National Library of Energy BETA

Sample records for operation fuels produced

  1. Design, Fabrication, and Operation of Innovative Microalgae Culture Experiments for the Purpose of Producing Fuels: Final Report, Phase I

    SciTech Connect (OSTI)

    Not Available

    1985-01-01

    A conceptual design was developed for a 1000-acre (water surface) algae culture facility for the production of fuels. The system is modeled after the shallow raceway system with mixing foils that is now being operated at the University of Hawaii. A computer economic model was created to calculate the discounted breakeven price of algae or fuels produced by the culture facility. A sensitivity analysis was done to estimate the impact of changes in important biological, engineering, and financial parameters on product price.

  2. Methods of producing transportation fuel

    DOE Patents [OSTI]

    Nair, Vijay; Roes, Augustinus Wilhelmus Maria; Cherrillo, Ralph Anthony; Bauldreay, Joanna M.

    2011-12-27

    Systems, methods, and heaters for treating a subsurface formation are described herein. At least one method for producing transportation fuel is described herein. The method for producing transportation fuel may include providing formation fluid having a boiling range distribution between -5.degree. C. and 350.degree. C. from a subsurface in situ heat treatment process to a subsurface treatment facility. A liquid stream may be separated from the formation fluid. The separated liquid stream may be hydrotreated and then distilled to produce a distilled stream having a boiling range distribution between 150.degree. C. and 350.degree. C. The distilled liquid stream may be combined with one or more additives to produce transportation fuel.

  3. California: Agricultural Residues Produce Renewable Fuel | Department...

    Broader source: Energy.gov (indexed) [DOE]

    technology is expected to produce biofuel that reduces greenhouse gas emissions by 80% compared to fossil fuel and help make California a leader in advanced biofuel production. ...

  4. Producing usable fuel from municipal solid waste

    SciTech Connect (OSTI)

    Ohlsson, O.O.

    1995-03-01

    Refuse disposal is a matter of increasing concern for municipalities and state governments. As existing land-fills become filled to capacity, and new landfills become more costly to site, it has become critical to develop alternative disposal methods. Some of the refuse that is presently being landfilled has the potential to provide considerable quantities of energy and thereby replace conventional fossil fuels. Another environmental concern is the problem of the emissions associated with combustion of traditional fossil fuels. The Clean Air Act Amendments of 1990 significantly restrict the level of sulfur dioxide (SO{sub 2}) and nitrogen oxides (NO{sub x}) emissions permissible as effluent from combustion facilities. To address both of these concerns, Argonne National Laboratory, under sponsorship of the U.S. Department of Energy (DOE), has developed a means of producing fuel from municipal solid waste that can be co-fired with coal to supplement coal supplies and reduce problematic emissions.

  5. Solid fuel volatilization to produce synthesis gas

    DOE Patents [OSTI]

    Schmidt, Lanny D.; Dauenhauer, Paul J.; Degenstein, Nick J.; Dreyer, Brandon J.; Colby, Joshua L.

    2014-07-29

    A method comprising contacting a carbon and hydrogen-containing solid fuel and a metal-based catalyst in the presence of oxygen to produce hydrogen gas and carbon monoxide gas, wherein the contacting occurs at a temperature sufficiently high to prevent char formation in an amount capable of stopping production of the hydrogen gas and the carbon monoxide gas is provided. In one embodiment, the metal-based catalyst comprises a rhodium-cerium catalyst. Embodiments further include a system for producing syngas. The systems and methods described herein provide shorter residence time and high selectivity for hydrogen and carbon monoxide.

  6. Apparatus and method for grounding compressed fuel fueling operator

    DOE Patents [OSTI]

    Cohen, Joseph Perry; Farese, David John; Xu, Jianguo

    2002-06-11

    A safety system for grounding an operator at a fueling station prior to removing a fuel fill nozzle from a fuel tank upon completion of a fuel filling operation is provided which includes a fuel tank port in communication with the fuel tank for receiving and retaining the nozzle during the fuel filling operation and a grounding device adjacent to the fuel tank port which includes a grounding switch having a contact member that receives physical contact by the operator and where physical contact of the contact member activates the grounding switch. A releasable interlock is included that provides a lock position wherein the nozzle is locked into the port upon insertion of the nozzle into the port and a release position wherein the nozzle is releasable from the port upon completion of the fuel filling operation and after physical contact of the contact member is accomplished.

  7. Alternative Fuels Data Center: Dallas Airport Operates With Alternative

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuels Dallas Airport Operates With Alternative Fuels to someone by E-mail Share Alternative Fuels Data Center: Dallas Airport Operates With Alternative Fuels on Facebook Tweet about Alternative Fuels Data Center: Dallas Airport Operates With Alternative Fuels on Twitter Bookmark Alternative Fuels Data Center: Dallas Airport Operates With Alternative Fuels on Google Bookmark Alternative Fuels Data Center: Dallas Airport Operates With Alternative Fuels on Delicious Rank Alternative Fuels Data

  8. Chapter 7 - Advancing Systems and Technologies to Produce Cleaner Fuels |

    Office of Environmental Management (EM)

    Department of Energy 7 - Advancing Systems and Technologies to Produce Cleaner Fuels Chapter 7 - Advancing Systems and Technologies to Produce Cleaner Fuels Chapter 7 - Advancing Systems and Technologies to Produce Cleaner Fuels Fuels play a critical role throughout our economy. In 2013, fuels directly supplied about 99% of the energy needed by our national transportation system, 66% of that needed to generate our electricity, 68% of that needed by our industry, and 27% of that needed by our

  9. Chapter 7: Advancing Systems and Technologies to Produce Cleaner Fuels

    Office of Environmental Management (EM)

    7: Advancing Systems and Technologies to Produce Cleaner Fuels September 2015 Quadrennial Technology Review 7 Advancing Systems and Technologies to Produce Cleaner Fuels Issues and RDD&D Opportunities  Fossil fuels account for 82% of total U.S. primary energy use.  Each fuel has strengths and weaknesses in relation to energy security, economic competitiveness, and environmental responsibility identified in Chapter 1.  Low-cost fuels can contribute to economic prosperity. Oil and gas

  10. City in Colorado Fueling Vehicles with Gas Produced from Wastewater

    Office of Environmental Management (EM)

    Treatment Facility | Department of Energy City in Colorado Fueling Vehicles with Gas Produced from Wastewater Treatment Facility City in Colorado Fueling Vehicles with Gas Produced from Wastewater Treatment Facility April 29, 2015 - 6:05pm Addthis Grand Junction's CNG station fuels the city's fleets and county buses and is available to fuel public vehicles as well. Pictured above, a Grand Valley Transit bus is preparing to refuel. Grand Junction's CNG station fuels the city's fleets and

  11. Fuel reactivity effects on the efficiency and operational window of dual-fuel compression ignition engines

    SciTech Connect (OSTI)

    Splitter, Derek A; Reitz, Rolf

    2014-01-01

    Fuel reactivity effects on the efficiency and operational window of dual-fuel compression ignition engines

  12. Alternative Fuels Data Center: Connecticut Utility Fleet Operates Vehicles

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    on Alternative Fuels Connecticut Utility Fleet Operates Vehicles on Alternative Fuels to someone by E-mail Share Alternative Fuels Data Center: Connecticut Utility Fleet Operates Vehicles on Alternative Fuels on Facebook Tweet about Alternative Fuels Data Center: Connecticut Utility Fleet Operates Vehicles on Alternative Fuels on Twitter Bookmark Alternative Fuels Data Center: Connecticut Utility Fleet Operates Vehicles on Alternative Fuels on Google Bookmark Alternative Fuels Data Center:

  13. Fossil fuel is king with energy producers

    SciTech Connect (OSTI)

    Hansen, T.

    1996-11-01

    Worldwide energy consumption is expected to double today`s levels by 2020, according to the World Energy Council. As diverse energy needs develop, fossil fuels are expected to continue to be the major source for power generation throughout the world. In the United States, utility deregulation is making low-cost fuel and power plant efficiency more important than ever. Electricity generators see both natural gas and coal as the fuels that will allow them to best meet the nation`s future energy needs. Coal will see less increase in its share of electricity generation than natural gas due to the costs associated with meeting the Clean Air Act Amendments` (CAAA) requirements. According to Organizations for Economic Cooperation Development, coal in both the United States and Europe will experience a 12 percent growth by 2010. Even with this somewhat slow growth, coal will remain the nation`s number one fuel for electricity generation well into the next century.

  14. CTTRANSIT Operates New England's First Fuel Cell Hybrid Bus ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CTTRANSIT Operates New England's First Fuel Cell Hybrid Bus CTTRANSIT Operates New England's First Fuel Cell Hybrid Bus DOE Hydrogen Program (Fact Sheet) PDF icon 42407.pdf More...

  15. Sales of Fossil Fuels Produced from Federal and Indian Lands...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    of Energy Washington, DC 20585 U.S. Energy Information Administration | Sales of Fossil Fuels Produced on Federal and Indian Lands, FY 2003 through FY 2012 ii This report...

  16. California: Agricultural Residues Produce Renewable Fuel | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Agricultural Residues Produce Renewable Fuel California: Agricultural Residues Produce Renewable Fuel April 18, 2013 - 12:00am Addthis Logos Technologies and EERE partnered with EdeniQ of Visalia, California, to construct a pilot plant that processes 1.2 tons per day of agricultural residues, such as corn stover (leaves and stalks), as well as other California-sourced indigenous, nonfood feedstock sources (wood chips and switchgrass). The project has completed 1,500 hours of

  17. Solar Reforming of Carbon Dioxide to Produce Diesel Fuel

    SciTech Connect (OSTI)

    Dennis Schuetzle; Robert Schuetzle

    2010-12-31

    This project focused on the demonstration of an innovative technology, referred to as the Sunexus CO2 Solar Reformer, which utilizes waste CO2 as a feedstock for the efficient and economical production of synthetic diesel fuel using solar thermal energy as the primary energy input. The Sunexus technology employs a two stage process for the conversion of CO2 to diesel fuel. A solar reforming system, including a specially designed reactor and proprietary CO2 reforming catalyst, was developed and used to convert captured CO2 rich gas streams into syngas (primarily hydrogen and carbon monoxide) using concentrated solar energy at high conversion efficiencies. The second stage of the system (which has been demonstrated under other funding) involves the direct conversion of the syngas into synthetic diesel fuel using a proprietary catalyst (Terra) previously developed and validated by Pacific Renewable Fuels and Chemicals (PRFC). The overall system energy efficiency for conversion of CO2 to diesel fuel is 74%, due to the use of solar energy. The results herein describe modeling, design, construction, and testing of the Sunexus CO2 Solar Reformer. Extensive parametric testing of the solar reformer and candidate catalysts was conducted and chemical kinetic models were developed. Laboratory testing of the Solar Reformer was successfully completed using various gas mixtures, temperatures, and gas flow rates/space velocities to establish performance metrics which can be employed for the design of commercial plants. A variety of laboratory tests were conducted including dry reforming (CO2 and CH{sub 4}), combination dry/steam reforming (CO2, CH{sub 4} & H{sub 2}O), and tri-reforming (CO2, CH{sub 4}, H{sub 2}O & O{sub 2}). CH{sub 4} and CO2 conversions averaged 95-100% and 50-90% per reformer cycle, respectively, depending upon the temperatures and gas space velocities. No formation of carbon deposits (coking) on the catalyst was observed in any of these tests. A 16 ft. diameter, concentrating solar dish was modified to accommodate the Sunexus CO2 Solar Reformer and the integrated system was installed at the Pacific Renewable Fuels and Chemicals test site at McClellan, CA. Several test runs were conducted without catalyst during which the ceramic heat exchanger in the Sunexus Solar Reformer reached temperatures between 1,050 F (566 C) and 2,200 F (1,204 C) during the test period. A dry reforming mixture of CO2/CH{sub 4} (2.0/1.0 molar ratio) was chosen for all of the tests on the integrated solar dish/catalytic reformer during December 2010. Initial tests were carried out to determine heat transfer from the collimated solar beam to the catalytic reactor. The catalyst was operated successfully at a steady-state temperature of 1,125 F (607 C), which was sufficient to convert 35% of the 2/1 CO2/CH{sub 4} mixture to syngas. This conversion efficiency confirmed the results from laboratory testing of this catalyst which provided comparable syngas production efficiencies (40% at 1,200 F [650 C]) with a resulting syngas composition of 20% CO, 16% H{sub 2}, 39% CO2 and 25% CH{sub 4}. As based upon the laboratory results, it is predicted that 90% of the CO2 will be converted to syngas in the solar reformer at 1,440 F (782 C) resulting in a syngas composition of 50% CO: 43% H{sub 2}: 7% CO2: 0% CH{sub 4}. Laboratory tests show that the higher catalyst operating temperature of 1,440 F (782 C) for efficient conversion of CO2 can certainly be achieved by optimizing solar reactor heat transfer, which would result in the projected 90% CO2-to-syngas conversion efficiencies. Further testing will be carried out during 2011, through other funding support, to further optimize the solar dish CO2 reformer. Additional studies carried out in support of this project and described in this report include: (1) An Assessment of Potential Contaminants in Captured CO2 from Various Industrial Processes and Their Possible Effect on Sunexus CO2 Reforming Catalysts; (2) Recommended Measurement Methods for Assessing Contaminant Levels in Captured CO2 Streams; (3) An Assessment of Current Commercial Scale Fisher-Tropsch (F-T) Technologies for the Conversion of Syngas to Fuels; (4) An Overview of CO2 Capture Technologies from Various Industrial Sources; and (5) Lifecycle Analysis for the Capture and Conversion of CO2 to Synthetic Diesel Fuel. Commercial scale Sunexus CO2 Solar Reformer plant designs, proposed in this report, should be able to utilize waste CO2 from a wide variety of industrial sources to produce a directly usable synthetic diesel fuel that replaces petroleum derived fuel, thus improving the United States energy security while also sequestering CO2. Our material balance model shows that every 5.0 lbs of CO2 is transformed using solar energy into 6.26 lbs (1.0 U.S. gallon) of diesel fuel and into by-products, which includes water. Details are provided in the mass and energy model in this report.

  18. Process of producing liquid hydrocarbon fuels from biomass

    DOE Patents [OSTI]

    Kuester, J.L.

    1987-07-07

    A continuous thermochemical indirect liquefaction process is described to convert various biomass materials into diesel-type transportation fuels which fuels are compatible with current engine designs and distribution systems comprising feeding said biomass into a circulating solid fluidized bed gasification system to produce a synthesis gas containing olefins, hydrogen and carbon monoxide and thereafter introducing the synthesis gas into a catalytic liquefaction system to convert the synthesis gas into liquid hydrocarbon fuel consisting essentially of C[sub 7]-C[sub 17] paraffinic hydrocarbons having cetane indices of 50+. 1 fig.

  19. Process of producing liquid hydrocarbon fuels from biomass

    DOE Patents [OSTI]

    Kuester, James L. (Scottsdale, AZ)

    1987-07-07

    A continuous thermochemical indirect liquefaction process to convert various biomass materials into diesel-type transportation fuels which fuels are compatible with current engine designs and distribution systems comprising feeding said biomass into a circulating solid fluidized bed gasification system to produce a synthesis gas containing olefins, hydrogen and carbon monoxide and thereafter introducing the synthesis gas into a catalytic liquefaction system to convert the synthesis gas into liquid hydrocarbon fuel consisting essentially of C.sub.7 -C.sub.17 paraffinic hydrocarbons having cetane indices of 50+.

  20. Table 4.1 Offsite-Produced Fuel Consumption, 2010;

    U.S. Energy Information Administration (EIA) Indexed Site

    1 Offsite-Produced Fuel Consumption, 2010; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources; Unit: Physical Units or Btu. Coke Residual Distillate Natural Gas(d) LPG and Coal and Breeze NAICS Total Electricity(b) Fuel Oil Fuel Oil(c) (billion NGL(e) (million (million Other(f) Code(a) Subsector and Industry (trillion Btu) (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) short tons) (trillion Btu) Total United States 311 Food 1,113 75,673 2 4

  1. Table 4.2 Offsite-Produced Fuel Consumption, 2010

    U.S. Energy Information Administration (EIA) Indexed Site

    4.2 Offsite-Produced Fuel Consumption, 2010; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources; Unit: Trillion Btu. NAICS Residual Distillate LPG and Coke Code(a) Subsector and Industry Total Electricity(b) Fuel Oil Fuel Oil(c) Natural Gas(d) NGL(e) Coal and Breeze Other(f) Total United States 311 Food 1,113 258 12 22 579 5 182 2 54 3112 Grain and Oilseed Milling 346 57 * 1 121 * 126 0 41 311221 Wet Corn Milling 214 26 * * 53 * 110 0 25 31131 Sugar Manufacturing 72 4 1

  2. Table 4.3 Offsite-Produced Fuel Consumption, 2010;

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Offsite-Produced Fuel Consumption, 2010; Level: National and Regional Data; Row: Values of Shipments and Employment Sizes; Column: Energy Sources; Unit: Trillion Btu. Economic Residual Distillate Natural LPG and Coke and Characteristic(a) Total Electricity(b) Fuel Oil Fuel Oil(c) Gas(d) NGL(e) Coal Breeze Other(f) Total United States Value of Shipments and Receipts (million dollars) Under 20 1,038 314 6 53 445 14 25 Q 181 20-49 918 296 11 19 381 10 97 5 97 50-99 1,018 308 7 13 440 5 130 6 110

  3. Produced Water Treatment Using Microbial Fuel Cell Technology

    SciTech Connect (OSTI)

    Borole, A. P.; Campbell, R.

    2011-05-20

    ORNL has developed a treatment for produced water using a combination of microbial fuel cells and electrosorption. A collaboration between Campbell Applied Physics and ORNL was initiated to further investigate development of the technology and apply it to treatment of field produced water. The project successfully demonstrated the potential of microbial fuel cells to generate electricity from organics in produced water. A steady voltage was continuously generated for several days using the system developed in this study. In addition to the extraction of electrical energy from the organic contaminants, use of the energy at the representative voltage was demonstrated for salts removal or desalination of the produced water. Thus, the technology has potential to remove organic as well as ionic contaminants with minimal energy input using this technology. This is a novel energy-efficient method to treat produced water. Funding to test the technology at larger scale is being pursued to enable application development.

  4. Response of Oil Sands Derived Fuels in Diesel HCCI Operation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Response of Oil Sands Derived Fuels in Diesel HCCI Operation Response of Oil Sands Derived Fuels in Diesel HCCI Operation Presentation given at the 2007 Diesel Engine-Efficiency & ...

  5. Method for producing sintered ceramic, layered, circular fuel pellets

    DOE Patents [OSTI]

    Harlow, John L. (East Berne, NY)

    1983-01-01

    A compacting die wherein the improvement comprises providing a screen in the die cavity, the screen being positioned parallel to the side walls of said die and dividing the die cavity into center and annular compartments. In addition, the use of this die in a method for producing an annular clad ceramic fuel material is disclosed.

  6. Demonstrating and evaluating heavy-duty alternative fuel operations

    SciTech Connect (OSTI)

    Peerenboom, W.

    1998-02-01

    The principal objectives of this project was to understand the effects of using an alternative fuel on a truck operating fleet through actual operation of trucks. Information to be gathered was expected to be anecdotal, as opposed to statistically viable, because the Trucking Research institute (TRI) recognized that projects could not attract enough trucks to produce statistically credible volumes of data. TRI was to collect operational data, and provide them to NREL, who would enter the data into the alternative fuels database being constructed for heavy-duty trucks at the time. NREL would also perform data analysis, with the understanding that the demonstrations were generally pre-production model engines and vehicles. Other objectives included providing information to the trucking industry on the availability of alternative fuels, developing the alternative fuels marketplace, and providing information on experience with alternative fuels. In addition to providing information to the trucking industry, an objective was for TRI to inform NREL and DOE about the industry, and give feedback on the response of the industry to developments in alternative fuels in trucking. At the outset, only small numbers of vehicles participated in most of the projects. Therefore, they had to be considered demonstrations of feasibility, rather than data gathering tests from which statistically significant conclusions might be drawn. Consequently, data gathered were expected to be useful for making estimates and obtaining valuable practical lessons. Project data and lessons learned are the subjects of separate project reports. This report concerns itself with the work of TRI in meeting the overall objectives of the TRI-NREL partnership.

  7. New Process Helps Overcome Obstacles to Produce Renewable Fuels and

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chemicals - News Releases | NREL New Process Helps Overcome Obstacles to Produce Renewable Fuels and Chemicals Lignin Valorization Study Published in Proceedings of the National Academy of Sciences August 20, 2014 There's an old saying in the biofuels industry: "You can make anything from lignin except money." But now, a new study may pave the way to challenging that adage. The study from the Energy Department's National Renewable Energy Laboratory (NREL) demonstrates a concept

  8. Neutrons Reveal New Electrocatalyst Family for Producing Hydrogen Fuel |

    Office of Science (SC) Website

    U.S. DOE Office of Science (SC) Neutrons Reveal New Electrocatalyst Family for Producing Hydrogen Fuel Basic Energy Sciences (BES) BES Home About Research Facilities Science Highlights Benefits of BES Funding Opportunities Basic Energy Sciences Advisory Committee (BESAC) Community Resources Contact Information Basic Energy Sciences U.S. Department of Energy SC-22/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3081 F: (301) 903-6594 E: Email Us More

  9. Fuel Cell Operations at Sub-Freezing Temperatures Workshop

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy sponsored a Fuel Cell Operations at Sub-Freezing Temperatures Workshop in Phoenix, Arizona February 1-2, 2005. Attendees included representatives from fuel cell...

  10. Research Portfolio Report Small Producers: Operations/Improved Recovery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Small Producers: Operations/Improved Recovery Cover image: Drill rigs and pump jacks are some typical tools used in natural gas and oil opera- tions and for improved recovery Research Portfolio Report Small Producers: Operations/Improved Recovery DOE/NETL-2015/1698 Prepared by: Mari Nichols-Haining and Christine Rueter KeyLogic Systems, Inc. National Energy Technology Laboratory (NETL) Contact: James Ammer james.ammer@netl.doe.gov Contract DE-FE0004003 Activity 4003.200.03 DISCLAIMER This report

  11. Table 4.3 Offsite-Produced Fuel Consumption, 2002

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Offsite-Produced Fuel Consumption, 2002;" " Level: National and Regional Data; " " Row: Values of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: Trillion Btu." " "," "," "," "," "," "," "," "," "," "," " " "," ",," "," ",," "," ",," ","RSE"

  12. Method for operating a combustor in a fuel cell system

    DOE Patents [OSTI]

    Clingerman, Bruce J. (Palmyra, NY); Mowery, Kenneth D. (Noblesville, IN)

    2002-01-01

    In one aspect, the invention provides a method of operating a combustor to heat a fuel processor to a desired temperature in a fuel cell system, wherein the fuel processor generates hydrogen (H.sub.2) from a hydrocarbon for reaction within a fuel cell to generate electricity. More particularly, the invention provides a method and select system design features which cooperate to provide a start up mode of operation and a smooth transition from start-up of the combustor and fuel processor to a running mode.

  13. Solid Oxide Fuel Cells Operating on Alternative and Renewable Fuels

    SciTech Connect (OSTI)

    Wang, Xiaoxing; Quan, Wenying; Xiao, Jing; Peduzzi, Emanuela; Fujii, Mamoru; Sun, Funxia; Shalaby, Cigdem; Li, Yan; Xie, Chao; Ma, Xiaoliang; Johnson, David; Lee, Jeong; Fedkin, Mark; LaBarbera, Mark; Das, Debanjan; Thompson, David; Lvov, Serguei; Song, Chunshan

    2014-09-30

    This DOE project at the Pennsylvania State University (Penn State) initially involved Siemens Energy, Inc. to (1) develop new fuel processing approaches for using selected alternative and renewable fuels – anaerobic digester gas (ADG) and commercial diesel fuel (with 15 ppm sulfur) – in solid oxide fuel cell (SOFC) power generation systems; and (2) conduct integrated fuel processor – SOFC system tests to evaluate the performance of the fuel processors and overall systems. Siemens Energy Inc. was to provide SOFC system to Penn State for testing. The Siemens work was carried out at Siemens Energy Inc. in Pittsburgh, PA. The unexpected restructuring in Siemens organization, however, led to the elimination of the Siemens Stationary Fuel Cell Division within the company. Unfortunately, this led to the Siemens subcontract with Penn State ending on September 23rd, 2010. SOFC system was never delivered to Penn State. With the assistance of NETL project manager, the Penn State team has since developed a collaborative research with Delphi as the new subcontractor and this work involved the testing of a stack of planar solid oxide fuel cells from Delphi.

  14. Producing liquid fuels from coal: prospects and policy issues

    SciTech Connect (OSTI)

    James T. Bartis; Frank Camm; David S. Ortiz

    2008-07-01

    The increase in world oil prices since 2003 has prompted renewed interest in producing and using liquid fuels from unconventional resources, such as biomass, oil shale, and coal. This book focuses on issues and options associated with establishing a commercial coal-to-liquids (CTL) industry within the United States. It describes the technical status, costs, and performance of methods that are available for producing liquids from coal; the key energy and environmental policy issues associated with CTL development; the impediments to early commercial experience; and the efficacy of alternative federal incentives in promoting early commercial experience. Because coal is not the only near-term option for meeting liquid-fuel needs, this book also briefly reviews the benefits and limitations of other approaches, including the development of oil shale resources, the further development of biomass resources, and increasing dependence on imported petroleum. A companion document provides a detailed description of incentive packages that the federal government could offer to encourage private-sector investors to pursue early CTL production experience while reducing the probability of bad outcomes and limiting the costs that might be required to motivate those investors. (See Rand Technical Report TR586, Camm, Bartis, and Bushman, 2008.) 114 refs., 2 figs., 16 tabs., 3 apps.

  15. Fuel Requirements for HCCI Engine Operation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Requirements for HCCI Engine Operation Fuel Requirements for HCCI Engine Operation 2002 DEER Conference Presentation: Southwest Research Institute PDF icon 2002_deer_ryan.pdf More Documents & Publications HCCI - A Technical Review and Progress Report 2006 Multidimensional simulation and chemical kinetics development for high efficiency clean combustion engines Chemical Kinetic Research on HCCI & Diesel Fuels

  16. Method for operating a combustor in a fuel cell system

    DOE Patents [OSTI]

    Chalfant, Robert W. (West Henrietta, NY); Clingerman, Bruce J. (Palmyra, NY)

    2002-01-01

    A method of operating a combustor to heat a fuel processor in a fuel cell system, in which the fuel processor generates a hydrogen-rich stream a portion of which is consumed in a fuel cell stack and a portion of which is discharged from the fuel cell stack and supplied to the combustor, and wherein first and second streams are supplied to the combustor, the first stream being a hydrocarbon fuel stream and the second stream consisting of said hydrogen-rich stream, the method comprising the steps of monitoring the temperature of the fuel processor; regulating the quantity of the first stream to the combustor according to the temperature of the fuel processor; and comparing said quantity of said first stream to a predetermined value or range of predetermined values.

  17. Performance of breached LMFBR fuel pins during continued operation

    SciTech Connect (OSTI)

    Lambert, J.D.B.; Strain, R.V.; Gross, K.C.; Hofman, G.L.; Colburn, R.P.; Adamson, M.G.; Ukai, S.

    1985-01-01

    Four EBR-II tests were used to scope the behavior of breached mixed-oxide pins. After release of stored fission gas, delayed-neutron signals were large and easily detected, although not readily correlated with exposed fuel area. No problems were met during reactor operation or fuel handling. Fuel-sodium reaction caused only narrow breaches which released minute amounts of fuel and fission products; the reaction product appeared dense and non-friable. These initial results indicated LMFBR oxide pins could have considerable potential for operating in the breached mode.

  18. Westinghouse VANTAGE+ fuel assembly to meet future PWR operating requirements

    SciTech Connect (OSTI)

    Doshi, P.K.; Chapin, D.L.; Scherpereel, L.R.

    1988-01-01

    Many utilities operating pressurized water reactors (PWRs) are implementing longer reload cycles. Westinghouse is addressing this trend with fuel products that increase fuel utilization through higher discharge burnups. Higher burnup helps to offset added enriched uranium costs necessary to enable the higher energy output of longer cycles. Current fuel products have burnup capabilities in the area of 40,000 MWd/tonne U or more. There are three main phenomena that must be addressed to achieve even higher burnup levels: accelerated cladding, waterside corrosion, and hydriding; increased fission gas production; and fuel rod growth. Long cycle lengths also require efficient burnable absorbers to control the excess reactivity associated with increased fuel enrichment while maintaining a low residual absorber penalty at the end of cycle. Westinghouse VANTAGE + PWR fuel incorporates features intended to enhance fuel performance at very high burnups, including advances in the three basic elements of the fuel assembly: fuel cladding, fuel rod, and fuel assembly skeleton. ZIRLO {sup TM} cladding, an advanced Zircaloy cladding that contains niobium, offers a significant improvement in corrosion resistance relative to Zircaloy-4. Another important Westinghouse PWR fuel feature that facilitates long cycles is the zirconium diboride integral fuel burnable absorber (ZrB{sub 2}IFBA).

  19. Operability and Emissions from a Medium-Duty Fleet Operating with GTL Fuel

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Catalyzed DPFs | Department of Energy Operability and Emissions from a Medium-Duty Fleet Operating with GTL Fuel and Catalyzed DPFs Operability and Emissions from a Medium-Duty Fleet Operating with GTL Fuel and Catalyzed DPFs 2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: Shell Global Solutions (US) Inc. PDF icon 2004_deer_cherrillo.pdf More Documents & Publications Diesel Particulate Filter Technology for Low-Temperature and Low-NOx/PM Applications

  20. NETL: Solid Oxide Fuel Cells Operating Principles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    cathodeelectrolyte interface, four electrons are extracted from the cathode (positive electrode). At the low end of the SOFC operating temperature range (650 - 700C), the...

  1. NREL Document Profiles Natural Gas Fueling, Fleet Operation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Document Profiles Natural Gas Fueling, Fleet Operation Media may contact: George Douglas, 303-275-4096 email: George Douglas Steve Ginter, Mack, 610-709-3259 Golden, Colo., June 7, 2000 - A unique and successful natural gas fueling and fleet operation involving trash haulers is discussed in a recent document issued by the U.S. Department of Energy's National Renewable Energy Laboratory (NREL). The NREL document, Waste Management's LNG Truck Fleet Start-Up Experience, offers solid evidence that

  2. NREL: News - Hybrid Buses Operate With Lower Emissions, Greater Fuel

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Efficiency Hybrid Buses Operate With Lower Emissions, Greater Fuel Efficiency Golden, Colo., August 1, 2002 A recently released study by the U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL) concludes that hybrid buses operate with lower emissions and greater fuel efficiency than conventional diesel buses. The yearlong evaluation of 10 prototype diesel hybrid-electric buses in the Metropolitan Transportation Authority's New York City Transit (NYCT) fleet of

  3. Dynamically balanced fuel nozzle and method of operation

    DOE Patents [OSTI]

    Richards, George A. (Morgantown, WV); Janus, Michael C. (Baltimore, MD); Robey, Edward H. (Westover, WV)

    2000-01-01

    An apparatus and method of operation designed to reduce undesirably high pressure oscillations in lean premix combustion systems burning hydrocarbon fuels are provided. Natural combustion and nozzle acoustics are employed to generate multiple fuel pockets which, when burned in the combustor, counteract the oscillations caused by variations in heat release in the combustor. A hybrid of active and passive control techniques, the apparatus and method eliminate combustion oscillations over a wide operating range, without the use of moving parts or electronics.

  4. Solid oxide fuel cell operable over wide temperature range

    DOE Patents [OSTI]

    Baozhen, Li (Essex Junction, VT); Ruka, Roswell J. (Pittsburgh, PA); Singhal, Subhash C. (Murrysville, PA)

    2001-01-01

    Solid oxide fuel cells having improved low-temperature operation are disclosed. In one embodiment, an interfacial layer of terbia-stabilized zirconia is located between the air electrode and electrolyte of the solid oxide fuel cell. The interfacial layer provides a barrier which controls interaction between the air electrode and electrolyte. The interfacial layer also reduces polarization loss through the reduction of the air electrode/electrolyte interfacial electrical resistance. In another embodiment, the solid oxide fuel cell comprises a scandia-stabilized zirconia electrolyte having high electrical conductivity. The scandia-stabilized zirconia electrolyte may be provided as a very thin layer in order to reduce resistance. The scandia-stabilized electrolyte is preferably used in combination with the terbia-stabilized interfacial layer. The solid oxide fuel cells are operable over wider temperature ranges and wider temperature gradients in comparison with conventional fuel cells.

  5. SEP Success Story: City in Colorado Fueling Vehicles with Gas Produced from

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wastewater Treatment Facility | Department of Energy City in Colorado Fueling Vehicles with Gas Produced from Wastewater Treatment Facility SEP Success Story: City in Colorado Fueling Vehicles with Gas Produced from Wastewater Treatment Facility April 29, 2015 - 8:00pm Addthis Grand Junction's CNG station fuels the city's fleets and county buses and is available to fuel public vehicles as well. Pictured above, a Grand Valley Transit bus is preparing to refuel. Grand Junction's CNG station

  6. Particulate Produced from Advanced Combustion Operation in a...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Carbon Monoxide Emissions Hydrogen Assisted Diesel Combustion in a Common Rail Turbodiesel Engine Effects of Ignition Quality and Fuel Composition on Critical Equivalence Ratio

  7. Operational considerations for high level blast furnace fuel injection

    SciTech Connect (OSTI)

    Poveromo, J.J.

    1996-12-31

    Injection levels of over 400 lbs/NTHM for coal, over 250 lbs/NTHM for natural gas and over 200 lbs/NTHM for oil have been achieved. Such high levels of fuel injection has a major impact on many aspects of blast furnace operation. In this paper the author begins by reviewing the fundamentals of fuel injection with emphasis on raceway thermochemical phenomena. The operational impacts which are generic to high level injection of any injectant are then outlined. The author will then focus on the particular characteristics of each injectant, with major emphasis on coal and natural gas. Operational considerations for coping with these changes and methods of maximizing the benefits of fuel injection will be reviewed.

  8. System for controlling the operating temperature of a fuel cell

    DOE Patents [OSTI]

    Fabis, Thomas R.; Makiel, Joseph M.; Veyo, Stephen E.

    2006-06-06

    A method and system are provided for improved control of the operating temperature of a fuel cell (32) utilizing an improved temperature control system (30) that varies the flow rate of inlet air entering the fuel cell (32) in response to changes in the operating temperature of the fuel cell (32). Consistent with the invention an improved temperature control system (30) is provided that includes a controller (37) that receives an indication of the temperature of the inlet air from a temperature sensor (39) and varies the heat output by at least one heat source (34, 36) to maintain the temperature of the inlet air at a set-point T.sub.inset. The controller (37) also receives an indication of the operating temperature of the fuel cell (32) and varies the flow output by an adjustable air mover (33), within a predetermined range around a set-point F.sub.set, in order to maintain the operating temperature of the fuel cell (32) at a set-point T.sub.opset.

  9. Method for producing electricity from a fuel cell having solid-oxide ionic electrolyte

    DOE Patents [OSTI]

    Mason, David M. (Los Altos, CA)

    1984-01-01

    Stabilized quadrivalent cation oxide electrolytes are employed in fuel cells at elevated temperatures with a carbon and/or hydrogen containing fuel anode and an oxygen cathode. The fuel cell is operated at elevated temperatures with conductive metallic coatings as electrodes and desirably having the electrolyte surface blackened. Of particular interest as the quadrivalent oxide is zirconia.

  10. Measurement of Species Distributions in Operating Fuel Cells

    SciTech Connect (OSTI)

    Partridge Jr, William P; Toops, Todd J; Parks, II, James E; Armstrong, Timothy R.

    2004-10-01

    Measurement and understanding of transient species distributions across and within fuel cells is a critical need for advancing fuel cell technology. The Spatially Resolved Capillary Inlet Mass Spectrometer (SpaciMS) instrument has been applied for in-situ measurement of transient species distributions within operating reactors; including diesel catalyst, air-exhaust mixing systems, and non-thermal plasma reactors. The work described here demonstrates the applicability of this tool to proton exchange membrane (PEM) and solid oxide fuel cells (SOFC) research. Specifically, we have demonstrated SpaciMS measurements of (1) transient species dynamics across a PEM fuel cell (FC) associated with load switching, (2) intra-PEM species distributions, and transient species dynamics at SOFC temperatures associated with FC load switching.

  11. Cerium migration during PEM fuel cell assembly and operation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Baker, Andrew M.; Torraco, Dennis; Judge, Elizabeth J.; Spernjak, Dusan; Mukundan, Rangachary; Borup, Rod L.; Advani, Suresh G.; Prasad, Ajay K.

    2015-09-14

    Cerium migration between PEM fuel cell components is influenced by potential-driven mobility, ionic diffusion, and gradients in water content. These factors were investigated in ex situ experiments and in operating fuel cells. Potential-induced migration was measured ex situ in hydrated window cells. Cerium-containing MEAs were also fabricated and tested under ASTs. MEA disassembly and subsequent XRF analysis were used to observe rapid cerium migration during cell assembly and operation. During MEA hot pressing, humidification, and low RH operation at OCV, ionic diffusion causes uniform migration from the membrane into the catalyst layers. During high RH operation at OCV, in-plane ceriummore » gradients arise due to variations in water content. These gradients may diminish the scavenging efficacy of cerium by reducing its proximity to generated radicals.« less

  12. Cerium migration during PEM fuel cell assembly and operation

    SciTech Connect (OSTI)

    Baker, Andrew M.; Torraco, Dennis; Judge, Elizabeth J.; Spernjak, Dusan; Mukundan, Rangachary; Borup, Rod L.; Advani, Suresh G.; Prasad, Ajay K.

    2015-09-14

    Cerium migration between PEM fuel cell components is influenced by potential-driven mobility, ionic diffusion, and gradients in water content. These factors were investigated in ex situ experiments and in operating fuel cells. Potential-induced migration was measured ex situ in hydrated window cells. Cerium-containing MEAs were also fabricated and tested under ASTs. MEA disassembly and subsequent XRF analysis were used to observe rapid cerium migration during cell assembly and operation. During MEA hot pressing, humidification, and low RH operation at OCV, ionic diffusion causes uniform migration from the membrane into the catalyst layers. During high RH operation at OCV, in-plane cerium gradients arise due to variations in water content. These gradients may diminish the scavenging efficacy of cerium by reducing its proximity to generated radicals.

  13. Pilot Integrated Cellulosic Biorefinery Operations to Fuel Ethanol

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Office(BETO) IBR Project Peer Review *© 2015 ICM, Inc. All Rights Reserved. *1 Recovery Act: Pilot Integrated Cellulosic Biorefinery Operations to Fuel Ethanol Award Number: DE-EE0002875 March 23, 2015 Demonstration and Market Transformation Program Douglas B. Rivers, Ph.D. ICM, Inc. Project Goal Statement  Leverage its existing pilot plant  Operate the pilot cellulosic integrated biorefinery using a biochemical platform with pretreatment and enzymatic hydrolysis technology coupled with

  14. From Gasoline to Grassoline: Microbes Produce Fuels Directly from Biomass

    DOE R&D Accomplishments [OSTI]

    Yarris, Lynn

    2011-03-28

    A microbe that can produce an advanced biofuel directly from biomass was developed by researchers with the U.S. Department of Energy's Joint BioEnergy Institute.

  15. Method for producing a fuel cell manifold seal

    DOE Patents [OSTI]

    Grevstad, Paul E. (West Hartford, CT); Johnson, Carl K. (Manchester, CT); Mientek, Anthony P. (Glastonbury, CT)

    1982-01-01

    A manifold-to-stack seal and sealing method for fuel cell stacks. This seal system solves the problem of maintaining a low leak rate manifold seal as the fuel cell stack undergoes compressive creep. The seal system eliminates the problem of the manifold-to-stack seal sliding against the rough stack surface as the stack becomes shorter because of cell creep, which relative motion destroys the seal. The seal system described herein utilizes a polymer seal frame firmly clamped between the manifold and the stack such that the seal frame moves with the stack. Thus, as the stack creeps, the seal frame creeps with it, and there is no sliding at the rough, tough to seal, stack-to-seal frame interface. Here the sliding is on a smooth easy to seal location between the seal frame and the manifold.

  16. Neutronics and Fuel Performance Evaluation of Accident Tolerant Fuel under Normal Operation Conditions

    SciTech Connect (OSTI)

    Xu Wu; Piyush Sabharwall; Jason Hales

    2014-07-01

    This report details the analysis of neutronics and fuel performance analysis for enhanced accident tolerance fuel, with Monte Carlo reactor physics code Serpent and INLs fuel performance code BISON, respectively. The purpose is to evaluate two of the most promising candidate materials, FeCrAl and Silicon Carbide (SiC), as the fuel cladding under normal operating conditions. Substantial neutron penalty is identified when FeCrAl is used as monolithic cladding for current oxide fuel. From the reactor physics standpoint, application of the FeCrAl alloy as coating layer on surface of zircaloy cladding is possible without increasing fuel enrichment. Meanwhile, SiC brings extra reactivity and the neutron penalty is of no concern. Application of either FeCrAl or SiC could be favorable from the fuel performance standpoint. Detailed comparison between monolithic cladding and hybrid cladding (cladding + coating) is discussed. Hybrid cladding is more practical based on the economics evaluation during the transition from current UO2/zircaloy to Accident Tolerant Fuel (ATF) system. However, a few issues remain to be resolved, such as the creep behavior of FeCrAl, coating spallation, inter diffusion with zirconium, etc. For SiC, its high thermal conductivity, excellent creep resistance, low thermal neutron absorption cross section, irradiation stability (minimal swelling) make it an excellent candidate materials for future nuclear fuel/cladding system.

  17. Hydropyrolysis of biomass to produce liquid hydrocarbon fuels. Final report. Biomass Alternative-Fuels Program

    SciTech Connect (OSTI)

    Fujita, R K; Bodle, W W; Yuen, P C

    1982-10-01

    The ojective of the study is to provide a process design and cost estimates for a biomass hydropyrolysis plant and to establish its economic viability for commercial applications. A plant site, size, product slate, and the most probable feedstock or combination of feedstocks were determined. A base case design was made by adapting IGT's HYFLEX process to Hawaiian biomass feedstocks. The HYFLEX process was developed by IGT to produce liquid and/or gaseous fuels from carbonaceous materials. The essence of the process is the simultaneous extraction of valuable oil and gaseous products from cellulosic biomass feedstocks without forming a heavy hard-to-handle tar. By controlling rection time and temperature, the product slate can be varied according to feedstock and market demand. An optimum design and a final assessment of the applicability of the HYFLEX process to the conversion of Hawaiian biomass was made. In order to determine what feedstocks could be available in Hawaii to meet the demands of the proposed hydropyrolysis plant, various biomass sources were studied. These included sugarcane and pineapple wastes, indigenous and cultivated trees and indigenous and cultivated shrubs and grasses.

  18. A survey of processes for producing hydrogen fuel from different sources for automotive-propulsion fuel cells

    SciTech Connect (OSTI)

    Brown, L.F.

    1996-03-01

    Seven common fuels are compared for their utility as hydrogen sources for proton-exchange-membrane fuel cells used in automotive propulsion. Methanol, natural gas, gasoline, diesel fuel, aviation jet fuel, ethanol, and hydrogen are the fuels considered. Except for the steam reforming of methanol and using pure hydrogen, all processes for generating hydrogen from these fuels require temperatures over 1000 K at some point. With the same two exceptions, all processes require water-gas shift reactors of significant size. All processes require low-sulfur or zero-sulfur fuels, and this may add cost to some of them. Fuels produced by steam reforming contain {approximately}70-80% hydrogen, those by partial oxidation {approximately}35-45%. The lower percentages may adversely affect cell performance. Theoretical input energies do not differ markedly among the various processes for generating hydrogen from organic-chemical fuels. Pure hydrogen has severe distribution and storage problems. As a result, the steam reforming of methanol is the leading candidate process for on-board generation of hydrogen for automotive propulsion. If methanol unavailability or a high price demands an alternative process, steam reforming appears preferable to partial oxidation for this purpose.

  19. Method for producing electricity using a platinum-ruthenium-palladium catalyst in a fuel cell

    DOE Patents [OSTI]

    Gorer, Alexander

    2004-01-27

    A method for producing electricity using a fuel cell that utilizes a ternary alloy composition as a fuel cell catalyst, the ternary alloy composition containing platinum, ruthenium and palladium. The alloy shows increased activity as compared to well-known catalysts.

  20. NREL Produces Ethylene via Photosynthesis; Breakthrough Offers Cleaner Alternative for Transportation Fuels (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-08-01

    NREL scientists have demonstrated a way to produce ethylene through photosynthesis, a breakthrough that could lead to more environmentally friendly ways to produce a variety of materials, chemicals, and transportation fuels. The scientists introduced a gene into a cyanobacterium and demonstrated that the organism remains stable through at least four generations, producing ethylene gas that can be easily captured. In the laboratory, the organism, Synechocystis sp. PCC 6803, produced 720 milligrams of ethylene per liter each day.

  1. Water Outlet Control Mechanism for Fuel Cell System Operation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industrial Technologies Industrial Technologies Hydrogen and Fuel Cell Hydrogen and Fuel Cell Find More Like This Return to Search Water Outlet Control Mechanism for Fuel Cell...

  2. Durability of Low Pt Fuel Cells Operating at High Power Density |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy of Low Pt Fuel Cells Operating at High Power Density Durability of Low Pt Fuel Cells Operating at High Power Density Presented at the Department of Energy Fuel Cell Projects Kickoff Meeting, September 1 - October 1, 2009 PDF icon cross_nuvera_durability_kickoff.pdf More Documents & Publications Transport Studies Enabling Efficiency Optimization of Cost-Competitive Fuel Cell Stacks Advanced Cathode Catalysts and Supports for PEM Fuel Cells Accelerated Testing

  3. CTTRANSIT Operates New England's First Fuel Cell Hybrid Bus | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy CTTRANSIT Operates New England's First Fuel Cell Hybrid Bus CTTRANSIT Operates New England's First Fuel Cell Hybrid Bus DOE Hydrogen Program (Fact Sheet) PDF icon 42407.pdf More Documents & Publications Connecticut Transit (CTTRANSIT) Fuel Cell Transit Bus: Third Evaluation Report and Appendices Connecticut Transit (CTTRANSIT) Fuel Cell Transit Bus: Second Evaluation Report and Appendices Connecticut Transit (CTTRANSIT) Fuel Cell Transit Bus: Preliminary Evaluation Results

  4. Innovative Gasification to Produce Fischer-Tropsch Jet and Diesel Fuel

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Innovative Gasification to Produce Fischer- Tropsch Jet and Diesel Fuel March 23, 2015 Jerod Smeenk Frontline BioEnergy, LLC This presentation does not contain any proprietary, confidential, or otherwise restricted information 1 Acronyms and definitions * BP - budget period (i.e., project phase) * BPD - barrel per day * BTL - biomass-to-liquids * F-76 - military spec diesel fuel * FT - Fischer-Tropsch process * IE - independent engineer engaged by the DOE to monitor and review project details *

  5. Sales of Fossil Fuels Produced from Federal and Indian Lands, FY 2003 through FY 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Map Appendix State/area maps Figure A1. Fossil fuel production on federal and Indian lands, FY 2014 Source: U.S. Energy Information Administration based on U.S. Department of the Interior, Office of Natural Resources Revenue. "ONNR Statistical Information Site" (http://statistics.onrr.gov). July 2015 U.S. Energy Information Administration | Sales of Fossil Fuels Produced on Federal and Indian Lands, FY 2003 through FY 2014 24 Figure A2. Changes in fossil fuels production (trillion

  6. Fact #659: January 24, 2011 Fuel Economy Ratings for Vehicles Operating on

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electricity | Department of Energy 9: January 24, 2011 Fuel Economy Ratings for Vehicles Operating on Electricity Fact #659: January 24, 2011 Fuel Economy Ratings for Vehicles Operating on Electricity The Environmental Protection Agency has developed a new methodology for determining how fuel economy information will be displayed on the window sticker of a vehicle that operates on electricity. The fuel economy will be displayed in miles per gallon equivalent (MPGequivalent), so that

  7. Sales of Fossil Fuels Produced from Federal and Indian Lands, FY 2003 through FY 2011

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sales of Fossil Fuels Produced from Federal and Indian Lands, FY 2003 through FY 2011 March 2012 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | Sales of Fossil Fuels Produced on Federal and Indian Lands, FY 2003 through FY 2011 i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data,

  8. High-Level Functional and Operational Requirements for the Advanced Fuel Cycle Facilty

    SciTech Connect (OSTI)

    Charles Park

    2006-12-01

    High-Level Functional & Operational Requirements for the AFCF -This document describes the principal functional and operational requirements for the proposed Advanced Fuel Cycle Facility (AFCF). The AFCF is intended to be the world's foremost facility for nuclear fuel cycle research, technology development, and demonstration. The facility will also support the near-term mission to develop and demonstrate technology in support of fuel cycle needs identified by industry, and the long-term mission to retain and retain U.S. leadership in fuel cycle operations. The AFCF is essential to demonstrate a more proliferation-resistant fuel cycle and make long-term improvements in fuel cycle effectiveness, performance and economy.

  9. Development of a Low NOx Medium sized Industrial Gas Turbine Operating on Hydrogen-Rich Renewable and Opportunity Fuels

    SciTech Connect (OSTI)

    Srinivasan, Ram

    2013-07-31

    This report presents the accomplishments at the completion of the DOE sponsored project (Contract # DE-FC26-09NT05873) undertaken by Solar Turbines Incorporated. The objective of this 54-month project was to develop a low NOx combustion system for a medium sized industrial gas turbine engine operating on Hydrogen-rich renewable and opportunity Fuels. The work in this project was focused on development of a combustion system sized for 15MW Titan 130 gas turbine engine based on design analysis and rig test results. Although detailed engine evaluation of the complete system is required prior to commercial application, those tasks were beyond the scope of this DOE sponsored project. The project tasks were organized in three stages, Stages 2 through 4. In Stage 2 of this project, Solar Turbines Incorporated characterized the low emission capability of current Titan 130 SoLoNOx fuel injector while operating on a matrix of fuel blends with varying Hydrogen concentration. The mapping in this phase was performed on a fuel injector designed for natural gas operation. Favorable test results were obtained in this phase on emissions and operability. However, the resulting fuel supply pressure needed to operate the engine with the lower Wobbe Index opportunity fuels would require additional gas compression, resulting in parasitic load and reduced thermal efficiency. In Stage 3, Solar characterized the pressure loss in the fuel injector and developed modifications to the fuel injection system through detailed network analysis. In this modification, only the fuel delivery flowpath was modified and the air-side of the injector and the premixing passages were not altered. The modified injector was fabricated and tested and verified to produce similar operability and emissions as the Stage 2 results. In parallel, Solar also fabricated a dual fuel capable injector with the same air-side flowpath to improve commercialization potential. This injector was also test verified to produce 15-ppm NOx capability on high Hydrogen fuels. In Stage 4, Solar fabricated a complete set of injectors and a combustor liner to test the system capability in a full-scale atmospheric rig. Extensive high-pressure single injector rig test results show that 15-ppm NOx guarantee is achievable from 50% to 100% Load with fuel blends containing up to 65% Hydrogen. Because of safety limitations in Solar Test Facility, the atmospheric rig tests were limited to methane-based fuel blends. Further work to validate the durability and installed engine capability would require long-term engine field test.

  10. Vitrification of HLW Produced by Uranium/Molybdenum Fuel Reprocessing in COGEMA's Cold Crucible Melter

    SciTech Connect (OSTI)

    Do Quang, R.; Petitjean, V.; Hollebecque, F.; Pinet, O.; Flament, T.; Prod'homme, A.

    2003-02-25

    The performance of the vitrification process currently used in the La Hague commercial reprocessing plants has been continuously improved during more than ten years of operation. In parallel COGEMA (industrial Operator), the French Atomic Energy Commission (CEA) and SGN (respectively COGEMA's R&D provider and Engineering) have developed the cold crucible melter vitrification technology to obtain greater operating flexibility, increased plant availability and further reduction of secondary waste generated during operations. The cold crucible is a compact water-cooled melter in which the radioactive waste and the glass additives are melted by direct high frequency induction. The cooling of the melter produces a solidified glass layer that protects the melter's inner wall from corrosion. Because the heat is transferred directly to the melt, high operating temperatures can be achieved with no impact on the melter itself. COGEMA plans to implement the cold crucible technology to vitrify high level liquid waste from reprocessed spent U-Mo-Sn-Al fuel (used in gas cooled reactor). The cold crucible was selected for the vitrification of this particularly hard-to-process waste stream because it could not be reasonably processed in the standard hot induction melters currently used at the La Hague vitrification facilities : the waste has a high molybdenum content which makes it very corrosive and also requires a special high temperature glass formulation to obtain sufficiently high waste loading factors (12 % in molybdenum). A special glass formulation has been developed by the CEA and has been qualified through lab and pilot testing to meet standard waste acceptance criteria for final disposal of the U-Mo waste. The process and the associated technologies have been also being qualified on a full-scale prototype at the CEA pilot facility in Marcoule. Engineering study has been integrated in parallel in order to take into account that the Cold Crucible should be installed remotely in one of the R7 vitrification cell. This paper will present the results obtained in the framework of these qualification programs.

  11. Chevron and NREL to Collaborate on Research to Produce Transportation Fuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    using Algae - News Releases | NREL Chevron and NREL to Collaborate on Research to Produce Transportation Fuels using Algae Joint effort to identify and develop algae strains for feedstock in next-generation biofuels October 31, 2007 Chevron Corporation (NYSE: CVX) and the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) announced today that they have entered into a collaborative research and development agreement to study and advance technology to produce liquid

  12. Operation of a solid oxide fuel cell on biodiesel with a partial oxidation reformer

    SciTech Connect (OSTI)

    Siefert, N, Shekhawat, D.; Gemmen, R.; Berry, D.

    2010-01-01

    The National Energy Technology Laboratorys Office of Research & Development (NETL/ORD) has successfully demonstrated the operation of a solid oxide fuel cell (SOFC) using reformed biodiesel. The biodiesel for the project was produced and characterized by West Virginia State University (WVSU). This project had two main aspects: 1) demonstrate a catalyst formulation on monolith for biodiesel fuel reforming; and 2) establish SOFC stack test stand capabilities. Both aspects have been completed successfully. For the first aspect, inhouse patented catalyst specifications were developed, fabricated and tested. Parametric reforming studies of biofuels provided data on fuel composition, catalyst degradation, syngas composition, and operating parameters required for successful reforming and integration with the SOFC test stand. For the second aspect, a stack test fixture (STF) for standardized testing, developed by Pacific Northwest National Laboratory (PNNL) and Lawrence Berkeley National Laboratory (LBNL) for the Solid Energy Conversion Alliance (SECA) Program, was engineered and constructed at NETL. To facilitate the demonstration of the STF, NETL employed H.C. Starck Ceramics GmbH & Co. (Germany) anode supported solid oxide cells. In addition, anode supported cells, SS441 end plates, and cell frames were transferred from PNNL to NETL. The stack assembly and conditioning procedures, including stack welding and sealing, contact paste application, binder burn-out, seal-setting, hot standby, and other stack assembly and conditioning methods were transferred to NETL. In the future, fuel cell stacks provided by SECA or other developers could be tested at the STF to validate SOFC performance on various fuels. The STF operated on hydrogen for over 1000 hrs before switching over to reformed biodiesel for 100 hrs of operation. Combining these first two aspects led to demonstrating the biodiesel syngas in the STF. A reformer was built and used to convert 0.5 ml/min of biodiesel into mostly hydrogen and carbon monoxide (syngas.) The syngas was fed to the STF and fuel cell stack. The results presented in this experimental report document one of the first times a SOFC has been operated on syngas from reformed biodiesel.

  13. Plasma reforming and partial oxidation of hydrocarbon fuel vapor to produce synthesis gas and/or hydrogen gas

    DOE Patents [OSTI]

    Kong, Peter C.; Detering, Brent A.

    2003-08-19

    Methods and systems for treating vapors from fuels such as gasoline or diesel fuel in an internal combustion engine, to form hydrogen gas or synthesis gas, which can then be burned in the engine to produce more power. Fuel vapor, or a mixture of fuel vapor and exhaust gas and/or air, is contacted with a plasma, to promote reforming reactions between the fuel vapor and exhaust gas to produce carbon monoxide and hydrogen gas, partial oxidation reactions between the fuel vapor and air to produce carbon monoxide and hydrogen gas, or direct hydrogen and carbon particle production from the fuel vapor. The plasma can be a thermal plasma or a non-thermal plasma. The plasma can be produced in a plasma generating device which can be preheated by contact with at least a portion of the hot exhaust gas stream, thereby decreasing the power requirements of the plasma generating device.

  14. Plasma Reforming And Partial Oxidation Of Hydrocarbon Fuel Vapor To Produce Synthesis Gas And/Or Hydrogen Gas

    DOE Patents [OSTI]

    Kong, Peter C. (Idaho Falls, ID); Detering, Brent A. (Idaho Falls, ID)

    2004-10-19

    Methods and systems are disclosed for treating vapors from fuels such as gasoline or diesel fuel in an internal combustion engine, to form hydrogen gas or synthesis gas, which can then be burned in the engine to produce more power. Fuel vapor, or a mixture of fuel vapor and exhaust gas and/or air, is contacted with a plasma, to promote reforming reactions between the fuel vapor and exhaust gas to produce carbon monoxide and hydrogen gas, partial oxidation reactions between the fuel vapor and air to produce carbon monoxide and hydrogen gas, or direct hydrogen and carbon particle production from the fuel vapor. The plasma can be a thermal plasma or a non-thermal plasma. The plasma can be produced in a plasma generating device which can be preheated by contact with at least a portion of the hot exhaust gas stream, thereby decreasing the power requirements of the plasma generating device.

  15. Transportation costs for new fuel forms produced from low rank US coals

    SciTech Connect (OSTI)

    Newcombe, R.J.; McKelvey, D.G. ); Ruether, J.A. )

    1990-09-01

    Transportation costs are examined for four types of new fuel forms (solid, syncrude, methanol, and slurry) produced from low rank coals found in the lower 48 states of the USA. Nine low rank coal deposits are considered as possible feedstocks for mine mouth processing plants. Transportation modes analyzed include ship/barge, pipelines, rail, and truck. The largest potential market for the new fuel forms is coal-fired utility boilers without emission controls. Lowest cost routes from each of the nine source regions to supply this market are determined. 12 figs.

  16. Catalytic conversion of solar thermal produced pyrolysis gases to liquid fuels

    SciTech Connect (OSTI)

    Hanley, T.R.; Benham, C.B.

    1981-01-01

    The conversion of a simulated pyrolysis gas and synthesis gas using a Fischer-Tropsch catalyst system in a fluidized-bed reactor is investigated. Liquid fuels were produced between 550 and 660/sup 0/F (288 and 349/sup 0/C) for the simulated pyrolysis gas feed. An analysis of both liquid and gaseous product streams is performed. This investigation indicates a need for more extensive research with respect to hydrogen-to-carbon-monoxide usage ratios and with respect to the role of alkenes in fuel production.

  17. Maintenance and operation of the US Alternative Fuel Center

    SciTech Connect (OSTI)

    Erwin, J.; Ferrill, J.L.; Hetrick, D.L.

    1994-08-01

    The Alternative Fuels Utilization Program (AFUP) of the Office of Energy Efficiency and Renewable Energy has investigated the possibilities and limitations of expanded scope of fuel alternatives and replacement means for transportation fuels from alternative sources. Under the AFUP, the Alternative Fuel Center (AFC) was created to solve problems in the DOE programs that were grappling with the utilization of shale oil and coal liquids for transportation fuels. This report covers the first year at the 3-year contract. The principal objective was to assist the AFUP in accomplishing its general goals with two new fuel initiatives selected for tasks in the project year: (1) Production of low-sulfur, low-olefin catalytically cracked gasoline blendstock; and (2) production of low-reactivity/low-emission gasoline. Supporting goals included maintaining equipment in good working order, performing reformulated gasoline tests, and meeting the needs of other government agencies and industries for fuel research involving custom processing, blending, or analysis of experimental fuels.

  18. Survey Results and Analysis of the Cost and Efficiency of Various Operating Hydrogen Fueling Stations

    SciTech Connect (OSTI)

    Cornish, John

    2011-03-05

    Existing Hydrogen Fueling Stations were surveyed to determine capital and operational costs. Recommendations for cost reduction in future stations and for research were developed.

  19. Advanced Vehicle Testing Activity: Hydrogen-Fueled Mercedes Sprinter Van -- Operating Summary

    SciTech Connect (OSTI)

    Karner, D.; Francfort, James Edward

    2003-01-01

    Over the past two years, Arizona Public Service, a subsidiary of Pinnacle West Capital Corporation, in cooperation with the U.S. Department of Energy's Advanced Vehicle Testing Activity, tested four gaseous fuel vehicles as part of its alternative fueled vehicle fleet. One vehicle operated initially using compressed natural gas (CNG) and later a blend of CNG and hydrogen. Of the other three vehicles, one was fueled with pure hydrogen and two were fueled with a blend of CNG and hydrogen. The three blended-fuel vehicles were originally equipped with either factory CNG engines or factory gasoline engines that were converted to run CNG fuel. The vehicles were variously modified to operate on blended fuel and were tested using 15 to 50% blends of hydrogen (by volume). The pure- hydrogen-fueled vehicle was converted from gasoline fuel to operate on 100% hydrogen. All vehicles were fueled from the Arizona Public Service's Alternative Fuel Pilot Plant, which was developed to dispense gaseous fuels, including CNG, blends of CNG and hydrogen, and pure hydrogen with up to 99.9999% purity. The primary objective of the test was to evaluate the safety and reliability of operating vehicles on hydrogen and blended hydrogen fuel, and the interface between the vehicles and the hydrogen fueling infrastructure. A secondary objective was to quantify vehicle emissions, cost, and performance. Over a total of 40,000 fleet test miles, no safety issues were found. Also, significant reductions in emissions were achieved by adding hydrogen to the fuel. This report presents results of testing conducted over 6,864 kilometers (4,265 miles) of operation using the pure-hydrogen-fueled Mercedes Sprinter van.

  20. Advanced Vehicle Testing Activity: Hydrogen-Fueled Mercedes Sprinter Van Operating Summary - January 2003

    SciTech Connect (OSTI)

    Karner, D.; Francfort, J.E.

    2003-01-22

    Over the past two years, Arizona Public Service, a subsidiary of Pinnacle West Capital Corporation, in cooperation with the U.S. Department of Energy's Advanced Vehicle Testing Activity, tested four gaseous fuel vehicles as part of its alternative fueled vehicle fleet. One vehicle operated initially using compressed natural gas (CNG) and later a blend of CNG and hydrogen. Of the other three vehicles, one was fueled with pure hydrogen and two were fueled with a blend of CNG and hydrogen. The three blended-fuel vehicles were originally equipped with either factory CNG engines or factory gasoline engines that were converted to run CNG fuel. The vehicles were variously modified to operate on blended fuel and were tested using 15 to 50% blends of hydrogen (by volume). The pure-hydrogen-fueled vehicle was converted from gasoline fuel to operate on 100% hydrogen. All vehicles were fueled from the Arizona Public Service's Alternative Fuel Pilot Plant, which was developed to dispense gaseous fuels, including CNG, blends of CNG and hydrogen, and pure hydrogen with up to 99.9999% purity. The primary objective of the test was to evaluate the safety and reliability of operating vehicles on hydrogen and blended hydrogen fuel, and the interface between the vehicles and the hydrogen fueling infrastructure. A secondary objective was to quantify vehicle emissions, cost, and performance. Over a total of 40,000 fleet test miles, no safety issues were found. Also, significant reductions in emissions were achieved by adding hydrogen to the fuel. This report presents results of testing conducted over 6,864 kilometers (4,265 miles) of operation using the pure-hydrogen-fueled Mercedes Sprinter van.

  1. Fuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fuels Research Team Members Key Contacts Fuels Gasification will likely be the cornerstone of future energy and chemical processes due to its flexibility to accommodate numerous feedstocks such as coal, biomass, and natural gas, and to produce a variety of products, including heat and specialty chemicals. Advanced integrated gasification combined cycle schemes require the production of clean hydrogen to fuel innovative combustion turbines and fuel cells. This research will focus on development

  2. Chapter 7: Advancing Systems and Technologies to Produce Cleaner Fuels | Hydrogen Production and Delivery Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    7: Advancing Systems and Technologies to Produce Cleaner Fuels Technology Assessments Bioenergy Conversion Biomass Feedstocks and Logistics Gas Hydrates Research and Development Hydrogen Production and Delivery Natural Gas Delivery Infrastructure Offshore Safety and Spill Reduction Unconventional Oil and Gas ENERGY U.S. DEPARTMENT OF Quadrennial Technology Review 2015 1 Quadrennial Technology Review 2015 Hydrogen Production and Delivery Chapter 7: Technology Assessments Introduction to the

  3. Fuel mixture stratification as a method for improving homogeneous charge compression ignition engine operation

    DOE Patents [OSTI]

    Dec, John E. (Livermore, CA); Sjoberg, Carl-Magnus G. (Livermore, CA)

    2006-10-31

    A method for slowing the heat-release rate in homogeneous charge compression ignition ("HCCI") engines that allows operation without excessive knock at higher engine loads than are possible with conventional HCCI. This method comprises injecting a fuel charge in a manner that creates a stratified fuel charge in the engine cylinder to provide a range of fuel concentrations in the in-cylinder gases (typically with enough oxygen for complete combustion) using a fuel with two-stage ignition fuel having appropriate cool-flame chemistry so that regions of different fuel concentrations autoignite sequentially.

  4. Storage of LWR spent fuel in air: Volume 1: Design and operation of a spent fuel oxidation test facility

    SciTech Connect (OSTI)

    Thornhill, C.K.; Campbell, T.K.; Thornhill, R.E.

    1988-12-01

    This report describes the design and operation and technical accomplishments of a spent-fuel oxidation test facility at the Pacific Northwest Laboratory. The objective of the experiments conducted in this facility was to develop a data base for determining spent-fuel dry storage temperature limits by characterizing the oxidation behavior of light-water reactor (LWR) spent fuels in air. These data are needed to support licensing of dry storage in air as an alternative to spent-fuel storage in water pools. They are to be used to develop and validate predictive models of spent-fuel behavior during dry air storage in an Independent Spent Fuel Storage Installation (ISFSI). The present licensed alternative to pool storage of spent fuel is dry storage in an inert gas environment, which is called inerted dry storage (IDS). Licensed air storage, however, would not require monitoring for maintenance of an inert-gas environment (which IDS requires) but does require the development of allowable temperature limits below which UO/sub 2/ oxidation in breached fuel rods would not become a problem. Scoping tests at PNL with nonirradiated UO/sub 2/ pellets and spent-fuel fragment specimens identified the need for a statistically designed test matrix with test temperatures bounding anticipated maximum acceptable air-storage temperatures. This facility was designed and operated to satisfy that need. 7 refs.

  5. Operation of N Reactor and Fuels Fabrication Facilities, Hanford Reservation, Richland, Benton County, Washington: Environmental assessment

    SciTech Connect (OSTI)

    Not Available

    1980-08-01

    Environmental data, calculations and analyses show no significant adverse radiological or nonradiological impacts from current or projected future operations resulting from N Reactor, Fuels Fabrication and Spent Fuel Storage Facilities. Nonoccupational radiation exposures resulting from 1978 N Reactor operations are summarized and compared to allowable exposure limits.

  6. Impact of Lower PM from Multimode Operation on Fuel Penalty from DPF

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Regeneration | Department of Energy Lower PM from Multimode Operation on Fuel Penalty from DPF Regeneration Impact of Lower PM from Multimode Operation on Fuel Penalty from DPF Regeneration Low engine-out PM emissions from HECC result in lower pressure drop rise rates across the DPF, less frequent DPF regeneration, and lower de-soot fuel penalty PDF icon deer09_prikhodko.pdf More Documents & Publications Measurement and Characterization of Lean NOx Adsorber Regeneration and Desulfation

  7. Federal Energy and Water Management Award Winner 22nd Operations Group Fuel

    Energy Savers [EERE]

    Efficiency Office | Department of Energy 22nd Operations Group Fuel Efficiency Office Federal Energy and Water Management Award Winner 22nd Operations Group Fuel Efficiency Office PDF icon fewm13_mcconnellafb_highres.pdf PDF icon fewm13_mcconnellafb.pdf More Documents & Publications Air Force Achieves Fuel Efficiency through Industry Best Practices Potential for the Use of Energy Savings Performance Contracts to Reduce Energy Consumption and Provide Energy and Cost Savings in

  8. Steam-reforming of fossil fuels and wastes to produce energy and chemicals without greenhouse gases

    SciTech Connect (OSTI)

    Galloway, T.R.

    1998-07-01

    Worldwide concern has demanded a re-examination of the energy- and chemical-producing plants that use fossil fuel sources and release large quantities of greenhouse gases. Plant retrofits with steam-reformer/gasifiers will increase plant efficiencies, improve economics and avoid releasing troublesome amounts of greenhouse gases, such as carbon dioxide. In this paper, the authors describe and illustrate the several new steam-reforming/gasification plants that are processing waste streams and fossil fuels. These plants range in size from 1 ton/day to 2,000 tons/day. They are commercial and economically successful. These new concepts can be used to both upgrade fossil plants for improved economics while eliminating the release of greenhouse gases. By aggressively retrofitting old coal plants and sequestering CO{sub 2}, a 15% reduction in 1990 CO{sub 2} emissions can be met by the US by 2010.

  9. Environmental aspects of alternative wet technologies for producing energy/fuel from peat. Final report

    SciTech Connect (OSTI)

    Smith, R.T.

    1981-05-01

    Peat in situ contains up to 90% moisture, with about 50% of this moisture trapped as a colloidal gel. This colloidal moisture cannot be removed by conventional dewatering methods (filter presses, etc.) and must be removed by thermal drying, solvent extraction, or solar drying before the peat can be utilized as a fuel feedstock for direct combustion or gasification. To circumvent the drying problem, alternative technologies such as wet oxidation, wet carbonization, and biogasification are possible for producing energy or enhanced fuel from peat. This report describes these three alternative technologies, calculates material balances for given raw peat feed rates of 1000 tph, and evaluates the environmental consequences of all process effluent discharges. Wastewater discharges represent the most significant effluent due to the relatively large quantities of water removed during processing. Treated process water returned to the harvested bog may force in situ, acidic bog water into recieving streams, disrupting local aquatic ecosystems.

  10. System and process for producing fuel with a methane thermochemical cycle

    DOE Patents [OSTI]

    Diver, Richard B.

    2015-12-15

    A thermochemical process and system for producing fuel are provided. The thermochemical process includes reducing an oxygenated-hydrocarbon to form an alkane and using the alkane in a reforming reaction as a reducing agent for water, a reducing agent for carbon dioxide, or a combination thereof. Another thermochemical process includes reducing a metal oxide to form a reduced metal oxide, reducing an oxygenated-hydrocarbon with the reduced metal oxide to form an alkane, and using the alkane in a reforming reaction as a reducing agent for water, a reducing agent for carbon dioxide, or a combination thereof. The system includes a reformer configured to perform a thermochemical process.

  11. Defective fuel rod detection in operating pressurized water reactors during periods of continuously decreasing fuel rod integrity levels

    SciTech Connect (OSTI)

    Zanker, H. )

    1989-09-01

    Periods of continuously decreasing levels of fuel rod integrity due to debris-induced cladding damage, vibration-induced fretting wear of the cladding, etc. cause difficulties in the assessment of fuel rod performance from coolant activity data. The calculational models currently in use for this purpose in nuclear power plants are not sufficiently capable of indicating cases in which they are invalid. This can mislead reactor operators by misinterpretation of the coolant activity data, especially in situations where fast reactions are necessary. A quick test of validity is suggested to check the applicability of the currently available calculational models for estimating the number and average size of fuel rod defects. This paper describes how to recognize immediately periods of continuously decreasing levels of fuel rod integrity in order to prevent complications in routine power plant maintenance as well as accident situations caused by more severe fuel rod degradation.

  12. Natural Fuel Energy Inc | Open Energy Information

    Open Energy Info (EERE)

    Fuel Energy Inc Jump to: navigation, search Name: Natural Fuel & Energy Inc Place: Boston, Massachusetts Zip: 2100 Product: Boston - based biodiesel producer that operates a...

  13. Methods of refining natural oils, and methods of producing fuel compositions

    DOE Patents [OSTI]

    Firth, Bruce E.; Kirk, Sharon E.

    2015-10-27

    A method of refining a natural oil includes: (a) providing a feedstock that includes a natural oil; (b) reacting the feedstock in the presence of a metathesis catalyst to form a metathesized product that includes olefins and esters; (c) passivating residual metathesis catalyst with an agent that comprises nitric acid; (d) separating the olefins in the metathesized product from the esters in the metathesized product; and (e) transesterifying the esters in the presence of an alcohol to form a transesterified product and/or hydrogenating the olefins to form a fully or partially saturated hydrogenated product. Methods for suppressing isomerization of olefin metathesis products produced in a metathesis reaction, and methods of producing fuel compositions are described.

  14. Methods of refining natural oils and methods of producing fuel compositions

    DOE Patents [OSTI]

    Firth, Bruce E; Kirk, Sharon E; Gavaskar, Vasudeo S

    2015-11-04

    A method of refining a natural oil includes: (a) providing a feedstock that includes a natural oil; (b) reacting the feedstock in the presence of a metathesis catalyst to form a metathesized product that includes olefins and esters; (c) passivating residual metathesis catalyst with an agent selected from the group consisting of phosphorous acid, phosphinic acid, and a combination thereof; (d) separating the olefins in the metathesized product from the esters in the metathesized product; and (e) transesterifying the esters in the presence of an alcohol to form a transesterified product and/or hydrogenating the olefins to form a fully or partially saturated hydrogenated product. Methods for suppressing isomerization of olefin metathesis products produced in a metathesis reaction, and methods of producing fuel compositions are described.

  15. Apparatus and method for operating internal combustion engines from variable mixtures of gaseous fuels

    DOE Patents [OSTI]

    Heffel, James W.; Scott, Paul B.

    2003-09-02

    An apparatus and method for utilizing any arbitrary mixture ratio of multiple fuel gases having differing combustion characteristics, such as natural gas and hydrogen gas, within an internal combustion engine. The gaseous fuel composition ratio is first sensed, such as by thermal conductivity, infrared signature, sound propagation speed, or equivalent mixture differentiation mechanisms and combinations thereof which are utilized as input(s) to a "multiple map" engine control module which modulates selected operating parameters of the engine, such as fuel injection and ignition timing, in response to the proportions of fuel gases available so that the engine operates correctly and at high efficiency irrespective of the gas mixture ratio being utilized. As a result, an engine configured according to the teachings of the present invention may be fueled from at least two different fuel sources without admixing constraints.

  16. Apparatus and method for operating internal combustion engines from variable mixtures of gaseous fuels

    DOE Patents [OSTI]

    Heffel, James W. (Lake Matthews, CA); Scott, Paul B. (Northridge, CA); Park, Chan Seung (Yorba Linda, CA)

    2011-11-01

    An apparatus and method for utilizing any arbitrary mixture ratio of multiple fuel gases having differing combustion characteristics, such as natural gas and hydrogen gas, within an internal combustion engine. The gaseous fuel composition ratio is first sensed, such as by thermal conductivity, infrared signature, sound propagation speed, or equivalent mixture differentiation mechanisms and combinations thereof which are utilized as input(s) to a "multiple map" engine control module which modulates selected operating parameters of the engine, such as fuel injection and ignition timing, in response to the proportions of fuel gases available so that the engine operates correctly and at high efficiency irrespective of the gas mixture ratio being utilized. As a result, an engine configured according to the teachings of the present invention may be fueled from at least two different fuel sources without admixing constraints.

  17. The Use of Exhaust Gas Recirculation to Optimize Fuel Economy and Minimize Emission in Engines Operating on E85 Fuel

    SciTech Connect (OSTI)

    Wu, Ko-Jen

    2011-12-31

    This report summarizes activities conducted for the project The Use of Exhaust Gas Recirculation to Optimized Fuel Economy and Minimize Emissions in Engines Operating on E85 Fuel under COOPERATIVE AGREEMENT NUMBER DE-FC26-07NT43271, which are as outlined in the STATEMENT OF PROJECT OBJECTIVES (SOPO) dated March 2007 and in the supplemental SOPO dated October 2010. The project objective was to develop and demonstrate an internal combustion engine that is optimized for E85 (85% ethanol and 15% gasoline) fuel operation to achieve substantially improved fuel economy while operating with E85 fuel and that is also production viable in the near- to medium-term. The key engine technology selected for research and development was turbocharging, which is known to improve fuel economy thru downsizing and is in particular capable of exploiting ethanol fuels characteristics of high octane number and high latent heat of vaporization. The engine further integrated synergistic efficiency improving technologies of cooled exhaust gas recirculation (EGR), direct fuel injection and dual continuously variable intake and exhaust cam phasers. On the vehicle level, fuel economy was furthered thru powertrain system optimization by mating a state-of-the-art six-speed automatic transmission to the engine. In order to achieve the projects objective of near- to medium-term production viability, it was essential to develop the engine to be flex-fuel capable of operating with fuels ranging from E0 (0% ethanol and 100% gasoline) to E85 and to use three-way type of catalyst technology for exhaust aftertreatment. Within these scopes, various technologies were developed through systems approach to focus on ways to help accelerate catalyst light-off. Significant amount of development took place during the course of the project within General Motors, LLC. Many prototype flex-fuel engines were designed, built and developed with various hardware configurations selected to achieve the project goals. Several flex-fuel demonstration vehicles were designed and built for carrying out calibration development and final testing to quantify the technology merits. Based on the extensive test results collected from dynamometer and vehicle testing, the fuel economy benefits of cooled EGR from the intended level of turbocharger technology were quantified. When combined with turbo downsizing, the FE benefits are considered large enough for E0 fuel as well as for E85 fuel to warrant further development of the technology beyond the current proof-of-concept level to a level that can meet production driveability quality and durability requirements in order to meet customers expectations. Cold-start cart test results from the emissions segment of the project were positive, confirming the assumption of faster thermal response of turbo exhaust system for emissions reductions for both E0 and E85 fuels. Vehicle emissions test results directionally correlated to the cold-start cart findings. The limited number of test runs did demonstrate the potentials of meeting stringent emission standards, however, they did not comprehend the factors such as hardware variability and long-term durability, 3 which are essential for mass production to satisfy customers expectations. It is therefore recommended, moving forward, durability concerns over turbocharger, EGR system and aftertreatment system, which would likely impact production viability, should be addressed. The data moreover suggested that further FE increase is likely with turbocharger technology advancement.

  18. Purge gas protected transportable pressurized fuel cell modules and their operation in a power plant

    DOE Patents [OSTI]

    Zafred, Paolo R. (Pittsburgh, PA); Dederer, Jeffrey T. (Valencia, PA); Gillett, James E. (Greensburg, PA); Basel, Richard A. (Plub Borough, PA); Antenucci, Annette B. (Pittsburgh, PA)

    1996-01-01

    A fuel cell generator apparatus and method of its operation involves: passing pressurized oxidant gas, (O) and pressurized fuel gas, (F), into fuel cell modules, (10 and 12), containing fuel cells, where the modules are each enclosed by a module housing (18), surrounded by an axially elongated pressure vessel (64), where there is a purge gas volume, (62), between the module housing and pressure vessel; passing pressurized purge gas, (P), through the purge gas volume, (62), to dilute any unreacted fuel gas from the modules; and passing exhaust gas, (82), and circulated purge gas and any unreacted fuel gas out of the pressure vessel; where the fuel cell generator apparatus is transpatable when the pressure vessel (64) is horizontally disposed, providing a low center of gravity.

  19. Impacts of Biodiesel Fuel Blends Oil Dilution on Light-Duty Diesel Engine Operation

    SciTech Connect (OSTI)

    Thornton, M. J.; Alleman, T. L.; Luecke, J.; McCormick, R. L.

    2009-08-01

    Assesses oil dilution impacts on a diesel engine operating with a diesel particle filter, NOx storage, a selective catalytic reduction emission control system, and a soy-based 20% biodiesel fuel blend.

  20. Recovery of Fresh Water Resources from Desalination of Brine Produced During Oil and Gas Production Operations

    SciTech Connect (OSTI)

    David B. Burnett; Mustafa Siddiqui

    2006-12-29

    Management and disposal of produced water is one of the most important problems associated with oil and gas (O&G) production. O&G production operations generate large volumes of brine water along with the petroleum resource. Currently, produced water is treated as a waste and is not available for any beneficial purposes for the communities where oil and gas is produced. Produced water contains different contaminants that must be removed before it can be used for any beneficial surface applications. Arid areas like west Texas produce large amount of oil, but, at the same time, have a shortage of potable water. A multidisciplinary team headed by researchers from Texas A&M University has spent more than six years is developing advanced membrane filtration processes for treating oil field produced brines The government-industry cooperative joint venture has been managed by the Global Petroleum Research Institute (GPRI). The goal of the project has been to demonstrate that treatment of oil field waste water for re-use will reduce water handling costs by 50% or greater. Our work has included (1) integrating advanced materials into existing prototype units and (2) operating short and long-term field testing with full size process trains. Testing at A&M has allowed us to upgrade our existing units with improved pre-treatment oil removal techniques and new oil tolerant RO membranes. We have also been able to perform extended testing in 'field laboratories' to gather much needed extended run time data on filter salt rejection efficiency and plugging characteristics of the process train. The Program Report describes work to evaluate the technical and economical feasibility of treating produced water with a combination of different separation processes to obtain water of agricultural water quality standards. Experiments were done for the pretreatment of produced water using a new liquid-liquid centrifuge, organoclay and microfiltration and ultrafiltration membranes for the removal of hydrocarbons from produced water. The results of these experiments show that hydrocarbons from produced water can be reduced from 200 ppm to below 29 ppm level. Experiments were also done to remove the dissolved solids (salts) from the pretreated produced water using desalination membranes. Produced water with up to 45,000 ppm total dissolved solids (TDS) can be treated to agricultural water quality water standards having less than 500 ppm TDS. The Report also discusses the results of field testing of various process trains to measure performance of the desalination process. Economic analysis based on field testing, including capital and operational costs, was done to predict the water treatment costs. Cost of treating produced water containing 15,000 ppm total dissolved solids and 200 ppm hydrocarbons to obtain agricultural water quality with less than 200 ppm TDS and 2 ppm hydrocarbons range between $0.5-1.5 /bbl. The contribution of fresh water resource from produced water will contribute enormously to the sustainable development of the communities where oil and gas is produced and fresh water is a scarce resource. This water can be used for many beneficial purposes such as agriculture, horticulture, rangeland and ecological restorations, and other environmental and industrial application.

  1. Identification, Verification, and Compilation of Produced Water Management Practices for Conventional Oil and Gas Production Operations

    SciTech Connect (OSTI)

    Rachel Henderson

    2007-09-30

    The project is titled 'Identification, Verification, and Compilation of Produced Water Management Practices for Conventional Oil and Gas Production Operations'. The Interstate Oil and Gas Compact Commission (IOGCC), headquartered in Oklahoma City, Oklahoma, is the principal investigator and the IOGCC has partnered with ALL Consulting, Inc., headquartered in Tulsa, Oklahoma, in this project. State agencies that also have partnered in the project are the Wyoming Oil and Gas Conservation Commission, the Montana Board of Oil and Gas Conservation, the Kansas Oil and Gas Conservation Division, the Oklahoma Oil and Gas Conservation Division and the Alaska Oil and Gas Conservation Commission. The objective is to characterize produced water quality and management practices for the handling, treating, and disposing of produced water from conventional oil and gas operations throughout the industry nationwide. Water produced from these operations varies greatly in quality and quantity and is often the single largest barrier to the economic viability of wells. The lack of data, coupled with renewed emphasis on domestic oil and gas development, has prompted many experts to speculate that the number of wells drilled over the next 20 years will approach 3 million, or near the number of current wells. This level of exploration and development undoubtedly will draw the attention of environmental communities, focusing their concerns on produced water management based on perceived potential impacts to fresh water resources. Therefore, it is imperative that produced water management practices be performed in a manner that best minimizes environmental impacts. This is being accomplished by compiling current best management practices for produced water from conventional oil and gas operations and to develop an analysis tool based on a geographic information system (GIS) to assist in the understanding of watershed-issued permits. That would allow management costs to be kept in line with the specific projects and regions, which increases the productive life of wells and increases the ultimate recoverable reserves in the ground. A case study was conducted in Wyoming to validate the applicability of the GIS analysis tool for watershed evaluations under real world conditions. Results of the partnered research will continue to be shared utilizing proven methods, such as on the IGOCC Web site, preparing hard copies of the results, distribution of documented case studies, and development of reference and handbook components to accompany the interactive internet-based GIS watershed analysis tool. Additionally, there have been several technology transfer seminars and presentations. The goal is to maximize the recovery of our nation's energy reserves and to promote water conservation.

  2. Fuel Cell Animation - Fuel Cell Stack (Text Version) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Stack (Text Version) Fuel Cell Animation - Fuel Cell Stack (Text Version) This text version of the fuel cell animation demonstrates how a fuel cell uses hydrogen to produce electricity, with only water and heat as byproducts. Fuel cell stack with electrical circuit. Fuel cell: The amount of power produced by a fuel cell depends on several factors, including fuel cell type, cell size, temperature at which it operates, and pressure at which the gases are supplied to the cell. A single fuel cell

  3. High capacity fossil fuel fired plant operator training program. Student handbook. Final report

    SciTech Connect (OSTI)

    Pearson, S.; Gardner, M.; Nguyen, Q.

    1994-09-30

    The operator of fossil fuel-fired boilers has a significant responsibility in assuring that the unit is continuously operated in a manner which complies with the various state and federal regulations. The course will emphasize the operating principles for all types of boilers and for all types of control equipment used for controlling air emissions from boilers. The course will emphasize the significant operating parameters that directly influence air emissions.

  4. Particulate Produced from Advanced Combustion Operation in a Compression Ignition Engine

    Broader source: Energy.gov [DOE]

    Determine operating conditions to achieve HECC operation, understand limitations of HECC operation, and determine sensitivies to operating parameter variations

  5. Establishing Specifications for Low Enriched Uranium Fuel Operations Conducted Outside the High Flux Isotope Reactor Site

    SciTech Connect (OSTI)

    Pinkston, Daniel [ORNL; Primm, Trent [ORNL; Renfro, David G [ORNL; Sease, John D [ORNL

    2010-10-01

    The National Nuclear Security Administration (NNSA) has funded staff at Oak Ridge National Laboratory (ORNL) to study the conversion of the High Flux Isotope Reactor (HFIR) from the current, high enriched uranium fuel to low enriched uranium fuel. The LEU fuel form is a metal alloy that has never been used in HFIR or any HFIR-like reactor. This report provides documentation of a process for the creation of a fuel specification that will meet all applicable regulations and guidelines to which UT-Battelle, LLC (UTB) the operating contractor for ORNL - must adhere. This process will allow UTB to purchase LEU fuel for HFIR and be assured of the quality of the fuel being procured.

  6. Purge gas protected transportable pressurized fuel cell modules and their operation in a power plant

    DOE Patents [OSTI]

    Zafred, P.R.; Dederer, J.T.; Gillett, J.E.; Basel, R.A.; Antenucci, A.B.

    1996-11-12

    A fuel cell generator apparatus and method of its operation involves: passing pressurized oxidant gas and pressurized fuel gas into modules containing fuel cells, where the modules are each enclosed by a module housing surrounded by an axially elongated pressure vessel, and where there is a purge gas volume between the module housing and pressure vessel; passing pressurized purge gas through the purge gas volume to dilute any unreacted fuel gas from the modules; and passing exhaust gas and circulated purge gas and any unreacted fuel gas out of the pressure vessel; where the fuel cell generator apparatus is transportable when the pressure vessel is horizontally disposed, providing a low center of gravity. 11 figs.

  7. Analysis of Actual Operating Conditions of an Off-grid Solid Oxide Fuel Cell

    SciTech Connect (OSTI)

    Dennis Witmer; Thomas Johnson; Jack Schmid

    2008-12-31

    Fuel cells have been proposed as ideal replacements for other technologies in remote locations such as Rural Alaska. A number of suppliers have developed systems that might be applicable in these locations, but there are several requirements that must be met before they can be deployed: they must be able to operate on portable fuels, and be able to operate with little operator assistance for long periods of time. This project was intended to demonstrate the operation of a 5 kW fuel cell on propane at a remote site (defined as one without access to grid power, internet, or cell phone, but on the road system). A fuel cell was purchased by the National Park Service for installation in their newly constructed visitor center at Exit Glacier in the Kenai Fjords National Park. The DOE participation in this project as initially scoped was for independent verification of the operation of this demonstration. This project met with mixed success. The fuel cell has operated over 6 seasons at the facility with varying degrees of success, with one very good run of about 1049 hours late in the summer of 2006, but in general the operation has been below expectations. There have been numerous stack failures, the efficiency of electrical generation has been lower than expected, and the field support effort required has been far higher than expected. Based on the results to date, it appears that this technology has not developed to the point where demonstrations in off road sites are justified.

  8. Method of producing exfoliated graphite composite compositions for fuel cell flow field plates

    DOE Patents [OSTI]

    Zhamu, Aruna; Shi, Jinjun; Guo, Jiusheng; Jang, Bor Z

    2014-04-08

    A method of producing an electrically conductive composite composition, which is particularly useful for fuel cell bipolar plate applications. The method comprises: (a) providing a supply of expandable graphite powder; (b) providing a supply of a non-expandable powder component comprising a binder or matrix material; (c) blending the expandable graphite with the non-expandable powder component to form a powder mixture wherein the non-expandable powder component is in the amount of between 3% and 60% by weight based on the total weight of the powder mixture; (d) exposing the powder mixture to a temperature sufficient for exfoliating the expandable graphite to obtain a compressible mixture comprising expanded graphite worms and the non-expandable component; (e) compressing the compressible mixture at a pressure within the range of from about 5 psi to about 50,000 psi in predetermined directions into predetermined forms of cohered graphite composite compact; and (f) treating the so-formed cohered graphite composite to activate the binder or matrix material thereby promoting adhesion within the compact to produce the desired composite composition. Preferably, the non-expandable powder component further comprises an isotropy-promoting agent such as non-expandable graphite particles. Further preferably, step (e) comprises compressing the mixture in at least two directions. The method leads to composite plates with exceptionally high thickness-direction electrical conductivity.

  9. Process for producing biodiesel, lubricants, and fuel and lubricant additives in a critical fluid medium

    DOE Patents [OSTI]

    Ginosar, Daniel M.; Fox, Robert V.

    2005-05-03

    A process for producing alkyl esters useful in biofuels and lubricants by transesterifying glyceride- or esterifying free fatty acid-containing substances in a single critical phase medium is disclosed. The critical phase medium provides increased reaction rates, decreases the loss of catalyst or catalyst activity and improves the overall yield of desired product. The process involves the steps of dissolving an input glyceride- or free fatty acid-containing substance with an alcohol or water into a critical fluid medium; reacting the glyceride- or free fatty acid-containing substance with the alcohol or water input over either a solid or liquid acidic or basic catalyst and sequentially separating the products from each other and from the critical fluid medium, which critical fluid medium can then be recycled back in the process. The process significantly reduces the cost of producing additives or alternatives to automotive fuels and lubricants utilizing inexpensive glyceride- or free fatty acid-containing substances, such as animal fats, vegetable oils, rendered fats, and restaurant grease.

  10. Design considerations and operating experience in firing refuse derived fuel in a circulating fluidized bed combustor

    SciTech Connect (OSTI)

    Piekos, S.J.; Matuny, M.

    1997-12-31

    The worldwide demand for cleaner, more efficient methods to dispose of municipal solid waste has stimulated interest in processing solid waste to produce refuse derived fuel (RDF) for use in circulating fluidized bed (CFB) boilers. The combination of waste processing and materials recovery systems and CFB boiler technology provides the greatest recovery of useful resources from trash and uses the cleanest combustion technology available today to generate power. Foster Wheeler Power Systems along with Foster Wheeler Energy Corporation and several other Foster Wheeler sister companies designed, built, and now operates a 1600 tons per day (TPD) (1450 metric tons) municipal waste-to-energy project located in Robbins, Illinois, a suburb of Chicago. This project incorporates waste processing systems to recover recyclable materials and produce RDF. It is the first project in the United States to use CFB boiler technology to combust RDF. This paper will provide an overview of the Robbins, Illinois waste-to-energy project and will examine the technical and environmental reasons for selecting RDF waste processing and CFB combustion technology. Additionally, this paper will present experience with handling and combusting RDF and review the special design features incorporated into the CFB boiler and waste processing system that make it work.

  11. Plant for producing an oxygen-containing additive as an ecologically beneficial component for liquid motor fuels

    DOE Patents [OSTI]

    Siryk, Yury Paul; Balytski, Ivan Peter; Korolyov, Volodymyr George; Klishyn, Olexiy Nick; Lnianiy, Vitaly Nick; Lyakh, Yury Alex; Rogulin, Victor Valery

    2013-04-30

    A plant for producing an oxygen-containing additive for liquid motor fuels comprises an anaerobic fermentation vessel, a gasholder, a system for removal of sulphuretted hydrogen, and a hotwell. The plant further comprises an aerobic fermentation vessel, a device for liquid substance pumping, a device for liquid aeration with an oxygen-containing gas, a removal system of solid mass residue after fermentation, a gas distribution device; a device for heavy gases utilization; a device for ammonia adsorption by water; a liquid-gas mixer; a cavity mixer, a system that serves superficial active and dispersant matters and a cooler; all of these being connected to each other by pipelines. The technical result being the implementation of a process for producing an oxygen containing additive, which after being added to liquid motor fuels, provides an ecologically beneficial component for motor fuels by ensuring the stability of composition fuel properties during long-term storage.

  12. Novel Intergrated Process to Process to Produce Fuels from Coal and Other Carbonaceous Feedstocks

    SciTech Connect (OSTI)

    Andrew Lucero

    2009-03-25

    BioConversion Technology, LLC has developed a novel gasifier design that produces a clean, medium to high BTU synthesis gas that can be utilized for a variety of applications. The staged, indirectly heated design produces high quality synthesis gas without the need for costly pure oxygen. This design also allows for extreme flexibility with respect to feedstocks (including those with high moisture contents) in addition to high throughputs in a small gasifier footprint. A pilot scale testing project was proposed to assist BCT with commercializing the process. A prototype gasifier constructed by BCT was transported to WRI for installation and testing. After troubleshooting, the gasifier was successfully operated with both coal and biomass feedstocks. Instrument upgrades are recommended for further testing.

  13. Operational Challenges of Extended Dry Storage of Spent Nuclear Fuel - 12550

    SciTech Connect (OSTI)

    Nichol, M. [Nuclear Energy Institute, Washington DC (United States)

    2012-07-01

    As a result of the termination of the Yucca Mountain used fuel repository program and a continuing climate of uncertainty in the national policy for nuclear fuel disposition, the likelihood has increased that extended storage, defined as more than 60 years, and subsequent transportation of used nuclear fuel after periods of extended storage may become necessary. Whether at the nation's 104 nuclear energy facilities, or at one or more consolidated interim storage facilities, the operational challenges of extended storage and transportation will depend upon the future US policy for Used Fuel Management and the future Regulatory Framework for EST, both of which should be developed with consideration of their operational impacts. Risk insights into the regulatory framework may conclude that dry storage and transportation operations should focus primarily on ensuring canister integrity. Assurance of cladding integrity may not be beneficial from an overall risk perspective. If assurance of canister integrity becomes more important, then mitigation techniques for potential canister degradation mechanisms will be the primary source of operational focus. If cladding integrity remains as an important focus, then operational challenges to assure it would require much more effort. Fundamental shifts in the approach to design a repository and optimize the back-end of the fuel cycle will need to occur in order to address the realities of the changes that have taken place over the last 30 years. Direct disposal of existing dual purpose storage and transportation casks will be essential to optimizing the back end of the fuel cycle. The federal used fuel management should focus on siting and designing a repository that meets this objective along with the development of CIS, and possibly recycling. An integrated approach to developing US policy and the regulatory framework must consider the potential operational challenges that they would create. Therefore, it should be integral to these efforts to redefine retrievability to apply to the dual purpose cask, and not to apply to individual assemblies. (authors)

  14. Method for producing ceramic composition having low friction coefficient at high operating temperatures

    DOE Patents [OSTI]

    Lankford, Jr., James (San Antonio, TX)

    1988-01-01

    A method for producing a stable ceramic composition having a surface with a low friction coefficient and high wear resistance at high operating temperatures. A first deposition of a thin film of a metal ion is made upon the surface of the ceramic composition and then a first ion implantation of at least a portion of the metal ion is made into the near surface region of the composition. The implantation mixes the metal ion and the ceramic composition to form a near surface composite. The near surface composite is then oxidized sufficiently at high oxidizing temperatures to form an oxide gradient layer in the surface of the ceramic composition.

  15. Initial operating results of coal-fired steam generators converted to 100% refuse-derived fuel

    SciTech Connect (OSTI)

    Barsin, J.A. ); Graika, P.K. ); Gonyeau, J.A. ); Bloomer, T.M. )

    1988-01-01

    The conversion of Northern States Power Company's (NSP) Red Wing and Wilmarth steam generators to fire refuse-derived fuel (RDF) is discussed. The use of the existing plant with the necessary modifications to the boilers has allowed NSP to effectively incinerate the fuel as required by Washington and Ramsey Counties. This paper covers the six-month start-up of Red Wing No. 1, commencing in May 1987, and the operating results since the plant went commercial in July 1987.

  16. Wind energy systems have low operating expenses because they have no fuel cost.

    Broader source: Energy.gov (indexed) [DOE]

    energy systems have low operating expenses because they have no fuel cost. Photo by Jenny Hager Photography, NREL 15990. 1. Wind energy is cost competitive with other fuel sources. The average levelized price of wind power purchase agree- ments signed in 2013 was approximately 2.5 cents per kilowatt-hour, a price that is not only cost competitive with new gas-fired power plants but also compares favorably to a range of fuel cost projections of gas-fired generation extending out through 2040. 1

  17. Fuel Composition Effects at Constant RON and MON in an HCCI Engine Operated with Negative Valve Overlap

    SciTech Connect (OSTI)

    Bunting, Bruce G; Farrell, John T

    2006-01-01

    The effects of fuel properties on gasoline HCCI operation have been investigated in a single cylinder, 500 cc, 11.3 CR port fuel injected research engine, operated at lambda=1 and equipped with hydraulic valve actuation. HCCI is promoted by early exhaust valve closing to retain hot exhaust in the cylinder, thereby increasing the cylinder gas temperature. Test fuels were formulated with pure components to have the same RON, MON, and octane sensitivity as an indolene reference fuel, but with a wide range of fuel composition differences. Experiments have been carried out to determine if fuel composition plays a role in HCCI combustion properties, independent of octane numbers. Fuel economy, emissions, and combustion parameters have been measured at several fixed speed/load conditions over a range of exhaust valve closing angles. When the data are compared at constant combustion phasing, fuel effects on emissions and other combustion properties are small. However, when compared at constant exhaust valve closing angle, fuel composition effects are more pronounced, specifically regarding ignition. Operability range differences are also related to fuel composition. An all-paraffinic (normal, iso, and cycloparaffins) fuel exhibited distinctly earlier combustion phasing, increased rate of cylinder pressure rise, and increased rate of maximum heat release compared to the indolene reference fuel. Conversely, olefin-containing fuels exhibited retarded combustion phasing. The fuels with the most advanced ignition showed a wider operating range in terms of engine speed and load, irrespective of exhaust closing angle. These ignition differences reflect contributions from both fuel and EGR kinetics, the effects of which are discussed. The fuel composition variables are somewhat inter-correlated, which makes the experimental separation their effects imprecise with this small set of fuels, though clear trends are evident. The overall effects of fuel composition on engine performance and emissions are small. However, the results suggest that the effects on combustion phasing and engine operability range may need to be considered in the practical implementation of HCCI for fuels with large compositional variations.

  18. Process for producing low-sulfur boiler fuel by hydrotreatment of solvent deashed SRC

    DOE Patents [OSTI]

    Roberts, George W.; Tao, John C.

    1985-01-01

    In this invention, a process is disclosed characterized by heating a slurry of coal in the presence of a process-derived recycle solvent and passing same to a dissolver zone, separating the resultant gases and liquid/solid products therefrom, vacuum distilling the liquid/solids products, separating the portions of the liquid/solids vacuum distillation effluent into a solid ash, unconverted coal particles and SRC material having a boiling point above 850.degree. F. and subjecting same to a critical solvent deashing step to provide an ash-free SRC product. The lighter liquid products from the vacuum distillation possess a boiling point below 850.degree. F. and are passed through a distillation tower, from which recycled solvent is recovered in addition to light distillate boiling below 400.degree. F. (overhead). The ash-free SRC product in accompanyment with at least a portion of the process derived solvent is passed in combination to a hydrotreating zone containing a hydrogenation catalyst and in the presence of hydrogen is hydroprocessed to produce a desulfurized and denitrogenized low-sulfur, low-ash boiler fuel and a process derived recycle solvent which is recycled to slurry the coal in the beginning of the process before heating.

  19. The net utility revenue impact of small power producing facilities operating under spot pricing policies

    SciTech Connect (OSTI)

    MacGregor, P.R.

    1989-01-01

    The National Energy Act, in general, and Section 210 of the Public Utilities Regulatory Policies Act (PURPA) of 1978 in particular, have dramatically stimulated increasing levels of independent non-utility power generation. As these levels of independent non-utility power generation increase, the electric utility is subjected to new and significant operational and financial impacts. One important concern is the net revenue impact on the utility which is the focus of the research discussed in this thesis and which is inextricably intertwined with the operational functions of the utility system. In general, non-utility generation, and specifically, cogeneration, impact utility revenues by affecting the structure and magnitude of the system load, the scheduling of utility generation, and the reliability of the composite system. These effects are examined by developing a comprehensive model non-utility independent power producing facilities, referenced as Small Power Producing Facilities, a cash-flow-based corporate model of the electric utility, a thermal plant based generation scheduling algorithm, and a system reliability evaluation. All of these components are integrated into an iterative closed loop solution algorithm to both assess and enhance the net revenue. In this solution algorithm, the spot pricing policy of the utility is the principal control mechanism in the process and the system reliability is the primary procedural constraint. A key issue in reducing the negative financial impact of non-utility generation is the possibility of shutting down utility generation units given sufficient magnitudes of non-utility generation in the system. A case study simulating the financial and system operations of the Georgia Power Company with representative cogeneration capacity and individual plant characteristics is analyzed in order to demonstrate the solution process.

  20. Durability of Low Platinum Fuel Cells Operating at High Power Density

    SciTech Connect (OSTI)

    Polevaya, Olga; Blanchet, Scott; Ahluwalia, Rajesh; Borup, Rod; Mukundan, Rangachary

    2014-03-19

    Understanding and improving the durability of cost-competitive fuel cell stacks is imperative to successful deployment of the technology. Stacks will need to operate well beyond todays state-of-the-art rated power density with very low platinum loading in order to achieve the cost targets set forth by DOE ($15/kW) and ultimately be competitive with incumbent technologies. An accelerated cost-reduction path presented by Nuvera focused on substantially increasing power density to address non-PGM material costs as well as platinum. The study developed a practical understanding of the degradation mechanisms impacting durability of fuel cells with low platinum loading (?0.2mg/cm2) operating at high power density (?1.0W/cm2) and worked out approaches for improving the durability of low-loaded, high-power stack designs. Of specific interest is the impact of combining low platinum loading with high power density operation, as this offers the best chance of achieving long-term cost targets. A design-of-experiments approach was utilized to reveal and quantify the sensitivity of durability-critical material properties to high current density at two levels of platinum loading (the more conventional 0.45 mgPt.cm1 and the much lower 0.2 mgPt.cm2) across several cell architectures. We studied the relevance of selected component accelerated stress tests (AST) to fuel cell operation in power producing mode. New stress tests (NST) were designed to investigate the sensitivity to the addition of electrical current on the ASTs, along with combined humidity and load cycles and, eventually, relate to the combined city/highway drive cycle. Changes in the cathode electrochemical surface area (ECSA) and average oxygen partial pressure on the catalyst layer with aging under AST and NST protocols were compared based on the number of completed cycles. Studies showed elevated sensitivity of Pt growth to the potential limits and the initial particle size distribution. The ECSA loss was correlated with the upper potential limit in the cycle tests, although the performance degradation was found to be a strong function of initial Pt loading. A large fraction of the voltage degradation was found due to increased mass transfer overpotentials, especially in the lower Pt loading cells. Increased mass transfer overpotentials were responsible for a large fraction of the voltage degradation at high current densities. Analysis of the impedance and polarization data indicated O2 diffusion in the aged electrode ionomer to be the main source of the increased mass transfer overpotentials. Results from the experimental parametric studies were used to inform and calibrate newly developed durability model, simulating lifetime performance of the fuel cell under variety of load-cycle protocols, electrode loadings and throughout wide range of operating conditions, including elevated-to-3.0A/cm2 current densities. Complete durability model included several sub-models: platinum dissolution-and-growth as well as reaction-diffusion model of cathode electrode, applied sequentially to study the lifetime predictions of ECSA and polarization performance in the ASTs and NSTs. These models establish relations between changes in overpotentials, ECSA and oxygen mass transport in fuel cell cathodes. The model was calibrated using single cells with land-channel and open flowfield architectures. The model was validated against Nuvera Orion (open flowfield) short stack data in the load cycle durability tests. The reaction-diffusion model was used to correlate the effective mass transfer coefficients for O2 diffusion in cathode ionomer and separately in gas pores with the operating conditions (pressure, temperature, gas velocity in flow field and current density), Pt loading, and ageing related growth in Pt particles and thinning of the electrode. Achievements of both modeling and experimental objectives were demonstrated in a full format, subscale stacks operating in a simulated but fully realistic ambient environment, using system-compatible operating protocols.

  1. Reliability of fast reactor mixed-oxide fuel during operational transients

    SciTech Connect (OSTI)

    Boltax, A.; Neimark, L.A.; Tsai, Hanchung ); Katsuragawa, M.; Shikakura, S. . Oarai Engineering Center)

    1991-07-01

    Results are presented from the cooperative DOE and PNC Phase 1 and 2 operational transient testing programs conducted in the EBR-2 reactor. The program includes second (D9 and PNC 316 cladding) and third (FSM, AST and ODS cladding) generation mixed-oxide fuel pins. The irradiation tests include duty cycle operation and extended overpower tests. the results demonstrate the capability of second generation fuel pins to survive a wide range of duty cycle and extended overpower events. 15 refs., 9 figs., 4 tabs.

  2. A solid oxide fuel cell power system: 1992--1993 field operation

    SciTech Connect (OSTI)

    Veyo, S.E.; Kusunoki, A.; Takeuchi, S.; Kaneko, S.; Yokoyama, H.

    1994-05-01

    Westinghouse has deployed fully integrated, automatically controlled, packaged solid oxide fuel cell (SOFC) power generation systems in order to obtain useful customer feedback. Recently, Westinghouse has deployed 20 kW class natural gas fueled SOFC generator modules integrated into two 25 kW SOFC systems, the first with The UTILITIES, a Japanese consortium. The UTILITIES 25 kW SOFC system is the focus of this paper. The unit was shipped to the Rokko Island Test Center for Advanced Energy Systems (near Kobe, Japan) operated by Kansai Electric Power Co.; testing was initiated February 1992. Module A operated for 2601 hours at an ave output 16.6 kW dc; final shutdown was induced by current stability problems with dissipator (restart not possible because of damaged cells). Module B operated for 1579 hours at ave output 17.8 kWdc. The unit was damaged by operation at excessively high fuel utilization > 91%. It was rebuilt and returned to Rokko Island. This module B2 operated for 1843 hours on PNG; shutdown was cuased by air supply failure. After a new blower and motor were installed July 1993, the system was restarted August 5, 1993 and operated continuously until November 10, 1993, when an automatic shutdown was induced as part of a MITI licensing inspection. After restart, the unit passed 6000 hours of operation on desulfurized PNG on January 25, 1994. Westinghouse`s future plans are outlined.

  3. Advanced spent fuel conditioning process (ACP) progress with respect to remote operation and maintenance

    SciTech Connect (OSTI)

    Lee, Hyo Jik; Lee, Jong Kwang; Park, Byung Suk; Yoon, Ji Sup

    2007-07-01

    Korea Atomic Energy Research Institute (KAERI) has been developing an Advanced Spent Fuel Conditioning Process (ACP) to reduce the volume of spent fuel, and the construction of the ACP facility (ACPF) for a demonstration of its technical feasibility has been completed. In 2006 two inactive demonstrations were performed with simulated fuels in the ACPF. Accompanied by process equipment performance tests, its remote operability and maintainability were also tested during that time. Procedures for remote operation tasks are well addressed in this study and evaluated thoroughly. Also, remote maintenance and repair tasks are addressed regarding some important modules with a high priority order. The above remote handling test's results provided a lot of information such as items to be revised to improve the efficiency of the remote handling tasks. This paper deals with the current status of ACP and the progress of remote handling of ACPF. (authors)

  4. Standard for the qualification of high capacity fossil fuel fired plant operators

    SciTech Connect (OSTI)

    Axtman, W.

    1996-12-31

    The American Society of Mechanical Engineers, at the request of the U.S. Environmental Protection Agency (EPA) and, in recognition of the needs and benefits associated with standard qualifications of operators of high capacity fossil fuel fired plants, established the Qualifications of High Capacity Fossil Fuel Fired Operator (QFO) Committee in 1994. The purpose of the QFO Committee is to develop and maintain such a standard for operators. This standard includes qualifications, duties, responsibilities and the certification requirements for operators as appropriate to The Clean Air Act as amended in 1990 for fossil fuel fired plants with inputs equal to or greater than 10,000 Btu/hr. This Standard does not cover the certification or validation of fossil plant operating procedures, operating practices, facility performance, nor compliance with any particular permit requirement. This standard recognizes the titles or positions to which any particular fossil plant operator may apply, will vary within a facility. Therefore, this standard does not attempt to identify the individual who is required to obtain certification in any class designation. The fossil plant owner is urged to contact the local jurisdiction in which the fossil plant is located in this regard. This standard does not in itself require certification but rather it serves as a means for complying with federal, state, and local regulations which require operators of fossil fuel fired boilers with inputs equal to or greater than 10,000,000 But/hr to be certified. Safety codes and standards are intended to enhance public health and safety. Revisions to this Standard result from committee considerations of factors such as technological advances, new data, and changing environmental and industry needs. Revisions do not imply that previous editions of this standard were inadequate.

  5. Method for reducing fuel cell output voltage to permit low power operation

    DOE Patents [OSTI]

    Reiser, Carl A. (Glastonbury, CT); Landau, Michael B. (West Hartford, CT)

    1980-01-01

    Fuel cell performance is degraded by recycling a portion of the cathode exhaust through the cells and, if necessary, also reducing the total air flow to the cells for the purpose of permitting operation below a power level which would otherwise result in excessive voltage.

  6. Fuel Effects on Combustion and Emissions of a Direct-Inection Diesel Engine Operating at Moderate to High Engine Speed and Load

    SciTech Connect (OSTI)

    Szybist, James P; Szymkowicz, Patrick G.; Northrop, William F

    2012-01-01

    It is advantageous to increase the specific power output of diesel engines and to operate them at higher load for a greater portion of a driving cycle to achieve better thermal efficiency and thus reduce vehicle fuel consumption. Such operation is limited by excessive smoke formation at retarded injection timing and high rates of cylinder pressure rise at more advanced timing. Given this window of operation, it is desired to understand the influence of fuel properties such that optimum combustion performance and emissions can be retained over the range of fuels commonly available in the marketplace. It has been shown in previous studies that varying cetane number (CN) of diesel fuel has little effect on ignition delay at high engine load due to the domination of high cylinder temperature on ignition kinetics. The work here experimentally confirms that finding but also shows that emissions and combustion performance vary according to fuel reactivity. Data are examined from a direct-injection single cylinder research engine for eight common diesel fuels including soy-based biodiesel blends at two high load operating points with no exhaust gas recirculation (EGR) and at a moderate load with four levels of EGR. It is shown in the work that at high engine load where combustion is controlled by mixing processes, CN and other fuel properties have little effect on engine performance, although lower CN fuels produce a small increase in noise, smoke and CO emissions. Biodiesel blends increase NOX emissions and decreases CO and smoke emissions at high load, but otherwise have little effect on performance. At moderate load, higher CN fuels are more tolerant to EGR due to their better chemical reactivity at retarded injection timing, but all fuels produce comparable thermal efficiency at advanced combustion phasing regardless of EGR. In contrast to the high load conditions, there was no increase in NOX emissions for biodiesel at the moderate load condition. It is concluded that although higher CN does not significantly alter ignition delay at moderate to high loads it has a dominant influence on the acceptable injection timing range. Apart from CN effects, fuel oxygen content plays an independent role in reducing some emissions. It is therefore recommended that compensation for fuel ignitability and oxygen content be included in combustion control strategies to optimize emissions and performance of future diesel engines.

  7. Table 1.14 Sales of Fossil Fuels Produced on Federal and American Indian Lands, Fiscal Years 2003-2011

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Sales of Fossil Fuels Produced on Federal and American Indian Lands, Fiscal Years 2003-2011 Fiscal Year 7 Crude Oil and Lease Condensate Natural Gas Plant Liquids 1 Natural Gas 2 Coal 3 Total Fossil Fuels 4 Sales 5,6 Sales as Share of Total U.S. Production Sales 5,6 Sales as Share of Total U.S. Production Sales 5,6 Sales as Share of Total U.S. Production Sales 5,6 Sales as Share of Total U.S. Production Sales 5,6 Sales as Share of Total U.S. Production Million Barrels Trillion Btu Percent

  8. Sales of Fossil Fuels Produced from Federal and Indian Lands, FY 2003 through FY 2011

    Broader source: Energy.gov [DOE]

    This paper was prepared in response to recent requests that the U.S. Energy Information Administration (EIA) provide updated summary information regarding fossil fuel production on federal and...

  9. Rail versus truck fuel efficiency: The relative fuel efficiency of truck-competitive rail freight and truck operations compared in a range of corridors. Final report

    SciTech Connect (OSTI)

    Not Available

    1991-04-01

    The report summarizes the findings of a study to evaluate the fuel efficiency of rail freight operations relative to competing truckload service. The objective of the study was to identify the circumstances in which rail freight service offers a fuel efficiency advantage over alternative truckload options, and to estimate the fuel savings associated with using rail service. The findings are based on computer simulations of rail and truck freight movements between the same origins and destinations. The simulation input assumptions and data are based on actual rail and truck operations. Input data was provided by U.S. regional and Class I railroads and by large truck fleet operators.

  10. Design and Operation of Equipment to Detect and Remove Water within Used Nuclear Fuel Storage Bottles

    SciTech Connect (OSTI)

    C.C. Baker; T.M. Pfeiffer; J.C. Price

    2013-09-01

    Inspection and drying equipment has been implemented in a hot cell to address the inadvertent ingress of water into used nuclear fuel storage bottles. Operated with telemanipulators, the system holds up to two fuel bottles and allows their threaded openings to be connected to pressure transducers and a vacuum pump. A prescribed pressure rebound test is used to diagnose the presence of moisture. Bottles found to contain moisture are dried by vaporization. The drying process is accelerated by the application of heat and vacuum. These techniques detect and remove virtually all free water (even water contained in a debris bed) while leaving behind most, if not all, particulates. The extracted water vapour passes through a thermoelectric cooler where it is condensed back to the liquid phase for collection. Fuel bottles are verified to be dry by passing the pressure rebound test.

  11. Hydrothermal Testing of K Basin Sludge and N Reactor Fuel at Sludge Treatment Project Operating Conditions

    SciTech Connect (OSTI)

    Delegard, Calvin H.; Schmidt, Andrew J.; Thornton, Brenda M.

    2007-03-30

    The Sludge Treatment Project (STP), managed for the U. S. DOE by Fluor Hanford (FH), was created to design and operate a process to eliminate uranium metal from K Basin sludge prior to packaging for Waste Isolation Pilot Plant (WIPP). The STP process uses high temperature liquid water to accelerate the reaction, produce uranium dioxide from the uranium metal, and safely discharge the hydrogen. Under nominal process conditions, the sludge will be heated in pressurized water at 185°C for as long as 72 hours to assure the complete reaction (corrosion) of up to 0.25-inch diameter uranium metal pieces. Under contract to FH, the Pacific Northwest National Laboratory (PNNL) conducted bench-scale testing of the STP hydrothermal process in November and December 2006. Five tests (~50 ml each) were conducted in sealed, un-agitated reaction vessels under the hydrothermal conditions (e.g., 7 to 72 h at 185°C) of the STP corrosion process using radioactive sludge samples collected from the K East Basin and particles/coupons of N Reactor fuel also taken from the K Basins. The tests were designed to evaluate and understand the chemical changes that may be occurring and the effects that any changes would have on sludge rheological properties. The tests were not designed to evaluate engineering aspects of the process. The hydrothermal treatment affected the chemical and physical properties of the sludge. In each test, significant uranium compound phase changes were identified, resulting from dehydration and chemical reduction reactions. Physical properties of the sludge were significantly altered from their initial, as-settled sludge values, including, shear strength, settled density, weight percent water, and gas retention.

  12. Organic fuel cells and fuel cell conducting sheets

    DOE Patents [OSTI]

    Masel, Richard I. (Champaign, IL); Ha, Su (Champaign, IL); Adams, Brian (Savoy, IL)

    2007-10-16

    A passive direct organic fuel cell includes an organic fuel solution and is operative to produce at least 15 mW/cm.sup.2 when operating at room temperature. In additional aspects of the invention, fuel cells can include a gas remover configured to promote circulation of an organic fuel solution when gas passes through the solution, a modified carbon cloth, one or more sealants, and a replaceable fuel cartridge.

  13. Technical considerations in repowering a nuclear plant for fossil fueled operation

    SciTech Connect (OSTI)

    Patti, F.J.

    1996-03-01

    Repowering involves replacement of the reactor by a fossil fuel source of steam. This source can be a conventional fossil fueled boiler or the heat recovery steam generator (HRSG) on a gas turbine exhaust. The existing steam turbine plant is used to the extent possible. Alternative fuels for repowering a nuclear plant are coal, natural gas and oil. In today`s world oil is not usually an alternative. Selection of coal or natural gas is largely a matter of availability of the fuel near the location of the plant. Both the fossil boiler and the HRSG produce steam at higher pressures and temperatures than the throttle conditions for a saturated steam nuclear turbine. It is necessary to match the steam conditions from the new source to the existing turbine as closely as possible. Technical approaches to achieve a match range from using a topping turbine at the front end of the cycle to attemperation of the throttle steam with feedwater. The electrical output from the repowered plant is usually greater than that of the original nuclear fueled design. This requires consideration of the ability to use the excess electricity. Interfacing of the new facility with the existing turbine plant requires consideration of facility layout and design. Site factors must also be considered, especially for a coal fired boiler, since rail and coal handling facilities must be added to a site for which these were not considered. Additional site factors that require consideration are ash handling and disposal.

  14. Operation of a Four-Cylinder 1.9L Propane Fueled HCCI Engine

    SciTech Connect (OSTI)

    Flowers, D; Aceves, S M; Martinez-Frias, J; Smith, J R; Au, M; Girard, J; Dibble, R

    2001-03-15

    A four-cylinder 1.9 Volkswagen TDI Engine has been converted to run in Homogeneous Charge Compression Ignition (HCCI) mode. The stock configuration is a turbocharged direct injection Diesel engine. The combustion chamber has been modified by discarding the in-cylinder Diesel fuel injectors and replacing them with blank inserts (which contain pressure transducers). The stock pistons contain a reentrant bowl and have been retained for the tests reported here. The intake and exhaust manifolds have also been retained, but the turbocharger has been removed. A heater has been installed upstream of the intake manifold and fuel is added just downstream of this heater. The performance of this engine in naturally aspirated HCCI operation, subject to variable intake temperature and fuel flow rate, has been studied. The engine has been run with propane fuel at a constant speed of 1800 rpm. This work is intended to characterize the HCCI operation of the engine in this configuration that has been minimally modified from the base Diesel engine. The performance (BMEP, IMEP, efficiency, etc) and emissions (THC, CO, NOx) of the engine are presented, as are combustion process results based on heat release analysis of the pressure traces from each cylinder.

  15. Hydraulically actuated fuel injector including a pilot operated spool valve assembly and hydraulic system using same

    DOE Patents [OSTI]

    Shafer, Scott F. (Morton, IL)

    2002-01-01

    The present invention relates to hydraulic systems including hydraulically actuated fuel injectors that have a pilot operated spool valve assembly. One class of hydraulically actuated fuel injectors includes a solenoid driven pilot valve that controls the initiation of the injection event. However, during cold start conditions, hydraulic fluid, typically engine lubricating oil, is particularly viscous and is often difficult to displace through the relatively small drain path that is defined past the pilot valve member. Because the spool valve typically responds slower than expected during cold start due to the difficulty in displacing the relatively viscous oil, accurate start of injection timing can be difficult to achieve. There also exists a greater difficulty in reaching the higher end of the cold operating speed range. Therefore, the present invention utilizes a fluid evacuation valve to aid in displacement of the relatively viscous oil during cold start conditions.

  16. Sales of Fossil Fuels Produced from Federal and Indian Lands, FY 2003 through FY 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Table 1. Fossil fuel sales of production from federal lands, FY 2003-14 Fiscal Year Crude Oil and Lease Condensate Natural Gas Plant Liquids 2 Natural Gas Coal Fossil Fuels Million Barrels 1 Trillion Btu Percent of U.S. Total Million Barrels 1 Trillion Btu Percent of U.S. Total Billion Cubic Feet 1 Trillion Btu Percent of U.S. Total Million Short Tons 1 Trillion Btu Percent of U.S. Total Trillion Btu Percent of U.S. Total 2003 679 3,939 33.0% 93 347 14.7% 6,798 6,981 35.7% 436 8,960 40.6%

  17. Sales of Fossil Fuels Produced from Federal and Indian Lands, FY 2003 through FY 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Table 2. Fossil fuel sales of production from Indian lands, FY 2003-14 Fiscal Year Crude Oil and Lease Condensate Natural Gas Plant Liquids 2 Natural Gas Coal Fossil Fuels Million Barrels 1 Trillion Btu Percent of U.S. Total Million Barrels 1 Trillion Btu Percent of U.S. Total Billion Cubic Feet 1 Trillion Btu Percent of U.S. Total Million Short Tons 1 Trillion Btu Percent of U.S. Total Trillion Btu Percent of U.S. Total 2003 10 59 0.5% 2 6 0.3% 283 291 1.5% 30 616 2.8% 972 1.7% 2004 10 58

  18. Fuel flexible fuel injector

    DOE Patents [OSTI]

    Tuthill, Richard S; Davis, Dustin W; Dai, Zhongtao

    2015-02-03

    A disclosed fuel injector provides mixing of fuel with airflow by surrounding a swirled fuel flow with first and second swirled airflows that ensures mixing prior to or upon entering the combustion chamber. Fuel tubes produce a central fuel flow along with a central airflow through a plurality of openings to generate the high velocity fuel/air mixture along the axis of the fuel injector in addition to the swirled fuel/air mixture.

  19. Impact of fuel cladding failure events on occupational radiation exposures at nuclear power plants. Case study: PWR during routine operations

    SciTech Connect (OSTI)

    Moeller, M.P.; Martin, G.F.; Haggard, D.L.

    1986-01-01

    The purpose of this report is to present data in support of evaluating the impact of fuel cladding failure events on occupational radiation exposure. To determine quantitatively whether fuel cladding failure contributes significantly to occupational radiation exposure, radiation exposure measurements were taken at comparable locations in two mirror-image pressurized-water reactors (PWRs) and their common auxiliary building. One reactor, Unit B, was experiencing degraded fuel characterized as 0.125% fuel pin-hole leakers and was operating at approximately 55% of the reactor's licensed maximum core power, while the other reactor, Unit A, was operating under normal conditions with less than 0.01% fuel pin-hole leakers at 100% of the reactor's licensed maximum core power. Measurements consisted of gamma spectral analyses, radiation exposure rates and airborne radionuclide concentrations. In addition, data from primary coolant sample results for the previous 20 months on both reactor coolant systems were analyzed. The results of the measurements and coolant sample analyses suggest that a 3560-megawatt-thermal (1100 MWe) PWR operating at full power with 0.125% failed fuel can experience an increase of 540% in radiation exposure rates as compared to a PWR operating with normal fuel. In specific plant areas, the degraded fuel may elevate radiation exposure rates even more.

  20. Emission Characteristics of a Diesel Engine Operating with In-Cylinder Gasoline and Diesel Fuel Blending

    SciTech Connect (OSTI)

    Prikhodko, Vitaly Y; Curran, Scott; Barone, Teresa L; Lewis Sr, Samuel Arthur; Storey, John Morse; Cho, Kukwon; Wagner, Robert M; Parks, II, James E

    2010-01-01

    Advanced combustion regimes such as homogeneous charge compression ignition (HCCI) and premixed charge compression ignition (PCCI) offer benefits of reduced nitrogen oxides (NOx) and particulate matter (PM) emissions. However, these combustion strategies often generate higher carbon monoxide (CO) and hydrocarbon (HC) emissions. In addition, aldehydes and ketone emissions can increase in these modes. In this study, the engine-out emissions of a compression-ignition engine operating in a fuel reactivity- controlled PCCI combustion mode using in-cylinder blending of gasoline and diesel fuel have been characterized. The work was performed on a 1.9-liter, 4-cylinder diesel engine outfitted with a port fuel injection system to deliver gasoline to the engine. The engine was operated at 2300 rpm and 4.2 bar brake mean effective pressure (BMEP) with the ratio of gasoline to diesel fuel that gave the highest engine efficiency and lowest emissions. Engine-out emissions for aldehydes, ketones and PM were compared with emissions from conventional diesel combustion. Sampling and analysis was carried out following micro-tunnel dilution of the exhaust. Particle geometric mean diameter, number-size distribution, and total number concentration were measured by a scanning mobility particle sizer (SMPS). For the particle mass measurements, samples were collected on Teflon-coated quartz-fiber filters and analyzed gravimetrically. Gaseous aldehydes and ketones were sampled using dinitrophenylhydrazine-coated solid phase extraction cartridges and the extracts were analyzed by liquid chromatography/mass spectrometry (LC/MS). In addition, emissions after a diesel oxidation catalyst (DOC) were also measured to investigate the destruction of CO, HC and formaldehydes by the catalyst.

  1. Method of producing a colloidal fuel from coal and a heavy petroleum fraction

    DOE Patents [OSTI]

    Longanbach, James R. (Columbus, OH)

    1983-08-09

    A method is provided for combining coal as a colloidal suspension within a heavy petroleum fraction. The coal is broken to a medium particle size and is formed into a slurry with a heavy petroleum fraction such as a decanted oil having a boiling point of about 300.degree.-550.degree. C. The slurry is heated to a temperature of 400.degree.-500.degree. C. for a limited time of only about 1-5 minutes before cooling to a temperature of less than 300.degree. C. During this limited contact time at elevated temperature the slurry can be contacted with hydrogen gas to promote conversion. The liquid phase containing dispersed coal solids is filtered from the residual solids and recovered for use as a fuel or feed stock for other processes. The residual solids containing some carbonaceous material are further processed to provide hydrogen gas and heat for use as required in this process.

  2. Sales of Fossil Fuels Produced from Federal and Indian Lands, FY 2003 through FY 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    8 Table 7. Sales of fossil fuel production from federal and Indian lands by state/area, FY 2003-14 trillion Btu State 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 Alabama 75 57 51 47 40 42 60 88 86 71 46 29 Alaska 61 66 68 52 32 28 27 23 21 19 18 21 Arizona 258 273 280 193 180 162 157 154 164 163 167 158 Arkansas 7 8 10 10 10 11 15 18 14 13 11 11 California 141 125 124 139 146 129 116 115 121 125 121 119 Colorado 785 842 960 906 905 931 846 868 917 952 875 877 Florida 0 - - - - -

  3. Biotechnology for producing fuels and chemicals from biomass. Volume II. Fermentation chemicals from biomass

    SciTech Connect (OSTI)

    Villet, R.

    1981-02-01

    The technological and economic feasibility of producing some selected chemicals by fermentation is discussed: acetone, butanol, acetic acid, citric acid, 2,3-butanediol, and propionic acid. The demand for acetone and butanol has grown considerably. They have not been produced fermentatively for three decades, but instead by the oxo and aldol processes. Improved cost of fermentative production will hinge on improving yields and using cellulosic feedstocks. The market for acetic acid is likely to grow 5% to 7%/yr. A potential process for production is the fermentation of hydrolyzed cellulosic material to ethanol followed by chemical conversion to acetic acid. For about 50 years fermentation has been the chief process for citric acid production. The feedstock cost is 15% to 20% of the overall cost of production. The anticipated 5%/yr growth in demand for citric acid could be enhanced by using it to displace phosphates in detergent manufacture. A number of useful chemicals can be derived from 2,3-butanediol, which has not been produced commercially on a large scale. R and D are needed to establish a viable commercial process. The commercial fermentative production of propionic acid has not yet been developed. Recovery and purification of the product require considerable improvement. Other chemicals such as lactic acid, isopropanol, maleic anhydride, fumarate, and glycerol merit evaluation for commercial fermentative production in the near future.

  4. Optimizing immobilized enzyme performance in cell-free environments to produce liquid fuels.

    SciTech Connect (OSTI)

    Kumar, Sanat

    2015-02-05

    The overall goal of this project was to optimize enzyme performance for the production of bio-diesel fuel. Enzyme immobilization has attracted much attention as a means to increase productivity. Mesorporous silica materials have been known to be best suited for immobilizing enzymes. A major challenge is to ensure that the enzymatic activity is retained after immobilization. Two major factors which drive enzymatic deactivation are protein-surface and inter-protein interactions. Previously, we studied protein stability inside pores and how to optimize protein-surface interactions to minimize protein denaturation. In this work we studied eh effect of surface curvature and chemistry on inter-protein interactions. Our goal was to find suitable immobilization supports which minimize these inter-protein interactions. Our studies carried out in the frame work of Hydrophobic-Polar (HP) model showed that enzymes immobilized inside hydrophobic pores of optimal sizes are best suited to minimize these inter-protein interactions. Besides, this study is also of biological importance to understand the role of chaperonins in protein disaggregation. Both of these aspects profited immensely with collaborations with our experimental colleague, Prof. Georges Belfort (RPI), who performed the experimental analog of our theoretical works.

  5. SG BioFuels | Open Energy Information

    Open Energy Info (EERE)

    SG BioFuels Jump to: navigation, search Name: SG BioFuels Place: Encinitas, California Zip: 92024 Product: California-based biofuel producer operating across the United States....

  6. ,"AGA Producing Region Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    Underground Natural Gas Storage - All Operators" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Total Underground Storage",6,"Monthly","12/2014","1/15/1994" ,"Data 2","Change in Working Gas from Same Period Previous

  7. Report on Development of Concepts for the Advanced Casting System in Support of the Deployment of a Remotely Operable Research Scale Fuel Fabrication Facility for Metal Fuel

    SciTech Connect (OSTI)

    Ken Marsden

    2007-03-01

    Demonstration of recycle processes with low transuranic losses is key to the successful implementation of the Global Nuclear Energy Partnership strategy to manage spent fuel. It is probable that these recycle processes will include remote fuel fabrication. This report outlines the strategy to develop and implement a remote metal fuel casting process with minimal transuranic losses. The approach includes a bench-scale casting system to develop materials, methods, and perform tests with transuranics, and an engineering-scale casting system to demonstrate scalability and remote operability. These systems will be built as flexible test beds allowing exploration of multiple fuel casting approaches. The final component of the remote fuel fabrication demonstration culminates in the installation of an advanced casting system in a hot cell to provide integrated remote operation experience with low transuranic loss. Design efforts and technology planning have begun for the bench-scale casting system, and this will become operational in fiscal year 2008, assuming appropriate funding. Installation of the engineering-scale system will follow in late fiscal year 2008, and utilize materials and process knowledge gained in the bench-scale system. Assuming appropriate funding, the advanced casting system will be installed in a remote hot cell at the end of fiscal year 2009.

  8. Immobilization of chloride-rich radioactive wastes produced by pyrochemical operations

    SciTech Connect (OSTI)

    McDaniel, E.W.; Terry, J.W.

    1997-08-01

    A a result of its former role as a producer of nuclear weapons components, the Rocky Flats Environmental Technology Site (RFETS), Golden, Colorado accumulated a variety of plutonium-contaminated materials. When the level of contamination exceeded a predetermined level (the economic discard limit), the materials were classified as residues rather than waste and were stored for later recovery of the plutonium. Although large quantities of residues were processed, others, primarily those more difficult to process, remain in storage at the site. It is planned for the residues with lower concentrations of plutonium to be disposed of as wastes at an appropriate disposal facility, probably the Waste Isolation Pilot Plant (WIPP). Because the plutonium concentration is too high or because the physical or chemical form would be difficult to get into a form acceptable to WIPP, it may not be possible to dispose of a portion of the residues at WIPP. The pyrochemical salts are among the residues that are difficult to dispose of. For a large percentage of the pyrochemical salts, safeguards controls are required, but WIPP was not designed to accommodate safeguards controls. A potential solution would be to immobilize the salts. These immobilized salts would contain substantially higher plutonium concentrations than is currently permissible but would be suitable for disposal at WIPP. This document presents the results of a review of three immobilization technologies to determine if mature technologies exist that would be suitable to immobilize pyrochemical salts: cement-based stabilization, low-temperature vitrification, and polymer encapsulation. The authors recommend that flow sheets and life-cycle costs be developed for cement-based and low-temperature glass immobilization.

  9. Ice formation in PEM fuel cells operated isothermally at sub-freezing temperatures

    SciTech Connect (OSTI)

    Mukundan, Rangachary; Luhan, Roger W; Davey, John R; Spendelow, Jacob S; Borup, Rodney L; Hussey, Daniel S; Jacobson, David L; Arif, Muhammad

    2009-01-01

    The effect of MEA and GDL structure and composition on the performance of single-PEM fuel cells operated isothermally at subfreezing temperatures is presented. The cell performance and durability are not only dependent on the MEA/GDL materials used but also on their interfaces. When a cell is operated isothermally at sub-freezing temperatures in constant current mode, the water formation due to the current density initially hydrates the membrane/ionomer and then forms ice in the catalyst layer/GDL. An increase in high frequency resistance was also observed in certain MEAs where there is a possibility of ice formation between the catalyst layer and GDL leading to a loss in contact area. The total water/ice holding capacity for any MEA was lower at lower temperatures and higher current densities. The durability of MEAs subjected to multiple isothermal starts was better for LANL prepared MEAs as compared to commercial MEAs, and cloth GDLs when compared to paper GDLs. The ice formation was monitored using high-resolution neutron radiography and was found to be concentrated near the cathode catalyst layer. However, there was significant ice formation in the GDLs especially at the higher temperature ({approx} -10 C) and lower current density (0.02 A/cm{sup 2}) operations. These results are consistent with the longer-term durability observations that show more severe degradation at the lower temperatures.

  10. Spent Nuclear Fuel (SNF) Project Cold Vacuum Drying (CVD) Facility Operations Manual

    SciTech Connect (OSTI)

    IRWIN, J.J.

    2000-11-18

    The mission of the Spent Nuclear Fuel (SNF) Project Cold Vacuum Drying Facility (CVDF) is to achieve the earliest possible removal of free water from Multi-Canister Overpacks (MCOs). The MCOs contain metallic uranium SNF that have been removed from the 100K Area fuel storage water basins (i.e., the K East and K West Basins) at the US. Department of Energy Hanford Site in Southeastern Washington state. Removal of free water is necessary to halt water-induced corrosion of exposed uranium surfaces and to allow the MCOs and their SNF payloads to be safely transported to the Hanford Site 200 East Area and stored within the SNF Project Canister Storage Building (CSB). The CVDF is located within a few hundred yards of the basins, southwest of the 165KW Power Control Building and the 105KW Reactor Building. The site area required for the facility and vehicle circulation is approximately 2 acres. Access and egress is provided by the main entrance to the 100K inner area using existing roadways. The CVDF will remove free. water from the MCOs to reduce the potential for continued fuel-water corrosion reactions. The cold vacuum drying process involves the draining of bulk water from the MCO and subsequent vacuum drying. The MCO will be evacuated to a pressure of 8 torr or less and backfilled with an inert gas (helium). The MCO will be sealed, leak tested, and then transported to the CSB within a sealed shipping cask. (The MCO remains within the same shipping Cask from the time it enters the basin to receive its SNF payload until it is removed from the Cask by the CSB MCO handling machine.) The CVDF subproject acquired the required process systems, supporting equipment, and facilities. The cold vacuum drying operations result in an MCO containing dried fuel that is prepared for shipment to the CSB by the Cask transportation system. The CVDF subproject also provides equipment to dispose of solid wastes generated by the cold vacuum drying process and transfer process water removed from the MCO back to the K Basins.

  11. Fuel cell system for transportation applications

    DOE Patents [OSTI]

    Kumar, Romesh (Naperville, IL); Ahmed, Shabbir (Evanston, IL); Krumpelt, Michael (Naperville, IL); Myles, Kevin M. (Downers Grove, IL)

    1993-01-01

    A propulsion system for a vehicle having pairs of front and rear wheels and a fuel tank. An electrically driven motor having an output shaft operatively connected to at least one of said pair of wheels is connected to a fuel cell having a positive electrode and a negative electrode separated by an electrolyte for producing dc power to operate the motor. A partial oxidation reformer is connected both to the fuel tank and to the fuel cell receives hydrogen-containing fuel from the fuel tank and water and air and for partially oxidizing and reforming the fuel with water and air in the presence of an oxidizing catalyst and a reforming catalyst to produce a hydrogen-containing gas. The hydrogen-containing gas is sent from the partial oxidation reformer to the fuel cell negative electrode while air is transported to the fuel cell positive electrode to produce dc power for operating the electric motor.

  12. Fuel cell system for transportation applications

    DOE Patents [OSTI]

    Kumar, R.; Ahmed, S.; Krumpelt, M.; Myles, K.M.

    1993-09-28

    A propulsion system is described for a vehicle having pairs of front and rear wheels and a fuel tank. An electrically driven motor having an output shaft operatively connected to at least one of said pair of wheels is connected to a fuel cell having a positive electrode and a negative electrode separated by an electrolyte for producing dc power to operate the motor. A partial oxidation reformer is connected both to the fuel tank and to the fuel cell and receives hydrogen-containing fuel from the fuel tank and uses water and air for partially oxidizing and reforming the fuel in the presence of an oxidizing catalyst and a reforming catalyst to produce a hydrogen-containing gas. The hydrogen-containing gas is sent from the partial oxidation reformer to the fuel cell negative electrode while air is transported to the fuel cell positive electrode to produce dc power for operating the electric motor. 3 figures.

  13. Application of Hydrogen Assisted Lean Operation to Natural Gas-Fueled Reciprocating Engines (HALO)

    SciTech Connect (OSTI)

    Chad Smutzer

    2006-01-01

    Two key challenges facing Natural Gas Engines used for cogeneration purposes are spark plug life and high NOx emissions. Using Hydrogen Assisted Lean Operation (HALO), these two keys issues are simultaneously addressed. HALO operation, as demonstrated in this project, allows stable engine operation to be achieved at ultra-lean (relative air/fuel ratios of 2) conditions, which virtually eliminates NOx production. NOx values of 10 ppm (0.07 g/bhp-hr NO) for 8% (LHV H2/LHV CH4) supplementation at an exhaust O2 level of 10% were demonstrated, which is a 98% NOx emissions reduction compared to the leanest unsupplemented operating condition. Spark ignition energy reduction (which will increase ignition system life) was carried out at an oxygen level of 9%, leading to a NOx emission level of 28 ppm (0.13 g/bhp-hr NO). The spark ignition energy reduction testing found that spark energy could be reduced 22% (from 151 mJ supplied to the coil) with 13% (LHV H2/LHV CH4) hydrogen supplementation, and even further reduced 27% with 17% hydrogen supplementation, with no reportable effect on NOx emissions for these conditions and with stable engine torque output. Another important result is that the combustion duration was shown to be only a function of hydrogen supplementation, not a function of ignition energy (until the ignitability limit was reached). The next logical step leading from these promising results is to see how much the spark energy reduction translates into increase in spark plug life, which may be accomplished by durability testing.

  14. Performance of solid oxide fuel cells operated with coal syngas provided directly from a gasification process

    SciTech Connect (OSTI)

    Hackett, Gregory A.; Gerdes, Kirk R.; Song, Xueyan; Chen, Yun; Shutthanandan, V.; Engelhard, Mark H.; Zhu, Zihua; Thevuthasan, Suntharampillai; Gemmen, Randall

    2012-09-15

    Solid oxide fuel cells (SOFCs) are presently being developed for gasification integrated power plants that generate electricity from coal at 50+% efficiency. The interaction of trace metals in coal syngas with the Ni-based SOFC anodes is being investigated through thermodynamic analyses and in laboratory experiments, but direct test data from coal syngas exposure are sparsely available. This research effort evaluates the significance of SOFC performance losses associated with exposure of a SOFC anode to direct coal syngas. SOFC specimen of industrially relevant composition are operated in a unique mobile test skid that was deployed to the research gasifier at the National Carbon Capture Center (NCCC) in Wilsonville, AL. The mobile test skid interfaces with a gasifier slipstream to deliver hot syngas (up to 300C) directly to a parallel array of 12 button cell specimen, each of which possesses an active area of approximately 2 cm2. During the 500 hour test period, all twelve cells were monitored for performance at four discrete operating current densities, and all cells maintained contact with a data acquisition system. Of these twelve, nine demonstrated good performance throughout the test, while three of the cells were partially compromised. Degradation associated with the properly functioning cells was attributed to syngas exposure and trace material attack on the anode structure that was accelerated at increasing current densities. Cells that were operated at 0 and 125 mA/cm degraded at 9.1 and 10.7% per 1000 hours, respectively, while cells operated at 250 and 375 mA/cm degraded at 18.9 and 16.2% per 1000 hours, respectively. Post-trial spectroscopic analysis of the anodes showed carbon, sulfur, and phosphorus deposits; no secondary Ni-metal phases were found.

  15. fuel

    National Nuclear Security Administration (NNSA)

    4%2A en Cheaper catalyst may lower fuel costs for hydrogen-powered cars http:www.nnsa.energy.govblogcheaper-catalyst-may-lower-fuel-costs-hydrogen-powered-cars

  16. fuel

    National Nuclear Security Administration (NNSA)

    4%2A en Cheaper catalyst may lower fuel costs for hydrogen-powered cars http:nnsa.energy.govblogcheaper-catalyst-may-lower-fuel-costs-hydrogen-powered-cars

  17. Influence of gadolinium doping on the structure and defects of ceria under fuel cell operating temperature

    SciTech Connect (OSTI)

    Acharya, S. A. Gaikwad, V. M.; Sathe, V.; Kulkarni, S. K.

    2014-03-17

    Correlation between atomic positional shift, oxygen vacancy defects, and oxide ion conductivity in doped ceria system has been established in the gadolinium doped ceria system from X-ray diffraction (XRD) and Raman spectroscopy study at operating temperature (300600?C) of Intermediate Temperature Solid Oxide Fuel Cell (IT-SOFC). High temperature XRD data are used to quantify atomic positional shift from mean position with temperature. The Raman spectroscopy study shows additional vibration modes related to ordering of defect spaces (Gd{sub Ce}{sup ?}?V{sub o}{sup }){sup *} and (2Gd{sub Ce}{sup ?}?V{sub o}{sup }){sup x} generated due to association of oxygen vacancies and reduced cerium or dopant cations site (Gd{sup 3+}), which disappear at 450?C; indicating oxygen vacancies dissociation from the defect complex. The experimental evidences of cation-anion positional shifting and oxygen vacancies dissociation from defect complex in the IT-SOFC operating temperature are discussed to correlate with activation energy for ionic conductivity.

  18. Hydrogen and Fuel Cell Technologies Program: Fuel Cells Fact...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen and Fuel Cell Technologies Program: Fuel Cells Fact Sheet Hydrogen and Fuel Cell Technologies Program: Fuel Cells Fact Sheet Fact sheet produced by the Fuel Cell...

  19. Investigation on Flame Characteristics and Burner Operability Issues of Oxy-Fuel Combustion

    SciTech Connect (OSTI)

    Choudhuri, Ahsan

    2013-05-30

    Oxy-fuel combustion has been used previously in a wide range of industrial applications. Oxy- combustion is carried out by burning a hydrocarbon fuel with oxygen instead of air. Flames burning in this configuration achieve higher flame temperatures which present opportunities for significant efficiency improvements and direct capture of CO{sub 2} from the exhaust stream. In an effort to better understand and characterize the fundamental flame characteristics of oxy-fuel combustion this research presents the experimental measurements of flame stability of various oxyfuel flames. Effects of H{sub 2} concentration, fuel composition, exhaust gas recirculation ratio, firing inputs, and burner diameters on the flame stability of these fuels are discussed. Effects of exhaust gas recirculation i.e. CO{sub 2} and H{sub 2}O (steam) acting as diluents on burner operability are also presented. The roles of firing input on flame stability are then analyzed. For this study it was observed that many oxy-flames did not stabilize without exhaust gas recirculation due to their higher burning velocities. In addition, the stability regime of all compositions was observed to decrease as the burner diameter increased. A flashback model is also presented, using the critical velocity gradient g{sub F}) values for CH{sub 4}-O{sub 2}-CO{sub 2} flames. The scaling relation (𝐠{sub F} = 𝐜 𝐒{sub 𝐋}{sup 2}/𝛂) for different burner diameters was obtained for various diameter burners. The report shows that results correlated linearly with a scaling value of c =0.0174. The second part of the study focuses on the experimental measurements of the flow field characteristics of premixed CH{sub 4}/21%O{sub 2}/79%N{sub 2} and CH{sub 4}/38%O{sub 2}/72%CO{sub 2} mixtures at constant firing input of 7.5 kW, constant, equivalence ratio of 0.8, constant swirl number of 0.92 and constant Reynolds Numbers. These measurements were taken in a swirl stabilized combustor at atmospheric pressure. The flow field visualization using Particle Imaging Velocimetry (PIV) technique is implemented to make a better understanding of the turbulence characteristics of CH{sub 4}/air and CH{sub 4}/38%O{sub 2}/72%CO{sub 2} combustion. The velocity fluctuations, turbulence intensities and local propagation velocities along the combustion chamber have been determined. The turbulent intensities increase as we move away from the combustor axis. CH{sub 4}-38%O{sub 2}-72%CO{sub 2} flames have low radial velocity and turbulent intensity distributions at different axial distances when compared with CH{sub 4}-Air flames.

  20. Method of producing a diesel fuel blend having a pre-determined flash-point and pre-determined increase in cetane number

    DOE Patents [OSTI]

    Waller, Francis Joseph; Quinn, Robert

    2004-07-06

    The present invention relates to a method of producing a diesel fuel blend having a pre-determined flash-point and a pre-determined increase in cetane number over the stock diesel fuel. Upon establishing the desired flash-point and increase in cetane number, an amount of a first oxygenate with a flash-point less than the flash-point of the stock diesel fuel and a cetane number equal to or greater than the cetane number of the stock diesel fuel is added to the stock diesel fuel in an amount sufficient to achieve the pre-determined increase in cetane number. Thereafter, an amount of a second oxygenate with a flash-point equal to or greater than the flash-point of the stock diesel fuel and a cetane number greater than the cetane number of the stock diesel fuel is added to the stock diesel fuel in an amount sufficient to achieve the pre-determined increase in cetane number.

  1. Fuel injection system and method of operating the same for an engine

    DOE Patents [OSTI]

    Topinka, Jennifer Ann (Niskayuna, NY); DeLancey, James Peter (Corinth, NY); Primus, Roy James (Niskayuna, NY); Pintgen, Florian Peter (Niskayuna, NY)

    2011-02-15

    A fuel injector is coupled to an engine. The fuel injector includes an injection opening configured to vary in cross-section between a open state and a fully closed state. The fuel injector is configured to provide a plurality of discrete commanded fuel injections into an engine cylinder by modulating the size of the injection opening without completely closing the opening to the fully closed state.

  2. Operation of a Four-Cylinder 1.9L Propane Fueled Homogeneous Charge Compression Ignition Engine: Basic Operating Characteristics and Cylinder-to-Cylinder Effects

    SciTech Connect (OSTI)

    Flowers, D; Aceves, S M; Martinez-Frias, J; Smith, J R; Au, M; Girard, J; Dibble, R

    2001-03-12

    A four-cylinder 1.9 Volkswagen TDI Engine has been converted to run in Homogeneous Charge Compression Ignition (HCCI) mode. The stock configuration is a turbocharged direct injection Diesel engine. The combustion chamber has been modified by discarding the in-cylinder Diesel fuel injectors and replacing them with blank inserts (which contain pressure transducers). The stock pistons contain a reentrant bowl and have been retained for the tests reported here. The intake and exhaust manifolds have also been retained, but the turbocharger has been removed. A heater has been installed upstream of the intake manifold and fuel is added just downstream of this heater. The performance of this engine in naturally aspirated HCCI operation, subject to variable intake temperature and fuel flow rate, has been studied. The engine has been run with propane fuel at a constant speed of 1800 rpm. This work is intended to characterize the HCCI operation of the engine in this configuration that has been minimally modified from the base Diesel engine. The performance (BMEP, IMEP, efficiency, etc) and emissions (THC, CO, NOx) of the engine are presented, as are combustion process results based on heat release analysis of the pressure traces from each cylinder.

  3. Influence of fuel variables on the operation of automotive open and pre-chamber diesel and spark ignited stratified charge engines: a literature study covering petroleum and syncrude derived fuels

    SciTech Connect (OSTI)

    Needham, J.R.

    1980-09-01

    A literature study has been carried out to ascertain the influence of fuels and fuel variables on the operation of automotive diesel and spark ignited stratified charge engines with a view to understanding the impact of future fuels derived from Syncrude. The findings from the search are presented and discussed in detail, conclusions reached and recommendations made.

  4. An assessment of potential environmental impacts of cement kiln dust produced in kilns co-fired with hazardous waste fuels

    SciTech Connect (OSTI)

    Goad, P.T.; Millner, G.C.; Nye, A.C.

    1998-12-31

    The Keystone Cement Company (Keystone), located in Bath, Pennsylvania, produces cement in two kilns that are co-fired with hazardous waste-derived fuels. Beginning in the late 1970`s Keystone began storing cement kiln dust (CKD) in an aboveground storage pile located on company property adjacent to the cement kilns. Storm water runoff from the CKD pile is channeled into a storm water settling pond which in turn discharges into Monocacy Creek, a stream running along the eastern property boundary. Monocacy Creek sustains a thriving trout fishery and is routinely fished during the open recreational fishing season in pennsylvania. The CKD pile has a surface area of approximately 12 acres, with an average height of approximately 35 feet. The southern edge of the pile is contiguous with an adjacent company-owned field in which field corn is grown for cattle feed. Some of the corn on the edges of the field is actually grown in direct contact with CKD that comprises the edge of the storage pile. The CKD pile is located approximately 150 yards to the west of Monocacy Creek. In 1995--1996 water, sediment and fish (trout) samples were obtained from Monocacy Creek sampling stations upstream and downstream of the point of discharge of storm water runoff from the CKD pile. In addition, corn samples were obtained from the field contiguous with the CKD pile and from a control field located distant to the site. The sediment, water, fish, and corn samples were analyzed for various chemicals previously identified as chemicals of potential concern in CKD. These data indicate that chemical constituents of CKD are not contaminating surface water or sediment in the stream, and that bioaccumulation of organic chemicals and/or metals has not occurred in field corn grown in direct contact with undiluted CKD, or in fish living in the waters that receive CKD pile runoff.

  5. How Fuel Cells Work | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cells Work How Energy Works 30 likes How Fuel Cells Work Fuel cells produce electrical power without any combustion and operate on fuels like hydrogen, natural gas and propane. This clean energy technology can provide power for virtually any application -- from cars and buses to commercial buildings -- while helping reduce carbon pollution and oil consumption. As part of How Energy Works, we'll cover everything from how fuel cells work and why to their important to current uses and the

  6. Enterprise SRS: Leveraging Ongoing Operations To Advance Nuclear Fuel Cycles Research And Development Programs

    SciTech Connect (OSTI)

    Murray, Alice M.; Marra, John E.; Wilmarth, William R.; Mcguire, Patrick W.; Wheeler, Vickie B.

    2013-07-03

    The Savannah River Site (SRS) is repurposing its vast array of assets to solve future national issues regarding environmental stewardship, national security, and clean energy. The vehicle for this transformation is Enterprise SRS which presents a new, radical view of SRS as a united endeavor for ''all things nuclear'' as opposed to a group of distinct and separate entities with individual missions and organizations. Key among the Enterprise SRS strategic initiatives is the integration of research into facilities in conjunction with on-going missions to provide researchers from other national laboratories, academic institutions, and commercial entities the opportunity to demonstrate their technologies in a relevant environment and scale prior to deployment. To manage that integration of research demonstrations into site facilities, The Department of Energy, Savannah River Operations Office, Savannah River Nuclear Solutions, the Savannah River National Laboratory (SRNL) have established a center for applied nuclear materials processing and engineering research (hereafter referred to as the Center). The key proposition of this initiative is to bridge the gap between promising transformational nuclear fuel cycle processing discoveries and large commercial-scale-technology deployment by leveraging SRS assets as facilities for those critical engineering-scale demonstrations necessary to assure the successful deployment of new technologies. The Center will coordinate the demonstration of R&D technologies and serve as the interface between the engineering-scale demonstration and the R&D programs, essentially providing cradle-to-grave support to the research team during the demonstration. While the initial focus of the Center will be on the effective use of SRS assets for these demonstrations, the Center also will work with research teams to identify opportunities to perform research demonstrations at other facilities. Unique to this approach is the fact that these SRS assets will continue to accomplish DOE's critical nuclear material missions (e.g., processing in H-Canyon and plutonium storage in K-Area). Thus, the demonstration can be accomplished by leveraging the incremental cost of performing demonstrations without needing to cover the full operational cost of the facility. Current Center activities have been focused on integrating advanced safeguards monitoring technologies demonstrations into the SRS H-Canyon and advanced location technologies demonstrations into K-Area Materials Storage. These demonstrations are providing valuable information to researchers and customers as well as providing the Center with an improved protocol for demonstration management that can be exercised across the entire SRS (as well as to offsite venues) so that future demonstrations can be done more efficiently and provide an opportunity to utilize these unique assets for multiple purposes involving national laboratories, academia, and commercial entities. Key among the envisioned future demonstrations is the use of H-Canyon to demonstrate new nuclear materials separations technologies critical for advancing the mission needs DOE-Nuclear Energy (DOE-NE) to advance the research for next generation fuel cycle technologies. The concept is to install processing equipment on frames. The frames are then positioned into an H-Canyon cell and testing in a relevant radiological environment involving prototypic radioactive materials can be performed.

  7. Fuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fuels - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy

  8. Expanding Robust HCCI Operation with Advanced Valve and Fuel Control Technologies

    SciTech Connect (OSTI)

    Szybist, J. P.; Confer, K.

    2012-09-11

    Delphi Automotive Systems and ORNL established this CRADA to advance the commercialization potential of the homogeneous charge compression ignition (HCCI) advanced combustion strategy for gasoline engine platforms. HCCI combustion has been shown by others to produce high diesel-like efficiency on a gasoline engine platform while simultaneously producing low NOX and particulate matter emissions. However, the commercialization barriers that face HCCI combustion are significant, with requirements for a more active engine control system, likely with next-cycle closed-loop feedback control, and with advanced valve train technologies to enable negative valve overlap conditions. In the partnership between Delphi and ORNL, each organization brought a unique and complementary set of skills to the project. Delphi has made a number of breakthroughs with production-intent valve train technologies and controls in recent years to make a part time production-intent HCCI engine plausible. ORNL has extensive knowledge and expertise with HCCI combustion, and also has a versatile research engine with hydraulic valve actuation (HVA) that is useful for guiding production of a cam-based HCCI system. Partnering these knowledge bases and capabilities was essential towards making progress to better understand HCCI combustion and the commercialization barriers that it faces. ORNL and Delphi maintained strong collaboration throughout the project. Meetings were held regularly, with additional reports, presentations, and meetings as necessary to maintain progress. Delphi provided guidance to ORNL regarding operational strategies to investigate on their single-cylinder research engine with HVA and data from their experimental multi-cylinder engine for modeling. ORNL provided single-cylinder engine data and modeling results.

  9. Atmospheric Photochemistry Studies of Pollutant Emissions from Transportation Vehicles Operating on Alternative Fuels

    SciTech Connect (OSTI)

    Jeffries, H.; Sexton, K.; Yu, J.

    1998-07-01

    This project was undertaken with the goal of improving our ability to predict the changes in urban ozone resulting from the widespread use of alternative fuels in automobiles. This report presents the results in detail.

  10. Supplement Analysis … Spent Nuclear Fuel and SRS H-Canyon Operations

    Energy Savers [EERE]

    DOE/EIS-0218-SA-07 SUPPLEMENT ANALYSIS FOR THE FOREIGN RESEARCH REACTOR SPENT NUCLEAR FUEL ACCEPTANCE PROGRAM Highly Enriched Uranium Target Residue Material Transportation U.S. Department of Energy Washington, DC November 2015 DOE/EIS-0218-SA-07 SUPPLEMENT ANALYSIS FOR THE FOREIGN RESEARCH REACTOR SPENT NUCLEAR FUEL ACCEPTANCE PROGRAM Highly Enriched Uranium Target Residue Material Transportation 1.0 INTRODUCTION The Department of Energy (DOE) has a continuing responsibility for safeguarding

  11. Fuel processing device

    DOE Patents [OSTI]

    Ahluwalia, Rajesh K. (Burr Ridge, IL); Ahmed, Shabbir (Naperville, IL); Lee, Sheldon H. D. (Willowbrook, IL)

    2011-08-02

    An improved fuel processor for fuel cells is provided whereby the startup time of the processor is less than sixty seconds and can be as low as 30 seconds, if not less. A rapid startup time is achieved by either igniting or allowing a small mixture of air and fuel to react over and warm up the catalyst of an autothermal reformer (ATR). The ATR then produces combustible gases to be subsequently oxidized on and simultaneously warm up water-gas shift zone catalysts. After normal operating temperature has been achieved, the proportion of air included with the fuel is greatly diminished.

  12. TESTING AND PERFORMANCE ANALYSIS OF NASA 5 CM BY 5 CM BI-SUPPORTED SOLID OXIDE ELECTROLYSIS CELLS OPERATED IN BOTH FUEL CELL AND STEAM ELECTROLYSIS MODES

    SciTech Connect (OSTI)

    R. C. O'Brien; J. E. O'Brien; C. M. Stoots; X. Zhang; S. C. Farmer; T. L. Cable; J. A. Setlock

    2011-11-01

    A series of 5 cm by 5 cm bi-supported Solid Oxide Electrolysis Cells (SOEC) were produced by NASA for the Idaho National Laboratory (INL) and tested under the INL High Temperature Steam Electrolysis program. The results from the experimental demonstration of cell operation for both hydrogen production and operation as fuel cells is presented. An overview of the cell technology, test apparatus and performance analysis is also provided. The INL High Temperature Steam Electrolysis laboratory has developed significant test infrastructure in support of single cell and stack performance analyses. An overview of the single cell test apparatus is presented. The test data presented in this paper is representative of a first batch of NASA's prototypic 5 cm by 5 cm SOEC single cells. Clearly a significant relationship between the operational current density and cell degradation rate is evident. While the performance of these cells was lower than anticipated, in-house testing at NASA Glenn has yielded significantly higher performance and lower degradation rates with subsequent production batches of cells. Current post-test microstructure analyses of the cells tested at INL will be published in a future paper. Modification to cell compositions and cell reduction techniques will be altered in the next series of cells to be delivered to INL with the aim to decrease the cell degradation rate while allowing for higher operational current densities to be sustained. Results from the testing of new batches of single cells will be presented in a future paper.

  13. Optical investigation of the combustion behaviour inside the engine operating in HCCI mode and using alternative diesel fuel

    SciTech Connect (OSTI)

    Mancaruso, E.; Vaglieco, B.M.

    2010-04-15

    In order to understand the effect of both the new homogeneous charge compression ignition (HCCI) combustion process and the use of biofuel, optical measurements were carried out into a transparent CR diesel engine. Rape seed methyl ester was used and tests with several injection pressures were performed. OH and HCO radical were detected and their evolutions were analyzed during the whole combustion. Moreover, soot concentration was measured by means the two colour pyrometry method. The reduction of particulate emission with biodiesel as compared to the diesel fuel was noted. Moreover, this effect resulted higher increasing the injection pressure. In the case of RME the oxidation of soot depends mainly from O{sub 2} content of fuel and OH is responsible of the NO formation in the chamber as it was observed for NO{sub x} exhaust emission. Moreover, it was investigated the evolution of HCO and CO into the cylinder. HCO was detected at the start of combustion. During the combustion, HCO oxidizes due to the increasing temperature and it produces CO. Both fuels have similar trend, the highest concentrations are detected for low injection pressure. This effect is more evident for the RME fuel. (author)

  14. Influence of fuel variables on the operation of automotive open and pre-chamber diesel and spark ignited stratified charge engines: a literature study covering petroleum and syncrude derived fuels, executive summary

    SciTech Connect (OSTI)

    Needham, J.R.

    1980-09-01

    A literature study was carried out to ascertain the influence of fuels and fuel variables on the operation of automotive diesel and spark ignited stratified charge engines with a view to understanding the impact of future fuels derived from syncrude. The findings from the search were presented and discussed in detail in the main report (Ricardo DP.81/539). In this executive summary, the conclusions and recommendations from the main report are presented.

  15. Microstructure degradation of YSZ in Ni/YSZ anodes of SOFC operated in phosphine-containing fuels

    SciTech Connect (OSTI)

    Chen, Yun; Chen, Song; Hackett, Gregory; Finklea, Harry; Zondlod, John; Celik, Ismail; Song, Xueyan; Gerdes, Kirk

    2013-03-07

    The interaction of trace (ppm) phosphine with the nickel/yttria stabilized zirconia (YSZ) anode of commercial solid oxide fuel cells has been investigated and evaluated for both synthesis gas and hydrogen fuels in an effort to examine PY reactions. The Ni poisoning effects reported in literature were confirmed and degradation was examined by electrochemical methods and post-test microstructural and chemical analyses. The results indicate that P-induced degradation rates and mechanisms are fuel dependent and that degradation of cells operated in synthesis gas (syngas) with phosphine is more severe than that of cells operated in hydrogen with phosphine. As reported in published literature, a cell operated in syngas containing 10 ppm phosphine demonstrated significant microstructural degradation within the Ni phase, including formation of NiP phases concentrated on the outer layer of the anode and significant pitting corrosion in the Ni grains. In this research, a previously undetected YPO{sub 4} phase is observed at the YSZ/YSZ/Ni triple grain junctions located at the interface with the YSZ electrolyte. Tetragonal YSZ (t-YSZ) and cubic-YSZ (c-YSZ) domains with sizes of several tens of nanometers are also newly observed along the Ni/YSZ interface. These observations contrast with data obtained for a cell operated in dry hydrogen with phosphine, where no YPO{sub 4} phase is observed and the alternating t-YSZ and c-YSZ domains at the Ni/YSZ interface are smaller with typical sizes of 510 nm. The data imply that electrolyte attack by P is a potentially debilitating mode of degradation in SOFC anodes, and that the associated reaction mechanisms and rates are worthy of further examination.

  16. Effects of Village Power Quality on Fuel Consumption and Operating Expenses

    SciTech Connect (OSTI)

    Richard Wies; Ron Johnson

    2008-12-31

    Alaska's rural village electric utilities are isolated from the Alaska railbelt electrical grid intertie and from each other. Different strategies have been developed for providing power to meet demand in each of these rural communities. Many of these communities rely on diesel electric generators (DEGs) for power. Some villages have also installed renewable power sources and automated generation systems for controlling the DEGs and other sources of power. For example, Lime Village has installed a diesel battery photovoltaic hybrid system, Kotzebue and Wales have wind-diesel hybrid systems, and McGrath has installed a highly automated system for controlling diesel generators. Poor power quality and diesel engine efficiency in village power systems increases the cost of meeting the load. Power quality problems may consist of poor power factor (PF) or waveform disturbances, while diesel engine efficiency depends primarily on loading, the fuel type, the engine temperature, and the use of waste heat for nearby buildings. These costs take the form of increased fuel use, increased generator maintenance, and decreased reliability. With the cost of bulk fuel in some villages approaching $1.32/liter ($5.00/gallon) a modest 5% decrease in fuel use can result in substantial savings with short payback periods depending on the village's load profile and the cost of corrective measures. This project over its five year history has investigated approaches to improving power quality and implementing fuel savings measures through the use of performance assessment software tools developed in MATLAB{reg_sign} Simulink{reg_sign} and the implementation of remote monitoring, automated generation control, and the addition of renewable energy sources in select villages. The results have shown how many of these communities would benefit from the use of automated generation control by implementing a simple economic dispatch scheme and the integration of renewable energy sources such as wind generation.

  17. More Than 410,000 Hours of Real-World Fuel Cell System Operation Have Been Analyzed by NREL's Technology Validation Team (Fact Sheet)

    SciTech Connect (OSTI)

    Kurtz, J.; Wipke, K.; Sprik, S.; Ramsden, T.

    2011-02-01

    This fact sheet discusses how researchers at the National Renewable Energy Laboratory (NREL) are working to validate hydrogen and fuel cell systems in real-world settings. NREL strives to provide an independent third-party technology assessment that focuses on fuel cell system and hydrogen infrastructure performance, operation, maintenance, and safety.

  18. How Fuel Cells Work | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    0 likes How Fuel Cells Work Fuel cells produce electrical power without any combustion and operate on fuels like hydrogen, natural gas and propane. This clean energy technology can provide power for virtually any application -- from cars and buses to commercial buildings -- while helping reduce carbon pollution and oil consumption. As part of How Energy Works, we'll cover everything from how fuel cells work and why to their important to current uses and the future of the technology. Learn more

  19. Method for producing bio-fuel that integrates heat from carbon-carbon bond-forming reactions to drive biomass gasification reactions

    DOE Patents [OSTI]

    Cortright, Randy D. (Madison, WI); Dumesic, James A. (Verona, WI)

    2011-01-18

    A low-temperature catalytic process for converting biomass (preferably glycerol recovered from the fabrication of bio-diesel) to synthesis gas (i.e., H.sub.2/CO gas mixture) in an endothermic gasification reaction is described. The synthesis gas is used in exothermic carbon-carbon bond-forming reactions, such as Fischer-Tropsch, methanol, or dimethylether syntheses. The heat from the exothermic carbon-carbon bond-forming reaction is integrated with the endothermic gasification reaction, thus providing an energy-efficient route for producing fuels and chemicals from renewable biomass resources.

  20. Method for producing bio-fuel that integrates heat from carbon-carbon bond-forming reactions to drive biomass gasification reactions

    DOE Patents [OSTI]

    Cortright, Randy D.; Dumesic, James A.

    2013-04-02

    A low-temperature catalytic process for converting biomass (preferably glycerol recovered from the fabrication of bio-diesel) to synthesis gas (i.e., H.sub.2/CO gas mixture) in an endothermic gasification reaction is described. The synthesis gas is used in exothermic carbon-carbon bond-forming reactions, such as Fischer-Tropsch, methanol, or dimethylether syntheses. The heat from the exothermic carbon-carbon bond-forming reaction is integrated with the endothermic gasification reaction, thus providing an energy-efficient route for producing fuels and chemicals from renewable biomass resources.

  1. Method for producing bio-fuel that integrates heat from carbon-carbon bond-forming reactions to drive biomass gasification reactions

    DOE Patents [OSTI]

    Cortright, Randy D. (Madison, WI); Dumesic, James A. (Verona, WI)

    2012-04-10

    A low-temperature catalytic process for converting biomass (preferably glycerol recovered from the fabrication of bio-diesel) to synthesis gas (i.e., H.sub.2/CO gas mixture) in an endothermic gasification reaction is described. The synthesis gas is used in exothermic carbon-carbon bond-forming reactions, such as Fischer-Tropsch, methanol, or dimethylether syntheses. The heat from the exothermic carbon-carbon bond-forming reaction is integrated with the endothermic gasification reaction, thus providing an energy-efficient route for producing fuels and chemicals from renewable biomass resources.

  2. A microbial fuel cell operating at low pH using an acidophile, Acidiphilium cryptum.

    SciTech Connect (OSTI)

    Borole, Abhijeet P; Cesar, Scott A; O'Neill, Hugh Michael; Tsouris, Costas

    2008-01-01

    A microbial fuel cell using an acidophilic microorganism, Acidiphilium cryptum, as the anode biocatalyst was investigated. The mode of electron transfer by this organism to the electrode was studied. Electricity production in the presence of a mediator was demonstrated using its natural electron acceptor, iron, as well as phenosafranin as the electron mediating agent. Production of Fe(II), as a result of iron reduction, at a pH of 4.0 or below was found to support electricity production. Accumulation of the oxidized iron, Fe(III) as a result of electron donation to the electrode, however, restricted higher current output. Addition of nitrilotriacetic acid helped resolve the problem by redissolution of deposited Fe(III). Further, use of phenosafranin as a secondary mediator resulted in improvement in power output. At a cell loading equivalent to OD600 of 1.0, a power output of 12.7 mW/m2 was obtained in a two-chamber air-sparged fuel cell. Potential for direct electron transfer was also investigated but not detected under the conditions studied.

  3. The Sasol route to fuels

    SciTech Connect (OSTI)

    Dry, M.E.

    1982-12-01

    Details are given of the Sasol operation in South Africa. Flow sheets are provided for Sasol 1 and Sasol 2 and 3. The Sasol 1 plant produces waxes, liquid fuels, pipeline gas and chemicals; the Sasol 2 and 3 plants primarily produce ethylene, gasoline and diesel fuel. The versatility of the process is emphasized. The product selectivities of the fixed bed and Synthol reactors are shown and the properties of the products are compared. The influence of the catalyst on selectivity is examined.

  4. DIGESTER GAS - FUEL CELL - PROJECT

    SciTech Connect (OSTI)

    Dr.-Eng. Dirk Adolph; Dipl.-Eng. Thomas Saure

    2002-03-01

    GEW has been operating the first fuel cell in Europe producing heat and electricity from digester gas in an environmentally friendly way. The first 9,000 hours in operation were successfully concluded in August 2001. The fuel cell powered by digester gas was one of the 25 registered ''Worldwide projects'' which NRW presented at the EXPO 2000. In addition to this, it is a key project of the NRW State Initiative on Future Energies. All of the activities planned for the first year of operation were successfully completed: installing and putting the plant into operation, the transition to permanent operation as well as extended monitoring till May 2001.

  5. Fuel cell-fuel cell hybrid system

    DOE Patents [OSTI]

    Geisbrecht, Rodney A.; Williams, Mark C.

    2003-09-23

    A device for converting chemical energy to electricity is provided, the device comprising a high temperature fuel cell with the ability for partially oxidizing and completely reforming fuel, and a low temperature fuel cell juxtaposed to said high temperature fuel cell so as to utilize remaining reformed fuel from the high temperature fuel cell. Also provided is a method for producing electricity comprising directing fuel to a first fuel cell, completely oxidizing a first portion of the fuel and partially oxidizing a second portion of the fuel, directing the second fuel portion to a second fuel cell, allowing the first fuel cell to utilize the first portion of the fuel to produce electricity; and allowing the second fuel cell to utilize the second portion of the fuel to produce electricity.

  6. Enterprise SRS: leveraging ongoing operations to advance nuclear fuel cycles research and development programs

    SciTech Connect (OSTI)

    Murray, A.M.; Marra, J.E.; Wilmarth, W.R.; McGuire, P.W.; Wheeler, V.B.

    2013-07-01

    The Savannah River Site (SRS) is re-purposing its vast array of assets (including H Canyon - a nuclear chemical separation plant) to solve issues regarding advanced nuclear fuel cycle technologies, nuclear materials processing, packaging, storage and disposition. The vehicle for this transformation is Enterprise SRS which presents a new, radical view of SRS as a united endeavor for 'all things nuclear' as opposed to a group of distinct and separate entities with individual missions and organizations. Key among the Enterprise SRS strategic initiatives is the integration of research into SRS facilities but also in other facilities in conjunction with on-going missions to provide researchers from other national laboratories, academic institutions, and commercial entities the opportunity to demonstrate their technologies in a relevant environment and scale prior to deployment. To manage that integration of research demonstrations into site facilities, a center for applied nuclear materials processing and engineering research has been established in SRS.

  7. Coal-water slurry fuel internal combustion engine and method for operating same

    DOE Patents [OSTI]

    McMillian, Michael H.

    1992-01-01

    An internal combustion engine fueled with a coal-water slurry is described. About 90 percent of the coal-water slurry charge utilized in the power cycle of the engine is directly injected into the main combustion chamber where it is ignited by a hot stream of combustion gases discharged from a pilot combustion chamber of a size less than about 10 percent of the total clearance volume of main combustion chamber with the piston at top dead center. The stream of hot combustion gases is provided by injecting less than about 10 percent of the total coal-water slurry charge into the pilot combustion chamber and using a portion of the air from the main combustion chamber that has been heated by the walls defining the pilot combustion chamber as the ignition source for the coal-water slurry injected into the pilot combustion chamber.

  8. Preventing CO poisoning in fuel cells

    DOE Patents [OSTI]

    Gottesfeld, Shimshon (Los Alamos, NM)

    1990-01-01

    Proton exchange membrane (PEM) fuel cell performance with CO contamination of the H.sub.2 fuel stream is substantially improved by injecting O.sub.2 into the fuel stream ahead of the fuel cell. It is found that a surface reaction occurs even at PEM operating temperatures below about 100.degree. C. to oxidatively remove the CO and restore electrode surface area for the H.sub.2 reaction to generate current. Using an O.sub.2 injection, a suitable fuel stream for a PEM fuel cell can be formed from a methanol source using conventional reforming processes for producing H.sub.2.

  9. Design and analysis of microalgal open pond systems for the purpose of producing fuels: A subcontract report

    SciTech Connect (OSTI)

    Weissman, J.C.; Goebel, R.P.

    1987-04-01

    The designs and systems developed include many innovative concepts and experiments, including the design and operation of a low-cost system. Cost-effectiveness is realized by minimizing capital costs of the system and achieving efficient use of inputs. Extensive engineering analysis of carbonation, mixing, and harvesting subsystems has elucidated both the lowest cost, most efficient options and the essential parameters needed to construct, test, and evaluate these subsystems. The use of growth ponds sealed with clay and lined with crushed rock results in construction cost savings of 50% over ponds lined with synthetic membranes. In addition a low-cost but efficient design allows improvements in technology to have maximum impact on final product cost reductions. In addition to the innovations in low-cost construction, the operational efficiency of the design is both higher and more feasible than that attained by any previous system concept of comparable scale. The water analysis has led to operational specifications that minimize water use and virtually eliminate losses of carbon dioxide to the atmosphere. The carbon dioxide injection system is designed for 95% efficiency, but is still low in cost. The construction of a large-scale, covered anaerobic lagoon to recycle carbon, nitrogen, and phosphorus has not been attempted at the scale analyzed here. Yet efficient recycling is essential for achieving economic affordability. 23 refs., 21 figs., 53 tabs.

  10. Maine Yankee: Making the Transition from an Operating Plant to an Independent Spent Fuel Storage Installation (ISFSI)

    SciTech Connect (OSTI)

    Norton, W.; McGough, M. S.

    2002-02-26

    The purpose of this paper is to describe the challenges faced by Maine Yankee Atomic Power Company in making the transition from an operating nuclear power plant to an Independent Spent Fuel Storage Installation (ISFSI). Maine Yankee (MY) is a 900-megawatt Combustion Engineering pressurized water reactor whose architect engineer was Stone & Webster. Maine Yankee was put into commercial operation on December 28, 1972. It is located on an 820-acre site, on the shores of the Back River in Wiscasset, Maine about 40 miles northeast of Portland, Maine. During its operating life, it generated about 1.2 billion kilowatts of power, providing 25% of Maine's electric power needs and serving additional customers in New England. Maine Yankee's lifetime capacity factor was about 67% and it employed more than 450 people. The decision was made to shutdown Maine Yankee in August of 1997, based on economic reasons. Once this decision was made planning began on how to accomplish safe and cost effective decommissioning of the plant by 2004 while being responsive to the community and employees.

  11. Design, operation, and performance of a modern air pollution control system for a refuse derived fuel combustion facility

    SciTech Connect (OSTI)

    Weaver, E.H.; Azzinnari, C.

    1997-12-01

    The Robbins, Illinois refuse derived fuel combustion facility was recently placed into service. Large and new, the facility is designed to process 1600 tons of waste per day. Twenty-five percent of the waste, or 400 tons per day, is separated out in the fuel preparation process. The remaining 1200 tons per day is burned in two circulating fluidized bed boilers. The system is designed to meet new source performance standards for municipal waste combustion facilities, including total particulate, acid gases (HCl, SO{sub 2}, HF), heavy metals (including mercury), and dioxins. The system utilizes semi-dry scrubbers with lime and activated carbon injected through dual fluid atomizers for control of acid gases. Final polishing of acid gas emissions, particulate control, heavy metals removal, and control of dioxins is accomplished with pulse jet fabric filters. This paper discusses the design of the facility`s air pollution control system, including all auxiliary systems required to make it function properly. Also discussed is the actual operation and emissions performance of the system.

  12. EERE Success Story-Doosan Fuel Cell Takes Closed Plant to Full Production

    Office of Environmental Management (EM)

    | Department of Energy Doosan Fuel Cell Takes Closed Plant to Full Production EERE Success Story-Doosan Fuel Cell Takes Closed Plant to Full Production December 8, 2015 - 12:06pm Addthis Photo Courtesy | Doosan Fuel Cell America, Inc. Photo Courtesy | Doosan Fuel Cell America, Inc. Doosan Fuel Cell, a Connecticut company which designs, engineers and manufactures clean energy fuel cell systems that produce combined heat and power systems, began operations in July 2014 at its corporate

  13. A review of Title V operating permit application requirements caused by the use of waste-derived fuel at cement plants

    SciTech Connect (OSTI)

    Yarmac, R.F.

    1994-12-31

    The Clean Air Act Amendments of 1990 required the USEPA to establish a comprehensive operating permit program which is being administered by the states. Most major air pollution sources will be required to submit operating permit applications by November 15, 1995 or earlier. Portland cement plants that burn waste-derived fuel face some special permitting problems that need to be addressed during the permit application process. This paper presents a brief summary of the Title V application with special emphasis on the permitting requirements incurred by the utilization of waste fuel at cement plants.

  14. Three-dimensional microstructural changes in the NiYSZ solid oxide fuel cell anode during operation

    SciTech Connect (OSTI)

    Nelson G. J.; Chu Y.; Grew, K.N.; Izzo Jr. J.R.; Lombardo, J.J.; Harris, W.M.; Faes, A.; Hessler-Wyser, A.; Van herle, J.; Wang, S.; Virkar, A.V.; Chiu, W.K.S.

    2012-04-07

    Microstructural evolution in solid oxide fuel cell (SOFC) cermet anodes has been investigated using X-ray nanotomography along with differential absorption imaging. SOFC anode supports composed of Ni and yttria-stabilized zirconia (YSZ) were subjected to extended operation and selected regions were imaged using a transmission X-ray microscope. X-ray nanotomography provides unique insight into microstructure changes of all three phases (Ni, YSZ, pore) in three spatial dimensions, and its relation to performance degradation. Statistically significant 3D microstructural changes were observed in the anode Ni phase over a range of operational times, including phase size growth and changes in connectivity, interfacial contact area and contiguous triple-phase boundary length. These observations support microstructural evolution correlated to SOFC performance. We find that Ni coarsening is driven by particle curvature as indicated by the dihedral angles between the Ni, YSZ and pore phases, and hypothesize that growth occurs primarily by means of diffusion and particle agglomeration constrained by a pinning mechanism related to the YSZ phase. The decrease in Ni phase size after extended periods of time may be the result of a second process connected to a mobility-induced decrease in the YSZ phase size or non-uniform curvature resulting in a net decrease in Ni phase size.

  15. Careers in Fuel Cell Technologies

    Broader source: Energy.gov [DOE]

    Fact sheet produced by the Fuel Cell Technologies Office describing job growth potential in existing and emerging fuel cell applications.

  16. Jet Fuel from Microalgal Lipids

    SciTech Connect (OSTI)

    Not Available

    2006-07-01

    A fact sheet on production of jet fuel or multi-purpose military fuel from lipids produced by microalgae.

  17. Fuel Cells Fact Sheet | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fact Sheet Fact sheet produced by the Fuel Cell Technologies Office describing hydrogen fuel cell technology. Fuel Cells More Documents & Publications Hydrogen and Fuel Cell...

  18. Planet Fuels | Open Energy Information

    Open Energy Info (EERE)

    Fuels Jump to: navigation, search Name: Planet Fuels Place: Brighton, United Kingdom Product: A UK based producer and supplier of biodiesel. References: Planet Fuels1 This...

  19. Fossil fuel power plants: Computer systems for power plant control, maintenance, and operation. (Latest citations from the Compendex database). Published Search

    SciTech Connect (OSTI)

    Not Available

    1993-07-01

    The bibliography contains citations concerning fossil fuel power plant computer systems. Minicomputer and microcomputer systems used for monitoring, process control, performance calculations, alarming, and administrative applications are discussed. Topics emphasize power plant control, maintenance and operation. (Contains 250 citations and includes a subject term index and title list.)

  20. Final environmental impact statement for the construction and operation of an independent spent fuel storage installation to store the Three Mile Island Unit 2 spent fuel at the Idaho National Engineering and Environmental Laboratory. Docket Number 72-20

    SciTech Connect (OSTI)

    1998-03-01

    This Final Environmental Impact Statement (FEIS) contains an assessment of the potential environmental impacts of the construction and operation of an Independent Spent Fuel Storage Installation (ISFSI) for the Three Mile Island Unit 2 (TMI-2) fuel debris at the Idaho National Engineering and Environmental laboratory (INEEL). US Department of Energy-Idaho Operations Office (DOE-ID) is proposing to design, construct, and operate at the Idaho Chemical Processing Plant (ICPP). The TMI-2 fuel debris would be removed from wet storage, transported to the ISFSI, and placed in storage modules on a concrete basemat. As part of its overall spent nuclear fuel (SNF) management program, the US DOE has prepared a final programmatic environmental impact statement (EIS) that provides an overview of the spent fuel management proposed for INEEL, including the construction and operation of the TMI-2 ISFSI. In addition, DOE-ID has prepared an environmental assessment (EA) to describe the environmental impacts associated with the stabilization of the storage pool and the construction/operation of the ISFSI at the ICPP. As provided in NRC`s NEPA procedures, a FEIS of another Federal agency may be adopted in whole or in part in accordance with the procedures outlined in 40 CFR 1506.3 of the regulations of the Council on Environmental Quality (CEQ). Under 40 CFR 1506.3(b), if the actions covered by the original EIS and the proposed action are substantially the same, the agency adopting another agency`s statement is not required to recirculate it except as a final statement. The NRC has determined that its proposed action is substantially the same as actions considered in DOE`s environmental documents referenced above and, therefore, has elected to adopt the DOE documents as the NRC FEIS.

  1. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fuel Vehicle (AFV) Decal The state motor fuel tax does not apply to passenger vehicles, certain buses, or commercial vehicles that are powered by an alternative fuel, if they obtain an AFV decal. Owners or operators of such vehicles that also own or operate their own personal fueling stations are required to pay an annual alternative fuel decal fee, as listed below. Motor vehicles licensed as historic vehicles that are powered by alternative fuels are exempt from the motor fuels tax

  2. Hot startup experience with electrometallurgical treatment of spent nuclear fuel

    SciTech Connect (OSTI)

    Benedict, R.W.; Lineberry, M.J.; McFarlane, H.F.; Rigg, R.H.

    1997-10-01

    The treatment of spent metal fuel from the EBR-II fast reactor commenced in June of 1996 at the Fuel Conditioning Facility on the Argonne-West site in Idaho, USA. During the first year of hot operations, 20 fuel assemblies entered processing and 6 low enrichment uranium product ingots were produced. Results are presented for the various process steps with decontamination factors achieved and equipment operational history reported.

  3. Alternative Fuels Data Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    License Fee Effective July 1, 2015, each alternative fuel supplier, refiner, distributor, terminal operator, importer or exporter of alternative fuel used in motor vehicles must...

  4. SulfaTrap(tm): Novel Sorbent to Clean Biogas for Fuel Cell Combined Heat and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Power | Department of Energy SulfaTrap(tm): Novel Sorbent to Clean Biogas for Fuel Cell Combined Heat and Power SulfaTrap(tm): Novel Sorbent to Clean Biogas for Fuel Cell Combined Heat and Power Improving Desulfurization Enables Fuel Cell Utilization of Digester Gases The need for clean, sustainable, and domestically produced energy has never been greater and demands new technologies and approaches for the way produces and uses energy. With their clean and quiet operation, solid oxide fuel

  5. Doosan Fuel Cell Takes Closed Plant to Full Production | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Doosan Fuel Cell Takes Closed Plant to Full Production Doosan Fuel Cell Takes Closed Plant to Full Production December 8, 2015 - 12:06pm Addthis Photo Courtesy | Doosan Fuel Cell America, Inc. Photo Courtesy | Doosan Fuel Cell America, Inc. In July 2014, after buying the assets of ClearEdge Power (formerly UTC Power) out of bankruptcy, the Connecticut company, which designs and manufactures clean energy fuel cell systems that produce combined heat and power, began operations at its

  6. Hydrogen and Fuel Cell Technologies Program: Fuel Cells Fact Sheet |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Hydrogen and Fuel Cell Technologies Program: Fuel Cells Fact Sheet Hydrogen and Fuel Cell Technologies Program: Fuel Cells Fact Sheet Fact sheet produced by the Fuel Cell Technologies Program describing hydrogen fuel cell technology. PDF icon Fuel Cells Fact Sheet More Documents & Publications Comparison of Fuel Cell Technologies: Fact Sheet Fuel Cells Fact Sheet 2011 Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies

  7. The effect of the composition of plutonium loaded on the reactivity change and the isotopic composition of fuel produced in a fast reactor

    SciTech Connect (OSTI)

    Blandinskiy, V. Yu.

    2014-12-15

    This paper presents the results of a numerical investigation into burnup and breeding of nuclides in metallic fuel consisting of a mixture of plutonium and depleted uranium in a fast reactor with sodium coolant. The feasibility of using plutonium contained in spent nuclear fuel from domestic thermal reactors and weapons-grade plutonium is discussed. It is shown that the largest production of secondary fuel and the least change in the reactivity over the reactor lifetime can be achieved when employing plutonium contained in spent nuclear fuel from a reactor of the RBMK-1000 type.

  8. Engine control techniques to account for fuel effects

    DOE Patents [OSTI]

    Kumar, Shankar; Frazier, Timothy R.; Stanton, Donald W.; Xu, Yi; Bunting, Bruce G.; Wolf, Leslie R.

    2014-08-26

    A technique for engine control to account for fuel effects including providing an internal combustion engine and a controller to regulate operation thereof, the engine being operable to combust a fuel to produce an exhaust gas; establishing a plurality of fuel property inputs; establishing a plurality of engine performance inputs; generating engine control information as a function of the fuel property inputs and the engine performance inputs; and accessing the engine control information with the controller to regulate at least one engine operating parameter.

  9. Fuel quality issues in stationary fuel cell systems.

    SciTech Connect (OSTI)

    Papadias, D.; Ahmed, S.; Kumar, R.

    2012-02-07

    Fuel cell systems are being deployed in stationary applications for the generation of electricity, heat, and hydrogen. These systems use a variety of fuel cell types, ranging from the low temperature polymer electrolyte fuel cell (PEFC) to the high temperature solid oxide fuel cell (SOFC). Depending on the application and location, these systems are being designed to operate on reformate or syngas produced from various fuels that include natural gas, biogas, coal gas, etc. All of these fuels contain species that can potentially damage the fuel cell anode or other unit operations and processes that precede the fuel cell stack. These detrimental effects include loss in performance or durability, and attenuating these effects requires additional components to reduce the impurity concentrations to tolerable levels, if not eliminate the impurity entirely. These impurity management components increase the complexity of the fuel cell system, and they add to the system's capital and operating costs (such as regeneration, replacement and disposal of spent material and maintenance). This project reviewed the public domain information available on the impurities encountered in stationary fuel cell systems, and the effects of the impurities on the fuel cells. A database has been set up that classifies the impurities, especially in renewable fuels, such as landfill gas and anaerobic digester gas. It documents the known deleterious effects on fuel cells, and the maximum allowable concentrations of select impurities suggested by manufacturers and researchers. The literature review helped to identify the impurity removal strategies that are available, and their effectiveness, capacity, and cost. A generic model of a stationary fuel-cell based power plant operating on digester and landfill gas has been developed; it includes a gas processing unit, followed by a fuel cell system. The model includes the key impurity removal steps to enable predictions of impurity breakthrough, component sizing, and utility needs. These data, along with process efficiency results from the model, were subsequently used to calculate the cost of electricity. Sensitivity analyses were conducted to correlate the concentrations of key impurities in the fuel gas feedstock to the cost of electricity.

  10. Development of a Low NOx Medium-Sized Industrial Gas Turbine Operating on Hydrogen-Rich Renewable and Opportunity Fuels

    SciTech Connect (OSTI)

    2009-11-01

    Solar Turbines Inc., in collaboration with Pennsylvania State University and the University of Southern California, will develop injector technologies for gas turbine use of high-hydrogen content renewable and opportunity fuels derived from coal, biomass, industrial process waste, or byproducts. This project will develop low-emission technology for alternate fuels with high-hydrogen content, thereby reducing natural gas requirements and lowering carbon intensity.

  11. Coal markets squeeze producers

    SciTech Connect (OSTI)

    Ryan, M.

    2005-12-01

    Supply/demand fundamentals seem poised to keep prices of competing fossil fuels high, which could cushion coal prices, but increased mining and transportation costs may squeeze producer profits. Are markets ready for more volatility?

  12. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fuel Definition The following fuels are defined as alternative fuels by the Energy Policy Act (EPAct) of 1992: pure methanol, ethanol, and other alcohols; blends of 85% or more of alcohol with gasoline; natural gas and liquid fuels domestically produced from natural gas; liquefied petroleum gas (propane); coal-derived liquid fuels; hydrogen; electricity; pure biodiesel (B100); fuels, other than alcohol, derived from biological materials; and P-Series fuels. In addition, the U.S.

  13. Operability and Emissions from a Medium-Duty Fleet Operating...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Operability and Emissions from a Medium-Duty Fleet Operating with GTL Fuel and Catalyzed DPFs Operability and Emissions from a Medium-Duty Fleet Operating with GTL Fuel and ...

  14. EPA's Renewable Fuels Standard Web page

    SciTech Connect (OSTI)

    2011-12-30

    The Renewable Fuel Standard (RFS) program regulations were developed in collaboration with refiners, renewable fuel producers, and many other stakeholders.

  15. Air Breathing Direct Methanol Fuel Cell

    DOE Patents [OSTI]

    Ren; Xiaoming (Los Alamos, NM)

    2003-07-22

    A method for activating a membrane electrode assembly for a direct methanol fuel cell is disclosed. The method comprises operating the fuel cell with humidified hydrogen as the fuel followed by running the fuel cell with methanol as the fuel.

  16. DETERMINATION OF THE QUANTITY OF I-135 RELEASED FROM THE AGR-1 TEST FUELS AT THE END OF ATR OPERATING CYCLE 138B

    SciTech Connect (OSTI)

    J. K. Hartwell; D. M. Scates; J. B. Walter; M. W. Drigert

    2007-05-01

    The AGR-1 experiment is a multiple fueled-capsule irradiation experiment being conducted in the Advanced Test Reactor (ATR) in support of the Advanced Gas Reactor (AGR) Fuel Development and Qualification Program. The experiment began irradiation in the ATR with a cycle that reached full power on December 26, 2006 and ended with shutdown of the reactor for a brief outage on February 10, 2007 at 0900. The AGR-1 experiment will continue cyclical irradiation for about 2.5 years. In order to allow estimation of the amount of radioiodine released during the first cycle, purge gas flow to all capsules continued for about 4 days after reactor shutdown. The FPMS data acquired during part of that shutdown flow period has been analyzed to elucidate the level of 135I released during the operating cycle.

  17. Chief Ethanol Fuels Inc | Open Energy Information

    Open Energy Info (EERE)

    Fuels Inc Jump to: navigation, search Name: Chief Ethanol Fuels Inc Place: Hastings, Nebraska Product: Ethanol producer and supplier References: Chief Ethanol Fuels Inc1 This...

  18. Alternatives to Traditional Transportation Fuels | Open Energy...

    Open Energy Info (EERE)

    fuel vehicles produced, the number of alternative fuel vehicles in use, and the amount of alternative transportation fuels consumed in the United States. References Retrieved from...

  19. Reforming of fuel inside fuel cell generator

    DOE Patents [OSTI]

    Grimble, Ralph E. (Finleyville, PA)

    1988-01-01

    Disclosed is an improved method of reforming a gaseous reformable fuel within a solid oxide fuel cell generator, wherein the solid oxide fuel cell generator has a plurality of individual fuel cells in a refractory container, the fuel cells generating a partially spent fuel stream and a partially spent oxidant stream. The partially spent fuel stream is divided into two streams, spent fuel stream I and spent fuel stream II. Spent fuel stream I is burned with the partially spent oxidant stream inside the refractory container to produce an exhaust stream. The exhaust stream is divided into two streams, exhaust stream I and exhaust stream II, and exhaust stream I is vented. Exhaust stream II is mixed with spent fuel stream II to form a recycle stream. The recycle stream is mixed with the gaseous reformable fuel within the refractory container to form a fuel stream which is supplied to the fuel cells. Also disclosed is an improved apparatus which permits the reforming of a reformable gaseous fuel within such a solid oxide fuel cell generator. The apparatus comprises a mixing chamber within the refractory container, means for diverting a portion of the partially spent fuel stream to the mixing chamber, means for diverting a portion of exhaust gas to the mixing chamber where it is mixed with the portion of the partially spent fuel stream to form a recycle stream, means for injecting the reformable gaseous fuel into the recycle stream, and means for circulating the recycle stream back to the fuel cells.

  20. Method to improve reliability of a fuel cell system using low performance cell detection at low power operation

    DOE Patents [OSTI]

    Choi, Tayoung; Ganapathy, Sriram; Jung, Jaehak; Savage, David R.; Lakshmanan, Balasubramanian; Vecasey, Pamela M.

    2013-04-16

    A system and method for detecting a low performing cell in a fuel cell stack using measured cell voltages. The method includes determining that the fuel cell stack is running, the stack coolant temperature is above a certain temperature and the stack current density is within a relatively low power range. The method further includes calculating the average cell voltage, and determining whether the difference between the average cell voltage and the minimum cell voltage is greater than a predetermined threshold. If the difference between the average cell voltage and the minimum cell voltage is greater than the predetermined threshold and the minimum cell voltage is less than another predetermined threshold, then the method increments a low performing cell timer. A ratio of the low performing cell timer and a system run timer is calculated to identify a low performing cell.

  1. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Tax Exemptions and Reductions Propane, natural gas, electricity, and hydrogen, also known as special fuel, used to operate motor vehicles are exempt from state fuel taxes, but subject to a special fuel tax at the rate of three-nineteenths of the conventional motor fuel tax. A reduction in special fuel tax is permissible if the fuel is already taxed by the Navajo Nation. Retailers, wholesalers, and suppliers of special fuel are eligible for a refund of the special fuel tax if dyed diesel fuel is

  2. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Biodiesel Tax Exemption Biodiesel blends containing at least 20% biodiesel derived from used cooking oil are exempt from the $0.30 per gallon state fuel excise tax. The exemption does not apply to fuel used in vehicles with a gross vehicle weight rating of 26,001 pounds or more, fuel not sold in retail operations, or fuel sold in operations involving fleet fueling or bulk sales. The exemption expires after December 31, 2019. (Reference Oregon Revised Statutes 319.530

  3. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Clean Transportation Fuel Standards The Oregon Department of Environmental Quality (DEQ) administers the Oregon Clean Fuels Program (Program), which requires fuel producers and importers to register and keep records of and report the volumes and carbon intensities of the fuels they provide in Oregon. DEQ adopted rules for the next phase of the Program, effective February 1, 2015, requiring fuel suppliers to reduce the carbon content of transportation fuels. For more information, see the DEQ

  4. Fuel Cells Fact Sheet | Department of Energy

    Energy Savers [EERE]

    Cells Fact Sheet Fuel Cells Fact Sheet Fact sheet produced by the Fuel Cell Technologies Office describing fuel cell technologies. PDF icon Fuel Cells Fact Sheet More Documents & Publications Comparison of Fuel Cell Technologies: Fact Sheet Hydrogen and Fuel Cell Technologies Program: Fuel Cells Fact Sheet 2011 Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Program

  5. Fuel Cell Handbook (Seventh Edition)

    Office of Scientific and Technical Information (OSTI)

    ... In addition, because combustion is avoided, fuel cells produce power with minimal ... The only liquid in this fuel cell is water; thus, corrosion problems are minimal. ...

  6. Method of monitoring stored nuclear fuel elements

    SciTech Connect (OSTI)

    Borloo, E.; Buergers, W.; Crutzen, S.; Vinche, C.

    1983-05-24

    To monitor a nuclear fuel element or fuel elements located in a store, e.g. a pond in a swimming pool reactor, the store is illuminated ultrasonically using one or more transducers transmitting ultrasonic signals in one or more predetermined directions to obtain an output which, because it depends on the number and relative location of the fuel elements in the store, and the structure of the store itself is distinctive to the fuel elements or elements stored therein. From this distinctive output is derived an identity unique to the stored fuel element or elements and a reference signal indicative of the whole structure when intact, the reference signal and identity being recorded. Subsequent ultrasonic testing of the store and its contents under identical operating conditions produces a signal which is compared to the recorded reference signal and if different therefrom reveals the occurrence of tampering with the store and/or the fuel element or elements.

  7. Development of an External Fuel Processor for a Solid Oxide Fuel Cell

    SciTech Connect (OSTI)

    Daniel Birmingham; Crispin Debellis; Mark Perna; Anant Upadhyayula

    2008-02-28

    A 250 kW External Fuel Processor was developed and tested that will supply the gases needed by a pipeline natural gas fueled, solid oxide fuel cell during all modes of operation. The fuel processor consists of three major subsystems--a desulfurizer to remove fuel sulfur to an acceptable level, a synthesis gas generator to support plant heat-up and low load fuel cell operations, and a start gas generator to supply a non-flammable, reducing gas to the fuel cell during startup and shutdown operations. The desulfurization subsystem uses a selective catalytic sulfur oxidation process that was developed for operation at elevated pressure and removes the fuel sulfur to a total sulfur content of less than 80 ppbv. The synthesis gas generation subsystem uses a waterless, catalytic partial oxidation reactor to produce a hydrogen-rich mixture from the natural gas and air. An operating window was defined that allows carbon-free operation while maintaining catalyst temperatures that will ensure long-life of the reactor. The start gas subsystem generates an oxygen-free, reducing gas from the pipeline natural gas using a low-temperature combustion technique. These physically and thermally integrated subsystems comprise the 250 kW External Fuel Processor. The 250 kW External Fuel Processor was tested at the Rolls-Royce facility in North Canton, Ohio to verify process performance and for comparison with design specifications. A step wise operation of the automatic controls through the startup, normal operation and shutdown sequences allowed the control system to be tuned and verified. A fully automated system was achieved that brings the fuel processor through its startup procedure, and then await commands from the fuel cell generator module for fuel supply and shutdown. The fuel processor performance met all design specifications. The 250 kW External Fuel Processor was shipped to an American Electric Power site where it will be tested with a Rolls-Royce solid oxide fuel cell generator module.

  8. Summary report : universal fuel processor.

    SciTech Connect (OSTI)

    Coker, Eric Nicholas; Rice, Steven F.; Kemp, Richard Alan; Stewart, Constantine A.; Miller, James Edward; Cornelius, Christopher James; Staiger, Chad Lynn; Pickett, Lyle M.

    2008-01-01

    The United States produces only about 1/3 of the more than 20 million barrels of petroleum that it consumes daily. Oil imports into the country are roughly equivalent to the amount consumed in the transportation sector. Hence the nation in general, and the transportation sector in particular, is vulnerable to supply disruptions and price shocks. The situation is anticipated to worsen as the competition for limited global supplies increases and oil-rich nations become increasingly willing to manipulate the markets for this resource as a means to achieve political ends. The goal of this project was the development and improvement of technologies and the knowledge base necessary to produce and qualify a universal fuel from diverse feedstocks readily available in North America and elsewhere (e.g. petroleum, natural gas, coal, biomass) as a prudent and positive step towards mitigating this vulnerability. Three major focus areas, feedstock transformation, fuel formulation, and fuel characterization, were identified and each was addressed. The specific activities summarized herein were identified in consultation with industry to set the stage for collaboration. Two activities were undertaken in the area of feedstock transformation. The first activity focused on understanding the chemistry and operation of autothermal reforming, with an emphasis on understanding, and therefore preventing, soot formation. The second activity was focused on improving the economics of oxygen production, particularly for smaller operations, by integrating membrane separations with pressure swing adsorption. In the fuel formulation area, the chemistry of converting small molecules readily produced from syngas directly to fuels was examined. Consistent with the advice from industry, this activity avoided working on improving known approaches, giving it an exploratory flavor. Finally, the fuel characterization task focused on providing a direct and quantifiable comparison of diesel fuel and JP-8.

  9. Alternative Fuels Data Center: Idaho National Laboratory Dual-Fuel Buses

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Reduce Operating Costs and Emissions Idaho National Laboratory Dual-Fuel Buses Reduce Operating Costs and Emissions to someone by E-mail Share Alternative Fuels Data Center: Idaho National Laboratory Dual-Fuel Buses Reduce Operating Costs and Emissions on Facebook Tweet about Alternative Fuels Data Center: Idaho National Laboratory Dual-Fuel Buses Reduce Operating Costs and Emissions on Twitter Bookmark Alternative Fuels Data Center: Idaho National Laboratory Dual-Fuel Buses Reduce Operating

  10. Indirect-fired gas turbine dual fuel cell power cycle

    DOE Patents [OSTI]

    Micheli, Paul L. (Sacramento, CA); Williams, Mark C. (Morgantown, WV); Sudhoff, Frederick A. (Morgantown, WV)

    1996-01-01

    A fuel cell and gas turbine combined cycle system which includes dual fuel cell cycles combined with a gas turbine cycle wherein a solid oxide fuel cell cycle operated at a pressure of between 6 to 15 atms tops the turbine cycle and is used to produce CO.sub.2 for a molten carbonate fuel cell cycle which bottoms the turbine and is operated at essentially atmospheric pressure. A high pressure combustor is used to combust the excess fuel from the topping fuel cell cycle to further heat the pressurized gas driving the turbine. A low pressure combustor is used to combust the excess fuel from the bottoming fuel cell to reheat the gas stream passing out of the turbine which is used to preheat the pressurized air stream entering the topping fuel cell before passing into the bottoming fuel cell cathode. The CO.sub.2 generated in the solid oxide fuel cell cycle cascades through the system to the molten carbonate fuel cell cycle cathode.

  11. Fuel pumping system and method

    DOE Patents [OSTI]

    Shafer, Scott F. (Morton, IL); Wang, Lifeng (Normal, IL) ,

    2006-12-19

    A fuel pumping system that includes a pump drive is provided. A first pumping element is operatively connected to the pump drive and is operable to generate a first flow of pressurized fuel. A second pumping element is operatively connected to the pump drive and is operable to generate a second flow of pressurized fuel. A first solenoid is operatively connected to the first pumping element and is operable to vary at least one of a fuel pressure and a fuel flow rate of the first flow of pressurized fuel. A second solenoid is operatively connected to the second pumping element and is operable to vary at least one of a fuel pressure and a fuel flow rate of the second flow of pressurized fuel.

  12. Fuel Pumping System And Method

    DOE Patents [OSTI]

    Shafer, Scott F. (Morton, IL); Wang, Lifeng (Normal, IL)

    2005-12-13

    A fuel pumping system that includes a pump drive is provided. A first pumping element is operatively connected to the pump drive and is operable to generate a first flow of pressurized fuel. A second pumping element is operatively connected to the pump drive and is operable to generate a second flow of pressurized fuel. A first solenoid is operatively connected to the first pumping element and is operable to vary at least one of a fuel pressure and a fuel flow rate of the first flow of pressurized fuel. A second solenoid is operatively connected to the second pumping element and is operable to vary at least one of a fuel pressure and a fuel flow rate of the second flow of pressurized fuel.

  13. Miniature ceramic fuel cell

    DOE Patents [OSTI]

    Lessing, Paul A. (Idaho Falls, ID); Zuppero, Anthony C. (Idaho Falls, ID)

    1997-06-24

    A miniature power source assembly capable of providing portable electricity is provided. A preferred embodiment of the power source assembly employing a fuel tank, fuel pump and control, air pump, heat management system, power chamber, power conditioning and power storage. The power chamber utilizes a ceramic fuel cell to produce the electricity. Incoming hydro carbon fuel is automatically reformed within the power chamber. Electrochemical combustion of hydrogen then produces electricity.

  14. Transportation fuels from wood

    SciTech Connect (OSTI)

    Baker, E.G.; Elliott, D.C.; Stevens, D.J.

    1980-01-01

    The various methods of producing transportation fuels from wood are evaluated in this paper. These methods include direct liquefaction schemes such as hydrolysis/fermentation, pyrolysis, and thermochemical liquefaction. Indirect liquefaction techniques involve gasification followed by liquid fuels synthesis such as methanol synthesis or the Fischer-Tropsch synthesis. The cost of transportation fuels produced by the various methods are compared. In addition, three ongoing programs at Pacific Northwest Laboratory dealing with liquid fuels from wood are described.

  15. Annular feed air breathing fuel cell stack

    DOE Patents [OSTI]

    Wilson, Mahlon S. (Los Alamos, NM); Neutzler, Jay K. (Peoria, AZ)

    1997-01-01

    A stack of polymer electrolyte fuel cells is formed from a plurality of unit cells where each unit cell includes fuel cell components defining a periphery and distributed along a common axis, where the fuel cell components include a polymer electrolyte membrane, an anode and a cathode contacting opposite sides of the membrane, and fuel and oxygen flow fields contacting the anode and the cathode, respectively, wherein the components define an annular region therethrough along the axis. A fuel distribution manifold within the annular region is connected to deliver fuel to the fuel flow field in each of the unit cells. The fuel distribution manifold is formed from a hydrophilic-like material to redistribute water produced by fuel and oxygen reacting at the cathode. In a particular embodiment, a single bolt through the annular region clamps the unit cells together. In another embodiment, separator plates between individual unit cells have an extended radial dimension to function as cooling fins for maintaining the operating temperature of the fuel cell stack.

  16. Method of producing a colloidal fuel from coal and a heavy petroleum fraction. [partial liquefaction of coal in slurry, filtration and gasification of residue

    DOE Patents [OSTI]

    Longanbach, J.R.

    1981-11-13

    A method is provided for combining coal as a colloidal suspension within a heavy petroleum fraction. The coal is broken to a medium particle size and is formed into a slurry with a heavy petroleum fraction such as a decanted oil having a boiling point of about 300 to 550/sup 0/C. The slurry is heated to a temperature of 400 to 500/sup 0/C for a limited time of only about 1 to 5 minutes before cooling to a temperature of less than 300/sup 0/C. During this limited contact time at elevated temperature the slurry can be contacted with hydrogen gas to promote conversion. The liquid phase containing dispersed coal solids is filtered from the residual solids and recovered for use as a fuel or feed stock for other processes. The residual solids containing some carbonaceous material are further processed to provide hydrogen gas and heat for use as required in this process.

  17. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Low Carbon Fuel Standard California's Low Carbon Fuel Standard (LCFS) Program requires a reduction in the carbon intensity of transportation fuels that are sold, supplied, or offered for sale in the state by a minimum of 10% by 2020. The California Air Resources Board (ARB) regulations require transportation fuel producers and importers to meet specified average carbon intensity requirements for fuel. In the regulations, carbon intensity reductions are based on reformulated gasoline mixed with

  18. Direct hydrocarbon fuel cells

    DOE Patents [OSTI]

    Barnett, Scott A.; Lai, Tammy; Liu, Jiang

    2010-05-04

    The direct electrochemical oxidation of hydrocarbons in solid oxide fuel cells, to generate greater power densities at lower temperatures without carbon deposition. The performance obtained is comparable to that of fuel cells used for hydrogen, and is achieved by using novel anode composites at low operating temperatures. Such solid oxide fuel cells, regardless of fuel source or operation, can be configured advantageously using the structural geometries of this invention.

  19. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Technician Training The Alternative Fuels Technician Certification Act (Act) regulates the training, testing, and certification of technicians and trainees who install, modify, repair, or renovate equipment used in alternative fueling infrastructure and in the conversion of any engine to operate on an alternative fuel. This includes original equipment manufacturer engines dedicated to operate on an alternative fuel. Plug-in electric vehicles (PEVs), PEV charging infrastructure, and PEV

  20. Qualification of Alternative Fuels

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Qualification of Alternative Fuels May 8, 2012 Pyrolysis Oil Workshop Thomas Butcher Sustainable Energy Technologies Department Applications Baseline - Residential and Light Commercial Pressure-atomized burners with 100-150 psi fuel pressure, no fuel heating; Cyclic operation - to 12,000 cycles per year; Fuel filtration to 90 microns or finer; Storage for periods of 1 year, possibly longer; Storage temperature varied; Visible range flame detection for safety; Nitrile seal materials common; Fuels

  1. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuel Vehicle (AFV) and Fueling Infrastructure Loans The Nebraska Energy Office administers the Dollar and Energy Saving Loan Program, which makes low-cost loans available for a variety of alternative fuel projects, including the replacement of conventional vehicles with AFVs; the purchase of new AFVs; the conversion of conventional vehicles to operate on alternative fuels; and the construction or purchase of fueling stations or equipment. The maximum loan amount is $750,000 per borrower, and the

  2. Method for cold stable biojet fuel

    DOE Patents [OSTI]

    Seames, Wayne S.; Aulich, Ted

    2015-12-08

    Plant or animal oils are processed to produce a fuel that operates at very cold temperatures and is suitable as an aviation turbine fuel, a diesel fuel, a fuel blendstock, or any fuel having a low cloud point, pour point or freeze point. The process is based on the cracking of plant or animal oils or their associated esters, known as biodiesel, to generate lighter chemical compounds that have substantially lower cloud, pour, and/or freeze points than the original oil or biodiesel. Cracked oil is processed using separation steps together with analysis to collect fractions with desired low temperature properties by removing undesirable compounds that do not possess the desired temperature properties.

  3. S. 403: A Bill to amend the Internal Revenue Code of 1986 to allow a tax credit for fuels produced from offshore deep-water projects. Introduced in the Senate of the United States, One Hundred Third Congress, First Session, February 18, 1993

    SciTech Connect (OSTI)

    1993-12-31

    The report S.403 is a bill to amend the Internal Revenue Code of 1986 to allow a tax credit for fuels produced from offshore deep-water projects. The proposed legislative text is included.

  4. Method for fast start of a fuel processor

    DOE Patents [OSTI]

    Ahluwalia, Rajesh K. (Burr Ridge, IL); Ahmed, Shabbir (Naperville, IL); Lee, Sheldon H. D. (Willowbrook, IL)

    2008-01-29

    An improved fuel processor for fuel cells is provided whereby the startup time of the processor is less than sixty seconds and can be as low as 30 seconds, if not less. A rapid startup time is achieved by either igniting or allowing a small mixture of air and fuel to react over and warm up the catalyst of an autothermal reformer (ATR). The ATR then produces combustible gases to be subsequently oxidized on and simultaneously warm up water-gas shift zone catalysts. After normal operating temperature has been achieved, the proportion of air included with the fuel is greatly diminished.

  5. Emissions characteristics of Military Helicopter Engines Fueled with JP-8 and a Fischer-Tropsch Fuel

    SciTech Connect (OSTI)

    Corporan, E.; DeWitt, M.; Klingshirn, Christopher D; Striebich, Richard; Cheng, Mengdawn

    2010-01-01

    The rapid growth in aviation activities and more stringent U.S. Environmental Protection Agency regulations have increased concerns regarding aircraft emissions, due to their harmful health and environmental impacts, especially in the vicinity of airports and military bases. In this study, the gaseous and particulate-matter emissions of two General Electric T701C engines and one T700 engine were evaluated. The T700 series engines power the U.S. Army's Black Hawk and Apache helicopters. The engines were fueled with standard military JP-8 fuel and were tested at three power settings. In addition, one of the T701C engines was operated on a natural-gas-derived Fischer-Tropsch synthetic paraffinic kerosene jet fuel. Test results show that the T701C engine emits significantly lower particulate-matter emissions than the T700 for all conditions tested. Particulate-matter mass emission indices ranged from 0.2-1.4 g/kg fuel for the T700 and 0.2-0.6 g/kg fuel for the T701C. Slightly higher NOx and lower CO emissions were observed for the T701C compared with the T700. Operation of the T701C with the Fischer-Tropsch fuel rendered dramatic reductions in soot emissions relative to operation on JP-8, due primarily to the lack of aromatic compounds in the alternative fuel. The Fischer-Tropsch fuel also produced smaller particles and slight reductions in CO emissions.

  6. Method and system to directly produce electrical power within the lithium blanket region of a magnetically confined, deuterium-tritium (DT) fueled, thermonuclear fusion reactor

    DOE Patents [OSTI]

    Woolley, Robert D. (Belle Mead, NJ)

    1999-01-01

    A method for integrating liquid metal magnetohydrodynamic power generation with fusion blanket technology to produce electrical power from a thermonuclear fusion reactor located within a confining magnetic field and within a toroidal structure. A hot liquid metal flows from a liquid metal blanket region into a pump duct of an electromagnetic pump which moves the liquid metal to a mixer where a gas of predetermined pressure is mixed with the pressurized liquid metal to form a Froth mixture. Electrical power is generated by flowing the Froth mixture between electrodes in a generator duct. When the Froth mixture exits the generator the gas is separated from the liquid metal and both are recycled.

  7. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Biofuel Compatibility Requirements for Underground Storage Tanks (USTs) Fueling station owners and operators must notify the appropriate state and local implementing agencies at least 30 days before switching USTs to store ethanol blends greater than 10%, biodiesel blends greater than 20%, or any other regulated fuel the agency has identified. This notification timeframe allows agencies to request information on UST compatibility before the owner or operator stores the fuel. Owners and operators

  8. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Provision for Establishment of Hydrogen Program The Texas Department of Transportation (TxDOT) may seek funding from public and private sources to acquire and operate hydrogen vehicles and establish and operate publicly-accessible hydrogen fueling stations. TxDOT must ensure that data on emissions from the vehicles, fueling stations, and related hydrogen production are monitored and compared with data on emissions from control vehicles with internal combustion engines that operate on fuels other

  9. DIMETHYL ETHER (DME)-FUELED SHUTTLE BUS DEMONSTRATION PROJECT

    SciTech Connect (OSTI)

    Elana M. Chapman; Shirish Bhide; Andre L. Boehman; David Klinikowski

    2003-04-01

    The objectives of this research and demonstration program are to convert a campus shuttle bus to operation on dimethyl ether, a potential ultra-clean alternative diesel fuel. To accomplish this objective, this project includes laboratory evaluation of a fuel conversion strategy, as well as field demonstration of the DME-fueled shuttle bus. Since DME is a fuel with no lubricity (i.e., it does not possess the lubricating quality of diesel fuel), conventional fuel delivery and fuel injection systems are not compatible with dimethyl ether. Therefore, to operate a diesel engine on DME one must develop a fuel-tolerant injection system, or find a way to provide the necessary lubricity to the DME. In this project, they have chosen the latter strategy in order to achieve the objective with minimal need to modify the engine. The strategy is to blend DME with diesel fuel, to obtain the necessary lubricity to protect the fuel injection system and to achieve low emissions. Within the Combustion Laboratory of the Penn State Energy Institute, they have installed and equipped a Navistar V-8 direct-injection turbodiesel engine for measurement of gaseous and particulate emissions and examination of the impact of fuel composition on diesel combustion. They have also reconfigured a high-pressure viscometer for studies of the viscosity, bulk modulus (compressibility) and miscibility of blends of diesel fuel, dimethyl ether and lubricity additives. The results include baseline emissions, performance and combustion measurements on the Navistar engine for operation on a federal low sulfur diesel fuel (300 ppm S). Most recently, they have examined blends of an oxygenated fuel additive (a liquid fuel called CETANER{trademark}) produced by Air Products, for comparison with dimethyl ether blended at the same weight of oxygen addition, 2 wt.%. While they have not operated the engine on DME yet, they are now preparing to do so. A fuel system for delivery of DME/Diesel blends has been configured and initial investigations at low DME blend ratios (around 5-10 vol%) will begin shortly. They have also performed viscosity measurements on diesel fuel, DME and 50-50 blends of DME in diesel. These tests have verified that DME has a much lower viscosity than the diesel fuel and that the viscosity of the blended fuel is also much lower than the diesel base fuel. This has implications for the injection and atomization of the DME/diesel blends.

  10. Business management for biodiesel producers

    SciTech Connect (OSTI)

    Gerpen, Jon Van

    2004-07-01

    The material in this book is intended to provide the reader with information about the biodiesel and liquid fuels industry, biodiesel start-up issues, legal and regulatory issues, and operational concerns.

  11. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Propane Equipment and Infrastructure Liability Exemption Propane equipment, infrastructure, and fuel providers are exempt from civil liability for personal injury or property damage resulting from an individual who modifies, repairs, materially alters, or uses propane equipment or fuel for purposes not intended by the manufacturer or fuel producer. (Reference Senate Bill 361, 2015, and Indiana Code 34-31-11.2

  12. Fossil-fuel power plants: Computer systems for power plant control, maintenance, and operation. October 1976-December 1989 (A Bibliography from the COMPENDEX data base). Report for October 1976-December 1989

    SciTech Connect (OSTI)

    Not Available

    1990-02-01

    This bibliography contains citations concerning fossil-fuel power plant computer systems. Minicomputer and microcomputer systems used for monitoring, process control, performance calculations, alarming, and administrative applications are discussed. Topics emphasize power plant control, maintenance and operation. (Contains 240 citations fully indexed and including a title list.)

  13. Fuel dissipater for pressurized fuel cell generators

    DOE Patents [OSTI]

    Basel, Richard A.; King, John E.

    2003-11-04

    An apparatus and method are disclosed for eliminating the chemical energy of fuel remaining in a pressurized fuel cell generator (10) when the electrical power output of the fuel cell generator is terminated during transient operation, such as a shutdown; where, two electrically resistive elements (two of 28, 53, 54, 55) at least one of which is connected in parallel, in association with contactors (26, 57, 58, 59), a multi-point settable sensor relay (23) and a circuit breaker (24), are automatically connected across the fuel cell generator terminals (21, 22) at two or more contact points, in order to draw current, thereby depleting the fuel inventory in the generator.

  14. PRELIMINARY IN-SITU X-RAY ABSORPTION FINE STRUCTURE EXAMINATION OF PT/C AND PTCO/C CATHODE CATALYSTS IN AN OPERATIONAL POLYMER ELECTROLYTE FUEL CELL

    SciTech Connect (OSTI)

    Phelan, B.T.; Myers, D.J.; Smith, M.C.

    2009-01-01

    State-of-the-art polymer electrolyte fuel cells require a conditioning period to reach optimized cell performance. There is insuffi cient understanding about the behavior of catalysts during this period, especially with regard to the changing environment of the cathode electrocatalyst, which is typically Pt nanoparticles supported on high surface area Vulcan XC-72 carbon (Pt/C). The purpose of this research was to record preliminary observations of the changing environment during the conditioning phase using X-Ray Absorption Fine Structure (XAFS) spectroscopy. XAFS was recorded for a Pt/C cathode at the Pt L3-edge and a PtCo/C cathode at both the Pt L3-edge and Co K-edge. Using precision machined graphite cell-blocks, both transmission and fl uorescence data were recorded at Sector 12-BM-B of Argonne National Laboratorys Advanced Photon Source. The fl uorescence and transmission edge steps allow for a working description of the changing electrocatalyst environment, especially water concentration, at the anode and cathode as functions of operating parameters. These features are discussed in the context of how future analysis may correlate with potential, current and changing apparent thickness of the membrane electrode assembly through loss of catalyst materials (anode, cathode, carbon support). Such direct knowledge of the effect of the conditioning protocol on the electrocatalyst may lead to better catalyst design. In turn, this may lead to minimizing, or even eliminating, the conditioning period.

  15. Nuclear Fuels | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nuclear Fuels Nuclear Fuels A reactor's ability to produce power efficiently is significantly affected by the composition and configuration of its fuel system. A nuclear fuel assembly consists of hundreds of thousands of uranium pellets, stacked and encapsulated within tubes called fuel rods or fuel pins which are then bundled together in various geometric arrangements. There are many design considerations for the material composition and geometric configuration of the various components

  16. polymers produced by nature

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    polymers produced by nature - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs

  17. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fuel and Vehicle Tax As of July 1, 2015, alternative fuels used to operate on-road vehicles are taxed at a rate of $0.162 per gasoline gallon equivalent (GGE). Alternative fuels are taxed at the same rate as gasoline and gasohol (5.1% of the statewide average wholesale price of a gallon of self-serve unleaded regular gasoline). Refer to the Virginia Department of Motor Vehicles (DMV) Fuels Tax Rates and Alternative Fuels Conversion website for fuel-specific GGE calculations.

  18. V Fuels Biodiesel Limited | Open Energy Information

    Open Energy Info (EERE)

    Biodiesel Limited Jump to: navigation, search Name: V-Fuels Biodiesel Limited Place: United Kingdom Product: UK-based biodiesel producers. References: V-Fuels Biodiesel Limited1...

  19. 2015 Solid Oxide Fuel Cells Project Portfolio

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2015 Solid Oxide Fuel Cells Project Portfolio Solid Oxide Fuel Cells are energy conversion devices that produce electric power through an electrochemical reaction rather than by...

  20. Platte Valley Fuel Ethanol | Open Energy Information

    Open Energy Info (EERE)

    Valley Fuel Ethanol Jump to: navigation, search Name: Platte Valley Fuel Ethanol Place: Central City, Nebraska Product: Bioethanol producer using corn as feedstock References:...

  1. Green Spirit Fuels | Open Energy Information

    Open Energy Info (EERE)

    Spirit Fuels Jump to: navigation, search Name: Green Spirit Fuels Place: Somerset, United Kingdom Zip: BA8 OTN Sector: Biofuels Product: The company was founded to produce and...

  2. Green Earth Fuels | Open Energy Information

    Open Energy Info (EERE)

    Earth Fuels Jump to: navigation, search Name: Green Earth Fuels Place: Houston, Texas Zip: 77057 Product: A producer and distributor of soy and palm based biodiesel Coordinates:...

  3. Heartland Grain Fuels LP | Open Energy Information

    Open Energy Info (EERE)

    Name: Heartland Grain Fuels LP Place: Aberdeen, South Dakota Zip: 57401 Sector: Bioenergy Product: Heartland Grain Fuels is a cooperatively-owned producer of corn-derived...

  4. Brasil Bio Fuels | Open Energy Information

    Open Energy Info (EERE)

    Bio Fuels Jump to: navigation, search Name: Brasil Bio Fuels Place: So Joo da Baliza, Roraima, Brazil Product: Brazil based ethanol producer located in Roraima, Brazil....

  5. Fuel Cell Animation- Chemical Process (Text Version)

    Broader source: Energy.gov [DOE]

    This text version of the fuel cell animation demonstrates how a fuel cell uses hydrogen to produce electricity, with only water and heat as byproducts.

  6. Paquin Energy and Fuel | Open Energy Information

    Open Energy Info (EERE)

    Paquin Energy and Fuel Jump to: navigation, search Name: Paquin Energy and Fuel Place: Keller, Texas Product: Biodiesel producer based in Texas Coordinates: 48.081785,...

  7. AgriFuel Company | Open Energy Information

    Open Energy Info (EERE)

    to: navigation, search Name: AgriFuel Company Place: Cranford, New Jersey Sector: Biofuels Product: AgriFuel produces and markets biofuels refined from waste vegetable oil,...

  8. Alternative Fuels Group | Open Energy Information

    Open Energy Info (EERE)

    Group Jump to: navigation, search Name: Alternative Fuels Group Place: Maryland Sector: Renewable Energy Product: US-based producer of renewable fuels. References: Alternative...

  9. Energex Pellet Fuel Inc | Open Energy Information

    Open Energy Info (EERE)

    Energex Pellet Fuel Inc Jump to: navigation, search Name: Energex Pellet Fuel Inc. Place: Mifflintown, Pennsylvania Zip: 17059 Product: Pellets producer with a capacity of 200,000...

  10. American Ag Fuels LLC | Open Energy Information

    Open Energy Info (EERE)

    American Ag Fuels LLC Jump to: navigation, search Name: American Ag Fuels LLC Place: Defiance, Ohio Zip: 43512 Product: Biodiesel producer in Defiance, Ohio. References: American...

  11. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fuel Excise Tax Credit NOTE: This incentive was retroactively extended multiple times, most recently through December 31, 2016, by Public Law 114-113, 2015. A tax incentive is available for alternative fuel that is sold for use or used as a fuel to operate a motor vehicle. A tax credit in the amount of $0.50 per gallon is available for the following alternative fuels: compressed natural gas (CNG), liquefied natural gas (LNG), liquefied hydrogen, liquefied petroleum gas (propane),

  12. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Vehicle Acquisition and Fuel Use Requirements for State and Alternative Fuel Provider Fleets Under the Energy Policy Act (EPAct) of 1992, as amended, certain state government and alternative fuel provider fleets are required to acquire alternative fuel vehicles (AFVs) as a portion of their annual light-duty vehicle acquisitions. Compliance is required by fleets that operate, lease, or control 50 or more light-duty vehicles within the United States. Of those 50 vehicles, at least 20 must be used

  13. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Clean Transportation Fuels for School Buses The Kentucky Department of Education (Department) must consider the use of clean transportation fuels in school buses as part of its regular procedure for establishing and updating school bus standards and specifications. If the Department determines that school buses may operate using clean transportation fuels while maintaining the same or a higher degree of safety as fuels currently allowed, it must update the standards and specifications to allow

  14. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Ethanol Fuel Blend Tax Rate The tax rate on fuel containing ethanol is $0.06 per gallon less than the tax rate on other motor fuels in certain geographic areas. This reduced rate is in effect during months ethanol fuel blends must be sold, transferred, or used to operate motor vehicles to reduce carbon monoxide emissions and attain federal or state air quality standards. (Reference Alaska Statutes 43.40.01

  15. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fuel Vehicle (AFV) Acquisition, Fuel Use, and Emissions Reductions Requirements All state agencies and transit districts must purchase AFVs and use alternative fuels to operate those vehicles to the maximum extent possible, except when it is not economically or logistically possible to purchase or fuel an AFV. Each state agency must develop and report a greenhouse gas reduction baseline and determine annual reduction targets. Reports to the Oregon Department of Administrative

  16. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Low Emission Vehicle (LEV) Standards California's LEV II exhaust emissions standards apply to Model Year (MY) 2004 and subsequent model year passenger cars, light-duty trucks, and medium-duty passenger vehicles meeting specified exhaust standards. The LEV II standards represent the maximum exhaust emissions for LEVs, Ultra Low Emission Vehicles, and Super Ultra Low Emission Vehicles, including flexible fuel, bi-fuel, and dual-fuel vehicles when operating on an alternative fuel. MY 2009 and

  17. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    and Infrastructure Tax Credit for Businesses Business owners and others may be eligible for a tax credit of 35% of eligible costs for qualified alternative fuel infrastructure projects, or the incremental or conversion cost of two or more AFVs. Qualified infrastructure includes facilities for mixing, storing, compressing, or dispensing fuels for vehicles operating on alternative fuels. Qualified alternative fuels include electricity, natural gas, gasoline blended with at least 85% ethanol (E85),

  18. Experience in preparing fuel for combustion

    SciTech Connect (OSTI)

    Rude, J.

    1995-09-01

    The key phase seems to be that wood is the ORIGINAL FUEL. Certainly as man discovered fire, it was the most obvious as well as abundantly available fuel and it burned very well because man was smart enough to select the dry wood once he understood the basics of combustion. As the needs started to go beyond the most elementary, designs for burning ideal fuels were pretty well perfected, however, the burning of less ideal fuels still remain a challenge. To provide plant steam requirements by burning waste that must be disposed of anyway can reduce operating cost considerably. For most of us involved in producing steam, the experience we have with fuels such as bark, wood waste, sludge, and miscellaneous forms of solid combustible waste material, are a result of burning these fuels in an existing boiler supposedly designed for wood waste or possibly a combination of wood and other fuels such as coal, oil, or gas. For a supplier of fuel preparation systems, the typical application involves the sizing, cleaning, and drying of wood waste, and sludge from a pulp and/or paper mill. Other forms of combustible waste are dealt with occasionally and after proper preparation fired in the combustion system for the purpose of generating hot gas and/or steam for the plant process.

  19. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fuel Vehicle (AFV) Parking Incentive Programs The California Department of General Services (DGS) and California Department of Transportation (DOT) must develop and implement AFV parking incentive programs in public parking facilities operated by DGS with 50 or more parking spaces and park-and-ride lots owned and operated by DOT. The incentives must provide meaningful and tangible benefits to drivers, such as preferential spaces, reduced fees, and fueling infrastructure. Fueling

  20. Fuel Economy and Emissions of a Vehicle Equipped with an Aftermarket Flexible-Fuel Conversion Kit

    SciTech Connect (OSTI)

    Thomas, John F; Huff, Shean P; West, Brian H

    2012-04-01

    The U.S. Environmental Protection Agency (EPA) grants Certificates of Conformity for alternative fuel conversion systems and also offers other forms of premarket registration of conversion kits for use in vehicles more than two model years old. Use of alternative fuels such as ethanol, natural gas, and propane are encouraged by the Energy Policy Act of 1992. Several original equipment manufacturers (OEMs) produce emissions-certified vehicles capable of using alternative fuels, and several alternative fuel conversion system manufacturers produce EPA-approved conversion systems for a variety of alternative fuels and vehicle types. To date, only one manufacturer (Flex Fuel U.S.) has received EPA certifications for ethanol fuel (E85) conversion kits. This report details an independent evaluation of a vehicle with a legal installation of a Flex Fuel U.S. conversion kit. A 2006 Dodge Charger was baseline tested with ethanol-free certification gasoline (E0) and E20 (gasoline with 20 vol % ethanol), converted to flex-fuel operation via installation of a Flex Box Smart Kit from Flex Fuel U.S., and retested with E0, E20, E50, and E81. Test cycles included the Federal Test Procedure (FTP or city cycle), the highway fuel economy test (HFET), and the US06 test (aggressive driving test). Averaged test results show that the vehicle was emissions compliant on E0 in the OEM condition (before conversion) and compliant on all test fuels after conversion. Average nitrogen oxide (NOx) emissions exceeded the Tier 2/Bin 5 intermediate life NO{sub X} standard with E20 fuel in the OEM condition due to two of three test results exceeding this standard [note that E20 is not a legal fuel for non-flexible-fuel vehicles (non-FFVs)]. In addition, one E0 test result before conversion and one E20 test result after conversion exceeded the NOX standard, although the average result in these two cases was below the standard. Emissions of ethanol and acetaldehyde increased with increasing ethanol, while nonmethane organic gas and CO emissions remained relatively unchanged for all fuels and cycles. Higher fraction ethanol blends appeared to decrease NO{sub X} emissions on the FTP and HFET (after conversion). As expected, fuel economy (miles per gallon) decreased with increasing ethanol content in all cases.

  1. EVermont Renewable Hydrogen Production and Transportation Fueling System

    SciTech Connect (OSTI)

    Garabedian, Harold T. Wight, Gregory Dreier, Ken Borland, Nicholas

    2008-03-30

    A great deal of research funding is being devoted to the use of hydrogen for transportation fuel, particularly in the development of fuel cell vehicles. When this research bears fruit in the form of consumer-ready vehicles, will the fueling infrastructure be ready? Will the required fueling systems work in cold climates as well as they do in warm areas? Will we be sure that production of hydrogen as the energy carrier of choice for our transit system is the most energy efficient and environmentally friendly option? Will consumers understand this fuel and how to handle it? Those are questions addressed by the EVermont Wind to Wheels Hydrogen Project: Sustainable Transportation. The hydrogen fueling infrastructure consists of three primary subcomponents: a hydrogen generator (electrolyzer), a compression and storage system, and a dispenser. The generated fuel is then used to provide transportation as a motor fuel. EVermont Inc., started in 1993 by then governor Howard Dean, is a public-private partnership of entities interested in documenting and advancing the performance of advanced technology vehicles that are sustainable and less burdensome on the environment, especially in areas of cold climates, hilly terrain and with rural settlement patterns. EVermont has developed a demonstration wind powered hydrogen fuel producing filling system that uses electrolysis, compression to 5000 psi and a hydrogen burning vehicle that functions reliably in cold climates. And that fuel is then used to meet transportation needs in a hybrid electric vehicle whose internal combustion engine has been converted to operate on hydrogen Sponsored by the DOE EERE Hydrogen, Fuel Cells & Infrastructure Technologies (HFC&IT) Program, the purpose of the project is to test the viability of sustainably produced hydrogen for use as a transportation fuel in a cold climate with hilly terrain and rural settlement patterns. Specifically, the project addresses the challenge of building a renewable transportation energy capable system. The prime energy for this project comes from an agreement with a wind turbine operator.

  2. 2009 Fuel Cell Market Report

    SciTech Connect (OSTI)

    Vincent, Bill; Gangi, Jennifer; Curtin, Sandra; Delmont, Elizabeth

    2010-11-01

    Fuel cells are electrochemical devices that combine hydrogen and oxygen to produce electricity, water, and heat. Unlike batteries, fuel cells continuously generate electricity, as long as a source of fuel is supplied. Moreover, fuel cells do not burn fuel, making the process quiet, pollution-free and two to three times more efficient than combustion. Fuel cell systems can be a truly zero-emission source of electricity, if the hydrogen is produced from non-polluting sources. Global concerns about climate change, energy security, and air pollution are driving demand for fuel cell technology. More than 630 companies and laboratories in the United States are investing $1 billion a year in fuel cells or fuel cell component technologies. This report provides an overview of trends in the fuel cell industry and markets, including product shipments, market development, and corporate performance. It also provides snapshots of select fuel cell companies, including general.

  3. MOLTEN CARBONATE FUEL CELL PRODUCT DESIGN IMPROVEMENT

    SciTech Connect (OSTI)

    H.C. Maru; M. Farooque

    2002-02-01

    The carbonate fuel cell promises highly efficient, cost-effective and environmentally superior power generation from pipeline natural gas, coal gas, biogas, and other gaseous and liquid fuels. FuelCell Energy, Inc. has been engaged in the development of this unique technology, focusing on the development of the Direct Fuel Cell (DFC{reg_sign}). The DFC{reg_sign} design incorporates the unique internal reforming feature which allows utilization of a hydrocarbon fuel directly in the fuel cell without requiring any external reforming reactor and associated heat exchange equipment. This approach upgrades waste heat to chemical energy and thereby contributes to a higher overall conversion efficiency of fuel energy to electricity with low levels of environmental emissions. Among the internal reforming options, FuelCell Energy has selected the Indirect Internal Reforming (IIR)--Direct Internal Reforming (DIR) combination as its baseline design. The IIR-DIR combination allows reforming control (and thus cooling) over the entire cell area. This results in uniform cell temperature. In the IIR-DIR stack, a reforming unit (RU) is placed in between a group of fuel cells. The hydrocarbon fuel is first fed into the RU where it is reformed partially to hydrogen and carbon monoxide fuel using heat produced by the fuel cell electrochemical reactions. The reformed gases are then fed to the DIR chamber, where the residual fuel is reformed simultaneously with the electrochemical fuel cell reactions. FuelCell Energy plans to offer commercial DFC power plants in various sizes, focusing on the subMW as well as the MW-scale units. The plan is to offer standardized, packaged DFC power plants operating on natural gas or other hydrocarbon-containing fuels for commercial sale. The power plant design will include a diesel fuel processing option to allow dual fuel applications. These power plants, which can be shop-fabricated and sited near the user, are ideally suited for distributed power generation, industrial cogeneration, marine applications and uninterrupted power for military bases. FuelCell Energy operated a 1.8 MW plant at a utility site in 1996-97, the largest fuel cell power plant ever operated in North America. This proof-of-concept power plant demonstrated high efficiency, low emissions, reactive power control, and unattended operation capabilities. Drawing on the manufacture, field test, and post-test experience of the full-size power plant; FuelCell Energy launched the Product Design Improvement (PDI) program sponsored by government and the private-sector cost-share. The PDI efforts are focused on technology and system optimization for cost reduction, commercial design development, and prototype system field trials. The program was initiated in December 1994. Year 2000 program accomplishments are discussed in this report.

  4. Federal Energy and Water Management Award Winner 22nd Operations...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    22nd Operations Group Fuel Efficiency Office Federal Energy and Water Management Award Winner 22nd Operations Group Fuel Efficiency Office PDF icon fewm13mcconnellafbhighres.pdf ...

  5. Current Challenges in Commercially Producing Biofuels from Lignocellul...

    Office of Scientific and Technical Information (OSTI)

    Biofuels that are produced from biobased materials are a good alternative to petroleum based fuels. They offer several benefits to society and the environment. Producing second ...

  6. Producing Transportation Fuels via Photosynthetically-derived...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    water and nutrients input, and CO 2 emission; (3) not competing with agriculture for ... Previous best EFE level increase: 70% Band intensity 19.9 28.1 0 5 10 15 20 25 30 35 JU547 ...

  7. Feasibility evaluation of fuel cells for selected heavy-duty transportation systems

    SciTech Connect (OSTI)

    Huff, J.R.; Murray, H.S.

    1982-10-01

    A study of the feasibility of using fuel cell power plants for heavy duty transportation applications is performed. It is concluded that it will be feasible to use fuel cell technology projected as being available by 1995 to 2000 for powering 3000-hp freight locomotives and 6000-hp river boats. The fuel cell power plant is proposed as an alternative to the currently used diesel or diesel-electric system. Phosphoric acid and solid polymer electrolyte fuel cells are determined to be the only applicable technologies in the desired time frame. Methanol, chemically reformed to produce hydrogen, is determined to be the most practical fuel for the applications considered. Feasibility is determined on the basis of weight and volume constraints, compatibility with existing propulsion components, and adequate performance relative to operational requirements. Simulation results show that performance goals are met and that overall energy consumption of heavy duty fuel cell power plants is lower than that of diesels for the same operating conditions. Overall energy consumption is substantially improved over diesel operation for locomotives. Operating cost comparisons are made using assumed diesel fuel and methanol costs. Development areas are identified to achieve the desired fuel cell capabilities. The required activities are in the areas of fuel cell electrode performance, catalyst development, fuel processing, controls, power conditioning, and system integration.

  8. NP-MHTGR Fuel Development Program Results

    SciTech Connect (OSTI)

    Maki, John Thomas; Petti, David Andrew; Hobbins, Richard Redfield; McCardell, Richard K.; Shaber, Eric Lee; Southworth, Finis Hio

    2002-10-01

    In August 1988, the Secretary of Energy announced a strategy to acquire New Production Reactor capacity for producing tritium. The strategy involved construction of a New Production Modular High Temperature Gas-Cooled Reactor (NP-MHTGR) where the Idaho National Engineering and Environmental Laboratory (INEEL) was selected as the Management and Operations contractor for the project. Immediately after the announcement in August 1988, tritium target particle development began with the INEEL selected as the lead laboratory. Fuel particle development was initially not considered to be on a critical path for the project, therefore, the fuel development program was to run concurrently with the design effort of the NP-MHTGR.

  9. Life-cycle analysis of alternative aviation fuels in GREET

    SciTech Connect (OSTI)

    Elgowainy, A.; Han, J.; Wang, M.; Carter, N.; Stratton, R.; Hileman, J.; Malwitz, A.; Balasubramanian, S.

    2012-07-23

    The Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model, developed at Argonne National Laboratory, has been expanded to include well-to-wake (WTWa) analysis of aviation fuels and aircraft. This report documents the key WTWa stages and assumptions for fuels that represent alternatives to petroleum jet fuel. The aviation module in GREET consists of three spreadsheets that present detailed characterizations of well-to-pump and pump-to-wake parameters and WTWa results. By using the expanded GREET version (GREET1{_}2011), we estimate WTWa results for energy use (total, fossil, and petroleum energy) and greenhouse gas (GHG) emissions (carbon dioxide, methane, and nitrous oxide) for (1) each unit of energy (lower heating value) consumed by the aircraft or (2) each unit of distance traveled/ payload carried by the aircraft. The fuel pathways considered in this analysis include petroleum-based jet fuel from conventional and unconventional sources (i.e., oil sands); Fisher-Tropsch (FT) jet fuel from natural gas, coal, and biomass; bio-jet fuel from fast pyrolysis of cellulosic biomass; and bio-jet fuel from vegetable and algal oils, which falls under the American Society for Testing and Materials category of hydroprocessed esters and fatty acids. For aircraft operation, we considered six passenger aircraft classes and four freight aircraft classes in this analysis. Our analysis revealed that, depending on the feedstock source, the fuel conversion technology, and the allocation or displacement credit methodology applied to co-products, alternative bio-jet fuel pathways have the potential to reduce life-cycle GHG emissions by 55-85 percent compared with conventional (petroleum-based) jet fuel. Although producing FT jet fuel from fossil feedstock sources - such as natural gas and coal - could greatly reduce dependence on crude oil, production from such sources (especially coal) produces greater WTWa GHG emissions compared with petroleum jet fuel production unless carbon management practices, such as carbon capture and storage, are used.

  10. RADIOACTIVE WASTE STREAMS FROM VARIOUS POTENTIAL NUCLEAR FUEL CYCLE OPTIONS

    SciTech Connect (OSTI)

    Nick Soelberg; Steve Piet

    2010-11-01

    Five fuel cycle options, about which little is known compared to more commonly known options, have been studied in the past year for the United States Department of Energy. These fuel cycle options, and their features relative to uranium-fueled light water reactor (LWR)-based fuel cycles, include: Advanced once-through reactor concepts (Advanced Once-Through, or AOT) intended for high uranium utilization and long reactor operating life, use depleted uranium in some cases, and avoid or minimize used fuel reprocessing Fission-fusion hybrid (FFH) reactor concepts potential variations are intended for high uranium or thorium utilization, produce fissile material for use in power generating reactors, or transmute transuranic (TRU) and some radioactive fission product (FP) isotopes High temperature gas reactor (HTGR) concepts - intended for high uranium utilization, high reactor thermal efficiencies; they have unique fuel designs Molten salt reactor (MSR) concepts can breed fissile U-233 from Th fuel and avoid or minimize U fuel enrichment, use on-line reprocessing of the used fuel, produce lesser amounts of long-lived, highly radiotoxic TRU elements, and avoid fuel assembly fabrication Thorium/U-233 fueled LWR (Th/U-233) concepts can breed fissile U-233 from Th fuel and avoid or minimize U fuel enrichment, and produce lesser amounts of long-lived, highly radiotoxic TRU elements. These fuel cycle options could result in widely different types and amounts of used or spent fuels, spent reactor core materials, and waste streams from used fuel reprocessing, such as: Highly radioactive, high-burnup used metal, oxide, or inert matrix U and/or Th fuels, clad in Zr, steel, or composite non-metal cladding or coatings Spent radioactive-contaminated graphite, SiC, carbon-carbon-composite, metal, and Be reactor core materials Li-Be-F salts containing U, TRU, Th, and fission products Ranges of separated or un-separated activation products, fission products, and actinides. Waste forms now used or studied for used LWR fuels can be used for some of these waste streams but some waste forms may need to be developed for unique waste streams.

  11. Synthetic fuels

    SciTech Connect (OSTI)

    Not Available

    1989-01-01

    In January 1982, the Department of Energy guaranteed a loan for the construction and startup of the Great Plains project. On August 1, 1985, the partnership defaulted on the $1.54 billion loan, and DOE acquired control of, and then title to, the project. DOE continued to operate the plant, through the ANG Coal Gasification Company, and sell synthetic fuel. The DOE's ownership and divestiture of the plant is discussed.

  12. EDG Fuels | Open Energy Information

    Open Energy Info (EERE)

    search Name: EDG Fuels Place: Silver City, Arizona Zip: 88062 Product: Arizona-based biodiesel producer. References: EDG Fuels1 This article is a stub. You can help OpenEI...

  13. 2009 Fuel Cell Market Report

    Fuel Cell Technologies Publication and Product Library (EERE)

    Fuel cells are electrochemical devices that combine hydrogen and oxygen to produce electricity, water, and heat. Unlike batteries, fuel cells continuously generate electricity, as long as a source of

  14. Effects of Gasoline Direct Injection Engine Operating Parameters on Particle Number Emissions

    SciTech Connect (OSTI)

    He, X.; Ratcliff, M. A.; Zigler, B. T.

    2012-04-19

    A single-cylinder, wall-guided, spark ignition direct injection engine was used to study the impact of engine operating parameters on engine-out particle number (PN) emissions. Experiments were conducted with certification gasoline and a splash blend of 20% fuel grade ethanol in gasoline (E20), at four steady-state engine operating conditions. Independent engine control parameter sweeps were conducted including start of injection, injection pressure, spark timing, exhaust cam phasing, intake cam phasing, and air-fuel ratio. The results show that fuel injection timing is the dominant factor impacting PN emissions from this wall-guided gasoline direct injection engine. The major factor causing high PN emissions is fuel liquid impingement on the piston bowl. By avoiding fuel impingement, more than an order of magnitude reduction in PN emission was observed. Increasing fuel injection pressure reduces PN emissions because of smaller fuel droplet size and faster fuel-air mixing. PN emissions are insensitive to cam phasing and spark timing, especially at high engine load. Cold engine conditions produce higher PN emissions than hot engine conditions due to slower fuel vaporization and thus less fuel-air homogeneity during the combustion process. E20 produces lower PN emissions at low and medium loads if fuel liquid impingement on piston bowl is avoided. At high load or if there is fuel liquid impingement on piston bowl and/or cylinder wall, E20 tends to produce higher PN emissions. This is probably a function of the higher heat of vaporization of ethanol, which slows the vaporization of other fuel components from surfaces and may create local fuel-rich combustion or even pool-fires.

  15. Fuel Cell Animation - Fuel Cell Components (Text Version) | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Components (Text Version) Fuel Cell Animation - Fuel Cell Components (Text Version) This text version of the fuel cell animation demonstrates how a fuel cell uses hydrogen to produce electricity, with only water and heat as byproducts. Fuel cell shown with its inputs and outputs. Hydrogen input on top, oxygen input in front, water and heat outputs out the back, with an electrical circuit going around the top. Polymer Electrolyte Membrane (PEM) in center, cathode/catalyst to the right

  16. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fuel Mixture Excise Tax Credit NOTE: This incentive was retroactively extended multiple times, most recently through December 31, 2016, by H.R. 2029. An alternative fuel blender that is registered with the Internal Revenue Service (IRS) may be eligible for a tax incentive on the sale or use of the alternative fuel blend (mixture) for use as a fuel in the blender's trade or business. The credit is in the amount of $0.50 per gallon of alternative fuel used to produce a mixture

  17. Biogas, compost and fuel cells

    SciTech Connect (OSTI)

    Wichert, B.; Wittrup, L.; Robel, R.

    1994-08-01

    A pilot project now under development in Folsom, California, incorporates an anaerobic digestion/aerobic composting process that could eventually supply enough biogas to a fuel cell. The Sacramento Municipal Utility District (SMUD) has two fuel cells in operation and is participating in the research project. Recently, the California Prison Industry Authority (PIA) began operating a processing facility at the Folsom prison, designed for 100 tons/day of mixed waste from the City of Folsom. The 35,000 square foot Correctional Resource Recovery Facility (CRRF) uses minimum security inmates from Folsom`s Return to Custody Facility to manually separate recyclables and compostable materials from the waste stream. The PIA will be using a new technology, high solids anaerobic digestion, to compost the organic fraction (representing approximately 60 to 70 percent of the waste stream). Construction began in June on a 40-foot wide by 120-foot long and 22-foot deep anaerobic digester. Once the vessel is operational in 1995, the composting process and the gradual breakdown of organic material will produce biogas, which SMUD hopes to use to power an adjacent two megawatt fuel cell. The electricity generated will serve SMUD customers, including the waste facility and nearby correctional institutions. 1 fig.

  18. Vivergo Fuels | Open Energy Information

    Open Energy Info (EERE)

    navigation, search Name: Vivergo Fuels Place: United Kingdom Product: Vivergo Fuels is a joint venture formed to build and operate a world-scale biofuel plant in the UK....

  19. Solid polymer MEMS-based fuel cells

    DOE Patents [OSTI]

    Jankowski, Alan F. (Livermore, CA); Morse, Jeffrey D. (Pleasant Hill, CA)

    2008-04-22

    A micro-electro-mechanical systems (MEMS) based thin-film fuel cells for electrical power applications. The MEMS-based fuel cell may be of a solid oxide type (SOFC), a solid polymer type (SPFC), or a proton exchange membrane type (PEMFC), and each fuel cell basically consists of an anode and a cathode separated by an electrolyte layer. The electrolyte layer can consist of either a solid oxide or solid polymer material, or proton exchange membrane electrolyte materials may be used. Additionally catalyst layers can also separate the electrodes (cathode and anode) from the electrolyte. Gas manifolds are utilized to transport the fuel and oxidant to each cell and provide a path for exhaust gases. The electrical current generated from each cell is drawn away with an interconnect and support structure integrated with the gas manifold. The fuel cells utilize integrated resistive heaters for efficient heating of the materials. By combining MEMS technology with thin-film deposition technology, thin-film fuel cells having microflow channels and full-integrated circuitry can be produced that will lower the operating temperature an will yield an order of magnitude greater power density than the currently known fuel cells.

  20. Solid oxide MEMS-based fuel cells

    DOE Patents [OSTI]

    Jankowksi, Alan F.; Morse, Jeffrey D.

    2007-03-13

    A micro-electro-mechanical systems (MEMS) based thin-film fuel cells for electrical power applications. The MEMS-based fuel cell may be of a solid oxide type (SOFC), a solid polymer type (SPFC), or a proton exchange membrane type (PEMFC), and each fuel cell basically consists of an anode and a cathode separated by an electrolyte layer. The electrolyte layer can consist of either a solid oxide or solid polymer material, or proton exchange membrane electrolyte materials may be used. Additionally catalyst layers can also separate the electrodes (cathode and anode) from the electrolyte. Gas manifolds are utilized to transport the fuel and oxidant to each cell and provide a path for exhaust gases. The electrical current generated from each cell is drawn away with an interconnect and support structure integrated with the gas manifold. The fuel cells utilize integrated resistive heaters for efficient heating of the materials. By combining MEMS technology with thin-film deposition technology, thin-film fuel cells having microflow channels and full-integrated circuitry can be produced that will lower the operating temperature an will yield an order of magnitude greater power density than the currently known fuel cells.

  1. Deep desulfurization of hydrocarbon fuels

    DOE Patents [OSTI]

    Song, Chunshan (State College, PA); Ma, Xiaoliang (State College, PA); Sprague, Michael J. (Calgary, CA); Subramani, Velu (State College, PA)

    2012-04-17

    The invention relates to processes for reducing the sulfur content in hydrocarbon fuels such as gasoline, diesel fuel and jet fuel. The invention provides a method and materials for producing ultra low sulfur content transportation fuels for motor vehicles as well as for applications such as fuel cells. The materials and method of the invention may be used at ambient or elevated temperatures and at ambient or elevated pressures without the need for hydrogen.

  2. Engineering microbes to produce biofuels

    SciTech Connect (OSTI)

    Wackett, LP

    2011-06-01

    The current biofuels landscape is chaotic. It is controlled by the rules imposed by economic forces and driven by the necessity of finding new sources of energy, particularly motor fuels. The need is bringing forth great creativity in uncovering new candidate fuel molecules that can be made via metabolic engineering. These next generation fuels include long-chain alcohols, terpenoid hydrocarbons, and diesel-length alkanes. Renewable fuels contain carbon derived from carbon dioxide. The carbon dioxide is derived directly by a photosynthetic fuel-producing organism(s) or via intermediary biomass polymers that were previously derived from carbon dioxide. To use the latter economically, biomass depolymerization processes must improve and this is a very active area of research. There are competitive approaches with some groups using enzyme based methods and others using chemical catalysts. With the former, feedstock and end-product toxicity loom as major problems. Advances chiefly rest on the ability to manipulate biological systems. Computational and modular construction approaches are key. For example, novel metabolic networks have been constructed to make long-chain alcohols and hydrocarbons that have superior fuel properties over ethanol. A particularly exciting approach is to implement a direct utilization of solar energy to make a usable fuel. A number of approaches use the components of current biological systems, but re-engineer them for more direct, efficient production of fuels.

  3. Mixed oxide fuels testing in the advanced test reactor to support plutonium disposition

    SciTech Connect (OSTI)

    Ryskamp, J.M.; Sterbentz, J.W.; Chang, G.S.

    1995-09-01

    An intense worldwide effort is now under way to find means of reducing the stockpile of weapons-grade plutonium. One of the most attractive solutions would be to use WGPu as fuel in existing light water reactors (LWRs) in the form of mixed oxide (MOX) fuel - i.e., plutonia (PUO{sub 2}) mixed with urania (UO{sub 2}). Before U.S. reactors could be used for this purpose, their operating licenses would have to be amended. Numerous technical issues must be resolved before LWR operating licenses can be amended to allow the use of MOX fuel. These issues include the following: (1) MOX fuel fabrication process verification, (2) Whether and how to use burnable poisons to depress MOX fuel initial reactivity, which is higher than that of urania, (3) The effects of WGPu isotopic composition, (4) The feasibility of loading MOX fuel with plutonia content up to 7% by weight, (5) The effects of americium and gallium in WGPu, (6) Fission gas release from MOX fuel pellets made from WGPu, (7) Fuel/cladding gap closure, (8) The effects of power cycling and off-normal events on fuel integrity, (9) Development of radial distributions of burnup and fission products, (10) Power spiking near the interfaces of MOX and urania fuel assemblies, and (11) Fuel performance code validation. We have performed calculations to show that the use of hafnium shrouds can produce spectrum adjustments that will bring the flux spectrum in ATR test loops into a good approximation to the spectrum anticipated in a commercial LWR containing MOX fuel while allowing operation of the test fuel assemblies near their optimum values of linear heat generation rate. The ATR would be a nearly ideal test bed for developing data needed to support applications to license LWRs for operation with MOX fuel made from weapons-grade plutonium. The requirements for planning and implementing a test program in the ATR have been identified.

  4. Hydrogen Fuel Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicles & Fuels » Fuels » Hydrogen Fuel Basics Hydrogen Fuel Basics August 19, 2013 - 5:45pm Addthis Hydrogen (H2) is a potentially emissions-free alternative fuel that can be produced from domestic resources. Although not widely used today as a transportation fuel, government and industry research and development are working toward the goal of clean, economical, and safe hydrogen production and hydrogen-powered fuel cell vehicles. Hydrogen is the simplest and most abundant element in the

  5. Overview of Aviation Fuel Markets for Biofuels Stakeholders

    SciTech Connect (OSTI)

    Davidson, C.; Newes, E.; Schwab, A.; Vimmerstedt, L.

    2014-07-01

    This report is for biofuels stakeholders interested the U.S. aviation fuel market. Jet fuel production represents about 10% of U.S. petroleum refinery production. Exxon Mobil, Chevron, and BP top producers, and Texas, Louisiana, and California are top producing states. Distribution of fuel primarily involves transport from the Gulf Coast to other regions. Fuel is transported via pipeline (60%), barges on inland waterways (30%), tanker truck (5%), and rail (5%). Airport fuel supply chain organization and fuel sourcing may involve oil companies, airlines, airline consortia, airport owners and operators, and airport service companies. Most fuel is used for domestic, commercial, civilian flights. Energy efficiency has substantially improved due to aircraft fleet upgrades and advanced flight logistic improvements. Jet fuel prices generally track prices of crude oil and other refined petroleum products, whose prices are more volatile than crude oil price. The single largest expense for airlines is jet fuel, so its prices and persistent price volatility impact industry finances. Airlines use various strategies to manage aviation fuel price uncertainty. The aviation industry has established goals to mitigate its greenhouse gas emissions, and initial estimates of biojet life cycle greenhouse gas emissions exist. Biojet fuels from Fischer-Tropsch and hydroprocessed esters and fatty acids processes have ASTM standards. The commercial aviation industry and the U.S. Department of Defense have used aviation biofuels. Additional research is needed to assess the environmental, economic, and financial potential of biojet to reduce greenhouse gas emissions and mitigate long-term upward price trends, fuel price volatility, or both.

  6. Yttrium and rare earth stabilized fast reactor metal fuel

    DOE Patents [OSTI]

    Guon, Jerold (Woodland Hills, CA); Grantham, LeRoy F. (Calabasas, CA); Specht, Eugene R. (Simi Valley, CA)

    1992-01-01

    To increase the operating temperature of a reactor, the melting point and mechanical properties of the fuel must be increased. For an actinide-rich fuel, yttrium, lanthanum and/or rare earth elements can be added, as stabilizers, to uranium and plutonium and/or a mixture of other actinides to raise the melting point of the fuel and improve its mechanical properties. Since only about 1% of the actinide fuel may be yttrium, lanthanum, or a rare earth element, the neutron penalty is low, the reactor core size can be reduced, the fuel can be burned efficiently, reprocessing requirements are reduced, and the nuclear waste disposal volumes reduced. A further advantage occurs when yttrium, lanthanum, and/or other rare earth elements are exposed to radiation in a reactor, they produce only short half life radioisotopes, which reduce nuclear waste disposal problems through much shorter assured-isolation requirements.

  7. Water reactive hydrogen fuel cell power system

    DOE Patents [OSTI]

    Wallace, Andrew P; Melack, John M; Lefenfeld, Michael

    2014-11-25

    A water reactive hydrogen fueled power system includes devices and methods to combine reactant fuel materials and aqueous solutions to generate hydrogen. The generated hydrogen is converted in a fuel cell to provide electricity. The water reactive hydrogen fueled power system includes a fuel cell, a water feed tray, and a fuel cartridge to generate power for portable power electronics. The removable fuel cartridge is encompassed by the water feed tray and fuel cell. The water feed tray is refillable with water by a user. The water is then transferred from the water feed tray into the fuel cartridge to generate hydrogen for the fuel cell which then produces power for the user.

  8. Water reactive hydrogen fuel cell power system

    DOE Patents [OSTI]

    Wallace, Andrew P; Melack, John M; Lefenfeld, Michael

    2014-01-21

    A water reactive hydrogen fueled power system includes devices and methods to combine reactant fuel materials and aqueous solutions to generate hydrogen. The generated hydrogen is converted in a fuel cell to provide electricity. The water reactive hydrogen fueled power system includes a fuel cell, a water feed tray, and a fuel cartridge to generate power for portable power electronics. The removable fuel cartridge is encompassed by the water feed tray and fuel cell. The water feed tray is refillable with water by a user. The water is then transferred from the water feed tray into a fuel cartridge to generate hydrogen for the fuel cell which then produces power for the user.

  9. Fuel Cells | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cells Fuel Cells A fuel cell uses the chemical energy of hydrogen or another fuel to cleanly and efficiently produce electricity. If hydrogen is the fuel, electricity, water, and heat are the only products. Fuel cells are unique in terms of the variety of their potential applications; they can provide power for systems as large as a utility power station and as small as a laptop computer. Why Study Fuel Cells Fuel cells can be used in a wide range of applications, including transportation,

  10. Alternative Fuel School Bus Information Resources

    SciTech Connect (OSTI)

    Not Available

    2004-04-01

    This 4-page Clean Cities fact sheet provides a list of important resources for learning more about alternative fuels in school buses. It includes information regarding Alternative Fuel School Bus Manufacturers, Alternative Fuel HD Engine Manufacturers, Alternative Fuel School Bus Operators, and Key Web Resources for Alternative Fuels.

  11. H.R. 5299: A Bill to amend the Internal Revenue Code of 1986 to phase out the tax subsidies for alcohol fuels involving alcohol produced from feedstocks eligible to receive Federal agricultural subsidies. Introduced in the House of Representatives, One Hundred Third Congress, Second Session, November 29, 1994

    SciTech Connect (OSTI)

    1994-12-31

    The report H.R. 5299 is a bill to amend the Internal Revenue Code of 1986 to phase out the tax subsidies of alcohol fuels involving alcohol produced from feedstocks eligible to receive Federal agriculture subsidies. The proposed legislative text is included.

  12. Evaluation of Ultra Clean Fuels from Natural Gas

    SciTech Connect (OSTI)

    Robert Abbott; Edward Casey; Etop Esen; Douglas Smith; Bruce Burke; Binh Nguyen; Samuel Tam; Paul Worhach; Mahabubul Alam; Juhun Song; James Szybist; Ragini Acharya; Vince Zello; David Morris; Patrick Flynn; Stephen Kirby; Krishan Bhatia; Jeff Gonder; Yun Wang; Wenpeng Liu; Hua Meng; Subramani Velu; Jian-Ping Shen, Weidong Gu; Elise Bickford; Chunshan Song; Chao-Yang Wang; Andre' Boehman

    2006-02-28

    ConocoPhillips, in conjunction with Nexant Inc., Penn State University, and Cummins Engine Co., joined with the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) in a cooperative agreement to perform a comprehensive study of new ultra clean fuels (UCFs) produced from remote sources of natural gas. The project study consists of three primary tasks: an environmental Life Cycle Assessment (LCA), a Market Study, and a series of Engine Tests to evaluate the potential markets for Ultra Clean Fuels. The overall objective of DOE's Ultra Clean Transportation Fuels Initiative is to develop and deploy technologies that will produce ultra-clean burning transportation fuels for the 21st century from both petroleum and non-petroleum resources. These fuels will: (1) Enable vehicles to comply with future emission requirements; (2) Be compatible with the existing liquid fuels infrastructure; (3) Enable vehicle efficiencies to be significantly increased, with concomitantly reduced CO{sub 2} emissions; (4) Be obtainable from a fossil resource, alone or in combination with other hydrocarbon materials such as refinery wastes, municipal wastes, biomass, and coal; and (5) Be competitive with current petroleum fuels. The objectives of the ConocoPhillips Ultra Clean Fuels Project are to perform a comprehensive life cycle analysis and to conduct a market study on ultra clean fuels of commercial interest produced from natural gas, and, in addition, perform engine tests for Fisher-Tropsch diesel and methanol in neat, blended or special formulations to obtain data on emissions. This resulting data will be used to optimize fuel compositions and engine operation in order to minimize the release of atmospheric pollutants resulting from the fuel combustion. Development and testing of both direct and indirect methanol fuel cells was to be conducted and the optimum properties of a suitable fuel-grade methanol was to be defined. The results of the study are also applicable to coal-derived FT liquid fuels. After different gas clean up processes steps, the coal-derived syngas will produce FT liquid fuels that have similar properties to natural gas derived FT liquids.

  13. Gaseous-fuel engine technology

    SciTech Connect (OSTI)

    1995-12-31

    This publication contains three distinct groups of papers covering gaseous-fuel injection and control, gaseous-fuel engine projects, and gaseous-fuel engine/vehicle applications. Contents include: ultra rapid natural gas port injection; a CNG specific fuel injector using latching solenoid technology; development of an electronically-controlled natural gas-fueled John Deere PowerTech 8.1L engine; adapting a Geo Metro to run on natural gas using fuel-injection technology; behavior of a closed loop controlled air valve type mixer on a natural gas fueled engine under transient operation; and a turbocharged lean-burn 4.3 liter natural gas engine.

  14. Organic fuels | Open Energy Information

    Open Energy Info (EERE)

    to: navigation, search Name: Organic fuels Place: Houston, Texas Zip: 77056 Product: Biodiesel producer and distributor Coordinates: 29.76045, -95.369784 Show Map Loading...

  15. Innovation Fuels | Open Energy Information

    Open Energy Info (EERE)

    Fuels Place: Newark, New Jersey Zip: 7104 Sector: Biofuels Product: New Jersey-based biodiesel producer which resulted from the merger of Hampton Biofuels and two other biodiesel...

  16. Alternative Fuels | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    gallons by 2022. Public concern over mobile sources of air pollution provides an additional incentive to produce fuels that generate fewer emissions and increase efficiency. ...

  17. Determination of the fuel characteristics of refuse-derived fuels by macroanalysis

    SciTech Connect (OSTI)

    Hecklinger, R.S.; Large, R.M.

    1980-01-01

    There is need for a means of determining the fuel characteristics of refuse-derived fuels to adjust the producer/user contractual relationship for fuel value. The authors discuss efforts to establish a macroanalysis procedure.

  18. Fuel control system

    SciTech Connect (OSTI)

    Detweiler, C.A.

    1980-12-30

    A fuel control system for a turbocharged engine having fuel delivered to the carburetor under the control of a vacuum operated device which is under the further control of a device sensing pressures upstream and downstream of the turbo charger compressor and delivering a vacuum signal to the fuel control device in proportion to the manifold pressure even though the latter pressure may be a positive pressure.

  19. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    High Occupancy Vehicle (HOV) Lane Exemption States are allowed to exempt certified alternative fuel vehicles (AFVs) and plug-in electric vehicles (PEVs) from HOV lane requirements within the state. Eligible AFVs are defined as vehicles operating solely on methanol, denatured ethanol, or other alcohols; a mixture containing at least 85% methanol, denatured ethanol, or other alcohols; natural gas, propane, hydrogen, or coal derived liquid fuels; or fuels derived from biological materials. PEVs are

  20. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Conversion Rebate The Nebraska Energy Office (NEO) offers rebates for qualified AFV conversions completed after January 4, 2016. The rebate amount for vehicle conversions is 50% of the cost of the equipment and installation, up to $4,500 per vehicle. Qualified vehicle conversions include new equipment that is installed in Nebraska by a certified installer to convert a conventional fuel vehicle to operate using a qualified clean-burning motor fuel. These fuels include hydrogen, compressed natural

  1. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fuel and Plug-in Hybrid Electric Vehicle Retrofit Regulations Converting a vehicle to operate on an alternative fuel in lieu of the original gasoline or diesel fuel is prohibited unless the California Air Resources Board (ARB) has evaluated and certified the retrofit system. ARB will issue certification to the manufacturer of the system in the form of an Executive Order once the manufacturer demonstrates compliance with the emissions, warranty, and durability requirements. A

  2. Ever Cat Fuels LLC | Open Energy Information

    Open Energy Info (EERE)

    Ever Cat Fuels, LLC Place: Anoka, Minnesota Zip: MN 55303 Product: Minnesota-based biodiesel producer. The company has developed a technology that produces biodiesel and...

  3. Fossil fuels -- future fuels

    SciTech Connect (OSTI)

    1998-03-01

    Fossil fuels -- coal, oil, and natural gas -- built America`s historic economic strength. Today, coal supplies more than 55% of the electricity, oil more than 97% of the transportation needs, and natural gas 24% of the primary energy used in the US. Even taking into account increased use of renewable fuels and vastly improved powerplant efficiencies, 90% of national energy needs will still be met by fossil fuels in 2020. If advanced technologies that boost efficiency and environmental performance can be successfully developed and deployed, the US can continue to depend upon its rich resources of fossil fuels.

  4. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Tax Exemption An individual who produces biodiesel for use in that individual's private passenger vehicle is exempt from the state motor fuel excise tax. (Reference North Carolina General Statutes 105-449.88(9

  5. Exploratory Design of a Reactor/Fuel Cycle Using Spent Nuclear Fuel Without Conventional Reprocessing - 13579

    SciTech Connect (OSTI)

    Bertch, Timothy C.; Schleicher, Robert W.; Rawls, John D.

    2013-07-01

    General Atomics has started design of a waste to energy nuclear reactor (EM2) that can use light water reactor (LWR) spent nuclear fuel (SNF). This effort addresses two problems: using an advanced small reactor with long core life to reduce nuclear energy overnight cost and providing a disposal path for LWR SNF. LWR SNF is re-fabricated into new EM2 fuel using a dry voloxidation process modeled on AIROX/ OREOX processes which remove some of the fission products but no heavy metals. By not removing all of the fission products the fuel remains self-protecting. By not separating heavy metals, the process remains proliferation resistant. Implementation of Energy Multiplier Module (EM2) fuel cycle will provide low cost nuclear energy while providing a long term LWR SNF disposition path which is important for LWR waste confidence. With LWR waste confidence recent impacts on reactor licensing, an alternate disposition path is highly relevant. Centered on a reactor operating at 250 MWe, the compact electricity generating system design maximizes site flexibility with truck transport of all system components and available dry cooling features that removes the need to be located near a body of water. A high temperature system using helium coolant, electricity is efficiently produced using an asynchronous high-speed gas turbine while the LWR SNF is converted to fission products. Reactor design features such as vented fuel and silicon carbide cladding support reactor operation for decades between refueling, with improved fuel utilization. Beyond the reactor, the fuel cycle is designed so that subsequent generations of EM2 reactor fuel will use the previous EM2 discharge, providing its own waste confidence plus eliminating the need for enrichment after the first generation. Additional LWR SNF is added at each re-fabrication to replace the removed fission products. The fuel cycle uses a dry voloxidation process for both the initial LWR SNF re-fabrication and later for EM2 discharge reuse. The EM2 waste disposal profile is effectively only fission products, which reduces the mass (about 3% vs LWR), average half life, heat and long term radio-toxicity of the disposal. Widespread implementation of EM2 fuel cycle is highly significant as it would increase world energy reserves; the remaining energy in U.S. LWR SNF alone exceeds that in the U.S. natural gas reserves. Unlike many LWR SNF disposition concepts, the EM2 fuel cycle conversion of SNF produces energy and associated revenue such that the overall project is cost effective. By providing conversion of SNF to fission products the fuel cycle is closed and a non-repository LWR SNF disposition path is created and overall repository requirements are significantly reduced. (authors)

  6. Fuel gas conditioning process

    DOE Patents [OSTI]

    Lokhandwala, Kaaeid A.

    2000-01-01

    A process for conditioning natural gas containing C.sub.3+ hydrocarbons and/or acid gas, so that it can be used as combustion fuel to run gas-powered equipment, including compressors, in the gas field or the gas processing plant. Compared with prior art processes, the invention creates lesser quantities of low-pressure gas per unit volume of fuel gas produced. Optionally, the process can also produce an NGL product.

  7. Opportunity fuels

    SciTech Connect (OSTI)

    Lutwen, R.C.

    1994-12-31

    Opportunity fuels - fuels that can be converted to other forms of energy at lower cost than standard fossil fuels - are discussed in outline form. The type and source of fuels, types of fuels, combustability, methods of combustion, refinery wastes, petroleum coke, garbage fuels, wood wastes, tires, and economics are discussed.

  8. Turbine combustor with fuel nozzles having inner and outer fuel circuits

    DOE Patents [OSTI]

    Uhm, Jong Ho; Johnson, Thomas Edward; Kim, Kwanwoo

    2013-12-24

    A combustor cap assembly for a turbine engine includes a combustor cap and a plurality of fuel nozzles mounted on the combustor cap. One or more of the fuel nozzles would include two separate fuel circuits which are individually controllable. The combustor cap assembly would be controlled so that individual fuel circuits of the fuel nozzles are operated or deliberately shut off to provide for physical separation between the flow of fuel delivered by adjacent fuel nozzles and/or so that adjacent fuel nozzles operate at different pressure differentials. Operating a combustor cap assembly in this fashion helps to reduce or eliminate the generation of undesirable and potentially harmful noise.

  9. Watts Bar Operating Cycles Simulated...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Coming in our next issue of Tech Notes: Fuel Performance Predictions with VERA Watts Bar Operating Cycles Simulated to Present Among the most important accomplishments during CASL...

  10. Operation Schedule

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Operation Schedule Daily Hours of Operation

  11. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Hydrogen Fueling Station Evaluation The California Air Resources Board (ARB) may not enforce any element of regulations that would require a supplier to construct, operate, or provide funding to construct or operate a publicly available hydrogen fueling station. Annually, ARB must aggregate and share the number of hydrogen vehicles that manufacturers project will be sold or leased over the next three years and the total number of hydrogen vehicle registered in the state. Based on this

  12. Supplemental information for a notice of construction for the Fueled Clad Fabrication System, the Radioisotope Power Systems Facility, and the Fuel Assembly Area

    SciTech Connect (OSTI)

    Not Available

    1989-08-01

    This ''Notice of Construction'' has been submitted by the US Department of Energy-Richland Operations Office (P.O. Box 550, Richland, Washington 99352), pursuant to WAC 402-80-070, for three new sources of radionuclide emissions at the Hanford Site in Washington State (Figure 1). The three new sources, the Fueled Clad Fabrication System (FCFS) the Radioisotope Power Systems Facility (RPSF) and the Fuel Assembly Area (FAA) will be located in one facility, the Fuels and materials Examination Facility (FMEF) of the 400 Area. The FMEF was originally designed to provide for post- irradiation examination and fabrication of breeder reactor fuels. These FMEF missions were cancelled before the introduction of any fuel materials or any irradiated material. The current plans are to use the facility to fabricate power supplies to be used in space applications and to produce Fast Flux Test Facility (FFTF) fuel and target assemblies. The FCFS and the RPSF will produce materials and assemblies for application in space. The FAA project will produce FFTF fuel and target assemblies. The FCFS and the RPSF will share the same building, stack, and, in certain cases, the same floor space. Given this relationship, to the extent possible, these systems will be dealt with separately. The FAA is a comparatively independent operation though it will share the FMEF complex.

  13. Prevention of significant deterioration permit application for the Fueled Clad Fabrication System, the Radioisotope Power Systems Facility, and the Fuel Assembly Area

    SciTech Connect (OSTI)

    Not Available

    1989-08-01

    This New Source Review'' has been submitted by the US Department of Energy-Richland Operations Office (PO Box 550, Richland, Washington 99352), pursuant to WAC 173-403-050 and in compliance with the Department of Ecology Guide to Processing A Prevention Of Significant Deterioration (PSD) Permit'' for three new sources of radionuclide emissions at the Hanford Site in Washington State. The three new sources, the Fueled Clad Fabrication System (FCFS), the Radioisotope Power Systems Facility (RPSF), and the Fuel Assembly Area (FAA), will be located in one facility, the Fuels and Materials Examination Facility (FMEF) of the 400 Area. The FMEF was originally designed to provide for post-irradiation examination and fabrication of breeder reactor fuels. These FMEF missions were cancelled before the introduction of any fuel materials or any irradiated material. The current plans are to use the facility to fabricate power supplies for use in space applications and to produce Fast Flux Test Facility (FFTF) fuel and target assemblies. The FCFS and the RPSF will produce materials and assemblies for application in space. The FAA project will produce FFTF fuel and target assemblies. The FCFS and the RPSF will share the same building, stack, and, in certain cases, the same floor space. Given this relationship, these systems will be dealt with separately to the extent possible. The FAA is a comparatively independent operation though it will share the FMEF complex.

  14. Techno-Economic Analysis of Scalable Coal-Based Fuel Cells

    SciTech Connect (OSTI)

    Chuang, Steven S. C.

    2014-08-31

    Researchers at The University of Akron (UA) have demonstrated the technical feasibility of a laboratory coal fuel cell that can economically convert high sulfur coal into electricity with near zero negative environmental impact. Scaling up this coal fuel cell technology to the megawatt scale for the nation’s electric power supply requires two key elements: (i) developing the manufacturing technology for the components of the coal-based fuel cell, and (ii) long term testing of a kW scale fuel cell pilot plant. This project was expected to develop a scalable coal fuel cell manufacturing process through testing, demonstrating the feasibility of building a large-scale coal fuel cell power plant. We have developed a reproducible tape casting technique for the mass production of the planner fuel cells. Low cost interconnect and cathode current collector material was identified and current collection was improved. In addition, this study has demonstrated that electrochemical oxidation of carbon can take place on the Ni anode surface and the CO and CO2 product produced can further react with carbon to initiate the secondary reactions. One important secondary reaction is the reaction of carbon with CO2 to produce CO. We found CO and carbon can be electrochemically oxidized simultaneously inside of the anode porous structure and on the surface of anode for producing electricity. Since CH4 produced from coal during high temperature injection of coal into the anode chamber can cause severe deactivation of Ni-anode, we have studied how CH4 can interact with CO2 to produce in the anode chamber. CO produced was found able to inhibit coking and allow the rate of anode deactivation to be decreased. An injection system was developed to inject the solid carbon and coal fuels without bringing air into the anode chamber. Five planner fuel cells connected in a series configuration and tested. Extensive studies on the planner fuels and stack revealed that the planner fuel cell stack is not suitable for operation with carbon and coal fuels due to lack of mechanical strength and difficulty in sealing. We have developed scalable processes for manufacturing of process for planner and tubular cells. Our studies suggested that tubular cell stack could be the only option for scaling up the coal-based fuel cell. Although the direct feeding of coal into fuel cell can significantly simplify the fuel cell system, the durability of the fuel cell needs to be further improved before scaling up. We are developing a tubular fuel cell stack with a coal injection and a CO2 recycling unit.

  15. Heavy metal inventory and fuel sustainability of recycling TRU in FBR design

    SciTech Connect (OSTI)

    Permana, Sidik; Suzuki, Mitsutoshi; Su'ud, Zaki

    2012-06-06

    Nuclear fuel materials from spent fuel of light water reactors have a potential to be used for destructive devices with very huge energy release or in the same time, it can be utilized as a peaceful energy or civil applications, for generating electricity, desalination of water, medical application and others applications. Several research activities showed some recycled spent fuel can be used as additional fuel loading for increasing fuel breeding capability as well as improving intrinsic aspect of nuclear non-proliferation. The present investigation intends to evaluate the composition of heavy metals inventories and fuel breeding capability in the FBR design based on the loaded fuel of light water reactor (LWR) spent fuel (SF) of 33 GWd/t with 5 years cooling time by adopting depletion code of ORIGEN. Whole core analysis of FBR design is performed by adopting and coupling codes such as SLAROM code, JOINT and CITATION codes. Nuclear data library, JFS-3-J-3.2R which is based on the JENDL 3.2 has been used for nuclear data analysis. JSFR design is the basis design reference which basically adopted 800 days cycle length for 4 batches system. Higher inventories of plutonium of MOX fuel and TRU fuel types at equilibrium composition than initial composition have been shown. Minor actinide (MA) inventory compositions obtain a different inventory trends at equilibrium composition for both fuel types. Higher Inventory of MA is obtained by MOX fuel and less MA inventory for TRU fuel at equilibrium composition than initial composition. Some different MA inventories can be estimated from the different inventory trend of americium (Am). Higher americium inventory for MOX fuel and less americium inventory for TRU fuel at equilibrium condition. Breeding ratio of TRU fuel is relatively higher compared with MOX fuel type. It can be estimated from relatively higher production of Pu-238 (through converted MA) in TRU fuel, and Pu-238 converts through neutron capture to produce Pu-239. Higher breeding ratio of MOX fuel and TRU fuel types at equilibrium condition are estimated from converted fertile material during reactor operation into fissile material of plutonium such as converted uranium fuel (converted U-238 into Pu-239) or additional converted fuel from MA into Pu-238 and changes into Pu-239 by capturing neutron. Loading LWR SF gives better fuel breeding capability and increase inventory of MA for doping material of MOX fuel; however, it requires more supply MA inventory for TRU fuel type.

  16. High Efficiency Direct Carbon and Hydrogen Fuel Cells for Fossil Fuel Power Generation

    SciTech Connect (OSTI)

    Steinberg, M; Cooper, J F; Cherepy, N

    2002-01-02

    Hydrogen he1 cells have been under development for a number of years and are now nearing commercial applications. Direct carbon fuel cells, heretofore, have not reached practical stages of development because of problems in fuel reactivity and cell configuration. The carbon/air fuel cell reaction (C + O{sub 2} = CO{sub 2}) has the advantage of having a nearly zero entropy change. This allows a theoretical efficiency of 100 % at 700-800 C. The activities of the C fuel and CO{sub 2} product do not change during consumption of the fuel. Consequently, the EMF is invariant; this raises the possibility of 100% fuel utilization in a single pass. (In contrast, the high-temperature hydrogen fuel cell has a theoretical efficiency of and changes in fuel activity limit practical utilizations to 75-85%.) A direct carbon fuel cell is currently being developed that utilizes reactive carbon particulates wetted by a molten carbonate electrolyte. Pure COZ is evolved at the anode and oxygen from air is consumed at the cathode. Electrochemical data is reported here for the carbon/air cell utilizing carbons derived from he1 oil pyrolysis, purified coal, purified bio-char and petroleum coke. At 800 O C, a voltage efficiency of 80% was measured at power densities of 0.5-1 kW/m2. Carbon and hydrogen fuels may be produced simultaneously at lugh efficiency from: (1) natural gas, by thermal decomposition, (2) petroleum, by coking or pyrolysis of distillates, (3) coal, by sequential hydrogasification to methane and thermal pyrolysis of the methane, with recycle of the hydrogen, and (4) biomass, similarly by sequential hydrogenation and thermal pyrolysis. Fuel production data may be combined with direct C and H2 fuel cell operating data for power cycle estimates. Thermal to electric efficiencies indicate 80% HHV [85% LHV] for petroleum, 75.5% HHV [83.4% LHV] for natural gas and 68.3% HHV [70.8% LHV] for lignite coal. Possible benefits of integrated carbon and hydrogen fuel cell power generation cycles are: (1) increased efficiency by a factor of up to 2 over many conventional fossil fuel steam plants, (2) reduced power generation cost, especially for increasing fossil fuel cost, (3) reduced CO2 emission per kWh, and (4) direct sequestration or reuse (e.g., in enhanced oil or NG recovery) of the CO{sub 2} product.

  17. Neutronic fuel element fabrication

    DOE Patents [OSTI]

    Korton, George (Cincinnati, OH)

    2004-02-24

    This disclosure describes a method for metallurgically bonding a complete leak-tight enclosure to a matrix-type fuel element penetrated longitudinally by a multiplicity of coolant channels. Coolant tubes containing solid filler pins are disposed in the coolant channels. A leak-tight metal enclosure is then formed about the entire assembly of fuel matrix, coolant tubes and pins. The completely enclosed and sealed assembly is exposed to a high temperature and pressure gas environment to effect a metallurgical bond between all contacting surfaces therein. The ends of the assembly are then machined away to expose the pin ends which are chemically leached from the coolant tubes to leave the coolant tubes with internal coolant passageways. The invention described herein was made in the course of, or under, a contract with the U.S. Atomic Energy Commission. It relates generally to fuel elements for neutronic reactors and more particularly to a method for providing a leak-tight metal enclosure for a high-performance matrix-type fuel element penetrated longitudinally by a multiplicity of coolant tubes. The planned utilization of nuclear energy in high-performance, compact-propulsion and mobile power-generation systems has necessitated the development of fuel elements capable of operating at high power densities. High power densities in turn require fuel elements having high thermal conductivities and good fuel retention capabilities at high temperatures. A metal clad fuel element containing a ceramic phase of fuel intimately mixed with and bonded to a continuous refractory metal matrix has been found to satisfy the above requirements. Metal coolant tubes penetrate the matrix to afford internal cooling to the fuel element while providing positive fuel retention and containment of fission products generated within the fuel matrix. Metal header plates are bonded to the coolant tubes at each end of the fuel element and a metal cladding or can completes the fuel-matrix enclosure by encompassing the sides of the fuel element between the header plates.

  18. Biodiesel Fuel Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biodiesel Fuel Basics Biodiesel Fuel Basics July 30, 2013 - 2:43pm Addthis Biodiesel is a domestically produced, renewable fuel that can be manufactured from vegetable oils, animal fats, or recycled restaurant greases. WHAT IS BIODIESEL? Biodiesel is a liquid fuel produced from renewable sources such as new and used vegetable oils and animal fats and is a cleaner-burning replacement for petroleum-based diesel fuel. It is nontoxic and biodegradable. Like petroleum diesel, biodiesel is used to

  19. Hydrogen Fuel Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable Energy » Hydrogen & Fuel Cells » Hydrogen Fuel Basics Hydrogen Fuel Basics August 14, 2013 - 2:06pm Addthis Hydrogen is a clean fuel that, when consumed, produces only water. Hydrogen can be produced from a variety of domestic sources, such as coal, natural gas, nuclear power, and renewable power. These qualities make it an attractive fuel option for transportation and electricity generation applications. Hydrogen is an energy carrier that can be used to store, move, and deliver

  20. Cask fleet operations study

    SciTech Connect (OSTI)

    Not Available

    1988-01-01

    The Nuclear Waste Policy Act of 1982 assigned to the Department of Energy's (DOE) Office of Civilian Waste Management the responsibility for disposing of high-level waste and spent fuel. A significant part of that responsibility involves transporting nuclear waste materials within the federal waste management system; that is, from the waste generator to the repository. The lead responsibility for transportation operations has been assigned to Oak Ridge Operations, with Oak Ridge National Laboratory (ORNL) providing technical support through the Transportation Operations Support Task Group. One of the ORNL support activities involves assessing what facilities, equipment and services are required to assure that an acceptable, cost-effective and safe transportation operations system can be designed, operated and maintained. This study reviews, surveys and assesses the experience of Nuclear Assurance Corporation (NAC) in operating a fleet of spent-fuel shipping casks to aid in developing the spent-fuel transportation system.

  1. Fuel Cell Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable Energy » Hydrogen & Fuel Cells » Fuel Cell Basics Fuel Cell Basics August 14, 2013 - 2:09pm Addthis Text Version Photo of two hydrogen fuel cells. Fuel cells are an emerging technology that can provide heat and electricity for buildings and electrical power for vehicles and electronic devices. How Fuel Cells Work Fuel cells work like batteries, but they do not run down or need recharging. They produce electricity and heat as long as fuel is supplied. A fuel cell consists of two

  2. Fuel quantity modulation in pilot ignited engines

    DOE Patents [OSTI]

    May, Andrew

    2006-05-16

    An engine system includes a first fuel regulator adapted to control an amount of a first fuel supplied to the engine, a second fuel regulator adapted to control an amount of a second fuel supplied to the engine concurrently with the first fuel being supplied to the engine, and a controller coupled to at least the second fuel regulator. The controller is adapted to determine the amount of the second fuel supplied to the engine in a relationship to the amount of the first fuel supplied to the engine to operate in igniting the first fuel at a specified time in steady state engine operation and adapted to determine the amount of the second fuel supplied to the engine in a manner different from the relationship at steady state engine operation in transient engine operation.

  3. NUCLEAR REACTOR FUEL SYSTEMS

    DOE Patents [OSTI]

    Thamer, B.J.; Bidwell, R.M.; Hammond, R.P.

    1959-09-15

    Homogeneous reactor fuel solutions are reported which provide automatic recombination of radiolytic gases and exhibit large thermal expansion characteristics, thereby providing stability at high temperatures and enabling reactor operation without the necessity of apparatus to recombine gases formed by the radiolytic dissociation of water in the fuel and without the necessity of liquid fuel handling outside the reactor vessel except for recovery processes. The fuels consist of phosphoric acid and water solutions of enriched uranium, wherein the uranium is in either the hexavalent or tetravalent state.

  4. Fuel cell stack arrangements

    DOE Patents [OSTI]

    Kothmann, Richard E. (Churchill Boro, PA); Somers, Edward V. (Murrysville, PA)

    1982-01-01

    Arrangements of stacks of fuel cells and ducts, for fuel cells operating with separate fuel, oxidant and coolant streams. An even number of stacks are arranged generally end-to-end in a loop. Ducts located at the juncture of consecutive stacks of the loop feed oxidant or fuel to or from the two consecutive stacks, each individual duct communicating with two stacks. A coolant fluid flows from outside the loop, into and through cooling channels of the stack, and is discharged into an enclosure duct formed within the loop by the stacks and seals at the junctures at the stacks.

  5. Farms to Fuels

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Farms to Fuel Amy Bolten Public Information Officer � Amy.Bolten@scwa.ca.gov � Farms to Fuel * Carbon Free Water by 2015 * One of the largest energy users in Sonoma County * Goal of operating Carbon Free Water system by 2015 * Diverse energy portfolio Farms to Fuel * Agriculture big part of Sonoma County * Poultry and eggs ranked 6 th in the state Farms to Fuel * Local Agriculture Statistics * 2007 Census of Agriculture - Sonoma County * -1% change # of Farms * -15% change Land in Farms *

  6. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    High Occupancy Vehicle (HOV) and High Occupancy Toll (HOT) Lane Exemption Alternative fuel vehicles (AFVs) displaying the proper alternative fuel license plate may use HOV and HOT lanes, regardless of the number of passengers. Qualified AFVs may also use the HOT lanes toll-free. AFVs include plug-in electric vehicles and bi-fuel or dual-fuel vehicles that operate on natural gas or propane. Applicants must provide proof they have paid registration fees in full before receiving the license plate.

  7. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Tax Credit The state offers an income tax credit of 36% of the cost of converting a vehicle to operate on an alternative fuel, the incremental cost of purchasing an original equipment manufacturer AFV, and the cost of alternative fueling equipment. Alternatively, a taxpayer may take a tax credit of 7.2% of the cost of the motor vehicle, up to $1,500. To qualify for the tax credit, vehicles must be dedicated AFVs and registered in

  8. HIGH EFFICIENCY, LOW EMISSIONS, SOLID OXIDE FUEL CELL SYSTEMS FOR MULTIPLE APPLICATIONS

    SciTech Connect (OSTI)

    Sara Ward; Michael A. Petrik

    2004-07-28

    Technology Management Inc. (TMI), teamed with the Ohio Office of Energy Efficiency and Renewable Energy, has engineered, constructed, and demonstrated a stationary, low power, multi-module solid oxide fuel cell (SOFC) prototype system operating on propane and natural gas. Under Phase I, TMI successfully operated two systems in parallel, in conjunction with a single DC-AC inverter and battery bus, and produced net AC electricity. Phase II testing expanded to include alternative and renewable fuels typically available in rural regions of Ohio. The commercial system is expected to have ultra-low pollution, high efficiency, and low noise. The TMI SOFC uses a solid ceramic electrolyte operating at high temperature (800-1000 C) which electrochemically converts gaseous fuels (hydrogen or mixed gases) and oxygen into electricity. The TMI system design oxidizes fuel primarily via electrochemical reactions and uses no burners (which pollute and consume fuel)--resulting in extremely clean exhaust. The use of proprietary sulfur tolerant materials developed by TMI allows system operation without additional fuel pre-processing or sulfur removal. Further, the combination of high operating temperatures and solid state operation increases the potential for higher reliability and efficiencies compared to other types of fuel cells. Applications for the TMI SOFC system cover a wide range of transportation, building, industrial, and military market sectors. A generic technology, fuel cells have the potential to be embodied into multiple products specific to Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) program areas including: Fuel Cells and Microturbines, School Buildings, Transportation, and Bioenergy. This program focused on low power stationary applications using a multi-module system operating on a range of common fuels. By producing clean electricity more efficiently (thus using less fuel), fuel cells have the triple effect of cleaning up the environment, reducing the amount of fuel consumed and, for energy intensive manufacturers, boosting their profits (by reducing energy expenses). Compared to conventional power generation technologies such as internal combustion engines, gas turbines, and coal plants, fuel cells are extremely clean and more efficient, particularly at smaller scales.

  9. Cellulase producing microorganism ATCC 55702

    DOE Patents [OSTI]

    Dees, H.C.

    1997-12-30

    Bacteria which produce large amounts of cellulase--containing cell-free fermentate have been identified. The original bacterium (ATCC 55703) was genetically altered using nitrosoguanidine (MNNG) treatment to produce the enhanced cellulase producing bacterium (ATCC 55702), which was identified through replicate plating. ATCC 55702 has improved characteristics and qualifies for the degradation of cellulosic waste materials for fuel production, food processing, textile processing, and other industrial applications. ATCC 55702 is an improved bacterial host for genetic manipulations using recombinant DNA techniques, and is less likely to destroy genetic manipulations using standard mutagenesis techniques. 5 figs.

  10. Cellulase producing microorganism ATCC 55702

    DOE Patents [OSTI]

    Dees, H. Craig (Lenoir City, TN)

    1997-01-01

    Bacteria which produce large amounts of cellulase--containing cell-free fermentate have been identified. The original bacterium (ATCC 55703) was genetically altered using nitrosoguanidine (MNNG) treatment to produce the enhanced cellulase producing bacterium (ATCC 55702), which was identified through replicate plating. ATCC 55702 has improved characteristics and qualifies for the degradation of cellulosic waste materials for fuel production, food processing, textile processing, and other industrial applications. ATCC 55702 is an improved bacterial host for genetic manipulations using recombinant DNA techniques, and is less likely to destroy genetic manipulations using standard mutagenesis techniques.

  11. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Dealer and Commercial User License Beginning January 1, 2017, alternative fuel dealers and alternative fuel commercial users must apply for a license from the Michigan Department of Treasury. Commercial users are defined as those operating vehicles with three or more axles, or two axles and a gross vehicle weight rating exceeding 26,000 pounds, that operate in more than one state. Alternative fuel dealers must pay a license fee of $500 and commercial users must pay a license fee of $50. For the

  12. NREL: Hydrogen and Fuel Cells Research - Basics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrogen and Fuel Cell Basics Photo of vehicle filling up at renewable hydrogen fueling station. NREL's hydrogen fueling station dispenses hydrogen produced via renewable electrolysis. Photo by Dennis Schroeder, NREL NREL researchers are working to unlock the potential of hydrogen as a fuel and to advance fuel cell technologies for automobiles, equipment, and buildings. View the Hydrogen Program video on NREL's YouTube channel to learn more about the basics of NREL's hydrogen and fuel cell

  13. Alternative Fuel Vehicle Resources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Alternative Fuel Vehicle Resources Alternative Fuel Vehicle Resources Alternative fuel vehicles use fuel types other than petroleum and include such fuels as electricity, ethanol, biodiesel, natural gas, hydrogen, and propane. Compared to petroleum, these alternatives often produce less harmful emissions and contribute to a reduction in petroleum dependence. Federal agencies and certain state governments are required to acquire alternative fuel vehicles as part of the Energy Policy Act of 1992,

  14. Fuel Cell Animation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cell Animation Fuel Cell Animation This fuel cell animation demonstrates how a fuel cell uses hydrogen to produce electricity, with only water and heat as byproducts. Hydrogen fuel cell vehicles emit approximately the same amount of water per mile as conventional vehicles powered by internal combustion engines. Learn more about water emissions from fuel cell vehicles. View text version of animation. FCTO Home About the Fuel Cell Technologies Office Hydrogen Production Hydrogen Delivery Hydrogen

  15. Hydrogen & Fuel Cells | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Efficiency » Vehicles » Hydrogen & Fuel Cells Hydrogen & Fuel Cells Watch this video to find out how fuel cell technology generates clean electricity from hydrogen to power our buildings and transportation-while emitting nothing but water. Learn more about hydrogen and fuel cell technology basics. Fuel cells produce electricity from a number of domestic fuels, including hydrogen and renewables, and can provide power for virtually any application -- from cars and buses to commercial

  16. Flexible Fuel Vehicles: Providing a Renewable Fuel Choice (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-03-01

    Flexible Fuel vehicles are able to operate using more than one type of fuel. FFVs can be fueled with unleaded gasoline, E85, or any combination of the two. Today more than 7 million vehicles on U.S. highways are flexible fuel vehicles. The fact sheet discusses how E85 affects vehicle performance, the costs and benefits of using E85, and how to find E85 station locations.

  17. Method for producing viscous hydrocarbons

    DOE Patents [OSTI]

    Poston, Robert S. (Winter Park, FL)

    1982-01-01

    A method for recovering viscous hydrocarbons and synthetic fuels from a subterranean formation by drilling a well bore through the formation and completing the well by cementing a casing means in the upper part of the pay zone. The well is completed as an open hole completion and a superheated thermal vapor stream comprised of steam and combustion gases is injected into the lower part of the pay zone. The combustion gases migrate to the top of the pay zone and form a gas cap which provides formation pressure to produce the viscous hydrocarbons and synthetic fuels.

  18. Municipal waste to vehicle fuel

    SciTech Connect (OSTI)

    Henrich, R.A.

    1981-01-01

    The use of water as a scrubbing agent for biogas from wastewater treatment plants and landfills is described. The purified gas containing 98% CH/sub 4/ is a viable and potentially cost-effective fuel for traction. A biogas-purification process (the Binax system), delivery of the gas, quality and economics of the purified gas, the Binax design specifications, and a vehicle-conversion system to operate on gasoline or CH/sub 4/ are discussed. Biogas manufacture from wastewater-treatment plants is generally approximately 0.25 -3 cubic ft/capita-day depending on digester design and operating efficiency, solid removal efficiency (primary treatment vs. secondary treatment), and on the amount of industrial and agricultural waste flowing into the facilities. A treatment facility serving a population of 100,000 might produce 50,000-300,000 cubic ft digester gas/day.

  19. Opportunities for mixed oxide fuel testing in the advanced test reactor to support plutonium disposition

    SciTech Connect (OSTI)

    Terry, W.K.; Ryskamp, J.M.; Sterbentz, J.W.

    1995-08-01

    Numerous technical issues must be resolved before LWR operating licenses can be amended to allow the use of MOX fuel. These issues include the following: (1) MOX fuel fabrication process verification; (2) Whether and how to use burnable poisons to depress MOX fuel initial reactivity, which is higher than that of urania; (3) The effects of WGPu isotopic composition; (4) The feasibility of loading MOX fuel with plutonia content up to 7% by weight; (5) The effects of americium and gallium in WGPu; (6) Fission gas release from MOX fuel pellets made from WGPu; (7) Fuel/cladding gap closure; (8) The effects of power cycling and off-normal events on fuel integrity; (9) Development of radial distributions of burnup and fission products; (10) Power spiking near the interfaces of MOX and urania fuel assemblies; and (11) Fuel performance code validation. The Advanced Test Reactor (ATR) at the Idaho National Engineering Laboratory possesses many advantages for performing tests to resolve most of the issues identified above. We have performed calculations to show that the use of hafnium shrouds can produce spectrum adjustments that will bring the flux spectrum in ATR test loops into a good approximation to the spectrum anticipated in a commercial LWR containing MOX fuel while allowing operation of the test fuel assemblies near their optimum values of linear heat generation rate. The ATR would be a nearly ideal test bed for developing data needed to support applications to license LWRs for operation with MOX fuel made from weapons-grade plutonium. The requirements for planning and implementing a test program in the ATR have been identified. The facilities at Argonne National Laboratory-West can meet all potential needs for pre- and post-irradiation examination that might arise in a MOX fuel qualification program.

  20. Open end protection for solid oxide fuel cells

    DOE Patents [OSTI]

    Zafred, Paolo R. (Murrysville, PA); Dederer, Jeffrey T. (Valencia, PA); Tomlins, Gregory W. (Pittsburgh, PA); Toms, James M. (Irwin, PA); Folser, George R. (Lower Burrell, PA); Schmidt, Douglas S. (Pittsburgh, PA); Singh, Prabhakar (Export, PA); Hager, Charles A. (Zelienople, PA)

    2001-01-01

    A solid oxide fuel cell (40) having a closed end (44) and an open end (42) operates in a fuel cell generator (10) where the fuel cell open end (42) of each fuel cell contains a sleeve (60, 64) fitted over the open end (42), where the sleeve (60, 64) extends beyond the open end (42) of the fuel cell (40) to prevent degradation of the interior air electrode of the fuel cell by fuel gas during operation of the generator (10).

  1. Vehicle and Fuel Use | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle and Fuel Use Vehicle and Fuel Use Vehicle and Fuel Use Mission The team evaluates and incorporates the requirements for vehicle and fuel use, as deemed appropriate for LM operations and approved by LM, as defined in: Executive Order (EO) 13693, Planning for Federal Sustainability in the Next Decade, and DOE Order 436.1, Departmental Sustainability The team advocates natural resource sustainability by evaluating vehicle and fuel use. Scope The team evaluates vehicle and fuel-use goals,

  2. Fuel performance annual report for 1986

    SciTech Connect (OSTI)

    Bailey, W.J.; Wu, S.

    1988-03-01

    This annual report, the ninth in a series, provides a brief description of fuel performance during 1986 in commercial nuclear power plants and an indication of trends. Brief summaries of fuel design changes, fuel surveillance programs, fuel operating experience, fuel problems, high-burnup fuel experience, and items of general significance are provided. References to more detailed information and related U.S. Nuclear Regulatory Commission evaluations are included. 550 refs., 12 figs., 31 tabs.

  3. Fuel performance: Annual report for 1987

    SciTech Connect (OSTI)

    Bailey, W.J.; Wu, S.

    1989-03-01

    This annual report, the tenth in a series, provides a brief description of fuel performance during 1987 in commercial nuclear power plants and an indication of trends. Brief summaries of fuel design changes, fuel surveillance programs, fuel operating experience, fuel problems, high-burnup fuel experience, and items of general significance are provided. References to more detailed information and related US Nuclear Regulator Commission evaluations are included. 384 refs., 13 figs., 33 tabs.

  4. Fuel performance annual report for 1989

    SciTech Connect (OSTI)

    Bailey, W.J.; Berting, F.M. ); Wu, S. . Div. of Systems Technology)

    1992-06-01

    This annual report, the twelfth in a series, provides a brief description of fuel performance during 1989 in commercial nuclear power plants and an indication of trends. Brief summaries of fuel design changes, fuel surveillance programs, fuel operating experience, fuel problems, high-burnup fuel experience, and items of general significance are provided. References to more detailed information and related US Nuclear Regulatory Commission evaluations are included.

  5. Types of Fuel Cells | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cells » Types of Fuel Cells Types of Fuel Cells Fuel cells are classified primarily by the kind of electrolyte they employ. This classification determines the kind of electro-chemical reactions that take place in the cell, the kind of catalysts required, the temperature range in which the cell operates, the fuel required, and other factors. These characteristics, in turn, affect the applications for which these cells are most suitable. There are several types of fuel cells currently under

  6. Safe Renewable Corporation formerly Safe Fuels | Open Energy...

    Open Energy Info (EERE)

    Renewable Corporation (formerly Safe Fuels) Place: Texas Zip: 77380 Product: Texas-based biodiesel producer. References: Safe Renewable Corporation (formerly Safe Fuels)1 This...

  7. Microchannel High-Temperature Recuperator for Fuel Cell Systems

    Broader source: Energy.gov [DOE]

    Fuel cells are electrochemical devices that produce electricity without combustion. Due to their high efficiency and minimal emissions, fuel cells are an attractive option for distributed power...

  8. National Fuel Cell Technology Evaluation Center (NFCTEC) (Revised...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    information. Since 2004 NREL has produced around 200 CDPs for these hydrogen and fuel cell technology validation projects: * Hydrogen Fuel Cell Vehicle and Infrastructure...

  9. Developing Low-Cost, Highly Efficient Heat Recovery for Fuel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Introduction Fuel cells are electrochemical devices that produce electricity without combustion. Due to their high effciency and minimal emissions, fuel cells are an attractive ...

  10. Fuel performance annual report for 1990. Volume 8

    SciTech Connect (OSTI)

    Preble, E.A.; Painter, C.L.; Alvis, J.A.; Berting, F.M.; Beyer, C.E.; Payne, G.A.; Wu, S.L.

    1993-11-01

    This annual report, the thirteenth in a series, provides a brief description of fuel performance during 1990 in commercial nuclear power plants. Brief summaries of fuel design changes, fuel surveillance programs, fuel operating experience and trends, fuel problems high-burnup fuel experience, and items of general significance are provided . References to additional, more detailed information, and related NRC evaluations are included where appropriate.

  11. Fuel performance annual report for 1983. Volume 1

    SciTech Connect (OSTI)

    Bailey, W.J.; Dunenfeld, M.S.

    1985-03-01

    This annual report, the sixth in a series, provides a brief description of fuel performance during 1983 in commercial nuclear power plants. Brief summaries of fuel design changes, fuel surveillance programs, fuel operating experience, fuel problems, high-burnup fuel experience, and items of general significance are provided. References to additional, more detailed information and related NRC evaluations are included.

  12. Fuel performance annual report for 1981. [PWR; BWR

    SciTech Connect (OSTI)

    Bailey, W.J.; Tokar, M.

    1982-12-01

    This annual report, the fourth in a series, provides a brief description of fuel performance during 1981 in commercial nuclear power plants. Brief summaries of fuel operating experience, fuel problems, fuel design changes and fuel surveillance programs, and high-burnup fuel experience are provided. References to additional, more detailed information and related NRC evaluations are included.

  13. Accident tolerant fuel analysis

    SciTech Connect (OSTI)

    Smith, Curtis; Chichester, Heather; Johns, Jesse; Teague, Melissa; Tonks, Michael Idaho National Laboratory; Youngblood, Robert

    2014-09-01

    Safety is central to the design, licensing, operation, and economics of Nuclear Power Plants (NPPs). Consequently, the ability to better characterize and quantify safety margin holds the key to improved decision making about light water reactor design, operation, and plant life extension. A systematic approach to characterization of safety margins and the subsequent margins management options represents a vital input to the licensee and regulatory analysis and decision making that will be involved. The purpose of the Risk Informed Safety Margin Characterization (RISMC) Pathway research and development (R&D) is to support plant decisions for risk-informed margins management by improving economics and reliability, and sustaining safety, of current NPPs. Goals of the RISMC Pathway are twofold: (1) Develop and demonstrate a risk-assessment method coupled to safety margin quantification that can be used by NPP decision makers as part of their margin recovery strategies. (2) Create an advanced ''RISMC toolkit'' that enables more accurate representation of NPP safety margin. In order to carry out the R&D needed for the Pathway, the Idaho National Laboratory is performing a series of case studies that will explore methods- and tools-development issues, in addition to being of current interest in their own right. One such study is a comparative analysis of safety margins of plants using different fuel cladding types: specifically, a comparison between current-technology Zircaloy cladding and a notional ''accident-tolerant'' (e.g., SiC-based) cladding. The present report begins the process of applying capabilities that are still under development to the problem of assessing new fuel designs. The approach and lessons learned from this case study will be included in future Technical Basis Guides produced by the RISMC Pathway. These guides will be the mechanism for developing the specifications for RISMC tools and for defining how plant decision makers should propose and evaluate margin recovery strategies.

  14. Accident Tolerant Fuel Analysis

    SciTech Connect (OSTI)

    Curtis Smith; Heather Chichester; Jesse Johns; Melissa Teague; Michael Tonks; Robert Youngblood

    2014-09-01

    Safety is central to the design, licensing, operation, and economics of Nuclear Power Plants (NPPs). Consequently, the ability to better characterize and quantify safety margin holds the key to improved decision making about light water reactor design, operation, and plant life extension. A systematic approach to characterization of safety margins and the subsequent margins management options represents a vital input to the licensee and regulatory analysis and decision making that will be involved. The purpose of the Risk Informed Safety Margin Characterization (RISMC) Pathway research and development (R&D) is to support plant decisions for risk-informed margins management by improving economics and reliability, and sustaining safety, of current NPPs. Goals of the RISMC Pathway are twofold: (1) Develop and demonstrate a risk-assessment method coupled to safety margin quantification that can be used by NPP decision makers as part of their margin recovery strategies. (2) Create an advanced RISMC toolkit that enables more accurate representation of NPP safety margin. In order to carry out the R&D needed for the Pathway, the Idaho National Laboratory is performing a series of case studies that will explore methods- and tools-development issues, in addition to being of current interest in their own right. One such study is a comparative analysis of safety margins of plants using different fuel cladding types: specifically, a comparison between current-technology Zircaloy cladding and a notional accident-tolerant (e.g., SiC-based) cladding. The present report begins the process of applying capabilities that are still under development to the problem of assessing new fuel designs. The approach and lessons learned from this case study will be included in future Technical Basis Guides produced by the RISMC Pathway. These guides will be the mechanism for developing the specifications for RISMC tools and for defining how plant decision makers should propose and evaluate margin recovery strategies.

  15. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Biodiesel Producer Tax Refund A biodiesel producer may apply for a refund of Iowa state sales or use taxes paid on purchases. To qualify, the producer must be registered with the U.S. Environmental Protection Agency and any biodiesel produced must be used in biodiesel fuel blends. The refund amount is based on the total gallons of biodiesel produced in the state multiplied by the designated rate of $0.02. A biodiesel producer is only eligible to receive a refund for up to 25 million gallons of

  16. Automotive Fuel Processor Development and Demonstration with Fuel Cell Systems

    SciTech Connect (OSTI)

    Nuvera Fuel Cells

    2005-04-15

    The potential for fuel cell systems to improve energy efficiency and reduce emissions over conventional power systems has generated significant interest in fuel cell technologies. While fuel cells are being investigated for use in many applications such as stationary power generation and small portable devices, transportation applications present some unique challenges for fuel cell technology. Due to their lower operating temperature and non-brittle materials, most transportation work is focusing on fuel cells using proton exchange membrane (PEM) technology. Since PEM fuel cells are fueled by hydrogen, major obstacles to their widespread use are the lack of an available hydrogen fueling infrastructure and hydrogen's relatively low energy storage density, which leads to a much lower driving range than conventional vehicles. One potential solution to the hydrogen infrastructure and storage density issues is to convert a conventional fuel such as gasoline into hydrogen onboard the vehicle using a fuel processor. Figure 2 shows that gasoline stores roughly 7 times more energy per volume than pressurized hydrogen gas at 700 bar and 4 times more than liquid hydrogen. If integrated properly, the fuel processor/fuel cell system would also be more efficient than traditional engines and would give a fuel economy benefit while hydrogen storage and distribution issues are being investigated. Widespread implementation of fuel processor/fuel cell systems requires improvements in several aspects of the technology, including size, startup time, transient response time, and cost. In addition, the ability to operate on a number of hydrocarbon fuels that are available through the existing infrastructure is a key enabler for commercializing these systems. In this program, Nuvera Fuel Cells collaborated with the Department of Energy (DOE) to develop efficient, low-emission, multi-fuel processors for transportation applications. Nuvera's focus was on (1) developing fuel processor subsystems (fuel reformer, CO cleanup, and exhaust cleanup) that were small enough to integrate on a vehicle and (2) evaluating the fuel processor system performance for hydrogen production, efficiency, thermal integration, startup, durability and ability to integrate with fuel cells. Nuvera carried out a three-part development program that created multi-fuel (gasoline, ethanol, natural gas) fuel processing systems and investigated integration of fuel cell / fuel processor systems. The targets for the various stages of development were initially based on the goals of the DOE's Partnership for New Generation Vehicles (PNGV) initiative and later on the Freedom Car goals. The three parts are summarized below with the names based on the topic numbers from the original Solicitation for Financial Assistance Award (SFAA).

  17. Methodology for comparing the health effects of electricity generation from uranium and coal fuels

    SciTech Connect (OSTI)

    Rhyne, W.R.; El-Bassioni, A.A.

    1981-12-08

    A methodology was developed for comparing the health risks of electricity generation from uranium and coal fuels. The health effects attributable to the construction, operation, and decommissioning of each facility in the two fuel cycle were considered. The methodology is based on defining (1) requirement variables for the materials, energy, etc., (2) effluent variables associated with the requirement variables as well as with the fuel cycle facility operation, and (3) health impact variables for effluents and accidents. The materials, energy, etc., required for construction, operation, and decommissioning of each fuel cycle facility are defined as primary variables. The materials, energy, etc., needed to produce the primary variable are defined as secondary requirement variables. Each requirement variable (primary, secondary, etc.) has associated effluent variables and health impact variables. A diverging chain or tree is formed for each primary variable. Fortunately, most elements reoccur frequently to reduce the level of analysis complexity. 6 references, 11 figures, 6 tables.

  18. California Fuel Cell Partnership: Alternative Fuels Research...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    California Fuel Cell Partnership: Alternative Fuels Research California Fuel Cell Partnership: Alternative Fuels Research This presentation by Chris White of the California Fuel ...

  19. Advanced Materials for Reversible Solid Oxide Fuel Cell (RSOFC...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low Degradation Advanced Materials for Reversible Solid Oxide Fuel Cell (RSOFC), Dual Mode Operation with Low Degradation Presented at the Department of Energy Fuel Cell Projects ...

  20. Fact #659: January 24, 2011 Fuel Economy Ratings for Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fact 659: January 24, 2011 Fuel Economy Ratings for Vehicles Operating on Electricity The Environmental Protection Agency has developed a new methodology for determining how fuel ...

  1. The Use of Exhaust Gas Recirculation to Optimize Fuel Economy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Use of Exhaust Gas Recirculation to Optimize Fuel Economy and Minimize Emissions in Engines Operating on E85 Fuel 2009 DOE Hydrogen Program and Vehicle Technologies Program...

  2. BioFuel Energy Corp | Open Energy Information

    Open Energy Info (EERE)

    Energy Corp Jump to: navigation, search Name: BioFuel Energy Corp Place: Denver, Colorado Zip: 80202 Product: Develops, owns and operates ethanol facilities. References: BioFuel...

  3. Improving Desulfurization to Enable Fuel Cell Utilization of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    sulfur-free biogas meeting the cleanliness requirements of fuel cell power plants. ... technology that will allow small-scale CHP fuel cell systems to operate on biogas. ...

  4. Fuel-Flexible Combustion System for Refinery and Chemical Plant...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    low-emission operation across a broad range of fuel compositions, including syngas, biogas, natural gas, and refinery fuel gas. PDF icon Displacing Natural Gas Consumption and...

  5. Alameda-Contra Costa Transit District Fuel Cell Transit Buses...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cell Transit Buses: Evalluation Results Update Alameda-Contra Costa Transit District ... on hydrogen fuel cell and diesel buses operating at Alameda-Contra Costa Transit District. ...

  6. 2009 Fuel Cell Market Report, November 2010

    SciTech Connect (OSTI)

    Not Available

    2010-11-01

    Fuel cells are electrochemical devices that combine hydrogen and oxygen to produce electricity, water, and heat. Unlike batteries, fuel cells continuously generate electricity, as long as a source of fuel is supplied. Moreover, fuel cells do not burn fuel, making the process quiet, pollution-free and two to three times more efficient than combustion. Fuel cell systems can be a truly zero-emission source of electricity, if the hydrogen is produced from non-polluting sources. Global concerns about climate change, energy security, and air pollution are driving demand for fuel cell technology. More than 630 companies and laboratories in the United States are investing $1 billion a year in fuel cells or fuel cell component technologies. This report provides an overview of trends in the fuel cell industry and markets, including product shipments, market development, and corporate performance. It also provides snapshots of select fuel cell companies, including general.

  7. System for adding sulfur to a fuel cell stack system for improved fuel cell stability

    DOE Patents [OSTI]

    Mukerjee, Subhasish; Haltiner, Jr., Karl J; Weissman, Jeffrey G.

    2012-03-06

    A system for adding sulfur to a fuel cell stack, having a reformer adapted to reform a hydrocarbon fuel stream containing sulfur contaminants, thereby providing a reformate stream having sulfur; a sulfur trap fluidly coupled downstream of the reformer for removing sulfur from the reformate stream, thereby providing a desulfurized reformate stream; and a metering device in fluid communication with the reformate stream upstream of the sulfur trap and with the desulfurized reformate stream downstream of the sulfur trap. The metering device is adapted to bypass a portion of the reformate stream to mix with the desulfurized reformate stream, thereby producing a conditioned reformate stream having a predetermined sulfur concentration that gives an acceptable balance of minimal drop in initial power with the desired maximum stability of operation over prolonged periods for the fuel cell stack.

  8. Fuel pin

    DOE Patents [OSTI]

    Christiansen, David W. (Kennewick, WA); Karnesky, Richard A. (Richland, WA); Leggett, Robert D. (Richland, WA); Baker, Ronald B. (Richland, WA)

    1989-01-01

    A fuel pin for a liquid metal nuclear reactor is provided. The fuel pin includes a generally cylindrical cladding member with metallic fuel material disposed therein. At least a portion of the fuel material extends radially outwardly to the inner diameter of the cladding member to promote efficient transfer of heat to the reactor coolant system. The fuel material defines at least one void space therein to facilitate swelling of the fuel material during fission.

  9. Fuel pin

    DOE Patents [OSTI]

    Christiansen, D.W.; Karnesky, R.A.; Leggett, R.D.; Baker, R.B.

    1987-11-24

    A fuel pin for a liquid metal nuclear reactor is provided. The fuel pin includes a generally cylindrical cladding member with metallic fuel material disposed therein. At least a portion of the fuel material extends radially outwardly to the inner diameter of the cladding member to promote efficient transfer of heat to the reactor coolant system. The fuel material defines at least one void space therein to facilitate swelling of the fuel material during fission.

  10. Evaluation Metrics Applied to Accident Tolerant Fuels

    SciTech Connect (OSTI)

    Shannon M. Bragg-Sitton; Jon Carmack; Frank Goldner

    2014-10-01

    The safe, reliable, and economic operation of the nation’s nuclear power reactor fleet has always been a top priority for the United States’ nuclear industry. Continual improvement of technology, including advanced materials and nuclear fuels, remains central to the industry’s success. Decades of research combined with continual operation have produced steady advancements in technology and have yielded an extensive base of data, experience, and knowledge on light water reactor (LWR) fuel performance under both normal and accident conditions. One of the current missions of the U.S. Department of Energy’s (DOE) Office of Nuclear Energy (NE) is to develop nuclear fuels and claddings with enhanced accident tolerance for use in the current fleet of commercial LWRs or in reactor concepts with design certifications (GEN-III+). Accident tolerance became a focus within advanced LWR research upon direction from Congress following the 2011 Great East Japan Earthquake, resulting tsunami, and subsequent damage to the Fukushima Daiichi nuclear power plant complex. The overall goal of ATF development is to identify alternative fuel system technologies to further enhance the safety, competitiveness and economics of commercial nuclear power. Enhanced accident tolerant fuels would endure loss of active cooling in the reactor core for a considerably longer period of time than the current fuel system while maintaining or improving performance during normal operations. The U.S. DOE is supporting multiple teams to investigate a number of technologies that may improve fuel system response and behavior in accident conditions, with team leadership provided by DOE national laboratories, universities, and the nuclear industry. Concepts under consideration offer both evolutionary and revolutionary changes to the current nuclear fuel system. Mature concepts will be tested in the Advanced Test Reactor at Idaho National Laboratory beginning in Summer 2014 with additional concepts being readied for insertion in fiscal year 2015. This paper provides a brief summary of the proposed evaluation process that would be used to evaluate and prioritize the candidate accident tolerant fuel concepts currently under development.

  11. Decay Heat Calculations for PWR and BWR Assemblies Fueled with Uranium and Plutonium Mixed Oxide Fuel using SCALE

    SciTech Connect (OSTI)

    Ade, Brian J; Gauld, Ian C

    2011-10-01

    In currently operating commercial nuclear power plants (NPP), there are two main types of nuclear fuel, low enriched uranium (LEU) fuel, and mixed-oxide uranium-plutonium (MOX) fuel. The LEU fuel is made of pure uranium dioxide (UO{sub 2} or UOX) and has been the fuel of choice in commercial light water reactors (LWRs) for a number of years. Naturally occurring uranium contains a mixture of different uranium isotopes, primarily, {sup 235}U and {sup 238}U. {sup 235}U is a fissile isotope, and will readily undergo a fission reaction upon interaction with a thermal neutron. {sup 235}U has an isotopic concentration of 0.71% in naturally occurring uranium. For most reactors to maintain a fission chain reaction, the natural isotopic concentration of {sup 235}U must be increased (enriched) to a level greater than 0.71%. Modern nuclear reactor fuel assemblies contain a number of fuel pins potentially having different {sup 235}U enrichments varying from {approx}2.0% to {approx}5% enriched in {sup 235}U. Currently in the United States (US), all commercial nuclear power plants use UO{sub 2} fuel. In the rest of the world, UO{sub 2} fuel is still commonly used, but MOX fuel is also used in a number of reactors. MOX fuel contains a mixture of both UO{sub 2} and PuO{sub 2}. Because the plutonium provides the fissile content of the fuel, the uranium used in MOX is either natural or depleted uranium. PuO{sub 2} is added to effectively replace the fissile content of {sup 235}U so that the level of fissile content is sufficiently high to maintain the chain reaction in an LWR. Both reactor-grade and weapons-grade plutonium contains a number of fissile and non-fissile plutonium isotopes, with the fraction of fissile and non-fissile plutonium isotopes being dependent on the source of the plutonium. While only RG plutonium is currently used in MOX, there is the possibility that WG plutonium from dismantled weapons will be used to make MOX for use in US reactors. Reactor-grade plutonium in MOX fuel is generally obtained from reprocessed irradiated nuclear fuel, whereas weapons-grade plutonium is obtained from decommissioned nuclear weapons material and thus has a different plutonium (and other actinides) concentration. Using MOX fuel instead of UOX fuel has potential impacts on the neutronic performance of the nuclear fuel and the design of the nuclear fuel must take these differences into account. Each of the plutonium sources (RG and WG) has different implications on the neutronic behavior of the fuel because each contains a different blend of plutonium nuclides. The amount of heat and the number of neutrons produced from fission of plutonium nuclides is different from fission of {sup 235}U. These differences in UOX and MOX do not end at discharge of the fuel from the reactor core - the short- and long-term storage of MOX fuel may have different requirements than UOX fuel because of the different discharged fuel decay heat characteristics. The research documented in this report compares MOX and UOX fuel during storage and disposal of the fuel by comparing decay heat rates for typical pressurized water reactor (PWR) and boiling water reactor (BWR) fuel assemblies with and without weapons-grade (WG) and reactor-grade (RG) MOX fuel.

  12. Fuel Cell Case Study

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Kathy Loftus Global Leader, Sustainable Engineering, Maintenance & Energy Management Whole Foods Market, Inc. Fuel Cell Case Study 2 Holistic Approach from Development to Operation WFM Energy Management Negotiation Awareness Load Shaping Engineering Refrigeration HVAC Electrical Maintenance Performance Based Retailers Operational Practices Store Design & Construction Consultants Specifications Procurement Equipment Selection Life Cycle Costing Energy & Maintenance team can feedback

  13. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Compressed Natural Gas (CNG) and Electricity Tax Exemption for Transit Use CNG and electricity that local agencies or public transit operators use as motor vehicle fuel to operate public transit services is exempt from applicable user taxes a county imposes. (Reference California Revenue and Taxation Code 7284.3

  14. Alternative Fuels Data Center: Fuel Prices

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Vehicles Printable Version Share this resource Send a link to Alternative Fuels Data Center: Fuel Prices to someone by E-mail Share Alternative Fuels Data Center: Fuel Prices on Facebook Tweet about Alternative Fuels Data Center: Fuel Prices on Twitter Bookmark Alternative Fuels Data Center: Fuel Prices on Google Bookmark Alternative Fuels Data Center: Fuel Prices on Delicious Rank Alternative Fuels Data Center: Fuel Prices on Digg Find More places to share Alternative Fuels Data Center: Fuel

  15. Fuel Performance Annual Report for 1980

    SciTech Connect (OSTI)

    Bailey, W. J.; Rising, K. H.; Tokar, M.

    1981-12-01

    This annual report, the third in a series, provides a brief description of fuel performance in conmercial nuclear power plants. Brief summaries of fuel surveillance programs and operating experience, fuel performance problems, and fuel design changes are provided. References to additional, more detailed, information and related NRC evaluation are included.

  16. EERE Success Story-California: Agricultural Residues Produce...

    Energy Savers [EERE]

    technology is expected to produce biofuel that reduces greenhouse gas emissions by 80% compared to fossil fuel and help make California a leader in advanced biofuel production. ...

  17. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Payments Through the Bioenergy Program for Advanced Biofuels (Section 9005), eligible producers of advanced biofuels, or fuels derived from renewable biomass other than corn kernel starch, may receive payments to support expanded production of advanced biofuels. Payment amounts will depend on the quantity and duration of production by the eligible producer; the net nonrenewable energy content of the advanced biofuel, if sufficient data is available; the number of producers participating in the

  18. hydrogen is produced by electrolysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    hydrogen is produced by electrolysis - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management

  19. Low emissions diesel fuel

    DOE Patents [OSTI]

    Compere, A.L.; Griffith, W.L.; Dorsey, G.F.; West, B.H.

    1998-05-05

    A method and matter of composition for controlling NO{sub x} emissions from existing diesel engines. The method is achieved by adding a small amount of material to the diesel fuel to decrease the amount of NO{sub x} produced during combustion. Specifically, small amounts, less than about 1%, of urea or a triazine compound (methylol melamines) are added to diesel fuel. Because urea and triazine compounds are generally insoluble in diesel fuel, microemulsion technology is used to suspend or dissolve the urea or triazine compound in the diesel fuel. A typical fuel formulation includes 5% t-butyl alcohol, 4.5% water, 0.5% urea or triazine compound, 9% oleic acid, and 1% ethanolamine. The subject invention provides improved emissions in heavy diesel engines without the need for major modifications.

  20. Low emissions diesel fuel

    DOE Patents [OSTI]

    Compere, Alicia L.; Griffith, William L.; Dorsey, George F.; West, Brian H.

    1998-01-01

    A method and matter of composition for controlling NO.sub.x emissions from existing diesel engines. The method is achieved by adding a small amount of material to the diesel fuel to decrease the amount of NO.sub.x produced during combustion. Specifically, small amounts, less than about 1%, of urea or a triazine compound (methylol melamines) are added to diesel fuel. Because urea and triazine compounds are generally insoluble in diesel fuel, microemulsion technology is used to suspend or dissolve the urea or triazine compound in the diesel fuel. A typical fuel formulation includes 5% t-butyl alcohol, 4.5% water, 0.5% urea or triazine compound, 9% oleic acid, and 1% ethanolamine. The subject invention provides improved emissions in heavy diesel engines without the need for major modifications.

  1. Emergency fuels utilization guidebook. Alternative Fuels Utilization Program

    SciTech Connect (OSTI)

    Not Available

    1980-08-01

    The basic concept of an emergency fuel is to safely and effectively use blends of specification fuels and hydrocarbon liquids which are free in the sense that they have been commandeered or volunteered from lower priority uses to provide critical transportation services for short-duration emergencies on the order of weeks, or perhaps months. A wide variety of liquid hydrocarbons not normally used as fuels for internal combustion engines have been categorized generically, including limited information on physical characteristics and chemical composition which might prove useful and instructive to fleet operators. Fuels covered are: gasoline and diesel fuel; alcohols; solvents; jet fuels; kerosene; heating oils; residual fuels; crude oils; vegetable oils; gaseous fuels.

  2. Fuel Cell Handbook, Fifth Edition

    SciTech Connect (OSTI)

    Energy and Environmental Solutions

    2000-10-31

    Progress continues in fuel cell technology since the previous edition of the Fuel Cell Handbook was published in November 1998. Uppermost, polymer electrolyte fuel cells, molten carbonate fuel cells, and solid oxide fuel cells have been demonstrated at commercial size in power plants. The previously demonstrated phosphoric acid fuel cells have entered the marketplace with more than 220 power plants delivered. Highlighting this commercial entry, the phosphoric acid power plant fleet has demonstrated 95+% availability and several units have passed 40,000 hours of operation. One unit has operated over 49,000 hours. Early expectations of very low emissions and relatively high efficiencies have been met in power plants with each type of fuel cell. Fuel flexibility has been demonstrated using natural gas, propane, landfill gas, anaerobic digester gas, military logistic fuels, and coal gas, greatly expanding market opportunities. Transportation markets worldwide have shown remarkable interest in fuel cells; nearly every major vehicle manufacturer in the U.S., Europe, and the Far East is supporting development. This Handbook provides a foundation in fuel cells for persons wanting a better understanding of the technology, its benefits, and the systems issues that influence its application. Trends in technology are discussed, including next-generation concepts that promise ultrahigh efficiency and low cost, while providing exceptionally clean power plant systems. Section 1 summarizes fuel cell progress since the last edition and includes existing power plant nameplate data. Section 2 addresses the thermodynamics of fuel cells to provide an understanding of fuel cell operation at two levels (basic and advanced). Sections 3 through 8 describe the six major fuel cell types and their performance based on cell operating conditions. Alkaline and intermediate solid state fuel cells were added to this edition of the Handbook. New information indicates that manufacturers have stayed with proven cell designs, focusing instead on advancing the system surrounding the fuel cell to lower life cycle costs. Section 9, Fuel Cell Systems, has been significantly revised to characterize near-term and next-generation fuel cell power plant systems at a conceptual level of detail. Section 10 provides examples of practical fuel cell system calculations. A list of fuel cell URLs is included in the Appendix. A new index assists the reader in locating specific information quickly.

  3. S. 790: This Act may be cited as the Motor Fuel Consumer Protection Act of 1991, introduced in the Senate of the United States, One Hundred Second Congress, First Session, April 9, 1991

    SciTech Connect (OSTI)

    Not Available

    1991-01-01

    This bill would amend the antitrust laws in order to preserve and promote wholesale and retail competition in the retail gasoline market. The bill describes limits on the ownership and operation of service stations. The main provision is the it shall be unlawful for any producer or refiner to require any retail motor fuel dealer to purchase more than 70% of the monthly retail sales of motor fuel from such refiner or producer. Motor fuel refers to gasoline, diesel fuel, alcohol, or any mixture of these sold for use in automobiles and related vehicles.

  4. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Biofuel Incentive The Agricultural Growth, Research, and Innovation Program may offer grants, loans, or other financial incentives to alternative fuel retailers for the installation of ethanol blender pumps or other rural economic infrastructure activities, or to producers of transportation fuels from cellulosic material or bio-based products. Once established, the program will remain in effective through June 30, 2025, with funding subject to legislative appropriation. (Reference Senate File 5,

  5. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Biofuel Production Facility Tax Exemption Any newly constructed or expanded biomass-to-energy facility is exempt from state property taxes for up to 10 taxable years immediately following the taxable year in which construction or installation is completed. A biomass-to-energy facility includes any industrial process plant that uses biomass to produce at least 500,000 gallons of cellulosic alcohol fuel, liquid or gaseous fuel, or other source of energy in a quantity with energy content at least

  6. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Biodiesel and Green Diesel Definitions Biodiesel is defined as a fuel that is comprised of mono-alkyl esters of long chain fatty acids derived from vegetable oil or animal fats and that meets ASTM D6751. Green diesel is defined as a fuel produced from non-fossil renewable resources, including agricultural or silvicultural plants, animal fats, residue, and waste generated from the production, processing, and marketing of agricultural products, silvicultural products, and other renewable

  7. Transportation Fuel Supply | NISAC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SheetsTransportation Fuel Supply content top Transportation Fuel Supply

  8. FY2015 ceramic fuels development annual highlights

    SciTech Connect (OSTI)

    Mcclellan, Kenneth James

    2015-09-22

    Key challenges for the Advanced Fuels Campaign are the development of fuel technologies to enable major increases in fuel performance (safety, reliability, power and burnup) beyond current technologies, and development of characterization methods and predictive fuel performance models to enable more efficient development and licensing of advanced fuels. Ceramic fuel development activities for fiscal year 2015 fell within the areas of 1) National and International Technical Integration, 2) Advanced Accident Tolerant Ceramic Fuel Development, 3) Advanced Techniques and Reference Materials Development, and 4) Fabrication of Enriched Ceramic Fuels. High uranium density fuels were the focus of the ceramic fuels efforts. Accomplishments for FY15 primarily reflect the prioritization of identification and assessment of new ceramic fuels for light water reactors which have enhanced accident tolerance while also maintaining or improving normal operation performance, and exploration of advanced post irradiation examination techniques which will support more efficient testing and qualification of new fuel systems.

  9. Ag Fuels Ltd | Open Energy Information

    Open Energy Info (EERE)

    to: navigation, search Name: Ag Fuels Ltd Place: Sealy, Texas Product: 3.6Mgpl (13.6Mlpy) biodiesel producer in Sealy, Texas. References: Ag Fuels Ltd1 This article is a stub....

  10. 2008 Fuel Cell Technologies Market Report

    Fuel Cell Technologies Publication and Product Library (EERE)

    Fuel cells are electrochemical devices that combine hydrogen and oxygen to produce electricity, water, and heat. Unlike batteries, fuel cells continuously generate electricity, as long as a source of

  11. Alternative Fuels Data Center: Emerging Fuels

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Emerging Fuels Printable Version Share this resource Send a link to Alternative Fuels Data Center: Emerging Fuels to someone by E-mail Share Alternative Fuels Data Center: Emerging Fuels on Facebook Tweet about Alternative Fuels Data Center: Emerging Fuels on Twitter Bookmark Alternative Fuels Data Center: Emerging Fuels on Google Bookmark Alternative Fuels Data Center: Emerging Fuels on Delicious Rank Alternative Fuels Data Center: Emerging Fuels on Digg Find More places to share Alternative

  12. Alternative Fuels Data Center: Biodiesel Fuel Basics

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuel Basics to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Fuel Basics on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Fuel Basics on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Fuel Basics on Google Bookmark Alternative Fuels Data Center: Biodiesel Fuel Basics on Delicious Rank Alternative Fuels Data Center: Biodiesel Fuel Basics on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Fuel Basics on AddThis.com... More in

  13. Alternative Fuels Data Center: Biodiesel Fueling Stations

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fueling Stations to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Fueling Stations on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Fueling Stations on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Fueling Stations on Google Bookmark Alternative Fuels Data Center: Biodiesel Fueling Stations on Delicious Rank Alternative Fuels Data Center: Biodiesel Fueling Stations on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Fueling

  14. Alternative Fuels Data Center: Electricity Fuel Basics

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Electricity Fuel Basics to someone by E-mail Share Alternative Fuels Data Center: Electricity Fuel Basics on Facebook Tweet about Alternative Fuels Data Center: Electricity Fuel Basics on Twitter Bookmark Alternative Fuels Data Center: Electricity Fuel Basics on Google Bookmark Alternative Fuels Data Center: Electricity Fuel Basics on Delicious Rank Alternative Fuels Data Center: Electricity Fuel Basics on Digg Find More places to share Alternative Fuels Data Center: Electricity Fuel Basics on

  15. Alternative Fuels Data Center: Ethanol Fuel Basics

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuel Basics to someone by E-mail Share Alternative Fuels Data Center: Ethanol Fuel Basics on Facebook Tweet about Alternative Fuels Data Center: Ethanol Fuel Basics on Twitter Bookmark Alternative Fuels Data Center: Ethanol Fuel Basics on Google Bookmark Alternative Fuels Data Center: Ethanol Fuel Basics on Delicious Rank Alternative Fuels Data Center: Ethanol Fuel Basics on Digg Find More places to share Alternative Fuels Data Center: Ethanol Fuel Basics on AddThis.com... More in this

  16. Alternative Fuels Data Center: Ethanol Fueling Stations

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fueling Stations to someone by E-mail Share Alternative Fuels Data Center: Ethanol Fueling Stations on Facebook Tweet about Alternative Fuels Data Center: Ethanol Fueling Stations on Twitter Bookmark Alternative Fuels Data Center: Ethanol Fueling Stations on Google Bookmark Alternative Fuels Data Center: Ethanol Fueling Stations on Delicious Rank Alternative Fuels Data Center: Ethanol Fueling Stations on Digg Find More places to share Alternative Fuels Data Center: Ethanol Fueling Stations on

  17. Alternative Fuels Data Center: Hydrogen Fueling Stations

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fueling Stations to someone by E-mail Share Alternative Fuels Data Center: Hydrogen Fueling Stations on Facebook Tweet about Alternative Fuels Data Center: Hydrogen Fueling Stations on Twitter Bookmark Alternative Fuels Data Center: Hydrogen Fueling Stations on Google Bookmark Alternative Fuels Data Center: Hydrogen Fueling Stations on Delicious Rank Alternative Fuels Data Center: Hydrogen Fueling Stations on Digg Find More places to share Alternative Fuels Data Center: Hydrogen Fueling Stations

  18. Alternative Fuels Data Center: Propane Fueling Stations

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fueling Stations to someone by E-mail Share Alternative Fuels Data Center: Propane Fueling Stations on Facebook Tweet about Alternative Fuels Data Center: Propane Fueling Stations on Twitter Bookmark Alternative Fuels Data Center: Propane Fueling Stations on Google Bookmark Alternative Fuels Data Center: Propane Fueling Stations on Delicious Rank Alternative Fuels Data Center: Propane Fueling Stations on Digg Find More places to share Alternative Fuels Data Center: Propane Fueling Stations on

  19. Alternative fuel transit buses

    SciTech Connect (OSTI)

    Motta, R.; Norton, P.; Kelly, K.

    1996-10-01

    The National Renewable Energy Laboratory (NREL) is a U.S. Department of Energy (DOE) national laboratory; this project was funded by DOE. One of NREL`s missions is to objectively evaluate the performance, emissions, and operating costs of alternative fuel vehicles so fleet managers can make informed decisions when purchasing them. Alternative fuels have made greater inroads into the transit bus market than into any other. Each year, the American Public Transit Association (APTA) surveys its members on their inventory and buying plans. The latest APTA data show that about 4% of the 50,000 transit buses in its survey run on an alternative fuel. Furthermore, 1 in 5 of the new transit buses that members have on order are alternative fuel buses. This program was designed to comprehensively and objectively evaluate the alternative fuels in use in the industry.

  20. Method and apparatus for conversion of carbonaceous materials to liquid fuel

    SciTech Connect (OSTI)

    Lux, Kenneth W.; Namazian, Mehdi; Kelly, John T.

    2015-12-01

    Embodiments of the invention relates to conversion of hydrocarbon material including but not limited to coal and biomass to a synthetic liquid transportation fuel. The invention includes the integration of a non-catalytic first reaction scheme, which converts carbonaceous materials into a solid product that includes char and ash and a gaseous product; a non-catalytic second reaction scheme, which converts a portion of the gaseous product from the first reaction scheme to light olefins and liquid byproducts; a traditional gas-cleanup operations; and the third reaction scheme to combine the olefins from the second reaction scheme to produce a targeted fuel like liquid transportation fuels.

  1. LIQUID PHASE FISCHER-TROPSCH (III & IV) DEMONSTRATION IN THE LAPORTE ALTERNATIVE FUELS DEVELOPMENT UNIT. Final Topical Report. Volume I/II: Main Report. Task 1: Engineering Modifications (Fischer-Tropsch III & IV Demonstration) and Task 2: AFDU Shakedown, Operations, Deactivation (Shut-Down) and Disposal (Fischer-Tropsch III & IV Demonstration).

    SciTech Connect (OSTI)

    Bharat L. Bhatt

    1999-06-01

    Slurry phase Fischer-Tropsch technology was successfully demonstrated in DOE's Alternative Fuels Development Unit (AFDU) at LaPorte, Texas. Earlier work at LaPorte, with iron catalysts in 1992 and 1994, had established proof-of-concept status for the slurry phase process. The third campaign (Fischer-Tropsch III), in 1996, aimed at aggressively extending the operability of the slurry reactor using a proprietary cobalt catalyst. Due to an irreversible plugging of catalyst-wax separation filters as a result of unexpected catalyst fines generation, the operations had to be terminated after seven days on-stream. Following an extensive post-run investigation by the participants, the campaign was successfully completed in March-April 1998, with an improved proprietary cobalt catalyst. These runs were sponsored by the U. S. Department of Energy (DOE), Air Products & Chemicals, Inc., and Shell Synthetic Fuels, Inc. (SSFI). A productivity of approximately 140 grams (gm) of hydrocarbons (HC)/ hour (hr)-liter (lit) of expanded slurry volume was achieved at reasonable system stability during the second trial (Fischer-Tropsch IV). The productivity ranged from 110-140 at various conditions during the 18 days of operations. The catalyst/wax filters performed well throughout the demonstration, producing a clean wax product. For the most part, only one of the four filter housings was needed for catalyst/wax filtration. The filter flux appeared to exceed the design flux. A combination of use of a stronger catalyst and some innovative filtration techniques were responsible for this success. There was no sign of catalyst particle attrition and very little erosion of the slurry pump was observed, in contrast to the Fischer-Tropsch III operations. The reactor operated hydrodynamically stable with uniform temperature profile and gas hold-ups. Nuclear density and differential pressure measurements indicated somewhat higher than expected gas hold-up (45 - 50 vol%) during Fischer-Tropsch IV operations. The high gas hold-up was confirmed by a dynamic gas disengagement test conducted at the end of the run. Heat transfer in the reactor was better than expected. Heat, mass and elemental balance calculations indicated excellent closure. After the initial learning curve with system dynamics, the plant was restarted very quickly (24 hours and 17 hours) following two plant trips. This demonstrates the ease and flexibility of the slurry technology. In-situ reduction of catalyst pre-cursor was completed successfully during F-T IV operations. Water measurements proved to be inaccurate due to wax/oil contamination of the analytical system. However, the reduction appeared to proceed well as close to expected syngas conversion was obtained at the beginning of the run. The selectivity to wax was lower than expected, with higher methane selectivity. Returning to the baseline condition indicated a productivity decline from 135-140 to 125-130 gm HC/hr-lit. of reactor volume in two weeks of operation. This may be a result of some catalyst loss from the reactor as well as initial catalyst deactivation. Significant quantities of product and samples were collected for further processing and analysis by the participants. Gas, liquid and solid phase mixing were studied as planned at two operating conditions using radioactive materials. A large amount of data were collected by ICI Tracerco using 43 detectors around the reactor. The data are being analyzed by Washington University as part of the Hydrodynamic Program with DOE.

  2. Fuel Oil",,,"Fuel Oil Consumption",,"Fuel Oil Expenditures"

    U.S. Energy Information Administration (EIA) Indexed Site

    1. Total Fuel Oil Consumption and Expenditures, 1999" ,"All Buildings Using Fuel Oil",,,"Fuel Oil Consumption",,"Fuel Oil Expenditures" ,"Number of Buildings (thousand)","Floorspac...

  3. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Biodiesel Education Grants Competitive grants are available through the Biodiesel Fuel Education Program (Section 9006) to educate governmental and private entities that operate vehicle fleets, the public, and other interested entities about the benefits of biodiesel use. Eligible applicants are non-profit organizations or institutes of higher education that have demonstrated knowledge of biodiesel fuel production, use, or distribution; and have demonstrated the ability to conduct educational

  4. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fuel Vehicle (AFV) Registration A fee of $75 is required for the registration of an AFV that operates on electricity, solar power, or any other source of energy not otherwise taxed under the state motor fuel tax laws. Compressed natural gas, liquefied natural gas, and liquefied petroleum gas (propane) are not subject to this requirement. (Reference Nebraska Revised Statutes 60-306 and 60-3,191

  5. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Natural Gas Vehicle (NGV) Inspection Requirements To pass the state vehicle inspection, an NGV owner must be able to provide proof that the fuel tank on the vehicle has met inspection requirements and falls within the manufacturer's recommended service life, as required by Title 49 of the U.S. Code of Federal Regulations, section 571.304. Fleet operators must also be able to prove that a certified technician inspected the vehicle's fuel tank. (Reference Texas Statutes, Transportation Code

  6. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Public Utility Definition A corporation or individual that owns, controls, operates, or manages a facility that supplies electricity to the public exclusively to charge light-duty battery electric and plug-in hybrid electric vehicles, compressed natural gas to fuel natural gas vehicles, or hydrogen as a motor vehicle fuel is not defined as a public utility. (Reference Assembly Bill 109, 2015, and California Public Utilities Code 216

  7. Fuel Chemistry and Cetane Effects on HCCI Performance, Combustion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Statistical Overview of 5 Years of HCCI Fuel and Engine Data from ORNL Response of Oil Sands Derived Fuels in Diesel HCCI Operation Combustion, Efficiency, and Fuel Effects in a ...

  8. Accelerating Acceptance of Fuel Cell Backup Power Systems - Final Report

    SciTech Connect (OSTI)

    Petrecky, James; Ashley, Christopher

    2014-07-21

    Since 2001, Plug Power has installed more than 800 stationary fuel cell systems worldwide. Plug Power’s prime power systems have produced approximately 6.5 million kilowatt hours of electricity and have accumulated more than 2.5 million operating hours. Intermittent, or backup, power products have been deployed with telecommunications carriers and government and utility customers in North and South America, Europe, the United Kingdom, Japan and South Africa. Some of the largest material handling operations in North America are currently using the company’s motive power units in fuel cell-powered forklifts for their warehouses, distribution centers and manufacturing facilities. The low-temperature GenSys fuel cell system provides remote, off-grid and primary power where grid power is unreliable or nonexistent. Built reliable and designed rugged, low- temperature GenSys delivers continuous or backup power through even the most extreme conditions. Coupled with high-efficiency ratings, low-temperature GenSys reduces operating costs making it an economical solution for prime power requirements. Currently, field trials at telecommunication and industrial sites across the globe are proving the advantages of fuel cells—lower maintenance, fuel costs and emissions, as well as longer life—compared with traditional internal combustion engines.

  9. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Excise Taxes All licensed on-road vehicles fueled with compressed natural gas (CNG) or liquefied petroleum gas (propane) are subject to a special fuels tax through the Excise Taxes Division of the Louisiana Department of Revenue (LDR). Vehicle owners or operators must pay either an annual flat rate decal fee in the amount of $120 per vehicle with a gross vehicle weight rating (GVWR) of less than 10,000 pounds (lbs.) or a variable rate of 80% of the current special fuels tax rate. The owners or

  10. Blue Sky Bio Fuels | Open Energy Information

    Open Energy Info (EERE)

    Bio Fuels Jump to: navigation, search Name: Blue Sky Bio-Fuels Place: Oakland, California Zip: 94602 Product: Blue Sky owns and operates a biodiesel plant in Idaho with a capacity...

  11. Fuel Bio One LLC | Open Energy Information

    Open Energy Info (EERE)

    search Name: Fuel Bio One, LLC Place: Elizabeth, New Jersey Zip: 7202 Product: Fuel Bio operates a 189.5mLpa (50m gallon) capacity biodiesel plant in New Jersey....

  12. Spent-fuel-storage alternatives

    SciTech Connect (OSTI)

    Not Available

    1980-01-01

    The Spent Fuel Storage Alternatives meeting was a technical forum in which 37 experts from 12 states discussed storage alternatives that are available or are under development. The subject matter was divided into the following five areas: techniques for increasing fuel storage density; dry storage of spent fuel; fuel characterization and conditioning; fuel storage operating experience; and storage and transport economics. Nineteen of the 21 papers which were presented at this meeting are included in this Proceedings. These have been abstracted and indexed. (ATT)

  13. MEMS-based thin-film fuel cells

    DOE Patents [OSTI]

    Jankowksi, Alan F.; Morse, Jeffrey D.

    2003-10-28

    A micro-electro-mechanical systems (MEMS) based thin-film fuel cells for electrical power applications. The MEMS-based fuel cell may be of a solid oxide type (SOFC), a solid polymer type (SPFC), or a proton exchange membrane type (PEMFC), and each fuel cell basically consists of an anode and a cathode separated by an electrolyte layer. Additionally catalyst layers can also separate the electrodes (cathode and anode) from the electrolyte. Gas manifolds are utilized to transport the fuel and oxidant to each cell and provide a path for exhaust gases. The electrical current generated from each cell is drawn away with an interconnect and support structure integrated with the gas manifold. The fuel cells utilize integrated resistive heaters for efficient heating of the materials. By combining MEMS technology with thin-film deposition technology, thin-film fuel cells having microflow channels and full-integrated circuitry can be produced that will lower the operating temperature an will yield an order of magnitude greater power density than the currently known fuel cells.

  14. Fuel Cells for Critical Communications Backup Power

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Critical Communications Backup Power Greg Moreland SENTECH, Inc. Supporting the U.S. Department of Energy August 6, 2008 APCO Annual Conference and Expo 2 2 Fuel cells use hydrogen to create electricity, with only water and heat as byproducts Fuel Cell Overview * An individual fuel cell produces about 1 volt * Hundreds of individual cells can comprise a fuel cell stack * Fuel cells can be used to power a variety of applications -Bibliographic Database * Laptop computers (50-100 W) *

  15. Fuel Cell Vehicle Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicles & Fuels » Vehicles » Fuel Cell Vehicle Basics Fuel Cell Vehicle Basics August 20, 2013 - 9:11am Addthis Photo of a blue car with 'The Road to Hydrogen' written on it, filling up at a hydrogen fueling station. Fuel cell vehicles, powered by hydrogen, could greatly improve the sustainability of our transportation sector. Although electricity production may contribute to air pollution, they are more efficient than conventional internal combustion engine vehicles and produce no

  16. Business Owners: Prepare for Fuel Shortages | Department of Energy

    Energy Savers [EERE]

    Fuel Shortages Business Owners: Prepare for Fuel Shortages Business Owners: Prepare for Fuel Shortages You may need fuel for vehicles, generators, and other equipment to continue operating your business during an emergency. During a shortage, local authorities and fuel suppliers will prioritize getting fuel to key assets such as emergency operations centers, hospitals, food supply dealers, water supply plants, and telecommunication networks. Plan ahead to help make sure you have adequate

  17. H. R. 1198: A Bill to amend the Internal Revenue Code of 1986 to restore the application of the credit for producing fuels from a nonconventional source to steam produced from agricultural byproducts, introduced in the House of Representatives, One Hundred Second Congress, First Session, February 28, 1991

    SciTech Connect (OSTI)

    Not Available

    1991-01-01

    The bill would allow a tax credit for steam produced from solid agricultural byproducts (including sugar cane residues, but not including timber byproducts). The bill applies to steam produced which is sold after December 31, 1989, the effective date of this amendment. Steam produced which is used by the taxpayer in his trade or business would be treated as having been sold by the taxpayer to an unrelated person on the date on which it is used.

  18. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Personal Use Biofuel Reporting Taxpayers producing and using biodiesel and ethanol for personal use must report the total gallons of fuel produced by year and the portion of fuel used on-road and off-road to the Arkansas Department of Finance and Administration (DFA). Taxpayers must then submit a tax payment for the portion of biodiesel and ethanol used for on-road purposes. For more information, including instructions and forms, see the DFA website. (Reference Arkansas Code 15-4-2802

  19. NREL: Hydrogen and Fuel Cells Research - Contaminants

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contaminants Image of a generic bar graph. Material Screening Data Tool Explore the results of fuel cell system contaminants studies. As fuel cell systems become more commercially competitive, and as automotive fuel cell research and development trends toward decreased catalyst loadings and thinner membranes, fuel cell operation becomes even more susceptible to contaminants. At NREL, we are researching system-derived contaminants and hydrogen fuel quality. Air contaminants are of interest as

  20. Fuel Cells and Renewable Portfolio Standards

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Renewable Portfolio Standards Webinar hosted by the Clean Energy States Alliance, the US Department of Energy, and the Technology Transition Corporation Frank Wolak, Vice President, FuelCell Energy, Inc. June 9, 2011 * FuelCell Energy (FCE) * The Benefits of Fuel Cells * Considerations for a Comprehensive Clean Energy Portfolio * Q&A Agenda FuelCell Energy Worlds Leading Manufacturer and Operator of Fuel Cell Systems Founded 1969, Public Offering 1992 Global Client Base, Strong Global

  1. Fuel Cell Technologies Multimedia | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Information Resources » Fuel Cell Technologies Multimedia Fuel Cell Technologies Multimedia View and download multimedia-including infographics, videos, and animations-related to hydrogen and fuel cell technologies, research, projects, and program activities. Infographics View the fuel cell electric vehicle infographic to learn about how fuel cell electric vehicles (FCEVs) work and some of the benefits of FCEVs, such as how they reduce greenhouse gas emissions, emit only water, and operate

  2. Alternative Fuels Data Center: Flexible Fuel Vehicles

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Ethanol Printable Version Share this resource Send a link to Alternative Fuels Data Center: Flexible Fuel Vehicles to someone by E-mail Share Alternative Fuels Data Center: Flexible Fuel Vehicles on Facebook Tweet about Alternative Fuels Data Center: Flexible Fuel Vehicles on Twitter Bookmark Alternative Fuels Data Center: Flexible Fuel Vehicles on Google Bookmark Alternative Fuels Data Center: Flexible Fuel Vehicles on Delicious Rank Alternative Fuels Data Center: Flexible Fuel Vehicles on Digg

  3. Homeowners: Respond to Fuel Shortages | Department of Energy

    Energy Savers [EERE]

    Fuel Shortages Homeowners: Respond to Fuel Shortages Homeowners: Respond to Fuel Shortages Natural disasters and other hazards can impact the energy industry's ability to produce and distribute petroleum products, including gasoline, diesel fuel, and heating oil. At the same time, the demand for fuel may spike due to evacuations, or because consumers are buying more fuel to power backup generators during electrical outages. All these factors may lead to fuel shortages, which will prompt local

  4. Production of biomass fuel for resource recovery: Trash recycling in Dade County, Florida

    SciTech Connect (OSTI)

    Mauriello, P.J.; Brooks, K.G.

    1997-12-01

    Dade County, Florida has been in the forefront of resources recovery from municipal solid waste since the early 1980`s. The County completed its 3,000 tons per day (six days per week) refuse derived fuel waste-to-energy facility in 1982. The Resources Recovery facility is operated under a long-term agreement with Montenay-Dade, Ltd. The trash processing capability of this facility was upgraded in 1997 to process 860 tons per day (six days per week) of trash into a biomass fuel which is used off-site to produce electrical energy. Under current Florida law, facilities like trash-to-fuel that produce alternative clean-burning fuels for the production of energy may receive credit for up to one-half of the state`s 30 percent waste reduction goal.

  5. Hydrogen Fuel Pilot Plant and Hydrogen ICE Vehicle Testing

    SciTech Connect (OSTI)

    J. Francfort

    2005-03-01

    The U.S. Department Energy's Advanced Vehicle Testing Activity (AVTA) teamed with Electric Transportation Applications (ETA) and Arizona Public Service (APS) to develop the APS Alternative Fuel (Hydrogen) Pilot Plant that produces and compresses hydrogen on site through an electrolysis process by operating a PEM fuel cell in reverse; natural gas is also compressed onsite. The Pilot Plant dispenses 100% hydrogen, 15 to 50% blends of hydrogen and compressed natural gas (H/CNG), and 100% CNG via a credit card billing system at pressures up to 5,000 psi. Thirty internal combustion engine (ICE) vehicles (including Daimler Chrysler, Ford and General Motors vehicles) are operating on 100% hydrogen and 15 to 50% H/CNG blends. Since the Pilot Plant started operating in June 2002, they hydrogen and H/CNG ICE vehicels have accumulated 250,000 test miles.

  6. Fuel cell stack monitoring and system control

    DOE Patents [OSTI]

    Keskula, Donald H.; Doan, Tien M.; Clingerman, Bruce J.

    2004-02-17

    A control method for monitoring a fuel cell stack in a fuel cell system in which the actual voltage and actual current from the fuel cell stack are monitored. A preestablished relationship between voltage and current over the operating range of the fuel cell is established. A variance value between the actual measured voltage and the expected voltage magnitude for a given actual measured current is calculated and compared with a predetermined allowable variance. An output is generated if the calculated variance value exceeds the predetermined variance. The predetermined voltage-current for the fuel cell is symbolized as a polarization curve at given operating conditions of the fuel cell.

  7. Alternative fuels for vehicles fleet demonstration program final report. Volume 1: Summary

    SciTech Connect (OSTI)

    1997-03-01

    The Alternative Fuels for Vehicles Fleet Demonstration Program (AFV-FDP) was a multiyear effort to collect technical data for use in determining the costs and benefits of alternative-fuel vehicles in typical applications in New York State. During 3 years of collecting data, 7.3 million miles of driving were accumulated, 1,003 chassis-dynamometer emissions tests were performed, 862,000 gallons of conventional fuel were saved, and unique information was developed about garage safety recommendations, vehicle performance, and other topics. Findings are organized by vehicle and fuel type. For light-duty compressed natural gas (CNG) vehicles, technology has evolved rapidly and closed-loop, electronically-controlled fuel systems provide performance and emissions advantages over open-loop, mechanical systems. The best CNG technology produces consistently low tailpipe emissions versus gasoline, and can eliminate evaporative emissions. Reduced driving range remains the largest physical drawback. Fuel cost is low ($/Btu) but capital costs are high, indicating that economics are best with vehicles that are used intensively. Propane produces impacts similar to CNG and is less expensive to implement, but fuel cost is higher than gasoline and safety codes limit use in urban areas. Light-duty methanol/ethanol vehicles provide performance and emissions benefits over gasoline with little impact on capital costs, but fuel costs are high. Heavy-duty CNG engines are evolving rapidly and provide large reductions in emissions versus diesel. Capital costs are high for CNG buses and fuel efficiency is reduced, but the fuel is less expensive and overall operating costs are about equal to those of diesel buses. Methanol buses provide performance and emissions benefits versus diesel, but fuel costs are high. Other emerging technologies were also evaluated, including electric vehicles, hybrid-electric vehicles, and fuel cells.

  8. Fuel Cells and Renewable Gaseous Fuels

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cell Technologies Office | 1 7142015 Fuel Cells and Renewable Gaseous Fuels Bioenergy 2015: Renewable Gaseous Fuels Breakout Session Sarah Studer, PhD ORISE Fellow Fuel Cell...

  9. Opportunity fuels

    SciTech Connect (OSTI)

    Lutwen, R.C.

    1996-12-31

    The paper consists of viewgraphs from a conference presentation. A comparison is made of opportunity fuels, defined as fuels that can be converted to other forms of energy at lower cost than standard fossil fuels. Types of fuels for which some limited technical data is provided include petroleum coke, garbage, wood waste, and tires. Power plant economics and pollution concerns are listed for each fuel, and compared to coal and natural gas power plant costs. A detailed cost breakdown for different plant types is provided for use in base fuel pricing.

  10. Fuel Cells Go Live

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    green h y d r o g e n f u e l i n g POWer Fuel Cells Go live A closer look at the requirements to create a hydrogen-based warehouse M anagers of distribution centers are always on the lookout for new ways to gain competitive advantage through increased operational efficiency, productivity and worker safety. Around North America, some are finding success by integrating commercially available hydrogen fuel cell systems into their lift truck fleets. For operations with large fleets of electric lift

  11. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Requirement for School Buses Every school bus that is capable of operating on diesel fuel must be capable of operating using blends of at least 20% biodiesel (B20). At least 2% of the total volume of fuel purchased annually by local school districts statewide for use in diesel school buses must be a minimum of B20, to the extent that biodiesel blends are available and compatible with the technology of the vehicles and the equipment used. (Reference North Carolina General Statutes 115C-240(c) and

  12. Characterization of Dual-Fuel Reactivity Controlled Compression Ignition

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (RCCI) Using Hydrated Ethanol and Diesel Fuel | Department of Energy Dual-Fuel Reactivity Controlled Compression Ignition (RCCI) Using Hydrated Ethanol and Diesel Fuel Characterization of Dual-Fuel Reactivity Controlled Compression Ignition (RCCI) Using Hydrated Ethanol and Diesel Fuel This study uses numerical simulations to explore the use of wet ethanol as the low-reactivity fuel and diesel as the high-reactivity fuel for RCCI operation in a heavy-duty diesel engine. PDF icon

  13. Fuel cell power supply with oxidant and fuel gas switching

    DOE Patents [OSTI]

    McElroy, J.F.; Chludzinski, P.J.; Dantowitz, P.

    1987-04-14

    This invention relates to a fuel cell vehicular power plant. Fuel for the fuel stack is supplied by a hydrocarbon (methanol) catalytic cracking reactor and CO shift reactor. A water electrolysis subsystem is associated with the stack. During low power operation part of the fuel cell power is used to electrolyze water with hydrogen and oxygen electrolysis products being stored in pressure vessels. During peak power intervals, viz, during acceleration or start-up, pure oxygen and pure hydrogen from the pressure vessel are supplied as the reaction gases to the cathodes and anodes in place of air and methanol reformate. This allows the fuel cell stack to be sized for normal low power/air operation but with a peak power capacity several times greater than that for normal operation. 2 figs.

  14. Fuel cell power supply with oxidant and fuel gas switching

    DOE Patents [OSTI]

    McElroy, James F. (Hamilton, MA); Chludzinski, Paul J. (Swampscott, MA); Dantowitz, Philip (Peabody, MA)

    1987-01-01

    This invention relates to a fuel cell vehicular power plant. Fuel for the fuel stack is supplied by a hydrocarbon (methanol) catalytic cracking reactor and CO shift reactor. A water electrolysis subsystem is associated with the stack. During low power operation part of the fuel cell power is used to electrolyze water with hydrogen and oxygen electrolysis products being stored in pressure vessels. During peak power intervals, viz, during acceleration or start-up, pure oxygen and pure hydrogen from the pressure vessel are supplied as the reaction gases to the cathodes and anodes in place of air and methanol reformate. This allows the fuel cell stack to be sized for normal low power/air operation but with a peak power capacity several times greater than that for normal operation.

  15. Hydrogen and Hydrogen/Natural Gas Station and Vehicle Operations - 2006 Summary Report

    SciTech Connect (OSTI)

    Francfort; Donald Karner; Roberta Brayer

    2006-09-01

    This report is a summary of the operations and testing of internal combustion engine vehicles that were fueled with 100% hydrogen and various blends of hydrogen and compressed natural gas (HCNG). It summarizes the operations of the Arizona Public Service Alternative Fuel Pilot Plant, which produces, compresses, and dispenses hydrogen fuel. Other testing activities, such as the destructive testing of a CNG storage cylinder that was used for HCNG storage, are also discussed. This report highlights some of the latest technology developments in the use of 100% hydrogen fuels in internal combustion engine vehicles. Reports are referenced and WWW locations noted as a guide for the reader that desires more detailed information. These activities are conducted by Arizona Public Service, Electric Transportation Applications, the Idaho National Laboratory, and the U.S. Department of Energy’s Advanced Vehicle Testing Activity.

  16. Fuel Cell Handbook, Fourth Edition

    SciTech Connect (OSTI)

    Stauffer, D.B; Hirschenhofer, J.H.; Klett, M.G.; Engleman, R.R.

    1998-11-01

    Robust progress has been made in fuel cell technology since the previous edition of the Fuel Cell Handbook was published in January 1994. This Handbook provides a foundation in fuel cells for persons wanting a better understanding of the technology, its benefits, and the systems issues that influence its application. Trends in technology are discussed, including next-generation concepts that promise ultra high efficiency and low cost, while providing exceptionally clean power plant systems. Section 1 summarizes fuel cell progress since the last edition and includes existing power plant nameplate data. Section 2 addresses the thermodynamics of fuel cells to provide an understanding of fuel cell operation at two levels (basic and advanced). Sections 3 through 6 describe the four major fuel cell types and their performance based on cell operating conditions. The section on polymer electrolyte membrane fuel cells has been added to reflect their emergence as a significant fuel cell technology. Phosphoric acid, molten carbonate, and solid oxide fuel cell technology description sections have been updated from the previous edition. New information indicates that manufacturers have stayed with proven cell designs, focusing instead on advancing the system surrounding the fuel cell to lower life cycle costs. Section 7, Fuel Cell Systems, has been significantly revised to characterize near-term and next-generation fuel cell power plant systems at a conceptual level of detail. Section 8 provides examples of practical fuel cell system calculations. A list of fuel cell URLs is included in the Appendix. A new index assists the reader in locating specific information quickly.

  17. New developments in RTR fuel recycling

    SciTech Connect (OSTI)

    Lelievre, F.; Brueziere, J.; Domingo, X.; Valery, J.F.; Leroy, J.F.; Tribout-Maurizi, A.

    2013-07-01

    As most utilities in the world, Research and Test Reactors (RTR) operators are currently facing two challenges regarding the fuel, in order to comply with local safety and waste management requirements as well as global non-proliferation obligation: - How to manage used fuel today, and - How fuel design changes that are currently under development will influence used fuel management. AREVA-La-Hague plant has a large experience in used fuel recycling, including traditional RTR fuel (UAl). Based on that experience and deep knowledge of RTR fuel manufacturing, AREVA is currently examining possible options to cope with both challenges. This paper describes the current experience of AREVA-La-Hague in UAl used fuels recycling and its plan to propose recycling for various types of fuels such as U{sub 3}Si{sub 2} fuel or UMo fuel on an industrial scale. (authors)

  18. NREL: Hydrogen and Fuel Cells Research - Fuel Cell Electric Vehicle

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Evaluations Fuel Cell Electric Vehicle Evaluations NREL's technology validation team analyzes hydrogen fuel cell electric vehicles (FCEVs) operating in a real-world setting to identify the current status of the technology, compare it to Department of Energy (DOE) performance and durability targets, and evaluate progress between multiple generations of technology, some of which will include commercial FCEVs for the first time. Current fuel cell electric vehicle evaluations build on the

  19. NREL: Hydrogen and Fuel Cells Research - National Fuel Cell Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Evaluation Center National Fuel Cell Technology Evaluation Center The National Fuel Cell Technology Evaluation Center (NFCTEC) at NREL's Energy Systems Integration Facility (ESIF) plays a crucial role in NREL's independent, third-party analysis of hydrogen fuel cell technologies in real-world operation. The NFCTEC is designed for secure management, storage, and processing of proprietary data from industry. Access to the off-network NFCTEC is limited to NREL's Technology Validation Team,

  20. NREL: Hydrogen and Fuel Cells Research - Stationary Fuel Cell Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Analysis Stationary Fuel Cell Systems Analysis NREL's technology validation team analyzes the performance of stationary fuel cell systems operating in real-world conditions and reports on the technology's performance, progress, and challenges. This analysis includes multiple fuel cell types-proton exchange membrane, solid oxide, phosphoric acid, and molten carbonate-with system sizes ranging from 5 kW to 2.8 MW. Overview Composite Data Products Publications Learn More Contacts Photo of

  1. NREL Produces Ethylene via Photosynthesis - News Releases | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Produces Ethylene via Photosynthesis Environmentally-friendly process offers intriguing alternative to fossil-fuel based ethylene for chemicals and transportation fuels September 25, 2012 Scientists at the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) have demonstrated a better way to use photosynthesis to produce ethylene, a breakthrough that could change the way materials, chemicals, and transportation fuels are made, and help clean the air. NREL scientists introduced

  2. EERE Success Story-California: Agricultural Residues Produce Renewable

    Office of Environmental Management (EM)

    Fuel | Department of Energy Agricultural Residues Produce Renewable Fuel EERE Success Story-California: Agricultural Residues Produce Renewable Fuel April 18, 2013 - 12:00am Addthis Logos Technologies and EERE partnered with EdeniQ of Visalia, California, to construct a pilot plant that processes 1.2 tons per day of agricultural residues, such as corn stover (leaves and stalks), as well as other California-sourced indigenous, nonfood feedstock sources (wood chips and switchgrass). The

  3. Swelling-resistant nuclear fuel

    DOE Patents [OSTI]

    Arsenlis, Athanasios; Satcher, Jr., Joe; Kucheyev, Sergei O.

    2011-12-27

    A nuclear fuel according to one embodiment includes an assembly of nuclear fuel particles; and continuous open channels defined between at least some of the nuclear fuel particles, wherein the channels are characterized as allowing fission gasses produced in an interior of the assembly to escape from the interior of the assembly to an exterior thereof without causing significant swelling of the assembly. Additional embodiments, including methods, are also presented.

  4. Aviation Fuels | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research & Development » Aviation Fuels Aviation Fuels A Navy plane in flight. The Bioenergy Technologies Office (BETO) sees the potential for biofuels produced for the aviation industry to help enable the growth of an advanced bioeconomy. Drop-in jet fuel replacements remain the only true alternative for the commercial aviation industry and the military, both facing ambitious near-term greenhouse gas reduction targets. BETO has been working with national labs, industry stakeholders, and

  5. Environmental data energy technology characterizations: synthetic fuels

    SciTech Connect (OSTI)

    Not Available

    1980-04-01

    Environmental Data Energy Technology Characterizations are publications which are intended to provide policy analysts and technical analysts with basic environmental data associated with key energy technologies. This publication provides documentation on synthetic fuels (coal-derived and oil shale). The transformation of the energy in coal and oil shale into a more useful form is described in this publication in terms of major activity areas in the synthetic fuel cycles, that is, in terms of activities which produce either an energy product or a fuel leading to the production of an energy product in a different form. The activities discussed in this document are coal liquefaction, coal gasification, in-situ gasification, and oil shales. These activities represent both well-documented and advanced activity areas. The former activities are characterized in terms of actual operating data with allowance for future modification where appropriate. Emissions are assumed to conform to environmental standards. The advanced activity areas examined are those like coal liquefaction and in-situ retorting of oil shale. For these areas, data from pilot or demonstration plants were used where available; otherwise, engineering studies provided the data. The organization of the chapters in this volume is designed to support the tabular presentation in the summary volume. Each chapter begins with a brief description of the activity under consideration. The standard characteristics, size, availability, mode of functioning and place in the fuel cycle are presented. Next, major legislative and/or technological factors influencing the commercial operation of the activity are offered. Discussions of resources consumed, residuals produced, and economics follow. To aid in comparing and linking the different activity areas, data for each area are normalized to 10/sup 12/ Btu of energy output from the activity.

  6. Advanced Fuels Campaign Light Water Reactor Accident Tolerant Fuel Performance Metrics

    SciTech Connect (OSTI)

    Brad Merrill; Melissa Teague; Robert Youngblood; Larry Ott; Kevin Robb; Michael Todosow; Chris Stanek; Mitchell Farmer; Michael Billone; Robert Montgomery; Nicholas Brown; Shannon Bragg-Sitton

    2014-02-01

    The safe, reliable and economic operation of the nations nuclear power reactor fleet has always been a top priority for the United States nuclear industry. As a result, continual improvement of technology, including advanced materials and nuclear fuels, remains central to industrys success. Decades of research combined with continual operation have produced steady advancements in technology and yielded an extensive base of data, experience, and knowledge on light water reactor (LWR) fuel performance under both normal and accident conditions. In 2011, following the Great East Japan Earthquake, resulting tsunami, and subsequent damage to the Fukushima Daiichi nuclear power plant complex, enhancing the accident tolerance of LWRs became a topic of serious discussion. As a result of direction from the U.S. Congress, the U.S. Department of Energy Office of Nuclear Energy (DOE-NE) initiated an Accident Tolerant Fuel (ATF) Development program. The complex multiphysics behavior of LWR nuclear fuel makes defining specific material or design improvements difficult; as such, establishing qualitative attributes is critical to guide the design and development of fuels and cladding with enhanced accident tolerance. This report summarizes a common set of technical evaluation metrics to aid in the optimization and down selection of candidate designs. As used herein, metrics describe a set of technical bases by which multiple concepts can be fairly evaluated against a common baseline and against one another. Furthermore, this report describes a proposed technical evaluation methodology that can be applied to assess the ability of each concept to meet performance and safety goals relative to the current UO2 zirconium alloy system and relative to one another. The resultant ranked evaluation can then inform concept down-selection, such that the most promising accident tolerant fuel design option(s) can continue to be developed for lead test rod or lead test assembly insertion into a commercial reactor within the desired timeframe (by 2022).

  7. Synthetic Fuel

    ScienceCinema (OSTI)

    Idaho National Laboratory - Steve Herring, Jim O'Brien, Carl Stoots

    2010-01-08

    Two global energy priorities today are finding environmentally friendly alternatives to fossil fuels, and reducing greenhouse gass Two global energy priorities today are finding environmentally friendly alternatives to fossil fuels, and reducing greenhous

  8. Freedom Fuels LLC | Open Energy Information

    Open Energy Info (EERE)

    LLC Jump to: navigation, search Name: Freedom Fuels LLC Place: Hampton, Iowa Product: Biodiesel producer based in Hampton, Iowa. Coordinates: 37.027795, -76.345119 Show Map...

  9. Agri Source Fuels | Open Energy Information

    Open Energy Info (EERE)

    search Name: Agri-Source Fuels Place: Pensacola, Florida Zip: 32505 Product: Biodiesel producer located in Florida that owns a plant in Dade City. References: Agri-Source...

  10. Agra Bio Fuels | Open Energy Information

    Open Energy Info (EERE)

    search Name: Agra Bio Fuels Place: Middletown, Pennsylvania Zip: 17057 Product: Biodiesel producer with plans to build 11 biodiesel plants in Pennsylvania. References: Agra...

  11. Comparison of Fuel Cell Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Information More information on the Fuel Cell Technologies Offce is available at http://www.hydrogenandfuelcells.energy.gov. Fuel Cell Type Common Electrolyte Operating Temperature Typical Stack Size Electrical Efficiency (LHV) Applications Advantages Challenges Polymer Electrolyte Membrane (PEM) Perfluorosulfonic acid <120°C <1 kW - 100 kW 60% direct H 2 ; i 40% reformed fuel ii * Backup power * Portable power * Distributed generation * Transportation * Specialty vehicles * Solid

  12. Fuel Economy

    Broader source: Energy.gov [DOE]

    The Energy Department is investing in groundbreaking research that will make cars weigh less, drive further and consume less fuel.

  13. Fuels Technologies

    Office of Environmental Management (EM)

    Fuels Technologies Program Mission To develop more energy efficient and environmentally friendly highway transportation technologies that enable America to use less petroleum. --EERE Strategic Plan, October 2002-- Kevin Stork, Team Leader Fuel Technologies & Technology Deployment Vehicle Technologies Program Energy Efficiency and Renewable Energy U.S. Department of Energy DEER 2008 August 6, 2008 Presentation Outline n Fuel Technologies Research Goals Fuels as enablers for advanced engine

  14. Summary of Off-Normal Events in US Fuel Cycle Facilities for AFCI Applications

    SciTech Connect (OSTI)

    L. C. Cadwallader; S. J. Piet; S. O. Sheetz; D. H. McGuire; W. B. Boore

    2005-09-01

    This report is a collection and review of system operation and failure experiences for facilities comprising the fission reactor fuel cycle, with the exception of reactor operations. This report includes mines, mills, conversion plants, enrichment plants, fuel fabrication plants, transportation of fuel materials between these centers, and waste storage facilities. Some of the facilities discussed are no longer operating; others continue to produce fuel for the commercial fission power plant industry. Some of the facilities discussed have been part of the military’s nuclear effort; these are included when the processes used are similar to those used for commercial nuclear power. When reading compilations of incidents and accidents, after repeated entries it is natural to form an opinion that there exists nothing but accidents. For this reason, production or throughput values are described when available. These adverse operating experiences are compiled to support the design and decisions needed for the Advanced Fuel Cycle Initiative (AFCI). The AFCI is to weigh options for a new fission reactor fuel cycle that is efficient, safe, and productive for US energy security.

  15. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Biofuels Program Impact Studies The Oregon Department of Energy (ODOE) must conduct periodic impact studies related to the biofuels industry in the state. These studies should evaluate such criteria as: jobs created; current and projected feedstock availability; amount of biofuels blends produced and consumed in the state; cost comparison of biofuels blends and petroleum fuel; environmental impacts; and the extent to which Oregon producers import biofuels or biofuels feedstocks from outside the

  16. Clean Cities Guide to Alternative Fuel Commercial Lawn Equipment (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01

    Guide explains the different types of alternative fuel commercial mowers and lists the makes and models of the ones available on the market. Turf grass is a fixture of the American landscape and the American economy. It is the nation's largest irrigated crop, covering more than 40 million acres. Legions of lawnmowers care for this expanse during the growing season-up to year-round in the warmest climates. The annual economic impact of the U.S. turf grass industry has been estimated at more than $62 billion. Lawn mowing also contributes to the nation's petroleum consumption and pollutant emissions. Mowers consume 1.2 billion gallons of gasoline annually, about 1% of U.S. motor gasoline consumption. Commercial mowing accounts for about 35% of this total and is the highest-intensity use. Large property owners and mowing companies cut lawns, sports fields, golf courses, parks, roadsides, and other grassy areas for 7 hours per day and consume 900 to 2,000 gallons of fuel annually depending on climate and length of the growing season. In addition to gasoline, commercial mowing consumes more than 100 million gallons of diesel annually. Alternative fuel mowers are one way to reduce the energy and environmental impacts of commercial lawn mowing. They can reduce petroleum use and emissions compared with gasoline- and diesel-fueled mowers. They may also save on fuel and maintenance costs, extend mower life, reduce fuel spillage and fuel theft, and promote a 'green' image. And on ozone alert days, alternative fuel mowers may not be subject to the operational restrictions that gasoline mowers must abide by. To help inform the commercial mowing industry about product options and potential benefits, Clean Cities produced this guide to alternative fuel commercial lawn equipment. Although the guide's focus is on original equipment manufacturer (OEM) mowers, some mowers can be converted to run on alternative fuels. For more information about propane conversions. This guide may be particularly helpful for organizations that are already using alternative fuels in their vehicles and have an alternative fuel supply or electric charging in place (e.g., golf cart charging stations at most golf courses). On the flip side, experiencing the benefits of using alternative fuels in mowing equipment may encourage organizations to try them in on-road vehicles as well. Whatever the case, alternative fuel commercial lawnmowers are a powerful and cost-effective way to reduce U.S. petroleum dependence and help protect the environment.

  17. Flexible Fuel Vehicles: Providing a Renewable Fuel Choice

    SciTech Connect (OSTI)

    Clean Cities

    2010-03-01

    Flexible fuel vehicles can operate on either gasoline or E85, a mixture of 85% ethanol and 15% gasoline. The fact sheet discusses the costs, benefits, and vehicle performance of using E85.

  18. Alternative Fuels Data Center: Alternative Fueling Station Locator

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    20,236 alternative fuel stations in the United States Excluding private stations Location details are subject to change. We recommend calling the stations to verify location, hours of operation, and access. About the data

  19. Gas turbine fuel from low-rank coal

    SciTech Connect (OSTI)

    Maas, D.J.; Smith, F.J.

    1986-06-01

    Five low-rank coals from the western United States were cleaned in a bench-scale heavy media separation procedures followed by acid leaching and hydrothermal processing. The objective of these cleaning steps was to determine the amenability of preparing gas turbine quality fuel from low-rank coal. The best candidate for scale-up was determined to be a Wyoming subbituminous coal from the eagle Butte mine. Two hundred thirty kilograms of cleaned and micronized coal/water fuel were prepared in pilot-scale equipment to determine process parameters and fuel characteristics. After establishing operating conditions, two thousand kilograms of cleaned and micronized coal/water and powdered coal fuel were produced for testing in a pilot-scale gas turbine combustor. An economic analysis was completed for a commercial-scale plant designed to produce clean gas turbine fuel from low-rank coal using the most promising process steps identified form the bench- and pilot-scale studies. 21 refs., 12 figs., 20 tabs.

  20. Demonstrating Fuel Consumption and Emissions Reductions with...

    Broader source: Energy.gov (indexed) [DOE]

    Presents a next generation model-based engine controller that incorporates real-time fuel efficiency optimization and tested under fully transient engine and vehicle operating ...

  1. EnerFuel | Open Energy Information

    Open Energy Info (EERE)

    Fort Lauderdale, Florida Zip: 33309 Product: Has designed an integrated feedback control system that allows fuel cells to operate efficiently over a wide range of load...

  2. Development of alternative fuels from coal-derived syngas

    SciTech Connect (OSTI)

    Brown, D.M.

    1992-05-19

    The overall objectives of this program are to investigate potential technologies for the conversion of coal-derived synthesis gas to oxygenated fuels, hydrocarbon fuels, fuel intermediates, and octane enhancers; and to demonstrate the most promising technologies at DOE's LaPorte, Texas, Slurry Phase Alternative Fuels Development Unit (AFDU). BASF continues to have difficulties in scaling-up the new isobutanol synthesis catalyst developed in Air Products' laboratories. Investigations are proceeding, but the proposed operation at LaPorte in April is now postponed. DOE has accepted a proposal to demonstrate Liquid Phase Shift (LPS) chemistry at LaPorte as an alternative to isobutanol. There are two principal reasons for carrying out this run. First, following the extensive modifications at the site, operation on a relatively benign'' system is needed before we start on Fischer-Tropsch technology in July. Second, use of shift catalyst in a slurry reactor will enable DOE's program on coal-based Fischer-Tropsch to encompass commercially available cobalt catalysts-up to now they have been limited to iron-based catalysts which have varying degrees of shift activity. In addition, DOE is supportive of continued fuel testing of LaPorte methanol-tests of MIOO at Detroit Diesel have been going particularly well. LPS offers the opportunity to produce methanol as the catalyst, in the absence of steam, is active for methanol synthesis.

  3. Novel Hydrogen Purification Device Integrated with PEM Fuel Cells

    SciTech Connect (OSTI)

    Joseph Schwartz; Hankwon Lim; Raymond Drnevich

    2010-12-31

    A prototype device containing twelve membrane tubes was designed, built, and demonstrated. The device produced almost 300 scfh of purified hydrogen at 200 psig feed pressure. The extent of purification met the program target of selectively removing enough impurities to enable industrial-grade hydrogen to meet purity specifications for PEM fuel cells. An extrusion process was developed to produce substrate tubes. Membranes met several test objectives, including completing 20 thermal cycles, exceeding 250 hours of operating life, and demonstrating a flux of 965 scfh/ft2 at 200 psid and 400 C.

  4. "Code(a)","Subsector and Industry","Source(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","Natural Gas(e)","NGL(f)","Coal","Breeze","Other(g)","Produced Onsite(h)"

    U.S. Energy Information Administration (EIA) Indexed Site

    1.4 Relative Standard Errors for Table 1.4;" " Unit: Percents." ,,"Any",,,,,,,,,"Shipments" "NAICS",,"Energy","Net","Residual","Distillate",,"LPG and",,"Coke and",,"of Energy Sources" "Code(a)","Subsector and Industry","Source(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","Natural

  5. Combined goal gasifier and fuel cell system and method

    DOE Patents [OSTI]

    Gmeindl, Frank D. (Morgantown, WV); Geisbrecht, Rodney A. (New Alexandria, PA)

    1990-01-01

    A molten carbonate fuel cell is combined with a catalytic coal or coal char gasifier for providing the reactant gases comprising hydrogen, carbon monoxide and carbon dioxide used in the operation of the fuel cell. These reactant gases are stripped of sulfur compounds and particulate material and are then separated in discrete gas streams for conveyance to appropriate electrodes in the fuel cell. The gasifier is arranged to receive the reaction products generated at the anode of the fuel cell by the electricity-producing electrochemical reaction therein. These reaction products from the anode are formed primarily of high temperature steam and carbon dioxide to provide the steam, the atmosphere and the heat necessary to endothermically pyrolyze the coal or char in the presence of a catalyst. The reaction products generated at the cathode are substantially formed of carbon dioxide which is used to heat air being admixed with the carbon dioxide stream from the gasifier for providing the oxygen required for the reaction in the fuel cell and for driving an expansion device for energy recovery. A portion of this carbon dioxide from the cathode may be recycled into the fuel cell with the air-carbon dioxide mixture.

  6. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Aftermarket Alternative Fuel Vehicle (AFV) Conversion Requirements Conventional original equipment manufacturer vehicles altered to operate on propane, natural gas, methane, ethanol, or electricity are classified as aftermarket AFV conversions. All vehicle conversions must meet current applicable U.S. Environmental Protection Agency or California Air Resources Board standards for aftermarket conversions. (Reference Pennsylvania Department of Environmental Protection Policy on Clean Alternative

  7. H. R. 1476: A bill to amend the Internal Revenue Code of 1986 to clarify the application of the credit for producing fuel from a nonconventional source with respect to gas produced from a tight formation and to make such credit permanent with respect to such gas and gas produced from Devonian shale. Introduced in the House of Representatives, One Hundredth First Congress, First Session, March 16, 1989

    SciTech Connect (OSTI)

    Not Available

    1989-01-01

    The determination of whether gas is produced from geopressured brines, Devonian shales, coal seams, or a tight formation is made from section 503 of the Natural Gas Policy Act of 1978. Permanent credit is for gas produced from a tight formation or Devonian shale only and applies to gas sold after July 1, 1987. The credit allowed for any taxable year shall not exceed the sum of the regular tax reduced by the sum of other credits allowable under other subsections of the Internal Revenue Code.

  8. Stationary Fuel Cell Evaluation (Presentation)

    SciTech Connect (OSTI)

    Kurtz, J.; Wipke, K.; Sprik, S.; Ramsden, T.; Ainscough, C.

    2012-05-01

    This powerpoint presentation discusses its objectives: real world operation data from the field and state-of-the-art lab; collection; analysis for independent technology validation; collaboration with industry and end users operating stationary fuel cell systems and reporting on technology status, progress and technical challenges. The approach and accomplishments are: A quarterly data analysis and publication of first technical stationary fuel cell composite data products (data through June 2012).

  9. Development of Fuel-Flexible Combustion Systems Utilizing Opportunity Fuels in Gas Turbines

    SciTech Connect (OSTI)

    2008-12-01

    General Electric Global Research will define, develop, and test new fuel nozzle technology concepts for gas turbine operation on a wide spectrum of opportunity fuels and/or fuel blends. This will enable gas turbine operation on ultra-low Btu fuel streams such as very weak natural gas, highly-diluted industrial process gases, or gasified waste streams that are out of the capability range of current turbine systems.

  10. Laser ablation based fuel ignition

    DOE Patents [OSTI]

    Early, James W. (Los Alamos, NM); Lester, Charles S. (San Juan Pueblo, NM)

    1998-01-01

    There is provided a method of fuel/oxidizer ignition comprising: (a) application of laser light to a material surface which is absorptive to the laser radiation; (b) heating of the material surface with the laser light to produce a high temperature ablation plume which emanates from the heated surface as an intensely hot cloud of vaporized surface material; and (c) contacting the fuel/oxidizer mixture with the hot ablation cloud at or near the surface of the material in order to heat the fuel to a temperature sufficient to initiate fuel ignition.

  11. Laser ablation based fuel ignition

    DOE Patents [OSTI]

    Early, J.W.; Lester, C.S.

    1998-06-23

    There is provided a method of fuel/oxidizer ignition comprising: (a) application of laser light to a material surface which is absorptive to the laser radiation; (b) heating of the material surface with the laser light to produce a high temperature ablation plume which emanates from the heated surface as an intensely hot cloud of vaporized surface material; and (c) contacting the fuel/oxidizer mixture with the hot ablation cloud at or near the surface of the material in order to heat the fuel to a temperature sufficient to initiate fuel ignition. 3 figs.

  12. Multicylinder Diesel Engine for Low Temperature Combustion Operation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Low Temperature Combustion Operation Multicylinder Diesel Engine for Low Temperature Combustion Operation Fuel injection strategies to extend low temperature combustion ...

  13. Feebates and Fuel Economy Standards: Impacts on Fuel Use in Light-Duty Vehicles and Greenhouse Gas Emissions

    SciTech Connect (OSTI)

    Greene, David L

    2011-01-01

    This study evaluates the potential impacts of a national feebate system, a market-based policy that consists of graduated fees on low-fuel-economy (or high-emitting) vehicles and rebates for high-fuel-economy (or lowemitting) vehicles. In their simplest form, feebate systems operate under three conditions: a benchmark divides all vehicles into two categories-those charged fees and those eligible for rebates; the sizes of the fees and rebates are a function of a vehicle's deviation from its benchmark; and placement of the benchmark ensures revenue neutrality or a desired level of subsidy or revenue. A model developed by the University of California for the California Air Resources Board was revised and used to estimate the effects of six feebate structures on fuel economy and sales of new light-duty vehicles, given existing and anticipated future fuel economy and emission standards. These estimates for new vehicles were then entered into a vehicle stock model that simulated the evolution of the entire vehicle stock. The results indicate that feebates could produce large, additional reductions in emissions and fuel consumption, in large part by encouraging market acceptance of technologies with advanced fuel economy, such as hybrid electric vehicles.

  14. Updated NGNP Fuel Acquisition Strategy

    SciTech Connect (OSTI)

    David Petti; Tim Abram; Richard Hobbins; Jim Kendall

    2010-12-01

    A Next Generation Nuclear Plant (NGNP) fuel acquisition strategy was first established in 2007. In that report, a detailed technical assessment of potential fuel vendors for the first core of NGNP was conducted by an independent group of international experts based on input from the three major reactor vendor teams. Part of the assessment included an evaluation of the credibility of each option, along with a cost and schedule to implement each strategy compared with the schedule and throughput needs of the NGNP project. While credible options were identified based on the conditions in place at the time, many changes in the assumptions underlying the strategy and in externalities that have occurred in the interim requiring that the options be re-evaluated. This document presents an update to that strategy based on current capabilities for fuel fabrication as well as fuel performance and qualification testing worldwide. In light of the recent Pebble Bed Modular Reactor (PBMR) project closure, the Advanced Gas Reactor (AGR) fuel development and qualification program needs to support both pebble and prismatic options under the NGNP project. A number of assumptions were established that formed a context for the evaluation. Of these, the most important are: Based on logistics associated with the on-going engineering design activities, vendor teams would start preliminary design in October 2012 and complete in May 2014. A decision on reactor type will be made following preliminary design, with the decision process assumed to be completed in January 2015. Thus, no fuel decision (pebble or prismatic) will be made in the near term. Activities necessary for both pebble and prismatic fuel qualification will be conducted in parallel until a fuel form selection is made. As such, process development, fuel fabrication, irradiation, and testing for pebble and prismatic options should not negatively influence each other during the period prior to a decision on reactor type. Additional funding will be made available beginning in fiscal year (FY) 2012 to support pebble bed fuel fabrication process development and fuel testing while maintaining the prismatic fuel schedule. Options for fuel fabrication for prismatic and pebble bed were evaluated based on the credibility of each option, along with a cost and schedule to implement each strategy. The sole prismatic option is Babcock and Wilcox (B&W) producing uranium oxycarbide (UCO) tristructural-isotropic (TRISO) fuel particles in compacts. This option finishes in the middle of 2022 . Options for the pebble bed are Nuclear Fuel Industries (NFI) in Japan producing uranium dioxide (UO2) TRISO fuel particles, and/or B&W producing UCO or UO2 TRISO fuel particles. All pebble options finish in mid to late 2022.

  15. Fuel and Lubricant Effects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Lubricant Effects Fuel and Lubricant Effects 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon ft001_bunting_2011_o.pdf More Documents & Publications APBF Effects on Combustion APBF Effects on Combustion Response of Oil Sands Derived Fuels in Diesel HCCI Operation

  16. Feasibility study: utilization of landfill gas for a vehicle fuel system, Rossman's landfill, Clackamas County, Oregon

    SciTech Connect (OSTI)

    1981-01-01

    In 1978, a landfill operator in Oregon became interested in the technical and economic feasibility of recovering the methane generated in the landfill for the refueling of vehicles. DOE awarded a grant for a site-specific feasibility study of this concept. This study investigated the expected methane yield and the development of a conceptual gas-gathering system; gas processing, compressing, and storage systems; and methane-fueled vehicle systems. Cost estimates were made for each area of study. The results of the study are presented. Reasoning that gasoline prices will continue to rise and that approximately 18,000 vehicles in the US have been converted to operate on methane, a project is proposed to use this landfill as a demonstration site to produce and process methane and to fuel a fleet (50 to 400) vehicles with the gas produced in order to obtain performance and economic data on the systems used from gas collection through vehicle operation. (LCL)

  17. Electrochemical Processing of Used Nuclear Fuel

    SciTech Connect (OSTI)

    K. M. Goff; J. C. Wass; G. M. Teske

    2011-08-01

    As part of the Department of Energys Fuel Cycle Research and Development Program an electrochemical technology employing molten salts is being developed for recycle of metallic fast reactor fuel and treatment of light water reactor oxide fuel to produce a feed for fast reactors. This technology has been deployed for treatment of used fuel from the Experimental Breeder Reactor II (EBR-II) in the Fuel Conditioning Facility, located at the Materials and Fuel Complex of Idaho National Laboratory. This process is based on dry (non-aqueous) technologies that have been developed and demonstrated since the 1960s. These technologies offer potential advantages compared to traditional aqueous separations including: compactness, resistance to radiation effects, criticality control benefits, compatibility with advanced fuel types, and ability to produce low purity products. This paper will summarize the status of electrochemical development and demonstration activities with used nuclear fuel, including preparation of associated high-level waste forms.

  18. Methods and systems for producing syngas

    DOE Patents [OSTI]

    Hawkes, Grant L; O'Brien, James E; Stoots, Carl M; Herring, J. Stephen; McKellar, Michael G; Wood, Richard A; Carrington, Robert A; Boardman, Richard D

    2013-02-05

    Methods and systems are provided for producing syngas utilizing heat from thermochemical conversion of a carbonaceous fuel to support decomposition of at least one of water and carbon dioxide using one or more solid-oxide electrolysis cells. Simultaneous decomposition of carbon dioxide and water or steam by one or more solid-oxide electrolysis cells may be employed to produce hydrogen and carbon monoxide. A portion of oxygen produced from at least one of water and carbon dioxide using one or more solid-oxide electrolysis cells is fed at a controlled flow rate in a gasifier or combustor to oxidize the carbonaceous fuel to control the carbon dioxide to carbon monoxide ratio produced.

  19. Fuel cell having dual electrode anode or cathode

    DOE Patents [OSTI]

    Findl, E.

    1984-04-10

    A fuel cell that is characterized by including a dual electrode anode that is operable to simultaneously electro-oxidize a gaseous fuel and a liquid fuel. In alternative embodiments, a fuel cell having a single electrode anode is provided with a dual electrode cathode that is operable to simultaneously reduce a gaseous oxidant and a liquid oxidant to electro-oxidize a fuel supplied to the cell.

  20. Fuel cell having dual electrode anode or cathode

    DOE Patents [OSTI]

    Findl, Eugene (Coram, NY)

    1985-01-01

    A fuel cell that is characterized by including a dual electrode anode that is operable to simultaneously electro-oxidize a gaseous fuel and a liquid fuel. In alternative embodiments, a fuel cell having a single electrode anode is provided with a dual electrode cathode that is operable to simultaneously reduce a gaseous oxidant and a liquid oxidant to electro-oxidize a fuel supplied to the cell.