National Library of Energy BETA

Sample records for operation refuse recovery

  1. Design considerations and operating experience in firing refuse derived fuel in a circulating fluidized bed combustor

    SciTech Connect (OSTI)

    Piekos, S.J.; Matuny, M.

    1997-12-31

    The worldwide demand for cleaner, more efficient methods to dispose of municipal solid waste has stimulated interest in processing solid waste to produce refuse derived fuel (RDF) for use in circulating fluidized bed (CFB) boilers. The combination of waste processing and materials recovery systems and CFB boiler technology provides the greatest recovery of useful resources from trash and uses the cleanest combustion technology available today to generate power. Foster Wheeler Power Systems along with Foster Wheeler Energy Corporation and several other Foster Wheeler sister companies designed, built, and now operates a 1600 tons per day (TPD) (1450 metric tons) municipal waste-to-energy project located in Robbins, Illinois, a suburb of Chicago. This project incorporates waste processing systems to recover recyclable materials and produce RDF. It is the first project in the United States to use CFB boiler technology to combust RDF. This paper will provide an overview of the Robbins, Illinois waste-to-energy project and will examine the technical and environmental reasons for selecting RDF waste processing and CFB combustion technology. Additionally, this paper will present experience with handling and combusting RDF and review the special design features incorporated into the CFB boiler and waste processing system that make it work.

  2. Initial operating results of coal-fired steam generators converted to 100% refuse-derived fuel

    SciTech Connect (OSTI)

    Barsin, J.A. ); Graika, P.K. ); Gonyeau, J.A. ); Bloomer, T.M. )

    1988-01-01

    The conversion of Northern States Power Company's (NSP) Red Wing and Wilmarth steam generators to fire refuse-derived fuel (RDF) is discussed. The use of the existing plant with the necessary modifications to the boilers has allowed NSP to effectively incinerate the fuel as required by Washington and Ramsey Counties. This paper covers the six-month start-up of Red Wing No. 1, commencing in May 1987, and the operating results since the plant went commercial in July 1987.

  3. Utilization of refuse derived fuels by the United States Navy

    SciTech Connect (OSTI)

    Lehr, D.L.

    1983-07-01

    The Resource Conservation and Recovery Act and the Safe Drinking Water Act are forcing those in charge of landfills to adhere to more stringent operating standards. This, along with the growing scarcity of landfill availability, makes the use of landfills less desirable for solid waste disposal. As such, new disposal methods that are environmentally safe and economically practical must be found. One alternative, that is not really new but which has gained renewed interest, is incineration. The Resource Conservation and Recovery Act also requires that government agencies should direct their installations to recover as many resources as possible. Therefore if incineration is to be implemented, heat recovery should be incorporated into the system. There are several processes available to convert raw refuse into a fuel for use in a heat recovery system. Refuse derived fuels (RDF) can be in the form of raw refuse, densified refuse, powdered refuse, gas, or pyrolytic oil. The only form of RDF that is economically feasible for systems designed to process less than 200 TPD (tons per day) is raw refuse. Most Navy bases generate far less than 200 TPD of solid waste and therefore the Navy has focused most of its attention on modular heat recovery incinerator (HRI) systems that utilize raw refuse as fuel.

  4. Design, operation, and performance of a modern air pollution control system for a refuse derived fuel combustion facility

    SciTech Connect (OSTI)

    Weaver, E.H.; Azzinnari, C.

    1997-12-01

    The Robbins, Illinois refuse derived fuel combustion facility was recently placed into service. Large and new, the facility is designed to process 1600 tons of waste per day. Twenty-five percent of the waste, or 400 tons per day, is separated out in the fuel preparation process. The remaining 1200 tons per day is burned in two circulating fluidized bed boilers. The system is designed to meet new source performance standards for municipal waste combustion facilities, including total particulate, acid gases (HCl, SO{sub 2}, HF), heavy metals (including mercury), and dioxins. The system utilizes semi-dry scrubbers with lime and activated carbon injected through dual fluid atomizers for control of acid gases. Final polishing of acid gas emissions, particulate control, heavy metals removal, and control of dioxins is accomplished with pulse jet fabric filters. This paper discusses the design of the facility`s air pollution control system, including all auxiliary systems required to make it function properly. Also discussed is the actual operation and emissions performance of the system.

  5. Research Portfolio Report Small Producers: Operations/Improved Recovery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Small Producers: Operations/Improved Recovery Cover image: Drill rigs and pump jacks are some typical tools used in natural gas and oil opera- tions and for improved recovery Research Portfolio Report Small Producers: Operations/Improved Recovery DOE/NETL-2015/1698 Prepared by: Mari Nichols-Haining and Christine Rueter KeyLogic Systems, Inc. National Energy Technology Laboratory (NETL) Contact: James Ammer james.ammer@netl.doe.gov Contract DE-FE0004003 Activity 4003.200.03 DISCLAIMER This report

  6. Optimal recovery of linear operators in non-Euclidean metrics

    SciTech Connect (OSTI)

    Osipenko, K Yu

    2014-10-31

    The paper looks at problems concerning the recovery of operators from noisy information in non-Euclidean metrics. Anumber of general theorems are proved and applied to recovery problems for functions and their derivatives from the noisy Fourier transform. In some cases, afamily of optimal methods is found, from which the methods requiring the least amount of original information are singled out. Bibliography: 25 titles.

  7. Proceedings of refuse-derived fuel (RDF)

    SciTech Connect (OSTI)

    Saltiel, C. )

    1991-01-01

    This book contains proceedings of Refuse-Derived Fuel (RDF)-Quality. Standards and Processing. Topics covered include: An Overview of RDF Processing Systems: Current Status, Design Features, and Future Trends. The Impact of Recycling and Pre-Combustion Processing of Municipal Solid Waste on Fuel Properties and Steam Combustion. The Changing Role of Standards in the Marketing of RDF. Refuse Derived Fuel Quality Requirements for Firing in Utility, Industrial or Dedicated Boilers. Refuse-Derived Fuel Moisture Effects on Boiler Performance and Operability. Refuse Derived Fuels: Technology, Processing, Quality and Combustion Experiences.

  8. Idaho Operations Office: American Recovery and Reinvestment Act Update

    ScienceCinema (OSTI)

    Provencher, Rick

    2012-06-14

    An update from Idaho National Laboratory, Rick Provencher addresses the progress that has been made due to the American Recovery and Reinvestment Act.

  9. Corrosion of boiler tube alloys in refuse firing: Shredded vs bulk refuse

    SciTech Connect (OSTI)

    Krause, H.H. ); Daniel, P.L.; Blue, J.D. )

    1994-08-01

    Results of corrosion probe exposures at two mass burning incinerators were compared with those conducted in a unit burning refuse-derived fuel. Tests were conducted with carbon steel, low-alloy steels, stainless steels, and high nickel-chromium alloys. Corrosion rates at similar metal and gas temperatures were essentially the same for both types of fuel. Boiler tube performance in the waterwalls of other incinerators confirmed these results. Boiler design and operating conditions appear to be more important factors in tube wastage than the extent of refuse processing.

  10. Decontamination and recovery of materials at nuclear facilites - operating history

    SciTech Connect (OSTI)

    Gillis, P.J. Jr.

    1994-12-31

    Non-Destructive Cleaning (NDC) Mobile CO{sub 2} Decontamination Facilities have more than 120 months of operational time conducting radioactive decontamination at Nuclear Power Stations and U.S. Department of Energy sites. During this time, we have compiled an extensive database on what has been decontaminated and the cost savings realized. The following are areas of interest: (1) how the CO{sub 2} decontamination process works; (2) how radioactive wastes are minimized and radioactive exposure to personnel is reduced with the use of the NDC Decontamination Facility; (3) how the self-contained Mobile Decontamination Facility works to provide adequate containment and control of the radioactive materials; (4) what kinds of items have been decontaminated, ranging from tools to underwater television cameras and from electric motors to lead shielding; (5) liquid radioactive waste volume reduction; (6) mixed-waste volume reduction; and (7) achievements in dose reduction to radiation levels that are as low as is reasonably achievable (ALARA) The design and operating features and performance of the Mobile Decontamination Facility, as well as the actual volumes of materials decontaminated, the decontamination factors achieved, the amounts and types of things that are free released, and the actual cost savings in all of these areas have been assessed. The data that was used is actual utility data and not the vendor`s data. All the experiences were from actual power plants.

  11. Recovery Act Begins Box Remediation Operations at F Canyon | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Begins Box Remediation Operations at F Canyon Recovery Act Begins Box Remediation Operations at F Canyon May 17, 2011 - 12:00pm Addthis Media Contacts Jim Giusti, DOE (803) 952-7697 james-r.giusti@srs.gov Paivi Nettamo, SRNS (803) 646-6075 paivi.nettamo@srs.gov AIKEN, S.C. - The F Canyon box remediation program, an American Recovery and Reinvestment Act project at Savannah River Site (SRS), has come online to process legacy transuranic (TRU) waste for off-site shipment and permanent

  12. Pre-operational safety appraisal Tritiated Scrap Recovery Facility, Mound facility

    SciTech Connect (OSTI)

    Dauby, J.J.; Flanagan, T.M.; Metcalf, L.W.; Rhinehammer, T.B.

    1996-07-01

    The purpose of this report is to identify, assess, and document the hazards which are associated with the proposed operation of the Tritiated Scrap Recovery Facility at Mound Facility. A Pre-operational Safety Appraisal is a requirement as stated in Department of Energy Order 5481.1, Safety Analysis and Review System. The operations to be conducted in the new Tritiated Scrap Waste Recovery Facility are not new, but a continuation of a prime mission of Mound`s i.e. recovery of tritium from waste produced throughout the DOE complex. The new facility is a replacement of an existing process started in the early 1960`s and incorporates numerous design changes to enhance personnel and environmental safety. This report also documents the safety of a one time operation involving the recovery of tritium from material obtained by the Department of Energy from the State of Arizona. This project will involve the processing of 240,000 curies of tritium contained in glass ampoules that were to be used in items such as luminous dial watches. These were manufactured by the now defunct American Atomics Corporation, Tucson, Arizona.

  13. Status report on energy recovery from municipal solid waste: technologies, lessons and issues. Information bulletin of the energy task force of the urban consortium

    SciTech Connect (OSTI)

    1980-01-01

    A review is presented of the lessons learned and issues raised regarding the recovery of energy from solid wastes. The review focuses on technologies and issues significant to currently operating energy recovery systems in the US - waterwall incineration, modular incineration, refuse derived fuels systems, landfill gas recovery systems. Chapters are: Energy Recovery and Solid Waste Disposal; Energy Recovery Systems; Lessons in Energy Recovery; Issues in Energy Recovery. Some basic conclusions are presented concerning the state of the art of energy from waste. Plants in shakedown or under construction, along with technologies in the development stages, are briefly described. Sources of additional information and a bibliography are included. (MCW)

  14. Biogas from refuse via an earth-sheltered passive solar digester. Final report

    SciTech Connect (OSTI)

    Not Available

    1984-02-01

    As originally conceived, the project involved the design, construction and operation of a test-scale refuse digestion system and alternative energy technology, as an integral component of a planned comprehensive waste management system based on the concept of recycling and resource recovery. Specific technologies employed in the digestion system included aerobic composting and anaerobic fermentation. System inputs included non-recycleable organic refuse (paper, food wastes, etc.) and septage (septic tank sludge), both of which represent disposal problems for many North American communities, and heat. Anticipated system outputs were biogas (50 to 60% methane), a premium fuel, and compostable sludge, a potential soil amendment-fertilizer. Projected net energy output was enhanced by incorporating biological feedstock preheating, earth sheltering, passive solar heating, and sludge heat recovery into the project design. The purpose of the project was to demonstrate the economic and environmental viability of this system versus competing waste-to-energy technologies. Due primarily to institutional barriers and related factors, the project did not progress to the point of enabling the stated purpose to be demonstrated.

  15. Evaluation of enhanced recovery operations in Smackover fields of southwest Alabama. Draft topical report on Subtasks 5 and 6

    SciTech Connect (OSTI)

    Hall, D.R.

    1992-06-01

    This report contains detailed geologic and engineering information on enhanced-recovery techniques used in unitized Smackover fields in Alabama. The report also makes recommendations on the applicability of these enhanced-recovery techniques to fields that are not now undergoing enhanced recovery. Eleven Smackover fields in Alabama have been unitized. Three fields were unitized specifically to allow the drilling of a strategically placed well to recover uncontacted oil. Two fields in Alabama are undergoing waterflood projects. Five fields are undergoing gas-injection programs to increase the ultimate recovery of hydrocarbons. Silas and Choctaw Ridge fields were unitized but no enhanced-recovery operations have been implemented.

  16. Commerce Refuse To Energy Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Refuse To Energy Biomass Facility Jump to: navigation, search Name Commerce Refuse To Energy Biomass Facility Facility Commerce Refuse To Energy Sector Biomass Facility Type...

  17. Growing attraction of refuse-derived fuels

    SciTech Connect (OSTI)

    Singh, R.

    1981-09-08

    A review of Dr. Andrew Porteous' book, Refuse Derived Fuels is presented. The escalating price of fossil fuel, particularily oil, together with the high cost of handling and transporting refuse makes the idea of refuse-derived fuel production an attractive and economic proposition. Refuse-derived fuel production is discussed and the various manufacturing processes in the UK and the USA are described. The pyrolysis of refuse for the production of gas, oil or heat and the production of methane and ethyl alcohol or other possibilities for refuse conversion.

  18. Sacrificial adsorbate for surfactants utilized in chemical floods of enhanced oil recovery operations

    DOE Patents [OSTI]

    Johnson, Jr., James S.; Westmoreland, Clyde G.

    1982-01-01

    The present invention is directed to a sacrificial or competitive adsorbate for surfactants contained in chemical flooding emulsions for enhanced oil recovery operations. The adsorbate to be utilized in the method of the present invention is a caustic effluent from the bleach stage or the weak black liquor from the digesters and pulp washers of the kraft pulping process. This effluent or weak black liquor is injected into an oil-bearing subterranean earth formation prior to or concurrent with the chemical flood emulsion and is adsorbed on the active mineral surfaces of the formation matrix so as to effectively reduce adsorption of surfactant in the chemical flood. Alternatively, the effluent or liquor can be injected into the subterranean earth formation subsequent to a chemical flood to displace the surfactant from the mineral surfaces for the recovery thereof.

  19. Sacrificial adsorbate for surfactants utilized in chemical floods of enhanced oil recovery operations

    DOE Patents [OSTI]

    Johnson, J.S. Jr.; Westmoreland, C.G.

    1980-08-20

    The present invention is directed to a sacrificial or competitive adsorbate for surfactants contained in chemical flooding emulsions for enhanced oil recovery operations. The adsorbate to be utilized in the method of the present invention is a caustic effluent from the bleach stage or the weak black liquor from the digesters and pulp washers of the kraft pulping process. This effluent or weak black liquor is injected into an oil-bearing subterranean earth formation prior to or concurrent with the chemical flood emulsion and is adsorbed on the active mineral surfaces of the formation matrix so as to effectively reduce adsorption of surfactant in the chemical flood. Alternatively, the effluent or liquor can be injected into the subterranean earth formation subsequent to a chemical flood to displace the surfactant from the mineral surfaces for the recovery thereof.

  20. Final Radiological Assessment of External Exposure for CLEAR-Line Americium Recovery Operations

    SciTech Connect (OSTI)

    Davis, Adam C.; Belooussova, Olga N.; Hetrick, Lucas Duane

    2014-11-12

    Los Alamos National Laboratory is currently planning to implement an americium recovery program. The americium, ordinarily isotopically pure 241Am, would be extracted from existing Pu materials, converted to an oxide and shipped to support fabrication of americium oxide-beryllium neutron sources. These operations would occur in the currently proposed Chloride Extraction and Actinide Recovery (CLEAR) line of glove boxes. This glove box line would be collocated with the currently-operational Experimental Chloride Extraction Line (EXCEL). The focus of this document is to provide an in-depth assessment of the currently planned radiation protection measures and to determine whether or not further design work is required to satisfy design-goal and ALARA requirements. Further, this document presents a history of americium recovery operations in the Department of Energy and high-level descriptions of the CLEAR line operations to provide a basis of comparison. Under the working assumptions adopted by this study, it was found that the evaluated design appears to mitigate doses to a level that satisfies the ALARA-in-design requirements of 10 CFR 835 as implemented by the Los Alamos National Laboratory procedure P121. The analyses indicate that extremity doses would also meet design requirements. Dose-rate calculations were performed using the radiation transport code MCNP5 and doses were estimated using a time-motion study developed in consort with the subject matter expert. A copy of this report and all supporting documentation are located on the Radiological Engineering server at Y:\\Rad Engineering\\2013 PROJECTS\\TA-55 Clear Line.

  1. Illinois user sues pipeline on refusal to transport gas

    SciTech Connect (OSTI)

    Barber, J.

    1985-12-02

    An Illinois steel company filed suit against Panhandle Eastern Pipeline Co. for refusing to transport natural gas after its gas transportation program ended on November 1. The company is asking for three times the amount it is losing, which is $7,000 per day, since being forced to purchase from a higher priced distribution company. The suit claims that Panhandle's refusal violates federal and state anti-trust laws and threatens the plant's continued operation. This is the first legal action by a single industrial user, but consumer groups have named over 20 major interstate pipelines for the same allegation when pipelines declined to participate in open access transportation under Order 436.

  2. Coal/D-RDF (densified refuse-derived fuel) co-firing project, Milwaukee County, Wisconsin

    SciTech Connect (OSTI)

    Hecklinger, R.S.; Rehm, F.R.

    1985-11-01

    A Research and Development Project was carried out to mix a densified refuse-derived fuel with coal at the fuel-receiving point and to co-fire the mixture in a spreader-stoker fired boiler. Two basic series of test runs were conducted. For the first series, coal was fired to establish a base line condition. For the second series, a mixture of coal and densified refuse-derived fuel was fired. The report describes the equipment used to densify refuse derived fuel, procedures used to prepare and handle the coal and densified refuse derived fuel mixture and the test results. The results include the effect of the coal and densified refuse derived fuel mixture on plant operations, boiler efficiency, stack emissions and EP toxicity.

  3. Case Study - Compressed Natural Gas Refuse Fleets

    SciTech Connect (OSTI)

    Laughlin, M; Burnham, A.

    2014-02-01

    This case study explores the use of heavy-duty refuse trucks fueled by compressed natural gas highlighting three fleets from very different types of organizations.

  4. Binder enhanced refuse derived fuel

    DOE Patents [OSTI]

    Daugherty, Kenneth E.; Venables, Barney J.; Ohlsson, Oscar O.

    1996-01-01

    A refuse derived fuel (RDF) pellet having about 11% or more particulate calcium hydroxide which is utilized in a combustionable mixture. The pellets are used in a particulate fuel bring a mixture of 10% or more, on a heat equivalent basis, of the RDF pellet which contains calcium hydroxide as a binder, with 50% or more, on a heat equivalent basis, of a sulphur containing coal. Combustion of the mixture is effective to produce an effluent gas from the combustion zone having a reduced SO.sub.2 and polycyclic aromatic hydrocarbon content of effluent gas from similar combustion materials not containing the calcium hydroxide.

  5. Enhanced cover methods for surface coal refuse reclamation

    SciTech Connect (OSTI)

    Gentile, L.F.; Cargill, K.W.; McGarvie, S.D.

    1997-12-31

    Controlling acid rock drainage (ARD) can be a major component of surface mining reclamation. An enhanced reclamation cover system is being constructed to control infiltration of rain water and generation of ARD from coal-refuse disposal areas at a closed mine in southern Illinois. Development of the mine reclamation plan required consideration of ARD generation in coal refuse disposal areas located adjacent to an alluvial aquifer used for public water supply. An integrated site characterization was performed at the mine to provide information to develop and support the enhanced reclamation plan. The enhanced cover system is similar to covers required for municipal solid waste landfills by the Resource Conversation and Recovery Act (RCRA), Subtitle D regulations. The system comprises a graded and compacted gob layer, overlain by a compacted clay liner, and a protective soil cover. The results of infiltration modeling and analyses showed that the standard reclamation cover is effective in reducing infiltration by about 18 percent compared to an unreclaimed coal-refuse surface. The modeling results showed that the inhanced cover system should reduce infiltration by about 84 percent. The geochemical modeling results showed that the reduction in infiltration would help minimize ARD generation and contribute to an earlier reclamation of the mine site.

  6. Project Startup: Evaluating the Performance of Hydraulic Hybrid Refuse Vehicles

    SciTech Connect (OSTI)

    2015-09-01

    The Fleet Test and Evaluation Team at the National Renewable Energy Laboratory (NREL) is evaluating the in-service performance of 10 next-generation hydraulic hybrid refuse vehicles (HHVs), 8 previous-generation HHVs, and 8 comparable conventional diesel vehicles operated by Miami-Dade County's Public Works and Waste Management Department in southern Florida. The HHVs under study - Autocar E3 refuse trucks equipped with Parker Hannifin's RunWise Advanced Series Hybrid Drive systems - can recover as much as 70 percent of the energy typically lost during braking and reuse it to power the vehicle. NREL's evaluation will assess the performance of this technology in commercial operation and help Miami-Dade County determine the ideal routes for maximizing the fuel-saving potential of its HHVs.

  7. NJ Compressed Natural Gas Refuse Trucks, Shuttle Buses and Infrastruct...

    Broader source: Energy.gov (indexed) [DOE]

    icon arravt051tifeinberg2011p.pdf More Documents & Publications NJ Compressed Natural Gas Refuse Trucks, Shuttle Buses and Infrastructure NJ Compressed Natural Gas Refuse ...

  8. NJ Compressed Natural Gas Refuse Trucks, Shuttle Buses and Infrastruct...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NJ Compressed Natural Gas Refuse Trucks, Shuttle Buses and Infrastructure NJ Compressed Natural Gas Refuse Trucks, Shuttle Buses and Infrastructure 2012 DOE Hydrogen and Fuel Cells ...

  9. Powerful electrostatic FEL: Regime of operation, recovery of the spent electron beam and high voltage generator

    SciTech Connect (OSTI)

    Boscolo, I.; Gong, J.

    1995-02-01

    FEL, driven by a Cockcroft-Walton electrostatic accelerator with the recovery of the spent electron beam, is proposed as powerful radiation source for plasma heating. The low gain and high gain regimes are compared in view of the recovery problem and the high gain regime is shown to be much more favourable. A new design of the onion Cockcroft-Walton is presented.

  10. NREL Evaluates Performance of Hydraulic Hybrid Refuse Vehicles

    SciTech Connect (OSTI)

    2015-09-01

    This highlight describes NREL's evaluation of the in-service performance of 10 next-generation hydraulic hybrid refuse vehicles (HHVs), 8 previous-generation (model year 2013) HHVs, and 8 comparable conventional diesel vehicles operated by Miami-Dade County's Public Works and Waste Management Department in southern Florida. Launched in March 2015, the on-road portion of this 12-month evaluation focuses on collecting and analyzing vehicle performance data - fuel economy, maintenance costs, and drive cycles - from the HHVs and the conventional diesel vehicles. The fuel economy of heavy-duty vehicles, such as refuse trucks, is largely dependent on the load carried and the drive cycles on which they operate. In the right applications, HHVs offer a potential fuel-cost advantage over their conventional counterparts. This advantage is contingent, however, on driving behavior and drive cycles with high kinetic intensity that take advantage of regenerative braking. NREL's evaluation will assess the performance of this technology in commercial operation and help Miami-Dade County determine the ideal routes for maximizing the fuel-saving potential of its HHVs. Based on the field data, NREL will develop a validated vehicle model using the Future Automotive Systems Technology Simulator, also known as FASTSim, to study the impacts of route selection and other vehicle parameters. NREL is also analyzing fueling and maintenance data to support total-cost-of-ownership estimations and forecasts. The study aims to improve understanding of the overall usage and effectiveness of HHVs in refuse operation compared to similar conventional vehicles and to provide unbiased technical information to interested stakeholders.

  11. An efficient process for recovery of fine coal from tailings of coal washing plants

    SciTech Connect (OSTI)

    Cicek, T.; Cocen, I.; Engin, V.T.; Cengizler, H.

    2008-07-01

    Gravity concentration of hard lignites using conventional jigs and heavy media separation equipment is prone to produce coal-rich fine tailings. This study aims to establish a fine coal recovery process of very high efficiency at reasonable capital investment and operational costs. The technical feasibility to upgrade the properties of the predeslimed fine refuse of a lignite washing plant with 35.9% ash content was investigated by employing gravity separation methods. The laboratory tests carried out with the combination of shaking table and Mozley multi-gravity separator (MGS) revealed that the clean coal with 18% ash content on dry basis could be obtained with 58.9% clean coal recovery by the shaking table stage and 4.1% clean coal recovery by MGS stage, totaling to the sum of 63.0% clean coal recovery from a predeslimed feed. The combustible recovery and the organic efficiency of the shaking table + MGS combination were 79.5% and 95.5%, respectively. Based on the results of the study, a flow sheet of a high-efficiency fine coal recovery process was proposed, which is also applicable to the coal refuse pond slurry of a lignite washing plant.

  12. Recovery Efficiency Test Project: Phase 1, Activity report. Volume 1: Site selection, drill plan preparation, drilling, logging, and coring operations

    SciTech Connect (OSTI)

    Overbey, W.K. Jr.; Carden, R.S.; Kirr, J.N.

    1987-04-01

    The recovery Efficiency Test well project addressed a number of technical issues. The primary objective was to determine the increased efficiency gas recovery of a long horizontal wellbore over that of a vertical wellbore and, more specifically, what improvements can be expected from inducing multiple hydraulic fractures from such a wellbore. BDM corporation located, planned, and drilled a long radius turn horizontal well in the Devonian shale Lower Huron section in Wayne County, West Virginia, demonstrating that state-of-the-art technology is capable of drilling such wells. BDM successfully tested drilling, coring, and logging in a horizontal well using air as the circulating medium; conducted reservoir modeling studies to protect flow rates and reserves in advance of drilling operations; observed two phase flow conditions in the wellbore not observed previously; cored a fracture zone which produced gas; observed that fractures in the core and the wellbore were not systematically spaced (varied from 5 to 68 feet in different parts of the wellbore); observed that highest gas show rates reported by the mud logger corresponded to zone with lowest fracture spacing (five feet) or high fracture frequency. Four and one-half inch casting was successfully installed in the borehole and was equipped to isolate the horizontal section into eight (8) zones for future testing and stimulation operations. 6 refs., 48 figs., 10 tabs.

  13. Geophysical Monitoring of Ground Surface Deformation Associated with a Confined Aquifer Storage and Recovery Operation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bonneville, Alain; Heggy, Essam; Strickland, Christopher E.; Normand, Jonathan; Dermond, Jeffrey A.; Fang, Yilin; Sullivan, E. C.

    2015-08-11

    A main issue in the storage of large volumes of fluids, mainly water and CO2, in the deep subsurface is to determine their field-scale-induced displacements and consequences on the mechanical behavior of the storage reservoir and surroundings. A quantifiable estimation of displacement can be made by combining the robust, cost-effective, and repeatable geophysical techniques of micro-gravimetry, differential global positioning system (DGPS), and differential synthetic aperture radar interferometry (DInSAR). These techniques were field tested and evaluated in an active large-volume aquifer storage and recovery (ASR) project in Pendleton, Oregon, USA, where three ASR wells are injecting up to 1.9 million m3/yr-1more » into basalt aquifers to a depth of about 150 m. Injection and recovery of water at the wells was accompanied by significant gravity anomalies and vertical deformation of the ground surface localized to the immediate surroundings of the injection wells as evidenced by DGPS and gravity measurements collected in 2011. At a larger scale, and between 2011 and 2013, DInSAR monitoring of the Pendleton area suggests the occurrence of sub-centimetric deformation in the western part of the city and close to the injection locations associated with the ASR cycle. A numerical simulation of the effect of the water injection gives results in good agreement with the observations and confirms the validity of the approach, which could be deployed in similar geological contexts to look at the mechanical effects of water and gas injections. The gravity signal reflects deep phenomena and gives additional insight into the repartition of fluids in the subsurface.« less

  14. Geophysical Monitoring of Ground Surface Deformation Associated with a Confined Aquifer Storage and Recovery Operation

    SciTech Connect (OSTI)

    Bonneville, Alain; Heggy, Essam; Strickland, Christopher E.; Normand, Jonathan; Dermond, Jeffrey A.; Fang, Yilin; Sullivan, E. C.

    2015-08-11

    A main issue in the storage of large volumes of fluids, mainly water and CO2, in the deep subsurface is to determine their field-scale-induced displacements and consequences on the mechanical behavior of the storage reservoir and surroundings. A quantifiable estimation of displacement can be made by combining the robust, cost-effective, and repeatable geophysical techniques of micro-gravimetry, differential global positioning system (DGPS), and differential synthetic aperture radar interferometry (DInSAR). These techniques were field tested and evaluated in an active large-volume aquifer storage and recovery (ASR) project in Pendleton, Oregon, USA, where three ASR wells are injecting up to 1.9 million m3/yr-1 into basalt aquifers to a depth of about 150 m. Injection and recovery of water at the wells was accompanied by significant gravity anomalies and vertical deformation of the ground surface localized to the immediate surroundings of the injection wells as evidenced by DGPS and gravity measurements collected in 2011. At a larger scale, and between 2011 and 2013, DInSAR monitoring of the Pendleton area suggests the occurrence of sub-centimetric deformation in the western part of the city and close to the injection locations associated with the ASR cycle. A numerical simulation of the effect of the water injection gives results in good agreement with the observations and confirms the validity of the approach, which could be deployed in similar geological contexts to look at the mechanical effects of water and gas injections. The gravity signal reflects deep phenomena and gives additional insight into the repartition of fluids in the subsurface.

  15. Effects of weathering on coal and its sulfur constituents in refuse piles

    SciTech Connect (OSTI)

    Khan, L.A.; Berggren, D.J.; Hughes, R.E.

    1984-12-01

    The rejects from coal mining and processing operations are intensively weathered in refuse piles. The effects of weathering on coal and and its associated sulfur-containing compounds are economically and environmentally significant. Chemical and x-ray diffraction analyses of material from abandoned mined lands, collected for a study of historic long-wall mines in Illinois, showed that most pyrite in weathered samples is converted to gypsum, jarosite, and minor alunite. There were only small reductions in the trace element concentrations of these samples. Coal readily takes up oxygen from air. Coal-oxygen complexes produced by oxygen adsorption or peroxide formation are very unstable, and the oxygen can be removed as oxygen gas, CO/sub 2/, or H/sub 2/O upon heating and evacuation. Heating coal under partial vacuum decreases its surface charge. The decrease in surface charge increases with heating time and temperature. This suggests that the adverse effect of exposure to air may be partially reversed, with a corresponding gain in the efficiency of the coal recovery processes.

  16. Operational improvements at Jewell Coal and Coke Company`s non-recovery ovens

    SciTech Connect (OSTI)

    Ellis, C.E.; Pruitt, C.W.

    1995-12-01

    Operational improvements at Jewell Coal and Coke Company over the past five years includes safety and environmental concerns, product quality, equipment availability, manpower utilization, and productivity. These improvements with Jewell`s unique process has allowed Jewell Coal and Coke Company to be a consistent, high quality coke producer. The paper briefly explains Jewell`s unique ovens, their operating mode, improved process control, their maintenance management program, and their increase in productivity.

  17. Airflow reduction during cold weather operation of residential heat recovery ventilators

    SciTech Connect (OSTI)

    McGugan, C.A.; Edwards, P.F.; Riley, M.A.

    1987-06-01

    Laboratory measurements of the performance of residential heat recovery ventilators have been carried out for the R-2000 Energy Efficient Home Program. This work was based on a preliminary test procedure developed by the Canadian Standards Association, part of which calls for testing the HRV under cold weather conditions. An environmental chamber was used to simulate outdoor conditions. Initial tests were carried out with an outdoor temperature of -20/sup 0/C; subsequent tests were carried out at a temperature of -25/sup 0/C. During the tests, airflows, temperatures, and relative humidities of airstreams entering and leaving the HRV, along with electric power inputs, were monitored. Frost buildup in the heat exchangers and defrost mechanisms, such as fan shutoff or recirculation, led to reductions in airflows. The magnitude of the reductions is dependent on the design of the heat exchanger and the defrost mechanism used. This paper presents the results of tests performed on a number of HRVs commercially available in Canada at the time of the testing. The flow reductions for the various defrost mechanisms are discussed.

  18. Recovery and reuse of MEK from paint stripping operation emissions using specialized adsorbents

    SciTech Connect (OSTI)

    Blystone, P.G.; Goltz, H.R.; Springer, J. Jr.

    1994-12-31

    The reduction of volatile organic compound (VOC) emissions is a significant goal of the 1990 Clean Air Act. Industrial operations relating to surface preparation, surface coating and paint striping operations constitute one of the largest industrial sources of VOC emissions. This paper describes a new emission control system offered by Purus, Inc. which captures and recovers VOCs from paint stripping operations. The system is based on an on-site adsorption-desorption process which utilizes a specialized polymeric resin adsorbent. Adsorbent beds are regenerated through a computer controlled pressure-temperature swing process (PTSA). The adsorbent resin offers significant operational advantages over conventional activated carbon adsorbents with respect to treating air laden with methyl ethyl ketone (MEK) vapors. Treatment of MEK with activated carbon can be problematic due to reactivity (degradation) and high heats of adsorption of ketones with carbon. The Purus process was successfully demonstrated at Tinker Air Force Base in or under the EPA`s Waste Reduction Evaluation at Federal Sites program. MEK emissions from a paint stripping booth vent were controlled at greater than 95% reduction levels. The recovered solvent was returned to depainting process and reused with no loss in paint stripping efficiency.

  19. Recovery of Fresh Water Resources from Desalination of Brine Produced During Oil and Gas Production Operations

    SciTech Connect (OSTI)

    David B. Burnett; Mustafa Siddiqui

    2006-12-29

    Management and disposal of produced water is one of the most important problems associated with oil and gas (O&G) production. O&G production operations generate large volumes of brine water along with the petroleum resource. Currently, produced water is treated as a waste and is not available for any beneficial purposes for the communities where oil and gas is produced. Produced water contains different contaminants that must be removed before it can be used for any beneficial surface applications. Arid areas like west Texas produce large amount of oil, but, at the same time, have a shortage of potable water. A multidisciplinary team headed by researchers from Texas A&M University has spent more than six years is developing advanced membrane filtration processes for treating oil field produced brines The government-industry cooperative joint venture has been managed by the Global Petroleum Research Institute (GPRI). The goal of the project has been to demonstrate that treatment of oil field waste water for re-use will reduce water handling costs by 50% or greater. Our work has included (1) integrating advanced materials into existing prototype units and (2) operating short and long-term field testing with full size process trains. Testing at A&M has allowed us to upgrade our existing units with improved pre-treatment oil removal techniques and new oil tolerant RO membranes. We have also been able to perform extended testing in 'field laboratories' to gather much needed extended run time data on filter salt rejection efficiency and plugging characteristics of the process train. The Program Report describes work to evaluate the technical and economical feasibility of treating produced water with a combination of different separation processes to obtain water of agricultural water quality standards. Experiments were done for the pretreatment of produced water using a new liquid-liquid centrifuge, organoclay and microfiltration and ultrafiltration membranes for the

  20. MILDOS - A Computer Program for Calculating Environmental Radiation Doses from Uranium Recovery Operations

    SciTech Connect (OSTI)

    Strange, D. L.; Bander, T. J.

    1981-04-01

    The MILDOS Computer Code estimates impacts from radioactive emissions from uranium milling facilities. These impacts are presented as dose commitments to individuals and the regional population within an 80 km radius of the facility. Only airborne releases of radioactive materials are considered: releases to surface water and to groundwater are not addressed in MILDOS. This code is multi-purposed and can be used to evaluate population doses for NEPA assessments, maximum individual doses for predictive 40 CFR 190 compliance evaluations, or maximum offsite air concentrations for predictive evaluations of 10 CFR 20 compliance. Emissions of radioactive materials from fixed point source locations and from area sources are modeled using a sector-averaged Gaussian plume dispersion model, which utilizes user-provided wind frequency data. Mechanisms such as deposition of particulates, resuspension. radioactive decay and ingrowth of daughter radionuclides are included in the transport model. Annual average air concentrations are computed, from which subsequent impacts to humans through various pathways are computed. Ground surface concentrations are estimated from deposition buildup and ingrowth of radioactive daughters. The surface concentrations are modified by radioactive decay, weathering and other environmental processes. The MILDOS Computer Code allows the user to vary the emission sources as a step function of time by adjustinq the emission rates. which includes shutting them off completely. Thus the results of a computer run can be made to reflect changing processes throughout the facility's operational lifetime. The pathways considered for individual dose commitments and for population impacts are: • Inhalation • External exposure from ground concentrations • External exposure from cloud immersion • Ingestioo of vegetables • Ingestion of meat • Ingestion of milk • Dose commitments are calculated using dose conversion factors, which are ultimately based

  1. Methane recovery from landfill in China

    SciTech Connect (OSTI)

    Gaolai, L.

    1996-12-31

    GEF has approved a special project for a demonstration project for Methane Recovery from the Urban Refuse Land Fill. This paper will introduce the possibility of GHG reduction from the landfill in China, describe the activities of the GEF project, and the priorities for international cooperation in this field. The Global Environment Facility (GEF) approved the project, China Promoting Methane Recovery and Unlization from Mixed Municipal Refuse, at its Council meeting in last April. This project is the first one supported by international organization in this field.

  2. Frustrated Material Refuses Orderly Arrangements | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Frustrated Material Refuses Orderly Arrangements Unlike most materials, a newly discovered oxide of lead, copper, and tellurium does not show an orderly arrangement of electron ...

  3. Alternative Fuels Data Center: Smithtown Selects CNG to Cut Refuse...

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    the Town of Smithtown, New York, decided to require its refuse collection contractors to use compressed natural gas (CNG) trucks. It was the first New York municipality to ...

  4. Hanford Information Related to the American Recovery and Reinvestment...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Font Size Recovery.gov Banner Recovery Work Updates Recovery Act Jobs Recovery.gov Prime Contractor plus Subcontractor Jobs 1 Lives Touched2 DOE Richland Operations Office...

  5. Application of Time-Lapse Seismic Monitoring for the Control and Optimization of CO2 Enhanced Oil Recovery Operations

    SciTech Connect (OSTI)

    Brian Toelle

    2008-11-30

    This project, 'Application of Time-Lapse Seismic Monitoring for the Control and Optimization of CO{sub 2} Enhanced Oil Recovery Operations', investigated the potential for monitoring CO{sub 2} floods in carbonate reservoirs through the use of standard p-wave seismic data. This primarily involved the use of 4D seismic (time lapse seismic) in an attempt to observe and map the movement of the injected CO{sub 2} through a carbonate reservoir. The differences between certain seismic attributes, such as amplitude, were used for this purpose. This technique has recently been shown to be effective in CO{sub 2} monitoring in Enhanced Oil Recovery (EOR) projects, such as Weyborne. This study was conducted in the Charlton 30/31 field in the northern Michigan Basin, which is a Silurian pinnacle reef that completed its primary production in 1997 and was scheduled for enhanced oil recovery using injected CO{sub 2}. Prior to injection an initial 'Base' 3D survey was obtained over the field and was then processed and interpreted. CO{sub 2} injection within the main portion of the reef was conducted intermittently during 13 months starting in August 2005. During this time, 29,000 tons of CO{sub 2} was injected into the Guelph formation, historically known as the Niagaran Brown formation. By September 2006, the reservoir pressure within the reef had risen to approximately 2000 lbs and oil and water production from the one producing well within the field had increased significantly. The determination of the reservoir's porosity distribution, a critical aspect of reservoir characterization and simulation, proved to be a significant portion of this project. In order to relate the differences observed between the seismic attributes seen on the multiple 3D seismic surveys and the actual location of the CO{sub 2}, a predictive reservoir simulation model was developed based on seismic attributes obtained from the base 3D seismic survey and available well data. This simulation predicted

  6. Method of extracting coal from a coal refuse pile

    DOE Patents [OSTI]

    Yavorsky, Paul M.

    1991-01-01

    A method of extracting coal from a coal refuse pile comprises soaking the coal refuse pile with an aqueous alkali solution and distributing an oxygen-containing gas throughout the coal refuse pile for a time period sufficient to effect oxidation of coal contained in the coal refuse pile. The method further comprises leaching the coal refuse pile with an aqueous alkali solution to solubilize and extract the oxidized coal as alkali salts of humic acids and collecting the resulting solution containing the alkali salts of humic acids. Calcium hydroxide may be added to the solution of alkali salts of humic acid to form precipitated humates useable as a low-ash, low-sulfur solid fuel.

  7. A Long Term Field Emissions Study of Natural Gas Fueled Refuse Haulers in New York City

    SciTech Connect (OSTI)

    Nigel N. Clark; Byron l. Rapp; Mridul Gautam; Wenguang Wang; Donald W. Lyons

    1998-10-19

    New York City Department of Sanitation has operated natural gas fueled refuse haulers in a pilot study: a major goal of this study was to compare the emissions from these natural gas vehicles with their diesel counterparts. The vehicles were tandem axle trucks with GVW (gross vehicle weight) rating of 69,897 pounds. The primary use of these was for street collection and transporting the refuse to a landfill. West Virginia University Transportable Heavy Duty Emissions Testing Laboratories have been engaged in monitoring the tailpipe emissions from these trucks for seven-years. In the later years of testing the hydrocarbons were speciated for non-methane and methane components. Six of these vehicles employed the older technology (mechanical mixer) Cummins L-10 lean burn natural gas engines. Five trucks were equipped with electronically controlled Detroit Diesel Series 50 lean burn engines, while another five were powered by Caterpillar stoichiometric burn 3306 natural gas engines, The Ca terpillar engines employed an exhaust oxygen sensor feedback and three way catalysts. Since the refuse haulers had automatic Allison transmissions, and since they were employed in stop-and-go city service, initial emissions measurements were made using the Central Business Cycle (SAE Jl376) for buses at 42,000 pound test weight. Some additional measurements were made using an ad hoc cycle that has been designed to be more representative of the real refuse hauler use that included several compaction cycles. The Cummins powered natural gas vehicles showed oxides of nitrogen and carbon monoxide emission variations typically associated with variable fuel mixer performance. In the first Year of testing, the stoichiometric Caterpillar engines yielded low emission levels, but in later years two of these refuse haulers had high carbon monoxide attributed to failure of the feedback system. For example, carbon monoxide on these two vehicles rose from 1.4 g/mile and 10 g/mile in 1995 to 144.9 g

  8. Natural gas cofiring in a refuse derived fuel incinerator: Results of a field evaluation. Topical report

    SciTech Connect (OSTI)

    Beshai, R.Z.; Hong, C.C.

    1993-10-01

    An evaluation of emissions reduction and improved operation of a municipal solid waste incinerator through natural gas cofiring is presented. A natural gas cofiring system was retrofitted on a refuse derived fuel combustor of the Columbis Solid Waste Reduction Facility in Columbus, Ohio. The field evaluation, conducted between July 6 and August 5, 1992, showed significant improvements in emissions and boiler operations. Carbon monoxide emissions were reduced from the baseline operations range of 530 to 1,950 parts per million to less than 50 ppm. Emissions of carbon dioxide, sulfur dioxide, hydrocarbons, and polychlorinated dibenzo-p-dioxins and furans were also reduced.

  9. Final Report, Materials for Industrial Heat Recovery Systems, Task 1 Improved Materials and Operation of Recuperators for Aluminum Melting Furnaces

    SciTech Connect (OSTI)

    Keiser, James R.; Sarma, Gorti B.; Thekdi, Arvind; Meisner Roberta A.; Phelps, Tony; Willoughby, Adam W.; Gorog, J. Peter; Zeh, John; Ningileri, Shridas; Liu, Yansheng; Xiao, Chenghe

    2007-09-30

    Production of aluminum is a very energy intensive process which is increasingly more important in the USA. This project concentrated on the materials issues associated with recovery of energy from the flue gas stream in the secondary industry where scrap and recycled metal are melted in large furnaces using gas fired burners. Recuperators are one method used to transfer heat from the flue gas to the air intended for use in the gas burners. By preheating this combustion air, less fuel has to be used to raise the gas temperature to the desired level. Recuperators have been successfully used to preheat the air, however, in many cases the metallic recuperator tubes have a relatively limited lifetime – 6 to 9 months. The intent of this project was to determine the cause of the rapid tube degradation and then to recommend alternative materials or operating conditions to prolong life of the recuperator tubes. The first step to understanding degradation of the tubes was to examine exposed tubes to identify the corrosion products. Analyses of the surface scales showed primarily iron oxides rather than chromium oxide suggesting the tubes were probably cycled to relatively high temperatures to the extent that cycling and subsequent oxide spalling reduced the surface concentration of chromium below a critical level. To characterize the temperatures reached by the tubes, thermocouples were mounted on selected tubes and the temperatures measured. During the several hour furnace cycle, tube temperatures well above 1000°C were regularly recorded and, on some occasions, temperatures of more than 1100°C were measured. Further temperature characterization was done with an infrared camera, and this camera clearly showed the variations in temperature across the first row of tubes in the four recuperator modules. Computational fluid dynamics was used to model the flow of combustion air in the tubes and the flue gas around the outside of the tubes. This modeling showed the

  10. New Report Compares Performance of Compressed Natural Gas Refuse...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A new report that compares the performance of compressed natural gas (CNG) refuse haulers ... The study reviews the fuel economy, range, cost and emissions of CNG garbage trucks. Free ...

  11. Jet flames of a refuse derived fuel

    SciTech Connect (OSTI)

    Weber, Roman; Kupka, Tomasz; Zajac, Krzysztof

    2009-04-15

    This paper is concerned with combustion of a refuse derived fuel in a small-scale flame. The objective is to provide a direct comparison of the RDF flame properties with properties of pulverized coal flames fired under similar boundary conditions. Measurements of temperature, gas composition (O{sub 2}, CO{sub 2}, CO, NO) and burnout have demonstrated fundamental differences between the coal flames and the RDF flames. The pulverized coals ignite in the close vicinity of the burner and most of the combustion is completed within the first 300 ms. Despite the high volatile content of the RDF, its combustion extends far into the furnace and after 1.8 s residence time only a 94% burnout has been achieved. This effect has been attributed not only to the larger particle size of fluffy RDF particles but also to differences in RDF volatiles if compared to coal volatiles. Substantial amounts of oily tars have been observed in the RDF flames even though the flame temperatures exceeded 1300 C. The presence of these tars has enhanced the slagging propensity of RDF flames and rapidly growing deposits of high carbon content have been observed. (author)

  12. Clean Cities Niche Market Overview: Refuse Haulers (Brochure)

    SciTech Connect (OSTI)

    Shea, S.

    2011-09-01

    Refuse haulers are ideal for the adoption of alternative fuels and advanced vehicle technologies. By using fuels like natural gas, propane, or biodiesel, and technologies like hybrid electric and hydraulic hybrid systems, the refuse-hauling sector could substantially decrease its petroleum use and greenhouse gas emissions. Fleet managers should explore the benefits of the fuels and technologies available, as well as the individual fleet needs, before adoption.

  13. Alternative Fuels Data Center: Virginia Cleans up With Natural Gas Refuse

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Trucks Virginia Cleans up With Natural Gas Refuse Trucks to someone by E-mail Share Alternative Fuels Data Center: Virginia Cleans up With Natural Gas Refuse Trucks on Facebook Tweet about Alternative Fuels Data Center: Virginia Cleans up With Natural Gas Refuse Trucks on Twitter Bookmark Alternative Fuels Data Center: Virginia Cleans up With Natural Gas Refuse Trucks on Google Bookmark Alternative Fuels Data Center: Virginia Cleans up With Natural Gas Refuse Trucks on Delicious Rank

  14. Production of biomass fuel for resource recovery: Trash recycling in Dade County, Florida

    SciTech Connect (OSTI)

    Mauriello, P.J.; Brooks, K.G.

    1997-12-01

    Dade County, Florida has been in the forefront of resources recovery from municipal solid waste since the early 1980`s. The County completed its 3,000 tons per day (six days per week) refuse derived fuel waste-to-energy facility in 1982. The Resources Recovery facility is operated under a long-term agreement with Montenay-Dade, Ltd. The trash processing capability of this facility was upgraded in 1997 to process 860 tons per day (six days per week) of trash into a biomass fuel which is used off-site to produce electrical energy. Under current Florida law, facilities like trash-to-fuel that produce alternative clean-burning fuels for the production of energy may receive credit for up to one-half of the state`s 30 percent waste reduction goal.

  15. NREL Evaluates Performance of Hydraulic Hybrid Refuse Vehicles (Fact Sheet), Highlights in Research & Development, NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Renewable Energy Laboratory (NREL) is evaluating the in-service performance of hydraulic hybrid vehicles (HHVs) and comparable conven- tional diesel vehicles operated by Miami- Dade County's Public Works and Waste Management Department in Florida. Launched in March 2015, the study aims to improve understanding of the overall usage and effectiveness of HHVs in refuse operation. The study was designed to help Miami- Dade County determine the ideal routes for maximizing the fuel-saving

  16. ULTRASONICALLY-ENHANCED DENSE-MEDIUM CYCLONING FOR FINE COAL AND COAL REFUSE IMPOUNDMENT MATERIALS

    SciTech Connect (OSTI)

    Dr. Mark S. Klima; Dr. Barbara J. Arnold

    2001-08-01

    The Pennsylvania State University, its project team (Typlex, Inc., DAGER, Inc., and PrepTech, Inc.), and advisory committee members have demonstrated the application of ultrasonic energy during dense-medium cyclining and subsequent recovery of fine coal and coal refuse impoundment materials. The results will help to extend the range of conventional dense-medium cyclining to sizes now typically cleaned in relatively inefficient water-only cyclone and spiral concentrators circuits. This technology also provides a potential approach to produce ultra-clean material as would be used for feedstocks for premium carbon products. This report describes Phase I of the project, which involved laboratory testing of dense-medium cyclining and subsequent medium recovery, with and without ultrasonic treatment, along with fundamental dispersion testing. Dense-medium cycloning was conducted with a 76.2-mm (3-in.) diameter cyclone under various conditions including magnetite grade, medium relative density, inlet pressure, cyclone geometry, and feed coal. Dense-medium recovery testing was carried out with a 305-mm (12-in.) diameter x 152-mm (6-in.) wide wet-drum magnetic separator using the cyclone clean coal and refuse products as the feed material. Fundamental testing of dispersion/reagglomeration phenomena was conducted with coal/clay mixtures. In almost all cases, the dense-medium cyclone was capable of achieving separations down to approximately 0.037 mm. Ultrasonic treatment had a slight effect on reducing the ash content of the clean coal. It was also found that ultrasonic treatment improved the purity of the magnetic fraction during wet-drum magnetic separation. The treatment was particularly beneficial for the cyclone overflow material. The fundamental testing indicated that agitation after ultrasonic treatment is necessary to disperse fine particles and to prevent agglomeration.

  17. Environmental assessment operation of the HB-Line facility and frame waste recovery process for production of Pu-238 oxide at the Savannah River Site

    SciTech Connect (OSTI)

    1995-04-01

    The Department of Energy (DOE) has prepared an environmental assessment (EA), DOE/EA-0948, addressing future operations of the HB-Line facility and the Frame Waste Recovery process at the Savannah River Site (SRS), near Aiken, South Carolina. Based on the analyses in the EA, DOE has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, DOE has concluded that, the preparation of an environmental impact statement is not required, and is issuing this Finding of No Significant Impact.

  18. Open air refuse burning video: Proton Dan the science man explores open air refuse burning

    SciTech Connect (OSTI)

    Eastburn, M.D.; Sipple, J.L.; Deramo, A.R.

    1999-07-01

    The goal of this video is to educate school children to the potential hazards of open air trash burning; to demonstrate alternative ways to dispose of trash; and to motivate students to take action to change the behavior of their parents with regard to trash burning. The burning of household trash, although illegal, is still a common practice in rural areas of Delaware. Enforcement has been difficult because the practice is often performed at night and is done across a wide rural area that is difficult to patrol on a continuing basis. The prohibition on trash burning (revised Regulation 13 of The Delaware Code of Regulations Governing The Control of Air Pollution) has been in effect since 1968, but the public has been slow to comply because trash burning has been practiced for many generations and because much of the public is unaware of the environmental impacts and/or the human health risks. This video may be valuable for other States to use as a public outreach tool regarding their problems with open air refuse burning. The focus of the video is a 7th grade science class is given various assignments relating to Earth Day and preservation of natural resources. Two children in particular are given the assignment to research and report on the hazards of open air trash burning and are asked to investigate alternative ways to dispose of refuse. Upon brainstorming how to find information on the topic, the kids decide to contact the host of a popular children's science show on broadcast television named Proton Dan the Science Man (a fictitious character and show based on Bill Nye the Science Guy). The host then invites the kids to the studio where he films his show and takes them through the topic. The TV host character takes the children to several external locations like a landfill, recycling centers, etc..

  19. Modified biochemical methane potential (BMP) assays to assess biodegradation potential of landfilled refuse

    SciTech Connect (OSTI)

    Bogner, J.E.; Rose, C.; Piorkowski, R.

    1989-01-01

    Modified Biochemical Methane Potential (BMP) assays were used to assess biogas production potential of solid landfill samples. In landfill samples with visible soil content, moisture addition alone was generally as effective at stimulating biogas production as the addition of a comprehensive nutrient media. In a variety of samples from humid and semiarid landfills, addition of an aqueous nutrient media was the most effective stimulant for biogas production; however, moisture addition was almost as effective for most samples, suggesting that water addition would be the most cost-effective field approach. Onset of methanogenesis was slower in fresh refuse samples (even when inoculated with anaerobic digester sludge) than in landfill samples, indicating that the soil into which materials are landfilled is a major source of microorganisms. High volatile solids loading in fresh refuse and landfill assays retarded methanogenesis. A comparison of anaerobic and aerobic sample handling techniques showed no significant differences with regard to onset of methanogenesis and total gas production. The technique shows initial promise with regard to replication and reproducibility of results and could be a meaningful addition to landfill site evaluations where commercial gas recovery is anticipated. The BMP technique could also be adapted to assess anaerobic biodegradability of other solid waste materials for conventional anaerobic digestion applications. 9 refs., 6 figs., 2 tabs.

  20. Systems analysis for the development of small resource recovery systems: system performance data. Final report

    SciTech Connect (OSTI)

    Crnkovich, P G; Helmstetter, A J

    1980-10-01

    The technologies that should be developed to make small-scale solid waste processing facilities attractive and viable for small municipalities with solid waste between 50 and 250 tons per day are identified. The resource recovery systems investigated were divided into three categories: thermal processng, mechanical separation, and biological processing. Thermal processing systems investigated are: excess-air incineration; starved-air incineration/gasification; and pyrolysis (indirect heating). Mechanical processing systems investigated are: coarse refuse derived fuel; materials separation; dust refuse derived fuel; densified refuse derived fuel; and fine refuse derived fuel. Mechanical processing components investigated include: receiving module; primary size reduction module; combustible separation module; refuse derived fuel preparation module; fuel densification; fuel storage module; ferrous separation; and building and facilities. Pretreatment processes and principle methods of bioconversion of MSW dealing with biological processing are investigated. (MCW)

  1. Development and evaluation of lime enhanced refuse-derived fuel (RDF) pellets

    SciTech Connect (OSTI)

    Ohlsson, O.O.

    1996-12-31

    The disposal of municipal solid waste (MSW) is of increasing concern for municipalities and state governments throughout the US. There are two technologies currently in use for the combustion of MSW: (1) mass burning in which unprocessed MSW is burned in a heat recovery furnace, and (2) a refuse-derived fuel (RDF) product, which consists of the organic (combustible) fraction of MSW which has been processed to produce a more homogeneous fuel product than raw MSW. The RDF is either marketed to outside users or combusted on-site in a dedicated or existing furnace. In an attempt to alleviate the problems encountered with RDF as a feedstock, Argonne National Laboratory (ANL) and the University of North Texas (UNT) under the sponsorship of the US Department of Energy (DOE) began a multi-phase research study to investigate the development of a low-cost binder that would improve the quality of RDF pellets.

  2. Steam gasification of tyre waste, poplar, and refuse-derived fuel: A comparative analysis

    SciTech Connect (OSTI)

    Galvagno, S. Casciaro, G.; Casu, S.; Martino, M.; Mingazzini, C.; Russo, A.; Portofino, S.

    2009-02-15

    In the field of waste management, thermal disposal is a treatment option able to recover resources from 'end of life' products. Pyrolysis and gasification are emerging thermal treatments that work under less drastic conditions in comparison with classic direct combustion, providing for reduced gaseous emissions of heavy metals. Moreover, they allow better recovery efficiency since the process by-products can be used as fuels (gas, oils), for both conventional (classic engines and heaters) and high efficiency apparatus (gas turbines and fuel cells), or alternatively as chemical sources or as raw materials for other processes. This paper presents a comparative study of a steam gasification process applied to three different waste types (refuse-derived fuel, poplar wood and scrap tyres), with the aim of comparing the corresponding yields and product compositions and exploring the most valuable uses of the by-products.

  3. An overview of the technology for energy recovery from municipal wastes in Japan

    SciTech Connect (OSTI)

    Hiraoka, M.

    1985-01-01

    Since the Japanese government adopted incineration and landfill systems for treatment of municipal refuse in 1963, a large number of incinerators have been built. After the Oil Embargo in 1973, heat recovery from incinerators in large cities was emphasized, and resource and heat recovery have been developed.

  4. Refuse derived fuel delivery system and distribution conveyors

    SciTech Connect (OSTI)

    Kaminski, D.J.; Frank, E.A.; Grinsteiner, C.S.

    1987-08-18

    This patent describes an apparatus for supplying comminuted combustible solid waste material from a refuse material supply to a combustion apparatus for use as fuel and wherein the combustion apparatus includes at least two fuel charging means each having a hopper for receiving comminuted combustible solid waste material, and the hoppers being positioned in side-by-side relation.

  5. Alternative Fuels Data Center: CNG Refuse Haulers Do Heavy Lifting in New

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    York CNG Refuse Haulers Do Heavy Lifting in New York to someone by E-mail Share Alternative Fuels Data Center: CNG Refuse Haulers Do Heavy Lifting in New York on Facebook Tweet about Alternative Fuels Data Center: CNG Refuse Haulers Do Heavy Lifting in New York on Twitter Bookmark Alternative Fuels Data Center: CNG Refuse Haulers Do Heavy Lifting in New York on Google Bookmark Alternative Fuels Data Center: CNG Refuse Haulers Do Heavy Lifting in New York on Delicious Rank Alternative Fuels

  6. Chlorinated organic compounds evolved during the combustion of blends of refuse-derived fuels and coals

    SciTech Connect (OSTI)

    Xiaodong Yang; Napier, J.; Sisk, B.; Wei-Ping Pan; Riley, J.T.; Lloyd, W.G.

    1996-12-31

    The objective of this study was to examine the possible formation of chlorinated organic compounds during the combustion of blends of refuse derived fuels (RDF) and coal under conditions similar to those of an atmospheric fluidized bed combustion (AFBC) system. A series of experiments were conducted using a TGA interfaced to FTIR and MS systems. Additional experiments using a tube furnace preheated to AFBC operating temperatures were also conducted. The combustion products were cryogenically trapped and analyzed with a GUMS system. The chlorination of phenols and the condensation reactions of chlorophenols were investigated in this study. A possible mechanism for the formation of chlorinated organic; compounds such as dibenzodioxins and dibenzofurans, by chlorination and condensation reactions involving phenols, was proposed.

  7. Method for recovery of hydrocarbons form contaminated soil or refuse materials

    DOE Patents [OSTI]

    Ignasiak, Teresa; Turak, Ali A.; Pawlak, Wanda; Ignasiak, Boleslaw L.; Guerra, Carlos R.; Zwillenberg, Melvin L.

    1991-01-01

    A method is provided for separating an inert solid substantially inorganic fraction comprising sand or soil from a tarry or oily organic matter in a feedstock. The feedstock may be contaminated soil or tarry waste. The feedstock is combined with pulverized coal and water. The ratio (oil or tar to dry weight of coal) of about 1.0:10 to about 4.0:10 at a temperature in the range of 60.degree.-95.degree. C. The mixture is agitated, the coarse particles are removed, and up to about 0.10% by weight (based on weight of coal) of a frothing agent is added. The mixture is then subjected to flotation, and the froth is removed from the mixture.

  8. SWPF Crane Lift Operation

    SciTech Connect (OSTI)

    2010-01-01

    A multiple vview shot of the SWPF crane lift operation at the Savannah River Site. Funded by the Recovery Act.

  9. Solvent recycle/recovery

    SciTech Connect (OSTI)

    Paffhausen, M.W.; Smith, D.L.; Ugaki, S.N.

    1990-09-01

    This report describes Phase I of the Solvent Recycle/Recovery Task of the DOE Chlorinated Solvent Substitution Program for the US Air Force by the Idaho National Engineering Laboratory, EG G Idaho, Inc., through the US Department of Energy, Idaho Operations Office. The purpose of the task is to identify and test recovery and recycling technologies for proposed substitution solvents identified by the Biodegradable Solvent Substitution Program and the Alternative Solvents/Technologies for Paint Stripping Program with the overall objective of minimizing hazardous wastes. A literature search to identify recycle/recovery technologies and initial distillation studies has been conducted. 4 refs.

  10. Cellulose-Enriched Microbial Communities from Leaf-Cutter Ant (Atta colombica) Refuse Dumps Vary in Taxonomic Composition and Degradation Ability

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lewin, Gina R.; Johnson, Amanda L.; Soto, Rolando D. Moreira; Perry, Kailene; Book, Adam J.; Horn, Heidi A.; Pinto-Tomás, Adrián A.; Currie, Cameron R.

    2016-03-21

    Deconstruction of the cellulose in plant cell walls is critical for carbon flow through ecosystems and for the production of sustainable cellulosic biofuels. Our understanding of cellulose deconstruction is largely limited to the study of microbes in isolation, but in nature, this process is driven by microbes within complex communities. In Neotropical forests, microbes in leaf-cutter ant refuse dumps are important for carbon turnover. These dumps consist of decaying plant material and a diverse bacterial community, as shown here by electron microscopy. To study the portion of the community capable of cellulose degradation, we performed enrichments on cellulose using materialmore » from five Atta colombica refuse dumps. The ability of enriched communities to degrade cellulose varied significantly across refuse dumps. 16S rRNA gene amplicon sequencing of enriched samples identified that the community structure correlated with refuse dump and with degradation ability. Overall, samples were dominated by Bacteroidetes, Gammaproteobacteria, and Betaproteobacteria. Half of abundant operational taxonomic units (OTUs) across samples were classified within general containing known cellulose degraders, including Acidovorax, the most abundant OTU detected across samples, which was positively correlated with cellulolytic ability. Lastly, a representative Acidovorax strain was isolated, but did not grow on cellulose alone. Phenotypic and compositional analyses of enrichment cultures, such as those presented here, help link community composition with cellulolytic ability and provide insight into the complexity of community-based cellulose degradation.« less

  11. Refuse-derived fuels in US Air Force heating and power systems. Final report, June 1982-February 1985

    SciTech Connect (OSTI)

    Joensen, A.W.

    1986-01-01

    This investigation was conducted to document and review all data associated with densified refuse-derived fuel (dRDF)--its preparation and properties, storage and handling, boiler cofiring efficiency and environmental emissions, potential boiler metal wastage, and any other experiences associated with the use of this fuel. The results of this investigation provide the basis for the development of an optimum dRDF fuel specification. These results identify performance characteristics and operating problems of the existing dRDF fuel pellet and contain an economic feasibility assessment of using this fuel.

  12. Inherently safe in situ uranium recovery (Patent) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Inherently safe in situ uranium recovery Citation Details In-Document Search Title: Inherently safe in situ uranium recovery An in situ recovery of uranium operation involves...

  13. emergency recovery

    National Nuclear Security Administration (NNSA)

    basis.

    Recovery includes the evaluation of the incident to identify lessons learned and development of initiatives to mitigate the effects of future...

  14. Combustion of refuse derived fuel in a fluidized bed

    SciTech Connect (OSTI)

    Piao, Guilin; Aono, Shigeru; Mori, Shigekatsu; Deguchi, Seiichi; Fujima, Yukihisa; Kondoh, Motohiro; Yamaguchi, Masataka

    1998-12-31

    Power generation from Refuse Derived Fuel (RDF) is an attractive utilization technology of municipal solid waste. To explain the behavior of RDF-fired fluidized bed incinerator, the commercial size RDF was continuously burnt in a 30 x 30 cm bubbling type fluidized-bed combustor. It was found that 12 kg/h of RDF feed rate was too high feed for this test unit and the Co level was higher than 500 ppm. However, 10 kg/h of RDF was a proper feed rate and the Co level was kept under 150 ppm. Secondary air injection and changing air ratio from the pipe grid were effective for the complete combustion of RDE. It was also found that HCl concentration in flue gas was controlled by the calcium component contained in RDF and its level was decreased with decreasing the combustor temperature.

  15. Recovery Act

    Broader source: Energy.gov [DOE]

    Recovery Act and Energy Department programs were designed to stimulate the economy while creating new power sources, conserving resources and aligning the nation to once again lead the global energy economy.

  16. Determination of the fuel characteristics of refuse-derived fuels by macroanalysis

    SciTech Connect (OSTI)

    Hecklinger, R.S.; Large, R.M.

    1980-01-01

    There is need for a means of determining the fuel characteristics of refuse-derived fuels to adjust the producer/user contractual relationship for fuel value. The authors discuss efforts to establish a macroanalysis procedure.

  17. Comminution phenomena during the fluidized bed combustion of a commercial refuse-derived fuel

    SciTech Connect (OSTI)

    Arena, U.; Cammarota, A.; Chirone, R.; D`Anna, G.

    1995-12-31

    A commercial densified refuse-derived fuel (RDF), obtained as pellets from municipal solid wastes, was burned in two laboratory scale bubbling fluidized bed combustors, having an internal diameter of 41 mm. The apparatus were both batchwise operated at 850 C by injecting batches of RDF particles into a bed of silica sand (300--400 {micro}m as size range) fluidized at a superficial gas velocity of 0.8 m/s. RDF particles with equivalent mean diameter ranging from 4 to 9 mm were used. Different experimental procedures were set up to separately investigate comminution phenomena of fuel particles. Results were compared with those obtained burning a South African bituminous coal. Results pointed out that RDF particles undergo a strong primary fragmentation phenomenon, with a probability of particle breakage equal to 1 for fuel particles larger than 6 mm. Attrition and char fragmentation phenomena are particularly relevant under both inert and oxidizing conditions, generating a large amount of unburned fines which may affect overall combustion efficiency.

  18. Hanford's Recovery Act Payments Jump Past $1 Billion

    Broader source: Energy.gov [DOE]

    The Richland Operations Office's (RL) American Recovery and Reinvestment Act payments at Hanford recently surpassed $1 billion.

  19. Recovery Act

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Recovery Act - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear Energy

  20. Co-firing high sulfur coal with refuse derived fuels. Technical progress report No. 8, July 1996--August 1996

    SciTech Connect (OSTI)

    Pan, Wei-Ping; Riley, J.T.; Lloyd, W.G.

    1996-08-31

    The objective of this study was to examine the possible formation of chlorinated organic compounds during the combustion of blends of refuse derived fuels (RDF) and coal under conditions similar to those of an atmospheric fluidized bed combustion (AFBC) system. A series of experiments were conducted using a TGA interfaced to FTIR. Additional experiments using a tube furnace preheated to AFBC operating temperatures were also conducted. The combustion products were cryogenically trapped and analyzed with a GC/MS system. The chlorination of phenols and the condensation reactions of chlorophenols were investigated in this study. A possible mechanism for the formation of chlorinated organic compounds such as dibenzodioxins and dibenzofurans, by chlorination and condensation reactions involving phenols, was proposed.

  1. Waste Isolation Pilot Plant Recovery Plan

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Waste Isolation Pilot Plant Recovery Plan Revision 0 September 30, 2014 [This page left blank.] EXECUTIVE SUMMARY Overview This Recovery Plan provides a safe and compliant approach to resuming operations at the Waste Isolation Pilot Plant (WIPP), the repository for disposal of the nation's defense transuranic (TRU) waste. The U.S. Department of Energy (DOE) is committed to resuming operations by the first quarter of calendar year 2016, and this Recovery Plan outlines the Department's approach to

  2. LANL exceeds Early Recovery Act

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    exceeds Early Recovery Act recycling goals March 8, 2010 More than 136 tons of metal saved from demolished buildings LOS ALAMOS, New Mexico, March 9, 2009-Los Alamos National Laboratory announced today that Lab demolition projects under the American Recovery and Reinvestment Act have recovered more than 136 tons of recyclable metal since work began last year, largely due to the skill of heavy equipment operators and efforts to gut the buildings before they come down. Some 106 tons of metal came

  3. Business Owners: Prepare a Business Recovery Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    a Business Recovery Plan Business Owners: Prepare a Business Recovery Plan Business Owners: Prepare a Business Recovery Plan Smart business owners develop and test a written business recovery plan to support them through disasters and help them stay in operation. Planning ahead will help your company get back to business more quickly. Consider your risks-How might a disaster affect your business operations? What natural disasters are most likely where you operate? Identify your critical business

  4. Refuse derived soluble bio-organics enhancing tomato plant growth and productivity

    SciTech Connect (OSTI)

    Sortino, Orazio; Dipasquale, Mauro; Montoneri, Enzo; Tomasso, Lorenzo; Perrone, Daniele G.; Vindrola, Daniela; Negre, Michele; Piccone, Giuseppe

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer Municipal bio-wastes are a sustainable source of bio-based products. Black-Right-Pointing-Pointer Refuse derived soluble bio-organics promote chlorophyll synthesis. Black-Right-Pointing-Pointer Refuse derived soluble bio-organics enhance plant growth and fruit ripening rate. Black-Right-Pointing-Pointer Sustainable chemistry exploiting urban refuse allows sustainable development. Black-Right-Pointing-Pointer Chemistry, agriculture and the environment benefit from biowaste technology. - Abstract: Municipal bio-refuse (CVD), containing kitchen wastes, home gardening residues and public park trimmings, was treated with alkali to yield a soluble bio-organic fraction (SBO) and an insoluble residue. These materials were characterized using elemental analysis, potentiometric titration, and 13C NMR spectroscopy, and then applied as organic fertilizers to soil for tomato greenhouse cultivation. Their performance was compared with a commercial product obtained from animal residues. Plant growth, fruit yield and quality, and soil and leaf chemical composition were the selected performance indicators. The SBO exhibited the best performance by enhancing leaf chlorophyll content, improving plant growth and fruit ripening rate and yield. No product performance-chemical composition relationship could be assessed. Solubility could be one reason for the superior performance of SBO as a tomato growth promoter. The enhancement of leaf chlorophyll content is discussed to identify a possible link with the SBO photosensitizing properties that have been demonstrated in other work, and thus with photosynthetic performance.

  5. Alternative fuel trucks case studies: Running refuse haulers on compressed natural gas

    SciTech Connect (OSTI)

    Norton, P.; Kelly, K.

    1996-07-01

    This document details the experience of New York City`s compressed natural gas refuse haulers. These 35 ton vehicles have engines that displace 10 liters and provide 240 horsepower. Fuel economy, range, cost, maintenance, repair issues, and emissions are discussed. Photographs and figures illustrate the attributes of these alternative fuel vehicles.

  6. Recovery Act | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Recovery Act Recovery Act More Documents & Publications Overview of Recovery Act FAR Clauses Map Data: Recovery Act Funding DOE Policy Re Recovery Act Recipient Use of Recovery Act Logos on Signage

  7. Recovery Act Funds at Work | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Information Center » 2009 Recovery Act » Recovery Act Funds at Work Recovery Act Funds at Work Funds from the American Recovery and Reinvestment Act of 2009 (Recovery Act) are being put to work to improve safety, reliability, and service in systems across the country. Central Maine Power is producing innovations in customer services, improvements in business operations, and lessons-learned that will be used for guiding future smart grid projects. Idaho Power Company is accelerating development

  8. Waste Isolation Pilot Plant Recovery Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Recovery Plan Waste Isolation Pilot Plant Recovery Plan This Recovery Plan provides a safe and compliant approach to resuming operations at the Waste Isolation Pilot Plant (WIPP), the repository for disposal of the nation's defense transuranic (TRU) waste. The U.S. Department of Energy (DOE) is committed to resuming operations by the first quarter of calendar year 2016, and this Recovery Plan outlines the Department's approach to meet that schedule while prioritizing safety, health, and

  9. Waste Heat Recovery

    Office of Environmental Management (EM)

    - PRE-DECISIONAL - DRAFT 1 Waste Heat Recovery 1 Technology Assessment 2 Contents 3 1. ... 2 4 1.1. Introduction to Waste Heat Recovery ......

  10. Developing a Regional Recovery Framework

    SciTech Connect (OSTI)

    Lesperance, Ann M.; Olson, Jarrod; Stein, Steven L.; Clark, Rebecca; Kelly, Heather; Sheline, Jim; Tietje, Grant; Williamson, Mark; Woodcock, Jody

    2011-09-01

    Abstract A biological attack would present an unprecedented challenge for local, state, and federal agencies; the military; the private sector; and individuals on many fronts ranging from vaccination and treatment to prioritization of cleanup actions to waste disposal. To prepare the Seattle region to recover from a biological attack, the Seattle Urban Area Security Initiative (UASI) partners collaborated with military and federal agencies to develop a Regional Recovery Framework for a Biological Attack in the Seattle Urban Area. The goal was to reduce the time and resources required to recover and restore wide urban areas, military installations, and other critical infrastructure following a biological incident by providing a coordinated systems approach. Based on discussions in small workshops, tabletop exercises, and interviews with emergency response agency staff, the partners identified concepts of operation for various areas to address critical issues the region will face as recovery progresses. Key to this recovery is the recovery of the economy. Although the Framework is specific to a catastrophic, wide-area biological attack using anthrax, it was designed to be flexible and scalable so it could also serve as the recovery framework for an all-hazards approach. The Framework also served to coalesce policy questions that must be addressed for long-term recovery. These questions cover such areas as safety and health, security, financial management, waste management, legal issues, and economic development.

  11. Hardened, environmentally disposable composite granules of coal cleaning refuse, coal combustion waste, and other wastes, and method preparing the same

    DOE Patents [OSTI]

    Burnet, G.; Gokhale, A.J.

    1990-07-10

    A hardened, environmentally inert and disposable composite granule of coal cleaning refuse and coal combustion waste and method for producing the same are disclosed, wherein the coal combustion waste is first granulated. The coal cleaning refuse is pulverized into fine particles and is then bound, as an outer layer, to the granulated coal combustion waste granules. This combination is then combusted and sintered. After cooling, the combination results in hardened, environmentally inert and disposable composite granules having cores of coal combustion waste, and outer shells of coal cleaning refuse. The composite particles are durable and extremely resistant to environmental and chemical forces. 3 figs.

  12. Hardened, environmentally disposable composite granules of coal cleaning refuse, coal combustion waste, and other wastes, and method preparing the same

    DOE Patents [OSTI]

    Burnet, George; Gokhale, Ashok J.

    1990-07-10

    A hardened, environmentally inert and disposable composite granule of coal cleaning refuse and coal combustion waste, and method for producing the same, wherein the coal combustion waste is first granulated. The coal cleaning refuse is pulverized into fine particles and is then bound, as an outer layer, to the granulated coal combustion waste granules. This combination is then combusted and sintered. After cooling, the combination results in hardened, environmentally inert and disposable composite granules having cores of coal combustion waste, and outer shells of coal cleaning refuse. The composite particles are durable and extremely resistant to environmental and chemical forces.

  13. Energy recovery ventilator

    SciTech Connect (OSTI)

    Benoit, Jeffrey T.; Dobbs, Gregory M.; Lemcoff, Norberto O.

    2015-06-23

    An energy recovery heat exchanger (100) includes a housing (102). The housing has a first flowpath (144) from a first inlet (104) to a first outlet (106). The housing has a second flowpath (146) from a second inlet (108) to a second outlet (110). Either of two cores may be in an operative position in the housing. Each core has a number of first passageways having open first and second ends and closed first and second sides. Each core has a number of second such passageways interspersed with the first passageways. The ends of the second passageways are aligned with the sides of the first passageways and vice versa. A number of heat transfer member sections separate adjacent ones of the first and second passageways. An actuator is coupled to the carrier to shift the cores between first and second conditions. In the first condition, the first core (20) is in the operative position and the second core (220) is not. In the second condition, the second core is in the operative position and the first core is not. When a core is in the operative position, its first passageways are along the first flowpath and the second passageways are along the second flowpath.

  14. Department of Energy Releases WIPP Recovery Plan

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Department of Energy Releases WIPP Recovery Plan Washington, D.C. - Today, the Department of Energy (DOE) released the Waste Isolation Pilot Plant (WIPP) Recovery Plan, outlining the necessary steps to resume operations at the transuranic waste disposal site outside of Carlsbad, N.M. WIPP operations were suspended following an underground truck fire and a radiological release earlier this year. "Safety is our top priority," said Mark Whitney, Acting Assistant Secretary for DOE's Office

  15. DOE feasibility report on Lake Calumet area refuse-to-energy facility

    SciTech Connect (OSTI)

    1980-06-18

    Site analyses and literature reviews were conducted to determine the feasibility of building an energy-producing municipal waste incinerator at Calumet Lake, Illinois. The amount of burnable waste produced within 5 and 10 miles of the near-Chicago site, the composition and heating value of this solid waste, and the air pollution impacts of waste incineration were determined, and the economic value of recovered material or of steam and electricity produced at the plant are discussed. It is concluded that there is sufficient refuse in the area to support a refuse processing center, that increasng landfill costs make such a center economically attractive, and that the Btu content of the refuse is adequate to produce steam for heat and power use. Replacing existing oil-fired power plants with this facility would result in an 88% reduction in current pollutant emission levels. There is a ready market for steam that could be produced. It is recommended that steps be taken to implement the establishment of the proposed waste processing center. (LCL)

  16. The use of commercial and industrial waste in energy recovery systems - A UK preliminary study

    SciTech Connect (OSTI)

    Lupa, Christopher J.; Ricketts, Lois J.; Sweetman, Andy; Herbert, Ben M.J.

    2011-08-15

    Highlights: > Commercial and industrial waste samples collected. > Samples analysed for calorific value, moisture, ash and elemental composition. > Values similar to those of municipal solid waste and refuse derived fuel. > Sampled waste could be used in current energy recovery systems with minimal retrofitting. > Sampled waste could account 6.5% towards the UK's 2020 renewable electricity target if all qualifying waste is used. - Abstract: With 2020 energy targets set out by the EU fast approaching, the UK is trying to source a higher proportion of its energy from renewable resources. Coupled with this, a growing population and increasing trends in consumer demand have resulted in national waste loads increasing. A possible solution to both issues is energy-from-waste (EfW) technologies. Many studies have focused on municipal solid waste (MSW) as a potential feedstock, but appear to overlook the potential benefits of commercial and industrial waste (C and IW). In this study, samples of C and IW were collected from three North West waste management companies and Lancaster University campus. The samples were tested for their gross and net calorific value, moisture content, ash content, volatile matter, and also elemental composition to determine their suitability in EfW systems. Intra-sample analysis showed there to be little variation between samples with the exception two samples, from waste management site 3, which showed extensive variation with regards to net calorific value, ash content, and elemental analysis. Comparisons with known fuel types revealed similarities between the sampled C and IW, MSW, and refuse derived fuel (RDF) thereby justifying its potential for use in EfW systems. Mean net calorific value (NCV) was calculated as 9.47 MJ/kg and concentrations of sulphur, nitrogen, and chlorine were found to be below 2%. Potential electrical output was calculated using the NCV of the sampled C and IW coupled with four differing energy generation

  17. WE-G-17A-08: Electron Gun Operation for in Line MRI-Linac Configurations: An Assessment of Beam Fidelity and Recovery Techniques for Different SIDs and Magnetic Field Strengths

    SciTech Connect (OSTI)

    Whelan, B; Keall, P; Constantin, D; Holloway, L; Kolling, S; Oborn, B; Fahrig, R

    2014-06-15

    Purpose: To test the functionality of medical electron guns within the fringe field of a purpose built superconducting MRI magnet, and to test different recovery techniques for a variety of imaging field strengths and SIDs. Methods: Three different electron guns were simulated using Finite Element Modelling; a standard diode gun, a standard triode gun, and a novel diode gun designed to operate within parallel magnetic fields. The approximate working regime of each gun was established by assessing exit current in constant magnetic fields of varying strength and defining ‘working’ as less than 10% change in injection current. Next, the 1.0T MRI magnet was simulated within Comsol Multiphysics. The coil currents in this model were also scaled to produce field strengths of .5, 1, 1.5 and 3T. Various magnetic shield configurations were simulated, varying the SID from 800 to 1300mm. The average magnetic field within the gun region was assessed together with the distortion in the imaging volume - greater than 150uT distortion was considered unacceptable. Results: The conventional guns functioned in fields of less than 7.5mT. Conversely, the redesigned diode required fields greater than .1T to function correctly. Magnetic shielding was feasible for SIDS of greater than 1000mm for field strengths of .5T and 1T, and 1100mm for 1.5 and 3.0T. Beyond these limits shielding resulted in unacceptable MRI distortion. In contrast, the redesigned diode could perform acceptably for SIDs of less than 812, 896, 931, and 974mm for imaging strengths of 0.5, 1.0, 1.5, 3.0T. Conclusions: For in-line MRIlinac configurations where the electron gun is operating in low field regions, shielding is a straight forward option. However, as magnetic field strength increases and the SID is reduced, shielding results in too great a distortion in the MRI and redesigning the electron optics is the preferable solution. The authors would like to acknowledge funding from the National Health and Research

  18. Data summary of municipal solid waste management alternatives. Volume 7, Appendix E -- Material recovery/material recycling technologies

    SciTech Connect (OSTI)

    1992-10-01

    The enthusiasm for and commitment to recycling of municipal solid wastes is based on several intuitive benefits: Conservation of landfill capacity; Conservation of non-renewable natural resources and energy sources; Minimization of the perceived potential environmental impacts of MSW combustion and landfilling; Minimization of disposal costs, both directly and through material resale credits. In this discussion, ``recycling`` refers to materials recovered from the waste stream. It excludes scrap materials that are recovered and reused during industrial manufacturing processes and prompt industrial scrap. Materials recycling is an integral part of several solid waste management options. For example, in the preparation of refuse-derived fuel (RDF), ferrous metals are typically removed from the waste stream both before and after shredding. Similarly, composting facilities, often include processes for recovering inert recyclable materials such as ferrous and nonferrous metals, glass, Plastics, and paper. While these two technologies have as their primary objectives the production of RDF and compost, respectively, the demonstrated recovery of recyclables emphasizes the inherent compatibility of recycling with these MSW management strategies. This appendix discusses several technology options with regard to separating recyclables at the source of generation, the methods available for collecting and transporting these materials to a MRF, the market requirements for post-consumer recycled materials, and the process unit operations. Mixed waste MRFs associated with mass bum plants are also presented.

  19. Combined heat recovery and dry scrubbing for MWCs to meet the new EPA guidelines

    SciTech Connect (OSTI)

    Finnis, P.J.; Heap, B.M.

    1997-12-01

    Both the UK and US Municipal Waste Combuster (MWC) markets have undergone upgraded regulatory control. In the UK, the government`s Integrated Pollution Control (IPC) regime, enforced by the 1990 Environmental Protection Act (EPA) Standard IPR5/3 moved control of emissions of MWCs from local councils to the government Environmental Authority (EA). Existing MWCs had until December 1, 1996 to complete environmental upgrades. Simultaneously, the European Community (EC) was finalizing more stringent legislation to take place in the year 2001. In the US, the 1990 Clean Air Act amendments required the Environmental Protection Agency (EPA) to issue emission guidelines for new and existing facilities. Existing facilities are likely to have only until the end of 1999 to complete upgrades. In North America, Procedair Industries Corp had received contracts from Kvaerner EnviroPower AB, for APC systems of four new Refuse Derived Fuel (RDF) fluid bed boilers that incorporated low outlet temperature economizers as part of the original boiler equipment. The Fayetteville, North Carolina facility was designed for 200,000 tpy. What all these facilities have in common is low economizer outlet temperatures of 285{degrees}F coupled with a Total Dry Scrubbing System. MWC or RDF facilities using conventional spray dryer/fabric filter combinations have to have economizer gas outlet temperatures about 430{degrees}F to allow for evaporation of the lime slurry in the spray dryer without the likelihood of wall build up or moisture carry over. Since the Totally Dry Scrubbing System can operate with economizer gas outlet temperatures about 285{degrees}F, the added energy available for sale from adding low outlet temperature economizer heat recovery can be considerable. This paper focuses on Procedair`s new plant and retrofit experience using `Dry Venturi Reactor/Fabric Filter` combinations with the lower inlet temperature operating conditions.

  20. Recovery Act Milestones

    ScienceCinema (OSTI)

    Rogers, Matt

    2013-05-29

    Every 100 days, the Department of Energy is held accountable for a progress report on the American Recovery and Reinvestment Act. Update at 200 days, hosted by Matt Rogers, Senior Advisor to Secretary Steven Chu for Recovery Act Implementation.

  1. WIPP Recovery Information

    Broader source: Energy.gov [DOE]

    At the March 26, 2014 Board meeting J. R. Stroble CBFO, Provided Information on Locations to Access WIPP Recovery Information.

  2. Waste Heat Recovery

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    - PRE-DECISIONAL - DRAFT 1 Waste Heat Recovery 1 Technology Assessment 2 Contents 3 1. Introduction to the Technology/System ............................................................................................... 2 4 1.1. Introduction to Waste Heat Recovery .......................................................................................... 2 5 1.2. Challenges and Barriers for Waste Heat Recovery ..................................................................... 13 6 1.3. Public

  3. Studies of the combustion of coal/refuse derived fuels using thermogravimetric-Fourier transform infrared-mass spectrometry

    SciTech Connect (OSTI)

    Lu, Huagang; Li, Jigui; Lloyd, W.G.

    1995-11-01

    According to a report of the Environmental Protection Agency (EPA), `Characterization of Municipal Solid Waste (MSW) in the United States`, the total MSW produced in the U.S. increased from 179 million tons in 1988 to 195 million tons in 1990. The EPA predicted that the country would produce about 216 million tons of garbage in the year 2000. The amount of waste generated and the rapidly declining availability of sanitary landfills has forced most municipalities to evaluate alternative waste management technologies for reducing the volume of waste sent to landfills. The fraction of MSW that is processed by such technologies as separation and recycling, composting, and waste-to-energy was forecast to increase from a few percent today to 30-40% by the year 2000. Waste-to-energy conversion of MSW can appear to be attractive because of the energy recovered, the economic value of recycled materials, and the cost savings derived from reduced landfill usage. However, extra care needs to be taken in burning MSW or refuse-derived fuel (RDF) to optimize the operating conditions of a combustor so that the combustion takes place in an environmentally acceptable manner. For instance, polychlorinated dibenzodioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) have been found in the precipitator fly ash and flue gas of some incinerator facilities in the United States and Europe. The amount of PCDDs and PCDFs occurs only in the parts-per-billion to parts-per-trillion range, but these chlorinated organics exhibit very high toxicity (LD{sub 50} < 10 {mu}g/Kg). The compound 2,3,7,8-tetrachlorodibenzodioxin has been found to be acnegenic, carcinogenic, and teratogenic. This has slowed or even stopped the construction and operation of waste-to-energy plants.

  4. A review of trace element emissions from the combustion of refuse-derived fuel with coal

    SciTech Connect (OSTI)

    Norton, G.A. )

    1992-05-01

    The effects of cocombusting refuse-derived fuel (RDF) with coal on stack emissions of trace elements in the ash stream were reviewed. The large number of variables and uncertainties involved precluded drawing definitive conclusions regarding many of the trace elements. However, it is evident that cocombustion resulted in increased emissions of Cd, Cu, Hg, Pb, and Zn. Emissions of As and Ni tended to decrease when RDF was fired with coal. Modeling studies indicated that ambient levels of trace elements during cocombustion should be within acceptable limits. However, periodic monitoring of Cd, Hg, and Pb may be warranted in some instances.

  5. Inherently safe in situ uranium recovery

    SciTech Connect (OSTI)

    Krumhansl, James L; Brady, Patrick V

    2014-04-29

    An in situ recovery of uranium operation involves circulating reactive fluids through an underground uranium deposit. These fluids contain chemicals that dissolve the uranium ore. Uranium is recovered from the fluids after they are pumped back to the surface. Chemicals used to accomplish this include complexing agents that are organic, readily degradable, and/or have a predictable lifetime in an aquifer. Efficiency is increased through development of organic agents targeted to complexing tetravalent uranium rather than hexavalent uranium. The operation provides for in situ immobilization of some oxy-anion pollutants under oxidizing conditions as well as reducing conditions. The operation also artificially reestablishes reducing conditions on the aquifer after uranium recovery is completed. With the ability to have the impacted aquifer reliably remediated, the uranium recovery operation can be considered inherently safe.

  6. Battleground Energy Recovery Project

    SciTech Connect (OSTI)

    Daniel Bullock

    2011-12-31

    In October 2009, the project partners began a 36-month effort to develop an innovative, commercial-scale demonstration project incorporating state-of-the-art waste heat recovery technology at Clean Harbors, Inc., a large hazardous waste incinerator site located in Deer Park, Texas. With financial support provided by the U.S. Department of Energy, the Battleground Energy Recovery Project was launched to advance waste heat recovery solutions into the hazardous waste incineration market, an area that has seen little adoption of heat recovery in the United States. The goal of the project was to accelerate the use of energy-efficient, waste heat recovery technology as an alternative means to produce steam for industrial processes. The project had three main engineering and business objectives: Prove Feasibility of Waste Heat Recovery Technology at a Hazardous Waste Incinerator Complex; Provide Low-cost Steam to a Major Polypropylene Plant Using Waste Heat; and ? Create a Showcase Waste Heat Recovery Demonstration Project.

  7. Enhanced oil recovery

    SciTech Connect (OSTI)

    Fisher, W.G.

    1982-01-01

    The principal enhanced recovery technique is waterflooding, because water generally is inexpensive to obtain and inject into the reservoir and it works. With the shortage of conventional oil in Canada there is greater emphasis being placed on other recovery schemes in addition to or in place of waterflooding. Tertiary recovery is applicable to many of the existing projects and engineers must recognize those fields that are candidates for tertiary recovery applications. The application of tertiary recovery techniques to a specific reservoir requires consideration of all methods developed to select the one most suitable. A thorough understanding of waterflooding and the factors that affect recovery is necessary before a tertiary process is considered. Factors that affect oil recovery under waterflooding are areal and vertical sweep efficiency, contact factor and displacement efficiency.

  8. Recovery of minerals from US coals

    SciTech Connect (OSTI)

    Vanderborgh, N.E.

    1982-01-01

    Projections show that domestic coal will serve for the majority of energy supplies during the next decades. Thorough chemical cleaning of this coal can be accomplished in long residence time, slurry transport systems to produce high-quality fuel product. Concurrently, mineral recovery from coals will supplement existing ores. This paper describes this concept and given preliminary engineering considerations for mineral recovery during transport operations.

  9. Results of emissions testing while burning densified refuse derived fuel, Dordt College, Sioux Center, Iowa

    SciTech Connect (OSTI)

    Not Available

    1989-10-01

    Pacific Environmental Services, Inc. provided engineering and source testing services to the Council of Great Lake Governors to support their efforts in promoting the development and utilization of densified refuse derived fuels (d-RDF) and pelletized wastepaper fuels in small steam generating facilities. The emissions monitoring program was designed to provide a complete air emissions profile while burning various refuse derived fuels. The specific goal of this test program was to conduct air emissions tests at Dordt College located in Sioux Center, Iowa and to identify a relationship between fuel types and emission characteristics. The sampling protocol was carried out June 12 through June 20, 1989 on boiler {number sign}4. This unit had been previously modified to burn d-RDF. The boiler was not equipped with any type of air pollution control device so the emissions samples were collected from the boiler exhaust stack on the roof of the boilerhouse. The emissions that were sampled included: particulates; PM{sub 10} particulates; hydrochloric acid; dioxins; furans; polychlorinated biphenyls (PCB); metals and continuous monitors for CO, CO{sub 2}O{sub 2}SO{sub x}NO{sub x} and total hydrocarbons. Grab samples of the fuels were collected, composited and analyzed for heating value, moisture content, proximate and ultimate analysis, ash fusion temperature, bulk density and elemental ash analysis. Grab samples of the boiler ash were also collected and analyzed for total hydrocarbons total dioxins, total furans, total PCBs and heavy metals. 77 figs., 20 tabs.

  10. Summary - Caustic Recovery Technology

    Office of Environmental Management (EM)

    Caustic Recovery Technology ETR Report Date: July 2007 ETR-7 United States Department of Energy Office of Environmental Management (DOE-EM) External Technical Review of Caustic Recovery Technology Why DOE-EM Did This Review The Department of Energy (DOE) Environmental Management Office (EM-21) has been developing caustic recovery technology for application to the Hanford Waste Treatment Plant (WTP) to reduce the amount of Low Activity Waste (LAW) vitrified. Recycle of sodium hydroxide with an

  11. WIPP Recovery Progress

    Broader source: Energy.gov [DOE]

    At the March 25, 2015 Board meeting J. R. Stroble CBFO, Provided Information on the Status of the Recovery Effort at the WIPP Site.

  12. ARM - Recovery Act

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... In other Recovery Act news, the remote balloon launcher was ... new aerosols observation systems passed acceptance testing ... By moving to the fast-switching dual polarization technology...

  13. EM Recovery Act Performance

    Broader source: Energy.gov [DOE]

    The Office of Environmental Management's (EM) American Recovery and Reinvestment Act Program recently achieved 74 percent footprint reduction, exceeding the originally established goal of 40...

  14. Recovery Act Open House

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    light snacks for those attending. DOE ID Manager Rick Provencher discusses the non-cleanup work that was accomplished with Recovery Act funding. Editorial Date November 15, 2010...

  15. Refrigerant recovery system

    SciTech Connect (OSTI)

    Abraham, A.W.

    1991-08-20

    This patent describes improvement in a refrigerant recovery apparatus of the type having inlet means for connecting to a refrigerant air system to withdraw refrigerant from the system, expansion means for converting refrigerant received from the system in liquid phase to a gaseous refrigerant, a compressor having a suction chamber with a suction inlet for receiving and pressurizing the gaseous refrigerant, the compressor having a housing containing oil for lubricating the compressor, a condenser for receiving the pressurized gaseous refrigerant and condensing it to liquid refrigerant, and a storage chamber for storing the liquid refrigerant. The improvement comprises in combination: oil separator means mounted exterior of the housing to one end of an inlet line, which has another end connected to the suction inlet of the compressor for receiving the flow of refrigerant from the refrigerated air system for separating out oil mixed with the refrigerant being received from the refrigerated air system prior to the refrigerant entering the suction inlet of the compressor; and the oil separator means being mounted at a lower elevation than the suction inlet of the compressor, the inlet line being unrestricted for allowing refrigerant flow to the compressor and oil from the compressor for draining oil in the housing of the compressor above the suction inlet back through the inlet line into the oil separator means when the compressor is not operating.

  16. Process to convert biomass and refuse derived fuel to ethers and/or alcohols

    DOE Patents [OSTI]

    Diebold, James P.; Scahill, John W.; Chum, Helena L.; Evans, Robert J.; Rejai, Bahman; Bain, Richard L.; Overend, Ralph P.

    1996-01-01

    A process for conversion of a feedstock selected from the group consisting of biomass and refuse derived fuel (RDF) to provide reformulated gasoline components comprising a substantial amount of materials selected from the group consisting of ethers, alcohols, or mixtures thereof, comprising: drying said feedstock; subjecting said dried feedstock to fast pyrolysis using a vortex reactor or other means; catalytically cracking vapors resulting from said pyrolysis using a zeolite catalyst; condensing any aromatic byproduct fraction; catalytically alkylating any benzene present in said vapors after condensation; catalytically oligomerizing any remaining ethylene and propylene to higher olefins; isomerizing said olefins to reactive iso-olefins; and catalytically reacting said iso-olefins with an alcohol to form ethers or with water to form alcohols.

  17. Process to convert biomass and refuse derived fuel to ethers and/or alcohols

    DOE Patents [OSTI]

    Diebold, J.P.; Scahill, J.W.; Chum, H.L.; Evans, R.J.; Rejai, B.; Bain, R.L.; Overend, R.P.

    1996-04-02

    A process is described for conversion of a feedstock selected from the group consisting of biomass and refuse derived fuel (RDF) to provide reformulated gasoline components comprising a substantial amount of materials selected from the group consisting of ethers, alcohols, or mixtures thereof, comprising: drying said feedstock; subjecting said dried feedstock to fast pyrolysis using a vortex reactor or other means; catalytically cracking vapors resulting from said pyrolysis using a zeolite catalyst; condensing any aromatic byproduct fraction; catalytically alkylating any benzene present in said vapors after condensation; catalytically oligomerizing any remaining ethylene and propylene to higher olefins; isomerizing said olefins to reactive iso-olefins; and catalytically reacting said iso-olefins with an alcohol to form ethers or with water to form alcohols. 35 figs.

  18. Co-firing high sulfur coal with refuse derived fuels. Quarterly report, October - December 1996

    SciTech Connect (OSTI)

    Pan, W.-P.; Riley, J.T.; Lloyd, W.G.

    1996-12-01

    The objectives of this quarter of study on the co-firing of high sulfur coal with refuse derived fuels project were two-fold. First, the effect of S0{sub 2} on the formation of chlorine during combustion processes was examined. To simulate the conditions used in the AFBC system, experiments were conducted in a quartz tube in an electrically heated furnace. The principle analytical technique used for identification of the products from this study was GC/MS. The evolved gas was trapped by an absorbent and analyzed with a GC/MS system. The preliminary results indicate an inhibiting effect of S0{sub 2} on the Deacon Reaction. Secondly, information on the evolution of chlorine, sulfur and organic compounds from coals 95031 and 95011 were studied with the AFBC system. 2 figs., 1 tab.

  19. Sulfur dioxide capture in the combustion of mixtures of lime, refuse-derived fuel, and coal

    SciTech Connect (OSTI)

    Churney, K.L.; Buckley, T.J. . Center for Chemical Technology)

    1990-06-01

    Chlorine and sulfur mass balance studies have been carried out in the combustion of mixtures of lime, refuse-derived fuel, and coal in the NIST multikilogram capacity batch combustor. The catalytic effect of manganese dioxide on the trapping of sulfur dioxide by lime was examined. Under our conditions, only 4% of the chlorine was trapped in the ash and no effect of manganese dioxide was observed. Between 42 and 14% of the total sulfur was trapped in the ash, depending upon the lime concentration. The effect of manganese dioxide on sulfur capture was not detectable. The temperature of the ash was estimated to be near 1200{degrees}C, which was in agreement with that calculated from sulfur dioxide capture thermodynamics. 10 refs., 12 figs., 10 tabs.

  20. National Weatherization Assistance Program Characterization Describing the Recovery Act Period

    SciTech Connect (OSTI)

    Tonn, Bruce Edward; Rose, Erin M.; Hawkins, Beth A.

    2015-10-01

    This report characterizes the U.S. Department of Energy s Weatherization Assistance Program (WAP) during the American Recovery and Reinvestment Act of 2009 (Recovery Act) period. This research was one component of the Recovery Act evaluation of WAP. The report presents the results of surveys administered to Grantees (i.e., state weatherization offices) and Subgrantees (i.e., local weatherization agencies). The report also documents the ramp up and ramp down of weatherization production and direct employment during the Recovery Act period and other challenges faced by the Grantees and Subgrantees during this period. Program operations during the Recovery Act (Program Year 2010) are compared to operations during the year previous to the Recovery Act (Program Year 2008).

  1. Resource Recovery OpportunitiesatAmericas Water Resource Recovery Facilities

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2013 by CH2M HILL, Inc. CH2MHILL® Resource Recovery Opportunities at America's Water Resource Recovery Facilities By Todd Williams, PE, BCEE Wastewater Global Service Team Deputy Leader Biomass 2014: Growing the Future Bioeconomy Washington, DC July 30, 2014 CH2MHILL Today  Operations on all continents  Approximately 28,000 employees  100 percent owned by our employees  Broadly diversified across multiple business sectors  US$7 billion in revenue We are an industry leader in

  2. FAQs Related to the Recovery Act | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    FAQs Related to the Recovery Act FAQs Related to the Recovery Act The Office of the General Counsel operates an email hotline for legal questions related to the American Recovery & Reinvestment Act (ARRA), including the State Energy Program (SEP), Energy Efficiency Conservation Block Grant (EECBG) and Weatherization Assistance Program (WAP). State, county, municipal, and tribal government representatives are welcome to email their legal questions to GChotline@hq.doe.gov. Questions will be

  3. Waste Isolation Pilot Plant Recovery Plan Revision 0 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Recovery Plan Revision 0 Waste Isolation Pilot Plant Recovery Plan Revision 0 This Recovery Plan provides a safe and compliant approach to resuming operations at the Waste Isolation Pilot Plant (WIPP), the repository for disposal of the nation's defense transuranic (TRU) waste. The U.S. Department of Energy (DOE) is committed to resuming operations by the first quarter of calendar year 2016, and this Recovery Plan outlines the Department's approach to meet that schedule while prioritizing

  4. American Recovery and Reinvestment Act

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    American Recovery and Reinvestment Act American Recovery and Reinvestment Act LANL was able to accelerate demolition and cleanup thanks to a 212 million award from the American...

  5. Recovery Act | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    With the passage of the American Recovery and Reinvestment Act of 2009 (Recovery Act), the Department of Energy (Department) will have new responsibilities and receive ...

  6. Recovery Act Milestones

    Broader source: Energy.gov [DOE]

    Every 100 days, the Department of Energy is held accountable for a progress report on the American Recovery and Reinvestment Act. Update at 200 days, hosted by Matt Rogers, Senior Advisor to...

  7. Enhanced Oil Recovery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Enhanced Oil Recovery As much as two-thirds of conventional crude oil discovered in U.S. fields remains unproduced, left behind due to the physics of fluid flow. In addition, ...

  8. Exhaust Energy Recovery

    Broader source: Energy.gov [DOE]

    Exhaust energy recovery proposed to achieve 10% fuel efficiency improvement and reduce or eliminate the need for increased heat rejectioncapacity for future heavy duty engines in Class 8 Tractors

  9. Recovery Act Workers Complete Environmental Cleanup of Coal Ash Basin

    Broader source: Energy.gov [DOE]

    The Savannah River Site (SRS) recently cleaned up a 17-acre basin containing coal ash residues from Cold War operations. The American Recovery and Reinvestment Act project was safely completed at a...

  10. Two Recovery Act Funding Case Studies Now Available

    Broader source: Energy.gov [DOE]

    Utilities across America are using Recovery Act funds and smart grid technologies to deliver more reliable and affordable power, recover from major storms, and improve operations. Two case studies are now available.

  11. Department of Energy Releases WIPP Recovery Plan | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    N.M. The Waste Isolation Pilot Plant Recovery Plan outlines the necessary steps to resume operations at the transuranic waste disposal site outside of Carlsbad, N.M. ...

  12. Recovery Act Workers Remediate and Restore Former Waste Sites...

    Office of Environmental Management (EM)

    technologies. A video of the revegetation is available at the DOE-Richland Operations YouTube site at www.youtube.comHanfordSite. Left Photo: Recovery Act workers with CH2M HILL...

  13. Performance assessment techniques for groundwater recovery and treatment systems

    SciTech Connect (OSTI)

    Kirkpatrick, G.L.

    1993-03-01

    Groundwater recovery and treatment (pump and treat systems) continue to be the most commonly selected remedial technology for groundwater restoration and protection programs at hazardous waste sites and RCRA facilities nationwide. Implementing a typical groundwater recovery and treatment system includes the initial assessment of groundwater quality, characterizing aquifer hydrodynamics, recovery system design, system installation, testing, permitting, and operation and maintenance. This paper focuses on methods used to assess the long-term efficiency of a pump and treat system. Regulatory agencies and industry alike are sensitive to the need for accurate assessment of the performance and success of groundwater recovery systems for contaminant plume abatement and aquifer restoration. Several assessment methods are available to measure the long-term performance of a groundwater recovery system. This paper presents six assessment techniques: degree of compliance with regulatory agency agreement (Consent Order of Record of Decision), hydraulic demonstration of system performance, contaminant mass recovery calculation, system design and performance comparison, statistical evaluation of groundwater quality and preferably, integration of the assessment methods. Applying specific recovery system assessment methods depends upon the type, amount, and quality of data available. Use of an integrated approach is encouraged to evaluate the success of a groundwater recovery and treatment system. The methods presented in this paper are for engineers and corporate management to use when discussing the effectiveness of groundwater remediation systems with their environmental consultant. In addition, an independent (third party) system evaluation is recommended to be sure that a recovery system operates efficiently and with minimum expense.

  14. High efficiency shale oil recovery

    SciTech Connect (OSTI)

    Adams, D.C.

    1992-01-01

    The overall project objective is to demonstrate the high efficiency of the Adams Counter-Current shale oil recovery process. The efficiency will first be demonstrated on a small scale, in the current phase, after which the demonstration will be extended to the operation of a small pilot plant. Thus the immediate project objective is to obtain data on oil shale retorting operations in a small batch rotary kiln that will be representative of operations in the proposed continuous process pilot plant. Although an oil shale batch sample is sealed in the batch kiln from the start until the end of the run, the process conditions for the batch are the same as the conditions that an element of oil shale would encounter in a continuous process kiln. Similar chemical and physical (heating, mixing) conditions exist in both systems. The two most important data objectives in this phase of the project are to demonstrate (1) that the heat recovery projected for this project is reasonable and (2) that an oil shale kiln will run well and not plug up due to sticking and agglomeration. The following was completed and is reported on this quarter: (1) A software routine was written to eliminate intermittently inaccurate temperature readings. (2) We completed the quartz sand calibration runs, resolving calibration questions from the 3rd quarter. (3) We also made low temperature retorting runs to identify the need for certain kiln modifications and kiln modifications were completed. (4) Heat Conductance data on two Pyrolysis runs were completed on two samples of Occidental oil shale.

  15. A review of technologies and performances of thermal treatment systems for energy recovery from waste

    SciTech Connect (OSTI)

    Lombardi, Lidia; Carnevale, Ennio; Corti, Andrea

    2015-03-15

    Highlights: • The topic of energy recovery from waste by thermal treatment is reviewed. • Combustion, gasification and pyrolysis were considered. • Data about energy recovery performances were collected and compared. • Main limitations to high values of energy performances were illustrated. • Diffusion of energy recovery from waste in EU, USA and other countries was discussed. - Abstract: The aim of this work is to identify the current level of energy recovery through waste thermal treatment. The state of the art in energy recovery from waste was investigated, highlighting the differences for different types of thermal treatment, considering combustion/incineration, gasification and pyrolysis. Also different types of wastes – Municipal Solid Waste (MSW), Refuse Derived Fuel (RDF) or Solid Refuse Fuels (SRF) and some typologies of Industrial Waste (IW) (sludge, plastic scraps, etc.) – were included in the analysis. The investigation was carried out mainly reviewing papers, published in scientific journals and conferences, but also considering technical reports, to gather more information. In particular the goal of this review work was to synthesize studies in order to compare the values of energy conversion efficiencies measured or calculated for different types of thermal processes and different types of waste. It emerged that the dominant type of thermal treatment is incineration associated to energy recovery in a steam cycle. When waste gasification is applied, the produced syngas is generally combusted in a boiler to generate steam for energy recovery in a steam cycle. For both the possibilities – incineration or gasification – cogeneration is the mean to improve energy recovery, especially for small scale plants. In the case of only electricity production, the achievable values are strongly dependent on the plant size: for large plant size, where advanced technical solutions can be applied and sustained from an economic point of view, net

  16. Co-firing high sulfur coal with refuse derived fuels. Technical progress report No. 6, January--March 1996

    SciTech Connect (OSTI)

    Pan, W.P.; Riley, J.T.; Lloyd, W.G.

    1996-02-29

    The objectives for this quarter of study on the co-firing of high sulfur coals with refuse derived fuels were two-fold. First, the effects of different experimental parameters such as temperature, flow rates and reaction times on the formation of chlorinated organic compounds were studied using the tubular furnace as a reactor followed by GC/MS analysis. Secondly, the effect of fuel/air ratio on the flue gas composition and combustion efficiency were studied with the AFBC system.

  17. Pilot scale production and combustion of liquid fuels from refuse derived fuel (RDF): Part 2

    SciTech Connect (OSTI)

    Klosky, M.K.

    1996-09-01

    EnerTech is developing a process for producing pumpable slurry fuels, comparable to Coal-Water-Fuels (CWF), from solid Refuse Derived Fuels (RDF). Previous reports have described the characteristics of the enhanced carbonized RDF slurry fuels. This paper summarizes those fuel characteristics and reports on the latest combustion tests performed with the final product fuel. The objective of this research was to determine the boiler and emission performance from the carbonized RDF slurry fuel using statistical screening experiments. Eight combustion tests were performed with a pilot scale pulverized coal/oil boiler simulator, with CO, SO{sub 2}, and NO{sub x} emissions determined on-line. The combustion tests produced simultaneous CO and NO{sub x} emissions well below and SO{sub 2} emissions comparable to the promulgated New Source Performance Standards (NSPS). This research will form the basis for later combustion experiments to be performed with the carbonized RDF slurry fuel, in which dioxin/furan and trace metal emissions will be determined.

  18. Superheater corrosion in a boiler fired with refuse-derived fuel

    SciTech Connect (OSTI)

    Blough, J.L.; Stanko, G.J.; Bakker, W.T.; Steinbeck, T.

    1995-12-31

    The environment in the superheater of a boiler firing refuse-derived fuel (RDF) is very aggressive. The high wastage rate for the standard T-22 material necessitated a materials testing program. Simples of Types 304H, HR3C, T-22 chromized, 825 and 625 were assembled into tubular test sections and welded into the superheater tubing. After 1,180 hours the test sections were evaluated and the wastage rates calculated for each material. The chlorides contained in the RDF are believed to be the primary corrodent. The chlorine may be interacting with the metal samples as HCl, a low-melting-point eutectic or a combination of these. Of the six materials tested, Alloy 625 exhibited the best resistance--substantially better than the next-best Type 304. Alloy 825 and HR3C corroded approximately 1.5 times the rate of Type 304. The chromized layer on T-22 showed no resistance to the environment and was consumed in large areas.

  19. Gasification of refuse derived fuel in the Battelle high throughput gasification system

    SciTech Connect (OSTI)

    Paisley, M.A.; Creamer, K.S.; Tweksbury, T.L.; Taylor, D.R. )

    1989-07-01

    This report presents the results of an experimental program to demonstrate the suitability of the Battelle High Throughput Gasification Process to non-wood biomass fuels. An extensive data base on wood gasification was generated during a multi-year experimental program. This data base and subsequent design and economic analysis activities led to the discussion to study the gasification character of other fuels. The specific fuel studied was refuse derived fuel (RDF) which is a prepared municipal solid waste (MSW). The use of RDF, while providing a valuable fuel, can also provide a solution to MSW disposal problems. Gasification of MSW provides advantages over land fill or mass burn technology since a more usable form of energy, medium Btu gas, is produced. Land filling of wastes produces no usable products and mass burning while greatly reducing the volume of wastes for disposal can produce only steam. This steam must be used on site or very nearby this limiting the potential locations for mass burn facilities. Such a gas, if produced from currently available supplies of MSW, can contribute 2 quads to the US energy supply. 3 refs., 12 figs., 7 tabs.

  20. Recovery Act | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Recovery Act Recovery Act Center Map PERFORMANCE The Department estimates the $6 billion Recovery Act investment will allow us to complete work now that would cost approximately $13 billion in future years, saving $7 billion. As Recovery Act work is completed through the cleanup of contaminated sites, facilities, and material disposition, these areas will becoming available for potential reuse by other entities. Recovery Act funding is helping the Department reach our cleanup goals faster.

  1. Solvent recovery targeting

    SciTech Connect (OSTI)

    Ahmad, B.S.; Barton, P.I.

    1999-02-01

    One of the environmental challenges faced by the pharmaceutical and specialty chemical industries is the widespread use of organic solvents. With a solvent-based chemistry, the solvent necessarily has to be separated from the product. Chemical species in waste-solvent streams typically form multicomponent azeotropic mixtures, and this often complicates separation and, hence, recovery of solvents. A design approach is presented whereby process modifications proposed by the engineer to reduce the formation of waste-solvent streams can be evaluated systematically. This approach, called solvent recovery targeting, exploits a recently developed algorithm for elucidating the separation alternatives achievable when applying batch distillation to homogeneous multicomponent mixtures. The approach places the composition of the waste-solvent mixture correctly in the relevant residue curve map and computes the maximum amount of pure material that can be recovered via batch distillation. Solvent recovery targeting is applied to two case studies derived from real industrial processes.

  2. Recovery Act Workers Accomplish Cleanup of Second Cold War Coal Ash Basin

    Broader source: Energy.gov [DOE]

    American Recovery and Reinvestment Act workers recently cleaned up a second basin containing coal ash residues from Cold War operations at the Savannah River Site (SRS).

  3. Recovery of EUVL substrates

    SciTech Connect (OSTI)

    Vernon, S.P.; Baker, S.L.

    1995-01-19

    Mo/Si multilayers, were removed from superpolished zerodur and fused silica substrates with a dry etching process that, under suitable processing conditions, produces negligible change in either the substrate surface figure or surface roughness. Full recovery of the initial normal incidence extreme ultra-violet (EUV) reflectance response has been demonstrated on reprocessed substrates.

  4. Recovery Act: State Assistance for Recovery Act Related Electricity

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Policies | Department of Energy Act: State Assistance for Recovery Act Related Electricity Policies Recovery Act: State Assistance for Recovery Act Related Electricity Policies $44 Million for State Public Utility Commissions State public utility commissions (PUCs), which regulate and oversee electricity projects in their states, will be receiving more than $44.2 million in Recovery Act funding to hire new staff and retrain existing employees to ensure they have the capacity to quickly and

  5. Occidental vertical modified in situ process for the recovery of oil from oil shale, Phase 2. Construction, operation, testing, and environmental impact. Final report, August 1981-December 1982. Volume 1

    SciTech Connect (OSTI)

    Stevens, A.L.; Zahradnik, R.L.; Kaleel, R.J.

    1984-01-01

    Occidential Oil Shale, Inc. (OOSI) recently completed the demonstration of mining, rubblization, ignition, and simulataneous processing of two commericalized modified in situ (MIS) retorts at the Logas Wash facility near DeBeque, Colorado. Upon completion of Retort 6 in 1978, Occidential began incorporating all of the knowledge previously acquired in an effort to design two more commercial-sized MIS retorts. Any commercial venture of the future would require the ability to operate simultaneously more than one retort. Thus, Retorts 7 and 8 were developed during 1980 and 1981 through joint funding of the DOE and OOSI in Phase II. Rubblization of the retorts produced an average rubble void of 18.5% in the low grade shale (17 gallons per ton) at the Logan Wash site. After rubblization, bulkheads were constructed, inlet and offgas pipes were installed and connected to surface processing facilities and liquid product handling systems were connected to the retorts. Extensive instrumentation was installed in cooperation with Sandia National Laboratories for monitoring the complete operation of the retorts. After pre-ignition testing, Retort 8 was ignited in December of 1981 and Retort 7 was ignited in January of 1982. The retorts were operated without interruption from ignition until mid- November of 1982 at which time inlet gas injection was terminated and water quenching was begun. Total product yield from the two retorts was approximately 200,000 barrels of oil, or 70% of the Fischer Assay oil-in-place in the rubblized rock in the two retrots. Water quenching studies were conducted over a period of several months, with the objective of determining the rate of heat extraction from the retorts as well as determining the quantity and quality of offgas and water coming out from the quenching process. Data from these studies are also included in this Summary Report. 62 figs., 18 tabs.

  6. FY 2014 Research Projects on CO2 Storage in Enhanced Oil Recovery |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Research Projects on CO2 Storage in Enhanced Oil Recovery FY 2014 Research Projects on CO2 Storage in Enhanced Oil Recovery In FY 2014, the U.S. Department of Energy selected five projects focused on advancing the state of knowledge and developing and validating technologies that would allow for more effective storage of carbon dioxide (CO2) in enhanced oil recovery (EOR) operations while also promoting additional oil recovery. Valued at more than $14 million, these

  7. New York Recovery Act Snapshot

    Broader source: Energy.gov [DOE]

    The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in New York are supporting a...

  8. DOE Recovery Act Field Projects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Recovery Act Field Projects DOE Recovery Act Field Projects DOE Recovery Act Field Projects

  9. Recovery Act State Memos Alabama

    Broader source: Energy.gov (indexed) [DOE]

    Updated July 2010 | Department of Energy Chart listing projects selected for Smart Grid Investment Grants under American Recovery and Reinvestment Act. There is a November 2011 Update to the "Recovery Act Selections for Smart Grid Investment Grant Awards - By Category" file. Recovery Act Selections for Smart Grid Invesment Grant Awards- By Category (461.59 KB) More Documents & Publications FINAL Combined SGIG Selections - By Category for Press -AOv10.xls Recovery Act Selections

  10. [Waste water heat recovery system

    SciTech Connect (OSTI)

    Not Available

    1993-04-28

    The production capabilities for and field testing of the heat recovery system are described briefly. Drawings are included.

  11. Recovery Act State Memos Tennessee

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Recovery Act State Memos Tennessee For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  12. American Recovery and Reinvestment Act

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    American Recovery and Reinvestment Act American Recovery and Reinvestment Act LANL was able to accelerate demolition and cleanup thanks to a $212 million award from the American Recovery and Reinvestment Act. August 1, 2013 Excavation trench and enclosure at TA-21. To protect air quality, MDA B is excavated under a dome. By September 2011, all projects were complete. In 2010 and 2011, LANL received $212 million in funding from the American Recovery and Reinvestment Act to complete three

  13. Recovery Act State Memos Illinois

    Broader source: Energy.gov (indexed) [DOE]

    ......... 13 RECOVERY ACT SUCCESS STORIES - ENERGY EMPOWERS * Retooled machines bring new green jobs to Illinois ......15 * County partners ...

  14. Recovery | National Nuclear Security Administration | (NNSA)

    National Nuclear Security Administration (NNSA)

    Recovery NNSA ensures that capabilities are in place to respond to any NNSA and Department of Energy facility emergency. It is also the nation's premier responder to any nuclear or radiological incident within the United States or abroad and provides operational planning and training to counter both domestic and international nuclear terrorism. NNSA ensures that capabilities are in place to respond to any NNSA and Department of Energy facility emergency. It is also the nation's premier responder

  15. Metal recovery from porous materials (Patent) | DOEPatents

    Office of Scientific and Technical Information (OSTI)

    Metal recovery from porous materials Title: Metal recovery from porous materials The present invention relates to recovery of metals. More specifically, the present invention ...

  16. Huntington Resource Recovery Facility Biomass Facility | Open...

    Open Energy Info (EERE)

    Resource Recovery Facility Biomass Facility Jump to: navigation, search Name Huntington Resource Recovery Facility Biomass Facility Facility Huntington Resource Recovery Facility...

  17. Elemental sulfur recovery process

    DOE Patents [OSTI]

    Flytzani-Stephanopoulos, Maria; Hu, Zhicheng

    1993-01-01

    An improved catalytic reduction process for the direct recovery of elemental sulfur from various SO.sub.2 -containing industrial gas streams. The catalytic process provides combined high activity and selectivity for the reduction of SO.sub.2 to elemental sulfur product with carbon monoxide or other reducing gases. The reaction of sulfur dioxide and reducing gas takes place over certain catalyst formulations based on cerium oxide. The process is a single-stage, catalytic sulfur recovery process in conjunction with regenerators, such as those used in dry, regenerative flue gas desulfurization or other processes, involving direct reduction of the SO.sub.2 in the regenerator off gas stream to elemental sulfur in the presence of a catalyst.

  18. URANIUM RECOVERY PROCESS

    DOE Patents [OSTI]

    Stevenson, J.W.; Werkema, R.G.

    1959-07-28

    The recovery of uranium from magnesium fluoride slag obtained as a by- product in the production of uranium metal by the bomb reduction prccess is presented. Generally the recovery is accomplished by finely grinding the slag, roasting ihe ground slag air, and leaching the roasted slag with a hot, aqueous solution containing an excess of the sodium bicarbonate stoichiometrically required to form soluble uranium carbonate complex. The roasting is preferably carried out at between 425 and 485 deg C for about three hours. The leaching is preferably done at 70 to 90 deg C and under pressure. After leaching and filtration the uranium may be recovered from the clear leach liquor by any desired method.

  19. Elemental sulfur recovery process

    DOE Patents [OSTI]

    Flytzani-Stephanopoulos, M.; Zhicheng Hu.

    1993-09-07

    An improved catalytic reduction process for the direct recovery of elemental sulfur from various SO[sub 2]-containing industrial gas streams. The catalytic process provides combined high activity and selectivity for the reduction of SO[sub 2] to elemental sulfur product with carbon monoxide or other reducing gases. The reaction of sulfur dioxide and reducing gas takes place over certain catalyst formulations based on cerium oxide. The process is a single-stage, catalytic sulfur recovery process in conjunction with regenerators, such as those used in dry, regenerative flue gas desulfurization or other processes, involving direct reduction of the SO[sub 2] in the regenerator off gas stream to elemental sulfur in the presence of a catalyst. 4 figures.

  20. The American Recovery

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    American Recovery and Reinvestment Act Smart Grid Highlights Jumpstarting a Modern Grid October 2014 2 The Office of Electricity Delivery and Energy Reliability (OE) provides national leadership to ensure that the nation's energy delivery system is secure, resilient, and reliable. OE works to develop new technologies to improve the infrastructure that brings electricity into our homes, offices, and factories in partnership with industry, other federal agencies, and state and local governments.

  1. Process for LPG recovery

    SciTech Connect (OSTI)

    Khan, Sh. A.; Haliburton, J.

    1985-03-26

    An improved process is described for the separation and recovery of substantially all the propane and heavier hydrocarbon components in a hydrocarbon gaseous feedstream. In this process, the vapor stream from a deethanizer is cooled to liquefaction and contacted with a vapor phase from the hydrocarbon gaseous feedstream. The contact takes place within a direct heat exchanger, and the resulting vapor fraction, which is essentially ethane and methane, is the gaseous product of the process.

  2. National incinerator testing and evaluation program: The environmental characterization of refuse-derived fuel (RDF) Combustion Technology, Mid-Connecticut Facility, Hartford, Connecticut. Final report, June 1987-March 1993

    SciTech Connect (OSTI)

    Finklestein, A.; Klicius, R.D.

    1994-12-01

    The report gives results of an environmental characterization of refuse-derived (RDF) semi-suspension burning technology at a facility in Hartford, Connecticut, that represents state-of-the-art technology, including a spray dryer/fabric filter flue-gas cleaning (FGC) system for each unit. Results were obtained for a variety of steam production rates, combustion conditions, flue gas temperatures, and acid gas removal efficiencies. All incoming wastes and residue streams were weighed, sampled, and analyzed. Key combustor and FGC system operating variables were monitored on a real time basis. A wide range of analyses for acid gases, trace organics, and heavy metals was carried out on gas emissions and all ash residue discharges.

  3. Inherently safe in situ uranium recovery.

    SciTech Connect (OSTI)

    Krumhansl, James Lee; Beauheim, Richard Louis; Brady, Patrick Vane; Arnold, Bill Walter; Kanney, Joseph F.; McKenna, Sean Andrew

    2009-05-01

    Expansion of uranium mining in the United States is a concern to some environmental groups and sovereign Native American Nations. An approach which may alleviate some problems is to develop inherently safe in situ uranium recovery ('ISR') technologies. Current ISR technology relies on chemical extraction of trace levels of uranium from aquifers that, once mined, can still contain dissolved uranium and other trace metals that are a health concern. Existing ISR operations are few in number; however, high uranium prices are driving the industry to consider expanding operations nation-wide. Environmental concerns and enforcement of the new 30 ppb uranium drinking water standard may make opening new mining operations more difficult and costly. Here we propose a technological fix: the development of inherently safe in situ recovery (ISISR) methods. The four central features of an ISISR approach are: (1) New 'green' leachants that break down predictably in the subsurface, leaving uranium, and associated trace metals, in an immobile form; (2) Post-leachant uranium/metals-immobilizing washes that provide a backup decontamination process; (3) An optimized well-field design that increases uranium recovery efficiency and minimizes excursions of contaminated water; and (4) A combined hydrologic/geochemical protocol for designing low-cost post-extraction long-term monitoring. ISISR would bring larger amounts of uranium to the surface, leave fewer toxic metals in the aquifer, and cost less to monitor safely - thus providing a 'win-win-win' solution to all stakeholders.

  4. Analysis of energy recovery potential using innovative technologies of waste gasification

    SciTech Connect (OSTI)

    Lombardi, Lidia; Carnevale, Ennio; Corti, Andrea

    2012-04-15

    Highlights: Black-Right-Pointing-Pointer Energy recovery from waste by gasification was simulated. Black-Right-Pointing-Pointer Two processes: high temperature gasification and gasification associated to plasma. Black-Right-Pointing-Pointer Two types of feeding waste: Refuse Derived Fuel (RDF) and pulper residues. Black-Right-Pointing-Pointer Different configurations for the energy cycles were considered. Black-Right-Pointing-Pointer Comparison with performances from conventional Waste-to-Energy process. - Abstract: In this paper, two alternative thermo-chemical processes for waste treatment were analysed: high temperature gasification and gasification associated to plasma process. The two processes were analysed from the thermodynamic point of view, trying to reconstruct two simplified models, using appropriate simulation tools and some support data from existing/planned plants, able to predict the energy recovery performances by process application. In order to carry out a comparative analysis, the same waste stream input was considered as input to the two models and the generated results were compared. The performances were compared with those that can be obtained from conventional combustion with energy recovery process by means of steam turbine cycle. Results are reported in terms of energy recovery performance indicators as overall energy efficiency, specific energy production per unit of mass of entering waste, primary energy source savings, specific carbon dioxide production.

  5. Heat recovery and seed recovery development project: preliminary design report (PDR)

    SciTech Connect (OSTI)

    Arkett, A. H.; Alexander, K. C.; Bolek, A. D.; Blackman, B. K.; Kurrle, P. E.; Tram, S. V.; Warren, A. M.; Ziobrowski, A. J.

    1981-06-01

    The preliminary design and performance characteristics are described of the 20 MWt heat recovery and seed recovery (HRSR) system to be fabricated, installed, and evaluated to provide a technological basis for the design of commercial size HRSR systems for coal-fired open-cycle MHD power plants. The system description and heat and material balances, equipment description and functional requirements, controls, interfacing systems, and operation and maintenance are detailed. Appendices include: (1) recommended environmental requirements for compliance with federal and state of Tennessee regulations, (2) channel and diffuser simulator, (3) equipment arrangement drawings, and (4) channel and diffuser simulator barrel drawings. (WHK)

  6. Combustion characterization of coal/refuse derived fuels using thermogravimetric-fourier transform infrared-mass spectrometry

    SciTech Connect (OSTI)

    Pan, Wei-Ping; Lu, Huagang; Hyatt, J.

    1995-12-31

    The fundamental thermal behavior of five materials (Illinois coal No. 6, Kentucky coal No. 9, polyvinyl chloride, cellulose, newspaper) has been investigated using the TGA/FTIR/MS system under the condition of combustion. The system was used to identify molecular chlorine, along with HCI, CO, CO{sub 2}, H{sub 2}O and various hydrocarbons in the gaseous products of the combustion of PVC resin in air. This is a significant finding that will lead us to examine this combustion step further to look for the formation of chlorinated organic compounds during co-firing of coal with refuse derived fuels.

  7. Coal-firing sulfur coal with refuse derived fuels. Technical progress report {number_sign}7, [April--June 1996

    SciTech Connect (OSTI)

    Pan, Wei-Ping, Riley, J.T.; Lloyd, W.G.

    1996-05-31

    The objectives for this quarter of study on the co-firing of high sulfur coal with refuse derived fuels project were two-fold. First, the organic compounds tentatively identified as combustion products in the previous report were confirmed by comparing retention times with pure samples. Secondly, a reduced amount of unburned carbon in the fly ash and an oxygen concentration at about 3--6% in the flue gases were achieved by the addition of removable heat exchange tubes in the AFBC system.

  8. Assessment of the percent status of burning refuse-derived fuel as a fuel supplement in the cement kiln industry

    SciTech Connect (OSTI)

    1981-09-01

    The purpose of the project was to solicit information on the use of refuse-derived fuel (RDF) in cement kilns by survey, follow up the mailed survey with telephone calls to the recipients, and assemble collected information into a report. A list of companies that had some experience with RFD was compiled and is presented in Appendix A. The procedure for conducting the survey is explained. A copy of the questionnaire is presented in Appendix B. The letters of response are reproduced in Appendix C. Two completed forms were received and clear conclusions are summarized. The effort was terminated and no final report was assembled.

  9. Environmental regulations handbook for enhanced oil recovery

    SciTech Connect (OSTI)

    Madden, M.P. ); Blatchford, R.P.; Spears, R.B. )

    1991-12-01

    This handbook is intended to assist owners and operators of enhanced oil recovery (EOR) operations in acquiring some introductory knowledge of the various state agencies, the US Environmental Protection Agency, and the many environmental laws, rules and regulations which can have jurisdiction over their permitting and compliance activities. It is a compendium of summarizations of environmental rules. It is not intended to give readers specific working details of what is required from them, nor can it be used in that manner. Readers of this handbook are encouraged to contact environmental control offices nearest to locations of interest for current regulations affecting them.

  10. Research and Development of a New Silica-Alumina Based Cementitious Material Largely Using Coal Refuse for Mine Backfill, Mine Sealing and Waste Disposal Stabilization

    SciTech Connect (OSTI)

    Henghu Sun; Yuan Yao

    2012-06-29

    Coal refuse and coal combustion byproducts as industrial solid waste stockpiles have become great threats to the environment. To activate coal refuse is one practical solution to recycle this huge amount of solid waste as substitute for Ordinary Portland Cement (OPC). The central goal of this project is to investigate and develop a new silica-alumina based cementitious material largely using coal refuse as a constituent that will be ideal for durable construction, mine backfill, mine sealing and waste disposal stabilization applications. This new material is an environment-friendly alternative to Ordinary Portland Cement. The main constituents of the new material are coal refuse and other coal wastes including coal sludge and coal combustion products (CCPs). Compared with conventional cement production, successful development of this new technology could potentially save energy and reduce greenhouse gas emissions, recycle vast amount of coal wastes, and significantly reduce production cost. A systematic research has been conducted to seek for an optimal solution for enhancing pozzolanic reactivity of the relatively inert solid waste-coal refuse in order to improve the utilization efficiency and economic benefit as a construction and building material.

  11. Shell boosts recovery at Kernridge

    SciTech Connect (OSTI)

    Moore, S.

    1984-01-01

    Since acquiring the Kernridge property in December 1979, Shell Oil Co. has drilled more than 1,800 wells and steadily increased production from 42,000 to 89,000 b/d of oil. Currently, the Kernridge Production Division of Shell California Production Inc. (SCPI), a newly formed subsidiary of Shell Oil Co., is operator for the property. The property covers approximately 35,000 mostly contiguous net acres, with production concentrated mainly on about 5,500 net acres. SCPI's four major fields in the area are the North and South Belridge, Lost Hills, and Antelope Hills. Most of the production comes from the North and South Belridge fields, which were previously held by the Belridge Oil Co. Productive horizons in the fields are the Tulare, Diatomite, Brown Shale, Antelope Shale, 64 Zone, and Agua sand. The Tulare and Diatomite are the two major reservoirs SCPI is developing. The Tulare, encountered between 400 and 1,300 ft, is made up of fine- to coarse-grained, unconsolidated sands with interbedded shales and silt stones and contains 13 /sup 0/ API oil. Using steam drive as the main recovery method, SCPI estimates an ultimate recovery from the Tulare formation of about 60% of the original 1 billion barrels in place. The Diatomite horizon, found between 800 and 3,500 ft and containing light, 28 /sup 0/ API oil, has high porosity (more than 60%), low permeability (less than 1 md), and natural fractures. Because of the Diatomite's low permeability, fracture stimulation is being used to increase well productivity. SCPI anticipates that approximately 5% of the almost 2 billion barrels of oil originally in place will be recovered by primary production.

  12. Funding Opportunity Announcement: Recovery Act ? Energy Efficiency...

    Office of Environmental Management (EM)

    Funding Opportunity Announcement: Recovery Act Energy Efficiency and Conversation Block Grants Formula Grants Funding Opportunity Announcement: Recovery Act Energy...

  13. Waste Heat Recovery Opportunities for Thermoelectric Generators...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Waste Heat Recovery Opportunities for Thermoelectric Generators Waste Heat Recovery Opportunities for Thermoelectric Generators Thermoelectrics have unique advantages for ...

  14. Incorporating Energy Efficiency into Disaster Recovery Efforts...

    Energy Savers [EERE]

    Disaster Recovery Efforts Incorporating Energy Efficiency into Disaster Recovery Efforts Better Buildings Residential Network Program Sustainability Peer Exchange Call Series: ...

  15. Enhancing scattering images for orientation recovery with diffusion map

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Winter, Martin; Saalmann, Ulf; Rost, Jan M.

    2016-02-12

    We explore the possibility for orientation recovery in single-molecule coherent diffractive imaging with diffusion map. This algorithm approximates the Laplace-Beltrami operator, which we diagonalize with a metric that corresponds to the mapping of Euler angles onto scattering images. While suitable for images of objects with specific properties we show why this approach fails for realistic molecules. Here, we introduce a modification of the form factor in the scattering images which facilitates the orientation recovery and should be suitable for all recovery algorithms based on the distance of individual images. (C) 2016 Optical Society of America

  16. Waste Heat Reduction and Recovery for Improving Furnace Efficiency,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Productivity and Emissions Performance: A BestPractices Process Heating Technical Brief | Department of Energy Waste Heat Reduction and Recovery for Improving Furnace Efficiency, Productivity and Emissions Performance: A BestPractices Process Heating Technical Brief Waste Heat Reduction and Recovery for Improving Furnace Efficiency, Productivity and Emissions Performance: A BestPractices Process Heating Technical Brief This technical brief is a guide to help plant operators reduce waste heat

  17. Implemntation of the Recovery Act at the Savannah River Site

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Implementation of the Recovery Act at the Savannah River Site OAS-RA-L-11-12 September 2011 Department of Energy Washington, DC 20585 September 29, 2011 MEMORANDUM FOR THE MANAGER, SAVANNAH RIVER OPERATIONS OFFICE FROM: Daniel M. Weeber, Director Environment, Technology, and Corporate Audits Division Office of Inspector General SUBJECT: INFORMATION: Audit Report on "Implementation of the Recovery Act at the Savannah River Site" Audit Report Number: OAS-RA-L-11-12 BACKGROUND The

  18. Recovery of organic acids

    DOE Patents [OSTI]

    Verser, Dan W. (Menlo Park, CA); Eggeman, Timothy J. (Lakewood, CO)

    2011-11-01

    A method is disclosed for the recovery of an organic acid from a dilute salt solution in which the cation of the salt forms an insoluble carbonate salt. A tertiary amine and CO.sub.2 are introduced to the solution to form the insoluble carbonate salt and a complex between the acid and an amine. A water immiscible solvent, such as an alcohol, is added to extract the acid/amine complex from the dilute salt solution to a reaction phase. The reaction phase is continuously dried and a product between the acid and the solvent, such as an ester, is formed.

  19. Heat recovery casebook

    SciTech Connect (OSTI)

    Lawn, J.

    1980-10-01

    Plants and factories could apply a great variety of sources and uses for valuable waste heat. Applications may be evaluated on the basis of real use for a specific waste heat, high-enough temperature and quality of work, and feasibility of mechanical heat transfer method. Classification may be by temperature, application, heat-transfer equipment, etc. Many buildings and industrial processes lend themselves well to heat-recovery strategies. Five case histories describe successful systems used by the Continental Corporation Data Center; Nabisco, Inc.; Kasper Foundry Company; Seven Up Bottling Company of Indiana; and Lehr Precision Tool company. (DCK)

  20. Pyrolysis with staged recovery

    DOE Patents [OSTI]

    Green, Norman W.; Duraiswamy, Kandaswamy; Lumpkin, Robert E.; Winter, Bruce L.

    1979-03-20

    In a continuous process for recovery of values contained in a solid carbonaceous material, the carbonaceous material is comminuted and then subjected to flash pyrolysis in the presence of a particulate heat source fed over an overflow weir to form a pyrolysis product stream containing a carbon containing solid residue and volatilized hydrocarbons. After the carbon containing solid residue is separated from the pyrolysis product stream, values are obtained by condensing volatilized hydrocarbons. The particulate source of heat is formed by oxidizing carbon in the solid residue.

  1. Recovery of organic acids

    DOE Patents [OSTI]

    Verser, Dan W. (Golden, CO); Eggeman, Timothy J. (Lakewood, CO)

    2009-10-13

    A method is disclosed for the recovery of an organic acid from a dilute salt solution in which the cation of the salt forms an insoluble carbonate salt. A tertiary amine and CO.sub.2 are introduced to the solution to form the insoluble carbonate salt and a complex between the acid and an amine. A water immiscible solvent, such as an alcohol, is added to extract the acid/amine complex from the dilute salt solution to a reaction phase. The reaction phase is continuously dried and a product between the acid and the solvent, such as an ester, is formed.

  2. URANIUM RECOVERY PROCESS

    DOE Patents [OSTI]

    Bailes, R.H.; Long, R.S.; Olson, R.S.; Kerlinger, H.O.

    1959-02-10

    A method is described for recovering uranium values from uranium bearing phosphate solutions such as are encountered in the manufacture of phosphate fertilizers. The solution is first treated with a reducing agent to obtain all the uranium in the tetravalent state. Following this reduction, the solution is treated to co-precipitate the rcduced uranium as a fluoride, together with other insoluble fluorides, thereby accomplishing a substantially complete recovery of even trace amounts of uranium from the phosphate solution. This precipitate usually takes the form of a complex fluoride precipitate, and after appropriate pre-treatment, the uranium fluorides are leached from this precipitate and rccovered from the leach solution.

  3. Sulfur recovery process

    SciTech Connect (OSTI)

    Hise, R.E.; Cook, W.J.

    1991-06-04

    This paper describes a method for recovering sulfur from a process feed stream mixture of gases comprising sulfur-containing compounds including hydrogen sulfide using the Claus reaction to convert sulfur-containing compounds to elemental sulfur and crystallization to separate sulfur-containing compounds from a tail gas of the Claus reaction for further processing as a recycle stream. It comprises: providing a Claus feed stream containing a stoichiometric excess of hydrogen sulfide, the Claus feed stream including the process feed stream and the recycles stream; introducing the Claus feed stream and an oxidizing agent into a sulfur recovery unit for converting sulfur-containing compounds in the Claus feed stream to elemental sulfur; withdrawing the tail gas from the sulfur recovery unit; separating water from the tail gas to producing a dehydrated tail gas; separating sulfur-containing compounds including carbonyl sulfide from the dehydrated tail gas as an excluded material by crystallization and withdrawing an excluded material-enriched output from the crystallization to produce the recycle stream; and combining the recycle stream with the process feed stream to produce the Claus feed stream.

  4. Resource Recovery Opportunities at America's Water Resource Recovery...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    at America's Water Resource Recovery Facilities Todd Williams, Deputy Leader for Wastewater Infrastructure Practice, CH2M HILL williamsbiomass2014.pdf (1.26 MB) More ...

  5. A field laboratory for improved oil recovery

    SciTech Connect (OSTI)

    Hildebrandt, A.F.; McDonald, J.; Claridge, E.; Killough, J.

    1992-09-01

    The purpose of Annex III of the Memorandum of Understanding, undertaken by the Houston Petroleum Research Center at the University of Houston, was to develop a field laboratory for research in improved oil recovery using a Gulf Coast reservoir in Texas. The participants: (1) make a field site selection and conducted a high resolution seismic survey in the demonstration field, (2) obtained characteristics of the reservoir (3) developed an evaluation of local flood efficiency in different parts of the demonstration reservoir, (4) used diverse methodology to evaluate the potential recovery of the remaining oil in the test reservoir, (5) developed cross-well seismic tomography, and (6) will transfer the learned technologies to oil operators through publication and workshops. This abstract is an overview of these tasks.

  6. HIGH CURRENT ENERGY RECOVERY LINAC AT BNL.

    SciTech Connect (OSTI)

    LITVINENKO,V.N.; BEN-ZVI,I.; BARTON,D.S.; ET AL.

    2005-05-16

    We present the design and parameters of an energy recovery linac (ERL) facility, which is under construction in the Collider-Accelerator Department at BNL. This R&D facility has the goal of demonstrating CW operation of an ERL with an average beam current in the range of 0.1-1 ampere and with very high efficiency of energy recovery. The possibility of a future upgrade to a two-pass ERL is also being considered. The heart of the facility is a 5-cell 703.75 MHz super-conducting RF linac with strong Higher Order Mode (HOM) damping. The flexible lattice of the ERL provides a test-bed for exploring issues of transverse and longitudinal instabilities and diagnostics of intense CW electron beams. This ERL is also perfectly suited for a far-IR FEL. We present the status and plans for construction and commissioning of this facility.

  7. High Current Energy Recovery Linac at BNL

    SciTech Connect (OSTI)

    Vladimir N. Litvinenko; Donald Barton; D. Beavis; Ilan Ben-Zvi; Michael Blaskiewicz; J.M. Brennan; A. Burrill; R. Calaga; P. Cameron; X. Chang; Roger Connolly; D. Gassner; H. Hahn; A. Hershcovitch; H.C. Hseuh; P. Johnson; D. Kayran; J. Kewisch; R. Lambiase; G. McIntyre; W. Meng; T. C. Nehring; A. Nicoletti; D. Pate; J. Rank; T. Roser; T. Russo; J. Scaduto; K. Smith; T. Srinivasan-Rao; N. Williams; K.-C. Wu; Vitaly Yakimenko; K. Yip; A. Zaltsman; Y. Zhao; H. Bluem; A. Burger; Mike Cole; A. Favale; D. Holmes; John Rathke; Tom Schultheiss; A. Todd; J. Delayen; W. Funk; L. Phillips; Joe Preble

    2004-08-01

    We present the design, the parameters of a small test Energy Recovery Linac (ERL) facility, which is under construction at Collider-Accelerator Department, BNL. This R&D facility has goals to demonstrate CW operation of ERL with average beam current in the range of 0.1 - 1 ampere, combined with very high efficiency of energy recovery. A possibility for future up-grade to a two-pass ERL is considered. The heart of the facility is a 5-cell 700 MHz super-conducting RF linac with HOM damping. Flexible lattice of ERL provides a test-bed for testing issues of transverse and longitudinal instabilities and diagnostics of intense CW e-beam. ERL is also perfectly suited for a far-IR FEL. We present the status and our plans for construction and commissioning of this facility.

  8. Recovery Act | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Financial Opportunities » Past Opportunities » Recovery Act Recovery Act Pie chart diagram shows the breakdown of how cost-sharing funds relatedto the American Recovery and Reinvestment Act from industry participants,totaling $54 million (for a grand total of $96 million), are allocatedwithin the Fuel Cell Technologies Office, updated September 2010. Thediagram shows that $18.5 million is allocated to backup power, $9.7million is allocated to lift truck, $7.6 million is allocated to

  9. Recovery Act State Memos Alaska

    Broader source: Energy.gov (indexed) [DOE]

    Alaska For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  10. Recovery Act State Memos Arizona

    Broader source: Energy.gov (indexed) [DOE]

    Arizona For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  11. Recovery Act State Memos Arkansas

    Broader source: Energy.gov (indexed) [DOE]

    Arkansas For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  12. Recovery Act State Memos California

    Broader source: Energy.gov (indexed) [DOE]

    California For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  13. Recovery Act State Memos Colorado

    Broader source: Energy.gov (indexed) [DOE]

    Colorado For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  14. Recovery Act State Memos Connecticut

    Broader source: Energy.gov (indexed) [DOE]

    Connecticut For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  15. Recovery Act State Memos Delaware

    Broader source: Energy.gov (indexed) [DOE]

    Delaware For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  16. Recovery Act State Memos Florida

    Broader source: Energy.gov (indexed) [DOE]

    Florida For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  17. Recovery Act State Memos Georgia

    Broader source: Energy.gov (indexed) [DOE]

    Georgia For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  18. Recovery Act State Memos Guam

    Broader source: Energy.gov (indexed) [DOE]

    Guam For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  19. Recovery Act State Memos Hawaii

    Broader source: Energy.gov (indexed) [DOE]

    Hawaii For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  20. Recovery Act State Memos Idaho

    Broader source: Energy.gov (indexed) [DOE]

    Idaho For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  1. Recovery Act State Memos Indiana

    Broader source: Energy.gov (indexed) [DOE]

    Indiana For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  2. Recovery Act State Memos Iowa

    Broader source: Energy.gov (indexed) [DOE]

    Iowa For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  3. Recovery Act State Memos Kansas

    Broader source: Energy.gov (indexed) [DOE]

    Kansas For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  4. Recovery Act State Memos Kentucky

    Broader source: Energy.gov (indexed) [DOE]

    Kentucky For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  5. Recovery Act State Memos Louisiana

    Broader source: Energy.gov (indexed) [DOE]

    Louisiana For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  6. Recovery Act State Memos Maine

    Broader source: Energy.gov (indexed) [DOE]

    Maine For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  7. Recovery Act State Memos Maryland

    Broader source: Energy.gov (indexed) [DOE]

    Maryland For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  8. Recovery Act State Memos Massachusetts

    Broader source: Energy.gov (indexed) [DOE]

    Massachusetts For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  9. Recovery Act State Memos Michigan

    Broader source: Energy.gov (indexed) [DOE]

    Michigan For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  10. Recovery Act State Memos Minnesota

    Broader source: Energy.gov (indexed) [DOE]

    Minnesota For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  11. Recovery Act State Memos Mississippi

    Broader source: Energy.gov (indexed) [DOE]

    Mississippi For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  12. Recovery Act State Memos Montana

    Broader source: Energy.gov (indexed) [DOE]

    Montana For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  13. Recovery Act State Memos Nebraska

    Broader source: Energy.gov (indexed) [DOE]

    Nebraska For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  14. Recovery Act State Memos Ohio

    Broader source: Energy.gov (indexed) [DOE]

    Ohio For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  15. Recovery Act State Memos Oklahoma

    Broader source: Energy.gov (indexed) [DOE]

    Oklahoma For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  16. Recovery Act State Memos Oregon

    Broader source: Energy.gov (indexed) [DOE]

    Oregon For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  17. Recovery Act State Memos Texas

    Broader source: Energy.gov (indexed) [DOE]

    Tennessee For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  18. Recovery Act State Memos Utah

    Broader source: Energy.gov (indexed) [DOE]

    Utah For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  19. Recovery Act State Memos Vermont

    Broader source: Energy.gov (indexed) [DOE]

    Vermont For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  20. Recovery Act State Memos Virginia

    Broader source: Energy.gov (indexed) [DOE]

    Virginia For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  1. Recovery Act State Memos Washington

    Broader source: Energy.gov (indexed) [DOE]

    Washington For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  2. Recovery Act State Memos Wyoming

    Broader source: Energy.gov (indexed) [DOE]

    Wyoming For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  3. Register file soft error recovery

    DOE Patents [OSTI]

    Fleischer, Bruce M.; Fox, Thomas W.; Wait, Charles D.; Muff, Adam J.; Watson, III, Alfred T.

    2013-10-15

    Register file soft error recovery including a system that includes a first register file and a second register file that mirrors the first register file. The system also includes an arithmetic pipeline for receiving data read from the first register file, and error detection circuitry to detect whether the data read from the first register file includes corrupted data. The system further includes error recovery circuitry to insert an error recovery instruction into the arithmetic pipeline in response to detecting the corrupted data. The inserted error recovery instruction replaces the corrupted data in the first register file with a copy of the data from the second register file.

  4. Recovery Newsletters | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Newsletters Recovery Newsletters RSS October 1, 2011 2011 ARRA Newsletters December 1, 2010 2010 ARRA Newsletters November 1, 2009 2009 ARRA Newsletters

  5. Recovery Act | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EV Everywhere: Electric Vehicle Benefits Recovery Act Plug-in electric vehicles (also known as electric cars or EVs) are connected, fun, and practical. They can reduce emissions, ...

  6. Recovery Act | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    RECIPIENTS Smart Grid Investment Grant 3,482,831,000 99 ... Transmission Planning 80,000,000 6 State Assistance for Recovery Act Related Electricity Policies ...

  7. Recovery Act | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    to increase our supply of clean, renewable energy. July 11, 2013 Demand Response: Lessons Learned with an Eye to the Future Under the Recovery Act, the Energy Department...

  8. Cement Kiln Flue Gas Recovery Scrubber Project

    SciTech Connect (OSTI)

    National Energy Technology Laboratory

    2001-11-30

    The Cement Kiln Flue Gas Recovery Scrubber Project was a technical success and demonstrated the following: CKD can be used successfully as the sole reagent for removing SO2 from cement kiln flue gas, with removal efficiencies of 90 percent or greater; Removal efficiencies for HCl and VOCs were approximately 98 percent and 70 percent, respectively; Particulate emissions were low, in the range of 0.005 to 0.007 grains/standard cubic foot; The treated CKD sorbent can be recycled to the kiln after its potassium content has been reduced in the scrubber, thereby avoiding the need for landfilling; The process can yield fertilizer-grade K2SO4, a saleable by-product; and Waste heat in the flue gas can provide the energy required for evaporation and crystallization in the by-product recovery operation. The demonstration program established the feasibility of using the Recovery Scrubber{trademark} for desulfurization of flue gas from cement kilns, with generally favorable economics, assuming tipping fees are available for disposal of ash from biomass combustion. The process appears to be suitable for commercial use on any type of cement kiln. EPA has ruled that CKD is a nonhazardous waste, provided the facility meets Performance Standards for the Management of CKD (U.S. Environmental Protection Agency 1999d). Therefore, regulatory drivers for the technology focus more on reduction of air pollutants and pollution prevention, rather than on treating CKD as a hazardous waste. Application of the Recovery Scrubbe{trademark} concept to other waste-disposal operations, where pollution and waste reductions are needed, appears promising.

  9. Californium Recovery from Palladium Wire

    SciTech Connect (OSTI)

    Burns, Jon D.

    2014-08-01

    The recovery of 252Cf from palladium-252Cf cermet wires was investigated to determine the feasibility of implementing it into the cermet wire production operation at Oak Ridge National Laboratorys Radiochemical Engineering Development Center. The dissolution of Pd wire in 8 M HNO3 and trace amounts of HCl was studied at both ambient and elevated temperatures. These studies showed that it took days to dissolve the wire at ambient temperature and only 2 hours at 60C. Adjusting the ratio of the volume of solvent to the mass of the wire segment showed little change in the kinetics of dissolution, which ranged from 0.176 mL/mg down to 0.019 mL/mg. A successful chromatographic separation of 153Gd, a surrogate for 252Cf, from Pd was demonstrated using AG 50x8 cation exchange resin with a bed volume of 0.5 mL and an internal diameter of 0.8 cm.

  10. Speech recovery device

    DOE Patents [OSTI]

    Frankle, Christen M.

    2004-04-20

    There is provided an apparatus and method for assisting speech recovery in people with inability to speak due to aphasia, apraxia or another condition with similar effect. A hollow, rigid, thin-walled tube with semi-circular or semi-elliptical cut out shapes at each open end is positioned such that one end mates with the throat/voice box area of the neck of the assistor and the other end mates with the throat/voice box area of the assisted. The speaking person (assistor) makes sounds that produce standing wave vibrations at the same frequency in the vocal cords of the assisted person. Driving the assisted person's vocal cords with the assisted person being able to hear the correct tone enables the assisted person to speak by simply amplifying the vibration of membranes in their throat.

  11. Energy recovery system

    DOE Patents [OSTI]

    Moore, Albert S.; Verhoff, Francis H.

    1980-01-01

    The present invention is directed to an improved wet air oxidation system and method for reducing the chemical oxygen demand (COD) of waste water used from scrubbers of coal gasification plants, with this COD reduction being sufficient to effectively eliminate waste water as an environmental pollutant. The improvement of the present invention is provided by heating the air used in the oxidation process to a temperature substantially equal to the temperature in the oxidation reactor before compressing or pressurizing the air. The compression of the already hot air further heats the air which is then passed in heat exchange with gaseous products of the oxidation reaction for "superheating" the gaseous products prior to the use thereof in turbines as the driving fluid. The superheating of the gaseous products significantly minimizes condensation of gaseous products in the turbine so as to provide a substantially greater recovery of mechanical energy from the process than heretofore achieved.

  12. Enhanced oil recovery system

    DOE Patents [OSTI]

    Goldsberry, Fred L.

    1989-01-01

    All energy resources available from a geopressured geothermal reservoir are used for the production of pipeline quality gas using a high pressure separator/heat exchanger and a membrane separator, and recovering waste gas from both the membrane separator and a low pressure separator in tandem with the high pressure separator for use in enhanced oil recovery, or in powering a gas engine and turbine set. Liquid hydrocarbons are skimmed off the top of geothermal brine in the low pressure separator. High pressure brine from the geothermal well is used to drive a turbine/generator set before recovering waste gas in the first separator. Another turbine/generator set is provided in a supercritical binary power plant that uses propane as a working fluid in a closed cycle, and uses exhaust heat from the combustion engine and geothermal energy of the brine in the separator/heat exchanger to heat the propane.

  13. HYDROGEN ISOTOPE RECOVERY USING PROTON EXCHANGE MEMBRANE ELECTROLYSIS OF WATER

    SciTech Connect (OSTI)

    Fox, E; Scott Greenway, S; Amy Ekechukwu, A

    2007-08-27

    A critical component of tritium glovebox operations is the recovery of high value tritium from the water vapor in the glove box atmosphere. One proposed method to improve existing tritium recovery systems is to replace the disposable hot magnesium beds used to separate the hydrogen and oxygen in water with continuous use Proton Exchange Membrane Electrolyzers (PEMEs). This study examines radiation exposure to the membrane of a PEME and examines the sizing difference that would be needed if the electrolyzer were operated with a cathode water vapor feed instead of an anode liquid water feed.

  14. Calculation of Radiation Doses from Uranium Recovery Operations.

    Energy Science and Technology Software Center (OSTI)

    1980-12-08

    Version: 00 MILDOS estimates impacts from radioactive emissions from uranium milling facilities. These impacts are presented as dose commitments to individuals and the regional population within an 80 km radius of the facility. Only airborne releases of radioactive materials are considered: releases to surface water and to groundwater are not addressed in MILDOS. This is a multi-purpose code system, within the range of its proper application, and can be used to evaluate population doses formore » NEPA assessments, maximum individual doses for predictive 40 CFR 190 compliance evaluations, or maximum offsite air concentrations for predictive evaluations of 10 CFR 20 compliance. The MILDOS package includes models for both point sources (stacks, vents) and area sources (ore pads, tailings areas). Gaseous releases are limited to consideration of 222Rn plus ingrowth of daughters. Exposure pathways of concern are assumed to be inhalation of airborne radioactive material, ingestion of vegetables, meat, and milk contaminated via deposition, and external exposure to radiation emitted by airborne activity and activity deposited on ground surfaces. Liquid exposure pathways are not treated by MILDOS.« less

  15. Method of controlling scale in oil recovery operations

    DOE Patents [OSTI]

    Krajicek, Richard W.

    1981-01-01

    Disclosed is a method of producing highly viscous minerals from a subterranean formation by injection of an acidic, thermal vapor stream without substantial scale buildup in downstream piping, pumps and well bore. The process comprises heating the formation by injection of heat, preferably in the form of a thermal vapor stream composed of combustion gases and steam and injecting an acidic compound simultaneously with the thermal vapor stream into the formation at a temperature above the dew point of the thermal vapor stream. The acidic, thermal vapor stream increases the solubility of metal ions in connate water and thus reduces scaling in the downstream equipment during the production of viscous hydrocarbons.

  16. Metal recovery from porous materials

    DOE Patents [OSTI]

    Sturcken, E.F.

    1991-01-01

    The present invention relates to recovery of metals. More specifically, the present invention relates to the recovery of plutonium and other metals from porous materials using microwaves. The United States Government has rights in this invention pursuant to Contract No. DE-AC09-89SR18035 between the US Department of Energy and Westinghouse Savannah River Company.

  17. Biomass Program Recovery Act Factsheet

    SciTech Connect (OSTI)

    2010-03-01

    The Biomass Program has awarded about $718 million in American Recovery and Reinvestment Act (Recovery Act) funds. The projects the Program is supporting are intended to: Accelerate advanced biofuels research, development, and demonstration; Speed the deployment and commercialization of advanced biofuels and bioproducts; Further the U.S. bioindustry through market transformation and creating or saving a range of jobs.

  18. Methodology for modeling the devolatilization of refuse-derived fuel from thermogravimetric analysis of municipal solid waste components

    SciTech Connect (OSTI)

    Fritsky, K.J.; Miller, D.L.; Cernansky, N.P.

    1994-09-01

    A methodology was introduced for modeling the devolatilization characteristics of refuse-derived fuel (RFD) in terms of temperature-dependent weight loss. The basic premise of the methodology is that RDF is modeled as a combination of select municipal solid waste (MSW) components. Kinetic parameters are derived for each component from thermogravimetric analyzer (TGA) data measured at a specific set of conditions. These experimentally derived parameters, along with user-derived parameters, are inputted to model equations for the purpose of calculating thermograms for the components. The component thermograms are summed to create a composite thermogram that is an estimate of the devolatilization for the as-modeled RFD. The methodology has several attractive features as a thermal analysis tool for waste fuels. 7 refs., 10 figs., 3 tabs.

  19. Performance analysis of cofiring densified refuse derived fuel in a military boiler. Final report Aug 80-Sep 81

    SciTech Connect (OSTI)

    Not Available

    1981-12-01

    This report provides an overview of existing densified refuse-derived fuel (dRDF) receiving, storage, handling and combustion equipment at Wright-Patterson Air Foce Base. DRDF is being burned as part of a long term alternative fuel evaluation program to develop design and procurement criteria for multiple fuel boilers. Recommendations are offered for specific equipment, procedural changes, and studies to improve the efficacy of the present configurations of dRDF as a fuel. A discussion of the fuel use criteria is presented. The options for continuing the present dRDF supply arrangement vs. the feasibility of local production of dRDF are presented. Research needs are summarized. A preemptive, integrated local synthetic solid fuel production facility and boiler performance test is recommended as a continuation of the program.

  20. Study of organic compounds evolved during the co-firing of coal and refuse derived fuel using TG/MS

    SciTech Connect (OSTI)

    Puroshothama, Shobha; Lu, R.; Yang, Xiaodong

    1996-10-01

    The evolution of organic compounds during the combustion of carbonaceous fuel coupled with solid waste disposal and limited landfill space has been a cause for concern. Co-firing high sulfur coal with refuse derived fuel seems an attractive alternative technique to tackle the dual problem of controlling SO{sub x} emissions as well as those of the chlorinated organic toxins. The TG serves to emulate the conditions of the fluidized bed combustor and the MS serves as the detector for evolved gases. This versatile combination is used to study the decomposition pathway as well as predict the conditions at which various compounds are formed and may serve as a means of reducing the formation of these chlorinated organic compounds.

  1. Feasibility Study of Economics and Performance of Solar Photovoltaics at the Refuse Hideaway Landfill in Middleton, Wisconsin

    SciTech Connect (OSTI)

    Salasovich, J.; Mosey, G.

    2011-08-01

    This report presents the results of an assessment of the technical and economic feasibility of deploying a photovoltaics (PV) system on a brownfield site at the Refuse Hideaway Landfill in Middleton, Wisconsin. The site currently has a PV system in place and was assessed for further PV installations. The cost, performance, and site impacts of different PV options were estimated. The economics of the potential systems were analyzed using an electric rate of $0.1333/kWh and incentives offered by the State of Wisconsin and by the serving utility, Madison Gas and Electric. According to the site production calculations, the most cost-effective system in terms of return on investment is the thin-film fixed-tilt technology. The report recommends financing options that could assist in the implementation of such a system.

  2. Production data reporting and how it aids surveillance in thermal recovery fields

    SciTech Connect (OSTI)

    Dever, R.E.; Womack, F.A.

    1983-03-01

    Modern surveillance requirements in large thermal recovery oil fields overwhelm manual efforts at collection, retrieval, and reporting of operations and production data. The introduction of a customized data base management and reporting system for this purpose can benefit Operations and Engineering through increased production from timelier awareness of field operating conditions, reduced operating expenses, better steam utilization, and significant manpower productivity increases.

  3. Maximizing NGL recovery by refrigeration optimization

    SciTech Connect (OSTI)

    Baldonedo H., A.H.

    1999-07-01

    PDVSA--Petroleo y Gas, S.A. has within its facilities in Lake Maracaibo two plants that extract liquids from natural gas (NGL), They use a combined mechanic refrigeration absorption with natural gasoline. Each of these plants processes 420 MMsccfd with a pressure of 535 psig and 95 F that comes from the compression plants PCTJ-2 and PCTJ-3 respectively. About 40 MMscfd of additional rich gas comes from the high pressure system. Under the present conditions these plants produce in the order of 16,800 and 23,800 b/d of NGL respectively, with a propane recovery percentage of approximately 75%, limited by the capacity of the refrigeration system. To optimize the operation and the design of the refrigeration system and to maximize the NGL recovery, a conceptual study was developed in which the following aspects about the process were evaluated: capacity of the refrigeration system, refrigeration requirements, identification of limitations and evaluation of the system improvements. Based on the results obtained it was concluded that by relocating some condensers, refurbishing the main refrigeration system turbines and using HIGH FLUX piping in the auxiliary refrigeration system of the evaporators, there will be an increase of 85% on the propane recovery, with an additional production of 25,000 b/d of NGL and 15 MMscfd of ethane rich gas.

  4. Wastewater heat recovery apparatus

    DOE Patents [OSTI]

    Kronberg, J.W.

    1992-09-01

    A heat recovery system is described with a heat exchanger and a mixing valve. A drain trap includes a heat exchanger with an inner coiled tube, baffle plate, wastewater inlet, wastewater outlet, cold water inlet, and preheated water outlet. Wastewater enters the drain trap through the wastewater inlet, is slowed and spread by the baffle plate, and passes downward to the wastewater outlet. Cold water enters the inner tube through the cold water inlet and flows generally upward, taking on heat from the wastewater. This preheated water is fed to the mixing valve, which includes a flexible yoke to which are attached an adjustable steel rod, two stationary zinc rods, and a pivoting arm. The free end of the arm forms a pad which rests against a valve seat. The rods and pivoting arm expand or contract as the temperature of the incoming preheated water changes. The zinc rods expand more than the steel rod, flexing the yoke and rotating the pivoting arm. The pad moves towards the valve seat as the temperature of the preheated water rises, and away as the temperature falls, admitting a variable amount of hot water to maintain a nearly constant average process water temperature. 6 figs.

  5. Wastewater heat recovery apparatus

    DOE Patents [OSTI]

    Kronberg, James W.

    1992-01-01

    A heat recovery system with a heat exchanger and a mixing valve. A drain trap includes a heat exchanger with an inner coiled tube, baffle plate, wastewater inlet, wastewater outlet, cold water inlet, and preheated water outlet. Wastewater enters the drain trap through the wastewater inlet, is slowed and spread by the baffle plate, and passes downward to the wastewater outlet. Cold water enters the inner tube through the cold water inlet and flows generally upward, taking on heat from the wastewater. This preheated water is fed to the mixing valve, which includes a flexible yoke to which are attached an adjustable steel rod, two stationary zinc rods, and a pivoting arm. The free end of the arm forms a pad which rests against a valve seat. The rods and pivoting arm expand or contract as the temperature of the incoming preheated water changes. The zinc rods expand more than the steel rod, flexing the yoke and rotating the pivoting arm. The pad moves towards the valve seat as the temperature of the preheated water rises, and away as the temperature falls, admitting a variable amount of hot water to maintain a nearly constant average process water temperature.

  6. URANIUM RECOVERY PROCESS

    DOE Patents [OSTI]

    Hyman, H.H.; Dreher, J.L.

    1959-07-01

    The recovery of uranium from the acidic aqueous metal waste solutions resulting from the bismuth phosphate carrier precipitation of plutonium from solutions of neutron irradiated uranium is described. The waste solutions consist of phosphoric acid, sulfuric acid, and uranium as a uranyl salt, together with salts of the fission products normally associated with neutron irradiated uranium. Generally, the process of the invention involves the partial neutralization of the waste solution with sodium hydroxide, followed by conversion of the solution to a pH 11 by mixing therewith sufficient sodium carbonate. The resultant carbonate-complexed waste is contacted with a titanated silica gel and the adsorbent separated from the aqueous medium. The aqueous solution is then mixed with sufficient acetic acid to bring the pH of the aqueous medium to between 4 and 5, whereby sodium uranyl acetate is precipitated. The precipitate is dissolved in nitric acid and the resulting solution preferably provided with salting out agents. Uranyl nitrate is recovered from the solution by extraction with an ether such as diethyl ether.

  7. Recovery Act: State Assistance for Recovery Act Related Electricity Policies

    Broader source: Energy.gov [DOE]

    State public utility commissions (PUCs), which regulate and oversee electricity projects in their states, will be receiving more than $44.2 million in Recovery Act funding to hire new staff and retrain existing employees to ensure they have the capacity to quickly and effectively review proposed electricity projects. The funds will help the individual state PUCs accelerate reviews of the large number of electric utility requests that are expected under the Recovery Act.

  8. WIPP Recovery Effort

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    WIPP Update Frank Marcinowski Deputy Assistant Secretary for Waste Management Office of Environmental Management EMSSAB Chairs Meeting, April 23, 2014 - Pasco, WA www.energy.gov/EM 2 Waste Isolation Pilot Plant www.wipp.doe.gov www.energy.gov/EM 3 February 5th Fire: * All operations at the repository ceased following salt haul truck fire in the WIPP underground * An investigation team was deployed to determine the cause of the fire * Report released March 13th February 14th Radiological

  9. Optimize carbon dioxide sequestration, enhance oil recovery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Optimize carbon dioxide sequestration, enhance oil recovery Optimize carbon dioxide sequestration, enhance oil recovery The simulation provides an important approach to estimate ...

  10. Enhancing Heat Recovery for Thermoelectric Devices | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heat Recovery for Thermoelectric Devices Enhancing Heat Recovery for Thermoelectric Devices Presentation given at the 16th Directions in Engine-Efficiency and Emissions Research ...