National Library of Energy BETA

Sample records for operator id code

  1. T ID CODE I

    National Nuclear Security Administration (NNSA)

    T ID CODE I DE- , I AC52- AMENDMENT OF SOLICITATION/MODIFICATlON OF CONTRACT I. CONTRAC I 06NA25396 I Los Alamos National Security, LLC 4200 West Jernez Road Suite 400 Los Alamos, NM 87544 PAGE 1 OF 1 PAGES 2. AMENDMENTIMODIFICATION NO. A029 U.S. Department of Energy National Nuclear Security Administration Manager, Los Alamos Site Office 528 3sth Street Los Alamos, NM 87544 I 9B. DATED (SEE ITEM 11) 8. NAME AND ADDRESS OF CONTRACTOR (No., street, county, state, ZIP Code) 10A. MODIFICATION OF

  2. 11. CONTRACT ID CODE

    National Nuclear Security Administration (NNSA)

    1 PAGE 1 OF2 AMENDMENT OF SOLICITATION/MODIFICATION OF CONTRACT PAGES 2. AMENDMENT/MODIFICATION NO. I 3. EFFECTIVE DATE M191 See Block 16C 4. REQUISITION/PURCHASE I 5. PROJECT NO. (If applicable) REQ. NO. 6.ISSUED BY CODE U.S. Department of Energy National Nuclear Security Administration Service Center Property and M&O Contract Support Department P.O. Box 5400 Albuquerque, NM 87185-5400 7. ADMINISTERED BY (If other than Item 6) CODE U.S. Department of Energy National Nuclear Security

  3. II.CONTRACT ID CODE

    National Nuclear Security Administration (NNSA)

    1 II.CONTRACT ID CODE ~AGE 1 of AMENDMENT OF SOLICITATIONIMODIFICATION OF CONTRACT PAGES AC 5. PROJECT NO. (If applicable) 3. EFFECTNE DATE 2. AMENDMENTfMODIFICA TION NO. 4. REQUISITIONIPURCHASE REQ. NO. See Block 16c. NOPR 7. ADMINISTERED BY (If other than Item 6) CODE 05008 6. ISSUED BY CODE 05008 U.S. Department of Energy National Nuclear Security Administration U.S. Department of Energy National Nuclear Security Administration P.O. Box 2050 Oak Ridge, TN 37831 P.O. Box 2050 Oak Ridge, TN

  4. DOE-ID Operations Summary

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    June 5, 2013 DOE-ID Operations Summary For the Period May 16, through May 30, 2013 EDITOR'S NOTE: The following is a summary of contractor operations at the Idaho National Laboratory, managed by DOE- Idaho Operations Office. It has been compiled in response to a request from stakeholders for more information on health, safety and environmental incidents at DOE facilities in Idaho. It also includes a brief summary of accomplishments at the Site. POC - Shannon Brennan, DOE-ID, (208) 526-3993.

  5. DOE-ID Operations Summary

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    24, 2013 DOE-ID Operations Summary For the Period May 30, 2013 through June 12, 2013 EDITOR'S NOTE: The following is a summary of contractor operations at the Idaho National Laboratory, managed by DOE- Idaho Operations Office. It has been compiled in response to a request from stakeholders for more information on health, safety and environmental incidents at DOE facilities in Idaho. It also includes a brief summary of accomplishments at the Site. POC - Shannon Brennan, DOE-ID, (208) 526-3993.

  6. DOE-ID Operations Summary

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    07, 2013 DOE-ID Operations Summary For the Period July 8, 2013 through July 28, 2013 EDITOR'S NOTE: The following is a summary of contractor operations at the Idaho National Laboratory, managed by DOE- Idaho Operations Office. It has been compiled in response to a request from stakeholders for more information on health, safety and environmental incidents at DOE facilities in Idaho. It also includes a brief summary of accomplishments at the Site. POC -Danielle Miller, (208) 526-5709. Advanced

  7. DOE-ID Operations Summary

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6, 2013 DOE-ID Operations Summary For the Period July 29, 2013 through August 12, 2013 EDITOR'S NOTE: The following is a summary of contractor operations at the Idaho National Laboratory, managed by DOE- Idaho Operations Office. It has been compiled in response to a request from stakeholders for more information on health, safety and environmental incidents at DOE facilities in Idaho. It also includes a brief summary of accomplishments at the Site. POC -Danielle Miller, (208) 526-5709. Advanced

  8. DOE-ID Operations Summary

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8, 2013 DOE-ID Operations Summary For the Period September 30, 2013 through October 31, 2013 EDITOR'S NOTE: The following is a summary of contractor operations at the Idaho National Laboratory, managed by DOE- Idaho Operations Office. It has been compiled in response to a request from stakeholders for more information on health, safety and environmental incidents at DOE facilities in Idaho. It also includes a brief summary of accomplishments at the Site. POC -Danielle Miller, (208) 526-5709.

  9. DOE-ID Operations Summary

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6, 2014 DOE-ID Operations Summary For the Period November 01, 2013 through November 30, 2013 EDITOR'S NOTE: The following is a summary of contractor operations at the Idaho National Laboratory, managed by DOE- Idaho Operations Office. It has been compiled in response to a request from stakeholders for more information on health, safety and environmental incidents at DOE facilities in Idaho. It also includes a brief summary of accomplishments at the Site. POC -Danielle Miller, (208) 526-5709.

  10. DOE-ID Operations Summary

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    27, 2014 DOE-ID Operations Summary For the Period December 01, 2013 through January 15, 2014 EDITOR'S NOTE: The following is a summary of contractor operations at the Idaho National Laboratory, managed by DOE- Idaho Operations Office. It has been compiled in response to a request from stakeholders for more information on health, safety and environmental incidents at DOE facilities in Idaho. It also includes a brief summary of accomplishments at the Site. POC -Danielle Miller, (208) 526-5709.

  11. DOE-ID Operations Summary

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3, 2015 Updated on April 28, 2015 DOE-ID Operations Summary For the Period September 30, 2014 through November 1, 2014 EDITOR'S NOTE: The following is a summary of contractor operations at the Idaho National Laboratory, managed by DOE- Idaho Operations Office. It has been compiled in response to a request from stakeholders for more information on health, safety and environmental incidents at DOE facilities in Idaho. It also includes a brief summary of accomplishments at the Site. POC -Danielle

  12. DOE-ID Operations Summary

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7, 2015 DOE-ID Operations Summary For the Period January 1, 2015 - January 31, 2015 EDITOR'S NOTE: The following is a summary of contractor operations at the Idaho National Laboratory Site, managed by the DOE- Idaho Operations Office. It has been compiled in response to a request from stakeholders for more information on health, safety and environmental incidents at DOE facilities in Idaho. It also includes a brief summary of accomplishments at the Site. POC: Danielle Miller, (208) 526-5709.

  13. DOE-ID Operations Summary

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6, 2015 DOE-ID Operations Summary For the Period February 1, 2015 - February 28, 2015 EDITOR'S NOTE: The following is a summary of contractor operations at the Idaho National Laboratory Site, managed by the DOE- Idaho Operations Office. It has been compiled in response to a request from stakeholders for more information on health, safety and environmental incidents at DOE facilities in Idaho. It also includes a brief summary of accomplishments at the Site. POC: Danielle Miller, (208) 526-5709.

  14. DOE-ID Operations Summary

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    23, 2015 DOE-ID Operations Summary For the Period March 1, 2015 -March 31, 2015 EDITOR'S NOTE: The following is a summary of contractor operations at the Idaho National Laboratory Site, managed by the DOE- Idaho Operations Office. It has been compiled in response to a request from stakeholders for more information on health, safety and environmental incidents at DOE facilities in Idaho. It also includes a brief summary of accomplishments at the Site. POC: Danielle Miller, (208) 526-5709.

  15. DOE-ID Operations Summary

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1, 2015 DOE-ID Operations Summary For the Period April 1, 2015 - April 30, 2015 EDITOR'S NOTE: The following is a summary of contractor operations at the Idaho National Laboratory Site, managed by the DOE- Idaho Operations Office. It has been compiled in response to a request from stakeholders for more information about health, safety and environmental incidents at DOE facilities in Idaho. It also includes a brief summary of accomplishments at the Site. POC: Danielle Miller, (208) 526-5709.

  16. DOE-ID Operations Summary

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4, 2015 DOE-ID Operations Summary For the Period May 1, 2015 - May 31, 2015 EDITOR'S NOTE: The following is a summary of contractor operations at the Idaho National Laboratory Site, managed by the DOE- Idaho Operations Office. It has been compiled in response to a request from stakeholders for more information on health, safety and environmental incidents at DOE facilities in Idaho. It also includes a brief summary of accomplishments at the Site. POC: Danielle Miller, (208) 526-5709. Advanced

  17. DOE-ID Operations Summary

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    25, 2015 DOE-ID Operations Summary For the Period June 1, 2015 - June 30, 2015 EDITOR'S NOTE: The following is a summary of contractor operations at the Idaho National Laboratory Site, managed by the DOE- Idaho Operations Office. It has been compiled in response to a request from stakeholders for more information on health, safety and environmental incidents at DOE facilities in Idaho. It also includes a brief summary of accomplishments at the Site. POC: Danielle Miller, (208) 526-5709. Advanced

  18. DOE-ID Operations Summary

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    December 2, 2015 DOE-ID Operations Summary For the Period September 1, 2015 - September 30, 2015 EDITOR'S NOTE: The following is a summary of contractor operations at the Idaho National Laboratory Site, managed by the DOE- Idaho Operations Office. It has been compiled in response to a request from stakeholders for more information on health, safety and environmental incidents at DOE facilities in Idaho. It also includes a brief summary of accomplishments at the Site. POC: Danielle Miller, (208)

  19. DOE-ID Operations Summary

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7, 2015 DOE-ID Operations Summary For the Period August 1, 2015 - August 31, 2015 EDITOR'S NOTE: The following is a summary of contractor operations at the Idaho National Laboratory Site, managed by the DOE- Idaho Operations Office. It has been compiled in response to a request from stakeholders for more information on health, safety and environmental incidents at DOE facilities in Idaho. It also includes a brief summary of accomplishments at the Site. POC: Danielle Miller, (208) 526-5709.

  20. DOE-ID Operations Summary

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    February 11, 2016 DOE-ID Operations Summary For the Period November 1, 2015 - November 30, 2015 EDITOR'S NOTE: The following is a summary of contractor operations at the Idaho National Laboratory Site, managed by the DOE- Idaho Operations Office. It has been compiled in response to a request from stakeholders for more information on health, safety and environmental incidents at DOE facilities in Idaho. It also includes a brief summary of accomplishments at the Site. POC: Danielle Miller, (208)

  1. DOE-ID Operations Summary

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    December 1, 2015 -December 31, 2015 EDITOR'S NOTE: The following is a summary of contractor operations at the Idaho National Laboratory Site, managed by the DOE- Idaho Operations Office. It has been compiled in response to a request from stakeholders for more information on health, safety and environmental incidents at DOE facilities in Idaho. It also includes a brief summary of accomplishments at the Site. POC: Danielle Miller, (208) 526-5709. Idaho Operations Office (DOE-ID) December 17: The

  2. DOE-ID Operations Summary

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    November 1, 2014 - November 30, 2014 EDITOR'S NOTE: The following is a summary of contractor operations at the Idaho National Laboratory Site, managed by the DOE- Idaho Operations Office. It has been compiled in response to a request from stakeholders for more information on health, safety and environmental incidents at DOE facilities in Idaho. It also includes a brief summary of accomplishments at the Site. POC: Danielle Miller, (208) 526-5709. Advanced Mixed Waste Treatment Project (AMWTP)

  3. DOE-ID Operations Summary

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    December 1, 2014 - December 31, 2014 EDITOR'S NOTE: The following is a summary of contractor operations at the Idaho National Laboratory Site, managed by the DOE- Idaho Operations Office. It has been compiled in response to a request from stakeholders for more information on health, safety and environmental incidents at DOE facilities in Idaho. It also includes a brief summary of accomplishments at the Site. POC: Danielle Miller, (208) 526-5709. Advanced Mixed Waste Treatment Project (AMWTP)

  4. DOE-ID Operations Summary

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    January 1, 2016 -February 29, 2016 EDITOR'S NOTE: The following is a summary of contractor operations at the Idaho National Laboratory Site, managed by the DOE- Idaho Operations Office. It has been compiled in response to a request from stakeholders for more information on health, safety and environmental incidents at DOE facilities in Idaho. It also includes a brief summary of accomplishments at the Site. POC: Danielle Miller, (208) 526-5709. Advanced Mixed Waste Treatment Project (AMWTP)

  5. 2011 Annual Planning Summary for Idaho Operations Office (ID...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The ongoing and projected Environmental Assessments and Environmental Impact Statements for 2011 and 2012 within the Idaho Operations Office (ID) (See Environmental Management). ...

  6. AMENDMENT OF SOLICITATIONIMODIFICATION OF CONTRACT I '. CONTRACT ID CODE

    National Nuclear Security Administration (NNSA)

    SOLICITATIONIMODIFICATION OF CONTRACT I '. CONTRACT ID CODE BWXT Pantex, LLC Route 726, Mt. Athos Road Lynchburg, VA 24506 PAGE I OF 12 PAGES Albuquerque, NM 871 85-5400 I Amarillo, TX 79120 I I 90. DATED (SEE ITEM 1 1 ) 8. NAME AND ADDRESS OF CONTRACTOR (No., street, county, state, ZIP Code) I 10A. MODIFICATION OF CONTRACTIORDER NO. 2. AMENDMENT/MODIFICATION NO. MI67 9A. AMENDMENT OF SOLICITATION NO. I 1 DE-AC04-00AL66620 100. DATED (SEE ITEM 13) 3. EFFECTIVE DATE See Block 16C Offers must

  7. 11. CONTRACT ID CODE PAGE OF PAGES I AMENDMENT OF SOLICITATION...

    National Nuclear Security Administration (NNSA)

    11. CONTRACT ID CODE PAGE OF PAGES I AMENDMENT OF SOLICITATIONMODIFICATION OF CONTRACT 1 I 2. AMENDMENTIMODIFICATION NO. 258 6. ISSUED BY CODE 3. EFFECTIVE DATE See Block 16C ...

  8. UCRL-ID-117240 CHEETAH: A Next Generation Thermochemical Code

    Office of Scientific and Technical Information (OSTI)

    17240 CHEETAH: A Next Generation Thermochemical Code L. Fried P. Suers November 1994 , L * Work performed under the auspices of the U . S . Department of Energy by the Lawrence ...

  9. 1. CONTRACT ID CODE PAGE OF PAGES AMENDMENT OF SOLICITATION/MODIFICATION OF CONTRACT I11 5

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ap5,sval 2700042 1. CONTRACT ID CODE PAGE OF PAGES AMENDMENT OF SOLICITATION/MODIFICATION OF CONTRACT I11 5 2. AMENDMENT/MOOIFICATION NO. 3. EFFECTIVE DATE 4. REQUISITION/PURCHASE REQ. NO.5 PROJECT NO. (If applicable) A077 See 16C 06-08RL-14383.O1 1 6. ISSUED BY CODE 7. ADMINISTERED BY (If other than Item 6) CODEJ US. Department of Energy Same as item 6. Richland Operations Office DOE Contracting POC: Richard Stimmrrel P. 0. Box 550, MSIN A7-80 (509) 376-2882 Richland, WA 99352 8 NAME AND

  10. AMENDMENT OF SOLICITATION/MODIFICATION OF CONTRACT \1. CONTRACT ID CODE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ID CODE I PAGE OF PAGES 1 I 2 2. AMENDMENTIMODIFICATION NO. 3. EFFECTIVE DATE 4. REOUISITIONIPURCHASE REO. NO. r' PROJECT NO. (If applicable) 356 See Block 16C 12SC001876 Item 7 6. ISSUED BY CODE 00518 7. ADMINISTERED BY (If other than Item 6) CODE \00518 Oak Ridge Oak Ridge U.S. Department of Energy U.S. Department of Energy P.O. Box 2001 P.O. Box 2001 Oak Ridge TN 37831 Oak Ridge TN 37831 8. NAME AND ADDRESS OF CONTRACTOR (No., stroot, county, State and ZIP Code) J1 SA. AMENDMENT OF

  11. AMENDMENT OF SOLICITATION/MODIFICATION OF CONTRACT 11. CONTRACT ID CODE

    National Nuclear Security Administration (NNSA)

    -------------------------------------------------------- AMENDMENT OF SOLICITATION/MODIFICATION OF CONTRACT 11. CONTRACT ID CODE I PAGE OF PAGES 1 I 2 2. AMENDMENT/MODIFICATION NO. 3. EFFECTIVE DATE 4. REQUISITION/PURCHASE REQ. NO. 15. PROJECT NO. (If applicable) 0246 See Block 16C 6. ISSUED BY CODE 05003 7. ADMINISTERED BY (If other than Item 6) CODE 105003 NNSA/Los Alamos Site Office NNSA/Los Alamos Site Office U.S. Department of Energy U.S. Department of Energy NNSA/Los Alamos Site Office Los

  12. 11. CONTRACT ID CODE PAGE OF PAGES I AMENDMENT OF SOLICITATION/MODIFICATION OF CONTRACT

    National Nuclear Security Administration (NNSA)

    11. CONTRACT ID CODE PAGE OF PAGES I AMENDMENT OF SOLICITATION/MODIFICATION OF CONTRACT 1 I 2. AMENDMENTIMODIFICATION NO. 258 6. ISSUED BY CODE 3. EFFECTIVE DATE See Block 16C 05008 4. REQUISITION/PURCHASE REQ. NO. 7. ADMINISTERED BY (If other than Item 6) 15. PROJECT NO. (If applicable) CODE 1 0 5 0 0 8 NNSA/Oakridge Site Office NNSA/Oakridge Site Office U.S. Department of Energy U. S. Department of Energy NNSA/Y-12 Site Office NNSA/Y-12 Site Office P.O. Box 2050 P.O. Box 2050 Building 9704-2

  13. AMENDMENT OF SOLICITATIONIMODIFICATlON OF CONTRACT ( I- CONTRACT ID CODE PAGE I OF 2

    National Nuclear Security Administration (NNSA)

    ( I- CONTRACT ID CODE PAGE I OF 2 PAGES I . . Babcock & Wilcox Technical Services Pantex, LLC PO Box 30020 Amarillo, TX 79120 2. AMENDMENTIMODIFICATION NO. M I 51 Albuquerque, NM 87185-5400 I Amarillo, TX 79120 90. DATED (SEE ITEM 11) 8. NAME AND ADDRESS OF CONTRACTOR (No., street, county, state, ZIP Code) 3. EFFECTIVE DATE See Block 16C 9A. AMENDMENT OF SOLICITATION NO. extended. 6 . ISSUED BY CODE U.S. Department of Energy National Nuclear Security Administration Service Center Property

  14. AMENDMENT OF SOlLICITATION/MODIFICATlON OF CONTRACT I I. CONTRACr ID CODE

    National Nuclear Security Administration (NNSA)

    SOlLICITATION/MODIFICATlON OF CONTRACT I I. CONTRACr ID CODE BWXT Pantex, LLC Route 726, Mt. Athos Road Lynchburg, VA 24506 PAGE I OF 2 PAGES Albuquerque, NM 871 85-5400 I Amarillo, TX 79120 9B. DATED (SEE ITEM 1 1 ) 8. NAME AND ADDRESS OF CONTRACTOR (No., street, county, state, ZIP Code) DE-AC04-00AL66620 I I IOB. DATED (SEE ITEM 13) 2. AMENDMENTIMODIFICATION NO. MI41 9A. AMENDMENT OF Sol-ICITATION NO. CODE I ~ H L I L I I Y L U U ~ I I - 11. THlS ITEM ONLY APPLIES TO AMENDMENTS OF

  15. AMENDMENT OF SOLICITATION/MODIFICATION OF CONTRACT /1. CONTRACT ID CODE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SOLICITATION/MODIFICATION OF CONTRACT /1. CONTRACT ID CODE I PAGE OF PAGES 1 I 2 2. AMENDMENT/MODIFICATION NO 3. EFFECTIVE DATE 4 REQUISITION/PURCHASE REQ. NO 1 5 PROJECT NO. (If applicable) 342 See Block 16C 12SCOO1256 Item 0001 6. ISSUED BY CODE 00518 7. ADMINISTERED BY (If other than Item 6) CODE 1 0 0518 Oak 'Ridge Oak Ridge U.S. Department of Energy U.S. Department of Energy P.O. Box 2001 P.O. Box 2001 Oak Ridge TN 37831 Oak Ridge TN 37831 8. NAME AND ADDRESS OF CONTRACTOR (No .. street.

  16. AMENDMENT OF SOLICITATION/MODIFICATION OF CONTRACT 1. CONTRACT ID CODE PAGE OF PAGES

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AMENDMENT OF SOLICITATION/MODIFICATION OF CONTRACT 1. CONTRACT ID CODE PAGE OF PAGES 1 20 2. AMENDMENT/MODIFICATION NO. A001 3. EFFECTIVE DATE See Block 16C 4. REQUISITION/PURCHASE REQ. NO. 5. PROJECT NO. (If applicable) 6. ISSUED BY CODE 7. ADMINISTERED BY (If other than Item 6) CODE U.S. Department of Energy National Energy Technology Laboratory PO Box 880, 3610 Collins Ferry Road Morgantown, WV 26507-0880 Attn: Amanda Lopez 8. NAME AND ADDRESS OF CONTRACTOR (No., street, county, State, and

  17. AMENDMENT OF SOLICITATION/MODIFICATION OF CONTRACT 1.CONTRACT ID CODE PAGE OF PAGES

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CONTRACT ID CODE PAGE OF PAGES T 1 1 13 2 AMENDIMENT/MODIFICATION NO 3. EFFECTIVE DATE 4 -REGUISITION/PURCHASE RED. NO 5. PROJECT NO. (If epplicable) 032 04/14/2011 11EM002244 6 ISSUED BY CODE 00603 7 ADMINISTERED BY (Iftherthan temrt6) CODE J00603 Office of River Protection Office of River Protection U.S. Department of Energy U.S. Department of Energy Office of River Protection office of River Protection P.O. Box 450 P.O. Box 450 Richland WA 99352 Richland WA 99352 8 NAME AND ADDRESS OF

  18. AMENDMENT OF SOLICITATIONIMODIFICATION OF CONTRACT 1. CONTRACT ID CODE P AE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    OF CONTRACT 1. CONTRACT ID CODE P AE 2. AMEN DMENT/MODIF ICATION NO. 3. EFFECTIVE DATE 4. REQUISITION/PURCHASE RED. NO. 5. PROJECT NO. (If applicable) 073 See Block 16C 12EM002951/12EM003004 6. ISSUED BY CODE 100603 7. ADMINISTERED BY (If other than Item 6) CODE 100603 Office of River Protection Office of River Protection U.S. Department of Energy U.S. Department of Energy Office of River Protection Office of River Protection P.O. Box 450 P.O. Box 450 Richland WA 99352 Richland WA 99352 8. NAME

  19. AMENDMENT OF SOLICITATIONIMODIFICATION OF CONTRACT I CONTRACT ID CODE PAGE OF PAGES

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    I CONTRACT ID CODE PAGE OF PAGES 1 14 2. AMENDMENT/MODIFICATION NO. 3 EFFECTIVE DATE 4. REQUISITION/PURCHASE RED. NO 5. PRtOJECT NO. (if pplicable) 186 See Block 16CL 6. ISSUED BY CODE j 0603 7. ADMINISTERED BY (If other than Item 6) CODE 00603 office of River Protection Office of River Protection U.S. Department of Energy U.S. Department of Energy office of River Protection office of River Protection P.O. Box 450 P.O. Box 450 Richland WA 99352 MS: H6-60 Richland WA 99352 6. NAME AND ADDRESS OF

  20. AMENDMENT OF SOUCITATIONIMODIFICATION OF CONTRACT 1. CONTRACT ID CODE PAGE OF PAGES

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1. CONTRACT ID CODE PAGE OF PAGES II 11 9 2. AMEN DMENTIMODIFICATION NO. 3. EFFECTIVE DATE 4. REOUISITIONIPURCHASE REQ. NO. 5. PROJECT NO. (If elpicable) 169 See Block 16C 12EM0020631 6. ISSUED BY CODE 00603 7. ADMINISTERED BY (If otherthan Item 6) CODE 100603 Office of River Protection Office of River Protection U.S. Department of Energy U.S. Department of Energy Office of River Protection Office of River Protection P.O. Box 450 P.O. Box 450 Richland WA 99352 MS: H6-60

  1. AMENDMENT OF SOLICITATION/MODIFICATION OF CONTRACT 1.CNTAT ID CODE PAGE "OF PAGES

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CNTAT ID CODE PAGE "OF PAGES 1 11 3 2. AMEN DME NT/MO0D IFICATION NO. 3. EFFECTIVE DATE 4. REOUISITION/PURCHASE REQ, NO. 5. PROJECT NO. (if applicable) 6. SSED Y ODE00037. ADMINISTERED BY (If'other than Item 6) CODE 00603 Office of River Protection Office of River Protection U.S. Department of Energy U.S. Department of Energy Office of River Protection Office of River Protection P.O. Box 450 P.O. Box 450 Richiand WA 99352 MS: H16-60 ____________________________________Richland WA 99352 8

  2. AMENDMENT OF SOLlClTATlONlMODlFlCATlON OF CONTRACT ( I. ID CODE

    National Nuclear Security Administration (NNSA)

    ( I. ID CODE / DE-ACO4-OOAL6662O ' 10s. DATED (SEE ITEM 13) PAGE I OF 2 PAGES Babcock & W ~ ~ C O X Technical Services Pantex, LLC 800 Main Street Lynchburg, VA 24505 9B. DATED (SEE ITEM 11) 10A. MODIFICATION OF CONTRACTIORDER NO. Offers must acknowledge receipt of this amendment prior to the hour and date specified in the solicitation as amended, by one of the following methods: (a) By completing Items 8 and 15, and returning - copies of the amendment; (b) By acknowledging receipt of this

  3. AMENDMENT OF SOLlClTATlONlMODlFlCATlON OF CONTRACT I ' CONTRACT ID CODE

    National Nuclear Security Administration (NNSA)

    ' CONTRACT ID CODE BWXT Pantex, LLC Route 726, Mt. Athos Road Lynchburg, VA 24506 PAGE 1 OF 12 PAGES 9B. DATED (SEE ITEM 11) 5. PROJECT NO. (If applicable) 4. REQUlSlTlONlPURCHASE REQ. NO. 2. AMENDMENTIMODIFICATION NO. MI39 extended. 6. ISSUED BY CODE U.S. Department of Energy National Nuclear Security Administration Service Center Property and M&O Contract Support Department P.O. Box 5400 Albuquerque, NM 871 85-5400 3. EFFECTIVE DATE See Block 16C CODE I FACILITY CODE Offers must

  4. AMENDMENT OF SOLlClTATlONlMODlFlCATlON OF CONTRACT I CONTRACT ID CODE

    National Nuclear Security Administration (NNSA)

    CONTRACT ID CODE Babcock & Wilcox Technical Services Pantex, LLC 9B. DATED (SEE ITEM 11) PO Box 30020 Amarillo, T X 79120 PAGE 1 OF 2 PAGES Albuquerque, NM 87185-5400 I Amarillo, TX 79120 I I DE-AC04-00AL66620 10B. DATED (SEE ITEM 13) 8. NAME AND ADDRESS OF CONTRACTOR (No., street, county, state, ZIP Code) 2. AMENDMENTIMODIFICATION NO. MI74 9A. AMENDMENT OF SOLICITATION NO. extended. CODE I FACILITY CODE Offers must acknowledge receipt of this amendment prior to the hour and date specified

  5. AMENDMENT OF SOLlClTATlONlMODlFlCATlON OF CONTRACT I I, CONTRACT ID CODE

    National Nuclear Security Administration (NNSA)

    I, CONTRACT ID CODE BWXT Pantex, LLC Route 726, Mt. Athos Road Lynchburg, V A 24506 PAGE I OF 2 PAGES Albuquerque, NM 87185-5400 I Amarillo, TX 79120 9B. DATED (SEE ITEM I I ) 8. NAME AND ADDRESS OF CONTRACTOR (No.. street, county, state, ZIP Code) I ( DE-AC04-00AL66620 10B. DATED (SEE ITEM 13) 2. AMENDMENTIMODIFICATION NO. M I 3 8 9A. AMENDMENT OF SOLICITATION NO. extended. 3. EFFECTIVE DATE See Block 16C CODE I FACILITY CODE Offers must acknowledge receipt of this amendment prior to the hour

  6. 1. CON'I'AC'r ID CODE PAGE OF PAGES AMENDMENT OF SOLICITATIONIMODIFICATION OF CONTRACT II 11 3

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CON'I'AC'r ID CODE PAGE OF PAGES AMENDMENT OF SOLICITATIONIMODIFICATION OF CONTRACT II 11 3 2. AMENDMENT/MODIFICATION NO. 3. EFFECTIVE DATE (M/D.'F) 4. REQUISITION/PURCHASE RE-Q. NO. S. PROJECT1 NO. t7fapplieoble) 27See Block 16C 12EM001839 6. ISUED13Y ODE7. ADMINISTER.ED BY (If uI/wr ius /tem 6) CODE U.S. Department of Energy Office or River Protection P. 0. Box 450, MS 146-60 Richland, WA 99352 1. NAME AND ADDRESS OF CONTRACTOR (No.,stree, county State and Z11' code) 9A, AMENDMEN f

  7. 1. CONTRACT ID CODE PAGE OF PAGES AMENDMENT OF SOLICITATIONIMODIFICATION OF CONTRACT I111 5

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AMENDMENT OF SOLICITATIONIMODIFICATION OF CONTRACT I111 5 2. AMENDMENT/MODIFICATION NO. 3. EFFECTIVE DATE 4. REQUISITION/PURCHASE REQ. NO. 5. PROJECT NO. (If applica ble) A078 See 16C 06-08RL14383.012 6. ISSUED BY CODE1 7. ADMINISTERED BY (If other than Item ) CODEJ U.S. Department of Energy Same as item 6. Richland Operations Office DOE Contracting POC: Richard Stimmel P. 0. Box 550, MSIN A7-80 (509) 376-2882 Richland, WA 99352 8. NAME AND ADDRESS OF CONTRACTOR (No. Street, county, Stale and

  8. AMENDMENT OF SOLlClTATlONlMODlFlCATION OF CONTRACT 1 I . CONTR"CT ID CODE

    National Nuclear Security Administration (NNSA)

    SOLlClTATlONlMODlFlCATION OF CONTRACT 1 I . CONTR"CT ID CODE BWXT Pantex, LLC Route 726, Mt. Athos Road Lynchburg, VA 24506 PAGE 1 OF 2 PAGES Albuquerque, NM 8718Ii4400 I Amarillo, TX 79120 9B. DATED (SEE m M 11) 10A. MODIFICATION OF CONTRACTIORDER NO. 8. NAME AND ADDRESS OF CONTRACTOR (No., street, county, &ate, ZIP Code) I ( DE-ACOCOOAL66620 10B. DATED (SEE / E M 13) 2. AMENDMENT/MODIFICATION NO. M097 9A. AMENDMENT OF SOLICITATION NO. Offera must a d t n d e d p rsceipt of this m e n

  9. AMENDMENT OF SOLlClTATlONlMODlFlCATlON OF CONTRACT I I. CONT" ID CODE

    National Nuclear Security Administration (NNSA)

    CONT" ID CODE Babcock & Wilcox Technical Services Pantex, LLC I 1 98. DATED (SEE ITEM 11) PAGE I OF 2 PAGES Albuquerque, NM 87185-5400 I Amarillo, TX 79120 PO Box 30020 Amarillo, TX 79120 8. NAME AND ADDRESS OF CONTRACTOR (No., street, county, state, ZIP Code) 10A. MODIFICATION OF CONTRACTIORDER NO. 2. AMENDMENTIMODIFICATION NO. MI64 9A. AMENDMENT OF SOLICITATION NO. DE-AC04-00AL66620 1 I IOB. DATED (SEE ITEM 13) 3. EFFECTIVE DATE See Block 16C Offers must acknowledge receipt of this

  10. AMENDMENT OF SOLlClTATlONlMODlFlCATlON OF CONTRACT I I. CONTRA'T ID CODE

    National Nuclear Security Administration (NNSA)

    CONTRA'T ID CODE BWXT Pantex, LLC Route 726, Mt. Athos Road Lynchburg, V A 24506 PAGE I OF 2 PAGES Albuquerque, NM 871 85-5400 / Amarillo, TX 79120 I I 9B. DATED (SEE ITEM 11) 8. NAME AND ADDRESS OF CONTRACTOR (No., street, county, state, ZIP Code) I 10A. MODIFICATION OF CONTRACTIORDER NO. 2. AMENDMENTIMODIFICATION NO. M I 0 8 9A. AMENDMENT OF SOLICITATION NO. DE-AC04-00AL66620 1 1 108. DATED (SEE ITEM 13) 3. EFFECTIVE DATE See Block 16C Offers must acknowledge receipt of this amendment prior to

  11. AMENDMENT OF SOLIr ATI ON/MODIFI CATION OF CONTRACT 1. CONTRACT ID CODE PAGE OF PAGES

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SOLIr ATI ON/MODIFI CATION OF CONTRACT 1. CONTRACT ID CODE PAGE OF PAGES 2 AMENDMENT/lIVDDIFICATiON NC 3. EFFECTIVE DATE [4 REDUISITION/PURCHASE REC NO IE PR3JECT NC (if applicable) 09 ISoe Bloo , 16- - ISee Soheoule S ISSUED D> CODE 7 ~ ADMINISTERED BY (if otnertrian ItemS CO DE Of fice of Ri-.er PoDLecOLODn office of Riv'er P-oCQ-ec-.iQ .S. Cet:F O<men of E-nerov,, I.S. Deparo:merio c-' Enrgv P.O. Box 4'5C 0 ... Box 45C .io ao 1 31 W YS: (-876 B. NAME AND ADDRESS CF CONTRACTOR (No seve

  12. 1. CONTRACT ID CODE PAGE OF PAGES AMENDMENT OF SOLICITATIONIMODIFICATION OF CONTRACT I11 5

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SOLICITATIONIMODIFICATION OF CONTRACT I11 5 2 AMENDMENT/MODIFICATION NO 3. EFFECTIVE DATE (MD Y) 4. REQUISITION/PURCHASE REQ. NO SPROJECT NO. (If applicable) 273 See Block 16C 6 ISSUED BY CODE 7 ADMINISTERED BY (If olher than Item 6,, CODE U.S. Department of Energy Office of River Protection P. 0. Box 450, MIS 116-60 Richland, WA 99352 8. NAME AND ADDRESS OF CONTRACTOR (No., street, county, Stale and ZIP code) 9A. AMENDMENT OF SOLICITATION NO. ED Bechtel National, Inc. 9B. DATED (SEE ITEM I])

  13. AMENDMENT OF SOLICITATION/MODIFICATION OF CONTRACT 1. CONTRACT ID CODE

    National Nuclear Security Administration (NNSA)

    l PAGE 1 OF 3PAGES 2. AMENDMENT/MODIFICATION NO. I 3. EFFECTIVE DATE 4. REQUISITION/PURCHASE REQ. NO. I 5. PROJECT NO. (If applicable) 180 See Block 16 C 6.1SSUEDBY CODE 7. ADMINISTERED BY (If other than Item 6) CODE U.S. Department of Energy National Nuclear Security Administration Manager, Los Alamos Site Office 3747 West Jemez Road Los Alamos, NM 87544 8. NAME AND ADDRESS OF CONTRACTOR (No., street, county, state, ZIP Code) 9A. AMENDMENT OF SOLICITATION NO. Los Alamos National Security, LLC

  14. AMENDMENT OF SOLICITATION/MODIFICATION OF CONTRACT 1. CONTRACT ID CODE

    National Nuclear Security Administration (NNSA)

    I PAGE 1 OF 1 PAGES 2. AMENDMENT/MODIFICATION NO. I 3. EFFECTIVE DATE 4. REQUISITION/PURCHASE REO. NO. I 5. PROJECT NO. (If applicable) 212 See Block 16 C 6.1SSUEDBY CODE 7. ADMINISTERED BY (If other than Item 6) CODE U.S. Department of Energy National Nuclear Security Administration Manager, Los Alamos Site Office 3747 West Jemez Road Los Alamos, NM 87544 8. NAME AND ADDRESS OF CONTRACTOR (No., street, county. state, ZIP Code} 9A. AMENDMENT OF SOLICITATION NO. Los Alamos National Security, LLC

  15. AMENDMENT OF SOLICITATION/MODIFICATION OF CONTRACT 11. CONTRACT ID CODE

    National Nuclear Security Administration (NNSA)

    l PAGE OF PAGES 1 I 3 2. AMENDMENT/MODIFICATION NO. See Block 16C 4. REQUISITION/PURCHASE REQ. NO. 15. PROJECT NO. (If applicable) 3. EFFECTIVE DA TE 0264 6. ISSUED BY CODE 05003 NNSA/Los Alamos Site Office U.S. Department of Energy NNSA/Los Alamos Site Office 3747 West Jemez Road Los Alamos NM 87544 8. NAME AND ADDRESS OF CONTRACTOR (No., street, county, State and ZIP Code) LOS ALAMOS NATIONAL SECURITY, LLC Attn: STEVE K. SHOOK P.O. BOX 1663, MS P222 LOS ALAMOS NM 875450001 CODE 175252894

  16. AMEN DMENT OF SOLICITATION/MODIFICATION OF CONTRACT r* CONTRACT ID CODE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AME:NDMENT OF SOLICITATION/MODIFICATION OF CONTRACT 1. CONTRACT 10 CODE PAGE 1 OF 224 PAGES 2. AMENDMENT/MODIFICATION NO. M202 3. EFFECTIVE DATE October 1, 2003 4. REQUISITION/PURCHASE REQ. NO. 5. PROJECT NO. (If applicable) 6. ISSUED BY CODE 7. ADMINISTERED BY (If other than Item 6) CODE U.s. Department of Energy N.itional Nuclear Security Administration Sandia Site Office Mail Stop 0184 P.O. Box 5400 AlbuauerQue, NM 87185-5400 8. NAME AND ADDRESS OF CONTRACTOR (No., street, county, state, ZIP

  17. AMENDMENT OF SOLICITATION/MODIFICATION OF CONTRACT 11. CONTRACT ID CODE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    I PAGE OF PAGES 1 1 2 2. AMENDMENTIMODIFICATION NO. 3. EFFECTIVE DATE 4. REaUISITIONIPURCHASE REa. NO. 15. PROJECT NO. (If applicable) 335 See Block 16C 12SCOO0484 Item 7 6. ISSUED BY CODE 00518 7. ADMINISTERED 8Y (If other than Item 6) CODE 100518 Oak Ridge Oak Ridge U.S. Department of Energy U.S. Department of Energy P.O. Box 2001 P.O. Box 2001 Oak Ridge TN 37831 Oak Ridge TN 37831 8. NAME AND ADDRESS OF CONTRACTOR (No .* stroot. COlUlty. Stato and ZIP Code) (x) 9A. AMENDMENT OF SOLICITATION

  18. 4-ID beamline layout

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sector 4 beamline layout Overview Sector 4 uses a canted undulator straight section to operate two beamlines The 4-ID-C beamline operates between 500 and 3000 eV while the 4-ID-D...

  19. AMENDMENT OF SOLICITATION/MODIFICATION OF CONTRACT 11. CONTRACT ID CODE

    National Nuclear Security Administration (NNSA)

    I PAGE OF PAGES 1 I 2 2. AMENDMENT/MODIFICATION NO. 3. EFFECTIVE DATE 4. REQUISITION/PURCHASE REQ. NO. 15. PROJECT NO. (ff applicable) 0259 See Block 16C 6. ISSUED BY CODE 05003 7. ADMINISTERED BY (If other than Item 6) coDE 105003 NNSA/Los Alamos Site Office NNSA/Los Alamos Site Office u. s. Department of Energy u. s. Department of Energy NNSA/Los Alamos Site Office Los Alamos Site Off ice 3747 West Jemez Road 3747 West Jemez Road Los Alamos NM 87544 Los Alamos NM 87544 8. NAME AND ADDRESS OF

  20. AMENDMENT OF SOLICITATION/MODIFICATION OF CONTRACT 11. CONTRACT ID CODE

    National Nuclear Security Administration (NNSA)

    1 PAGE 1 OF 23 PAGES 2. AMENDMENT/MODIFICATION NO. 13. EFFECTIVE DATE M188 See Block 16C 4. REQUISITION/PURCHASE I5. PROJECT NO. (If applicable) REQ. NO. 6. ISSUED BY CODE U.S. Department of Energy National Nuclear Security Administration Service Center Property and M&O Contract Support Department P.O. Box 5400 Albuquerque, NM 87185*5400 7. ADMINISTERED BY (If other than Item 6) CODE U.S. Department of Energy National Nuclear Security Administration Manager, Pantex Site Office P.O. Box 30030

  1. AMENDMENT OF SOLICITATION/MODIFICATION OF CONTRACT 11. CONTRACT ID CODE 1 PAGE OF PAGES

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 PAGE OF PAGES 1 I 2 2. AMENDMENTIMODIFICATION NO. 3. EFFECTIVE DATE 4. REQUISITIONIPURCHASE REO. NO. 15. PROJECT NO. (If applicable) 352 See Block 16C 12SC001876 Item 3 6. ISSUED BY CODE 00518 7. ADMINISTERED BY (If other than Item 6) CODE 100518 Oak Ridge Oak Ridge U.S. Department of Energy U.S. Department of Energy P.O. Box 2001 P.O. Box 2001 Oak Ridge TN 37831 Oak Ridge TN 37831 8. NAME AND ADDRESS OF CONTRACTOR (No .* stteet. county. Stete and ZIP Coda) (X) 9A. AMENDMENT OF SOLICITATION

  2. 1. CONTRACT ID CODE PAGE OF PAGES AMENDMENT OF SOLICITATIONIMODIFICATION OF CONTRACT II11 5

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AMENDMENT OF SOLICITATIONIMODIFICATION OF CONTRACT II11 5 2. AMEN DMENT/MODIFICATION NO. 3. EFFECTIVE DATE 4. REOUISITIONIPURCHASE REQ. NO. 5. PROJECT NO. (if applicable) A07 I ee 6C06-08RL143 83 .013 6.ISE YCDJ7. ADMINISTERED BY If lother than Item 6) CODEJ U.S. Department of Energy Same as item 6. Richland Operations Office DOE Contracting POC: Richard Stimmel P. 0. Box 550, MSTN A7-80 (509) 376-2882 Richland, WA 99352 _________ 8. NAME AND ADDRESS OF CONTRACTOR (No. Street, county, State and

  3. ID@Work

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ID@Work ID@Work ID@Work is a video feature that introduces DOE-ID employees and the jobs they perform. These videos are created in Windows Media Video (wmv) format and have no scripts are available. 2013, January Morris Hall is the Radiological Controls Manager for the Idaho Operations Office 2 minutes, (18 MB) 2012, December Mark Arenaz, Director of ID's Office of Project Management Support 2 minutes, (14 MB) 2012, January Carol Henning, Safety Team Lead for Quality and Safety Division 2

  4. AMENDMENT OF SOLlClTATlONlMODlFlCATlON OF CONTFWCT I 1 CONTRACT ID CODE PAGE I OF 2

    National Nuclear Security Administration (NNSA)

    CONTFWCT I 1 CONTRACT ID CODE PAGE I OF 2 PAGES MI10 I See Block 16C I REQ. NO. BWXT Pantex, LLC Route 726, Mt. Athos Road Lynchburg, VA 24506 2. AMENDMENTIMODIFICATION NO. 1 3. EFFECTIVE DATE 1 4. REQUISITIONIPURCHASE 1 5. PROJECT NO. (If a ~ ~ l i c a b l e l . a , U.S. Department of Energy National Nuclear Security Administration Service Center Property and M&O Contract Support Department P.O. Box 5400 Albuquerque, NM 871 85-5400 96. DATED (SEE ITEM 1 1 ) 6. ISSUED BY CODE 1 7.

  5. U-063: RSA SecurID Software Token for Windows DLL Loading Error Lets Remote Users Execute Arbitrary Code

    Broader source: Energy.gov [DOE]

    A remote user can cause the target application to execute arbitrary code on the target user's system.

  6. APS Beamline 6-ID-B,C

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6-ID-B,C Home Recent Publications Beamline Info Optics Instrumentation Software User Info Beamline 6-ID-B,C Beamline 6-ID-B,C is operated by the Magnetic Materials Group in the...

  7. APS Beamline 6-ID-D

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MM-Group Home MMG Advisory Committees 6-ID-D Home Recent Publications Beamline Info Optics Instrumentation Software User Info Beamline 6-ID-D Beamline 6-ID-D is operated by the...

  8. 1. CONTRACT ID CODE PAGE of: PAGES AMENDM ENT OF SOLICITATION/MODIFICATION OF CONTRACT I -1 5

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of: PAGES AMENDM ENT OF SOLICITATION/MODIFICATION OF CONTRACT I -1 5 2. AMENDMENT/MODIFICATION NO. 3. EFFECTIVE DATE (0/1T 4. REQUISITION/PURCHASE REQ. NO. 5. PROJECT NO. (If applicable) 286 See Block 16C 12EM0014771 6. ISSUED BY CODE 7. AD)MINISTERED BY (If otherrtianItm 6) CODE U.S. Department of Energy Office of River Protection P. 0. Box 450, MIS 116-60 Richland, WA 99352 8. NAME AND ADDRESS OF CONTRACTOR (No., street. county.. State and ZIP code) 9A. AMENDMENT OF SOLICITATION NO. Bechtel

  9. Department of Energy Idaho - Inside DOE-ID

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Inside ID Inside Idaho Operations Office (DOE-ID) DOE-ID Mission and Vision Brief History of the Idaho National Laboratory (INL) DOE-ID Agreement in Principle Organization Chart...

  10. Progress with the COGENT Edge Kinetic Code: Collision operator options

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Dorf, M. A.; Cohen, R. H.; Compton, J. C.; Dorr, M.; Rognlien, T. D.; Angus, J.; Krasheninnikov, S.; Colella, P.; Martin, D.; McCorquodale, P.

    2012-06-27

    In this study, COGENT is a continuum gyrokinetic code for edge plasmas being developed by the Edge Simulation Laboratory collaboration. The code is distinguished by application of the fourth order conservative discretization, and mapped multiblock grid technology to handle the geometric complexity of the tokamak edge. It is written in v∥-μ (parallel velocity – magnetic moment) velocity coordinates, and making use of the gyrokinetic Poisson equation for the calculation of a self-consistent electric potential. In the present manuscript we report on the implementation and initial testing of a succession of increasingly detailed collision operator options, including a simple drag-diffusion operatormore » in the parallel velocity space, Lorentz collisions, and a linearized model Fokker-Planck collision operator conserving momentum and energy (© 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)« less

  11. Verification of unfold error estimates in the unfold operator code

    SciTech Connect (OSTI)

    Fehl, D.L.; Biggs, F.

    1997-01-01

    Spectral unfolding is an inverse mathematical operation that attempts to obtain spectral source information from a set of response functions and data measurements. Several unfold algorithms have appeared over the past 30 years; among them is the unfold operator (UFO) code written at Sandia National Laboratories. In addition to an unfolded spectrum, the UFO code also estimates the unfold uncertainty (error) induced by estimated random uncertainties in the data. In UFO the unfold uncertainty is obtained from the error matrix. This built-in estimate has now been compared to error estimates obtained by running the code in a Monte Carlo fashion with prescribed data distributions (Gaussian deviates). In the test problem studied, data were simulated from an arbitrarily chosen blackbody spectrum (10 keV) and a set of overlapping response functions. The data were assumed to have an imprecision of 5{percent} (standard deviation). One hundred random data sets were generated. The built-in estimate of unfold uncertainty agreed with the Monte Carlo estimate to within the statistical resolution of this relatively small sample size (95{percent} confidence level). A possible 10{percent} bias between the two methods was unresolved. The Monte Carlo technique is also useful in underdetermined problems, for which the error matrix method does not apply. UFO has been applied to the diagnosis of low energy x rays emitted by Z-pinch and ion-beam driven hohlraums. {copyright} {ital 1997 American Institute of Physics.}

  12. APS Beamline 6-ID-B,C

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    B,C Home Recent Publications Beamline Info Optics Instrumentation Software User Info Beamline 6-ID-B,C Beamline 6-ID-B,C is operated by the Magnetic Materials Group in the X-ray...

  13. APS Beamline 6-ID-D

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    D Home Recent Publications Beamline Info Optics Instrumentation Software User Info Beamline 6-ID-D Beamline 6-ID-D is operated by the Magnetic Materials Group in the X-ray Science...

  14. U-208: HP Operations Agent Bugs Let Remote Users Execute Arbitrary Code

    Broader source: Energy.gov [DOE]

    Two vulnerabilities were reported in HP Operations Agent. A remote user can execute arbitrary code on the target system

  15. DOE-ID Mission and Vision

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ID Mission and Vision You are here: DOE-ID Home > Inside ID > Our Mission and Vision The Idaho Operations Office (DOE-ID)/INL mission is: To develop and deliver cost-effective solutions to both fundamental and advanced challenges in nuclear energy and other energy resources, national security, and environmental management. The Department's expectations of its operations offices and laboratories are: to advance the national, economic and energy security of the United States; to promote

  16. Insertion of operation-and-indicate instructions for optimized SIMD code

    Office of Scientific and Technical Information (OSTI)

    (Patent) | SciTech Connect Insertion of operation-and-indicate instructions for optimized SIMD code Citation Details In-Document Search Title: Insertion of operation-and-indicate instructions for optimized SIMD code Mechanisms are provided for inserting indicated instructions for tracking and indicating exceptions in the execution of vectorized code. A portion of first code is received for compilation. The portion of first code is analyzed to identify non-speculative instructions performing

  17. T-725: Cisco Unified Service Monitor and Cisco Unified Operations Manager Remote Code Execution Vulnerabilitiry Code

    Broader source: Energy.gov [DOE]

    Successful exploitation of these vulnerabilities could allow an unauthenticated, remote attacker to execute arbitrary code on affected servers.

  18. Insertion of operation-and-indicate instructions for optimized SIMD code

    DOE Patents [OSTI]

    Eichenberger, Alexander E; Gara, Alan; Gschwind, Michael K

    2013-06-04

    Mechanisms are provided for inserting indicated instructions for tracking and indicating exceptions in the execution of vectorized code. A portion of first code is received for compilation. The portion of first code is analyzed to identify non-speculative instructions performing designated non-speculative operations in the first code that are candidates for replacement by replacement operation-and-indicate instructions that perform the designated non-speculative operations and further perform an indication operation for indicating any exception conditions corresponding to special exception values present in vector register inputs to the replacement operation-and-indicate instructions. The replacement is performed and second code is generated based on the replacement of the at least one non-speculative instruction. The data processing system executing the compiled code is configured to store special exception values in vector output registers, in response to a speculative instruction generating an exception condition, without initiating exception handling.

  19. Badging, Real ID

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Office » Badging, Real ID Badging, Real ID Effective Nov. 3, 2014, the Lab will implement requirements of the REAL ID Act. Contact Badge Office (505) 667-6901 Email Badge requirements US citizen employees must present a photo ID and proof of US citizenship. See Security Smart on Proof of United States Citizenship for the Badge Office (pdf). Foreign national guests and employees must have an approved visit and present a valid passport and documentation of US legal status and work authorizations.

  20. DOE-ID Operations Summary

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The waste is primarily a product of experiments from the Engineering Test Reactor, Experimental Breeder Reactor-II and fast reactor tests. The Idaho Cleanup Project will treat the ...

  1. DOE-ID Operations Summary

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... The waste is primarily a product of experiments from the Engineering Test Reactor, Experimental Breeder Reactor-II and other fast reactor tests. ICP will treat the ...

  2. RAPID/Roadmap/15-ID-b | Open Energy Information

    Open Energy Info (EERE)

    BETA About Bulk Transmission Geothermal Hydropower Solar Tools Contribute Contact Us Air Quality Permit - Tier II Operating Permit (15-ID-b) Tier II Operating Permits are...

  3. Beamline 29-ID

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    & Milestones IEX Advisory Committees FDR Beamline Information RSXS ARPES APS Ring Status Current APS Schedule Intermediate Energy X-Rays (29-ID): The Intermediate Energy...

  4. Page 1, About DOE-ID

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 of 11 Previous Page About the U.S. Department of Energy, Idaho Operations Office (DOE-ID) As a new employee of the Department of Energy (DOE), you are entering a Cabinet-Level Executive Branch Agency with a long history of achievement. The Idaho Operations Office (DOE-ID)/INL mission is to develop and deliver cost-effective solutions to both fundamental and advanced challenges in nuclear energy and other energy resources, national security, and environmental management. The Department's

  5. DOE - Office of Legacy Management -- Lowman Mill Site - ID 01

    Office of Legacy Management (LM)

    Mill Site (ID.01) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials...

  6. 1. CONTRACT ID CODE PAGE OF PAGES

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    or print) I16A NAME AND TITILE OF CONTRACTING OFFICER (l'vpe or print) Ronnie L. Dawson Contracting Officer 15B. CONTRACTORJOFEEROR 15C. DAlE SIGNED 16B, UNITED STATES OF...

  7. Progress with the COGENT Edge Kinetic Code: Implementing the Fokker-Plank Collision Operator

    SciTech Connect (OSTI)

    Dorf, M. A.; Cohen, R. H.; Dorr, M.; Hittinger, J.; Rognlien, T. D.

    2014-06-20

    Here, COGENT is a continuum gyrokinetic code for edge plasma simulations being developed by the Edge Simulation Laboratory collaboration. The code is distinguished by application of a fourth-order finite-volume (conservative) discretization, and mapped multiblock grid technology to handle the geometric complexity of the tokamak edge. The distribution function F is discretized in v∥ – μ (parallel velocity – magnetic moment) velocity coordinates, and the code presently solves an axisymmetric full-f gyro-kinetic equation coupled to the long-wavelength limit of the gyro-Poisson equation. COGENT capabilities are extended by implementing the fully nonlinear Fokker-Plank operator to model Coulomb collisions in magnetized edge plasmas. The corresponding Rosenbluth potentials are computed by making use of a finite-difference scheme and multipole-expansion boundary conditions. Details of the numerical algorithms and results of the initial verification studies are discussed. (© 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)

  8. 4-ID-D optics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4-ID-D Beamline Optics A schetch of the major optical components for beam line 4-ID-D are shown above. All these components located in the B-station upstream from the D...

  9. Progress with the COGENT Edge Kinetic Code: Implementing the Fokker-Plank Collision Operator

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Dorf, M. A.; Cohen, R. H.; Dorr, M.; Hittinger, J.; Rognlien, T. D.

    2014-06-20

    Here, COGENT is a continuum gyrokinetic code for edge plasma simulations being developed by the Edge Simulation Laboratory collaboration. The code is distinguished by application of a fourth-order finite-volume (conservative) discretization, and mapped multiblock grid technology to handle the geometric complexity of the tokamak edge. The distribution function F is discretized in v∥ – μ (parallel velocity – magnetic moment) velocity coordinates, and the code presently solves an axisymmetric full-f gyro-kinetic equation coupled to the long-wavelength limit of the gyro-Poisson equation. COGENT capabilities are extended by implementing the fully nonlinear Fokker-Plank operator to model Coulomb collisions in magnetized edge plasmas.more » The corresponding Rosenbluth potentials are computed by making use of a finite-difference scheme and multipole-expansion boundary conditions. Details of the numerical algorithms and results of the initial verification studies are discussed. (© 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)« less

  10. Real ID Act in brief

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Real Estate Approvals Real Estate Approvals Real Estate Approvals Policy Flash 2011-61, Acquisition Guide Chapter 17.3, Acquisition, Use, and Disposal of Real Estate (attachment)

    Visitors » Badging, Badge Office » Real ID Act in brief Real ID Act in brief Effective Nov. 3, 2014, the Lab will implement requirements of the REAL ID Act. Contact Badge Office (505) 667-6901 Email REAL ID Act in brief REAL ID is a coordinated effort by the states and the Federal Government to improve the

  11. Blind Modal ID

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Projects » Blind Modal ID Blind separation of high-resolution vibration modes High-resolution video camera measurement of the structural vibration (the top video) could be separated into individual, monotone, vibration modes, which enable high-resolution visualization and analysis of structural dynamics. Contact Yongchao Yang (832) 335-3003 Email David Mascarenas dmascarenas@lanl.gov (505) 665-0881 Original video = Mode 1 - 6.34 Hz + Mode 2 - 17.96 Hz + Mode 3 - 25.89 Hz (higher

  12. Data ID Service

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ID Service First DOI for a DOE dataset was minted by OSTI and registered with DataCite on 8/10/2011 from the DOE Atmospheric Radiation Measurement (ARM) Climate Research Facility at Oak Ridge National Laboratory http://dx.doi.org/10.5439/1021460 Disseminate Our Results: "Our success should be measured not when a project is completed or an experiment concluded, but when scientifc and technical information is disseminated. Beyond broad availability of technical reports, e-prints and

  13. DOE/ID-Number

    Energy Savers [EERE]

    ... 21, 2015 ACRONYMS ASME B&PVC American Society of Mechanical Engineers Boiler and Pressure Vessel Code ASTM American Society for Testing and Materials CISCC Chloride Induced ...

  14. DHSIsotopeID

    Energy Science and Technology Software Center (OSTI)

    2007-12-18

    DHSIsotopeID is an application designed to read and analyze radiation measurement files taken by radiation measurement files taken by radiation portal monitors, and in particular, by the advanced spectroscopic portals. It requires that the data files be in the N42 file format, compliant with the interface control documents for DNDO radiation measurement files. It carries out an automated analysis to determine which isotopes are present in the spectra, and then presents the results in graphicalmore » form to the user. It also enables further post-processing and analysis, for example by performing further analysis on selected regions of interest of the spectrum, as designated by the user via the graphical interface.« less

  15. NAICS Codes @ Headquarters Description: NAICS Codes used at Headquarters Procurement Services

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NAICS Codes @ Headquarters Description: NAICS Codes used at Headquarters Procurement Services Filters: Signed Date only show values between , Contracting Agency ID show only ('8900'), Contracting Office ID show only ('00001'), Date Signed only show values between '05/01/2011' and '04/30/2012', Last Modified Date only show values between Contracting Agency ID: 8900, Contracting Office ID: 00001 NAICS Code NAICS Description Action Obligation 541519 OTHER COMPUTER RELATED SERVICES 341

  16. SLAC Dosimeter / ID Request Form A

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Feb 2009 (updated 13 May 2010) SLAC-I-760-0A07J-006-R010 1 of 2 SLAC Dosimeter / ID Request Form A (For applicants who have completed SLAC Environment, Safety, and Health Training) Sections 1-5 completed by applicant. Section 1: Contact Information Last name: First name: MI: Male Female Birth year (yyyy): Job title: Contact information/mailing address: City: State: Zip code: Country: Dept/Group: Phone number: Mail stop: Users or non-SLAC employees only: List employer, company, or university :

  17. DOE/ID-Number

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    76 Idaho National Laboratory Radiological Response Training Range Environmental Assessment Final October 2010 DOE/EA-1776 Idaho National Laboratory Radiological Response Training Range Environmental Assessment Final October 2010 Prepared for the U.S. Department of Energy Idaho Operations Office i CONTENTS GLOSSARY ................................................................................................................................................ iii EXECUTIVE SUMMARY

  18. DOE/ID-Number

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    822 Idaho National Laboratory Stand-Off Experiment (SOX) Range Environmental Assessment Final March 2011 DOE/EA-1822 Idaho National Laboratory Stand-Off Experiment (SOX) Range Environmental Assessment Final March 2011 Prepared for the U.S. Department of Energy Idaho Operations Office i CONTENTS ACRONYMS ............................................................................................................................................... iii GLOSSARY

  19. DOE-ID Twitter Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bradley Bugger doeidbug Bradley Bugger Want to know what's going on at DOE-Idaho? Follow DOE-ID public affairs supervisor Brad Bugger on Twitter at doeidbug. https://twitter.com/#!/doeidbug Editorial Date May 9, 2911 By Brad Bugger

  20. MagRad: A code to optimize the operation of superconducting magnets in a radiation environment

    SciTech Connect (OSTI)

    Yeaw, C.T.

    1995-12-31

    A powerful computational tool, called MagRad, has been developed which optimizes magnet design for operation in radiation fields. Specifically, MagRad has been used for the analysis and design modification of the cable-in-conduit conductors of the TF magnet systems in fusion reactor designs. Since the TF magnets must operate in a radiation environment which damages the material components of the conductor and degrades their performance, the optimization of conductor design must account not only for start-up magnet performance, but also shut-down performance. The degradation in performance consists primarily of three effects: reduced stability margin of the conductor; a transition out of the well-cooled operating regime; and an increased maximum quench temperature attained in the conductor. Full analysis of the magnet performance over the lifetime of the reactor includes: radiation damage to the conductor, stability, protection, steady state heat removal, shielding effectiveness, optimal annealing schedules, and finally costing of the magnet and reactor. Free variables include primary and secondary conductor geometric and compositional parameters, as well as fusion reactor parameters. A means of dealing with the radiation damage to the conductor, namely high temperature superconductor anneals, is proposed, examined, and demonstrated to be both technically feasible and cost effective. Additionally, two relevant reactor designs (ITER CDA and ARIES-II/IV) have been analyzed. Upon addition of pure copper strands to the cable, the ITER CDA TF magnet design was found to be marginally acceptable, although much room for both performance improvement and cost reduction exists. A cost reduction of 10-15% of the capital cost of the reactor can be achieved by adopting a suitable superconductor annealing schedule. In both of these reactor analyses, the performance predictive capability of MagRad and its associated costing techniques have been demonstrated.

  1. DOEDataID_24X30poster112515

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    osti.gov/home/doe-data-id-service

  2. UTILITY_ID","UTILNAME","STATE_CODE","YEAR","MONTH","RES_REV ...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...,92986.022,1106028.081,427520 471,"Amana Society Service Co","IA",2011,1,86,687,709,83,720...,104340,1293080,483884 12341,"MidAmerican Energy Co","IA",2011,1,45419.941,606535.866,5501...

  3. UTILITY_ID","UTILNAME","STATE_CODE","YEAR","MONTH","RES_REV ...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...8,271065,0,,,0,67455,928657,0 471,"Amana Society Service Co","IA","2007R",1,63,645,707,70,...0,85894,1256263,483594 12341,"MidAmerican Energy Co","IA","2007R",1,38128,474364,539478,25...

  4. UTILITY_ID","UTILNAME","STATE_CODE","YEAR","MONTH","RES_REV ...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...,90424.591,1142019.157,426909 471,"Amana Society Service Co","IA",2009,1,84,679,710,89,750...0,95160,1347761,482995 12341,"MidAmerican Energy Co","IA",2009,1,46327.143,619260.46,54557...

  5. UTILITY_ID","UTILNAME","STATE_CODE","YEAR","MONTH","RES_REV ...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...,90577.294,1124952.028,427803 471,"Amana Society Service Co","IA",2010,1,75,625,710,78,679...0,97698,1300060,483536 12341,"MidAmerican Energy Co","IA",2010,1,47406.924,646488.65,54729...

  6. UTILITY_ID","UTILNAME","STATE_CODE","YEAR","MONTH","RES_REV ...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...0,83215.98,1119242.926,425071 471,"Amana Society Service Co","IA",2008,1,68,645,708,73,737...0,83931,1337774,484355 12341,"MidAmerican Energy Co","IA",2008,1,40643.972,535012.07,54378...

  7. UTILITY_ID","UTILNAME","STATE_CODE","YEAR","MONTH","RES_REV ...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...7,260544,0,,,0,63754,932707,0 471,"Amana Society Service Co","IA",2006,1,50,590,699,58,692...,,93335,1228232,481559 12341,"MidAmerican Energy Co","IA",2006,1,37221,459792,532611,25092...

  8. UCRL-ID-117240 CHEETAH: A Next Generation Thermochemical Code

    Office of Scientific and Technical Information (OSTI)

    Clark Souers (510) 422-7796 Abstract CHEETAH 11 is an ... The first two reactions are trivial and therefore have no ... Of course, real experiments are always carried out on finite ...

  9. PERSONAL PROPERTY TRANSFER MEMORANDUM OF UNDERSTANDING DE..GM07..04ID11457

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PERSONAL PROPERTY TRANSFER MEMORANDUM OF UNDERSTANDING DE..GM07..04ID11457 BETWEEN THE DEPARTMENT OF ENERGY IDAHO OPERATIONS OFFICE AND THE COMMUNITY REUSE ORGANIZATION, INC. I. INTRODUCTION This plan establishes conditions under which personal property may be transferred from the United States Department of Energy, Idaho Operations Office (DOE-ID), an agency of the United States Government, to the Community Reuse Organization, Inc. (CRO), an Idaho Corporation. A. Background Section 3] 55 of

  10. Mo Year Report Period: EIA ID NUMBER:

    U.S. Energy Information Administration (EIA) Indexed Site

    Mo Year Report Period: EIA ID NUMBER: http:www.eia.govsurveyformeia14instructions.pdf Mailing Address: Secure File Transfer option available at: (e.g., PO Box, RR) https:...

  11. 1-ID Home Page | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1-ID Home Infrastructure Techniques Data Analysis Publications X-ray Resources Materials Physics and Engineering Group Useful Links Current APS status ESAF System GUP System X-Ray...

  12. IDS Climate Change and Development Centre Resources | Open Energy...

    Open Energy Info (EERE)

    IDS Climate Change and Development Centre Resources Jump to: navigation, search Tool Summary Name: IDS Climate Change and Development Centre Resources AgencyCompany Organization:...

  13. Id-1 and Id-2 genes and products as markers of epithelial cancer

    DOE Patents [OSTI]

    Desprez, Pierre-Yves; Campisi, Judith

    2008-09-30

    A method for detection and prognosis of breast cancer and other types of cancer. The method comprises detecting expression, if any, for both an Id-1 and an Id-2 genes, or the ratio thereof, of gene products in samples of breast tissue obtained from a patient. When expressed, Id-1 gene is a prognostic indicator that breast cancer cells are invasive and metastatic, whereas Id-2 gene is a prognostic indicator that breast cancer cells are localized and noninvasive in the breast tissue.

  14. Id-1 and Id-2 genes and products as markers of epithelial cancer

    DOE Patents [OSTI]

    Desprez, Pierre-Yves; Campisi, Judith

    2011-10-04

    A method for detection and prognosis of breast cancer and other types of cancer. The method comprises detecting expression, if any, for both an Id-1 and an Id-2 genes, or the ratio thereof, of gene products in samples of breast tissue obtained from a patient. When expressed, Id-1 gene is a prognostic indicator that breast cancer cells are invasive and metastatic, whereas Id-2 gene is a prognostic indicator that breast cancer cells are localized and noninvasive in the breast tissue.

  15. Nuclear Power 2010 Program Dominion Virginia Power Cooperative Project U.S. Department of Energy Cooperative Agreement DE-FC07-05ID14635 Construction and Operating License Demonstration Project Final Report

    SciTech Connect (OSTI)

    Eugene S. Grecheck David P. Batalo

    2010-11-30

    This report serves to summarize the major activities completed as part of Virginia Electric and Power Company's North Anna construction and operating license demonstration project with DOE. Project successes, lessons learned, and suggestions for improvement are discussed. Objectives of the North Anna COL project included preparation and submittal of a COLA to the USNRC incorporating ESBWR technology for a third unit a the North Anna Power Station site, support for the NRC review process and mandatory hearing, obtaining NRC approval of the COLA and issuance of a COL, and development of a business case necessary to support a decision on building a new nuclear power plant at the North Anna site.

  16. Employee Assistance Self-ID Form | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Employee Assistance Self-ID Form Employee Assistance Self-ID Form Request Emergency Assistance Self-ID Form-HQ PDF icon Employee Assistance Self-ID Form More Documents & Publications DOE HQ Special Needs Assistance in an Emergency DOE Emergency Special Needs Self-Identification Form DOE Emergency Exercise Feedback Form

  17. U-110: Samba Bug Lets Remote Users Execute Arbitrary Code | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    code on the target system. reference LINKS: Vendor Advisory Security Tracker ID 1026739 CVE-2012-0870 IMPACT ASSESSMENT: Medium Discussion: A vulnerability was reported in Samba....

  18. T-559: Stack-based buffer overflow in oninit in IBM Informix Dynamic Server (IDS) 11.50 allows remote execution

    Broader source: Energy.gov [DOE]

    Stack-based buffer overflow in oninit in IBM Informix Dynamic Server (IDS) 11.50 allows remote execution attackers to execute arbitrary code via crafted arguments in the USELASTCOMMITTED session environment option in a SQL SET ENVIRONMENT statement

  19. DOE-ID Procurement Services � the action team

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DOE-ID Procurement Services � the action team Passage of the American Recovery and Reinvestment Act of 2009 included billions of dollars in additional funding for energy efficiency improvements to U.S. homes and businesses. By early July, the U.S. Department of Energy was hard pressed to get that funding to the communities who needed it to reduce their power bills. That�s when DOE�s Office of Energy Efficiency asked the department�s Idaho Operations Office for support from DOE-ID�s

  20. Microsoft Word - DOE-ID-INL-10-017.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DOE-ID-INL-10-017 SECTION A. Project Title: ATR Complex Dial Room. SECTION B. Project Description: The proposed project is to construct and operate a new dial room at the Advanced Test Reactor Complex (ATR Complex) (formerly known as the Test Reactor Area [TRA]) in order to meet the U.S. Department of Energy Office of Nuclear Energy programmatic needs and to provide ongoing critical support at the Idaho National Laboratory (INL). The existing telecommunication and data systems located at the

  1. I.D I VI Figure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ~press - ,~,.--;~ 3.1 ,,~-.::;:.--- ~ ( 3.1 ( ;-; t\ I.D I VI Figure 9-1. Location of the original Cypress Grove Set-Aside and the Stave Island and Georgia Power replacement Areas. Set-Aside 9: Cypress Grove, Stave Island, and Georgia Power

  2. 2010 Annual Planning Summary for Idaho Operations Office (ID)

    Broader source: Energy.gov [DOE]

    Annual Planning Summaries briefly describe the status of ongoing NEPA compliance activities, any EAs expected to be prepared in the next 12 months, any EISs expected to be prepared in the next 24...

  3. Microsoft Word - 140602DOE-ID_OperationsSummary.docx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    was not properly isolated while conducting an inspection of an electrical receptacle in a trailer module office building. The electrical panel was shut, secured, and locked and...

  4. Facility Representative Program Outstanding at ID

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    June 19, 2007 Facility Representative Program Outstanding at ID Idaho's three DOE Complex-wide Facility Representative of the Year (FROTY) recipients at this year's conference pose for a photo shoot with Elvis. L to R: Dary Newbry 2005 FROTY, Bob Seal 2006 FROTY, Bob Knighten 2004 FROTY Facility representatives (FRs) are the eyes and ears of the federal government at the Idaho National Laboratory. They oversee the people, processes, facilities and systems that ensure safety at INL facilities.

  5. CHANGE IN ACCEPTABLE ID DOCUMENTS FOR JLAB ACCESS:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    JLAB ACCESS: The REAL ID Act (Public Law 109-13) now determines which state driver's license can be presented and accepted as a valid ID document for access to Jefferson Lab. The...

  6. Speech coding

    SciTech Connect (OSTI)

    Ravishankar, C., Hughes Network Systems, Germantown, MD

    1998-05-08

    Speech is the predominant means of communication between human beings and since the invention of the telephone by Alexander Graham Bell in 1876, speech services have remained to be the core service in almost all telecommunication systems. Original analog methods of telephony had the disadvantage of speech signal getting corrupted by noise, cross-talk and distortion Long haul transmissions which use repeaters to compensate for the loss in signal strength on transmission links also increase the associated noise and distortion. On the other hand digital transmission is relatively immune to noise, cross-talk and distortion primarily because of the capability to faithfully regenerate digital signal at each repeater purely based on a binary decision. Hence end-to-end performance of the digital link essentially becomes independent of the length and operating frequency bands of the link Hence from a transmission point of view digital transmission has been the preferred approach due to its higher immunity to noise. The need to carry digital speech became extremely important from a service provision point of view as well. Modem requirements have introduced the need for robust, flexible and secure services that can carry a multitude of signal types (such as voice, data and video) without a fundamental change in infrastructure. Such a requirement could not have been easily met without the advent of digital transmission systems, thereby requiring speech to be coded digitally. The term Speech Coding is often referred to techniques that represent or code speech signals either directly as a waveform or as a set of parameters by analyzing the speech signal. In either case, the codes are transmitted to the distant end where speech is reconstructed or synthesized using the received set of codes. A more generic term that is applicable to these techniques that is often interchangeably used with speech coding is the term voice coding. This term is more generic in the sense that the coding techniques are equally applicable to any voice signal whether or not it carries any intelligible information, as the term speech implies. Other terms that are commonly used are speech compression and voice compression since the fundamental idea behind speech coding is to reduce (compress) the transmission rate (or equivalently the bandwidth) And/or reduce storage requirements In this document the terms speech and voice shall be used interchangeably.

  7. Facility Representative Program ID Selects FR of the Year

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facility Representative Program ID Selects FR of the Year John Martin DOE-ID Facility Representative John Martin DOE-ID Facility Representative of the Year. John Martin was selected as DOE-ID's Facility Representative of the Year and the office's nominee for the 2007 DOE Facility Representative of the Year Award. John was selected from an exceptional field of candidates to represent DOE-ID at the Facility Representative Annual Workshop in Las Vegas this May. Each year the Department of Energy

  8. CHANGE IN ACCEPTABLE ID DOCUMENTS FOR JLAB ACCESS:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CHANGE IN ACCEPTABLE ID DOCUMENTS FOR JLAB ACCESS: The REAL ID Act (Public Law 109-13) now determines which state driver's license can be presented and accepted as a valid ID document for access to Jefferson Lab. The following states/US territories have been determined by the U.S. Department of Homeland Security to have failed to comply with the REAL ID Act: American Samoa, Illinois, Minnesota, Missouri, and Washington. As of March 2, 2015, Jefferson Lab will begin using the REAL ID Act

  9. Idaho National Lab Contract DE-AC07-05ID14517

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contract No. DE-AC07-05ID14517 Modifications You are here: DOE-ID Home > Contracts, Financial Assistance & Solicitations > INL Contract > INL Basic Contract Blue Line Free Acrobat Reader Link The documents listed below represent an electronic copy of modifications to the contract for the Management and Operation of the INL awarded to Battelle Energy Alliance, LLC. These documents are in PDF format. The Adobe Reader is required to access them. If you do not currently have the Acrobat

  10. Airless drying -- Developments since IDS'94

    SciTech Connect (OSTI)

    Stubbing, T.J.

    1999-09-01

    Since its introduction to IDS'94 delegates, significant progress has been made with the development of airless drying technology. The ceramic industry internationally is beginning to benefit from both the energy use and drying time reductions it achieves, while on the basis of further theoretical work carried out since 1993 other industries, including the bioenergy sector, should also soon begin to exploit its advantages. As global warming becomes a reality and oil reserves decline, superheated steam drying and gasification of biomass will contribute to the mitigation of those problems.

  11. Property:DSIRE/Id | Open Energy Information

    Open Energy Info (EERE)

    DSIRE Incentive Code. Pages using the property "DSIREId" Showing 25 pages using this property. (previous 25) (next 25) 2 2003 Climate Change Fuel Cell Buy-Down Program...

  12. Simulation of loss of RHR during midloop operations and the role of steam generators in decay heat removal using the RELAP5/MOD3 code

    SciTech Connect (OSTI)

    Hassan, Y.A.; Raja, L.L. . Dept. of Nuclear Engineering)

    1993-09-01

    Loss of residual heat removal during midloop operations was simulated for a typical four-loop pressurized water reactor operated under reduced inventory level using the RELAP5/MOD3 thermal-hydraulic code. Two cases are considered here: one for an intact reactor coolant system with no vents and the other for an open system with a vent in the pressurizer. The presence of air in the reactor coolant system is modeled, and its effect on the transients is calculated. The steam generators are considered under wet lay up with water in the secondary covering the U-tubes. The system is pressurized once the water starts boiling in the core. Higher system pressures are seen for the closed-vent case when compared with the open-vent case. Reflux condensation occurs in the steam generator U-tubes preventing complete uncovery of the core and aiding in decay heat removal. The total heat removed by the steam generators is one-third of that produced by the core. The hot leg and vessel upper head pressurization cause the reactor vessel to act as a manometer where the core level drops and the downcomer level rises. This phenomenon is seen at different transient times for the two cases. Since it occurs only for a brief period, the rest of the transient is unaffected. Fuel centerline and clad temperatures are observed to be below the accepted safety limits throughout both transients.

  13. RAPID/Roadmap/14-ID-d | Open Energy Information

    Open Energy Info (EERE)

    Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal Hydropower Solar Tools Contribute Contact Us 401 Water Quality Certification (14-ID-d) IDEQ is...

  14. RAPID/Roadmap/3-ID-b | Open Energy Information

    Open Energy Info (EERE)

    Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal Hydropower Solar Tools Contribute Contact Us State Land Access Overview (3-ID-b) If a project is...

  15. RAPID/Roadmap/14-ID-f | Open Energy Information

    Open Energy Info (EERE)

    Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal Hydropower Solar Tools Contribute Contact Us 401 NPDES Water Quality Certification (14-ID-f) Idaho...

  16. RAPID/Roadmap/4-ID-a | Open Energy Information

    Open Energy Info (EERE)

    Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal Hydropower Solar Tools Contribute Contact Us State Exploration Process (4-ID-a) 04IDAStateExploration...

  17. RAPID/Roadmap/11-ID-a | Open Energy Information

    Open Energy Info (EERE)

    Toolkit BETA About Bulk Transmission Geothermal Hydropower Solar Tools Contribute Contact Us State Cultural Considerations (11-ID-a) Idaho has a statute that provides state...

  18. RAPID/Roadmap/5-ID-a | Open Energy Information

    Open Energy Info (EERE)

    Geothermal Hydropower Solar Tools Contribute Contact Us Drilling and Well Development (5-ID-a) 05IDADrillingWellDevelopment.pdf Error creating thumbnail: Page number not in...

  19. RAPID/Roadmap/17-ID-a | Open Energy Information

    Open Energy Info (EERE)

    Contact Us Aesthetic Resource Assessment (17-ID-a) 17IDAAestheticResourceAssessment.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number...

  20. RAPID/Roadmap/9-ID-a | Open Energy Information

    Open Energy Info (EERE)

    Environmental Review Process (9-ID-a) Add overview. 09IDAStateEnvironmentalProcess.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number...

  1. RAPID/Roadmap/14-ID-c | Open Energy Information

    Open Energy Info (EERE)

    Geothermal Hydropower Solar Tools Contribute Contact Us Underground Injection Control Permit (14-ID-c) Rule 40 of the Idaho Department of Water Resources' Drilling for...

  2. Temporary EPA ID Number Request | Open Energy Information

    Open Energy Info (EERE)

    Temporary EPA ID Number RequestLegal Abstract A developer that may "generate hazardous waste only from an episodic event" may instead apply for a temporary hazardous waste...

  3. RAPID/Roadmap/8-ID-e | Open Energy Information

    Open Energy Info (EERE)

    ID-e < RAPID | Roadmap Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal Hydropower Solar Tools...

  4. RAPID/Roadmap/3-ID-e | Open Energy Information

    Open Energy Info (EERE)

    ID-e < RAPID | Roadmap Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal Hydropower Solar Tools...

  5. RAPID/Roadmap/14-ID-b | Open Energy Information

    Open Energy Info (EERE)

    RAPIDRoadmap14-ID-b < RAPID | Roadmap Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal...

  6. RAPID/Roadmap/8-ID-a | Open Energy Information

    Open Energy Info (EERE)

    RAPIDRoadmap8-ID-a < RAPID | Roadmap Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal Hydropower...

  7. RAPID/Roadmap/6-ID-b | Open Energy Information

    Open Energy Info (EERE)

    RAPIDRoadmap6-ID-b < RAPID | Roadmap Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal Hydropower...

  8. RAPID/Roadmap/15-ID-a | Open Energy Information

    Open Energy Info (EERE)

    BETA About Bulk Transmission Geothermal Hydropower Solar Tools Contribute Contact Us Air Quality Permit - Permit to Construct (15-ID-a) The Idaho Department of Environmental...

  9. RAPID/Roadmap/12-ID-a | Open Energy Information

    Open Energy Info (EERE)

    Contact Us State Biological Resource Considerations (12-ID-a) The Idaho Department of Fish & Game preserves wildlife against any direct take, including wild animals, birds, and...

  10. Mechanical code comparator

    DOE Patents [OSTI]

    Peter, Frank J.; Dalton, Larry J.; Plummer, David W.

    2002-01-01

    A new class of mechanical code comparators is described which have broad potential for application in safety, surety, and security applications. These devices can be implemented as micro-scale electromechanical systems that isolate a secure or otherwise controlled device until an access code is entered. This access code is converted into a series of mechanical inputs to the mechanical code comparator, which compares the access code to a pre-input combination, entered previously into the mechanical code comparator by an operator at the system security control point. These devices provide extremely high levels of robust security. Being totally mechanical in operation, an access control system properly based on such devices cannot be circumvented by software attack alone.

  11. Id-1 and Id-2 genes and products as therapeutic targets for treatment of breast cancer and other types of carcinoma

    DOE Patents [OSTI]

    Desprez, Pierre-Yves; Campisi, Judith

    2014-09-30

    A method for treatment and amelioration of breast, cervical, ovarian, endometrial, squamous cells, prostate cancer and melanoma in a patient comprising targeting Id-1 or Id-2 gene expression with a delivery vehicle comprising a product which modulates Id-1 or Id-2 expression.

  12. Data ID Service | DOE Data Explorer

    Office of Scientific and Technical Information (OSTI)

    for discovery of additional data, specialized interfaces, toolkits for data analysis, etc. Because OSTI is the operating agent for Science.gov and World Wide Science.org,...

  13. Extension of the supercritical carbon dioxide brayton cycle to low reactor power operation: investigations using the coupled anl plant dynamics code-SAS4A/SASSYS-1 liquid metal reactor code system.

    SciTech Connect (OSTI)

    Moisseytsev, A.; Sienicki, J. J.

    2012-05-10

    Significant progress has been made on the development of a control strategy for the supercritical carbon dioxide (S-CO{sub 2}) Brayton cycle enabling removal of power from an autonomous load following Sodium-Cooled Fast Reactor (SFR) down to decay heat levels such that the S-CO{sub 2} cycle can be used to cool the reactor until decay heat can be removed by the normal shutdown heat removal system or a passive decay heat removal system such as Direct Reactor Auxiliary Cooling System (DRACS) loops with DRACS in-vessel heat exchangers. This capability of the new control strategy eliminates the need for use of a separate shutdown heat removal system which might also use supercritical CO{sub 2}. It has been found that this capability can be achieved by introducing a new control mechanism involving shaft speed control for the common shaft joining the turbine and two compressors following reduction of the load demand from the electrical grid to zero. Following disconnection of the generator from the electrical grid, heat is removed from the intermediate sodium circuit through the sodium-to-CO{sub 2} heat exchanger, the turbine solely drives the two compressors, and heat is rejected from the cycle through the CO{sub 2}-to-water cooler. To investigate the effectiveness of shaft speed control, calculations are carried out using the coupled Plant Dynamics Code-SAS4A/SASSYS-1 code for a linear load reduction transient for a 1000 MWt metallic-fueled SFR with autonomous load following. No deliberate motion of control rods or adjustment of sodium pump speeds is assumed to take place. It is assumed that the S-CO{sub 2} turbomachinery shaft speed linearly decreases from 100 to 20% nominal following reduction of grid load to zero. The reactor power is calculated to autonomously decrease down to 3% nominal providing a lengthy window in time for the switchover to the normal shutdown heat removal system or for a passive decay heat removal system to become effective. However, the calculations reveal that the compressor conditions are calculated to approach surge such that the need for a surge control system for each compressor is identified. Thus, it is demonstrated that the S-CO{sub 2} cycle can operate in the initial decay heat removal mode even with autonomous reactor control. Because external power is not needed to drive the compressors, the results show that the S-CO{sub 2} cycle can be used for initial decay heat removal for a lengthy interval in time in the absence of any off-site electrical power. The turbine provides sufficient power to drive the compressors. Combined with autonomous reactor control, this represents a significant safety advantage of the S-CO{sub 2} cycle by maintaining removal of the reactor power until the core decay heat falls to levels well below those for which the passive decay heat removal system is designed. The new control strategy is an alternative to a split-shaft layout involving separate power and compressor turbines which had previously been identified as a promising approach enabling heat removal from a SFR at low power levels. The current results indicate that the split-shaft configuration does not provide any significant benefits for the S-CO{sub 2} cycle over the current single-shaft layout with shaft speed control. It has been demonstrated that when connected to the grid the single-shaft cycle can effectively follow the load over the entire range. No compressor speed variation is needed while power is delivered to the grid. When the system is disconnected from the grid, the shaft speed can be changed as effectively as it would be with the split-shaft arrangement. In the split-shaft configuration, zero generator power means disconnection of the power turbine, such that the resulting system will be almost identical to the single-shaft arrangement. Without this advantage of the split-shaft configuration, the economic benefits of the single-shaft arrangement, provided by just one turbine and lower losses at the design point, are more important to the overall cycle performance. Therefore, the single-shaft

  14. JLab Registration/International Services - Researcher/Visitor ID

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Requirements Researcher/Visitor ID Requirements CHANGE IN ACCEPTABLE ID DOCUMENTS FOR JLAB ACCESS U.S. Citizens must bring a valid Government issued ID card that contains a photo such as a passport or valid driver's license. Non-driver photo identification cards issued by the Department of Motor Vehicles can be used as proof of identification. Lawful Permanent Resident of the United States must bring their Green Card or passport with valid I-551 stamp AND a valid government issued

  15. Compiling Codes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    wrappers will automatically provide the necessary MPI include files and libraries. For Fortran source code use mpif90: % mpif90 -o example.x example.f90 For C source code use...

  16. NAICS Codes @ Headquarters | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NAICS Codes @ Headquarters NAICS Codes @ Headquarters A listing of NAICS codes used at Headquarters Procurement Services PDF icon NAICS Codes @ Headquarters.pdf More Documents & Publications Product Service Codes @ Headquarters Management & Operating Subcontract Reporting Capability (MOSRC) Downloads Historical Procurement Information

  17. Product Service Codes @ Headquarters | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Product Service Codes @ Headquarters Product Service Codes @ Headquarters A listing of Product Service Codes used at Headquarters Procurement Services PDF icon Produce Service Codes @ Headquarters.pdf More Documents & Publications NAICS Codes @ Headquarters Management & Operating Subcontract Reporting Capability (MOSRC) Downloads Federal Reporting Recipient Information

  18. Beamline 4-ID-C | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    C 4-ID-C Home Recent Publications XSD-MM Home MM Advisory Committees FAQs Beamline Info Instrumentation Magnet Materials Internal Useful Links Current APS status ESAF System GUP...

  19. Microsoft Word - DOE-ID-INL-15-070.docx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DOE-ID-INL-15-070 excluded petroleum and natural gas products that pre-exist in the environment such that there would be uncontrolled or unpermitted releases; (4) have the...

  20. RAPID/Roadmap/3-ID-d | Open Energy Information

    Open Energy Info (EERE)

    Toolkit BETA About Bulk Transmission Geothermal Hydropower Solar Tools Contribute Contact Us Land Use Permit (3-ID-d) The Idaho Department of Lands issues Land Use Permits for...

  1. RAPID/Roadmap/6-ID-c | Open Energy Information

    Open Energy Info (EERE)

    Tools Contribute Contact Us Drinking Water Permit (6-ID-c) 06IDCDrinkingWaterPermit.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number...

  2. RAPID/Roadmap/7-ID-a | Open Energy Information

    Open Energy Info (EERE)

    Contact Us Power Plant Siting Process (7-ID-a) 07IDAPowerPlantSitingConstruction.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number...

  3. RAPID/Roadmap/13-ID-a | Open Energy Information

    Open Energy Info (EERE)

    Contribute Contact Us State Land Use Assessment (13-ID-a) 13IDALandUseAssessment.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number...

  4. Microsoft Word - DOE-ID-INL-14-034.docx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    No.: DOE-ID-INL-14-034 pollutants, contaminants, or CERCLA-excluded petroleum and natural gas products that pre-exist in the environment such that there would be uncontrolled...

  5. RAPID/Roadmap/19-ID-a | Open Energy Information

    Open Energy Info (EERE)

    to 19-ID-a.5 - Is a Change in Point of Diversion, Place of Use, Period of Use, or Nature of Use Needed for an Existing Water Right If the proposed activity will require a...

  6. RAPID/Roadmap/6-ID-a | Open Energy Information

    Open Energy Info (EERE)

    load A load is overlegal if the load is: width over 8'6"; Over 14' tall; Truck and trailer combined are over 75' long; or The load weighs over 80,000 pounds. 6-ID-a.2 - Meet...

  7. RAPID/Roadmap/18-ID-b | Open Energy Information

    Open Energy Info (EERE)

    demonstrate insurance coverage that would protect the community from incurring clean-up costs in the event of the developer's insolvency. 18-ID-b.5 - Facility siting license...

  8. Vermont Hazardous Waste Handler Site ID Form | Open Energy Information

    Open Energy Info (EERE)

    to library Legal Document- Permit ApplicationPermit Application: Vermont Hazardous Waste Handler Site ID FormLegal Abstract This form is used to notify the Vermont Agency of...

  9. RAPID/Roadmap/3-ID-a | Open Energy Information

    Open Energy Info (EERE)

    the IDL becomes involved only if they are notified and the Land Board requests their involvement. 3-ID-a.3 - Consultation (optional) IDL may meet with any other state agency to...

  10. T-642: RSA SecurID update to Customers

    Broader source: Energy.gov [DOE]

    RSA investigation has revealed that the attack resulted in certain information being extracted from RSA's systems. Some of that information is related to RSA's SecurID two-factor authentication products

  11. NERSC Helps Physicists ID New Molecules With Unique Features

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NERSC Helps Physicists ID New Molecules With Unique Features NERSC Helps Physicists ID New Molecules With Unique Features Hollow magnetic cage molecules may have applications in technology, healthcare August 10, 2013 NERSC supercomputing resources helped Virginia Commonwealth University (VCU) researchers determine it may be possible to create large, hollow magnetic cage molecules that could be used in medicine as a drug delivery system to noninvasively treat tumors and in other emerging

  12. Physicists ID Mechanism that Stabilizes Plasma in Tokamaks

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Physicists ID Mechanism that Stabilizes Plasma in Tokamaks Physicists ID Mechanism that Stabilizes Plasma in Tokamaks Calculations Run at NERSC Create 3D Simulations of Fusion Plasmas January 4, 2016 Contact: Kathy Kincade, kkincade@lbl.gov, +1 510 495 2124 jardinfusion A cross-section of the virtual plasma showing where the magnetic field lines intersect the plane. The central section has field lines that rotate exactly once. Image: Stephen Jardin A team of physicists led by Stephen Jardin of

  13. Final Report: DOE/ID/14215

    SciTech Connect (OSTI)

    Kenneth Bryden; J. Richard Hess; Thomas Ulrich; Robert Zemetra

    2008-08-18

    The proposed straw separation system developed in the research project harvests the large internode sections of the straw which has the greater potential as a feedstock for lignocellulosic ethanol production while leaving the chaff and nodes in the field. This strategy ensures sustainable agriculture by preventing the depletion of soil minerals, and it restores organic matter to the soil in amounts and particle sizes that accommodate farmers needs to keep tillage and fertilizer costs low. A ton of these nutrient-rich plant tissues contains as much as $10.55 worth of fertilizer (economic and energy benefits), in terms of nitrogen, phosphorus, potassium, and other nutrients provided to the soil when incorporated by tillage instead of being burned. Biomass conversion to fermentable sugars for the purpose of producing fuels, chemicals, and other industrial products is well understood. Most bioenergy strategies rely on low-cost fermentable sugars for sustainability and economic viability in the marketplace. Exploitation of the whole cropspecifically, wheat straw or other plant material currently regarded as residue or wasteis a practical approach for obtaining a reliable and low-cost source of sugars. However, industrial-scale production of sugars from wheat straw, while technically feasible, is plagued by obstacles related to capital costs, energy consumption, waste streams, production logistics, and the quality of the biomass feedstock. Currently available separation options with combine harvesters are not able to achieve sufficient separation of the straw/stover and chaff streams to realize the full potential of selective harvest. Since ethanol yield is a function of feedstock structural carbohydrate content, biomass anatomical fractions of higher product yield can have a significant beneficial impact on minimum ethanol selling price. To address this advanced biomass separation computation engineering models were developed to more effectively and efficiently engineer high-fidelity and high throughput separation systems for biomass components. INL and Iowa State University developed a computational modeling strategy for simulating multi-phase flow with an integrated solver using various computational fluid dynamics (CFD) codes. ISU set up a classic multi-phase test problem to be solved by the various CFD codes. The benchmark case was based on experimental data for bubble gas holdup and bed expansion for a gas/solid fluidized bed. Preliminary fluidization experiments identified some unexpected fluidization behavior, where rather than the bed uniformly fluidizing, a blow out would occur where a hole would open up in the bed through which the air would preferentially flow, resulting in erratic fluidization. To improve understanding of this phenomena and aid in building a design tool, improved computational tools were developed. The virtual engineering techniques developed were tested and utilized to design a separation baffle in a CNH combine. A computational engineering approach involving modeling, analysis, and simulation was used in the form of virtual engineering to design a baffle separator capable of accomplishing the high-fidelity residue separation established by the performance targets. Through the use of the virtual engineering model, baffle designs were simulated to (1) determine the effect of the baffle on the airflow of the combine cleaning system, and (2) predict the effectiveness of the baffle in separating the residue streams. A baffle design was selected based on the virtual engineering modeling, built into the INL selective harvest test combine. The result of the baffle changes improved the crop separation capability of the combine, enabling downstream improvement in composition and theoretical ethanol yield. In addition, the positive results from the application of the virtual engineering tools to the CNH combine design resulted in further application of these tools to other INL areas of research. INL and the University of Idaho identified, characterized, and modified a key plant biosynt

  14. RH-TRU Waste Content Codes

    SciTech Connect (OSTI)

    Washington TRU Solutions

    2007-07-01

    The Remote-Handled Transuranic (RH-TRU) Content Codes (RH-TRUCON) document describes the inventory of RH-TRU waste within the transportation parameters specified by the Remote-Handled Transuranic Waste Authorized Methods for Payload Control (RH-TRAMPAC).1 The RH-TRAMPAC defines the allowable payload for the RH-TRU 72-B. This document is a catalog of RH-TRU 72-B authorized contents by site. A content code is defined by the following components: A two-letter site abbreviation that designates the physical location of the generated/stored waste (e.g., ID for Idaho National Laboratory [INL]). The site-specific letter designations for each of the sites are provided in Table 1. A three-digit code that designates the physical and chemical form of the waste (e.g., content code 317 denotes TRU Metal Waste). For RH-TRU waste to be transported in the RH-TRU 72-B, the first number of this three-digit code is 3. The second and third numbers of the three-digit code describe the physical and chemical form of the waste. Table 2 provides a brief description of each generic code. Content codes are further defined as subcodes by an alpha trailer after the three-digit code to allow segregation of wastes that differ in one or more parameter(s). For example, the alpha trailers of the subcodes ID 322A and ID 322B may be used to differentiate between waste packaging configurations. As detailed in the RH-TRAMPAC, compliance with flammable gas limits may be demonstrated through the evaluation of compliance with either a decay heat limit or flammable gas generation rate (FGGR) limit per container specified in approved content codes. As applicable, if a container meets the watt*year criteria specified by the RH-TRAMPAC, the decay heat limits based on the dose-dependent G value may be used as specified in an approved content code. If a site implements the administrative controls outlined in the RH-TRAMPAC and Appendix 2.4 of the RH-TRU Payload Appendices, the decay heat or FGGR limits based on a 10-day shipping period (rather than the standard 60-day shipping period) may be used as specified in an approved content code. Requests for new or revised content codes may be submitted to the WIPP RH-TRU Payload Engineer for review and approval, provided all RH-TRAMPAC requirements are met.

  15. 1,CONTRACT ID CODE PAGE OF PAGES AMENDMENT OF SOLICITATION/MODIFICATIO...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    shall plan and perform large scale testing of pulse j et mixed vessels for both non-Newtonian and Newtonian vessel designs. Scope to be addressed includes planning,...

  16. Remote-Handled Transuranic Content Codes

    SciTech Connect (OSTI)

    Washington TRU Solutions

    2006-12-01

    The Remote-Handled Transuranic (RH-TRU) Content Codes (RH-TRUCON) document describes the inventory of RH-TRU waste within the transportation parameters specified by the Remote-Handled Transuranic Waste Authorized Methods for Payload Control (RH-TRAMPAC).1 The RH-TRAMPAC defines the allowable payload for the RH-TRU 72-B. This document is a catalog of RH-TRU 72-B authorized contents by site. A content code is defined by the following components: A two-letter site abbreviation that designates the physical location of the generated/stored waste (e.g., ID for Idaho National Laboratory [INL]). The site-specific letter designations for each of the sites are provided in Table 1. A three-digit code that designates the physical and chemical form of the waste (e.g., content code 317 denotes TRU Metal Waste). For RH-TRU waste to be transported in the RH-TRU 72-B, the first number of this three-digit code is 3. The second and third numbers of the three-digit code describe the physical and chemical form of the waste. Table 2 provides a brief description of each generic code. Content codes are further defined as subcodes by an alpha trailer after the three-digit code to allow segregation of wastes that differ in one or more parameter(s). For example, the alpha trailers of the subcodes ID 322A and ID 322B may be used to differentiate between waste packaging configurations. As detailed in the RH-TRAMPAC, compliance with flammable gas limits may be demonstrated through the evaluation of compliance with either a decay heat limit or flammable gas generation rate (FGGR) limit per container specified in approved content codes. As applicable, if a container meets the watt*year criteria specified by the RH-TRAMPAC, the decay heat limits based on the dose-dependent G value may be used as specified in an approved content code. If a site implements the administrative controls outlined in the RH-TRAMPAC and Appendix 2.4 of the RH-TRU Payload Appendices, the decay heat or FGGR limits based on a 10-day shipping period (rather than the standard 60-day shipping period) may be used as specified in an approved content code.

  17. Compiling Codes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Compiling Codes Compiling Codes Overview There are three compiler suites available on Carver: Portland Group (PGI), Intel, and GCC. The PGI compilers are the default, to provide compatibility with other NERSC platforms. Compiler bugs affecting NERSC users are listed at PGI compiler bugs. Because Carver uses Intel processors, many benchmarks have shown significantly better performance when compiled with the Intel compilers. Compiler bugs affecting NERSC users are listed at Intel bugs. The GCC

  18. Microsoft Word - DOE-ID-13-044 Idaho EC B3-6.doc

    Office of Environmental Management (EM)

    10-2008 CONCLUDING MATERIAL Review Activity: Preparing Activity: DOE Operations Offices Field Offices DOE-HS-11 NA NNSA Service Center HS CH OH Project Number: EM ID GFO FSC 6910-0069 NE NV SC OR RL OAK SR RP National Laboratories Area Offices BNL Pantex Site Office LLNL Ashtabula Area Office LANL Carlsbad Area Office PNNL Columbus Area Office Sandia Fernald Area Office FNL Los Alamos Area Office West Valley Area Office Kirtland Area Office Pinellas Area Office Kansas City Area Office Miamisburg

  19. Idaho Operations Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    31,2010 Rod Wetsch 420 County Road 26 Beulah, ND 58523 SUBJECT: FOIA Response (10-035) (ID-2010-01986-F) (OM-PA-I0-061) Dear Mr. Wetsch: This is in final response from the Idaho Operations Office (DOE-ID), regarding your June 2, 2010, Freedom of Information Act Request. In that e-mail you requested documents relating to: "vulnerabilities of running desktop applications (Word, Excel, and PowerPoint) on the same platform as the process control systems applications." The administrator for

  20. An interactive version of PropID for the aerodynamic design of horizontal axis wind turbines

    SciTech Connect (OSTI)

    Ninham, C.P.; Selig, M.S.

    1997-12-31

    The original PROP code developed by AeroVironment, Inc. and its various versions have been in use for wind turbine performance predictions for over ten years. Due to its simplicity, rapid execution times and relatively accurate predictions, it has become an industry standard in the US. The Europeans have similar blade-element/momentum methods in use for design. Over the years, PROP has continued to be improved (in its accuracy and capability), e.g., PROPSH, PROPPC, PROP93, and PropID. The latter version incorporates a unique inverse design capability that allows the user to specify the desired aerodynamic characteristics from which the corresponding blade geometry is determined. Through this approach, tedious efforts related to manually adjusting the chord, twist, pitch and rpm to achieve desired aerodynamic/performance characteristics can be avoided, thereby making it possible to perform more extensive trade studies in an effort to optimize performance. Past versions of PropID did not have supporting graphics software. The more current version to be discussed includes a Matlab-based graphical user interface (GUI) and additional features that will be discussed in this paper.

  1. Compiling Codes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Compiling Codes Compiling Codes Overview Open Mpi is the the only MPI library available on Euclid. This implementation of MPI-2 is described at Open MPI: Open Source High Performance Computing. The default compiler suite is from the Portland Group which is loaded by default at login, along with the PGI compiled Open MPI environment. % module list Currently Loaded Modulefiles: 1) pgi/10.8 2) openmpi/1.4.2 Basic Example Open MPI provides a convenient set of wrapper commands which you should use in

  2. AMENDMENT OF SOLlClTATlONlMODlFlCATlON OF CONTRACT ID PAGE I OF 2

    National Nuclear Security Administration (NNSA)

    / ' ID PAGE I OF 2 PAGES - . Albuquerque, NM 87185-5400 I Amarillo, TX 79120 I ( DE-AC04-00AL66620 10B. DATED (SEE ITEM 13) 8. NAME AND ADDRESS OF CONTRACTOR (No., street, county, state, ZIP Code) Babcock & W ~ ~ C O X Technical Services Pantex, LLC 800 Main Street Lynchburg, VA 24505 2 . AMENDMENTIMODIFICATION NO. MI50 9A. AMENDMENT OF SOLICITATION NO. 9B. DATED (SEE ITEM 11) 10A. MODIFICATION OF CONTRACTIORDER NO. Offers must acknowledge receipt of this amendment prior to the hour and date

  3. DOE-ID FOIA Electronic Reading Room Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electronic Reading Room Documents Electronic Reading Room Documents The information contained here represents DOE-ID's responses to FOIA requests that have been or are likely to be of broad public interest, as stipulated under the Electronic Freedom of Information Act Amendments of 1996. As required by the Act, documents created after November 1997, which meet the criteria for electronic presentation, will be made available here. Other documents requested under the FOIA will also be made

  4. Poster - DOE Data ID Service | OSTI, US Dept of Energy, Office of

    Office of Scientific and Technical Information (OSTI)

    Scientific and Technical Information ID Service Document Files and References Available Downloads for this Document: application/pdf icon Poster DOE Data ID Service Last updated on Tuesday 22 December

  5. DOI-BLM-ID-T020-2012-0003-CX | Open Energy Information

    Open Energy Info (EERE)

    ID-T020-2012-0003-CX Jump to: navigation, search NEPA Document Collection for: DOI-BLM-ID-T020-2012-0003-CX CX for GeothermalExploration CX for Seismic Survey at ?? Geothermal...

  6. Finding Utility Companies Under a Given Utility ID | OpenEI Community

    Open Energy Info (EERE)

    utility company pages under a given utility id. From the Special Ask page, in the query box enter the following: Category:Utility CompaniesEiaUtilityId::15248 substituting...

  7. EIS-0471: Areva Eagle Rock Enrichment Facility in Bonneville County, ID |

    Energy Savers [EERE]

    Department of Energy 1: Areva Eagle Rock Enrichment Facility in Bonneville County, ID EIS-0471: Areva Eagle Rock Enrichment Facility in Bonneville County, ID May 20, 2011 delete me old download page duplicate

  8. A 12-MW-scale pilot study of in-duct scrubbing (IDS) using a rotary atomizer

    SciTech Connect (OSTI)

    Samuel, E.A.; Murphy, K.R.; Demian, A.

    1989-11-01

    A low-cost, moderate-removal efficiency, flue gas desulfurization (FGD) technology was selected by the US Department of Energy for pilot demonstration in its Acid Rain Precursor Control Technology Initiative. The process, identified as In-Duct Scrubbing (IDS), applies rotary atomizer techniques developed for lime-based spray dryer FGD while utilizing existing flue gas ductwork and particulate collectors. IDS technology is anticipated to result in a dry desulfurization process with a moderate removal efficiency (50% or greater) for high-sulfur coal-fired boilers. The critical elements for successful application are: (1) adequate mixing of sorbent droplets with flue gas for efficient reaction contact, (2) sufficient residence time to produce a non-wetting product, and (3) appropriate ductwork cross-sectional area to prevent deposition of wet reaction products before particle drying is comple. The ductwork in many older plants, previously modified to meet 1970 Clean Air Act requirements for particulate control, usually meet these criteria. A 12 MW-scale IDS pilot plant was constructed at the Muskingum River Plant of the American Electric Power System. The pilot plant, which operates from a slipstrem attached to the air-preheater outlet duct from the Unit 5 boiler at the Muskingum River Plant (which burns about 4% sulfur coal), is equipped with three atomizer stations to test the IDS concept in vertical and horizontal configurations. In addition, the pilot plant is equipped to test the effect of injecting IDS off- product upstream of the atomizer, on SO{sub 2}and NO{sub x} removals.

  9. code release

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    code release - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear

  10. Material Safety Data Sheet MSDS ID NO.: 0137SPE012

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Material Safety Data Sheet MSDS ID NO.: 0137SPE012 Revision date: 05/25/2011 1. CHEMICAL PRODUCT AND COMPANY INFORMATION Product name: Speedway E85 Synonym: Speedway ED75/ED85; E-75; E75; E-85; E85; Ethanol/Gasoline Fuel Blend; Fuel Ethanol ED75/ED85 Chemical Family: Gasoline/Ethanol Formula: Mixture Manufacturer: Speedway LLC P.O. Box 1500 Enon, OH 45501 Other information: 419-421-3070 Emergency telephone number: 877-627-5463 2. COMPOSITION/INFORMATION ON INGREDIENTS E85 is a mixture of ethyl

  11. IdJOO2 UNITED STATES ENVIRONMENTAL PROTECTION AGENCY

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6/2004 13:39 FAX IdJOO2 UNITED STATES ENVIRONMENTAL PROTECTION AGENCY WASHINGTON, D.C. 20460 MAR 26 2004 OFFICE OF AIR AND RADIATION R. Paul Detwiler, Acting Manager Carlsbad Field Office U.S. Department of Energy P.O. Box 3090 Carlsbad, NM 88221-3090 Dear Dr. Detwiler: This letter announces the U.S. Environmental Protection Agency's (EPA's) final decision to approve the Department of Energy's (DOE's) remote handled (RH) transuranic (TRU) Waste Characterization Program Implementation Plan

  12. Microsoft Word - DOE-ID-INL-12-016.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    No.: DOE-ID-INL-12-016 SECTION A. Project Title: Reverse Osmosis System Removal SECTION B. Project Description: The project will remove a reverse osmosis water treatment system (FU-HA-101) from TAN 681 room 182. The system is out-of-service, with no intent of future use. Work will involve removal of the reverse osmosis system, and associated plumbing/piping and electrical lines and conduit. The project will clear the area of obstacles and tripping hazards associated with unused/unnecessary

  13. Microsoft Word - DOE-ID-INL-11-014.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in the 2000 "Final Programmatic Environmental Impact Statement for Accomplishing Expanded Civilian ... DOE's National Environmental Policy Act (NEPA) implementing procedures (10 Code ...

  14. Microsoft Word - DOE-ID-14-047.docx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    with copper or other code approved piping. * Install new potable water backflow valve, two filter isolation valves, and two filter housings on the east wall of the facility. ...

  15. Microsoft Word - DOE-ID-INL-15-019.docx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    In addition, the result from the last Boiler and Pressure Vessel inspection recommended that the ... categorical exclusion from 10 Code of Federal Regulation (CFR) ...

  16. RAPID/Roadmap/20-ID-a | Open Energy Information

    Open Energy Info (EERE)

    Code, governs the procedures for well abandonment. 20IDAWellAbandonmentProcess.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number...

  17. DOE/ID-Number FCRD-USED-2011-000184

    Office of Environmental Management (EM)

    ... The GDSA framework employs the PFLOTRAN thermal-hydrologic-chemical multi-physics code ... 38 4.1.4 Thermal and Chemical Environment ......

  18. Building Energy Code

    Broader source: Energy.gov [DOE]

    The Bureau of Construction Codes is responsible for the administration of the State Construction Code Act (1972 PA 230), also known as the Uniform Construction Code.

  19. Building Energy Code

    Broader source: Energy.gov [DOE]

    Georgia's Department of Community Affairs periodically reviews, amends and/or updates the state minimum standard codes. Georgia has "mandatory" and "permissive" codes. Georgia State Energy Code...

  20. Building Energy Code

    Broader source: Energy.gov [DOE]

    NOTE: On March 9, 2016, the State Fire Prevention and Building Code Council adopted major updates to the State Uniform Code and the State Energy Code. The State Energy Code has been updated to 2015...

  1. RH-TRU Waste Content Codes (RH-TRUCON)

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2007-08-01

    The Remote-Handled Transuranic (RH-TRU) Content Codes (RH-TRUCON) document describes the inventory of RH-TRU waste within the transportation parameters specified by the Remote-Handled Transuranic Waste Authorized Methods for Payload Control (RH-TRAMPAC).1 The RH-TRAMPAC defines the allowable payload for the RH-TRU 72-B. This document is a catalog of RH-TRU 72-B authorized contents by site. A content code is defined by the following components: A two-letter site abbreviation that designates the physical location of the generated/stored waste (e.g., ID for Idaho National Laboratory [INL]). The site-specific letter designations for each of the sites are provided in Table 1. A three-digit code that designates the physical and chemical form of the waste (e.g., content code 317 denotes TRU Metal Waste). For RH-TRU waste to be transported in the RH-TRU 72-B, the first number of this three-digit code is 3. The second and third numbers of the three-digit code describe the physical and chemical form of the waste. Table 2 provides a brief description of each generic code. Content codes are further defined as subcodes by an alpha trailer after the three-digit code to allow segregation of wastes that differ in one or more parameter(s). For example, the alpha trailers of the subcodes ID 322A and ID 322B may be used to differentiate between waste packaging configurations. As detailed in the RH-TRAMPAC, compliance with flammable gas limits may be demonstrated through the evaluation of compliance with either a decay heat limit or flammable gas generation rate (FGGR) limit per container specified in approved content codes. As applicable, if a container meets the watt*year criteria specified by the RH-TRAMPAC, the decay heat limits based on the dose-dependent G value may be used as specified in an approved content code. If a site implements the administrative controls outlined in the RH-TRAMPAC and Appendix 2.4 of the RH-TRU Payload Appendices, the decay heat or FGGR limits based on a 10-day shipping period (rather than the standard 60-day shipping period) may be used as specified in an approved content code. Requests for new or revised content codes may be submitted to the WIPP RH-TRU Payload Engineer for review and approval, provided all RH-TRAMPAC requirements are met.

  2. Underground Storage Tank Integrated Demonstration (UST-ID). Technology summary

    SciTech Connect (OSTI)

    Not Available

    1994-02-01

    The DOE complex currently has 332 underground storage tanks (USTs) that have been used to process and store radioactive and chemical mixed waste generated from weapon materials production. Very little of the over 100 million gallons of high-level and low-level radioactive liquid waste has been treated and disposed of in final form. Two waste storage tank design types are prevalent across the DOE complex: single-shell wall and double-shell wall designs. They are made of stainless steel, concrete, and concrete with carbon steel liners, and their capacities vary from 5000 gallons (19 m{sup 3}) to 10{sup 6} gallons (3785 m{sup 3}). The tanks have an overburden layer of soil ranging from a few feet to tens of feet. Responding to the need for remediation of tank waste, driven by Federal Facility Compliance Agreements (FFCAs) at all participating sites, the Underground Storage Tank Integrated Demonstration (UST-ID) Program was created by the US DOE Office of Technology Development in February 1991. Its mission is to focus the development, testing, and evaluation of remediation technologies within a system architecture to characterize, retrieve, treat to concentrate, and dispose of radioactive waste stored in USTs at DOE facilities. The ultimate goal is to provide safe and cost-effective solutions that are acceptable to the public and the regulators. The UST-ID has focused on five DOE locations: the Hanford Site, which is the host site, in Richland, Washington; the Fernald Site in Fernald, Ohio; the Idaho National Engineering Laboratory near Idaho Falls, Idaho; the Oak Ridge Reservation in Oak Ridge, Tennessee, and the Savannah River Site in Savannah River, South Carolina.

  3. Tribal Green Building Codes

    Energy Savers [EERE]

    with even amount of white space between photos and header Tribal Green Building Codes Chelsea Chee November 1 3, 2012 SAND# 2012---9858C Photos placed in horizontal position with even amount of white space between photos and header Source: http://www.galavantier.com/sites/default/files/imagecache/exp-itinerary-main/Pink Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia %20Jeep%20Tours%20-%20Grand%20Canyon%20-Hualapai%20Indian%20Village-High-Res---

  4. IDS-NF Impact of Neutrino Cross Section Impact of Neutrino Cross Section

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    IDS-NF Impact of Neutrino Cross Section Impact of Neutrino Cross Section Knowledge on Oscillation Knowledge on Oscillation Measurements Measurements M. Sorel, IFIC (CSIC and U. of Valencia) IDS-NF, RAL, Jan 16-17 2008 M. Sorel - IFIC (Valencia U. & CSIC) 2 IDS-NF Neutrino Cross Sections: At What Energies Needed? Superbeams: Solid: T2K Dashed: NovA M. Sorel - IFIC (Valencia U. & CSIC) 3 IDS-NF Neutrino Cross Sections: At What Energies Needed? Superbeams: Solid: T2K Dashed: NovA Beta

  5. DOE Data ID Service | OSTI, US Dept of Energy, Office of Scientific...

    Office of Scientific and Technical Information (OSTI)

    increase access to digital data from DOE-funded scientific research. Through the DOE Data ID Service, OSTI assigns persistent identifiers, known as Digital Object Identifiers ...

  6. 2015 (COOP) Continuity of Operations Awareness | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    30, 2015 6:00AM to 3:00PM MDT Course Title: 2015 COOP Awareness Briefing (Course ID: 2015COOP) Audience: The Department of Energy (DOE) Annual Continuity of Operations (COOP)...

  7. Microsoft Word - 2013 (05-22-13) DOE-ID Operations Summary-13...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the current solar cycle is predicted to be less intense on average than previous cycles, solar activity spikes that occur during the maximum of any cycle can be significant. These...

  8. Enterprise Assessments Operational Awareness Record for the Follow-Up

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Review of the Idaho Site Fire Protection Program as Implemented for the IMCL and the AMWTP, OAR # EA-ID-2015-10-22 | Department of Energy Follow-Up Review of the Idaho Site Fire Protection Program as Implemented for the IMCL and the AMWTP, OAR # EA-ID-2015-10-22 Enterprise Assessments Operational Awareness Record for the Follow-Up Review of the Idaho Site Fire Protection Program as Implemented for the IMCL and the AMWTP, OAR # EA-ID-2015-10-22 December 2015 Enterprise Assessments Operational

  9. RH-TRU Waste Content Codes (RH TRUCON)

    SciTech Connect (OSTI)

    Washington TRU Solutions

    2007-05-01

    The Remote-Handled Transuranic (RH-TRU) Content Codes (RH-TRUCON) document describes the inventory of RH-TRU waste within the transportation parameters specified by the Remote-Handled Transuranic Waste Authorized Methods for Payload Control (RH-TRAMPAC).1 The RH-TRAMPAC defines the allowable payload for the RH-TRU 72-B. This document is a catalog of RH-TRU 72-B authorized contents by site. A content code is defined by the following components: A two-letter site abbreviation that designates the physical location of the generated/stored waste (e.g., ID for Idaho National Laboratory [INL]). The site-specific letter designations for each of the sites are provided in Table 1. A three-digit code that designates the physical and chemical form of the waste (e.g., content code 317 denotes TRU Metal Waste). For RH-TRU waste to be transported in the RH-TRU 72-B, the first number of this three-digit code is 3. The second and third numbers of the three-digit code describe the physical and chemical form of the waste. Table 2 provides a brief description of each generic code. Content codes are further defined as subcodes by an alpha trailer after the three-digit code to allow segregation of wastes that differ in one or more parameter(s). For example, the alpha trailers of the subcodes ID 322A and ID 322B may be used to differentiate between waste packaging configurations. As detailed in the RH-TRAMPAC, compliance with flammable gas limits may be demonstrated through the evaluation of compliance with either a decay heat limit or flammable gas generation rate (FGGR) limit per container specified in approved content codes. As applicable, if a container meets the watt*year criteria specified by the RH-TRAMPAC, the decay heat limits based on the dose-dependent G value may be used as specified in an approved content code. If a site implements the administrative controls outlined in the RH-TRAMPAC and Appendix 2.4 of the RH-TRU Payload Appendices, the decay heat or FGGR limits based on a 10-day shipping period (rather than the standard 60-day shipping period) may be used as specified in an approved content code.

  10. Femtosecond dark-field imaging with an X-ray free electron laser (CXIDB ID 19)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Martin, A. V.

    2012-08-25

    This data was collected as part of the same experiment as the data deposited in [ID16](id-16.html). Experiment details are given in [Loh, N.D. et al.](http://dx.doi.org/10.1038/nature11222)

  11. Femtosecond dark-field imaging with an X-ray free electron laser (CXIDB ID 19)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Martin, A. V.

    This data was collected as part of the same experiment as the data deposited in [ID16](id-16.html). Experiment details are given in [Loh, N.D. et al.](http://dx.doi.org/10.1038/nature11222)

  12. Building Energy Code

    Broader source: Energy.gov [DOE]

    Mississippi's existing state code is based on the 1977 Model Code for Energy Conservation (MCEC). The existing law does not mandate enforcement by localities, and any revised code will probably...

  13. Building Energy Code

    Broader source: Energy.gov [DOE]

    Tennessee is a "home rule" state which leaves adoption of codes up to the local codes jurisdictions. State energy codes are passed through the legislature, apply to all construction and must be...

  14. Building Energy Code

    Broader source: Energy.gov [DOE]

    The Kentucky Building Code (KBC) is updated every three years on a cycle one year behind the publication year for the International Building Code. Any changes to the code by the state of Kentucky...

  15. Building Energy Code

    Broader source: Energy.gov [DOE]

    The State Building Code Council revised the Washington State Energy Code (WESC) in February 2013, effective July 1, 2013. The WESC is a state-developed code based upon ASHRAE 90.1-2010 and the...

  16. Code of Conduct

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    it conducts business in a trustworthy manner. What is LANL's Code of Conduct? Charlie McMillan 1:46 Laboratory Director Charlie McMillan introduces the code LANL's Code of...

  17. UTILITY_ID","UTILITY_NAME","SCHEDULE","LINENO","AMOUNT","DESCRIPTION

    U.S. Energy Information Administration (EIA) Indexed Site

    ... (sum of lines 20, 21, less line 22)" 7977,"Hamilton City of",3,1,51548421,"Electric Operating Revenues (400)" 7977,"Hamilton City of",3,2,29270242,"Operation Expenses (401)" ...

  18. UTILITY_ID","UTILITY_NAME","SCHEDULE","LINENO","AMOUNT","DESCRIPTION

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Units (line 14, less line 19)" 7977,"Hamilton City of",5,1,0,"Taxes Other Than Income Taxes, Operating Income (408.1)" 7977,"Hamilton City of",5,2,0,"Income Taxes, Operating ...

  19. Building Energy Code

    Broader source: Energy.gov [DOE]

    The Rhode Island Building Code Standards Committee adopts, promulgates and administers the state building code. Compliance is determined through the building permit and inspection process by local...

  20. Building Energy Code

    Broader source: Energy.gov [DOE]

    The West Virginia State Fire Commission is responsible for adopting and promulgating statewide construction codes. These codes may be voluntarily adopted at the local level. Local jurisdictions...

  1. Building Energy Code

    Broader source: Energy.gov [DOE]

    The North Carolina State Building Code Council is responsible for developing all state codes. By statute, the Commissioner of Insurance has general supervision over the administration and...

  2. " Row: NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    Data; " " Row: NAICS Codes;" " Column: Floorspace and ... "Code(a)","Subsector and Industry","(million sq ... because Relative Standard Error is greater than 50 ...

  3. PNNL Energy Codes Portfolio

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Development ASHRAE Standard 90.1 International Energy Conservation Code (IECC) Analysis ... of DOE's Determinations on national model codes * Evaluate cost-effectiveness on newly ...

  4. Building Energy Codes

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ...Impacts * Priorities for FY15 and Beyond 2 Building Energy Codes - Mission Support the building energy code and standard development, adoption, implementation and enforcement ...

  5. Building Energy Code

    Broader source: Energy.gov [DOE]

    Public Act 093-0936 (Illinois Energy Conservation Code for Commercial Buildings) was signed into law in August, 2004. The Illinois Energy Conservation Code for Commercial Buildings became...

  6. Building Energy Codes: State and Local Code Implementation Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mark Lessans Fellow Building Energy Codes: State and Local Code Implementation Overview ... building code regarding energy efficiency to the revised model code and submit a ...

  7. Group representations, error bases and quantum codes

    SciTech Connect (OSTI)

    Knill, E

    1996-01-01

    This report continues the discussion of unitary error bases and quantum codes. Nice error bases are characterized in terms of the existence of certain characters in a group. A general construction for error bases which are non-abelian over the center is given. The method for obtaining codes due to Calderbank et al. is generalized and expressed purely in representation theoretic terms. The significance of the inertia subgroup both for constructing codes and obtaining the set of transversally implementable operations is demonstrated.

  8. The Integrated TIGER Series Codes

    Energy Science and Technology Software Center (OSTI)

    2006-01-15

    ITS is a powerful and user-friendly software package permitting state-of-the-art Monte Carlo solution of linear time-independent coupled electron/photon radiation transport problems, with or without the presence of macroscopic electric and magnetic fields of arbitrary spatial dependence. Our goal has been to simultaneously maximize operational simplicity and physical accuracy. Through a set of preprocessor directives, the user selects one of the many ITS codes. The ease with which the makefile system is applied combines with anmore » input scheme based on order-independent descriptive keywords that makes maximum use of defaults and intemal error checking to provide experimentalists and theorists alike with a method for the routine but rigorous solution of sophisticated radiation transport problems. Physical rigor is provided by employing accurate cross sections, sampling distributions, and physical models for describing the production and transport of the electron/photon cascade from 1.0 GeV down to 1.0 keV. The availability of source code permits the more sophisticated user to tailor the codes to specific applications and to extend the capabilities of the codes to more complex applications. Version 5.0, the latest version of ITS, contains (1) improvements to the ITS 3.0 continuous-energy codes, (2) multigroup codes with adjoint transport capabilities, (3) parallel implementations of all ITS codes, (4) a general purpose geometry engine for linking with CAD or other geometry formats, and (5) the Cholla facet geometry library. Moreover, the general user friendliness of the software has been enhanced through increased internal error checking and improved code portability.« less

  9. A short Id2 protein fragment containing the nuclear export signal forms amyloid-like fibrils

    SciTech Connect (OSTI)

    Colombo, Noemi [Fakultaet fuer Chemie und Pharmazie, Universitaet Regensburg, Universitaetsstrasse 31, 93053 Regensburg (Germany); Schroeder, Josef [Institut fuer Pathologie, Zentrales EM-Labor, Fakultaet fuer Medizin, Universitaet Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg (Germany); Cabrele, Chiara [Fakultaet fuer Chemie und Pharmazie, Universitaet Regensburg, Universitaetsstrasse 31, 93053 Regensburg (Germany)]. E-mail: chiara.cabrele@chemie.uni-regensburg.de

    2006-07-21

    The negative regulator of DNA-binding/cell-differentiation Id2 is a small protein containing a central helix-loop-helix (HLH) motif and a C-terminal nuclear export signal (NES). Whereas the former is essential for Id2 dimerization and nuclear localization, the latter is responsible for the transport of Id2 from the nucleus to the cytoplasm. Whereas the isolated Id2 HLH motif is highly helical, large C-terminal Id2 fragments including the NES sequence are either unordered or aggregation-prone. To study the conformational properties of the isolated NES region, we synthesized the Id2 segment 103-124. The latter was insoluble in water and only temporarily soluble in water/alcohol mixtures, where it formed quickly precipitating {beta}-sheets. Introduction of a positively charged N-terminal tail prevented aggressive precipitation and led to aggregates consisting of long fibrils that bound thioflavin T. These results show an interesting structural aspect of the Id2 NES region, which might be of significance for both protein folding and function.

  10. Microsoft Word - DIOE-ID-INL-14-026.docx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Standards and Corrective Action Requirements for Owners and Operators of Underground Storage Tanks"). These actions do not include rebuilding or modifying substantial portions of...

  11. Microsoft Word - DOE-ID-INL-15-064.docx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Standards and Corrective Action Requirements for Owners and Operators of Underground Storage Tanks"). These actions do not include rebuilding or modifying substantial portions of...

  12. Microsoft Word - DOE-ID-INL-14-003.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ATR cooling tower is required to maintain reliable operation of the secondary coolant system and ensure that the probability of loss of heat sink accident scenarios are minimized. ...

  13. Microsoft Word - DOE-ID-INL-15-075.docx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and removal intofrom the dry air chamber. The laboratory hood also serves as an environment that will accommodate smearing and counting operations for radiation control...

  14. Microsoft Word - DOE-ID-INL-16-017.docx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    An Air Permitting Applicability Determination (APAD) will be prepared for these engines documenting permitting exemptions and operational requirements. Generating and Managing ...

  15. Property:RAPID/Contact/ID4/Position | Open Energy Information

    Open Energy Info (EERE)

    of Environmental Quality + Water Quality Planning Bureau Chief + Montana Department of Natural Resources & Conservation + Water Operations Bureau Chief + N Nevada Division of...

  16. Operation Schedule

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Operation Schedule Daily Hours of Operation

  17. Id-1 gene and gene products as therapeutic targets for treatment of breast cancer and other types of carcinoma

    DOE Patents [OSTI]

    Desprez, Pierre-Yves; Campisi, Judith

    2014-08-19

    A method for treatment of breast cancer and other types of cancer. The method comprises targeting and modulating Id-1 gene expression, if any, for the Id-1 gene, or gene products in breast or other epithelial cancers in a patient by delivering products that modulate Id-1 gene expression. When expressed, Id-1 gene is a prognostic indicator that cancer cells are invasive and metastatic.

  18. Priority coding for control room alarms

    DOE Patents [OSTI]

    Scarola, Kenneth; Jamison, David S.; Manazir, Richard M.; Rescorl, Robert L.; Harmon, Daryl L.

    1994-01-01

    Indicating the priority of a spatially fixed, activated alarm tile on an alarm tile array by a shape coding at the tile, and preferably using the same shape coding wherever the same alarm condition is indicated elsewhere in the control room. The status of an alarm tile can change automatically or by operator acknowledgement, but tones and/or flashing cues continue to provide status information to the operator.

  19. Idaho Operations Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    September 2. 2010 Josh Berman 2 N. Riverside Plaza, Suite 2250 Chicago, IL 60606 SUBJECT: FOIA Response (10-034) (lD-201O-01859-F)(OHA Case No. TFA-0404) (OM-PA-I0- 062) Dear Mr. Berman: This is a revised final response from the Idaho Operations Office (DOE-ID), regarding your July 22, 2010, Freedom ofInformation Act (FOIA) request. In that letter you requested: * Richard Boardman Emails * WoodiGrubick Emails FY 2006 * Wood/Grubick Emails FY 2007 * WoodiGrubick Emails FY 2008 * WoodiGrubick

  20. ASME Code Efforts Supporting HTGRs

    SciTech Connect (OSTI)

    D.K. Morton

    2012-09-01

    In 1999, an international collaborative initiative for the development of advanced (Generation IV) reactors was started. The idea behind this effort was to bring nuclear energy closer to the needs of sustainability, to increase proliferation resistance, and to support concepts able to produce energy (both electricity and process heat) at competitive costs. The U.S. Department of Energy has supported this effort by pursuing the development of the Next Generation Nuclear Plant, a high temperature gas-cooled reactor. This support has included research and development of pertinent data, initial regulatory discussions, and engineering support of various codes and standards development. This report discusses the various applicable American Society of Mechanical Engineers (ASME) codes and standards that are being developed to support these high temperature gascooled reactors during construction and operation. ASME is aggressively pursuing these codes and standards to support an international effort to build the next generation of advanced reactors so that all can benefit.

  1. ASME Code Efforts Supporting HTGRs

    SciTech Connect (OSTI)

    D.K. Morton

    2011-09-01

    In 1999, an international collaborative initiative for the development of advanced (Generation IV) reactors was started. The idea behind this effort was to bring nuclear energy closer to the needs of sustainability, to increase proliferation resistance, and to support concepts able to produce energy (both electricity and process heat) at competitive costs. The U.S. Department of Energy has supported this effort by pursuing the development of the Next Generation Nuclear Plant, a high temperature gas-cooled reactor. This support has included research and development of pertinent data, initial regulatory discussions, and engineering support of various codes and standards development. This report discusses the various applicable American Society of Mechanical Engineers (ASME) codes and standards that are being developed to support these high temperature gascooled reactors during construction and operation. ASME is aggressively pursuing these codes and standards to support an international effort to build the next generation of advanced reactors so that all can benefit.

  2. ASME Code Efforts Supporting HTGRs

    SciTech Connect (OSTI)

    D.K. Morton

    2010-09-01

    In 1999, an international collaborative initiative for the development of advanced (Generation IV) reactors was started. The idea behind this effort was to bring nuclear energy closer to the needs of sustainability, to increase proliferation resistance, and to support concepts able to produce energy (both electricity and process heat) at competitive costs. The U.S. Department of Energy has supported this effort by pursuing the development of the Next Generation Nuclear Plant, a high temperature gas-cooled reactor. This support has included research and development of pertinent data, initial regulatory discussions, and engineering support of various codes and standards development. This report discusses the various applicable American Society of Mechanical Engineers (ASME) codes and standards that are being developed to support these high temperature gascooled reactors during construction and operation. ASME is aggressively pursuing these codes and standards to support an international effort to build the next generation of advanced reactors so that all can benefit.

  3. YEAR","UTILITY_ID","UTILITY_NAME","PLANT_ID","PLANT_NAME","SCHEDULE","LINENO","A

    U.S. Energy Information Administration (EIA) Indexed Site

    UTILITY_ID","UTILITY_NAME","PLANT_ID","PLANT_NAME","SCHEDULE","LINENO","AMOUNTS","DESCRIPTION" 2001,298,"Alexandria City of",6558,"DG Hunter",9,"Line 1","STEAM","Kind of Plant" 2001,298,"Alexandria City of",6558,"DG Hunter",9,"Line 2",1956,"Year Originally Constructed" 2001,298,"Alexandria City of",6558,"DG

  4. Physicists ID Mechanism that Stabilizes Plasma in Tokamaks

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    operates for the Department of Energy in San Diego and the ASDEX Upgrade in Garching, Germany. They hope to learn to create these conditions on demand, especially in ITER, the...

  5. File:08-ID-c - Certificate of Public Convenience and Necessity...

    Open Energy Info (EERE)

    modified from its original state, some details may not fully reflect the modified file. Image title Lucidchart Author None Short title 08-ID-c - Certificate of Public Convenience...

  6. File:USDA-CE-Production-GIFmaps-ID.pdf | Open Energy Information

    Open Energy Info (EERE)

    ID.pdf Jump to: navigation, search File File history File usage Idaho Ethanol Plant Locations Size of this preview: 776 600 pixels. Full resolution (1,650 1,275 pixels,...

  7. DOI-BLM-ID-B010-2010-0083-CX | Open Energy Information

    Open Energy Info (EERE)

    0083-CX Jump to: navigation, search NEPA Document Collection for: DOI-BLM-ID-B010-2010-0083-CX CX for GeothermalExploration, CX for Thermal Gradient Holes for Geothermal...

  8. DOI-BLM-ID-I020-2012-0017-CX | Open Energy Information

    Open Energy Info (EERE)

    I020-2012-0017-CX Jump to: navigation, search NEPA Document Collection for: DOI-BLM-ID-I020-2012-0017-CX CX at Bingham-Caribou Geothermal Area for GeothermalExploration CX for...

  9. DOI-BLM-ID-B010-2010-??-CX | Open Energy Information

    Open Energy Info (EERE)

    ??-CX Jump to: navigation, search NEPA Document Collection for: DOI-BLM-ID-B010-2010-??-CX CX at Weiser Geothermal Area for GeothermalExploration CX at Weiser Geothermal Area for...

  10. DOI-BLM-ID-110-2009-3825-CE | Open Energy Information

    Open Energy Info (EERE)

    110-2009-3825-CE Jump to: navigation, search NEPA Document Collection for: DOI-BLM-ID-110-2009-3825-CE CX at Crane Creek Geothermal Area for GeothermalExploration Crane Creek...

  11. High-resolution x-ray diffraction microscopy of specifically labeled yeast cells (CXIDB ID 6)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Nelson, Johanna

    2011-07-22

    This is the third of five exposures of the same sample at different tilts. This one is at +30 degrees tilt. Check CXI IDs 4 to 8 for the complete set.

  12. High-resolution x-ray diffraction microscopy of specifically labeled yeast cells (CXIDB ID 5)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Nelson, Johanna

    2011-07-22

    This is the second of five exposures of the same sample at different tilts. This one is at +15 degrees tilt. Check CXI IDs 4 to 8 for the complete set.

  13. High-resolution x-ray diffraction microscopy of specifically labeled yeast cells (CXIDB ID 8)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Nelson, Johanna

    2011-07-22

    This is the fifth of five exposures of the same sample at different tilts. This one is at -30 degrees tilt. Check CXI IDs 4 to 8 for the complete set.

  14. High-resolution x-ray diffraction microscopy of specifically labeled yeast cells (CXIDB ID 4)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Nelson, Johanna

    2011-07-22

    This is the first of five exposures of the same sample at different tilts. This one is at +0 degrees tilt. Check CXI IDs 4 to 8 for the complete set.

  15. High-resolution x-ray diffraction microscopy of specifically labeled yeast cells (CXIDB ID 7)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Nelson, Johanna

    2011-07-22

    This is the fourth of five exposures of the same sample at different tilts. This one is at -15 degrees tilt. Check CXI IDs 4 to 8 for the complete set.

  16. Microsoft Word - DOE-ID-INL-16-013.docx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 SECTION A. Project Title: Irradiated Materials Characterization Laboratory (IMCL) Ventilation Modifications SECTION B. Project Description and Purpose: The Materials and Fuels Complex (MFC) Irradiated Materials Characterization Laboratory (IMCL), building MFC-1729, was constructed and placed into operational status approximately two years ago. During this period, operational experience has shown that air flow across the laboratory is minimal and does not meet expectations for radiological

  17. How the DOE Data ID Service Works | OSTI, US Dept of Energy, Office of

    Office of Scientific and Technical Information (OSTI)

    Scientific and Technical Information the DOE Data ID Service Works DataCite | Contact DOE Data ID Service A DOE researcher, organization, or grantee determines that important datasets exist which need to be announced in DOE's scientific and technical databases and assigned DOIs. DOE Order 241.1B instructs that bibliographic information for these datasets be submitted to OSTI. First time submitters may contact OSTI at 865-576-6784 for help in deciding what submittal method will be used,

  18. Microsoft Word - DOE-ID-INL-12-028-1.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    EC Document No.: DOE-ID-INL-12-028 SECTION A. Project Title: National Oceanic and Atmospheric Administration (NOAA) Birch Creek Canyon Wind Study SECTION B. Project Description: The National Oceanic and Atmospheric Administration (NOAA) Birch Creek Valley Wind Study would be conducted under the umbrella of the NOAA/Idaho National Laboratory (INL) Meteorological Research Partnership Memorandum of Agreement between NOAA and the Idaho Office of the U.S. Department of Energy (DOE-ID). The project

  19. High Temperature Gas Reactors: Assessment of Applicable Codes...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: High Temperature Gas Reactors: Assessment of Applicable Codes and ... applicable to HTGR plants, the operating history of past and present HTGR plants, and with ...

  20. NREL: Hydrogen and Fuel Cells Research - Safety, Codes, and Standards

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in the Safety Sensor Testing Laboratory. Photo by Dennis Schroeder, NREL NREL's hydrogen safety, codes, and standards projects focus on ensuring safe operation, handling, and...

  1. Building Energy Code

    Broader source: Energy.gov [DOE]

    Much of the information presented in this summary is drawn from the U.S. Department of Energy’s (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more...

  2. Building Energy Code

    Broader source: Energy.gov [DOE]

    The Virginia Uniform Statewide Building Code (USBC) is a statewide minimum requirement that local jurisdictions cannot amend. The code is applicable to all new buildings in the commonwealth. The...

  3. Building Energy Code

    Broader source: Energy.gov [DOE]

    Much of the information presented in this summary is drawn from the U.S. Department of Energy’s (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more deta...

  4. Building Energy Code

    Broader source: Energy.gov [DOE]

    Prior to 1997, South Carolina's local governments adopted and enforced the building codes. In 1997, the law required statewide use of the most up-to-date building codes, which then required the...

  5. Building Energy Code

    Broader source: Energy.gov [DOE]

    The Florida Building Commission (FBC) is directed to adopt, revise, update, and maintain the Florida Building Code in accordance with Chapter 120 of the state statutes. The code is mandatory...

  6. Building Energy Code

    Broader source: Energy.gov [DOE]

    Much of the information presented in this summary is drawn from the U.S. Department of Energys (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more...

  7. Building Energy Code

    Broader source: Energy.gov [DOE]

    Note: Much of the information presented in this summary is drawn from the U.S. Department of Energys (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more...

  8. Building Energy Code

    Broader source: Energy.gov [DOE]

    Changes to the energy code are submitted to the Uniform Building Code Commission. The proposed change is reviewed by the Commission at a monthly meeting to decide if it warrants further considera...

  9. Building Energy Code

    Broader source: Energy.gov [DOE]

    Legislation passed in March 2010 authorized the Alabama Energy and Residential Code (AERC) Board to adopt mandatory residential and commercial energy codes for all jurisdictions. In 2015, the AER...

  10. Building Energy Code

    Broader source: Energy.gov [DOE]

    In September 2011 the Nebraska Building Energy Code was updated to the 2009 International Energy Conservation Code (IECC) standards. As with the previous 2003 IECC standards, which had been in...

  11. Building Energy Code

    Broader source: Energy.gov [DOE]

    The 2012 IECC is in effect for all residential and commercial buildings, Idaho schools, and Idaho jurisdictions that adopt and enforce building codes, unless a local code exists that is more...

  12. Building Energy Code

    Broader source: Energy.gov [DOE]

    The 1993 State Legislature updated the state energy code to the 1989 Model Energy Code (MEC) and established a procedure to update the standard. Then in 1995, following consultation with an...

  13. Building Energy Code

    Broader source: Energy.gov [DOE]

    In November of 2015, the Commission adopted the 2015 International Building Code (IBC) with amendments. The Commission did not adopt the 2012 International Energy Conservation Code (IECC) as part...

  14. Building Energy Code

    Broader source: Energy.gov [DOE]

    In 2006 Iowa enacted H.F. 2361, requiring the State Building Commissioner to adopt energy conservation requirements based on a nationally recognized building energy code. The State Building Code...

  15. Building Energy Code

    Broader source: Energy.gov [DOE]

    The New Jersey Uniform Construction Code Act provides that model codes and standards publications shall not be adopted more frequently than once every three years. However, a revision or amendment...

  16. Guam- Building Energy Code

    Broader source: Energy.gov [DOE]

    Much of the information presented in this summary is drawn from the U.S. Department of Energy’s (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more...

  17. Building Energy Code

    Broader source: Energy.gov [DOE]

    The Indiana Residential Building Code is based on the 2003 IRC with state amendments (eff. 9/11/05). This code applies to 1 and 2 family dwellings and townhouses. During the adoption process,...

  18. Building Energy Code

    Broader source: Energy.gov [DOE]

    Colorado is a home rule state, so no statewide energy code exists, although state government buildings do have specific requirements. Voluntary adoption of energy codes is encouraged and efforts...

  19. Building Energy Code

    Broader source: Energy.gov [DOE]

    All residential and commercial structures are required to comply with the state’s energy code. The 2009 New Mexico Energy Conservation Code (NMECC), effective June 2013, is based on 2009...

  20. Building Energy Code

    Broader source: Energy.gov [DOE]

    Note: Much of the information presented in this summary is drawn from the U.S. Department of Energy’s (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more...

  1. Building Energy Code

    Broader source: Energy.gov [DOE]

    A mandatory energy code is not enforced at the state level. If a local energy code is adopted, it is enforced at the local level. Builders or sellers of new residential buildings (single-family or...

  2. Building Energy Code

    Broader source: Energy.gov [DOE]

    New Hampshire adopted a mandatory statewide building code in 2002 based on the 2000 IECC. S.B. 81 was enacted in July 2007, and it upgraded the New Hampshire Energy Code to the 2006 IECC. In Dece...

  3. Cellulases and coding sequences

    DOE Patents [OSTI]

    Li, Xin-Liang; Ljungdahl, Lars G.; Chen, Huizhong

    2001-01-01

    The present invention provides three fungal cellulases, their coding sequences, recombinant DNA molecules comprising the cellulase coding sequences, recombinant host cells and methods for producing same. The present cellulases are from Orpinomyces PC-2.

  4. Cellulases and coding sequences

    DOE Patents [OSTI]

    Li, Xin-Liang; Ljungdahl, Lars G.; Chen, Huizhong

    2001-02-20

    The present invention provides three fungal cellulases, their coding sequences, recombinant DNA molecules comprising the cellulase coding sequences, recombinant host cells and methods for producing same. The present cellulases are from Orpinomyces PC-2.

  5. Top NAICS Codes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Business opportunities » Top NAICS Codes Top NAICS Codes Below is a current listing of the top NAICS codes by volume and dollar value Contact Small Business Office 505-667-4419 Email Top Ten NAICS Codes Volume 511210 Software Publishers 334516 Analytical Laboratory Instrument Manufacturing 334111 Electronic Computer Manufacturing 325120 Industrial Gas Manufacturing 334112 Computer Storage Device Manufacturing 334519 Other Measuring and Controlling Device Manufacturing 334515 Instrument

  6. Building Energy Code

    Broader source: Energy.gov [DOE]

    In March 2006, SB 459 was enacted to promote renewable energy and update the state's building energy codes.

  7. " Row: NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    " Level: National Data; " " Row: NAICS Codes;" " Column: Floorspace and Buildings;" " ... " QWithheld because Relative Standard Error is greater than 50 percent." " ...

  8. Generating code adapted for interlinking legacy scalar code and extended

    Office of Scientific and Technical Information (OSTI)

    vector code (Patent) | SciTech Connect Generating code adapted for interlinking legacy scalar code and extended vector code Citation Details In-Document Search Title: Generating code adapted for interlinking legacy scalar code and extended vector code Mechanisms for intermixing code are provided. Source code is received for compilation using an extended Application Binary Interface (ABI) that extends a legacy ABI and uses a different register configuration than the legacy ABI. First compiled

  9. XSOR codes users manual

    SciTech Connect (OSTI)

    Jow, Hong-Nian; Murfin, W.B.; Johnson, J.D.

    1993-11-01

    This report describes the source term estimation codes, XSORs. The codes are written for three pressurized water reactors (Surry, Sequoyah, and Zion) and two boiling water reactors (Peach Bottom and Grand Gulf). The ensemble of codes has been named ``XSOR``. The purpose of XSOR codes is to estimate the source terms which would be released to the atmosphere in severe accidents. A source term includes the release fractions of several radionuclide groups, the timing and duration of releases, the rates of energy release, and the elevation of releases. The codes have been developed by Sandia National Laboratories for the US Nuclear Regulatory Commission (NRC) in support of the NUREG-1150 program. The XSOR codes are fast running parametric codes and are used as surrogates for detailed mechanistic codes. The XSOR codes also provide the capability to explore the phenomena and their uncertainty which are not currently modeled by the mechanistic codes. The uncertainty distributions of input parameters may be used by an. XSOR code to estimate the uncertainty of source terms.

  10. DLLExternalCode

    Energy Science and Technology Software Center (OSTI)

    2014-05-14

    DLLExternalCode is the a general dynamic-link library (DLL) interface for linking GoldSim (www.goldsim.com) with external codes. The overall concept is to use GoldSim as top level modeling software with interfaces to external codes for specific calculations. The DLLExternalCode DLL that performs the linking function is designed to take a list of code inputs from GoldSim, create an input file for the external application, run the external code, and return a list of outputs, read frommore » files created by the external application, back to GoldSim. Instructions for creating the input file, running the external code, and reading the output are contained in an instructions file that is read and interpreted by the DLL.« less

  11. Microsoft Word - DOE-ID-INL-16-042.docx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    42 SECTION A. Project Title: Test Reactor Area (TRA)-1627 Laboratory Water Supply Modifications SECTION B. Project Description and Purpose: The current raw water supply to the Radioanalytical Chemistry Laboratory (RaCL), building TRA-1627, at the Advanced Test Reactor Complex is not reliable due to poor condition of underground water lines along Marlin Avenue. Failure of the line causes safety issues that interrupt operations at RaCL for extended periods of time. The proposed action is needed to

  12. Appliance Standards and Building Codes

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Adoption: * Support state adoption of ARRA target codes, updated model codes (IECC and Standard 90.1), and stretch codes. Compliance: * Prioritizing compliance with building energy ...

  13. Microsoft Word - DOE-ID-INL-14-045.docx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    45 SECTION A. Project Title: Information Operations Research Center (IORC) Emergency Generator Installation SECTION B. Project Description: The proposed activity would install an emergency power engine-generator at the IORC facility. The engine-generator would be a new Caterpillar Diesel unit with 600 KW output. The equipment would be installed at the Research and Education Campus (REC) in Idaho Falls, Idaho, on or about the July 2015 time frame at an estimated cost of $1.3 M. The new unit would

  14. Microsoft Word - DOE-ID-INL-16-018.docx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8 SECTION A. Project Title: Advanced Test Reactor (ATR)-1D-N and 2B-SE Asbestos Abatement and Insulation Installation SECTION B. Project Description and Purpose: The experiment loop primary cubicles at the Advanced Test Reactor (ATR) contain all of the "out of pile" piping and equipment to operate the experiment loops. Most of this equipment was originally insulated with Asbestos Containing Material (ACM). This becomes problematic when work needs to be performed on equipment in the

  15. Microsoft Word - DOE-ID-INL-16-025.docx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5 SECTION A. Project Title: Advanced Test Reactor (ATR)-C-3 2-Ton Crane Replacement SECTION B. Project Description and Purpose: The Advanced Test Reactor (ATR) 2-ton crane system (ATR-C-3) has reached the end of its useful life. Replacement of the crane is needed to continue facility operations. The proposed action would replace all components of the crane system (except for rails attached to the overhead building structure if they are found adequate by the vendor). The new crane would interface

  16. Generating code adapted for interlinking legacy scalar code and extended vector code

    DOE Patents [OSTI]

    Gschwind, Michael K

    2013-06-04

    Mechanisms for intermixing code are provided. Source code is received for compilation using an extended Application Binary Interface (ABI) that extends a legacy ABI and uses a different register configuration than the legacy ABI. First compiled code is generated based on the source code, the first compiled code comprising code for accommodating the difference in register configurations used by the extended ABI and the legacy ABI. The first compiled code and second compiled code are intermixed to generate intermixed code, the second compiled code being compiled code that uses the legacy ABI. The intermixed code comprises at least one call instruction that is one of a call from the first compiled code to the second compiled code or a call from the second compiled code to the first compiled code. The code for accommodating the difference in register configurations is associated with the at least one call instruction.

  17. Compiling Codes on Cori

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Compiling Codes on Cori Compiling Codes on Cori Overview Cray provides a convenient set of wrapper commands that should be used in almost all cases for compiling and linking parallel programs. Invoking the wrappers will automatically link codes with MPI libraries and other Cray system software. All MPI and Cray system include directories are also transparently imported. In addition the wrappers append the compiler's target processor arguments for the Hopper compute node processors. NOTE: The

  18. Compiling Codes on Hopper

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Compiling Codes Compiling Codes on Hopper Overview Cray provides a convenient set of wrapper commands that should be used in almost all cases for compiling and linking parallel programs. Invoking the wrappers will automatically link codes with MPI libraries and other Cray system software. All MPI and Cray system include directories are also transparently imported. In addition the wrappers append the compiler's target processor arguments for the hopper compute node processors. NOTE: The intention

  19. Building Energy Code

    Broader source: Energy.gov [DOE]

    The Office of the State Fire Marshal is granted the authority to promulgate amendments, revisions, and alternative compliance methods for the code.

  20. Building Energy Code

    Broader source: Energy.gov [DOE]

    The Maryland Building Performance Standards (MBPS) are adopted by the Maryland Department of Housing and Community Development (DHCD) Codes Administration. As required by legislation passed in...

  1. Building Energy Code

    Broader source: Energy.gov [DOE]

    Kansas adopted the 2006 International Energy Conservation Code (IECC) as "the applicable state standard" for commercial and industrial buildings. Enforcement is provided by local jurisdictions; t...

  2. " Row: NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Number of Establishments by Usage of Cogeneration Technologies, 2002; " " Level: National Data; " " Row: NAICS Codes;" " Column: Usage within Cogeneration Technologies;" " Unit: ...

  3. " Row: NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Number of Establishments by Usage of Cogeneration Technologies, 2006;" " Level: National Data; " " Row: NAICS Codes;" " Column: Usage within Cogeneration Technologies;" " Unit: ...

  4. Building Energy Codes Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    http:www.energycodes.govaboutresults 5 Introduction: Model Energy Codes ANSIASHRAEIES Standard 90.1 * Current Version: 90.1-2013 (published 102013) * 30% more efficient ...

  5. " Row: NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    " ,,,"Cogeneration" "NAICS",,,"Technology" "Code(a)","Selected Subsectors and ... that reported this" "cogeneration technology in use anytime in 2010." " (e) This ...

  6. Shields - Code Coupling

    SciTech Connect (OSTI)

    Vernon, Louis James

    2015-03-02

    This PowerPoint presentation focuses on the history and benefits of the Space Weather Modeling Framework (SWMF) code and collaborative software development.

  7. Building Energy Code

    Broader source: Energy.gov [DOE]

    Pennsylvania Department of Labor and Industry (DLI) has the authority to upgrade commercial and residential energy standards through the regulatory process. The current code, the 2009 UCC, became...

  8. Building Energy Code

    Broader source: Energy.gov [DOE]

    The Connecticut Office of the State Building Inspector establishes and enforces building, electrical, mechanical, plumbing and energy code requirements by reviewing, developing, adopting and...

  9. Tokamak Systems Code

    SciTech Connect (OSTI)

    Reid, R.L.; Barrett, R.J.; Brown, T.G.; Gorker, G.E.; Hooper, R.J.; Kalsi, S.S.; Metzler, D.H.; Peng, Y.K.M.; Roth, K.E.; Spampinato, P.T.

    1985-03-01

    The FEDC Tokamak Systems Code calculates tokamak performance, cost, and configuration as a function of plasma engineering parameters. This version of the code models experimental tokamaks. It does not currently consider tokamak configurations that generate electrical power or incorporate breeding blankets. The code has a modular (or subroutine) structure to allow independent modeling for each major tokamak component or system. A primary benefit of modularization is that a component module may be updated without disturbing the remainder of the systems code as long as the imput to or output from the module remains unchanged.

  10. " Row: NAICS Codes;" " ...

    U.S. Energy Information Administration (EIA) Indexed Site

    of Purchased Electricity, Natural Gas, and Steam, 1998;" " Level: National Data; " " Row: NAICS Codes;" " Column: Supplier Sources of Purchased Electricity, Natural Gas, and ...

  11. DOE Data ID Service Benefits | OSTI, US Dept of Energy, Office of

    Office of Scientific and Technical Information (OSTI)

    Scientific and Technical Information Benefits DataCite | Contact DOE Data ID Service When you submit metadata to OSTI about a dataset, you are basically "announcing" that it exists and you are describing it. That's why you will see the name of the basic submittal tool for data referred to as "Announcement Notice 241.6." Note that the DOE Data ID Service does not accept the dataset itself; only the metadata is submitted. The metadata loads into the OSTI processing system

  12. How to Use the DOE Data ID Service: For Data Centers and High Volume/High

    Office of Scientific and Technical Information (OSTI)

    Frequency Submitters | OSTI, US Dept of Energy, Office of Scientific and Technical Information Data Centers and High Volume/High Frequency Submitters DataCite | Contact DOE Data ID Service Call or email your organization's Scientific and Technical Information (STI) Manager. Your STI Manager will refer you to the correct contact at OSTI. Or, if someone else has suggested you contact OSTI directly, you may do so through the DOE Data ID Service email. OSTI will work with you to discover your

  13. Comments on Docket ID: DOE-HQ-2011-0014 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    on Docket ID: DOE-HQ-2011-0014 Comments on Docket ID: DOE-HQ-2011-0014 This letter comprises the comments of the Pacific Gas and Electric Company (PG&E), Southern California Gas Company (SCGC), San Diego Gas and Electric (SDG&E), and Southern California Edison (SCE) in response to the U.S. Department of Energy's (DOE) Request for Information on Regulatory Burden. The signatories of this letter, collectively referred to herein as the California Investor Owned Utilities (CA IOUs) represent

  14. A Better Way to ID Extreme Weather Events in Climate Models

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Better Way to ID Extreme Weather Events in Climate Models A Better Way to ID Extreme Weather Events in Climate Models Berkeley Lab scientists help automate the search for hurricanes and other storms in huge datasets December 7, 2011 Dan Krotz, dakrotz@lbl.gov, +1 510-486-4019 You'd think that spotting a category 5 hurricane would never be difficult. But when the hurricane is in a global climate model that spans several decades, it becomes a fleeting wisp among mountains of data. That's a

  15. Lichenase and coding sequences

    DOE Patents [OSTI]

    Li, Xin-Liang; Ljungdahl, Lars G.; Chen, Huizhong

    2000-08-15

    The present invention provides a fungal lichenase, i.e., an endo-1,3-1,4-.beta.-D-glucanohydrolase, its coding sequence, recombinant DNA molecules comprising the lichenase coding sequences, recombinant host cells and methods for producing same. The present lichenase is from Orpinomyces PC-2.

  16. Single mimivirus particles intercepted and imaged with an X-ray laser (CXIDB ID 1)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Seibert, M. Marvin; Ekeberg, Tomas; Maia, Filipe R.N.C.

    2011-02-02

    These are the files used to reconstruct the images in the paper "Single Mimivirus particles intercepted and imaged with an X-ray laser". Besides the diffracted intensities, the Hawk configuration files used for the reconstructions are also provided. The files from CXIDB ID 1 are the pattern and configuration files for the pattern showed in Figure 2a in the paper.

  17. Single mimivirus particles intercepted and imaged with an X-ray laser (CXIDB ID 2)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Seibert, M. Marvin; Ekeberg, Tomas

    2011-02-02

    These are the files used to reconstruct the images in the paper "Single Mimivirus particles intercepted and imaged with an X-ray laser". Besides the diffracted intensities, the Hawk configuration files used for the reconstructions are also provided. The files from CXIDB ID 2 are the pattern and configuration files for the pattern showed in Figure 2b in the paper.

  18. Single mimivirus particles intercepted and imaged with an X-ray laser (CXIDB ID 1)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Seibert, M. Marvin; Ekeberg, Tomas; Maia, Filipe R.N.C.

    These are the files used to reconstruct the images in the paper "Single Mimivirus particles intercepted and imaged with an X-ray laser". Besides the diffracted intensities, the Hawk configuration files used for the reconstructions are also provided. The files from CXIDB ID 1 are the pattern and configuration files for the pattern showed in Figure 2a in the paper.

  19. Report number codes

    SciTech Connect (OSTI)

    Nelson, R.N.

    1985-05-01

    This publication lists all report number codes processed by the Office of Scientific and Technical Information. The report codes are substantially based on the American National Standards Institute, Standard Technical Report Number (STRN)-Format and Creation Z39.23-1983. The Standard Technical Report Number (STRN) provides one of the primary methods of identifying a specific technical report. The STRN consists of two parts: The report code and the sequential number. The report code identifies the issuing organization, a specific program, or a type of document. The sequential number, which is assigned in sequence by each report issuing entity, is not included in this publication. Part I of this compilation is alphabetized by report codes followed by issuing installations. Part II lists the issuing organization followed by the assigned report code(s). In both Parts I and II, the names of issuing organizations appear for the most part in the form used at the time the reports were issued. However, for some of the more prolific installations which have had name changes, all entries have been merged under the current name.

  20. Insertion of operation-and-indicate instructions for optimized...

    Office of Scientific and Technical Information (OSTI)

    Insertion of operation-and-indicate instructions for optimized SIMD code Citation Details In-Document Search Title: Insertion of operation-and-indicate instructions for optimized ...

  1. Id1 expression promotes peripheral CD4{sup +} T cell proliferation and survival upon TCR activation without co-stimulation

    SciTech Connect (OSTI)

    Liu, Chen; Jin, Rong; Wang, Hong-Cheng; Tang, Hui; Liu, Yuan-Feng; Qian, Xiao-Ping; Sun, Xiu-Yuan; Ge, Qing; Sun, Xiao-Hong; Zhang, Yu

    2013-06-21

    Highlights: •Id1 expression enables naïve T cell proliferation without anti-CD28 co-stimulation. •Id1 expression facilitates T cells survival when stimulated with anti-CD3. •Elevation of IL-2 production by Id1 contributes increased proliferation and survival. •Id1 potentiates NF-κB activation by anti-CD3 stimulation. -- Abstract: Although the role of E proteins in the thymocyte development is well documented, much less is known about their function in peripheral T cells. Here we demonstrated that CD4 promoter-driven transgenic expression of Id1, a naturally occurring dominant-negative inhibitor of E proteins, can substitute for the co-stimulatory signal delivered by CD28 to facilitate the proliferation and survival of naïve CD4{sup +} cells upon anti-CD3 stimulation. We next discovered that IL-2 production and NF-κB activity after anti-CD3 stimulation were significantly elevated in Id1-expressing cells, which may be, at least in part, responsible for the augmentation of their proliferation and survival. Taken together, results from this study suggest an important role of E and Id proteins in peripheral T cell activation. The ability of Id proteins to by-pass co-stimulatory signals to enable T cell activation has significant implications in regulating T cell immunity.

  2. Report on a workshop concerning code validation

    SciTech Connect (OSTI)

    None

    1996-12-01

    The design of wind turbine components is becoming more critical as turbines become lighter and more dynamically active. Computer codes that will reliably predict turbine dynamic response are, therefore, more necessary than before. However, predicting the dynamic response of very slender rotating structures that operate in turbulent winds is not a simple matter. Even so, codes for this purpose have been developed and tested in North America and in Europe, and it is important to disseminate information on this subject. The purpose of this workshop was to allow those involved in the wind energy industry in the US to assess the progress invalidation of the codes most commonly used for structural/aero-elastic wind turbine simulation. The theme of the workshop was, ``How do we know it`s right``? This was the question that participants were encouraged to ask themselves throughout the meeting in order to avoid the temptation of presenting information in a less-than-critical atmosphere. Other questions posed at the meeting are: What is the proof that the codes used can truthfully represent the field data? At what steps were the codes tested against known solutions, or against reliable field data? How should the designer or user validate results? What computer resources are needed? How do codes being used in Europe compare with those used in the US? How does the code used affect industry certification? What can be expected in the future?

  3. Building Energy Code

    Broader source: Energy.gov [DOE]

    The Massachusetts Board of Building Regulations and Standards has authority to promulgate the Massachusetts State Building Code (MSBC). The energy provisions in the MSBC were developed by the Boa...

  4. Compiling Codes on Hopper

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    % ftn -O0 -Kieee MyCode.F90 Documentation For the full list of compiler options type man pgf90, man pgf95,man pgcc or man pgCC. However, remember always to use the Cray...

  5. Building Energy Code

    Broader source: Energy.gov [DOE]

    On May 2014, Delaware updated its energy code to 2012 IECC with amendments for residential sector and ASHRAE 90.1-2010 with amendments for the commercial sector. The Delaware specific amendments to...

  6. Building Energy Code

    Broader source: Energy.gov [DOE]

    Authority for adopting the state energy codes was previously vested in the Energy Security Office of the Department of Commerce (originally the Department of Public Services). In 1999-2000, the...

  7. Compiling Codes on Hopper

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    example.x example.c For C++ source code use CC % CC -fast -o example.x example.C All compilers on Hopper, PGI, Pathscale, Cray, GNU, and Intel, are provided via five programming...

  8. National Energy Codes Conference

    Broader source: Energy.gov [DOE]

    Join us in Nashville, TN March 23-26, 2015 for the National Energy Codes Conference! Additional details, including registration information, a preliminary agenda, the application for the Jeffrey A...

  9. Building Energy Code

    Broader source: Energy.gov [DOE]

    The Oregon Energy Code amendments were most recently updated for both residential and non-residential construction in 2014. In October 2010 Oregon also adopted the Oregon Solar Installation...

  10. Building Energy Code

    Broader source: Energy.gov [DOE]

    The Texas State Energy Conservation Office (SECO) by rule may choose to adopt the latest published editions of the energy efficiency provisions of the International Residential Code (IRC) or the...

  11. Building Energy Code

    Broader source: Energy.gov [DOE]

    Missouri does not have a statewide building or energy code for private residential and commercial buildings, and there currently is no state regulatory agency authorized to promulgate, adopt, or...

  12. Compressible Astrophysics Simulation Code

    Energy Science and Technology Software Center (OSTI)

    2007-07-18

    This is an astrophysics simulation code involving a radiation diffusion module developed at LLNL coupled to compressible hydrodynamics and adaptive mesh infrastructure developed at LBNL. One intended application is to neutrino diffusion in core collapse supernovae.

  13. TOUGH+ v1.5 Core Code

    SciTech Connect (OSTI)

    2015-08-27

    TOUGH+ v1.5 is a numerical code for the simulation of multi-phase, multi-component flow and transport of mass and heat through porous and fractured media, and represents the third update of the code since its first release [Moridis et al., 2008]. TOUGH+ is a successor to the TOUGH2 [Pruess et al., 1991; 2012] family of codes for multi-component, multiphase ?uid and heat ?ow developed at the Lawrence Berkeley National Laboratory. It is written in standard FORTRAN 95/2003, and can be run on any computational platform (workstations, PC, Macintosh). TOUGH+ v1.5 employs dynamic memory allocation, thus minimizing storage requirements. It has a completely modular structure, follows the tenets of Object-Oriented Programming (OOP), and involves the advanced features of FORTRAN 95/2003, i.e., modules, derived data types, the use of pointers, lists and trees, data encapsulation, defined operators and assignments, operator extension and overloading, use of generic procedures, and maximum use of the powerful intrinsic vector and matrix processing operations. TOUGH+ v1.5 is the core code for its family of applications, i.e., the part of the code that is common to all its applications. It provides a description of the underlying physics and thermodynamics of non-isothermal flow, of the mathematical and numerical approaches, as well as a detailed explanation of the general (common to all applications) input requirements, options, capabilities and output specifications. The core code cannot run by itself: it needs to be coupled with the code for the specific TOUGH+ application option that describes a particular type of problem. The additional input requirements specific to a particular TOUGH+ application options and related illustrative examples can be found in the corresponding User?s Manual.

  14. TOUGH+ v1.5 Core Code

    Energy Science and Technology Software Center (OSTI)

    2015-08-27

    TOUGH+ v1.5 is a numerical code for the simulation of multi-phase, multi-component flow and transport of mass and heat through porous and fractured media, and represents the third update of the code since its first release [Moridis et al., 2008]. TOUGH+ is a successor to the TOUGH2 [Pruess et al., 1991; 2012] family of codes for multi-component, multiphase fluid and heat flow developed at the Lawrence Berkeley National Laboratory. It is written in standard FORTRANmore » 95/2003, and can be run on any computational platform (workstations, PC, Macintosh). TOUGH+ v1.5 employs dynamic memory allocation, thus minimizing storage requirements. It has a completely modular structure, follows the tenets of Object-Oriented Programming (OOP), and involves the advanced features of FORTRAN 95/2003, i.e., modules, derived data types, the use of pointers, lists and trees, data encapsulation, defined operators and assignments, operator extension and overloading, use of generic procedures, and maximum use of the powerful intrinsic vector and matrix processing operations. TOUGH+ v1.5 is the core code for its family of applications, i.e., the part of the code that is common to all its applications. It provides a description of the underlying physics and thermodynamics of non-isothermal flow, of the mathematical and numerical approaches, as well as a detailed explanation of the general (common to all applications) input requirements, options, capabilities and output specifications. The core code cannot run by itself: it needs to be coupled with the code for the specific TOUGH+ application option that describes a particular type of problem. The additional input requirements specific to a particular TOUGH+ application options and related illustrative examples can be found in the corresponding User’s Manual.« less

  15. Generating code adapted for interlinking legacy scalar code and...

    Office of Scientific and Technical Information (OSTI)

    Mechanisms for intermixing code are provided. Source code is received for compilation using an extended Application Binary Interface (ABI) that extends a legacy ABI and uses a ...

  16. AMENDMENT OF SOLlClTATlONlMODlFlCATlON OF CONTRACT I 6. ISSUED BY CODE

    National Nuclear Security Administration (NNSA)

    6. ISSUED BY CODE U.S. Department of Energy National Nuclear Security Administration Service Center Property and M&O Contract Support Department P.O. Box 5400 BWXT Pantex, LLC Route 726, Mt. Athos Road Lynchburg, VA 24506 I. CONTRACT ID CODE I 7. ADMINISTERED BY (If other than Item 6) CODE U.S. Department of Energy National Nuclear Security Administration Manager, Pantex Site Office P.O. Box 30030 Albuquerque, NM 87185-5400 I Amarillo, TX 79120 9B. DATED (SEE ITEM 11) PAGE I OF 2 PAGES 2.

  17. Nevada Energy Code for Buildings

    Broader source: Energy.gov [DOE]

    Legislation signed in 2009 changed the process of adopting building codes in the state. Previously, the statewide code would only apply to local governments that had not already adopted a code,...

  18. DOE Data ID Service Background | OSTI, US Dept of Energy, Office of

    Office of Scientific and Technical Information (OSTI)

    Scientific and Technical Information Background DataCite | Contact DOE Data ID Service In 2011, the DOE Office of Scientific and Technical Information (OSTI) joined DataCite to facilitate citing, accessing, and reusing publicly available scientific research datasets produced by DOE-funded researchers. DataCite is an international organization that supports data visibility, ease of data citation in scholarly publications, data preservation and future re-use, and data access and

  19. How to Use the DOE Data ID Service: For Grantees | OSTI, US Dept of Energy,

    Office of Scientific and Technical Information (OSTI)

    Office of Scientific and Technical Information Grantees DataCite | Contact DOE Data ID Service Grantees who are not stationed at one of DOE's laboratories may access the E-Link website at https://www.osti.gov/elink/. Select the link for Financial Assistance Recipients. Choose Scientific Research Datasets (AN 241.6) from the menu and begin entering the metadata that is asked for. Ensure all required fields are completed with the appropriate information. Required fields are: Dataset Type,

  20. Microsoft PowerPoint - ID 876 TourBooklet_revb_Geology [Compatibility Mode]

    Office of Environmental Management (EM)

    Energy, National Nuclear Security Administration Nevada Field Office Bob Andrews Navarro-Intera December 10, 2014 Nevada National Security Site Underground Test Area (UGTA) Tour Page 2 Page 2Title ID 876 Tour Booklet 12/10/2014 - Page 2 Log No. 2014-xxx Nevada National Security Site (NNSS) * NNSS has many diverse roles to support the U.S. nuclear weapons stockpile stewardship missions and also supports other U.S. Department of Energy (DOE), Department of Defense, and Department of Homeland

  1. FAA Smoke Transport Code

    Energy Science and Technology Software Center (OSTI)

    2006-10-27

    FAA Smoke Transport Code, a physics-based Computational Fluid Dynamics tool, which couples heat, mass, and momentum transfer, has been developed to provide information on smoke transport in cargo compartments with various geometries and flight conditions. The software package contains a graphical user interface for specification of geometry and boundary conditions, analysis module for solving the governing equations, and a post-processing tool. The current code was produced by making substantial improvements and additions to a codemore » obtained from a university. The original code was able to compute steady, uniform, isothermal turbulent pressurization. In addition, a preprocessor and postprocessor were added to arrive at the current software package.« less

  2. Regulations, Guidelines and Codes and Standards | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Safety, Codes & Standards Current Approaches to Safety, Codes & Standards Regulations, Guidelines and Codes and Standards Regulations, Guidelines and Codes and Standards Many ...

  3. Integrated Codes | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    These codes include both classified and unclassified codes, codes used to simulate the safety, performance, and reliability of stockpile systems, codes used for the design and ...

  4. Transmutation Fuel Performance Code Conceptual Design

    SciTech Connect (OSTI)

    Gregory K. Miller; Pavel G. Medvedev

    2007-03-01

    One of the objectives of the Global Nuclear Energy Partnership (GNEP) is to facilitate the licensing and operation of Advanced Recycle Reactors (ARRs) for transmutation of the transuranic elements (TRU) present in spent fuel. A fuel performance code will be an essential element in the licensing process ensuring that behavior of the transmutation fuel elements in the reactor is understood and predictable. Even more important in the near term, a fuel performance code will assist substantially in the fuels research and development, design, irradiation testing and interpretation of the post-irradiation examination results.

  5. IDAHO OPERATIONS OFFICE NAMES NEW IDAHO CLEANUP PROJECT MANAGER

    Broader source: Energy.gov [DOE]

    Idaho Falls, ID – The Department of Energy Idaho Operations Office today announced that James Cooper has been named deputy manager of its highly-successful Idaho Cleanup Project, which oversees the environmental cleanup and waste management mission at DOE’s Idaho site.

  6. Electrical Circuit Simulation Code

    Energy Science and Technology Software Center (OSTI)

    2001-08-09

    Massively-Parallel Electrical Circuit Simulation Code. CHILESPICE is a massively-arallel distributed-memory electrical circuit simulation tool that contains many enhanced radiation, time-based, and thermal features and models. Large scale electronic circuit simulation. Shared memory, parallel processing, enhance convergence. Sandia specific device models.

  7. User`s manual for SNL-SAND-II code

    SciTech Connect (OSTI)

    Griffin, P.J.; Kelly, J.G.; VanDenburg, J.W.

    1994-04-01

    Sandia National Laboratories, in the process of characterizing the neutron environments at its reactor facilities, has developed an enhanced version of W. McElroy`s original SAND-II code. The enhanced input, output, and plotting interfaces make the code much easier to use. The basic physics and operation of the code remain unchanged. Important code enhancements include the interfaces to the latest ENDF/B-VI and IRDF-90 dosimetry-quality cross sections and the ability to use silicon displacement-sensitive devices as dosimetry sensors.

  8. Finite Element Analysis Code

    Energy Science and Technology Software Center (OSTI)

    2006-03-08

    MAPVAR-KD is designed to transfer solution results from one finite element mesh to another. MAPVAR-KD draws heavily from the structure and coding of MERLIN II, but it employs a new finite element data base, EXODUS II, and offers enhanced speed and new capabilities not available in MERLIN II. In keeping with the MERLIN II documentation, the computational algorithms used in MAPVAR-KD are described. User instructions are presented. Example problems are included to demonstrate the operationmore » of the code and the effects of various input options. MAPVAR-KD is a modification of MAPVAR in which the search algorithm was replaced by a kd-tree-based search for better performance on large problems.« less

  9. Confocal coded aperture imaging

    DOE Patents [OSTI]

    Tobin, Jr., Kenneth William (Harriman, TN); Thomas, Jr., Clarence E. (Knoxville, TN)

    2001-01-01

    A method for imaging a target volume comprises the steps of: radiating a small bandwidth of energy toward the target volume; focusing the small bandwidth of energy into a beam; moving the target volume through a plurality of positions within the focused beam; collecting a beam of energy scattered from the target volume with a non-diffractive confocal coded aperture; generating a shadow image of said aperture from every point source of radiation in the target volume; and, reconstructing the shadow image into a 3-dimensional image of the every point source by mathematically correlating the shadow image with a digital or analog version of the coded aperture. The method can comprise the step of collecting the beam of energy scattered from the target volume with a Fresnel zone plate.

  10. Hanford Meteorological Station computer codes: Volume 2, The PROD computer code

    SciTech Connect (OSTI)

    Andrews, G.L.; Buck, J.W.

    1987-09-01

    At the end of each work shift (day, swing, and graveyard), the Hanford Meteorological Station (HMS), operated by Pacific Northwest Laboratory, issues a forecast of the 200-ft-level wind speed and direction and the weather for use at B Plant and PUREX. These forecasts are called production forecasts. The PROD computer code is used to archive these production forecasts and apply quality assurance checks to the forecasts. The code accesses an input file, which contains the previous forecast's date and shift number, and an output file, which contains the production forecasts for the current month. A data entry form consisting of 20 fields is included in the program. The fields must be filled in by the user. The information entered is appended to the current production monthly forecast file, which provides an archive for the production forecasts. This volume describes the implementation and operation of the PROD computer code at the HMS.

  11. THREAT OF MALICIOUS CODE

    Energy Savers [EERE]

    THREAT OF MALICIOUS CODE The Department of Energy (DOE) is strongly committed to the protection of all DOE assets from cyber attack and malicious exploitation. This includes information, networks, hardware, software, and mobile devices. DOE's continued diligence in this arena is critical in today's constantly-evolving cyber threat landscape. A recently cited incident involved senior officials receiving unsolicited free phone chargers. Luckily, the source was legitimate and did not result in a

  12. Coding Archives - Nercenergy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Coding What Certificates Should My Microsoft Exchange Server Have? Much like any other network application, in order to secure the functionality and safety of Microsoft Exchange Servers, it's essential to adopt specific certificates. Due to the literally thousands, if not millions, of security threats bombarding your Exchange Server every day, these certificates ensure users have a safe messaging experience while simultaneously safeguarding your data and sensitive information from being

  13. Bar coded retroreflective target

    DOE Patents [OSTI]

    Vann, Charles S.

    2000-01-01

    This small, inexpensive, non-contact laser sensor can detect the location of a retroreflective target in a relatively large volume and up to six degrees of position. The tracker's laser beam is formed into a plane of light which is swept across the space of interest. When the beam illuminates the retroreflector, some of the light returns to the tracker. The intensity, angle, and time of the return beam is measured to calculate the three dimensional location of the target. With three retroreflectors on the target, the locations of three points on the target are measured, enabling the calculation of all six degrees of target position. Until now, devices for three-dimensional tracking of objects in a large volume have been heavy, large, and very expensive. Because of the simplicity and unique characteristics of this tracker, it is capable of three-dimensional tracking of one to several objects in a large volume, yet it is compact, light-weight, and relatively inexpensive. Alternatively, a tracker produces a diverging laser beam which is directed towards a fixed position, and senses when a retroreflective target enters the fixed field of view. An optically bar coded target can be read by the tracker to provide information about the target. The target can be formed of a ball lens with a bar code on one end. As the target moves through the field, the ball lens causes the laser beam to scan across the bar code.

  14. How to Use the DOE Data ID Service: For Individual Lab Researchers | OSTI,

    Office of Scientific and Technical Information (OSTI)

    US Dept of Energy, Office of Scientific and Technical Information Individual Lab Researchers DataCite | Contact DOE Data ID Service Call or email your organization's Scientific and Technical Information (STI) Manager. Explain your need to submit a dataset to support a publication and/or to receive a DOI. Ask if your lab has been assigned a unique DOI prefix. The answer should be "yes." If it is not, the STI Manager will need to contact OSTI to obtain a prefix and then get back to

  15. Microsoft Word - DOE-ID-INL-12-007_INL-12-033_.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Page 1 of 2 CX Posting No.: DOE-ID-INL-12-007 SECTION A. Project Title: Geotechnical Core Drilling for USGS 138 SECTION B. Project Description: . The U.S. Geological Survey (USGS) proposes to drill a 1,000-foot deep geotechnical corehole (USGS 138) into the eastern Snake River Plain aquifer. The location of the corehole will be about 4.0 mile(s) east of the city Howe and about 8.5 mile(s) north of the Naval Reactors Facility at the Southeast Quarter of the Southwest Quarter, Section 7, Township

  16. Microsoft Word - DOE-ID-14-032 Purdue EC B3-6.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Design Codes to Account for Accident Thermal Effects on Seismic Performance - ... nuclear facilities subjected to combined accident thermal conditions and seismic loading. ...

  17. Current Safe Operating Practices | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Safety, Codes & Standards » Current Approaches to Safety, Codes & Standards » Current Safe Operating Practices Current Safe Operating Practices Safe operating practices are established to minimize the known hazards associated with handling hydrogen-fire, explosion, and asphyxiation. Some hazards can be mitigated by hydrogen's unique properties. For example, hydrogen's high dispersion coefficient allows it to dissipate rapidly and makes it virtually impossible for hydrogen to explode in

  18. Idaho Code | Open Energy Information

    Open Energy Info (EERE)

    Not provided DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Idaho Code Citation Idaho Code (2014). Retrieved from "http:en.openei.org...

  19. IDAHO OPERATIONS OFFICE NAMES NEW IDAHO CLEANUP PROJECT MANAGER

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    doe logo Media Contact: Brad Bugger (208) 526-0833 For Immediate Release: Wednesday, June 29, 2011 IDAHO OPERATIONS OFFICE NAMES NEW IDAHO CLEANUP PROJECT MANAGER Idaho Falls, ID � The Department of Energy Idaho Operations Office today announced that James Cooper has been named deputy manager of its highly-successful Idaho Cleanup Project, which oversees the environmental cleanup and waste management mission at DOE's Idaho site. Cooper has more than 30 years of experience in commercial and

  20. DOE Names New Director of Idaho Operations Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DOE Names New Director of Idaho Operations Office Idaho Falls, ID - The Department of Energy today announced that Rick Provencher has been named manager of its Rick Provencher Idaho Operations Office, which oversees the nation's leading commercial nuclear energy research laboratory and environmental cleanup and waste management mission at the site. Provencher, who has managed the highly-successful Idaho Cleanup Project since 2004, will assume his new duties on May 23, 2010. He succeeds interim

  1. Finite Element Analysis Code

    Energy Science and Technology Software Center (OSTI)

    2005-06-26

    Exotxt is an analysis code that reads finite element results data stored in an exodusII file and generates a file in a structured text format. The text file can be edited or modified via a number of text formatting tools. Exotxt is used by analysis to translate data from the binary exodusII format into a structured text format which can then be edited or modified and then either translated back to exodusII format or tomore » another format.« less

  2. Finite Element Analysis Code

    Energy Science and Technology Software Center (OSTI)

    2005-05-07

    CONEX is a code for joining sequentially in time multiple exodusll database files which all represent the same base mesh topology and geometry. It is used to create a single results or restart file from multiple results or restart files which typically arise as the result of multiple restarted analyses. CONEX is used to postprocess the results from a series of finite element analyses. It can join sequentially the data from multiple results databases intomore » a single database which makes it easier to postprocess the results data.« less

  3. JOY computer code

    SciTech Connect (OSTI)

    Couch, R.G.; Albright, E.L.; Alexander, N.B.

    1983-01-01

    JOY is a 3-dimensional multifluid Eulerian hydrocode in Cartesian coordinates. It contains an elastic-plastic treatment and a shock-initiation model for high explosives (HE). Development of JOY was funded by the Ballistic Missile Defense Advanced Technology Center (BMDATC). The intended use of the code was for the study of hypervelocity impacts. The ultimate goal was to perform a structural analysis of objects subject to such impacts. JOY was designed to treat the early-impact phases where material motion is complicated, and then transfer information to DYNA3D for the longer-timescale analysis.

  4. Reduction/Transformation Operators

    Energy Science and Technology Software Center (OSTI)

    2006-09-01

    RTOp (reduction/transformation operators) is a collection of C++ software that provides the basic mechanism for implementinig vector operations in a flexible and efficient manner. This is the main interface utilized by Thyra to allow for the specification of specific vector reduction and/or transformation operations. The RTOp package contains three different types of software. (a) a small number of interoperability interfaces. (b) support software including code for the parallel SPMD mode based on only Teuchos::Comm(and notmore » MPl directly(, and (c) a library of pre-implemented RTOp subclasses for everything from simple AXPYs and norms, to more specialized vector operations. RTOp allows an algorithm developer to implement their own RTOp subclasses in a way that is independent from any specific serial, parallel, out-of-core or other type of vector implementation. RTOp is a required package by Thyra and MOOCHO. (c)« less

  5. Biodiesel Vehicle and Infrastructure Codes and Standards Chart (Revised) (Fact Sheet), NREL (National Renewable Energy Laboratory)

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Many standards development organizations (SDOs) are working to develop codes and standards needed for the utilization of alternative fuel vehicle technologies. This chart shows the SDOs responsible for leading the support and development of key codes and standards for biodiesel. Biodiesel Vehicle and Infrastructure Codes and Standards Chart Vehicles Storage Dispensing Infrastructure Engine Testing: Fuel Systems: Fuel Lubricants: Powertrain Systems: Containers: Dispensing Operations: Dispensing

  6. Analyses to support development of risk-informed separation distances for hydrogen codes and standards.

    SciTech Connect (OSTI)

    LaChance, Jeffrey L.; Houf, William G.; Fluer, Inc., Paso Robels, CA; Fluer, Larry; Middleton, Bobby

    2009-03-01

    The development of a set of safety codes and standards for hydrogen facilities is necessary to ensure they are designed and operated safely. To help ensure that a hydrogen facility meets an acceptable level of risk, code and standard development organizations are tilizing risk-informed concepts in developing hydrogen codes and standards.

  7. Code Tables | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Code Tables U.S. Department of Energy / U.S. Nuclear Regulatory Commission Nuclear Materials Management & Safeguards System Code Tables Action Code The action code identifies the type of activity being reported in a transaction. The Action Code table shows the valid action codes. Nature of Transaction (TI) Code The financial code signifies the nature of the financial or contractual activity that is involved in the transaction. The Nature of Transaction (TI) Code table shows the valid action

  8. Laboratory Operations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory Operations /newsroom/_assets/images/operations-icon.png Laboratory Operations Latest announcements from the Lab on its operations. Community, Events Laboratory Operations Environmental Stewardship Melissa Blueflower-Sanchez and Robert Sanchez, owners of R and M Construction, LLC, of Santa Clara Pueblo. Four regional businesses receive Native American Venture Acceleration Fund grants The grants are designed to help the recipients create jobs, increase their revenue base and help

  9. Cal. Wat. Code 13376 | Open Energy Information

    Open Energy Info (EERE)

    Cal. Wat. Code 13376Legal Abstract Cal. Wat. Code 13376, current through August 14, 2014. Published NA Year Signed or Took Effect 2014 Legal Citation Cal. Wat. Code...

  10. Cal. Wat. Code 13320 | Open Energy Information

    Open Energy Info (EERE)

    Cal. Wat. Code 13320Legal Abstract Cal. Wat. Code 13320, current through August 13, 2014. Published NA Year Signed or Took Effect 1969 Legal Citation Cal. Wat. Code...

  11. Cal. Wat. Code 13369 | Open Energy Information

    Open Energy Info (EERE)

    Cal. Wat. Code 13369Legal Abstract Cal. Wat. Code 13369, current through August 13, 2014. Published NA Year Signed or Took Effect 1969 Legal Citation Cal. Wat. Code...

  12. Cal. Wat. Code 13373 | Open Energy Information

    Open Energy Info (EERE)

    Cal. Wat. Code 13373Legal Abstract Cal. Wat. Code 13373, current through August 14, 2014. Published NA Year Signed or Took Effect 1987 Legal Citation Cal. Wat. Code...

  13. Cal. Wat. Code 13160 | Open Energy Information

    Open Energy Info (EERE)

    Cal. Wat. Code 13160Legal Abstract Cal. Wat. Code 13160, current through August 13, 2014. Published NA Year Signed or Took Effect 1969 Legal Citation Cal. Wat. Code...

  14. Southeast Energy Efficiency Alliance's Building Energy Codes...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Southeast Energy Efficiency Alliance's Building Energy Codes Project Southeast Energy Efficiency Alliance's Building Energy Codes Project Building Codes Project for the 2013 ...

  15. Building Codes Resources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Building Energy Codes Program: Resource Center Building Energy Codes Program: Status of State Energy Code Adoption Impacts of Standard 90.1-2007 for Commercial Buildings at State ...

  16. Utah Code Annotated | Open Energy Information

    Open Energy Info (EERE)

    Code Ann. DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Utah Code Annotated Citation Utah Code Annotated (2014). Retrieved from...

  17. North Portal Fuel Storage System Fire Hazard Analysis-ESF Surface Design Package ID

    SciTech Connect (OSTI)

    N.M. Ruonavaara

    1995-01-18

    The purpose of the fire hazard analysis is to comprehensively assess the risk from fire within the individual fire areas. This document will only assess the fire hazard analysis within the Exploratory Studies Facility (ESF) Design Package ID, which includes the fuel storage system area of the North Portal facility, and evaluate whether the following objectives are met: 1.1.1--This analysis, performed in accordance with the requirements of this document, will satisfy the requirements for a fire hazard analysis in accordance with U.S. Department of Energy (DOE) Order 5480.7A. 1.1.2--Ensure that property damage from fire and related perils does not exceed an acceptable level. 1.1.3--Provide input to the ESF Basis For Design (BFD) Document. 1.1.4 Provide input to the facility Safety Analysis Report (SAR) (Paragraph 3.8).

  18. Eastport, ID Natural Gas Pipeline Imports From Canada (Dollars per Thousand

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 1.22 1.60 1.60 2.04 2000's 3.79 4.71 2.83 4.72 5.30 7.13 6.22 6.31 7.88 3.86 2010's 4.19 3.90 2.59 3.34 4.14 2.34 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: U.S. Price of Natural Gas Pipeline Imports by Point of Entry Eastport, ID Natural Gas

  19. Yucca Mountain Project Integrated Data System (IDS); Final report, October 1, 1989--December 31, 1990

    SciTech Connect (OSTI)

    1991-05-23

    This final report for LANL Subcontract 9-XS8-2604-1 includes copies of all formal letters, memorandums, and reports provided by CAG to support the IDS effort in the LANL Test Managers Office, Las Vegas, Nevada from October 1, 1989 through the end of the contract on December 31, 1990. The material is divided into two sections; the Functional Requirements Document (FRD) and other reports, letters, and memorandums. All documents are arranged in chronological order with most recent last. Numerous draft copies of the FRD were prepared and cover sheets for all drafts are included. The complete text of only the last version supplied (July 27, 1990) is included in this document.

  20. RELAP5/MOD3 code manual: Code structure, system models, and solution methods. Volume 1

    SciTech Connect (OSTI)

    1995-08-01

    The RELAP5 code has been developed for best estimate transient simulation of light water reactor coolant systems during postulated accidents. The code models the coupled behavior of the reactor coolant system and the core for loss-of-coolant accidents, and operational transients, such as anticipated transient without scram, loss of offsite power, loss of feedwater, and loss of flow. A generic modeling, approach is used that permits simulating a variety of thermal hydraulic systems. Control system and secondary system components are included to permit modeling of plant controls, turbines, condensers, and secondary feedwater systems. RELAP5/MOD3 code documentation is divided into seven volumes: Volume I provides modeling theory and associated numerical schemes.

  1. Electric Vehicle and Infrastructure Codes and Standards Citations (Brochure), NREL (National Renewable Energy Laboratory)

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Electric Vehicle and Infrastructure Codes and Standards Citations This document lists codes and standards typically used for U.S. electric vehicle and infrastructure projects. To determine which codes and standards apply to a specific project, identify the codes and standards currently in effect within the jurisdiction where the

  2. Propane Vehicle and Infrastructure Codes and Standards Citations (Brochure), NREL (National Renewable Energy Laboratory)

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Propane Vehicle and Infrastructure Codes and Standards Citations This document lists codes and standards typically used for U.S. propane vehicle and infrastructure projects. To determine which codes and standards apply to a specific project, identify the codes and standards currently in effect within the jurisdiction where the

  3. Validation of the G-PASS code : status report.

    SciTech Connect (OSTI)

    Vilim, R. B.; Nuclear Engineering Division

    2009-03-12

    Validation is the process of determining whether the models in a computer code can describe the important phenomena in applications of interest. This report describes past work and proposed future work for validating the Gas Plant Analyzer and System Simulator (G-PASS) code. The G-PASS code was developed for simulating gas reactor and chemical plant system behavior during operational transients and upset events. Results are presented comparing code properties, individual component models, and integrated system behavior against results from four other computer codes. Also identified are two experiment facilities nearing completion that will provide additional data for individual component and integrated system model validation. The main goal of the validation exercise is to ready a version of G-PASS for use as a tool in evaluating vendor designs and providing guidance to vendors on design directions in nuclear-hydrogen applications.

  4. City of Austin- Zoning Code

    Broader source: Energy.gov [DOE]

    The Zoning Code also allows for preservation plans in historic districts to incorporate sustainability measures such as solar technologies and other energy generation and efficiency measures.

  5. Marin County- Solar Access Code

    Broader source: Energy.gov [DOE]

    Marin County's Energy Conservation Code is designed to assure new subdivisions provide for future passive or natural heating or cooling opportunities in the subdivision to the extent feasible. ...

  6. Technical Assistance: Increasing Code Compliance

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    with, and enforcing the model energy codes resulting in higher-performing buildings ... 3 3 PNNL's Technical Support Development Standard 90.1 International Energy Conservation ...

  7. NEEP Building Energy Codes Project

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Challenge * Political - change in leadership or no longer a priority * Funding and staffing constraints * Lack of communication amongst state departments ( codes, energy etc.) ...

  8. Clark County- Energy Conservation Code

    Broader source: Energy.gov [DOE]

    In September 2010, Clark County adopted Ordinance 3897, implementing the Southern Nevada version of the 2009 International Energy Conservation Code for both residential and commercial buildings...

  9. " Row: NAICS Codes; Column: Electricity...

    U.S. Energy Information Administration (EIA) Indexed Site

    1. Electricity: Components of Net Demand, 1998;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Electricity Components;" " Unit: Million Kilowatthours." " "," ...

  10. Telescope Adaptive Optics Code

    Energy Science and Technology Software Center (OSTI)

    2005-07-28

    The Telescope AO Code has general adaptive optics capabilities plus specialized models for three telescopes with either adaptive optics or active optics systems. It has the capability to generate either single-layer or distributed Kolmogorov turbulence phase screens using the FFT. Missing low order spatial frequencies are added using the Karhunen-Loeve expansion. The phase structure curve is extremely dose to the theoreUcal. Secondly, it has the capability to simulate an adaptive optics control systems. The defaultmore » parameters are those of the Keck II adaptive optics system. Thirdly, it has a general wave optics capability to model the science camera halo due to scintillation from atmospheric turbulence and the telescope optics. Although this capability was implemented for the Gemini telescopes, the only default parameter specific to the Gemini telescopes is the primary mirror diameter. Finally, it has a model for the LSST active optics alignment strategy. This last model is highly specific to the LSST« less

  11. https://bluedart.phe.com/owa/?ae=Item&t=IPM.Note&id=RgAAAAA%2f3

    National Nuclear Security Administration (NNSA)

    Phyllis Radack Manager, Regulatory Services 702-295-6582 702-858-5587 (cell) 702-295-7699 ...idRgAAAAA%2f3mOqqZ%2bfSq... 702-858-5587 (cell) 702-295-7699 (fax) From: Morris, Patrick ...

  12. ACCELERATION PHYSICS CODE WEB REPOSITORY.

    SciTech Connect (OSTI)

    WEI, J.

    2006-06-26

    In the framework of the CARE HHH European Network, we have developed a web-based dynamic accelerator-physics code repository. We describe the design, structure and contents of this repository, illustrate its usage, and discuss our future plans, with emphasis on code benchmarking.

  13. Accelerator Physics Code Web Repository

    SciTech Connect (OSTI)

    Zimmermann, F.; Basset, R.; Bellodi, G.; Benedetto, E.; Dorda, U.; Giovannozzi, M.; Papaphilippou, Y.; Pieloni, T.; Ruggiero, F.; Rumolo, G.; Schmidt, F.; Todesco, E.; Zotter, B.W.; Payet, J.; Bartolini, R.; Farvacque, L.; Sen, T.; Chin, Y.H.; Ohmi, K.; Oide, K.; Furman, M.; /LBL, Berkeley /Oak Ridge /Pohang Accelerator Lab. /SLAC /TRIUMF /Tech-X, Boulder /UC, San Diego /Darmstadt, GSI /Rutherford /Brookhaven

    2006-10-24

    In the framework of the CARE HHH European Network, we have developed a web-based dynamic accelerator-physics code repository. We describe the design, structure and contents of this repository, illustrate its usage, and discuss our future plans, with emphasis on code benchmarking.

  14. Portable code development in C

    SciTech Connect (OSTI)

    Brown, S.A.

    1990-11-06

    With a new generation of high performance computers appearing around us on a time scale of months, a new challenge for developers of simulation codes is to write and maintain production codes that are both highly portable and maximally efficient. My contention is that C is the language that is both best suited to that goal and is widely available today. GLF is a new code written mainly in C which is intended to have all of the XRASER physics and run on any platform of interest. It demonstrates the power of the C paradigm for code developers and flexibility and ease of use for the users. Three fundamental problems are discussed: the C/UNIX development environment; the supporting tools and libraries which handle data and graphics portability issues; and the advantages of C in numerical simulation code development.

  15. Operational Excellence

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Operational Excellence /about/_assets/images/icon-70th.jpg Operational Excellence The Lab's mission is to develop and apply science and technology to ensure the safety, security, and reliability of the U.S. nuclear deterrent; reduce global threats; and solve other emerging national security and energy challenges. aeiral shot of los alamos, new mexico What Los Alamos gets done as a premier national security science laboratory depends on how we do it The Laboratory's operations and business

  16. Operations Videos

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Operations Research Analysts The U.S. Energy Information Administration (EIA) within the Department of Energy has forged a world-class information program that stresses quality, teamwork, and employee growth. In support of our program, we offer a variety of profes- sional positions, including the Operations Research Analyst, whose work is associated with the development and main- tenance of energy modeling systems. Responsibilities: Operations Research Analysts perform or participate in one or

  17. SPEAR Operations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Interface 1113 N. Kurita J. Langton Vacuum TSP's 1120 J. Corbett A. Terebilo MATLAB Applications - Basics 1121 F. Rafael Booster Kicker Upgrade, Operation Manual 1121...

  18. operations center

    National Nuclear Security Administration (NNSA)

    servers and other critical Operations Center equipment

  19. Independent air supply system filtered to protect against biological and radiological agents (99.7%).
  20. <...

  21. Codes and Standards Activities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE Activities » Codes and Standards Activities Codes and Standards Activities The Fuel Cell Technologies Office works with code development organizations, code officials, industry experts, and national laboratory scientists to draft new model codes and equipment standards that cover emerging hydrogen technologies for consideration by the various code enforcing jurisdictions. DOE's codes and standards activities are focused on: Developing training programs for state and local officials that

  22. ETR/ITER systems code

    SciTech Connect (OSTI)

    Barr, W.L.; Bathke, C.G.; Brooks, J.N.; Bulmer, R.H.; Busigin, A.; DuBois, P.F.; Fenstermacher, M.E.; Fink, J.; Finn, P.A.; Galambos, J.D.; Gohar, Y.; Gorker, G.E.; Haines, J.R.; Hassanein, A.M.; Hicks, D.R.; Ho, S.K.; Kalsi, S.S.; Kalyanam, K.M.; Kerns, J.A.; Lee, J.D.; Miller, J.R.; Miller, R.L.; Myall, J.O.; Peng, Y-K.M.; Perkins, L.J.; Spampinato, P.T.; Strickler, D.J.; Thomson, S.L.; Wagner, C.E.; Willms, R.S.; Reid, R.L.

    1988-04-01

    A tokamak systems code capable of modeling experimental test reactors has been developed and is described in this document. The code, named TETRA (for Tokamak Engineering Test Reactor Analysis), consists of a series of modules, each describing a tokamak system or component, controlled by an optimizer/driver. This code development was a national effort in that the modules were contributed by members of the fusion community and integrated into a code by the Fusion Engineering Design Center. The code has been checked out on the Cray computers at the National Magnetic Fusion Energy Computing Center and has satisfactorily simulated the Tokamak Ignition/Burn Experimental Reactor II (TIBER) design. A feature of this code is the ability to perform optimization studies through the use of a numerical software package, which iterates prescribed variables to satisfy a set of prescribed equations or constraints. This code will be used to perform sensitivity studies for the proposed International Thermonuclear Experimental Reactor (ITER). 22 figs., 29 tabs.

  1. New Code Compliance Briefs Assist in Resolving Codes and Standards...

    Energy Savers [EERE]

    Codes and Standards Concerns in Energy Innovations February 24, 2016 3:00PM to 4:30PM EST The Building America Program is hosting a free webinar that will provide an overview ...

  2. Continuity of Operations Plan (COOP)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    by DOE ID Employees. Reporting Instructions: When reporting, please leave name, contact phone number, email address, location, status of safe or if assistance is needed and what...

  3. System for loading executable code into volatile memory in a downhole tool

    DOE Patents [OSTI]

    Hall, David R.; Bartholomew, David B.; Johnson, Monte L.

    2007-09-25

    A system for loading an executable code into volatile memory in a downhole tool string component comprises a surface control unit comprising executable code. An integrated downhole network comprises data transmission elements in communication with the surface control unit and the volatile memory. The executable code, stored in the surface control unit, is not permanently stored in the downhole tool string component. In a preferred embodiment of the present invention, the downhole tool string component comprises boot memory. In another embodiment, the executable code is an operating system executable code. Preferably, the volatile memory comprises random access memory (RAM). A method for loading executable code to volatile memory in a downhole tool string component comprises sending the code from the surface control unit to a processor in the downhole tool string component over the network. A central processing unit writes the executable code in the volatile memory.

  4. NREL Supports Development of New National Code for Hydrogen Technologies (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-12-01

    On December 14, 2010, the National Fire Protection Association (NFPA) issued a new national code for hydrogen technologies - NFPA 2 Hydrogen Technologies Code - which covers critical applications and operations such as hydrogen dispensing, production, and storage. The new code consolidates existing hydrogen-related NFPA codes and standards requirements into a single document and also introduces new requirements. This consolidation makes it easier for users to prepare code-compliant permit applications and to review/approve these applications. The National Renewable Energy Laboratory helped support the development of NFPA 2 on behalf of the U.S. Department of Energy Fuel Cell Technologies Program.

  5. OM Code Requirements For MOVs -- OMN-1 and Appendix III

    SciTech Connect (OSTI)

    Kevin G. DeWall

    2011-08-01

    The purpose or scope of the ASME OM Code is to establish the requirements for pre-service and in-service testing of nuclear power plant components to assess their operational readiness. For MOVs this includes those that perform a specific function in shutting down a reactor to the safe shutdown condition, maintaining the safe shutdown condition, and mitigating the consequences of an accident. This paper will present a brief history of industry and regulatory activities related to MOVs and the development of Code requirements to address weaknesses in earlier versions of the OM Code. The paper will discuss the MOV requirements contained in the 2009 version of ASME OM Code, specifically Mandatory Appendix III and OMN-1, Revision 1.

  6. code | OpenEI Community

    Open Energy Info (EERE)

    by Graham7781(2017) Super contributor 14 April, 2014 - 09:48 National Day of Civic Hacking code community data Event hacking international national OpenEI The National Day of...

  7. Technical Qualification Program and FTCP Self-Assessment Report- Idaho Operations Office- 2015

    Broader source: Energy.gov [DOE]

    The Department of Energy Idaho Operations Office conducted a management self-assessment of the DOE-ID Technical Qualification Program and Federal Technical Capability Program from October 26 thru December 15, 2015. The management self-assessment was conducted by the Assistant Manager, Nuclear and Safety Performance (also the Federal Technical Capabilities Panel Agent) and a Facility Representative.

  8. Edge equilibrium code for tokamaks

    SciTech Connect (OSTI)

    Li, Xujing; Drozdov, Vladimir V.

    2014-01-15

    The edge equilibrium code (EEC) described in this paper is developed for simulations of the near edge plasma using the finite element method. It solves the Grad-Shafranov equation in toroidal coordinate and uses adaptive grids aligned with magnetic field lines. Hermite finite elements are chosen for the numerical scheme. A fast Newton scheme which is the same as implemented in the equilibrium and stability code (ESC) is applied here to adjust the grids.

  9. electromagnetics, eddy current, computer codes

    Energy Science and Technology Software Center (OSTI)

    2002-03-12

    TORO Version 4 is designed for finite element analysis of steady, transient and time-harmonic, multi-dimensional, quasi-static problems in electromagnetics. The code allows simulation of electrostatic fields, steady current flows, magnetostatics and eddy current problems in plane or axisymmetric, two-dimensional geometries. TORO is easily coupled to heat conduction and solid mechanics codes to allow multi-physics simulations to be performed.

  10. Operating Costs

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-03-28

    This chapter is focused on capital costs for conventional construction and environmental restoration and waste management projects and examines operating cost estimates to verify that all elements of the project have been considered and properly estimated.

  11. Oil and gas field code master list 1994

    SciTech Connect (OSTI)

    Not Available

    1995-01-01

    This is the thirteenth annual edition of the Energy Information Administration`s (EIA) Oil and Gas Field Code Master List. It reflects data collected through October 1994 and provides standardized field name spellings and codes for all identified oil and/or gas fields in the United States. The master field name spellings and codes are to be used by respondents when filing the following Department of Energy (DOE) forms: Form EIA-23, {open_quotes}Annual Survey of Domestic Oil and Gas Reserves,{close_quotes} filed by oil and gas well operators (field codes are required from larger operators only); Forms FERC 8 and EIA-191, {open_quotes}Underground Gas Storage Report,{close_quotes} filed by natural gas producers and distributors who operate underground natural gas storage facilities. Other Federal and State government agencies, as well as industry, use the EIA Oil and Gas Field Code Master List as the standard for field identification. A machine-readable version of the Oil and Gas Field Code Master List is available from the National Technical Information Service, 5285 Port Royal Road, Springfield, Virginia 22161, (703) 487-4650. In order for the Master List to be useful, it must be accurate and remain current. To accomplish this, EIA constantly reviews and revises this list. The EIA welcomes all comments, corrections, and additions to the Master List. All such information should be given to the EIA Field Code Coordinator at (214) 953-1858. EIA gratefully acknowledges the assistance provides by numerous State organizations and trade associations in verifying the existence of fields and their official nomenclature.

  12. BPA Hotline & Codes of Conduct

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and efficiency of DOE's programs and operations. Individuals may report allegations of fraud, waste, abuse, or mismanagement in DOE programs or operations to the Office of...

  13. Safe operating conditions for NSLS-II Storage Ring Frontends commissioning

    SciTech Connect (OSTI)

    Seletskiy, S.; Amundsen, C.; Ha, K.; Hussein, A.

    2015-04-02

    The NSLS-II Storage Ring Frontends are designed to safely accept the synchrotron radiation fan produced by respective insertion device when the electron beam orbit through the ID is locked inside the predefined Active Interlock Envelope. The Active Interlock is getting enabled at a particular beam current known as AI safe current limit. Below such current the beam orbit can be anywhere within the limits of the SR beam acceptance. During the FE commissioning the beam orbit is getting intentionally disturbed in the particular ID. In this paper we explore safe operating conditions for the Frontends commissioning.

  14. AMENDMENT OF SOLICITATION/MODIFICATION OF CONTRACT 11. CONTRACT ID COOE

    National Nuclear Security Administration (NNSA)

    COOE IPAGE 1 of2 AC PAGES 2. AMENOMENTIMOOIFlCAllON NO. I3. EFfeCTIVE DATE 4. REQUlSrTlONIPURCHASE I5. PROJECT NO. (If applicable) see Block 16C REQ.NO. NOPR M19Z 6. ISSUED BY CODE 7. ADMINISTERED BY (If other /han /Ism 6) CODE U.S. Department of Energy NatIonal Nuclear Security Administration P.O. Box 2060 Oak Ridge. TN 31131 8. NAME AND ADDRESS OF C<»lTRACTOR (No.* JllnJet county. aIIIe. ZI Ccde) Babcock & Wilcox Technical Services Y-12, LLC P.O. Box 2009 M58014 Oak Ridge, TN

  15. Microsoft Word - DOE-ID-15-052 Houston EC B3-6.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 SECTION A. Project Title: Multiple Degradation Mechanisms in Reinforced Concrete Structures, Modeling and Risk Analysis - The University of Houston SECTION B. Project Description The University of Houston proposes to complement ongoing Light Water Reactor Sustainability (LWRS)-funded Grizzly (component aging code) efforts by providing improved multi-physics models that will be incorporated into Grizzly's framework. These new developments include 1) coupling between mechanical damage and

  16. Example of Environmental Restoration Code of Accounts

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-03-28

    This chapter describes the fundamental structure of an example remediation cost code system, lists and describes the Level 1 cost codes, and lists the Level 2 and Level 3 cost codes.

  17. Microsoft Word - DOE-ID-14-084 Virginia Tech EC B3-15.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    that most closely resembles nuclear reactor operating conditions, and offer nuclear nanomaterial understanding and prediction abilities based on comprehensive characterization and...

  18. Microsoft Word - DOE-ID-15-030 City College EC B3-6.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a VHTR Core under Normal Operation and Accident Scenarios - City College of New York ... core of a Very High Temperature Gas-Cooled Reactor (VHTR) under accident conditions. ...

  19. Microsoft Word - DOE-ID-13-008 MIT EC B2-5.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Standards and Corrective Action Requirements for Owners and Operators of Underground Storage Tanks"). These actions do not include rebuilding or modifying substantial portions of...

  20. Microsoft Word - DOE-ID-13-064 Ohio State EC B3-6.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Material Use - Depleted uranium chloride up to 80 g will be utilized under the radiation safety protocol. This will be operated under the state license with an...

  1. Microsoft Word - DOE-ID-12-028 Georgia Tech.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    glove box system, and activities can be expected to average a microcurie or lower. The Radiation Safety Office supports all laboratory operations. Waste management handles...

  2. Microsoft Word - DOE-ID-12-006 Utah EC.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6 SECTION A. Project Title: Acquisition of Specific Equipment to Enhance Performance, Control and Operational Capability of the University of Utah TRIGA Facilities SECTION B....

  3. Microsoft Word - DOE-ID-14-044 Georgia Institute of Tech_3 EC...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for working fluids under different operating conditions. We will perform finite element analysis for the optimized design to understand the thermal stresses under various...

  4. UCRL-ID-119665 LLNL Small-Scale Drop-Hammer Impact Sensitivity...

    Office of Scientific and Technical Information (OSTI)

    ... release control, the control for the vacuum system solenoid and a manual height control. ... A large industrial vacuum cleaner provides continuous air flow during operation. A water ...

  5. Web Operational Status Boards

    SciTech Connect (OSTI)

    2004-04-16

    Web Operational Status Boards (WebOSB)is a web-based application designed to acquire, display, and update highly dynamic status information between multiple users and jurisdictions. WebOSB is able to disseminate real-time status information?support the timely sharing of information?with constant, dynamic updates via personal computers and the Internet between emergency operations centers (EOCs), incident command centers, and to users outside the EOC who need to know the information (hospitals, shelters, schools). The WebOSB application far exceeds outdated information-sharing methods used by emergency workers: whiteboards, Word and Excel documents, or even locality-specific Web sites. WebOSB?s capabilities include the following elements: - Secure access. Multiple users can access information on WebOSB from any personal computer with Internet access and a secure ID. Privileges are use to control access and distribution of status information and to identify users who are authorized to add or edit information. - Simultaneous update. WebOSB provides options for users to add, display, and update dynamic information simultaneously at all locations involved in the emergency management effort, A single status board can be updated from multiple locations enabling shelters and hospitals to post bed availability or list decontamination capability. - On-the-fly modification. Allowing the definition of an existing status board to be modified on-the-fly can be an asset during an emergency, where information requirements can change quickly. The status board designer feature allows an administrator to quickly define, modi,, add to, and implement new status boards in minutes without needing the help of Web designers and computer programmers. - Publisher/subscriber notification. As a subscriber, each user automatically receives notification of any new information relating to specific status boards. The publisher/subscriber feature automatically notified each user of any new information relating to specific status boards. WebOSB can be installed to fit the specific needs of an emergency management community. Because it was originally developed to concurrently support multiple EOCs at the local, county, and state level, it can also support multi-user environments for other types of projects.

  6. Web Operational Status Boards

    Energy Science and Technology Software Center (OSTI)

    2004-04-16

    Web Operational Status Boards (WebOSB)is a web-based application designed to acquire, display, and update highly dynamic status information between multiple users and jurisdictions. WebOSB is able to disseminate real-time status information—support the timely sharing of information—with constant, dynamic updates via personal computers and the Internet between emergency operations centers (EOCs), incident command centers, and to users outside the EOC who need to know the information (hospitals, shelters, schools). The WebOSB application far exceeds outdated information-sharingmore » methods used by emergency workers: whiteboards, Word and Excel documents, or even locality-specific Web sites. WebOSB’s capabilities include the following elements: - Secure access. Multiple users can access information on WebOSB from any personal computer with Internet access and a secure ID. Privileges are use to control access and distribution of status information and to identify users who are authorized to add or edit information. - Simultaneous update. WebOSB provides options for users to add, display, and update dynamic information simultaneously at all locations involved in the emergency management effort, A single status board can be updated from multiple locations enabling shelters and hospitals to post bed availability or list decontamination capability. - On-the-fly modification. Allowing the definition of an existing status board to be modified on-the-fly can be an asset during an emergency, where information requirements can change quickly. The status board designer feature allows an administrator to quickly define, modi,, add to, and implement new status boards in minutes without needing the help of Web designers and computer programmers. - Publisher/subscriber notification. As a subscriber, each user automatically receives notification of any new information relating to specific status boards. The publisher/subscriber feature automatically notified each user of any new information relating to specific status boards. WebOSB can be installed to fit the specific needs of an emergency management community. Because it was originally developed to concurrently support multiple EOCs at the local, county, and state level, it can also support multi-user environments for other types of projects.« less

  7. Building Energy Codes Collaborative Technical Assistance for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Collaborative Technical Assistance for States Building Energy Codes Collaborative Technical ... 2014 BTO Peer Review Southeast Energy Efficiency Alliance's Building Energy Codes ...

  8. Finite Element Scalar Diffraction Theory Code

    Energy Science and Technology Software Center (OSTI)

    1993-08-18

    This computer code calculates the optical diffraction field for diffraction through two-dimensional apertures to aid optical system design. The code allows plotting of the diffraction field.

  9. Design Code Survey Form | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Design Code Survey Form Design Code Survey Form Survey of Safety Software Used in Design of Structures, Systems, and Components 1. Introduction The Department's Implementation Plan ...

  10. Building Energy Code | Open Energy Information

    Open Energy Info (EERE)

    Building Energy Code Jump to: navigation, search Building energy codes adopted by states (and some local governments) require commercial andor residential construction to adhere...

  11. Building Energy Codes | Open Energy Information

    Open Energy Info (EERE)

    Building Energy Codes Jump to: navigation, search Building energy codes adopted by states (and some local governments) require commercial andor residential construction to adhere...

  12. Technical Standards, Safety Analysis Toolbox Codes - November...

    Office of Environmental Management (EM)

    2003 Technical Standards, Safety Analysis Toolbox Codes - November 2003 November 2003 Software Quality Assurance Plan and Criteria for the Safety Analysis Toolbox Codes Safety...

  13. Chemistry and Material Sciences Codes at NERSC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chemistry and Material Sciences Codes Chemistry and Material Sciences Codes at NERSC April 6, 2011 Last edited: 2016-04-29 11:35:1

  14. Nevada Administrative Code | Open Energy Information

    Open Energy Info (EERE)

    Not provided DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Nevada Administrative Code Citation Nevada Administrative Code (2014)....

  15. Arizona Administrative Code | Open Energy Information

    Open Energy Info (EERE)

    Arizona Administrative Code Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: Arizona Administrative CodeLegal Abstract This...

  16. Runtime Detection of C-Style Errors in UPC Code

    SciTech Connect (OSTI)

    Pirkelbauer, P; Liao, C; Panas, T; Quinlan, D

    2011-09-29

    Unified Parallel C (UPC) extends the C programming language (ISO C 99) with explicit parallel programming support for the partitioned global address space (PGAS), which provides a global memory space with localized partitions to each thread. Like its ancestor C, UPC is a low-level language that emphasizes code efficiency over safety. The absence of dynamic (and static) safety checks allows programmer oversights and software flaws that can be hard to spot. In this paper, we present an extension of a dynamic analysis tool, ROSE-Code Instrumentation and Runtime Monitor (ROSECIRM), for UPC to help programmers find C-style errors involving the global address space. Built on top of the ROSE source-to-source compiler infrastructure, the tool instruments source files with code that monitors operations and keeps track of changes to the system state. The resulting code is linked to a runtime monitor that observes the program execution and finds software defects. We describe the extensions to ROSE-CIRM that were necessary to support UPC. We discuss complications that arise from parallel code and our solutions. We test ROSE-CIRM against a runtime error detection test suite, and present performance results obtained from running error-free codes. ROSE-CIRM is released as part of the ROSE compiler under a BSD-style open source license.

  17. Validation issues for SSI codes

    SciTech Connect (OSTI)

    Philippacopoulos, A.J.

    1995-02-01

    The paper describes the results of a recent work which was performed to verify computer code predictions in the SSI area. The first part of the paper is concerned with analytic solutions of the system response. The mathematical derivations are reasonably reduced by the use of relatively simple models which capture fundamental ingredients of the physics of the system motion while allowing for the response to be obtained analytically. Having established explicit forms of the system response, numerical solutions from three computer codes are presented in comparative format.

  18. Sensor Authentication: Embedded Processor Code

    SciTech Connect (OSTI)

    2012-09-25

    Described is the c code running on the embedded Microchip 32bit PIC32MX575F256H located on the INL developed noise analysis circuit board. The code performs the following functions: Controls the noise analysis circuit board preamplifier voltage gains of 1, 10, 100, 000 Initializes the analog to digital conversion hardware, input channel selection, Fast Fourier Transform (FFT) function, USB communications interface, and internal memory allocations Initiates high resolution 4096 point 200 kHz data acquisition Computes complex 2048 point FFT and FFT magnitude. Services Host command set Transfers raw data to Host Transfers FFT result to host Communication error checking

  19. Microsoft Word - DOE-ID-12-005 New Mexico.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    will acquire a computer and associated hardware to measure control rod scram times, a laptop computer and associated electronics such as MCS and MCA systems for operating a High...

  20. Microsoft Word - DOE-ID-13-079 UC Berkeley EC B3-6.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    feasibility of designing a sodium-cooled breed-and-burn (B&B) fast reactor that will be able to establish and maintain a B&B mode of operation when fueled with depleted uranium. ...

  1. T-582: RSA systems has resulted in certain information being extracted from RSA systems that relates to RSA SecurID

    Broader source: Energy.gov [DOE]

    RSA investigation has revealed that the attack resulted in certain information being extracted from RSA's systems. Some of that information is related to RSA's SecurID two-factor authentication products.

  2. Operating Strategies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Operating Strategies and Design Recommendations for Mitigating Local Damage Effects in Offshore Turbine Blades Phillip W. Richards phillip@gatech.edu Graduate Research Assistant Daniel Guggenheim School of Aerospace Engineering Atlanta, Georgia, USA D. Todd Griffith dgriffi@sandia.gov Principal Member of the Technical Staff Sandia National Laboratories Albuquerque, New Mexico, USA Dewey H. Hodges dhodges@gatech.edu Professor Daniel Guggenheim School of Aerospace Engineering Atlanta, Georgia, USA

  3. Safety, Codes, and Standards Fact Sheet

    Broader source: Energy.gov [DOE]

    Fact sheet produced by the Fuel Cell Technologies Office describing hydrogen safety, codes, and standards.

  4. Tribal Legal Code: Umpqua Indian Utility Cooperative

    Broader source: Energy.gov [DOE]

    Provides an example tribal utility legal code. Also includes an example tribal energy development vision statement.

  5. Microsoft Word - DOE-ID-11-020 Ohio State - Blue EC.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    20 SECTION A. Project Title: A NEUP Minor Reactor Upgrade Request for Enhancement of Safety and Operational Monitoring Systems and Research Capabilities of the Ohio State University Nuclear Reactor Laboratory SECTION B. Project Description The object of this project by the University of Wisconsin is to upgrade outdated systems critical to operation of the reactor and laboratory to ensure their long-term viability for serving the education and research missions of both OSU and DOE. Equipment and

  6. Building Energy Codes Program Logic Model

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    provide funding to help measure & improve code compliance The Building Energy Codes Program aims to "lock in" savings from energy codes by participating in code development processes and supporting local and state governments in the adoption and implementation of progressively more advanced building energy codes across the country. External Influences: DOE budget, Construction industry, Real estate market, State/local policies & budget Objectives Activities / Partners Outputs

  7. Building Energy Codes Program | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Building Energy Codes Program Building Energy Codes Program 75% of U.S. buildings will be new or renovated by 2035. Building codes will ensure they use energy wisely. 75% of U.S. buildings will be new or renovated by 2035. Building codes will ensure they use energy wisely. The Building Technologies Office (BTO) supports greater adoption of residential and commercial building energy codes through collaborative efforts with local governments and industry groups, and by providing key tools and

  8. Structural design, analysis, and code evaluation of an odd-shaped pressure vessel

    SciTech Connect (OSTI)

    Rezvani, M.A.; Ziada, H.H.

    1992-12-01

    This paper is the result of an effort to design, analyze and evaluate a rectangular pressure vessel. Normally pressure vessels are designed in circular or spherical shapes to prevent stress concentrations. In this case, because of operational limitations, the choice of vessels was limited to a rectangular pressure box with a removable cover plate. The American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code is used as a guideline for pressure containments whose width or depth exceeds 15.24 cm (6.0 in.) and where pressures will exceed 103.4 KPa (15.0 lbf/in[sup 2]). This evaluation used Section VIII of this Code, hereafter referred to as the Code. The dimensions and working pressure of the subject vessel fall within the pressure vessel category of the Code. The Code design guidelines and rules do not directly apply to this vessel. Therefore, finite-element methodology was used to analyze the pressure vessel, and the Code then was used in qualifying the vessel to be stamped to the Code. Section VIII, Division 1 of the Code was used for evaluation. This action was justified by selecting a material for which fatigue damage would not be a concern. The stress analysis results were then chocked against the Code, and the thicknesses adjusted to satisfy Code requirements. Although not directly applicable, the Code design formulas for rectangular vessels were also considered and presented in this study.

  9. Structural design, analysis, and code evaluation of an odd-shaped pressure vessel

    SciTech Connect (OSTI)

    Rezvani, M.A.; Ziada, H.H.

    1992-12-01

    This paper is the result of an effort to design, analyze and evaluate a rectangular pressure vessel. Normally pressure vessels are designed in circular or spherical shapes to prevent stress concentrations. In this case, because of operational limitations, the choice of vessels was limited to a rectangular pressure box with a removable cover plate. The American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code is used as a guideline for pressure containments whose width or depth exceeds 15.24 cm (6.0 in.) and where pressures will exceed 103.4 KPa (15.0 lbf/in{sup 2}). This evaluation used Section VIII of this Code, hereafter referred to as the Code. The dimensions and working pressure of the subject vessel fall within the pressure vessel category of the Code. The Code design guidelines and rules do not directly apply to this vessel. Therefore, finite-element methodology was used to analyze the pressure vessel, and the Code then was used in qualifying the vessel to be stamped to the Code. Section VIII, Division 1 of the Code was used for evaluation. This action was justified by selecting a material for which fatigue damage would not be a concern. The stress analysis results were then chocked against the Code, and the thicknesses adjusted to satisfy Code requirements. Although not directly applicable, the Code design formulas for rectangular vessels were also considered and presented in this study.

  10. Operations Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (~ii~,Richland Operations Office ~Z4TESO~Richland, Washington 99352 SEP 2 2009 CERTIFIED MAIL Ms. Sarah Washburn Heart of America Northwest 1314 N.E. 5 6 th Street Suite 100 Seattle, Washington 98105 Dear Ms. Washburn: FREEDOM OF INFORMATION ACT REQUEST (FOI 2009-0067) You requested, pursuant to the Freedom of Information Act (FOJA), the following documents relating to: 1 . "The authorization, decision to use, and actual use of any and all pesticides and herbicides anywhere within the

  11. Complete genome sequence of Catenulispora acidiphila type strain (ID 139908T)

    SciTech Connect (OSTI)

    Copeland, Alex; Lapidus, Alla; Rio, Tijana GlavinaDel; Nolan, Matt; Lucas, Susan; Chen, Feng; Tice, Hope; Cheng, Jan-Fang; Bruce, David; Goodwin, Lynne; Pitluck, Sam; Mikhailova, Natalia; Pati, Amrita; Ivanova, Natalia; Mavromatis, Konstantinos; Chen, Amy; Palaniappan, Krishna; Chain, Patrick; Land, Miriam; Hauser, Loren; Chang, Yun-Juan; Jefferies, Cynthia C.; Chertkov, Olga; Brettin, Thomas; Detter, John C.; Han, Cliff; Ali, Zahid; Tindall, Brian J.; Goker, Markus; Bristow, James; Eisen, Jonathan A.; Markowitz, Victor; Hugenholtz, Philip; Kyrpides, Nikos C.; Klenk, Hans-Peter

    2009-05-20

    Catenulispora acidiphila Busti et al. 2006 is the type species of the genus Catenulispora, and is of interest because of the rather isolated phylogenetic location of the genomically little studied suborder Catenulisporineae within the order Actinomycetales. C. acidiphilia is known for its acidophilic, aerobic lifestyle, but can also grow scantly under anaerobic conditions. Under regular conditions C. acidiphilia grows in long filaments of relatively short aerial hyphae with marked septation. It is a free living, non motile, Gram-positive bacterium isolated from a forest soil sample taken from a wooded area in Gerenzano, Italy. Here we describe the features of this organism, together with the complete genome sequence and annotation. This is the first complete genome sequence of the actinobacterial family Catenulisporaceae, and the 10,467,782 bp long single replicon genome with its 9056 protein-coding and 69 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.

  12. Simulation of neoclassical transport with the continuum gyrokinetic code COGENT

    SciTech Connect (OSTI)

    Dorf, M. A.; Cohen, R. H.; Dorr, M.; Rognlien, T.; Hittinger, J.; Compton, J.; Colella, P.; Martin, D.; McCorquodale, P.

    2013-01-15

    The development of the continuum gyrokinetic code COGENT for edge plasma simulations is reported. The present version of the code models a nonlinear axisymmetric 4D (R, v{sub Parallel-To }, {mu}) gyrokinetic equation coupled to the long-wavelength limit of the gyro-Poisson equation. Here, R is the particle gyrocenter coordinate in the poloidal plane, and v{sub Parallel-To} and {mu} are the guiding center velocity parallel to the magnetic field and the magnetic moment, respectively. The COGENT code utilizes a fourth-order finite-volume (conservative) discretization combined with arbitrary mapped multiblock grid technology (nearly field-aligned on blocks) to handle the complexity of tokamak divertor geometry with high accuracy. Topics presented are the implementation of increasingly detailed model collision operators, and the results of neoclassical transport simulations including the effects of a strong radial electric field characteristic of a tokamak pedestal under H-mode conditions.

  13. Simulation of neoclassical transport with the continuum gyrokinetic code COGENT

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Dorf, M. A.; Cohen, R. H.; Dorr, M.; Rognlien, T.; Hittinger, J.; Compton, J.; Colella, P.; Martin, D.; McCorquodale, P.

    2013-01-25

    The development of the continuum gyrokinetic code COGENT for edge plasma simulations is reported. The present version of the code models a nonlinear axisymmetric 4D (R, v∥, μ) gyrokinetic equation coupled to the long-wavelength limit of the gyro-Poisson equation. Here, R is the particle gyrocenter coordinate in the poloidal plane, and v∥ and μ are the guiding center velocity parallel to the magnetic field and the magnetic moment, respectively. The COGENT code utilizes a fourth-order finite-volume (conservative) discretization combined with arbitrary mapped multiblock grid technology (nearly field-aligned on blocks) to handle the complexity of tokamak divertor geometry with high accuracy.more » Furthermore, topics presented are the implementation of increasingly detailed model collision operators, and the results of neoclassical transport simulations including the effects of a strong radial electric field characteristic of a tokamak pedestal under H-mode conditions.« less

  14. SCDAP/RELAP5/MOD2 code manual

    SciTech Connect (OSTI)

    Allison, C.M.; Johnson, E.C.; Berna, G.A.; Cheng, T.C.; Hagrman, D.L.; Johnsen, G.W.; Kiser, D.M.; Miller, C.S.; Ransom, V.H.; Riemke, R.A.; Shieh, A.S.; Siefken, L.J.; Trapp, J.A.; Wagner, R.J. )

    1989-09-01

    The SCDAP/RELAP5 code has been developed for best-estimate transient simulation of light water reactor coolant systems during a severe accident. The code models the coupled behavior of the reactor coolant system, the core, and the fission products and aerosols in the system during a severe accident transient as well as large and small break loss-of-coolant accidents, operational transients such as anticipated transient without SCRAM, loss of offsite power, loss of feedwater, and loss of flow. A generic modeling approach is used that permits as much of a particular system to be modeled as necessary. Control system and secondary system components are included to permit modeling of plant controls, turbines, condensers, and secondary feedwater conditioning systems. The modeling theory and associated numerical schemes are documented in Volumes I and II to acquaint the user with the modeling base and thus aid in effective use of the code.

  15. RESULTS OF RADIOLOGICAL I'IEASUREMENTS HIGHT{AYS 18 AI.ID IO4 IN NIAGARA

    Office of Legacy Management (LM)

    9s' RESULTS OF RADIOLOGICAL I'IEASUREMENTS HIGHT{AYS 18 AI.ID IO4 IN NIAGARA az76 rl//.ry' ORNL/RASA.85/ 40 TAKEN AT JUNCTION FALLS, NEH YORK Accesr to the information in thit rcport ir limiled to tho!' inOllateO on tho dl3tribution li3t and to OePartment ot Encrgy and Oepartmcnt ol Enotgy Gontracton This report was prepared as an account of work sponsored by an agency of the United States Government. Neitherth€ U nited StatesGovernment norany agency thereof, nor any of their employees, makes

  16. Processing module operating methods, processing modules, and communications systems

    DOE Patents [OSTI]

    McCown, Steven Harvey; Derr, Kurt W.; Moore, Troy

    2014-09-09

    A processing module operating method includes using a processing module physically connected to a wireless communications device, requesting that the wireless communications device retrieve encrypted code from a web site and receiving the encrypted code from the wireless communications device. The wireless communications device is unable to decrypt the encrypted code. The method further includes using the processing module, decrypting the encrypted code, executing the decrypted code, and preventing the wireless communications device from accessing the decrypted code. Another processing module operating method includes using a processing module physically connected to a host device, executing an application within the processing module, allowing the application to exchange user interaction data communicated using a user interface of the host device with the host device, and allowing the application to use the host device as a communications device for exchanging information with a remote device distinct from the host device.

  17. Multidimensional Fuel Performance Code: BISON

    SciTech Connect (OSTI)

    2014-09-03

    BISON is a finite element based nuclear fuel performance code applicable to a variety of fuel forms including light water reactor fuel rods, TRISO fuel particles, and metallic rod and plate fuel (Refs. [a, b, c]). It solves the fully-coupled equations of thermomechanics and species diffusion and includes important fuel physics such as fission gas release and material property degradation with burnup. BISON is based on the MOOSE framework (Ref. [d]) and can therefore efficiently solve problems on 1-, 2- or 3-D meshes using standard workstations or large high performance computers. BISON is also coupled to a MOOSE-based mesoscale phase field material property simulation capability (Refs. [e, f]). As described here, BISON includes the code library named FOX, which was developed concurrent with BISON. FOX contains material and behavioral models that are specific to oxide fuels.

  18. Sensor Authentication: Embedded Processor Code

    Energy Science and Technology Software Center (OSTI)

    2012-09-25

    Described is the c code running on the embedded Microchip 32bit PIC32MX575F256H located on the INL developed noise analysis circuit board. The code performs the following functions: Controls the noise analysis circuit board preamplifier voltage gains of 1, 10, 100, 000 Initializes the analog to digital conversion hardware, input channel selection, Fast Fourier Transform (FFT) function, USB communications interface, and internal memory allocations Initiates high resolution 4096 point 200 kHz data acquisition Computes complex 2048more » point FFT and FFT magnitude. Services Host command set Transfers raw data to Host Transfers FFT result to host Communication error checking« less

  19. GeoPhysical Analysis Code

    Energy Science and Technology Software Center (OSTI)

    2011-05-21

    GPAC is a code that integrates open source libraries for element formulations, linear algebra, and I/O with two main LLNL-Written components: (i) a set of standard finite elements physics solvers for rersolving Darcy fluid flow, explicit mechanics, implicit mechanics, and fluid-mediated fracturing, including resolution of contact both implicity and explicity, and (ii) a MPI-based parallelization implementation for use on generic HPC distributed memory architectures. The resultant code can be used alone for linearly elastic problemsmore » and problems involving hydraulic fracturing, where the mesh topology is dynamically changed. The key application domain is for low-rate stimulation and fracture control in subsurface reservoirs (e.g., enhanced geothermal sites and unconventional shale gas stimulation). GPAC also has interfaces to call external libraries for, e.g., material models and equations of state; however, LLNL-developed EOS and material models will not be part of the current release.« less

  20. Multidimensional Fuel Performance Code: BISON

    Energy Science and Technology Software Center (OSTI)

    2014-09-03

    BISON is a finite element based nuclear fuel performance code applicable to a variety of fuel forms including light water reactor fuel rods, TRISO fuel particles, and metallic rod and plate fuel (Refs. [a, b, c]). It solves the fully-coupled equations of thermomechanics and species diffusion and includes important fuel physics such as fission gas release and material property degradation with burnup. BISON is based on the MOOSE framework (Ref. [d]) and can therefore efficientlymore » solve problems on 1-, 2- or 3-D meshes using standard workstations or large high performance computers. BISON is also coupled to a MOOSE-based mesoscale phase field material property simulation capability (Refs. [e, f]). As described here, BISON includes the code library named FOX, which was developed concurrent with BISON. FOX contains material and behavioral models that are specific to oxide fuels.« less

  1. Anelastic Strain Recovery Analysis Code

    Energy Science and Technology Software Center (OSTI)

    1995-04-05

    ASR4 is a nonlinear least-squares regression of Anelastic Strain Recovery (ASR) data for the purpose of determining in situ stress orientations and magnitudes. ASR4 fits the viscoelastic model of Warpinski and Teufel to measure ASR data, calculates the stress orientations directly, and stress magnitudes if sufficient input data are available. The code also calculates the stress orientation using strain-rosette equations, and it calculates stress magnitudes using Blanton''s approach, assuming sufficient input data are available.

  2. GUI for Structural Mechanics Codes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Development of GUI for Structural Mechanics Codes The TRACC Cluster gives its users a lot of flexibility when it comes to requesting software version of LS-DYNA and computational resources for submitted jobs. To fully utilize that flexibility, users need to get familiar with on-line documentation of all the installed releases of different software and modules on the cluster. As on other LINUX based HPC systems, the submission and controlling of LS-DYNA is done through text commands. Especially

  3. City Code Non-Transferable

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    City Code Non-Transferable If the sales tax permit at this location becomes invalid then all associated permits will become invalid. If the business changes location or ownership or is discontinued for any reason, this permit must be returned to the Oklahoma Tax Commission for cancellation WITH AN EXPLANATION ON THE REVERSE SIDE. PLEASE POST IN CONSPICUOUS PLACE GENERAL ELECTRIC COMPANY 4211 METRO PKWY FORT MYERS FL 33916-9406 443111 8010 March 6, 2014 2102181888 Effective Expires Business

  4. ABAREX -- A neutron spherical optical-statistical-model code -- A user`s manual

    SciTech Connect (OSTI)

    Smith, A.B.; Lawson, R.D.

    1998-06-01

    The contemporary version of the neutron spherical optical-statistical-model code ABAREX is summarized with the objective of providing detailed operational guidance for the user. The physical concepts involved are very briefly outlined. The code is described in some detail and a number of explicit examples are given. With this document one should very quickly become fluent with the use of ABAREX. While the code has operated on a number of computing systems, this version is specifically tailored for the VAX/VMS work station and/or the IBM-compatible personal computer.

  5. Tandem Mirror Reactor Systems Code (Version I)

    SciTech Connect (OSTI)

    Reid, R.L.; Finn, P.A.; Gohar, M.Y.; Barrett, R.J.; Gorker, G.E.; Spampinaton, P.T.; Bulmer, R.H.; Dorn, D.W.; Perkins, L.J.; Ghose, S.

    1985-09-01

    A computer code was developed to model a Tandem Mirror Reactor. Ths is the first Tandem Mirror Reactor model to couple, in detail, the highly linked physics, magnetics, and neutronic analysis into a single code. This report describes the code architecture, provides a summary description of the modules comprising the code, and includes an example execution of the Tandem Mirror Reactor Systems Code. Results from this code for two sensitivity studies are also included. These studies are: (1) to determine the impact of center cell plasma radius, length, and ion temperature on reactor cost and performance at constant fusion power; and (2) to determine the impact of reactor power level on cost.

  6. SUMMARY OF GENERAL WORKING GROUP A+B+D: CODES BENCHMARKING.

    SciTech Connect (OSTI)

    WEI, J.; SHAPOSHNIKOVA, E.; ZIMMERMANN, F.; HOFMANN, I.

    2006-05-29

    Computer simulation is an indispensable tool in assisting the design, construction, and operation of accelerators. In particular, computer simulation complements analytical theories and experimental observations in understanding beam dynamics in accelerators. The ultimate function of computer simulation is to study mechanisms that limit the performance of frontier accelerators. There are four goals for the benchmarking of computer simulation codes, namely debugging, validation, comparison and verification: (1) Debugging--codes should calculate what they are supposed to calculate; (2) Validation--results generated by the codes should agree with established analytical results for specific cases; (3) Comparison--results from two sets of codes should agree with each other if the models used are the same; and (4) Verification--results from the codes should agree with experimental measurements. This is the summary of the joint session among working groups A, B, and D of the HI32006 Workshop on computer codes benchmarking.

  7. Nuclear modules of ITER tokamak systems code

    SciTech Connect (OSTI)

    Gohar, Y.; Baker, C.; Brooks, J.; Finn, P.; Hassanein, A.; Willms, S.; Barr, W.; Bushigin, A.; Kalyanam, K.M.; Haines, J.

    1987-10-01

    Nuclear modules were developed to model various reactor components in the ITER systems code. Several design options and cost algorithms are included for each component. The first wall, blanket and shield modules calculate the beryllium zone thickness, the disruptions results, the nuclear responses in different components including the toroidal field coils. Tungsten shield/water coolant/steel structure and steel shield/water coolant are the shield options for the inboard and outboard sections of the reactor. Lithium nitrate dissolved in the water coolant with a variable beryllium zone thickness in the outboard section of the reactor provides the tritium breeding capability. The reactor vault module defines the thickness of the reactor wall and the roof based on the dose equivalent during operation including skyshine contribution. The impurity control module provides the design parameters for the divertor including plate design, heat load, erosion rate, tritium permeation through the plate material to the coolant, plasma contamination by sputtered impurities, and plate lifetime. Several materials: Be, C, V, Mo, and W can be used for the divertor plate to cover a range of plasma edge temperatures. The tritium module calculates tritium and deuterium flow rates for the reactor plant. The tritium inventory in the fuelers, neutral beams, vacuum pumps, impurity control, first wall, and blanket is calculated. Tritium requirements are provided for different operating conditions. The nuclear models are summarized in this paper including the different design options and key analyses of each module. 39 refs., 3 tabs.

  8. Preparation for Facility Operations RM | Department of Energy

    Energy Savers [EERE]

    Preparation for Facility Operations RM Preparation for Facility Operations RM The objective of this Standard Review Plan (SRP) on Preparation for Facility Operations is to provide consistency guidance to evaluate the effectiveness of the final project closure of major construction projects for transition from Critical Decision-4 (CD-4) to facility operations. PDF icon Preparation for Facility Operations RM More Documents & Publications Code of Record Standard Review Plan (SRP) Standard

  9. RL-721 REV7 I. Project Title: NEPA REVIEW SCREENING FORM Document ID Number:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3, Rev 1 MSA Annual Categorical Exclusion for Support Buildings under 10 CFR 1021, Subpart D, Appendix B, Bl.l5 for Calendar Year 2014 II. Project Description and Location (including Time Period over which proposed action will occur and Project Dimensions - e.g., acres displaced/disturbed, excavation length/depth, area/location/number of buildings, etc.): Mission Support Alliance (MSA) and its subcontractors perform siting, construction or modification, and operation of support buildings and

  10. RL-721 REV7 I. Project Title: NEPA REVIEW SCREENING FORM Document ID Number:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 MSA Annual Categorical Exclusion for Oil Spill Cleanup under 10 CFR 1021, Subpart D, Appendix B, B5.6 for Calendar Year 2014 II. Project Description and Location (including Time Period over which proposed action will occur and Project Dimensions -e.g., acres displaced/disturbed, excavation length/depth, area/location/number of buildings, etc.): Mission Support Alliance (MSA) and its subcontractors perform removal of oil and contaminated materials recovered in oil spill cleanup operations and

  11. RL-721 REV7 I. Project Title: NEPA REVIEW SCREENING FORM Document ID Number:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    38, Rev 3 MSA Annual Categorical Exclusion for Electronic Equipment under 10 CFR 1021, Subpart D, Appendix B, Bl.7 for Calendar Year 2015. II. Project Description and Location (including Time Period over which proposed action will occur and Project Dimensions - e.g., acres displaced/disturbed, excavation length/depth, area/location/number of buildings, etc.): Mission Support Alliance (MSA) and its subcontractors perform acquisition, installation, operation, modification, and removal of

  12. RL-721 REV7 I. Project Title: NEPA REVIEW SCREENING FORM Document ID Number:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4, Rev 2 MSA Annual Categorical Exclusion for Small-Scale Research and Development, Laboratory Operations, and Pilot Projects under 10 CFR 1021, Subpart D, Appendix B, B3.6 for Calendar Year 2015. II. Project Description and Location (including Time Period over which proposed action will occur and Project Dimensions -e.g., acres displaced/disturbed, excavation length/depth, area/location/number of buildings, etc.): Mission Support Alliance (MSA) and its subcontractors perform siting,

  13. RL-721 REV7 I. Project Title: NEPA REVIEW SCREENING FORM Document ID Number:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    42 Radiological Survey Activities in the 600 Area of the Hanford Site Supporting Land Conveyance II. Project Description and Location (including Time Period over which proposed action will occur and Project Dimensions - e.g., acres displaced/disturbed, excavation length/depth, area/location/number of buildings, etc.): The U.S. Department of Energy, Richland Operations (DOE-RL) proposes to conduct radiological surveys of a portion of the 600 Area of the Hanford Site. The surveys are needed to

  14. RL-721 REV? I. Project Title: NEPA REVIEW SCREENING FORM Document ID Number:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8, Rev 2 MSA Annual Categorical Exclusion for Electronic Equipment under 10 CFR 1021, Subpart D, Appendix B, Bl.7 for Calendar Year 2014 II. Project Description and Location (including Time Period over which proposed action will occur and Project Dimensions - e.g., acres displaced/disturbed, excavation length/depth, area/location/number of buildings, etc.): Mission Support Alliance (MSA) and its subcontractors perform acquisition, installation, operation, modification, and removal of electricity

  15. RL-721 REV? I. Project Title: NEPA REVIEW SCREENING FORM Document ID Number:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8, Rev 1 MSA Annual Categorical Exclusion for Installation or Relocation of Machinery and Equipment under 10 CFR 1021, Subpart D, Appendix B, B1.31 for Calendar Year 2014 II. Project Description and Location (including Time Period over which proposed action will occur and Project Dimensions - e.g., acres displaced/disturbed, excavation length/depth, area/location/number of buildings, etc.): Mission Support Alliance (MSA) and its subcontractors perform installation or relocation and operation of

  16. RL-721 REV? I. Project Title: NEPA REVIEW SCREENING FORM Document ID Number:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4, Rev 1 MSA Annual Categorical Exclusion for Small-Scale Research and Development, Laboratory Operations, and Pilot Projects under 10 CFR 1021, Subpart D, Appendix B, B3.6 for Calendar Year 2014 II. Project Description and Location (including Time Period over which proposed action will occur and Project Dimensions -e.g., acres displaced/disturbed, excavation length/depth, area/location/number of buildings, etc.): Mission Support Alliance (MSA) and its subcontractors perform siting,

  17. DOE-ID Bi-Weekly Summary For June 15 to July 6, 2009

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6, 2009 EDITOR'S NOTE: The following is a regular summary of operations at DOE's Idaho Site. It has been compiled in response to a request from stakeholders for more information on health, safety and environmental incidents at DOE facilities in Idaho. It also includes a brief summary of accomplishments at the laboratory. The report is broken down by contractor: Advanced Mixed Waste Treatment Project (AMWTP), Idaho Cleanup Project (ICP) and Idaho National Laboratory (INL). This summary will be

  18. Calutron Operations | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Operations Calutron Operations

  19. Proceedings of the OECD/CSNI workshop on transient thermal-hydraulic and neutronic codes requirements

    SciTech Connect (OSTI)

    Ebert, D.

    1997-07-01

    This is a report on the CSNI Workshop on Transient Thermal-Hydraulic and Neutronic Codes Requirements held at Annapolis, Maryland, USA November 5-8, 1996. This experts` meeting consisted of 140 participants from 21 countries; 65 invited papers were presented. The meeting was divided into five areas: (1) current and prospective plans of thermal hydraulic codes development; (2) current and anticipated uses of thermal-hydraulic codes; (3) advances in modeling of thermal-hydraulic phenomena and associated additional experimental needs; (4) numerical methods in multi-phase flows; and (5) programming language, code architectures and user interfaces. The workshop consensus identified the following important action items to be addressed by the international community in order to maintain and improve the calculational capability: (a) preserve current code expertise and institutional memory, (b) preserve the ability to use the existing investment in plant transient analysis codes, (c) maintain essential experimental capabilities, (d) develop advanced measurement capabilities to support future code validation work, (e) integrate existing analytical capabilities so as to improve performance and reduce operating costs, (f) exploit the proven advances in code architecture, numerics, graphical user interfaces, and modularization in order to improve code performance and scrutibility, and (g) more effectively utilize user experience in modifying and improving the codes.

  20. Quantum error-correcting codes and devices

    DOE Patents [OSTI]

    Gottesman, Daniel

    2000-10-03

    A method of forming quantum error-correcting codes by first forming a stabilizer for a Hilbert space. A quantum information processing device can be formed to implement such quantum codes.

  1. N. Mariana Islands- Building Energy Code

    Broader source: Energy.gov [DOE]

    Much of the information presented in this summary is drawn from the U.S. Department of Energy’s (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more...

  2. California Water Code | Open Energy Information

    Open Energy Info (EERE)

    OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: California Water CodeLegal Abstract Code governing the usage of water resources in the state of...

  3. DOE Research and Development Accomplishments QR Code

    Office of Scientific and Technical Information (OSTI)

    QR Code qrcode A Quick Response (QR) code is a two-dimensional barcode containing alphanumeric text that can be read/scanned by designated barcode readers and camera phones. QR codes can contain a wide variety of information, including URLs that can direct users to websites. The QR code for access to DOE R&D Accomplishments is available on this web page.

  4. Energy Code Compliance and Enforcement Best Practices

    Broader source: Energy.gov [DOE]

    This webinar covers how to access current practices, compliance best practices, and enforce best practices with energy code compliances.

  5. Cost Codes and the Work Breakdown Structure

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-03-28

    The chapter discusses the purpose of the work breakdown structure (WBS) and code of account (COA) cost code system, shows the purpose and fundamental structure of both the WBS and the cost code system, and explains the interface between the two systems.

  6. Ultra-narrow bandwidth voice coding

    DOE Patents [OSTI]

    Holzrichter, John F.; Ng, Lawrence C.

    2007-01-09

    A system of removing excess information from a human speech signal and coding the remaining signal information, transmitting the coded signal, and reconstructing the coded signal. The system uses one or more EM wave sensors and one or more acoustic microphones to determine at least one characteristic of the human speech signal.

  7. Mosaic of coded aperture arrays

    DOE Patents [OSTI]

    Fenimore, Edward E.; Cannon, Thomas M.

    1980-01-01

    The present invention pertains to a mosaic of coded aperture arrays which is capable of imaging off-axis sources with minimum detector size. Mosaics of the basic array pattern create a circular on periodic correlation of the object on a section of the picture plane. This section consists of elements of the central basic pattern as well as elements from neighboring patterns and is a cyclic version of the basic pattern. Since all object points contribute a complete cyclic version of the basic pattern, a section of the picture, which is the size of the basic aperture pattern, contains all the information necessary to image the object with no artifacts.

  8. National Agenda for Hydrogen Codes and Standards

    SciTech Connect (OSTI)

    Blake, C.

    2010-05-01

    This paper provides an overview of hydrogen codes and standards with an emphasis on the national effort supported and managed by the U.S. Department of Energy (DOE). With the help and cooperation of standards and model code development organizations, industry, and other interested parties, DOE has established a coordinated national agenda for hydrogen and fuel cell codes and standards. With the adoption of the Research, Development, and Demonstration Roadmap and with its implementation through the Codes and Standards Technical Team, DOE helps strengthen the scientific basis for requirements incorporated in codes and standards that, in turn, will facilitate international market receptivity for hydrogen and fuel cell technologies.

  9. US DRIVE Hydrogen Codes and Standards Technical Team Roadmap...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen Codes and Standards Technical Team Roadmap US DRIVE Hydrogen Codes and Standards Technical Team Roadmap The Hydrogen Codes and Standards Tech Team (CSTT) mission is to ...

  10. Photovoltaic Online Training Course for Code Officials | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Photovoltaic Online Training Course for Code Officials Photovoltaic Online Training Course for Code Officials The Photovoltaic Online Training Course for Code Officials is a free ...

  11. Hydrogen Pipeline Working Group Workshop: Code for Hydrogen Pipelines...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Working Group Workshop: Code for Hydrogen Pipelines Hydrogen Pipeline Working Group Workshop: Code for Hydrogen Pipelines Code for Hydrogen Piping and Pipelines. B31 Hydrogen ...

  12. Technical Standards, Guidance on MELCOR computer code - May 3...

    Office of Environmental Management (EM)

    Standards, Guidance on MELCOR computer code - May 3, 2004 Technical Standards, Guidance on MELCOR computer code - May 3, 2004 May 3, 2004 MELCOR Computer Code Application Guidance...

  13. The United States Code - Printing, Title 44 Excerpts | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The United States Code - Printing, Title 44 Excerpts The United States Code - Printing, Title 44 Excerpts The United States Code - Printing, Title 44 Excerpts PDF icon The United ...

  14. Terrain-Responsive Atmospheric Code

    Energy Science and Technology Software Center (OSTI)

    1991-11-20

    The Terrain-Responsive Atmospheric Code (TRAC) is a real-time emergency response modeling capability designed to advise Emergency Managers of the path, timing, and projected impacts from an atmospheric release. TRAC evaluates the effects of both radiological and non-radiological hazardous substances, gases and particulates. Using available surface and upper air meteorological information, TRAC realistically treats complex sources and atmospheric conditions, such as those found in mountainous terrain. TRAC calculates atmospheric concentration, deposition, and dose for more thanmore » 25,000 receptor locations within 80 km of the release point. Human-engineered output products support critical decisions on the type, location, and timing of protective actions for workers and the public during an emergency.« less

  15. SCDAP/RELAP5/MOD2 code manual

    SciTech Connect (OSTI)

    Allison, C.M.; Johnson, E.C.; Berna, G.A.; Cheng, T.C.; Hagrman, D.L.; Johnsen, G.W.; Kiser, D.M.; Miller, C.S.; Ransom, V.H.; Riemke, R.A.; Shieh, A.S.; Siefken, L.J.; Trapp, J.A.; Wagner, R.J. )

    1989-09-01

    The SCDAP/RELAP5 code has been developed for best-estimate transient simulation of light water reactor coolant systems during a severe accident. The code models the coupled behavior of the reactor coolant system, the core, and the fission products and aerosols in the system during a severe accident transient as well as large and small break loss-of-coolant accidents, operational transients such as anticipated transient without SCRAM, loss of offsite power, loss of feedwater, and loss of flow. A generic modeling approach is used that permits as much of a particular system to be modeled as necessary. Control system and secondary system components are included to permit modeling of plant controls, turbines, condensers, and secondary feedwater conditioning systems. This document, Volume III, contains detailed instructions for code application and input data preparation. In addition, Volume III contains user guidelines that have evolved over the past several years from application of the RELAP5 and SCDAP codes at the Idaho National Engineering Laboratory, at other national laboratories, and by users throughout the world. 2 refs., 32 figs., 9 tabs.

  16. Natural Gas Vehicle and Infrastructure Codes and Standards Chart (Revised) (Fact Sheet), NREL (National Renewable Energy Laboratory)

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Natural Gas Vehicle and Infrastructure Codes and Standards Chart Many standards development organizations (SDOs) are working to develop codes and standards needed for the utilization of alternative fuel vehicle technologies. This chart shows the SDOs responsible for leading the support and development of key codes and standards for natural gas. Vehicle Safety: Vehicle Fuel Systems: Vehicle Containers: Vehicle Fuel System Components: Dispensing Component Standards: Dispensing Operations:

  17. Compressing bitmap indexes for faster search operations

    SciTech Connect (OSTI)

    Wu, Kesheng; Otoo, Ekow J.; Shoshani, Arie

    2002-04-25

    In this paper, we study the effects of compression on bitmap indexes. The main operations on the bitmaps during query processing are bitwise logical operations such as AND, OR, NOT, etc. Using the general purpose compression schemes, such as gzip, the logical operations on the compressed bitmaps are much slower than on the uncompressed bitmaps. Specialized compression schemes, like the byte-aligned bitmap code(BBC), are usually faster in performing logical operations than the general purpose schemes, but in many cases they are still orders of magnitude slower than the uncompressed scheme. To make the compressed bitmap indexes operate more efficiently, we designed a CPU-friendly scheme which we refer to as the word-aligned hybrid code (WAH). Tests on both synthetic and real application data show that the new scheme significantly outperforms well-known compression schemes at a modest increase in storage space. Compared to BBC, a scheme well-known for its operational efficiency, WAH performs logical operations about 12 times faster and uses only 60 percent more space. Compared to the uncompressed scheme, in most test cases WAH is faster while still using less space. We further verified with additional tests that the improvement in logical operation speed translates to similar improvement in query processing speed.

  18. Initial verification and validation of RAZORBACK - A research reactor transient analysis code

    SciTech Connect (OSTI)

    Talley, Darren G.

    2015-09-01

    This report describes the work and results of the initial verification and validation (V&V) of the beta release of the Razorback code. Razorback is a computer code designed to simulate the operation of a research reactor (such as the Annular Core Research Reactor (ACRR)) by a coupled numerical solution of the point reactor kinetics equations, the energy conservation equation for fuel element heat transfer, and the mass, momentum, and energy conservation equations for the water cooling of the fuel elements. This initial V&V effort was intended to confirm that the code work to-date shows good agreement between simulation and actual ACRR operations, indicating that the subsequent V&V effort for the official release of the code will be successful.

  19. NERSC Selects 20 NESAP Code Teams

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Selects 20 NESAP Code Teams NERSC Selects 20 NESAP Code Teams NERSC Exascale Scientific Applications Program projects to launch in Fall 2014 August 25, 2014 Contact: Kathy Kincade, +1 510 495 2124, kkincade@lbl.gov onesandzeros The National Energy Research Scientific Computing Center (NERSC) has accepted 20 projects into the NERSC Exascale Scientific Applications Program (NESAP), a new collaborative effort that partners NERSC, Intel and Cray resources with code teams across the U.S. to prepare

  20. Verification and Validation Supporting VERA Neutronics Code

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Verification and Validation Supporting VERA Neutronics Code As CASL produces its VERA software each physics capability must be tested, verified, and validated (V&V). The overarching objective of code verification is to establish that a computation- al model implemented in a code accurately represents the de- veloper's conceptual representation of the physics, while vali- dation refers to the process of determining the degree to which a computational model provides an accurate representation