleet applications, while outside the United States, natural gas vehicle use has expanded significantly in the past decade. In this report for the U.S. Department of Energy's Clean Cities Program - a public-private partnership that advances the energy, economic, and environmental security of the U.S. by supporting local decisions that reduce petroleum use in the transportation sector - we have examined the state of natural gas vehicle technology, current market status, energy and environmental benefits, implications regarding advancements in European natural gas vehicle technologies, research and development efforts, and current market barriers and opportunities for greater market penetration. The authors contend that commercial intracity trucks are a prime area for advancement of this fuel. Therefore, we examined an aggressive future market penetration of natural gas heavy-duty vehicles that could be seen as a long-term goal. Under this scenario using Energy Information Administration projections and GREET life-cycle modeling of U.S. on-road heavy-duty use, natural gas vehicles would reduce petroleum consumption by approximately 1.2 million barrels of oil per day, while another 400,000 barrels of oil per day reduction could be achieved with significant use of natural gas off-road vehicles. This scenario would reduce daily oil consumption in the United States by about 8%.

  19. Recording Scientific Knowledge

    SciTech Connect (OSTI)

    Bowker, Geof (Santa Clara University) [Santa Clara University

    2006-01-09T23:59:59.000Z

    The way we record knowledge, and the web of technical, formal, and social practices that surrounds it, inevitably affects the knowledge that we record. The ways we hold knowledge about the past - in handwritten manuscripts, in printed books, in file folders, in databases - shape the kind of stories we tell about that past. In this talk, I look at how over the past two hundred years, information technology has affected the nature and production of scientific knowledge. Further, I explore ways in which the emergent new cyberinfrastructure is changing our relationship to scientific practice.

  20. Scientific Advisory Committee

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol HomeFacebook Twitter Principalfuel cells"03,Scientific AdvisoryScientific

  1. Scientific Data Movement

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol HomeFacebook Twitter Principalfuel cells"03,ScientificScientificData

  2. Kyrgyzstan: Problems, opportunities

    SciTech Connect (OSTI)

    Banks, J.; Ebel, R. (International Resources Group, Washington, DC (United States))

    1993-03-15T23:59:59.000Z

    Kyrgyzstan is a country of 4.3 million persons in Central Asia with Kazakhstan bordering to the north, China to the southeast, Uzbekistan to the west, and Tajikistan to the southwest. Among Kyrgyzstan's major ethnic groups, Kyrgyz account of 52% of the population, Russians 22%, and Uzbeks 13%. Since independence Sept. 7, 1991, from the Soviet Union, Kyrgyzstan has found itself in a very difficult position. The situation in the energy sector is particularly strained. Oil and gas production are minimal, there are no refineries in the country, and all petroleum products are brought in from Russia, Kazakhstan, and Uzbekistan. Natural gas in supplied from Turkmenistan. Although there are domestic reserves of coal, imports from Russia and Kazakhstan account for 55% of supply. However, there is significant hydropower potential in Kyrgyzstan. Energy officials have clearly identified development of this resource as the path to energy independence and economic progress. An overview of Kyrgyzstan's energy sector is given in this article for crude oil, natural gas, coal resources, electrical power, and investment opportunities.

  3. Combinatorial Parallel and Scientific

    E-Print Network [OSTI]

    Pinar, Ali

    - tional biology, scientific data mining, and network analysis. These applications are changing, and Department of Computer Science, University of New Mexico, email: bah at sandia dot gov. #12;i i discrete modeling, astrophysics, nanoscience, and combustion. Sparse solvers invariably require exploiting

  4. Scientific Highlights News & Events

    E-Print Network [OSTI]

    . The phenomenal rate of increase in the inte- gration density on semiconductor micro-chips is driven by advances around the central C=C bridge, i.e. to cis- and trans-stilbene, respectively (Fig. 1). This isomerisation

  5. Slide1 | OSTI, US Dept of Energy, Office of Scientific and Technical...

    Office of Scientific and Technical Information (OSTI)

    Innovative Web Resources Can Advance the DOE R&D Mission ARPA-E June 24, 2010 Walter L. Warnick, Ph.D. Director Office of Scientific & Technical Information Office of Science...

  6. Slide14 | OSTI, US Dept of Energy, Office of Scientific and Technical...

    Office of Scientific and Technical Information (OSTI)

    - a searchable gateway to over 500,000 documents, access to more than 16,000 scientific Web sites DOE R&D Accomplishments - where you can find remarkable advances in science Our...

  7. South Florida Ecosystem Restoration: Scientific Information Needs in the Southern

    E-Print Network [OSTI]

    South Florida Ecosystem Restoration: Scientific Information Needs in the Southern Coastal Areas information needed for ecosystem restoration in the Southern Coastal Areas of South Florida. In 1996 that time, ecosystem restoration has advanced from planning to implementation; progress in research has

  8. Future Science Needs and Opportunities for Electron Scattering: Next-Generation Instrumentation and Beyond. Report of the Basic Energy Sciences Workshop on Electron Scattering for Materials Characterization, March 1-2, 2007

    SciTech Connect (OSTI)

    Miller, D. J.; Williams, D. B.; Anderson, I. M.; Schmid, A. K.; Zaluzec, N. J.

    2007-03-02T23:59:59.000Z

    To identify emerging basic science and engineering research needs and opportunities that will require major advances in electron-scattering theory, technology, and instrumentation.

  9. An Ontology for Scientific Information in a Grid Environment: the Earth System Grid.

    E-Print Network [OSTI]

    Chervenak, Ann

    An Ontology for Scientific Information in a Grid Environment: the Earth System Grid. Line Pouchard.S. Department of Energy Scientific Discovery through Advanced Computing (SciDAC) program. The Earth System Grid, 5 Carl Kesselman,5 Arie Shoshani, 6 Alex Sim6 [1] Oak Ridge National Laboratory, [2] Argonne

  10. Wind Technologies & Evolving Opportunities (Presentation)

    SciTech Connect (OSTI)

    Robichaud, R.

    2014-07-01T23:59:59.000Z

    This presentation covers opportunities for wind technology; wind energy market trends; an overview of the National Wind Technology Center near Boulder, Colorado; wind energy price and cost trends; wind turbine technology improvements; and wind resource characterization improvements.

  11. Postdoc Employment Opportunities at LANL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Employment at LANL Postdoc Employment Opportunities at LANL Point your career towards LANL: work with the best minds on the planet in an inclusive environment that is rich in...

  12. Policy Statement on Equal Employment Opportunity, Harassment...

    Energy Savers [EERE]

    Policy Statement on Equal Employment Opportunity, Harassment and Retaliation Policy Statement on Equal Employment Opportunity, Harassment and Retaliation The Secretary of Energy...

  13. Department of Energy Issues Funding Opportunity Announcements...

    Energy Savers [EERE]

    Funding Opportunity Announcements to Enhance Nuclear Energy Education Department of Energy Issues Funding Opportunity Announcements to Enhance Nuclear Energy Education March 24,...

  14. Key Opportunities and Challenges for Program Sustainability ...

    Energy Savers [EERE]

    Key Opportunities and Challenges for Program Sustainability Key Opportunities and Challenges for Program Sustainability Better Buildings Neighborhood Program, Peer Exchange Call:...

  15. Natural Gas and Hydrogen Infrastructure Opportunities: Markets...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Opportunities: Markets and Barriers to Growth Natural Gas and Hydrogen Infrastructure Opportunities: Markets and Barriers to Growth Presentation by Matt Most, Encana Natural Gas,...

  16. Opportunities for Wide Bandgap Semiconductor Power Electronics...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Opportunities for Wide Bandgap Semiconductor Power Electronics for Hydrogen and Fuel Cell Applications Opportunities for Wide Bandgap Semiconductor Power Electronics for Hydrogen...

  17. Grant Title: AMERICAN HONDA FOUNDATION GRANTS Funding Opportunity Number: N/A

    E-Print Network [OSTI]

    Farritor, Shane

    Grant Title: AMERICAN HONDA FOUNDATION GRANTS Funding Opportunity Number: N/A Agency/Department: American Honda Foundation. Area of Research: Youth and scientific education. Release and Expiration: N list of eligible applicants. Summary: The American Honda Foundation engages in grant making

  18. RoBOT: "Rocks Beneath Our Toes" An experiential learning opportunity in mineralogy and geochemistry

    E-Print Network [OSTI]

    Baxter, Ethan F.

    RoBOT: "Rocks Beneath Our Toes" An experiential learning opportunity in mineralogy with Boston University undergraduates to analyze the mineralogy and unravel the unique story that each rock into modern scientific methods of geochemistry and mineralogy and to unlock for them the exciting

  19. Scientific Advisory Committee

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementingnpitcheResearch BriefsTenney,Science andJanuary »Scientific

  20. Scientific Advisory Committee

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementingnpitcheResearch BriefsTenney,Science andJanuaryScientific Advisory

  1. ProductSpecifications Thermo Scientific

    E-Print Network [OSTI]

    Peraire, Jaime

    ProductSpecifications Thermo Scientific CellomicsArrayScan VTI HCS Reader The Thermo Scientific info.cellularimaging@thermofisher.com www.thermo.com/cellomics and Cellular Imaging Europe: +44 118 988 and filters available Integrated Software Features · Thermo Scientific Cellomics iQ - High Content intelligent

  2. Sandia National Laboratories: Scientific Visit on Crystalline...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    WorkshopsScientific Visit on Crystalline Rock Repository Development Scientific Visit on Crystalline Rock Repository Development Many thanks to all participants at the Scientific...

  3. Accelerating scientific discovery : 2007 annual report.

    SciTech Connect (OSTI)

    Beckman, P.; Dave, P.; Drugan, C.

    2008-11-14T23:59:59.000Z

    As a gateway for scientific discovery, the Argonne Leadership Computing Facility (ALCF) works hand in hand with the world's best computational scientists to advance research in a diverse span of scientific domains, ranging from chemistry, applied mathematics, and materials science to engineering physics and life sciences. Sponsored by the U.S. Department of Energy's (DOE) Office of Science, researchers are using the IBM Blue Gene/L supercomputer at the ALCF to study and explore key scientific problems that underlie important challenges facing our society. For instance, a research team at the University of California-San Diego/ SDSC is studying the molecular basis of Parkinson's disease. The researchers plan to use the knowledge they gain to discover new drugs to treat the disease and to identify risk factors for other diseases that are equally prevalent. Likewise, scientists from Pratt & Whitney are using the Blue Gene to understand the complex processes within aircraft engines. Expanding our understanding of jet engine combustors is the secret to improved fuel efficiency and reduced emissions. Lessons learned from the scientific simulations of jet engine combustors have already led Pratt & Whitney to newer designs with unprecedented reductions in emissions, noise, and cost of ownership. ALCF staff members provide in-depth expertise and assistance to those using the Blue Gene/L and optimizing user applications. Both the Catalyst and Applications Performance Engineering and Data Analytics (APEDA) teams support the users projects. In addition to working with scientists running experiments on the Blue Gene/L, we have become a nexus for the broader global community. In partnership with the Mathematics and Computer Science Division at Argonne National Laboratory, we have created an environment where the world's most challenging computational science problems can be addressed. Our expertise in high-end scientific computing enables us to provide guidance for applications that are transitioning to petascale as well as to produce software that facilitates their development, such as the MPICH library, which provides a portable and efficient implementation of the MPI standard--the prevalent programming model for large-scale scientific applications--and the PETSc toolkit that provides a programming paradigm that eases the development of many scientific applications on high-end computers.

  4. Advanced Manufacturing Office (Formerly Industrial Technologies Program)

    E-Print Network [OSTI]

    Advanced Manufacturing Office (Formerly Industrial Technologies Program) Leo Christodoulou Jamie August 11, 2011 #12;Background and Opportunity Background Industry accounts for 30% of energy consumption-value industries such as the renewable energy industry. Example materials include low-cost carbon fiber, low

  5. National Scientific User Facility Purpose and Capabilities

    SciTech Connect (OSTI)

    K. E. Rosenberg; T. R. Allen; J. C. Haley; M. K. Meyer

    2010-09-01T23:59:59.000Z

    The U.S. Department of Energy (DOE) designated the Advanced Test Reactor (ATR) as a National Scientific User Facility (NSUF) in April 2007. This designation allows the ATR to become a cornerstone of nuclear energy research and development (R&D) within the U.S. by making it easier for universities, the commercial power industry, other national laboratories, and international organizations to conduct nuclear energy R&D. The mission of the ATR NSUF is to provide nuclear energy researchers access to world-class facilities, thereby facilitating the advancement of nuclear science and technology within the U.S. In support of this mission, hot cell laboratories are being upgraded. These upgrades include a set of lead shielded cells that will house Irradiated Assisted Stress Corrosion Cracking (IASCC) test rigs and construction of a shielded laboratory facility. A primary function of this shielded laboratory is to provide a state of the art type laboratory facility that is functional, efficient and flexible that is dedicated to the analysis and characterization of nuclear and non-nuclear materials. The facility shall be relatively easy to reconfigure to provide laboratory scale hot cave space for housing current and future nuclear material scientific research instruments.

  6. Supporting Advanced Scientific Computing Research Basic Energy Sciences Biological

    E-Print Network [OSTI]

    SDN PNWG-HUB ­ PNNL on June 6th 1 10GE NASH-ORNL-#2 SDN Wave PNNL Sire office at OSTI June 19th 1 10GE KANS-Great Plains Net (GPN

  7. Advanced Scientific Computing Research User Facilities | U.S...

    Office of Science (SC) Website

    research projects that are funded by the DOE Office of Science and require high performance computing support are eligible to apply to use NERSC resources. Projects that are not...

  8. Center for Technology for Advanced Scientific Component Software (TASCS)

    SciTech Connect (OSTI)

    Dr. Mathew Sottile

    2010-06-30T23:59:59.000Z

    The UO portion of the larger TASCS project was focused on the usability subproject identified in the original project proposal. The key usability issue that we tacked was that of supporting legacy code developers in migrating to a component-oriented design pattern and development model with minimal manual labor. It was observed during the lifetime of the TASCS (and previous CCA efforts) that more often than not, users would arrive with existing code that was developed previous to their exposure to component design methods. As such, they were faced with the task of both learning the CCA toolchain and at the same time, manually deconstructing and reassembling their existing code to fit the design constraints imposed by components. This was a common complaint (and occasional reason for a user to abandon components altogether), so our task was to remove this manual labor as much as possible to lessen the burden placed on the end-user when adopting components for existing codes. To accomplish this, we created a source-based static analysis tool that used code annotations to drive code generation and transformation operations. The use of code annotations is due to one of the key technical challenges facing this work | programming languages are limited in the degree to which application-specific semantics can be represented in code. For example, data types are often ambiguous. The C pointer is the most common example cited in practice. Given a pointer to a location in memory, should it be interpreted as a singleton or an array. If it is to be interpreted as an array, how many dimensions does the array have? What are their extents? The annotation language that we designed and implemented addresses this ambiguity issue by allowing users to decorate their code in places where ambiguity exists in order to guide tools to interpret what the programmer really intends.

  9. DOE Announces First Awards in Scientific Discovery through Advanced...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    nature. The projects include the search for the explosion mechanism of core-collapse supernovae, development of a new generation of accelerator simulation codes and simulations of...

  10. CENTER FOR ADVANCED BIOTECHNOLOGY AND MEDICINE 2012 SCIENTIFIC ADVISORY BOARD

    E-Print Network [OSTI]

    REPRESENTATIVES Dr. Nader Fotouhi Vice President, Discovery Chemistry Hoffmann-La Roche Michael Dean Miller, Ph Academy of Sciences), '86 Babiss, Lee, Vice President Pre-Clinical Res. & Dev. Hoffmann-La Roche Inc.'99. Biol. Sci., '88-'91 Drews, Jurgen, M.D., Pres., Intl. R & D, Hoffmann-La Roche Inc., '93-'96 Gage, L

  11. Recap: Advancing Scientific Innovation at the National Labs ...

    Broader source: Energy.gov (indexed) [DOE]

    Lab Fri, Mar 07 2014 18:19:31 OLCF Industry User Named Person to Watch in High-Performance Computing for 2014 http:t.copXTjgsn0XJ Titan Industry @ORNL @GEResearch - OLCF ...

  12. Center for Technology for Advanced Scientific Component Software (TASCS)

    SciTech Connect (OSTI)

    Bramley, Randall B.

    2012-08-02T23:59:59.000Z

    Indiana University�¢����s SWIM activities have primarily been in three areas. All are completed, but we are continuing to work on two of them because refinements are useful to both DoE laboratories and the high performance computing community.

  13. Computational Biology, Advanced Scientific Computing, and Emerging Computational Architectures

    SciTech Connect (OSTI)

    None

    2007-06-27T23:59:59.000Z

    This CRADA was established at the start of FY02 with $200 K from IBM and matching funds from DOE to support post-doctoral fellows in collaborative research between International Business Machines and Oak Ridge National Laboratory to explore effective use of emerging petascale computational architectures for the solution of computational biology problems. 'No cost' extensions of the CRADA were negotiated with IBM for FY03 and FY04.

  14. Supporting Advanced Scientific Computing Research Basic Energy Sciences Biological

    E-Print Network [OSTI]

    configuration ­ Continuous monitoring of servers & services ­ Performance tuning & verifying everything Bechtel-NV IARC INL NSTEC Pantex SNLA DOE-ALB Allied Signal KCP SRS NREL DOE NETL NNSA ARM ORAU OSTI NOAA and how? · Evaluate publication issues ­ Is the data already published? ­ Are there security concerns

  15. Energy Department Requests Proposals for Advanced Scientific Computing

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube|6721 Federal RegisterHydrogen and FuelDefense asDepartment of Energy

  16. Barbara Helland, Facilities Division Director Advanced Scientific Computing Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProductsAlternativeOperationalAugustDecade5-F,INITIAL JohnE Pt he A

  17. Energy Department Requests Proposals for Advanced Scientific Computing

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,OfficeEnd of Year 2010 SNF &DepartmentEnergyEfficiencyDepartment

  18. Energy Department Requests Proposals for Advanced Scientific Computing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign:INEAWaterCool RoofsAmericanOfficedoe

  19. PIA - Advanced Test Reactor National Scientific User Facility Users Week

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,39732onMake YourDepartmentChartForums OutreachAMWTP2009 | Department

  20. PIA - Advanced Test Reactor National Scientific User Facility Users Week

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOilNEWResponse toOctoberMultifamily Landlords1Reality2009 | Department of

  1. Large Scale Computing and Storage Requirements for Advanced Scientific

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is Your Home asLCLSLaboratoryRowland toShade LandscapingComputing

  2. Sandia Energy - Helping Advance the Scientific Foundation that Enables

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear Press ReleasesInAppliedEnergyGeothermal HomeGridH

  3. Supporting Advanced Scientific Computing Research * Basic Energy Sciences * Biological

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening a solid ...Success StoriesSupplement AnalysisSupplying

  4. Supporting Advanced Scientific Computing Research * Basic Energy Sciences * Biological

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening a solid ...Success StoriesSupplement

  5. Supporting Advanced Scientific Computing Research * Basic Energy Sciences * Biological

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening a solid ...Success StoriesSupplementNetwork Monitoring and

  6. Supporting Advanced Scientific Computing Research * Basic Energy Sciences * Biological

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening a solid ...Success StoriesSupplementNetwork Monitoring andEnergy S

  7. Supporting Advanced Scientific Computing Research * Basic Energy Sciences * Biological

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening a solid ...Success StoriesSupplementNetwork Monitoring andEnergy

  8. Scientific Advisory Committee

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol HomeFacebook Twitter Principalfuel cells"03,Scientific Advisory Committee

  9. Scientific Advisory Committee

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol HomeFacebook Twitter Principalfuel cells"03,Scientific Advisory

  10. Scientific Advisory Committee

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementingnpitcheResearch BriefsTenney,Science andJanuary »Scientific Advisory

  11. Advanced Reactor Innovation Evaluation Study (ARIES) Properties Archive

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    ARIES stands for Advanced Reactor Innovation Evaluation Study. It is a program and a team that explores the commercial potential of fusion as an energy resource. Though it is a multi-institutional program, ARIES is led by the University of California at San Diego. ARIES studies both magnetic fusion energy (MFE) and inertial fusion energy (IFE), using an approach that integrates theory, experiments, and technology. The ARIES team proposes fusion reactor designs and works to understand how technology, materials and plasma physics processes interact and influence each other. A 2005 report to the Fusion Energy Sciences Advisory Committee ("Scientific Challenges, Opportunities, and Priorities for the U.S. Fusion Energy Sciences Program") noted on page 98 an example of the importance of this materials properties aspect: "For instance, effects on plasma edge by various plasma facing materials and effects on various plasma stabilization and control techniques by highly conducting liquid metal blankets are being considered by physicists." This web page is an archive of material properties collected here for the use of the ARIES Fusion Power Plant Studies Team.

  12. Inert anodes and advanced smelting of aluminum

    SciTech Connect (OSTI)

    ASME Technical Working Group on Inert Anode Technologies

    1999-07-01T23:59:59.000Z

    This report provides a broad assessment of open literature and patents that exist in the area of inert anodes and their related cathode systems and cell designs, technologies that are relevant for the advanced smelting of aluminum. The report also discusses the opportunities, barriers, and issued associated with these technologies from a technical, environmental, and economic viewpoint. It discusses the outlook for the direct retrofit of advanced reduction technologies to existing aluminum smelters, and compares retrofits to ''brown field'' usage and ''green field'' adoption of the technologies. A number of observations and recommendations are offered for consideration concerning further research and development efforts that may be directed toward these advanced technologies. The opportunities are discussed in the context of incremental progress that is being made in conventional Hall-Heroult cell systems.

  13. Advanced energy projects FY 1997 research summaries

    SciTech Connect (OSTI)

    NONE

    1997-09-01T23:59:59.000Z

    The mission of the Advanced Energy Projects (AEP) program is to explore the scientific feasibility of novel energy-related concepts that are high risk, in terms of scientific feasibility, yet have a realistic potential for a high technological payoff. The concepts supported by the AEP are typically at an early stage of scientific development. They often arise from advances in basic research and are premature for consideration by applied research or technology development programs. Some are based on discoveries of new scientific phenomena or involve exploratory ideas that span multiple scientific and technical disciplines which do not fit into an existing DOE program area. In all cases, the objective is to support evaluation of the scientific or technical feasibility of the novel concepts involved. Following AEP support, it is expected that each concept will be sufficiently developed to attract further funding from other sources to realize its full potential. Projects that involve evolutionary research or technology development and demonstration are not supported by AEP. Furthermore, research projects more appropriate for another existing DOE research program are not encouraged. There were 65 projects in the AEP research portfolio during Fiscal Year 1997. Eigheen projects were initiated during that fiscal year. This document consists of short summaries of projects active in FY 1997. Further information of a specific project may be obtained by contacting the principal investigator.

  14. Government procurement: An opportunity for energy efficiency

    SciTech Connect (OSTI)

    McKane, A.T.; Harris, J.P.

    1997-06-01T23:59:59.000Z

    This panel presents information on four approaches to energy-efficient procurement: the Federal Procurement Challenge, the Energy-Efficient Procurement Collaborative, the ENERGY STAR program, and Green Seal. To provide a context for these presentations, the authors present an overview and background on the significance of and recent trends in government procurement. In the United States, the combined annual expenditures by the Federal government for energy-consuming equipment and appliances have been estimated at $10-$20 billion. The Energy Policy Act of 1992 and Executive Order 12902 direct Federal agencies to exercise leadership as the world`s largest customer to promote the purchase of energy-efficient, renewable energy, and water conserving products. The Department of Energy`s Federal Energy Management Program, through the Federal Procurement Challenge, offers Federal agencies the opportunity to coordinate these purchasing activities through a broad-based program that also links efforts at the Federal level with state and local purchasing. The Challenge is designed to use the buying power of the Federal government to: support and expand markets for today`s `best practice` energy-efficient, renewable energy, and water-conserving products; create new entry markets for advanced energy-saving technologies and products; and lower the cost of efficient products for all consumers by providing a large, reliable market. Other program objectives include: reducing operating costs for Federal agencies; reducing Federal energy use and greenhouse gas emissions; and providing a model for other levels of government, corporate, and institutional purchasers. Purchases of energy-related products by state and local governments are estimated at 3-4 times those of the entire Federal market. The multi-state Energy-Efficient Procurement Collaborative affords state and local governments the opportunity to share information and technical information on energy-efficient purchasing.

  15. JT-60 Modification Plan for Long Pulse Advanced Tokamak Research

    E-Print Network [OSTI]

    JT-60 Modification Plan for Long Pulse Advanced Tokamak Research Colloquium of Max Planck Institute as one step to DEMO · Advanced tokamak researches · Scientific achievements of JT-60 and its phase Tokamak Commercializa tion pease JT-60 Decision system of prototype reactor Electricity Generation

  16. EQUAL OPPORTUNITIES POLICY POLICY STATEMENT

    E-Print Network [OSTI]

    EQUAL OPPORTUNITIES POLICY POLICY STATEMENT Imperial College London is committed to a policy Resources (HR) has overall responsibility for the formulation, implementation and monitoring of the policy that this policy is effective by: · advising the College's senior management, other appropriate members of staff

  17. Internship opportunity with URS Corporation

    E-Print Network [OSTI]

    Internship opportunity with URS Corporation URS is the largest global engineering design firm of undergraduate studies to participate in an internship program with the School of Ocean & Earth Science & Technology (SOEST) at the University of Hawaii. The intent of the internship is two-fold: · To establish

  18. Cognitive Radio: Fundamentals and Opportunities

    E-Print Network [OSTI]

    Morelos-Zaragoza, Robert H.

    Cognitive Radio: Fundamentals and Opportunities Robert H. Morelos-Zaragoza Department of Electrical Engineering San Jose State University October 12, 2007 #12;Cognitive Radio - RHMZ - 2007 Slide 2 of 18 Outline 1. Software-defined radio (SDR) a) Black-box approach b) Components and attributes (Mitola) 2

  19. ROSE ART MUSEUM INTERNSHIP OPPORTUNITIES

    E-Print Network [OSTI]

    Snider, Barry B.

    ROSE ART MUSEUM INTERNSHIP OPPORTUNITIES FOR BRANDEIS STUDENTS ACADEMIC YEAR 2013-2014 For academic year 2013-2014, the Rose offers two paid internships, the Starr and Warner Curatorial Internships. These internships are available only for students who will be seniors during 2013-2014. While any rising senior may

  20. WHEN GLACIERS BREAK THE ICE BETWEEN SEVERAL SCIENTIFIC HORIZONS T. Landes, P. Grussenmeyer, M. Koehl

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    WHEN GLACIERS BREAK THE ICE BETWEEN SEVERAL SCIENTIFIC HORIZONS T. Landes, P. Grussenmeyer, M temperate glacier activity. For this ambitious purpose, it was necessary to reassemble specialists coming glaciers was a unique opportunity for the MAP-PAGE team, specialized in geodetic surveying and imaging

  1. Innovative forming and fabrication technologies : new opportunities.

    SciTech Connect (OSTI)

    Davis, B.; Hryn, J.; Energy Systems; Kingston Process Metallurgy, Inc.

    2008-01-31T23:59:59.000Z

    The advent of light metal alloys and advanced materials (polymer, composites, etc.) have brought the possibility of achieving important energy reductions into the full life cycle of these materials, especially in transportation applications. 1 These materials have gained acceptance in the aerospace industry but use of light metal alloys needs to gain wider acceptance in other commercial transportation areas. Among the main reasons for the relatively low use of these materials are the lack of manufacturability, insufficient mechanical properties, and increased material costs due to processing inefficiencies. Considering the enormous potential energy savings associated with the use of light metal alloys and advanced materials in transportation, there is a need to identify R&D opportunities in the fields of materials fabrication and forming aimed at developing materials with high specific mechanical properties combined with energy efficient processes and good manufacturability. This report presents a literature review of the most recent developments in the areas of fabrication and metal forming focusing principally on aluminum alloys. In the first section of the document, the different sheet manufacturing technologies including direct chill (DC) casting and rolling, spray forming, spray rolling, thin slab, and strip casting are reviewed. The second section of the document presents recent research on advanced forming processes. The various forming processes reviewed are: superplastic forming, electromagnetic forming, age forming, warm forming, hydroforming, and incremental forming. Optimization of conventional forming processes is also discussed. Potentially interesting light metal alloys for high structural efficiency including aluminum-scandium, aluminum-lithium, magnesium, titanium, and amorphous metal alloys are also reviewed. This section concludes with a discussion on alloy development for manufacturability. The third section of the document reviews the latest developments in fiber-reinforced composite materials. Emerging curing processes are presented along with a discussion on the possible developments in biocomposite materials. The fourth section presents recent developments in the fabrication of bulk nanomaterials and nanoparticles reinforced materials. Advanced joining technologies are presented in the fifth section. Future research is proposed in the last section.

  2. EMPLOYMENT OPPORTUNITIES Hawaii Ocean Observing System (HiOOS) Employment Opportunities

    E-Print Network [OSTI]

    UHM EMPLOYMENT OPPORTUNITIES Hawaii Ocean Observing System (HiOOS) Employment Opportunities FIELD TECHNICIAN OPPORTUNITY: employment with possible development of a senior thesis project in GESCarlo, edecarlo@soest.hawaii.edu JOB REFERENCE NUMBER ON STUDENT EMPLOYMENT WEBSITE: none Student

  3. Scientific and Technical Information Management

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2003-10-14T23:59:59.000Z

    The Order establishes requirements and responsibilities for managing DOE's scientific and technical information. Cancels DOE O 241.1. Canceled by DOE O 241.1B.

  4. Throwback Thursdays Celebrate Scientific Supercomputing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Celebrate Scientific Supercomputing A Cray-1 supercomputer arrives at the Magnetic Fusion Energy Computer Center in A Cray-1 supercomputer arrives at the Magnetic Fusion...

  5. Scientific and Technical Need | JCESR

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    key questions in electrochemical energy storage along the full technology-development pipeline, from basic scientific research through manufacturing and delivery to market. The...

  6. Scientific and Natural Areas (Minnesota)

    Broader source: Energy.gov [DOE]

    Certain scientific and natural areas are established throughout the state for the purpose of preservation and protection. Construction and new development is prohibited in these areas.

  7. Final Scientific EFNUDAT Workshop

    ScienceCinema (OSTI)

    None

    2011-10-06T23:59:59.000Z

    The Final Scientific EFNUDAT Workshop - organized by the CERN/EN-STI group on behalf of n_TOF Collaboration - will be held at CERN, Geneva (Switzerland) from 30 August to 2 September 2010 inclusive.EFNUDAT website: http://www.efnudat.euTopics of interest include: Data evaluationCross section measurementsExperimental techniquesUncertainties and covariancesFission propertiesCurrent and future facilities  International Advisory Committee: C. Barreau (CENBG, France)T. Belgya (IKI KFKI, Hungary)E. Gonzalez (CIEMAT, Spain)F. Gunsing (CEA, France)F.-J. Hambsch (IRMM, Belgium)A. Junghans (FZD, Germany)R. Nolte (PTB, Germany)S. Pomp (TSL UU, Sweden) Workshop Organizing Committee: Enrico Chiaveri (Chairman)Marco CalvianiSamuel AndriamonjeEric BerthoumieuxCarlos GuerreroRoberto LositoVasilis Vlachoudis Workshop Assistant: Géraldine Jean

  8. Kelly Scientific Resources Kelly Scientific Resources yy BIOTECHNOLOGY DRUG &

    E-Print Network [OSTI]

    Puglisi, Joseph

    for a wide variety of scientific and clinical research positions. KSR is a trusted career advisor, guiding is a $92 Billion Dollar Industry Customer Uses for an Agencyg y · Strictly Head Count · Special Projects staffing supplier in the world * ­ Recruiting Scientific and Clinical Research professionals since 1995

  9. ADVANCING THE SCIENCE OF NATURAL AND ENHANCED ATTENUATION FOR CHLORINATED SOLVENTS

    SciTech Connect (OSTI)

    Looney, B; TOM O. EARLY, T; TYLER GILMORE, T; FRANCIS H. CHAPELLE, F; NORMAN H. CUTSHALL, N; JEFF ROSS, J; MARK ANKENY, M; Michael Heitkamp, M; DAVID MAJOR, D; CHARLES J. NEWELL, C; W. JODY WAUGH, W; GARY WEIN, G; Karen Vangelas, K; Karen-M Adams, K; CLAIRE H. SINK, C

    2006-12-27T23:59:59.000Z

    This report summarizes the results of a three-year program that addressed key scientific and technical aspects related to natural and enhanced attenuation of chlorinated organics. The results from this coordinated three-year program support a variety of technical and regulatory advancements. Scientists, regulators, engineers, end-users and stakeholders participated in the program, which was supported by the U.S. Department of Energy (DOE) and the Interstate Technology and Regulatory Council (ITRC). The overarching objective of the effort was to examine environmental remedies that are based on natural processes--remedies such as Monitored Natural Attenuation (MNA) or Enhanced Attenuation (EA). A key result of the recent effort was the general affirmation of the approaches and guidance in the original U.S. Environmental Protection Agency (EPA) chlorinated solvent MNA protocols and directives from 1998 and 1999, respectively. The research program did identify several specific opportunities for advances based on: (1) mass balance as the central framework for attenuation based remedies, (2) scientific advancements and achievements during the past ten years, (3) regulatory and policy development and real-world experience using MNA, and (4) exploration of various ideas for integrating attenuation remedies into a systematic set of ''combined remedies'' for contaminated sites. These opportunities are summarized herein and are addressed in more detail in referenced project documents and journal articles, as well as in the technical and regulatory documents being developed within the ITRC. Natural attenuation processes occur in all soil and groundwater systems and act, to varying degrees, on all contaminants. Thus, a decision to rely on natural attenuation processes as part of a site-remediation strategy does not depend on the occurrence of natural attenuation, but on its effectiveness in meeting site-specific remediation goals. Meeting these goals typically requires low risk, plume stability, and documentation of accepted and sustainable attenuation processes. Plume stability and sustainability depend on the balance between contaminant loading into the plume and contaminant attenuation within the plume. This ''mass balance'' is a simple and powerful idea that developed into the central framework for all aspects of the DOE MNA/EA program. The centrality of mass balance has been advocated by Chapelle and others (e.g., 1995) for several years, and the concepts proved to be critical to conceptualizing natural attenuation remedies, designing enhancements, developing characterization and monitoring strategies, and developing regulatory decision frameworks that encourage broader use of MNA/EA with clarified technical responsibility.

  10. ProductSpecifications Thermo Scientific

    E-Print Network [OSTI]

    Short, Daniel

    ProductSpecifications Thermo Scientific Niton XL3t GOLDD+ XRF Analyzer The Thermo Scientific Niton XL3t x-ray tube-based x-ray fluorescence (XRF) analyzer with GOLDD+ technology is purpose versatile x-ray tubes ever used in a handheld XRF instrument. When this power is harnessed to our

  11. Breakout Session: Solar Securitization: Opportunities and Challenges...

    Energy Savers [EERE]

    Securitization: Opportunities and Challenges Breakout Session: Solar Securitization: Opportunities and Challenges May 21, 2014 6:30PM to 7:30PM PDT Avila A & B The U.S. solar...

  12. Clinical Opportunities Intercampus Program in Communicative Disorders

    E-Print Network [OSTI]

    Clinical Opportunities Intercampus Program in Communicative Disorders The University of Kansas 1) Community Living Opportunities (CLO) Diagnostic Clinic ­ This is a diagnostic clinic for adults with severe, Social, Modalities) Garden Terrace Diagnostic Clinic - This is a screening clinic for communication

  13. Hydrogen Economy: Opportunities and Challenges *

    E-Print Network [OSTI]

    A hydrogen economy, the long-term goal of many nations, can potentially provide energy security, along with environmental and economic benefits. However, the transition from a conventional petroleum-based energy system to a hydrogen economy involves many uncertainties, such as the development of efficient fuel cell technologies, problems in hydrogen production and distribution infrastructure, and the response of petroleum markets. This study uses the U.S. MARKAL model to simulate the impacts of hydrogen technologies on the U.S. energy system and identify potential impediments to a successful transition. Preliminary findings identify potential market barriers facing the hydrogen economy, as well as opportunities in new R&D and product markets for bioproducts. Quantitative analysis also offers insights on policy options for promoting hydrogen technologies. The objective of this paper is to study the transition from a petroleum-based energy system to a hydrogen economy, and ascertain the consequent opportunities and

  14. Opportunities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LANS capabilities, please contact licensing@lanl.gov. Multifunctional Cell Imaging Polymers Description: This capability involves the use of water-soluble conjugated polymers...

  15. Opportunities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Multifunctional Cell Imaging Polymers Description: This capability involves the use of water-soluble conjugated polymers for cell imaging. The LANS polymer is apoptotic, does...

  16. Opportunities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear Astrophysics One ofSpeedingthis site »Operations

  17. Opportunities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeeding access toTest and EvaluationOperational

  18. Challenges and Opportunities in Thermoelectric Energy Conversion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Conversion Challenges and Opportunities in Thermoelectric Energy Conversion 2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: Lawrence Berkeley...

  19. Advanced Combustion

    SciTech Connect (OSTI)

    Holcomb, Gordon R. [NETL

    2013-03-11T23:59:59.000Z

    The activity reported in this presentation is to provide the mechanical and physical property information needed to allow rational design, development and/or choice of alloys, manufacturing approaches, and environmental exposure and component life models to enable oxy-fuel combustion boilers to operate at Ultra-Supercritical (up to 650{degrees}C & between 22-30 MPa) and/or Advanced Ultra-Supercritical conditions (760{degrees}C & 35 MPa).

  20. Electrolysis: Information and Opportunities for Electric Power Utilities

    SciTech Connect (OSTI)

    Kroposki, B.; Levene, J.; Harrison, K.; Sen, P.K.; Novachek, F.

    2006-09-01T23:59:59.000Z

    Recent advancements in hydrogen technologies and renewable energy applications show promise for economical near- to mid-term conversion to a hydrogen-based economy. As the use of hydrogen for the electric utility and transportation sectors of the U.S. economy unfolds, electric power utilities need to understand the potential benefits and impacts. This report provides a historical perspective of hydrogen, discusses the process of electrolysis for hydrogen production (especially from solar and wind technologies), and describes the opportunities for electric power utilities.

  1. Energy efficiency opportunities in China. Industrial equipment and small cogeneration

    SciTech Connect (OSTI)

    NONE

    1995-02-01T23:59:59.000Z

    A quick glance at comparative statistics on energy consumption per unit of industrial output reveals that China is one of the least energy efficient countries in the world. Energy waste not only impedes economic growth, but also creates pollution that threatens human health, regional ecosystems, and the global climate. China`s decision to pursue economic reform and encourage technology transfer from developed countries has created a window of opportunity for significant advances in energy efficiency. Policy changes, technical training, public education, and financing can help China realize its energy conservation potential.

  2. Acquisition of Scientific Equipment

    SciTech Connect (OSTI)

    Noland, Lynn [Director, Sponsored Programs] [Director, Sponsored Programs

    2014-05-16T23:59:59.000Z

    Whitworth University constructed a 63,00 sq. ft. biology and chemistry building which opened in the Fall of 2011. This project provided for new state-of-the-art science instrumentation enabling Whitworth students to develop skills and knowledge that are directly transferable to practical applications thus enhancing Whitworth student's ability to compete and perform in the scientific workforce. Additionally, STEM faculty undertake outreach programs in the area schools, bringing students to our campus to engage in activities with our science students. The ability to work with insturmentation that is current helps to make science exciting for middle school and high school students and gets them thinking about careers in science. 14 items were purchased following the university's purchasing policy, that benefit instruction and research in the departments of biology, chemistry, and health sciences. They are: Cadaver Dissection Tables with Exhaust Chamber and accessories, Research Microscope with DF DIC, Phase and Fluorescence illumination with DP72 Camera, Microscope with Fluorescence, Microcomputer controlled ultracentrifuge, Ultracentrifuge rotor, Variable Temperature steam pressure sterilizer, Alliance APLC System, DNA Speedvac, Gel Cocumentation System, BioPac MP150, Glovebox personal workstation,Lyophilizer, Nano Drop 2000/2000c Spectrophotometer, C02 Incubator.

  3. Opportunity Thinking for Open Innovation innovation?

    E-Print Network [OSTI]

    Ghosh, Joydeep

    · Technology innovation process · Shared services Copyright © 2012 NewEdge25 #12;Leveraging multiple sourcesOpportunity Thinking for Open Innovation #12;Why open innovation? Copyright © 2012 NewEdge2 #12;Opportunity! Open innovation promises to make an attractive opportunity even more attractive. · Better

  4. Business Opportunities in the Energy Industry | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Business Opportunities in the Energy Industry Business Opportunities in the Energy Industry An opportunity for small businesses to network with industry professionals, sponsored by...

  5. Funding Opportunities | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Funding Opportunities Bioimaging Technology Bioimaging Technology Home About Research Funding Opportunities Contact BER Home Funding Opportunities Print Text Size: A A A...

  6. Business Opportunity Session Materials - December 14, 2011, Chicago...

    Office of Environmental Management (EM)

    Business Opportunity Session Materials - December 14, 2011, Chicago Business Opportunity Session Materials - December 14, 2011, Chicago Our Business Opportunity Sessions bring...

  7. Ewa Deelman, deelman@isi.edu www.isi.edu/~deelman pegasus.isi.edu Clouds: An Opportunity for

    E-Print Network [OSTI]

    Deelman, Ewa

    Ewa Deelman, deelman@isi.edu www.isi.edu/~deelman pegasus.isi.edu Clouds: An Opportunity for Scientific Applications? Ewa Deelman USC Information Sciences Institute #12;Ewa Deelman, deelman@isi.edu www.isi.edu/~deelman pegasus.isi.edu Acknowledgements Yang-Suk Ki (former PostDoc, USC) Gurmeet Singh (former Ph.D. student

  8. Extraction chromatography: Progress and opportunities

    SciTech Connect (OSTI)

    Dietz, M.L.; Horwitz, E.P.; Bond, A.H. [Argonne National Lab., IL (United States). Chemistry Div.

    1997-10-01T23:59:59.000Z

    Extraction chromatography provides a simple and effective method for the analytical and preparative-scale separation of a variety of metal ions. Recent advances in extractant design, particularly the development of extractants capable of metal ion recognition or of strong complex formation in highly acidic media, have significantly improved the utility of the technique. Advances in support design, most notably the introduction of functionalized supports to enhance metal ion retention, promise to yield further improvements. Column instability remains a significant obstacle, however, to the process-scale application of extraction chromatography. 79 refs.

  9. Biogas Opportunities Roadmap Fact Sheet

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced Materials Find Find More Like ThisBioenergyBiofuelFood Security

  10. Scientific Visualization, Seeing the Unseeable

    ScienceCinema (OSTI)

    LBNL

    2009-09-01T23:59:59.000Z

    June 24, 2008 Berkeley Lab lecture: Scientific visualization transforms abstract data into readily comprehensible images, provide a vehicle for "seeing the unseeable," and play a central role in bo... June 24, 2008 Berkeley Lab lecture: Scientific visualization transforms abstract data into readily comprehensible images, provide a vehicle for "seeing the unseeable," and play a central role in both experimental and computational sciences. Wes Bethel, who heads the Scientific Visualization Group in the Computational Research Division, presents an overview of visualization and computer graphics, current research challenges, and future directions for the field.

  11. Scientific Data Management (SDM) Center for Enabling Technologies

    SciTech Connect (OSTI)

    Lud?scher, Bertram; Altintas, Ilkay

    2013-09-06T23:59:59.000Z

    Over the past five years, our activities have both established Kepler as a viable scientific workflow environment and demonstrated its value across multiple science applications. We have published numerous peer-reviewed papers on the technologies highlighted in this short paper and have given Kepler tutorials at SC06,SC07,SC08,and SciDAC 2007. Our outreach activities have allowed scientists to learn best practices and better utilize Kepler to address their individual workflow problems. Our contributions to advancing the state-of-the-art in scientific workflows have focused on the following areas. Progress in each of these areas is described in subsequent sections. Workflow development. The development of a deeper understanding of scientific workflows "in the wild" and of the requirements for support tools that allow easy construction of complex scientific workflows; Generic workflow components and templates. The development of generic actors (i.e.workflow components and processes) which can be broadly applied to scientific problems; Provenance collection and analysis. The design of a flexible provenance collection and analysis infrastructure within the workflow environment; and Workflow reliability and fault tolerance. The improvement of the reliability and fault-tolerance of workflow environments.

  12. Advanced Combustion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProducts (VAP) VAP7-0973 1BP-14 Power and TransmissionAdolphusAdvanced Energy

  13. Energy Development Opportunities for Wyoming

    SciTech Connect (OSTI)

    Larry Demick

    2012-11-01T23:59:59.000Z

    The Wyoming Business Council, representing the state’s interests, is participating in a collaborative evaluation of energy development opportunities with the NGNP Industry Alliance (an industry consortium), the University of Wyoming, and the US Department of Energy’s Idaho National Laboratory. Three important energy-related goals are being pursued by the State of Wyoming: Ensuring continued reliable and affordable sources of energy for Wyoming’s industries and people Restructuring the coal economy in Wyoming Restructuring the natural gas economy in Wyoming

  14. Financial Opportunities | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic Plan| Departmentof Ohio EnvironmentalEnergy MarketFinancial Opportunities

  15. Undergraduate Opportunities | ornl.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin TransitionProgramUndergraduate Opportunities SHARE Undergraduate

  16. Funding Opportunities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdf Flash2006-52.pdf0.pdfDepartment ofEnergy 3 FuelModelOpportunities

  17. Fermilab at Work | Job Opportunities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.New Mexico Feb. 13, 2013 NAME:Job Opportunities Join the Fermilab

  18. Physics Opportunities with the 12 GeV Upgrade at Jefferson Lab

    E-Print Network [OSTI]

    Dudek, Jozef; Essig, Rouven; Kumar, Krishna; Meyer, Curtis; McKeown, Robert; Meziani, Zein Eddine; Miller, Gerald A; Pennington, Michael; Richards, David; Weinstein, Larry; Young, Glenn

    2012-01-01T23:59:59.000Z

    This white paper summarizes the scientific opportunities for utilization of the upgraded 12 GeV Continuous Electron Beam Accelerator Facility (CEBAF) and associated experimental equipment at Jefferson Lab. It is based on the 52 proposals recommended for approval by the Jefferson Lab Physics Advisory Committee.The upgraded facility will enable a new experimental program with substantial discovery potential to address important topics in nuclear, hadronic, and electroweak physics.

  19. Physics Opportunities with the 12 GeV Upgrade at Jefferson Lab

    E-Print Network [OSTI]

    Jozef Dudek; Rolf Ent; Rouven Essig; Krishna Kumar; Curtis Meyer; Robert McKeown; Zein Eddine Meziani; Gerald A. Miller; Michael Pennington; David Richards; Larry Weinstein; Glenn Young

    2012-08-07T23:59:59.000Z

    This white paper summarizes the scientific opportunities for utilization of the upgraded 12 GeV Continuous Electron Beam Accelerator Facility (CEBAF) and associated experimental equipment at Jefferson Lab. It is based on the 52 proposals recommended for approval by the Jefferson Lab Program Advisory Committee.The upgraded facility will enable a new experimental program with substantial discovery potential to address important topics in nuclear, hadronic, and electroweak physics.

  20. June 4, 2007 Advanced Fault Tolerance Solutions for High Performance Computing

    E-Print Network [OSTI]

    Engelmann, Christian

    June 4, 2007 Advanced Fault Tolerance Solutions for High Performance Computing Workshop on Trends Tolerance Solutions for High Performance Computing Christian Engelmann Oak Ridge National Laboratory, Oak Solutions for High Performance Computing Workshop on Trends, Technologies and Collaborative Opportunities

  1. June 8, 2007 Advanced Fault Tolerance Solutions for High Performance Computing

    E-Print Network [OSTI]

    Engelmann, Christian

    June 8, 2007 Advanced Fault Tolerance Solutions for High Performance Computing Workshop on Trends Tolerance Solutions for High Performance Computing Christian Engelmann Oak Ridge National Laboratory, Oak for High Performance Computing Workshop on Trends, Technologies and Collaborative Opportunities in High

  2. IST | VALCOURT NEW CAREER OPPORTUNITY

    E-Print Network [OSTI]

    expertise and analytical abilities will be used in your project management based on the Argile method. 3 in computer science or information systems management (IMS) or equivalent, and at least 10 years of relevant would be an asset Use with ease the advanced functions of SAP MM/PP/WM/QM Apply frequently your

  3. Research on advanced photovoltaic manufacturing technology

    SciTech Connect (OSTI)

    Jester, T.; Eberspacher, C. (Siemens Solar Industries, Camarillo, CA (United States))

    1991-11-01T23:59:59.000Z

    This report outlines opportunities for significantly advancing the scale and economy of high-volume manufacturing of high-efficiency photovoltaic (PV) modules. We propose to pursue a concurrent effort to advance existing crystalline silicon module manufacturing technology and to implement thin film CuInSe{sub 2} (CIS) module manufacturing. This combination of commercial-scale manufacturing of high-efficiency crystalline silicon modules and of pilot-scale manufacturing of low-cost thin film CIS technology will support continued, rapid growth of the US PV industry.

  4. I/O Resources for Scientific Applications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Resources for Scientific Applications at NERSC IO Resources for Scientific Applications at NERSC Introduction NERSC provides a range of online resources to assist users...

  5. NERSC HPSS Storage by Scientific Discipline

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Storage by Scientific Discipline Troubleshooting IO Resources for Scientific Applications at NERSC Optimizing IO performance on the Lustre file system IO Formats Science...

  6. Increasing Scientific Productivity by Tracking Data

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Data Tracking Increases Scientific Productivity Data Tracking Increases Scientific Productivity July 20, 2011 | Tags: HPSS, NERSC Linda Vu, lvu@lbl.gov, +1 510 486 2402 HPSS...

  7. Development of extreme ultraviolet and soft x-ray multilayer optics for scientific studies with femtosecond/attosecond sources

    SciTech Connect (OSTI)

    Aquila, Andrew Lee

    2009-05-21T23:59:59.000Z

    The development of multilayer optics for extreme ultraviolet (EUV) radiation has led to advancements in many areas of science and technology, including materials studies, EUV lithography, water window microscopy, plasma imaging, and orbiting solar physics imaging. Recent developments in femtosecond and attosecond EUV pulse generation from sources such as high harmonic generation lasers, combined with the elemental and chemical specificity provided by EUV radiation, are opening new opportunities to study fundamental dynamic processes in materials. Critical to these efforts is the design and fabrication of multilayer optics to transport, focus, shape and image these ultra-fast pulses This thesis describes the design, fabrication, characterization, and application of multilayer optics for EUV femtosecond and attosecond scientific studies. Multilayer mirrors for bandwidth control, pulse shaping and compression, tri-material multilayers, and multilayers for polarization control are described. Characterization of multilayer optics, including measurement of material optical constants, reflectivity of multilayer mirrors, and metrology of reflected phases of the multilayer, which is critical to maintaining pulse size and shape, were performed. Two applications of these multilayer mirrors are detailed in the thesis. In the first application, broad bandwidth multilayers were used to characterize and measure sub-100 attosecond pulses from a high harmonic generation source and was performed in collaboration with the Max-Planck institute for Quantum Optics and Ludwig- Maximilians University in Garching, Germany, with Professors Krausz and Kleineberg. In the second application, multilayer mirrors with polarization control are useful to study femtosecond spin dynamics in an ongoing collaboration with the T-REX group of Professor Parmigiani at Elettra in Trieste, Italy. As new ultrafast x-ray sources become available, for example free electron lasers, the multilayer designs described in this thesis can be extended to higher photon energies, and such designs can be used with those sources to enable new scientific studies, such as molecular bonding, phonon, and spin dynamics.

  8. Scientific Cornerstones | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementingnpitcheResearch BriefsTenney,Science andJanuaryScientificScientific

  9. Scientific Labs | Neutron Science | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementingnpitcheResearch BriefsTenney,ScienceScientificScientific Labs SHARE

  10. Upcoming Funding Opportunity for Marine and Hydrokinetic Development...

    Energy Savers [EERE]

    Upcoming Funding Opportunity for Marine and Hydrokinetic Development University Consortium Upcoming Funding Opportunity for Marine and Hydrokinetic Development University...

  11. Multiphysics simulations: challenges and opportunities.

    SciTech Connect (OSTI)

    Keyes, D.; McInnes, L. C.; Woodward, C.; Gropp, W.; Myra, E.; Pernice, M. (Mathematics and Computer Science); (KAUST and Columbia Univ.); (Lawrence Livermore National Laboratory); (Univ. of Illinois at Urbana-Champaign); (Univ. of Mich.); (Idaho National Lab.)

    2012-11-29T23:59:59.000Z

    This report is an outcome of the workshop Multiphysics Simulations: Challenges and Opportunities, sponsored by the Institute of Computing in Science (ICiS). Additional information about the workshop, including relevant reading and presentations on multiphysics issues in applications, algorithms, and software, is available via https://sites.google.com/site/icismultiphysics2011/. We consider multiphysics applications from algorithmic and architectural perspectives, where 'algorithmic' includes both mathematical analysis and computational complexity and 'architectural' includes both software and hardware environments. Many diverse multiphysics applications can be reduced, en route to their computational simulation, to a common algebraic coupling paradigm. Mathematical analysis of multiphysics coupling in this form is not always practical for realistic applications, but model problems representative of applications discussed herein can provide insight. A variety of software frameworks for multiphysics applications have been constructed and refined within disciplinary communities and executed on leading-edge computer systems. We examine several of these, expose some commonalities among them, and attempt to extrapolate best practices to future systems. From our study, we summarize challenges and forecast opportunities. We also initiate a modest suite of test problems encompassing features present in many applications.

  12. Verifying disarmament: scientific, technological and political challenges

    SciTech Connect (OSTI)

    Pilat, Joseph R [Los Alamos National Laboratory

    2011-01-25T23:59:59.000Z

    There is growing interest in, and hopes for, nuclear disarmament in governments and nongovernmental organizations (NGOs) around the world. If a nuclear-weapon-free world is to be achievable, verification and compliance will be critical. VerifYing disarmament would have unprecedented scientific, technological and political challenges. Verification would have to address warheads, components, materials, testing, facilities, delivery capabilities, virtual capabilities from existing or shutdown nuclear weapon and existing nuclear energy programs and material and weapon production and related capabilities. Moreover, it would likely have far more stringent requirements. The verification of dismantlement or elimination of nuclear warheads and components is widely recognized as the most pressing problem. There has been considerable research and development done in the United States and elsewhere on warhead and dismantlement transparency and verification since the early 1990s. However, we do not today know how to verifY low numbers or zero. We need to develop the needed verification tools and systems approaches that would allow us to meet this complex set of challenges. There is a real opportunity to explore verification options and, given any realistic time frame for disarmament, there is considerable scope to invest resources at the national and international levels to undertake research, development and demonstrations in an effort to address the anticipated and perhaps unanticipated verification challenges of disarmament now andfor the next decades. Cooperative approaches have the greatest possibility for success.

  13. Multiscale Computation: Needs and Opportunities for BER Science

    SciTech Connect (OSTI)

    Scheibe, Timothy D.; Smith, Jeremy C.

    2015-01-01T23:59:59.000Z

    The Environmental Molecular Sciences Laboratory (EMSL), a scientific user facility managed by Pacific Northwest National Laboratory for the U.S. Department of Energy, Office of Biological and Environmental Research (BER), conducted a one-day workshop on August 26, 2014 on the topic of “Multiscale Computation: Needs and Opportunities for BER Science.” Twenty invited participants, from various computational disciplines within the BER program research areas, were charged with the following objectives: ? Identify BER-relevant models and their potential cross-scale linkages that could be exploited to better connect molecular-scale research to BER research at larger scales. ? Identify critical science directions that will motivate EMSL decisions regarding future computational (hardware and software) architectures.

  14. Final Scientific/Technical Report

    SciTech Connect (OSTI)

    Brown, R. C.; McCarley, T. M.

    2006-05-04T23:59:59.000Z

    The overall goal of this project was to establish an education and training program in biobased products at Iowa State University (ISU). In particular, a graduate program in Biorenewable Resources and Technology (BRT) was to be established as a way of offering students advanced study in the use of plant- and crop-based resources in the production of biobased products. The program was to include three fundamental elements: an academic program, a research program, and industrial interactions. The academic program set out to introduce a new graduate major in Biorenewable Resources and Technology. Unlike other schools, which only offer certificates or areas of emphasis in biobased products, Iowa State University offers both M.S. and Ph.D degrees through its graduate program. Core required courses in Biorenewable Resources and Technology include a foundation course entitled Fundamentals of Biorenewable Resources (BRT 501); a seminar course entitled Biobased Products Seminar (BRT 506); a laboratory course, and a special topics laboratory course. The foundation course is a three-credit course introducing students to basic concepts in biorenewable resources and technology. The seminar course provides students with an opportunity to hear from nationally and internationally recognized leaders in the field. The laboratory requirement is a 1-credit laboratory course or a special topics laboratory/research experience (BRT 591L). As part of student recruitment, quarter-time assistantships from DOE funds were offered to supplement assistantships provided by faculty to students. Research was built around platform teams in an effort to encourage interdisciplinary research and collaborative student learning in biorenewable resources. A platform is defined as the convergence of enabling technologies into a highly integrated system for transforming a specific feedstock into desired products. The platform teams parallel the way industry conducts research and product development. Platform teams organize faculty and students for cross-disciplinary, systems-oriented research and collaborative learning. To date, nine platforms have been developed, although these will most likely be reorganized into a smaller number of broader topics. In the spring of 2004, BRT faculty initiated a regional partnership and collaborative learning program with colleagues at the University of Minnesota, Kansas State University, and South Dakota State University to develop distance education courses in biorenewable resources and technology. As a fledgling graduate program, the BRT graduate program didn’t have the breadth of resources to offer a large number of courses in biorenewables. Other schools faced a similar problem. The academic consortium as first conceived would allow students from the member schools to enroll in biorenewables courses from any of the participating schools, which would assure the necessary enrollment numbers to offer specialized course work. Since its inception, the collaborative curriculum partnership has expanded to include Louisiana State University and the University of Wisconsin. A second international curriculum development campaign was also initiated in the spring of 2004. In particular, several BRT faculty teamed with colleagues at the University of Arkansas, University of Washington, University of Gent (Belgium), National Polytechnic Institute of Toulouse (France), and Technical University of Graz (Austria) to develop an EU-US exchange program in higher education and vocational education/training (entitled “Renewable Resources and Clean Technology”).

  15. Opportunities and Challenges for Running Scientific Workflows on the Cloud School of Computer Science and Engineering

    E-Print Network [OSTI]

    Lu, Shiyong

    of Computer Science and Engineering Univ. of Electronic and Science Technology of China Chengdu, China yongzh04@gmail.com Xubo Fei Department of Computer Science Wayne State University Detroit, USA xubo@wayne.edu Ioan Raicu Department of Computer Science Illinois Institute of Technology Chicago, USA iraicu

  16. LALP-07-023 Spring 2007 he opportunity to explore new scientific frontiers awaits

    E-Print Network [OSTI]

    available to participants of the only pulsed field user program in the United States. The NHMFL's 60 Telsa

  17. Advanced Energy Projects FY 1996 research summaries

    SciTech Connect (OSTI)

    NONE

    1996-09-01T23:59:59.000Z

    The mission of the Advanced Energy Projects Division (AEP) is to explore the scientific feasibility of novel energy-related concepts. These concepts are typically at an early stage of scientific development and, therefore, are premature for consideration by applied research or technology development programs. The portfolio of projects is dynamic, but reflects the broad role of the Department in supporting research and development for improving the Nation`s energy posture. Topical areas presently receiving support include: alternative energy sources; innovative concepts for energy conversion and storage; alternate pathways to energy efficiency; exploring uses of new scientific discoveries; biologically-based energy concepts; renewable and biodegradable materials; novel materials for energy technology; and innovative approaches to waste treatment and reduction. Summaries of the 70 projects currently being supported are presented. Appendices contain budget information and investigator and institutional indices.

  18. Sandia National Laboratories: evaluate energy storage opportunity

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    energy storage opportunity Sandian Spoke at the New York Energy Storage Expo On December 12, 2014, in Energy, Energy Storage, Energy Storage Systems, Grid Integration,...

  19. Hydrogen Infrastructure Market Readiness: Opportunities and Potential...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Opportunities and Potential for Near-term Cost Reductions. Proceedings of the Hydrogen Infrastructure Market Readiness Workshop and Summary of Feedback Provided through the...

  20. DOE & Strategic Sourcing "New Challenges, New Opportunities"

    Broader source: Energy.gov (indexed) [DOE]

    & Strategic Sourcing "New Challenges, New Opportunities" What is it? NNSA Model DOE Future Activities Bill Marks, Commodity Manager, NNSA Supply Chain Management Center Gary...

  1. Equal Employment Opportunity: Collaborating for Mission Success

    National Nuclear Security Administration (NNSA)

    2012 Equal Employment Opportunity: Collaborating for Mission Success U.S. DEPARTMENT OF ENERGY National Nuclear Security Administration 2012 EEO Report of Accomplishment 2012...

  2. Business Opportunity Session Materials | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SBIRSTTR Program OfficeOffice of Science Opportunities with DOE Laboratories, Larry Thompson, Small Business Program ManagerContract Specialist, Chicago Operations Office...

  3. Funding Opportunity Announcement: Solar Training and Education...

    Energy Savers [EERE]

    Training and Education for Professionals (STEP) Funding Opportunity Announcement: Solar Training and Education for Professionals (STEP) Funding Number: DE-FOA-0001329 Funding...

  4. Additive Manufacturing Opportunities for Transportation | ornl...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Additive Manufacturing Opportunities for Transportation Mar 13 2015 10:00 AM - 11:00 AM Lonnie Love, Manufacturing Systems Research Group Transportation Science Seminar Series...

  5. EEO Complaint Equal Employment Opportunity: Collaborating for...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    r EEO Complaint Equal Employment Opportunity: Collaborating for Mission Success Things to Consider Before you Decide to File.... BURDEN OF PROOF IN THE EEO COMPLAINT PROCESS Who...

  6. Golden Opportunity: Compromise Agreement (2013-SE-1418)

    Broader source: Energy.gov [DOE]

    DOE and Golden Opportunity, Inc. entered into a Compromise Agreement to resolve a case involving the distribution in commerce of noncompliant freezers.

  7. Water resource opportunity assessment: Fort Dix

    SciTech Connect (OSTI)

    Sullivan, G.P.; Hostick, D.J.; Elliott, D.B.; Fitzpatrick, Q.K.; Dahowski, R.T.; Dison, D.R

    1996-12-01T23:59:59.000Z

    This report provides the results of the water resource opportunity assessments performed by Pacific Northwest National Laboratory at the Fort Dix facility located in Fort Dix, New Jersey.

  8. Smart Grid Demonstration Funding Opportunity Announcement DE...

    Broader source: Energy.gov (indexed) [DOE]

    Frequently asked questions about the Smart Grid Demonstration and Energy Storage Funding Opportunity Announcement released as part of the American Recovery and Reinvestment Act,...

  9. Challenges and Opportunities in Thermoelectric Materials Research...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Materials Research for Automotive Applications Challenges and Opportunities in Thermoelectric Materials Research for Automotive Applications Presentation given at the 2007 Diesel...

  10. Advances and Challenges in Computational Plasma Science

    SciTech Connect (OSTI)

    W.M. Tang; V.S. Chan

    2005-01-03T23:59:59.000Z

    Scientific simulation, which provides a natural bridge between theory and experiment, is an essential tool for understanding complex plasma behavior. Recent advances in simulations of magnetically-confined plasmas are reviewed in this paper with illustrative examples chosen from associated research areas such as microturbulence, magnetohydrodynamics, and other topics. Progress has been stimulated in particular by the exponential growth of computer speed along with significant improvements in computer technology.

  11. Computational Research Challenges and Opportunities for the Optimization of Fossil Energy Power Generation System

    SciTech Connect (OSTI)

    Zitney, S.E.

    2007-06-01T23:59:59.000Z

    Emerging fossil energy power generation systems must operate with unprecedented efficiency and near-zero emissions, while optimizing profitably amid cost fluctuations for raw materials, finished products, and energy. To help address these challenges, the fossil energy industry will have to rely increasingly on the use advanced computational tools for modeling and simulating complex process systems. In this paper, we present the computational research challenges and opportunities for the optimization of fossil energy power generation systems across the plant lifecycle from process synthesis and design to plant operations. We also look beyond the plant gates to discuss research challenges and opportunities for enterprise-wide optimization, including planning, scheduling, and supply chain technologies.

  12. Biofuels in Oregon and Washington: A Business Case Analysis of Opportunities and Challenges

    SciTech Connect (OSTI)

    Stiles, Dennis L.; Jones, Susan A.; Orth, Rick J.; Saffell, Bernard F.; Zhu, Yunhua

    2008-02-28T23:59:59.000Z

    The purpose of this report is to assemble the information needed to estimate the significance of the opportunity for producing biofuels in the region as well as the associated challenges. The report reviews the current state of the industry, the biomass resources that are available within current production practices, and the biofuels production technology that is available within the marketplace. The report also identifys the areas in which alternative approaches or strategies, or technologoical advances, might offer an opportunity to expand the Nortwest biofuels industry beyond its current state.

  13. Scientific and Technical Information Management

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2001-04-09T23:59:59.000Z

    To establish Department of Energy (DOE) requirements and responsibilities to ensure that scientific and technical information (STI) is identified, processed, disseminated, and preserved in a manner that (a) enables the scientific community and the public to locate and use the unclassified and unlimited STI resulting from DOE's research and related endeavors and (b) ensures access to classified and sensitive unclassified STI is protected according to legal or Departmental requirements. Cancels DOE O 241.1. Canceled by DOE O 241.1A Chg 1.

  14. Columbia University Opportunities to Gain Experience

    E-Print Network [OSTI]

    Shepard, Kenneth

    Columbia University Opportunities to Gain Experience There are myriad ways to build experience Sciences at Columbia University offers on-campus research opportunities for the summer term Dec. 13 - March careereducation.columbia.edu Join LionSHARE ­ CCE's internship/job board Double Discovery Center Volunteer

  15. EXHIBITION & SPONSORSHIP Sponsorship and Advertisement opportunities exist.

    E-Print Network [OSTI]

    Kumar, M. Jagadesh

    opportunities exist. Sponsors will get an opportunity to make product presentations, display table top products/catalogues at the conference venue oTable top display of products at the conference venue oProduct presentation during and technical tours will focus on RAC and IAQ projects. NCRAC-2013 3rd National Conference on Refrigeration

  16. Geothermal: Advanced Search

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Search Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us HomeBasic Search About Publications Advanced Search New Hot Docs News Related Links You...

  17. APPLIED MATHEMATICS AND SCIENTIFIC COMPUTING

    E-Print Network [OSTI]

    Rogina, Mladen

    APPLIED MATHEMATICS AND SCIENTIFIC COMPUTING Brijuni, Croatia June 23{27, 2003. y x Runge's example; Organized by: Department of Mathematics, Unversity of Zagreb, Croatia. Miljenko Maru#20;si#19;c, chairman;simir Veseli#19;c Andro Mikeli#19;c Sponsors: Ministry of Science and Technology, Croatia, CV Sistemi d

  18. VOLUME 49 2009 Scientific papers

    E-Print Network [OSTI]

    Singh, Amit

    with the timing of pruning of the branches RITSUKO MURAKAMI, AKIO KOYAMA & HIROE YASUI Technical reports Eco-friendly innovative techniques for reverting crop losses due to weeds, into gains, in sericulture P.S. SINHA, RAM in French and English, with original scientific and technical articles. If you wish to join the ISC

  19. Selecting international performance contracting opportunities

    SciTech Connect (OSTI)

    Hansen, J.C.

    1997-06-01T23:59:59.000Z

    With the approach of retail wheeling, subsequent price volatility and more than a little utility confusion on the horizon, it is a great time to pose the question; why not reach out and become an international ESCO? There are lots of countries that could certainly benefit from the introduction of performance contracting and the establishment of full service energy service companies. ESCOs from a number of countries are already {open_quotes}testing the waters{close_quotes} around the world. British, German, Austrian, French, and Australian companies, and probably others, are looking for business in areas far from home. There is no question that international markets can be very favorable targets for an ESCO that is ready to broaden its market base. There is a long list of developing countries: the Central and Eastern European nations, the new nations that once formed the Soviet Union, the {open_quotes}awakening giants{close_quotes} like China, Indonesia and India ... all ought to be good opportunities for a growing ESCO to plant the flag of performance contracting ... but are they?

  20. ADVANCED TURBINE SYSTEMS PROGRAM

    SciTech Connect (OSTI)

    Sy Ali

    2002-03-01T23:59:59.000Z

    The market for power generation equipment is undergoing a tremendous transformation. The traditional electric utility industry is restructuring, promising new opportunities and challenges for all facilities to meet their demands for electric and thermal energy. Now more than ever, facilities have a host of options to choose from, including new distributed generation (DG) technologies that are entering the market as well as existing DG options that are improving in cost and performance. The market is beginning to recognize that some of these users have needs beyond traditional grid-based power. Together, these changes are motivating commercial and industrial facilities to re-evaluate their current mix of energy services. One of the emerging generating options is a new breed of advanced fuel cells. While there are a variety of fuel cell technologies being developed, the solid oxide fuel cells (SOFC) and molten carbonate fuel cells (MCFC) are especially promising, with their electric efficiency expected around 50-60 percent and their ability to generate either hot water or high quality steam. In addition, they both have the attractive characteristics of all fuel cells--relatively small siting footprint, rapid response to changing loads, very low emissions, quiet operation, and an inherently modular design lending itself to capacity expansion at predictable unit cost with reasonably short lead times. The objectives of this project are to:(1) Estimate the market potential for high efficiency fuel cell hybrids in the U.S.;(2) Segment market size by commercial, industrial, and other key markets;(3) Identify and evaluate potential early adopters; and(4) Develop results that will help prioritize and target future R&D investments. The study focuses on high efficiency MCFC- and SOFC-based hybrids and competing systems such as gas turbines, reciprocating engines, fuel cells and traditional grid service. Specific regions in the country have been identified where these technologies and the corresponding early adopters are likely to be located.

  1. Cogeneration and beyond: The need and opportunity for high efficiency, renewable community energy systems

    SciTech Connect (OSTI)

    Gleason, T.C.J.

    1992-06-01T23:59:59.000Z

    The justification, strategies, and technology options for implementing advanced district heating and cooling systems in the United States are presented. The need for such systems is discussed in terms of global warming, ozone depletion, and the need for a sustainable energy policy. Strategies for implementation are presented in the context of the Public Utilities Regulatory Policies Act and proposed new institutional arrangements. Technology opportunities are highlighted in the areas of advanced block-scale cogeneration, CFC-free chiller technologies, and renewable sources of heating and cooling that are particularly applicable to district systems.

  2. 1/12/11 1:51 PMComputer-Aided Brains: Scientific American Page 1 of 3http://www.scientificamerican.com/article.cfm?id=computer-aided-brains

    E-Print Network [OSTI]

    Salvucci, Dario D.

    » Scientific American Mind » October 2005 Head Lines | Mind & Brain Computer-Aided Brains By Brad Stenger1/12/11 1:51 PMComputer-Aided Brains: Scientific American Page 1 of 3http://www.scientificamerican.com/article.cfm?id=computer-aided-brains Image: For years, innovators have tried to devise computerized gadgetry to aid the brain. Advances have

  3. Multicore Architecture-aware Scientific Applications

    SciTech Connect (OSTI)

    Srinivasa, Avinash

    2011-11-28T23:59:59.000Z

    Modern high performance systems are becoming increasingly complex and powerful due to advancements in processor and memory architecture. In order to keep up with this increasing complexity, applications have to be augmented with certain capabilities to fully exploit such systems. These may be at the application level, such as static or dynamic adaptations or at the system level, like having strategies in place to override some of the default operating system polices, the main objective being to improve computational performance of the application. The current work proposes two such capabilites with respect to multi-threaded scientific applications, in particular a large scale physics application computing ab-initio nuclear structure. The first involves using a middleware tool to invoke dynamic adaptations in the application, so as to be able to adjust to the changing computational resource availability at run-time. The second involves a strategy for effective placement of data in main memory, to optimize memory access latencies and bandwidth. These capabilties when included were found to have a significant impact on the application performance, resulting in average speedups of as much as two to four times.

  4. Geothermal Technology Advancement for Rapid Development of Resources in the U.S. Webinar, 6-23-2011

    Broader source: Energy.gov [DOE]

    Transcript and presentation slides for Funding Opportunity Announcement webinar, DE-FOA-0000522: Geothermal Technology Advancement for Rapid Development of Resources in the U.S., on 6-23-2011.

  5. Materials needs and opportunities in the pulp and paper industry

    SciTech Connect (OSTI)

    Angelini, P. [comp.

    1995-08-01T23:59:59.000Z

    The Department of Energy`s (DOE) Office of Industrial Technologies (OIT) supports research and development (R&D) in industry, the DOE national laboratories, and in universities to develop energy efficient, environmentally-acceptable industrial technologies. The Office of Industrial Technologies is working with seven energy-intensive industries to develop R&D roadmaps that will facilitate cooperative government-industry efforts to achieve energy-efficient, environmentally-acceptable, sustainable industries of the future. The forest products industry is one of the industries with which OIT is working to develop an R&D roadmap. The Advanced Industrial Materials (AIM) Program of the Office of Industrial Technologies sponsors long-term, directed research on materials that will enable industry to develop and utilize more energy-efficient, sustainable processes and technologies. The purpose of the study described in this report was to identify the material R&D needs and opportunities for the pulp and paper mill of the future.

  6. Advancing sustainable bioenergy: Evolving stakeholder interests and the relevance of research

    SciTech Connect (OSTI)

    Johnson, Timothy L [U.S. Environmental Protection Agency, Raleigh, North Carolina; Bielicki, Dr Jeffrey M [University of Minnesota; Dodder, Rebecca [U.S. Environmental Protection Agency; Hilliard, Michael R [ORNL; Kaplan, Ozge [U.S. Environmental Protection Agency; Miller, C. Andy [U.S. Environmental Protection Agency

    2013-01-01T23:59:59.000Z

    The sustainability of future bioenergy production rests on more than continual improvements in its environmental, economic, and social impacts. The emergence of new biomass feedstocks, an expanding array of conversion pathways, and expected increases in overall bioenergy production are connecting diverse technical, social, and policy communities. These stakeholder groups have different and potentially conflicting values and cultures, and therefore different goals and decision making processes. Our aim is to discuss the implications of this diversity for bioenergy researchers. The paper begins with a discussion of bioenergy stakeholder groups and their varied interests, and illustrates how this diversity complicates efforts to define and promote sustainable bioenergy production. We then discuss what this diversity means for research practice. Researchers, we note, should be aware of stakeholder values, information needs, and the factors affecting stakeholder decision making if the knowledge they generate is to reach its widest potential use. We point out how stakeholder participation in research can increase the relevance of its products, and argue that stakeholder values should inform research questions and the choice of analytical assumptions. Finally, we make the case that additional natural science and technical research alone will not advance sustainable bioenergy production, and that important research gaps relate to understanding stakeholder decision making and the need, from a broader social science perspective, to develop processes to identify and accommodate different value systems. While sustainability requires more than improved scientific and technical understanding, the need to understand stakeholder values and manage diversity presents important research opportunities.

  7. IT Licentiate theses Scientific Computing on Hybrid

    E-Print Network [OSTI]

    Flener, Pierre

    IT Licentiate theses 2013-002 Scientific Computing on Hybrid Architectures MARCUS HOLM UPPSALA of Licentiate of Philosophy in Scientific Computing c Marcus Holm 2013 ISSN 1404-5117 Printed by the Department

  8. Advanced light source, User`s Handbook, Revision 1

    SciTech Connect (OSTI)

    NONE

    1995-07-01T23:59:59.000Z

    The Advanced Light Source (ALS) is a national facility for scientific research and development located at the Lawrence Berkeley National Laboratory (LBNL) of the University of California. Its purpose is to generate beams of very bright light in the ultraviolet and soft x-ray regions of the spectrum. The facility is open to researchers from industry, universities, and government laboratories.

  9. Advanced Visualization Technology for Terascale Particle Accelerator Simulations

    E-Print Network [OSTI]

    Ma, Kwan-Liu

    Advanced Visualization Technology for Terascale Particle Accelerator Simulations Kwan-Liu Ma £ Greg-performance computing, particle accelerators, perception, point-based rendering, scientific visualization, field lines Introduction Particle accelerators have helped enable some of the most remarkable discoveries of the 20th

  10. Costs and business models in scientific

    E-Print Network [OSTI]

    Rambaut, Andrew

    Costs and business models in scientific research publishing A report commissioned by the Wellcome Trust DP-3114.p/100/04-2004/JM #12;Costs and business models in scientific research publishing A report, Cambridgeshire CB4 9ZR, UK Tel: +44 (0)1223 209400 Web: www.sqw.co.uk #12;Costs and business models in scientific

  11. Ultimate Isotope Precision for Carbonates Thermo Scientific

    E-Print Network [OSTI]

    Lachniet, Matthew S.

    Ultimate Isotope Precision for Carbonates Thermo Scientific KIEL IV Carbonate Device Part of Thermo integration cycle Ultimate Isotope Precision for Carbonates The Thermo Scientific KIEL IV Carbonate DeviceV Thermo Scientific MAT 253 or the 3-kV DELTA V isotope ratio mass spectrometer meets the requirements

  12. OPPORTUNITIES IN SMR EMERGENCY PLANNING

    SciTech Connect (OSTI)

    Moe, Wayne

    2014-06-01T23:59:59.000Z

    This paper discusses the results of a cost/benefit-oriented assessment related to sizing of the emergency planning zones (EPZs) for advanced, small modular reactors (SMRs). An appropriately sized EPZ could result in significant cost savings for SMR licensees. Papers published by the U.S. Nuclear Regulatory Commission and other organizations discuss the applicability of current emergency preparedness regulatory requirements to SMRs, including determining an appropriate EPZ size. Both the NRC and the industry recognize that a methodology should be developed for determining appropriate EPZ sizing for SMRs. Relative costs for smaller EPZs envisioned for SMRs have been assessed qualitatively as discussed in this paper. Building off the foundation provided in the earlier papers, this paper provides a quantitative cost/benefit-oriented assessment of offsite emergency planning costs for EPZ sizes that may be justified for SMRs as compared to costs typically incurred for the current fleet of U.S. nuclear power plants. This assessment determined that a licensee utilizing a smaller EPZ could realize significant savings in offsite emergency planning costs over the nominal 40-year lifetime for an SMR. This cost/benefit-oriented assessment suggests that a reduction of the plume exposure pathway EPZ from 10 miles to the site boundary could reduce offsite emergency planning related costs by more than 90% over the 40 year life of a typical single unit nuclear power plant.

  13. Identifying Opportunities for Industrial Energy Conservation

    E-Print Network [OSTI]

    Hoffman, A. R.

    1981-01-01T23:59:59.000Z

    The Energy Productivity Center of the Mellon Institute is engaged in a 2-year study to identify opportunities for improved U.S. industrial energy productivity. A distinguishing feature is the focus on energy services provided when fuels are consumed...

  14. Wind Technologies and Evolving Opportunities (Presentation)

    SciTech Connect (OSTI)

    Robi Robichaud

    2014-03-01T23:59:59.000Z

    This presentation provides an overview of wind energy research being conducted at the National Wind Technology Center, market and technology trends in wind energy, and opportunities for wind technology.

  15. NREL: Business Opportunities - Inactive Solicitations/Request...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    you have questions, please e-mail the contact person as listed in the RFP document or Business Opportunities. Request for Proposals (RFP) RHB-5-42432 Testing and Inspection...

  16. Big data : evolution, components, challenges and opportunities

    E-Print Network [OSTI]

    Zarate Santovena, Alejandro

    2013-01-01T23:59:59.000Z

    This work reviews the evolution and current state of the "Big Data" industry, and to understand the key components, challenges and opportunities of Big Data and analytics face in today business environment, this is analyzed ...

  17. Natural Gas and Hydrogen Infrastructure Opportunities: Markets...

    Broader source: Energy.gov (indexed) [DOE]

    h presentation slides: Natural Gas and hydrogen Infrastructure opportunities: markets and Barriers to Growth Matt Most, Encana Natural Gas 1 OctOber 2011 | ArgOnne nAtiOnAl...

  18. Solar Neutrinos: Models, Observations, and New Opportunities

    E-Print Network [OSTI]

    W. C. Haxton

    2007-10-11T23:59:59.000Z

    I discuss the development and resolution of the solar neutrino problem, as well as opportunities now open to us to extend our knowledge of main-sequence stellar evolution and neutrino astrophysics.

  19. Now Accepting Applications: BUILD Funding Opportunity | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    November 14, 2014 5:00PM EST to December 19, 2014 5:00PM EST Through its annual Buildings University Innovators and Leaders Development (BUILD) funding opportunity, the Energy...

  20. Tribal DERA Grant Funding Opportunity Review Webinar

    Office of Energy Efficiency and Renewable Energy (EERE)

    Prosper Sustainably is hosting a free webinar on July 16, 2014 at 1pm PST that reviews the EPA’s Tribal Diesel Emissions Reduction Act (DERA) funding opportunity. During the webinar Josh Simmons,...

  1. Equal Employment Opportunity and Diversity Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2003-02-12T23:59:59.000Z

    Provides a centralized, comprehensive source of information for DOE/NNSA employees and applicants regarding the requirements of the Department's equal employment opportunity and diversity program. Cancels DOE O 311.1A.

  2. Kentucky Economic Opportunity Zone Program (KEOZ) (Kentucky)

    Broader source: Energy.gov [DOE]

    The Kentucky Economic Opportunity Zone Program (KEOZ) focuses on the development of areas with high unemployment and poverty levels. The program provides an income tax credit of up to 100% of the...

  3. Renewable Energy Opportunities by Renovation Type

    Broader source: Energy.gov [DOE]

    Renewable energy opportunities should be considered and identified in the earliest stages of Federal project planning and the team should assess the renewable energy options based on the type of...

  4. Golden Opportunity: Proposed Penalty (2014-CE-20003)

    Broader source: Energy.gov [DOE]

    DOE alleged in a Notice of Proposed Civil Penalty that Golden Opportunity, Inc. failed to certify room air conditioners, central air conditioners/heat pumps, and residential clothes washers as compliant with the applicable energy conservation standards.

  5. Interdisciplinary Graduate Internship Opportunities Desert Archaeology, Inc.

    E-Print Network [OSTI]

    Watkins, Joseph C.

    Interdisciplinary Graduate Internship Opportunities ARIZONA Desert Archaeology, Inc. Desert to regulatory compliance. Interested in sponsoring graduate internships William Doelle, President Desert credit by working on research projects or campaigns. The purpose of the internship program is to provide

  6. Petroleum Engineering Research Building Naming Opportunities

    E-Print Network [OSTI]

    Gelfond, Michael

    Petroleum Engineering Research Building Naming Opportunities Area Naming of the Building Upstream Faculty Office Faculty Office Core and Rheology Laboratory Fracturing and Production Laboratory Mercury Apache Occidental Petroleum Anadarko Chevron Pioneer Natural Resources Terry and Linda Fuller & James

  7. Climate Change: Risks and Opportunities for the Finance Sector...

    Open Energy Info (EERE)

    Climate Change: Risks and Opportunities for the Finance Sector Online Course Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Climate Change: Risks and Opportunities for...

  8. Recovery Act, Office of the Biomass Program,Funding Opportunity...

    Broader source: Energy.gov (indexed) [DOE]

    Recovery Act, Office of the Biomass Program,Funding Opportunity Announcements Special Notice Recovery Act, Office of the Biomass Program,Funding Opportunity Announcements Special...

  9. Services Export Opportunities for California -- A Preliminary Assessment

    E-Print Network [OSTI]

    Bardhan, Ashok; Kroll, Cynthia A.

    2006-01-01T23:59:59.000Z

    J. Shatz. 2006. "Services Exports and the States: MeasuringServices Export Opportunities for California--A PreliminaryNovember 2006 Services Export Opportunities for California--

  10. New Report Describes Joint Opportunities for Natural Gas and...

    Office of Environmental Management (EM)

    New Report Describes Joint Opportunities for Natural Gas and Hydrogen Fuel Cell Vehicle Markets New Report Describes Joint Opportunities for Natural Gas and Hydrogen Fuel Cell...

  11. Sandia National Laboratories: New Report Describes Joint Opportunities...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    bilitiesCapabilitiesNew Report Describes Joint Opportunities for Natural Gas and Hydrogen Fuel-Cell Vehicle Markets New Report Describes Joint Opportunities for Natural Gas and...

  12. Wind Energy R&D Opportunity: Energy Department Announces $125...

    Energy Savers [EERE]

    Wind Energy R&D Opportunity: Energy Department Announces 125 Million for Transformational Energy Projects Wind Energy R&D Opportunity: Energy Department Announces 125 Million for...

  13. Technical Challenges and Opportunities Light-Duty Diesel Engines...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Challenges and Opportunities Light-Duty Diesel Engines in North America Technical Challenges and Opportunities Light-Duty Diesel Engines in North America 2005 Diesel Engine...

  14. Career Opportunities with the Office of Electricity Delivery...

    Energy Savers [EERE]

    Career Opportunities with the Office of Electricity Delivery & Energy Reliability (OE) Career Opportunities with the Office of Electricity Delivery & Energy Reliability (OE) Career...

  15. Request for Information Regarding a Proposed Funding Opportunity...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Regarding a Proposed Funding Opportunity for Administration of the Wave Energy Converter Prize Request for Information Regarding a Proposed Funding Opportunity for Administration...

  16. Building America Webinar: Opportunities to Apply Phase Change...

    Energy Savers [EERE]

    Opportunities to Apply Phase Change Materials to Building Enclosures Building America Webinar: Opportunities to Apply Phase Change Materials to Building Enclosures This webinar,...

  17. Frontiers, Opportunities, and Challenges in Biochemical and Chemical...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Frontiers, Opportunities, and Challenges in Biochemical and Chemical Catalysis of CO2. Frontiers, Opportunities, and Challenges in Biochemical and Chemical Catalysis of CO2....

  18. Opportunities to Apply Phase Change Materials to Building Enclosures...

    Energy Savers [EERE]

    Opportunities to Apply Phase Change Materials to Building Enclosures Webinar Opportunities to Apply Phase Change Materials to Building Enclosures Webinar Slides from the Building...

  19. Unraveling DPF Degradation using Chemical Tracers and Opportunities...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Unraveling DPF Degradation using Chemical Tracers and Opportunities for Extending Filter Life Unraveling DPF Degradation using Chemical Tracers and Opportunities for Extending...

  20. DOE Offers $15 Million Geothermal Heat Recovery Opportunity ...

    Office of Environmental Management (EM)

    15 Million Geothermal Heat Recovery Opportunity DOE Offers 15 Million Geothermal Heat Recovery Opportunity August 25, 2010 - 11:11am Addthis Photo of geothermal power plant....

  1. POLICY GUIDANCE MEMORANDUM #30 Job Opportunity Announcement Template...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Job Opportunity Announcement templates throughout the Deparment to improve Hiring Reform Initiatives. POLICY GUIDANCE MEMORANDUM 30 Job Opportunity Announcement Template...

  2. Energy Efficiency Opportunities in Federal High Performance Computing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Efficiency Opportunities in Federal High Performance Computing Data Centers Energy Efficiency Opportunities in Federal High Performance Computing Data Centers Case study describes...

  3. Solar Powering America by Recognizing Communities Funding Opportunity...

    Energy Savers [EERE]

    Solar Powering America by Recognizing Communities Funding Opportunity Solar Powering America by Recognizing Communities Funding Opportunity March 5, 2015 5:00PM EST U.S. Department...

  4. Webinar: Opportunities for Wide Bandgap Semiconductor Power Electronic...

    Broader source: Energy.gov (indexed) [DOE]

    Opportunities for Wide Bandgap Semiconductor Power Electronics for Hydrogen and Fuel Cell Applications Webinar: Opportunities for Wide Bandgap Semiconductor Power Electronics...

  5. Energy Use Loss and Opportunities Analysis: U.S. Manufacturing...

    Energy Savers [EERE]

    Use Loss and Opportunities Analysis: U.S. Manufacturing & Mining Energy Use Loss and Opportunities Analysis: U.S. Manufacturing & Mining energyuselossopportunitiesanalysis.pdf...

  6. Expanding Educational Opportunities for the Wind Energy Workforce...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Expanding Educational Opportunities for the Wind Energy Workforce Expanding Educational Opportunities for the Wind Energy Workforce April 11, 2013 - 12:00am Addthis The University...

  7. Carbon Offsets for Forestry and Bioenergy: Researching Opportunities...

    Open Energy Info (EERE)

    Researching Opportunities for Poor Rural Communities Jump to: navigation, search Name Carbon Offsets for Forestry and Bioenergy: Researching Opportunities for Poor Rural...

  8. ITP Steel: Steel Industry Marginal Opportunity Study September...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Steel Industry Marginal Opportunity Study September 2005 ITP Steel: Steel Industry Marginal Opportunity Study September 2005 steelmarginalopportunity.pdf More Documents &...

  9. United States Industrial Motor Systems Market Opportunities Assessment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Motor Systems Market Opportunities Assessment: Executive Summary United States Industrial Motor Systems Market Opportunities Assessment: Executive Summary In addition to serving...

  10. Water Power R&D Opportunity: Energy Department Announces $125...

    Energy Savers [EERE]

    Water Power R&D Opportunity: Energy Department Announces 125 Million for Transformational Energy Projects Water Power R&D Opportunity: Energy Department Announces 125 Million for...

  11. SBIR/STTR Release 2 Funding Opportunity Deadline December 15...

    Office of Environmental Management (EM)

    Funding Opportunity Deadline December 15-Includes Hydrogen and Fuel Cells SBIRSTTR Release 2 Funding Opportunity Deadline December 15-Includes Hydrogen and Fuel Cells December 8,...

  12. Behavioral Opportunities for Energy Savings in Office Buildings...

    Office of Environmental Management (EM)

    Opportunities for Energy Savings in Office Buildings: a London Field Experiment Behavioral Opportunities for Energy Savings in Office Buildings: a London Field Experiment Report...

  13. DOE Issues Funding Opportunity for Innovations to Increase Cybersecuri...

    Office of Environmental Management (EM)

    Funding Opportunity for Innovations to Increase Cybersecurity for Energy Delivery Systems DOE Issues Funding Opportunity for Innovations to Increase Cybersecurity for Energy...

  14. Advancing Transportation through Vehicle Electrification - PHEV

    SciTech Connect (OSTI)

    Bazzi, Abdullah; Barnhart, Steven

    2014-12-31T23:59:59.000Z

    FCA US LLC viewed the American Recovery and Reinvestment Act (ARRA) as an historic opportunity to learn about and develop PHEV technologies and create the FCA US LLC engineering center for Electrified Powertrains. The ARRA funding supported FCA US LLC’s light-duty electric drive vehicle and charging infrastructure-testing activities and enabled FCA US LLC to utilize the funding on advancing Plug-in Hybrid Electric Vehicle (PHEV) technologies for production on future programs. FCA US LLC intended to develop the next-generations of electric drive and energy batteries through a properly paced convergence of standards, technology, components and common modules. To support the development of a strong, commercially viable supplier base, FCA US LLC also utilized this opportunity to evaluate various designated component and sub-system suppliers. The original proposal of this project was submitted in May 2009 and selected in August 2009. The project ended in December 2014.

  15. Opportunities for Biorenewables in Oil Refineries

    SciTech Connect (OSTI)

    Marker, T.L.

    2005-12-19T23:59:59.000Z

    Abstract: The purpose of this study was to evaluate the potential for using biorenewable feedstocks in oil refineries. Economic analyses were conducted, with support from process modeling and proof of principle experiments, to assess a variety of potential processes and configurations. The study considered two primary alternatives: the production of biodiesel and green diesel from vegetable oils and greases and opportunities for utilization of pyrolysis oil. The study identified a number of promising opportunities for biorenewables in existing or new refining operations.

  16. Power-aware applications for scientific cluster and distributed computing

    E-Print Network [OSTI]

    Abdurachmanov, David; Eulisse, Giulio; Grosso, Paola; Hillegas, Curtis; Holzman, Burt; Klous, Sander; Knight, Robert; Muzaffar, Shahzad

    2014-01-01T23:59:59.000Z

    The aggregate power use of computing hardware is an important cost factor in scientific cluster and distributed computing systems. The Worldwide LHC Computing Grid (WLCG) is a major example of such a distributed computing system, used primarily for high throughput computing (HTC) applications. It has a computing capacity and power consumption rivaling that of the largest supercomputers. The computing capacity required from this system is also expected to grow over the next decade. Optimizing the power utilization and cost of such systems is thus of great interest. A number of trends currently underway will provide new opportunities for power-aware optimizations. We discuss how power-aware software applications and scheduling might be used to reduce power consumption, both as autonomous entities and as part of a (globally) distributed system. As concrete examples of computing centers we provide information on the large HEP-focused Tier-1 at FNAL, and the Tigress High Performance Computing Center at Princeton U...

  17. Training | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Beam Time ESAF Contacts Calendars User Community Scientific Access Site AccessVisit Training See also: Argonne WBT Argonne eJHQ ASDACIS Training Courses Training All core...

  18. Training | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Beam Time ESAF Contacts Calendars User Community Scientific Access Site AccessVisit Training See also: Argonne WBT Argonne eJHQ APS Beamline Shielding ASDACIS Training Courses...

  19. Advanced energy projects FY 1994 research summaries

    SciTech Connect (OSTI)

    Not Available

    1994-09-01T23:59:59.000Z

    The Division of Advanced Energy Projects (AEP) provides support to explore the feasibility of novel, energy-related concepts that evolve from advances in basic research. These concepts are typically at an early stage of scientific definition and, therefore, are premature for consideration by applied research or technology development programs. The AEP also supports high-risk, exploratory concepts that do not readily fit into a program area but could have several applications that may span scientific disciplines or technical areas. Projects supported by the Division arise from unsolicited ideas and concepts submitted by researchers. The portfolio of projects is dynamic and reflects the broad role of the Department in supporting research and development for improving the Nation`s energy outlook. FY 1994 projects include the following topical areas: novel materials for energy technology; renewable and biodegradable materials; exploring uses of new scientific discoveries; alternate pathways to energy efficiency; alternative energy sources; and innovative approaches to waste treatment and reduction. Summaries are given for 66 projects.

  20. Final Scientific/Technical Report

    SciTech Connect (OSTI)

    Newbold, Kenneth F.

    2013-11-26T23:59:59.000Z

    Led by James Madison University, Valley 25x?25 promotes using a diverse energy portfolio to achieve the goal of 25 percent renewable energy by 2025, including renewables like wind, biomass, solar, and geothermal. A primary emphasis is energy efficiency, which offers the best opportunities to decrease the use and impact of non-renewable energy sources. Endorsed by the national 25x?25 organization, Valley 25x?25 serves as an East Coast Demonstration Project, and as such, partners with regional businesses, local and state governments, institutions of higher education, and K-12 schools to explore how Valley resources can contribute to the development of innovative energy solutions.

  1. Final LDRD report : advanced materials for next generation high-efficiency thermochemistry.

    SciTech Connect (OSTI)

    Ambrosini, Andrea; Miller, James Edward; Allendorf, Mark D. [Sandia National Laboratories, Livermore, CA; Coker, Eric Nicholas; Ermanoski, Ivan; Hogan, Roy E.,; McDaniel, Anthony H. [Sandia National Laboratories, Livermore, CA

    2014-01-01T23:59:59.000Z

    Despite rapid progress, solar thermochemistry remains high risk; improvements in both active materials and reactor systems are needed. This claim is supported by studies conducted both prior to and as part of this project. Materials offer a particular large opportunity space as, until recently, very little effort apart from basic thermodynamic analysis was extended towards understanding this most fundamental component of a metal oxide thermochemical cycle. Without this knowledge, system design was hampered, but more importantly, advances in these crucial materials were rare and resulted more from intuition rather than detailed insight. As a result, only two basic families of potentially viable solid materials have been widely considered, each of which has significant challenges. Recent efforts towards applying an increased level of scientific rigor to the study of thermochemical materials have provided a much needed framework and insights toward developing the next generation of highly improved thermochemically active materials. The primary goal of this project was to apply this hard-won knowledge to rapidly advance the field of thermochemistry to produce a material within 2 years that is capable of yielding CO from CO2 at a 12.5 % reactor efficiency. Three principal approaches spanning a range of risk and potential rewards were pursued: modification of known materials, structuring known materials, and identifying/developing new materials for the application. A newly developed best-of-class material produces more fuel (9x more H2, 6x more CO) under milder conditions than the previous state of the art. Analyses of thermochemical reactor and system efficiencies and economics were performed and a new hybrid concept was reported. The larger case for solar fuels was also further refined and documented.

  2. ALS Scientific Advisory Committee Charter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76) (See theDoctoral Fellowship inALS Reveals NewScientific

  3. ALS Scientific Advisory Committee Charter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76) (See theDoctoral Fellowship inALS RevealsScientific

  4. The scientific potential of space-based gravitational wave detectors

    E-Print Network [OSTI]

    Jonathan R. Gair

    2014-08-28T23:59:59.000Z

    The millihertz gravitational wave band can only be accessed with a space-based interferometer, but it is one of the richest in potential sources. Observations in this band have amazing scientific potential. The mergers between massive black holes with mass in the range 10 thousand to 10 million solar masses, which are expected to occur following the mergers of their host galaxies, produce strong millihertz gravitational radiation. Observations of these systems will trace the hierarchical assembly of structure in the Universe in a mass range that is very difficult to probe electromagnetically. Stellar mass compact objects falling into such black holes in the centres of galaxies generate detectable gravitational radiation for several years prior to the final plunge and merger with the central black hole. Measurements of these systems offer an unprecedented opportunity to probe the predictions of general relativity in the strong-field and dynamical regime. Millihertz gravitational waves are also generated by millions of ultra-compact binaries in the Milky Way, providing a new way to probe galactic stellar populations. ESA has recognised this great scientific potential by selecting The Gravitational Universe as its theme for the L3 large satellite mission, scheduled for launch in ~2034. In this article we will review the likely sources for millihertz gravitational wave detectors and describe the wide applications that observations of these sources could have for astrophysics, cosmology and fundamental physics.

  5. Scientific Grand Challenges: Crosscutting Technologies for Computing at the Exascale - February 2-4, 2010, Washington, D.C.

    SciTech Connect (OSTI)

    Khaleel, Mohammad A.

    2011-02-06T23:59:59.000Z

    The goal of the "Scientific Grand Challenges - Crosscutting Technologies for Computing at the Exascale" workshop in February 2010, jointly sponsored by the U.S. Department of Energy’s Office of Advanced Scientific Computing Research and the National Nuclear Security Administration, was to identify the elements of a research and development agenda that will address these challenges and create a comprehensive exascale computing environment. This exascale computing environment will enable the science applications identified in the eight previously held Scientific Grand Challenges Workshop Series.

  6. Institute for ADVANCED STUDY

    E-Print Network [OSTI]

    OF EVENTS 91 · REPORT OF THE INSTITUTE LIBRARIES 93 · INSTITUTE FOR ADVANCED STUDY/PARK CITY MATHEMATICS. The Institute for Advanced Study has sustained this founding principle for more than sixty-five years

  7. analysis scientific computing: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the need Kuzmanov, Georgi 3 SCIINSTITUTE Scientific Computing and Imaging Institute Computer Technologies and Information Sciences Websites Summary: SCIINSTITUTE Scientific...

  8. Policy Statement on Equal Employment Opportunity, Harassment, and Retaliation

    Broader source: Energy.gov [DOE]

    Secretary Ernest Moniz's 2013 Policy Statement on Equal Employment Opportunity, Harassment, and Retaliation.

  9. Institute Jor ADVANCED STUDY

    E-Print Network [OSTI]

    for advanced study HELENE L. KAPLAN Of Counsel Skiiddcn Arps Slate Meagher & Flam PETER R. KANN Chairman

  10. Energy Department Announces Technical Assistance Opportunity...

    Energy Savers [EERE]

    commitment to provide Tribes with the tools and resources they need to foster tribal energy self-sufficiency and sustainability, advancing economic competitiveness and job...

  11. Data Mining Research: Opportunities and Challenges Data Mining Research: Opportunities and Challenges

    E-Print Network [OSTI]

    Grossman, Robert

    Data Mining Research: Opportunities and Challenges 1 Data Mining Research: Opportunities and Challenges A Report of three NSF Workshops on Mining Large, Massive, and Distributed Data* Robert Grossman, 1997 and February, 1998 to discuss the current state of the art of data mining and data intensive

  12. Italian Academy Advanced Studies

    E-Print Network [OSTI]

    Qian, Ning

    The Italian Academy for Advanced Studies in America at Columbia University Annual Report 2006­2007 The Italian Academy for Advanced Studies in America at Columbia University Annual Report 2006­2007 #12;italian academy for advanced studies in america 1161 Amsterdam Avenue New York, NY 10027 tel: (212) 854-2306 fax

  13. A training program for scientific supercomputing users

    SciTech Connect (OSTI)

    Hanson, F.; Moher, T.; Sabelli, N.; Solem, A.

    1988-01-01T23:59:59.000Z

    There is need for a mechanism to transfer supercomputing technology into the hands of scientists and engineers in such a way that they will acquire a foundation of knowledge that will permit integration of supercomputing as a tool in their research. Most computing center training emphasizes computer-specific information about how to use a particular computer system; most academic programs teach concepts to computer scientists. Only a few brief courses and new programs are designed for computational scientists. This paper describes an eleven-week training program aimed principally at graduate and postdoctoral students in computationally-intensive fields. The program is designed to balance the specificity of computing center courses, the abstractness of computer science courses, and the personal contact of traditional apprentice approaches. It is based on the experience of computer scientists and computational scientists, and consists of seminars and clinics given by many visiting and local faculty. It covers a variety of supercomputing concepts, issues, and practices related to architecture, operating systems, software design, numerical considerations, code optimization, graphics, communications, and networks. Its research component encourages understanding of scientific computing and supercomputer hardware issues. Flexibility in thinking about computing needs is emphasized by the use of several different supercomputer architectures, such as the Cray X/MP48 at the National Center for Supercomputing Applications at University of Illinois at Urbana-Champaign, IBM 3090 600E/VF at the Cornell National Supercomputer Facility, and Alliant FX/8 at the Advanced Computing Research Facility at Argonne National Laboratory. 11 refs., 6 tabs.

  14. Student Experiential Opportunities in National Security Careers

    SciTech Connect (OSTI)

    None

    2007-12-31T23:59:59.000Z

    This report documents student experiential opportunities in national security careers as part of the National Security Preparedness Project (NSPP), being performed under a Department of Energy (DOE)/National Nuclear Security Administration (NNSA) grant. This report includes a brief description of how experiential opportunities assist students in the selection of a career and a list of opportunities in the private sector and government. The purpose of the NSPP is to promote national security technologies through business incubation, technology demonstration and validation, and workforce development. Workforce development activities will facilitate the hiring of students to work with professionals in both the private and public sectors, as well as assist in preparing a workforce for careers in national security. The goal of workforce development under the NSPP grant is to assess workforce needs in national security and implement strategies to develop the appropriate workforce.

  15. Low-Density and High Porosity Hydrogen Storage Materials Built from Ultra-Light Elements. Final Scientific/Technical Report

    SciTech Connect (OSTI)

    Feng, Pingyun

    2014-01-10T23:59:59.000Z

    A number of significant advances have been achieved, opening up new opportunities for the synthetic development of novel porous materials and their energy-related applications including gas storage and separation and catalysis. These include lithium-based metal-organic frameworks, magnesium-based metal-organic frameworks, and high gas uptake in porous frameworks with high density of open donor sites.

  16. PLASMA SCIENCE ADVANCED COMPUTING INTITUTE

    E-Print Network [OSTI]

    , ... leading to ITER -- impact real decision-making in the large "scientific options space" -- harvest

  17. Instrumentation to Enhance Advanced Test Reactor Irradiations

    SciTech Connect (OSTI)

    J. L. Rempe; D. L. Knudson; K. G. Condie; J. E. Daw; S. C. Taylor

    2009-09-01T23:59:59.000Z

    The Department of Energy (DOE) designated the Advanced Test Reactor (ATR) as a National Scientific User Facility (NSUF) in April 2007 to support U.S. leadership in nuclear science and technology. By attracting new research users - universities, laboratories, and industry - the ATR will support basic and applied nuclear research and development, further advancing the nation's energy security needs. A key component of the ATR NSUF effort is to prove new in-pile instrumentation techniques that are capable of providing real-time measurements of key parameters during irradiation. To address this need, an assessment of instrumentation available and under-development at other test reactors has been completed. Based on this review, recommendations are made with respect to what instrumentation is needed at the ATR and a strategy has been developed for obtaining these sensors. Progress toward implementing this strategy is reported in this document. It is anticipated that this report will be updated on an annual basis.

  18. Energy Efficiency Improvement Opportunities for the Cement Industry

    SciTech Connect (OSTI)

    Price, Lynn; Worrell, Ernst; Galitsky, Christina; Price, Lynn

    2008-01-31T23:59:59.000Z

    This report provides information on the energy savings, costs, and carbon dioxide emissions reductions associated with implementation of a number of technologies and measures applicable to the cement industry. The technologies and measures include both state-of-the-art measures that are currently in use in cement enterprises worldwide as well as advanced measures that are either only in limited use or are near commercialization. This report focuses mainly on retrofit measures using commercially available technologies, but many of these technologies are applicable for new plants as well. Where possible, for each technology or measure, costs and energy savings per tonne of cement produced are estimated and then carbon dioxide emissions reductions are calculated based on the fuels used at the process step to which the technology or measure is applied. The analysis of cement kiln energy-efficiency opportunities is divided into technologies and measures that are applicable to the different stages of production and various kiln types used in China: raw materials (and fuel) preparation; clinker making (applicable to all kilns, rotary kilns only, vertical shaft kilns only); and finish grinding; as well as plant wide measures and product and feedstock changes that will reduce energy consumption for clinker making. Table 1 lists all measures in this report by process to which they apply, including plant wide measures and product or feedstock changes. Tables 2 through 8 provide the following information for each technology: fuel and electricity savings per tonne of cement; annual operating and capital costs per tonne of cement or estimated payback period; and, carbon dioxide emissions reductions for each measure applied to the production of cement. This information was originally collected for a report on the U.S. cement industry (Worrell and Galitsky, 2004) and a report on opportunities for China's cement kilns (Price and Galitsky, in press). The information provided in this report is based on publicly-available reports, journal articles, and case studies from applications of technologies around the world.

  19. Scientific Data Management Integrated Software Infrastructure Center (SDM/ISIC): Scientific Process Automation (SPA), FINAL REPORT

    SciTech Connect (OSTI)

    Bertram Ludaescher; Ilkay Altintas

    2012-07-03T23:59:59.000Z

    This is the final report from SDSC and UC Davis on DE-FC02-01ER25486, Scientific Data Management Integrated Software Infrastructure Center (SDM/ISIC): Scientific Process Automation (SPA).

  20. 2013 Midyear Economic Forecast Sponsorship Opportunity

    E-Print Network [OSTI]

    de Lijser, Peter

    2013 Midyear Economic Forecast Sponsorship Opportunity Thursday, April 18, 2013, ­ Hyatt Regency Irvine 11:30 a.m. ­ 1:30 p.m. Dr. Anil Puri presents his annual Midyear Economic Forecast addressing and Economics at California State University, Fullerton, the largest accredited business school in California

  1. Hydrogen Nordic opportunities for 27 January 2005

    E-Print Network [OSTI]

    Hydrogen ­ Nordic opportunities for Growth? 27 January 2005 IDA, Copenhagen Hans Larsen, Head of Department Risø National Laboratory #12;Why Hydrogen? A sustainable energy system Security of supply Climate technology Competitive and economic production of hydrogen Better storage methodologies Lower prices on fuel

  2. Internship Opportunity Our Lady of Guadalupe Parish

    E-Print Network [OSTI]

    Carter, John

    Internship Opportunity Our Lady of Guadalupe Parish 7000 35th Ave SW Seattle, WA 98126 Ministry Scope of Internship: This position will support the Outreach Coordinator in a) determining where local their service efforts. Length of Internship: It is expected that the time of this internship will coincide

  3. PAID INTERNSHIP OPPORTUNITIES SPRING AND SUMMER 2014

    E-Print Network [OSTI]

    Buehrer, R. Michael

    PAID INTERNSHIP OPPORTUNITIES SPRING AND SUMMER 2014 ABOUT THE PROGRAM: The Virginia Space Grant colleges are offering the Commonwealth STEM Industry Internship Program (CSIIP). CSIIP is a free resource for finding paid spring, summer, and fall internships. CSIIP provides an online system where undergraduate

  4. Summer Research Opportunities for Undergraduates from Underrepresented

    E-Print Network [OSTI]

    Lathrop, Daniel P.

    and Physical Sciences, Mathematics, Engineering, and Social Sciences Maryland Center for Undergraduate Research predominantly male · STEM and Social Sciences also want to encourage students from a diverse racialSummer Research Opportunities for Undergraduates from Underrepresented Groups--Students in Life

  5. Columbia University Opportunities to Gain Experience

    E-Print Network [OSTI]

    Hone, James

    Columbia University Opportunities to Gain Experience There are so many ways to build experience The Columbia University Office of Government and Community Affairs provides assistance to undergraduates.edu/academics/research/science Summer Undergraduate Research Fellowship The Department of Biological Sciences at Columbia University

  6. Columbia University Opportunities to Gain Experience

    E-Print Network [OSTI]

    Hone, James

    Columbia University Opportunities to Gain Experience There are so many ways to build experience Program The Columbia University Office of Government and Community Affairs provides assistance.edu/academics/research/science Summer Undergraduate Research Fellowship The Department of Biological Sciences at Columbia University

  7. Energy Challenge! Learn about opportunities to

    E-Print Network [OSTI]

    are working on ways to make renewable energy that are cheap and efficient. Energy from wind, the sun Park. What is Energy? What is Energy? Answers:1)b2)a3)c4)e5)d a) the Sun b) batteries c) gas dEnergy Challenge! Q: MSU N 9 o. Learn about opportunities to participate in upcoming science

  8. NCC Technical Training Opportunity in Concrete

    E-Print Network [OSTI]

    NCC Technical Training Opportunity in Concrete Pavement Technology National Concrete Consortium training through the National Concrete Pavement Technology Center (CP Tech Center). · Michigan Tech for Concrete Pavement: You may select specific subjects within the manual for emphasis if that is of interest

  9. Equal Employment Opportunity and Diversity Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1996-12-30T23:59:59.000Z

    DOE N 311.2, dated 5/29/02, extends this directive until 12/30/02. To provide equal opportunity in employment for all Department of Energy (DOE) employees and applicants, and to alleviate conspicuous absences and/or manifest imbalances. Cancels DOE O 311.1. Canceled by DOE O 311.1B.

  10. JET Forward Programme & Opportunities for Collaboration

    E-Print Network [OSTI]

    JET Forward Programme & Opportunities for Collaboration Lorne Horton JET Exploitation Manager Contract for the Opera.on of the JET Facili.es Co-Funded by Euratom #12;L.D. Horton 2 FESAC Strategic Planning Panel 8 July 2014 - What makes JET unique! - Plans for JET exploitation

  11. EXHIBITION & SPONSORSHIP Sponsorship and Advertisement opportunities exist.

    E-Print Network [OSTI]

    Mittal, Anurag

    an opportunity to make product presentations, display table top products, posters and catalogues, and distributeDistribution of pamphlets oDisplay of posters/catalogues at the conference venue oTable top display of products at the conference venue oProduct presentation during technical sessions oAdvertisement in proceedings/souvenir o

  12. Internship opportunity with National Weather Service

    E-Print Network [OSTI]

    Internship opportunity with National Weather Service Pacific Regional Headquarters Fall 2008 deadline: August 8, 2008 The Pacific Region of the National Weather Service administers the programs and the general public. The Pacific Regional Headquarters of the National Weather Service, located in downtown

  13. UNIVERSITY POLICY ON EQUAL OPPORTUNITY Policy Statement

    E-Print Network [OSTI]

    Vertes, Akos

    UNIVERSITY POLICY ON EQUAL OPPORTUNITY Policy Statement The university is an Equal Employment, or on any other basis prohibited by applicable law in any of its programs or activities. Reason for Policy/Purpose This policy is necessary to re-affirm the university's commitment and for compliance with Title VII

  14. Systems Engineering Research Overview and Opportunities

    E-Print Network [OSTI]

    de Weck, Olivier L.

    Systems Engineering Research Overview and Opportunities February 26, 2008 Dr. Donna H. Rhodes Dr. Adam M. Ross Massachusetts Institute of Technology Engineering Systems Division rhodes@mit.edu adamross@mit.edu #12;seari.mit.edu © 2008 Massachusetts Institute of Technology 2 What is Systems Engineering? SYSTEMS

  15. Advanced Manufacturing for a U.S. Clean Energy Economy (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-03-01T23:59:59.000Z

    This fact sheet is an overview of the U.S. Department of Energy's Advanced Manufacturing Office. Manufacturing is central to our economy, culture, and history. The industrial sector produces 11% of U.S. gross domestic product (GDP), employs 12 million people, and generates 57% of U.S. export value. However, U.S. industry consumes about one-third of all energy produced in the United States, and significant cost-effective energy efficiency and advanced manufacturing opportunities remain unexploited. As a critical component of the National Innovation Policy for Advanced Manufacturing, the U.S. Department of Energy's (DOE's) Advanced Manufacturing Office (AMO) is focused on creating a fertile environment for advanced manufacturing innovation, enabling vigorous domestic development of transformative manufacturing technologies, promoting coordinated public and private investment in precompetitive advanced manufacturing technology infrastructure, and facilitating the rapid scale-up and market penetration of advanced manufacturing technologies.

  16. Proposed scientific activities for the Salton Sea Scientific Drilling Project

    SciTech Connect (OSTI)

    Not Available

    1984-05-01T23:59:59.000Z

    The Salton Sea Scientific Drilling Project (SSSDP) has been organized for the purpose of investigating a hydrothermal system at depths and temperatures greater than has been done before. Plans are to deepen an existing well or to drill a new well for research purposes for which temperatures of 300/sup 0/C will be reached at a depth of less than 3.7 km and then deepen that well a further 1.8 km. This report recounts the Congressional history of the appropriation to drill the hole and other history through March 1984, gives a review of the literature on the Salton Sea Geothermal Field and its relationship to other geothermal systems of the Salton Trough, and describes a comprehensive series of investigations that have been proposed either in the well or in conjunction with the SSSDP. Investigations in geophysics, geochemistry and petrology, tectonics and rock mechanics, and geohydrology are given. A tabulation is given of current commercial and state-of-the-art downhole tools and their pressure, temperature, and minimum hole size limitations.

  17. Scientific Discovery Learning with Computer Simulations Scientific Discovery Learning with Computer

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Scientific Discovery Learning with Computer Simulations 1 Scientific Discovery Learning with Computer Simulations 2 Abstract Scientific discovery learning is a highly self-directed and constructivistic form of learning. A computer simulation is a type of computer-based environment that is very

  18. Wind Technology Advancements and Impacts on Western Wind Resources (Presentation)

    SciTech Connect (OSTI)

    Robichaud, R.

    2014-09-01T23:59:59.000Z

    Robi Robichaud made this presentation at the Bureau of Land Management West-wide Wind Opportunities and Constraints Mapping (WWOCM) Project public meeting in Denver, Colorado in September 2014. This presentation outlines recent wind technology advancements, evolving turbine technologies, and industry challenges. The presentation includes maps of mean wind speeds at 50-m, 80-m, and 100-m hub heights on BLM lands. Robichaud also presented on the difference in mean wind speeds from 80m to 100m in Wyoming.

  19. APOLLO MANNED LUNAR LANDING SCIENTIFIC EXPERIMENT PROPOSAL

    E-Print Network [OSTI]

    Rathbun, Julie A.

    APOLLO MANNED LUNAR LANDING SCIENTIFIC EXPERIMENT PROPOSAL GEOLOGICAL FIELD INVESTIGATION IN EARLY APOLLO MANNED LUNAR LANDING MISSIONS Abstract and Techi~icalSection E. M.Shoemaker, U. S-investigator November 1965 #12;APOLLO MANNED 1,UNAR I,ANDING SCIENTIFIC EXPERIMENT PROPOSAL GEOLOGICAL FIETADINi

  20. Transportation Energy Futures: Key Opportunities and Tools for Decision Makers (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2012-12-01T23:59:59.000Z

    The Transportation Energy Futures (TEF) project examines underexplored greenhouse gas-abatement and oil-savings opportunities by consolidating transportation energy knowledge, conducting advanced analysis, and exploring additional opportunities for sound strategic action. Led by NREL, in collaboration with Argonne National Laboratory, the project's primary goal is to provide analysis to accompany DOE-EERE's long-term transportation energy planning by addressing high-priority questions, informing domestic decisions about transportation energy strategies, priorities, and investments. Research and analysis were conducted with an eye toward short-term actions that support long-term energy goals The project looks beyond technology to examine each key question in the context of the marketplace, consumer behavior, industry capabilities, and infrastructure. This updated fact sheet includes a new section on initial project findings.

  1. alamos scientific laboratory: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 An Equal Opportunity Employer Operated by Los Alamos National Security LLC for DOENNSA Materials Science Websites Summary: Page 1 of 2 An Equal Opportunity Employer ...

  2. Advanced Rooftop Unit Control

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced-Rooftop-Unit-Control Sign In About | Careers | Contact | Investors | bpa.gov Search Policy & Reporting Expand Policy & Reporting EE Sectors Expand EE Sectors...

  3. DOE Advanced Protection Project

    Broader source: Energy.gov (indexed) [DOE]

    protection logic in each relay 17 Copyright 2010, Southern California Edison Advanced Protection on the System of the Future * Use fault-interrupting switches with relays...

  4. Advanced Studies Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Engineering Institute Advanced Studies Institute Contact Institute Director Charles Farrar (505) 663-5330 Email UCSD EI Director Michael Todd (858) 534-5951 Professional Staff...

  5. Advanced Thermal Control

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Potential Thermal Control Technologies Advanced Vehicle Systems Technology Transfer Jet Cooling Alternative Coolants TIM Low R Structure Phase Change Spray Cooling Air Cooling...

  6. Advanced Propulsion Technology Strategy

    Broader source: Energy.gov (indexed) [DOE]

    Alternative Sources) Hydrogen Time ADVANCED PROPULSION TECHNOLOGY STRATEGY DOWNSIZED TURBO GAS ENGINE CHEVROLET CRUZE 1.4L TURBO ECOTEC Downsized SIDI Turbo Boosting HCCI -...

  7. Plug-and-Play Photovoltaics Funding Opportunity

    Broader source: Energy.gov [DOE]

    Through the Plug-and-Play Photovoltaics program, DOE will advance the development of a commercial plug-and-play photovoltaic (PV) system, an off-the-shelf product that is fully inclusive with...

  8. Report on Advanced Detector Development

    SciTech Connect (OSTI)

    James K. Jewell

    2012-09-01T23:59:59.000Z

    Neutron, gamma and charged particle detection improvements are key to supporting many of the foreseen measurements and systems envisioned in the R&D programs and the future fuel cycle requirements, such as basic nuclear physics and data, modeling and simulation, reactor instrumentation, criticality safety, materials management and safeguards. This task will focus on the developmental needs of the FCR&D experimental programs, such as elastic/inelastic scattering, total cross sections and fission neutron spectra measurements, and will leverage a number of existing neutron detector development efforts and programs, such as those at LANL, PNNL, INL, and IAC as well as those at many universities, some of whom are funded under NE grants and contracts. Novel materials and fabrication processes combined with state-of-the-art electronics and computing provide new opportunities for revolutionary detector systems that will be able to meet the high precision needs of the program. This work will be closely coordinated with the Nuclear Data Crosscut. The Advanced Detector Development effort is a broadly-focused activity that supports the development of improved nuclear data measurements and improved detection of nuclear reactions and reactor conditions. This work supports the design and construction of large-scale, multiple component detectors to provide nuclear reaction data of unprecedented quality and precision. Examples include the Time Projection Chamber (TPC) and the DANCE detector at LANL. This work also supports the fabrication and end-user application of novel scintillator materials detection and monitoring.

  9. ATR NATIONAL SCIENTIFIC USER FACILITY INSTRUMENTATION ENHANCEMENT EFFORTS

    SciTech Connect (OSTI)

    Joy L. Rempe; Mitchell K. Meyer

    2009-04-01T23:59:59.000Z

    A key component of the Advanced Test Reactor (ATR) National Scientific User Facility (NSUF) effort is to enhance instrumentation techniques available to users conducting irradiation tests in this unique facility. In particular, development of sensors capable of providing ‘real-time’ measurements of key irradiation parameters is emphasized because of their potential to offer increased fidelity data and reduced post-test examination costs. This paper describes the strategy for identifying new instrumentation needed for ATR irradiations and the program underway to develop and evaluate new sensors to address these needs. Accomplishments from this program are illustrated by describing several new sensors now available to users of the ATR NSUF. In addition, progress is reported on current research efforts to provide users improved in-pile instrumentation.

  10. WAPA Participates in Business Opportunities in the Energy Industry...

    Broader source: Energy.gov (indexed) [DOE]

    WAPA Participates in Business Opportunities in the Energy Industry WAPA Participates in Business Opportunities in the Energy Industry October 28, 2014 9:00AM to 12:00PM MDT PPA...

  11. Study Reveals Challenges and Opportunities Related to Vessels...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reveals Challenges and Opportunities Related to Vessels for U.S. Offshore Wind Study Reveals Challenges and Opportunities Related to Vessels for U.S. Offshore Wind October 1, 2013...

  12. LISTING EMPLOYMENT & INTERNSHIP OPPORTUNITIES CAREER CENTER at COLLEGE OF CHARLESTON

    E-Print Network [OSTI]

    Kasman, Alex

    LISTING EMPLOYMENT & INTERNSHIP OPPORTUNITIES CAREER CENTER at COLLEGE OF CHARLESTON GUIDELINES & POLICIES The following guidelines & policies apply to all employers offering employment and/or internship action and equal employment opportunity regulations ALL INTERNSHIP POSITIONS LISTED WITH THE CAREER

  13. Motor Energy Saving Opportunities in an Industrial Plant

    E-Print Network [OSTI]

    Kumar, B.; Elwell, A.

    Industrial plants have enormous energy saving opportunities with electric motors. Improving motor efficiency is a conventional wisdom to save energy. Re-engineering affords far greater savings opportunities than motor efficiency improvement. Motor...

  14. Waste-to-Energy: Waste Management and Energy Production Opportunities...

    Office of Environmental Management (EM)

    Waste-to-Energy: Waste Management and Energy Production Opportunities Waste-to-Energy: Waste Management and Energy Production Opportunities July 24, 2014 9:00AM to 3:30PM EDT U.S....

  15. Information on Equal Opportunities at CERN

    E-Print Network [OSTI]

    2003-01-01T23:59:59.000Z

    In response to questions raised at the meeting of the Finance Committee in December 2002, the Management agreed to present a short information document . At its meeting in May 2003, TREF discussed the content of this information document and took note of supplementary information provided in a presentation by CERN's Equal Opportunities Officer, accompanied by the Chairman of the Equal Opportunities Advisory Panel. The Forum concluded that this supplementary information should be included in a revised version of the document, as indicated in section 3 and Annex 1 below. Finally, the Forum took note of a main issue raised by the Panel, namely the need for crèche facilities available to CERN staff. This led to a study commissioned by the Management, recommending the setting up of crèche facilities on the CERN site (Annex 2). However, given the current financial constraints, funding could only be found by setting priorities in the next 5-Yearly Review.

  16. The scientific case for a JET D-T experiment

    SciTech Connect (OSTI)

    Weisen, H. [CRPP, EPFL, Association EURATOM - Confédération Suisse, Lausanne (Switzerland); Sips, A. C. C.; Horton, L. D. [JET-EFDA, Culham Science Centre, Abingdon OX14 3DB, United Kingdom and European Commission, Brussels (Belgium); Challis, C. D.; Sharapov, S. E.; Zastrow, K.-D. [EURATOM/CCFE Fusion Association, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Eriksson, L.-G. [European Commission, Brussels (Belgium); Batistoni, P. [EURATOM/ENEA Association, Largo Enrico Fermi, 13 Ciampino Province de Rome (Italy); Collaboration: EFDA-JET Contributors

    2014-08-21T23:59:59.000Z

    After the first high power D-T experiment in JET in 1997 (DTE1), when JET was equipped with Carbon PFC's, a proposed second high power (up to ?40MW) D-T campaign (DTE2) in the current Be/W vessel will address essential operational, technical, diagnostics and scientific issues in support of ITER. These experiments are proposed to minimize the risks to ITER by testing strategies for the management of the in-vessel tritium content, by providing the basis for transferring operational scenarios from non-active operation to D-T mixtures and by addressing the issue of the neutron measurement accuracy. Dedicated campaigns with operation in Deuterium, Hydrogen and Tritium before the D-T campaign proper will allow the investigation of isotope scaling of the H-mode transition, pedestal physics, heat, particle, momentum and impurity transport in much greater detail than was possible in DTE1. The D-T campaign proper will include validations of the baseline ELMy H-Mode scenario, of the hybrid H-mode and advanced tokamak scenarios, as well as the investigation of alpha particle physics and the qualification of ICRH scenarios suitable for D-T operation. This paper reviews the scientific goals of DTE2 together with a summary of the results of DTE1.

  17. Industrial Fuel Switching - Emerging NGL Opportunities 

    E-Print Network [OSTI]

    Cascone, R.

    2004-01-01T23:59:59.000Z

    INDUSTRIAL FUEL SWITCHING - EMERGING NGL OPPORTUNITIES Ron Cascone Manager Special Projects, Utilities and Environmental Nexant, Inc. White Plains, NY ABSTRACT Removing butanes and pentanes from gasoline to meet local... feedstocks, convert them to alternative fuels, or sell them as heating fuels. Industrial fuel users can switch from fuel oil, natural gas or LPG for short periods to these clean and/or more economic fuels. Current regulations will necessitate removing...

  18. Solar Powering America by Recognizing Communities Funding Opportunity

    Broader source: Energy.gov [DOE]

    DOE's SunShot Initiative is accepting applications for the Solar Powering America by Recognizing Communities funding opportunity.

  19. Advanced Demand Responsive Lighting

    E-Print Network [OSTI]

    Advanced Demand Responsive Lighting Host: Francis Rubinstein Demand Response Research Center demand responsive lighting systems ­ Importance of dimming ­ New wireless controls technologies · Advanced Demand Responsive Lighting (commenced March 2007) #12;Objectives · Provide up-to-date information

  20. Kansas Advanced Semiconductor Project

    SciTech Connect (OSTI)

    Baringer, P.; Bean, A.; Bolton, T.; Horton-Smith, G.; Maravin, Y.; Ratra, B.; Stanton, N.; von Toerne, E.; Wilson, G.

    2007-09-21T23:59:59.000Z

    KASP (Kansas Advanced Semiconductor Project) completed the new Layer 0 upgrade for D0, assumed key electronics projects for the US CMS project, finished important new physics measurements with the D0 experiment at Fermilab, made substantial contributions to detector studies for the proposed e+e- international linear collider (ILC), and advanced key initiatives in non-accelerator-based neutrino physics.