Powered by Deep Web Technologies
Note: This page contains sample records for the topic "operations plan coso" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Testing operations plan: Coso Geothermal Exploratory Hole No. 1 (CGEH-1) |  

Open Energy Info (EERE)

operations plan: Coso Geothermal Exploratory Hole No. 1 (CGEH-1) operations plan: Coso Geothermal Exploratory Hole No. 1 (CGEH-1) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Testing operations plan: Coso Geothermal Exploratory Hole No. 1 (CGEH-1) Details Activities (1) Areas (1) Regions (0) Abstract: Coso Geothermal Exploratory Hole No. 1 (CGEH-1) was drilled to investigate the potential of the Coso Hot Springs Known Geothermal Resource Area (KGRA) in southeastern California. Detailed background information is contained in the drilling plan, Coso Geothermal Exploratory Hole No. 1 (CGEH-1), NVO-184, dated June 1977. The purpose of this supplement to NVO-184 is to establish a plan of operations for testing the resource after completion of well drilling activities. Major elements of this plan include

2

Operations plan Coso geothermal exploratory hole No. 1 (CGEH-1) | Open  

Open Energy Info (EERE)

plan Coso geothermal exploratory hole No. 1 (CGEH-1) plan Coso geothermal exploratory hole No. 1 (CGEH-1) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Operations plan Coso geothermal exploratory hole No. 1 (CGEH-1) Details Activities (1) Areas (1) Regions (0) Abstract: An investigative program is described, involving the drilling and testing of an exploratory hole to a nominal depth of 4,000 feet with an option to drill to a depth of 6,000 feet. The following are covered: management and organizational concept; program elements--description, detailed drilling program; materials, services, and equipment provided by ERDA, NWC; site selection; site access and security; health and safety; permits and approvals; reporting; environmental impact; funding; schedule of activities; and public information. The license and reporting forms are

3

Exploratory Well At Coso Geothermal Area (1977-1978) | Open Energy  

Open Energy Info (EERE)

77-1978) 77-1978) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Exploratory Well At Coso Geothermal Area (1977-1978) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Exploratory Well Activity Date 1977 - 1978 Usefulness useful DOE-funding Unknown Notes 1477-m Coso Geothermal Exploration Hole (CGEH) No. 1 well drilled .The objective of well and future well testing is to determine the well productivity and geothermal reservoir parameters. References Energy Research and Development Administration, Las Vegas, NV (USA). Nevada Operations Office (1 June 1977) Operations plan Coso geothermal exploratory hole No. 1 (CGEH-1) Department of Energy, Las Vegas, Nev.. Nevada Operations Office; Naval Weapons Center, China Lake, Calif.; California Univ., Berkeley.

4

Operating plan FY 1998  

SciTech Connect

This document is the first edition of Argonne`s new Operating Plan. The Operating Plan complements the strategic planning in the Laboratory`s Institutional Plan by focusing on activities that are being pursued in the immediate fiscal year, FY 1998. It reflects planning that has been done to date, and it will serve in the future as a resource and a benchmark for understanding the Laboratory`s performance. The heart of the Institutional Plan is the set of major research initiatives that the Laboratory is proposing to implement in future years. In contrast, this Operating Plan focuses on Argonne`s ongoing R&D programs, along with cost-saving measures and other improvements being implemented in Laboratory support operations.

NONE

1997-10-01T23:59:59.000Z

5

Operational Area Monitoring Plan  

Office of Legacy Management (LM)

' ' SECTION 11.7B Operational Area Monitoring Plan for the Long -Term H yd rol og ical M o n i to ri ng - Program Off The Nevada Test Site S . C. Black Reynolds Electrical & Engineering, Co. and W. G. Phillips, G. G. Martin, D. J. Chaloud, C. A. Fontana, and 0. G. Easterly Environmental Monitoring Systems Laboratory U. S. Environmental Protection Agency October 23, 1991 FOREWORD This is one of a series of Operational Area Monitoring Plans that comprise the overall Environmental Monitoring Plan for the DOE Field Office, Nevada (DOEINV) nuclear and non- nuclear testing activities associated with the Nevada Test Site (NTS). These Operational Area Monitoring Plans are prepared by various DOE support contractors, NTS user organizations, and federal or state agencies supporting DOE NTS operations. These plans and the parent

6

Seismicity of the Coso Range, California | Open Energy Information  

Open Energy Info (EERE)

of the Coso Range, California of the Coso Range, California Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Seismicity of the Coso Range, California Details Activities (1) Areas (1) Regions (0) Abstract: A 16-station seismographic network, approximately 40 km north-south by 30 km east-west, was installed in the Coso Range, California, in September 1975 as part of a geological and geophysical assessment of the geothermal resource potential of range. During the first 2 years of network operations, 4216 local earthquakes (0.5< or =m< or =3.9) defined zones of seismicity that strike radially outward from a Pleistocene rhyolite field located near the center of the Coso Range. Most earthquakes were located in zones showing a general northwest trend across the range.

7

Refraction Survey At Coso Geothermal Area (1989) | Open Energy Information  

Open Energy Info (EERE)

Refraction Survey At Coso Geothermal Area (1989) Refraction Survey At Coso Geothermal Area (1989) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Refraction Survey Activity Date 1989 Usefulness useful DOE-funding Unknown Exploration Basis Determine the crustul structure of the Coso geothermal system Notes In mid-1989 the authors designed and collected four seismic reflection/refraction profiles that addressed the crustal structure of the Coso geothermal field. The two main east-west and north-south profiles crossed at the southeastern most base of Sugar Loaf Mountain. Both in-line and cross-line Vibroseis and explosion data were recorded on each of these approximately 12-mi lines. This was accomplished with the simultaneous operation of two 1024-channel sign bit recording systems while four

8

Microearthquake moment tensors from the Coso Geothermal area | Open Energy  

Open Energy Info (EERE)

Microearthquake moment tensors from the Coso Geothermal area Microearthquake moment tensors from the Coso Geothermal area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: Microearthquake moment tensors from the Coso Geothermal area Details Activities (1) Areas (1) Regions (0) Abstract: The Coso geothermal area, California, has produced hot water and steam for electricity generation for more than 20 years, during which time there has been a substantial amount of microearthquake activity in the area. Seismicity is monitored by a high-quality permanent network of 16 three-component digital borehole seismometers operated by the US Navy and supplemented by a ~ 14-station portable array of surface three-component digital instruments. The portable stations improve focal sphere coverage, providing seismic-wave polarity and amplitude data sets sufficient for

9

Three-dimensional Q (super -1) model of the Coso Hot Springs known  

Open Energy Info (EERE)

Q (super -1) model of the Coso Hot Springs known Q (super -1) model of the Coso Hot Springs known geothermal resource area (in Coso geothermal area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Three-dimensional Q (super -1) model of the Coso Hot Springs known geothermal resource area (in Coso geothermal area) Details Activities (3) Areas (1) Regions (0) Abstract: Observations of teleseismic P waves above geothermal systems exhibit travel time delays and anomalously high seismic attenuation, which is extremely useful in estimating the thermal regime and the potential of the system. A regional telemetered network of sixteen stations was operated by the U.S. Geological Survey in the Coso Hot Springs Known Geothermal Resources Area (KGRA) for such studies from September 1975 to October 1976.

10

Teleseismic-Seismic Monitoring At Coso Geothermal Area (2011-2012) | Open  

Open Energy Info (EERE)

2012) 2012) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Teleseismic-Seismic Monitoring At Coso Geothermal Area (2011-2012) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Teleseismic-Seismic Monitoring Activity Date 2011 - 2012 Usefulness not indicated DOE-funding Unknown Exploration Basis Map hydraulic structure within the field from seismic data Notes 2011: 16 years of seismicity were analyzed to improve hypocentral locations and simultaneously invert for the seismic velocity structure within the Coso Geothermal Field (CGF). The CGF has been continuously operated since the 1980's. 2012: 14 years of seismicity in the Coso Geothermal Field were relocated using differential travel times and simultaneously invert for

11

Coso Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Coso Geothermal Area Coso Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Coso Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 2.1 DOE Involvement 2.2 Time Line 3 Regulatory and Environmental Issues 4 Future Plans 5 Exploration History 6 Well Field Description 7 Research and Development Activities 8 Technical Problems and Solutions 9 Geology of the Area 9.1 Regional Setting 9.2 Structure 9.3 Stratigraphy 10 Hydrothermal System 11 Heat Source 12 Geofluid Geochemistry 13 NEPA-Related Analyses (1) 14 Exploration Activities (132) 15 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.04701,"lon":-117.76854,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

12

UC Operational Plan 2006 INTRODUCTION  

E-Print Network (OSTI)

(FMP) including a financial forecast model and capital expenditure plan April Finance Manager 3-2006) and develop a follow-on Financial Management Plan which will include a financial forecast model and a capital expenditure plan Operational Steps 2006 Timeline Task Responsibility 1. Complete the implementation

Hickman, Mark

13

ORISE: Operations Support and Planning  

NLE Websites -- All DOE Office Websites (Extended Search)

Securing the Golden State Amber Waves 2012 Bureau of Reclamation Emergency Management Issues Special Interest Group Golden Guardian Joint Information Center Preventing Nuclear Smuggling Program Training and Technology Support Resources How to Work With Us Contact Us Oak Ridge Institute for Science Education Operations Support and Planning Operations Support and Planning The Oak Ridge Institute for Science and Education (ORISE) provides operations and planning support to the U.S. Department of Energy (DOE), Federal Emergency Management Agency and other government agencies for their counterterrorism and emergency response readiness programs. ORISE's planning, logistical and administrative support areas are focused on enhancing the radiological preparedness and response coordination

14

Conduct of operations implementation plan  

SciTech Connect

This implementation plan describes the process and provides information and schedules that are necessary to implement and comply with the Department of Energy (DOE) Order 5480.19, {open_quotes}Conduct of Operations{close_quotes} (CoOp). This plan applies to all Pinellas Plant operations and personnel. Generally, this Plan discusses how DOE Order 5480.19 will be implemented at the Pinellas Plant.

Anderson, C.K.; Hall, R.L.

1991-02-20T23:59:59.000Z

15

Teleseismic-Seismic Monitoring At Coso Geothermal Area (1975-1976) | Open  

Open Energy Info (EERE)

Teleseismic-Seismic Monitoring At Coso Geothermal Area (1975-1976) Teleseismic-Seismic Monitoring At Coso Geothermal Area (1975-1976) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Teleseismic-Seismic Monitoring At Coso Geothermal Area (1975-1976) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Teleseismic-Seismic Monitoring Activity Date 1975 - 1976 Usefulness not indicated DOE-funding Unknown Exploration Basis Estimate thermal regime and potential of the system Notes Three-dimensional Q -1 model of the Coso Hot Springs known geothermal resource area was conducted. To complete the model a regional telemetered network of sixteen stations was operated by the U.S. Geological Survey; deployed a portable Centipede array of 26 three-component stations near the

16

Temporal Velocity Variations beneath the Coso Geothermal Field Observed  

Open Energy Info (EERE)

Velocity Variations beneath the Coso Geothermal Field Observed Velocity Variations beneath the Coso Geothermal Field Observed using Seismic Double Difference Tomography of Compressional and Shear Wave Arrival Times Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: Temporal Velocity Variations beneath the Coso Geothermal Field Observed using Seismic Double Difference Tomography of Compressional and Shear Wave Arrival Times Details Activities (1) Areas (1) Regions (0) Abstract: Microseismic imaging can be an important tool for characterizing geothermal reservoirs. Since microseismic sources occur more or less continuously both due to the operations of a geothermal field and the naturally occurring background seismicity, passive seismic monitoring is well suited to quantify the temporal variations in the vicinity of a

17

Locating an active fault zone in Coso geothermal field by analyzing seismic  

Open Energy Info (EERE)

Locating an active fault zone in Coso geothermal field by analyzing seismic Locating an active fault zone in Coso geothermal field by analyzing seismic guided waves from microearthquake data Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: Locating an active fault zone in Coso geothermal field by analyzing seismic guided waves from microearthquake data Details Activities (1) Areas (1) Regions (0) Abstract: Active fault systems usually provide high-permeability channels for hydrothermal outflow in geothermal fields. Locating such fault systems is of a vital importance to plan geothermal production and injection drilling, since an active fault zone often acts as a fracture-extensive low-velocity wave guide to seismic waves. We have located an active fault zone in the Coso geothermal field, California, by identifying and analyzing

18

Seismicity and seismic stress in the Coso Range, Coso geothermal field, and  

Open Energy Info (EERE)

Seismicity and seismic stress in the Coso Range, Coso geothermal field, and Seismicity and seismic stress in the Coso Range, Coso geothermal field, and Indian Wells Valley region, Southeast-Central California Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Book: Seismicity and seismic stress in the Coso Range, Coso geothermal field, and Indian Wells Valley region, Southeast-Central California Details Activities (1) Areas (1) Regions (0) Abstract: The temporal and spatial distribution of seismicity in the Coso Range, the Coso geothermal field, and the Indian Wells Valley region of southeast-central California are discussed in this paper. An analysis of fault-related seismicity in the region led us to conclude that the Little Lake fault and the Airport Lake fault are the most significant seismogenic zones. The faulting pattern clearly demarcates the region as a transition

19

Evaluation of Coso Geothermal Exploratory Hole No. 1 (CGEH-1) Coso Hot  

Open Energy Info (EERE)

Coso Geothermal Exploratory Hole No. 1 (CGEH-1) Coso Hot Coso Geothermal Exploratory Hole No. 1 (CGEH-1) Coso Hot Springs: KGRA, China Lake, CA Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: Evaluation of Coso Geothermal Exploratory Hole No. 1 (CGEH-1) Coso Hot Springs: KGRA, China Lake, CA Details Activities (1) Areas (1) Regions (0) Abstract: The well, Coso Geothermal Exploratory Hole No. 1 (CGEH-1) was drilled at the China Lake Naval Weapons Center. Drilling was started on 2 September 1977, and the well completed on 1 December 1977 to 4845 ft. The well is an exploratory hole to determine geological and hydrothermal characteristics of the Coso Hot Springs KGRA (Known Geothermal Resource Area). During drilling, numerous geophysical and temperature surveys were performed to evaluate the geological characteristics of CGEH-1. LBL

20

Time-Dependent Seismic Tomography of the Coso Geothermal Area, 1996-2004 |  

Open Energy Info (EERE)

Dependent Seismic Tomography of the Coso Geothermal Area, 1996-2004 Dependent Seismic Tomography of the Coso Geothermal Area, 1996-2004 Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: Time-dependent seismic tomography of the Coso geothermal area, 1996-2004 Details Activities (1) Areas (1) Regions (0) Abstract: Local-earthquake tomographic images were calculated for each of the years 1996 - 2004 using arrival times from the U.S. Navy's permanent seismometer network at the Coso geothermal area, California. The results show irregular strengthening with time of the wave-speed ratio VP/VS at shallow depths. These changes result predominately from progressive relative increase in VS with respect to VP, and could result from processes associated with geothermal operations such as decrease in fluid pressure

Note: This page contains sample records for the topic "operations plan coso" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Coincident P and Sh reflections from basement rocks at Coso geothermal  

Open Energy Info (EERE)

Coincident P and Sh reflections from basement rocks at Coso geothermal Coincident P and Sh reflections from basement rocks at Coso geothermal field Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Coincident P and Sh reflections from basement rocks at Coso geothermal field Details Activities (2) Areas (1) Regions (0) Abstract: In mid-1989 the authors designed and collected four seismic reflection/refraction profiles that addressed the crustal structure of the Coso geothermal field. The two main east-west and north-south profiles crossed at the southeasternmost base of Sugar Loaf Mountain. Both in-line and cross-line Vibroseis and explosion data were recorded on each of these approximately 12-mi lines. This was accomplished with the simultaneous operation of two 1024-channel sign bit recording systems while four

22

Time-dependent seismic tomography of the Coso geothermal area, 1996-2004 |  

Open Energy Info (EERE)

of the Coso geothermal area, 1996-2004 of the Coso geothermal area, 1996-2004 Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: Time-dependent seismic tomography of the Coso geothermal area, 1996-2004 Details Activities (1) Areas (1) Regions (0) Abstract: Local-earthquake tomographic images were calculated for each of the years 1996 - 2004 using arrival times from the U.S. Navy's permanent seismometer network at the Coso geothermal area, California. The results show irregular strengthening with time of the wave-speed ratio VP/VS at shallow depths. These changes result predominately from progressive relative increase in VS with respect to VP, and could result from processes associated with geothermal operations such as decrease in fluid pressure and the drying of argillaceous minerals such as illite.

23

Coso Rock Art Within Its Archaeological Context  

E-Print Network (OSTI)

1984 The Sugarloaf Obsidian Quarry. Naval Weapons CenterPinyon Uplands, Obsidian Quarries, and Coso Hot Springs.hunter-gatherers. Behemoth quarries of high-quaUty obsidian

Gilreath, Amy J.; Hildebrandt, William R.

2008-01-01T23:59:59.000Z

24

Nuclear Safety Research and Development Program Operating Plan...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Program Operating Plan Nuclear Safety Research and Development Program Operating Plan July 5, 2012 Nuclear Safety Research and Development Program Operating Plan This operating...

25

Optimization Online - Operations Risk Management by Planning ...  

E-Print Network (OSTI)

Aug 1, 2007 ... Operations Risk Management by Planning Optimally the Qualified Workforce Capacity. Emmanuel Fragni re(Emmanuel.Fragniere ***at***...

Emmanuel Fragni re

2007-08-01T23:59:59.000Z

26

Definition: Operating Plan | Open Energy Information  

Open Energy Info (EERE)

Plan Plan Jump to: navigation, search Dictionary.png Operating Plan A document that identifies a group of activities that may be used to achieve some goal. An Operating Plan may contain Operating Procedures and Operating Processes. A company-specific system restoration plan that includes an Operating Procedure for black-starting units, Operating Processes for communicating restoration progress with other entities, etc., is an example of an Operating Plan.[1] Related Terms Operating Procedure, smart grid References ↑ Glossary of Terms Used in Reliability Standards An i LikeLike UnlikeLike You like this.Sign Up to see what your friends like. nline Glossary Definition Retrieved from "http://en.openei.org/w/index.php?title=Definition:Operating_Plan&oldid=502599

27

ICDF Complex Operations Waste Management Plan  

SciTech Connect

This Waste Management Plan functions as a management and planning tool for managing waste streams generated as a result of operations at the Idaho CERCLA Disposal Facility (ICDF) Complex. The waste management activities described in this plan support the selected remedy presented in the Waste Area Group 3, Operable Unit 3-13 Final Record of Decision for the operation of the Idaho CERCLA Disposal Facility Complex. This plan identifies the types of waste that are anticipated during operations at the Idaho CERCLA Disposal Facility Complex. In addition, this plan presents management strategies and disposition for these anticipated waste streams.

W.M. Heileson

2006-12-01T23:59:59.000Z

28

Continuity of Operations Plan (COOP)  

NLE Websites -- All DOE Office Websites (Extended Search)

You are here: DOE-ID Home > COOP Continuity of Operations Plan (COOP) Call-In Number: 1-208-526-COOP (2667) or 1-877-DOE-DOE1 (1-877-363-3631) Wait for recording to start then Dial 382: If you are directed or forced to evacuate your current location to an alternate site, please contact us as soon as possible to advise us that you are safe and with a means of contacting you. This toll free or local number can be used by employees or their families to report their whereabouts or the whereabouts of another DOE-ID employee. Email Check-In: In addition to the call-in number, employees and families can report their status via a email check-in system. To access the email please click here. The email based check in system should only be used by DOE ID Employees.

29

Reconnaissance electrical surveys in the Coso Range, California | Open  

Open Energy Info (EERE)

electrical surveys in the Coso Range, California electrical surveys in the Coso Range, California Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Reconnaissance electrical surveys in the Coso Range, California Details Activities (3) Areas (1) Regions (0) Abstract: Telluric current, audiomagnetotelluric (AMT), and direct current (dc) methods were used to study the electrical structure of the Coso Range and Coso geothermal area. Telluric current mapping outlined major resistivity lows associated with conductive valley fill of the Rose Valley basin, the Coso Basin, and the northern extension of the Coso Basin east of Coso Hot Springs. A secondary resistivity low with a north-south trend runs through the Coso Hot Springs--Devil's Kitchen geothermal area. The secondary low in the geothermal area, best defined by the 7.5-Hz AMT map

30

Telluric Survey At Coso Geothermal Area (1977) | Open Energy Information  

Open Energy Info (EERE)

Coso Geothermal Area (1977) Coso Geothermal Area (1977) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Telluric Survey At Coso Geothermal Area (1977) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Telluric Survey Activity Date 1977 Usefulness not indicated DOE-funding Unknown Exploration Basis To investigate electrical properties of rocks associated with thermal phenomena of the Devil's Kitchen-Coso Hot Springs area Notes Telluric current mapping outlined major resistivity lows associated with conductive valley fill of the Rose Valley basin, the Coso Basin, and the northern extension of the Coso Basin east of Coso Hot Springs. A secondary resistivity low with a north-south trend runs through the Coso Hot Springs--Devil's Kitchen geothermal area.

31

FTCP FY 2011 Operational Plan  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

N N N o o v v e e m m b b e e r r 2 2 0 0 1 1 0 0 U U . . S S . . D D E E P P A A R R T T M M E E N N T T O O F F E E N N E E R R G G Y Y F F E E D D E E R R A A L L T T E E C C H H N N I I C C A A L L C C A A P P A A B B I I L L I I T T Y Y P P R R O O G G R R A A M M F F Y Y 2 2 0 0 1 1 1 1 O O P P E E R R A A T T I I O O N N A A L L P P L L A A N N Federal Technical Capability Program FY 2011 Operational Plan November 2010 1 The objective of the Federal Technical Capability Program is to recruit, deploy, develop, and retain Federal personnel with the necessary technical capabilities to safely accomplish the Department's missions and responsibilities. The Department has identified guiding principles to accomplish that objective and identified four general functions of the Federal Technical Capability Program. The guiding principles are:  Federal personnel possess the experience, knowledge, skills, and abilities that are

32

FTCP FY 2009 Operational Plan  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

N N o o v v e e m m b b e e r r 2 2 0 0 0 0 8 8 U U . . S S . . D D E E P P A A R R T T M M E E N N T T O O F F E E N N E E R R G G Y Y F F E E D D E E R R A A L L T T E E C C H H N N I I C C A A L L C C A A P P A A B B I I L L I I T T Y Y P P R R O O G G R R A A M M F F Y Y 2 2 0 0 0 0 9 9 O O P P E E R R A A T T I I O O N N A A L L P P L L A A N N Federal Technical Capability Program FY 2009 Operational Plan November 2008 1 The objective of the Federal Technical Capability Program is to recruit, deploy, develop, and retain Federal personnel with the necessary technical capabilities to safely accomplish the Department's missions and responsibilities. The Department has identified guiding principles to accomplish that objective and identified four general functions of the Federal Technical Capability Program. The guiding principles are: * Federal personnel possess the experience, knowledge, skills, and abilities that are

33

Robust scheduling in forest operations planning  

E-Print Network (OSTI)

Forest operations planning is a complex decision process which considers multiple objectives on the strategic, tactical and operational horizons. Decisions such as where to harvest and in what order over different time ...

Lim, Lui Cheng

2008-01-01T23:59:59.000Z

34

Annual Operating Plan: FY 1991  

SciTech Connect

This is an internal DOE Geothermal Program planning and control document. Many of these reports were issued only in draft form.

None

1991-06-05T23:59:59.000Z

35

FTCP FY 2010 Operational Plan  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

D D D e e c c e e m m b b e e r r 2 2 0 0 0 0 9 9 ( (R Re ev vi is se ed d A Ap pr ri il l 2 20 01 10 0) ) U U . . S S . . D D E E P P A A R R T T M M E E N N T T O O F F E E N N E E R R G G Y Y F F E E D D E E R R A A L L T T E E C C H H N N I I C C A A L L C C A A P P A A B B I I L L I I T T Y Y P P R R O O G G R R A A M M F F Y Y 2 2 0 0 1 1 0 0 O O P P E E R R A A T T I I O O N N A A L L P P L L A A N N Federal Technical Capability Program FY 2010 Operational Plan December 2009 (Rev 1, April 2010) 1 The objective of the Federal Technical Capability Program is to recruit, deploy, develop, and retain Federal personnel with the necessary technical capabilities to safely accomplish the Department's missions and responsibilities. The Department has identified guiding principles to accomplish that objective and identified four general functions of the Federal Technical Capability Program. The guiding principles are:

36

Operations Authorization Assessment Plan | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Operations Authorization Assessment Plan Operations Authorization Assessment Plan Operations Authorization Assessment Plan Performance Objective: The objective of this assessment is to verify there is documentation in place which accurately describes the safety envelope for a facility, program or project. Criteria: Conditions and requirements should be established to ensure programs addressing all applicable functional areas are adequately implemented to support safe performance of the work. The extent of documentation and level of authority for agreement shall be tailored to the complexity and hazards associated with the work. Personnel shall be responsible and accountable for performance of work in accordance with the controls established. Operations-Authorization.doc More Documents & Publications

37

Acoustic Logs At Coso Geothermal Area (1977) | Open Energy Information  

Open Energy Info (EERE)

Coso Geothermal Area (1977) Coso Geothermal Area (1977) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Acoustic Logs At Coso Geothermal Area (1977) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Acoustic Logs Activity Date 1977 Usefulness not indicated DOE-funding Unknown Notes Acoustic logs indicate fractured rock and potentially permeable zones. References Galbraith, R. M. (1 May 1978) Geological and geophysical analysis of Coso Geothermal Exploration Hole No. 1 (CGEH-1), Coso Hot Springs KGRA, California Goranson, C.; Schroeder, R. (1 June 1978) Static downhole characteristics of well CGEH-1 at Coso Hot Springs, China Lake, California Retrieved from "http://en.openei.org/w/index.php?title=Acoustic_Logs_At_Coso_Geothermal_Area_(1977)&oldid=510216"

38

Gamma Log At Coso Geothermal Area (1977) | Open Energy Information  

Open Energy Info (EERE)

Gamma Log At Coso Geothermal Area (1977) Gamma Log At Coso Geothermal Area (1977) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Gamma Log At Coso Geothermal Area (1977) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Gamma Log Activity Date 1977 Usefulness not indicated DOE-funding Unknown Notes extensive geophysical logging surveys were conducted: natural gamma and neutron porosity logs indicate gross rock type References Galbraith, R. M. (1 May 1978) Geological and geophysical analysis of Coso Geothermal Exploration Hole No. 1 (CGEH-1), Coso Hot Springs KGRA, California Goranson, C.; Schroeder, R. (1 June 1978) Static downhole characteristics of well CGEH-1 at Coso Hot Springs, China Lake, California Retrieved from "http://en.openei.org/w/index.php?title=Gamma_Log_At_Coso_Geothermal_Area_(1977)&oldid=510780"

39

Facilities Operations, Planning, and Engineering Services  

E-Print Network (OSTI)

Facilities Operations, Planning, and Design Engineering Services Energy Management & Water and In- house Engineering Mechanical Electrical Engineering Data Analysis Construction Services In Conservation Capital Project-Bldg Systems Review Commissioning BSL3/DLAM Engineer Building Systems Engineering

McLaughlin, Richard M.

40

Geothermometry At Coso Geothermal Area (1978) | Open Energy Information  

Open Energy Info (EERE)

Geothermometry At Coso Geothermal Area (1978) Geothermometry At Coso Geothermal Area (1978) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermometry At Coso Geothermal Area (1978) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Geothermometry Activity Date 1978 Usefulness useful DOE-funding Unknown Exploration Basis Determine fluid origin in two exploratory wells Notes Collected water from original coso hot springs well (1967) and CGEH No. 1. and completed chemical analysis to determine fluid origin. The surface expression of fumarole and acid sulfate pools and shallow steam wells gives a false indication of an extensive vapor dominated system because upward convecting, boiling alkaline-chloride waters do not reach the surface.

Note: This page contains sample records for the topic "operations plan coso" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Electrical Resistivity At Coso Geothermal Area (1972) | Open Energy  

Open Energy Info (EERE)

Electrical Resistivity At Coso Geothermal Area (1972) Electrical Resistivity At Coso Geothermal Area (1972) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Electrical Resistivity At Coso Geothermal Area (1972) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Direct-Current Resistivity Survey Activity Date 1972 Usefulness useful DOE-funding Unknown Exploration Basis Identify drilling sites for exploration Notes Electrical resistivity studies outline areas of anomalously conductive ground that may be associated with geothermal activity and assist in locating drilling sites to test the geothermal potential. References Ferguson, R. B. (1 June 1973) Progress report on electrical resistivity studies, COSO Geothermal Area, Inyo County, California

42

Isotopic Analysis- Fluid At Coso Geothermal Area (1982) | Open Energy  

Open Energy Info (EERE)

Analysis- Fluid At Coso Geothermal Area (1982) Analysis- Fluid At Coso Geothermal Area (1982) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Fluid At Coso Geothermal Area (1982) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Isotopic Analysis- Fluid Activity Date 1982 Usefulness not indicated DOE-funding Unknown Exploration Basis Determine recharge for the system Notes Thirty-nine water samples were collected from the Coso geothermal system and vicinity and were analyzed for major chemical constituents and deltaD and delta18O. Non-thermal ground waters from the Coso Range were found to be isotopically heavier than non-thermal ground waters from the Sierra Nevada to the west. The deltaD value for the deep thermal water at Coso is

43

Geologic Study of the Coso Formation | Open Energy Information  

Open Energy Info (EERE)

Study of the Coso Formation Study of the Coso Formation Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Geologic Study of the Coso Formation Details Activities (1) Areas (1) Regions (0) Abstract: There have been great advances in the last 20 years in understanding the volcanic, structural, geophysical, and petrologic development of the Coso Range and Coso geothermal field. These studies have provided a wealth of knowledge concerning the geology of the area, including general structural characteristics and kinematic history. One element missing from this dataset was an understanding of the sedimentology and stratigraphy of well-exposed Cenozoic sedimentary strata - the Coso Formation. A detailed sedimentation and tectonics study of the Coso Formation was undertaken to provide a more complete picture of the

44

Upper crustal structure of an obliquely extending orogen, central Coso  

Open Energy Info (EERE)

structure of an obliquely extending orogen, central Coso structure of an obliquely extending orogen, central Coso Range, eastern California Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: Upper crustal structure of an obliquely extending orogen, central Coso Range, eastern California Details Activities (1) Areas (1) Regions (0) Abstract: The Coso Range is an extensional domain in a releasing stepover between major dextral strike-slip faults along the southeastern margin of the Sierra Nevada Microplate. New multifold seismic reflection data from the Coso geothermal field in the central Coso Range image reflectors that resemble suites of structural and magmatic features exposed in many exhumed metamorphic core complexes (MCC). The Coso Wash Fault, a Holocene-active normal fault that is a locus of surface geothermal activity, is imaged as a

45

Geological and geophysical analysis of Coso Geothermal Exploration Hole No.  

Open Energy Info (EERE)

and geophysical analysis of Coso Geothermal Exploration Hole No. and geophysical analysis of Coso Geothermal Exploration Hole No. 1 (CGEH-1), Coso Hot Springs KGRA, California Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Geological and geophysical analysis of Coso Geothermal Exploration Hole No. 1 (CGEH-1), Coso Hot Springs KGRA, California Details Activities (5) Areas (1) Regions (0) Abstract: The Coso Geothermal Exploration Hole number one (CGEH-1) was drilled in the Coso Hot Springs KGRA, California, from September 2 to December 2, 1977. Chip samples were collected at ten foot intervals and extensive geophysical logging surveys were conducted to document the geologic character of the geothermal system as penetrated by CGEH-1. The major rock units encountered include a mafic metamorphic sequence and a

46

Numerical Modeling At Coso Geothermal Area (2007) | Open Energy Information  

Open Energy Info (EERE)

Coso Geothermal Area (2007) Coso Geothermal Area (2007) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Numerical Modeling At Coso Geothermal Area (2007) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Numerical Modeling Activity Date 2007 Usefulness not indicated DOE-funding Unknown Exploration Basis To determine the importance of fracture networks for fluid migration in tectonically active regions such as the Coso Range. Notes A finite element analysis is used to establish the 3D state of stress within the tectonic setting of the Coso Range. The mean and differential stress distributions are used to infer fluid flow vectors and second order fracture likelihood and orientation. The results show that the Coso Range

47

Structural interpretation of the Coso geothermal field. Summary report,  

Open Energy Info (EERE)

the Coso geothermal field. Summary report, the Coso geothermal field. Summary report, October 1986-August 1987 Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Structural interpretation of the Coso geothermal field. Summary report, October 1986-August 1987 Details Activities (1) Areas (1) Regions (0) Abstract: The Coso Geothermal Field, located east of the Sierra Nevada at the northern edge of the high Mojave Desert in Southern California, is an excellent example of a structurally controlled geothermal resource. Author(s): Austin, C.F.; Moore, J.L. Published: Publisher Unknown, 9/1/1987 Document Number: Unavailable DOI: Unavailable Source: View Original Report Geothermal Literature Review At Coso Geothermal Area (1987) Coso Geothermal Area Retrieved from "http://en.openei.org/w/index.php?title=Structural_interpretation_of_the_Coso_geothermal_field._Summary_report,_October_1986-August_1987&oldid=473519"

48

ICD Complex Operations and Maintenance Plan  

SciTech Connect

This Operations and Maintenance (O&M) Plan describes how the Idaho National Laboratory (INL) conducts operations, winterization, and startup of the Idaho CERCLA Disposal Facility (ICDF) Complex. The ICDF Complex is the centralized INL facility responsible for the receipt, storage, treatment (as necessary), and disposal of INL Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) remediation waste.

Gibson, P. L.

2007-06-25T23:59:59.000Z

49

2013 Annual Planning Summary for the Savannah River Operations...  

Office of Environmental Management (EM)

for Savannah River Operations Office 2010 Annual Planning Summary for Savannah River Operations Office (SRS) 2012 Annual Planning Summary for Bonneville Power Administration...

50

CRAD, Machine Shop Safe Operations Assessment Plan | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Machine Shop Safe Operations Assessment Plan CRAD, Machine Shop Safe Operations Assessment Plan Performance Objective: The purpose of this assessment is to verify that machine shop...

51

CRAD, Conduct of Operations Assessment Plan | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Conduct of Operations Assessment Plan CRAD, Conduct of Operations Assessment Plan Performance Objective: The purpose of this assessment is to verify programmatic implementation of...

52

National Security Technology Incubator Operations Plan  

SciTech Connect

This report documents the operations plan for developing the National Security Technology Incubator (NSTI) program for southern New Mexico. The NSTI program will focus on serving businesses with national security technology applications by nurturing them through critical stages of early development. The NSTI program is being developed as part of the National Security Preparedness Project (NSPP), funded by Department of Energy (DOE)/National Nuclear Security Administration (NNSA). The operation plan includes detailed descriptions of the structure and organization, policies and procedures, scope, tactics, and logistics involved in sustainable functioning of the NSTI program. Additionally, the operations plan will provide detailed descriptions of continuous quality assurance measures based on recommended best practices in incubator development by the National Business Incubation Association (NBIA). Forms that assist in operations of NSTI have been drafted and can be found as an attachment to the document.

None

2008-04-30T23:59:59.000Z

53

FTCP 2011 Operational Plan Closeout Summary  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1 Operational Plan Closeout Summary 1 Operational Plan Closeout Summary Brief Summary Objective Complete (Yes or No) Carried Over to 2012 Operational Plan Goal # Goal 1 Champions: Ed Parsons, RL and Dave Chaney, NA-SH-20 DOE FTCP FY 11 OPSPLAN Goal 1: Create the 2015 Strategic Vision to Enhance the Technical Competency of the Federal Workforce Objectives Create 2015 Vision Statement Champions: Ed Parsons, RL and Dave Chaney, NA-SH- 20 For DOE to be a technically proficient enterprise, with federal technical personnel overseeing Defense Nuclear Facilities in a manner that enables and enhances the DOE mission in a technically defensible fashion, while being recognized as preeminent in federal technical leadership and competency. (Post on DOE FTCP Website) Yes No

54

FTCP 2011 Operational Plan Closeout Summary  

NLE Websites -- All DOE Office Websites (Extended Search)

FTCP 2011 Operational Plan Closeout Summary FTCP 2011 Operational Plan Closeout Summary Brief Summary Objective Complete (Yes or No) Carried Over to 2012 Operational Plan Goal # Goal 1 Champions: Ed Parsons, RL and Dave Chaney, NA-SH-20 DOE FTCP FY 11 OPSPLAN Goal 1: Create the 2015 Strategic Vision to Enhance the Technical Competency of the Federal Workforce Objectives Create 2015 Vision Statement Champions: Ed Parsons, RL and Dave Chaney, NA-SH- 20 For DOE to be a technically proficient enterprise, with federal technical personnel overseeing Defense Nuclear Facilities in a manner that enables and enhances the DOE mission in a technically defensible fashion, while being recognized as preeminent in federal technical leadership and competency. (Post on DOE FTCP Website)

55

FTCP 2012 Operational Plan Closeout Summary  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2 Operational Plan Closeout Summary 2 Operational Plan Closeout Summary 1 Brief Summary Objective Complete (Yes or No) Carried Over to FY 2013 FTCP Operational Plan Goal 1 Champions: Dave Chaney, NA-SH-2 Enhance Qualification Process Objectives Qualifying Officials Expectations/Training Information Sharing Champion: Ted Pietrok, PNSO Developed clearinghouse of various approaches used to train and qualify Qualifying Officials (QOs). Collected QO approaches from FTCP Agents and training representatives. Developed framework for organizing approaches. Set-up electronic clearinghouse on FTCP website. Determined a standard set of elements common to all QO approaches. Yes No Analyze QO approaches to identify standardized approach, if appropriate. Develop a standardized framework for QO training and

56

FTCP 2009 Operational Plan Closeout Summary  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

09 Operational Plan Closeout Summary 09 Operational Plan Closeout Summary 1 Brief Summary Objective Complete (Yes or No) Carried Over to 2010 Operational Plan Goal # Goal 1 Champion: Jim Todd, SSO Improve Processes Objectives Establish Record Keeping Requirements Champions: Jim Todd and Allen Tate, SSO Resulted in Issue Paper, FTCP-09-003 Yes No Develop Functional Area Qualification Standard (FAQS) Champion: Ali Ghovanlou, HSS Performed a consistency review of all FAQS based on accepted expectations and revised the template. Yes No Integrate Safety and Security Champions: Winnie Lehman, NNSA SC and Pat Worthington, HSS Evaluated and recommended inclusion of additional security elements to General Technical Base. Developed and implemented the Safeguards and Security FAQS.

57

Guidance for evaluation of operational emergency plans  

SciTech Connect

The purpose of this document is to provide guidance for development of emergency plans for the USDOE Office of Defense Programs, Office of Energy Research, and Office of Environmental Management facilities. It gathers emergency planning policy and guidance from applicable federal regulations, DOE Orders and related guidance documents. This material, along with recommended good practices, is presented as a checklist against which emergency plans can be reviewed by DOE Headquarters. The Office of Emergency Response (DP-23), Office of Environment, Safety and Health Technical Support (ER-8), and Office of Transportation, Emergency Management and Analytical Services (EM-26) will use this checklist to evaluate plans submitted by DP, ER, and EM field elements. The scope of this document encompasses plans for operational emergencies at DOE facilities, both nuclear and non-nuclear. Operational emergencies, as defined in Attachment 2 to DOE Order 5500.1B (April 30, 1991) are ``significant accidents, incidents, events, or natural phenomena which seriously degrade the safety or security of DOE facilities. Operational Emergencies apply to DOE reactors and other DOE facilities (nuclear and non-nuclear) involved with hazardous materials; DOE-controlled nuclear weapons, components, or test devices; DOE safeguards and security events; and transportation accidents involving hazardous materials under DOE control.``

NONE

1995-03-01T23:59:59.000Z

58

Service Improvement Group Operational Plan 2014 -2015  

E-Print Network (OSTI)

Service Improvement Group Operational Plan 2014 - 2015 Version 1.0 #12;2 Introduction Universities are facing a number of challenges including financial constraints, increasing regulatory demands is accessible from the website · Review procedures and processes every six months · Assist in the development

Botea, Adi

59

Planning and Preparedness for Operational Emergencies  

Directives, Delegations, and Requirements

To establish requirements for planning and prepardness for Operational Emergencies involving the Department of Energy (DOE) or requiring DOE assistance. Cancels DOE O 5500.3. Chg 1 dated Change 1 2-27-92. canceled by DOE O 151.1 of 9-25-1995.

1991-04-30T23:59:59.000Z

60

Image Logs At Coso Geothermal Area (2004) | Open Energy Information  

Open Energy Info (EERE)

Logs At Coso Geothermal Area (2004) Logs At Coso Geothermal Area (2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Image Logs At Coso Geothermal Area (2004) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Image Logs Activity Date 2004 Usefulness not indicated DOE-funding Unknown Exploration Basis EGS potential of Coso Geothermal Region Notes During the second year of this project, wellbore logs and stress data were acquired in a new production well drilled in the Coso Geothermal Field, 38C-9. The image analysis results include the discrimination of natural from drilling induced fractures in wellbore image data, natural fracture characterization, and wellbore failure analysis References Sheridan, J.; Hickman, S.H. (1 January 2004) IN SITU STRESS,

Note: This page contains sample records for the topic "operations plan coso" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Stress Test At Coso Geothermal Area (2004) | Open Energy Information  

Open Energy Info (EERE)

Stress Test At Coso Geothermal Area (2004) Stress Test At Coso Geothermal Area (2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Stress Test At Coso Geothermal Area (2004) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Stress Test Activity Date 2004 Usefulness not indicated DOE-funding Unknown Exploration Basis EGS potential of Coso Geothermal Region Notes A hydraulic fracturing stress test at 3,703 feet TVD was used to constrain a normal faulting and strike-slip faulting stress tensor for this reservoir. The shear and normal stresses resolved on the fracture and fault planes were calculated and used to identify the subset of critically stressed planes that act to maintain permeability within the Coso Geothermal Field. References

62

Thermal Gradient Holes At Coso Geothermal Area (1976) | Open Energy  

Open Energy Info (EERE)

Thermal Gradient Holes At Coso Geothermal Area (1976) Thermal Gradient Holes At Coso Geothermal Area (1976) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Coso Geothermal Area (1976) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Thermal Gradient Holes Activity Date 1976 Usefulness useful DOE-funding Unknown Notes Temperatures have been obtained to depths up to 133 m in 22 boreholes with measurements being made at least four times in each borehole. Geothermal gradients ranged from 240C/km to 450 0C/km. References Combs, J. (1 December 1976) Heat flow determinations and implied thermal regime of the Coso geothermal area, California Retrieved from "http://en.openei.org/w/index.php?title=Thermal_Gradient_Holes_At_Coso_Geothermal_Area_(1976)&oldid=511217"

63

Field Mapping At Coso Geothermal Area (2006) | Open Energy Information  

Open Energy Info (EERE)

Field Mapping At Coso Geothermal Area (2006) Field Mapping At Coso Geothermal Area (2006) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Field Mapping At Coso Geothermal Area (2006) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Field Mapping Activity Date 2006 Usefulness not indicated DOE-funding Unknown Exploration Basis Determine impact of brittle faulting and seismogenic deformation on permeability in geothermal reservoir Notes New mapping documents a series of late Quaternary NNE-striking normal faults in the central Coso Range that dip northwest, toward and into the main production area of the Coso geothermal field. The faults exhibit geomorphic features characteristic of Holocene activity, and locally are associated with fumaroles and hydothermal alteration. The active faults

64

Tectonic setting of the Coso geothermal reservoir | Open Energy Information  

Open Energy Info (EERE)

Tectonic setting of the Coso geothermal reservoir Tectonic setting of the Coso geothermal reservoir Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Tectonic setting of the Coso geothermal reservoir Details Activities (1) Areas (1) Regions (0) Abstract: The Coso geothermal reservoir is being developed in Sierran-type crystalline bedrock of the Coso Mountains, a small desert mountain range just to the east of the Sierra Nevada and Rose Valley, which is the southern extension of the Owens Valley of eastern California Optimum development of this reservoir requires an understanding of the fracture hydrology of the Coso Mountains crystalline terrain and its hydrologic connection to regional groundwater and thermal sources. An interpreted, conceptually balanced regional cross section that extends from the Sierra

65

Magnetotellurics At Coso Geothermal Area (2004) | Open Energy Information  

Open Energy Info (EERE)

Magnetotellurics At Coso Geothermal Area (2004) Magnetotellurics At Coso Geothermal Area (2004) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Magnetotellurics Activity Date 2004 Usefulness not indicated DOE-funding Unknown Exploration Basis EGS potential of Coso Geothermal Region Notes A dense grid of magnetotelluric (MT) stations plus contiguous bipole array profiling centered over the east flank of the Coso geothermal system is being acquired. Acquiring good quality MT data in producing geothermal systems is a challenge due to production related electromagnetic (EM) noise and, in the case of Coso, due to proximity of a regional DC intertie power transmission line. To achieve good results, a remote reference completely outside the influence of the dominant source of EM noise must be

66

Core Analysis At Coso Geothermal Area (1979) | Open Energy Information  

Open Energy Info (EERE)

Coso Geothermal Area (1979) Coso Geothermal Area (1979) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Core Analysis Activity Date 1979 Usefulness useful DOE-funding Unknown Exploration Basis Compare microcracks between Coso and Raft River geothermal areas Notes Microcracks were observed in core samples from Coso. Both permeability and electrical conductivity were measured for a suite of samples with a range of microcracks characteristics. A partial set of samples were collected to study migration of radioactive elements. References Simmons, G.; Batzle, M. L.; Shirey, S. (1 April 1979) Microcrack technology. Progress report, 1 October 1978--31 March 1979 Retrieved from "http://en.openei.org/w/index.php?title=Core_Analysis_At_Coso_Geothermal_Area_(1979)&oldid=473689

67

Isotopic Analysis- Fluid At Coso Geothermal Area (1990) | Open Energy  

Open Energy Info (EERE)

Analysis- Fluid At Coso Geothermal Area (1990) Analysis- Fluid At Coso Geothermal Area (1990) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Fluid At Coso Geothermal Area (1990) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Isotopic Analysis- Fluid Activity Date 1990 Usefulness not indicated DOE-funding Unknown Exploration Basis Determine the recharge of the area Notes Hydrogen and oxygen isotope data on waters of Coso thermal and nonthermal waters were studied. Hydrogen and oxygen isotopes do not uniquely define the recharge area for the Coso geothermal system but strongly suggest Sierran recharge with perhaps some local recharge. References Whelan, J. A. (1 September 1990) Water geochemistry study of Indian Wells Valley, Inyo and Kern Counties, California. Supplement.

68

Reflection Survey At Coso Geothermal Area (1989) | Open Energy Information  

Open Energy Info (EERE)

Reflection Survey At Coso Geothermal Area (1989) Reflection Survey At Coso Geothermal Area (1989) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Reflection Survey At Coso Geothermal Area (1989) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Reflection Survey Activity Date 1989 Usefulness useful DOE-funding Unknown Exploration Basis Determine the crustul structure of the Coso geothermal system Notes In mid-1989 the authors designed and collected four seismic reflection/refraction profiles that addressed the crustal structure of the Coso geothermal field. The two main east-west and north-south profiles crossed at the southeastern most base of Sugar Loaf Mountain. Both in-line and cross-line Vibroseis and explosion data were recorded on each of these

69

DC Resistivity Survey (Schlumberger Array) At Coso Geothermal Area (1977) |  

Open Energy Info (EERE)

DC Resistivity Survey (Schlumberger Array) At Coso DC Resistivity Survey (Schlumberger Array) At Coso Geothermal Area (1977) Exploration Activity Details Location Coso Geothermal Area Exploration Technique DC Resistivity Survey (Schlumberger Array) Activity Date 1977 Usefulness not indicated DOE-funding Unknown Exploration Basis To investigate electrical properties of rocks associated with thermal phenomena of the Devil's Kitchen-Coso Hot Springs area Notes 18 USGS Schlumberger soundings and 6 Schlumberger soundings by Furgerson (1973) were plotted and automatically processed and interpreted References Jackson, D.B. ODonnell, J.E.; Gregory, D. I. (1 January 1977) Schlumberger soundings, audio-magnetotelluric soundings and telluric mapping in and around the Coso Range, California Retrieved from "http://en.openei.org/w/index.php?title=DC_Resistivity_Survey_(Schlumberger_Array)_At_Coso_Geothermal_Area_(1977)&oldid=591389

70

Isotopic Analysis- Rock At Coso Geothermal Area (1984) | Open Energy  

Open Energy Info (EERE)

Analysis- Rock At Coso Geothermal Area (1984) Analysis- Rock At Coso Geothermal Area (1984) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Rock At Coso Geothermal Area (1984) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Isotopic Analysis- Rock Activity Date 1984 Usefulness not indicated DOE-funding Unknown Exploration Basis To analyze evidence for crustal interaction and compositional zonation in the source regions of Pleistocene basaltic and rhyolitic magmas of the Coso volcanic field Notes The isotopic compositions of Pb and Sr in Pleistocene basalt, high-silica rhyolite, and andesitic inclusions in rhyolite of the Coso volcanic field indicate that these rocks were derived from different levels of compositionally zoned magmatic systems. The two earliest rhyolites probably

71

Field Mapping At Coso Geothermal Area (1978) | Open Energy Information  

Open Energy Info (EERE)

Field Mapping At Coso Geothermal Area (1978) Field Mapping At Coso Geothermal Area (1978) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Field Mapping At Coso Geothermal Area (1978) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Field Mapping Activity Date 1978 Usefulness not indicated DOE-funding Unknown Notes Geology and alteration mapping analyzed exposed rocks in geothermal region. Neither geologic mapping nor deep drilling have revealed potential deep primary aquifers. Surface alteration at Coso is of three main types: (1) clay-opal-alunite alteration, (2) weak argillic alteration, and (3) stockwork calcite veins and veinlets, which are locally associated with calcareous sinter. References Hulen, J. B. (1 May 1978) Geology and alteration of the Coso

72

Field Mapping At Coso Geothermal Area (1980) | Open Energy Information  

Open Energy Info (EERE)

Field Mapping At Coso Geothermal Area (1980) Field Mapping At Coso Geothermal Area (1980) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Field Mapping At Coso Geothermal Area (1980) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Field Mapping Activity Date 1980 Usefulness not indicated DOE-funding Unknown Exploration Basis Determine the areal extent of the magma reservoir Notes The distribution of quaternary rhyolite dome of the Coso Range was analyzed. Thirty-eight separate domes and flows of phenocryst-poor, high-silica rhyolite of similar major element chemical composition were erupted over the past 1 m.y. from vents arranged in a crudely S-shaped array atop a granitic horst in the Coso Range, California. The immediate source of heat for the surficial geothermal phenomena is probably a silicic

73

Conceptual Model At Coso Geothermal Area (1990) | Open Energy Information  

Open Energy Info (EERE)

Conceptual Model At Coso Geothermal Area (1990) Conceptual Model At Coso Geothermal Area (1990) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Conceptual Model Activity Date 1990 Usefulness useful DOE-funding Unknown Exploration Basis To develop an understanding of the fracture hydrology of the Coso Mountains crystalline terrain and its hydrologic connection to regional groundwater and thermal source Notes An interpreted, conceptually balanced regional cross section that extends from the Sierra Nevada through the geothermal reservoir to the Panamint Mountains is presented. The cross section is constrained by new reflection and refraction seismic data, gravity and magnetic modeling, drilling data from the geothermal reservoir, and published regional geologic mapping. The

74

Hydrogeologic investigation of Coso Hot Springs, Inyo County, California.  

Open Energy Info (EERE)

Hydrogeologic investigation of Coso Hot Springs, Inyo County, California. Hydrogeologic investigation of Coso Hot Springs, Inyo County, California. Final report October 1977--January 1978 Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Hydrogeologic investigation of Coso Hot Springs, Inyo County, California. Final report October 1977--January 1978 Details Activities (2) Areas (1) Regions (0) Abstract: This investigation included: review of existing geologic, geophysical, and hydrologic information; field examination of geologic rock units and springs and other features of hydrologic significance and sampling of waters for chemical analysis; determination of the local Coso Hot Springs and regional groundwater hydrology, including consideration of recharge, discharge, movement, and water quality; and determination of the

75

Microseismicity, stress, and fracture in the Coso geothermal field,  

Open Energy Info (EERE)

Microseismicity, stress, and fracture in the Coso geothermal field, Microseismicity, stress, and fracture in the Coso geothermal field, California Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Microseismicity, stress, and fracture in the Coso geothermal field, California Details Activities (1) Areas (1) Regions (0) Abstract: Microseismicity, stress, and fracture in the Coso geothermal field are investigated using seismicity, focal mechanisms and stress analysis. Comparison of hypocenters of microearthquakes with locations of development wells indicates that microseismic activity has increased since the commencement of fluid injection and circulation. Microearthquakes in the geothermal field are proposed as indicators of shear fracturing associated with fluid injection and circulation along major pre-existing

76

Ground Gravity Survey At Coso Geothermal Area (1980) | Open Energy...  

Open Energy Info (EERE)

Range, California. Rather, linear gravity contours, which suggest a regional tectonic origin, enclose the location of most of the volcanic activity of the Coso Range. References...

77

Characterization of subsurface fracture patterns in the Coso...  

Open Energy Info (EERE)

LibraryAdd to library Conference Proceedings: Characterization of subsurface fracture patterns in the Coso geothermal reservoir by analyzing shear-wave splitting of...

78

Microseismicity, stress, and fracture in the Coso geothermal...  

Open Energy Info (EERE)

Microseismicity, stress, and fracture in the Coso geothermal field, California Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Microseismicity,...

79

Three-dimensional magnetotelluric characterization of the Coso...  

Open Energy Info (EERE)

array profiling has been acquired over the east flank of the Coso geothermal system, CA, USA. Due to production related electromagnetic (EM) noise the permanent observatory at...

80

Temporal Velocity Variations beneath the Coso Geothermal Field...  

Open Energy Info (EERE)

beneath the Coso Geothermal Field Observed using Seismic Double Difference Tomography of Compressional and Shear Wave Arrival Times Jump to: navigation, search GEOTHERMAL...

Note: This page contains sample records for the topic "operations plan coso" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Conceptual Model At Coso Geothermal Area (2005) | Open Energy Information  

Open Energy Info (EERE)

Coso Geothermal Area (2005) Coso Geothermal Area (2005) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Conceptual Model Activity Date 2005 Usefulness not indicated DOE-funding Unknown Exploration Basis Develop a conceptual model of the Coso area Notes Investigation of the Coso Range using seismicity, gravity, and geochemistry of rocks and fluids, supports the interpretation that the structure hosting the geothermal resource is a nascent metamorphic core complex. The structural setting is a releasing bend in a dextral strike-slip system that extends from the Indian Wells Valley northward into the Owens Valley. This tectonic setting results in NW-directed transtension, which is accommodated by normal and strike-slip faulting of the brittle upper 4-6 km of the

82

Geothermal Literature Review At Coso Geothermal Area (1985) | Open Energy  

Open Energy Info (EERE)

5) 5) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Geothermal Literature Review Activity Date 1985 Usefulness not indicated DOE-funding Unknown Exploration Basis Need to develop a reservoir model for Coso Notes Analysis of complex geothermal system was done by looking at the available data on the Coso Geothermal Field References Austin, C.F.; Durbin, W.F. (1 September 1985) Coso: example of a complex geothermal reservoir. Final report, 1984-1985 Retrieved from "http://en.openei.org/w/index.php?title=Geothermal_Literature_Review_At_Coso_Geothermal_Area_(1985)&oldid=510801" Category: Exploration Activities What links here Related changes Special pages Printable version Permanent link Browse properties About us Disclaimers

83

Progress report on electrical resistivity studies, COSO Geothermal Area,  

Open Energy Info (EERE)

Progress report on electrical resistivity studies, COSO Geothermal Area, Progress report on electrical resistivity studies, COSO Geothermal Area, Inyo County, California Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Progress report on electrical resistivity studies, COSO Geothermal Area, Inyo County, California Details Activities (1) Areas (1) Regions (0) Abstract: The first phase of an electrical geophysical survey of the Coso Geothermal Area is described. The objective of the survey was to outline areas of anomalously conductive ground that may be associated with geothermal activity and to assist in locating drilling sites to test the geothermal potential. Author(s): Ferguson, R. B. Published: Publisher Unknown, 6/1/1973 Document Number: Unavailable DOI: Unavailable Source: View Original Report Electrical Resistivity At Coso Geothermal Area (1972)

84

Reflection Survey At Coso Geothermal Area (2008) | Open Energy Information  

Open Energy Info (EERE)

At Coso Geothermal Area (2008) At Coso Geothermal Area (2008) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Reflection Survey At Coso Geothermal Area (2008) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Reflection Survey Activity Date 2008 Usefulness not indicated DOE-funding Unknown Exploration Basis A reflection survey was done to analyze the brittle upper plate structure revealed by reflection seismic data Notes The relationships between upper crustal faults, the brittle-ductile transition zone, and underlying magmatic features imaged by multifold seismic reflection data are consistent with the hypothesis that the Coso geothermal field, which lies within an extensional step-over between dextral faults, is a young, actively developing metamorphic core complex.

85

Ground magnetic survey in the Coso Range, California | Open Energy  

Open Energy Info (EERE)

Ground magnetic survey in the Coso Range, California Ground magnetic survey in the Coso Range, California Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Ground magnetic survey in the Coso Range, California Details Activities (1) Areas (1) Regions (0) Abstract: A ground magnetic study was completed in the Coso volcanic field to investigate faulting and associated hydrothermal alteration patterns. The magnetic intensity contours match general geologic patterns in varying rock types. Hydrothermally altered rocks along intersecting fault zones show up as strong magnetic lows that form a triangular-shaped area. This area is centered in an area of highest heat flow and is a site of concentrated fumarolic activity. In the Coso volcanic field the combination of high heat flow, fumarolic activity, magnetic lows, and hydrothermal

86

Shear-wave splitting and reservoir crack characterization: the Coso  

Open Energy Info (EERE)

Shear-wave splitting and reservoir crack characterization: the Coso Shear-wave splitting and reservoir crack characterization: the Coso geothermal field Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Shear-wave splitting and reservoir crack characterization: the Coso geothermal field Details Activities (1) Areas (1) Regions (0) Abstract: This paper aims to improve current understanding of the subsurface fracture system in the Coso geothermal field, located in east-central California. The Coso reservoir is in active economic development, so that knowledge of the subsurface fracture system is of vital importance for an accurate evaluation of its geothermal potential and day-to-day production. To detect the geometry and density of fracture systems we applied the shear-wave splitting technique to a large number of

87

Isotope Transport and Exchange within the Coso Geothermal System | Open  

Open Energy Info (EERE)

Transport and Exchange within the Coso Geothermal System Transport and Exchange within the Coso Geothermal System Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: Isotope Transport and Exchange within the Coso Geothermal System Details Activities (1) Areas (1) Regions (0) Abstract: We are investigating the plumbing of the Coso geothermal system and the nearby Coso Hot Springs using finite element models of single-phase, variable-density fluid flow, conductive- convective heat transfer, fluid-rock isotope exchange, and groundwater residence times. Using detailed seismic reflection data and geologic mapping, we constructed a regional crosssectional model that extends laterally from the Sierra Nevada to Wildhorse Mesa, west of the Argus Range. The base of the model terminates at the brittle-ductile transition zone. A sensitivity study was

88

Image Logs At Coso Geothermal Area (2011) | Open Energy Information  

Open Energy Info (EERE)

Image Logs At Coso Geothermal Area (2011) Image Logs At Coso Geothermal Area (2011) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Image Logs At Coso Geothermal Area (2011) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Image Logs Activity Date 2011 Usefulness useful DOE-funding Unknown Exploration Basis Determine crustul stress heterogeneity Notes Borehole induced structures in image logs of wells from the Coso Geothermal Field (CGF) record variation in the azimuth of principal stress. Image logs of these structures from five wells were analyzed to quantify the stress heterogeneity for three geologically distinct locations: two wells within the CGF (one in an actively produced volume), two on the margin of the CGF and outside the production area, and a control well several tens of km

89

Ground Gravity Survey At Coso Geothermal Area (1990) | Open Energy  

Open Energy Info (EERE)

Coso Geothermal Area (1990) Coso Geothermal Area (1990) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity Survey At Coso Geothermal Area (1990) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Ground Gravity Survey Activity Date 1990 Usefulness not indicated DOE-funding Unknown Exploration Basis To identify features related to the heat source and to seek possible evidence for an underlying magma chamber Notes 2D and 3D gravity modeling was done using gridded Bouguer gravity data covering a 45 by 45 km region over the Coso geothermal area. Isostatic and terrain corrected Bouguer gravity data for about 1300 gravity stations were obtained from the US Geological Survey. After the data were checked, the gravity values were gridded at 1 km centers for the area of interest

90

Static Temperature Survey At Coso Geothermal Area (1977) | Open Energy  

Open Energy Info (EERE)

Static Temperature Survey At Coso Geothermal Area Static Temperature Survey At Coso Geothermal Area (1977) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Static Temperature Survey Activity Date 1977 Usefulness not indicated DOE-funding Unknown Notes Temperature logs were taken during and after drilling: Results: Convective heat flow and temperatures greater than 350 F appear to occur only along an open fracture system encountered between depths of 1850 and 2775 feet. Temperature logs indicate a negative thermal gradient below 3000 feet. Water chemistry indicates that this geothermal resource is a hot-water rather than a vapor-dominated system. References Galbraith, R. M. (1 May 1978) Geological and geophysical analysis of Coso Geothermal Exploration Hole No. 1 (CGEH-1), Coso Hot Springs KGRA,

91

Aeromagnetic and gravity surveys in the Coso Range, California | Open  

Open Energy Info (EERE)

and gravity surveys in the Coso Range, California and gravity surveys in the Coso Range, California Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Aeromagnetic and gravity surveys in the Coso Range, California Details Activities (2) Areas (1) Regions (0) Abstract: The effect of an underlying magma reservoir cannot be identified within the complex gravity pattern in the Coso Range, California. Rather, linear gravity contours, which suggest a regional tectonic origin, enclose the location of most of the volcanic activity of the Coso Range. Faults along the edges of northwest trending, magnetic blocks probably provided paths of minimum resistance to the ascending viscous magma that was extruded as rhyolite domes. Dense, magnetic rocks associated with a complex mafic pluton 9 km in diameter form a relatively impermeable north border of

92

Attenuation and source properties at the Coso Geothermal Area, California |  

Open Energy Info (EERE)

source properties at the Coso Geothermal Area, California source properties at the Coso Geothermal Area, California Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Attenuation and source properties at the Coso Geothermal Area, California Details Activities (1) Areas (1) Regions (0) Abstract: We use a multiple-empirical Green's function method to determine source properties of small (M -0.4 to 1.3) earthquakes and P- and S-wave attenuation at the Coso Geothermal Field, California. Source properties of a previously identified set of clustered events from the Coso geothermal region are first analyzed using an empirical Green's function (EGF) method. Stress-drop values of at least 0.5-1 MPa are inferred for all of the events; in many cases, the corner frequency is outside the usable bandwidth, and the stress drop can only be constrained as being higher than

93

Isotopic Analysis- Fluid At Coso Geothermal Area (2007) | Open Energy  

Open Energy Info (EERE)

Isotopic Analysis- Fluid At Coso Geothermal Area (2007) Isotopic Analysis- Fluid At Coso Geothermal Area (2007) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Fluid At Coso Geothermal Area (2007) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Isotopic Analysis- Fluid Activity Date 2007 Usefulness not indicated DOE-funding Unknown Exploration Basis Determine the location of the heat source Notes Fluids have been sampled from 9 wells and 2 fumaroles from the East Flank of the Coso hydrothermal system with a view to identifying, if possible, the location and characteristics of the heat source inflows into this portion of the geothermal field. Preliminary results show that there has been extensive vapor loss in the system, most probably in response to

94

Numerical Modeling At Coso Geothermal Area (1995) | Open Energy Information  

Open Energy Info (EERE)

Numerical Modeling At Coso Geothermal Area (1995) Numerical Modeling At Coso Geothermal Area (1995) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Numerical Modeling At Coso Geothermal Area (1995) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Numerical Modeling Activity Date 1995 Usefulness useful DOE-funding Unknown Exploration Basis Locate an active fault zone by analyzing seismic guided waves from microearthquake data Notes An active fault zone was located in the Coso geothermal field, California, by identifying and analyzing a fault-zone trapped Rayleigh-type guided wave from microearthquake data. The wavelet transform is employed to characterize guided-wave's velocity-frequency dispersion, and numerical methods are used to simulate the guided-wave propagation. The modeling

95

Structural interpretation of Coso Geothermal field, Inyo County, California  

Open Energy Info (EERE)

Coso Geothermal field, Inyo County, California Coso Geothermal field, Inyo County, California Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Structural interpretation of Coso Geothermal field, Inyo County, California Details Activities (2) Areas (1) Regions (0) Abstract: The Coso Geothermal field, located east of the Sierra Nevada at the northern edge of the high Mojave Desert in southern California, is an excellent example of a structurally controlled geothermal resource. The geothermal system appears to be associated with at least one dominant north-south-trending feature which extends several miles through the east-central portion of the Coso volcanic field. Wells drilled along this feature have encountered production from distinct fractures in crystalline basement rocks. The identified producing fractures occur in zones which

96

Isotopic Analysis- Rock At Coso Geothermal Area (1997) | Open Energy  

Open Energy Info (EERE)

Rock At Coso Geothermal Area (1997) Rock At Coso Geothermal Area (1997) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Rock At Coso Geothermal Area (1997) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Isotopic Analysis- Rock Activity Date 1997 Usefulness useful DOE-funding Unknown Exploration Basis Determine a major lithospheric boundary Notes Sr and Nd isotope ratios of Miocene-Recent basalts in eastern California, when screened for crustal contamination, vary dramatically and indicate the presence of a major lithospheric boundary that is not obvious from surface geology. Isotope ratios from the Coso field form a bull's-eye pattern with very low 87Sr/86Sr (0.7033) centered just south of the geothermal area. The

97

Attenuation structure of Coso geothermal area, California, from wave pulse  

Open Energy Info (EERE)

structure of Coso geothermal area, California, from wave pulse structure of Coso geothermal area, California, from wave pulse widths Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Attenuation structure of Coso geothermal area, California, from wave pulse widths Details Activities (1) Areas (1) Regions (0) Abstract: Pulse width data are used to invert for attenuation structure in the Coso geothermal area, California. The dataset consists of pulse width measurements of 838 microseismic events recorded on a seismic array of 16 downhole stations between August 1993 and March 1994. The quality factor Q correlates well with surface geology and surface heat flow observations. A broad region of low Q (≈ 30 to 37) is located at 0.5 to 1.2 km in depth below Devil's Kitchen, Nicol Prospects, and Coso Hot Springs. A vertical,

98

Heat flow and microearthquake studies, Coso Geothermal Area, China Lake,  

Open Energy Info (EERE)

and microearthquake studies, Coso Geothermal Area, China Lake, and microearthquake studies, Coso Geothermal Area, China Lake, California. Final report Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Book: Heat flow and microearthquake studies, Coso Geothermal Area, China Lake, California. Final report Details Activities (2) Areas (1) Regions (0) Abstract: The present research effort at the Coso Geothermal Area located on the China Lake Naval Weapons Center, China Lake, California, was concerned with: (1) heat flow studies and (2) microearthquake studies associated with the geothermal phenomena in the Coso Hot Springs area. The sites for ten heat flow boreholes were located primarily using the available seismic ground noise and electrical resistivity data. Difficulty was encountered in the drilling of all of the holes due to altered, porous,

99

Well Log Techniques At Coso Geothermal Area (1985) | Open Energy  

Open Energy Info (EERE)

Coso Geothermal Area (1985) Coso Geothermal Area (1985) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Well Log Techniques Activity Date 1985 Usefulness not indicated DOE-funding Unknown Exploration Basis Impact of long term testing on the well pressure Notes The downhole pressure monitoring equipment for each well included a stainless steel pressure chamber attached to a 0.25 inch stainless steel capillary tubing. The surface end of the capillary tubing was connected to a Paroscientific quartz pressure trandsducer. References Sanyal, S.; Menzies, A.; Granados, E.; Sugine, S.; Gentner, R. (20 January 1987) Long-Term Testing of Geothermal Wells in the Coso Hot Springs KGRA Retrieved from "http://en.openei.org/w/index.php?title=Well_Log_Techniques_At_Coso_Geothermal_Area_(1985)&oldid=600462

100

Active Faulting in the Coso Geothermal Field, Eastern California | Open  

Open Energy Info (EERE)

Faulting in the Coso Geothermal Field, Eastern California Faulting in the Coso Geothermal Field, Eastern California Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: Active Faulting in the Coso Geothermal Field, Eastern California Details Activities (1) Areas (1) Regions (0) Abstract: New mapping documents a series of late Quaternary NNE-striking normal faults in the central Coso Range that dip northwest, toward and into the main production area of the Coso geothermal field. The faults exhibit geomorphic features characteristic of Holocene activity, and locally are associated with fumaroles and hydothermal alteration. The active faults sole into or terminate against the brittle-ductile transition zone (BDT) at a depth of about 4 to 5 km. The BDT is arched upward over a volume of crust

Note: This page contains sample records for the topic "operations plan coso" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Field Mapping At Coso Geothermal Area (1999) | Open Energy Information  

Open Energy Info (EERE)

Field Mapping At Coso Geothermal Area (1999) Field Mapping At Coso Geothermal Area (1999) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Field Mapping At Coso Geothermal Area (1999) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Field Mapping Activity Date 1999 Usefulness not indicated DOE-funding Unknown Exploration Basis Develop an understanding of the sedimentology and stratigraphy of well-exposed Cenozoic sedimentary strata Notes A detailed sedimentation and tectonics study of the Coso Formation was undertaken to provide a more complete picture of the development of the Basin and Range province in this area. Detailed mapping and depositional analysis distinguishes separate northern and southern depocenters, each with its own accommodation and depositional history.

102

Fault Mapping At Coso Geothermal Area (1980) | Open Energy Information  

Open Energy Info (EERE)

Fault Mapping At Coso Geothermal Area (1980) Fault Mapping At Coso Geothermal Area (1980) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Fault Mapping At Coso Geothermal Area (1980) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Fault Mapping Activity Date 1980 Usefulness useful DOE-funding Unknown Exploration Basis To determine the Late Cenozoic volcanism, geochronology, and structure of the Coso Range Notes This system apparently is heated by a reservoir of silicic magma at greater than or equal to 8-km depth, itself produced and sustained through partial melting of crustal rocks by thermal energy contained in mantle-derived basaltic magma that intrudes the crust in repsonse to lithospheric extension. References Duffield, W.A.; Bacon, C.R.; Dalrymple, G.B. (10 May 1980) Late

103

Steady state deformation of the Coso Range, east central California,  

Open Energy Info (EERE)

Steady state deformation of the Coso Range, east central California, Steady state deformation of the Coso Range, east central California, inferred from satellite radar interferometry Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Steady state deformation of the Coso Range, east central California, inferred from satellite radar interferometry Details Activities (2) Areas (1) Regions (0) Abstract: Observations of deformation from 1992 to 1997 in the southern Coso Range using satellite radar interferometry show deformation rates of up to 35 mm yr -1 in an area approximately 10 km by 15 km. The deformation is most likely the result of subsidence in an area around the Coso geothermal field. The deformation signal has a short-wavelength component, related to production in the field, and a long-wavelength component,

104

Operational Readiness Team: OPERATIONAL READINESS REVIEW PLAN FOR THE  

NLE Websites -- All DOE Office Websites (Extended Search)

oak ridge oak ridge 12 ...... Prepared by the Operational Readiness Team: OPERATIONAL READINESS REVIEW PLAN FOR THE RAD1 0 1 SOT0 PE THERMOELECTRIC GENERATOR MATERIALS PRODUCTION TASKS R. H. Cooper M. M. Martin C. R. Riggs R. L. Beatty E. K. Ohriner R. N. Escher OISTRIBUTIQM OF THIS DOCUMENT IS UNLIMITED DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately

105

FTCP OPERATIONAL PLAN and Closeout Summary, FISCAL YEAR 2009 | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

OPERATIONAL PLAN and Closeout Summary, FISCAL YEAR 2009 OPERATIONAL PLAN and Closeout Summary, FISCAL YEAR 2009 FTCP OPERATIONAL PLAN and Closeout Summary, FISCAL YEAR 2009 The objective of the Federal Technical Capability Program is to recruit, deploy, develop, and retain Federal personnel with the necessary technical capabilities to safely accomplish the Department's missions and responsibilities. The operational plan documents the processes and goals focused on improving the overall implementation of the Program by continuing to implement an integrated approach throughout DOE with clear roles and responsibilities and accountability to include effective line management oversight by Federal organizations. FY2009 Operational Plan FY2009 Operational Plan - Goal 1 Summary FY2009 Operational Plan - Goal 2 Summary

106

FTCP Operational Plan and Closeout Summary, Fiscal Year 2012 | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Operational Plan and Closeout Summary, Fiscal Year 2012 Operational Plan and Closeout Summary, Fiscal Year 2012 FTCP Operational Plan and Closeout Summary, Fiscal Year 2012 The objective of the Federal Technical Capability Program is to recruit, deploy, develop, and retain Federal personnel with the necessary technical capabilities to safely accomplish the Department's missions and responsibilities. The operational plan documents the processes and goals focused on improving the overall implementation of the Program by continuing to implement an integrated approach throughout DOE with clear roles and responsibilities and accountability to include effective line management oversight by Federal organizations. FY2012 Operational Plan FY2012 Operational Plan Closeout Summary More Documents & Publications FTCP Biennial Report - Calendar Years 2011-2012

107

Nuclear Safety Research and Development Program Operating Plan | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Program Operating Plan Program Operating Plan Nuclear Safety Research and Development Program Operating Plan July 5, 2012 Nuclear Safety Research and Development Program Operating Plan This operating plan outlines the mission, goals, and processes for the Department of Energy's (DOE) Nuclear Safety Research & Development (NSR&D) Program. This first version of the operating plan also discusses the startup phase of the program. NSR&D involves a systematic search for knowledge to advance the fundamental understanding of nuclear safety science and technology through scientific study, analysis, modeling, and experiments. Maintaining an effective NSR&D program will support DOE and the National Nuclear Security Administration (NNSA) in standards development, validation of analytical models and

108

FTCP Operational Plan and Closeout Summary, Fiscal Year 2011 | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Operational Plan and Closeout Summary, Fiscal Year 2011 Operational Plan and Closeout Summary, Fiscal Year 2011 FTCP Operational Plan and Closeout Summary, Fiscal Year 2011 The objective of the Federal Technical Capability Program is to recruit, deploy, develop, and retain Federal personnel with the necessary technical capabilities to safely accomplish the Department's missions and responsibilities. The operational plan documents the processes and goals focused on improving the overall implementation of the Program by continuing to implement an integrated approach throughout DOE with clear roles and responsibilities and accountability to include effective line management oversight by Federal organizations. FY2011 Operational Plan FY2011 Operational Plan Closeout Summary More Documents & Publications FTCP Biennial Report - Calendar Years 2011-2012

109

Structural investigations at the Coso geothermal area using remote sensing  

Open Energy Info (EERE)

investigations at the Coso geothermal area using remote sensing investigations at the Coso geothermal area using remote sensing information, Inyo County, California Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Structural investigations at the Coso geothermal area using remote sensing information, Inyo County, California Details Activities (1) Areas (1) Regions (0) Abstract: Remote sensing studies have been made in and adjacent to the Coso geothermal field using TM FCC satellite imagery, 1:100,000 scale, US Geological Survey orthophotos, 1:24,OOO scale, and proprietary black-and-white photography by California Energy Company, Inc., at various scales including black-and-white positive film transparencies at a scale of 1:6,000. These studies have been made in an attempt to understand the complex geology seen on the surface and to try to improve the method of

110

FLUID STRATIGRAPHY OF THE COSO GEOTHERMAL RESERVOIR | Open Energy  

Open Energy Info (EERE)

FLUID STRATIGRAPHY OF THE COSO GEOTHERMAL RESERVOIR FLUID STRATIGRAPHY OF THE COSO GEOTHERMAL RESERVOIR Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: FLUID STRATIGRAPHY OF THE COSO GEOTHERMAL RESERVOIR Details Activities (1) Areas (1) Regions (0) Abstract: A fluid model for the Coso geothermal reservoir is developed from Fluid Inclusion Stratigraphy (FIS) analyses. Fluid inclusion gas chemistry in well cuttings collected at 20 ft intervals is analyzed and plotted on well log diagrams. The working hypothesis is that select gaseous species and species ratios indicate areas of groundwater and reservoir fluid flow, fluid processes and reservoir seals. Boiling and condensate zones are distinguished. Models are created using cross-sections and fence diagrams. A thick condensate and boiling zone is indicated across the western portion

111

Conceptual Model At Coso Geothermal Area (1980) | Open Energy Information  

Open Energy Info (EERE)

Conceptual Model At Coso Geothermal Area (1980) Conceptual Model At Coso Geothermal Area (1980) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Conceptual Model Activity Date 1980 Usefulness not indicated DOE-funding Unknown Exploration Basis 1) Estimate thermal regime and thermal potential of the system. 2) Use field mapping to develop a model of the reservoir system. Notes 1) The seismograms of 44 events recorded by the telemetered array and nine events by the Centipede array were analyzed using the reduced spectral ratio technique to determine the differential attenuation factor delta t* for the events recorded with the highest signal-to-noise ratio. 2) Arcuate faults in the Coso Range are interpreted to have been produced by the regional stress field rather than to have been of volcanogenic origin.

112

Three-dimensional magnetotelluric characterization of the Coso geothermal  

Open Energy Info (EERE)

magnetotelluric characterization of the Coso geothermal magnetotelluric characterization of the Coso geothermal field Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Three-dimensional magnetotelluric characterization of the Coso geothermal field Details Activities (1) Areas (1) Regions (0) Abstract: A dense grid of 125 magnetotelluric (MT) stations plus a single line of contiguous bipole array profiling has been acquired over the east flank of the Coso geothermal system, CA, USA. Due to production related electromagnetic (EM) noise the permanent observatory at Parkfield, CA was used as a remote reference to suppress this cultural EM noise interference. These data have been inverted to a fully three-dimensional (3D) resistivity model. This model shows the controlling geological structures possibly

113

Tracer Testing At Coso Geothermal Area (1993) | Open Energy Information  

Open Energy Info (EERE)

Tracer Testing At Coso Geothermal Area (1993) Tracer Testing At Coso Geothermal Area (1993) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Tracer Testing At Coso Geothermal Area (1993) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Tracer Testing Activity Date 1993 Usefulness useful DOE-funding Unknown Exploration Basis To determine the steam and water mass flow rate Notes The method involves precisely metered injection of liquid and vapor phase tracers into the two-phase production pipeline and concurrent sampling of each phase downstream of the injection point. Subsequent chemical analysis of the steam and water samples for tracer content enables the calculation of mass flowrate for each phase given the known mass injection rates of

114

Paleomagnetic Measurements At Coso Geothermal Area (2006) | Open Energy  

Open Energy Info (EERE)

Paleomagnetic Measurements At Coso Geothermal Area (2006) Paleomagnetic Measurements At Coso Geothermal Area (2006) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Paleomagnetic Measurements At Coso Geothermal Area (2006) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Paleomagnetic Measurements Activity Date 2006 Usefulness not indicated DOE-funding Unknown Exploration Basis Analyze fault block kinematics at a releasing stepover of the Eastern California shear zone to determine the partitioning of rotation style Notes Rotations paleomagnetically relative to two different reference frames were measured. At two localities, the secular variation were averaged through sedimentary sections to reveal rotation or its absence relative to paleogeographic north. Where sediments are lacking, a really-extensive lava

115

Tracer Testing At Coso Geothermal Area (2006) | Open Energy Information  

Open Energy Info (EERE)

Tracer Testing At Coso Geothermal Area (2006) Tracer Testing At Coso Geothermal Area (2006) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Tracer Testing At Coso Geothermal Area (2006) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Tracer Testing Activity Date 2006 Usefulness useful DOE-funding Unknown Exploration Basis To characterize the flow patterns of fluid injected into well 68-20RD. Notes A conservative liquid phase tracer, 2-naphthalene sulfonate, and a two-phase tracer, ethanol, were injected into well 68-20RD. Surrounding production wells were sampled over the subsequent 125 days and analyzed for the two tracers. The results demonstrate the efficacy of the simultaneous use of liquid-phase and two-phase tracers in fluid-depleted geothermal

116

Distribution of quaternary rhyolite dome of the Coso Range, California:  

Open Energy Info (EERE)

of quaternary rhyolite dome of the Coso Range, California: of quaternary rhyolite dome of the Coso Range, California: Implications for extent of the geothermal anomaly Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Distribution of quaternary rhyolite dome of the Coso Range, California: Implications for extent of the geothermal anomaly Details Activities (1) Areas (1) Regions (0) Abstract: Thirty-eight separate domes and flows of phenocryst-poor, high-silica rhyolite of similar major element chemical composition were erupted over the past 1 m.y. from vents arranged in a crudely S-shaped array atop a granitic horst in the Coso Range, California. Most of the extrusions are probably less than about 0.3 m.y. old. The area is one of Quaternary basaltic volcanism and crustal extension. The central part of

117

Integrated mineralogical and fluid inclusion study of the Coso geothermal  

Open Energy Info (EERE)

mineralogical and fluid inclusion study of the Coso geothermal mineralogical and fluid inclusion study of the Coso geothermal systems, California Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: Integrated mineralogical and fluid inclusion study of the Coso geothermal systems, California Details Activities (1) Areas (1) Regions (0) Abstract: Coso is one of several high-temperature geothermal systems on the margins of the Basin and Range province that is associated with recent volcanic activity. This system, which is developed entirely in fractured granitic and metamorphic rocks, consists of a well-defined thermal plume that originates in the southern part of the field and then flows upward and laterally to the north. Fluid inclusion homogenization temperatures and salinities demonstrate that cool, low salinity ground waters were present

118

Fluid Inclusion Analysis At Coso Geothermal Area (2004) | Open Energy  

Open Energy Info (EERE)

Fluid Inclusion Analysis At Coso Geothermal Area Fluid Inclusion Analysis At Coso Geothermal Area (2004) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Fluid Inclusion Analysis Activity Date 2004 Usefulness not indicated DOE-funding Unknown Exploration Basis 1) To determine if analyses of fluid propene and propane species in fluid inclusions can be used to interpret fluid type, history, or process. 2) To evaluate the geology and thermal history of the East Flank, in order to better understand how the rocks will behave during hydro-fracturing. Notes 1) Analyses were performed on drill cuttings at 20ft intervals from four Coso geothermal wells. Two wells are good producers, one has cold-water entrants in the production zone, and the fourth is a non-producer. The ratios show distinct differences between producing and the non-producing

119

GEOLOGIC FRAMEWORK OF THE EAST FLANK, COSO GEOTHERMAL FIELD: IMPLICATIONS  

Open Energy Info (EERE)

GEOLOGIC FRAMEWORK OF THE EAST FLANK, COSO GEOTHERMAL FIELD: IMPLICATIONS GEOLOGIC FRAMEWORK OF THE EAST FLANK, COSO GEOTHERMAL FIELD: IMPLICATIONS FOR EGS DEVELOPMENT Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: GEOLOGIC FRAMEWORK OF THE EAST FLANK, COSO GEOTHERMAL FIELD: IMPLICATIONS FOR EGS DEVELOPMENT Details Activities (1) Areas (1) Regions (0) Abstract: The Coso Geothermal Field is a large, high temperature system located in eastern California on the western edge of the Basin and Range province. The East Flank of this field is currently under study as a DOE-funded Enhanced Geothermal Systems (EGS) project. This paper summarizes petrologic and geologic investigations on two East Flank wells, 34A-9 and 34-9RD2 conducted as part of a continuing effort to better understand how the rocks will behave during hydraulic and thermal stimulation. Well 34A-9

120

Recent earthquake sequences at Coso: Evidence for conjugate faulting and  

Open Energy Info (EERE)

earthquake sequences at Coso: Evidence for conjugate faulting and earthquake sequences at Coso: Evidence for conjugate faulting and stress loading near a geothermal field Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Recent earthquake sequences at Coso: Evidence for conjugate faulting and stress loading near a geothermal field Details Activities (1) Areas (1) Regions (0) Abstract: Two recent earthquake sequences near the Coso geothermal field show clear evidence of faulting along conjugate planes. We present results from analyzing an earthquake sequence occurring in 1998 and compare it with a similar sequence that occurred in 1996. The two sequences followed mainshocks that occurred on 27 November 1996 and 6 March 1998. Both mainshocks ruptured approximately colocated regions of the same fault

Note: This page contains sample records for the topic "operations plan coso" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Geothermal Literature Review At Coso Geothermal Area (1984) | Open Energy  

Open Energy Info (EERE)

Geothermal Literature Review At Coso Geothermal Area Geothermal Literature Review At Coso Geothermal Area (1984) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Geothermal Literature Review Activity Date 1984 Usefulness not indicated DOE-funding Unknown Exploration Basis To characterize the magma beneath melt zones Notes The melt zones of volcanic clusters were analyzed with recent geological and geophysical data for five magma-hydrothermal systems. These were studied for the purpose of developing estimates for the depth, volume and location of magma beneath each area. References Goldstein, N. E.; Flexser, S. (1 December 1984) Melt zones beneath five volcanic complexes in California: an assessment of shallow magma occurrences Retrieved from "http://en.openei.org/w/index.php?title=Geothermal_Literature_Review_At_Coso_Geothermal_Area_(1984)&oldid=510800"

122

3D MAGNETOTELLURIC CHARACTERIZATION OF THE COSO GEOTHERMAL FIELD | Open  

Open Energy Info (EERE)

CHARACTERIZATION OF THE COSO GEOTHERMAL FIELD CHARACTERIZATION OF THE COSO GEOTHERMAL FIELD Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: 3D Magnetotelluric characterization of the COSO Geothermal Field Details Activities (0) Areas (0) Regions (0) Abstract: Knowledge of the subsurface electrical resistivity/conductivity can contribute to a better understanding of complex hydrothermal systems, typified by Coso geothermal field, through mapping the geometry (bounds and controlling structures) over existing production. Three-dimensional magnetotelluric (MT) inversion is now an emerging technology for characterizing the resistivity structures of complex geothermal systems. The method appears to hold great promise, but histories exploiting truly 3D inversion that demonstrate the advantages that can be gained by acquiring

123

Compound and Elemental Analysis At Coso Geothermal Area (2004) | Open  

Open Energy Info (EERE)

Coso Geothermal Coso Geothermal Area (2004) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Compound and Elemental Analysis Activity Date 2004 Usefulness useful DOE-funding Unknown Notes In order to test FIS for geothermal exploration, drill chips from Coso well 83-16 were analyzed, which were selected at 1000 ft intervals by Joseph Moore. Sequential crushes done by the CFS (crushfast-scan) method (Norman 1996) show that chips have a high density of homogeneous fluid inclusions. Analyses were averaged and plotted verses depth (Fig. 4), and interpreted. Fluid inclusion gas analyses done on vein minerals from drill hole 68-6 that were earlier analyzed (Adams 2000) were plotted for comparison in order to confirm that similar analyses are obtained from chips and vein

124

Thermochronometry At Coso Geothermal Area (2003) | Open Energy Information  

Open Energy Info (EERE)

Thermochronometry At Coso Geothermal Area (2003) Thermochronometry At Coso Geothermal Area (2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermochronometry At Coso Geothermal Area (2003) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Thermochronometry Activity Date 2003 Usefulness not indicated DOE-funding Unknown Exploration Basis Determine the age of the geothermal system and the granitic host rock using the 40Ar/39Ar thermal history Notes A downhole 40Ar/39Ar thermochronology study of granitic host-rock K-feldspar is presently being undertaken at the New Mexico Geochronology Research Laboratory. The technique couples the measurement of argon loss from K-feldspar and knowledge of the diffusion parameters of transport in K-feldspar to estimate the longevity of the system at present day

125

Characterization of subsurface fracture patterns in the Coso geothermal  

Open Energy Info (EERE)

subsurface fracture patterns in the Coso geothermal subsurface fracture patterns in the Coso geothermal reservoir by analyzing shear-wave splitting of microearthquake seismorgrams Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: Characterization of subsurface fracture patterns in the Coso geothermal reservoir by analyzing shear-wave splitting of microearthquake seismorgrams Details Activities (1) Areas (1) Regions (0) Abstract: A large number of microearthquake seismograms have been recorded by a downhole, three-component seismic network deployed around the Coso, California geothermal reservoir. Shear-wave splitting induced by the alignment of cracks in the reservoir has been widely observed in the recordings. Over 100 events with body wave magnitude greater than 1.0 from

126

The Coso EGS Project, recent developments (in International collaboration  

Open Energy Info (EERE)

Coso EGS Project, recent developments (in International collaboration Coso EGS Project, recent developments (in International collaboration for geothermal energy in the Americas) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: The Coso EGS Project, recent developments (in International collaboration for geothermal energy in the Americas) Details Activities (3) Areas (1) Regions (0) Abstract: A preliminary fracture/stress analysis was conducted for the recently drilled well 38C-9 as part of a continuing effort to characterize the stress state within the east flank of the Coso geothermal field. Electric Micro Imager (EMI) data were analyzed over the logged interval of 5,881-9,408 ft. Naturally occurring fractures were analyzed in order to determine both fracture dip and azimuth. Most of the fractures dip steeply

127

Fluid Stratigraphy and Permeable Zones of the Coso Geothermal Reservoir |  

Open Energy Info (EERE)

Stratigraphy and Permeable Zones of the Coso Geothermal Reservoir Stratigraphy and Permeable Zones of the Coso Geothermal Reservoir Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: Fluid Stratigraphy and Permeable Zones of the Coso Geothermal Reservoir Details Activities (1) Areas (1) Regions (0) Abstract: A fence-diagram for the Coso geothermal reservoir is developed from Fluid Inclusion Stratigraphy (FIS) analyses. Fluid inclusion gas chemistry in well cuttings collected at 20 ft intervals is analyzed and plotted on well log diagrams. The working hypothesis is that select gaseous species and species ratios indicate areas of groundwater and reservoir fluid flow, fluid processes and reservoir seals. Boiling and condensate zones are distinguished. Permeable zones are indicated by a large change in

128

Late Cenozoic volcanism, geochronology, and structure of the Coso Range,  

Open Energy Info (EERE)

Late Cenozoic volcanism, geochronology, and structure of the Coso Range, Late Cenozoic volcanism, geochronology, and structure of the Coso Range, Inyo County, California Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Late Cenozoic volcanism, geochronology, and structure of the Coso Range, Inyo County, California Details Activities (1) Areas (1) Regions (0) Abstract: The Coso Range lies at the west edge of the Great Basin, adjacent to the southern part of the Sierra Nevada. A basement complex of pre-Cenozoic plutonic and metamorphic rocks is partly buried by approx.35 km^3 of late Cenozoic volcanic rocks that were erupted during two periods, as defined by K-Ar dating: (1) 4.0--2.5 m.y., approx.31 km^3 of basalt, rhyodacite, dacite, andesite, and rhyolite, in descending order of abundance, and (2) < or =1.1 m.y., nearly equal amounts of basalt and

129

Isotopic Analysis Fluid At Coso Geothermal Area (1997) | Open Energy  

Open Energy Info (EERE)

Fluid At Coso Geothermal Area (1997) Fluid At Coso Geothermal Area (1997) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Fluid At Coso Geothermal Area (1997) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Isotopic Analysis- Fluid Activity Date 1997 Usefulness not indicated DOE-funding Unknown Exploration Basis Identify the source of chlorine Notes The 36Cl/Cl values for several geothermal water samples and reservoir host rock samples have been measured. The results suggest that the thermal waters could be connate waters derived from sedimentary formations, presumably underlying and adjacent top the granitic rocks, which have recently migrated into the host rocks. Alternatively, most of the chlorine but not the water, may have recently input into the system from magmatic

130

Detection of Surface Temperature Anomalies in the Coso Geothermal Field  

Open Energy Info (EERE)

Detection of Surface Temperature Anomalies in the Coso Geothermal Field Detection of Surface Temperature Anomalies in the Coso Geothermal Field Using Thermal Infrared Remote Sensing Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: Detection of Surface Temperature Anomalies in the Coso Geothermal Field Using Thermal Infrared Remote Sensing Details Activities (1) Areas (1) Regions (0) Abstract: We use thermal infrared (TIR) data from the spaceborne ASTER instrument to detect surface temperature anomalies in the Coso geothermal field in eastern California. The identification of such anomalies in a known geothermal area serves as an incentive to apply similar markers and techniques to areas of unknown geothermal potential. We carried out field measurements concurrently with the collection of ASTER images. The field

131

Tracer Testing At Coso Geothermal Area (2004) | Open Energy Information  

Open Energy Info (EERE)

Coso Geothermal Area (2004) Coso Geothermal Area (2004) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Tracer Testing Activity Date 2004 Usefulness not indicated DOE-funding Unknown Exploration Basis To determine the EGS potential of the Coso Geothermal Field Notes A dramatic decrease in the ratio of chloride to boron was observed in the liquid discharge of a well proposed for EGS development. The decrease appears to be related to the transformation of some feed zones in the well from liquid-dominated to vapor-dominated. High concentrations of boron are transported to the wellbore in the steam, where it fractionates to the liquid phase flowing in from liquid-dominated feed zones. The high-boron steam is created when the reservoir liquid in some of the feed zones boils

132

Audio-Magnetotellurics At Coso Geothermal Area (1977) | Open Energy  

Open Energy Info (EERE)

Coso Geothermal Area (1977) Coso Geothermal Area (1977) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Audio-Magnetotellurics Activity Date 1977 Usefulness not indicated DOE-funding Unknown Exploration Basis To investigate electrical properties of rocks associated with thermal phenomena of the Devil's Kitchen-Coso Hot Springs area Notes Audio-magnetotelluric geophysical surveys determined that the secondary low in the geothermal area, best defined by the 7.5-Hz AMT map and dc soundings, is caused by a shallow conductive zone (5--30 ohm m) interpreted to be hydrothermally altered Sierra Nevada basement rocks containing saline water of a hot water geothermal system. This zone of lowest apparent resistivities over the basement rocks lies within a closed contour of a

133

Cuttings Analysis At Coso Geothermal Area (2003) | Open Energy Information  

Open Energy Info (EERE)

3) 3) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Cuttings Analysis Activity Date 2003 Usefulness not indicated DOE-funding Unknown Exploration Basis 1) Fracture/stress analysis 2) Determine the EGS potential of Coso Geothermal Region Notes 1) Petrologic analyses of cuttings from several wells are used to construct a vein-mineral paragenesis of the Coso east flank. 2) Cuttings collected during the drilling of each of the four east-flank study wells are used to determine the lithologies of the hydrothermally altered zones, the characteristics of the vein fillings, and the extent of large-scale faulting. References Rose, P.; Barton, C.; McCulloch, J.; Moore, J.N.; Kovac, K.; Sheridan, J.; Spielman, P.; Berard, B. (1 January 2003) The Coso EGS

134

Rock Sampling At Coso Geothermal Area (1995) | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Rock Sampling At Coso Geothermal Area (1995) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Rock Sampling At Coso Geothermal Area (1995) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Rock Sampling Activity Date 1995 Usefulness not indicated DOE-funding Unknown Notes Geologic controls on the geometry of the upwelling plume were investigated using petrographic and analytical analyses of reservoir rock and vein material. References Lutz, S.J.; Moore, J.N. ; Copp, J.F. (1 June 1995) Lithology and alteration mineralogy of reservoir rocks at Coso Geothermal Area,

135

Chemical and isotopic characteristics of the coso east flank hydrothermal  

Open Energy Info (EERE)

isotopic characteristics of the coso east flank hydrothermal isotopic characteristics of the coso east flank hydrothermal fluids: implications for the location and nature of the heat source Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: Chemical and isotopic characteristics of the coso east flank hydrothermal fluids: implications for the location and nature of the heat source Details Activities (1) Areas (1) Regions (0) Abstract: Fluids have been sampled from 9 wells and 2 fumaroles from the East Flank of the Coso hydrothermal system with a view to identifying, if possible, the location and characteristics of the heat source inflows into this portion of the geothermal field. Preliminary results show that there has been extensive vapor loss in the system, most probably in response to

136

Geothermometry At Coso Geothermal Area (1980) | Open Energy Information  

Open Energy Info (EERE)

Geothermometry At Coso Geothermal Area (1980) Geothermometry At Coso Geothermal Area (1980) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Geothermometry Activity Date 1980 Usefulness useful DOE-funding Unknown Exploration Basis Fluid temperature of feed water Notes Cation and sulfate isotope geothermometers indicate that the reservoir feeding water to the Coso Hot Spring well has a temperature of about 240 -250 C, and the reservoir feeding the CGEH well has a temperature of about 205 C. The variation in the chemical composition of water from the two wells suggests a model in which water-rock chemical equilibrium is maintained as a convecting solution cools from about 245-205 C by conductive heat loss. References Fournier, R.O.; Thompson, J.M.; Austin, C.F. (10 May 1980)

137

Exploration model for possible geothermal reservoir, Coso Hot Springs KGRA,  

Open Energy Info (EERE)

model for possible geothermal reservoir, Coso Hot Springs KGRA, model for possible geothermal reservoir, Coso Hot Springs KGRA, Inyo Co. , California Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: Exploration model for possible geothermal reservoir, Coso Hot Springs KGRA, Inyo Co. , California Details Activities (1) Areas (1) Regions (0) Abstract: The purpose of this study was to test the hypothesis that a steam-filled fracture geothermal reservoir exists at Coso Hot Springs KGRA, as proposed by Combs and Jarzabek (1977). Gravity data collected by the USGS (Isherwood and Plouff, 1978) was plotted and compared with the geology of the area, which is well known. An east-west trending Bouguer gravity profile was constructed through the center of the heat flow anomaly described by Combs (1976). The best fit model for the observed gravity at

138

Analytical Modeling At Coso Geothermal Area (1980) | Open Energy  

Open Energy Info (EERE)

Modeling At Coso Geothermal Area (1980) Modeling At Coso Geothermal Area (1980) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Analytical Modeling At Coso Geothermal Area (1980) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Analytical Modeling Activity Date 1980 Usefulness not indicated DOE-funding Unknown Exploration Basis 1) Characterize a magma source. 2) To conduct reservoir modeling of a steam reservoir. Notes 1) Closed-form analytical solutions for the conduction heat transfer from various idealized magma geometries (dikes, sills, and spheres) are obtained using either the Schwarz-Christoffel transformation theorem (dikes and sills) or the 'method of images' with superposition (spheres). Comparison of these analytically determined heat flux distributions with

139

Poisson's ratio and porosity at Coso geothermal area, California | Open  

Open Energy Info (EERE)

Poisson's ratio and porosity at Coso geothermal area, California Poisson's ratio and porosity at Coso geothermal area, California Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Poisson's ratio and porosity at Coso geothermal area, California Details Activities (1) Areas (1) Regions (0) Abstract: High-resolution, three-dimensional, compressional and shear wave velocity models, derived from microearthquake traveltimes, are used to map the distribution of Poisson's ratio and porosity at Coso Geothermal Area, Inyo County, California. Spatial resolution of the three-dimensional Poisson's ratio and porosity distributions is estimated to be 0.5 km horizontally and 0.8 km vertically. Model uncertainties, + or -1% in the interior and + or -2.3% around the edge of the model, are estimated by a jackknife method. We use perturbations of r = V p /V s ratio and Psi = V p

140

Exploration model for possible geothermal reservoir, Coso Hot...  

Open Energy Info (EERE)

Abstract The purpose of this study was to test the hypothesis that a steam-filled fracture geothermal reservoir exists at Coso Hot Springs KGRA, as proposed by Combs and...

Note: This page contains sample records for the topic "operations plan coso" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

3D Magnetotelluic characterization of the Coso Geothermal Field  

E-Print Network (OSTI)

and Neubauer, F. M. , 2003, 3D inversion of a scalar radio3D MAGNETOTELLURIC CHARACTERIZATION OF THE COSO GEOTHERMALMT imaging. An initial 3D conductivity model was constructed

Newman, Gregory A.; Hoversten, G. Michael; Wannamaker, Philip E.; Gasperikova, Erika

2008-01-01T23:59:59.000Z

142

TRACING FLUID SOURCES IN THE COSO GEOTHERMAL SYSTEM USING FLUID...  

Open Energy Info (EERE)

TRACING FLUID SOURCES IN THE COSO GEOTHERMAL SYSTEM USING FLUID-INCLUSION GAS CHEMISTRY Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Proceedings:...

143

Further Analysis of 3D Magnetotelluric Measurements Over the Coso  

Open Energy Info (EERE)

Further Analysis of 3D Magnetotelluric Measurements Over the Coso Further Analysis of 3D Magnetotelluric Measurements Over the Coso Geothermal Field Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: Further Analysis of 3D Magnetotelluric Measurements Over the Coso Geothermal Field Details Activities (1) Areas (1) Regions (0) Abstract: At last year's GRC annual meeting we presented initial results of a 3D investigation of the Coso Geothermal field utilizing a dense grid of magnetotelluric (MT) stations plus a single line of contiguous bipole array profiling over the east flank of the field (Newman et al., 2005). Motivation for this study is that electrical resistivity/ conductivity mapping can contribute to better improved understanding of enhanced geothermal systems (EGS) by imaging the geometry, bounds and controlling

144

Magnetotellurics At Coso Geothermal Area (2006) | Open Energy Information  

Open Energy Info (EERE)

Magnetotellurics At Coso Geothermal Area (2006) Magnetotellurics At Coso Geothermal Area (2006) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Magnetotellurics Activity Date 2006 Usefulness useful DOE-funding Unknown Exploration Basis Use magnetotelluric data to model the reservoir. Notes Magnetotelluric (MT) data from 101 tensor stations over the East Flank of the Coso geothermal field, southeastern California, were inverted on a PC using a 3-D Gauss-Newton regularization algorithm based on a staggered-grid, finite difference forward problem and jacobians. Static shifts at each MT site can be included as additional parameters and solved for simultaneously. Recent modifications to the algorithm developed here include the addition of an LU solver to calculate the model parameter

145

Heat flow studies, Coso Geothermal Area, China Lake, California. Technical  

Open Energy Info (EERE)

studies, Coso Geothermal Area, China Lake, California. Technical studies, Coso Geothermal Area, China Lake, California. Technical report Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Heat flow studies, Coso Geothermal Area, China Lake, California. Technical report Details Activities (1) Areas (1) Regions (0) Abstract: Heat flow studies in the Coso Geothermal Area were conducted at China Lake, California. Temperature measurements were completed in nine of the heat flow boreholes. Temperatures were measured at five meter intervals from the ground surface to the deepest five meter interval. Subsequently, temperatures were remeasured two or three times in each borehole in order to demonstrate that equilibrium thermal conditions existed. The maximum difference in temperature, at any of the five meter intervals, was 0.03 deg

146

Fluid Inclusion Analysis At Coso Geothermal Area (1999) | Open Energy  

Open Energy Info (EERE)

Fluid Inclusion Analysis At Coso Geothermal Area Fluid Inclusion Analysis At Coso Geothermal Area (1999) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Fluid Inclusion Analysis Activity Date 1999 Usefulness not indicated DOE-funding Unknown Exploration Basis Well and steam sample comparison Notes Vein and alteration assemblages from eight Coso wells have been collected and their fluid-inclusion gases analyzed by quadrupole mass spectrometry. Four major types of alteration were sampled: 1) young calcite-hematite-pyrite veins; 2) wairakite or epidote veins and alteration that are spatially associated with deep reservoirs in the main field and eastern wells; 3) older sericite and pyrite wallrock alteration; and 4) stilbite-calcite veins that are common in cooler or marginal portions of

147

Numerical Modeling At Coso Geothermal Area (2000) | Open Energy Information  

Open Energy Info (EERE)

Numerical Modeling At Coso Geothermal Area (2000) Numerical Modeling At Coso Geothermal Area (2000) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Numerical Modeling Activity Date 2000 Usefulness not indicated DOE-funding Unknown Exploration Basis Determine areas with fault patterns for geothermal development using Poisson's ratio and porosity Notes High-resolution, three-dimensional, compressional and shear wave velocity models, derived from microearthquake travel times, are used to map the distribution of Poisson's ratio and porosity at Coso Geothermal Area. Spatial resolution of the three-dimensional Poisson's ratio and porosity distributions is estimated to be 0.5 km horizontally and 0.8 km vertically. Model uncertainties, + or -1% in the interior and + or -2.3% around the

148

3D Magnetotelluic characterization of the Coso Geothermal Field | Open  

Open Energy Info (EERE)

Magnetotelluic characterization of the Coso Geothermal Field Magnetotelluic characterization of the Coso Geothermal Field Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: 3D Magnetotelluic characterization of the Coso Geothermal Field Details Activities (1) Areas (1) Regions (0) Abstract: Electrical resistivity may contribute to progress in understanding geothermal systems by imaging the geometry, bounds and controlling structures in existing production, and thereby perhaps suggesting new areas for field expansion. To these ends, a dense grid of magnetotelluric (MT) stations plus a single line of contiguous bipole array profiling has been acquired over the east flank of the Coso geothermal system. Acquiring good quality MT data in producing geothermal systems is a challenge due to production related electromagnetic (EM) noise and, in the

149

Conceptual Model At Coso Geothermal Area (2006) | Open Energy Information  

Open Energy Info (EERE)

6) 6) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Conceptual Model Activity Date 2006 Usefulness useful DOE-funding Unknown Exploration Basis Determine boiling zones and their relation to production zones by developing a fluid model Notes A fluid model for the Coso geothermal reservoir is developed from Fluid Inclusion Stratigraphy (FIS) analyses. Fluid inclusion gas chemistry in well cuttings collected at 20 ft intervals is analyzed and plotted on well log diagrams. Models are created using cross-sections and fence diagrams. References Dilley, L.M.; Norman, D.I.; Moore, J.; McCullouch, J. (1 January 2006) FLUID STRATIGRAPHY OF THE COSO GEOTHERMAL RESERVOIR Retrieved from "http://en.openei.org/w/index.php?title=Conceptual_Model_At_Coso_Geothermal_Area_(2006)&oldid=473688

150

Thermal Gradient Holes At Coso Geothermal Area (1974) | Open Energy  

Open Energy Info (EERE)

Coso Geothermal Area (1974) Coso Geothermal Area (1974) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Thermal Gradient Holes Activity Date 1974 Usefulness useful DOE-funding Unknown Exploration Basis Use heat flow studies for the first time at Coso to indicate the presence or absence of abnormal heat Notes Located 10 sites for heat flow boreholes using available seismic ground noise and electrical resistivity data; data collected from 9 of 10; thermal conductivity measurements were completed using both the needle probe technique and the divided bar apparatus with a cell arrangement. In the upper few hundred meters of the subsurface heat is being transferred by a conductive heat transfer mechanism with a value of ~ 15 µcal/cm2sec; the background heat flow is ~ 3.5 HFU.

151

Lithology and alteration mineralogy of reservoir rocks at Coso Geothermal  

Open Energy Info (EERE)

Lithology and alteration mineralogy of reservoir rocks at Coso Geothermal Lithology and alteration mineralogy of reservoir rocks at Coso Geothermal Area, California Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Lithology and alteration mineralogy of reservoir rocks at Coso Geothermal Area, California Details Activities (1) Areas (1) Regions (0) Abstract: Coso is one of several high-temperature geothermal systems associated with recent volcanic activity in the Basin and Range province. Chemical and fluid inclusion data demonstrate that production is from a narrow, asymmetric plume of thermal water that originates from a deep reservoir to the south and then flows laterally to the north. Geologic controls on the geometry of the upwelling plume were investigated using petrographic and analytical analyses of reservoir rock and vein material.

152

Standard Review Plan Preparation for Facility Operations Strengthening...  

Office of Environmental Management (EM)

Planning and Conducting Readiness Reviews DOE O 422.1, Admin Chg 1, Conduct of Operations, June 2013 DOE O 426.2, Personnel Selection, Training, Qualification, and...

153

2010 Annual Planning Summary for Savannah River Operations Office...  

Energy Savers (EERE)

Savannah River Operations Office (SRS) Annual Planning Summaries briefly describe the status of ongoing NEPA compliance activities, any EAs expected to be prepared in the next 12...

154

Economic Operation and Planning of Distribution System Sources.  

E-Print Network (OSTI)

??This thesis presents the findings of some research carried out pertaining to economic operation and planning distribution systems. An optimal capacitor switching algorithm is developed (more)

Li, KaiYu

2010-01-01T23:59:59.000Z

155

CRAD, Conduct of Operations Assessment Plan | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Conduct of Operations Assessment Plan Conduct of Operations Assessment Plan CRAD, Conduct of Operations Assessment Plan Performance Objective: The purpose of this assessment is to verify programmatic implementation of DOE O 5480.19, "Conduct of Operations Requirements of DOE Facilities" Criteria: Operations at DOE facilities shall be conducted in a manner to assure an acceptable level of safety. (DOE O 5408.19 Conduct of Operations for DOE Facilities) Operators at facilities shall have procedures in place to control the conduct of their operations. (DOE O 5408.19 Conduct of Operations for DOE Facilities) Line organizations shall review existing and planed programs important to safe and reliable facility operations. (DOE O 5408.19 Conduct of Operations for DOE Facilities) Line organizations shall assess the effectiveness of corporate

156

Planning and scheduling proximity operations for autonomous orbital rendezvous  

E-Print Network (OSTI)

This thesis develops a mixed integer programming formulation to solve the proximity operations scheduling problem for autonomous orbital rendezvous. The algorithm of this thesis allows the operator to specify planned modes, ...

Guerra, Christopher J., 1978-

2003-01-01T23:59:59.000Z

157

Operational Plan and Desktop Reference for the Veterans Employment Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Operational Plan and Desktop Reference for the Veterans Employment Operational Plan and Desktop Reference for the Veterans Employment Program Operational Plan and Desktop Reference for the Veterans Employment Program DOE Guide to the President's Initiative for Veterans Employment. Includes: Department-wide policies and procedures, goals and objectives, DVAAP, information on veterans' preference and special hiring authorities, procedures for use of vocational rehabilitation programs, sources for finding veterans, and links to websites. Operational Plan and Desktop Reference for the Veterans Employment Program Responsible Contacts Donna Friend HUMAN RESOURCES SPECIALIST E-mail donna.friend@hq.doe.dov Phone 202-586-5880 More Documents & Publications Operational Plan and Desktop Reference for the Disability Employment Program

158

Operational Plan and Desktop Reference for the Veterans Employment Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Operational Plan and Desktop Reference for the Veterans Employment Operational Plan and Desktop Reference for the Veterans Employment Program Operational Plan and Desktop Reference for the Veterans Employment Program DOE Guide to the President's Initiative for Veterans Employment. Includes: Department-wide policies and procedures, goals and objectives, DVAAP, information on veterans' preference and special hiring authorities, procedures for use of vocational rehabilitation programs, sources for finding veterans, and links to websites. Operational Plan and Desktop Reference for the Veterans Employment Program Responsible Contacts Donna Friend HUMAN RESOURCES SPECIALIST E-mail donna.friend@hq.doe.dov Phone 202-586-5880 More Documents & Publications Operational Plan and Desktop Reference for the Disability Employment Program

159

SYSTEM PLANNING WITH THE HANFORD WASTE OPERATIONS SIMULATOR  

SciTech Connect

At the U. S. Department of Energy's Hanford Site in southeastern Washington State, 216 million liters (57 million gallons) of nuclear waste is currently stored in aging underground tanks, threatening the Columbia River. The River Protection Project (RPP), a fully integrated system of waste storage, retrieval, treatment, and disposal facilities, is in varying stages of design, construction, operation, and future planning. These facilities face many overlapping technical, regulatory, and financial hurdles to achieve site cleanup and closure. Program execution is ongoing, but completion is currently expected to take approximately 40 more years. Strategic planning for the treatment of Hanford tank waste is by nature a multi-faceted, complex and iterative process. To help manage the planning, a report referred to as the RPP System Plan is prepared to provide a basis for aligning the program scope with the cost and schedule, from upper-tier contracts to individual facility operating plans. The Hanford Tank Waste Operations Simulator (HTWOS), a dynamic flowsheet simulation and mass balance computer model, is used to simulate the current planned RPP mission, evaluate the impacts of changes to the mission, and assist in planning near-term facility operations. Development of additional modeling tools, including an operations research model and a cost model, will further improve long-term planning confidence. The most recent RPP System Plan, Revision 4, was published in September 2009.

CRAWFORD TW; CERTA PJ; WELLS MN

2010-01-14T23:59:59.000Z

160

Disruption Management ( Operations Research between planning ...  

E-Print Network (OSTI)

G enerally , a disrupted situation or j ust a disruption is a state during the ... T he plan produced by OR-based decision support are to be applied on the day of.

Note: This page contains sample records for the topic "operations plan coso" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Daily Flight Planning and Operations Schedule  

NLE Websites -- All DOE Office Websites (Extended Search)

to aircraft close at 9:45AM Return to Ponca City 2PM (depending on mission) Afternoon: review observations, plan for next day If 2PM take-off move aircraft out of hangar late...

162

Water Management Plans for Surface Coal Mining Operations (North Dakota) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Management Plans for Surface Coal Mining Operations (North Management Plans for Surface Coal Mining Operations (North Dakota) Water Management Plans for Surface Coal Mining Operations (North Dakota) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Program Info State North Dakota Program Type Siting and Permitting A water management plan is required for all surface coal mining operations. This plan must be submitted to the State Engineer of the State Water Commission at the same time a surface mining permit is submitted to the

163

BNL | Center for Functional Nanomaterials Operations Plan  

NLE Websites -- All DOE Office Websites (Extended Search)

Training BES Safety Management System Quality Management Small Science Nano Safety Reference Guide Organizational Responsibilities CFN Director Emilio Mendez Operations...

164

Controls on Fault-Hosted Fluid Flow: Preliminary Results from the Coso  

Open Energy Info (EERE)

Controls on Fault-Hosted Fluid Flow: Preliminary Results from the Coso Controls on Fault-Hosted Fluid Flow: Preliminary Results from the Coso Geothermal Field, CA Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: Controls on Fault-Hosted Fluid Flow: Preliminary Results from the Coso Geothermal Field, CA Details Activities (1) Areas (1) Regions (0) Abstract: cap rock, permeability, fault, fracture, clay, Coso Author(s): Davatzes, N.C.; Hickman, S.H. Published: Geothermal Resource Council Transactions 2005, 1/1/2005 Document Number: Unavailable DOI: Unavailable Conceptual Model At Coso Geothermal Area (2005-2007) Coso Geothermal Area Retrieved from "http://en.openei.org/w/index.php?title=Controls_on_Fault-Hosted_Fluid_Flow:_Preliminary_Results_from_the_Coso_Geothermal_Field,_CA&oldid=473359"

165

COSO Geothermal Exploratory Hole No. 1, CGEH No. 1. Completion report.  

Open Energy Info (EERE)

COSO Geothermal Exploratory Hole No. 1, CGEH No. 1. Completion report. COSO Geothermal Exploratory Hole No. 1, CGEH No. 1. Completion report. (Coso Hot Springs KGRA) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: COSO Geothermal Exploratory Hole No. 1, CGEH No. 1. Completion report. (Coso Hot Springs KGRA) Details Activities (1) Areas (1) Regions (0) Abstract: Coso Geothermal Exploratory Hole No. 1 (CGEH No. 1) is the first deep exploratory hole drilled in the Coso Hot Springs area of Southeastern California. CGEH No. 1 was drilled to a depth of 4,845 ft in the central area of a large thermal anomaly and was a continuation of investigative work in that locale to determine the existence of a geothermal resource. The drilling and completion of CGEH No. 1 is described. Also included are the daily drilling reports, drill bit records, descriptions of the casing,

166

An isotopic study of the Coso, California, geothermal area | Open Energy  

Open Energy Info (EERE)

study of the Coso, California, geothermal area study of the Coso, California, geothermal area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: An isotopic study of the Coso, California, geothermal area Details Activities (1) Areas (1) Regions (0) Abstract: Thirty-nine water samples were collected from the Coso geothermal system and vicinity and were analyzed for major chemical constituents and deltaD and delta^18/O. Non-thermal ground waters from the Coso Range were found to be isotopically heavier than non-thermal ground waters from the Sierra Nevada to the west. The deltaD value for the deep thermal water at Coso is similar to that of the Sierra water, suggesting that the major recharge for the hydrothermal system comes from the Sierra Nevada rather than from local precipitation on the Coso Range. The delta^18/O values of

167

Field Mapping At Coso Geothermal Area (1977-1978) | Open Energy Information  

Open Energy Info (EERE)

Coso Geothermal Area (1977-1978) Coso Geothermal Area (1977-1978) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Field Mapping At Coso Geothermal Area (1977-1978) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Field Mapping Activity Date 1977 - 1978 Usefulness not indicated DOE-funding Unknown Notes Hydrogeologic investigation of Coso hot springs was conducted by field examination of geologic rock units and springs and other features of hydrologic significance and sampling of waters for chemical analysis; determination of the local Coso Hot Springs and regional groundwater hydrology, including consideration of recharge, discharge, movement, and water quality; determination of the possible impact of large-scale geothermal development on Coso Hot Springs.

168

Field Mapping At Coso Geothermal Area (2010) | Open Energy Information  

Open Energy Info (EERE)

Field Mapping At Coso Geothermal Area (2010) Field Mapping At Coso Geothermal Area (2010) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Field Mapping Activity Date 2010 Usefulness not indicated DOE-funding Unknown Exploration Basis To determine if there is geothermal potential in the South Ranges Notes It has been believed that the South Ranges at China Lake may host geothermal resources for several decades. Recent Garlock Fault mapping, associated thermochronology work and a well documented but geologically unresolved steaming well to the west suggests that the South Ranges should be investigated for geothermal potential. In 2009, GPO awarded a contract to the University of Kansas to follow through on detailed mapping, trenching, dating and thermochronoloy in the Lava Mountains and the

169

Thermochronometry At Coso Geothermal Area (2010) | Open Energy Information  

Open Energy Info (EERE)

Thermochronometry At Coso Geothermal Area (2010) Thermochronometry At Coso Geothermal Area (2010) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Thermochronometry Activity Date 2010 Usefulness not indicated DOE-funding Unknown Exploration Basis To determine if there is geothermal potential in the South Ranges Notes It has been believed that the South Ranges at China Lake may host geothermal resources for several decades. Recent Garlock Fault mapping, associated thermochronology work and a well documented but geologically unresolved steaming well to the west suggests that the South Ranges should be investigated for geothermal potential. In 2009, GPO awarded a contract to the University of Kansas to follow through on detailed mapping, trenching, dating and thermochronoloy in the Lava Mountains and the

170

Multispectral Imaging At Coso Geothermal Area (1990) | Open Energy  

Open Energy Info (EERE)

) ) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Multispectral Imaging At Coso Geothermal Area (1990) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Multispectral Imaging Activity Date 1990 Usefulness not indicated DOE-funding Unknown Exploration Basis To understand the complex geology seen on the surface and to try to improve the method of locating geothermal wells. Notes Remote sensing studies have been made in and adjacent to the Coso geothermal field using TM FCC satellite imagery, 1:100,000 scale, US Geological Survey orthophotos, 1:24,000 scale, and proprietary black-and-white photography by California Energy Company, Inc., at various scales including black-and-white positive film transparencies at a scale of

171

Ground Magnetics At Coso Geothermal Area (1984) | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Ground Magnetics At Coso Geothermal Area (1984) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Magnetics At Coso Geothermal Area (1984) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Ground Magnetics Activity Date 1984 Usefulness useful DOE-funding Unknown Notes The magnetic intensity contours match general geologic patterns in varying rock types. Hydrothermally altered rocks along intersecting fault zones show up as strong magnetic lows that form a triangular-shaped area. This area is centered in an area of highest heat flow and is a site of

172

Core Analysis At Coso Geothermal Area (1980) | Open Energy Information  

Open Energy Info (EERE)

Core Analysis At Coso Geothermal Area (1980) Core Analysis At Coso Geothermal Area (1980) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Core Analysis Activity Date 1980 Usefulness not indicated DOE-funding Unknown Exploration Basis Determine the heat transfer mechanism Notes In an investigation of the thermal regime of this Basin and Range geothermal area, temperature measurements were made in 25 shallow and 1 intermediate depth borehole. Thermal conductivity measurements were made on 312 samples from cores and drill cuttings. The actual process by which heat is transferred is rather complex; however, the heat flow determinations can be divided into two groups. The first group, less than 4.0 HFU, are indicative of regions with primarily conductive regimes, although

173

Compound and Elemental Analysis At Coso Geothermal Area (1991) | Open  

Open Energy Info (EERE)

1) 1) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Compound and Elemental Analysis At Coso Geothermal Area (1991) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Compound and Elemental Analysis Activity Date 1991 Usefulness useful DOE-funding Unknown Exploration Basis Determine the fluid origin by looking at variations in dissolved gas compositions of reservoir fluids Notes Gas concentrations and ratios in 110 analyses of geothermal fluids from 47 wells in the Coso geothermal system illustrate the complexity of this two-phase reservoir in its natural state. Two geographically distinct regions of single-phase (liquid) reservoir are present and possess distinctive gas and liquid compositions. Steam sampled from wells in the

174

Deformation and seismicity in the Coso geothermal area, Inyo County,  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Deformation and seismicity in the Coso geothermal area, Inyo County, California, observations and modeling using satellite radar interferometry Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Deformation and seismicity in the Coso geothermal area, Inyo County, California, observations and modeling using satellite radar interferometry Details Activities (2) Areas (1) Regions (0) Abstract: Interferometric synthetic aperture radar (InSAR) data collected in the Coso geothermal area, eastern California, during 1993-1999 indicate ground subsidence over a approximately 50 km 2 region that approximately

175

MAGNETOTELLURIC SURVEYING AND MONITORING AT THE COSO GEOTHERMAL AREA,  

Open Energy Info (EERE)

SURVEYING AND MONITORING AT THE COSO GEOTHERMAL AREA, SURVEYING AND MONITORING AT THE COSO GEOTHERMAL AREA, CALIFORNIA, IN SUPPORT OF THE ENHANCED GEOTHERMAL SYSTEMS CONCEPT: SURVEY PARAMETERS AND INITIAL RESULTS Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: MAGNETOTELLURIC SURVEYING AND MONITORING AT THE COSO GEOTHERMAL AREA, CALIFORNIA, IN SUPPORT OF THE ENHANCED GEOTHERMAL SYSTEMS CONCEPT: SURVEY PARAMETERS AND INITIAL RESULTS Details Activities (1) Areas (1) Regions (0) Abstract: Electrical resistivity may contribute to progress in enhanced geothermal systems (EGS) by imaging the geometry, bounds and controlling structures in existing production, and by monitoring changes in the underground resistivity properties in the vicinity of injection due to fracture porosity enhancement. To these ends, we are acquiring a dense grid

176

Numerical Modeling At Coso Geothermal Area (2010) | Open Energy Information  

Open Energy Info (EERE)

10) 10) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Numerical Modeling At Coso Geothermal Area (2010) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Numerical Modeling Activity Date 2010 Usefulness useful DOE-funding Unknown Exploration Basis To determine conditions when fractures nucleate Notes A numerical model was developed using Poly3D to simulate the distribution and magnitude of stress concentration in the vicinity of the borehole floor, and determine the conditions under which petal-centerline fractures nucleate. As a whole, the simulations have demonstrated that a borehole under the stress boundary conditions present at the Coso 58A-10 borehole is able to amplify the stress concentration to produce tension below the

177

Acoustic Logs At Coso Geothermal Area (2005) | Open Energy Information  

Open Energy Info (EERE)

Coso Geothermal Area (2005) Coso Geothermal Area (2005) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Acoustic Logs Activity Date 2005 Usefulness not indicated DOE-funding Unknown Exploration Basis Well bore fracture analysis Notes Electrical and acoustic image logs have been collected from well 58A-10 in crystalline rock on the eastern margin. Electrical image logs appear to be sensitive to variations in mineralogy, porosity, and fluid content that highlight both natural fractures and rock fabrics. These fabric elements account for about 50% of the total population of planar structures seen in the electrical image log, but locally approach 100%. Acoustic image logs reveal a similar natural fracture population, but generally image slightly fewer fractures, and do not reveal rock fabric. Both logs also record

178

Fluid Inclusion Stratigraphy: Interpretation of New Wells in the Coso  

Open Energy Info (EERE)

Stratigraphy: Interpretation of New Wells in the Coso Stratigraphy: Interpretation of New Wells in the Coso Geothermal Field Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: Fluid Inclusion Stratigraphy: Interpretation of New Wells in the Coso Geothermal Field Details Activities (1) Areas (1) Regions (0) Abstract: This paper focuses on the interpretation of the additional wells (4 bore holes) and comparison to the previous wells. Preliminary correlation between wells is also presented. Analyses from multiple boreholes show fluid stratigraphy that correlates from well to well. The wells include large producers, small to moderate producers, problem producers, injectors, and non producers Author(s): Dilley, L.M.; Newman, D.L. ; McCulloch, J.; Wiggett, G. Published: Geothermal Resource Council Transactions 2005, 1/1/2005

179

Fluid Inclusion Analysis At Coso Geothermal Area (2003) | Open Energy  

Open Energy Info (EERE)

Coso Geothermal Area Coso Geothermal Area (2003) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Fluid Inclusion Analysis Activity Date 2003 Usefulness not indicated DOE-funding Unknown Exploration Basis 1) Fracture/stress analysis. 2)To determine the driver of the relationship between hydrogen and organic species. Notes 1) Fluid inclusion analyses of cuttings from well 83-16 were used to determine the temperatures of vein mineralization. 2) Measurement of organic compounds in fluid inclusions shows that there are strong relationships between H2 concentrations and alkane/alkene ratios and benzene concentrations. Inclusion analyses that indicate H2 concentrations > 0.001 mol % typically have ethane > ethylene, propane > propylene, and

180

Flow Test At Coso Geothermal Area (1978) | Open Energy Information  

Open Energy Info (EERE)

Flow Test At Coso Geothermal Area (1978) Flow Test At Coso Geothermal Area (1978) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Flow Test Activity Date 1978 Usefulness not indicated DOE-funding Unknown Notes Flow tests of well CGEH No. 1 were conducted. LBL performed eight temperature surveys after completion of the well to estimate equilibrium reservoir temperatures. Downhole fluid samples were obtained by the U.S. Geological Survey (USGS) and Lawrence Berkeley Laboratory (LBL), and a static pressure profile was obtained. The first test began September 5, 1978 using nitrogen stimulation to initiate flow; this procedure resulted in small flow and subsequent filling of the bottom hole with drill cuttings. The second test, on November 2, 1978, utilized a nitrogen-foam-water mixture to clean residual particles from bottom hole,

Note: This page contains sample records for the topic "operations plan coso" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Reflection Survey At Coso Geothermal Area (2001) | Open Energy Information  

Open Energy Info (EERE)

Exploration Activity: Reflection Survey At Coso Geothermal Area (2001) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Reflection Survey Activity Date 2001 Usefulness not indicated DOE-funding Unknown Exploration Basis Look for features that are characteristic of the geothermal producing region not originally seen by imaging the Coso Field using seismic Notes During December of 1999, approximately 32 miles of seismic data were acquired as part of a detailed seismic investigation undertaken by the US Navy Geothermal Program Office. Data acquisition was designed to make effective use of advanced data processing methods, which include Optim's proprietary nonlinear velocity optimization technique and pre-stack Kirchhoff migration. The velocity models from the 2-D lines were combined

182

NMOSE Artesian Well Plan of Operations | Open Energy Information  

Open Energy Info (EERE)

OpenEI Reference LibraryAdd to library Legal Document- OtherOther: NMOSE Artesian Well Plan of OperationsLegal Published NA Year Signed or Took Effect 2011 Legal Citation Not...

183

BNL | Center for Functional Nanomaterials Operations Plan  

NLE Websites -- All DOE Office Websites (Extended Search)

Basic Rules Everyone Must Know Basic Rules Everyone Must Know Work Planning All work must be planned and reviewed for safety. Experimental Safety Reviews (ESRs), Safety Approval Forms (SAFs), and Work Permits are the documents used at the CFN. Make sure your project is reviewed and approved before you begin your work and that you follow all rules, regulations, and postings. Changes in procedures need to be approved before work commences. All individuals performing work at BNL are required to obtain a guest or permanent appointment before beginning work. You must wear your badge/ID at all times. Radioactive materials, chemicals, and equipment may not be brought into the Department without prior notification. Shipping ANY sample from BNL needs to be done through the shipping desk located in B98. Any radioactive material must be evaluated by the

184

Nuclear Safety Reserch and Development Program Operating Plan  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Safety Research and Development Safety Research and Development Program Operating Plan Office of Nuclear Safety Office of Health, Safety and Security U.S. Department of Energy June 2012 INTENTIONALLY BLANK NSR&D Program Operating Plan June 2012 Table of Contents 1.0 INTRODUCTION................................................................................................................. 1 2.0 BACKGROUND ................................................................................................................... 1 3.0 OBJECTIVES ....................................................................................................................... 2 4.0 NSR&D PROGRAM PROCESSES .................................................................................... 3

185

Fluid Inclusion Analysis At Coso Geothermal Area (1990) | Open Energy  

Open Energy Info (EERE)

0) 0) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Fluid Inclusion Analysis At Coso Geothermal Area (1990) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Fluid Inclusion Analysis Activity Date 1990 Usefulness not indicated DOE-funding Unknown Notes A system for analysis of inclusion gas contents based upon quadrupole mass spectrometry has been designed, assembled and tested during the first seven months of funding. The system is currently being tested and calibrated using inclusions with known gas contents from active geothermal systems. References Mckibben, M. A. (25 April 1990) Volatiles in hydrothermal fluids- A mass spectrometric study of fluid inclusions from active geothermal systems

186

Fluid Inclusion Analysis At Coso Geothermal Area (1996) | Open Energy  

Open Energy Info (EERE)

) ) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Fluid Inclusion Analysis At Coso Geothermal Area (1996) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Fluid Inclusion Analysis Activity Date 1996 Usefulness not indicated DOE-funding Unknown Notes Fluid inclusion homogenization temperatures and salinities demonstrate that cool, low salinity ground waters were present when the thermal plume was emplaced. Dilution of the thermal waters occurred above and below the plume producing strong gradients in their compositions. Comparison of mineral and fluid inclusion based temperatures demonstrates that cooling has occurred along the margins of the thermal system but that the interior of the system

187

Numerical Modeling At Coso Geothermal Area (2006) | Open Energy Information  

Open Energy Info (EERE)

2006) 2006) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Numerical Modeling Activity Date 2006 Usefulness useful DOE-funding Unknown Exploration Basis Determine areas of high permeability using isotope transport and exchange analysis Notes Finite element models of single-phase, variable-density fluid flow, conductive- convective heat transfer, fluid-rock isotope exchange, and groundwater residence times were developed. Using detailed seismic reflection data and geologic mapping, a regional cross-sectional model was constructed that extends laterally from the Sierra Nevada to Wildhorse Mesa, west of the Argus Range. The findings suggest that active faults and seismogenic zones in and around the Coso geothermal area have much higher

188

Operating Plan 573.1-2  

NLE Websites -- All DOE Office Websites (Extended Search)

573.1-2 Title: U.S. POSTAL MAIL, SHIPPING AND RECEIVING SECURITY Owner: Cindy Mullens, ESS&H Division, Office of Institutional Operations Approving Official: Thomas Wilson, Jr.,...

189

Operations, Maintenance, and Replacement 10-Year Plan, 1990 -1999.  

SciTech Connect

In 1988 Bonneville Power Administration (BPA) began work on this Operations, Maintenance, and Replacement 10-Year Plan to develop a levelized program that would assure high system reliability. During the Programs in Perspective (PIP) meetings in the late summer and fall of 1988, many of the concerns to be addressed in an Operations, Maintenance, and Replacement Plan were identified. Following these PIP meetings BPA established internal work groups. During the winter and spring of 1989, these work groups developed technical background and issue papers on topics that ranged from substation maintenance to environmental protection. In addition, a customer forum group was established and met on several occasions to review work on the plan, to offer ideas and points of view, and to assure that BPA understood customer concerns. Based on recommendations from the work group reports and customer input, BPA's O M Management Team developed the draft Operations, Maintenance, and Replacement 10-Year Plan that was released for public comment during the spring of 1990. During the public review period, BPA received a number of written comments from customers and the interested public. In addition, special meetings were held with interested customers. This final Operations, Maintenance, and Replacement 10-Year Plan reflects BPA's response to customers and interested public on each topic discussed in the 10-Year Plan. The plan is a distillation of BPA's strategies to achieve a levelized program over 10 years.

United States. Bonneville Power Administration.

1990-08-01T23:59:59.000Z

190

Operations, Maintenance, and Replacement 10-Year Plan, 1990--1999  

SciTech Connect

In 1988 Bonneville Power Administration (BPA) began work on this Operations, Maintenance, and Replacement 10-Year Plan to develop a levelized program that would assure high system reliability. During the Programs in Perspective (PIP) meetings in the later summer and fall of 1988, many of the concerns to be addressed in an Operations, Maintenance, and Replacement Plan were identified. Following these PIP meetings BPA established internal work groups. During the winter and spring of 1989, these work groups developed technical background and issue papers on topics that ranged from substation maintenance to environmental protection. In addition, a customer forum group was established and met on several occasions to review work on the plan, to offer ideas and points of view, and to assure that BPA understood customer concerns. Based on recommendations from the work group reports and customer input, BPA's O M Management Team developed the draft Operations, Maintenance, and Replacement 10-Year Plan that was released for public comment during the spring of 1990. During the public review period, BPA received a number of written comments from customers and the interested public. In addition, special meetings were held with interested customers. This final Operations, Maintenance, and Replacement 10-year Plan reflects BPA's response to customers and interested public on each topic discussed in the 10-Year Plan. The plan is a distillation of BPA's strategies to achieve a levelized program over 10 years.

Not Available

1990-08-01T23:59:59.000Z

191

FTCP FY 2011 Operational Plan - Goal 2  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2 2 Accelerate and Expand Implementation of eTQP Champions: Allen Tate, SSO and Robert Hastings, RL Goal was not achieved due to change in software platform. The goal to automate portions of the TQP is identified in the FTCP FY2011 Ops Plan as a separate issue. Objective 1: Acceleration of eTQP Baseline Champion: Allen Tate Accomplishments The team developed an implementation schedule but the rest of the objective was not accomplished due to HC-1 decision to change the eTQP software platform to PLATEAU versus Vision. Subsequent energy of the team was spent on trying to find alternative approaches to fund and use Vision. The fiscal year ended with no solutions. Objective 2: Accelerate Implementation of eTQP Champion: Rob Hastings Accomplishments

192

CRAD, Machine Shop Safe Operations Assessment Plan | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Machine Shop Safe Operations Assessment Plan Machine Shop Safe Operations Assessment Plan CRAD, Machine Shop Safe Operations Assessment Plan Performance Objective: The purpose of this assessment is to verify that machine shop operators are provided a safe and healthful workplace which will reduce or prevent injuries, illnesses, and accidental losses. Criteria: A worker protection program shall be implemented that provides a place of employment free from recognized hazards that are causing or likely to cause death or serious physical harm. (DOE O 440.1A Contractor Requirements Document (CRD)) Employees shall be encouraged to become involved in the identification and control of hazards in the workplace. (DOE O 440.1A CRD) Workers shall have the right, without reprisal, to accompany DOE worker protection personnel during workplace inspections. (DOE O44.1A

193

Operating and Assurance Program Plan. Revision 4  

SciTech Connect

The LBL Operating and Assurance Program (OAP) is a management system and a set of requirements designed to maintain the level of performance necessary to achieve LBL`s programmatic and administrative objectives effectively and safely through the application of quality assurance and related conduct of operations and maintenance management principles. Implement an LBL management philosophy that supports and encourages continual improvement in performance and quality at the Laboratory. Provide an integrated approach to compliance with applicable regulatory requirements and DOE orders. The OAP is intended to meet the requirements of DOE Order 5700.6C, Quality Assurance. The Program also contains management system elements of DOE Orders 5480.19, Conduct of Operations Requirements for DOE Facilities; 5480.25, Safety of Accelerator Facilities; and 4330.4A, Maintenance Management Program, and is meant to integrate these elements into the overall LBL approach to Laboratory management. The requirements of this program apply to LBL employees and organizations, and to contractors and facility users as managed by their LBL sponsors. They are also applicable to external vendors and suppliers as specified in procurement documents and contracts.

Not Available

1994-07-01T23:59:59.000Z

194

Draft 1992 : Operations, Maintenance, and Replacement 10-Year Plan.  

SciTech Connect

Two years ago, BPA released its first-ever Operations, Maintenance, and Replacement (OM R) 10-Year Plan. That effort broke new ground and was an extensive look at the condition of Operations, Maintenance, and Replacement on BPA's power system. This document -- the 1992 OM R 10-Year Plan -- uses that original plan as its foundation. It takes a look at how well BPA has accomplished the challenging task set out in the 1990 Plan. The 1992 Plan also introduces the Construction Program. Construction's critical role in these programs is explored, and the pressures of construction workload -- such as the seasonal nature of the work and the broad swings in workload between projects and years -- are discussed. The document then looks at how situations may have changed with issues explored initially in the 1990 Plan. Importantly, this Plan also surfaces and explains some new issues that threaten to impact BPA's ability to accomplish its OM R workload. Finally, the document focuses on the revised strategies for Operations, Maintenance, Replacement, Construction, and Environment for the 1992 to 2001 time period, including the financial and human resources needed to accomplish those strategies.

United States. Bonneville Power Administration.

1992-05-01T23:59:59.000Z

195

Draft 1992 : Operations, Maintenance, and Replacement 10-Year Plan.  

SciTech Connect

Two years ago, BPA released its first-ever Operations, Maintenance, and Replacement (OM&R) 10-Year Plan. That effort broke new ground and was an extensive look at the condition of Operations, Maintenance, and Replacement on BPA`s power system. This document -- the 1992 OM&R 10-Year Plan -- uses that original plan as its foundation. It takes a look at how well BPA has accomplished the challenging task set out in the 1990 Plan. The 1992 Plan also introduces the Construction Program. Construction`s critical role in these programs is explored, and the pressures of construction workload -- such as the seasonal nature of the work and the broad swings in workload between projects and years -- are discussed. The document then looks at how situations may have changed with issues explored initially in the 1990 Plan. Importantly, this Plan also surfaces and explains some new issues that threaten to impact BPA`s ability to accomplish its OM&R workload. Finally, the document focuses on the revised strategies for Operations, Maintenance, Replacement, Construction, and Environment for the 1992 to 2001 time period, including the financial and human resources needed to accomplish those strategies.

United States. Bonneville Power Administration.

1992-05-01T23:59:59.000Z

196

Optimal Planning and Operation of Smart Grids with Electric Vehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

Optimal Planning and Operation of Smart Grids with Electric Vehicle Optimal Planning and Operation of Smart Grids with Electric Vehicle Interconnection Title Optimal Planning and Operation of Smart Grids with Electric Vehicle Interconnection Publication Type Journal Article Refereed Designation Refereed LBNL Report Number LBNL-5251E Year of Publication 2012 Authors Stadler, Michael, Chris Marnay, Maximillian Kloess, Gonçalo Cardoso, Gonçalo Mendes, Afzal S. Siddiqui, Ratnesh Sharma, Olivier Mégel, and Judy Lai Journal Journal of Energy Engineering, Special Issue: Challenges and opportunities in the 21st century energy infrastructure Volume 138 Start Page 95 Issue 2 Pagination 95-108 Date Published 06/2012 Publisher LBNL ISSN ISSN (print): 0733-9402, ISSN (online): 1943-7897 Keywords carbon emissions, combined heat and power, commercial buildings, distributed energy resources, distributed generation, electric vehicle, electricity markets and policy group, energy analysis and environmental impacts department, load shifting, microgrid, microgrids, optimization, smart grid, storage technologies

197

Water Sampling At Coso Geothermal Area (1977-1978) | Open Energy  

Open Energy Info (EERE)

Water Sampling At Coso Geothermal Area (1977-1978) Water Sampling At Coso Geothermal Area (1977-1978) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Coso Geothermal Area (1977-1978) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Water Sampling Activity Date 1977 - 1978 Usefulness not indicated DOE-funding Unknown Notes Hydrogeologic investigation of Coso hot springs was conducted by field examination of geologic rock units and springs and other features of hydrologic significance and sampling of waters for chemical analysis; determination of the local Coso Hot Springs and regional groundwater hydrology, including consideration of recharge, discharge, movement, and water quality; determination of the possible impact of large-scale

198

Fluid Inclusion Analysis At Coso Geothermal Area (Norman & Moore, 2004) |  

Open Energy Info (EERE)

Fluid Inclusion Analysis At Coso Geothermal Area (Norman & Moore, 2004) Fluid Inclusion Analysis At Coso Geothermal Area (Norman & Moore, 2004) (Redirected from Water-Gas Samples At Coso Geothermal Area (2004)) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Fluid Inclusion Analysis At Coso Geothermal Area (Norman & Moore, 2004) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Fluid Inclusion Analysis Activity Date 2004 Usefulness useful DOE-funding Unknown Exploration Basis To determine effectiveness of FIS for geothermal exploration Notes In order to test FIS for geothermal exploration, drill chips were analyzed from Coso well 83-16, which were selected at 1000 ft intervals by Joseph Moore. Sequential crushes done by our CFS (crushfast-scan) method (Norman

199

Long-Wave Infrared At Coso Geothermal Area (1968-1971) | Open Energy  

Open Energy Info (EERE)

Long-Wave Infrared At Coso Geothermal Area (1968-1971) Long-Wave Infrared At Coso Geothermal Area (1968-1971) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Long-Wave Infrared At Coso Geothermal Area (1968-1971) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Long-Wave Infrared Activity Date 1968 - 1971 Usefulness useful DOE-funding Unknown Exploration Basis Fumarolic and hot springs activity Notes 8- to 14-micrometer IR imagery has value in delineating the typical arcuate structural patterns References Koenig, J.B.; Gawarecki, S.J.; Austin, C.F. (1 February 1972) Remote sensing survey of the Coso geothermal area, Inyo county, California. Technical publication 1968--1971 Retrieved from "http://en.openei.org/w/index.php?title=Long-Wave_Infrared_At_Coso_Geothermal_Area_(1968-1971)&oldid=473747"

200

Modeling-Computer Simulations At Coso Geothermal Area (1999) | Open Energy  

Open Energy Info (EERE)

Modeling-Computer Simulations At Coso Geothermal Area (1999) Modeling-Computer Simulations At Coso Geothermal Area (1999) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Coso Geothermal Area (1999) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Modeling-Computer Simulations Activity Date 1999 Usefulness not indicated DOE-funding Unknown Exploration Basis To analyze attenuation and source properties Notes A multiple-empirical Green's function method was used to determine source properties of small (M -0.4 to 1.3) earthquakes and P-wave and S-wave attenuation at the Coso Geothermal Field. Source properties of a previously identified set of clustered events from the Coso geothermal region are first analyzed using an empirical Green's function (EGF) method.

Note: This page contains sample records for the topic "operations plan coso" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Field Mapping At Coso Geothermal Area (2001-2003) | Open Energy Information  

Open Energy Info (EERE)

-2003) -2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Field Mapping At Coso Geothermal Area (2001-2003) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Field Mapping Activity Date 2001 - 2003 Usefulness not indicated DOE-funding Unknown Exploration Basis Determine structural control on permeability and fluid production Notes New multifold seismic reflection data from the Coso geothermal field in the central Coso Range, eastern California, image brittle faults and other structures in a zone of localized crustal extension between two major strike-slip faults. Production in the Coso field primarily occurs in the hanging walls of the listric faults. References Unruh, J. (1 January 2001) NEW SEISMIC IMAGING OF THE COSO

202

Stepout-Deepening Wells At Coso Geothermal Area (1986) | Open Energy  

Open Energy Info (EERE)

Stepout-Deepening Wells At Coso Geothermal Area (1986) Stepout-Deepening Wells At Coso Geothermal Area (1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Step-out Well At Coso Geothermal Area (1986) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Step-out Well Activity Date 1986 Usefulness not indicated DOE-funding Unknown Notes A step-out exploration/production well drilled in 1986 to a depth of 6553 ft located several miles south of the Devil's Kitchen region along the identified north-south feature produced fluids with a temperature greater than 640 F. References Austin, C.F.; Bishop, B.P.; Moore, J. (1 May 1987) Structural interpretation of Coso Geothermal field, Inyo County, California Retrieved from "http://en.openei.org/w/index.php?title=Stepout-Deepening_Wells_At_Coso_Geothermal_Area_(1986)&oldid=687864"

203

Stress and Fluid-Flow Interaction for the Coso Geothermal Field Derived  

Open Energy Info (EERE)

Stress and Fluid-Flow Interaction for the Coso Geothermal Field Derived Stress and Fluid-Flow Interaction for the Coso Geothermal Field Derived from 3D Numerical Models Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: Stress and Fluid-Flow Interaction for the Coso Geothermal Field Derived from 3D Numerical Models Details Activities (1) Areas (1) Regions (0) Abstract: The efficiency of geothermal energy production at the Coso Geothermal Field in eastern California is reliant on the knowledge of fluid flow directions associated with fracture networks. We use finite element analysis to establish the 3D state of stress within the tectonic setting of the Coso Range. The mean and differential stress distributions are used to infer fluid flow vectors and second order fracture likelihood and orientation. The results show that the Coso Range and adjacent areas are

204

Structure, tectonics and stress field of the Coso Range, Inyo County,  

Open Energy Info (EERE)

tectonics and stress field of the Coso Range, Inyo County, tectonics and stress field of the Coso Range, Inyo County, California Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Structure, tectonics and stress field of the Coso Range, Inyo County, California Details Activities (1) Areas (1) Regions (0) Abstract: The tectonics of the Coso Range has been described as having arcuate and ring faults both suggesting the presence of a circumscribed subsidence bowl or calderalike feature. New information suggests the Coso Range is situated in an area of transition between the stress of the right slip San Andreas fault-plate interaction and the extensional tectonics of the Basin and Range. Arcuate faults in the Coso Range are interpreted to have been produced by the regional stress field rather than to have been of

205

STRESS AND FAULTING IN THE COSO GEOTHERMAL FIELD: UPDATE AND RECENT RESULTS  

Open Energy Info (EERE)

STRESS AND FAULTING IN THE COSO GEOTHERMAL FIELD: UPDATE AND RECENT RESULTS STRESS AND FAULTING IN THE COSO GEOTHERMAL FIELD: UPDATE AND RECENT RESULTS FROM THE EAST FLANK AND COSO WASH Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: STRESS AND FAULTING IN THE COSO GEOTHERMAL FIELD: UPDATE AND RECENT RESULTS FROM THE EAST FLANK AND COSO WASH Details Activities (1) Areas (1) Regions (0) Abstract: We integrate new geologic mapping and measurements of stress orientations and magnitudes from wells 34-9RD2 and 58A-10 with existing data sets to refine a geomechanical model for the Coso geothermal field. Vertically averaged stress orientations across the field are fairly uniform and are consistent with focal mechanism inversions of earthquake clusters for stress and incremental strain. Active faults trending NNW-SSE to

206

Field Mapping At Coso Geothermal Area (1968-1971) | Open Energy Information  

Open Energy Info (EERE)

Field Mapping At Coso Geothermal Area (1968-1971) Field Mapping At Coso Geothermal Area (1968-1971) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Field Mapping At Coso Geothermal Area (1968-1971) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Field Mapping Activity Date 1968 - 1971 Usefulness useful DOE-funding Unknown Exploration Basis Fumarolic and hot springs activity Notes Snowmelt patterns has the greatest utility in locating areas of presently active thermal fluid leakage References Koenig, J.B.; Gawarecki, S.J.; Austin, C.F. (1 February 1972) Remote sensing survey of the Coso geothermal area, Inyo county, California. Technical publication 1968--1971 Retrieved from "http://en.openei.org/w/index.php?title=Field_Mapping_At_Coso_Geothermal_Area_(1968-1971)&oldid=473716"

207

2014 Headquarters Facilities Master Security Plan- Chapter 8, Operations Security Program  

Energy.gov (U.S. Department of Energy (DOE))

2014 Headquarters Facilities Master Security Plan - Chapter 8, Operations Security Program Describes the DOE Headquarters Operations Security (OPSEC) Program.

208

Three-dimensional P and S waves velocity structures of the Coso...  

Open Energy Info (EERE)

structures of the Coso geothermal area, California, from microseismic travel time data Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article:...

209

Geology of Injection Well 46A-19RD in the Coso Enhanced Geothermal...  

Open Energy Info (EERE)

Enhanced Geothermal Systems Experiment Abstract The Coso Geothermal Field is a large, high temperature system located in California on the western edge of the Basin and Range...

210

Coso Rock Art Within Its Archaeological Context  

E-Print Network (OSTI)

60% Draft Cultural Resources Management Plan for Naval AirCultural Resources Management at the National Training Center, Fort Irwin, 1993-1994: An Addendum to the Fort Irwin Historic Preservation Plan.

Gilreath, Amy J.; Hildebrandt, William R.

2008-01-01T23:59:59.000Z

211

Planning and Conduct of Operational Readiness Reviews (ORR)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE-STD-3006-2000 DOE-STD-3006-2000 June 2000 Superseding DOE-STD-3006-95 November 1995 DOE STANDARD PLANNING AND CONDUCT OF OPERATIONAL READINESS REVIEWS (ORR) U.S. Department of Energy AREA OPER Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. NOT MEASUREMENT SENSITIVE This document has been reproduced directly from the best available copy. Available to DOE and DOE contractors from ES&H Technical Information Services, U.S. Department of Energy, (800) 473-4375, fax: (301) 903-9823 Available to the public from the U.S. Department of Commerce, Technology Administration, National Technical Information Service, Springfield, VA 22161; (703) 605-6000. DOE-STD-3006-2000 iii PLANNING AND CONDUCT OF OPERATIONAL READINESS REVIEWS (ORR)

212

Cuttings Analysis At Coso Geothermal Area (2005) | Open Energy Information  

Open Energy Info (EERE)

5) 5) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Cuttings Analysis Activity Date 2005 Usefulness not indicated DOE-funding Unknown Exploration Basis EGS well analysis for fractures to determine the geologic framework of the east flank of the field Notes This paper summarizes petrologic and geologic investigations on two East Flank wells, 34A-9 and 34-9RD2 conducted as part of a continuing effort to better understand how the rocks will behave during hydraulic and thermal stimulation. Well 34A-9 is the hottest well at depth in the East Flank, reaching nearly 350 0C. The reservoir on the East Flank is dominated by diorite and granodiorite. References Kovac, K.M.; Moore, J.N.; Lutz, S.J. (1 January 2005) GEOLOGIC FRAMEWORK OF THE EAST FLANK, COSO GEOTHERMAL FIELD: IMPLICATIONS FOR EGS

213

Fluid Inclusion Analysis At Coso Geothermal Area (2002) | Open Energy  

Open Energy Info (EERE)

) ) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Fluid Inclusion Analysis At Coso Geothermal Area (2002) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Fluid Inclusion Analysis Activity Date 2002 Usefulness useful DOE-funding Unknown Notes Analyses were averaged and plotted verses depth (Figure 4). Fluid inclusion gas analyses done on vein minerals from drill hole 68-6 that we earlier analyzed (Adams 2000) were plotted for comparison in order to confirm that similar analyses are obtained from chips and vein minerals. This comparison is far from ideal. The drill holes are better than a kilometer apart, samples analyzed in the two bore holes are not from the same depths, and the chip analyses were performed on the new dual quadrupole system that

214

Aeromagnetic Survey At Coso Geothermal Area (1977) | Open Energy  

Open Energy Info (EERE)

77) 77) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Aeromagnetic Survey Activity Date 1977 Usefulness useful regional reconnaissance DOE-funding Unknown Notes A detailed low-altitude aeromagnetic survey of 576 line-mi (927 line-km) was completed over a portion of the Coso Hot Springs KGRA. This survey defined a pronounced magnetic low that could help delineate the geothermal system that has an areal extent of approximately 10 sq mi (26 sq km) partially due to magnetite destruction by hydrothermal solutions associated with the geothermal system. The anomoly coincides with two other geophysical anomalies: 1) a bedrock electrical resistivity low and 2) an area of relatively high near-surface temperatures. References Fox, R. C. (1 May 1978) Low-altitude aeromagnetic survey of a

215

Numerical Modeling At Coso Geothermal Area (1999) | Open Energy Information  

Open Energy Info (EERE)

9) 9) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Numerical Modeling Activity Date 1999 Usefulness not indicated DOE-funding Unknown Exploration Basis To determine three-dimensional P and S waves velocity structures Notes High precision P and S wave travel times for 2104 microearthquakes with focus <6 km are used in a non-linear inversion to derive high-resolution 3-D compressional and shear velocity structures at the Coso Geothermal Area. Block size for the inversion is 0.2 km horizontally and 0.5 km vertically and inversions are investigated in the upper 5 km of the geothermal area. Spatial resolution, calculated by synthetic modeling of a cross model at critical locations, is estimated to be 0.35 km for Vp and 0.5 km for V s . In the 2 km southwest Sugarloaf region, we found low V p

216

Geothermal Literature Review At Coso Geothermal Area (1987) | Open Energy  

Open Energy Info (EERE)

7) 7) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Geothermal Literature Review Activity Date 1987 Usefulness not indicated DOE-funding Unknown Exploration Basis Compare multiple theories of the structural control of the geothermal system Notes The geothermal system appears to be associated with at least one dominant north-south-trending feature which extends several miles through the east-central portion of the Coso volcanic field. The identified producing fractures occur in zones which range from 10 - 100s of feet in extent, separated by regions of essentially unfractured rock of similar composition. Wells in the Devil's Kitchen area have encountered fluids in excess of 4500F and flow rates of 1 million lb/hr at depths less than 4000

217

Cuttings Analysis At Coso Geothermal Area (2006) | Open Energy Information  

Open Energy Info (EERE)

6) 6) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Cuttings Analysis Activity Date 2006 Usefulness not indicated DOE-funding Unknown Exploration Basis To determine the geology of Injection Well 46A-19RD Notes Well 46A-19RD, located in the southwestern portion of this field is currently the focus of a DOE-funded Enhanced Geothermal Systems (EGS) project. Petrologic and petrographic investigations of the well show that quartz diorite and granodiorite are dominant lithologies. Dikes of granophyre, containing phenocrysts of plagioclase, potassium feldspar, and quartz were encountered at approximately 1438-1457 m and 3459.5-3505.2 m. References Kovac, K.M.; Moore, J.N.; Rose, P.E.; McCulloch, J. (1 January 2006) Geology of Injection Well 46A-19RD in the Coso Enhanced Geothermal Systems

218

Coso Junction, California: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Coso Junction, California: Energy Resources Jump to: navigation, search Name Coso Junction, California Equivalent URI DBpedia GeoNames ID 5339829 Coordinates 36.0449439°, -117.9472993° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.0449439,"lon":-117.9472993,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

219

3D Magnetotelluric characterization of the COSO GeothermalField  

SciTech Connect

Knowledge of the subsurface electrical resistivity/conductivity can contribute to a better understanding of complex hydrothermal systems, typified by Coso geothermal field, through mapping the geometry (bounds and controlling structures) over existing production. Three-dimensional magnetotelluric (MT) inversion is now an emerging technology for characterizing the resistivity structures of complex geothermal systems. The method appears to hold great promise, but histories exploiting truly 3D inversion that demonstrate the advantages that can be gained by acquiring and analyzing MT data in three dimensions are still few in number. This project will address said issue, by applying 3D MT forward modeling and inversion to a MT data set acquired over the Coso geothermal field. The goal of the project is to provide the capability to image large geothermal reservoirs in a single self-consistent model. Initial analysis of the Coso MT data has been carried out using 2D MT imaging technology to construct an initial 3D resistivity model from a series of 2D resistivity images obtained using the inline electric field measurements (Zxy impedance elements) along different measurement transects. This model will be subsequently refined through a 3D inversion process. The initial 3D resistivity model clearly shows the controlling geological structures possibly influencing well production at Coso. The field data however, also show clear three dimensionality below 1 Hz, demonstrating the limitations of 2D resistivity imaging. The 3D MT predicted data arising from this starting model show good correspondence in dominant components of the impedance tensor (Zxy and Zyx) above 1Hz. Below 1 Hz there is significant differences between the field data and the 2D model data.

Newman, Gregory A.; Hoversten, Michael; Gasperikova, Erika; Wannamaker, Philip E.

2005-01-01T23:59:59.000Z

220

FTCP OPERATIONAL PLAN and Closeout Summary, FISCAL YEAR 2009  

Energy.gov (U.S. Department of Energy (DOE))

The objective of the Federal Technical Capability Program is to recruit, deploy, develop, and retain Federal personnel with the necessary technical capabilities to safely accomplish the Department's missions and responsibilities. The operational plan documents the processes and goals focused on improving the overall implementation of the Program by continuing to implement an integrated approach throughout DOE with clear roles and responsibilities and accountability to include effective line management oversight by Federal organizations.

Note: This page contains sample records for the topic "operations plan coso" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Performance improvement plan use in implementing conduct of operations  

SciTech Connect

The Nuclear Materials Processing and Waste Management and Environmental Restoration Divisions (NMPD/WMER) of the Westinghouse Savannah River Company (WSRC) operate nineteen individual facilities at Savannah River Site (SRS). These facilities produce the fuel and target assemblies for the SRS Reactors: extract Tritium, Plutonium, Uranium and other isotopes from the irradiated fuel and targets; safely store the radioactive waste from ongoing operations; and encapsulate the waste in a final waste form for long term disposal. Continuous improvement in the operation of all facilities and in the conduct of business at SRS is the goal embodied in the NMPD/WMER Performance Improvement Plan (PIP) discussed in this document. The NMPD/WMER PIP is the mechanism used to establish a basis for operations that will lead to achievement of a performance level that will meet or exceed the standards developed and used in the commercial nuclear power industry.

Baumhardt, R.J.

1992-06-01T23:59:59.000Z

222

Performance improvement plan use in implementing conduct of operations  

SciTech Connect

The Nuclear Materials Processing and Waste Management and Environmental Restoration Divisions (NMPD/WMER) of the Westinghouse Savannah River Company (WSRC) operate nineteen individual facilities at Savannah River Site (SRS). These facilities produce the fuel and target assemblies for the SRS Reactors: extract Tritium, Plutonium, Uranium and other isotopes from the irradiated fuel and targets; safely store the radioactive waste from ongoing operations; and encapsulate the waste in a final waste form for long term disposal. Continuous improvement in the operation of all facilities and in the conduct of business at SRS is the goal embodied in the NMPD/WMER Performance Improvement Plan (PIP) discussed in this document. The NMPD/WMER PIP is the mechanism used to establish a basis for operations that will lead to achievement of a performance level that will meet or exceed the standards developed and used in the commercial nuclear power industry.

Baumhardt, R.J.

1992-01-01T23:59:59.000Z

223

Workstation Configuration and Process Planning for RLW Operations  

Science Journals Connector (OSTI)

Abstract The application of Remote Laser Welding (RLW) has become an attractive assembly technology in various branches of industry, as it offers higher efficiency at lower costs compared to traditional Resistance Spot Welding (RSW) when high volumes of sheet metal assemblies are to be produced. However, the introduction of RLW technology raises multiple new issues in designing the configuration, the layout, and the behavior of the assembly system. Since configuring an RLW workstation and planning the welding process are closely interrelated problems, a hierarchical decision process must be applied where configuration and planning go hand in hand. The paper presents a hierarchical workflow for workstation configuration and process planning for RLW operations, and proposes methods for solving the decision problems related to each step of this workflow. A software toolbox is introduced that has been developed to facilitate a semi-automatic, mixed-initiative workstation design and to guide the expert user throughout the configuration, planning, programming, evaluation, and simulation of the RLW workstation. A case study from the automotive industry is presented, where the software tools developed are applied to configuring and planning the behavior of an RLW workstation that replaces RSW technology in assembling a car door.

Gbor Erd?s; Csaba Kardos; Zsolt Kemny; Andrs Kovcs; Jzsef Vncza

2014-01-01T23:59:59.000Z

224

Standard Review Plan Preparation for Facility Operations Strengthening Line Management Oversight and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Standard Review Plan Standard Review Plan Preparation for Facility Operations Strengthening Line Management Oversight and Federal Monitoring of Nuclear Facilities August 2013 2 OFFICE OF ENVIRONMENTAL MANAGEMENT Standard Review Plan (SRP) Preparation for Facility Operations Applicability CD-0 CD-1 CD-2 CD-3 CD-4 Operation Post Operation August 2013 3 Table of Contents Objective ......................................................................................................................................... 4 Requirements .................................................................................................................................. 4 Primary References ......................................................................................................................... 6

225

A gravity model for the Coso geothermal area, California | Open Energy  

Open Energy Info (EERE)

gravity model for the Coso geothermal area, California gravity model for the Coso geothermal area, California Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: A gravity model for the Coso geothermal area, California Details Activities (1) Areas (1) Regions (0) Abstract: Two- and three-dimensional gravity modeling was done using gridded Bouguer gravity data covering a 45 x 45 km region over the Coso geothermal area in an effort to identify features related to the heat source and to seek possible evidence for an underlying magma chamber. Isostatic and terrain corrected Bouguer gravity data for about 1300 gravity stations were obtained from the US Geological Survey. After the data were checked, the gravity values were gridded at 1 km centers for the area of interest centered on the Coso volcanic field. Most of the gravity

226

Teleseismic-Seismic Monitoring At Coso Geothermal Area (1983-1985) | Open  

Open Energy Info (EERE)

Coso Geothermal Area (1983-1985) Coso Geothermal Area (1983-1985) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Teleseismic-Seismic Monitoring At Coso Geothermal Area (1983-1985) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Teleseismic-Seismic Monitoring Activity Date 1983 - 1985 Usefulness not indicated DOE-funding Unknown Exploration Basis To study anomalous shear wave attenuation in the shallow crust Notes V s and V p wave amplitudes were measured from vertical component seismograms of earthquakes that occurred in the Coso-southern Sierra Nevada region from July 1983 to 1985. Seismograms of 16 small earthquakes show SV amplitudes which are greatly diminished at some azimuths and takeoff angles, indicating strong lateral variations in S wave attenuation in the

227

Teleseismic-Seismic Monitoring At Coso Geothermal Area (2005) | Open Energy  

Open Energy Info (EERE)

Coso Geothermal Area (2005) Coso Geothermal Area (2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Teleseismic-Seismic Monitoring At Coso Geothermal Area (2005) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Teleseismic-Seismic Monitoring Activity Date 2005 Usefulness not indicated DOE-funding Unknown Exploration Basis More detailed analysis of microearthquakes over a longer period of time Notes The permanent 18-station network of three-component digital seismometers at the seismically active Coso geothermal area, California, provides high-quality microearthquake (MEQ) data that are well suited to investigating temporal variations in structure related to processes within the geothermal reservoir. A preliminary study (Julian, et al. 2003; Julian

228

Three-dimensional anatomy of a geothermal field, Coso, Southeast-Central  

Open Energy Info (EERE)

anatomy of a geothermal field, Coso, Southeast-Central anatomy of a geothermal field, Coso, Southeast-Central California Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Book: Three-dimensional anatomy of a geothermal field, Coso, Southeast-Central California Details Activities (1) Areas (1) Regions (0) Abstract: This paper reviews geophysical and seismological imaging in the Coso geothermal field, located in southeast-central California. The Coso geothermal production area covers approximately 6X10 km 2 . Although regional seismicity is addressed, as it sheds light on the magma, or heat, sources in the field, the primary focus of this paper is on the main production area. Three-dimensional inversions for P- and S- wave velocity variations, distribution of attenuation, and anisotropy are presented side-by-side so that anomalies can be compared spatially in a direct

229

Modeling-Computer Simulations At Coso Geothermal Area (1980) | Open Energy  

Open Energy Info (EERE)

Modeling-Computer Simulations At Coso Geothermal Area (1980) Modeling-Computer Simulations At Coso Geothermal Area (1980) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Coso Geothermal Area (1980) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Modeling-Computer Simulations Activity Date 1980 Usefulness useful DOE-funding Unknown Exploration Basis Estimate thermal regime and potential of the system Notes A three-dimensional generalized linear inversion of the delta t* observations was performed using a three-layer model. A shallow zone of high attenuation exists within the upper 5 km in a region bounded by Coso Hot Springs, Devils Kitchen, and Sugarloaf Mountain probably corresponding to a shallow vapor liquid mixture or "lossy" near surface lithology.

230

Direct-Current Resistivity Survey At Coso Geothermal Area (1977) | Open  

Open Energy Info (EERE)

Direct-Current Resistivity Survey At Coso Geothermal Area (1977) Direct-Current Resistivity Survey At Coso Geothermal Area (1977) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity Survey At Coso Geothermal Area (1977) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Direct-Current Resistivity Survey Activity Date 1977 Usefulness useful regional reconnaissance DOE-funding Unknown Exploration Basis To investigate electrical properties of rocks associated with thermal phenomena of the Devil's Kitchen-Coso Hot Springs area Notes DC resistivity geophysical surveys determined that the secondary low in the geothermal area, best defined by the 7.5-Hz AMT map and dc soundings, is caused by a shallow conductive zone (5--30 ohm m) interpreted to be

231

Teleseismic-Seismic Monitoring At Coso Geothermal Area (1998-2002) | Open  

Open Energy Info (EERE)

Teleseismic-Seismic Monitoring At Coso Geothermal Area (1998-2002) Teleseismic-Seismic Monitoring At Coso Geothermal Area (1998-2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Teleseismic-Seismic Monitoring At Coso Geothermal Area (1998-2002) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Teleseismic-Seismic Monitoring Activity Date 1998 - 2002 Usefulness not indicated DOE-funding Unknown Notes Two recent earthquake sequences near the Coso geothermal field show clear evidence of faulting along conjugate planes. Results from analyzing an earthquake sequence occurring in 1998 are presented and compared with a similar sequence that occurred in 1996. The two sequences followed mainshocks that occurred on 27 November, 1996 and 6 March, 1998. Both mainshocks ruptured approximately colocated regions of the same fault

232

Dipole-dipole resistivity survey of a portion of the Coso Hot Springs KGRA,  

Open Energy Info (EERE)

dipole resistivity survey of a portion of the Coso Hot Springs KGRA, dipole resistivity survey of a portion of the Coso Hot Springs KGRA, Inyo County, California Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Dipole-dipole resistivity survey of a portion of the Coso Hot Springs KGRA, Inyo County, California Details Activities (1) Areas (1) Regions (0) Abstract: A detailed electrical resistivity survey of 54 line-km was completed at the Coso Hot Springs KGRA in September 1977. This survey has defined a bedrock resistivity low at least 4 sq mi (10 sq km) in extent associated with the geothermal system at Coso. The boundaries of this low are generally well defined to the north and west but not as well to the south where an approximate southern limit has been determined. The bedrock resistivity low merges with an observed resistivity low over gravel fill

233

Micro-Earthquake At Coso Geothermal Area (2005) | Open Energy Information  

Open Energy Info (EERE)

5) 5) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Micro-Earthquake At Coso Area (2005) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Micro-Earthquake Activity Date 2005 Usefulness useful DOE-funding Unknown Notes Characterization of 3D Fracture Patterns at The Geysers and Coso Geothermal Reservoirs by Shear-wave Splitting, Rial, Elkibbi, Yang and Pereyra. The raw data for the project consists of seismographic recordings of microearthquakes (MEQ) detected over many years by arrays of sensors at both The Geysers and Coso. References Patrick Laney (2005) Federal Geothermal Research Program Update - Fiscal Year 2004 Retrieved from "http://en.openei.org/w/index.php?title=Micro-Earthquake_At_Coso_Geothermal_Area_(2005)&oldid=475476"

234

Thermal And-Or Near Infrared At Coso Geothermal Area (2009) | Open Energy  

Open Energy Info (EERE)

And-Or Near Infrared At Coso Geothermal Area (2009) And-Or Near Infrared At Coso Geothermal Area (2009) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal And-Or Near Infrared At Coso Geothermal Area (2009) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Thermal And-Or Near Infrared Activity Date 2009 Usefulness useful DOE-funding Unknown Exploration Basis Determine the importance of elevation and temperature inversions using thermal infrared satellite images Notes Examples of nighttime temperature inversions are shown in thermal infrared satellite images collected over the Coso geothermal field in eastern California. Temperature-elevation plots show the normal trend of temperature decrease with elevation, on which temperature inversions appear

235

DC Resistivity Survey (Dipole-Dipole Array) At Coso Geothermal Area (1977)  

Open Energy Info (EERE)

Dipole Array) At Coso Geothermal Area (1977) Dipole Array) At Coso Geothermal Area (1977) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: DC Resistivity Survey (Dipole-Dipole Array) At Coso Geothermal Area (1977) Exploration Activity Details Location Coso Geothermal Area Exploration Technique DC Resistivity Survey (Dipole-Dipole Array) Activity Date 1977 Usefulness useful regional reconnaissance DOE-funding Unknown Notes Detailed electrical resistivity survey for a 54 line-km. This survey has defined a bedrock resistivity low at least 4 sq mi (10 sq km) in extent; survey data indicate that a 10 to 20 ohm-meter zone extends from near surface to a depth greater than 750 meters. References Fox, R. C. (1 May 1978) Dipole-dipole resistivity survey of a portion of the Coso Hot Springs KGRA, Inyo County, California

236

Data Acquisition-Manipulation At Coso Geothermal Area (1980) | Open Energy  

Open Energy Info (EERE)

Data Acquisition-Manipulation At Coso Geothermal Area (1980) Data Acquisition-Manipulation At Coso Geothermal Area (1980) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Data Acquisition-Manipulation At Coso Geothermal Area (1980) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Data Acquisition-Manipulation Activity Date 1980 Usefulness useful DOE-funding Unknown Exploration Basis Fault mapping in geothermal area to determine the seismicity of the Coso Range Notes The rhyolite field has a significantly higher b value of 1.26 +- 0.16; if only the shallow events (depth <5 km) are used in the calculation, the b value for this area becomes even higher, 1.34 +- 0.24. The higher b values were interpreted as reflecting the existence of short average fault lengths

237

Three-dimensional V p /V s variations for the Coso region, California |  

Open Energy Info (EERE)

p /V s variations for the Coso region, California p /V s variations for the Coso region, California Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Three-dimensional V p /V s variations for the Coso region, California Details Activities (1) Areas (1) Regions (0) Abstract: Recent seismological studies of the Coso region of southeastern California document both low P wave velocities and abnormal SV attenuation in Indian Wells Valley, south of the Pleistocene volcanics of the Coso Range. In order to learn more about the physical nature of these colocated anomalies, a tomographic inversion for the three-dimensional variations of Vp /Vs the ratio of compressional to shear velocity was performed. Iterative back projection of 2966 shear and compressional wave travel time residuals from local earthquakes recorded on vertical instruments reveals

238

Teleseismic-Seismic Monitoring At Coso Geothermal Area (2006) | Open Energy  

Open Energy Info (EERE)

Coso Geothermal Area (2006) Coso Geothermal Area (2006) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Teleseismic-Seismic Monitoring At Coso Geothermal Area (2006) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Teleseismic-Seismic Monitoring Activity Date 2006 Usefulness useful DOE-funding Unknown Exploration Basis To assess the benefits of surface seismic surveys Notes Different migration procedures were applied to image a synthetic reservoir model and seismic data. After carefully preprocessing seismic data, the 2-D and 2.5-D pre-stack depth migration of line 109 in the Coso Geothermal Field shows a well defined reflector at about 16,000 ft depth. Compared to the 2-D pre-stack migrated image, the 2.5-D pre-stack migrated image

239

Fluid Inclusion Analysis At Coso Geothermal Area (Norman & Moore, 2004) |  

Open Energy Info (EERE)

Fluid Inclusion Analysis At Coso Geothermal Area (Norman & Moore, 2004) Fluid Inclusion Analysis At Coso Geothermal Area (Norman & Moore, 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Fluid Inclusion Analysis At Coso Geothermal Area (Norman & Moore, 2004) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Fluid Inclusion Analysis Activity Date 2004 Usefulness useful DOE-funding Unknown Exploration Basis To determine effectiveness of FIS for geothermal exploration Notes In order to test FIS for geothermal exploration, drill chips were analyzed from Coso well 83-16, which were selected at 1000 ft intervals by Joseph Moore. Sequential crushes done by our CFS (crushfast-scan) method (Norman 1996) show that chips have a high density of homogeneous fluid inclusions.

240

P wave velocity variations in the Coso region, California, derived from  

Open Energy Info (EERE)

P wave velocity variations in the Coso region, California, derived from P wave velocity variations in the Coso region, California, derived from local earthquake travel times Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: P wave velocity variations in the Coso region, California, derived from local earthquake travel times Details Activities (1) Areas (1) Regions (0) Abstract: Inversion of 4036 P wave travel time residuals from 429 local earthquakes using a tomographic scheme provides information about three-dimensional upper crustal velocity variations in the Indian Wells Valley-Coso region of southeastern California. The residuals are calculated relative to a Coso-specific velocity model, corrected for station elevation, weighted, and back-projected along their ray paths through models defined with layers of blocks. Slowness variations in the surface

Note: This page contains sample records for the topic "operations plan coso" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Anomalous shear wave attenuation in the shallow crust beneath the Coso  

Open Energy Info (EERE)

Anomalous shear wave attenuation in the shallow crust beneath the Coso Anomalous shear wave attenuation in the shallow crust beneath the Coso volcanic region, California Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Anomalous shear wave attenuation in the shallow crust beneath the Coso volcanic region, California Details Activities (1) Areas (1) Regions (0) Abstract: We use seismograms of local earthquakes to image relative shear wave attenuation structure in the shallow crust beneath the region containing the Coso volcanic-geothermal area of eastern California. SV and P wave amplitudes were measured from vertical component seismograms of earthquakes that occurred in the Coso-southern Sierra Nevada region from July 1983 to 1985. Seismograms of 16 small earthquakes show SV amplitudes which are greatly diminished at some azimuths and takeoff angles,

242

FTCP OPERATIONAL PLAN and Summary, FISCAL YEAR 2010 | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

OPERATIONAL PLAN and Summary, FISCAL YEAR 2010 OPERATIONAL PLAN and Summary, FISCAL YEAR 2010 FTCP OPERATIONAL PLAN and Summary, FISCAL YEAR 2010 The objective of the Federal Technical Capability Program is to recruit, deploy, develop, and retain Federal personnel with the necessary technical capabilities to safely accomplish the Department's missions and responsibilities. The operational plan documents the processes and goals focused on improving the overall implementation of the Program by continuing to implement an integrated approach throughout DOE with clear roles and responsibilities and accountability to include effective line management oversight by Federal organizations. FY2010 Operational Plan FY2010 Operational Plan - Goal 1 Summary FY2010 Operational Plan - Goal 2 Summary FY2010 Operational Plan - Goal 3 Summary

243

Hazardous-waste analysis plan for LLNL operations  

SciTech Connect

The Lawrence Livermore National Laboratory is involved in many facets of research ranging from nuclear weapons research to advanced Biomedical studies. Approximately 80% of all programs at LLNL generate hazardous waste in one form or another. Aside from producing waste from industrial type operations (oils, solvents, bottom sludges, etc.) many unique and toxic wastes are generated such as phosgene, dioxin (TCDD), radioactive wastes and high explosives. One key to any successful waste management program must address the following: proper identification of the waste, safe handling procedures and proper storage containers and areas. This section of the Waste Management Plan will address methodologies used for the Analysis of Hazardous Waste. In addition to the wastes defined in 40 CFR 261, LLNL and Site 300 also generate radioactive waste not specifically covered by RCRA. However, for completeness, the Waste Analysis Plan will address all hazardous waste.

Roberts, R.S.

1982-02-12T23:59:59.000Z

244

PROJECT MANGEMENT PLAN EXAMPLES Policy & Operational Decisions, Assumptions  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Policy & Operational Decisions, Assumptions Policy & Operational Decisions, Assumptions and Strategies Examples 1 & 2 Example 1 1.0 Summary The 322-M Metallurgical Laboratory is currently categorized as a Radiological Facility. It is inactive with no future DOE mission. In May of 1998 it was ranked Number 45 in the Inactive Facilities Risk Ranking database which the Facilities Decommissioning Division maintains. A short-term surveillance and maintenance program is in-place while the facility awaits final deactivation. Completion of the end points described in this deactivation project plan will place the 322-M facility into an End State that can be described as "cold and dark". The facility will be made passively safe requiring minimal surveillance and no scheduled maintenance.

245

Cuttings Analysis At Coso Geothermal Area (1985-1987) | Open Energy  

Open Energy Info (EERE)

5-1987) 5-1987) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Cuttings Analysis At Coso Geothermal Area (1985-1987) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Cuttings Analysis Activity Date 1985 - 1987 Usefulness useful DOE-funding Unknown Exploration Basis Analyze an indicator of high permeability zones within a geothermal field Notes Petrographic and geochemical analyses of cuttings from six wells in the Coso Hot Springs geothermal field show a systematic variation in the occurrence, texture, and composition of sericite that can be correlated with high permeability production zones and temperature. The wells studied intersect rhyolitic dikes and sills in the fractured granitic and dioritic

246

Micro-Earthquake At Coso Geothermal Area (2011) | Open Energy Information  

Open Energy Info (EERE)

) ) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Micro-Earthquake At Coso Geothermal Area (2011) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Micro-Earthquake Activity Date 2011 Usefulness not indicated DOE-funding Unknown Exploration Basis To analyze temporal velocity variations Notes Microseismic data recorded between 1996 and 2008 was used to determine the temporally varying seismic velocity of the Coso geothermal field. In this study, the double difference tomography method was applied to simultaneously locate a suite of microseismic events and determine the compressional and shear wave velocity as well as their ratio. References Seher, T.; Zhang, H.; Fehler, M.; Yu, H.; Soukhovitskaya, V.;

247

HEMP emergency planning and operating procedures for electric power systems  

SciTech Connect

Investigations of the impact of high-altitude electromagnetic pulse (HEMP) on electric power systems and electrical equipment have revealed that HEMP creates both misoperation and failures. These events result from both the early time E[sub 1] (steep-front pulse) component and the late time E[sub 3] (geomagnetic perturbations) component of HEMP. In this report a HEMP event is viewed in terms of its marginal impact over classical power system disturbances by considering the unique properties and consequences of HEMP. This report focuses on system-wide electrical component failures and their potential consequences from HEMP. In particular, the effectiveness of planning and operating procedures for electric systems is evaluated while under the influence of HEMP. This assessment relies on published data and characterizes utilities using the North American Electric Reliability Council's regions and guidelines to model electric power system planning and operations. Key issues addressed by the report include how electric power systems are affected by HEMP and what actions electric utilities can initiate to reduce the consequences of HEMP. The report also reviews the salient features of earlier HEMP studies and projects, examines technology trends in the electric power industry which are affected by HEMP, characterizes the vulnerability of power systems to HEMP, and explores the capability of electric systems to recover from a HEMP event.

Reddoch, T.W.; Markel, L.C. (Electrotek Concepts, Inc., Knoxville, TN (United States))

1991-01-01T23:59:59.000Z

248

Smart microgrid operational planning considering multiple demand response programs  

Science Journals Connector (OSTI)

Microgrid (MG) is one of the important blocks in the future smart distribution systems. The scheduling pattern of MGs affects distribution system operation. Also the optimal scheduling of MGs will result in reliable and economical operation of distribution system. In this paper an operational planning model of a MG which considers multiple demand response programs is proposed. In the proposed approach all types of loads can participate in demand response programs which will be considered in either energy or reserve scheduling. Also the renewable distributed generation uncertainty is covered by reserve provided by both Distributed Generations (DGs) and responsive loads. The novelty of this paper is the demand side participation in energy and reserve scheduling simultaneously. Furthermore the energy and reserve scheduling is proposed for day-ahead and real-time. The proposed model was tested on a typical MG system and the results show that running demand response programs will reduce total operation cost of MG and cause more efficient use of resources.

Alireza Zakariazadeh; Shahram Jadid

2014-01-01T23:59:59.000Z

249

Optimal Planning and Operation of Smart Grids with Electric Vehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

Planning and Operation of Smart Grids with Electric Vehicle Planning and Operation of Smart Grids with Electric Vehicle Interconnection Title Optimal Planning and Operation of Smart Grids with Electric Vehicle Interconnection Publication Type Journal Article Refereed Designation Refereed LBNL Report Number LBNL-5251E Year of Publication 2012 Authors Stadler, Michael, Chris Marnay, Maximillian Kloess, Gonçalo Cardoso, Gonçalo Mendes, Afzal S. Siddiqui, Ratnesh Sharma, Olivier Mégel, and Judy Lai Journal Journal of Energy Engineering, American Society of Civil Engineers (ASCE): Special Issue: Challenges and opportunities in the 21st century energy infrastructure Volume 138 Issue 2 Date Published 06/2012 Abstract Connection of electric storage technologies to smartgrids will have substantial implications for building energy systems. Local storage will enable demand response. When connected to buildings, mobile storage devices such as electric vehicles (EVs) are in competition with conventional stationary sources at the building. EVs can change the financial as well as environmental attractiveness of on-site generation (e.g. PV or fuel cells). In order to examine the impact of EVs on building energy costs and CO2 emissions, a distributed-energy-resources adoption problem is formulated as a mixed-integer linear program with minimization of annual building energy costs or CO2 emissions and solved for 2020 technology assumptions. The mixed-integer linear program is applied to a set of 139 different commercial buildings in California and example results as well as the aggregated economic and environmental benefits are reported. Special constraints for the available PV, solar thermal, and EV parking lots at the commercial buildings are considered. The research shows that EV batteries can be used to reduce utility-related energy costs at the smart grid or commercial building due to arbitrage of energy between buildings with different tariffs. However, putting more emphasis on CO2 emissions makes stationary storage more attractive and stationary storage capacities increase while the attractiveness of EVs decreases. The limited availability of EVs at the commercial building decreases the attractiveness of EVs and if PV is chosen by the optimization, then it is mostly used to charge the stationary storage at the commercial building and not the EVs connected to the building.

250

Optimal Planning and Scheduling of Offshore Oil Field Infrastructure Investment and Operations  

Science Journals Connector (OSTI)

Optimal Planning and Scheduling of Offshore Oil Field Infrastructure Investment and Operations ... A multiperiod mixed-integer linear programming (MILP) model formulation is presented for the planning and scheduling of investment and operation in offshore oil field facilities. ... An Efficient Multiperiod MINLP Model for Optimal Planning of Offshore Oil and Gas Field Infrastructure ...

R. R. Iyer; I. E. Grossmann; S. Vasantharajan; A. S. Cullick

1998-03-13T23:59:59.000Z

251

TRACING FLUID SOURCES IN THE COSO GEOTHERMAL SYSTEM USING FLUID-INCLUSION  

Open Energy Info (EERE)

TRACING FLUID SOURCES IN THE COSO GEOTHERMAL SYSTEM USING FLUID-INCLUSION TRACING FLUID SOURCES IN THE COSO GEOTHERMAL SYSTEM USING FLUID-INCLUSION GAS CHEMISTRY Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: TRACING FLUID SOURCES IN THE COSO GEOTHERMAL SYSTEM USING FLUID-INCLUSION GAS CHEMISTRY Details Activities (1) Areas (1) Regions (0) Abstract: Vein and alteration assemblages from eight Coso wells have been collected and their fluid-inclusion gases analyzed by quadrupole mass spectrometry. Four major types of alteration were sampled: 1) young calcite-hematite-pyrite veins; 2) wairakite or epidote veins and alteration that are spatially associated with deep reservoirs in the main field and eastern wells; 3) older sericite and pyrite wallrock alteration; and 4) stilbite-calcite veins that are common in cooler or marginal portions of

252

40AR/39AR THERMAL HISTORY OF THE COSO GEOTHERMAL FIELD | Open Energy  

Open Energy Info (EERE)

AR/39AR THERMAL HISTORY OF THE COSO GEOTHERMAL FIELD AR/39AR THERMAL HISTORY OF THE COSO GEOTHERMAL FIELD Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: 40AR/39AR THERMAL HISTORY OF THE COSO GEOTHERMAL FIELD Details Activities (1) Areas (1) Regions (0) Abstract: The age of the geothermal system and the granitic host rock at Coso geothermal system in California is poorly known. This is mainly due to a paucity of vein-type minerals (e.g. adularia, sericite) that can be directly dated. A downhole 40Ar/39Ar thermochronology study of granitic host-rock Kfeldspar is presently being undertaken at the New Mexico Geochronology Research Laboratory at New Mexico Tech. The technique couples the measurement of argon loss from K-feldspar and knowledge of the diffusion parameters of transport in K-feldspar to estimate the longevity

253

Low-altitude aeromagnetic survey of a portion of the Coso Hot Springs KGRA,  

Open Energy Info (EERE)

altitude aeromagnetic survey of a portion of the Coso Hot Springs KGRA, altitude aeromagnetic survey of a portion of the Coso Hot Springs KGRA, Inyo County, California Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Low-altitude aeromagnetic survey of a portion of the Coso Hot Springs KGRA, Inyo County, California Details Activities (1) Areas (1) Regions (0) Abstract: A detailed low-altitude aeromagnetic survey of 576 line-mi (927 line-km) was completed over a portion of the Coso Hot Springs KGRA in September 1977. The survey has defined a pronounced magnetic low that could help delineate the geothermal system. The magnetic low has an areal extent of approximately 10 sq mi (26 sq km). Direct and indirect evidence indicates that this anomaly is due, in part, to magnetite destruction by hydrothermal solutions associated with the geothermal system. The anomaly

254

CRUSTAL STRESS HETEROGENEITY IN THE VICINITY OF COSO GEOTHERMAL FIELD, CA |  

Open Energy Info (EERE)

CRUSTAL STRESS HETEROGENEITY IN THE VICINITY OF COSO GEOTHERMAL FIELD, CA CRUSTAL STRESS HETEROGENEITY IN THE VICINITY OF COSO GEOTHERMAL FIELD, CA Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: CRUSTAL STRESS HETEROGENEITY IN THE VICINITY OF COSO GEOTHERMAL FIELD, CA Details Activities (1) Areas (1) Regions (0) Abstract: Borehole induced structures in image logs of wells from the Coso Geothermal Field (CGF), CA record variation in the azimuth of principal stress. Image logs of these structures from five wells were analyzed to quantify the stress heterogeneity for three geologically distinct locations: two wells within the CGF (one in an actively produced volume), two on the margin of the CGF and outside the production area, and a control well several tens of kilometers south of the CGF. Average directions of

255

Teleseismic-Seismic Monitoring At Coso Geothermal Area (1988) | Open Energy  

Open Energy Info (EERE)

Coso Geothermal Coso Geothermal Area (1988) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Teleseismic-Seismic Monitoring Activity Date 1988 Usefulness useful DOE-funding Unknown Exploration Basis To analyze three-dimensional Vp/Vs variation Notes A tomographic inversion for the 3D variations of the Vp/V s, the ratio of compressional to shear velocity, was performed. Iterative back projection of 2966 shear and compressional wave travel time residuals from local earthquakes recorded on vertical instruments reveals that Vp/Vs is generally high at the surface and decreases systematically to 10 km depth. Near Devil's Kitchen in the Coso Geothermal Area, Vp/Vs values are very low near the surface, consistent with measured values for steam-dominated

256

InSAR At Coso Geothermal Area (2000) | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » InSAR At Coso Geothermal Area (2000) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: InSAR At Coso Geothermal Area (2000) Exploration Activity Details Location Coso Geothermal Area Exploration Technique InSAR Activity Date 2000 Usefulness useful DOE-funding Unknown Exploration Basis To determine ground subsidence using satellite radar interferometry Notes Interferometric synthetic aperture radar (InSAR) data collected in the Coso geothermal area, eastern California, during 1993-1999 indicate ground subsidence over a approximately 50 km 2 region that approximately coincides

257

Remote sensing survey of the Coso geothermal area, Inyo county, California.  

Open Energy Info (EERE)

sensing survey of the Coso geothermal area, Inyo county, California. sensing survey of the Coso geothermal area, Inyo county, California. Technical publication 1968--1971 Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Remote sensing survey of the Coso geothermal area, Inyo county, California. Technical publication 1968--1971 Details Activities (4) Areas (1) Regions (0) Abstract: The Coso geothermal area, located primarily within the test ranges of the Naval Weapons Center, China Lake, Calif., is an area of granitic rock exposure and fracture-controlled explosion breccias and perlitic domes. Fumarolic and hot springs activity are present at scattered locations. Remote sensing studies were made that included color and color IR photography, 8- to 14-micrometer IR imagery, and snowmelt patterns. Color photography and snowmelt patterns were of greatest utility in

258

Static downhole characteristics of well CGEH-1 at Coso Hot Springs, China  

Open Energy Info (EERE)

downhole characteristics of well CGEH-1 at Coso Hot Springs, China downhole characteristics of well CGEH-1 at Coso Hot Springs, China Lake, California Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Static downhole characteristics of well CGEH-1 at Coso Hot Springs, China Lake, California Details Activities (5) Areas (1) Regions (0) Abstract: A series of measurements was made in the exploratory well CGEH-1 at Coso Hot Springs. The temperature measurements provide estimates for the thermal equilibration of the well and indicate that the fractures intersecting the well have different temperatures. The hottest fractures are in the upper-cased portion of the well. Downhole chemical sampling suggests that the borehole still contains remnants of drilling materials. The well has never been extensively flowed at this time.

259

IN SITU STRESS, FRACTURE AND FLUID FLOW ANALYSIS-EAST FLANK OF THE COSO  

Open Energy Info (EERE)

IN SITU STRESS, FRACTURE AND FLUID FLOW ANALYSIS-EAST FLANK OF THE COSO IN SITU STRESS, FRACTURE AND FLUID FLOW ANALYSIS-EAST FLANK OF THE COSO GEOTHERMAL FIELD Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: IN SITU STRESS, FRACTURE AND FLUID FLOW ANALYSIS-EAST FLANK OF THE COSO GEOTHERMAL FIELD Details Activities (1) Areas (1) Regions (0) Abstract: High rock temperatures, a high degree of fracturing, high tectonic stresses, and low permeability are the combination of qualities that define an ideal candidate-Enhanced Geothermal System (EGS) reservoir. The Coso Geothermal Field is an area where fluid temperatures exceeding 300°C have been measured at depths less than 10,000 feet and the reservoir is both highly fractured and tectonically stressed. Some of the wells within this portion of the reservoir are relatively impermeable,

260

Teleseismic evidence for a low-velocity body under the Coso geothermal area  

Open Energy Info (EERE)

Teleseismic evidence for a low-velocity body under the Coso geothermal area Teleseismic evidence for a low-velocity body under the Coso geothermal area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Teleseismic evidence for a low-velocity body under the Coso geothermal area Details Activities (1) Areas (1) Regions (0) Abstract: Teleseismic P wave arrivals were recorded by a dense array of seismograph stations located in the Coso geothermal area, California. The resulting pattern of relative residuals an area showing approximately 0.2-s excess travel time that migrates with changing source azimuth, suggesting that the area is the 'delay shadow' produced by a deep, low-velocity body. Inversion of the relative residual data for three-dimensional velocity structure determines the lateral variations in velocity to a depth of 22.5

Note: This page contains sample records for the topic "operations plan coso" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Coso: example of a complex geothermal reservoir. Final report, 1984-1985 |  

Open Energy Info (EERE)

Coso: example of a complex geothermal reservoir. Final report, 1984-1985 Coso: example of a complex geothermal reservoir. Final report, 1984-1985 Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Coso: example of a complex geothermal reservoir. Final report, 1984-1985 Details Activities (1) Areas (1) Regions (0) Abstract: The Coso geothermal system has been widely studied and reported by scientists through the past several years, but there is still a considerable divergence of opinion regarding the structural setting, origin, and internal structure of this energy resource. Because of accelerating exploration and development drilling that is taking place, there is a need for a reservoir model that is consistent with the limited geologic facts available regarding the area. Author(s): Austin, C.F.; Durbin, W.F.

262

The nascent Coso metamorphic core complex, east-central California, brittle  

Open Energy Info (EERE)

nascent Coso metamorphic core complex, east-central California, brittle nascent Coso metamorphic core complex, east-central California, brittle upper plate structure revealed by reflection seismic data Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: The nascent Coso metamorphic core complex, east-central California, brittle upper plate structure revealed by reflection seismic data Details Activities (1) Areas (1) Regions (0) Abstract: The relationships between upper crustal faults, the brittle-ductile transition zone, and underlying magmatic features imaged by multifold seismic reflection data are consistent with the hypothesis that the Coso geothermal field, which lies within an extensional step-over between dextral faults, is a young, actively developing metamorphic core complex. The reflection images were processed using a non-linear simulated

263

Geology and alteration of the Coso Geothermal Area, Inyo County, California  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Geology and alteration of the Coso Geothermal Area, Inyo County, California Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Geology and alteration of the Coso Geothermal Area, Inyo County, California Details Activities (1) Areas (1) Regions (0) Abstract: Geology and alteration of the Coso geothermal area were mapped in conjunction with geophysical surveys and a deep drill test (CGEH-1) to facilitate selection of a follow-up drill site. The oldest rocks exposed at Coso are intermediate to mafic metamorphic rocks of uncertain age intruded by dikes and pods of quartz latite porphyry and felsite, and by a small

264

Geology of Injection Well 46A-19RD in the Coso Enhanced Geothermal Systems  

Open Energy Info (EERE)

of Injection Well 46A-19RD in the Coso Enhanced Geothermal Systems of Injection Well 46A-19RD in the Coso Enhanced Geothermal Systems Experiment Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: Geology of Injection Well 46A-19RD in the Coso Enhanced Geothermal Systems Experiment Details Activities (1) Areas (1) Regions (0) Abstract: The Coso Geothermal Field is a large, high temperature system located in California on the western edge of the Basin and Range province. Well 46A-19RD, located in the southwestern portion of this field is currently the focus of a DOE-funded Enhanced Geothermal Systems (EGS) project. Petrologic and petrographic investigations of the well show that quartz diorite and granodiorite are dominant lithologies. Dikes of granophyre, containing phenocrysts of plagioclase, potassium feldspar, and

265

Heat flow determinations and implied thermal regime of the Coso geothermal  

Open Energy Info (EERE)

determinations and implied thermal regime of the Coso geothermal determinations and implied thermal regime of the Coso geothermal area, California Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: Heat flow determinations and implied thermal regime of the Coso geothermal area, California Details Activities (1) Areas (1) Regions (0) Abstract: Obvious surface manifestations of an anomalous concentration of geothermal energy at the Coso Geothermal Area, California, include fumarolic activity, active hot springs, and associated hydrothermally altered rocks. Abundant Pleistocene volcanic rocks, including a cluster of thirty-seven rhyolite domes, occupy a north-trending structural and topographic ridge near the center of an oval-shaped zone of late Cenozoic ring faulting. In an investigation of the thermal regime of the geothermal

266

2-M Probe Survey At Coso Geothermal Area (1977) | Open Energy Information  

Open Energy Info (EERE)

7) 7) Exploration Activity Details Location Coso Geothermal Area Exploration Technique 2-M Probe Survey Activity Date 1977 Usefulness useful DOE-funding Unknown Exploration Basis Compare directly shallow temperature results with standard geothermal exploration techniques. Notes Shallow soil temperature data (2m) were collected at 102 sites at Coso. Close geometrical similarity between the shallow soil temperature has been observed with the 30-m contour data for Coso using computer program. References Leschack, L. A.; Lewis, J. E.; Chang, D. C. (1 December 1977) Rapid reconnaissance of geothermal prospects using shallow temperature surveys. Semi-annual technical report Retrieved from "http://en.openei.org/w/index.php?title=2-M_Probe_Survey_At_Coso_Geothermal_Area_(1977)&oldid=47367

267

Aerial Photography At Coso Geothermal Area (1968-1971) | Open Energy  

Open Energy Info (EERE)

1971) 1971) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Aerial Photography At Coso Geothermal Area (1968-1971) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Aerial Photography Activity Date 1968 - 1971 Usefulness useful DOE-funding Unknown Exploration Basis Fumarolic and hot springs activity Notes Color photography has the greatest utility in locating areas of presently active thermal fluid leakage and in facilitating geologic interpretation References Koenig, J.B.; Gawarecki, S.J.; Austin, C.F. (1 February 1972) Remote sensing survey of the Coso geothermal area, Inyo county, California. Technical publication 1968--1971 Retrieved from "http://en.openei.org/w/index.php?title=Aerial_Photography_At_Coso_Geothermal_Area_(1968-1971)&oldid=473677"

268

Variation in sericite composition from fracture zones within the Coso Hot  

Open Energy Info (EERE)

Variation in sericite composition from fracture zones within the Coso Hot Variation in sericite composition from fracture zones within the Coso Hot Sprints geothermal system Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Variation in sericite composition from fracture zones within the Coso Hot Sprints geothermal system Details Activities (1) Areas (1) Regions (0) Abstract: Two types of white micas are found in drillhole samples within the geothermal system at Coso Hot Springs. Low-permeability zones of the crystalline basement contain coarse-grained relict muscovite, whereas rock alteration near fracture zones at temperatures > 150°C is characterized by abundant finegrained sericite in association with secondary calcite and quartz and unaltered relict microcline. In this hydrothermal sericite there

269

The Coso geothermal field: A nascent metamorphic core complex | Open Energy  

Open Energy Info (EERE)

The Coso geothermal field: A nascent metamorphic core complex The Coso geothermal field: A nascent metamorphic core complex Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: The Coso geothermal field: A nascent metamorphic core complex Abstract Investigation of the Coso Range using seismicity, gravity, and geochemistry of rocks and fluids, supports the interpretation that the structure hosting the geothermal resource is a nascent metamorphic core complex. The structural setting is a releasing bend in a dextral strike-slip system that extends from the Indian Wells Valley northward into the Owens Valley. This tectonic setting results in NW-directed transtension, which is accommodated by normal and strike-slip faulting of the brittle upper 4-6 km of the crust, and shearing and ductile stretching below this depth, accompanied by

270

Fluid Inclusion Analysis At Coso Geothermal Area (2004-2005) | Open Energy  

Open Energy Info (EERE)

Fluid Inclusion Analysis At Coso Geothermal Area (2004-2005) Fluid Inclusion Analysis At Coso Geothermal Area (2004-2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Fluid Inclusion Analysis At Coso Geothermal Area (2004-2005) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Fluid Inclusion Analysis Activity Date 2004 - 2005 Usefulness useful DOE-funding Unknown Exploration Basis Determine if fluid inclusion stratigraphy is applicable to geothermal Notes Fluid Inclusion Stratigraphy (FIS) is a new technique developed for the oil industry in order to map borehole fluids.Fluid inclusion gas geochemistry is analyzed and plotted on well log diagrams. The working hypothesis is that select gaseous species and species ratios indicate areas of groundwater and reservoir fluid flow and reservoir seals. Analyses from

271

Micro-Earthquake At Coso Geothermal Area (1987) | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Micro-Earthquake At Coso Geothermal Area (1987) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Micro-Earthquake Activity Date 1987 Usefulness not indicated DOE-funding Unknown Exploration Basis Analysis was done to link the zones of decreased P velocity to contemporary magmatic activity Notes Inversion of 4036 P wave travel time residuals from 429 local earthquakes using a tomographic scheme provides information about 3D upper crustal velocity variations in the Indian Wells Valley-Coso region of southeastern CA. The residuals are calculated relative to a Coso-specific velocity model, corrected for station elevation, weighted, and back-projected along

272

Modeling-Computer Simulations At Coso Geothermal Area (2000) | Open Energy  

Open Energy Info (EERE)

Modeling-Computer Simulations At Coso Geothermal Area (2000) Modeling-Computer Simulations At Coso Geothermal Area (2000) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Coso Geothermal Area (2000) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Modeling-Computer Simulations Activity Date 2000 Usefulness not indicated DOE-funding Unknown Exploration Basis Model ground subsidence using observations of satellite radar interferometry Notes The InSAR displacement data was inverted for the positions, geometry, and relative strengths of the deformation sources at depth using a nonlinear least squares minimization algorithm. Elastic solutions were used for a prolate uniformly pressurized spheroidal cavity in a semi-infinite body as

273

Scattering from a fault interface in the Coso geothermal field | Open  

Open Energy Info (EERE)

Scattering from a fault interface in the Coso geothermal field Scattering from a fault interface in the Coso geothermal field Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Scattering from a fault interface in the Coso geothermal field Details Activities (1) Areas (1) Regions (0) Abstract: Large-amplitude, secondary arrivals are modeled as scattering anomalies near the Coso, California, geothermal field. Polarization and ray tracing methods determine the orientation and location of the scattering body. Two models are proposed for the scatterer: (1) a point scatterer located anywhere in a one-dimensional (1-D), layered velocity model; and (2) a dipping interface between two homogeneous half spaces. Each model is derived by non-linear, grid search inversion for the optimal solution which best predicts observed travel times. In each case the models predict a

274

USE OF ADVANCED DATA PROCESSING TECHNIQUES IN THE IMAGING OF THE COSO  

Open Energy Info (EERE)

USE OF ADVANCED DATA PROCESSING TECHNIQUES IN THE IMAGING OF THE COSO USE OF ADVANCED DATA PROCESSING TECHNIQUES IN THE IMAGING OF THE COSO GEOTHERMAL FIELD Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: USE OF ADVANCED DATA PROCESSING TECHNIQUES IN THE IMAGING OF THE COSO GEOTHERMAL FIELD Details Activities (1) Areas (1) Regions (0) Abstract: During December of 1999, approximately 32 miles of seismic data were acquired within the Coso Geothermal Field, Inyo County, California, as part of a detailed seismic investigation undertaken by the US Navy Geothermal Program Office. Data acquisition was designed to make effective use of advanced data processing methods, which include Optim's proprietary nonlinear velocity optimization technique and pre-stack Kirchhoff migration. The nonlinear optimization technique is used to obtain high

275

Flow Test At Coso Geothermal Area (1985-1986) | Open Energy Information  

Open Energy Info (EERE)

Flow Test At Coso Geothermal Area (1985-1986) Flow Test At Coso Geothermal Area (1985-1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Coso Geothermal Area (1985-1986) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Flow Test Activity Date 1985 - 1986 Usefulness not indicated DOE-funding Unknown Exploration Basis Understand the connectivity of the production and injection wells. Notes A long-term flow test was conducted involving one producing well (well 43-7), one injector (well 88-1), and two observation wells (well 66-6 and California Energy Co's well 71A-7). The flow test included a well production metering system and a water injection metering system. References Sanyal, S.; Menzies, A.; Granados, E.; Sugine, S.; Gentner, R.

276

Long-Term Testing of Geothermal Wells in the Coso Hot Springs KGRA | Open  

Open Energy Info (EERE)

Long-Term Testing of Geothermal Wells in the Coso Hot Springs KGRA Long-Term Testing of Geothermal Wells in the Coso Hot Springs KGRA Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: Long-Term Testing of Geothermal Wells in the Coso Hot Springs KGRA Details Activities (3) Areas (2) Regions (0) Abstract: Three wells have been drilled by the Los Angeles Department of Water and Power at the Coso Hot Springs KGRA. A long-term flow test was conducted involving one producing well (well 43-7), one injector (well 88-1), and two observation wells (well 66-6 and California Energy Co's well 71A-7). This paper presents the equipment and techniques involved and the results from the long-term test conducted between December 1985 and February 1986. Author(s): Sanyal, S.; Menzies, A.; Granados, E.; Sugine, S.;

277

Micro-Earthquake At Coso Geothermal Area (1974) | Open Energy Information  

Open Energy Info (EERE)

Coso Geothermal Area (1974) Coso Geothermal Area (1974) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Micro-Earthquake Activity Date 1974 Usefulness useful DOE-funding Unknown Exploration Basis To determine the background level of seismicity before any drilling related to production takes place. Notes Two different arrays of portable high-gain seismographs were installed- measurements taken over thirty three days; completed 9 calibration blasts. The microearthquake activity changed considerably including days which had only a few events while others had as many as 100 or more distinct local events; more than two thousand events with S-P times of less than three seconds were detected; observed low value for Poisson's ratio which indicated that the Coso geothermal system is a vapor-dominated system

278

NEW SEISMIC IMAGING OF THE COSO GEOTHERMAL FIELD, EASTERN CALIFORNIA | Open  

Open Energy Info (EERE)

NEW SEISMIC IMAGING OF THE COSO GEOTHERMAL FIELD, EASTERN CALIFORNIA NEW SEISMIC IMAGING OF THE COSO GEOTHERMAL FIELD, EASTERN CALIFORNIA Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: NEW SEISMIC IMAGING OF THE COSO GEOTHERMAL FIELD, EASTERN CALIFORNIA Details Activities (1) Areas (1) Regions (0) Abstract: New multifold seismic reflection data from the central Coso Range, eastern California, image brittle faults and other structures in Mesozoic crystalline rocks that host a producing geothermal field. The reflection data were processed in two steps that incorporate new seismic imaging methods: (1) Pwave first arrivals in the seismic data were inverted for subsurface acoustic velocities using a non-linear simulated annealing approach; and (2) 2-D Velocity tomograms obtained from the inversions were

279

GEOLOGY AND MINERAL PARAGENESIS STUDY WITHIN THE COSO-EGS PROJECT | Open  

Open Energy Info (EERE)

MINERAL PARAGENESIS STUDY WITHIN THE COSO-EGS PROJECT MINERAL PARAGENESIS STUDY WITHIN THE COSO-EGS PROJECT Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: GEOLOGY AND MINERAL PARAGENESIS STUDY WITHIN THE COSO-EGS PROJECT Details Activities (1) Areas (1) Regions (0) Abstract: The Coso Geothermal Field is a large, high temperature system located in California on the western edge of the Basin and Range province. The East Flank of this field is currently under study as a DOE-funded Enhanced Geothermal Systems project. The reservoir rocks generally consist of a complex, interfingering sequence of diorite, granodiorite, and granite. The diorites show weak to strong alteration representing multiple hydrothermal events. The work described here was undertaken to evaluate the geology and thermal history of the East Flank, in order to better

280

P wave anisotropy, stress, and crack distribution at Coso geothermal field,  

Open Energy Info (EERE)

wave anisotropy, stress, and crack distribution at Coso geothermal field, wave anisotropy, stress, and crack distribution at Coso geothermal field, California Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: P wave anisotropy, stress, and crack distribution at Coso geothermal field, California Details Activities (1) Areas (1) Regions (0) Abstract: A new inversion method for P wave anisotropy (Wu and Lees, 1999a) has been applied to high-precision, microseismic traveltime data collected at Coso geothermal region, California. Direction-dependent P wave velocity and thus its perturbation, are represented by a symmetric positive definite matrix A instead of a scalar. The resulting anisotropy distribution is used to estimate variations in crack density, stress distribution and permeability within the producing geothermal field. A circular dome-like

Note: This page contains sample records for the topic "operations plan coso" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Three-dimensional P and S waves velocity structures of the Coso geothermal  

Open Energy Info (EERE)

P and S waves velocity structures of the Coso geothermal P and S waves velocity structures of the Coso geothermal area, California, from microseismic travel time data Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Three-dimensional P and S waves velocity structures of the Coso geothermal area, California, from microseismic travel time data Details Activities (1) Areas (1) Regions (0) Abstract: High precision P and S wave travel times for 2104 microearthquakes with focus <6 km are used in a non-linear inversion to derive high-resolution three-dimensional compressional and shear velocity structures at the Coso Geothermal Area in eastern California. Block size for the inversion is 0.2 km horizontally and 0.5 km vertically and inversions are investigated in the upper 5 km of the geothermal area.

282

Variations in dissolved gas compositions of reservoir fluids from the Coso  

Open Energy Info (EERE)

Variations in dissolved gas compositions of reservoir fluids from the Coso Variations in dissolved gas compositions of reservoir fluids from the Coso geothermal field Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: Variations in dissolved gas compositions of reservoir fluids from the Coso geothermal field Details Activities (1) Areas (1) Regions (0) Abstract: Gas concentrations and ratios in 110 analyses of geothermal fluids from 47 wells in the Coso geothermal system illustrate the complexity of this two-phase reservoir in its natural state. Two geographically distinct regions of single-phase (liquid) reservoir are present and possess distinctive gas and liquid compositions. Relationships in soluble and insoluble gases preclude derivation of these waters from a common parent by boiling or condensation alone. These two regions may

283

Operating Plan of Mirant Potomac River, LLC in Compliance with Order No.  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Operating Plan of Mirant Potomac River, LLC in Compliance with Operating Plan of Mirant Potomac River, LLC in Compliance with Order No. 202-05-03 Operating Plan of Mirant Potomac River, LLC in Compliance with Order No. 202-05-03 Docket No. EO-05-01: Attached is the Operating Plan of Mirant Potomac River, LLC, which is being submitted in compliance with Order No. 202-05-03, issued by the Department of Energy on December 20, 2005, in the captioned proceeding. Operating Plan of Mirant Potomac River, LLC in Compliance with Order No. 202-05-03 More Documents & Publications Supplement Number 1 to Operating Plan of Mirnat Potomac River, LLC in Compliance with Order No. 202-05-03 Re: Potomac River Generating Station Department of Energy Case No. EO-05-01: Advanced Notice of Power Outages. Docket No. EO-05-01: Further Notice of 230kV Circuit Planned Outages

284

JOIDES Resolution Ship Security Plan The JOIDES Resolution is operating under the International Ship &  

E-Print Network (OSTI)

JOIDES Resolution Ship Security Plan The JOIDES Resolution is operating under the International or the Ship Security Plan is not followed. The JOIDES Resolution's Ship Security Plan has been approved by its and personnel will be searched as required in accordance with the ISPS code, the Ship Security Plan

285

FTCP FY09 Operational Plan GOAL 2 Objectives and Actions  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Federal Technical Capability Program Federal Technical Capability Program FY 2009 Operational Plan Preserve and Enhance Technical Capability Action Plan F F E E D D E E R R A A L L T T E E C C H H N N I I C C A A L L C C A A P P A A B B I I L L I I T T Y Y P P R R O O G G R R A A M M F F Y Y 2 2 0 0 0 0 9 9 O O P P E E R R A A T T I I O O N N A A L L P P L L A A N N GOAL 2: Preserve and Enhance Technical Capability * Champions: Dave Chaney, NNSA Service Center and Larry Kelly, Oak Ridge Office Objectives/Actions Identify Resource and Organizational Structure Needs to Improve Qualification Consistency and Transportability * Champion: Allen Tate, SSO * Determine appropriate resource levels * Determine effective organizational structure Establish an Effective Mid-Level Recruitment Program * Champions:Sean Clayton, HQ HC-13 and Barry Weaver, ETS * Benchmark existing programs

286

Supplement Number 2 to the Operating Plan of Mirant Potomac River, LLC |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2 to the Operating Plan of Mirant Potomac River, 2 to the Operating Plan of Mirant Potomac River, LLC Supplement Number 2 to the Operating Plan of Mirant Potomac River, LLC Docket No. EO-05-01. Order No. 202-05-03: Pursuant to Section 202(c) of the Federal Power Act, 16 USC §824a(c), Section 301(b) of the Department of Energy Organization Act, 42 USC §7151(b), and Order No. 202-05-3, issued by the Department of Energy ("DOE" or the "Department") on December 20,2005 ("Order"), Mirant Potomac River, LLC ("Mirant") hereby submits the following Supplement Number 2 to the Operating Plan submitted to the Department on December 30, 2005 (the "Operating Plan") in response to the Order. Supplement Number 2 to the Operating Plan of Mirant Potomac River, LLC More Documents & Publications

287

Supplement Number 1 to Operating Plan of Mirnat Potomac River, LLC in  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Supplement Number 1 to Operating Plan of Mirnat Potomac River, LLC Supplement Number 1 to Operating Plan of Mirnat Potomac River, LLC in Compliance with Order No. 202-05-03 Supplement Number 1 to Operating Plan of Mirnat Potomac River, LLC in Compliance with Order No. 202-05-03 Docket No. EO-05-01: Pursuant to Section 202(c) of the Federal Power Act, 16 USC §824a(c), Section 301 (b) of the Department of Energy Organization Act, 42 USC §7151 (b), and Order No. 202-05-3, issued by the Department of Energy ("DOE" or the "Department") on December 20, 2005 ("Order"), Mirant Potomac River, LLC ("Mirant") hereby submits the following Supplement Number 1 to the Operating Plan submitted to the Department on December 30, 2005 (the "Operating Plan") in response to the Order. Supplement Number 1 to Operating Plan of Mirnat Potomac River, LLC in

288

Supplement Number 4 to the Operating Plan of Mirant Potomac River, LLC |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4 to the Operating Plan of Mirant Potomac River, 4 to the Operating Plan of Mirant Potomac River, LLC Supplement Number 4 to the Operating Plan of Mirant Potomac River, LLC Docket No. EO-05-01: Pursuant to Section 202(c) of the Federal Power Act, 16 USC § 824a(c), Section 301(b) of the Department of Energy Organization Act, 42 USC §7151 (b), and Order No, 202-05-3, isslled by the Department of Energy ("DOE" or the "Department") on December 20, 2005 ("Order"), Mirant Potomac River, LLC ("Mirant") hereby submits the following Supplement Number 4 to the Operating Plan submitted to the Department on December 30, 2005 (the "Operating Plan") in response to the Order, Supplement Number 4 to the Operating Plan of Mirant Potomac River, LLC More Documents & Publications

289

Supplement Number 3 to the Operating Plan of Mirant Potomac River, LLC |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3 to the Operating Plan of Mirant Potomac River, 3 to the Operating Plan of Mirant Potomac River, LLC Supplement Number 3 to the Operating Plan of Mirant Potomac River, LLC Docket No. EO-05-01:Pursuant to Section 202(c) of the Federal Power Act, 16 USC §824a(c), Section 301 (b) of the Department of Energy Organization Act, 42 USC §7151 (b), and Order No. 202-05-3, issued by the Department of Energy ("DOE" or the "Department") on December 20, 2005 ("Order"), Mirant Potomac River, LLC ("Mirant") hereby submits the following Supplement Number 3 to the Operating Plan submitted to the Department on December 30, 2005 (the "Operating Plan") in response to the Order. Supplement Number 3 to the Operating Plan of Mirant Potomac River, LLC More Documents & Publications

290

Supplement Number 5 to the Operating Plan of Mirant Potomac River, LLC in  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5 to the Operating Plan of Mirant Potomac River, 5 to the Operating Plan of Mirant Potomac River, LLC in Compliance with Order No. 202-05-03 Supplement Number 5 to the Operating Plan of Mirant Potomac River, LLC in Compliance with Order No. 202-05-03 Docket No. EO-05-01: Pursuant to Section 202(c) of the Federal Power Act, 16 USC §824a(c), Section 301(b) of the Department of Energy Organization Act, 42 USC §7151(b), and Order No. 202-05-3, issued by the Department of Energy ("DOE" or the "Department") on December 20, 2005 ("Order"), Mirant Potomac River, LLC ("Mirant") hereby submits the following Supplement Number 5 to the Operating Plan submitted to the Department on December 30, 2005 (the "Operating Plan") in response to the Order. Supplement Number 5 to the Operating Plan of Mirant Potomac River, LLC in

291

Cuttings Analysis At Coso Geothermal Area (1980) | Open Energy Information  

Open Energy Info (EERE)

80) 80) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Cuttings Analysis Activity Date 1980 Usefulness not indicated DOE-funding Unknown Exploration Basis Determine the heat transfer mechanism Notes In an investigation of the thermal regime of this Basin and Range geothermal area, temperature measurements were made in 25 shallow and 1 intermediate depth borehole. Thermal conductivity measurements were made on 312 samples from cores and drill cuttings. The actual process by which heat is transferred is rather complex; however, the heat flow determinations can be divided into two groups. The first group, less than 4.0 HFU, are indicative of regions with primarily conductive regimes, although deep-seated mass transfer is implied. The second group, greater than 4.0

292

Numerical Modeling At Coso Geothermal Area (1997) | Open Energy Information  

Open Energy Info (EERE)

7) 7) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Numerical Modeling Activity Date 1997 Usefulness useful DOE-funding Unknown Exploration Basis Develop tool to identify low velocity zones by modeling fault-zone guided waves of microearthquakes Notes A numerical method has been employed to simulate the guided-wave propagation from microearthquakes through the fault zone. By comparing observed and synthetic waveforms the fault-zone width and its P-wave and S-wave velocity structure have been estimated. It is suggested that the identification and modeling of guided waves is an effective tool to locate fracture-induced, low-velocity fault-zone structures in geothermal fields. References Lou, M.; Rial, J.A. ; Malin, P.E. (1 July 1997) Modeling

293

Aeromagnetic Survey At Coso Geothermal Area (1980) | Open Energy  

Open Energy Info (EERE)

80) 80) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Aeromagnetic Survey Activity Date 1980 Usefulness not indicated DOE-funding Unknown Notes Dense, magnetic rocks associated with a complex mafic pluton 9 km in diameter form a relatively impermeable north border of the Pleistocene volcanic field. A heat flow high nearly coincides with the west half of a 6-km-diameter magnetic low. A 2-km-diameter outcrop of a pre-Cenozoic silicic pluton, which has low magnetization compared to the surrounding metamorphic rocks, presumably typifies the rocks that underlie the magnetic low and heat flow high. Hydrothermal fluids may have destroyed some magnetite in the more magnetic wall rock, further reducing the magnetic intensity. References

294

Operational efficiency through resource planning optimization and work process improvement  

E-Print Network (OSTI)

This thesis covers work done at National Grid to improve resource planning and the execution of pipeline construction and maintenance work carried out at the yards. Resource Planning, the art of picking the right jobs for ...

Balwani, Siddharth (Siddharth Vashdev)

2012-01-01T23:59:59.000Z

295

Plan for Operating in the Event of a Lapse in Appropriations  

Directives, Delegations, and Requirements

The order established plans and procedures for continuing operations during a lapse in appropriations. Cancels DOE O 137.1A

2011-09-30T23:59:59.000Z

296

Planning and Reporting for Operations and Maintenance in Federal...  

Energy Savers (EERE)

contracts (ESPCs). planningomespcs.pdf More Documents & Publications Reviewing Measurement and Verification Plans for Federal ESPC Projects Introduction to Measurement &...

297

(Draft) Character Study Charrette Summary PLANNING, FACILITIES & OPERATIONS 1  

E-Print Network (OSTI)

, natural resource management and historic preservation - a balance of social, cultural, and environmental studies and utility system master planning to preparation of construc- tion documents and management and cultural. In his practice- concerned mainly with projects of urban design, campus and regional planning

Zaferatos, Nicholas C.

298

FY 2007 Operating Plan for DOE--March 16, 2007.xls  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Operating Plan by Appropriation Operating Plan by Appropriation (Dollars in Thousands) FY 2006 FY 2007 FY 2008 Current Operating Congressional Approp. Plan Request Discretionary Summary By Appropriation Energy And Water Development, And Related Agencies Appropriation Summary: Energy Programs Energy supply and conservation Operation and maintenance........................................... 1,781,242 2,065,474 2,187,943 Construction.................................................................... 31,155 89,030 ---- Total, Energy supply and conservation.............................. 1,812,397 2,154,504 2,187,943 Fossil energy programs Clean coal technology..................................................... -20,000 ---- -58,000 Fossil energy research and development....................... 580,669 592,621 566,801

299

EIS-0480: Long-Term Experimental and Management Plan for the Operation of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

0: Long-Term Experimental and Management Plan for the 0: Long-Term Experimental and Management Plan for the Operation of Glen Canyon Dam EIS-0480: Long-Term Experimental and Management Plan for the Operation of Glen Canyon Dam SUMMARY Two agencies of the Department of the Interior, Bureau of Reclamation and National Park Service, are jointly preparing a Long-Term Experimental and Management Plan for the Glen Canyon Dam and an EIS for adoption of the Plan. The Glen Canyon Dam, on the Colorado River in northern, Arizona, generates hydroelectric power that is marketed by DOE's Western Area Power Administration, a cooperating agency. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD July 6, 2011 EIS-0480: Notice of Intent to Prepare a Draft Environmental Impact Statement Long-Term Experimental and Management Plan for the Operation of Glen Canyon

300

2010 Annual Planning Summary for Idaho Operations Office (ID)  

Energy.gov (U.S. Department of Energy (DOE))

Annual Planning Summaries briefly describe the status of ongoing NEPA compliance activities, any EAs expected to be prepared in the next 12 months, any EISs expected to be prepared in the next 24...

Note: This page contains sample records for the topic "operations plan coso" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Time-dependent seismic tomography and its application to the Coso  

Open Energy Info (EERE)

and its application to the Coso and its application to the Coso geothermal area, 1996-2006 Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: Time-dependent seismic tomography and its application to the Coso geothermal area, 1996-2006 Details Activities (1) Areas (1) Regions (0) Abstract: Measurements of temporal changes in Earth structure are commonly determined using local earthquake tomography computer programs that invert multiple seismic-wave arrival time data sets separately and assume that any differences in the structural results arise from real temporal variations. This assumption is dangerous because the results of repeated tomography experiments would differ even if the structure did not change, simply because of variation in the seismic ray distribution caused by the natural

302

Conceptual Model At Coso Geothermal Area (2005-2007) | Open Energy  

Open Energy Info (EERE)

7) 7) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Conceptual Model At Coso Geothermal Area (2005-2007) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Conceptual Model Activity Date 2005 - 2007 Usefulness useful DOE-funding Unknown Exploration Basis Determine most productive areas of geothermal field using stress and faulting analysis to develop a geomechanical model Notes New geologic mapping and measurements of stress orientations and magnitudes from wells 34-9RD2 and 58A-10 were integrated with existing data sets to refine a geomechanical model for the Coso geothermal field. Vertically averaged stress orientations across the field are fairly uniform and are consistent with focal mechanism inversions of earthquake clusters for

303

Thermal And-Or Near Infrared At Coso Geothermal Area (2007) | Open Energy  

Open Energy Info (EERE)

2007) 2007) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal And-Or Near Infrared At Coso Geothermal Area (2007) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Thermal And-Or Near Infrared Activity Date 2007 Usefulness not indicated DOE-funding Unknown Exploration Basis Analyze if coupling remote sensing and field data is effective for determining geothermal areas Notes Thermal infrared (TIR) data from the spaceborne ASTER instrument was used to detect surface temperature anomalies in the Coso geothermal field in eastern California. The identification of such anomalies in a known geothermal area serves as an incentive to apply similar markers and techniques to areas of unknown geothermal potential. Field measurements

304

Teleseismic-Seismic Monitoring At Coso Geothermal Area (1980) | Open Energy  

Open Energy Info (EERE)

Teleseismic-Seismic Monitoring At Coso Geothermal Teleseismic-Seismic Monitoring At Coso Geothermal Area (1980) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Teleseismic-Seismic Monitoring Activity Date 1980 Usefulness useful DOE-funding Unknown Exploration Basis Determine extent of low velocity body Notes An area showing approximately 0.2-s excess travel time that migrates with changing source azimuth, suggesting that the area is the 'delay shadow' produced by a deep, low-velocity body. Inversion of the relative residual data for three-dimensional velocity structure determines the lateral variations in velocity to a depth of 22.5 km beneath the array. An intense low-velocity body, which coincides with the surface expressions of late Pleistocene rhyolitic volcanism, high heat flow, and hydrothermal activity,

305

Seismotectonics of the Coso Range-Indian Wells Valley region, California:  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Seismotectonics of the Coso Range-Indian Wells Valley region, California: Transtensional deformation along the southeastern margin of the Sierra Nevada microplate Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Seismotectonics of the Coso Range-Indian Wells Valley region, California: Transtensional deformation along the southeastern margin of the Sierra Nevada microplate Abstract not available Authors Jeffrey R. Unruh, Egill Hauksson, Francis C. Monastero and Robert J. Twiss and Jonathan C. Lewis Published Journal Geological Society of America, 2002 DOI 10.1130/0-8137-1195-9.277 Online Internet link for Seismotectonics of the Coso Range-Indian Wells Valley region, California: Transtensional deformation along the

306

Fluid Inclusion Analysis At Coso Geothermal Area (2005-2006) | Open Energy  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Fluid Inclusion Analysis At Coso Geothermal Area (2005-2006) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Fluid Inclusion Analysis At Coso Geothermal Area (2005-2006) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Fluid Inclusion Analysis Activity Date 2005 - 2006 Usefulness not indicated DOE-funding Unknown Exploration Basis Include more wells from previous analysis Notes This paper focuses on the interpretation of the additional wells (4 bore holes) and comparison to the previous wells. Preliminary correlation

307

Stress and fault rock controls on fault zone hydrology, Coso geothermal  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Stress and fault rock controls on fault zone hydrology, Coso geothermal field, CA Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: Stress and fault rock controls on fault zone hydrology, Coso geothermal field, CA Details Activities (1) Areas (1) Regions (0) Abstract: In crystalline rock of the Coso Geothermal Field, CA, fractures are the primary source of permeability. At reservoir depths, borehole image, temperature, and mud logs indicate fluid flow is concentrated in extensively fractured damage zones of large faults well-oriented for slip.

308

2-M Probe Survey At Coso Geothermal Area (2007) | Open Energy Information  

Open Energy Info (EERE)

2-M Probe Survey At Coso Geothermal Area (2007) 2-M Probe Survey At Coso Geothermal Area (2007) Exploration Activity Details Location Coso Geothermal Area Exploration Technique 2-M Probe Survey Activity Date 2007 Usefulness useful regional reconnaissance DOE-funding Unknown Exploration Basis Analyze if coupling remote sensing and field data is effective for determining geothermal areas using 1-M probe Notes The field data include subsurface temperature measured with temperature probes at depths down to 1 m, surface temperatures recorded with a hand-held infrared camera and an infrared thermometer, reflectance of contrasting surfaces measured with a hand-held spectroradiometer for the purpose of estimating the albedo effect, and radiosonde atmospheric profiles of temperature, water vapor, and pressure in order to apply

309

Micro-Earthquake At Coso Geothermal Area (1996) | Open Energy Information  

Open Energy Info (EERE)

) ) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Micro-Earthquake At Coso Geothermal Area (1996) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Micro-Earthquake Activity Date 1996 Usefulness useful DOE-funding Unknown Exploration Basis Determine the attenuation structure Notes Pulse width data are used to invert for attenuation structure. The dataset consists of pulse width measurements of 838 microseismic events recorded on a seismic array of 16 downhole stations between August 1993 and March 1994. A broad region of low Q (≈ 30 to 37) is located at 0.5 to 1.2 km in depth below Devil's Kitchen, Nicol Prospects, and Coso Hot Springs. A vertical, low Q (≈ 36 in contrast with surrounding rock of 80) region is

310

Micro-Earthquake At Coso Geothermal Area (2007) | Open Energy Information  

Open Energy Info (EERE)

Coso Geothermal Area (2007) Coso Geothermal Area (2007) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Micro-Earthquake Activity Date 2007 Usefulness not indicated DOE-funding Unknown Exploration Basis Develop and test a tool to better analyze microearthquake data Notes A GUI-based interface was developed to use inversion software that greatly increases its ease of use and makes feasible analyzing larger numbers of earthquakes than previously was practical. Examples are shown from an injection experiment conducted in well 34-9RD2, on the East Flank. This tight well was re-drilled February - March 2005. Pervasive porosity and fractures were encountered at about 2660 m depth. These mud losses induced a 50-minute swarm of 44 microearthquakes, with magnitudes in the range -0.3

311

IN SEARCH FOR THERMAL ANOMALIES IN THE COSO GEOTHERMAL FIELD (CALIFORNIA)  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » IN SEARCH FOR THERMAL ANOMALIES IN THE COSO GEOTHERMAL FIELD (CALIFORNIA) USING REMOTE SENSING AND FIELD DATA Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: IN SEARCH FOR THERMAL ANOMALIES IN THE COSO GEOTHERMAL FIELD (CALIFORNIA) USING REMOTE SENSING AND FIELD DATA Details Activities (2) Areas (1) Regions (0) Abstract: We attempt to identify thermal anomalies using thermal infrared (TIR) data collected over the Coso Geothermal Power Project with the spaceborne ASTER instrument. Our analysis emphasizes corrections for thermal artifacts in the satellite images caused by topography, albedo, and

312

Micro-Earthquake At Coso Geothermal Area (1992-1997) | Open Energy  

Open Energy Info (EERE)

2-1997) 2-1997) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Micro-Earthquake At Coso Geothermal Area (1992-1997) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Micro-Earthquake Activity Date 1992 - 1997 Usefulness useful DOE-funding Unknown Exploration Basis Characterize subsurface fracture patterns in the Coso geothermal reservoir by analyzing shear-wave splitting of microearthquake seismorgrams Notes A large number of microearthquake seismograms have been recorded by a downhole, three-component seismic network. Shear-wave splitting induced by the alignment of cracks in the reservoir has been widely observed in the recordings. Over 100 events with body wave magnitude greater than 1.0 from

313

Heat flow in the Coso geothermal area, Inyo County, California | Open  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Heat flow in the Coso geothermal area, Inyo County, California Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Heat flow in the Coso geothermal area, Inyo County, California Details Activities (2) Areas (1) Regions (0) Abstract: Obvious surface manifestations of an anomalous concentration of geothermal resources at the Coso geothermal area, Inyo County, California, include fumarolic activity and associated hydrothermally altered rocks. Pleistocene volcanic rocks associated with the geothermal activity include 38 rhyolite domes occupying a north trending structural and topographic

314

Electric Micro Imager Log At Coso Geothermal Area (2003) | Open Energy  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Electric Micro Imager Log At Coso Geothermal Area (2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Single-Well and Cross-Well Resistivity At Coso Geothermal Area (2003) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Single-Well and Cross-Well Resistivity Activity Date 2003 Usefulness not indicated DOE-funding Unknown Exploration Basis Fracture/stress analysis Notes A preliminary fracture/stress analysis was conducted for the recently drilled well 38C-9 as part of a continuing effort to characterize the

315

COMPARISON OF ACOUSTIC AND ELECTRICAL IMAGE LOGS FROM THE COSO GEOTHERMAL  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » COMPARISON OF ACOUSTIC AND ELECTRICAL IMAGE LOGS FROM THE COSO GEOTHERMAL FIELD, CA Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: COMPARISON OF ACOUSTIC AND ELECTRICAL IMAGE LOGS FROM THE COSO GEOTHERMAL FIELD, CA Details Activities (1) Areas (1) Regions (0) Abstract: Electrical and acoustic image logs collected from well 58A-10 in crystalline rock on the eastern margin of the Coso Geothermal Field, CA, reveal different populations of planar structures intersecting the borehole. Electrical image logs appear to be sensitive to variations in

316

Data Acquisition-Manipulation At Coso Geothermal Area (1982) | Open Energy  

Open Energy Info (EERE)

2) 2) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Data Acquisition-Manipulation At Coso Geothermal Area (1982) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Data Acquisition-Manipulation Activity Date 1982 Usefulness useful DOE-funding Unknown Exploration Basis Develop parameters to identify geothermal region Notes Statistical methods are outlined to separate spatially, temporally, and magnitude-dependent portions of both the random and non-random components of the seismicity. The methodology employed compares the seismicity distributions with a generalized Poisson distribution. Temporally related events are identified by the distribution of the interoccurrence times. From the temporal characteristics of the seismicity associated with these

317

Micro-Earthquake At Coso Geothermal Area (1993-1994) | Open Energy  

Open Energy Info (EERE)

1994) 1994) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Micro-Earthquake At Coso Geothermal Area (1993-1994) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Micro-Earthquake Activity Date 1993 - 1994 Usefulness useful DOE-funding Unknown Exploration Basis Multiplet analysis Notes Instances of microseismicity in seismic doublets which are co-located hypocenters that appear to have nearly identical waveforms were searched for. Using 1085 high-quality events from 1993 to 1994, they identified numerous doublets, some occurring within minutes of each other. The hypocentral data was subdivided into spatial clusters to reduce the computational burden and evaluated multiple cross-correlation pairs,

318

Teleseismic-Seismic Monitoring At Coso Geothermal Area (2004) | Open Energy  

Open Energy Info (EERE)

) ) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Teleseismic-Seismic Monitoring At Coso Geothermal Area (2004) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Teleseismic-Seismic Monitoring Activity Date 2004 Usefulness not indicated DOE-funding Unknown Exploration Basis Analyze seismic data to develop reservoir models that characterize the geothermal system Notes Large-amplitude, secondary arrivals are modeled as scattering anomalies. Polarization and ray tracing methods determine the orientation and location of the scattering body. Two models are proposed for the scatterer: (1) a point scatterer located anywhere in a one-dimensional (1-D), layered velocity model; and (2) a dipping interface between two homogeneous half

319

Data Acquisition-Manipulation At Coso Geothermal Area (1979) | Open Energy  

Open Energy Info (EERE)

9) 9) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Data Acquisition-Manipulation At Coso Geothermal Area (1979) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Data Acquisition-Manipulation Activity Date 1979 Usefulness not indicated DOE-funding Unknown Exploration Basis Determine the potential electrical power in the area Notes The analysis was concentrated on identifying the major sources of surface and ground water, potential limitations on the usage of this water, and the resulting constraints on potentially developable electrical power in each geothermal resource area. References Sakaguchi, J. L. (19 March 1979) Regional Systems Development for Geothermal Energy Resources Pacific Region (California and Hawaii).

320

Ganges Valley Aerosol Experiment: Science and Operations Plan  

SciTech Connect

The Ganges Valley region is one of the largest and most rapidly developing sections of the Indian subcontinent. The Ganges River, which provides the region with water needed for sustaining life, is fed primarily by snow and rainfall associated with Indian summer monsoons. Impacts of changes in precipitation patterns, temperature, and the flow of the snow-fed rivers can be immense. Recent satellite-based measurements have indicated that the upper Ganges Valley has some of the highest persistently observed aerosol optical depth values. The aerosol layer covers a vast region, extending across the Indo-Gangetic Plain to the Bay of Bengal during the winter and early spring of each year. The persistent winter fog in the region is already a cause of much concern, and several studies have been proposed to understand the economic, scientific, and societal dimensions of this problem. During the INDian Ocean EXperiment (INDOEX) field studies, aerosols from this region were shown to affect cloud formation and monsoon activity over the Indian Ocean. This is one of the few regions showing a trend toward increasing surface dimming and enhanced mid-tropospheric warming. Increasing air pollution over this region could modify the radiative balance through direct, indirect, and semi-indirect effects associated with aerosols. The consequences of aerosols and associated pollution for surface insolation over the Ganges Valley and monsoons, in particular, are not well understood. The proposed field study is designed for use of (1) the ARM Mobile Facility (AMF) to measure relevant radiative, cloud, convection, and aerosol optical characteristics over mainland India during an extended period of 912 months and (2) the G-1 aircraft and surface sites to measure relevant aerosol chemical, physical, and optical characteristics in the Ganges Valley during a period of 612 weeks. The aerosols in this region have complex sources, including burning of coal, biomass, and biofuels; automobile emissions; and dust. The extended AMF deployment will enable measurements under different regimes of the climate and aerosol abundancein the wet monsoon period with low aerosol loading; in the dry, hot summer with aerosols dispersed throughout the atmospheric column; and in the cool, dry winter with aerosols confined mostly to the boundary later and mid-troposphere. Each regime, in addition, has its own distinct radiative and atmospheric dynamic drivers. The aircraft operational phase will assist in characterizing the aerosols at times when they have been observed to be at the highest concentrations. A number of agencies in India will collaborate with the proposed field study and provide support in terms of planning, aircraft measurements, and surface sites. The high concentration of aerosols in the upper Ganges Valley, together with hypotheses involving several possible mechanisms with direct impacts on the hydrologic cycle of the region, gives us a unique opportunity to generate data sets that will be useful both in understanding the processes at work and in providing answers regarding the effects of aerosols on climate in a region where the perturbation is the highest.

Kotamarthi, VR

2010-06-21T23:59:59.000Z

Note: This page contains sample records for the topic "operations plan coso" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Lessons Learned: Planning and Operating Power Systems with Large  

E-Print Network (OSTI)

flow) run-of-river hydro plant. While there are plans for large size photovoltaic (PV) installations on both islands, small residential roof-mounted PV systems have already proliferated, and an almost exponential growth of these small systems is forecasted. Figure 1 Small Net Metered PV Systems Installed

322

Department of Energy - Idaho Operations Office FY-2013 and Beyond Strategic Plan  

NLE Websites -- All DOE Office Websites (Extended Search)

- Idaho Operations Office - Idaho Operations Office FY-2013 and Beyond Strategic Plan Introduction The Department of Energy Idaho Operations Office (DOE-ID) 2013 Strategic Plan and Beyond outlines the Federal workforce mission, vision, strategies, objectives, responsibilities, and expectations that will sustain the successful accomplishment of the Idaho National Laboratory (INL) Site mission. DOE-ID's Strategic Plan is aligned with the DOE Headquarters Strategic Plan and DOE-ID's efforts toward becoming an internationally recognized world class laboratory. By implementing this Strategic Plan, DOE-ID is playing an important supporting role in achieving DOE's overall mission to ensure America's security and prosperity by addressing its energy, environmental, and nuclear challenges through transformative science and

323

Plant-life extension planning for an operating LMFBR  

SciTech Connect

The study concluded that continued EBR-II operation is certainly feasible for well beyond 10 more years, and that continued demonstration of the unique inherent safety and operability features of a pool-type liquid-metal-cooled reactor and the demonstration of a reasonable operating lifetime are very important and will provide invaluable information for the design and development of the next generation nuclear power plants.

King, R.W.

1985-01-01T23:59:59.000Z

324

2011 Annual Planning Summary for Idaho Operations Office (ID)  

Energy.gov (U.S. Department of Energy (DOE))

The ongoing and projected Environmental Assessments and Environmental Impact Statements for 2011 and 2012 within the Idaho Operations Office (ID) (See Environmental Management).

325

2011 Annual Planning Summary for Chicago Operations Office (CH)  

Energy.gov (U.S. Department of Energy (DOE))

The ongoing and projected Environmental Assessments and Environmental Impact Statements for 2011 and 2012 within the Chicago Operations Office (CH) (See Science APS).

326

Operations Risk Management by Planning Optimally the Qualified ...  

E-Print Network (OSTI)

The back office will prepare the contracts, conduct all the exchange of information in due time and ... Internal risk is typically linked to operations (so controllable).

2007-07-31T23:59:59.000Z

327

Continuity of Operations (COOP) Implementation Plan | U.S. DOE...  

Office of Science (SC) Website

methods to safeguard personnel, records, and facilities, and ensures the capability to conduct functions at an office of convenience, Alternate Operating Facility (AOF), or...

328

2011 Annual Planning Summary for Savannah River Operations Office (SRS)  

Energy.gov (U.S. Department of Energy (DOE))

The ongoing and projected Environmental Assessments and Environmental Impact Statements for 2011 and 2012 within the Savannah River Operations Office (SRS) (See also Environmental Management).

329

Machine Shop Safe Operations Assessment Plan, 7/03 | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Machine Shop Safe Operations Assessment Plan, 7/03 Machine Shop Safe Operations Assessment Plan, 7/03 Machine Shop Safe Operations Assessment Plan, 7/03 The purpose of this assessment is to verify that machine shop operators are provided a safe and healthful workplace which will reduce or prevent injuries, illnesses, and accidental losses. A worker protection program shall be implemented that provides a place of employment free from recognized hazards that are causing or likely to cause death or serious physical harm. (DOE O 440.1A Contractor Requirements Document (CRD)) Machine-Shop.doc More Documents & Publications MAINTENANCE Assessment Plan, NNSA/Nevada Site Office Facility Representative Division Order Module--DOE O 440.1B, WORKER PROTECTION PROGRAM FOR DOE (INCLUDING NNSA) FEDERAL EMPLOYEES DOE-STD-6005-01

330

2013 Annual Workforce Analysis and Staffing Plan Report- Savannah River Operations Office  

Energy.gov (U.S. Department of Energy (DOE))

Managers perform an annual workforce analysis of their organization and develop staffing plans that identify technical capabilities and positions they need to ensure safe operation of defense nuclear facilities.

331

2012 Annual Workforce Analysis and Staffing Plan Report- Richland Operations Office  

Energy.gov (U.S. Department of Energy (DOE))

Managers perform an annual workforce analysis of their organization and develop staffing plans that identify technical capabilities and positions they need to ensure safe operation of defense nuclear facilities.

332

2012 Annual Workforce Analysis and Staffing Plan Report- Idaho Operations Office  

Energy.gov (U.S. Department of Energy (DOE))

Managers perform an annual workforce analysis of their organization and develop staffing plans that identify technical capabilities and positions they need to ensure safe operation of defense nuclear facilities.

333

2011 Annual Workforce Analysis and Staffing Plan Report- Savannah River Operations Office  

Energy.gov (U.S. Department of Energy (DOE))

Managers perform an annual workforce analysis of their organization and develop staffing plans that identify technical capabilities and positions they need to ensure safe operation of defense nuclear facilities.

334

2011 Annual Workforce Analysis and Staffing Plan Report- Richland Operations Office  

Energy.gov (U.S. Department of Energy (DOE))

Managers perform an annual workforce analysis of their organization and develop staffing plans that identify technical capabilities and positions they need to ensure safe operation of defense nuclear facilities.

335

2011 Annual Workforce Analysis and Staffing Plan Report- Idaho Operations Office  

Energy.gov (U.S. Department of Energy (DOE))

Managers perform an annual workforce analysis of their organization and develop staffing plans that identify technical capabilities and positions they need to ensure safe operation of defense nuclear facilities.

336

2013 Annual Workforce Analysis and Staffing Plan Report- Idaho Operations Office  

Energy.gov (U.S. Department of Energy (DOE))

Managers perform an annual workforce analysis of their organization and develop staffing plans that identify technical capabilities and positions they need to ensure safe operation of defense nuclear facilities.

337

2014 Annual Workforce Analysis and Staffing Plan Report- Idaho Operations Office  

Energy.gov (U.S. Department of Energy (DOE))

Managers perform an annual workforce analysis of their organization and develop staffing plans that identify technical capabilities and positions they need to ensure safe operation of defense nuclear facilities.

338

2012 Annual Workforce Analysis and Staffing Plan Report- Savannah River Operations Office  

Energy.gov (U.S. Department of Energy (DOE))

Managers perform an annual workforce analysis of their organization and develop staffing plans that identify technical capabilities and positions they need to ensure safe operation of defense nuclear facilities.

339

Making European Fisheries Ecosystem Plans Operational EC FP7 project # 212881  

E-Print Network (OSTI)

.2.1.4 Deep Water................................................................................................. 143 1.2.3.4 Deep WaterMEFEPO Making European Fisheries Ecosystem Plans Operational EC FP7 project # 212881 Work Package 1

Hansen, René Rydhof

340

2013 Annual Workforce Analysis and Staffing Plan Report- Richland Operations Office  

Energy.gov (U.S. Department of Energy (DOE))

Managers perform an annual workforce analysis of their organization and develop staffing plans that identify technical capabilities and positions they need to ensure safe operation of defense nuclear facilities.

Note: This page contains sample records for the topic "operations plan coso" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

2014 Annual Workforce Analysis and Staffing Plan Report- Richland Operations Office  

Energy.gov (U.S. Department of Energy (DOE))

Managers perform an annual workforce analysis of their organization and develop staffing plans that identify technical capabilities and positions they need to ensure safe operation of defense nuclear facilities.

342

2014 Annual Workforce Analysis and Staffing Plan Report- Savannah River Operations Office  

Energy.gov (U.S. Department of Energy (DOE))

Managers perform an annual workforce analysis of their organization and develop staffing plans that identify technical capabilities and positions they need to ensure safe operation of defense nuclear facilities.

343

Planning and Reporting for Operations and Maintenance in Federal Energy Savings Performance Contracts  

Energy.gov (U.S. Department of Energy (DOE))

Guidelines describe the Operations and Maintenance (O&M) Working Group on planning and reporting for O&M during the U.S. Department of Energy's (DOEs) energy savings performance contracts (ESPCs).

344

2010 Annual Workforce Analysis and Staffing Plan Report- Savannah River Operations Office  

Energy.gov (U.S. Department of Energy (DOE))

Managers perform an annual workforce analysis of their organization and develop staffing plans that identify technical capabilities and positions they need to ensure safe operation of defense nuclear facilities.

345

Appendix C of the UF Chemical Hygiene Plan Standard Operating Procedures  

E-Print Network (OSTI)

1 Appendix C of the UF Chemical Hygiene Plan Standard Operating Procedures Principal Investigator of our emergency equipment: The following are the spill control and decontamination procedures: The following are the waste disposal procedures: #12;2 Appendix C of the UF Chemical Hygiene Plan Standard

Slatton, Clint

346

Coordinated dynamic planning for air and space operations  

E-Print Network (OSTI)

Planners of military air and space operations in a battlefield environment seek to allocate resources against targets in a way that best achieves the objectives of the commander. In future conflicts, the presence of new ...

Wroten, Matthew Christian

2005-01-01T23:59:59.000Z

347

LWRS Program and EPRI Long-Term Operations Program - Joint R&D Plan |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

LWRS Program and EPRI Long-Term Operations Program - Joint R&D Plan LWRS Program and EPRI Long-Term Operations Program - Joint R&D Plan LWRS Program and EPRI Long-Term Operations Program - Joint R&D Plan To address the challenges associated with pursuing commercial nuclear power plant operations beyond 60 years, the U.S. Department of Energy's (DOE) Office of Nuclear Energy (NE) and the Electric Power Research Institute (EPRI) have established separate but complementary research and development programs: DOE-NE's Light Water Reactor Sustainability (LWRS) Program and EPRI's Long-Term Operations (LTO) Program. To ensure that a proper linkage is maintained between the programs, DOE-NE and EPRI executed a Memorandum of Understanding in late 2010 to "establish guiding principles under which research activities (between LWRS and LTO) could be

348

LWRS Program and EPRI Long-Term Operations Program - Joint R&D Plan |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

LWRS Program and EPRI Long-Term Operations Program - Joint R&D Plan LWRS Program and EPRI Long-Term Operations Program - Joint R&D Plan LWRS Program and EPRI Long-Term Operations Program - Joint R&D Plan To address the challenges associated with pursuing commercial nuclear power plant operations beyond 60 years, the U.S. Department of Energy's (DOE) Office of Nuclear Energy (NE) and the Electric Power Research Institute (EPRI) have established separate but complementary research and development programs: DOE-NE's Light Water Reactor Sustainability (LWRS) Program and EPRI's Long-Term Operations (LTO) Program. To ensure that a proper linkage is maintained between the programs, DOE-NE and EPRI executed a Memorandum of Understanding in late 2010 to "establish guiding principles under which research activities (between LWRS and LTO) could be

349

Planning and Reporting for Operations and Maintenance in Federal Energy Savings Performance Contracts  

NLE Websites -- All DOE Office Websites (Extended Search)

11.4 11.4 Planning and Reporting for O&M in Federal ESPCs Planning and Reporting for Operations & Maintenance in Federal Energy Saving Performance Contracts Prepared by: Operations and Maintenance Working Group Approved by: Federal ESPC Steering Committee M&V - 3 Planning and Reporting for O&M in Federal ESPCs CONTENTS 1. INTRODUCTION AND OVERVIEW ...................................................................... 1 1.1 OVERVIEW OF O&M ISSUES IN ESPCS ................................................................... 1 1.1.1 Key Issues, Timing, and Available Guidance on O&M in Federal ESPCs .................................................................................................................. 2 2. STEPS OF MANAGING O&M RESPONSIBILITIES ........................................... 3

350

Planning and Reporting for Operations and Maintenance in Federal Energy Savings Performance Contracts  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

11.4 11.4 Planning and Reporting for O&M in Federal ESPCs Planning and Reporting for Operations & Maintenance in Federal Energy Saving Performance Contracts Prepared by: Operations and Maintenance Working Group Approved by: Federal ESPC Steering Committee M&V - 3 Planning and Reporting for O&M in Federal ESPCs CONTENTS 1. INTRODUCTION AND OVERVIEW ...................................................................... 1 1.1 OVERVIEW OF O&M ISSUES IN ESPCS ................................................................... 1 1.1.1 Key Issues, Timing, and Available Guidance on O&M in Federal ESPCs .................................................................................................................. 2 2. STEPS OF MANAGING O&M RESPONSIBILITIES ........................................... 3

351

Tank Farm Contractor Operation and Utilization Plan [SEC 1 Thru 3  

SciTech Connect

The Tank Waste Remediation System Operation and Utilization Plan updates the operating scenario and plans for the delivery of feed to BNFL Inc., retrieval of waste from single-shell tanks, and the overall process flowsheets for Phases I and II of the privatization of the Tank Waste Remediation System. The plans and flowsheets are updated with the most recent tank-by-tank inventory and sludge washing data. Sensitivity cases were run to evaluate the impact or benefits of proposed changes to the BNFL Inc. contract and to evaluate a risk-based SST retrieval strategy.

KIRKBRIDE, R.A.

1999-05-04T23:59:59.000Z

352

Operation Planning of Multiparcel Tankers under Fuel Price Uncertainty  

Science Journals Connector (OSTI)

They may deviate slightly from their normal voyage plans, incur necessary port dues, or even delay the transit through a canal to refuel at a port with attractively priced fuel. ... Most commercial marine vessels use fuels with 180 cst, 380 cst, and 500 cst viscosities with 380 cst being the most common. ... The fuel prices for these options are uncertain except at the end of leg 0. Since the tanker may be at a port, or will reach the next port shortly after time zero, it is reasonable to assume that the fuel price of each refueling option after leg 0 is fixed and known. ...

H. C. Oh; I. A. Karimi

2010-05-26T23:59:59.000Z

353

Environmental Monitoring Plan United States Department of Energy Richland Operations Office. Revision 2  

SciTech Connect

This Environmental Monitoring Plan was prepared for the US Department of Energy`s (DOE`s) Richland Operations Office (RL) to implement the requirements of DOE Order 5400.1. According to the Order, each DOE site, facility, or activity that uses, generates, releases, or manages significant pollutants or hazardous materials shall prepare a written environmental monitoring plan covering two major activities: (1) effluent monitoring and (2) environmental surveillance. The plan is to contain information discussing the rationale and design criteria for the monitoring programs, sampling locations and schedules, quality assurance requirements, program implementation procedures, analytical procedures, and reporting requirements. The plan`s purpose is to assist DOE in the management of environmental activities at the Hanford Site and to help ensure that operations on the site are conducted in an environmentally safe and sound manner.

NONE

1997-11-10T23:59:59.000Z

354

Response of the Potomac Electric Power Company to the Operating Plan of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

of the Potomac Electric Power Company to the Operating of the Potomac Electric Power Company to the Operating Plan of Mirant Potomac River, L.L.C. Response of the Potomac Electric Power Company to the Operating Plan of Mirant Potomac River, L.L.C. Docket No. EO-05-01: In sum, although Pepco agrees wilh DOE's directive that Mirant "should immediately take the necessary steps to implement Option A of the intermediate phase proposed in the implementation plan,") that Option does not satisfy the concerns identified by DOE in its decision and Order. Pepco agrees that Option B and olher options Ihat are more consistent with the DOE order need to be considered. and Pepco urges the DOE to implement a compliance plan Ihat fully meets the requirements of the DOE Potomac River Order and restores system reliability to the levels

355

HelpMe Telecom - Service Support Organization (SSO) Operating Plan  

E-Print Network (OSTI)

pace with technology changes over the years, yet with improving supplier?s systems, SSO can achieve significant improvements without having to rely on extensive system modifications. It is the process analysis aspect that provided the most insight...: Short-term Operational Improvements Long-Term Value Creation ? Hire additional contractors to clear current order backlog. ? Identify Subject-Matter-Experts (SMEs), and delegate problem resolution. ? Create robust training process...

Bhojwani, Sunil

2005-12-16T23:59:59.000Z

356

Power grid simulation model for long term operation planning  

Science Journals Connector (OSTI)

Abstract In this paper a comprehensive mixed-integer linear programming (MILP) model of transmission network and power plants is presented. The model is capable of forced and regular outage simulation with respect to the spinning reserve requirements. The model formulation includes thermal, pumped-storage and conventional hydro plants as well as renewable resources. Fast and efficient outage scheduling algorithm suitable for prospective studies is presented. We also show how the overall price minimisation can lead to unrealistic pumped-storage plants dispatch and how can this behaviour be corrected using hydrothermal decomposition. To overcome this issue a dedicated MILP water planning model is proposed and its results are compared to the real day production profiles of pumped-storage and conventional hydro plants. The simulation times and results of models with and without hydrothermal decomposition are compared on an annual simulation of Czech transmission network (61 power plants, 110 units and 31 nodes connected by 53 lines). Simulations produced by the model presented in this paper exhibit realistic transmission system behaviour, which was confirmed by the Czech TSO. The annual simulation times stay below reasonable values allowing multiple scenario prospective studies.

Jan Zbojnk; Michal Dvo?k

2014-01-01T23:59:59.000Z

357

CARES: Carbonaceous Aerosol and Radiative Effects Study Operations Plan  

SciTech Connect

The CARES field campaign is motivated by the scientific issues described in the CARES Science Plan. The primary objectives of this field campaign are to investigate the evolution and aging of carbonaceous aerosols and their climate-affecting properties in the urban plume of Sacramento, California, a mid-size, mid-latitude city that is located upwind of a biogenic volatile organic compound (VOC) emission region. Our basic observational strategy is to make comprehensive gas, aerosol, and meteorological measurements upwind, within, and downwind of the urban area with the DOE G-1 aircraft and at strategically located ground sites so as to study the evolution of urban aerosols as they age and mix with biogenic SOA precursors. The NASA B-200 aircraft, equipped with the High Spectral Resolution Lidar (HSRL), digital camera, and the Research Scanning Polarimeter (RSP), will be flown in coordination with the G-1 to characterize the vertical and horizontal distribution of aerosols and aerosol optical properties, and to provide the vertical context for the G-1 and ground in situ measurements.

Zaveri, RA; Shaw, WJ; Cziczo, DJ

2010-07-12T23:59:59.000Z

358

FTCP FY09 Operational Plan GOAL 3 Objectives and Actions  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6: 4/09/09 6: 4/09/09 Objective 1: Define and describe the key steps an individual should take following initial TQP qualification to achieve status as a DOE-recognized expert. (Dave Chaney) Action 6: Develop white paper on approach to institutionalize "DOE/NNSA Recognized Expert" BACKGROUND: The benchmarking of other agencies indicates that "Recognized Experts" may be used in a training environment as Subject Matter Experts, but that industry and regulators generally rely on educational degrees from accredited universities, internal corporate/agency qualification and certification programs or Professional Engineer (PE)/ Independent Body Certifications and experience for operational/maintenance/functional expertise, without having a

359

FTCP FY09 Operational Plan GOAL 3 Objectives and Actions  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5: 4/09/09 5: 4/09/09 Objective 1: Define and describe the key steps an individual should take following initial TQP qualification to achieve status as a DOE-recognized expert. (Dave Chaney) Action 5: Recommend definition of DOE/NNSA Recognized Expert The benchmarking of other agencies indicates that "Recognized Experts" may be used in a training environment as Subject Matter Experts, but that industry and regulators generally rely on educational degrees from accredited universities, internal corporate/agency qualification and certification programs or Professional Engineer (PE)/ Independent Body Certifications and experience for operational/maintenance/functional expertise, without having a formal cadre of "Recognized Experts".

360

Microsoft Word - Appendix I-LCRS Operating Plan.doc  

Office of Legacy Management (LM)

July 2005 Doc. No. S0079000 July 2005 Doc. No. S0079000 Page I-3 I1.0 Purpose The purpose of this document is to provide information necessary for the proper operation and maintenance of the Leachate Collection and Removal System (LCRS). Specifically, the subsequent sections will provide the information relating to the management of leachate, maintenance and calibration of liquid level, general equipment maintenance, and reporting requirements. I2.0 Facility Description The LCRS facility is located at the north end of the disposal cell and consists of an 11,500-gallon horizontal below-grade pipe storage sump, four pipes from the disposal cell (east and west primary and east and west secondary) to convey the leachate to the sump, liquid level monitoring instruments, and other related equipment. An 8-foot chain link and barbed wire fence surrounds

Note: This page contains sample records for the topic "operations plan coso" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

DOE Nevada Operations Office Environmental Protection Implementation Plan, November 9, 1993--November 9, 1994  

SciTech Connect

DOE Order 5400.1, ``General Environmental Protection Program,`` established environmental protection program requirements, authorities, and responsibilities to assure that the Department of Energy (DOE) operations are in compliance with applicable federal, state, and local environmental protection laws and regulations, executive orders, and internal department policies. Chapter III of DOE Order 5400.1 required that each field organization prepare a plan for implementing the requirements of this order by no later than November 9, 1989, and update the plan annually. Therefore, the Department of Energy/Nevada Operations Office (DOE/NV) has prepared this fourth annual update of its Environmental Protection Implementation Plan (EPIP). The Order and corresponding guidances also require estimated budgetary resources necessary for implementation of the Order be identified in the Environmental Protection Implementation Plan. To satisfy this requirement, the estimated costs to effectuate necessary changes in existing programs or processes and to institute new programs or processes for compliance with the Order are provided in the following sections of this plan. The DOE/NV Assistant Manager for Environment, Safety, Security, & Health (AMESSH), in consultation with other organizations responsible for line management of plan implementation, is responsible for annual plan revisions.

Elle, D.R. [USDOE Nevada Operations Office, Las Vegas, NV (United States); Townsend, Y.E. [ed.; Latham, A.R.; Black, S.C. [Reynolds Electrical and Engineering Co., Inc., Las Vegas, NV (United States)

1993-11-01T23:59:59.000Z

362

Conduct Operations Assessment Plan - Developed By NNSA/Nevada Site Office Independent Oversight Division  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

August 2003 - Conduct of Operations (Programmatic Implementation) August 2003 - Conduct of Operations (Programmatic Implementation) Utilize Conduct of Operations - 5480.19 Utilize BN PD-0021.001 - Formality of Operations Utilize LLNL, LANL comparable documents (WSS) Requirements matrix at the senior management level Flow-down of requirements into facilities VALUE ADDED FOR: AMTS Contractor Assurance Focus Area AMTS ISM Improvements Focus Area AMTS Nuclear Operations Focus Area AMTS Performance Assurance Division AMNS Programs CONDUCT OF OPERATIONS Assessment Plan NNSA/Nevada Site Office Independent Oversight Division Performance Objective: The purpose of this assessment is to verify programmatic implementation of DOE O 5480.19, "Conduct of Operations Requirements of DOE Facilities" Criteria: Operations at DOE facilities shall be conducted in a manner to assure an

363

Federal Technical Capability Program Operational Plan - FY 2012  

NLE Websites -- All DOE Office Websites (Extended Search)

i i * D D e e c c e e m m b b e e r r 2 2 0 0 1 1 1 1 Revised: February 2012 U U . . S S . . D D E E P P A A R R T T M M E E N N T T O O F F E E N N E E R R G G Y Y F F E E D D E E R R A A L L T T E E C C H H N N I I C C A A L L C C A A P P A A B B I I L L I I T T Y Y P P R R O O G G R R A A M M F F Y Y 2 2 0 0 1 1 2 2 O O P P E E R R A A T T I I O O N N A A L L P P L L A A N N Federal Technical Capability P rogram FY 2012 Operational P lan December 2011 1 The objective of the Federal Technical Capability Program is to recruit, deploy, develop, and retain Federal personnel with the necessary technical capabilities to safely accomplish the Department's missions and responsibilities. The Department has identified guiding principles to accomplish that objective and identified four general functions of the Federal Technical Capability Program. The guiding principles are:

364

Federal Technical Capability Program Operational Plan - FY 2012  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

* D D e e c c e e m m b b e e r r 2 2 0 0 1 1 1 1 Revised: February 2012 U U . . S S . . D D E E P P A A R R T T M M E E N N T T O O F F E E N N E E R R G G Y Y F F E E D D E E R R A A L L T T E E C C H H N N I I C C A A L L C C A A P P A A B B I I L L I I T T Y Y P P R R O O G G R R A A M M F F Y Y 2 2 0 0 1 1 2 2 O O P P E E R R A A T T I I O O N N A A L L P P L L A A N N Federal Technical Capability P rogram FY 2012 Operational P lan December 2011 1 The objective of the Federal Technical Capability Program is to recruit, deploy, develop, and retain Federal personnel with the necessary technical capabilities to safely accomplish the Department's missions and responsibilities. The Department has identified guiding principles to accomplish that objective and identified four general functions of the Federal Technical Capability Program. The guiding principles are:

365

FTCP FY09 Operational Plan GOAL 2 White Paper - Mentoring Programs  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Page 1 of 3 Page 1 of 3 FTCP White Paper Regarding Mentoring Programs Available To Technical Qualification Program Employees in DOE and NNSA Introduction: The FTCP FY2009 Operational Plan Goal 2 (Preserve and Enhance Technical Credibility) calls for "Establishing an Effective Mid-Level Recruitment Program", and to "Establish an effective mentoring program" to ensure critical knowledge transfer in designated Technical Qualification positions affecting defense nuclear facilities. The Operational Plan Team researched existing programs within the Department and determined that DOE has been successfully managing a mentoring program and NNSA piloted and is in the process of establishing a formal mentoring program. The Team recommended and the FTCP agreed to use

366

Teleseismic-Seismic Monitoring At Coso Geothermal Area (1996-2004) | Open  

Open Energy Info (EERE)

4) 4) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Teleseismic-Seismic Monitoring At Coso Geothermal Area (1996-2004) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Teleseismic-Seismic Monitoring Activity Date 1996 - 2004 Usefulness useful DOE-funding Unknown Exploration Basis To look at time dependent seismic tomography Notes Local-earthquake tomographic images were calculated for each of the years 1996 - 2004 using arrival times from the U.S. Navy's permanent seismometer network. The results show irregular strengthening with time of the wave-speed ratio V p/V s at shallow depths. The period from 1996 through 2006 was studied, and the results to date using the traditional method show, for a 2-km horizontal grid spacing, an irregular strengthening

367

Micro-Earthquake At Coso Geothermal Area (2002-2005) | Open Energy  

Open Energy Info (EERE)

-2005) -2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Micro-Earthquake At Coso Geothermal Area (2002-2005) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Micro-Earthquake Activity Date 2002 - 2005 Usefulness not indicated DOE-funding Unknown Exploration Basis To improve understanding of the subsurface fracture system Notes A shear-wave splitting technique was applied on a set of high quality, locally recorded microearthquake (MEQ) data. Four major fracture directions have been identified from the seismograms recorded by the permanent 16-station down-hole array: N10- 20W, NS, N20E, and N40-45E, of which the first and the third are the most prominent. All orientations are consistent with the known strike of local sets of faults and fractures at depth and at

368

Imaging the Coso geothermal area crustal structure with an array of  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Imaging the Coso geothermal area crustal structure with an array of high-density mini-arrays Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: Imaging the Coso geothermal area crustal structure with an array of high-density mini-arrays Details Activities (1) Areas (1) Regions (0) Abstract: Advances in passive seismic data collecting and processing have produced higher resolution images of the crust and mantle than have been previously obtainable. The Earth is appearing to be more heterogeneous than was thought when only rougher scale observations were available. Here we

369

2-M Probe Survey At Coso Geothermal Area (1979) | Open Energy Information  

Open Energy Info (EERE)

9) 9) Exploration Activity Details Location Coso Geothermal Area Exploration Technique 2-M Probe Survey Activity Date 1979 Usefulness useful DOE-funding Unknown Exploration Basis Correct previously analyzed 2-m probe data Notes Corrected 2-m temperature anomaly at Coso was compared with a low altitude aeromagnetic anomaly and an anomaly outlined by electrical resistivity methods obtained independently. Preliminary tests were made with a simple thermal conductivity probe demonstrating the feasibility of measuring soil thermal diffusivity at the time the 2-m temperatures are recorded. References Leschack, L. A.; Lewis, J. E.; Chang, D. C.; Lewellen, R. I.; O'Hara, N.W. (1 March 1979) Rapid reconnaissance of geothermal prospects using shallow temperature surveys. Second technical report

370

Micro-Earthquake At Coso Geothermal Area (2000) | Open Energy Information  

Open Energy Info (EERE)

0) 0) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Micro-Earthquake At Coso Geothermal Area (2000) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Micro-Earthquake Activity Date 2000 Usefulness not indicated DOE-funding Unknown Exploration Basis Compare results of dense arrays with less densely spaced instruments Notes Results from a dense array of passive seismometers are presented. Data collected during the 18-month deployment of 16 dense mini-arrays in the region of the China Lake geothermal field near Ridgecrest, CA was used. The crustal structure within the geothermal field, its relationship to regional tectonic features, and search for an indication of mantle influence on volcanism was imaged. The mini-arrays consist of mostly short period

371

OMB Memorandum No. 95-18--Agency Plans for Operations During Funding Hiatus  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EXECUTIVE EXECUTIVE OFFICE OF THE PRESIDENT OFFICE OF MANAGEMENT AND BUDGET WASHINGTON, D.C. 20503 THE DIRECTOR August 22, 1995 M-95-l8 MEMORANDUM FOR HEADS OF FROM: Alice M. Director EXECUTIVE DEPARTMENTS RiVli~ AND AGENCIES SUBJECT: Agency Plans for Operations During Funding Hiatus OMB Bulletin 80-14, dated August 28, 1980 (and amended by the OMB Director's memorandum of November 17, 1981) requires all agencies to maintain contingency plans to deal with a possible appropriations hiatus. The bulletin requires agency plans to be consistent with the January 16, 1981 opinion of the Attorney General on this subject. The Office of Legal Counsel of the Department of Justice has issued an opinion dated August 16, 1995 that updates the 1981 opinion. A copy of the August 16th opinion is attached. You should review your plans in light of this opinion, make any changes necessary to conform to the opinion,

372

Powerline Conductor Operational Testing Facility (PCOT) The Powerline Conductor Operational Testing Facility (PCOT), currently planned for  

E-Print Network (OSTI)

advanced overhead power line conductors and superconducting cables into an operational high-voltage (HV) transmission system for long-term testing and evaluation. The HV transmission test network within PCOT, Tennessee, 500-kV Substation. In addition to testing advanced conductors and cables, PCOT provides

373

Abstract, AGU Fall meeting, San Francisco, 10-14 December, 2007 Seismic characterisation of hydraulic stimulation tests at the Coso geothermal  

E-Print Network (OSTI)

of hydraulic stimulation tests at the Coso geothermal area, California Bruce R. Julian U. S. Geological Survey, Durham DH1 3LE, U.K., g.r.foulger@durham.ac.uk Francis C. Monastero Geothermal Program Office, U. S. Navy and after fluid injection tests at the Coso geothermal area, California, to map the fractures formed

Foulger, G. R.

374

Operational Plan  

Energy Savers (EERE)

and Employment website provides job fair information, job posting, and job search engine. Publications: There are numerous military publications that can be used to...

375

DOE-STD-3006-95; DOE Standard Planning and Conduct of Operational Readiness Reviews (ORR)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3006-95 3006-95 November 1995 SUPERSEDING DOE-STD-3006-93 November 1993 DOE STANDARD PLANNING AND CONDUCT OF OPERATIONAL READINESS REVIEWS (ORR) U.S. Department of Energy AREA MISC Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. This document has been reproduced directly from the best available copy. Available to DOE and DOE contractors from the Office of Scientific and Technical Information, P.O. Box 62, Oak Ridge, TN 37831; (615) 576-8401. Available to the public from the U.S. Department of Commerce, Technology Administration, National Technical Information Service, Springfield, VA 22161; (703) 487-4650. DOE-STD-3006-95 i PLANNING AND CONDUCT OF OPERATIONAL READINESS REVIEWS (ORR) FOREWORD 1. DOE 0 425.1 establishes the requirement to conduct Operational Readiness Reviews

376

2011 Annual Workforce Analysis and Staffing Plan Report - Idaho Operations Office  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

January 19~ 2012 Subject: Annual Workforce Analysis and Staffing Plan Report for Calendar Year 2011 (OS-DM-12-004) To: Karen L. Boardman, Chairperson Federal Technical Capability Panel National Nuclear Security Administration Reference: Memorandum, Karen Boardman to Distribution, "Annual Workforce Analysis and Staffing Plan Report for Calendar Year 2011," dated October 13,2011 In accordance with direction in the reference, the Department of Energy, Idaho Operations Office (DOE-ID) performed a workforce analysis and developed an Annual Workforce Analysis and Staffing Report. The Report is hereby submitted for the Federal Technical Capability Program (FTCP) review and incorporation into the FTCP Annual Report to the Secretary.

377

Best management practices plan for the Lower East Fork Poplar Creek Operable Unit, Oak Ridge, Tennessee  

SciTech Connect

This plan was prepared in support of the Phase II Remedial Design Report (DOE/OR/01-1449&D1) and in accordance with requirements under CERCLA to present the plan for best management practices to be followed during the remediation. This document provides the Environmental Restoration Program with information about spill prevention and control, water quality monitoring, good housekeeping practices, sediment and erosion control measures, and inspections and environmental compliance practices to be used during Phase II of the remediation project for the Lower East Fork Poplar Creek Operable Unit.

NONE

1996-04-01T23:59:59.000Z

378

Pilot-scale treatability test plan for the 200-BP-5 operable unit  

SciTech Connect

This document presents the treatability test plan for pilot-scale pump and treat testing at the 200-BP-5 Operable Unit. This treatability test plan has been prepared in response to an agreement between the U.S. Department of Energy (DOE), the U.S. Environmental Protection Agency (EPA), and the State of Washington Department of Ecology (Ecology), as documented in Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement, Ecology et al. 1989a) Change Control Form M-13-93-03 (Ecology et al. 1994) and a recent 200 NPL Agreement Change Control Form (Appendix A). The agreement also requires that, following completion of the activities described in this test plan, a 200-BP-5 Operable Unit Interim Remedial Measure (IRM) Proposed Plan be developed for use in preparing an Interim Action Record of Decision (ROD). The IRM Proposed Plan will be supported by the results of this treatability test plan, as well as by other 200-BP-5 Operable Unit activities (e.g., development of a qualitative risk assessment). Once issued, the Interim Action ROD will specify the interim action(s) for groundwater contamination at the 200-BP-5 Operable Unit. The treatability test approach is to conduct a pilot-scale pump and treat test for each of the two contaminant plumes associated with the 200-BP-5 Operable Unit. Primary contaminants of concern are {sup 99}Tc and {sup 60}Co for underwater affected by past discharges to the 216-BY Cribs, and {sup 90}Sr, {sup 239/240}Pu, and Cs for groundwater affected by past discharges to the 216-B-5 Reverse Well. The purpose of the pilot-scale treatability testing presented in this testplan is to provide the data basis for preparing an IRM Proposed Plan. To achieve this objective, treatability testing must: Assess the performance of groundwater pumping with respect to the ability to extract a significant amount of the primary contaminant mass present in the two contaminant plumes.

Not Available

1994-08-01T23:59:59.000Z

379

FTCP FY09 Operational Plan GOAL 2 White Paper - Qualification Consistency and Transportability  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Program FY 2009 Operational Plan Program FY 2009 Operational Plan Goal 2: Preserve and Enhance Technical Capability Objective 1 Point Paper NNSA/SSO/AMFO/8 Jul 09/adt Objective 1: Identify resource and organizational structure needs to improve qualification consistency and transportability. Actions: 1. Determine appropriate resource levels 2. Determine effective organizational structure Methodology A TQP Resource Management Questionnaire was developed to address the actions above. The scope of the questionnaire broadened to include questions concerning TQP-related definitions, mentorship, and centralization of TQP tasks directly under the FTCP. The questionnaire was sent to all FTCP Agents and associate members who were given approximately 45 days to respond. Summary of questionnaire results:

380

Operations Authorization Assessment plan - Developed By NNSA/Nevada Site Office Facility Representative Division  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Operations Authorization Operations Authorization Assessment Plan NNSA/Nevada Site Office Independent Oversight Division Performance Objective: The objective of this assessment is to verify there is documentation in place which accurately describes the safety envelope for a facility, program or project. Criteria: Conditions and requirements should be established to ensure programs addressing all applicable functional areas are adequately implemented to support safe performance of the work. The extent of documentation and level of authority for agreement shall be tailored to the complexity and hazards associated with the work. Personnel shall be responsible and accountable for performance of work in accordance with the controls established. Controls established for safety are a discernible part of the plan for

Note: This page contains sample records for the topic "operations plan coso" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Operational status and life extension plans for the Los Alamos Neutron Science Center (LANSCE)  

SciTech Connect

The Los Alamos Neutron Science Center (LANSCE) accelerator and beam delivery complex generates the proton beams that serve three neutron production sources, a proton radiography facility and a medical and research isotope production facility. The recent operating history of the facility, including both achievements and challenges, will be reviewed. Plans for performance improvement will be discussed, together with the underlying drivers for the ongoing LANSCE Risk Mitigation project. The details of this latter project will also be discussed.

Garnett, Robert W [Los Alamos National Laboratory; Gulley, Mark S [Los Alamos National Laboratory; Jones, Kevin W [Los Alamos National Laboratory; Erickson, John L [Los Alamos National Laboratory

2010-01-01T23:59:59.000Z

382

Plan for Operating in the Event of a Lapse in Appropriations  

Directives, Delegations, and Requirements

The order establishes the Departments plan and procedures for continuing operations using balances from prior years, if available, during a lapse in appropriations and continuing only those essential functions related to emergencies involving the safety of human life or the protection of property and initiating orderly shutdown of those activities not considered essential. Canceled by DOE O 137.1A. Cancels DOE 5500.6B.

1998-09-04T23:59:59.000Z

383

Plan for Operating in the Event of a Lapse in Appropriations  

Directives, Delegations, and Requirements

The order establishes the DOE plan and procedures for continuing operations using balances from prior years, if available, during a lapse in appropriations and upon exhaustion of all available balances, continuing only those essential functions related to emergencies involving the safety of human life or the protection of property and initiating orderly shutdown of those activities not considered essential. Cancels DOE O 137.1. Canceled by DOE O 137.1B.

1999-08-30T23:59:59.000Z

384

Memo Issuance of EM Capital and Major Operating Project Standard Review Plan Edition Two  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

MAR 2 4 201011 MAR 2 4 201011 MEMORANDUM FOR DISTRIBUTION FROM: DR. STEVEN L. KRAHN DEPUTY ASSISTANT SAFETY AND SECU EIVVIROIVMENTAL MANAGEMENT SUBJECT: Issuance of Environmental Management Capital and Major Operating Project Standard Review Plan Edition Two The Office of Environmental Management (EM) is responsible for managing the design, construction, operation, and eventual disposition of mission critical projects/facilities. Effective management of these projects requires multiple disciplines to be integrated and engaged at various project lifecycle phases. These disciplines include project management, engineering, design, safety, environment, safeguards and security, and quality assurance. The lessons-learned to date from ongoing Headquarters (HQ) and Field project reviews [e.g., Construction Project

385

Machine Shop Safe Operations Assessment Plan - Developed By NNSA/Nevada Site Office Facility Representative Division  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

July 2003 - Machine Shop Safe Operations July 2003 - Machine Shop Safe Operations Utilize 29 CFR 1910 Utilize applicable LLNL, LANL, DTRA, BN procedures VALUE ADDED FOR: AMTS Contractor Assurance Focus Area AMTS ISM Improvements Focus Area AMTS Safety Precursors/Hazards Analysis Focus Area AMTS Environment, Safety, & Health Division MACHINE SHOP SAFE OPERATIONS Assessment Plan NNSA/Nevada Site Office Independent Oversight Division Performance Objective: The purpose of this assessment is to verify that machine shop operators are provided a safe and healthful workplace which will reduce or prevent injuries, illnesses, and accidental losses. Criteria: A worker protection program shall be implemented that provides a place of employment free from recognized hazards that are causing or likely to cause

386

RCRA and operational monitoring (ROM): Multi-year program plan and fiscal year 96 work plan. WBS 1.5.3, Revision 1  

SciTech Connect

The RCRA & Operational Monitoring (ROM) Program Office manages the Hanford Site direct funded Resource Conservation and Recovery Act (RCRA) and Operational Monitoring under Work Breakdown Structure (WBS) 1.01.05.03. The ROM Program Office is included in Hanford Technical Services, a part of Projects & Site Services of Westinghouse Hanford Company (WHC). The 1996 Multi-Year Program Plan (MYPP) includes the Fiscal Year Work Plan (FYWP). The Multi-Year Program Plan takes its direction from the Westinghouse Planning Baseline Integration Organization. The MYPP provides both the near term, enhanced details and the long term, projected details for the Program Office to use as baseline Cost, Scope and Schedule. Change Control administered during the fiscal year is against the baseline provided by near term details of this document. The MYPP process has been developed by WHC to meet its internal planning and integration needs and complies with the requirements of the US Department of Energy, Richland Operations Office (RL) Long Range Planning Process Directive (RLID 5000.2). Westinghouse Hanford Company (WHC) has developed the multi-year planning process for programs to establish the technical, schedule and cost baselines for program and support activities under WHC`s scope of responsibility. The baseline information is developed by both WHC indirect funded support services organization, and direct funded programs in WHC. WHC Planning and Integration utilizes the information presented in the program specific MYPP and the Program Master Baseline Schedule (PMBS) to develop the Site-Wide Integrated Schedule.

NONE

1995-09-01T23:59:59.000Z

387

Maintenance and operations contractor plan for transition to the project Hanford management contract (PHMC)  

SciTech Connect

This plan has been developed by Westinghouse Hanford Company (WHC), and its subcontractors ICF Kaiser Hanford (ICF KH) and BCS Richland, Inc. (BCSR), at the direction of the US Department of Energy (DOE), Richland Operations Office (RL). WHC and its subcontractors are hereafter referred to as the Maintenance and Operations (M and O) Contractor. The plan identifies actions involving the M and O Contractor that are critical to (1) prepare for a smooth transition to the Project Hanford Management Contractor (PHMC), and (2) support and assist the PHMC and RL in achieving transition as planned, with no or minimal impact to ongoing baseline activities. The plan is structured around two primary phases. The first is the pre-award phase, which started in mid-February 1996 and is currently scheduled to be completed on June 1, 1996, at which time the contract is currently planned to be awarded. The second is the follow-on four-month post-award phase from June 1, 1996, until October 1, 1996. Considering the magnitude and complexity of the scope of work being transitioned, completion in four months will require significant effort by all parties. To better ensure success, the M and O Contractor has developed a pre-award phase that is intended to maximize readiness for transition. Priority is given to preparation for facility assessments and processing of personnel, as these areas are determined to be on the critical path for transition. In addition, the M and O Contractor will put emphasis during the pre-award phase to close out open items prior to contract award, to include grievances, employee concerns, audit findings, compliance issues, etc.

Waite, J.L.

1996-04-12T23:59:59.000Z

388

1997 annual ground control operating plan for the Waste Isolation Pilot Plant  

SciTech Connect

This plan presents background information and a working guide to assist Mine Operations and Engineering in developing strategies for addressing ground control issues at the Waste Isolation Pilot Plant (WIPP). With the anticipated receipt of waste in late 1997, this document provides additional detail to Panel 1 activities and options. The plan also serves as a foundation document for development and revision of the annual long-term ground control plan. Section 2.0 documents the current status of all underground excavations with respect to location, geology, geometry, age, ground support, operational use, projected life, and physical conditions. Section 3.0 presents the methods used to evaluate ground conditions, including visual observations of the roof, ribs, and floor, inspection of observation holes, and review of instrumentation data. Section 4.0 lists several ground support options and specific applications of each. Section 5.0 discusses remedial ground control measures that have been implemented to date. Section 6.0 presents projections and recommendations for ground control actions based on the information in Sections 2.0 through 5.0 of this plan and on a rating of the critical nature of each specific area. Section 7.0 presents a summary statement, and Section 8.0 includes references. Appendix A provides an overview and critique of ground control systems that have been, or may be, used at the site. Because of the dynamic nature of the underground openings and associated geotechnical activities, this plan will be revised as additional data are incorporated.

NONE

1997-02-01T23:59:59.000Z

389

RCRA facility investigation/corrective measures study work plan for the 200-UP-2 Operable Unit, Hanford Site, Richland, Washington  

SciTech Connect

The 200-UP-2 Operable Unit is one of two source operable units at the U Plant Aggregate Area at the Hanford Site. Source operable units include waste management units and unplanned release sites that are potential sources of radioactive and/or hazardous substance contamination. This work plan, while maintaining the title RFI/CMS, presents the background and direction for conducting a limited field investigation in the 200-UP-2 Operable Unit, which is the first part of the process leading to final remedy selection. This report discusses the background, prior recommendations, goals, organization, and quality assurance for the 200-UP-2 Operable Unit Work Plan. The discussion begins with a summary of the regulatory framework and the role of the work plan. The specific recommendations leading into the work plan are then addressed. Next, the goals and organization of the report are discussed. Finally, the quality assurance and supporting documentation are presented.

Not Available

1993-06-01T23:59:59.000Z

390

The Mixed Waste Management Facility. Design basis integrated operations plan (Title I design)  

SciTech Connect

The Mixed Waste Management Facility (MWMF) will be a fully integrated, pilotscale facility for the demonstration of low-level, organic-matrix mixed waste treatment technologies. It will provide the bridge from bench-scale demonstrated technologies to the deployment and operation of full-scale treatment facilities. The MWMF is a key element in reducing the risk in deployment of effective and environmentally acceptable treatment processes for organic mixed-waste streams. The MWMF will provide the engineering test data, formal evaluation, and operating experience that will be required for these demonstration systems to become accepted by EPA and deployable in waste treatment facilities. The deployment will also demonstrate how to approach the permitting process with the regulatory agencies and how to operate and maintain the processes in a safe manner. This document describes, at a high level, how the facility will be designed and operated to achieve this mission. It frequently refers the reader to additional documentation that provides more detail in specific areas. Effective evaluation of a technology consists of a variety of informal and formal demonstrations involving individual technology systems or subsystems, integrated technology system combinations, or complete integrated treatment trains. Informal demonstrations will typically be used to gather general operating information and to establish a basis for development of formal demonstration plans. Formal demonstrations consist of a specific series of tests that are used to rigorously demonstrate the operation or performance of a specific system configuration.

NONE

1994-12-01T23:59:59.000Z

391

2012 Annual Workforce Analysis and Staffing Plan Report - Idaho Operations Office  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4, 2013 4, 2013 Subject: Annual Workforce Analysis and Staffing Plan Report for Calendar Year 2012 (EM-NSPD-13-003) To: Karen L. Boardman, Chairman Federal Technical Capability Panel National Nuclear Security Administration Reference: Memorandum, Karen Boardman to Distribution, "Annual Workforce Analysis and Staffing Plan Report for Calendar Year 2012," dated October 24, 2012 In accordance with direction in the reference, the Department of Energy, Idaho Operations Office (DOE-ID) performed a workforce analysis and developed an Annual Workforce Analysis and Staffing Report. The Report is herby submitted for the Federal Technical Capability Program (FTCP) review and incorporation into the FTCP Annual Report to the Secretary. Questions may be addressed to the DOE-ID FTCP Agent, Mark C. Brown at (208) 526-

392

DOE-HDBK-5504-95; Guidance for Evaluation of Operational Emergency Plans  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5504-95 5504-95 March 1995 DOE HANDBOOK GUIDANCE FOR EVALUATION OF OPERATIONAL EMERGENCY PLANS U.S. Department of Energy AREA MISC Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. This document has been reproduced directly from the best available copy. Available to DOE and DOE contractors from the Office of Scientific and Technical Information, P.O. Box 62, Oak Ridge, TN 37831; (615) 576-8401. Available to the public from the U.S. Department of Commerce, Technology Administration, National Technical Information Service, Springfield, VA 22161; (703) 487-4650. Order No. DE95012002 DOE-HDBK-5504-95 iii FOREWORD This handbook incorporates emergency planning information from the following EPA and OSHA regulations:

393

INL SITEWIDE INSTITUTIONAL CONTROLS, AND OPERATIONS AND MAINTENANCE PLAN FOR CERCLA RESPONSE ACTIONS  

SciTech Connect

On November 9, 2002, the U.S. Environmental Protection Agency, the U.S. Department of Energy, and the Idaho Department of Environmental Quality approved the 'Record of Decision Experimental Breeder Reactor-I/Boiling Water Reactor Experiment Area and Miscellaneous Sites', which required a Site-wide institutional controls plan for the then Idaho National Engineering and Environmental Laboratory (now known as the Idaho National Laboratory). This document, first issued in June 2004, fulfilled that requirement. This revision identifies and consolidates the institutional controls and operations and maintenance requirements into a single document.

JOLLEY, WENDELL L

2008-02-05T23:59:59.000Z

394

Experiment operations plan for the MT-4 experiment in the NRU reactor. [PWR  

SciTech Connect

A series of thermal-hydraulic and cladding materials deformation experiments were conducted using light-water reactor fuel bundles as part of the Pacific Northwest Laboratory Loss-of-Coolant Accident (LOCA) Simulation Program. This report is the formal operations plan for MT-4 - the fourth materials deformation experiment conducted in the National Research Universal (NRU) reactor, Chalk River, Ontario, Canada. A major objective of MT-4 was to simulate a pressurized water reactor LOCA that could induce fuel rod cladding deformation and rupture due to a short-term adiabatic transient and a peak fuel cladding temperature of 1200K (1700/sup 0/F).

Russcher, G.E.; Wilson, C.L.; Parchen, L.J.; Marshall, R.K.; Hesson, G.M.; Webb, B.J.; Freshley, M.D.

1983-06-01T23:59:59.000Z

395

A detailed MILP optimization model for combined cooling, heat and power system operation planning  

Science Journals Connector (OSTI)

Abstract A detailed optimization model is presented for planning the short-term operation of combined cooling, heat and power (CCHP) energy systems. The purpose is, given the design of a cogeneration system, to determine an operating schedule that minimizes the total operating and maintenance costs minus the revenue due to the electricity sold to the grid, while taking into account time-varying loads, tariffs and ambient conditions. The model considers the simultaneous use of different prime movers (generating electricity and heat), boilers, compression heat pumps and chillers, and absorption chillers to satisfy given electricity, heat and cooling demands. Heat and cooling load can be stored in storage tanks. Units can have one or two operative variables, highly nonlinear performance curves describing their off-design behavior, and limitations or penalizations affecting their start-up/shut-down operations. To exploit the effectiveness of state-of-the-art Mixed Integer Linear Program (MILP) solvers, the resulting Mixed Integer Nonlinear Programming (MINLP) model is converted into a MILP by appropriate piecewise linear approximation of the nonlinear performance curves. The model, written in the AMPL modeling language, has been tested on several plant test cases. The computational results are discussed in terms of the quality of the solutions, the linearization accuracy and the computational time.

Aldo Bischi; Leonardo Taccari; Emanuele Martelli; Edoardo Amaldi; Giampaolo Manzolini; Paolo Silva; Stefano Campanari; Ennio Macchi

2014-01-01T23:59:59.000Z

396

Renewable Electricity Futures Study. Volume 4: Bulk Electric Power Systems: Operations and Transmission Planning  

NLE Websites -- All DOE Office Websites (Extended Search)

Bulk Electric Power Systems: Bulk Electric Power Systems: Operations and Transmission Planning Volume 4 of 4 Volume 2 PDF Volume 3 PDF Volume 1 PDF Volume 4 PDF NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Renewable Electricity Futures Study Edited By Hand, M.M. National Renewable Energy Laboratory Baldwin, S. U.S. Department of Energy DeMeo, E. Renewable Energy Consulting Services, Inc. Reilly, J.M. Massachusetts Institute of Technology Mai, T. National Renewable Energy Laboratory Arent, D. Joint Institute for Strategic Energy Analysis Porro, G. National Renewable Energy Laboratory Meshek, M. National Renewable Energy Laboratory Sandor, D. National Renewable

397

M-13-22, Planning for Agency Operations during a Potential Lapse in Appropriations  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

C . 20503 THE DIRECTOR September 17, 2013 M-13-22 MEMORANDUM FOR THE HEADS OF EXECUTIVE DEPARTMENTS AND AGENCIES FROM: Sylvia M. Burwq ~ Director SUBJECT: Planning for Agency Operations during a Potential Lapse in Appropriations Appropriations provided under the Consolidated and Further Continuing Appropriations Act, 2013 (P.L. 113-6) expire at 11:59 pm on Monday, September 30. The Administration does not want a lapse in appropriations to occur. There is enough time for Congress to prevent a lapse in appropriations, and the Administration is willing to work with Congress to enact a short-term continuing resolution to fund critical Government operations and allow Congress the time to complete the full year 2014 appropriations. However, prudent management requires that

398

Pilot-scale treatability test plan for the 100-HR-3 operable unit  

SciTech Connect

This document presents the treatability test plan for pilot-scale pump-and-treat testing at the 100-HR-3 Operable Unit. The test will be conducted in fulfillment of interim Milestone M-15-06E to begin pilot-scale pump-and-treat operations by August 1994. The scope of the test was determined based on the results of lab/bench-scale tests (WHC 1993a) conducted in fulfillment of Milestone M-15-06B. These milestones were established per agreement between the U.S. Department of Energy (DOE), the Washington State Department of Ecology and the U.S. Environmental Protection Agency (EPA), and documented on Hanford Federal of Ecology Facility Agreement and Consent Order Change Control Form M-15-93-02. This test plan discusses a pilot-scale pump-and-treat test for the chromium plume associated with the D Reactor portion of the 100-HR-3 Operable Unit. Data will be collected during the pilot test to assess the effectiveness, operating parameters, and resource needs of the ion exchange (IX) pump-and-treat system. The test will provide information to assess the ability to remove contaminants by extracting groundwater from wells and treating extracted groundwater using IX. Bench-scale tests were conducted previously in which chromium VI was identified as the primary contaminant of concern in the 100-D reactor plume. The DOWEX 21K{trademark} resin was recommended for pilot-scale testing of an IX pump-and-treat system. The bench-scale test demonstrated that the system could remove chromium VI from groundwater to concentrations less than 50 ppb. The test also identified process parameters to monitor during pilot-scale testing. Water will be re-injected into the plume using wells outside the zone of influence and upgradient of the extraction well.

Not Available

1994-08-01T23:59:59.000Z

399

Operable Unit 3-13, Group 3, Other Surface Soils Remediation Sets 4-6 (Phase II) Waste Management Plan  

SciTech Connect

This Waste Management Plan describes waste management and waste minimization activities for Group 3, Other Surface Soils Remediation Sets 4-6 (Phase II) at the Idaho Nuclear Technology and Engineering Center located within the Idaho National Laboratory. The waste management activities described in this plan support the selected response action presented in the Final Record of Decision for Idaho Nuclear Technology and Engineering Center, Operable Unit 3-13. This plan identifies the waste streams that will be generated during implementation of the remedial action and presents plans for waste minimization, waste management strategies, and waste disposition.

G. L. Schwendiman

2006-07-01T23:59:59.000Z

400

Remedial design work plan for Lower East Fork Poplar Creek Operable Unit, Oak Ridge, Tennessee  

SciTech Connect

The Remedial Design Work Plan (RDWP) for Lower East Fork Poplar Creek (EFPC) Operable Unit (OU) in Oak Ridge, Tennessee. This remedial action fits into the overall Oak Ridge Reservation (ORR) cleanup strategy by addressing contaminated floodplain soil. The objective of this remedial action is to minimize the risk to human health and the environment from contaminated soil in the Lower EFPC floodplain pursuant to the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) and the Federal Facility Agreement (FFA) (1992). In accordance with the FFA, a remedial investigation (RI) (DOE 1994a) and a feasibility study (DOE 1994b) were conducted to assess contamination of the Lower EFPC and propose remediation alternatives. The remedial investigation determined that the principal contaminant is mercury, which originated from releases during Y-12 Plant operations, primarily between 1953 and 1963. The recommended alternative by the feasibility study was to excavate and dispose of floodplain soils contaminated with mercury above the remedial goal option. Following the remedial investigation/feasibility study, and also in accordance with the FFA, a proposed plan was prepared to more fully describe the proposed remedy.

NONE

1995-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "operations plan coso" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

HEMP emergency planning and operating procedures for electric power systems. Power Systems Technology Program  

SciTech Connect

Investigations of the impact of high-altitude electromagnetic pulse (HEMP) on electric power systems and electrical equipment have revealed that HEMP creates both misoperation and failures. These events result from both the early time E{sub 1} (steep-front pulse) component and the late time E{sub 3} (geomagnetic perturbations) component of HEMP. In this report a HEMP event is viewed in terms of its marginal impact over classical power system disturbances by considering the unique properties and consequences of HEMP. This report focuses on system-wide electrical component failures and their potential consequences from HEMP. In particular, the effectiveness of planning and operating procedures for electric systems is evaluated while under the influence of HEMP. This assessment relies on published data and characterizes utilities using the North American Electric Reliability Council`s regions and guidelines to model electric power system planning and operations. Key issues addressed by the report include how electric power systems are affected by HEMP and what actions electric utilities can initiate to reduce the consequences of HEMP. The report also reviews the salient features of earlier HEMP studies and projects, examines technology trends in the electric power industry which are affected by HEMP, characterizes the vulnerability of power systems to HEMP, and explores the capability of electric systems to recover from a HEMP event.

Reddoch, T.W.; Markel, L.C. [Electrotek Concepts, Inc., Knoxville, TN (United States)

1991-12-31T23:59:59.000Z

402

Risk Assessment Using The Homeland-Defense Operational Planning System (HOPS)  

SciTech Connect

The Homeland-Defense Operational Planning System (HOPS), is a new operational planning tool leveraging Lawrence Livermore National Laboratory's expertise in weapons systems and in sparse information analysis to support the defense of the U.S. homeland. HOPS provides planners with a basis to make decisions to protect against acts of terrorism, focusing on the defense of facilities critical to U.S. infrastructure. Criticality of facilities, structures, and systems is evaluated on a composite matrix of specific projected casualty, economic, and sociopolitical impact bins. Based on these criteria, significant unidentified vulnerabilities are identified and secured. To provide insight into potential successes by malevolent actors, HOPS analysts strive to base their efforts mainly on unclassified open-source data. However, more cooperation is needed between HOPS analysts and facility representatives to provide an advantage to those whose task is to defend these facilities. Evaluated facilities include: refineries, major ports, nuclear power plants and other nuclear licensees, dams, government installations, convention centers, sports stadiums, tourist venues, and public and freight transportation systems. A generalized summary of analyses of U.S. infrastructure facilities will be presented.

Price, D E; Durling, R L

2005-10-10T23:59:59.000Z

403

Hungry Horse Mitigation Plan; Fisheries Mitigation Plan for Losses Attributable to the Construction and Operation of Hungry Horse Dam, 1990-2003 Technical Report.  

SciTech Connect

In this document we present fisheries losses, mitigation alternatives, and recommendations to protect, mitigate, and enhance resident fish and aquatic habitat affected by the construction and operation of Hungry Horse Dam. This plan addresses six separate program measures in the 1987 Columbia Basin Fish and Wildlife Program. We designed the plan to be closely coordinated in terms of dam operations, funding, and activities with the Kerr Mitigation Plan presently before the Federal Energy Regulatory Commission. This document represents a mitigation plan for consideration by the Northwest Power Planning Council process; it is not an implementation plan. Flathead Lake is one of the cleanest lakes of its size in the world. The exceptional water quality and unique native fisheries make the Flathead Lake/River system extremely valuable to the economy and quality of life in the basin. The recreational fishery in Flathead Lake has an estimated value of nearly eight million dollars annually. This mitigation process represents our best opportunity to reduce the impacts of hydropower in this valuable aquatic system and increase angling opportunity. We based loss estimates and mitigation alternatives on an extensive data base, agency reports, nationally and internationally peer-reviewed scientific articles, and an innovative biological model for Hungry Horse Reservoir and the Flathead River. We conducted an extensive, 14-month scoping and consultation process with agency representatives, representatives of citizen groups, and the general public. This consultation process helped identify issues, areas of agreement, areas of conflict, and advantages and disadvantages of mitigation alternatives. The results of the scoping and consultation process helped shape our mitigation plan. Our recommended plan is based firmly on principles of adaptive management and recognition of biological uncertainty. After we receive direction from the NPPC, we will add more detailed hypotheses and other features necessary for a long-term implementation plan.

Fraley, John J.; Marotz, Brian L. (Montana Department of Fish, Wildlife and Parks, Helena, MT); DosSantos, Joseph M. (Confederated Salish and Kootenai Tribes of the Flathead Nation, Pablo, MT)

2003-04-01T23:59:59.000Z

404

Remedial investigation/feasibility study work plan for the 100-KR-4 operable unit, Hanford Site, Richland, Washington  

SciTech Connect

Four areas of the Hanford Site (the 100, 200, 300, and 1100 Areas) have been included on the US Environmental Protection Agency`s (EPA`s) National Priorities List (NPL) under the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA). This work plan and the attached supporting project plans establish the operable unit setting and the objectives, procedures, tasks, and schedule for conducting the CERCLA remedial investigation/feasibility study (RI/FS) for the 100-KR-4 operable unit. The 100-K Area consists of the 100-KR-4 groundwater operable unit and three source operable units. The 100-KR-4 operable unit includes all contamination found in the aquifer soils and water beneath the 100-K Area. Source operable units include facilities and unplanned release sites that are potential sources of contamination.

Not Available

1992-09-01T23:59:59.000Z

405

Impact of dispersed solar and wind systems on electric distribution planning and operation  

SciTech Connect

Small-scale dispersed solar photovoltaic and wind generation (DSW) will affect the generation, transmission, and distribution systems of an electric utility. This study examines the technical and economic impacts of dispersing DSW devices within the distribution system. Dispersed intermittent generation is included. Effects of DSW devices on capital investments, reliability, operating and maintenance costs, protection requirements, and communication and control requirements are examined. A DSW operation model is developed to help determine the dependable capacity of fluctuating solar photovoltaic and wind generation as part of the distribution planning process. Specific case studies using distribution system data and renewable resource data for Southern California Edison Company and Consumers Power Company are analyzed to gain insights into the effects of interconnecting DSW devices. The DSW devices were found to offer some distribution investment savings, depending on their availability during peak loads. For a summer-peaking utility, for example, dispersing photovoltaic systems is more likely to defer distribution capital investments than dispersing wind systems. Dispersing storage devices to increase DSW's dependable capacity for distribution systems needs is not economically attractive. Substation placement of DSW and storage devices is found to be more cost effective than feeder or customer placement. Examination of the effects of DSW on distribution system operation showed that small customer-owned DSW devices are not likely to disrupt present time-current distribution protection coordination. Present maintenance work procedures, are adequate to ensure workmen's safety. Regulating voltages within appropriate limits will become more complex with intermittent generation along the distribution feeders.

Boardman, R.W.; Patton, R.; Curtice, D.H.

1981-02-01T23:59:59.000Z

406

Assessing the Role of Operating, Passenger, and Infrastructure Costs in Fleet Planning under Fuel Price Uncertainty  

E-Print Network (OSTI)

ICKET . Aircraft Category Fuel Price (FP) Coefficient SL*FPin Fleet Planning under Fuel Price Uncertainty Megan Smirti,in Fleet Planning under Fuel Price Uncertainty Megan Smirti,

Smirti, Megan; Hansen, Mark

2009-01-01T23:59:59.000Z

407

March 30, 2010, Face to Face Meeting Presentation - DOE FTCP FY10 Operational Plan  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Federal Federal Technical Capability Panel DOE Federal Technical Capability Panel FY10 Operational Plan G l 1 Obj ti 2 Goal 1 Objective 2: Define and implement a standard approach for continuing technical training for personnel in the continuing technical training for personnel in the TQP March 2010 Mark Sundie and Carol Ingram, Co-champions g , p Objectives for Today Goal 1 Objective 2 Goals for Face-to-Face: Goal 1 Objective 2 Goals for Face to Face: Obtain approval of revised wording Obtain approval of revised wording * Obtain FTCP input and buy-in on path forward: forward: Brief Panel on Status of Objective 2 Ensure that outcomes support DOE long-term mission pp g needs and provide management flexibility in TQP implementation G1 O2 Summary Face to Face Mar2010 FINAL Carol Ingram, NNSA/LSO

408

Nez Perce Tribal Hatchery Project, Operations and Maintenance and Planning and Design, 2001 Annual Report.  

SciTech Connect

This report fulfills the contract obligations based on the Statement of Work (SOW) for the project as contracted with Bonneville Power Administration (BPA). Nez Perce Tribal Hatchery (NPTH) Year-2001 annual report combines information from two contracts with a combined value of $2,336,491. They are identified by Bonneville Power Administration as follows: (1) Operations and Maintenance--Project No. 1983-350-00, Contract No. 4504, and (2) Planning and Design--Project No. 1983-350-00, Contract No. 4035. The Operations and Maintenance (O&M) budget of $2,166,110 was divided as follows: Facility Development and Fish Production Costs--$860,463; and Equipment Purchases as capital cost--$1,305,647 for equipment and subcontracts. The Planning and Design (P&D) budget of $170,381 was allocated to development of a Coho master planning document in conjunction with Nez Perce Tribal Hatchery. The O&M budget expenditures represent personnel and fish production expenses; e.g., administration, management, coordination, facility development, personnel training and fish production costs for spring Chinook and Coho salmon. Under Objective 1: Fish Culture Training and Education, tribal staff worked at Clearwater Anadromous Hatchery (CAFH) an Idaho Department of Fish and Game (IDFG) facility to produce spring Chinook smolt and parr for release that are intended to provide future broodstock for NPTH. As a training exercise, BPA allowed tribal staff to rear Coho salmon at Dworshak National Fish Hatchery, a U.S. Fish and Wildlife Service (USFWS) facility. This statement of work allows this type of training to prepare tribal staff to later rear salmon at Nez Perce Tribal Hatchery under Task 1.6. As a subset of the O&M budget, the equipment purchase budget of $1,305,647 less $82,080 for subcontracts provides operational and portable equipment necessary for NPTH facilities after construction. The equipment budget for the year was $1,223,567; this year's purchases amounted $287,364.48 (see Table 5). Purchases are itemized in Appendix D and E. FishPro, Inc. assisted tribal staff with equipment purchases. The unspent contract balances will be carried forward to the ensuing year to complete equipment purchases essential to hatchery operations. The NPTH activities focused on completion of the Northwest Power Planning Council Step-3 decision that authorized hatchery construction. Construction began in July 2000. It is anticipated to continue through October 2002. At the end of 2001, the hatchery facilities were approximately 70% completed and the budget approximately 90% expended. The following facilities are either completed or in final stages of construction: (1) NPTH Central Hatchery facility at Site 1705, and (2) North Lapwai Valley satellite, and (3) Sweetwater Springs satellite, and (4) Yoosa-Camp satellite, and (5) Newsome Creek satellite, and (6) Lukes Gulch satellite, and (7) Cedar Flats satellite.

Larson, Roy Edward; Walker, Grant W.; Penney, Aaron K. (Nez Perce Tribe, Lapwai, ID)

2006-03-01T23:59:59.000Z

409

Field operations plan for permeability testing in the WIPP-site underground facility  

SciTech Connect

This Field Operations Plan (FOP) describes the objectives, design, equipment, and methodology for permeability tests to be conducted in boreholes drilled from the underground facility currently under construction at the 655-meter depth level at the Waste Isolation Pilot Plant (WIPP) site in southeastern New Mexico into relatively undisturbed portions of the Salado formation. The WIPP is a U. S. Department of Energy research and development facility designed to demonstrate safe disposal of transuranic radioactive wastes resulting from the United States`s defense programs. The testing described in this FOP will be conducted by INTERA Technologies, Inc., under contract to the Earth Sciences Division of Sandia National Laboratories (SNL). The testing program is part of the WIPP-site Hydrogeologic Characterization and Plugging and Sealing programs being conducted by SNL`s Earth Sciences and Experimental Programs Divisions, respectively.

Saulnier, G.J. Jr. [Intera Technologies, Inc., Austin, TX (United States)

1988-08-09T23:59:59.000Z

410

Field operations plan for permeability testing in the WIPP-site underground facility  

SciTech Connect

This Field Operations Plan (FOP) describes the objectives, design, equipment, and methodology for permeability tests to be conducted in boreholes drilled from the underground facility currently under construction at the 655-meter depth level at the Waste Isolation Pilot Plant (WIPP) site in southeastern New Mexico into relatively undisturbed portions of the Salado formation. The WIPP is a U. S. Department of Energy research and development facility designed to demonstrate safe disposal of transuranic radioactive wastes resulting from the United States's defense programs. The testing described in this FOP will be conducted by INTERA Technologies, Inc., under contract to the Earth Sciences Division of Sandia National Laboratories (SNL). The testing program is part of the WIPP-site Hydrogeologic Characterization and Plugging and Sealing programs being conducted by SNL's Earth Sciences and Experimental Programs Divisions, respectively.

Saulnier, G.J. Jr. (Intera Technologies, Inc., Austin, TX (United States))

1988-08-09T23:59:59.000Z

411

Experiment operations plan for the TH-2 experiment in the NRU reactor. [PWR; BWR  

SciTech Connect

A series of thermal-hydraulic and cladding materials deformation experiments were conducted using light-water reactor fuel bundles as part of the Pacific Northwest Laboratory Loss-of-Coolant Accident (LOCA) Simulation Program. This report is the formal operations plan for TH-2--the second experiment in the series of thermal-hydraulic tests conducted in the National Research Universal (NRU) reactor, Chalk River, Ontario, Canada. The major objective of TH-2 was to develop the experiment reflood control parameters and the procedures to be used in subsequent experiments in this program. In this experiment, the data acquisition and control system was used to control the fuel cladding temperature during a simulated LOCA by using variable reflood coolant flow.

Russcher, G.E.; Wilson, C.L.; Parchen, L.J.; Freshley, M.D.

1983-06-01T23:59:59.000Z

412

Integrated spare parts logistics and operations planning for maintenance service providers  

Science Journals Connector (OSTI)

Abstract This paper considers the problem of coordinated spare-part logistics and operations planning for third-party maintenance providers. Due to the multi-indenture structure of the equipment, different types of components might randomly fail to perform at different points of time. The spare part logistics literature has been focused on spare part inventory management in an in-house maintenance context. In this article, a mathematical programming model is first developed to formulate the problem in the context of a third-party maintenance provider who is faced with strict due dates for the delivery of repaired equipment. The model seeks the optimal number of maintenance jobs that can be completed to deliver at each period, as well as the order quantity of spare parts so as to minimize the procurement, inventory, and equipment late delivery costs, while taking into account the spare part supply lead-time. Next, we model the spare part demand uncertainty as a non-stationary stochastic process in each period in the planning horizon. The deterministic model is then reformulated as a multi-stage stochastic program with recourse. We also discuss the complexity of the stochastic model and propose a preprocessing approach to reduce its size for large instances. Numerical results demonstrate how the proposed model links the spare part logistics and equipment delivery decisions under spare part demand uncertainty.

Masoumeh Kazemi Zanjani; Mustapha Nourelfath

2014-01-01T23:59:59.000Z

413

Configuration Management Plan for Tank Farm Restoration and Safe Operations Project W-314 [CANCELLED  

SciTech Connect

The W-314 configuration management (CM) plan describes the systems, processes and procedures for implementing CM.

MCGREW, D.L.

2001-01-12T23:59:59.000Z

414

Public Participation Plan for Waste Area Group 7 Operable Unit 7-13/14 at the Idaho National Laboratory Site  

SciTech Connect

This Public Participation Plan outlines activities being planned to: (1) brief the public on results of the remedial investigation and feasibility study, (2) discuss the proposed plan for remediation of Operable Unit 7-13/14 with the public, and (3) encourage public participation in the decision-making process. Operable Unit 7-13/14 is the Comprehensive Remedial Investigation/Feasibility Study for Waste Area Group 7. Analysis focuses on the Subsurface Disposal Area (SDA) within the Radioactive Waste Management Complex at the Idaho National Laboratory (Site). This plan, a supplement to the Idaho National Laboratory Community Relations Plan (DOE-ID 2004), will be updated as necessary. The U.S. Department of Energy (DOE), Idaho Department of Environmental Quality (DEQ), and U.S. Environmental Protection Agency (EPA) will participate in the public involvement activities outlined in this plan. Collectively, DOE, DEQ, and EPA are referred to as the Agencies. Because history has shown that implementing the minimum required public involvement activities is not sufficient for high-visibility cleanup projects, this plan outlines additional opportunities the Agencies are providing to ensure that the publics information needs are met and that the Agencies can use the publics input for decisions regarding remediation activities.

B. G. Meagher

2007-07-17T23:59:59.000Z

415

Test plan for evaluating the operational performance of the prototype nested, fixed-depth fluidic sampler  

SciTech Connect

The PHMC will provide Low Activity Wastes (LAW) tank wastes for final treatment by a privatization contractor from two double-shell feed tanks, 241-AP-102 and 241-AP-104. Concerns about the inability of the baseline ''grab'' sampling to provide large volume samples within time constraints has led to the development of a nested, fixed-depth sampling system. This sampling system will provide large volume, representative samples without the environmental, radiation exposure, and sample volume impacts of the current base-line ''grab'' sampling method. A plan has been developed for the cold testing of this nested, fixed-depth sampling system with simulant materials. The sampling system will fill the 500-ml bottles and provide inner packaging to interface with the Hanford Sites cask shipping systems (PAS-1 and/or ''safe-send''). The sampling system will provide a waste stream that will be used for on-line, real-time measurements with an at-tank analysis system. The cold tests evaluate the performance and ability to provide samples that are representative of the tanks' content within a 95 percent confidence interval, to sample while mixing pumps are operating, to provide large sample volumes (1-15 liters) within a short time interval, to sample supernatant wastes with over 25 wt% solids content, to recover from precipitation- and settling-based plugging, and the potential to operate over the 20-year expected time span of the privatization contract.

REICH, F.R.

1999-05-18T23:59:59.000Z

416

Operations, Maintenance, and Replacement 10-Year Plan 1990-1999 : Environmental Strategy. Final Report.  

SciTech Connect

In operating and maintaining its regional power transmission system, Bonneville Power Administration (BPA) must address environmental concerns. Pollution sources and pathways for pollution migration, including potential contamination from hazardous or toxic materials, are present. BPA must develop and follow precautionary measures, respond to emergencies, minimize wastes, redress past problems, alert and train employees to problems and safety needs, constantly evaluate this effort and update the program for improvements and changes in regulations and technology. Part of BPA's mission is to conduct its operation, maintenance, and replacement programs in an environmentally sound manner. BPA recognizes its responsibility to be good stewards of the environment. BPA will meet its environmental obligations as set forth in environmental laws and regulations. BPA intends to make consistent and measurable progress toward meeting these responsibilities. The target for the 10-Year Plan is to achieve environmental compliance and meet the following goals: (1) protect human health and the environment; (2) avoid or limit liability (3) set up an effective internal management structure to maintain compliance; and (4) achieve cost-effective compliance. 6 figs.

United States. Bonneville Power Administration.

1990-09-01T23:59:59.000Z

417

Tank waste remediation system operation and utilization plan,vol. I {ampersand} II  

SciTech Connect

The U.S. Department of Energy Richland Operations Office (RL) is in the first stages of contracting with private companies for the treatment and immobilization of tank wastes. The components of tank waste retrieval, treatment, and immobilization have been conceived in two phases (Figure 1.0-1). To meet RL's anticipated contractual requirements, the Project Hanford Management Contractor (PHMC) companies will be required to provide waste feeds to the private companies consistent with waste envelopes that define the feeds in terms of quantity, and concentration of both chemicals and radionuclides. The planning that supports delivery of the feed must be well thought out in four basic areas: (1) Low-activity waste (LAW)/high-level waste (HLW) feed staging plans. How is waste moved within the existing tanks to deliver waste that corresponds to the defined feed envelopes to support the Private Contractor's processing schedule and processing rate? (2) Single-shell tank (SST) retrieval sequence. How are Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) (Ecology et al. 1994) milestones for SST retrieval integrated into the Phase I processing to set the stage for Phase II processing to complete the mission? (3) Tank Waste Remediation System (TWRS) process flowsheet. How do materials flow from existing tank inventories through: (1) blending and pretreatment functions in the double-shell tanks (DSTs), (2) contractor processing facilities, and (3) stored waste forms (Figure 1.0-2); (4) Storage and disposal of the immobilized low-activity waste (ILAW) and immobilized high-level waste (IHLW) product. How is the ILAW and IHLW product received from the private companies, the ILAW disposed onsite, and the IHLW stored onsite until final disposal?

Kirkbride, R.A.

1997-09-01T23:59:59.000Z

418

Old hydrofracture facility tanks contents removal action operations plan at the Oak Ridge National Laboratory, Oak Ridge, Tennessee. Volume 2: Checklists and work instructions  

SciTech Connect

This is volume two of the ORNL old hydrofracture facility tanks contents removal action operations plan. This volume contains checklists and work instructions.

NONE

1998-05-01T23:59:59.000Z

419

Management and operating contractor plan for transition to the project Hanford Management Contractor  

SciTech Connect

This is Revision 1 to the M{ampersand}O Contractor Plan for Transition to the Project Hanford Management Contractor.

Waite, J.L., Westinghouse Hanford

1996-06-27T23:59:59.000Z

420

E-Print Network 3.0 - aguila pre-operations plan Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

101211 Anonymous Only Summary: St Cost: Free 4155811600 Planned Parenthood Golden Gate 815 Eddy St, Suite 200 Cost: Sliding... Scale Testing available for women. Appointment...

Note: This page contains sample records for the topic "operations plan coso" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Starting and Operating a Woman-Owned Mechanical Engineering Consulting Firm in Kansas: Business and Operations Plan  

E-Print Network (OSTI)

in these states. An engineering business does not need a federal license to operate. Local County and City Permits There are requirements and restrictions regarding signage, parking, and the type of business allowed in a particular area. Special zoning...

McEwing, Ronald

2005-12-16T23:59:59.000Z

422

Property:FuturePlans | Open Energy Information  

Open Energy Info (EERE)

FuturePlans FuturePlans Jump to: navigation, search Property Name FuturePlans Property Type Text Subproperties This property has the following 3 subproperties: C Coso Geothermal Area R Raft River Geothermal Area S Salt Wells Geothermal Area Pages using the property "FuturePlans" Showing 3 pages using this property. B Beowawe Hot Springs Geothermal Area + With the award of the $2 million USDOE ARRA grant and the industry match of $4 million, the 1.5 MW binary bottoming-cycle plant is on-line. Once the plant is fully operational it will provide nonproprietary data to the National Geothermal Data System (NGDS) and the Department of Energy Geothermal Technologies Program (DOE GTP) for a minimum of two years. C Chena Geothermal Area + In 2011, Chena Hot Springs was awarded a $900,000 grant from the Fairbanks North Star Borough (FNSB) for the development to help locate and develop high-temperature resources in the Borough. The total cost of the project that is not covered by the grant is $1.25 Million. (Frey, 2011) In the mid 2000's geochemical research indicated that there may be resources in the 200°F range. fP If such resources do exist, the plan will be to expand the capacity of Chena Power. This would allow for the expansion of the resort, and the potential to finally tie Chena into the local power grid. Tying into the grid would provide clean energy to Golden Valley Electric Association and FNSB residents. Chena currently has the required equipment for a 250 kW addition when additional heat is able to be recovered. (Frey, 2011) To help gain public support for geothermal power that utilizes low temperature resources, Chena Power has built a mobile 0.28 MW ORC (organic rankine cycle) system. Chena built the mobile ORC system with the help of United Technologies (UTC) to be an entirely mobile and self contained unit by mounting the ORC system on two 45 foot step deck trailers. The two trailers are placed side by side when operational. Chena Power is currently continuing to deploy the mobile unit state to state to extract energy from the waste water that is rejected from an oil well.

423

On the determination of coherent solar microclimates for utility planning and operations  

Science Journals Connector (OSTI)

Abstract This work presents a cluster analysis for the determination of coherent zones of Global Horizontal Irradiance (GHI) for a utility scale territory in California, which is serviced by San Diego Gas & Electric. Knowledge of these coherent zones, or clusters, would allow utilities and power plants to realize cost savings through regional planning and operation activities such as the mitigation of solar power variability through the intelligent placement of solar farms and the optimal placement of radiometric stations. In order to determine such clusters, two years of gridded satellite data were used to describe the evolution of GHI over a portion of Southern California. Step changes of the average daily clear-sky index at each location are used to characterize the fluctuation of GHI. The k-means clustering algorithm is applied in conjunction with a stable initialization method to diminish its dependency to random initial conditions. Two validity indices are then used to define the quality of the cluster partitions as well as the appropriate number of clusters. The clustering algorithm determined an optimal number of 14 coherent spatial clusters of similar GHI variability as the most appropriate segmentation of the service territory map. In addition, 14 cluster centers are selected whose radiometric observations may serve as a proxy for the rest of the cluster. A correlation analysis, within and between the proposed clusters, based both on single-point ground-based and satellite-derived measurements evaluates positively the coherence of the conducted clustering. This method could easily be applied to any other utility scale region and is not dependent on GHI data which shows promise for the application of such clustering methods to load data and/or other renewable resources such as wind.

Athanassios Zagouras; Rich H. Inman; Carlos F.M. Coimbra

2014-01-01T23:59:59.000Z

424

Systems Engineering Management Plan for Tank Farm Restoration and Safety Operations Project W-314  

SciTech Connect

The Systems Engineering Management Plan for Project W-314 has been prepared within the guidelines of HNF-SD-WM-SEMP-002, TWRS Systems Engineering Management Plan. The activities within this SEMP have been tailored, in accordance with the TWRS SEMP and DOE Order 430.1, Life Cycle Asset Management, to meet the needs of the project.

MCGREW, D.L.

2000-04-19T23:59:59.000Z

425

Configuration Management Plan for Tank Farm Restoration and Safe Operations Project W-314  

SciTech Connect

The Configuration Management Plan for Project W-314 describes the systems, processes and procedures for implementation of applicable configuration management practices described in HNF-0842, Volume 111, Section 3.1, ''Configuration Management Implementation''. This plan is tailored specifically for use by Project W-314.

MCGREW, D.L.

2000-04-19T23:59:59.000Z

426

Risk Management Plan for Tank Farm Restoration and Safe Operations Project W-314  

SciTech Connect

The Risk Management Plan for Project W-314 describes the systems, processes and procedures for implementation of applicable risk management practices described in HNF-0842, Volume IV, Section 2.6, ''Risk Management''. This plan is tailored specifically for use by Project W-314.

MCGREW, D.L.

2000-04-19T23:59:59.000Z

427

Project Execution Plan, Waste Management Division, Nevada Operations Office, U.S. Department of Energy, April 2000  

SciTech Connect

This plan addresses project activities encompassed by the U.S. Department of Energy/Nevada Operations Office Waste Management Division and conforms to the requirements contained in the ''Life Cycle Asset Management,'' U.S. Department of Energy Order O430.1A; the Joint Program Office Policy on Project Management in Support of DOE Order O430.1, and the Project Execution and Engineering Management Planning Guide. The plan also reflects the milestone philosophies of the Federal Facility Agreement and Consent Order, as agreed to by the state of Nevada; and traditional project management philosophies such as the development of life cycle costs, schedules, and work scope; identification of roles and responsibilities; and baseline management and controls.

DOE /NV

2000-04-01T23:59:59.000Z

428

Operations Information  

NLE Websites -- All DOE Office Websites (Extended Search)

Standards BPA Operations Information (OPI) Transmission Services operates and plans for regional and national system needs. Transmission Services coordinates system operation and...

429

Remedial investigation/feasibility study work plan for the 100-BC-2 operable unit, Hanford Site, Richland, Washington  

SciTech Connect

This work plan and attached supporting project plans establish the operable unit setting and the objectives, procedures, tasks, and schedule for conducting the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) remedial investigation/feasibility study (RI/FS) for the 100-BC-2 operable unit in the 100 Area of the Hanford Site. The 100 Area is one of four areas at the Hanford Site that are on the US Environmental Protection Agency`s (EPA) National Priorities List under CERCLA. The 100-BC-2 operable unit is one of two source operable units in the 100-B/C Area (Figure ES-1). Source operable units are those that contain facilities and unplanned release sites that are potential sources of hazardous substance contamination. The 100-BC-2 source operable unit contains waste sites that were formerly in the 100-BC-2, 100-BC-3, and 100-BC-4 operable units. Because of their size and geographic location, the waste sites from these two operable units were added to 100-BC-2. This allows for a more efficient and effective investigation of the remaining 100-B/C Reactor area waste sites. The investigative approach to waste sites associated with the 100-BC-2 operable unit are listed in Table ES-1. The waste sites fall into three general categories: high priority liquid waste disposal sites, low priority liquid waste disposal sites, and solid waste burial grounds. Several sites have been identified as candidates for conducting an IRM. Two sites have been identified as warranting additional limited field sampling. The two sites are the 116-C-2A pluto crib, and the 116-C-2C sand filter.

Not Available

1993-05-01T23:59:59.000Z

430

EXPERIMENT OPERATIONS PLAN FOR A LOSS-OF-COOLANT ACCIDENT SIMULATION IN THE NATIONAL RESEARCH UNIVERSAL REACTOR  

SciTech Connect

Pressurized water reactor loss-of-coolant accident phenomena are being simulated with a series of experiments in the U-2 loop of the National Research Universal Reactor at Chalk River, Ontario, Canada. The first of these experiments includes up to 45 parametric thermal-hydraulic tests to establish the relationship between the reflood delay time of emergency coolant, the reflooding rate, and the resultant fuel rod cladding peak temperature. This document contains both experiment proposal and assembly proposal information. The intent of this document is to supply information required by the Chalk River Nuclear Laboratories (CRNL), and to identify the planned procedures and data that will be used both to establish readiness to proceed from one test phase to the next and to operate the experiment. Operating control settings and limits are provided for both experimenter systems and CRNL systems. A hazards review summarizes safety issues that have been addressed during the development of the experiment plan.

Russcher, G. E.; Cannon, L. W.; Goodman, R. L.; Hesson, G. M.; King, L. L.; McDuffie, P. N.; Marshall, R. K.; Nealley, C.; Pilger, J. P.; Mohr, C. L.

1981-04-01T23:59:59.000Z

431

The ATLAS liquid argon calorimeter: One year of LHC operation and future upgrade plans for HL-LHC  

SciTech Connect

An overview of the ATLAS liquid-argon calorimeter system is provided, along with a discussion of its operation and performance during the first year of LHC running. Upgrade planning related to the proposed high-luminosity upgrade of the LHC is also discussed, with an emphasis on the forward part of the calorimeter where the effects of the higher luminosity are a particular challenge. (authors)

Krieger, P. W. [Dept. of Physics, Univ. of Toronto, Toronto, ON (Canada)

2011-07-01T23:59:59.000Z

432

Operations and Maintenance (O&M) Plan for the U.S. Department...  

Office of Legacy Management (LM)

management and land use control section of this O&M Plan. LM's 24-hour phone number and web address will be posted locally so that citizens can report sightings or concerns, such...

433

EIS-0480: Long-Term Experimental and Management Plan for the Operation of Glen Canyon Dam  

Energy.gov (U.S. Department of Energy (DOE))

Two agencies of the Department of the Interior, Bureau of Reclamation and National Park Service, are jointly preparing a Long-Term Experimental and Management Plan for the Glen Canyon Dam and an EIS for adoption of the Plan. The Glen Canyon Dam, on the Colorado River in northern, Arizona, generates hydroelectric power that is marketed by DOE's Western Area Power Administration, a cooperating agency.

434

Remedial Design/Remedial Action Work Plan for Operable Units 6-05 and 10-04, Phase III  

SciTech Connect

The remedial design/remedial action for Operable Unit 6-05 (Waste Area Group 6) and Operable Unit 10-04 (Waste Area Group 10) - collectively called Operable Unit 10-04 has been divided into four phases. Phase I consists of developing and implementing institutional controls at Operable Unit 10-04 sites and developing and implementing Idaho National Laboratory-wide plans for both institutional controls and ecological monitoring. Phase II will remediate sites contaminated with trinitrotoluene and Royal Demolition Explosive. Phase III will remediate lead contamination at a gun range, and Phase IV will remediate hazards from unexploded ordnance. This Phase III remedial Design/Remedial Action Work Plan addresses the remediation of lead-contaminated soils found at the Security Training Facility (STF)-02 Gun Range located at the Idaho National Laboratory. Remediation of the STF-02 Gun Range will include excavating contaminated soils; physically separating copper and lead for recycling; returning separated soils below the remediation goal to the site; stabilizing contaminated soils, as required, and disposing of the separated soils that exceed the remediation goal; encapsulating and disposing of creosote-contaminated railroad ties and power poles; removing and disposing of the wooden building and asphalt pads found at the STF-02 Gun Range; sampling and analyzing soil to determine the excavation requirements; and when the remediation goals have been met, backfilling and contouring excavated areas and revegetating the affected area.

R. P. Wells

2006-09-19T23:59:59.000Z

435

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 92, NO. B1, PAGES 393-405, JANUARY 10, 1987 P Wave Velocity Variations in the Coso Region, California,  

E-Print Network (OSTI)

GeophysicsDivision, SandiaNational Laboratories,Albuquerque,New Mexico ROBERT W. CLAYTON Seismological velocity variations in the Indian Wells Valley-Coso region of southeasternCalifornia. The residuals layer reflect local geology, including slow velocities for the sedimentary basins of Indian Wells

Clayton, Robert W.

436

New Pump and Treat Facility Remedial Action Work Plan For Test Area North Final Groundwater Remediation, Operable Unit 1-07B  

SciTech Connect

This remedial action work plan identifies the approach and requirements for implementing the medial zone remedial action for Test Area North, Operable Unit 1-07B, at the Idaho National Laboratory. This plan details the management approach for the construction and operation of the New Pump and Treat Facility (NPTF). As identified in the remediatial design/remedial action scope of work, a separate remedial design/remedial action work plan will be prepared for each remedial component of the Operable Unit 1-07B remedial action.

Nelson, L. O.

2007-06-12T23:59:59.000Z

437

Reclamation planning and operation at the Mae Moh Lignite Mine, Thailand  

SciTech Connect

The Mae Moh Mine is a large open cut lignite mine situated in Northern Thailand. The mine produces lignite for coal fired power stations located adjacent to the mine. Current mine production is approximately 9 Mtpa providing lignite to eight power stations with a total output of 1,125 MW. The power development plan for Mae Moh provides for 19 power stations by the year 1999 which will require lignite production to be increased to 30.5 Mtpa and overburden will be mined at a rate approaching 300 Mtpa. Environmental management and reclamation planning at Mae Moh are major issues due to water quality impact and land use conflicts. This paper presents the key elements of the reclamation master plan and works strategy for progressive reclamation and water pollution control.

Miller, S.D. [Stuart D. Miller & Associates, Balmain (Australia); Teparat, C. [Electricity Generating Authority of Thailand, Mae Moh (Thailand)

1990-12-31T23:59:59.000Z

438

Surface Spectral Albedo Intensive Operational Period at the ARM SGP Site in august 2002: Results, Analysis, and Future Plans  

NLE Websites -- All DOE Office Websites (Extended Search)

Spectral Albedo Intensive Operational Period Spectral Albedo Intensive Operational Period at the ARM SGP Site in August 2002: Results, Analysis, and Future Plans A. P. Trishchenko and Y. Luo Canada Centre for Remote Sensing Ottawa, Ontario, Canada M. C. Cribb and Z. Li University of Maryland College Park, Maryland K. Hamm University of Oklahoma Norman, Oklahoma Introduction A surface spectral albedo Intensive Operational Period (IOP) at the Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) site was conducted during August 14-19, 2002, to meet the ARM Program need in a detailed knowledge of surface boundary conditions for atmospheric radiation studies. We measured surface spectral albedos/reflectances for several representative surface types and made a survey of landcover types over an area of approximately 10 km x 10 km centered

439

When is More Data Valuable to Human Operators? The Cognitive Engineering Laboratory (CEL) plans to conduct a microworld simulator study during the summer of 2014.  

E-Print Network (OSTI)

When is More Data Valuable to Human Operators? The Cognitive Engineering Laboratory (CEL) plans to conduct a microworld simulator study during the summer of 2014. The objective is to evaluate human only looked at operator performance under normal operating conditions. Will having additional sensor

440

E-Print Network 3.0 - automated operations planning Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

State University Collection: Computer Technologies and Information Sciences 11 Operator Scheduling Strategies in Supervisory Control of Multiple UAVs M.L. Cummings* Summary: some...

Note: This page contains sample records for the topic "operations plan coso" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

2014 Annual Planning Summary for the NNSA Savannah River Operations Office  

Energy.gov (U.S. Department of Energy (DOE))

The ongoing and projected Environmental Assessments and Environmental Impact Statements for 2014 and 2015 within the NNSA Savannah River Operations Office.

442

Travinfo Field Operational Test Traveler Information Center (TIC) Study (technology Evaluation Element) Implementation Plan  

E-Print Network (OSTI)

Phase I & 11) 2. Review TRWIASG TIC documentation 3.TIC site visits 4. Conduct discussions with operators PhaseInformation Center (TIC) Study (Technology Evaluation

Miller, Mark; Hall, Randolph

1995-01-01T23:59:59.000Z

443

16.2 - Performance Evaluation and Measurement Plans for Cost-Reimbursement, Non-Management and Operating Contracts  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Chapter 16.2 (July 2012) Chapter 16.2 (July 2012) 1 Performance Evaluation and Measurement Plans for Cost-Reimbursement, Non- Management and Operating Contracts [Reference: FAR 6, FAR 16, FAR 22, FAR 32, FAR 46, DEAR 915.404-4-72, DEAR 916.405-2, DEAR 970.1504-1, and Acquisition Guide Chapter 16.1] Overview The policy of the DOE is to maximize contractor performance and to align costs with performance through the use of performance-based management as a strategic contract management tool to plan for, manage, and evaluate contractor performance. An important function of contract administration is the ability, or the opportunity, to manage the environment within which the contracted effort is proceeding and, most importantly, to facilitate adjustments to that effort to meet the demand and changes as

444

Sample Business Plan Framework 1: A program seeking to continue operations in the post-grant period as a not-for-profit (NGO) entity  

Energy.gov (U.S. Department of Energy (DOE))

U.S. Department of Energy Better Buildings Neighborhood Program: Sample Business Plan Framework 1: A program seeking to continue operations in the post-grant period as a not-for-profit (NGO) entity.

445

CAH and Shared Services Transition Plan CAH will move seven servers that provide daily operational services such as user authentication and access, central file  

E-Print Network (OSTI)

CAH and Shared Services Transition Plan CAH will move seven servers that provide daily operational the university's NET domain. Domains provide user authentication, access, and management to resources divide the transition plan, and each phase has goals and a deadline. The overall goal is to continue

Wu, Shin-Tson

446

Second Line of Defense Megaports Initiative Operational Testing and Evaluation Plan Colon Container Terminal (CCT) Panama  

SciTech Connect

Report on the Operational Testing and Evaluation to validate and baseline an operable system that meets the Second Line of Defense (SLD) mission requirements. An SLD system is defined as the detection technology and associated equipment, the system operators from the host country, the standard operating procedures (SOPs), and other elements such as training and maintenance which support long-term system sustainment. To this end, the activities conducted during the OT&E phase must demonstrate that the Megaports System can be operated effectively in real-time by Panama Direccion General de Aduanas (DGA Panama Customs) personnel to the standards of the U.S. Department of Energy/National Nuclear Security Administration (DOE/NNSA).

Newhouse, Robert N.

2010-01-01T23:59:59.000Z

447

The Role of Demand Resources In Regional Transmission Expansion Planning and Reliable Operations  

SciTech Connect

Investigating the role of demand resources in regional transmission planning has provided mixed results. On one hand there are only a few projects where demand response has been used as an explicit alternative to transmission enhancement. On the other hand there is a fair amount of demand response in the form of energy efficiency, peak reduction, emergency load shedding, and (recently) demand providing ancillary services. All of this demand response reduces the need for transmission enhancements. Demand response capability is typically (but not always) factored into transmission planning as a reduction in the load which must be served. In that sense demand response is utilized as an alternative to transmission expansion. Much more demand response is used (involuntarily) as load shedding under extreme conditions to prevent cascading blackouts. The amount of additional transmission and generation that would be required to provide the current level of reliability if load shedding were not available is difficult to imagine and would be impractical to build. In a very real sense demand response solutions are equitably treated in every region - when proposed, demand response projects are evaluated against existing reliability and economic criteria. The regional councils, RTOs, and ISOs identify needs. Others propose transmission, generation, or responsive load based solutions. Few demand response projects get included in transmission enhancement plans because few are proposed. But this is only part of the story. Several factors are responsible for the current very low use of demand response as a transmission enhancement alternative. First, while the generation, transmission, and load business sectors each deal with essentially the same amount of electric power, generation and transmission companies are explicitly in the electric power business but electricity is not the primary business focus of most loads. This changes the institutional focus of each sector. Second, market and reliability rules have, understandably, been written around the capabilities and limitations of generators, the historic reliability resources. Responsive load limitations and capabilities are often not accommodated in markets or reliability criteria. Third, because of the institutional structure, demand response alternatives are treated as temporary solutions that can delay but not replace transmission enhancement. Financing has to be based on a three to five year project life as opposed to the twenty to fifty year life of transmission facilities. More can be done to integrate demand response options into transmission expansion planning. Given the societal benefits it may be appropriate for independent transmission planning organizations to take a more proactive role in drawing demand response alternatives into the resource mix. Existing demand response programs provide a technical basis to build from. Regulatory and market obstacles will have to be overcome if demand response alternatives are to be routinely considered in transmission expansion planning.

Kirby, Brendan J [ORNL

2006-07-01T23:59:59.000Z

448

Use of Frequency Response Metrics to Assess the Planning and Operating Requirements for Reliable Integration of Variable Renewable Generation  

SciTech Connect

An interconnected electric power system is a complex system that must be operated within a safe frequency range in order to reliably maintain the instantaneous balance between generation and load. This is accomplished by ensuring that adequate resources are available to respond to expected and unexpected imbalances and restoring frequency to its scheduled value in order to ensure uninterrupted electric service to customers. Electrical systems must be flexible enough to reliably operate under a variety of"change" scenarios. System planners and operators must understand how other parts of the system change in response to the initial change, and need tools to manage such changes to ensure reliable operation within the scheduled frequency range. This report presents a systematic approach to identifying metrics that are useful for operating and planning a reliable system with increased amounts of variable renewable generation which builds on existing industry practices for frequency control after unexpected loss of a large amount of generation. The report introduces a set of metrics or tools for measuring the adequacy of frequency response within an interconnection. Based on the concept of the frequency nadir, these metrics take advantage of new information gathering and processing capabilities that system operators are developing for wide-area situational awareness. Primary frequency response is the leading metric that will be used by this report to assess the adequacy of primary frequency control reserves necessary to ensure reliable operation. It measures what is needed to arrest frequency decline (i.e., to establish frequency nadir) at a frequency higher than the highest set point for under-frequency load shedding within an interconnection. These metrics can be used to guide the reliable operation of an interconnection under changing circumstances.

Eto, Joseph H.; Undrill, John; Mackin, Peter; Daschmans, Ron; Williams, Ben; Haney, Brian; Hunt, Randall; Ellis, Jeff; Illian, Howard; Martinez, Carlos; O'Malley, Mark; Coughlin, Katie; LaCommare, Kristina Hamachi

2010-12-20T23:59:59.000Z

449

A hedge fund business plan : investment theory, operations, and capital raising for Broadgates Capital Management  

E-Print Network (OSTI)

Launching a start-up hedge fund is a complex, multifaceted endeavor that requires an understanding of the interconnectivity between capital raising, investment strategy, regulation, and fund operations. The purpose of this ...

Mills, Jeffrey David

2014-01-01T23:59:59.000Z

450

Observation and Analysis of Departure Planning Operations at Boston Logan International Airport  

E-Print Network (OSTI)

The Departure Planner (DP) is a concept for a decision-aiding tool that is aimed at improving the departure operations performance at major congested airports. In order to support the development of the DP tool, the flow ...

Idris, Husni R.

2011-10-14T23:59:59.000Z

451

Environmental Monitoring Plan, United States Department of Energy, Richland Operations Office. Revision 1  

SciTech Connect

This report describes environmental monitoring activities at Hanford Reservation. Attention is focused on effluent monitoring and environmental surveillance. All Hanford contractors reviewed potential sources of contamination. A facility effluent monitoring plan was written for each facility with the potential to release significant quantities of hazardous materials, addressing both radiological and nonradiological effluent monitoring. The environmental surveillance program assesses onsite and offsite environmental impacts and offsite human health exposures. The program monitors air, surface water, sediment, agricultural products, vegetation, soil, and wildlife. In addition, independent onsite surveillance is conducted to evaluate the effectiveness of Hanford Site effluent controls in order to comply with applicable environmental standards and regulations.

Not Available

1994-11-09T23:59:59.000Z

452

Test Plan for Long-Term Operation of a Ten-Cell High Temperature Electrolysis Stack  

SciTech Connect

This document defines a test plan for a long-term (2500 Hour) test of a ten-cell high-temperature electrolysis stack to be performed at INL during FY09 under the Nuclear Hydrogen Initiative. This test was originally planned for FY08, but was removed from our work scope as a result of the severe budget cuts in the FY08 NHI Program. The purpose of this test is to evaluate stack performance degradation over a relatively long time period and to attempt to identify some of the degradation mechanisms via post-test examination. This test will be performed using a planar ten-cell Ceramatec stack, with each cell having dimensions of 10 cm 10 cm. The specific makeup of the stack will be based on the results of a series of shorter duration ten-cell stack tests being performed during FY08, funded by NGNP. This series of tests was aimed at evaluating stack performance with different interconnect materials and coatings and with or without brazed edge rails. The best performing stack from the FY08 series, in which five different interconnect/coating/edge rail combinations were tested, will be selected for the FY09 long-term test described herein.

James E. O'Brien; Carl M. Stoots; J. Stephen Herring

2008-07-01T23:59:59.000Z

453

Second Line of Defense Megaports Initiative Operational Testing and Evaluation Plan - Kingston Container Terminal, Port of Kingston, Jamaica  

SciTech Connect

Operational Testing and Evaluation Plan - Kingston Container Terminal, Port of Kingston, Jamaica was written for the Second Line of Defense Megaports Initiative. The purpose of the Operational Testing and Evaluation (OT&E) phase of the project is to prepare for turnover of the Megaports system supplied by U.S. Department of Energy/National Nuclear Security Administration (DOE/NNSA) located at the Kingston Container Terminal (KCT) of the Port of Kingston, Jamaica to the Government of Jamaica (GOJ). Activities conducted during the OT&E phase must demonstrate that the Megaports system can be operated effectively in real time by Jamaica Customs and KCT personnel to the satisfaction of the DOE/NNSA. These activities will also determine if the Megaports system, as installed and accepted, is performing according to the Megaports Program objectives such that the system is capable of executing the mission of the Second Line of Defense Megaports Initiative. The OT&E phase of the project also provides an opportunity to consider potential improvements to the system and to take remedial action if performance deficiencies are identified during the course of evaluation. Changes to the system should be considered under an appropriate change-control process. DOE/NNSA will determine that OT&E is complete by examining whether the Megaports system is performing as intended and that the GOJ is fully capable of operating the system independently without continued onsite support from the U.S. team.

Deforest, Thomas J.; VanDyke, Damon S.

2012-03-01T23:59:59.000Z

454

Facility Operations 1993 fiscal year work plan: WBS 1.3.1  

SciTech Connect

The Facility Operations program is responsible for the safe, secure, and environmentally sound management of several former defense nuclear production facilities, and for the nuclear materials in those facilities. As the mission for Facility Operations plants has shifted from production to support of environmental restoration, each plant is making a transition to support the new mission. The facilities include: K Basins (N Reactor fuel storage); N Reactor; Plutonium-Uranium Reduction Extraction (PUREX) Plant; Uranium Oxide (UO{sub 3}) Plant; 300 Area Fuels Supply (N Reactor fuel supply); Plutonium Finishing Plant (PFP).

Not Available

1992-11-01T23:59:59.000Z

455

Second Line of Defense, Megaports Initiative, Operational Testing and Evaluation Plan, Port of Lazaro Cardenas, Mexico  

SciTech Connect

The purpose of the Operational Testing and Evaluation (OT&E) phases of the project is to prepare for turnover of the Megaports System supplied by U.S. Department of Energy/National Nuclear Security Administration (DOE/NNSA)located at the Export Lanes of the Port of Lazaro Cardenas, Mexicoto the Government of Mexico (GOM).

Hughes, Jamie D.

2012-05-30T23:59:59.000Z

456

FTCP FY09 Operational Plan GOAL 2 White Paper - Mid-level Recruitment Programs  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

White Paper White Paper Topic: Identifying and documenting mid-level recruitment programs. Issue: Due to increasing attrition rates of senior technical staff, a large percentage of Site Office positions are in need of both knowledge management and succession planning programs to ensure the continuity of DOE's mission. A long term strategy has been to identify entry level talent that could work along side experienced technical personnel to build the competencies necessary for our mission critical positions while filling forecasted skill gaps. As a result, Site Offices find it very difficult to identify a short term strategy that can identify and place new, mid-level employees into positions requiring the immediate application of mature technical skills.

457

NNSA Strategic Performance Evaluation Plan (PEP) FOR MANAGEMENT AND OPERATION OF  

National Nuclear Security Administration (NNSA)

MANAGEMENT AND OPERATION OF MANAGEMENT AND OPERATION OF Los Alamos National Security, LLC Contract Number: DE-AC52-06NA25396 Performance period: October 01, 2012 through September 30, 2013 Director ~;!;tory '1'/r/;L Steven K. Shook Date Chief, Prime Contracts Office Los Alamos National Laboratory Kevin W. Smith Manager Los Alamos Site Office :dd:.- Date 7J~;i;curity Ad~i]~/2-- Robert M. Poole Date Contracting Officer Los Alamos Site Office National Nuclear Security Administration INTRODUCTION The Los Alamos National Laboratory is managed by Los Alamos National Security,LLC, herein referenced as "Contractor", for the U.S. Department of Energy (DOE), National Nuclear Security Administration (NNSA). Pursuant to the terms and conditions of the Contract, and Clause H-12,

458

New Pump and Treat Facility Remedial Action Work Plan for Test Area North (TAN) Final Groundwater Remediation, Operable Unit 1-07B  

SciTech Connect

This remedial action work plan identifies the approach and requirements for implementing the medical zone remedial action for Test Area North, Operable Unit 1-07B, at the Idaho National Engineering and Environmental Laboratory (INEEL). This plan details management approach for the construction and operation of the New Pump and Treat Facility. As identified in the remedial design/remedial action scope of work, a separate remedial design/remedial action work plan will be prepared for each remedial component of the Operable Unit 1-07B remedial action. This work plan was originally prepared as an early implementation of the final Phase C remediation. At that time, The Phase C implementation strategy was to use this document as the overall Phase C Work Plan and was to be revised to include the remedial actions for the other remedial zones (hotspot and distal zones). After the completion of Record of Decision Amendment: Technical Support Facility Injection Well (TSF-05) and Surrounding Groundwater Contamination (TSF-23) and Miscellaneous No Action Sites, Final Remedial Action, it was determined that each remedial zone would have it own stand-alone remedial action work plan. Revision 1 of this document converts this document to a stand-alone remedial action plan specific to the implementation of the New Pump and Treat Facility used for plume remediation within the medical zone of the OU 1-07B contaminated plume.

D. Vandel

2003-09-01T23:59:59.000Z

459

Operable Unit 7-13/14 in situ thermal desorption treatability study work plan  

SciTech Connect

This Work Plan provides technical details for conducting a treatability study that will evaluate the application of in situ thermal desorption (ISTD) to landfill waste at the Subsurface Disposal Area (SDA) at the Idaho National Engineering and Environmental Laboratory (INEEL). ISTD is a form of thermally enhanced vapor vacuum extraction that heats contaminated soil and waste underground to raise its temperature and thereby vaporize and destroy most organics. An aboveground vapor vacuum collection and treatment system then destroys or absorbs the remaining organics and vents carbon dioxide and water to the atmosphere. The technology is a byproduct of an advanced oil-well thermal extraction program. The purpose of the ISTD treatability study is to fill performance-based data gaps relative to off-gas system performance, administrative feasibility, effects of the treatment on radioactive contaminants, worker safety during mobilization and demobilization, and effects of landfill type waste on the process (time to remediate, subsidence potential, underground fires, etc.). By performing this treatability study, uncertainties associated with ISTD as a selected remedy will be reduced, providing a better foundation of remedial recommendations and ultimate selection of remedial actions for the SDA.

Shaw, P.; Nickelson, D.; Hyde, R.

1999-05-01T23:59:59.000Z

460

Remedial Design/Remedial Action Work Plan for Operable Units 6-05 and 10-04, Phase IV  

SciTech Connect

This Phase IV Remedial Design/Remedial Action Work Plan addresses the remediation of areas with the potential for UXO at the Idaho National Laboratory. These areas include portions of the Naval Proving Ground, the Arco High-Altitude Bombing Range, and the Twin Buttes Bombing Range. Five areas within the Naval Proving Ground that are known to contain UXO include the Naval Ordnance Disposal Area, the Mass Detonation Area, the Experimental Field Station, The Rail Car Explosion Area, and the Land Mine Fuze Burn Area. The Phase IV remedial action will be concentrated in these five areas. For other areas, such as the Arco High-Altitude Bombing Range and the Twin Buttes Bombing Range, ordnance has largely consisted of sand-filled practice bombs that do not pose an explosion risk. Ordnance encountered in these areas will be addressed under the Phase I Operations and Maintenance Plan that allows for the recovery and disposal of ordnance that poses an imminent risk to human health or the environment.

R. P. Wells

2006-11-14T23:59:59.000Z

Note: This page contains sample records for the topic "operations plan coso" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

July 24, 2006, Department letter providing status and path forward for the 2004-1 implementation plan, Oversight of Complex, High-Hazard Nuclear Operations  

NLE Websites -- All DOE Office Websites (Extended Search)

July 24, 2006 July 24, 2006 The Honorable A. J. Eggenberger Chairman Defense Nuclear Facilities Safety Board 625 Indiana Avenue, NW, Suite 700 Washington, DC 20004-294 1 Dear Mr. Chairman: In June 2005, I provided you with a copy of the Department's revised Implementation Plan to Improve Oversight of Nuclear Operations in response to Board recommendation 2004- 1 . Since that time, the Department has completed numerous planned actions and has learned from this experience how best to sustain real improvement in this area. Based on the feedback to date, we are preparing to make a course correction on our implementation plan to improve its effectiveness and to bolster line management accountability. To this end, we plan to revise our 2004-1 implementation plan and provide you with this revision by

462

Renewable Electricity Futures Study. Volume 4: Bulk Electric Power Systems: Operations and Transmission Planning  

SciTech Connect

The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%-90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT).

Milligan, M.; Ela, E.; Hein, J.; Schneider, T.; Brinkman, G.; Denholm, P.

2012-06-01T23:59:59.000Z

463

Recovery Efficiency Test Project: Phase 1, Activity report. Volume 1: Site selection, drill plan preparation, drilling, logging, and coring operations  

SciTech Connect

The recovery Efficiency Test well project addressed a number of technical issues. The primary objective was to determine the increased efficiency gas recovery of a long horizontal wellbore over that of a vertical wellbore and, more specifically, what improvements can be expected from inducing multiple hydraulic fractures from such a wellbore. BDM corporation located, planned, and drilled a long radius turn horizontal well in the Devonian shale Lower Huron section in Wayne County, West Virginia, demonstrating that state-of-the-art technology is capable of drilling such wells. BDM successfully tested drilling, coring, and logging in a horizontal well using air as the circulating medium; conducted reservoir modeling studies to protect flow rates and reserves in advance of drilling operations; observed two phase flow conditions in the wellbore not observed previously; cored a fracture zone which produced gas; observed that fractures in the core and the wellbore were not systematically spaced (varied from 5 to 68 feet in different parts of the wellbore); observed that highest gas show rates reported by the mud logger corresponded to zone with lowest fracture spacing (five feet) or high fracture frequency. Four and one-half inch casting was successfully installed in the borehole and was equipped to isolate the horizontal section into eight (8) zones for future testing and stimulation operations. 6 refs., 48 figs., 10 tabs.

Overbey, W.K. Jr.; Carden, R.S.; Kirr, J.N.

1987-04-01T23:59:59.000Z

464

Experiment Operations Plan for a Loss-of-Coolant Accident Simulation in the National Research Universal Reactor Materials Test 2  

SciTech Connect

A loss-of-coolant accident (LOCA) simulation program is evaluating the thermal-hydraulic and mechanical effects on pressurized water reactor (PWR) test fuel bundles. This Experiment Operation Plan (EOP) Addendum 2, together with the referenced EOP, describes the desired operating conditions and additional hazards review associated with the four-part MT-2 experiment. The primary portions of the experiment, MT-2.2 and MT-2.3, will evaluate the following: 1) the mechanical deformation of pressurized fuel rods subjected to a slow LOCA, using reflood water for temperature control, that is designed to produce cladding temperatures in the range from 1033 to 1089K (1400 to 1500F) for an extended time, and 2) the effects of the deformed and possibly failed cladding on the thermal-hydraulic performance of the test assembly during simulated LOCA heating and reflooding. The secondary portions of the experiment, MT-2.1 and MT-2.4, are intended to provide thermal-hydraulic calibration information during two-stage reflood conditions for 1) relatively low cladding temperatures, <839K (1050F), on nondeformed rods, and 2) moderately high cladding temperatures, <1089K (1500F), on deformed rods.

Russcher, G. E.; Barner, J. O.; Hesson, G. M.; Wilson, C. L.; Parchen, L. J.; Cunningham, M. E.; Marshall, R. K.; Mohr, C. L.

1981-09-01T23:59:59.000Z

465

Operable Unit 3-13, Group 3, Other Surface Soils Remediation Sets 4-6 (Phase II) Remedial Design/Remedial Action Work Plan  

SciTech Connect

This Remedial Design/Remedial Action Work Plan provides the framework for defining the remedial design requirements, preparing the design documentation, and defining the remedial actions for Waste Area Group 3, Operable Unit 3-13, Group 3, Other Surface Soils, Remediation Sets 4-6 (Phase II) located at the Idaho Nuclear Technology and Engineering Center at the Idaho National Laboratory. This plan details the design developed to support the remediation and disposal activities selected in the Final Operable Unit 3-13, Record of Decision.

D. E. Shanklin

2006-06-01T23:59:59.000Z

466

Remedial Investigation Work Plan for Upper East Fork Poplar Creek Operable Unit 3 at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. Environmental Restoration Program  

SciTech Connect

Upper East Fork Popular Creek Operable Unit 3 (UEFPC OU 3) is a source term OU composed of seven sites, and is located in the western portion of the Y-12 Plant. For the most part, the UEFPC OU 3 sites served unrelated purposes and are geographically removed from one another. The seven sites include the following: Building 81-10, the S-2 Site, Salvage Yard oil storage tanks, the Salvage Yard oil/solvent drum storage area, Tank Site 2063-U, the Salvage Yard drum deheader, and the Salvage Yard scrap metal storage area. All of these sites are contaminated with at least one or more hazardous and/or radioactive chemicals. All sites have had some previous investigation under the Y-12 Plant RCRA Program. The work plan contains summaries of geographical, historical, operational, geological, and hydrological information specific to each OU 3 site. The potential for release of contaminants to receptors through various media is addressed, and a sampling and analysis plan is presented to obtain objectives for the remedial investigation. Proposed sampling activities are contingent upon the screening level risk assessment, which includes shallow soil sampling, soil borings, monitoring well installation, groundwater sampling, and surface water sampling. Data from the site characterization activities will be used to meet the above objectives. A Field Sampling Investigation Plan, Health and Safety Plan, and Waste Management Plan are also included in this work plan.

Not Available

1993-08-01T23:59:59.000Z

467

Remedial investigation/feasibility study Work Plan and addenda for Operable Unit 4-12: Central Facilities Area Landfills II and III at the Idaho National Engineering Laboratory  

SciTech Connect

This document is divided into two main sections -- the Work Plan and the addenda. The Work Plan describes the regulatory history and physical setting of Operable Unit 4-12, previous sampling activities, and data. It also identifies a preliminary conceptual model, preliminary remedial action alternatives, and preliminary applicable or relevant and appropriate requirements. In addition, the Work Plan discusses data gaps and data quality objectives for proposed remedial investigation activities. Also included are tasks identified for the remedial investigation/feasibility study (RI/FS) and a schedule of RI/FS activities. The addenda include details of the proposed field activities (Field Sampling Plan), anticipated quality assurance activities (Quality Assurance Project Plan), policies and procedures to protect RI/FS workers and the environment during field investigations (Health and Safety Plan), and policies, procedures, and activities that the Department of Energy will use to involve the public in the decision-making process concerning CFA Landfills II and III RI/FS activities (Community Relations Plan).

Keck, K.N.; Stormberg, G.J.; Porro, I.; Sondrup, A.J.; McCormick, S.H.

1993-07-01T23:59:59.000Z

468

Confirmatory Sampling and Analysis Plan for the Lower East Fork Poplar Creek operable unit, Oak Ridge, Tennessee  

SciTech Connect

On December 21, 1989, the EPA placed the US Department of Energy`s (DOE`s) Oak Ridge Reservation (ORR) on the National Priorities List (NPL). On January 1, 1992, a Federal Facilities Agreement (FFA) between the DOE Field Office in Oak Ridge (DOE-OR), EPA Region IV, and the Tennessee Department of Environment and Conservation (TDEC) went into effect. This FFA establishes the procedural framework and schedule by which DOE-OR will develop, coordinate, implement and monitor environmental restoration activities on the ORR in accordance with applicable federal and state environmental regulations. The DOE-OR Environmental Restoration Program for the ORR addresses the remediation of areas both within and outside the ORR boundaries. This sampling and analysis plan focuses on confirming the cleanup of the stretch of EFPC flowing from Lake Reality at the Y-12 Plant through the City of Oak Ridge, to Poplar Creek on the ORR and its associated floodplain. Both EFPC and its floodplain have been contaminated by releases from the Y-12 Plant since the mid-1950s. Because the EFPC site-designated as an ORR operable unit (OU) under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) is included on the NPL, its remediation must follow the specific procedures mandated by CERCLA, as amended by the Superfund Amendments and Reauthorization Act in 1986.

NONE

1996-04-01T23:59:59.000Z

469

VI Symposium of Specialists in Electric Operational and Expansion Planning -VI SEPOPE, May 24-29,1998, Bahia, Brazil POWER SYSTEM PLANNING IN THE SOUTH AMERICA  

E-Print Network (OSTI)

the execution of a few macro projects, capital intensive, with high impact on the economic development of each country, and where their revenues depend on the local conditions and the development of future projects in infrastructure development and the required regulations in the energy field. It describes how the planning

Catholic University of Chile (Universidad Católica de Chile)

470

Coincident P and Sh reflections from basement rocks at Coso geothermal...  

Open Energy Info (EERE)

cross-line Vibroseis and explosion data were recorded on each of these approximately 12-mi lines. This was accomplished with the simultaneous operation of two 1024-channel sign...

471

CFN Ops Plan | Work Planning  

NLE Websites -- All DOE Office Websites (Extended Search)

Operations Plan Operations Plan Work Planning & Control for Experiments and Operations All experimental work will be conducted in accordance with Work Planning and Control for Experiments and Operations, which ensures proper design and operation of all experiments prior to their commencement. CFN will use the SBMS provided standard form for the formal documentation. The Lead Experimenter/Responsible person will notify the Experimental Safety Review Committee of any new experiments or modifications to existing experiments. CFN will appoint an Experimental Safety Review Committee. This committee will consist of the Experiment Review Coordinator, CFN personnel, Facility Support Representative (FSR), Environmental Compliance Representative (ECR). Additional subject matter experts may be appointed on an ad-hoc

472

RCRA Facility Investigation/Remedial Investigation Work Plan Addendum for the TNX Area Operable Unit Groundwater Radiological Characterization  

SciTech Connect

The purpose of this document is to present a sampling and analysis plan for the Water Table Aquifer for purposes of obtaining additional data for remedial decision-making with respect to radioactive contamination in the groundwater.

Brewer, K.

2002-06-17T23:59:59.000Z

473

Planning for the Transition to Long-Term Stewardship at Three U.S. Department of Energy-Chicago Operations Office Facilities  

SciTech Connect

This paper describes a pilot study that resulted in the generation of draft planning documents for the upcoming transition from remediation construction to long-term stewardship at three national laboratories managed by the U.S. Department of Energy (DOE)-Chicago Operations Office (CH). The remediation construction work at these facilities is being completed under the DOE's Office of Environmental Management (EM) Program. Once the remediation is complete, the responsibility for long-term stewardship (LTS) of the closed waste sites is expected to be transferred to the DOE organization responsible for managing each of the three facilities (i.e., the site landlord). To prepare for this transfer, an extensive planning effort is required. This pilot study utilized the DOE guidance in effect at the time to (1) develop a series of documents identifying applicable requirements that the LTS Programs will need to satisfy, issues that need to be resolved before the transfer can proceed, and criteria to be used to determine when active remediation is complete and a given site is ready for transfer to the LTS Program; (2) examine alternate structures for possible LTS Programs; and (3) develop draft LTS Implementation Plans. This advanced planning effort yielded a number of observations and lessons learned that are applicable to any facility approaching the end of its remediation construction phase.

Moos, L. P.; Ditmars, J. D.; Heston, S. L.; Granzen, G. A.; Holzemer, M. J.; Bennett, D. B.

2003-02-26T23:59:59.000Z

474

Integrated Hatchery Operations Team: Operations Plans for Anadromous Fish Production Facilities in the Columbia River Basin, Volume IV of IV; Washington: Rocky Reach Hatchery Addendum, 1992 Annual Report.  

SciTech Connect

Rocky Reach Hatchery is located along the Columbia Paver, just downstream from Rocky Reach Dam. Site elevation is 800 feet above sea level. The Turtle Rock Island facility, located 2 miles upstream, is operated as a satellite facility (shared with the Washington Department of Wildlife). The facility is staffed with 2.75 FTE`S. The hatchery was originally designed as a mile-long spawning channel at Turtle Rock Island. Rearing units consist of eight vinyl raceways at Rocky Reach and four rearing ponds at Turtle Rock. Water rights are held by Chelan County PUD and total 3,613 gpm from the Columbia River. Water available for use in the Turtle Rock rearing ponds averages 12,000 gpm from the Columbia River. Rocky Reach Hatchery and the Turtle Rock satellite facility are owned by Chelan County PUD. They are operated as mitigation facilities for the fishery impacts caused by the construction and operation of Rocky Reach Dam. Rocky Reach Hatchery is used for incubation and early rearing of upriver bright (URB) fall chinook. Fingerlings are later transferred to the Turtle Rock facility for final rearing and release.

Peck, Larry

1993-08-01T23:59:59.000Z

475

Experiment Operations Plan for a Loss-of-Coolant Accident Simulation in the National Research Universal Reactor Materials Tests 1 and 2  

SciTech Connect

A loss of Coolant Accident (LOCA) simulation program is evaluating the thermal-hydraulic and mechanical effects of LOCA conditions on pressurized water reactor test fuel bundles. This experiment operation plan for the second and third experiments of t