National Library of Energy BETA

Sample records for operation converse wyoming

  1. Wyoming Underground Natural Gas Storage - All Operators

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural Gas Reserves AdjustmentsDecade Year-0 Year-1 Year-21440 1

  2. Converse County, Wyoming: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (Utility Company)| Open(Evans, EtInformation Control ofConverse County,

  3. Radiological survey of the inactive uranium-mill tailings at the Spook site, Converse County, Wyoming

    SciTech Connect (OSTI)

    Haywood, F.F.; Christian, D.J.; Chou, K.D.; Ellis, B.S.; Lorenzo, D.; Shinpaugh, W.H.

    1980-05-01

    Results of a radiological survey performed at the Spook site in Converse County, Wyoming, in June 1976, are presented. The mill at this site was located a short distance from the open-pit mine where the ore was obtained and where part of the tailings was dumped into the mine. Several piles of overburden or low-grade ore in the vicinity were included in the measurements of above-ground gamma exposure rate. The average exposure rate over these piles varied from 14 ..mu..R/hr, the average background exposure rate for the area, to 140 ..mu..R/hr. The average exposure rate for the tailings and former mill area was 220 ..mu..R/hr. Movement of tailings particles down dry washes was evident. The calculated concentration of /sup 226/Ra in ten holes as a function of depth is presented graphically.

  4. Summary of the engineering assessment of inactive uranium mill tailings, Spook Site, Converse County, Wyoming

    SciTech Connect (OSTI)

    Not Available

    1981-10-01

    Ford, Bacon, Davis Utah Inc. has reevaluated the Spook site in order to revise the December 1977 engineering assessment of the problems resulting from the existence of radioactive uranium mill tailings 48 mi northeast of Casper, in Converse County, Wyoming. This engineering assessment has included the preparation of topographic maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of tailings and radiation exposures of individuals and nearby populations, the investigations of site hydrology and meteorology, and the evaluation and costing of alternative corrective actions. Radon gas released from the 187,000 tons of tailings at the Spook site constitutes the most significant environmental impact, although windblown tailings and external gamma radiation also are factors.

  5. Conversion of Low-Rank Wyoming Coals into Gasoline by Direct...

    Office of Scientific and Technical Information (OSTI)

    of Low-Rank Wyoming Coals into Gasoline by Direct Liquefaction Polyakov, Oleg 01 COAL, LIGNITE, AND PEAT Under the cooperative agreement program of DOE and funding from...

  6. Conversion of Low-Rank Wyoming Coals into Gasoline by Direct...

    Office of Scientific and Technical Information (OSTI)

    Number(s): DOENT-43293--; WRI--14-R002r DOE Contract Number: FC26-08NT43293 Resource Type: Technical Report Research Org: University Of Wyoming Research Corporation, WY...

  7. Preliminary draft industrial siting administration permit application: Socioeconomic factors technical report. Final technical report, November 1980-May 1982. [Proposed WyCoalGas project in Converse County, Wyoming

    SciTech Connect (OSTI)

    Not Available

    1982-01-01

    Under the with-project scenario, WyCoalGas is projected to make a difference in the long-range future of Converse County. Because of the size of the proposed construction and operations work forces, the projected changes in employment, income, labor force, and population will alter Converse County's economic role in the region. Specifically, as growth occurs, Converse County will begin to satisfy a larger portion of its own higher-ordered demands, those that are currently being satisfied by the economy of Casper. Business-serving and household-serving activities, currently absent, will find the larger income and population base forecast to occur with the WyCoalGas project desirable. Converse County's economy will begin to mature, moving away from strict dependence on extractive industries to a more sophisticated structure that could eventually appeal to national, and certainly, regional markets. The technical demand of the WyCoalGas plant will mean a significant influx of varying occupations and skills. The creation of basic manufacturing, advanced trade and service sectors, and concomitant finance and transportation firms will make Converse County more economically autonomous. The county will also begin to serve market center functions for the smaller counties of eastern Wyoming that currently rely on Casper, Cheyenne or other distant market centers. The projected conditions expected to exist in the absence of the WyCoalGas project, the socioeconomic conditions that would accompany the project, and the differences between the two scenarios are considered. The analysis is keyed to the linkages between Converse County and Natrona County.

  8. Wyoming coal-conversion project. Final technical report, November 1980-February 1982. [Proposed WyCoalGas project, Converse County, Wyoming; contains list of appendices with title and identification

    SciTech Connect (OSTI)

    1982-01-01

    This final technical report describes what WyCoalGas, Inc. and its subcontractors accomplished in resolving issues related to the resource, technology, economic, environmental, socioeconomic, and governmental requirements affecting a project located near Douglas, Wyoming for producing 150 Billion Btu per day by gasifying sub-bituminous coal. The report summarizes the results of the work on each task and includes the deliverables that WyCoalGas, Inc. and the subcontractors prepared. The co-venturers withdrew from the project for two reasons: federal financial assistance to the project was seen to be highly uncertain; and funds were being expended at an unacceptably high rate.

  9. CRAD, Management- Y-12 Enriched Uranium Operations Oxide Conversion Facility

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a January 2005 assessment of Management program at the Y-12 - Enriched Uranium Operations Oxide Conversion Facility.

  10. CRAD, Training- Y-12 Enriched Uranium Operations Oxide Conversion Facility

    Office of Energy Efficiency and Renewable Energy (EERE)

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a January 2005 assessment of the Training Program at the Y-12 - Enriched Uranium Operations Oxide Conversion Facility.

  11. CRAD, Conduct of Operations- Y-12 Enriched Uranium Operations Oxide Conversion Facility

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a January, 2005 assessment of Conduct of Operations program at the Y-12 - Enriched Uranium Operations Oxide Conversion Facility.

  12. Wyoming’s “Rosy” Financial Picture

    E-Print Network [OSTI]

    Schuhmann, Robert A.; Skopek, Tracy A.

    2012-01-01

    Wyoming’s “Rosy” Financial Picture Abstract: As a non-budgetWyoming’s “Rosy” Financial Picture Table A2: Summary ofs “Rosy” Financial Picture Perhaps the most disheartening

  13. EIS-0329: Proposed Construction, Operation, Decontamination/Decommissioning of Depleted Uranium Hexafluoride Conversion Facilities

    Broader source: Energy.gov [DOE]

    This EIS analyzes DOE's proposal to construct, operate, maintain, and decontaminate and decommission two depleted uranium hexafluoride (DUF 6) conversion facilities, at Portsmouth, Ohio, and Paducah, Kentucky.

  14. Use of a Conversational Computer Program in Operator Training for Improved Energy Efficiency 

    E-Print Network [OSTI]

    Brickman, S. W.; Mergens, E. H.

    1980-01-01

    Energy efficient operation of process equipment requires attentive operation by well-trained personnel. Use of a computer simulation model together with a conversational computer program, which provides dynamic game playing opportunities...

  15. Wyoming’s “Rosy” Financial Picture

    E-Print Network [OSTI]

    Schuhmann, Robert A.; Skopek, Tracy A.

    2012-01-01

    J. (2011b) “Wyoming Clean Coal Efforts Advance,” Casperadministra- tion pushes for clean-coal and carbon capture

  16. CRAD, Emergency Management- Y-12 Enriched Uranium Operations Oxide Conversion Facility

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a January 2005 assessment of Emergency Management program at the Y-12 Enriched Uranium Operations Oxide Conversion Facility.

  17. CRAD, DOE Oversight- Y-12 Enriched Uranium Operations Oxide Conversion Facility

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a DOE independent oversight assessment of the Y-12 Site Office's programs for oversight of its contractors at the Y-12 Enriched Uranium Operations Oxide Conversion Facility.

  18. CRAD, Safety Basis- Y-12 Enriched Uranium Operations Oxide Conversion Facility

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a January 2005 assessment of the Safety Basis at the Y-12 - Enriched Uranium Operations Oxide Conversion Facility.

  19. CRAD, Occupational Safety & Health- Y-12 Enriched Uranium Operations Oxide Conversion Facility

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a January 2005 assessment of Industrial Safety and Industrial Health programs at the Y-12 - Enriched Uranium Operations Oxide Conversion Facility.

  20. CRAD, Environmental Protection- Y-12 Enriched Uranium Operations Oxide Conversion Facility

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a January 2005 assessment of Environmental Compliance program at the Y-12 - Enriched Uranium Operations Oxide Conversion Facility.

  1. CRAD, Radiological Controls- Y-12 Enriched Uranium Operations Oxide Conversion Facility

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a January 2005 assessment of the Radiation Protection Program at the Y-12 - Enriched Uranium Operations Oxide Conversion Facility.

  2. Laramie, Wyoming December, 1999

    E-Print Network [OSTI]

    Laughlin, Robert B.

    , President, University of Wyoming Don J. Likwartz, Oil and Gas Supervisor Lance Cook, State Geologist(800) 877-9975. Printed on 50% recycled fiber paper. 400 copies printed by Pony X-Press, Cheyenne, Wyoming - Geologic Hazards Rodney H. De Bruin, Staff Geologist - Oil and Gas Ray E. Harris, Staff Geologist

  3. Energy Development Opportunities for Wyoming

    SciTech Connect (OSTI)

    Larry Demick

    2012-11-01

    The Wyoming Business Council, representing the state’s interests, is participating in a collaborative evaluation of energy development opportunities with the NGNP Industry Alliance (an industry consortium), the University of Wyoming, and the US Department of Energy’s Idaho National Laboratory. Three important energy-related goals are being pursued by the State of Wyoming: Ensuring continued reliable and affordable sources of energy for Wyoming’s industries and people Restructuring the coal economy in Wyoming Restructuring the natural gas economy in Wyoming

  4. Survey and conceptual flow sheets for coal conversion plant handling-preparation and ash/slag removal operations

    SciTech Connect (OSTI)

    Zapp, F.C.; Thomas, O.W.; Silverman, M.D.; Dyslin, D.A.; Holmes, J.M.

    1980-03-01

    This study was undertaken at the request of the Fossil Fuel Processing Division of the Department of Energy. The report includes a compilation of conceptual flow sheets, including major equipment lists, and the results of an availability survey of potential suppliers of equipment associated with the coal and ash/slag operations that will be required by future large coal conversion plant complexes. Conversion plant flow sheet operations and related equipment requirements were based on two representative bituminous coals - Pittsburgh and Kentucky No. 9 - and on nine coal conversion processes. It appears that almost all coal handling and preparation and ash/slag removal equipment covered by this survey, with the exception of some coal comminution equipment, either is on hand or can readily be fabricated to meet coal conversion plant capacity requirements of up to 50,000 short tons per day. Equipment capable of handling even larger capacities can be developed. This approach appears to be unjustified, however, because in many cases a reasonable or optimum number of trains of equipment must be considered when designing a conversion plant complex. The actual number of trains of equipment selected will be influenced by the total requied capacity of the complex, the minimum on-line capacity that can be tolerated in case of equipment failure, reliability of specific equipment types, and the number of reactors and related feed injection stations needed for the specific conversion process.

  5. Shutdown Margin for High Conversion BWRs Operating in Th-233U Fuel Cycle

    E-Print Network [OSTI]

    Yaniv Shaposhnik; Eugene Shwageraus; Ezra Elias

    2013-09-27

    Several reactivity control system design options are explored in order to satisfy shutdown margin (SDM) requirements in a high conversion BWRs operating in Th-233U fuel cycle (Th-RBWR). The studied has an axially heterogeneous fuel assembly structure with a single fissile zone sandwiched between two fertile blanket zones. The utilization of an originally suggested RBWR Y-shape control rod in Th-RBWR is shown to be insufficient for maintaining adequate SDM to balance the high negative reactivity feedbacks, while maintaining fuel breeding potential, core power rating, and minimum Critical Power Ratio (CPR). Instead, an alternative assembly design, also relying on heterogeneous fuel zoning, is proposed for achieving fissile inventory ratio (FIR) above unity, adequate SDM and meeting minimum CPR limit at thermal core output matching the ABWR power. The new concept was modeled as a single 3-dimensional fuel assembly having reflective radial boundaries, using the BGCore system, which consists of the MCNP code coupled with fuel depletion and thermo-hydraulic feedback modules.

  6. Draft Environmental Impact Statement for Construction and Operation of a Depleted Uranium Hexafluoride Conversion Facility at the Portsmouth, Ohio, Site

    SciTech Connect (OSTI)

    N /A

    2003-11-28

    This document is a site-specific environmental impact statement (EIS) for construction and operation of a proposed depleted uranium hexafluoride (DUF{sub 6}) conversion facility at the U.S. Department of Energy (DOE) Portsmouth site in Ohio (Figure S-1). The proposed facility would convert the DUF{sub 6} stored at Portsmouth to a more stable chemical form suitable for use or disposal. The facility would also convert the DUF{sub 6} from the East Tennessee Technology Park (ETTP) site near Oak Ridge, Tennessee. In a Notice of Intent (NOI) published in the Federal Register on September 18, 2001 (Federal Register, Volume 66, page 48123 [66 FR 48123]), DOE announced its intention to prepare a single EIS for a proposal to construct, operate, maintain, and decontaminate and decommission two DUF{sub 6} conversion facilities at Portsmouth, Ohio, and Paducah, Kentucky, in accordance with the National Environmental Policy Act of 1969 (NEPA) (United States Code, Title 42, Section 4321 et seq. [42 USC 4321 et seq.]) and DOE's NEPA implementing procedures (Code of Federal Regulations, Title 10, Part 1021 [10 CFR Part 1021]). Subsequent to award of a contract to Uranium Disposition Services, LLC (hereafter referred to as UDS), Oak Ridge, Tennessee, on August 29, 2002, for design, construction, and operation of DUF{sub 6} conversion facilities at Portsmouth and Paducah, DOE reevaluated its approach to the NEPA process and decided to prepare separate site-specific EISs. This change was announced in a Federal Register Notice of Change in NEPA Compliance Approach published on April 28, 2003 (68 FR 22368); the Notice is included as Attachment B to Appendix C of this EIS. This EIS addresses the potential environmental impacts from the construction, operation, maintenance, and decontamination and decommissioning (D&D) of the proposed conversion facility at three alternative locations within the Portsmouth site; from the transportation of all ETTP cylinders (DUF{sub 6}, low-enriched UF6 [LEU-UF{sub 6}], and empty) to Portsmouth; from the transportation of depleted uranium conversion products to a disposal facility; and from the transportation, sale, use, or disposal of the fluoride-containing conversion products (hydrogen fluoride [HF] or calcium fluoride [CaF{sub 2}]). An option of shipping the ETTP cylinders to Paducah is also considered. In addition, this EIS evaluates a no action alternative, which assumes continued storage of DUF{sub 6} in cylinders at the Portsmouth and ETTP sites. A separate EIS (DOE/EIS-0359) evaluates potential environmental impacts for the proposed Paducah conversion facility.

  7. Wyoming Natural Gas Summary

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0ProvedDecade Year-0 Year-1ExpectedBarrels)Wyoming (Million3.40

  8. Wyoming Natural Gas Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural Gas Reserves Adjustments (BillionYear (MillionCubicCubic3.40

  9. Wyoming Proved Nonproducing Reserves

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural Gas Reserves AdjustmentsDecade Year-0 Year-1 Year-2144 152

  10. EA-1581: Sand Hills Wind Project, Wyoming

    Broader source: Energy.gov [DOE]

    The Bureau of Land Management, with DOE’s Western Area Power Administration as a cooperating agency, was preparing this EA to evaluate the environmental impacts of a proposal to construct, operate, and maintain the Sand Hills Wind Energy Facility on private and federal lands in Albany County, Wyoming. If the proposed action had been implemented, Western would have interconnected the proposed facility to an existing transmission line. This project has been canceled.

  11. Report on surface geology and groundwater investigations of Mortons and Green Valley Well Fields. Final technical report, November 1980-May 1982. [Proposed WyCoalGas Project, Converse County, Wyoming; site evaluation

    SciTech Connect (OSTI)

    None

    1982-01-01

    The general region of investigation of this report is in the southern part of the Powder River Basin near the Town of Douglas, Wyoming. Two specific areas within this region were investigated to determine the groundwater potential with drilling and testing programs during the years 1973 to 1975. One area of investigation is located approximately 12 miles west of Douglas in T32 and 33N, R73 and 74W, and is known as the Green Valley Well Field. This area is situated in the foothills of the north end of the Laramie Range and encompasses approximately 25 square miles. In this area the Madison Formation limestone and the Flathead Formation sandstone are the aquifers of interest for groundwater production. The second area is located approximately 13 miles north of Douglas in T34 and 35N, R70 and 71W, and is known as the Mortons Well Field. This area encompasses about 30 square miles. In this area, the Lance Formation and Fox Hills Formation sandstones are the aquifers of interest. Contained within the body of this report are two geologic studies prepared by consulting geologists, Dr. Peter Huntoon and Henry Richter. These studies define the pertinent structural and groundwater geologic features in and in the vicinities of the Mortons and Green Valley Well Fields. A relatively complex structural geology was encountered in the Green Valley area. The study of the Mortons area suggests that the geology of this area is relatively uniform. Inventories of the water users in the vicinities of the two study areas are included at the back of this report in Appendix B. These inventories are comprised of water appropriations as recognized by the Wyoming State Engineer's Office. Both groundwater and surface water appropriations are inventoried within the Green Valley study area. Only groundwater appropriations are inventoried within the Mortons study area.

  12. Overview of Energy Development Opportunities for Wyoming

    SciTech Connect (OSTI)

    Larry Demick

    2012-11-01

    An important opportunity exists for the energy future of Wyoming that will • Maintain its coal industry • Add substantive value to its indigenous coal and natural gas resources • Improve dramatically the environmental impact of its energy production capability • Increase its Gross Domestic Product These can be achieved through development of a carbon conversion industry that transforms coal and natural gas to synthetic transportation fuels, chemical feedstocks, and chemicals that are the building blocks for the chemical industry. Over the longer term, environmentally clean nuclear energy can provide the substantial energy needs of a carbon conversion industry and be part of the mix of replacement technologies for the current fleet of aging coal-fired electric power generating stations.

  13. Wyoming Recovery Act State Memo

    Broader source: Energy.gov [DOE]

    Wyoming has substantial natural resources including coal, natural gas, oil, and wind power. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation’s...

  14. The Conversion of CESR to Operate as the Test Accelerator, CesrTA, Part 1: Overview

    E-Print Network [OSTI]

    Billing, M G

    2015-01-01

    Cornell's electron/positron storage ring (CESR) was modified over a series of accelerator shutdowns beginning in May 2008, which substantially improves its capability for research and development for particle accelerators. CESR's energy span from 1.8 to 5.6 GeV with both electrons and positrons makes it ideal for the study of a wide spectrum of accelerator physics issues and instrumentation related to present light sources and future lepton damping rings. Additionally a number of these are also relevant for the beam physics of proton accelerators. This paper outlines the motivation, design and conversion of CESR to a test accelerator, CesrTA, enhanced to study such subjects as low emittance tuning methods, electron cloud (EC) effects, intra-beam scattering, fast ion instabilities as well as general improvements to beam instrumentation. While the initial studies of CesrTA focussed on questions related to the International Linear Collider (ILC) damping ring design, CesrTA is a very flexible storage ring, capabl...

  15. Wyoming's Appliance Rebate Program Surges Ahead

    Broader source: Energy.gov [DOE]

    Wyoming’s appliance rebate program, which opened in April, continues through this fall. Residents of the Equality State can receive rebates on ENERGY STAR certified clothes washers, dishwashers, water heaters and gas furnaces ranging from $50 to $250.

  16. Wyoming Underground Natural Gas Storage - All Operators

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames City of",6,1,"Omaha Public PowerOECD/IEA - 2008 © OECD/IEA - 2008 © OECD/IEA - 2008 To Cover... To CoverCubic Feet)Shale91,501

  17. Results of scoping tests for open-cycle OTEC (ocean thermal energy conversion) components operating with seawater

    SciTech Connect (OSTI)

    Zangrando, F; Bharathan, D; Green, H J; Link, H F; Parsons, B K; Parsons, J M; Pesaran, A A [Solar Energy Research Inst., Golden, CO (USA); Panchal, C B [Argonne National Lab., IL (USA)

    1990-09-01

    This report presents comprehensive documentation of the experimental research conducted on open-cycle ocean thermal energy conversion (OC-OTEC) components operating with seawater as a working fluid. The results of this research are presented in the context of previous analysis and fresh-water testing; they provide a basis for understanding and predicting with confidence the performance of all components of an OC-OTEC system except the turbine. Seawater tests have confirmed the results that were obtained in fresh-water tests and predicted by the analytical models of the components. A sound technical basis has been established for the design of larger systems in which net power will be produced for the first time from OC-OTEC technology. Design and operation of a complete OC-OTEC system that produces power will provide sufficient confidence to warrant complete transfer of OC-OTEC technology to the private sector. Each components performance is described in a separate chapter written by the principal investigator responsible for technical aspects of the specific tests. Chapters have been indexed separately for inclusion on the data base.

  18. Wetland assessment of the effects of construction and operation of a depleteduranium hexafluoride conversion facility at the Portsmouth, Ohio, site.

    SciTech Connect (OSTI)

    Van Lonkhuyzen, R.

    2005-09-09

    The U.S. Department of Energy (DOE) Depleted Uranium Hexafluoride (DUF{sub 6}) Management Program evaluated alternatives for managing its inventory of DUF{sub 6} and issued the ''Programmatic Environmental Impact Statement for Alternative Strategies for the Long-Term Management and Use of Depleted Uranium Hexafluoride'' (DUF{sub 6} PEIS) in April 1999 (DOE 1999). The DUF{sub 6} inventory is stored in cylinders at three DOE sites: Paducah, Kentucky; Portsmouth, Ohio; and East Tennessee Technology Park (ETTP), near Oak Ridge, Tennessee. In the Record of Decision for the DUF{sub 6} PEIS, DOE stated its decision to promptly convert the DUF{sub 6} inventory to a more stable chemical form. Subsequently, the U.S. Congress passed, and the President signed, the ''2002 Supplemental Appropriations Act for Further Recovery from and Response to Terrorist Attacks on the United States'' (Public Law No. 107-206). This law stipulated in part that, within 30 days of enactment, DOE must award a contract for the design, construction, and operation of a DUF{sub 6} conversion plant at the Department's Paducah, Kentucky, and Portsmouth, Ohio, sites, and for the shipment of DUF{sub 6} cylinders stored at ETTP to the Portsmouth site for conversion. This wetland assessment has been prepared by DOE, pursuant to Executive Order 11990 (''Protection of Wetlands'') and DOE regulations for implementing this Executive Order as set forth in Title 10, Part 1022, of the ''Code of Federal Regulations'' (10 CFR Part 1022 [Compliance with Floodplain and Wetland Environmental Review Requirements]), to evaluate potential impacts to wetlands from the construction and operation of a conversion facility at the DOE Portsmouth site. Approximately 0.02 acre (0.009 ha) of a 0.08-acre (0.03-ha) palustrine emergent wetland would likely be eliminated by direct placement of fill material during facility construction at Location A. Portions of this wetland that are not filled may be indirectly affected by an altered hydrologic regime because of the proximity of construction, possibly resulting in a decreased frequency or duration of inundation or soil saturation, and potential loss of hydrology necessary to sustain wetland conditions. Construction at Locations B or C would not result in direct impacts to wetlands. However, the hydrologic characteristics of nearby wetlands could be indirectly affected by adjacent construction. Executive Order 11990, ''Protection of Wetlands'', requires federal agencies to minimize the destruction, loss, or degradation of wetlands, and to preserve and enhance the natural and beneficial uses of wetlands. DOE regulations for implementing Executive Order 11990 are set forth in 10 CFR Part 1022. The impacts at Location A may potentially be avoided by an alternative routing of the entrance road, or mitigation may be developed in coordination with the appropriate regulatory agencies. Unavoidable impacts to wetlands that are within the jurisdiction of the USACE may require a CWA Section 404 Permit, which would trigger the requirement for a CWA Section 401 Water Quality Certification from the State of Ohio. Unavoidable impacts to isolated wetlands may require an Isolated Wetlands Permit from the Ohio Environmental Protection Agency. A mitigation plan may be required prior to the initiation of construction. Cumulative impacts to wetlands are anticipated to be negligible to minor for the proposed action, in conjunction with the effects of existing conditions and other activities. Habitat disturbance would involve settings commonly found in this part of Ohio, which in many cases involve previously disturbed habitats.

  19. Wyoming DOE EPSCoR

    SciTech Connect (OSTI)

    Gern, W.A.

    2004-01-15

    All of the research and human resource development projects were systemic in nature with real potential for becoming self sustaining. They concentrated on building permanent structure, such as faculty expertise, research equipment, the SEM Minority Center, and the School of Environment and Natural Resources. It was the intent of the DOE/EPSCoR project to permanently change the way Wyoming does business in energy-related research, human development for science and engineering careers, and in relationships between Wyoming industry, State Government and UW. While there is still much to be done, the DOE/EPSCoR implementation award has been successful in accomplishing that change and enhancing UW's competitiveness associated with coal utilization, electrical energy efficiency, and environmental remediation.

  20. Wyoming Natural Gas Processed in Wyoming (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0ProvedDecade Year-0 Year-1ExpectedBarrels)Wyoming (Million Cubic

  1. Wyoming Natural Gas Plant Liquids Production Extracted in Wyoming (Million

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural Gas Reserves Adjustments (BillionYear (MillionCubicCubic

  2. ,"Wyoming Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Wyoming Natural Gas Gross Withdrawals and Production",10,"Annual",2014,"06301967" ,"Release...

  3. Users guide for the conversion of Navy paint-spray-booth particulate emission-control systems from wet to dry operation. Final report, January-September 1989

    SciTech Connect (OSTI)

    Ayer, J.; Tate, D.

    1990-03-01

    The report is a guide for converting U.S. Navy paint-spray-booth particulate emission control systems from wet to dry operation. The use of water curtains for air-pollution-control of paint-spray booths is considered a major source of water and solid-waste pollution from industrial painting operations. It is possible, however, to eliminate this water-pollution problem and significantly reduce the solid-waste load by converting the booth to utilize a dry-filter pollution-control system. The conversion, however, requires extensive planning prior to actual facility modification. The report describes requirements to facilitate the planning and preparation for conversion of typical spray booths. Although the report addresses modifications of Navy spray booths, the basic engineering requirements discussed apply also to other Department of Defense installations and to commercial industrial facilities.

  4. wyoming

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLosThe 26thI D- 6 0 4 2 r mReducingwhistleblower

  5. SHEEP MOUNTAIN URANIUM PROJECT CROOKS GAP, WYOMING

    E-Print Network [OSTI]

    SHEEP MOUNTAIN URANIUM PROJECT CROOKS GAP, WYOMING US EPA Project Meeting April 7 2011April 7, 2011/Titan Uranium, VP Development · Deborah LebowAal/EPA Region 8 Air Program Introduction to Titan Uranium USA;PROJECT OVERVIEW ·Site Location·Site Location ·Fremont , Wyoming ·Existing Uranium Mine Permit 381C

  6. LM Conducts Groundwater and Soil Investigation at Riverton, Wyoming...

    Office of Environmental Management (EM)

    Conducts Groundwater and Soil Investigation at Riverton, Wyoming, in Response to 2010 Flood LM Conducts Groundwater and Soil Investigation at Riverton, Wyoming, in Response to 2010...

  7. Secretary Moniz Announces Travel to Alaska, Idaho, Wyoming, Missouri...

    Office of Environmental Management (EM)

    to Alaska, Idaho, Wyoming, Missouri to Discuss Energy Opportunities and Attend Dedication of Kansas City Plant Secretary Moniz Announces Travel to Alaska, Idaho, Wyoming,...

  8. Biological assessment of the effects of construction and operation of a depleted uranium hexafluoride conversion facility at the Paducah, Kentucky, site.

    SciTech Connect (OSTI)

    Van Lonkhuyzen, R.

    2005-09-09

    The U.S. Department of Energy (DOE) Depleted Uranium Hexafluoride (DUF{sub 6}) Management Program evaluated alternatives for managing its inventory of DUF{sub 6} and issued the ''Programmatic Environmental Impact Statement for Alternative Strategies for the Long-Term Management and Use of Depleted Uranium Hexafluoride'' (DUF{sub 6} PEIS) in April 1999 (DOE 1999). The DUF{sub 6} inventory is stored in cylinders at three DOE sites: Paducah, Kentucky; Portsmouth, Ohio; and East Tennessee Technology Park (ETTP), near Oak Ridge, Tennessee. In the Record of Decision for the DUF{sub 6} PEIS, DOE stated its decision to promptly convert the DUF6 inventory to a more stable chemical form. Subsequently, the U.S. Congress passed, and the President signed, the ''2002 Supplemental Appropriations Act for Further Recovery from and Response to Terrorist Attacks on the United States'' (Public Law No. 107-206). This law stipulated in part that, within 30 days of enactment, DOE must award a contract for the design, construction, and operation of a DUF{sub 6} conversion plant at the Department's Paducah, Kentucky, and Portsmouth, Ohio, sites, and for the shipment of DUF{sub 6} cylinders stored at ETTP to the Portsmouth site for conversion. This biological assessment (BA) has been prepared by DOE, pursuant to the National Environmental Policy Act of 1969 (NEPA) and the Endangered Species Act of 1974, to evaluate potential impacts to federally listed species from the construction and operation of a conversion facility at the DOE Paducah site.

  9. BIOMASS ENERGY CONVERSION IN HAWAII

    E-Print Network [OSTI]

    Ritschard, Ronald L.

    2013-01-01

    Operations, vol. 2 of Biomass Energy (Stanford: StanfordPhotosynthethic Pathway Biomass Energy Production," ~c:_! _LBL-11902 UC-61a BIOMASS ENERGY CONVERSION IN HAWAII

  10. The Conversion of CESR to Operate as the Test Accelerator, CesrTA, Part 2: Vacuum Modifications

    E-Print Network [OSTI]

    Billing, M G

    2015-01-01

    Cornell's electron/positron storage ring (CESR) was modified over a series of accelerator shutdowns beginning in May 2008, which substantially improves its capability for research and development for particle accelerators. CESR's energy span from 1.8 to 5.6 GeV with both electrons and positrons makes it ideal for the study of a wide spectrum of accelerator physics issues and instrumentation related to present light sources and future lepton damping rings. Additionally a number of these are also relevant for the beam physics of proton accelerators. This paper, the second in a series of four, discusses the modifications of the vacuum system necessary for the conversion of CESR to the test accelerator, CesrTA, enhanced to study such subjects as low emittance tuning methods, electron cloud (EC) effects, intra-beam scattering, fast ion instabilities as well as general improvements to beam instrumentation. A separate paper describes the vacuum system modifications of the superconducting wigglers to accommodate the ...

  11. Powell, Wyoming: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPIProtectio1975) |Texas:Pottawattamie County,River, Wyoming:Wyoming: Energy

  12. Wyoming Municipal Power Agency | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAand Dalton Jump to:Wylie, Texas: Energy Resources Jump to:WyomingWyoming

  13. Wyoming Water Resources Center Annual Technical Report

    E-Print Network [OSTI]

    of America, Boulder, CO. #12;Problem and Research Objectives: Coal bed methane (CBM) development://wwweng.uwyo.edu/civil/research/water/epmodeler.html. University of Wyoming, Laramie. 4. Wilkerson, G. V., 2002. A GIS model for evaluating the impacts of coal bed, 2001). CBM extraction involves pumping methane and ground water out of coal seams. The gas and water

  14. Wyoming Water Resources Center Annual Technical Report

    E-Print Network [OSTI]

    Wyoming Water Resources Center Annual Technical Report FY 1999 Introduction Research Program In the west, water is critical to survival. Data and information concerning this resource are very valuable by the Water Research Program. Basic Project Information Category Data Title Water Resources Data System Water

  15. Biological assessment of the effects of construction and operation of adepleted uranium hexafluoride conversion facility at the Portsmouth, Ohio,site.

    SciTech Connect (OSTI)

    Van Lonkhuyzen, R.

    2005-09-09

    The U.S. Department of Energy (DOE) Depleted Uranium Hexafluoride (DUF{sub 6}) Management Program evaluated alternatives for managing its inventory of DUF{sub 6} and issued the ''Programmatic Environmental Impact Statement for Alternative Strategies for the Long-Term Management and Use of Depleted Uranium Hexafluoride'' (DUF{sub 6} PEIS) in April 1999 (DOE 1999). The DUF{sub 6} inventory is stored in cylinders at three DOE sites: Paducah, Kentucky; Portsmouth, Ohio; and East Tennessee Technology Park (ETTP), near Oak Ridge, Tennessee. In the Record of Decision for the DUF{sub 6} PEIS, DOE stated its decision to promptly convert the DUF{sub 6} inventory to a more stable chemical form. Subsequently, the U.S. Congress passed, and the President signed, the ''2002 Supplemental Appropriations Act for Further Recovery from and Response to Terrorist Attacks on the United States'' (Public Law No. 107-206). This law stipulated in part that, within 30 days of enactment, DOE must award a contract for the design, construction, and operation of a DUF{sub 6} conversion plant at the Department's Paducah, Kentucky, and Portsmouth, Ohio, sites, and for the shipment of DUF{sub 6} cylinders stored at ETTP to the Portsmouth site for conversion. This biological assessment (BA) has been prepared by DOE, pursuant to the National Environmental Policy Act of 1969 and the Endangered Species Act of 1974, to evaluate potential impacts to federally listed species from the construction and operation of a conversion facility at the DOE Portsmouth site. The Indiana bat is known to occur in the area of the Portsmouth site and may potentially occur on the site during spring or summer. Evaluations of the Portsmouth site indicated that most of the site was found to have poor summer habitat for the Indiana bat because of the small size, isolation, and insufficient maturity of the few woodlands on the site. Potential summer habitat for the Indiana bat was identified outside the developed area bounded by Perimeter Road, within the corridors along Little Beaver Creek, the Northwest Tributary stream, and a wooded area east of the X-100 facility. However, no Indiana bats were collected during surveys of these areas in 1994 and 1996. Locations A, B, and C do not support suitable habitat for the Indiana bat and would be unlikely to be used by Indiana bats. Indiana bat habitat also does not occur at Proposed Areas 1 and 2. Although Locations A and C contain small wooded areas, the small size and lack of suitable maturity of these areas indicate that they would provide poor habitat for Indiana bats. Trees that may be removed during construction would not be expected to be used for summer roosting by Indiana bats. Disturbance of Indiana bats potentially roosting or foraging in the vicinity of the facility during operations would be very unlikely, and any disturbance would be expected to be negligible. On the basis of these considerations, DOE concludes that the proposed action is not likely to adversely affect the Indiana bat. No critical habitat exists for this species in the action area. Although the timber rattlesnake occurs in the vicinity of the Portsmouth site, it has not been observed on the site. In addition, habitat for the timber rattlesnake is not present on the Portsmouth site. Therefore, DOE concludes that the proposed action would not affect the timber rattlesnake.

  16. Floodplain/wetland assessment of the effects of construction and operation ofa depleted uranium hexafluoride conversion facility at the Paducah, Kentucky,site.

    SciTech Connect (OSTI)

    Van Lonkhuyzen, R.

    2005-09-09

    The U.S. Department of Energy (DOE) Depleted Uranium Hexafluoride (DUF{sub 6}) Management Program evaluated alternatives for managing its inventory of DUF{sub 6} and issued the ''Programmatic Environmental Impact Statement for Alternative Strategies for the Long-Term Management and Use of Depleted Uranium Hexafluoride'' (DUF{sub 6} PEIS) in April 1999 (DOE 1999). The DUF{sub 6} inventory is stored in cylinders at three DOE sites: Paducah, Kentucky; Portsmouth, Ohio; and East Tennessee Technology Park (ETTP), near Oak Ridge, Tennessee. In the Record of Decision for the DUF{sub 6} PEIS, DOE stated its decision to promptly convert the DUF{sub 6} inventory to a more stable chemical form. Subsequently, the U.S. Congress passed, and the President signed, the ''2002 Supplemental Appropriations Act for Further Recovery from and Response to Terrorist Attacks on the United States'' (Public Law No. 107-206). This law stipulated in part that, within 30 days of enactment, DOE must award a contract for the design, construction, and operation of a DUF{sub 6} conversion plant at the Department's Paducah, Kentucky, and Portsmouth, Ohio, sites, and for the shipment of DUF{sub 6} cylinders stored at ETTP to the Portsmouth site for conversion. This floodplain/wetland assessment has been prepared by DOE, pursuant to Executive Order 11988 (''Floodplain Management''), Executive Order 11990 (Protection of Wetlands), and DOE regulations for implementing these Executive Orders as set forth in Title 10, Part 1022, of the ''Code of Federal Regulations'' (10 CFR Part 1022 [''Compliance with Floodplain and Wetland Environmental Review Requirements'']), to evaluate potential impacts to floodplains and wetlands from the construction and operation of a conversion facility at the DOE Paducah site. Reconstruction of the bridge crossing Bayou Creek would occur within the Bayou Creek 100-year floodplain. Replacement of bridge components, including the bridge supports, however, would not be expected to result in measurable long-term changes to the floodplain. Approximately 0.16 acre (0.064 ha) of palustrine emergent wetlands would likely be eliminated by direct placement of fill material within Location A. Some wetlands that are not filled may be indirectly affected by an altered hydrologic regime, due to the proximity of construction, possibly resulting in a decreased frequency or duration of inundation or soil saturation and potential loss of hydrology necessary to sustain wetland conditions. Indirect impacts could be minimized by maintaining a buffer near adjacent wetlands. Wetlands would likely be impacted by construction at Location B; however, placement of a facility in the northern portion of this location would minimize wetland impacts. Construction at Location C could potentially result in impacts to wetlands, however placement of a facility in the southeastern portion of this location may best avoid direct impacts to wetlands. The hydrologic characteristics of nearby wetlands could be indirectly affected by adjacent construction. Executive Order 11990, ''Protection of Wetlands'', requires federal agencies to minimize the destruction, loss, or degradation of wetlands, and to preserve and enhance the natural and beneficial uses of wetlands. DOE regulations for implementing Executive Order 11990 as well as Executive Order 11988, ''Floodplain Management'', are set forth in 10 CFR Part 1022. Mitigation for unavoidable impacts may be developed in coordination with the appropriate regulatory agencies. Unavoidable impacts to wetlands that are within the jurisdiction of the USACE may require a CWA Section 404 Permit, which would trigger the requirement for a CWA Section 401 Water Quality Certification from the Commonwealth of Kentucky. A mitigation plan may be required prior to the initiation of construction. Cumulative impacts to floodplains and wetlands are anticipated to be negligible to minor under the proposed action, in conjunction with the effects of existing conditions and other activities. Habitat disturbance would involve settings commonly found i

  17. Energy Incentive Programs, Wyoming | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: AlternativeCommunication3-EDepartment ofArizona EnergyHampshireWyoming Energy Incentive Programs,

  18. COAL QUALITY AND GEOCHEMISTRY, POWDER RIVER BASIN, WYOMING AND MONTANA

    E-Print Network [OSTI]

    in the Powder River Basin in Wyoming and Montana (fig. PQ-1) is considered to be "clean coal." For the location

  19. ,"Wyoming Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Wyoming...

  20. Chapter 9 of the Wyoming Public Service Commission Regulations...

    Open Energy Info (EERE)

    of the Wyoming Public Service Commission Regulations: General Forms Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation:...

  1. Chapter 2 of the Wyoming Public Service Commission Regulations...

    Open Energy Info (EERE)

    Chapter 2 of the Wyoming Public Service Commission Regulations: General Regulations Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document-...

  2. Wyoming Public Service Commission | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEtGeorgia:Illinois:Wizard PowerWyandanch, New York:-26State ParksWyoming

  3. Wyoming Carbon Capture and Storage Institute

    SciTech Connect (OSTI)

    Nealon, Teresa

    2014-06-30

    This report outlines the accomplishments of the Wyoming Carbon Capture and Storage (CCS) Technology Institute (WCTI), including creating a website and online course catalog, sponsoring technology transfer workshops, reaching out to interested parties via news briefs and engaging in marketing activities, i.e., advertising and participating in tradeshows. We conclude that the success of WCTI was hampered by the lack of a market. Because there were no supporting financial incentives to store carbon, the private sector had no reason to incur the extra expense of training their staff to implement carbon storage. ii

  4. DOE - Office of Legacy Management -- Wyoming

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal Gas &SCE-SessionsSouth Dakota Edgemont, South Dakota, DisposalWestConnecticutUtahWyoming

  5. Alta, Wyoming: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAand DaltonSolarOpen5All HomeAlphakat GmbH JumpAlso Energy JumpWyoming:

  6. Wyoming Department of Transportation | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowa (UtilityMichigan) Jump to: Name: Wyoming Department of Transportation

  7. Wyoming Infrastructure Authority | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowa (UtilityMichigan) Jump to: Name: Wyoming Department of

  8. Wyoming State Geological Survey | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowa (UtilityMichigan) Jump to: Name: Wyoming Department ofInvestments Jump

  9. Douglas, Wyoming: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePower VenturesInformation9)askDouble Oak, Texas: Energy ResourcesWyoming:

  10. Utah Nevada California Arizona Idaho Oregon Wyoming

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal Consumers inYear JanSalesa.E. Great Basin Oil and Gas

  11. Utah Nevada California Arizona Idaho Oregon Wyoming

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal Consumers inYear JanSalesa.E. Great Basin Oil and

  12. Utah Nevada California Arizona Idaho Oregon Wyoming

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal Consumers inYear JanSalesa.E. Great Basin Oil

  13. Wyoming Heat Content of Natural Gas Consumed

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural Gas Reserves Adjustments (Billion Cubic31 1,031 1,034 1,034

  14. Wyoming Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural Gas Reserves Adjustments (Billion Cubic31 1,03142,793

  15. Wyoming Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural Gas Reserves Adjustments (Billion Cubic31

  16. Wyoming Natural Gas Processed (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural Gas Reserves Adjustments (BillionYear

  17. Wyoming Natural Gas Repressuring (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural Gas Reserves Adjustments (BillionYearDecade Year-0 Year-1

  18. Wyoming Natural Gas Repressuring (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural Gas Reserves Adjustments (BillionYearDecade Year-0

  19. Environmental Survey preliminary report, Naval Petroleum and Oil Shale Reserves in Colorado, Utah, and Wyoming, Casper, Wyoming

    SciTech Connect (OSTI)

    Not Available

    1989-02-01

    This report presents the preliminary environmental findings from the first phase of the Environmental Survey of the United States Department of Energy (DOE) Naval Petroleum and Oil Shale Reserves in Colorado, Utah, and Wyoming (NPOSR-CUW) conducted June 6 through 17, 1988. NPOSR consists of the Naval Petroleum Reserve No. 3 (NPR-3) in Wyoming, the Naval Oil Shale Reserves No. 1 and 3 (NOSR-1 and NOSR-3) in Colorado and the Naval Oil Shale Reserve No. 2 (NOSR-2) in Utah. NOSR-2 was not included in the Survey because it had not been actively exploited at the time of the on-site Survey. The Survey is being conducted by an interdisciplinary team of environmental specialists, lead and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. Individual team specialists are outside experts being supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with NPOSR. The Survey covers all environmental media and all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. This phase of the Survey involves the review of existing site environmental data, observations of the operations carried on at NPOSR and interviews with site personnel. The Survey team has developed a Sampling and Analysis Plan to assist in further assessing specific environmental problems identified at NOSR-3 during the on-site Survey. There were no findings associated with either NPR-3 or NOSR-1 that required Survey-related sampling and Analysis. The Sampling and Analysis Plan will be executed by Idaho National Engineering Laboratory. When completed, the results will be incorporated into the Environmental Survey Summary report. The Summary Report will reflect the final determinations of the NPOSR-CUW Survey and the other DOE site-specific Surveys. 110 refs., 38 figs., 24 tabs.

  20. Quantum conversion

    E-Print Network [OSTI]

    Michael Mazilu

    2015-08-06

    The electromagnetic momentum transferred transfered to scattering particles is proportional to the intensity of the incident fields, however, the momentum of single photons ($\\hbar k$) does not naturally appear in these classical expressions. Here, we discuss an alternative to Maxwell's stress tensor that renders the classical electromagnetic field momentum compatible to the quantum mechanical one. This is achieved through the introduction of the quantum conversion which allows the transformation, including units, of the classical fields to wave-function equivalent fields.

  1. The Conversion of Waste to Energy 

    E-Print Network [OSTI]

    John, T.; Cheek, L.

    1980-01-01

    Almost every industrial operation produces some combustible waste, but conversion of this to useful energy is often more difficult than with other energy recovery projects and requires careful attention to design, operating and maintaining...

  2. Wind energy conversion system

    DOE Patents [OSTI]

    Longrigg, Paul (Golden, CO)

    1987-01-01

    The wind energy conversion system includes a wind machine having a propeller connected to a generator of electric power, the propeller rotating the generator in response to force of an incident wind. The generator converts the power of the wind to electric power for use by an electric load. Circuitry for varying the duty factor of the generator output power is connected between the generator and the load to thereby alter a loading of the generator and the propeller by the electric load. Wind speed is sensed electro-optically to provide data of wind speed upwind of the propeller, to thereby permit tip speed ratio circuitry to operate the power control circuitry and thereby optimize the tip speed ratio by varying the loading of the propeller. Accordingly, the efficiency of the wind energy conversion system is maximized.

  3. Chapter 1 of the Wyoming Public Service Commission Regulations...

    Open Energy Info (EERE)

    Chapter 1 of the Wyoming Public Service Commission Regulations: Rules of Practice and Procedure Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document-...

  4. The Technical and Economic Feasibility of Siting Synfuels Plants in Wyoming

    SciTech Connect (OSTI)

    Anastasia M Gandrik; Rick A Wood; David Bell; William Schaffers; Thomas Foulke; Richard D Boardman

    2011-09-01

    A comprehensive study has been completed to determine the feasibility of constructing and operating gasification and reforming plants which convert Wyoming fossil resources (coal and natural gas) into the higher value products of power, transportation fuels, and chemical feedstocks, such as ammonia and methanol. Detailed plant designs, simulation models, economic models and well-to-wheel greenhouse gas models were developed, validated by national-level engineering firms, which were used to address the following issues that heretofore have prevented these types of projects from going forward in Wyoming, as much as elsewhere in the United States: 1. Quantification of plant capital and operating expenditures 2. Optimization of plant heat integration 3. Quantification of coal, natural gas, electricity, and water requirements 4. Access to raw materials and markets 5. Requirements for new infrastructure, such as electrical power lines and product pipelines 6. The possible cost-benefit tradeoffs of using natural gas reforming versus coal gasification 7. The extent of labor resources required for plant construction and for permanent operations 8. Options for managing associated CO2 emissions, including capture and uses in enhanced oil recovery and sequestration 9. Options for reducing water requirements such as recovery of the high moisture content in Wyoming coal and use of air coolers rather than cooling towers 10. Permitting requirements 11. Construction, and economic impacts on the local communities This paper will summarize the analysis completed for two major synfuels production pathways, methanol to gasoline and Fischer-Trosph diesel production, using either coal or natural gas as a feedstock.

  5. Conversion of Questionnaire Data

    SciTech Connect (OSTI)

    Powell, Danny H; Elwood Jr, Robert H

    2011-01-01

    During the survey, respondents are asked to provide qualitative answers (well, adequate, needs improvement) on how well material control and accountability (MC&A) functions are being performed. These responses can be used to develop failure probabilities for basic events performed during routine operation of the MC&A systems. The failure frequencies for individual events may be used to estimate total system effectiveness using a fault tree in a probabilistic risk analysis (PRA). Numeric risk values are required for the PRA fault tree calculations that are performed to evaluate system effectiveness. So, the performance ratings in the questionnaire must be converted to relative risk values for all of the basic MC&A tasks performed in the facility. If a specific material protection, control, and accountability (MPC&A) task is being performed at the 'perfect' level, the task is considered to have a near zero risk of failure. If the task is performed at a less than perfect level, the deficiency in performance represents some risk of failure for the event. As the degree of deficiency in performance increases, the risk of failure increases. If a task that should be performed is not being performed, that task is in a state of failure. The failure probabilities of all basic events contribute to the total system risk. Conversion of questionnaire MPC&A system performance data to numeric values is a separate function from the process of completing the questionnaire. When specific questions in the questionnaire are answered, the focus is on correctly assessing and reporting, in an adjectival manner, the actual performance of the related MC&A function. Prior to conversion, consideration should not be given to the numeric value that will be assigned during the conversion process. In the conversion process, adjectival responses to questions on system performance are quantified based on a log normal scale typically used in human error analysis (see A.D. Swain and H.E. Guttmann, 'Handbook of Human Reliability Analysis with Emphasis on Nuclear Power Plant Applications,' NUREG/CR-1278). This conversion produces the basic event risk of failure values required for the fault tree calculations. The fault tree is a deductive logic structure that corresponds to the operational nuclear MC&A system at a nuclear facility. The conventional Delphi process is a time-honored approach commonly used in the risk assessment field to extract numerical values for the failure rates of actions or activities when statistically significant data is absent.

  6. Expansion and Enhacement of the Wyoming Coalbed Methane Clearinghouse Website to the Wyoming Energy Resources Information Clearinghouse.

    SciTech Connect (OSTI)

    Hulme, Diana; Hamerlinck, Jeffrey; Bergman, Harold; Oakleaf, Jim

    2010-03-26

    Energy development is expanding across the United States, particularly in western states like Wyoming. Federal and state land management agencies, local governments, industry and non-governmental organizations have realized the need to access spatially-referenced data and other non-spatial information to determine the geographical extent and cumulative impacts of expanding energy development. The Wyoming Energy Resources Information Clearinghouse (WERIC) is a web-based portal which centralizes access to news, data, maps, reports and other information related to the development, management and conservation of Wyomingâ??s diverse energy resources. WERIC was established in 2006 by the University of Wyomingâ??s Ruckelshaus Institute of Environment and Natural Resources (ENR) and the Wyoming Geographic Information Science Center (WyGISC) with funding from the US Department of Energy (DOE) and the US Bureau of Land Management (BLM). The WERIC web portal originated in concept from a more specifically focused website, the Coalbed Methane (CBM) Clearinghouse. The CBM Clearinghouse effort focused only on coalbed methane production within the Powder River Basin of northeast Wyoming. The CBM Clearinghouse demonstrated a need to expand the effort statewide with a comprehensive energy focus, including fossil fuels and renewable and alternative energy resources produced and/or developed in Wyoming. WERIC serves spatial data to the greater Wyoming geospatial community through the Wyoming GeoLibrary, the WyGISC Data Server and the Wyoming Energy Map. These applications are critical components that support the Wyoming Energy Resources Information Clearinghouse (WERIC). The Wyoming GeoLibrary is a tool for searching and browsing a central repository for metadata. It provides the ability to publish and maintain metadata and geospatial data in a distributed environment. The WyGISC Data Server is an internet mapping application that provides traditional GIS mapping and analysis functionality via the web. It is linked into various state and federal agency spatial data servers allowing users to visualize multiple themes, such as well locations and core sage grouse areas, in one domain. Additionally, this application gives users the ability to download any of the data being displayed within the web map. The Wyoming Energy Map is the newest mapping application developed directly from this effort. With over a 100 different layers accessible via this mapping application, it is the most comprehensive Wyoming energy mapping application available. This application also provides the public with the ability to create cultural and wildlife reports based on any location throughout Wyoming and at multiple scales. The WERIC website also allows users to access links to federal, state, and local natural resource agency websites and map servers; research documents about energy; and educational information, including information on upcoming energy-relate conferences. The WERIC website has seen significant use by energy industry consultants, land management agencies, state and local decision-makers, non-governmental organizations and the public. Continued service to these sectors is desirable but some challenges remain in keeping the WERIC site viable. The most pressing issue is finding the human and financial resources to keep the site continually updated. Initially, the concept included offering users the ability to maintain the site themselves; however, this has proven not to be a viable option since very few people contributed. Without user contributions, the web page relied on already committed university staff to publish and link to the appropriate documents and web-pages. An option that is currently being explored to address this issue is development of a partnership with the University of Wyoming, School of Energy Resources (SER). As part of their outreach program, SER may be able to contribute funding for a full-time position dedicated to maintenance of WERIC.

  7. Conversion of Low-Rank Wyoming Coals into Gasoline by Direct Liquefaction

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield MunicipalTechnical Report: Achievements ofCOMPOSITION OF VAPORSSeries) | ScienceCinema(Technical

  8. Conversion of Low-Rank Wyoming Coals into Gasoline by Direct Liquefaction

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfate Reducing BacteriaConnect Collider Testspolycarbonate and plasticquantum dots(Technical

  9. The high conversion LC-Fining process

    SciTech Connect (OSTI)

    VanDriesen, R.P.; Strangio, V.A.; Rhoe, A.; Kolstad, J.J.

    1986-01-01

    Residual oil hydrocracking has been practiced at moderate conversions for many years on a wide range of feedstocks. Processes utilizing expanded bed reactors have been proven to be effective in the hydrocracking of these heavy residual feedstocks. Conversions up to 60% vacuum bottoms to distillates were routinely obtained in several commercial units. More recently Amoco has been operating an LC-Fining unit in their Texas City refinery at conversions as high as 80%. Normal conversion in this plant however is 60-65%. LC-Fining is an expanded bed resid hydrocracking and hydrodesulfurization process developed by Cities Service and Lummus Crest. There are a number of factors which may limit the conversion in any given plant site. These include compatibility problems with the liquid product, settling out of heavy hydrocarbons in downstream equipment or fouling of the catalyst in the reactor which in the extreme results in coking of the catalyst bed. The operator of a residual hydrocracker maintains conversion at a sufficiently low level to avoid these problems. Recent advances in the LC-Fining technology have led to the development of the High Conversion LC-Fining Process which is capable of operation at conversions of 95% and higher without any of these problems.

  10. Energy conversion system

    DOE Patents [OSTI]

    Murphy, L.M.

    1985-09-16

    The energy conversion system includes a photo-voltaic array for receiving solar radiation and converting such radiation to electrical energy. The photo-voltaic array is mounted on a stretched membrane that is held by a frame. Tracking means for orienting the photo-voltaic array in predetermined positions that provide optimal exposure to solar radiation cooperate with the frame. An enclosure formed of a radiation transmissible material includes an inside containment space that accommodates the photo-voltaic array on the stretched membrane, the frame and the tracking means, and forms a protective shield for all such components. The enclosure is preferably formed of a flexible inflatable material and maintains its preferred form, such as a dome, under the influence of a low air pressure furnished to the dome. Under this arrangement the energy conversion system is streamlined for minimizing wind resistance, sufficiently weathproof for providing protection against weather hazards such as hail, capable of using diffused light, lightweight for low-cost construction and operational with a minimal power draw.

  11. Energy conversion system

    DOE Patents [OSTI]

    Murphy, Lawrence M. (Lakewood, CO)

    1987-01-01

    The energy conversion system includes a photo-voltaic array for receiving solar radiation and converting such radiation to electrical energy. The photo-voltaic array is mounted on a stretched membrane that is held by a frame. Tracking means for orienting the photo-voltaic array in predetermined positions that provide optimal exposure to solar radiation cooperate with the frame. An enclosure formed of a radiation transmissible material includes an inside containment space that accommodates the photo-voltaic array on the stretched membrane, the frame and the tracking means, and forms a protective shield for all such components. The enclosure is preferably formed of a flexible inflatable material and maintains its preferred form, such as a dome, under the influence of a low air pressure furnished to the dome. Under this arrangement the energy conversion system is streamlined for minimizing wind resistance, sufficiently weatherproof for providing protection against weather hazards such as hail, capable of using diffused light, lightweight for low-cost construction, and operational with a minimal power draw.

  12. COAL QUALITY AND GEOCHEMISTRY, HANNA AND CARBON BASINS, WYOMING

    E-Print Network [OSTI]

    Chapter HQ COAL QUALITY AND GEOCHEMISTRY, HANNA AND CARBON BASINS, WYOMING By G.D. Stricker and M coal beds and zones in the Northern RockyMountains and Great Plains region, U.S. Geological Survey of selected Tertiary coal beds and zones in the Northern Rocky Mountains and Great Plains region, U

  13. COAL QUALITY AND GEOCHEMISTRY, GREATER GREEN RIVER BASIN, WYOMING

    E-Print Network [OSTI]

    Chapter GQ COAL QUALITY AND GEOCHEMISTRY, GREATER GREEN RIVER BASIN, WYOMING By G.D. Stricker and M coal beds and zones in the Northern RockyMountains and Great Plains region, U.S. Geological Survey of selected Tertiary coal beds and zones in the Northern Rocky Mountains and Great Plains region, U

  14. Tiger Team Assessment of the Navel Petroleum and Oil Shale Reserves Colorado, Utah, and Wyoming

    SciTech Connect (OSTI)

    Not Available

    1992-07-01

    This report documents the Tiger Team Assessment of the Naval Petroleum Oil Shale Reserves in Colorado, Utah, and Wyoming (NPOSR-CUW). NPOSR-CUW consists of Naval Petroleum Reserve Number 3 located near Casper, Wyoming; Naval Oil Shale Reserve Number I and Naval Oil Shale Reserve Number 3 located near Rifle, Colorado; and Naval Oil Shale Reserve Number 2 located near Vernal, Utah, which was not examined as part of this assessment. The assessment was comprehensive, encompassing environment, safety, and health (ES H) and quality assurance (QA) disciplines; site remediation; facilities management; and waste management operations. Compliance with applicable Federal, state, and local regulations; applicable DOE Orders; best management practices; and internal NPOSR-CUW requirements was assessed. The NPOSR-CUW Tiger Team Assessment is part of a larger, comprehensive DOE Tiger Team Independent Assessment Program planned for DOE facilities. The objective of the initiative is to provide the Secretary with information on the compliance status of DOE facilities with regard to ES H requirements, root causes for noncompliance, adequacy of DOE and contractor ES H management programs, response actions to address the identified problem areas, and DOE-wide ES H compliance trends and root causes.

  15. Plasmonic conversion of solar energy

    E-Print Network [OSTI]

    Clavero, Cesar

    2014-01-01

    solar energy conversion .This new paradigm of solar energy conversion, based on theon this field, solar energy conversion aimed at photovoltaic

  16. Sandia Energy - Wavelength Conversion Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wavelength Conversion Materials Home Energy Research EFRCs Solid-State Lighting Science EFRC Overview Wavelength Conversion Materials Wavelength Conversion MaterialsAlyssa...

  17. Structural analysis of the Sheep Mountain anticline, Bighorn Basin, Wyoming 

    E-Print Network [OSTI]

    Hennier, Jeffrey Hugh

    1984-01-01

    in the Phosphoria Formation at the northwest plunge of Sheep Mountain. 38 10 Pi diagram plot of bedding attitudes in the Mowry Shale at the extreme northwest plunge of Sheep Mountain . 40 A. Photograph of flatirons formed in weathered Phosphoria beds along... sedimentalogical transition zone or hinge line extended from Mexico through the western U. S. to Canada, separating the deeply subsiding Cordilleran geosynclinal trough to the west in Idaho and Utah from stable cratonic shelf to the east in Wyoming (Thomas...

  18. Sheridan County, Wyoming: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-Enhancing Capacity for LowInformation Nano MaterialsNebraska: EnergyWyoming:

  19. Powder River, Wyoming: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPIProtectio1975) |Texas:Pottawattamie County,River, Wyoming: Energy Resources

  20. Red Butte, Wyoming: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onRAPID/Geothermal/Exploration/Colorado <RAPID/Geothermal/WaterEnergy MarketingNewOpenRecycled EnergyButte, Wyoming:

  1. SBOT WYOMING ROCKY MOUNTAIN OILFIELD CENTER POC Jenny Krom Telephone

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy BillsNo. 195 -Rob Roberts About UsWYOMING ROCKY MOUNTAIN OILFIELD CENTER POC

  2. Crook County, Wyoming: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (Utility Company)|Alabama:Crofton, Maryland: Energy ResourcesWyoming: Energy

  3. Wyoming Nonassociated Natural Gas Proved Reserves, Wet After Lease

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural Gas Reserves Adjustments

  4. Thermochemical Conversion Pilot Plant (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-06-01

    The state-of-the-art thermochemical conversion pilot plant includes several configurable, complementary unit operations for testing and developing various reactors, filters, catalysts, and other unit operations. NREL engineers and scientists as well as clients can test new processes and feedstocks in a timely, cost-effective, and safe manner to obtain extensive performance data on processes or equipment.

  5. High conversion hydrocracking process

    SciTech Connect (OSTI)

    Stine, L.O.; Reno, M.E.; Munro, W.H.; Hamper, S.J.

    1990-10-09

    This patent describes a process for hydrocracking a heavy hydrocarbon feed stream having a 10 percent boiling point above about 316{degrees} C. It comprises: passing the feedstream into a catalytic hydrocracking reaction zone in contact with hydrocracking catalyst comprising at least one metal selected from the group consisting of chromium, nickel, cobalt, platinum, palladium, tungsten and molybdenum, at a temperature above about 316{degrees} C. and a total pressure above 1480 kPa, the catalytic hydrocracking reaction zone operating at a feed stream conversion rate above 70 wt. percent with a hydrogen circulation rate in excess at 1777 m{sup 3}/m{sup 3}, to produce a reaction zone effluent stream, subjecting the reaction zone effluent stream to cooling and a vapor-liquid separation to yield a recycle hydrogen stream and a liquid phase stream, heating the liquid phase stream recovered from the vapor-liquid separation to vaporize at least 90 volume percent of the liquid phase stream, passing the heated and at least partially vaporized liquid phase stream to a fractionation zone wherein the stream is separated into at least a net bottoms stream, a heavy distillate stream, and at least one light distillate stream which is removed as the distillate product stream, removing all of the net bottoms stream from the process, and recycling substantially all of the heavy distillate stream to the catalytic hydrocracking zone.

  6. Jobs and Economic Development from New Transmission and Generation in Wyoming (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-05-01

    Wyoming is a significant energy exporter, producing nearly 40% of the nation's coal and 10% of the nation's natural gas. However, opportunities to add new energy exports in the form of power generation are limited by insufficient transmission capacity. This fact sheet summarizes results from a recent analysis conducted by NREL for the Wyoming Infrastructure Authority (WIA) that estimates jobs and economic development activity that could occur in Wyoming should the market support new investments in power generation and transmission in the state.

  7. Jobs and Economic Development from New Transmission and Generation in Wyoming Fact Sheet

    SciTech Connect (OSTI)

    2011-05-10

    Wyoming is a significant energy exporter, producing nearly 40% of the nation's coal and 10% of the nation's natural gas. However, opportunities to add new energy exports in the form of power generation are limited by insufficient transmission capacity. This fact sheet summarizes results from a recent analysis conducted by NREL for the Wyoming Infrastructure Authority that estimates jobs and economic development activity that could occur in Wyoming should the market support new investments in power generation and transmission in the state.

  8. Economic Development from New Generation and Transmission in Wyoming and Colorado (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-03-01

    This report analyzes the potential economic impacts in Colorado and Wyoming of a 225 MW natural gas fired electricity generation facility and a 900 MW wind farm constructed in Wyoming as well as a 180 mile, 345 kV transmission line that runs from Wyoming to Colorado. This report and analysis is not a forecast, but rather an estimate of economic activity associated with a hypothetical scenario.

  9. Economic Development from New Generation and Transmission in Wyoming and Colorado

    SciTech Connect (OSTI)

    Keyser, D.; Lantz, E.

    2013-03-01

    This report analyzes the potential economic impacts in Colorado and Wyoming of a 225 MW natural gas fired electricity generation facility and a 900 MW wind farm constructed in Wyoming as well as a 180 mile, 345 kV transmission line that runs from Wyoming to Colorado. This report and analysis is not a forecast, but rather an estimate of economic activity associated with a hypothetical scenario.

  10. Wyoming Game and Fish Department Geospatial Data | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEtGeorgia:Illinois:Wizard PowerWyandanch, New York:-26State Parks andWyoming

  11. Wyoming Rules of Civil Procedure | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEtGeorgia:Illinois:Wizard PowerWyandanch, New York:-26State ParksWyomingRules

  12. Vista West, Wyoming: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al.,Turin,Village of Wellington,FL LLC Jump to: navigation,West, Wyoming:

  13. Sweetwater County, Wyoming: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-Enhancing CapacityVectren)Model forTechnologies95 Jump to:SwedenCounty, Wyoming:

  14. Hot Springs County, Wyoming: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy Resources JumpNew Jersey:Hopkinsville, Kentucky:OpenHot PotCounty, Wyoming:

  15. Homa Hills, Wyoming: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy Resources JumpNew Jersey: EnergyHollyHoma Hills, Wyoming: Energy Resources

  16. Wyoming Regions | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLosThe23-24, 2011Science (SC)ScienceWest VirginiaWorkingWyoming

  17. Platte County, Wyoming: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPIProtectio1975) | OpenBethlehemPlainsboroPlastic Magen IndustryWyoming: Energy

  18. Montana Natural Gas Processed in Wyoming (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963Residential2, 2014ProvedYear Jan Feb Mar Apr May

  19. Natural Gas Delivered to Consumers in Wyoming (Including Vehicle Fuel)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963Residential2, 2014ProvedYear JanFuel)(Million Cubic Feet) Year

  20. Utah Natural Gas Processed in Wyoming (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0Proved ReservesData20092009Reserves Based Production(MillionWyoming

  1. Wyoming Department of Environmental Quality | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAand Dalton Jump to:Wylie, Texas: Energy Resources Jump to:Wyoming

  2. Albany County, Wyoming: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAand DaltonSolarOpen5 -Telephone Co Jump to:Elec Coop,Wyoming: Energy

  3. Campbell County, Wyoming: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmentalBowerbank,Cammack Village, Arkansas: Energy Resources JumpVerde,Tennessee:Wyoming:

  4. City of Cody, Wyoming (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmentalBowerbank,CammackFLIRChurch Point,Blue Hill,MissouriClewiston, FloridaCody, Wyoming

  5. City of Deaver, Wyoming (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmentalBowerbank,CammackFLIRChurch Point,BlueDeaver, Wyoming (Utility Company) Jump to:

  6. Airport Road, Wyoming: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowaWisconsin: Energy ResourcesAir Quality Jump to:Airforce WindRoad, Wyoming:

  7. Wyoming Game and Fish Department | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowa (UtilityMichigan) Jump to: Name: Wyoming Department of TransportationGame

  8. Wyoming Office of State Lands and Investments | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowa (UtilityMichigan) Jump to: Name: Wyoming Department ofInvestments Jump to:

  9. Wyoming State Historic Preservation Office | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowa (UtilityMichigan) Jump to: Name: Wyoming Department ofInvestments

  10. Park County, Wyoming: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII JumpQuarterly Smart GridNorth Carolina:Paramount Farms Jump to:Wyoming: Energy

  11. Wyoming Natural Gas Underground Storage Volume (Million Cubic Feet)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLos Alamos verifies largest single gold crystalPriceFeet)Wyoming

  12. Wyoming Dry Natural Gas Reserves Adjustments (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural Gas Reserves Adjustments (Billion Cubic Feet) Decade Year-0

  13. Wyoming Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural Gas Reserves Adjustments (Billion Cubic Feet) Decade

  14. Wyoming Dry Natural Gas Reserves Extensions (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural Gas Reserves Adjustments (Billion Cubic Feet)

  15. Wyoming Dry Natural Gas Reserves Revision Decreases (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural Gas Reserves Adjustments (Billion Cubic Feet)New

  16. Wyoming Dry Natural Gas Reserves Revision Increases (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural Gas Reserves Adjustments (Billion Cubic Feet)NewIncreases

  17. Wyoming Dry Natural Gas Reserves Sales (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural Gas Reserves Adjustments (Billion Cubic

  18. Wyoming Lease Condensate Proved Reserves, Reserve Changes, and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural Gas Reserves Adjustments (Billion Cubic31 1,031 1,034

  19. Wyoming Natural Gas % of Total Residential - Sales (Percent)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural Gas Reserves Adjustments (Billion Cubic31 1,031 1,034Decade

  20. Wyoming Natural Gas % of Total Residential - Sales (Percent)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural Gas Reserves Adjustments (Billion Cubic31 1,031

  1. Wyoming Natural Gas Gross Withdrawals from Coalbed Wells (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural Gas Reserves Adjustments (Billion Cubic31Feet) Decade

  2. Wyoming Natural Gas Gross Withdrawals from Coalbed Wells (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural Gas Reserves Adjustments (Billion Cubic31Feet)

  3. Wyoming Natural Gas Injections into Underground Storage (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural Gas Reserves Adjustments (BillionYear Jan Feb Mar

  4. Wyoming Natural Gas Injections into Underground Storage (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural Gas Reserves Adjustments (BillionYear Jan Feb MarFeet)

  5. Wyoming Natural Gas Input Supplemental Fuels (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural Gas Reserves Adjustments (BillionYear Jan Feb

  6. Wyoming Natural Gas Lease Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural Gas Reserves Adjustments (BillionYear Jan FebFuel

  7. Wyoming Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural Gas Reserves Adjustments (BillionYear Jan FebFueland

  8. Wyoming Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural Gas Reserves Adjustments (BillionYear JanIndustrial

  9. Wyoming Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural Gas Reserves Adjustments (BillionYear

  10. Wyoming Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural Gas Reserves Adjustments (BillionYear (Million Cubic Feet)

  11. Wyoming Natural Gas Pipeline and Distribution Use Price (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural Gas Reserves Adjustments (BillionYear (Million Cubic

  12. Wyoming Natural Gas Plant Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural Gas Reserves Adjustments (BillionYear (Million CubicFuel

  13. Wyoming Natural Gas Plant Liquids Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural Gas Reserves Adjustments (BillionYear (Million

  14. Wyoming Natural Gas Plant Liquids Production Extracted in Colorado (Million

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural Gas Reserves Adjustments (BillionYear (MillionCubic

  15. Wyoming Natural Gas Reserves Summary as of Dec. 31

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural Gas Reserves Adjustments (BillionYearDecade Year-036,748

  16. Wyoming Natural Gas Underground Storage Capacity (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural Gas Reserves Adjustments (BillionYearDecade

  17. Wyoming Natural Gas Underground Storage Capacity (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural Gas Reserves Adjustments (BillionYearDecadeYear Jan Feb Mar

  18. Wyoming Natural Gas Underground Storage Withdrawals (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural Gas Reserves Adjustments (BillionYearDecadeYear Jan Feb

  19. Wyoming Natural Gas Underground Storage Withdrawals (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural Gas Reserves Adjustments (BillionYearDecadeYear Jan FebYear

  20. Wyoming Natural Gas Vehicle Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural Gas Reserves Adjustments (BillionYearDecadeYear Jan

  1. Wyoming Natural Gas Vehicle Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural Gas Reserves Adjustments (BillionYearDecadeYear JanYear Jan

  2. Wyoming Natural Gas Vented and Flared (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural Gas Reserves Adjustments (BillionYearDecadeYear

  3. Wyoming Natural Gas Vented and Flared (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural Gas Reserves Adjustments (BillionYearDecadeYearYear Jan Feb

  4. Wyoming Natural Gas in Underground Storage (Working Gas) (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural Gas Reserves Adjustments (BillionYearDecadeYearYear

  5. Wyoming Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural Gas Reserves AdjustmentsDecade Year-0 Year-1 Year-2 Year-3

  6. Wyoming Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural Gas Reserves AdjustmentsDecade Year-0 Year-1 Year-2

  7. Wyoming Quantity of Production Associated with Reported Wellhead Value

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural Gas Reserves AdjustmentsDecade Year-0 Year-1 Year-2144

  8. Wyoming Shale Gas Proved Reserves, Reserves Changes, and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural Gas Reserves AdjustmentsDecade Year-0 Year-1 Year-21440 1 0

  9. Sampling and analyses report for June 1992 semiannual postburn sampling at the RM1 UCG site, Hanna, Wyoming

    SciTech Connect (OSTI)

    Lindblom, S.R.

    1992-08-01

    The Rocky Mountain 1 (RMl) underground coal gasification (UCG) test was conducted from November 16, 1987 through February 26, 1988 (United Engineers and Constructors 1989) at a site approximately one mile south of Hanna, Wyoming. The test consisted of dual module operation to evaluate the controlled retracting injection point (CRIP) technology, the elongated linked well (ELW) technology, and the interaction of closely spaced modules operating simultaneously. The test caused two cavities to be formed in the Hanna No. 1 coal seam and associated overburden. The Hanna No. 1 coal seam is approximately 30 ft thick and lays at depths between 350 ft and 365 ft below the surface in the test area. The coal seam is overlain by sandstones, siltstones and claystones deposited by various fluvial environments. The groundwater monitoring was designed to satisfy the requirements of the Wyoming Department of Environmental Quality (WDEQ) in addition to providing research data toward the development of UCG technology that minimizes environmental impacts. The June 1992 semiannual groundwater.sampling took place from June 10 through June 13, 1992. This event occurred nearly 34 months after the second groundwater restoration at the RM1 site and was the fifteenth sampling event since UCG operations ceased. Samples were collected for analyses of a limited suite set of parameters as listed in Table 1. With a few exceptions, the groundwater is near baseline conditions. Data from the field measurements and analysis of samples are presented. Benzene concentrations in the groundwater were below analytical detection limits.

  10. Sandia Energy - Test Site Operations & Maintenance Safety

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Test Site Operations & Maintenance Safety Home Stationary Power Energy Conversion Efficiency Wind Energy SWiFT Facility & Testing Test Site Operations & Maintenance Safety Test...

  11. Conversion of raw carbonaceous fuels

    DOE Patents [OSTI]

    Cooper, John F. (Oakland, CA)

    2007-08-07

    Three configurations for an electrochemical cell are utilized to generate electric power from the reaction of oxygen or air with porous plates or particulates of carbon, arranged such that waste heat from the electrochemical cells is allowed to flow upwards through a storage chamber or port containing raw carbonaceous fuel. These configurations allow combining the separate processes of devolatilization, pyrolysis and electrochemical conversion of carbon to electric power into a single unit process, fed with raw fuel and exhausting high BTU gases, electric power, and substantially pure CO.sub.2 during operation.

  12. Unit 9: Spatial Data Conversion

    E-Print Network [OSTI]

    9, CCTP; Dodson, Rustin

    1998-01-01

    UNIT 9: SPATIAL DATA CONVERSION Written by Rustin Dodson,Programs Page 1 Unit 9: Spatial Data Conversion freezingPrograms Page 2 Unit 9: Spatial Data Conversion Export USGS

  13. Sampling and analyses report for December 1991 semiannual postburn sampling at the RM1 UCG site, Hanna, Wyoming

    SciTech Connect (OSTI)

    Lindblom, S.R.

    1992-01-01

    The Rocky Mountain 1 (RM1) underground coal gasification (UCG) test was conducted from November 16, 1987, through February 26, 1988 at a site approximately one mile south of Hanna, Wyoming. The test consisted of a dual-module operation to evaluate the controlled retracting injection point (CRIP) technology, the elongated linked well (ELW) technology, and the interaction of closely spaced modules operating simultaneously. The test caused two cavities to form in the Hanna No. 1 coal seam and associated overburden. The Hanna No. 1 coal seam was approximately 30 ft thick and lay at depths between 350 and 365 ft below the surface in the test area. The coal seam was overlain by sandstones, siltstones, and claystones deposited by various fluvial environments. The groundwater monitoring was designed to satisfy the requirements of the Wyoming Department of Environmental Quality (WDEQ) in addition to providing research data toward the development of UCG technology that minimizes environmental impacts. Further background material and the sampling and analytical procedures associated with the sampling task are described in the Rocky Mountain 1 Postburn Groundwater Monitoring Quality Assurance Plan (Mason and Johnson 1988).

  14. DANISHBIOETHANOLCONCEPT Biomass conversion for

    E-Print Network [OSTI]

    DANISHBIOETHANOLCONCEPT Biomass conversion for transportation fuel Concept developed at RISØ and DTU Anne Belinda Thomsen (RISØ) Birgitte K. Ahring (DTU) #12;DANISHBIOETHANOLCONCEPT Biomass: Biogas #12;DANISHBIOETHANOLCONCEPT Pre-treatment Step Biomass is macerated The biomass is cut in small

  15. California-Wyoming Grid Integration Study: Phase 1 -- Economic Analysis

    SciTech Connect (OSTI)

    Corbus, D.; Hurlbut, D.; Schwabe, P.; Ibanez, E.; Milligan, M.; Brinkman, G.; Paduru, A.; Diakov, V.; Hand, M.

    2014-03-01

    This study presents a comparative analysis of two different renewable energy options for the California energy market between 2017 and 2020: 12,000 GWh per year from new California in-state renewable energy resources; and 12,000 GWh per year from Wyoming wind delivered to the California marketplace. Either option would add to the California resources already existing or under construction, theoretically providing the last measure of power needed to meet (or to slightly exceed) the state's 33% renewable portfolio standard. Both options have discretely measurable differences in transmission costs, capital costs (due to the enabling of different generation portfolios), capacity values, and production costs. The purpose of this study is to compare and contrast the two different options to provide additional insight for future planning.

  16. Direct conversion technology

    SciTech Connect (OSTI)

    Massier, P.F.; Back, L.H.; Ryan, M.A.; Fabris, G.

    1992-01-07

    The overall objective of the Direct Conversion Technology task is to develop an experimentally verified technology base for promising direct conversion systems that have potential application for energy conservation in the end-use sectors. This report contains progress of research on the Alkali Metal Thermal-to-Electric Converter (AMTEC) and on the Two-Phase Liquid-Metal MHD Electrical Generator (LMMHD) for the period January 1, 1991 through December 31, 1991. Research on AMTEC and on LMMHD was initiated during October 1987. Reports prepared on previous occasions (Refs. 1--5) contain descriptive and performance discussions of the following direct conversion concepts: thermoelectric, pyroelectric, thermionic, thermophotovoltaic, thermoacoustic, thermomagnetic, thermoelastic (Nitionol heat engine); and also, more complete descriptive discussions of AMTEC and LMMHD systems.

  17. Digital optical conversion module

    DOE Patents [OSTI]

    Kotter, D.K.; Rankin, R.A.

    1988-07-19

    A digital optical conversion module used to convert an analog signal to a computer compatible digital signal including a voltage-to-frequency converter, frequency offset response circuitry, and an electrical-to-optical converter. Also used in conjunction with the digital optical conversion module is an optical link and an interface at the computer for converting the optical signal back to an electrical signal. Suitable for use in hostile environments having high levels of electromagnetic interference, the conversion module retains high resolution of the analog signal while eliminating the potential for errors due to noise and interference. The module can be used to link analog output scientific equipment such as an electrometer used with a mass spectrometer to a computer. 2 figs.

  18. Power conversion architecture for grid interface at high switching frequency

    E-Print Network [OSTI]

    Lim, Seungbum

    This paper presents a new power conversion architecture for single-phase grid interface. The proposed architecture is suitable for realizing miniaturized ac-dc converters operating at high frequencies (HF, above 3 MHz) and ...

  19. Direct Conversion Technology

    SciTech Connect (OSTI)

    Back, L.H.; Fabris, G.; Ryan, M.A.

    1992-07-01

    The overall objective of the Direct Conversion Technology task is to develop an experimentally verified technology base for promising direct conversion systems that have potential application for energy conservation in the end-use sectors. Initially, two systems were selected for exploratory research and advanced development. These are Alkali Metal Thermal-to-Electric Converter (AMTEC) and Two-Phase Liquid Metal MD Generator (LMMHD). This report describes progress that has been made during the first six months of 1992 on research activities associated with these two systems. (GHH)

  20. Photovoltaic Energy Conversion

    E-Print Network [OSTI]

    Glashausser, Charles

    Photovoltaic Energy Conversion Frank Zimmermann #12;Solar Electricity Generation Consumes no fuel Electrode Valence Band Conduction Band Fermi Level I- /I3 - Redox Potential Dye 1D 3D* 1D* Energy Levels Counter Electrode Valence Band Conduction Band Fermi Level I- /I3 - Redox Potential Dye 1D 3D* 1D* Energy

  1. ENERGY CONVERSION Spring 2011

    E-Print Network [OSTI]

    Bahrami, Majid

    , 5th Edition Michael J. Moran and Howard N. Shapiro, John Wiley and Sons Inc., New York, NY, 2004, John Willey 2010. 3) Alternative Energy Systems and Applications, by B.K. Hodge, John Willey 2010. 41 ENSC 461 ENERGY CONVERSION Spring 2011 Instructor: Dr. Majid Bahrami 4372 Email

  2. Power conversion apparatus and method

    DOE Patents [OSTI]

    Su, Gui-Jia (Knoxville, TN)

    2012-02-07

    A power conversion apparatus includes an interfacing circuit that enables a current source inverter to operate from a voltage energy storage device (voltage source), such as a battery, ultracapacitor or fuel cell. The interfacing circuit, also referred to as a voltage-to-current converter, transforms the voltage source into a current source that feeds a DC current to a current source inverter. The voltage-to-current converter also provides means for controlling and maintaining a constant DC bus current that supplies the current source inverter. The voltage-to-current converter also enables the current source inverter to charge the voltage energy storage device, such as during dynamic braking of a hybrid electric vehicle, without the need of reversing the direction of the DC bus current.

  3. Community Energy Systems and the Law of Public Utilities. Volume Fifty-two. Wyoming

    SciTech Connect (OSTI)

    Feurer, D.A.; Weaver, C.L.

    1981-01-01

    A detailed description is presented of the laws and programs of the State of Wyoming governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  4. EA-1219: Hoe Creek Underground Coal Gasification Test Site Remediation, Campbell County, Wyoming

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts for the proposed Hoe Creek Underground Coal Gasification Test Site Remediation that would be performed at the Hoe Creek site in Campbell County, Wyoming.

  5. Wyoming State Briefing Book for low-level radioactive waste management

    SciTech Connect (OSTI)

    Not Available

    1981-10-01

    The Wyoming State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Wyoming. The profile is the result of a survey of NRC licensees in Wyoming. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Wyoming.

  6. EA-1155: Ground-water Compliance Activities at the Uranium Mill Tailings Site, Spook, Wyoming

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts for the proposal to comply with the Environmental Protection Agency's ground-water standards set forth in 40 CFR 192 at the Spook, Wyoming Uranium Mill...

  7. EA-1008: Continued Development of Naval Petroleum Reserve No. 3 (Sitewide), Natrona County, Wyoming

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of the proposal to continue development of the U.S. Department of Energy's Naval Petroleum Reserve No. 3 located in Natrona County, Wyoming over the next...

  8. Wyo. Stat. § 35-12-101 et seq.: The Wyoming Industrial Development...

    Open Energy Info (EERE)

    Wyo. Stat. 35-12-101 et seq.: The Wyoming Industrial Development Information and Siting Act Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document-...

  9. Strong converse theorems using Rényi entropies

    E-Print Network [OSTI]

    Felix Leditzky; Nilanjana Datta

    2015-06-08

    We use a R\\'enyi entropy approach to prove strong converse theorems for certain information-theoretic tasks which involve local operations and quantum (or classical) communication between two parties. These include state redistribution, coherent state merging, quantum state splitting, randomness extraction against quantum side information, and data compression with quantum side information. The method we employ in proving these results extends ideas developed by Sharma [arXiv:1404.5940] to prove the strong converse theorem for state merging. For state redistribution, we prove the strong converse property for the boundary of the entire achievable rate region in the $(e,q)$-plane, where $e$ and $q$ denote the entanglement cost and quantum communication cost, respectively. This extends a recent strong converse theorem for the quantum communication cost of state redistribution, proved by Berta et al. [arXiv:1409.4338]. For the other tasks as well, we provide new proofs for strong converse theorems which were previously established using smooth entropies.

  10. Environment of deposition and reservoir properties of Teapot sandstones (Upper Cretaceous), Well Draw field, Converse County, Wyoming 

    E-Print Network [OSTI]

    Sullivan, John Joseph

    1982-01-01

    fossils, and reservoir morphology. Three distinct sandstone facies produce oil and gas at Well Draw field. The main producing zone consists of thicker, channel turbidites. The lower two zones are thinly interbedded with shale and have limited reservoir... to oil ratio was 900 cu ft/bbl (Isbell et al, , 1976). Temperatures within Teapot sandstones yield an average geothermal gradient of 1, 21'F/100 ft (22. 0'C/km). More than 350 wells were drilled on 160 acre spacing in the Well Draw area...

  11. WRI-14-R002r CONVERSION OF LOW-RANK WYOMING COALS INTO GASOLINE BY DIRECT LIQUEFACTION

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield MunicipalTechnicalInformation4563 LLNL Small-scale Friction Sensitivityv b W r .WM'02 Conference,

  12. Jobs and Economic Development from New Transmission and Generation in Wyoming

    SciTech Connect (OSTI)

    Lantz, Eric; Tegen, Suzanne

    2011-03-31

    This report is intended to inform policymakers, local government officials, and Wyoming residents about the jobs and economic development activity that could occur should new infrastructure investments in Wyoming move forward. The report and analysis presented is not a projection or a forecast of what will happen. Instead, the report uses a hypothetical deployment scenario and economic modeling tools to estimate the jobs and economic activity likely associated with these projects if or when they are built.

  13. Aqueous geochemistry of the Thermopolis hydrothermal system, southern Bighorn Basin, Wyoming, U.S.A.

    SciTech Connect (OSTI)

    Kaszuba, John P. [Univ. of Wyoming, Laramie, WY (United States). Dept. of Geology and Geophysics; Sims, Kenneth W.W. [Univ. of Wyoming, Laramie, WY (United States). School of Energy Resources; Pluda, Allison R. [Univ. of Wyoming, Laramie, WY (United States). Wyoming High-Precision Isotope Lab.

    2014-03-01

    The Thermopolis hydrothermal system is located in the southern portion of the Bighorn Basin, in and around the town of Thermopolis, Wyoming. It is the largest hydrothermal system in Wyoming outside of Yellowstone National Park. The system includes hot springs, travertine deposits, and thermal wells; published models for the hydrothermal system propose the Owl Creek Mountains as the recharge zone, simple conductive heating at depth, and resurfacing of thermal waters up the Thermopolis Anticline.

  14. Aqueous geochemistry of the Thermopolis hydrothermal system, southern Bighorn Basin, Wyoming, U.S.A.

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kaszuba, John P.; Sims, Kenneth W.W.; Pluda, Allison R.

    2014-06-01

    The Thermopolis hydrothermal system is located in the southern portion of the Bighorn Basin, in and around the town of Thermopolis, Wyoming. It is the largest hydrothermal system in Wyoming outside of Yellowstone National Park. The system includes hot springs, travertine deposits, and thermal wells; published models for the hydrothermal system propose the Owl Creek Mountains as the recharge zone, simple conductive heating at depth, and resurfacing of thermal waters up the Thermopolis Anticline.

  15. Jobs and Economic Development from New Transmission and Generation in Wyoming

    SciTech Connect (OSTI)

    Lantz, E.; Tegen, S.

    2011-03-01

    This report is intended to inform policymakers, local government officials, and Wyoming residents about the jobs and economic development activity that could occur should new infrastructure investments in Wyoming move forward. The report and analysis presented is not a projection or a forecast of what will happen. Instead, the report uses a hypothetical deployment scenario and economic modeling tools to estimate the jobs and economic activity likely associated with these projects if or when they are built.

  16. Biomass Thermochemical Conversion Program. 1984 annual report

    SciTech Connect (OSTI)

    Schiefelbein, G.F.; Stevens, D.J.; Gerber, M.A.

    1985-01-01

    The objective of the program is to generate scientific data and conversion process information that will lead to establishment of cost-effective process for converting biomass resources into clean fuels. The goal of the program is to develop the data base for biomass thermal conversion by investigating the fundamental aspects of conversion technologies and by exploring those parameters that are critical to the conversion processes. The research activities can be divided into: (1) gasification technology; (2) liquid fuels technology; (3) direct combustion technology; and (4) program support activities. These activities are described in detail in this report. Outstanding accomplishments during fiscal year 1984 include: (1) successful operation of 3-MW combustor/gas turbine system; (2) successful extended term operation of an indirectly heated, dual bed gasifier for producing medium-Btu gas; (3) determination that oxygen requirements for medium-Btu gasification of biomass in a pressurized, fluidized bed gasifier are low; (4) established interdependence of temperature and residence times on biomass pyrolysis oil yields; and (5) determination of preliminary technical feasibility of thermally gasifying high moisture biomass feedstocks. A bibliography of 1984 publications is included. 26 figs., 1 tab.

  17. Ocean Thermal Energy Conversion Basics

    Broader source: Energy.gov [DOE]

    A process called ocean thermal energy conversion (OTEC) uses the heat energy stored in the Earth's oceans to generate electricity.

  18. Biological Conversion of Sugars To Hydrocarbons | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biological Conversion of Sugars To Hydrocarbons Biological Conversion of Sugars To Hydrocarbons PDF explaining the biological process of bioenergy Biological Conversion of Sugars...

  19. Performance and operation of the Hamm Minnelusa Sand Unit, Campbell County, Wyoming

    SciTech Connect (OSTI)

    Doll, T.E.; Hanson, M.T.

    1987-12-01

    The Hamm Minnelusa Sand Unit was discovered in 1966 and produced from the Minnelusa B sand. The field was under fluid-expansion primary recovery until water injection began in Dec. 1972. Waterflood response peaked at a higher monthly rate than that of primary recovery. Water production indicated channeling through high-permeability zones. In Oct. 1975, a volumetric-sweep improvement program was initiated into the single-injection wellbore. Anionic polyacrylamide and aluminum citrate were injected to provide in-depth vertical conformance. A second well was converted to injection in April 1976, and sweep improvement started 26 months later. The third well was converted to injection and the chemical-oil-recovery program began in Aug. 1982. The first two injectors were converted to produce water disposal at that date. The polymer-augmented waterflood was terminated in Jan. 1985. Water injection continues. This paper details flood performance up to July, 1985. Cumulative water injection is 76.6% of the total PV. A 39.5% PV chemical slug has been injected. Total recovery to data is 48.7% of the original oil in place (OOIP).

  20. ,"Wyoming Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames City of",6,1,"Omaha Public PowerOECD/IEA -Annual",2014Proved Reserves,Summary"Shale Proved Reserves (Billion

  1. Data from selected Almond Formation outcrops -- Sweetwater County, Wyoming

    SciTech Connect (OSTI)

    Jackson, S.R.; Rawn-Schatzinger, V.

    1993-12-01

    The objectives of this research program are to: (1) determine the reservoir characteristics and production problems of shoreline barrier reservoirs; and (2) develop methods and methodologies to effectively characterize shoreline barrier reservoirs to predict flow patterns of injected and produced fluids. Two reservoirs were selected for detailed reservoir characterization studies -- Bell Creek field, Carter County, Montana, that produces from the Lower Cretaceous (Albian-Cenomanian) Muddy Formation, and Patrick Draw field, Sweetwater County, Wyoming that produces from the Upper Cretaceous (Campanian) Almond Formation of the Mesaverde Group. An important component of the research project was to use information from outcrop exposures of the producing formations to study the spatial variations of reservoir properties and the degree to which outcrop information can be used in the construction of reservoir models. A report similar to this one presents the Muddy Formation outcrop data and analyses performed in the course of this study (Rawn-Schatzinger, 1993). Two outcrop localities, RG and RH, previously described by Roehler (1988) provided good exposures of the Upper Almond shoreline barrier facies and were studied during 1990--1991. Core from core well No. 2 drilled approximately 0.3 miles downdip of outcrop RG was obtained for study. The results of the core study will be reported in a separate volume. Outcrops RH and RG, located about 2 miles apart were selected for detailed description and drilling of core plugs. One 257-ft-thick section was measured at outcrop RG, and three sections {approximately}145 ft thick located 490 and 655 feet apart were measured at the outcrop RH. Cross-sections of these described profiles were constructed to determine lateral facies continuity and changes. This report contains the data and analyses from the studied outcrops.

  2. Zinc phosphate conversion coatings

    DOE Patents [OSTI]

    Sugama, Toshifumi (Wading River, NY)

    1997-01-01

    Zinc phosphate conversion coatings for producing metals which exhibit enhanced corrosion prevention characteristics are prepared by the addition of a transition-metal-compound promoter comprising a manganese, iron, cobalt, nickel, or copper compound and an electrolyte such as polyacrylic acid, polymethacrylic acid, polyitaconic acid and poly-L-glutamic acid to a phosphating solution. These coatings are further improved by the incorporation of Fe ions. Thermal treatment of zinc phosphate coatings to generate .alpha.-phase anhydrous zinc phosphate improves the corrosion prevention qualities of the resulting coated metal.

  3. Zinc phosphate conversion coatings

    DOE Patents [OSTI]

    Sugama, T.

    1997-02-18

    Zinc phosphate conversion coatings for producing metals which exhibit enhanced corrosion prevention characteristics are prepared by the addition of a transition-metal-compound promoter comprising a manganese, iron, cobalt, nickel, or copper compound and an electrolyte such as polyacrylic acid, polymethacrylic acid, polyitaconic acid and poly-L-glutamic acid to a phosphating solution. These coatings are further improved by the incorporation of Fe ions. Thermal treatment of zinc phosphate coatings to generate {alpha}-phase anhydrous zinc phosphate improves the corrosion prevention qualities of the resulting coated metal. 33 figs.

  4. Solid-state power conversion handbook

    SciTech Connect (OSTI)

    Tarter, R.E.

    1993-01-01

    This new handbook is the first to be devoted to the field of solid-state power conversion. The material in this book is to be used in engineering practice and is oriented toward application rather than theory. The purpose of the book is to assemble in a single volume all the pertinent and comprehensive information necessary to meet the growing demands placed upon solid-state power conversion equipment. These demands include increased efficiency, improved reliability, higher packaging density, improved performance, and meeting safety and electromagnetic compatibility (EMC) requirements. The material presented includes a thorough analysis of fundamental electrical and magnetic aspects of power conversion plus thermal, protection, and reliability considerations. Attention is focused on semi-conductor and magnetic components and on analysis of various topologies. The handbook is organized into four sections. (1) Chapters 1-3 present the relations of various waveforms, transient components with emphasis on power semiconductors and magnetic components. (2) Chapters 4-12 deal with single-level conversion of rectifier circuits, filters, inverters and converters, feedback and stability analysis, and modulators and pulse-forming networks. (3) Chapters 13-16 discuss ancillary topics related to safety, EMC, thermal management, and reliability. (4) Chapters 17-19 cover design and operation of power supplies and systems from a detailed building block standpoint.

  5. Moderate pressure hydrocracking: A profitable conversion alternative

    SciTech Connect (OSTI)

    Hunter, M.G. (M.W. Kellogg Co., Houston, TX (United States)); Pappal, D.A. (Mobil Research and Development Corp., Dallas, TX (United States)); Pesek, C.L. (Akzo Chemicals, Inc., Houston, TX (United States))

    1994-01-01

    Moderate Pressure Hydrocracking (MPHC) is a once-through hydrocracking process for the conversion of heavy gas oils to low-sulfur distillates and unconverted oil which is highly upgraded relative to the raw feed. Operating at lower pressure significantly reduces capital investment and results in substantially less hydrogen consumption. Furthermore, the process requirements for MPHC are within the range of many existing vacuum gas oil desulfurization units. Mobil Research and Development Corporation and Akzo Chemicals have been actively engaged in Moderate Pressure Hydrocracking research for more than ten years. Mobil's first commercial MPHC installation was successfully started up in 1983. Mobil operates five hydrocrackers, two of which are partial conversion MPHC designs that process heavy vacuum gas oils into middle distillate products. This research and operating experience has led to an advanced capability to apply hydrocracking conversion technology to heavy feedstocks under moderate pressure conditions. Akzo has commercialized a family of hydrotreating and hydrocracking catalysts which are combined to achieve the optimal balance between activity and selectivity for each specific refining application. The M.W. Kellogg Co. is a leading technology based international Engineering Construction company and has experience in the design, engineering and construction of 22 hydrocrackers. Mobil, Akzo and Kellogg have formed a partnership to offer MAK-MPHC and other full conversion hydrocracking technologies for license to the refining industry. This paper will present pilot plant and commercial results for Akzo catalysts in Moderate Pressure Hydrocracking applications. Specific process design features, typical refinery applications and the economic incentives for selecting MAK-MPHC will also be discussed.

  6. Kinetics of high-conversion hydrocracking of bitumen

    SciTech Connect (OSTI)

    Nagaishi, H.; Gray, M.R.; Chan, E.W.; Sanford, E.C.

    1995-12-31

    Residues are complex mixtures of thousands of components. This mixture will change during hydrocracking, so that high conversion may result in a residue material with different characteristics from the starting material. Our objective is to determine the kinetics of residue conversion and yields of distillates at high conversions, and to relate these observations to the underlying chemical reactions. Athabasca bitumen was reacted in a 1-L CSTR in a multipass operation. Product from the first pass was collected, then run through the reactor again and so on, giving kinetic data under conditions that simulated a multi-reactor or packed-bed operation. Experiments were run both with hydrocracking catalyst and without added catalyst. Products were analyzed by distillation, elemental analysis, NMR, and GPC. These data will be used to derive a kinetic model for hydrocracking of bitumen residue covering a wide range of conversion (from 30% to 95%+), based on the underlying chemistry.

  7. Conversion Technologies for Advanced Biofuels - Carbohydrates...

    Broader source: Energy.gov (indexed) [DOE]

    webinarcarbohydratesproduction.pdf More Documents & Publications Advanced Conversion Roadmap Workshop Workshop on Conversion Technologies for Advanced Biofuels - Carbohydrates...

  8. Conversion Technologies for Advanced Biofuels - Carbohydrates...

    Energy Savers [EERE]

    More Documents & Publications Conversion Technologies for Advanced Biofuels - Carbohydrates Production Advanced Conversion Roadmap Workshop Innovative Topics for Advanced Biofuels...

  9. Challenges and Opportunities in Thermoelectric Energy Conversion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Conversion Challenges and Opportunities in Thermoelectric Energy Conversion 2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: Lawrence Berkeley...

  10. Method for the photocatalytic conversion of gas hydrates

    DOE Patents [OSTI]

    Taylor, Charles E. (Pittsburg, PA); Noceti, Richard P. (Pittsburg, PA); Bockrath, Bradley C. (Bethel Park, PA)

    2001-01-01

    A method for converting methane hydrates to methanol, as well as hydrogen, through exposure to light. The process includes conversion of methane hydrates by light where a radical initiator has been added, and may be modified to include the conversion of methane hydrates with light where a photocatalyst doped by a suitable metal and an electron transfer agent to produce methanol and hydrogen. The present invention operates at temperatures below 0.degree. C., and allows for the direct conversion of methane contained within the hydrate in situ.

  11. Anomalous shear wave delays and surface wave velocities at Yellowstone Caldera, Wyoming

    SciTech Connect (OSTI)

    Daniel, R.G.; Boore, D.M.

    1982-04-10

    To investigate the effects of a geothermal area on the propagation of intermediate-period (1--30 s) teleseismic body waves and surface waves, a specially designed portable seismograph system was operated in Yellowstone Caldera, Wyoming. Travel time residuals, relative to a station outside the caldera, of up to 2 s for compressional phases are in agreement with short-period residuals for P phases measured by other investigators. Travel time delays for shear arrivals in the intermediate-period band range from 2 to 9 s and decrease with increasing dT/d..delta... Measured Rayleigh wave phase velocities are extremely low, ranging from 3.2 km/s at 27-s period to 2.0 km/s at 7-s period; the estimated uncertainty associated with these values is 15%. We propose a model for compressional and shear velocities and Poisson's ratio beneath the Yellowstone caldera which fits the teleseismic body and surface wave data: it consists of a highly anomalous crust with an average shear velocity of 3.0 km/s overlying an upper mantle with average velocity of 4.1 km/s. The high average value of Poisson's ratio in the crust (0.34) suggests the presence of fluids there; Poisson's ratio in the mantle between 40 and approximately 200 km is more nearly normal (0.29) than in the crust. A discrepancy between normal values of Poisson's ratio in the crust calculated from short-period data and high values calculated from teleseismic data can be resolved by postulating a viscoelastic crustal model with frequency-dependent shear velocity and attenuation.

  12. Gyroharmonic conversion experiments

    SciTech Connect (OSTI)

    Hirshfield, J.L.; LaPointe, M.A.; Ganguly, A.K. [Omega-P, Inc., New Haven, Connecticut 06520 (United States); LaPointe, M.A. [Yale University, New Haven, Connecticut 06511 (United States)

    1999-05-01

    Generation of high power microwaves has been observed in experiments where a 250{endash}350 kV, 20{endash}30 A electron beam accelerated in a cyclotron autoresonance accelerator (CARA) passes through a cavity tuned gyroharmonic) and at 8.6 GHz (3rd harmonic) will be described. Theory indicates that high conversion efficiency can be obtained for a high quality beam injected into CARA, and when mode competition can be controlled. Comparisons will be made between the experiments and theory. Planned 7th harmonic experiments will also be described, in which phase matching between the TE-72 mode at 20 GHz, and the TE-11 mode at 2.86 GHz, allows efficient 20 GHz co-generation within the CARA waveguide itself. {copyright} {ital 1999 American Institute of Physics.}

  13. Gyroharmonic conversion experiments

    SciTech Connect (OSTI)

    Hirshfield, J. L.; LaPointe, M. A. [Omega-P, Inc., New Haven, Connecticut 06520 (United States); Yale University, New Haven, Connecticut 06511 (United States); Ganguly, A. K. [Omega-P, Inc., New Haven, Connecticut 06520 (United States)

    1999-05-07

    Generation of high power microwaves has been observed in experiments where a 250-350 kV, 20-30 A electron beam accelerated in a cyclotron autoresonance accelerator (CARA) passes through a cavity tuned gyroharmonic) and at 8.6 GHz (3rd harmonic) will be described. Theory indicates that high conversion efficiency can be obtained for a high quality beam injected into CARA, and when mode competition can be controlled. Comparisons will be made between the experiments and theory. Planned 7th harmonic experiments will also be described, in which phase matching between the TE-72 mode at 20 GHz, and the TE-11 mode at 2.86 GHz, allows efficient 20 GHz co-generation within the CARA waveguide itself.

  14. Sampling and analyses report for December 1991 semiannual postburn sampling at the RM1 UCG site, Hanna, Wyoming. [Quarterly report, January--March 1992

    SciTech Connect (OSTI)

    Lindblom, S.R.

    1992-01-01

    The Rocky Mountain 1 (RM1) underground coal gasification (UCG) test was conducted from November 16, 1987, through February 26, 1988 at a site approximately one mile south of Hanna, Wyoming. The test consisted of a dual-module operation to evaluate the controlled retracting injection point (CRIP) technology, the elongated linked well (ELW) technology, and the interaction of closely spaced modules operating simultaneously. The test caused two cavities to form in the Hanna No. 1 coal seam and associated overburden. The Hanna No. 1 coal seam was approximately 30 ft thick and lay at depths between 350 and 365 ft below the surface in the test area. The coal seam was overlain by sandstones, siltstones, and claystones deposited by various fluvial environments. The groundwater monitoring was designed to satisfy the requirements of the Wyoming Department of Environmental Quality (WDEQ) in addition to providing research data toward the development of UCG technology that minimizes environmental impacts. Further background material and the sampling and analytical procedures associated with the sampling task are described in the Rocky Mountain 1 Postburn Groundwater Monitoring Quality Assurance Plan (Mason and Johnson 1988).

  15. HELIOPHYSICS II. ENERGY CONVERSION PROCESSES

    E-Print Network [OSTI]

    Hudson, Hugh

    with the term "solar flare" dominate our thinking about energy conversion from magnetic storage to other formsHELIOPHYSICS II. ENERGY CONVERSION PROCESSES edited by CAROLUS J. SCHRIJVER Lockheed Martin of a solar flare 11 2.3.1 Flare luminosity and mechanical energy 11 2.3.2 The impulsive phase (hard X

  16. DOE-Sponsored Technology Enhances Recovery of Natural Gas in Wyoming

    Broader source: Energy.gov [DOE]

    Research sponsored by the U.S. Department of Energy Oil and Natural Gas Program has found a way to distinguish between groundwater and the water co-produced with coalbed natural gas, thereby boosting opportunities to tap into the vast supply of natural gas in Wyoming as well as Montana.

  17. SNOWPACK RECONSTRUCTIONS INCORPORATING CLIMATE IN THE UPPER GREEN RIVER BASIN (WYOMING)

    E-Print Network [OSTI]

    Grissino-Mayer, Henri D.

    . In the 1976 report, two headwaters gage reconstructions were completed for the Green River at Warren BridgeSNOWPACK RECONSTRUCTIONS INCORPORATING CLIMATE IN THE UPPER GREEN RIVER BASIN (WYOMING) SALLYROSE of Sustainability and Multidisciplinary Research, Las Vegas, NV 89054 USA ABSTRACT The Green River is the largest

  18. Irrigation Canals as Sink Habitat for Trout and Other Fishes in a Wyoming Drainage

    E-Print Network [OSTI]

    of mortality for fish in the Rocky Mountain region. Our study looked at how fish were affected by the irrigation canal system in the Smiths Fork, a tributary to the Bear River in western Wyoming. There are two speckled dace Rhinichthys osculus (29% of all fish) and mountain sucker Catostomus platyrhynchus (37

  19. Assessment of Impacts from Adopting the 2006 International Energy Conservation Code for Residential Buildings in Wyoming

    SciTech Connect (OSTI)

    Lucas, Robert G.

    2007-10-01

    The state of Wyoming currently does not have a statewide building energy efficiency code for residential buildings. The U.S. Department of Energy has requested Pacific Northwest National Laboratory (PNNL) to estimate the energy savings, economic impacts, and pollution reduction from adopting the 2006 International Energy Conservation Code (IECC). This report addresses the impacts for low-rise residential buildings only.

  20. FORT UNION COAL IN THE POWDER RIVER BASIN, WYOMING AND MONTANA: A SYNTHESIS

    E-Print Network [OSTI]

    Chapter PS FORT UNION COAL IN THE POWDER RIVER BASIN, WYOMING AND MONTANA: A SYNTHESIS By R of selected Tertiary coal beds and zones in the Northern RockyMountains and Great Plains region, U Resource assessment of selected Tertiary coal beds and zones in the Northern Rocky Mountains and Great

  1. 53119782000 Solar Energy Conversion

    E-Print Network [OSTI]

    Chen, Yang-Yuan

    or degrade of the photocatalyst) The Challenges: Cost + Efficiency Earth ultimate recoverable resource of oil Solar Cells Work Operation of a PV cellThe effect of the electric field in a PV cell General schematic of a residential PV system with battery storage Basic structure of a generic silicon PV cell #12;-2 (photo courtesy

  2. Big George to Carter Mountain 115-kV transmission line project, Park and Hot Springs Counties, Wyoming. Environmental Assessment

    SciTech Connect (OSTI)

    Not Available

    1994-02-01

    The Western Area Power Administration (Western) is proposing to rebuild, operate, and maintain a 115-kilovolt (kV) transmission line between the Big George and Carter Mountain Substations in northwest Wyoming (Park and Hot Springs Counties). This environmental assessment (EA) was prepared in compliance with the National Environmental Policy Act (NEPA) and the regulations of the Council on Environmental Quality (CEQ) and the Department of Energy (DOE). The existing Big George to Carter Mountain 69-kV transmission line was constructed in 1941 by the US Department of Interior, Bureau of Reclamation, with 1/0 copper conductor on wood-pole H-frame structures without an overhead ground wire. The line should be replaced because of the deteriorated condition of the wood-pole H-frame structures. Because the line lacks an overhead ground wire, it is subject to numerous outages caused by lightning. The line will be 54 years old in 1995, which is the target date for line replacement. The normal service life of a wood-pole line is 45 years. Under the No Action Alternative, no new transmission lines would be built in the project area. The existing 69-kV transmission line would continue to operate with routine maintenance, with no provisions made for replacement.

  3. Role of acid catalysis in dimethyl ether conversion processes

    SciTech Connect (OSTI)

    Tartamella, T.L.; Lee, S.

    1996-12-31

    Acidity plays an important role in the conversion of methanol and dimethyl ether (DME) to hydrocarbons and oxygenates. In the conversion to hydrocarbons over zeolite catalyst, Broensted acidity is the main contributor to the first hydrocarbon formed. Here, acidity is also an important factor in determining olefin, paraffin, and aromatic content in the final product distribution. Catalyst life has also been found to be related to acidity content in zeolites. DME conversion to oxygenates is especially dependent on high acidity catalysts. Superacids like BF{sub 3}, HF-BF{sub 3}, and CF{sub 3}COOH have been used in the past for conversion of DME in carbonylation reactions to form methyl acetate and acetic acid at high pressures. Recently, heteropoly acids and their corresponding metal substituted salts have been used to convert DME to industrially important petrochemicals resulting in shorter reaction times and without the use of harsh operating conditions.

  4. Methane conversion to methanol

    SciTech Connect (OSTI)

    Noble, R.D.; Falconer, J.L.

    1992-06-01

    The objective of this research study is to demonstrate the effectiveness of a catalytic membrane reactor for the partial oxidation of methane. The specific goals are to demonstrate that we can improve product yield, demonstrate the optimal conditions for membrane reactor operation, determine the transport properties of the membrane, and provide demonstration of the process at the pilot plant scale. The last goal will be performed by Unocal, Inc., our industrial partner, upon successful completion of this study.

  5. Methane conversion to methanol

    SciTech Connect (OSTI)

    Noble, R.D.; Falconer, J.L.

    1992-01-01

    The objective of this research study is to demonstrate the effectiveness of a catalytic membrane reactor for the partial oxidation of methane. The specific goals are to demonstrate that we can improve product yield, demonstrate the optimal conditions for membrane reactor operation, determine the transport properties of the membrane, and provide demonstration of the process at the pilot plant scale. The last goal will be performed by Unocal, Inc., our industrial partner, upon successful completion of this study.

  6. Conversation View Outlook Web App User Guide

    E-Print Network [OSTI]

    Calgary, University of

    Conversation View Outlook Web App User Guide Email conversations that include multiple replies and sent messages can be viewed simultaneously using Conversation View. In Exchange 2010 Outlook Web App

  7. Tidal Conversion by Supercritical Topography

    E-Print Network [OSTI]

    Balmforth, Neil J.

    Calculations are presented of the rate of energy conversion of the barotropic tide into internal gravity waves above topography on the ocean floor. The ocean is treated as infinitely deep, and the topography consists of ...

  8. Plasmonic conversion of solar energy

    E-Print Network [OSTI]

    Clavero, Cesar

    2014-01-01

    Basic Research Needs for Solar Energy Utilization, BasicS. Pillai and M. A. Green, Solar Energy Materials and SolarPlasmonic conversion of solar energy César Clavero Plasma

  9. EIS-0359: Uranium Hexafluoride Conversion Facility at the Paducah, Kentucky Site

    Broader source: Energy.gov [DOE]

    This site-specific EIS considers the construction, operation, maintenance, and decontamination and decommissioning of the proposed depleted uranium hexafluoride (DUF6) conversion facility at three locations within the Paducah site; transportation of depleted uranium conversion products and waste materials to a disposal facility; transportation and sale of the hydrogen fluoride (HF) produced as a conversion co-product; and neutralization of HF to calcium fluoride and its sale or disposal in the event that the HF product is not sold.

  10. Technical Market Analysis for Biochemical Conversion Presentation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technical Market Analysis for Biochemical Conversion March 23, 2015 Biochemical Conversion Jim Collett and Mark Butcher PNNL This presentation does not contain any proprietary,...

  11. Unit Conversions and Formulas to Know

    E-Print Network [OSTI]

    rroames

    2007-12-06

    Math 139. Unit Conversions and Formulas to Memorize. Fall 2007. Unit Conversions to know: 1 foot = 12 inches. 1 centimeter = 10 millimeters. 1 yard = 3 feet.

  12. Materials challenges in advanced coal conversion technologies

    SciTech Connect (OSTI)

    Powem, C.A.; Morreale, B.D. [National Energy Technology Laboratory, Albany, OR (United States)

    2008-04-15

    Coal is a critical component in the international energy portfolio, used extensively for electricity generation. Coal is also readily converted to liquid fuels and/or hydrogen for the transportation industry. However, energy extracted from coal comes at a large environmental price: coal combustion can produce large quantities of ash and CO{sub 2}, as well as other pollutants. Advanced technologies can increase the efficiencies and decrease the emissions associated with burning coal and provide an opportunity for CO{sub 2} capture and sequestration. However, these advanced technologies increase the severity of plant operating conditions and thus require improved materials that can stand up to the harsh operating environments. The materials challenges offered by advanced coal conversion technologies must be solved in order to make burning coal an economically and environmentally sound choice for producing energy.

  13. Effective Reverse Conversion in Residue Number System Processors

    E-Print Network [OSTI]

    propose effective Residue Number System (RNS) to Weighted Number System conversion techniques with k being the num- ber of moduli. First, we introduce an RNS to MRC technique, which ad- dresses in an RNS to MRC with an asymptotic complexity, in terms of arithmetic operations, in the order of O

  14. Conversion Tower for Dispatchable Solar Power: High-Efficiency Solar-Electric Conversion Power Tower

    SciTech Connect (OSTI)

    2012-01-11

    HEATS Project: Abengoa Solar is developing a high-efficiency solar-electric conversion tower to enable low-cost, fully dispatchable solar energy generation. Abengoa’s conversion tower utilizes new system architecture and a two-phase thermal energy storage media with an efficient supercritical carbon dioxide (CO2) power cycle. The company is using a high-temperature heat-transfer fluid with a phase change in between its hot and cold operating temperature. The fluid serves as a heat storage material and is cheaper and more efficient than conventional heat-storage materials, like molten salt. It also allows the use of a high heat flux solar receiver, advanced high thermal energy density storage, and more efficient power cycles.

  15. On thermoelectric power conversion from heat re-circulating combustion systems F. J. Weinberg

    E-Print Network [OSTI]

    On thermoelectric power conversion from heat re-circulating combustion systems F. J. Weinberg Fax: 4420 7594 5604 Word count: 3750 Diags. equivalent: 1600 5350 #12;On thermoelectric power the absolute maximum efficiency of energy conversion by thermoelectric devices that operate as part of the heat

  16. Wyoming Natural Gas Gross Withdrawals from Oil Wells (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural Gas Reserves Adjustments (Billion

  17. Biomass Program 2007 Accomplishments - Thermochemical Conversion Platform

    SciTech Connect (OSTI)

    none,

    2009-10-27

    This document details the accomplishments of the Biomass Program Thermochemical Conversion Platform in 2007.

  18. Biomass Program 2007 Accomplishments - Biochemical Conversion Platform

    SciTech Connect (OSTI)

    none,

    2009-10-27

    This document details accomplishments of the Biomass Program Biochemical Conversion Platform accomplishments in 2007.

  19. Biochemical Conversion Pilot Plant (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-06-01

    This fact sheet provides information about Biochemical Conversion Pilot Plant capabilities and resources at NREL.

  20. Recirculation in multiple wave conversions

    SciTech Connect (OSTI)

    Brizard, A. J. [Department of Chemistry and Physics, Saint Michael's College, Colchester, Vermont 05439 (United States); Kaufman, A. N. [Department of Physics and Lawrence Berkeley National Laboratory, University of California, Berkeley, California 94720 (United States); Tracy, E. R. [Department of Physics, College of William and Mary, Williamsburg, Virginia 23187-8795 (United States)

    2008-08-15

    A one-dimensional multiple wave-conversion model is constructed that allows energy recirculation in ray phase space. Using a modular eikonal approach, the connection coefficients for this model are calculated by ray phase-space methods. Analytical results (confirmed numerically) show that all connection coefficients exhibit interference effects that depend on an interference phase, calculated from the coupling constants and the area enclosed by the intersecting rays. This conceptual model, which focuses on the topology of intersecting rays in phase space, is used to investigate how mode conversion between primary and secondary waves is modified by the presence of a tertiary wave.

  1. DOE Extends Contract to Operate Depleted Uranium Hexafluoride Conversion

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematics And StatisticsProgramof Energy ConsentCertify DOE Collects CivilEx Parte

  2. DOE Extends Contract to Operate Depleted Uranium Hexafluoride Conversion

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematics And Statistics »Application for RefundEnergy Cyborge ReportingTraining and EducationDOEPlants

  3. Methods for locating ground faults and insulation degradation condition in energy conversion systems

    DOE Patents [OSTI]

    Agamy, Mohamed; Elasser, Ahmed; Galbraith, Anthony William; Harfman Todorovic, Maja

    2015-08-11

    Methods for determining a ground fault or insulation degradation condition within energy conversion systems are described. A method for determining a ground fault within an energy conversion system may include, in part, a comparison of baseline waveform of differential current to a waveform of differential current during operation for a plurality of DC current carrying conductors in an energy conversion system. A method for determining insulation degradation within an energy conversion system may include, in part, a comparison of baseline frequency spectra of differential current to a frequency spectra of differential current transient at start-up for a plurality of DC current carrying conductors in an energy conversion system. In one embodiment, the energy conversion system may be a photovoltaic system.

  4. Energy Conversion and Storage Program

    SciTech Connect (OSTI)

    Cairns, E.J.

    1992-03-01

    The Energy Conversion and Storage Program applies chemistry and materials science principles to solve problems in (1) production of new synthetic fuels, (2) development of high-performance rechargeable batteries and fuel cells, (3) development of advanced thermochemical processes for energy conversion, (4) characterization of complex chemical processes, and (5) application of novel materials for energy conversion and transmission. Projects focus on transport-process principles, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, novel materials, and advanced methods of analysis. Electrochemistry research aims to develop advanced power systems for electric vehicle and stationary energy storage applications. Topics include identification of new electrochemical couples for advanced rechargeable batteries, improvements in battery and fuel-cell materials, and the establishment of engineering principles applicable to electrochemical energy storage and conversion. Chemical Applications research includes topics such as separations, catalysis, fuels, and chemical analyses. Included in this program area are projects to develop improved, energy-efficient methods for processing waste streams from synfuel plants and coal gasifiers. Other research projects seek to identify and characterize the constituents of liquid fuel-system streams and to devise energy-efficient means for their separation. Materials Applications research includes the evaluation of the properties of advanced materials, as well as the development of novel preparation techniques. For example, the use of advanced techniques, such as sputtering and laser ablation, are being used to produce high-temperature superconducting films.

  5. MUTUAL CONVERSION SOLAR AND SIDEREAL

    E-Print Network [OSTI]

    Roegel, Denis

    TABLES FOR THE MUTUAL CONVERSION OF SOLAR AND SIDEREAL TIME BY EDWARD SANG, F.R.S.E. EDINBURGH in the third example. Sang converts 3.27 seconds of solar time into 3.26 seconds of sidereal time. But sidereal time elapses faster than solar time, and the correct value is 3.28 sec- onds. In the fourth example

  6. Rationality and Conversation: A Thesis on Grice’s Theory of Conversation 

    E-Print Network [OSTI]

    Schoolfield, Matthew D

    2007-11-27

    H. P. Grice first presented his theory of conversational implicature in “Logic and Conversation.” This theory is comprised of conversational maxims that are based on the Cooperative Principle. Since then, it has become ...

  7. Mineral resources of the Buffalo Hump and Sand Dunes Addition Wilderness Study Areas, Sweetwater County, Wyoming

    SciTech Connect (OSTI)

    Gibbons, A.B.; Barbon, H.N.; Kulik, D.M. (Geological Survey, Reston, VA (USA)); McDonnell, J.R. Jr. (US Bureau of Mines (US))

    1990-01-01

    The authors present a study to assess the potential for undiscovered mineral resources and appraise the identified resources of the Buffalo Hump and Sand Dunes Addition Wilderness Study Areas, southwestern Wyoming, There are no mines, prospects, or mineralized areas nor any producing oil or gas wells; however, there are occurrences of coal, claystone and shale, and sand. There is a moderate resource potential for oil shale and natural gas and a low resource potential for oil, for metals, including uranium, and for geothermal sources.

  8. Environmental Assessment of Remedial Action at the Riverton Uranium Mill Tailings Site, Riverton, Wyoming

    SciTech Connect (OSTI)

    1987-06-01

    The US Department of Energy (DOE) has prepared an environmental assessment (DOE/EA-0254) on the proposed remedial action at the inactive uranium milling site near Riverton, Wyoming. Based on the analyses in the EA, the DOE has determined that the proposed action does not constitute a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969 (42 U.S.C. 4321, et seq.). Therefore, the preparation of an environmental impact statement (EIS) is not required.

  9. New interpretations of Paleozoic stratigraphy and history in the northern Laramie Range and vicinity, Southeast Wyoming

    SciTech Connect (OSTI)

    Sando, W.J.; Sandberg, C.A.

    1987-01-01

    Biostratigraphic and lithostratigraphic studies of the Paleozoic sequence in Southeast Wyoming indicate the need for revision of the ages and nomenclature of Devonian, Mississippian, and Pennsylvanian formations. The Paleozoic sequence begins with a quartzarenite of Devonian age referred to the newly named Fremont Canyon Sandstone, which is overlain by the Englewood Formation of Late Devonian and Early Mississippian age. The Englewood is succeeded by the Madison Limestone of Early and Late Mississippian age, which is overlain disconformably by the Darwin Sandstone Member (Pennsylvanian) of the Casper and Hartville formations. This sequence represents predominantly marine deposition in near-shore environments marginal to the ancient Transcontinental Arch.

  10. Natural Gas Citygate Price in Wyoming (Dollars per Thousand Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963Residential2, 2014ProvedYear Jan FebYear Jan Feb Mar Apr May Jun

  11. Wyoming Dry Natural Gas Reserves New Field Discoveries (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural Gas Reserves Adjustments (Billion Cubic Feet)New Field

  12. Wyoming Natural Gas Gross Withdrawals from Gas Wells (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural Gas Reserves Adjustments (Billion Cubic31Feet)Decade

  13. Wyoming Natural Gas Gross Withdrawals from Gas Wells (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural Gas Reserves Adjustments (Billion Cubic31Feet)DecadeYear

  14. Wyoming Natural Gas Gross Withdrawals from Oil Wells (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural Gas Reserves Adjustments (BillionYear Jan Feb Mar Apr May

  15. Wyoming Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural Gas Reserves Adjustments (BillionYear Jan Feb Mar Apr

  16. Wyoming Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural Gas Reserves Adjustments (BillionYear Jan Feb Mar AprYear

  17. Wyoming Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural Gas Reserves Adjustments (BillionYear Jan FebFueland Plant

  18. Wyoming Natural Gas Number of Gas and Gas Condensate Wells (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural Gas Reserves Adjustments (BillionYear Jan

  19. Wyoming Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural Gas Reserves Adjustments (BillionYearDecadeYear JanYear

  20. Wyoming Natural Gas in Underground Storage (Base Gas) (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural Gas Reserves Adjustments (BillionYearDecadeYearYear Jan

  1. Wyoming Natural Gas in Underground Storage - Change in Working Gas from

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural Gas Reserves Adjustments (BillionYearDecadeYearYearSame

  2. Wyoming Natural Gas in Underground Storage - Change in Working Gas from

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural Gas Reserves Adjustments (BillionYearDecadeYearYearSameSame

  3. Weather Ready Nation: A Vital Conversation on

    E-Print Network [OSTI]

    Weather Ready Nation: A Vital Conversation on Tornadoes and Severe Weather A Community Report March;WeatherReady Nation: A Vital Conversation on Tornadoes and Severe Weather Report from the December 2011

  4. Transparency in nonlinear frequency conversion

    E-Print Network [OSTI]

    Longhi, Stefano

    2015-01-01

    Suppression of wave scattering and the realization of transparency effects in engineered optical media and surfaces have attracted great attention in the past recent years. In this work the problem of transparency is considered for optical wave propagation in a nonlinear dielectric medium with second-order $\\chi^{(2)}$ susceptibility. Because of nonlinear interaction, a reference signal wave at carrier frequency $\\omega_1$ can exchange power, thus being amplified or attenuated,when phase matching conditions are satisfied and frequency conversion takes place. Therefore, rather generally the medium is not transparent to the signal wave because of 'scattering' in the frequency domain. Here we show that broadband transparency, corresponding to the full absence of frequency conversion in spite of phase matching, can be observed for the signal wave in the process of sum frequency generation whenever the effective susceptibility $\\chi^{(2)}$ along the nonlinear medium is tailored following a suitable spatial apodiza...

  5. Optomechanical conversion by mechanical turbines

    E-Print Network [OSTI]

    Kneževi?, Miloš; Warner, Mark

    2014-10-30

    has mov- ing parts gives it a disadvantage over conventional photo- voltaics, though rubber is highly durable and tough — for instance car tyres survive long use in harsh, abra- sive conditions. Another difficulty, that could perhaps be solved... ’effect du frottement dans l’equilibre,” Mem. Acad. Sci. , pp. 265 (1762). 7[14] L. R. G. Treloar, The Physics of Rubber Elasticity (Ox- ford University Press, Oxford, 2005). [15] M. Knez?evic´ and M. Warner, “Photoferroelectric solar to electrical conversion...

  6. The National Conversion Pilot Project

    SciTech Connect (OSTI)

    Roberts, A.V.

    1995-12-31

    The National Conversion Pilot Project (NCPP) is a recycling project under way at the U.S. Department of Energy (DOE) Rocky Flats Environmental Technology Site (RFETS) in Colorado. The recycling aim of the project is threefold: to reuse existing nuclear weapon component production facilities for the production of commercially marketable products, to reuse existing material (uranium, beryllium, and radioactively contaminated scrap metals) for the production of these products, and to reemploy former Rocky Flats workers in this process.

  7. Thermochemical Conversion | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram: Report15 MeetingDevelopmentDepartmentof EnergyTheConversion

  8. Research Reactor Conversion | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Reactor Conversion | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the...

  9. OCEAN THERMAL ENERGY CONVERSION: AN OVERALL ENVIRONMENTAL ASSESSMENT

    E-Print Network [OSTI]

    Sands, M.Dale

    2013-01-01

    M.D. (editor). 1980. Ocean Thermal Energy Conversion Draft1980 :. i l OCEAN THERMAL ENERGY CONVERSION: ENVIRONMENTALDevelopment Plan. Ocean Thermal Energy Conversion. U.S. DOE

  10. DRAFT. ENVIRONMENTAL ASSESSMENT OCEAN THERMAL ENERGY CONVERSION (OTEC) PILOT PLANTS

    E-Print Network [OSTI]

    Sullivan, S.M.

    2014-01-01

    1979. Commercial ocean thermal energy conversion ( OTEC)field of ocean thermal energy conversion discharges. I~. L.II of the Sixth Ocean Thermal Energy conversion Conference.

  11. ENVIRONMENTAL ASSESSMENT OCEAN THERMAL ENERGY CONVERSION (OTEC) PILOT PLANTS

    E-Print Network [OSTI]

    Sullivan, S.M.

    2014-01-01

    1979. Commercial ocean thermal energy conversion (OTEC)of the Fifth Ocean Thermal Energy Conversion Conference,Sands. 1980. Ocean thermal energy conversion (OTEC) pilot

  12. Thermophotovoltaic energy conversion using photonic bandgap selective emitters

    DOE Patents [OSTI]

    Gee, James M. (Albuquerque, NM); Lin, Shawn-Yu (Albuquerque, NM); Fleming, James G. (Albuquerque, NM); Moreno, James B. (Albuquerque, NM)

    2003-06-24

    A method for thermophotovoltaic generation of electricity comprises heating a metallic photonic crystal to provide selective emission of radiation that is matched to the peak spectral response of a photovoltaic cell that converts the radiation to electricity. The use of a refractory metal, such as tungsten, for the photonic crystal enables high temperature operation for high radiant flux and high dielectric contrast for a full 3D photonic bandgap, preferable for efficient thermophotovoltaic energy conversion.

  13. An evaluation of known remaining oil resources in the state of New Mexico and Wyoming. Volume 4, Project on Advanced Oil Recovery and the States

    SciTech Connect (OSTI)

    Not Available

    1994-11-01

    The Interstate Oil and Gas Compact Commission (IOGCC) has conducted a series of studies to evaluate the known, remaining oil resource in twenty-three (23) states. The primary objective of the IOGCC`s effort is to examine the potential impact of an aggressive and focused program of research, development, and demonstration (RD&D) and technology transfer on future oil recovery in the United States. As part of a larger effort by the IOGCC, this report focuses on the potential economic benefits of improved oil recovery in the states of New Mexico and Wyoming. Individual reports for six other oil producing states and a national report have been separately published by the IOGCC. The analysis presented in this report is based on the databases and models available in the Tertiary Oil Recovery Information System (TORIS). Overall, well abandonments and more stringent environmental regulations could limit economic access to New Mexico`s known, remaining oil resource. The high risk of near-term abandonment and the significant benefits of future application of improved oil recovery technology, clearly point to a need for more aggressive transfer of currently available technologies to domestic oil producers. Development and application of advanced oil recovery technologies could have even greater benefits to the state and the nation. A collaborative, focused RD&D effort, integrating the resources and expertise of industry, state and local governments, and the Federal government, is clearly warranted. With effective RD&D and a program of aggressive technology transfer to widely disseminate its results, oil production could be maximized. The resulting increase in production rates, employment, operator profits, state and Federal tax revenues, and energy security will benefit both the states of New Mexico and Wyoming and the nation as a whole.

  14. High resolution A/D conversion based on piecewise conversion at lower resolution

    DOE Patents [OSTI]

    Terwilliger, Steve (Albuquerque, NM)

    2012-06-05

    Piecewise conversion of an analog input signal is performed utilizing a plurality of relatively lower bit resolution A/D conversions. The results of this piecewise conversion are interpreted to achieve a relatively higher bit resolution A/D conversion without sampling frequency penalty.

  15. Basic data for thermal springs and wells as recorded in GEOTHERM: Wyoming

    SciTech Connect (OSTI)

    Bliss, J.D.

    1983-05-01

    GEOTHERM sample file contains 356 records for Wyoming. Three computer-generated indexes are found in appendices A, B, and C of this report. The indexes give one line summaries of each GEOTHERM record describing the chemistry of geothermal springs and wells in the sample file for Wyoming. Each index is sorted by different variables to assist the user in locating geothermal records describing specific sites. Appendix A is sorted by the county name and the name of the source. Also given are latitude, longitude (both use decimal minutes), township, range, section, GEOTHERM record identifier, and temperature (/sup 0/C). Appendix B is sorted by county, township, range, and section. Also given are name of source, GEOTHERM record identifier, and temperature (/sup 0/C). Appendix C is first sorted into one-degree blocks by latitude, and longitude, and then by name of source. Adjacent one-degree blocks which are published as a 1:250,000 map are combined under the appropriate map name. Also given are GEOTHERM record identifier, and temperature (/sup 0/C). A bibliography is given in Appendix D.

  16. Charging system with galvanic isolation and multiple operating modes

    DOE Patents [OSTI]

    Kajouke, Lateef A.; Perisic, Milun; Ransom, Ray M.

    2013-01-08

    Systems and methods are provided for operating a charging system with galvanic isolation adapted for multiple operating modes. A vehicle charging system comprises a DC interface, an AC interface, a first conversion module coupled to the DC interface, and a second conversion module coupled to the AC interface. An isolation module is coupled between the first conversion module and the second conversion module. The isolation module comprises a transformer and a switching element coupled between the transformer and the second conversion module. The transformer and the switching element are cooperatively configured for a plurality of operating modes, wherein each operating mode of the plurality of operating modes corresponds to a respective turns ratio of the transformer.

  17. Biomass Thermochemical Conversion Program: 1986 annual report

    SciTech Connect (OSTI)

    Schiefelbein, G.F.; Stevens, D.J.; Gerber, M.A.

    1987-01-01

    Wood and crop residues constitute a vast majority of the biomass feedstocks available for conversion, and thermochemical processes are well suited for conversion of these materials. Thermochemical conversion processes can generate a variety of products such as gasoline hydrocarbon fuels, natural gas substitutes, or heat energy for electric power generation. The US Department of Energy is sponsoring research on biomass conversion technologies through its Biomass Thermochemical Conversion Program. Pacific Northwest Laboratory has been designated the Technical Field Management Office for the Biomass Thermochemical Conversion Program with overall responsibility for the Program. This report briefly describes the Thermochemical Conversion Program structure and summarizes the activities and major accomplishments during fiscal year 1986. 88 refs., 31 figs., 5 tabs.

  18. Sandia Energy - Energy Conversion Efficiency

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid youOxygen GenerationTechnologiesEnergy Conversion Efficiency Home

  19. Biochemical Conversion | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataEnergy Webinar:I DueBETO Quiz -Technologies forBig SavingsConversion

  20. DOE Issues Request for Quotations for Depleted Uranium Hexafluoride Conversion Technical Services

    Broader source: Energy.gov [DOE]

    Cincinnati – The U.S. Department of Energy (DOE) today issued a Request for Quotation (RFQ) for engineering and operations technical services to support the Portsmouth Paducah Project Office and the oversight of operations of the Depleted Uranium Hexafluoride (DUF6) Conversion Project located in Paducah KY, and Portsmouth OH.

  1. IEEE TRANSACTIONS ON ENERGY CONVERSION, VOL. 19, NO. 3, SEPTEMBER 2004 561 Performance Improvement of Alternators

    E-Print Network [OSTI]

    Perreault, Dave

    IEEE TRANSACTIONS ON ENERGY CONVERSION, VOL. 19, NO. 3, SEPTEMBER 2004 561 Performance Improvement of Alternators With Switched-Mode Rectifiers Juan Rivas, Student Member, IEEE, David Perreault, Member, IEEE alternators to operate at a load-matched condition at all operating speeds, overcoming the limitation

  2. Conversion Preliminary Safety Analysis Report for the NIST Research Reactor

    SciTech Connect (OSTI)

    Diamond, D. J.; Baek, J. S.; Hanson, A. L.; Cheng, L-Y; Brown, N.; Cuadra, A.

    2015-01-30

    The NIST Center for Neutron Research (NCNR) is a reactor-laboratory complex providing the National Institute of Standards and Technology (NIST) and the nation with a world-class facility for the performance of neutron-based research. The heart of this facility is the NIST research reactor (aka NBSR); a heavy water moderated and cooled reactor operating at 20 MW. It is fueled with high-enriched uranium (HEU) fuel elements. A Global Threat Reduction Initiative (GTRI) program is underway to convert the reactor to low-enriched uranium (LEU) fuel. This program includes the qualification of the proposed fuel, uranium and molybdenum alloy foil clad in an aluminum alloy, and the development of the fabrication techniques. This report is a preliminary version of the Safety Analysis Report (SAR) that would be submitted to the U.S. Nuclear Regulatory Commission (NRC) for approval prior to conversion. The report follows the recommended format and content from the NRC codified in NUREG-1537, “Guidelines for Preparing and Reviewing Applications for the Licensing of Non-power Reactors,” Chapter 18, “Highly Enriched to Low-Enriched Uranium Conversions.” The emphasis in any conversion SAR is to explain the differences between the LEU and HEU cores and to show the acceptability of the new design; there is no need to repeat information regarding the current reactor that will not change upon conversion. Hence, as seen in the report, the bulk of the SAR is devoted to Chapter 4, Reactor Description, and Chapter 13, Safety Analysis.

  3. BIOMASS ENERGY CONVERSION IN HAWAII

    E-Print Network [OSTI]

    Ritschard, Ronald L.

    2013-01-01

    Report, (unpublished, 1979). Biomass Project Progress 31.Operations, vol. 2 of Biomass Energy (Stanford: StanfordPhotosynthethic Pathway Biomass Energy Production," ~c:_! _

  4. Explorations of Novel Energy Conversion and Storage Systems

    E-Print Network [OSTI]

    Duffin, Andrew Mark

    2010-01-01

    Energy Conversion and Storage Systems By Andrew Mark DuffinEnergy Conversion and Storage Systems by Andrew Mark Duffin

  5. 2011 Biomass Program Platform Peer Review: Thermochemical Conversion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thermochemical Conversion 2011 Biomass Program Platform Peer Review: Thermochemical Conversion "This document summarizes the recommendations and evaluations provided by an...

  6. Thermophotovoltaic conversion using selective infrared line emitters and large band gap photovoltaic devices

    DOE Patents [OSTI]

    Brandhorst, Jr., Henry W. (Auburn, AL); Chen, Zheng (Auburn, AL)

    2000-01-01

    Efficient thermophotovoltaic conversion can be performed using photovoltaic devices with a band gap in the 0.75-1.4 electron volt range, and selective infrared emitters chosen from among the rare earth oxides which are thermally stimulated to emit infrared radiation whose energy very largely corresponds to the aforementioned band gap. It is possible to use thermovoltaic devices operating at relatively high temperatures, up to about 300.degree. C., without seriously impairing the efficiency of energy conversion.

  7. HumanWildlife Interactions 8(2):284290, Fall 2014 Oil and gas impacts on Wyoming's sage-

    E-Print Network [OSTI]

    Human­Wildlife Interactions 8(2):284­290, Fall 2014 Oil and gas impacts on Wyoming's sage- grouse: Historical impacts from oil and gas development to greater sage-grouse (Centrocercus urophasianus) habitat been extrapolated to estimate future oil and gas impacts in the U. S. Fish and Wildlife Service (2010

  8. A loesspaleosol record of climate and glacial history over the past two glacialinterglacial cycles (~150 ka), southern Jackson Hole, Wyoming

    E-Print Network [OSTI]

    Licciardi, Joseph M.

    of the Laurentide ice sheet (Bettis et al., 2003). In the Great Plains, west of the Mississippi River Valley, loess accumulation of loess along the upper Snake River in Jackson Hole, northwestern Wyoming (Fig. 2). In southern Jackson Hole, loess locally more than 8 m thick is distributed along both sides of the Snake River. We

  9. Sibley station low-sulfur coal conversion program

    SciTech Connect (OSTI)

    Rupinskas, R.L. [Sargent & Lundy LLC, Chicago, IL (United States); Rembold, D.F. [Missouri Public Service, Kansas City, MO (United States)

    1995-03-01

    After embarking on an upgrade project in 1986 that was designed to allow efficient and reliable operation of its coal-fired Sibley station through 2010, Missouri Public Service (MPS) faced the uncertainty of impending acid-rain legislation. To protect its investment in the Sibley Rebuild Program, the utility evaluated compliance options based on the emerging legislation and concluded that switching to low-sulfur coal offered the least-cost compliance approach. Compared to installing a scrubber, switching to a low-sulfur coal was also more straightforward, although not without challenges and complications. This paper reviews the Sibley low-sulfur coal conversion program. At Sibley, fuel switching was chosen only after numerous internal and external studies; it withstood late challenges from natural gas and allowance trading. Switching demanded additional equipment to blend Power River Basin coals and other coals, and demanded additional and upgraded protective equipment in the areas of fire protection, dust collection, and explosion prevention. In the year since the coal conversion project was completed the facility has operated reliably, the economic benefits of the lower cost Powder River Basin coals have been realized, and the station has also met the requirements of both phases of the acid rain legislation. Fuel switching at Sibley required a team approach and careful analysis. The coal conversion project also required attention and dedication by team members in order to minimize fuel costs while maintaining optimum plant efficiency and availability.

  10. Radiological survey of the inactive uranium-mill tailings at Riverton, Wyoming

    SciTech Connect (OSTI)

    Haywood, F.F.; Lorenzo, D.; Christian, D.J.; Chou, K.D.; Ellis, B.S.; Shinpaugh, W.H.

    1980-03-01

    Results of a radiological survey performed at the Riverton, Wyoming site in July 1976, are presented. The average external gamma exposure rate at 1 m over the tailings pile was 56 ..mu..R/hr. The corresponding rate for the former mill area was 97 ..mu..R/hr. Movement of tailings particles in a dry wash is evident; but it appears that, in general, the earth cover over the tailings pile has been effective in limiting both wind and water erosion of the tailings. The calculated concentration of /sup 226/Ra as a function of depth in 15 augered holes is presented graphically. A survey of the Teton Division Lumber Company property in Riverton showed a maximum external gamma exposure rate of 270 ..mu..R/hr.

  11. Final long-term surveillance plan for the Spook, Wyoming, disposal site

    SciTech Connect (OSTI)

    NONE

    1993-01-01

    A general license for the custody and long-term care of DOE Uranium Mill Tailings Remedial Action (UMTRA) Project permanent disposal sites was issued by the US Nuclear Regulatory Commission (NRC), and became effective on November 29, 1990. The general license will be in effect for a specific disposal site when the NRC accepts the disposal site`s long-term surveillance plan (LTSP) and concurs that remedial action is complete at that site. This document describes in detail the long-term surveillance activities for the Spook, Wyoming, disposal site, including monitoring, maintenance, and emergency measures necessary to fulfill the conditions of the general license, and to ensure that the disposal cell continues to comply with the UMTRA design standards.

  12. Microclimatic performance of a free-air warming and CO? enrichment experiment in windy Wyoming, USA

    SciTech Connect (OSTI)

    LeCain, Daniel; Smith, David; Morgan, Jack; Kimball, Bruce A.; Pendall, Elise; Miglietta, Franco; Liang, Wenju

    2015-02-06

    In order to plan for global changing climate experiments are being conducted in many countries, but few have monitored the effects of the climate change treatments (warming, elevated CO?) on the experimental plot microclimate. During three years of an eight year study with year-round feedback-controlled infra-red heater warming (1.5/3.0°C day/night) and growing season free-air CO? enrichment (600 ppm) in the mixed-grass prairie of Wyoming, USA, we monitored soil, leaf, canopy-air, above-canopy-air temperatures and relative humidity of control and treated experimental plots and evaluated ecologically important temperature differentials. Leaves were warmed somewhat less than the target settings (1.1 & 1.5°C day/night) but soil was warmed more creating an average that matched the target settings extremely well both during the day and night plus the summer and winter. The site typically has about 50% bare or litter covered soil, therefore soil heat transfer is more critical than in dense canopy ecosystems. The Wyoming site commonly has strong winds (5 ms?¹ average) and significant daily and seasonal temperature fluctuations (as much as 30°C daily) but the warming system was nearly always able to maintain the set temperatures regardless of abiotic variation. The within canopy-air was only slightly warmed and above canopy-air was not warmed by the system, therefore convective warming was minor. Elevated CO? had no direct effect nor interaction with the warming treatment on microclimate. Relative humidity within the plant canopy was only slightly reduced by warming. Soil water content was reduced by warming but increased by elevated CO?. This study demonstrates the importance of monitoring the microclimate in manipulative field global change experiments so that critical physiological and ecological conclusions can be determined. Highly variable energy demand fluctuations showed that passive IR heater warming systems will not maintain desired warming for much of the time.

  13. Microclimatic performance of a free-air warming and CO? enrichment experiment in windy Wyoming, USA

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    LeCain, Daniel; Smith, David; Morgan, Jack; Kimball, Bruce A.; Pendall, Elise; Miglietta, Franco; Liang, Wenju

    2015-02-06

    In order to plan for global changing climate experiments are being conducted in many countries, but few have monitored the effects of the climate change treatments (warming, elevated CO?) on the experimental plot microclimate. During three years of an eight year study with year-round feedback-controlled infra-red heater warming (1.5/3.0°C day/night) and growing season free-air CO? enrichment (600 ppm) in the mixed-grass prairie of Wyoming, USA, we monitored soil, leaf, canopy-air, above-canopy-air temperatures and relative humidity of control and treated experimental plots and evaluated ecologically important temperature differentials. Leaves were warmed somewhat less than the target settings (1.1 & 1.5°C day/night)more »but soil was warmed more creating an average that matched the target settings extremely well both during the day and night plus the summer and winter. The site typically has about 50% bare or litter covered soil, therefore soil heat transfer is more critical than in dense canopy ecosystems. The Wyoming site commonly has strong winds (5 ms?¹ average) and significant daily and seasonal temperature fluctuations (as much as 30°C daily) but the warming system was nearly always able to maintain the set temperatures regardless of abiotic variation. The within canopy-air was only slightly warmed and above canopy-air was not warmed by the system, therefore convective warming was minor. Elevated CO? had no direct effect nor interaction with the warming treatment on microclimate. Relative humidity within the plant canopy was only slightly reduced by warming. Soil water content was reduced by warming but increased by elevated CO?. This study demonstrates the importance of monitoring the microclimate in manipulative field global change experiments so that critical physiological and ecological conclusions can be determined. Highly variable energy demand fluctuations showed that passive IR heater warming systems will not maintain desired warming for much of the time.« less

  14. Paleontological overview of oil shale and tar sands areas in Colorado, Utah, and Wyoming.

    SciTech Connect (OSTI)

    Murphey, P. C.; Daitch, D.; Environmental Science Division

    2009-02-11

    In August 2005, the U.S. Congress enacted the Energy Policy Act of 2005, Public Law 109-58. In Section 369 of this Act, also known as the ''Oil Shale, Tar Sands, and Other Strategic Unconventional Fuels Act of 2005,'' Congress declared that oil shale and tar sands (and other unconventional fuels) are strategically important domestic energy resources that should be developed to reduce the nation's growing dependence on oil from politically and economically unstable foreign sources. In addition, Congress declared that both research- and commercial-scale development of oil shale and tar sands should (1) be conducted in an environmentally sound manner using management practices that will minimize potential impacts, (2) occur with an emphasis on sustainability, and (3) benefit the United States while taking into account concerns of the affected states and communities. To support this declaration of policy, Congress directed the Secretary of the Interior to undertake a series of steps, several of which are directly related to the development of a commercial leasing program for oil shale and tar sands. One of these steps was the completion of a programmatic environmental impact statement (PEIS) to analyze the impacts of a commercial leasing program for oil shale and tar sands resources on public lands, with an emphasis on the most geologically prospective lands in Colorado, Utah, and Wyoming. For oil shale, the scope of the PEIS analysis includes public lands within the Green River, Washakie, Uinta, and Piceance Creek Basins. For tar sands, the scope includes Special Tar Sand Areas (STSAs) located in Utah. This paleontological resources overview report was prepared in support of the Oil Shale and Tar Sands Resource Management Plan Amendments to Address Land Use Allocations in Colorado, Utah, and Wyoming and PEIS, and it is intended to be used by Bureau of Land Management (BLM) regional paleontologists and field office staff to support future projectspecific analyses. Additional information about the PEIS can be found at http://ostseis.anl.gov.

  15. Natural gas/diesel conversions - the outlook

    SciTech Connect (OSTI)

    Fiore, V.B.; Joyce, T.J.

    1986-01-01

    High conversion costs and technical inadequacies of available equipment have limited diesel to compressed natural gas (CNG) conversions, a process which can use either fumigation, pilot oil injection, or spark-ignition for vehicle ignition. An overview of Gas Research Institute conversion research projects includes a summary of major problems associated with performance, cost, and reliability of the systems. A summary table identifies projects by organization and location, then provides project objectives, funding, future plans, and comments where the information is available.

  16. Adaptive Management and Planning Models for Cultural Resources in Oil and Gas Fields in New Mexico and Wyoming

    SciTech Connect (OSTI)

    Eckerle, William; Hall, Stephen

    2005-12-30

    In 2002, Gnomon, Inc., entered into a cooperative agreement with the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) for a project entitled, Adaptive Management and Planning Models for Cultural Resources in Oil and Gas Fields in New Mexico and Wyoming (DE-FC26-02NT15445). This project, funded through DOE’s Preferred Upstream Management Practices grant program, examined cultural resource management practices in two major oil- and gas-producing areas, southeastern New Mexico and the Powder River Basin of Wyoming (Figure 1). The purpose of this project was to examine how cultural resources have been investigated and managed and to identify more effective management practices. The project also was designed to build information technology and modeling tools to meet both current and future management needs. The goals of the project were described in the original proposal as follows: Goal 1. Create seamless information systems for the project areas. Goal 2. Examine what we have learned from archaeological work in the southeastern New Mexico oil fields and whether there are better ways to gain additional knowledge more rapidly or at a lower cost. Goal 3. Provide useful sensitivity models for planning, management, and as guidelines for field investigations. Goal 4. Integrate management, investigation, and decision- making in a real-time electronic system. Gnomon, Inc., in partnership with the Wyoming State Historic Preservation Office (WYSHPO) and Western GeoArch Research, carried out the Wyoming portion of the project. SRI Foundation, in partnership with the New Mexico Historic Preservation Division (NMHPD), Statistical Research, Inc., and Red Rock Geological Enterprises, completed the New Mexico component of the project. Both the New Mexico and Wyoming summaries concluded with recommendations how cultural resource management (CRM) processes might be modified based on the findings of this research.

  17. Planning Document for an NBSR Conversion Safety Analysis Report

    SciTech Connect (OSTI)

    Diamond D. J.; Baek J.; Hanson, A.L.; Cheng, L-Y.; Brown, N.; Cuadra, A.

    2013-09-25

    The NIST Center for Neutron Research (NCNR) is a reactor-laboratory complex providing the National Institute of Standards and Technology (NIST) and the nation with a world-class facility for the performance of neutron-based research. The heart of this facility is the National Bureau of Standards Reactor (NBSR). The NBSR is a heavy water moderated and cooled reactor operating at 20 MW. It is fueled with high-enriched uranium (HEU) fuel elements. A Global Threat Reduction Initiative (GTRI) program is underway to convert the reactor to low-enriched uranium (LEU) fuel. This program includes the qualification of the proposed fuel, uranium and molybdenum alloy foil clad in an aluminum alloy, and the development of the fabrication techniques. This report is a planning document for the conversion Safety Analysis Report (SAR) that would be submitted to, and approved by, the Nuclear Regulatory Commission (NRC) before the reactor could be converted.This report follows the recommended format and content from the NRC codified in NUREG-1537, “Guidelines for Preparing and Reviewing Applications for the Licensing of Non-power Reactors,” Chapter 18, “Highly Enriched to Low-Enriched Uranium Conversions.” The emphasis herein is on the SAR chapters that require significant changes as a result of conversion, primarily Chapter 4, Reactor Description, and Chapter 13, Safety Analysis. The document provides information on the proposed design for the LEU fuel elements and identifies what information is still missing. This document is intended to assist ongoing fuel development efforts, and to provide a platform for the development of the final conversion SAR. This report contributes directly to the reactor conversion pillar of the GTRI program, but also acts as a boundary condition for the fuel development and fuel fabrication pillars.

  18. LED Street Lighting Conversion Workshop Presentations

    Broader source: Energy.gov [DOE]

    This page provides links to the presentations given at the National League of Cities Mobile Workshop, LED Street Lighting Conversion: Saving Your Community Money, While Improving Public Safety,...

  19. Biochemical Conversion: Using Hydrolysis, Fermentation, and Catalysis...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    hydrolyze the cellulose and hemicellulose in biomass to free the sugars for conversion. The program is working to identify the most productive, naturally occurring...

  20. "Fundamental Challenges in Solar Energy Conversion" workshop...

    Office of Science (SC) Website

    "Fundamental Challenges in Solar Energy Conversion" workshop hosted by LMI-EFRC Energy Frontier Research Centers (EFRCs) EFRCs Home Centers Research Science Highlights News &...

  1. "Approaches to Ultrahigh Efficiency Solar Energy Conversion"...

    Office of Science (SC) Website

    "Approaches to Ultrahigh Efficiency Solar Energy Conversion" Webinar Energy Frontier Research Centers (EFRCs) EFRCs Home Centers Research Science Highlights News & Events EFRC News...

  2. Limits in high efficiency quantum frequency conversion

    E-Print Network [OSTI]

    Nicolás Quesada; J. E. Sipe

    2015-08-13

    Frequency conversion is an enabling process in many quantum information protocols. In this letter we study fundamental limits to high efficiency frequency conversion imposed by time ordering corrections. Using the Magnus expansion, we argue that these corrections, which are usually considered detrimental, can be used to increase the efficiency of conversion under certain circumstances. The corrections induce a nonlinear behaviour in the probability of upconversion as a function of the pump intensity, significantly modifying the sinusoidal Rabi oscillations that are otherwise expected. Finally, by using a simple scaling argument, we explain why cascaded frequency conversion devices attenuate time ordering corrections, allowing the construction of near ideal quantum pulse gates.

  3. Molecular catalytic coal liquid conversion. Quarterly report...

    Office of Scientific and Technical Information (OSTI)

    report Citation Details In-Document Search Title: Molecular catalytic coal liquid conversion. Quarterly report You are accessing a document from the Department of Energy's (DOE)...

  4. Molecular catalytic coal liquid conversion. Quarterly status...

    Office of Scientific and Technical Information (OSTI)

    report Citation Details In-Document Search Title: Molecular catalytic coal liquid conversion. Quarterly status report In this Quarter, the research was focused continually on the...

  5. Molecular catalytic coal liquid conversion. Quarterly status...

    Office of Scientific and Technical Information (OSTI)

    July--September 1995 Citation Details In-Document Search Title: Molecular catalytic coal liquid conversion. Quarterly status report, July--September 1995 The research was...

  6. Molecular catalytic coal liquid conversion. Quarterly report...

    Office of Scientific and Technical Information (OSTI)

    October--December 1994 Citation Details In-Document Search Title: Molecular catalytic coal liquid conversion. Quarterly report, October--December 1994 You are accessing a...

  7. Molecular catalytic coal liquid conversion. Quarterly status...

    Office of Scientific and Technical Information (OSTI)

    July--September 1995 Citation Details In-Document Search Title: Molecular catalytic coal liquid conversion. Quarterly status report, July--September 1995 You are accessing...

  8. Molecular catalytic coal liquid conversion. Quarterly report...

    Office of Scientific and Technical Information (OSTI)

    October--December 1994 Citation Details In-Document Search Title: Molecular catalytic coal liquid conversion. Quarterly report, October--December 1994 In this Quarter, the...

  9. Molecular catalytic coal liquid conversion. Quarterly report...

    Office of Scientific and Technical Information (OSTI)

    report Citation Details In-Document Search Title: Molecular catalytic coal liquid conversion. Quarterly report In this Quarter, the research was focused continually on the two...

  10. Molecular catalytic coal liquid conversion. Quarterly status...

    Office of Scientific and Technical Information (OSTI)

    report Citation Details In-Document Search Title: Molecular catalytic coal liquid conversion. Quarterly status report You are accessing a document from the Department of...

  11. Conversion Technologies for Advanced Biofuels ? Carbohydrates...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for host organism in the presentence of limited six carbon sugars Identify cellular transporters and regulators required for maximum sugar to hydrocarbon conversion ...

  12. Resource Limits and Conversion Efficiency with Implications for Climate Change

    E-Print Network [OSTI]

    Croft, Gregory Donald

    2009-01-01

    in Wyoming coal production comes from surface mining ofis too thick for surface mining. The Wyodak-Anderson Coal issurface mining; it is easier to mine one or two massive coals

  13. Photonic Crystals for Enhancing Thermophotovoltaic Energy Conversion

    SciTech Connect (OSTI)

    LIN, SHAWN-YU; FLEMING, JAMES G.; MORENO, JOSEPH A.

    2003-03-01

    Thermophotovoltaics (TPV) converts the radiant energy of a thermal source into electrical energy using photovoltaic cells. TPV has a number of attractive features, including: fuel versatility (nuclear, fossil, solar, etc.), quiet operation, low maintenance, low emissions, light weight, high power density, modularity, and possibility for cogeneration of heat and electricity. Some of these features are highly attractive for military applications (Navy and Army). TPV could also be used for distributed power and automotive applications wherever fuel cells, microturbines, or cogeneration are presently being considered if the efficiencies could be raised to around 30%. This proposal primarily examine approaches to improving the radiative efficiency. The ideal irradiance for the PV cell is monochromatic illumination at the bandgap. The photonic crystal approach allows for the tailoring of thermal emission spectral bandwidth at specific wavelengths of interest. The experimental realization of metallic photonic crystal structures, the optical transmission, reflection and absorption characterization of it have all been carried out in detail and will be presented next. Additionally, comprehensive models of TPV conversion has been developed and applied to the metallic photonic crystal system.

  14. Conversion and enrichment in the Soviet Union

    SciTech Connect (OSTI)

    1991-04-01

    In the Soviet Union, just as in the West, the civilian nuclear industry emerged from research work undertaken for nuclear weapons development. At first, researchers tried various techniques for physical separation of uranium isotopes: electromagnetic and molecular-kinetic thermo-diffusion methods; gaseous diffusion; and centrifuge methods. All of those methods, which are based primarily on differences in the atomic mass of uranium isotopes, called for extensive research and the development of new, technically unprecedented equipment. Gradually gaseous diffusion and gas centrifuge technology became recognized as most feasible for industrial use, so research on other methods was terminated. Industrial-scale uranium enrichment in the Soviet Union began in 1949 using the gaseous diffusion method; by the early 1960s, centrifuge technology was in use on an industrial scale. All Soviet production of highly-enriched, weapons-grade uranium was halted in 1987. The Soviet Union now has four enrichment plants in operation (at classified locations), solely for civilian nuclear power needs. All four enrichment plants have centrifuge modules, and enrichment provided by gaseous diffusion accounts for less than 5% of their total output. Two of the four enrichment plants also incorporate facilities for conversion to uranium hexafluoride (UF{sub 6}).

  15. Process for carbonaceous material conversion and recovery of alkali metal catalyst constituents held by ion exchange sites in conversion residue

    DOE Patents [OSTI]

    Sharp, David W. (Seabrook, TX)

    1980-01-01

    In a coal gasification operation or similar conversion process carried out in the presence of an alkali metal-containing catalyst wherein solid particles containing alkali metal residues are produced, alkali metal constituents are recovered for the particles by contacting or washing them with an aqueous solution containing calcium or magnesium ions in an alkali metal recovery zone at a low temperature, preferably below about 249.degree. F. During the washing or leaching process, the calcium or magnesium ions displace alkali metal ions held by ion exchange sites in the particles thereby liberating the ions and producing an aqueous effluent containing alkali metal constituents. The aqueous effluent from the alkali metal recovery zone is then recycled to the conversion process where the alkali metal constituents serve as at least a portion of the alkali metal constituents which comprise the alkali metal-containing catalyst.

  16. Framing the Conversation: The Role of Facebook Conversations in Shopping for Eyeglasses

    E-Print Network [OSTI]

    Kane, Shaun K.

    Framing the Conversation: The Role of Facebook Conversations in Shopping for Eyeglasses Karim Said Warby Parker's Facebook page and explore the ways customers formulate questions and conversations,000 Facebook posts, consisting of photos, comments, and "likes". Using statistical analyses and qualitative

  17. Biomass thermal conversion research at SERI

    SciTech Connect (OSTI)

    Milne, T. A.; Desrosiers, R. E.; Reed, T. B.

    1980-09-01

    SERI's involvement in the thermochemical conversion of biomass to fuels and chemicals is reviewed. The scope and activities of the Biomass Thermal Conversion and Exploratory Branch are reviewed. The current status and future plans for three tasks are presented: (1) Pyrolysis Mechanisms; (2) High Pressure O/sub 2/ Gasifier; and (3) Gasification Test Facility.

  18. Heat to electricity thermoacoustic-magnetohydrodynamic conversion

    E-Print Network [OSTI]

    Castrejon-Pita, A A

    2006-01-01

    In this work, a new concept for the conversion of heat into electricity is presented. The conversion is based on the combined effects of a thermoacoustic prime mover coupled with a magnetohydrodynamic generator, using different working fluids in each process. The results of preliminary experiments are also presented.

  19. Heat to electricity thermoacoustic-magnetohydrodynamic conversion

    E-Print Network [OSTI]

    A. A. Castrejon-Pita; G. Huelsz

    2006-10-12

    In this work, a new concept for the conversion of heat into electricity is presented. The conversion is based on the combined effects of a thermoacoustic prime mover coupled with a magnetohydrodynamic generator, using different working fluids in each process. The results of preliminary experiments are also presented.

  20. Unit Conversion Factors Quantity Equivalent Values

    E-Print Network [OSTI]

    Ashurst, W. Robert

    Unit Conversion Factors Quantity Equivalent Values Mass 1 kg = 1000 g = 0.001 metric ton = 2·R 10.73 psia·ft3 lbmol·R 62.36 liter·torr mol·K 0.7302 ft3·atm lbmol·R Temperature Conversions: T

  1. Data Conversion in Residue Number System

    E-Print Network [OSTI]

    Zilic, Zeljko

    ;2 Abstract This thesis tackles the problem of data conversion in the Residue Number System (RNS). The RNS has the use of RNS at the applications. In this thesis, we aim at developing efficient schemes for the conversion from the conventional representation to the RNS representation and vice versa. The conventional

  2. 1982 annual report: Biomass Thermochemical Conversion Program

    SciTech Connect (OSTI)

    Schiefelbein, G.F.; Stevens, D.J.; Gerber, M.A.

    1983-01-01

    This report provides a brief overview of the Thermochemical Conversion Program's activities and major accomplishments during fiscal year 1982. The objective of the Biomass Thermochemical Conversion Program is to generate scientific data and fundamental biomass converison process information that, in the long term, could lead to establishment of cost effective processes for conversion of biomass resources into clean fuels and petrochemical substitutes. The goal of the program is to improve the data base for biomass conversion by investigating the fundamental aspects of conversion technologies and exploring those parameters which are critical to these conversion processes. To achieve this objective and goal, the Thermochemical Conversion Program is sponsoring high-risk, long-term research with high payoff potential which industry is not currently sponsoring, nor is likely to support. Thermochemical conversion processes employ elevated temperatures to convert biomass materials into energy. Process examples include: combustion to produce heat, steam, electricity, direct mechanical power; gasification to produce fuel gas or synthesis gases for the production of methanol and hydrocarbon fuels; direct liquefaction to produce heavy oils or distillates; and pyrolysis to produce a mixture of oils, fuel gases, and char. A bibliography of publications for 1982 is included.

  3. Interdigitated photovoltaic power conversion device

    DOE Patents [OSTI]

    Ward, James Scott (Englewood, CO); Wanlass, Mark Woodbury (Golden, CO); Gessert, Timothy Arthur (Conifer, CO)

    1999-01-01

    A photovoltaic power conversion device has a top surface adapted to receive impinging radiation. The device includes at least two adjacent, serially connected cells. Each cell includes a semi-insulating substrate and a lateral conductivity layer of a first doped electrical conductivity disposed on the substrate. A base layer is disposed on the lateral conductivity layer and has the same electrical charge conductivity thereof. An emitter layer of a second doped electrical conductivity of opposite electrical charge is disposed on the base layer and forms a p-n junction therebetween. A plurality of spaced channels are formed in the emitter and base layers to expose the lateral conductivity layer at the bottoms thereof. A front contact grid is positioned on the top surface of the emitter layer of each cell. A first current collector is positioned along one outside edge of at least one first cell. A back contact grid is positioned in the channels at the top surface of the device for engagement with the lateral conductivity layer. A second current collector is positioned along at least one outside edge of at least one oppositely disposed second cell. Finally, an interdigitation mechanism is provided for serially connecting the front contact grid of one cell to the back contact grid of an adjacent cell at the top surface of the device.

  4. Interdigitated photovoltaic power conversion device

    DOE Patents [OSTI]

    Ward, J.S.; Wanlass, M.W.; Gessert, T.A.

    1999-04-27

    A photovoltaic power conversion device has a top surface adapted to receive impinging radiation. The device includes at least two adjacent, serially connected cells. Each cell includes a semi-insulating substrate and a lateral conductivity layer of a first doped electrical conductivity disposed on the substrate. A base layer is disposed on the lateral conductivity layer and has the same electrical charge conductivity thereof. An emitter layer of a second doped electrical conductivity of opposite electrical charge is disposed on the base layer and forms a p-n junction therebetween. A plurality of spaced channels are formed in the emitter and base layers to expose the lateral conductivity layer at the bottoms thereof. A front contact grid is positioned on the top surface of the emitter layer of each cell. A first current collector is positioned along one outside edge of at least one first cell. A back contact grid is positioned in the channels at the top surface of the device for engagement with the lateral conductivity layer. A second current collector is positioned along at least one outside edge of at least one oppositely disposed second cell. Finally, an interdigitation mechanism is provided for serially connecting the front contact grid of one cell to the back contact grid of an adjacent cell at the top surface of the device. 15 figs.

  5. Class I cultural resource overview for oil shale and tar sands areas in Colorado, Utah and Wyoming.

    SciTech Connect (OSTI)

    O'Rourke, D.; Kullen, D.; Gierek, L.; Wescott, K.; Greby, M.; Anast, G.; Nesta, M.; Walston, L.; Tate, R.; Azzarello, A.; Vinikour, B.; Van Lonkhuyzen, B.; Quinn, J.; Yuen, R.; Environmental Science Division

    2007-11-01

    In August 2005, the U.S. Congress enacted the Energy Policy Act of 2005, Public Law 109-58. In Section 369 of this Act, also known as the 'Oil Shale, Tar Sands, and Other Strategic Unconventional Fuels Act of 2005', Congress declared that oil shale and tar sands (and other unconventional fuels) are strategically important domestic energy resources that should be developed to reduce the nation's growing dependence on oil from politically and economically unstable foreign sources. The Bureau of Land Management (BLM) is developing a Programmatic Environmental Impact Statement (PEIS) to evaluate alternatives for establishing commercial oil shale and tar sands leasing programs in Colorado, Wyoming, and Utah. This PEIS evaluates the potential impacts of alternatives identifying BLM-administered lands as available for application for commercial leasing of oil shale resources within the three states and of tar sands resources within Utah. The scope of the analysis of the PEIS also includes an assessment of the potential effects of future commercial leasing. This Class I cultural resources study is in support of the Draft Oil Shale and Tar Sands Resource Management Plan Amendments to Address Land Use Allocations in Colorado, Utah, and Wyoming and Programmatic Environmental Impact Statement and is an attempt to synthesize archaeological data covering the most geologically prospective lands for oil shale and tar sands in Colorado, Utah, and Wyoming. This report is based solely on geographic information system (GIS) data held by the Colorado, Utah, and Wyoming State Historic Preservation Offices (SHPOs). The GIS data include the information that the BLM has provided to the SHPOs. The primary purpose of the Class I cultural resources overview is to provide information on the affected environment for the PEIS. Furthermore, this report provides recommendations to support planning decisions and the management of cultural resources that could be impacted by future oil shale and tar sands resource development.

  6. Biomass Feedstock and Conversion Supply System Design and Analysis

    SciTech Connect (OSTI)

    Jacob J. Jacobson; Mohammad S. Roni; Patrick Lamers; Kara G. Cafferty

    2014-09-01

    Idaho National Laboratory (INL) supports the U.S. Department of Energy’s bioenergy research program. As part of the research program INL investigates the feedstock logistics economics and sustainability of these fuels. A series of reports were published between 2000 and 2013 to demonstrate the feedstock logistics cost. Those reports were tailored to specific feedstock and conversion process. Although those reports are different in terms of conversion, some of the process in the feedstock logistic are same for each conversion process. As a result, each report has similar information. A single report can be designed that could bring all commonality occurred in the feedstock logistics process while discussing the feedstock logistics cost for different conversion process. Therefore, this report is designed in such a way that it can capture different feedstock logistics cost while eliminating the need of writing a conversion specific design report. Previous work established the current costs based on conventional equipment and processes. The 2012 programmatic target was to demonstrate a delivered biomass logistics cost of $55/dry ton for woody biomass delivered to fast pyrolysis conversion facility. The goal was achieved by applying field and process demonstration unit-scale data from harvest, collection, storage, preprocessing, handling, and transportation operations into INL’s biomass logistics model. The goal of the 2017 Design Case is to enable expansion of biofuels production beyond highly productive resource areas by breaking the reliance of cost-competitive biofuel production on a single, low-cost feedstock. The 2017 programmatic target is to supply feedstock to the conversion facility that meets the in-feed conversion process quality specifications at a total logistics cost of $80/dry T. The $80/dry T. target encompasses total delivered feedstock cost, including both grower payment and logistics costs, while meeting all conversion in-feed quality targets. The 2012 $55/dry T. programmatic target included only logistics costs with a limited focus on biomass quantity, quality and did not include a grower payment. The 2017 Design Case explores two approaches to addressing the logistics challenge: one is an agronomic solution based on blending and integrated landscape management and the second is a logistics solution based on distributed biomass preprocessing depots. The concept behind blended feedstocks and integrated landscape management is to gain access to more regional feedstock at lower access fees (i.e., grower payment) and to reduce preprocessing costs by blending high quality feedstocks with marginal quality feedstocks. Blending has been used in the grain industry for a long time; however, the concept of blended feedstocks in the biofuel industry is a relatively new concept. The blended feedstock strategy relies on the availability of multiple feedstock sources that are blended using a least-cost formulation within an economical supply radius, which, in turn, decreases the grower payment by reducing the amount of any single biomass. This report will introduce the concepts of blending and integrated landscape management and justify their importance in meeting the 2017 programmatic goals.

  7. Energy conversion & storage program. 1994 annual report

    SciTech Connect (OSTI)

    Cairns, E.J.

    1995-04-01

    The Energy Conversion and Storage Program investigates state-of-the-art electrochemistry, chemistry, and materials science technologies for: (1) development of high-performance rechargeable batteries and fuel cells; (2) development of high-efficiency thermochemical processes for energy conversion; (3) characterization of complex chemical processes and chemical species; (4) study and application of novel materials for energy conversion and transmission. Research projects focus on transport process principles, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, novel materials, and advanced methods of analysis.

  8. Energy Conversion & Storage Program, 1993 annual report

    SciTech Connect (OSTI)

    Cairns, E.J.

    1994-06-01

    The Energy Conversion and Storage Program applies chemistry and materials science principles to solve problems in: production of new synthetic fuels; development of high-performance rechargeable batteries and fuel cells; development of high-efficiency thermochemical processes for energy conversion; characterization of complex chemical processes and chemical species; and the study and application of novel materials for energy conversion and transmission. Projects focus on transport-process principles, chemical kinetics, thermodynamics, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, novel materials, and advanced methods of analysis.

  9. Characterization and fluid flow simulation of naturally fractured Frontier sandstone, Green River Basin, Wyoming

    SciTech Connect (OSTI)

    Harstad, H. [New Mexico Tech, Socorro, NM (United States); Teufel, L.W.; Lorenz, J.C.; Brown, S.R. [Sandia National Labs., Albuquerque, NM (United States). Geomechanics Dept.

    1996-08-01

    Significant gas reserves are present in low-permeability sandstones of the Frontier Formation in the greater Green River Basin, Wyoming. Successful exploitation of these reservoirs requires an understanding of the characteristics and fluid-flow response of the regional natural fracture system that controls reservoir productivity. Fracture characteristics were obtained from outcrop studies of Frontier sandstones at locations in the basin. The fracture data were combined with matrix permeability data to compute an anisotropic horizontal permeability tensor (magnitude and direction) corresponding to an equivalent reservoir system in the subsurface using a computational model developed by Oda (1985). This analysis shows that the maximum and minimum horizontal permeability and flow capacity are controlled by fracture intensity and decrease with increasing bed thickness. However, storage capacity is controlled by matrix porosity and increases linearly with increasing bed thickness. The relationship between bed thickness and the calculated fluid-flow properties was used in a reservoir simulation study of vertical, hydraulically-fractured and horizontal wells and horizontal wells of different lengths in analogous naturally fractured gas reservoirs. The simulation results show that flow capacity dominates early time production, while storage capacity dominates pressure support over time for vertical wells. For horizontal wells drilled perpendicular to the maximum permeability direction a high target production rate can be maintained over a longer time and have higher cumulative production than vertical wells. Longer horizontal wells are required for the same cumulative production with decreasing bed thickness.

  10. RIVERTON DOME GAS EXPLORATION AND STIMULATION TECHNOLOGY DEMONSTRATION, WIND RIVER BASIN, WYOMING

    SciTech Connect (OSTI)

    Ronald C. Surdam; Zunsheng Jiao; Nicholas K. Boyd

    1999-11-01

    The new exploration technology for basin center gas accumulations developed by R.C. Surdam and Associates at the Institute for Energy Research, University of Wyoming, was applied to the Riverton Dome 3-D seismic area. Application of the technology resulted in the development of important new exploration leads in the Frontier, Muddy, and Nugget formations. The new leads are adjacent to a major north-south trending fault, which is downdip from the crest of the major structure in the area. In a blind test, the drilling results from six new Muddy test wells were accurately predicted. The initial production values, IP, for the six test wells ranged from < one mmcf/day to four mmcf/day. The three wells with the highest IP values (i.e., three to four mmcf/day) were drilled into an intense velocity anomaly (i.e., anomalously slow velocities). The well drilled at the end of the velocity anomaly had an IP value of one mmcf/day, and the two wells drilled outside of the velocity anomaly had IP values of < one mmcf/day and are presently shut in. Based on these test results, it is concluded that the new IER exploration strategy for detecting and delineating commercial, anomalously pressured gas accumulation is valid in the southwestern portions of the Wind River Basin, and can be utilized to significantly reduce exploration risk and to increase profitability of so-called basin center gas accumulations.

  11. Eolian evidence for climatic fluctuations during the Late Pleistocene and Holocene in Wyoming

    SciTech Connect (OSTI)

    Gaylord, D.R.

    1985-01-01

    Evaluation of eolian features, particularly sand dunes, in the Ferris-Lost Solider area of south-central Wyoming demonstrates the dynamic character of late Pleistocene and Holocene climatic fluctuations in a high altitude, intermontane basin. Directly- and indirectly-dated stratigraphic, sedimentary, and geomorphic evidence documents recurrent late Quaternary eolian activity as well as the timing and severity of episodic aridity during the Altithermal. Eolian activity in the Ferris-Lost Solider area began under cool and arid conditions by the late Pleistocene. Radiocarbon-dated dune and interdune strata reveal that Holocene sand dune building at Ferris-Lost Solider peaked between ca. 7660 and 4540 years b.p. The first phase of dune building was the most extensive and lasted until ca. 6460 years b.p. Warm, persistently arid conditions during this time favored active dunes with slipfaces, even in historically well-vegetated locales subject to high water tables. Increased effective moisture from ca. 6460 to 5940 years b.p. promoted dune stabilizing vegetation; but renewed dune building, lasting until ca. 4540 years b.p., followed this climatic moderation. Subsequent dune and interdune deposits reveal a return to climatic conditions where only sporadic and localized dune reactivations have interrupted overall dune stability. The most significant recent reactivation, probably associated with a regional decrease in effective moisture, occurred ca. 290 years b.p.

  12. EA-1617: Lovell-Yellowtail and Basin-Lovell Transmission Line Rebuild Project, Big Horn County, Wyoming, and Big Horn and Carbon Counties, Montana

    Broader source: Energy.gov [DOE]

    DOE’s Western Area Power Administration prepared this EA and a finding of no significant impact for a proposal to rebuild the Lovell-Yellowtail (LV-YT) No. 1 and No. 2 115-kV transmission lines, located in Big Horn County, Wyoming, and Big Horn and Carbon Counties in Montana, and the Basin-Lovell 115-kV transmission line in Big Horn County, Wyoming.

  13. Ocean Thermal Energy Conversion Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ocean Thermal Energy Conversion Basics Ocean Thermal Energy Conversion Basics August 16, 2013 - 4:22pm Addthis A process called ocean thermal energy conversion (OTEC) uses the heat...

  14. CONVERSION EXTRACTION DESULFURIZATION (CED) PHASE III

    SciTech Connect (OSTI)

    James Boltz

    2005-03-01

    This project was undertaken to refine the Conversion Extraction Desulfurization (CED) technology to efficiently and economically remove sulfur from diesel fuel to levels below 15-ppm. CED is considered a generic term covering all desulfurization processes that involve oxidation and extraction. The CED process first extracts a fraction of the sulfur from the diesel, then selectively oxidizes the remaining sulfur compounds, and finally extracts these oxidized materials. The Department of Energy (DOE) awarded Petro Star Inc. a contract to fund Phase III of the CED process development. Phase III consisted of testing a continuous-flow process, optimization of the process steps, design of a pilot plant, and completion of a market study for licensing the process. Petro Star and the Degussa Corporation in coordination with Koch Modular Process Systems (KMPS) tested six key process steps in a 7.6-centimeter (cm) (3.0-inch) inside diameter (ID) column at gas oil feed rates of 7.8 to 93.3 liters per hour (l/h) (2.1 to 24.6 gallons per hour). The team verified the technical feasibility with respect to hydraulics for each unit operation tested and successfully demonstrated pre-extraction and solvent recovery distillation. Test operations conducted at KMPS demonstrated that the oxidation reaction converted a maximum of 97% of the thiophenes. The CED Process Development Team demonstrated that CED technology is capable of reducing the sulfur content of light atmospheric gas oil from 5,000-ppm to less than 15-ppm within the laboratory scale. In continuous flow trials, the CED process consistently produced fuel with approximately 20-ppm of sulfur. The process economics study calculated an estimated process cost of $5.70 per product barrel. The Kline Company performed a marketing study to evaluate the possibility of licensing the CED technology. Kline concluded that only 13 refineries harbored opportunity for the CED process. The Kline study and the research team's discussions with prospective refineries led to the conclusion that there were not likely prospects for the licensing of the CED process.

  15. Summer Series 2012 - Conversation with Omar Yaghi

    ScienceCinema (OSTI)

    Omar Yaghi

    2013-06-24

    Jeff Miller, head of Public Affairs, sat down in conversation with Omar Yaghi, director of the Molecular Foundry, in the first of a series of "powerpoint-free" talks on July 11th 2012, at Berkeley Lab.

  16. Summer Series 2012 - Conversation with Kathy Yelick

    SciTech Connect (OSTI)

    Kathy Yelick

    2012-07-23

    Jeff Miller, head of Public Affairs, sat down in conversation with Kathy Yelick, Associate Berkeley Lab Director, Computing Sciences, in the second of a series of "powerpoint-free" talks on July 18th 2012, at Berkeley Lab.

  17. ME 533: Energy Conversion Emily M Ryan

    E-Print Network [OSTI]

    aspects of modern energy conversion systems, including traditional systems such as steam power plants, gas turbines and internal combustion engines and refrigeration systems, and renewable systems such as solar

  18. Assessment of ocean thermal energy conversion

    E-Print Network [OSTI]

    Muralidharan, Shylesh

    2012-01-01

    Ocean thermal energy conversion (OTEC) is a promising renewable energy technology to generate electricity and has other applications such as production of freshwater, seawater air-conditioning, marine culture and chilled-soil ...

  19. Summer Series 2012 - Conversation with Kathy Yelick

    ScienceCinema (OSTI)

    Yelick, Kathy

    2013-06-24

    Jeff Miller, head of Public Affairs, sat down in conversation with Kathy Yelick, Associate Berkeley Lab Director, Computing Sciences, in the second of a series of "powerpoint-free" talks on July 18th 2012, at Berkeley Lab.

  20. Radio frequency dc-dc power conversion

    E-Print Network [OSTI]

    Rivas, Juan, 1976-

    2007-01-01

    THIS THESIS addresses the development of system architectures and circuit topologies for dc-dc power conversion at very high frequencies. The systems architectures that are developed are structured to overcome limitations ...

  1. Collaboration on Topic Change in Conversation

    E-Print Network [OSTI]

    Howe, Mary

    1991-01-01

    Conversations are cooperatively achieved speech events. Analysis of topic changes shows that topic endings are negotiated by participants over a series of turns, using the following specific types of indicators: summary assessments, acknowledgment...

  2. Electrical power conversion is essential for improving

    E-Print Network [OSTI]

    Langendoen, Koen

    Electrical power conversion is essential for improving energy efficiency and harvesting renewable energy. Diploma Master of Science Embedded Systems Credits 120 ECTS, 24 months Starts in September universities of technology in the Netherlands - Delft University of Technology, Eindhoven University

  3. Algae-to-Fuel: Integrating Thermochemical Conversion, Nutrient...

    Office of Environmental Management (EM)

    Algae-to-Fuel: Integrating Thermochemical Conversion, Nutrient Recycling, and Wastewater Algae-to-Fuel: Integrating Thermochemical Conversion, Nutrient Recycling, and Wastewater...

  4. Conversion Technologies for Advanced Biofuels - Bio-Oil Production...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Oil Production Conversion Technologies for Advanced Biofuels - Bio-Oil Production RTI International report-out at the CTAB webinar on Conversion Technologies for Advanced Biofuels...

  5. Conversion Technologies for Advanced Biofuels - Bio-Oil Upgrading...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ebinarbiooilsupgrading.pdf More Documents & Publications Conversion Technologies for Advanced Biofuels - Bio-Oil Production Thermochemical Conversion Proceeses to Aviation Fuels...

  6. First-of-its-Kind Carbon Capture and Conversion Demonstration...

    Office of Environmental Management (EM)

    First-of-its-Kind Carbon Capture and Conversion Demonstration Technology Opening in Texas First-of-its-Kind Carbon Capture and Conversion Demonstration Technology Opening in Texas...

  7. OCEAN THERMAL ENERGY CONVERSION (OTEC) PROGRAMMATIC ENVIRONMENTAL ANALYSIS

    E-Print Network [OSTI]

    Sands, M. D.

    2011-01-01

    310, the Ocean the Ocean Energy Thermal Energy Conversionfor the commercialization of ocean thermal energy conversionOpen cycle ocean thermal energy conversion. A preliminary

  8. Recycling of wasted energy : thermal to electrical energy conversion

    E-Print Network [OSTI]

    Lim, Hyuck

    2011-01-01

    making direct thermal energy storage methods, e.g. thosethermal shorting, that limits the energy conversion efficiency of direct thermoelectric energy conversion methods.

  9. Project Profile: Brayton Solar Power Conversion System | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar Power Conversion System Project Profile: Brayton Solar Power Conversion System Brayton Energy logo Brayton Energy, under the CSP R&D FOA, is looking to demonstrate the...

  10. 2015 Peer Review Presentations-Thermochemical Conversion | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thermochemical Conversion 2015 Peer Review Presentations-Thermochemical Conversion The Bioenergy Technologies Office hosted its 2015 Project Peer Review on March 23-27, 2015, at...

  11. 2015 Peer Review Presentations-Biochemical Conversion | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biochemical Conversion 2015 Peer Review Presentations-Biochemical Conversion The Bioenergy Technologies Office hosted its 2015 Project Peer Review on March 23-27, 2015, at the...

  12. Novel Transparent Phosphor Conversion Matrix with High Thermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transparent Phosphor Conversion Matrix with High Thermal Conductivity for Next-Generation Phosphor-Converted LED-based Solid State Lighting Novel Transparent Phosphor Conversion...

  13. Molecular catalytic coal liquid conversion (Conference) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    Conference: Molecular catalytic coal liquid conversion Citation Details In-Document Search Title: Molecular catalytic coal liquid conversion This research, which is relevant to the...

  14. Molecular catalytic coal liquid conversion (Conference) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    Conference: Molecular catalytic coal liquid conversion Citation Details In-Document Search Title: Molecular catalytic coal liquid conversion You are accessing a document from...

  15. Electron Transfer Dynamics in Photocatalytic CO2 Conversion ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electron Transfer Dynamics in Photocatalytic CO2 Conversion Electron Transfer Dynamics in Photocatalytic CO2 Conversion Coal is the workhorse of our power industry, responsible for...

  16. Composites for Multi-energy conversion & waste heat recovery...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Composites for Multi-energy conversion & waste heat recovery Composites for Multi-energy conversion & waste heat recovery Discusses development of a composite that transfers energy...

  17. Process Design and Economics for the Conversion of Lignocellulosic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Biomass to Sugars and Biological Conversion of Sugars to Hydrocarbons Process Design and Economics for the Conversion of Lignocellulosic Biomass to Hydrocarbons:...

  18. Novel Vertimass Catalyst for Conversion of Ethanol and Other...

    Office of Environmental Management (EM)

    Novel Vertimass Catalyst for Conversion of Ethanol and Other Alcohols into Fungible Gasoline, Jet, and Diesel Fuel Blend Stocks Novel Vertimass Catalyst for Conversion of Ethanol...

  19. Nanostructured High-Temperature Bulk Thermoelectric Energy Conversion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High-Temperature Bulk Thermoelectric Energy Conversion for Efficient Automotive Waste Heat Recovery Nanostructured High-Temperature Bulk Thermoelectric Energy Conversion for...

  20. New process speeds conversion of biomass to fuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Conversion of Biomass to Fuels New process speeds conversion of biomass to fuels Scientists made a major step forward recently towards transforming biomass-derived molecules into...

  1. 2011 Biomass Program Platform Peer Review: Biochemical Conversion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biochemical Conversion 2011 Biomass Program Platform Peer Review: Biochemical Conversion This document summarizes the recommendations and evaluations provided by an independent...

  2. Potential Impacts of Hydrokinetic and Wave Energy Conversion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Potential Impacts of Hydrokinetic and Wave Energy Conversion Technologies on Aquatic Environments Potential Impacts of Hydrokinetic and Wave Energy Conversion Technologies on...

  3. Thermoelectric Conversion of Waste Heat to Electricity in an...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Conversion of Waste Heat to Electricity in an IC Engine-Powered Vehicle Thermoelectric Conversion of Waste Heat to Electricity in an IC Engine Powered Vehicle...

  4. Evaluation of Thermal to Electrical Energy Conversion of High...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thermal to Electrical Energy Conversion of High Temperature Skutterudite-Based Thermoelectric Modules Evaluation of Thermal to Electrical Energy Conversion of High Temperature...

  5. Impact of the HEU/LEU conversion on experimental facilities

    SciTech Connect (OSTI)

    Marek, M.; Kysela, J.; Ernest, J.; Flibor, S.; Broz, V. [Reactor Services Division, Nuclear Research Institute Rez, plc., Husinec 130, CZ-25068 (Czech Republic)

    2008-07-15

    The LVR-15 reactor is a multipurpose research facility used for basic research on horizontal channels, material and corrosion studies in loops and irradiation rigs, and for the isotope production. A conversion from HEU (IRT-2M 36%, so far used) to LEU (IRT-3M 19.5%, IRT- 4M 19.5%) is planned till 2010. The influence of the new type of fuel on the performance of the experimental facilities operated at the reactor has been studied. The comparison of the calculated neutron fluence rates and spectra using NODER operational code (3D nodal diffusion) and MCNP code for both the fresh and depleted cores was performed. Results of the analyses and future plans are presented in the article. (author)

  6. Wind energy conversion system analysis model (WECSAM) computer program documentation

    SciTech Connect (OSTI)

    Downey, W T; Hendrick, P L

    1982-07-01

    Described is a computer-based wind energy conversion system analysis model (WECSAM) developed to predict the technical and economic performance of wind energy conversion systems (WECS). The model is written in CDC FORTRAN V. The version described accesses a data base containing wind resource data, application loads, WECS performance characteristics, utility rates, state taxes, and state subsidies for a six state region (Minnesota, Michigan, Wisconsin, Illinois, Ohio, and Indiana). The model is designed for analysis at the county level. The computer model includes a technical performance module and an economic evaluation module. The modules can be run separately or together. The model can be run for any single user-selected county within the region or looped automatically through all counties within the region. In addition, the model has a restart capability that allows the user to modify any data-base value written to a scratch file prior to the technical or economic evaluation. Thus, any user-supplied data for WECS performance, application load, utility rates, or wind resource may be entered into the scratch file to override the default data-base value. After the model and the inputs required from the user and derived from the data base are described, the model output and the various output options that can be exercised by the user are detailed. The general operation is set forth and suggestions are made for efficient modes of operation. Sample listings of various input, output, and data-base files are appended. (LEW)

  7. Exceeding the solar cell Shockley-Queisser limit via thermal up-conversion of low-energy photons

    E-Print Network [OSTI]

    Boriskina, Svetlana V

    2013-01-01

    Maximum efficiency of ideal single-junction photovoltaic (PV) cells is limited to 33% (for one sun illumination) by intrinsic losses such as band edge thermalization, radiative recombination, and inability to absorb below-bandgap photons. This intrinsic thermodynamic limit, named after Shockley and Queisser (S-Q), can be exceeded by utilizing low-energy photons either via their electronic up-conversion or via thermophotovoltaic (TPV) conversion process. However, electronic up-conversion systems have extremely low efficiencies, and practical temperature considerations limit the operation of TPV converters to the narrow-gap PV cells. Here we develop a conceptual design of a hybrid TPV platform, which exploits thermal up-conversion of low-energy photons and is compatible with conventional silicon PV cells by using spectral and directional selectivity of the up-converter. The hybrid platform offers sunlight-to-electricity conversion efficiency exceeding that imposed by the S-Q limit on the corresponding PV cells ...

  8. Fluid Bed Waste Heat Boiler Operating Experience in Dirty Gas Streams 

    E-Print Network [OSTI]

    Kreeger, A. H.

    1986-01-01

    BOILER OPERATING EXPERIENCE IN DIRTY GAS STREAMS Alan H. Kreeger. Aerojet Energy Conversion Company. Sacramento. California ABSTRACT The first industrial fluid bed waste heat boiler in the U. S. is operating on an aluminium melting furnace...

  9. Air pollution control technology for municipal solid waste-to-energy conversion facilities: capabilities and research needs

    SciTech Connect (OSTI)

    Lynch, J F; Young, J C

    1980-09-01

    Three major categories of waste-to-energy conversion processes in full-scale operation or advanced demonstration stages in the US are co-combustion, mass incineration, and pyrolysis. These methods are described and some information on US conversion facilities is tabulated. Conclusions and recommendations dealing with the operation, performance, and research needs for these facilities are given. Section II identifies research needs concerning air pollution aspects of the waste-to-energy processes and reviews significant operating and research findings for the co-combustion, mass incinceration, and pyrolysis waste-to-energy systems.

  10. Adding value to coal conversion`s char: A strategy for lower-priced fuels

    SciTech Connect (OSTI)

    Kruse, C.W. [Illinois State Geological Survey, Champaign, IL (United States); Fatemi, M. [Amoco Corporation, Naperville, IL (United States); Feizoulof, C. [Univ. of Illinois, Urbana, IL (United States)

    1994-12-31

    Coal`s low hydrogen to carbon ratio gives coal physical properties that are not the most desired in fuel markets. The problem is dealt with in conversion technologies designed to upgrade coal to more desirable fuels by either: (1) chemically adding hydrogen, as in liquefaction or high-BTU gasification, or (2) the production of char, as in mild gasification. The first option is neither cost-effective nor environmentally sound. Liquefaction results in the production of one mole of carbon dioxide for each mole of hydrogen needed. The result is that despite the preferred hydrogen to carbon ratio in the fuel, carbon dioxide is produced in greater quantities than it would be by simply burning the coal. The depressed market value of char is the primary drawback of coal utilization technologies exercising the second option. Making value-added, non-fuel products from char could significantly improve the economics of overall operations and result in competitively-priced premium hydrocarbon fuels. The research goal of a growing number of groups, including ours, is to produce and describe carbon products which will command higher prices than the carbon (coal) from which they were produced.

  11. The boron isotope systematics of the Yellowstone National Park (Wyoming) hydrothermal system: A reconnaissance

    SciTech Connect (OSTI)

    Palmer, M.R. (Bristol Univ. (England)); Sturchio, N.C. (Argonne National Lab., IL (USA))

    1990-10-01

    Boron concentrations and isotope compositions have been measured in fourteen hot spring waters, two drill hole waters, an unaltered rhyolite flow, and hydrothermally altered rhyolite from the geothermal system in Yellowstone National Park, Wyoming. The samples are representative of the major thermal areas within the park and span the range of fluid types. For the fluids, the B concentrations range from 0.043-2.69 mM/kg, and the {delta}{sup 11}B values range from {minus}9.3 to +4.4{per thousand}. There is no relationship between the dissolved B concentrations or isotope compositions with the concentration of any major element (other than Cl) or physical property. Each basin is characterized by a restricted range in B/Cl ratios and {delta}{sup 11}B values. Hot spring waters from the Norris Basin, Upper Geyser Basin, Calcite Springs, and Clearwater have {delta}{sup 11}B values close to that of unaltered rhyolite ({minus}5.2{per thousand}) and are interpreted to have derived their B from this source. Waters from Mammoth Hot Springs, Sheepeater, and Rainbow Springs have lower {delta}{sup 11}B values close to {minus}8{per thousand}. These lower values may reflect leaching of B from sedimentary rocks outside the Yellowstone caldera, but they are similar to the {delta}{sup 11}B value of hydrothermally altered rhyolite ({minus}9.7{per thousand}). Hence, the light boron isotope compositions recorded in these hot spring waters may reflect leaching of previously deposited hydrothermal minerals. Cooler springs along the Yellowstone River just outside the park boundary have lower B concentrations and higher {delta}{sup 11}B values that may reflect mixing with shallow meteoric water.

  12. Summary of the engineering assessment of inactive uranium mill tailings, Riverton Site, Riverton, Wyoming

    SciTech Connect (OSTI)

    none,

    1981-08-01

    Ford, Bacon, and Davis Utah Inc. has reevaluated the Riverton site in order to revise the December 1977 engineering assessment of the problems resulting from the existence of radioactive uranium mill tailings at Riverton, Wyoming. This engineering assessment has included the preparation of topographic maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of tailings and radiation exposures of individuals and nearby populations, the investigations of site hydrology and meteorology, and the evaluation and costing of alternative corrective actions. Radon gas released from the 900,000 tons of tailings materials at the Riverton site constitutes the most significant environmental impact, although windblown tailings and external gamma radiation also are factors. The nine alternative actions presented in this engineering assessment range from millsite decontamination with the addition of 3 m of stabilization cover material (Option I), to removal of the tailings to remote disposal sites and decontaminations of the tailings site (Options II through IX). Cost estimates for the nine options range from about $16,600,000 for stabilization in-place, to about $23,200,000 for disposal at a distance of 18 to 25 mi. Three principal alternatives for the reprocessing of the Riverton tailings were examined: (a) heap leaching; (b) treatment at an existing mill; and (c) reprocessing at a new conventional mill constructed for tailings reprocessing. The cost of the uranium recovered would be about $260 and $230/lb of U/sub 3/O/sub 8/ by heap leach and conventional plant processes respectively. The spot market price for uranium was $25/lb early in 1981. Therefore, reprocessing the tailings for uranium recovery does not appear to be economically attractive.

  13. Environmental assessment: Warren Air Force Base 115-kV transmission line, Cheyenne, Wyoming

    SciTech Connect (OSTI)

    Not Available

    1986-03-01

    The Western Area Power Administration (Western), is propsoing to construct a new electrical tranmission line and substation in southeastern Wyoming. This proposed line, called the Warren Air Force Base Tranmission Line, will supply power for Western's system to Francis E.Warren Air Force Base (F.E. Warren AFB) near Cheyenne. It would allow for increased tranmission capacity to the air base. F.E. Warren AFB currently is served electrically be Western via a 13.8-kv line. It is a wood-pole, double-circuit line without an overhead ground wire, which extends from Western's Cheyenne Substation, through an urban area, and onto the air base. The Cheyenne Substation is located on the south side of the city of Cheyenne. The electrical load on the base is increasing from 4 megawatts (MW) to 11 or 12 MW, an approximate three-fold increase. Voltage problems occasionally occur at the base due to the present electrial loads and to the age and inadequacy of the 13.8-kv line, which was placed in service in 1941. The existing line has served beyond its designed service life and requires replacement. Replacement would be necessary even without an increasing load. F.E. Warren AFB has several new and expanding programs, including additional housing, shopping centers, and the Peacekeeper Missile Program. Part of this expansion already has occured; the remainder is expected by early 1988. This expansion has created the need for additional electrical service. The present 13.8-kV line is not capable of supporting the additional load. 28 refs., 4 figs., 2 tabs.

  14. Feedstock Supply System Design and Economics for Conversion of Lignocellulosic Biomass to Hydrocarbon Fuels: Conversion Pathway: Biological Conversion of Sugars to Hydrocarbons The 2017 Design Case

    SciTech Connect (OSTI)

    Kevin Kenney; Kara G. Cafferty; Jacob J. Jacobson; Ian J Bonner; Garold L. Gresham; William A. Smith; David N. Thompson; Vicki S. Thompson; Jaya Shankar Tumuluru; Neal Yancey

    2013-09-01

    The U.S. Department of Energy promotes the production of a range of liquid fuels and fuel blendstocks from lignocellulosic biomass feedstocks by funding fundamental and applied research that advances the state of technology in biomass collection, conversion, and sustainability. As part of its involvement in this program, the Idaho National Laboratory (INL) investigates the feedstock logistics economics and sustainability of these fuels. Between 2000 and 2012, INL conducted a campaign to quantify the economics and sustainability of moving biomass from standing in the field or stand to the throat of the biomass conversion process. The goal of this program was to establish the current costs based on conventional equipment and processes, design improvements to the current system, and to mark annual improvements based on higher efficiencies or better designs. The 2012 programmatic target was to demonstrate a delivered biomass logistics cost of $35/dry ton. This goal was successfully achieved in 2012 by implementing field and process demonstration unit-scale data from harvest, collection, storage, preprocessing, handling, and transportation operations into INL’s biomass logistics model. Looking forward to 2017, the programmatic target is to supply biomass to the conversion facilities at a total cost of $80/dry ton and on specification with in-feed requirements. The goal of the 2017 Design Case is to enable expansion of biofuels production beyond highly productive resource areas by breaking the reliance of cost-competitive biofuel production on a single, abundant, low-cost feedstock. If this goal is not achieved, biofuel plants are destined to be small and/or clustered in select regions of the country that have a lock on low-cost feedstock. To put the 2017 cost target into perspective of past accomplishments of the cellulosic ethanol pathway, the $80 target encompasses total delivered feedstock cost, including both grower payment and logistics costs, while meeting all conversion in-feed quality targets. The 2012 $35 programmatic target included only logistics costs with a limited focus on biomass quality

  15. Conversion of Units of Measurement Gordon S. Novak Jr. \\Lambda

    E-Print Network [OSTI]

    Novak Jr., Gordon S.

    Conversion of Units of Measurement Gordon S. Novak Jr. \\Lambda Department of Computer Sciences conversion and unit checking in a programming language is described. Index Terms -- unit conversion, unit if the type system does not include units of measurement. Conversion of units must be done explicitly

  16. ORIGINAL PAPER Tunability of Propane Conversion over Alumina Supported

    E-Print Network [OSTI]

    ORIGINAL PAPER Tunability of Propane Conversion over Alumina Supported Pt and Rh Catalysts William Propane conversion over alumina supported Pt and Rh (1 wt% metals loading) was examined under fuel rich conversion and almost complete propane conversion) so long as the metal particle size was sufficiently low

  17. Preconceptual design studies and cost data of depleted uranium hexafluoride conversion plants

    SciTech Connect (OSTI)

    Jones, E

    1999-07-26

    One of the more important legacies left with the Department of Energy (DOE) after the privatization of the United States Enrichment Corporation is the large inventory of depleted uranium hexafluoride (DUF6). The DOE Office of Nuclear Energy, Science and Technology (NE) is responsible for the long-term management of some 700,000 metric tons of DUF6 stored at the sites of the two gaseous diffusion plants located at Paducah, Kentucky and Portsmouth, Ohio, and at the East Tennessee Technology Park in Oak Ridge, Tennessee. The DUF6 management program resides in NE's Office of Depleted Uranium Hexafluoride Management. The current DUF6 program has largely focused on the ongoing maintenance of the cylinders containing DUF6. However, the long-term management and eventual disposition of DUF6 is the subject of a Programmatic Environmental Impact Statement (PEIS) and Public Law 105-204. The first step for future use or disposition is to convert the material, which requires construction and long-term operation of one or more conversion plants. To help inform the DUF6 program's planning activities, it was necessary to perform design and cost studies of likely DUF6 conversion plants at the preconceptual level, beyond the PEIS considerations but not as detailed as required for conceptual designs of actual plants. This report contains the final results from such a preconceptual design study project. In this fast track, three month effort, Lawrence Livermore National Laboratory and Bechtel National Incorporated developed and evaluated seven different preconceptual design cases for a single plant. The preconceptual design, schedules, costs, and issues associated with specific DUF6 conversion approaches, operating periods, and ownership options were evaluated based on criteria established by DOE. The single-plant conversion options studied were similar to the dry-conversion process alternatives from the PEIS. For each of the seven cases considered, this report contains information on the conversion process, preconceptual plant description, rough capital and operating costs, and preliminary project schedule.

  18. Fuel Economy and Emissions of a Vehicle Equipped with an Aftermarket Flexible-Fuel Conversion Kit

    SciTech Connect (OSTI)

    Thomas, John F; Huff, Shean P; West, Brian H

    2012-04-01

    The U.S. Environmental Protection Agency (EPA) grants Certificates of Conformity for alternative fuel conversion systems and also offers other forms of premarket registration of conversion kits for use in vehicles more than two model years old. Use of alternative fuels such as ethanol, natural gas, and propane are encouraged by the Energy Policy Act of 1992. Several original equipment manufacturers (OEMs) produce emissions-certified vehicles capable of using alternative fuels, and several alternative fuel conversion system manufacturers produce EPA-approved conversion systems for a variety of alternative fuels and vehicle types. To date, only one manufacturer (Flex Fuel U.S.) has received EPA certifications for ethanol fuel (E85) conversion kits. This report details an independent evaluation of a vehicle with a legal installation of a Flex Fuel U.S. conversion kit. A 2006 Dodge Charger was baseline tested with ethanol-free certification gasoline (E0) and E20 (gasoline with 20 vol % ethanol), converted to flex-fuel operation via installation of a Flex Box Smart Kit from Flex Fuel U.S., and retested with E0, E20, E50, and E81. Test cycles included the Federal Test Procedure (FTP or city cycle), the highway fuel economy test (HFET), and the US06 test (aggressive driving test). Averaged test results show that the vehicle was emissions compliant on E0 in the OEM condition (before conversion) and compliant on all test fuels after conversion. Average nitrogen oxide (NOx) emissions exceeded the Tier 2/Bin 5 intermediate life NO{sub X} standard with E20 fuel in the OEM condition due to two of three test results exceeding this standard [note that E20 is not a legal fuel for non-flexible-fuel vehicles (non-FFVs)]. In addition, one E0 test result before conversion and one E20 test result after conversion exceeded the NOX standard, although the average result in these two cases was below the standard. Emissions of ethanol and acetaldehyde increased with increasing ethanol, while nonmethane organic gas and CO emissions remained relatively unchanged for all fuels and cycles. Higher fraction ethanol blends appeared to decrease NO{sub X} emissions on the FTP and HFET (after conversion). As expected, fuel economy (miles per gallon) decreased with increasing ethanol content in all cases.

  19. Ocean Thermal Energy Conversion (OTEC) Programmatic Environmental Analysis--Appendices

    SciTech Connect (OSTI)

    Authors, Various

    1980-01-01

    The programmatic environmental analysis is an initial assessment of Ocean Thermal Energy Conversion (OTEC) technology considering development, demonstration and commercialization. It is concluded that the OTEC development program should continue because the development, demonstration, and commercialization on a single-plant deployment basis should not present significant environmental impacts. However, several areas within the OTEC program require further investigation in order to assess the potential for environmental impacts from OTEC operation, particularly in large-scale deployments and in defining alternatives to closed-cycle biofouling control: (1) Larger-scale deployments of OTEC clusters or parks require further investigations in order to assess optimal platform siting distances necessary to minimize adverse environmental impacts. (2) The deployment and operation of the preoperational platform (OTEC-1) and future demonstration platforms must be carefully monitored to refine environmental assessment predictions, and to provide design modifications which may mitigate or reduce environmental impacts for larger-scale operations. These platforms will provide a valuable opportunity to fully evaluate the intake and discharge configurations, biofouling control methods, and both short-term and long-term environmental effects associated with platform operations. (3) Successful development of OTEC technology to use the maximal resource capabilities and to minimize environmental effects will require a concerted environmental management program, encompassing many different disciplines and environmental specialties. This volume contains these appendices: Appendix A -- Deployment Scenario; Appendix B -- OTEC Regional Characterization; and Appendix C -- Impact and Related Calculations.

  20. Energy conversion & storage program. 1995 annual report

    SciTech Connect (OSTI)

    Cairns, E.J.

    1996-06-01

    The 1995 annual report discusses laboratory activities in the Energy Conversion and Storage (EC&S) Program. The report is divided into three categories: electrochemistry, chemical applications, and material applications. Research performed in each category during 1995 is described. Specific research topics relate to the development of high-performance rechargeable batteries and fuel cells, the development of high-efficiency thermochemical processes for energy conversion, the characterization of new chemical processes and complex chemical species, and the study and application of novel materials related to energy conversion and transmission. Research projects focus on transport-process principles, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, novel materials and deposition technologies, and advanced methods of analysis.

  1. A Personalized System for Conversational Recommendations

    E-Print Network [OSTI]

    Goker, M H; Thompson, C A; 10.1613/jair.1318

    2011-01-01

    Searching for and making decisions about information is becoming increasingly difficult as the amount of information and number of choices increases. Recommendation systems help users find items of interest of a particular type, such as movies or restaurants, but are still somewhat awkward to use. Our solution is to take advantage of the complementary strengths of personalized recommendation systems and dialogue systems, creating personalized aides. We present a system -- the Adaptive Place Advisor -- that treats item selection as an interactive, conversational process, with the program inquiring about item attributes and the user responding. Individual, long-term user preferences are unobtrusively obtained in the course of normal recommendation dialogues and used to direct future conversations with the same user. We present a novel user model that influences both item search and the questions asked during a conversation. We demonstrate the effectiveness of our system in significantly reducing the time and nu...

  2. Cornell's conversion of a coal fired heating plant to natural Gas -BACKGROUND: In December 2009, the Combined Heat and Power Plant

    E-Print Network [OSTI]

    Keinan, Alon

    Cornell's conversion of a coal fired heating plant to natural Gas University began operating with natural gas, instead of the coal-fired generators of the coal that had been stockpiled, the Plant is running completely on natural gas

  3. Basement/cover rock relations of the Dry Fork Ridge Anticline termination, northeastern Bighorn Mountains, Wyoming and Montana 

    E-Print Network [OSTI]

    Hennings, Peter Hill

    1986-01-01

    their equivalents in the western geosynclinal basins (e. g. , 2 to 5 km vs. 8 to 11 km). The structural style of Laramide deformation in the Wyoming Province is dominated by high angle faulting in the basement, whereas the style on the west side... on a scale of I: 12, 000 over the entire area and at a scale of I:6, 000 in structura11y complex portions. The map base consists of U. S. G. S. 7. 5 minute topographic quadrangles that were enlarged. Aerial photographs on a scale of appr oximate1y I...

  4. Annotated bibliography of selected references on shoreline barrier island deposits with emphasis on Patrick Draw Field, Sweetwater County, Wyoming

    SciTech Connect (OSTI)

    Rawn-Schatzinger, V.; Schatzinger, R.A.

    1993-07-01

    This bibliography contains 290 annotated references on barrier island and associated depositional environments and reservoirs. It is not an exhaustive compilation of all references on the subject, but rather selected papers on barrier islands, and the depositional processes of formation. Papers that examine the morphology and internal architecture of barrier island deposits, exploration and development technologies are emphasized. Papers were selected that aid in understanding reservoir architecture and engineering technologies to help maximize recovery efficiency from barrier island oil reservoirs. Barrier islands from Wyoming, Montana and the Rocky Mountains basins are extensively covered.

  5. operations center

    National Nuclear Security Administration (NNSA)

    servers and other critical Operations Center equipment

  6. Independent air supply system filtered to protect against biological and radiological agents (99.7%).
  7. <...

  8. Infiltration from an impoundment for coal-bed natural gas, Powder River Basin, Wyoming: Evolution of water and sediment chemistry - article no. W06424

    SciTech Connect (OSTI)

    Healy, R.W.; Rice, C.A.; Bartos, T.T.; McKinley, M.P. [US Geological Survey, Lakewood, CO (United States). Denver Federal Center

    2008-06-15

    Development of coal-bed natural gas (CBNG) in the Powder River Basin, Wyoming, has increased substantially in recent years. Among environmental concerns associated with this development is the fate of groundwater removed with the gas. A preferred water-management option is storage in surface impoundments. A study was conducted on changes in water and sediment chemistry as water from an impoundment infiltrated the subsurface. Sediment cores were collected prior to operation of the impoundment and after its closure and reclamation. Suction lysimeters were used to collect water samples from beneath the impoundment. Large amounts of chloride (12,300 kg) and nitrate (13,500 kg as N), most of which accumulated naturally in the sediments over thousands of years, were released into groundwater by infiltrating water. Nitrate was more readily flushed from the sediments than chloride. If sediments at other impoundment locations contain similar amounts of chloride and nitrate, impoundments already permitted could release over 48 x 10{sup 6} kg of chloride and 52 x 10{sup 6} kg of nitrate into groundwater in the basin. A solute plume with total dissolved solid (TDS) concentrations at times exceeding 100,000 mg/L was created in the subsurface. TDS concentrations in the plume were substantially greater than those in the CBNG water (about 2300 mg/L) and in the ambient shallow groundwater (about 8000 mg/L). Sulfate, sodium, and magnesium are the dominant ions in the plume. The elevated concentrations are attributed to cation-exchange-enhanced gypsum dissolution. As gypsum dissolves, calcium goes into solution and is exchanged for sodium and magnesium on clays. Removal of calcium from solution allows further gypsum dissolution.

  9. Recovery of alkali metal constituents from catalytic coal conversion residues

    DOE Patents [OSTI]

    Soung, Wen Y. (Houston, TX)

    1984-01-01

    In a coal gasification operation (32) or similar conversion process carried out in the presence of an alkali metal-containing catalyst wherein particles containing alkali metal residues are produced, alkali metal constituents are recovered from the particles by contacting them (46, 53, 61, 69) with water or an aqueous solution to remove water-soluble alkali metal constituents and produce an aqueous solution enriched in said constituents. The aqueous solution thus produced is then contacted with carbon dioxide (63) to precipitate silicon constituents, the pH of the resultant solution is increased (81), preferably to a value in the range between about 12.5 and about 15.0, and the solution of increased pH is evaporated (84) to increase the alkali metal concentration. The concentrated aqueous solution is then recycled to the conversion process (86, 18, 17) where the alkali metal constituents serve as at least a portion of the alkali metal constituents which comprise the alkali metal-containing catalyst.

  10. Alkali metal recovery from carbonaceous material conversion process

    DOE Patents [OSTI]

    Sharp, David W. (Seabrook, TX); Clavenna, LeRoy R. (Baytown, TX); Gorbaty, Martin L. (Fanwood, NJ); Tsou, Joe M. (Galveston, TX)

    1980-01-01

    In a coal gasification operation or similar conversion process carried out in the presence of an alkali metal-containing catalyst wherein solid particles containing alkali metal residues are produced in the gasifier or similar reaction zone, alkali metal constitutents are recovered from the particles by withdrawing and passing the particles from the reaction zone to an alkali metal recovery zone in the substantial absence of molecular oxygen and treating the particles in the recovery zone with water or an aqueous solution in the substantial absence of molecular oxygen. The solution formed by treating the particles in the recovery zone will contain water-soluble alkali metal constituents and is recycled to the conversion process where the alkali metal constituents serve as at least a portion of the alkali metal constituents which comprise the alkali metal-containing catalyst. Preventing contact of the particles with oxygen as they are withdrawn from the reaction zone and during treatment in the recovery zone avoids the formation of undesirable alkali metal constituents in the aqueous solution produced in the recovery zone and insures maximum recovery of water-soluble alkali metal constituents from the alkali metal residues.

  11. Alternative fuel information: Facts about CNG and LPG conversion

    SciTech Connect (OSTI)

    O`Connor, K.

    1994-06-01

    As new environmental and energy related laws begin to take effect, increasing numbers of alternative fuel vehicles (AFVs) will be required in federal, state, municipal, and private fleets across the country. The National Energy Policy Act of 1992 and the Clean Air Act Amendments of 1990, along with several new state and local laws, will require fleet managers to either purchase original equipment manufacturer (OEM) vehicles, which are produced by automakers, or convert existing vehicles to run on alternative fuels. Because there is a limited availability and selection of OEM vehicles, conversions are seen as a transition to the time when automakers will produce more AFVs for public sale. A converted vehicle is any vehicle that originally was designed to operate on gasoline, and has been altered to run on an alternative fuel such as compressed natural gas (CNG) or propane (liquefied petroleum gas -- LPG), the two most common types of fuel conversions. In the United States, more than 25,000 vehicles already have been converted to COG, and 300,000 have been converted to LPG.

  12. EIS-0360: Depleted Uranium Oxide Conversion Product at the Portsmouth, Ohio Site

    Broader source: Energy.gov [DOE]

    This site-specific EIS analyzes the construction, operation, maintenance, and decontamination and decommissioning of the proposed depleted uranium hexafluoride (DUF6) conversion facility at three alternative locations within the Paducah site; transportation of all cylinders (DUF6, enriched, and empty) currently stored at the East Tennessee Technology Park (ETTP) near Oak Ridge, Tennessee, to Portsmouth; construction of a new cylinder storage yard at Portsmouth (if required) for ETTP cylinders; transportation of depleted uranium conversion products and waste materials to a disposal facility; transportation and sale of the hydrogen fluoride (HF) produced as a conversion coproduct; and neutralization of HF to calcium fluoride and its sale or disposal in the event that the HF product is not sold.

  13. 2009 Biochemical Conversion Platform Review Report

    SciTech Connect (OSTI)

    Ferrell, John

    2009-12-01

    This document summarizes the recommendations and evaluations provided by an independent external panel of experts at the U.S. Department of Energy Biomass Program’s Biochemical Conversion platform review meeting, held on April 14-16, 2009, at the Sheraton Denver Downtown, Denver, Colorado.

  14. Polarization conversion loss in birefringent crystalline resonators

    E-Print Network [OSTI]

    Polarization conversion loss in birefringent crystalline resonators Ivan S. Grudinin,* Guoping Lin gallery modes in birefringent crystalline resonators are investigated. We experimentally investigate://dx.doi.org/10.1364/OL.38.002410 Crystalline whispering gallery mode (WGM) resonators are known for compact size

  15. Power Conversion APEX Interim Report November, 1999

    E-Print Network [OSTI]

    California at Los Angeles, University of

    Efficiency for different steam cycles. 17.2 Close cycle gas turbine: The closed cycle gas turbine has. POWER CONVERSION 17.1 Steam Cycle Different steam cycles have been well developed. A study by EPRI summarized the various advanced steam cycles which maybe available for an advanced coal power plant

  16. ENERGY SERIES "Emerging High Power Conversion Technologies"

    E-Print Network [OSTI]

    Bergman, Keren

    SEMINAR: ENERGY SERIES "Emerging High Power Conversion Technologies" Dujic Drazen Professor, Power of embedded renewable energy sources. Whatever the renewable source of the prime energy is (wind, solar, hydro, storage or use. This is where power electronics come into a play, as key enabling technology for flexible

  17. Ocean Thermal Energy Conversion LUIS A. VEGA

    E-Print Network [OSTI]

    demand due to emerging economies like China, India, and Brazil. Coal and natural gas resources 7296 OOcean Thermal Energy Conversion LUIS A. VEGA Hawaii Natural Energy Institute, School of Ocean the OTEC plant. The difference between gross power and in-plant power consumption needed to run all sweater

  18. Conversational Programming in Action Alexander Repenning

    E-Print Network [OSTI]

    Repenning, Alexander

    Conversational Programming in Action Alexander Repenning AgentSheets Inc. Boulder 80301, Colorado.0 culture, end-user programming, which is programming by end users with limited, if any, formal programming programming languages such as Logo have made programming substantially more accessible to end users. More

  19. Making Programming more Conversational Alexander Repenning

    E-Print Network [OSTI]

    Repenning, Alexander

    Making Programming more Conversational Alexander Repenning AgentSheets Inc. Boulder 80301, Colorado.0 culture, end-user programming--programming by end users with limited or even no formal programming programming languages such as Logo have made programming substantially more accessible to end-users. More

  20. 3. Energy conversion, balances, efficiency, equilibrium

    E-Print Network [OSTI]

    Zevenhoven, Ron

    1/124 3. Energy conversion, balances, efficiency, equilibrium (Introduction to Thermodynamics) Ron and Flow Engineering | 20500 Turku | Finland 2/124 3.1: Energy Åbo Akademi University | Thermal and Flow Engineering | 20500 Turku | Finland #12;3/124 What is energy? /1 "Energy is any quantity that changes

  21. Resonant conversion of massless neutrinos in supernovae

    E-Print Network [OSTI]

    Nunokawa, H; Rossi, A; Valle, José W F

    1996-01-01

    It has been noted for a long time that, in some circumstances, {\\sl massless} neutrinos may be {\\sl mixed} in the leptonic charged current. Conventional neutrino oscillation searches in vacuum are insensitive to this mixing. We discuss the effects of resonant massless-neutrino conversions in the dense medium of a supernova. In particular, we show how the detected \\bar\

  22. Soft materials for linear electromechanical energy conversion

    E-Print Network [OSTI]

    Antal Jakli; Nandor Eber

    2014-07-29

    We briefly review the literature of linear electromechanical effects of soft materials, especially in synthetic and biological polymers and liquid crystals (LCs). First we describe results on direct and converse piezoelectricity, and then we discuss a linear coupling between bending and electric polarization, which maybe called bending piezoelectricity, or flexoelectricity.

  1. Steam Plant Conversion Eliminating Campus Coal Use

    E-Print Network [OSTI]

    Dai, Pengcheng

    Steam Plant Conversion Eliminating Campus Coal Use at the Steam Plant #12;· Flagship campus region produce 14% of US coal (TN only 0.2%) Knoxville and the TN Valley #12;· UT is one of about 70 U.S. colleges and universities w/ steam plant that burns coal · Constructed in 1964, provides steam for

  2. 2009 Thermochemical Conversion Platform Review Report

    SciTech Connect (OSTI)

    Ferrell, John

    2009-12-01

    This document summarizes the recommendations and evaluations provided by an independent external panel of experts at the U.S. Department of Energy Biomass Program’s Thermochemical Conversion platform review meeting, held on April 14-16, 2009, at the Sheraton Denver Downtown, Denver, Colorado.

  3. Site characterization of the highest-priority geologic formations for CO2 storage in Wyoming

    SciTech Connect (OSTI)

    Surdam, Ronald C.; Bentley, Ramsey; Campbell-Stone, Erin; Dahl, Shanna; Deiss, Allory; Ganshin, Yuri; Jiao, Zunsheng; Kaszuba, John; Mallick, Subhashis; McLaughlin, Fred; Myers, James; Quillinan, Scott

    2013-12-07

    This study, funded by U.S. Department of Energy National Energy Technology Laboratory award DE-FE0002142 along with the state of Wyoming, uses outcrop and core observations, a diverse electric log suite, a VSP survey, in-bore testing (DST, injection tests, and fluid sampling), a variety of rock/fluid analyses, and a wide range of seismic attributes derived from a 3-D seismic survey to thoroughly characterize the highest-potential storage reservoirs and confining layers at the premier CO2 geological storage site in Wyoming. An accurate site characterization was essential to assessing the following critical aspects of the storage site: (1) more accurately estimate the CO2 reservoir storage capacity (Madison Limestone and Weber Sandstone at the Rock Springs Uplift (RSU)), (2) evaluate the distribution, long-term integrity, and permanence of the confining layers, (3) manage CO2 injection pressures by removing formation fluids (brine production/treatment), and (4) evaluate potential utilization of the stored CO2

  4. OCEAN THERMAL ENERGY CONVERSION: AN OVERALL ENVIRONMENTAL ASSESSMENT

    SciTech Connect (OSTI)

    Sands, M.Dale

    1980-08-01

    Significant acccrmplishments in Ocean Thermal Energy Conversion (OTEC) technology have increased the probability of producing OTEC-derived power within this decade with subsequent large scale commercialization following by the turn of the century. Under U.S. Department of Energy funding, the Oceanic Engineering Operations of Interstate Electronics Corporation has prepared several OTEC Environmental Assessments over the past years, in particular, the OTEC Programmatic Environmental Assessment. The Programmatic EA considers several technological designs (open- and closed-cycle), plant configuratlons (land-based, moored, and plant-ship), and power usages (baseload electricity, ammonia and aluminum production). Potential environmental impacts, health and safetv issues and a status update of the institutional issues as they influence OTEC deployments, are included.

  5. Solar energy conversion via hot electron internal photoemission in metallic nanostructures: Efficiency estimates

    SciTech Connect (OSTI)

    Leenheer, Andrew J.; Narang, Prineha; Atwater, Harry A.; Lewis, Nathan S.

    2014-04-07

    Collection of hot electrons generated by the efficient absorption of light in metallic nanostructures, in contact with semiconductor substrates can provide a basis for the construction of solar energy-conversion devices. Herein, we evaluate theoretically the energy-conversion efficiency of systems that rely on internal photoemission processes at metal-semiconductor Schottky-barrier diodes. In this theory, the current-voltage characteristics are given by the internal photoemission yield as well as by the thermionic dark current over a varied-energy barrier height. The Fowler model, in all cases, predicts solar energy-conversion efficiencies of <1% for such systems. However, relaxation of the assumptions regarding constraints on the escape cone and momentum conservation at the interface yields solar energy-conversion efficiencies as high as 1%–10%, under some assumed (albeit optimistic) operating conditions. Under these conditions, the energy-conversion efficiency is mainly limited by the thermionic dark current, the distribution of hot electron energies, and hot-electron momentum considerations.

  6. Integration of Feedstock Assembly System and Cellulosic Ethanol Conversion Models to Analyze Bioenergy System Performance

    SciTech Connect (OSTI)

    Jared M. Abodeely; Douglas S. McCorkle; Kenneth M. Bryden; David J. Muth; Daniel Wendt; Kevin Kenney

    2010-09-01

    Research barriers continue to exist in all phases of the emerging cellulosic ethanol biorefining industry. These barriers include the identification and development of a sustainable and abundant biomass feedstock, the assembly of viable assembly systems formatting the feedstock and moving it from the field (e.g., the forest) to the biorefinery, and improving conversion technologies. Each of these phases of cellulosic ethanol production are fundamentally connected, but computational tools used to support and inform analysis within each phase remain largely disparate. This paper discusses the integration of a feedstock assembly system modeling toolkit and an Aspen Plus® conversion process model. Many important biomass feedstock characteristics, such as composition, moisture, particle size and distribution, ash content, etc. are impacted and most effectively managed within the assembly system, but generally come at an economic cost. This integration of the assembly system and the conversion process modeling tools will facilitate a seamless investigation of the assembly system conversion process interface. Through the integrated framework, the user can design the assembly system for a particular biorefinery by specifying location, feedstock, equipment, and unit operation specifications. The assembly system modeling toolkit then provides economic valuation, and detailed biomass feedstock composition and formatting information. This data is seamlessly and dynamically used to run the Aspen Plus® conversion process model. The model can then be used to investigate the design of systems for cellulosic ethanol production from field to final product.

  7. Task 3.3: Warm Syngas Cleanup and Catalytic Processes for Syngas Conversion to Fuels Subtask 3: Advanced Syngas Conversion to Fuels

    SciTech Connect (OSTI)

    Lebarbier Dagel, Vanessa M.; Li, J.; Taylor, Charles E.; Wang, Yong; Dagle, Robert A.; Deshmane, Chinmay A.; Bao, Xinhe

    2014-03-31

    This collaborative joint research project is in the area of advanced gasification and conversion, within the Chinese Academy of Sciences (CAS)-National Energy Technology Laboratory (NETL)-Pacific Northwest National Laboratory (PNNL) Memorandum of Understanding. The goal for this subtask is the development of advanced syngas conversion technologies. Two areas of investigation were evaluated: Sorption-Enhanced Synthetic Natural Gas Production from Syngas The conversion of synthetic gas (syngas) to synthetic natural gas (SNG) is typically catalyzed by nickel catalysts performed at moderate temperatures (275 to 325°C). The reaction is highly exothermic and substantial heat is liberated, which can lead to process thermal imbalance and destruction of the catalyst. As a result, conversion per pass is typically limited, and substantial syngas recycle is employed. Commercial methanation catalysts and processes have been developed by Haldor Topsoe, and in some reports, they have indicated that there is a need and opportunity for thermally more robust methanation catalysts to allow for higher per-pass conversion in methanation units. SNG process requires the syngas feed with a higher H2/CO ratio than typically produced from gasification processes. Therefore, the water-gas shift reaction (WGS) will be required to tailor the H2/CO ratio. Integration with CO2 separation could potentially eliminate the need for a separate WGS unit, thereby integrating WGS, methanation, and CO2 capture into one single unit operation and, consequently, leading to improved process efficiency. The SNG process also has the benefit of producing a product stream with high CO2 concentrations, which makes CO2 separation more readily achievable. The use of either adsorbents or membranes that selectively separate the CO2 from the H2 and CO would shift the methanation reaction (by driving WGS for hydrogen production) and greatly improve the overall efficiency and economics of the process. The scope of this activity was to develop methods and enabling materials for syngas conversion to SNG with readily CO2 separation. Suitable methanation catalyst and CO2 sorbent materials were developed. Successful proof-of-concept for the combined reaction-sorption process was demonstrated, which culminated in a research publication. With successful demonstration, a decision was made to switch focus to an area of fuels research of more interest to all three research institutions (CAS-NETL-PNNL). Syngas-to-Hydrocarbon Fuels through Higher Alcohol Intermediates There are two types of processes in syngas conversion to fuels that are attracting R&D interest: 1) syngas conversion to mixed alcohols; and 2) syngas conversion to gasoline via the methanol-to-gasoline process developed by Exxon-Mobil in the 1970s. The focus of this task was to develop a one-step conversion technology by effectively incorporating both processes, which is expected to reduce the capital and operational cost associated with the conversion of coal-derived syngas to liquid fuels. It should be noted that this work did not further study the classic Fischer-Tropsch reaction pathway. Rather, we focused on the studies for unique catalyst pathways that involve the direct liquid fuel synthesis enabled by oxygenated intermediates. Recent advances made in the area of higher alcohol synthesis including the novel catalytic composite materials recently developed by CAS using base metal catalysts were used.

  8. Operating Costs

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-03-28

    This chapter is focused on capital costs for conventional construction and environmental restoration and waste management projects and examines operating cost estimates to verify that all elements of the project have been considered and properly estimated.

  9. Compressed natural gas and liquefied petroleum gas conversions: The National Renewable Energy Laboratory`s experience

    SciTech Connect (OSTI)

    Motta, R.C.; Kelly, K.J.; Warnock, W.W.

    1996-04-01

    The National Renewable Energy Laboratory (NREL) contracted with conversion companies in six states to convert approximately 900 light-duty Federal fleet vehicles to operate on compressed natural gas (CNG) or liquefied petroleum gas (LPG). The contracts were initiated in order to help the Federal government meet the vehicle acquisition requirements of the Energy Policy Act of 1992 (EPACT) during a period of limited original equipment manufacturer (OEM) model availability. Approximately 90% of all conversions were performed on compact of full-size vans and pickups, and 90% of the conversions were to bi-fuel operation. With a positive response from the fleet managers, this program helped the Federal government meet the vehicle acquisition requirements of EPACT for fiscal years 1993 and 1994, despite limited OEM model availability. The conversions also helped to establish the infrastructure needed to support further growth in the use of alternative fuel vehicles. In conclusion, the program has been successful in helping the Federal government meet the vehicle acquisition requirements of EPACT, establishing infrastructure, increasing the displacement of imported oil, and evaluating the emissions performance of converted vehicles. With the relatively widespread availability of OEM vehicles in the 1996 model year, the program is now being phased out.

  10. Computational study of power conversion and luminous efficiency performance for

    E-Print Network [OSTI]

    Demir, Hilmi Volkan

    Computational study of power conversion and luminous efficiency performance for semiconductor, Singapore 639798, Singapore *volkan@stanfordalumni.org Abstract: We present power conversion efficiency (PCE) and luminous efficiency (LE) performance levels of high photometric quality white LEDs integrated with quantum

  11. Ocean Thermal Energy Conversion: Potential Environmental Impacts and Fisheries

    E-Print Network [OSTI]

    Hawai'i at Manoa, University of

    Ocean Thermal Energy Conversion: Potential Environmental Impacts and Fisheries Christina M Comfort Institute #12;Ocean Thermal Energy Conversion (OTEC) · Renewable energy ­ ocean thermal gradient · Large will unavoidably affect pelagic fish... ­ Noise and water pollution ­ FAD effects ­ Entrainment and Impingement

  12. Cross section generation strategy for high conversion light water reactors

    E-Print Network [OSTI]

    Herman, Bryan R. (Bryan Robert)

    2011-01-01

    High conversion water reactors (HCWR), such as the Resource-renewable Boiling Water Reactor (RBWR), are being designed with axial heterogeneity of alternating fissile and blanket zones to achieve a conversion ratio of ...

  13. Direct Conversion of Biomass to Fuel | ornl.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Direct Conversion of Biomass to Fuel UGA, ORNL research team engineers microbes for the direct conversion of biomass to fuel July 11, 2014 New research from the University of...

  14. World crude capacity, conversion capability inch upward

    SciTech Connect (OSTI)

    Rhodes, A.K.

    1994-12-19

    Reported world crude capacity increased almost 1 million b/d, while conversion processes--fluid catalytic cracking (FCC), hydrocracking, coking--increased more than 1.7 million b/d or 8.3%, according to the Journal's most recent survey of world refining capacity. As a measure of capacity growth in the past year, changes in distillation capacities (atmospheric plus vacuum) were calculated for three major refining regions. The year-to-year comparison indicates: for the US, an increase of 293,000 b/d, or 1.3%; for the European Economic Community (E.E.C.), an increase of 431,000 b/d, or 2.6%; and for Asia/Pacific, excluding China, an increase of 122,000 b/d, or 1.1%. In addition to the compiled data the paper describes the survey layout, regional changes, conversion units, hydroprocessing, company size, oxygenates, and construction.

  15. Evaluation and Optimization of a Supercritical Carbon Dioxide Power Conversion Cycle for Nuclear Applications

    SciTech Connect (OSTI)

    Edwin A. Harvego; Michael G. McKellar

    2011-05-01

    There have been a number of studies involving the use of gases operating in the supercritical mode for power production and process heat applications. Supercritical carbon dioxide (CO2) is particularly attractive because it is capable of achieving relatively high power conversion cycle efficiencies in the temperature range between 550°C and 750°C. Therefore, it has the potential for use with any type of high-temperature nuclear reactor concept, assuming reactor core outlet temperatures of at least 550°C. The particular power cycle investigated in this paper is a supercritical CO2 Recompression Brayton Cycle. The CO2 Recompression Brayton Cycle can be used as either a direct or indirect power conversion cycle, depending on the reactor type and reactor outlet temperature. The advantage of this cycle when compared to the helium Brayton Cycle is the lower required operating temperature; 550°C versus 850°C. However, the supercritical CO2 Recompression Brayton Cycle requires an operating pressure in the range of 20 MPa, which is considerably higher than the required helium Brayton cycle operating pressure of 8 MPa. This paper presents results of analyses performed using the UniSim process analyses software to evaluate the performance of the supercritical CO2 Brayton Recompression Cycle for different reactor outlet temperatures. The UniSim model assumed a 600 MWt reactor power source, which provides heat to the power cycle at a maximum temperature of between 550°C and 750°C. The UniSim model used realistic component parameters and operating conditions to model the complete power conversion system. CO2 properties were evaluated, and the operating range for the cycle was adjusted to take advantage of the rapidly changing conditions near the critical point. The UniSim model was then optimized to maximize the power cycle thermal efficiency at the different maximum power cycle operating temperatures. The results of the analyses showed that power cycle thermal efficiencies in the range of 40 to 50% can be achieved.

  16. Authoritarianism in the Conversation of Gestures

    E-Print Network [OSTI]

    Herb, Terry R.; Elliott Jr., Robert E.

    1971-10-01

    AUTHORITARIANISM IN THE CONVERSATION OF GESTURES* Terry R. Herb and Robert F. Elliott, Jr. University of Alabama in Huntsville Current studies of attitudes have relied upon written responses and the most obvious form of communication, the verbal... appropriate to intensify nonverbal communication. As Goffman (1961: 106-110) has observed, the individual may perform the activities proscribed by the role but disidentify himself from it. The~ctof separating oneself from a role is termed role distance...

  17. Direct conversion of algal biomass to biofuel

    DOE Patents [OSTI]

    Deng, Shuguang; Patil, Prafulla D; Gude, Veera Gnaneswar

    2014-10-14

    A method and system for providing direct conversion of algal biomass. Optionally, the method and system can be used to directly convert dry algal biomass to biodiesels under microwave irradiation by combining the reaction and combining steps. Alternatively, wet algae can be directly processed and converted to fatty acid methyl esters, which have the major components of biodiesels, by reacting with methanol at predetermined pressure and temperature ranges.

  18. Resource Limits and Conversion Efficiency with Implications for Climate Change

    E-Print Network [OSTI]

    Croft, Gregory Donald

    2009-01-01

    Repowering Project, Clean Coal Topical Report Number 20,P. and Nel, H. G. 2004, Clean coal conversion options using

  19. Solar-Driven Microbial Photoelectrochemical System for Energy Conversion

    E-Print Network [OSTI]

    Wang, Hanyu

    2015-01-01

    Microbial Bioelectrocatalysis. Energy Environ. Sci. 2012, 5,Oxide Heteronanostructures. Energy Environ. Sci. 2011, 4,H. , Bioelectrochemical Energy Conversion. Appl. Microbiol.

  20. Integrating and Piloting Lignocellulose Biomass Conversion Technology (Presentation)

    SciTech Connect (OSTI)

    Schell, D. J.

    2009-06-15

    Presentation on NREL's integrated biomass conversion capabilities. Presented at the 2009 Advanced Biofuels Workshop in Denver, CO, Cellulosic Ethanol session.

  1. Flexible Conversion Ratio Fast Reactor Systems Evaluation

    SciTech Connect (OSTI)

    Neil Todreas; Pavel Hejzlar

    2008-06-30

    Conceptual designs of lead-cooled and liquid salt-cooled fast flexible conversion ratio reactors were developed. Both concepts have cores reated at 2400 MWt placed in a large-pool-type vessel with dual-free level, which also contains four intermediate heat exchanges coupling a primary coolant to a compact and efficient supercritical CO2 Brayton cycle power conversion system. Decay heat is removed passively using an enhanced Reactor Vessel Auxiliary Cooling System and a Passive Secondary Auxiliary Cooling System. The most important findings were that (1) it is feasible to design the lead-cooled and salt-cooled reactor with the flexible conversion ratio (CR) in the range of CR=0 and CR=1 n a manner that achieves inherent reactor shutdown in unprotected accidents, (2) the salt-cooled reactor requires Lithium thermal Expansion Modules to overcme the inherent salt coolant's large positive coolant temperature reactivity coefficient, (3) the preferable salt for fast spectrum high power density cores is NaCl-Kcl-MgCl2 as opposed to fluoride salts due to its better themal-hydraulic and neutronic characteristics, and (4) both reactor, but attain power density 3 times smaller than that of the sodium-cooled reactor.

  2. Apparatus for feeding an MTG conversion reactor

    SciTech Connect (OSTI)

    Mao, C.H.; Schreiner, M. Jr.

    1989-05-02

    A continuous system is described comprising: first distillation means; second distillation means; pressurized chemical reactor means containing dehydration catalyst; methanol-to-gasoline conversion reactor means containing conversion catalyst; means for passing a crude methanol feed containing a minor amount of water to an upper stage of the first distillation means; means for maintaining the first distillation means at a pressure at least equal to the pressure of the pressurized chemical reactor means; means for withdrawing dehydration product from pressurized chemical reactor means; means for adding dehydration product to an intermediate stage of the first distillation means; means for withdrawing from first distillation means a first overhead stream comprising essentially water-free dimethylether; means for withdrawing from first distillation means a first bottoms stream containing aqueous methanol; means for passing the dimethylether-containing first overhead stream from the first distillation means to methanol-to-gasoline conversion reactor means; means for passing the first bottoms stream containing aqueous methanol from the first distillation means to the second distillation means; means for withdrawing from second distillation means a second overhead stream comprising methanol; means for withdrawing from second distillation means a second bottoms stream comprising water; means for passing the second overhead methanol stream to pressurized chemical reactor means; and means for recycling the dehydration product to an intermediate stage of the first distillation means.

  3. Derivation of dose conversion factors for tritium

    SciTech Connect (OSTI)

    Killough, G. G.

    1982-03-01

    For a given intake mode (ingestion, inhalation, absorption through the skin), a dose conversion factor (DCF) is the committed dose equivalent to a specified organ of an individual per unit intake of a radionuclide. One also may consider the effective dose commitment per unit intake, which is a weighted average of organ-specific DCFs, with weights proportional to risks associated with stochastic radiation-induced fatal health effects, as defined by Publication 26 of the International Commission on Radiological Protection (ICRP). This report derives and tabulates organ-specific dose conversion factors and the effective dose commitment per unit intake of tritium. These factors are based on a steady-state model of hydrogen in the tissues of ICRP's Reference Man (ICRP Publication 23) and equilibrium of specific activities between body water and other tissues. The results differ by 27 to 33% from the estimate on which ICRP Publication 30 recommendations are based. The report also examines a dynamic model of tritium retention in body water, mineral bone, and two compartments representing organically-bound hydrogen. This model is compared with data from human subjects who were observed for extended periods. The manner of combining the dose conversion factors with measured or model-predicted levels of contamination in man's exposure media (air, drinking water, soil moisture) to estimate dose rate to an individual is briefly discussed.

  4. Challenges Ahead Head movements and other social acts in conversations

    E-Print Network [OSTI]

    Theune, Mariët

    Challenges Ahead Head movements and other social acts in conversations Dirk Heylen University of face-to-face interactions. The fact that conversations are a type of joint activity involving social in functions that are served by the multitude of movements that people display during conversations. 1

  5. Central Eurasian Studies (CEUS) Uzbek Coffee & Conversation Hour

    E-Print Network [OSTI]

    Robeson, Scott M.

    (314 E. Kirkwood Avenue) Finnish Coffee & Conversation Hour WEDNESDAYS, 5:30-6:30 pm, IMU Starbucks, IMU Starbucks Tibetan Tea & Conversation Hour THURSDAYS, 6:00-7:00 pm, Anyetsang's Little Tibet Restaurant (415 E. 4th Street) Turkish Coffee & Conversation Hour FRIDAYS, 1:00-2:00 pm, IMU Starbucks Uyghur

  6. Stress and Cognitive Load in Multimodal Conversational Interactions

    E-Print Network [OSTI]

    Nijholt, Anton

    Stress and Cognitive Load in Multimodal Conversational Interactions Andreea Niculescu, Yujia Cao conversational interactions is determined by many influence parameters. Stress and cognitive load are two of them. In order to assess the impact of stress and cognitive load on the perceived conversational quality

  7. E2I EPRI Assessment Offshore Wave Energy Conversion Devices

    E-Print Network [OSTI]

    E2I EPRI Assessment Offshore Wave Energy Conversion Devices Report: E2I EPRI WP ­ 004 ­ US ­ Rev 1 #12;E2I EPRI Assessment - Offshore Wave Energy Conversion Devices Table of Contents Introduction Assessment - Offshore Wave Energy Conversion Devices Introduction E2I EPRI is leading a U.S. nationwide

  8. Operating Strategies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeeding access toOctober 1996Technologies /JuneOperating Oak Ridge'sOPERATING

  9. Micro/Nano-Scale Phase Change Systems for Thermal Management and Solar Energy Conversion Applications

    E-Print Network [OSTI]

    Coso, Dusan

    2013-01-01

    storage and direct solar energy conversion to work. FocusManagement and Solar Energy Conversion Applications By DusanThermal Management and Solar Energy Conversion Applications

  10. InGaAsP/InP intrastep quantum wells for enhanced solar energy conversion

    E-Print Network [OSTI]

    Chen, Winnie Victoria

    2012-01-01

    Wells for Enhanced Solar Energy Conversion by Winnie ChenWells for Enhanced Solar Energy Conversion A dissertationan improvement in solar energy conversion efficiency due to

  11. Power Control and Optimization of Photovoltaic and Wind Energy Conversion Systems /

    E-Print Network [OSTI]

    Ghaffari, Azad

    2013-01-01

    Power Optimization and Control in Wind Energy Conversion Systemspower point tracking in wind energy conversion systems,”power point tracking of wind energy conversion systems based

  12. Experimental demonstration of bandwidth enhancement based on two-pump wavelength conversion in a silicon waveguide

    E-Print Network [OSTI]

    Gao, Shiming; Tien, En-Kuang; Huang, Yuewang; He, Sailing

    2010-01-01

    27887 Fig. 3. Measured unit conversion efficiencies and theFor comparison, unit conversion efficiency is introduced byc) the corresponding unit conversion efficiency for the two-

  13. Power Control and Optimization of Photovoltaic and Wind Energy Conversion Systems /

    E-Print Network [OSTI]

    Ghaffari, Azad

    2013-01-01

    77 5.2 Wind Energy Conversion System . . . . .Optimization and Control in Wind Energy Conversion SystemsAC matrix con- verter for wind energy conversion system,” in

  14. 3-D Reservoir and Stochastic Fracture Network Modeling for Enhanced Oil Recovery, Circle Ridge Phosphoria/Tensleep Reservoir, and River Reservation, Arapaho and Shoshone Tribes, Wyoming

    SciTech Connect (OSTI)

    La Pointe, Paul R.; Hermanson, Jan

    2002-09-09

    The goal of this project is to improve the recovery of oil from the Circle Ridge Oilfield, located on the Wind River Reservation in Wyoming, through an innovative integration of matrix characterization, structural reconstruction, and the characterization of the fracturing in the reservoir through the use of discrete fracture network models.

  15. Draft environmental assessment: Ocean Thermal Energy Conversion (OTEC) Pilot Plants

    SciTech Connect (OSTI)

    Sullivan, S.M.; Sands, M.D.; Donat, J.R.; Jepsen, P.; Smookler, M.; Villa, J.F.

    1981-02-01

    This Environmental Assessment (EA) has been prepared, in accordance with the National Environmental Policy Act of 1969, for the deployment and operation of a commercial 40-Megawatt (MW) Ocean Thermal Energy Conversion (OTEC) Pilot Plant (hereafter called the Pilot Plant). A description of the proposed action is presented, and a generic environment typical of the candidate Pilot Plant siting regions is described. An assessment of the potential environmental impacts associated with the proposed action is given, and the risk of credible accidents and mitigating measures to reduce these risks are considered. The Federal and State plans and policies the proposed action will encompass are described. Alternatives to the proposed action are presented. Appendix A presents the navigation and environmental information contained in the US Coast Pilot for each of the candidate sites; Appendix B provides a brief description of the methods and calculations used in the EA. It is concluded that environmental disturbances associated with Pilot Plant activities could potentially cause significant environmental impacts; however, the magnitude of these potential impacts cannot presently be assessed, due to insufficient engineering and environmental information. A site- and design-specific OTEC Pilot Plant Environmental Impact Statement (EIS) is required to resolve the potentially significant environmental effects associated with Pilot Plant deployment and operation. (WHK)

  16. Design Construction and Operation of a Supercritical Carbon Dioxide (sCO2) Loop for Investigation of Dry Cooling and Natural Circulation Potential for Use in Advanced Small Modular Reactors Utilizing sCO2 Power Conversion Cycles.

    SciTech Connect (OSTI)

    Middleton, Bobby D.; Rodriguez, Salvador B.; Carlson, Matthew David

    2015-11-01

    This report outlines the work completed for a Laboratory Directed Research and Development project at Sandia National Laboratories from October 2012 through September 2015. An experimental supercritical carbon dioxide (sCO 2 ) loop was designed, built, and o perated. The experimental work demonstrated that sCO 2 can be uti lized as the working fluid in an air - cooled, natural circulation configuration to transfer heat from a source to the ultimate heat sink, which is the surrounding ambient environment in most ca ses. The loop was also operated in an induction - heated, water - cooled configuration that allows for measurements of physical parameters that are difficult to isolate in the air - cooled configuration. Analysis included the development of two computational flu id dynamics models. Future work is anticipated to answer questions that were not covered in this project.

  17. Impact of HFIR LEU Conversion on Beryllium Reflector Degradation Factors

    SciTech Connect (OSTI)

    Ilas, Dan

    2013-10-01

    An assessment of the impact of low enriched uranium (LEU) conversion on the factors that may cause the degradation of the beryllium reflector is performed for the High Flux Isotope Reactor (HFIR). The computational methods, models, and tools, comparisons with previous work, along with the results obtained are documented and discussed in this report. The report documents the results for the gas and neutronic poison production, and the heating in the beryllium reflector for both the highly enriched uranium (HEU) and LEU HFIR configurations, and discusses the impact that the conversion to LEU may have on these quantities. A time-averaging procedure was developed to calculate the isotopic (gas and poisons) production in reflector. The sensitivity of this approach to different approximations is gauged and documented. The results show that the gas is produced in the beryllium reflector at a total rate of 0.304 g/cycle for the HEU configuration; this rate increases by ~12% for the LEU case. The total tritium production rate in reflector is 0.098 g/cycle for the HEU core and approximately 11% higher for the LEU core. A significant increase (up to ~25%) in the neutronic poisons production in the reflector during the operation cycles is observed for the LEU core, compared to the HEU case, for regions close to the core s horizontal midplane. The poisoning level of the reflector may increase by more than two orders of magnitude during long periods of downtime. The heating rate in the reflector is estimated to be approximately 20% lower for the LEU core than for the HEU core. The decrease is due to a significantly lower contribution of the heating produced by the gamma radiation for the LEU core. Both the isotopic (gas and neutronic poisons) production and the heating rates are spatially non-uniform throughout the beryllium reflector volume. The maximum values typically occur in the removable reflector and close to the midplane.

  18. IEEE TRANSACTIONS ON ENERGY CONVERSION, VOL. 22, NO. 2, 2007 457 Effects of Battery Buffering on the

    E-Print Network [OSTI]

    Mazumder, Sudip K.

    efficiency, near-zero emissions, ease of installation in urban as well as in remote regions, silent operIEEE TRANSACTIONS ON ENERGY CONVERSION, VOL. 22, NO. 2, 2007 457 Effects of Battery Buffering, the effectiveness of the energy buffering is investigated. Index Terms--Balance-of-plant subsystem (BOPS

  19. Chemistry of Furan Conversion into Aromatics and Olefins over HZSM-5: A Model Biomass Conversion Reaction

    SciTech Connect (OSTI)

    Cheng, Yu-Ting; Huber, George W.

    2011-06-03

    The conversion of furan (a model of cellulosic biomass) over HZSM-5 was investigated in a thermogravimetric analysis–mass spectrometry system, in situ Fourier transform infrared analysis, and in a continuous-flow fixed-bed reactor. Furan adsorbed as oligomers at room temperature with a 1.73 of adsorbed furan/Al ratio. These oligomers were polycyclic aromatic compounds that were converted to CO, CO?, aromatics, and olefins at temperatures from 400 to 600 °C. Aromatics (e.g., benzene, toluene, and naphthalene), oligomer isomers (e.g., benzofuran, 2,2-methylenebisfuran, and benzodioxane), and heavy oxygenates (C??{sub +} oligomers) were identified as intermediates formed inside HZSM-5 at different reaction temperatures. During furan conversion, graphite-type coke formed on the catalyst surface, which caused the aromatics and olefins formation to deactivate within the first 30 min of time on-stream. We have measured the effects of space velocity and temperature for furan conversion to help us understand the chemistry of biomass conversion inside zeolite catalysts. The major products for furan conversion included CO, CO?, allene, C?–C? olefins, benzene, toluene, styrene, benzofuran, indene, and naphthalene. The aromatics (benzene and toluene) and olefins (ethylene and propylene) selectivity decreased with increasing space velocity. Unsaturated hydrocarbons such as allene, cyclopentadiene, and aromatics selectivity increased with increasing space velocity. The product distribution was selective to olefins and CO at high temperatures (650 °C) but was selective to aromatics (benzene and toluene) at intermediate temperatures (450–600 °C). At low temperatures (450 °C), benzofuran and coke contributed 60% of the carbon selectivity. Several different reactions were occurring for furan conversion over zeolites. Some important reactions that we have identified in this study include Diels–Alder condensation (e.g., two furans form benzofuran and water), decarbonylation (e.g., furan forms CO and allene), oligomerization (allene forms olefins and aromatics plus hydrogen), and alkylation (e.g., furan plus olefins). The product distribution was far from thermodynamic equilibrium.

  20. Operation Poorman

    SciTech Connect (OSTI)

    Pruvost, N.; Tsitouras, J.

    1981-03-18

    The objectives of Operation Poorman were to design and build a portable seismic system and to set up and use this system in a cold-weather environment. The equipment design uses current technology to achieve a low-power, lightweight system that is configured into three modules. The system was deployed in Alaska during wintertime, and the results provide a basis for specifying a mission-ready seismic verification system.

  1. MINING NUCLEAR TRANSIENT DATA THROUGH SYMBOLIC CONVERSION

    SciTech Connect (OSTI)

    Diego MAndelli; Tunc Aldemir; Alper Yilmaz; Curtis Smith

    2013-09-01

    Dynamic Probabilistic Risk Assessment (DPRA) methodologies generate enormous amounts of data for a very large number of simulations. The data contain temporal information of both the state variables of the simulator and the temporal status of specific systems/components. In order to measure system performances, limitations and resilience, such data need to be carefully analyzed with the objective of discovering the correlations between sequence/timing of events and system dynamics. A first approach toward discovering these correlations from data generated by DPRA methodologies has been performed by organizing scenarios into groups using classification or clustering based algorithms. The identification of the correlations between system dynamics and timing/sequencing of events is performed by observing the temporal distribution of these events in each group of scenarios. Instead of performing “a posteriori” analysis of these correlations, this paper shows how it is possible to identify the correlations implicitly by performing a symbolic conversion of both continuous (temporal profiles of simulator state variables) and discrete (status of systems and components) data. Symbolic conversion is performed for each simulation by properly quantizing both continuous and discrete data and then converting them as a series of symbols. After merging both series together, a temporal phrase is obtained. This phrase preserves duration, coincidence and sequence of both continuous and discrete data in a uniform and consistent manner. In this paper it is also shown that by using specific distance measures, it is still possible to post-process such symbolic data using clustering and classification techniques but in considerably less time since the memory needed to store the data is greatly reduced by the symbolic conversion.

  2. Next-Generation Thermionic Solar Energy Conversion

    Broader source: Energy.gov [DOE]

    This fact sheet describes a next-generation thermionic solar energy conversion project awarded under the DOE's 2012 SunShot Concentrating Solar Power R&D award program. The team, led by Stanford University, seeks to demonstrate the feasibility of photon-enhanced, microfabricated thermionic energy converters as a high-efficiency topping cycle for CSP electricity generation. With the potential to double the electricity output efficiency of solar-thermal power stations, this topping cycle application can significantly reduce the cost of solar-thermal electricity below that of the lowest-cost, fossil-fuel generated electricity.

  3. Carbon aerogel electrodes for direct energy conversion

    DOE Patents [OSTI]

    Mayer, Steven T. (San Leandro, CA); Kaschmitter, James L. (Pleasanton, CA); Pekala, Richard W. (Pleasant Hill, CA)

    1997-01-01

    A direct energy conversion device, such as a fuel cell, using carbon aerogel electrodes, wherein the carbon aerogel is loaded with a noble catalyst, such as platinum or rhodium and soaked with phosphoric acid, for example. A separator is located between the electrodes, which are placed in a cylinder having plate current collectors positioned adjacent the electrodes and connected to a power supply, and a pair of gas manifolds, containing hydrogen and oxygen positioned adjacent the current collectors. Due to the high surface area and excellent electrical conductivity of carbon aerogels, the problems relative to high polarization resistance of carbon composite electrodes conventionally used in fuel cells are overcome.

  4. Carbon aerogel electrodes for direct energy conversion

    DOE Patents [OSTI]

    Mayer, S.T.; Kaschmitter, J.L.; Pekala, R.W.

    1997-02-11

    A direct energy conversion device, such as a fuel cell, using carbon aerogel electrodes is described, wherein the carbon aerogel is loaded with a noble catalyst, such as platinum or rhodium and soaked with phosphoric acid, for example. A separator is located between the electrodes, which are placed in a cylinder having plate current collectors positioned adjacent the electrodes and connected to a power supply, and a pair of gas manifolds, containing hydrogen and oxygen positioned adjacent the current collectors. Due to the high surface area and excellent electrical conductivity of carbon aerogels, the problems relative to high polarization resistance of carbon composite electrodes conventionally used in fuel cells are overcome. 1 fig.

  5. NREL: Biomass Research - Biochemical Conversion Capabilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines light on771/6/14 Contact:News Releases |NRELBiochemical Conversion

  6. Plasma-Hydrocarbon conversion - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeeding access| DepartmentPeerFederal FleetUpSmallHydrocarbon conversion Idaho

  7. Atlantic Biomass Conversions Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAandAmminex A SOpenAshley, Ohio:Atchison-HoltAtlantaBiomass Conversions Inc

  8. Biochemical Conversion Related Links | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataEnergy Webinar:I DueBETO Quiz -Technologies forBig SavingsConversion »

  9. Fabrication and testing of an infrared spectral control component for thermophotovoltaic power conversion applications

    E-Print Network [OSTI]

    O'Sullivan, Francis M. (Francis Martin), 1980-

    2004-01-01

    Thermophotovoltaic (TPV) power conversion is the direct conversion of thermal radiation to electricity. Conceptually, TPV power conversion is a very elegant means of energy conversion. A thermal source emits a radiative ...

  10. Application of Annular Linear Induction Pumps Technology for Waste Heat Rejection and Power Conversion

    SciTech Connect (OSTI)

    Adkins, Harold E.

    2005-03-16

    The U.S.-sponsored Jupiter Icy Moons Orbiter (JIMO) program will require a light weight, efficient, and reliable power generation system capable of a 20+ year lifespan. This requirement has renewed interest in orbiter technological development. Sub-components of the orbiter system are the primary and secondary power conversion/heat rejection systems for both the proposed nuclear reactors and Brayton cycle heat engines. Brayton-cycle conversion technology has been identified as an excellent candidate for nuclear electric propulsion (NEP) power conversion systems. The conversion/rejection systems for these components typically utilize pumped molten metal as the heat transfer medium. Electromagnetic (EM) Annular Linear Induction Pumps (ALIPs) are ideal for this purpose as they can operate at moderate to high efficiency, at elevated temperature, do not involve moving parts (solid-state; long life), and require no bearings or seals. A parametric study was performed to develop a suite of ALIP preliminary designs capable of providing specified pressure and mass flow rate ranges for the proposed NaK(78) Brayton-cycle heat rejection loop. A limited study was also performed for the proposed lithium-cooled nuclear reactor heat transport loops; however, the design of these units is still in its infancy. Both studies were conducted by Pacific Northwest National Laboratory (PNNL) with the MHD Systems’ ALIP Design Code. The studies focused on designing ALIPs that displayed reasonably high efficiency and low source voltages as well as low mass and smallest geometric envelope.

  11. Current Research on Thermochemical Conversion of Biomass at the National Renewable Energy Laboratory

    SciTech Connect (OSTI)

    Baldwin, R. M.; Magrini-Bair, K. A.; Nimlos, M. R.; Pepiot, P.; Donohoe, B. S.; Hensley, J. E.; Phillips, S. D.

    2012-04-05

    The thermochemical research platform at the National Bioenergy Center, National Renewable Energy Laboratory (NREL) is primarily focused on conversion of biomass to transportation fuels using non-biological techniques. Research is conducted in three general areas relating to fuels synthesis via thermochemical conversion by gasification: (1) Biomass gasification fundamentals, chemistry and mechanisms of tar formation; (2) Catalytic tar reforming and syngas cleaning; and (3) Syngas conversion to mixed alcohols. In addition, the platform supports activities in both technoeconomic analysis (TEA) and life cycle assessment (LCA) of thermochemical conversion processes. Results from the TEA and LCA are used to inform and guide laboratory research for alternative biomass-to-fuels strategies. Detailed process models are developed using the best available material and energy balance information and unit operations models created at NREL and elsewhere. These models are used to identify cost drivers which then form the basis for research programs aimed at reducing costs and improving process efficiency while maintaining sustainability and an overall net reduction in greenhouse gases.

  12. Evaluation of aftermarket CNG conversion kits in light-duty vehicle applications. Final report

    SciTech Connect (OSTI)

    Blazek, C.F.; Rowley, P.F.; Grimes, J.W.

    1995-07-01

    The Institute of Gas Technology (IGT) was contracted by the National Renewable Energy Laboratory (NREL) to evaluate three compressed natural gas (CNG) conversion systems using a 1993 Chevrolet Lumina baseline vehicle. A fourth conversion system was added to the test matrix through funding support from Brooklyn Union. The objective of this project was to measure the Federal Test Procedure (FTP) emissions and fuel economy of the different conversion systems, and to compare the performance to gasoline-fueled operation and each other. Different natural gas compositions were selected to represent the 10th percentile, mean, and 90th percentile compositions distributed in the Continental United States. Testing with these different compositions demonstrated the systems` ability to accommodate the spectrum of gas found in the United States. Each compressed natural gas conversion system was installed and adjusted according to the manufacturer`s instructions. In addition to the FTP testing, an evaluation of the comparative installation times and derivability tests (based on AGA and CRC guidelines) were conducted on each system.

  13. Low-Enriched Uranium Fuel Conversion Activities for the High Flux Isotope Reactor, Annual Report for FY 2011

    SciTech Connect (OSTI)

    Renfro, David G; Cook, David Howard; Freels, James D; Griffin, Frederick P; Ilas, Germina; Sease, John D; Chandler, David

    2012-03-01

    This report describes progress made during FY11 in ORNL activities to support converting the High Flux Isotope Reactor (HFIR) from high-enriched uranium (HEU) fuel to low-enriched uranium (LEU) fuel. Conversion from HEU to LEU will require a change in fuel form from uranium oxide to a uranium-molybdenum (UMo) alloy. With both radial and axial contouring of the fuel foil and an increase in reactor power to 100 MW, calculations indicate that the HFIR can be operated with LEU fuel with no degradation in performance to users from the current levels achieved with HEU fuel. Studies are continuing to demonstrate that the fuel thermal safety margins can be preserved following conversion. Studies are also continuing to update other aspects of the reactor steady state operation and accident response for the effects of fuel conversion. Technical input has been provided to Oregon State University in support of their hydraulic testing program. The HFIR conversion schedule was revised and provided to the GTRI program. In addition to HFIR conversion activities, technical support was provided directly to the Fuel Fabrication Capability program manager.

  14. Investigation of proton focusing and conversion efficiency for proton fast ignition

    E-Print Network [OSTI]

    Bartal, Teresa Jean

    2012-01-01

    2.2 Proton Acceleration . . . . . . . . . . . . . . . .plasma (LSP) simulations . . Proton Focusing and ConversionProton Focusing and Conversion Efficiency with Hemispherical

  15. Address conversion unit for multiprocessor system

    SciTech Connect (OSTI)

    Fava, T.F.; Lary, R.F.; Blackledge, R.

    1987-03-03

    An address conversion unit is described for use in one processor in a multi-processor data processing system including a common memory, the processors and common memory being interconnected by a common bus including means for transferring address signals defining a common address space. The processor includes private bus means including means for transferring signals including address signals defining a private address space. A processor unit means is connected to the private bus means and includes means for transmitting and receiving signals including address signals over the private bus means for engaging in data transfers thereover. The address conversion unit is connected to the private bus means and common bus means for receiving address signals over the private bus means from the processor unit means in the private address space. The unit comprises: A. pointer storage means for storing a pointer identifying a portion of the common bus memory space; B. pointer generation means connected to receive a common bus address and for generating a pointer in response thereto for storage in the pointer storage means; and C. common bus address generation means connected to the private bus and the pointer storage means for receiving an address from the processor unit means and for generating a common bus address in response thereto. The common bus address is used to initiate transfers between the processor unit means and the common memory over the common bus.

  16. Ocean energy conversion systems annual research report

    SciTech Connect (OSTI)

    Not Available

    1981-03-01

    Alternative power cycle concepts to the closed-cycle Rankine are evaluated and those that show potential for delivering power in a cost-effective and environmentally acceptable fashion are explored. Concepts are classified according to the ocean energy resource: thermal, waves, currents, and salinity gradient. Research projects have been funded and reported in each of these areas. The lift of seawater entrained in a vertical steam flow can provide potential energy for a conventional hydraulic turbine conversion system. Quantification of the process and assessment of potential costs must be completed to support concept evaluation. Exploratory development is being completed in thermoelectricity and 2-phase nozzles for other thermal concepts. Wave energy concepts are being evaluated by analysis and model testing with present emphasis on pneumatic turbines and wave focussing. Likewise, several conversion approaches to ocean current energy are being evaluated. The use of salinity resources requires further research in membranes or the development of membraneless processes. Using the thermal resource in a Claude cycle process as a power converter is promising, and a program of R and D and subsystem development has been initiated to provide confirmation of the preliminary conclusion.

  17. Advanced Stirling conversion systems for terrestrial applications

    SciTech Connect (OSTI)

    Shaltens, R.K.

    1987-01-01

    Sandia National Laboratories (SNLA) is developing heat engines for terrestrial Solar distributed Heat Receivers. SNLA has identified the Stirling to be one of the most promising candidates for the terrestrial applications. The free-piston Stirling engine (FPSE) has the potential to meet the DOE goals for both performance and cost. Free-piston Stirling activities which are directed toward a dynamic power source for the space application are being conducted. Space power system requirements include high efficiency, very long life, high reliability and low vibration. The FPSE has the potential for future high power space conversion systems, either solar or nuclear powered. Generic free-piston technology is currently being developed for use with a residential heat pump under an Interagency Agreement. Also, an overview is presented of proposed conceptual designs for the Advanced Stirling Conversion System (ASCS) using a free-piston Stirling engine and a liquid metal heat pipe receiver. Power extraction includes both a linear alternator and hydraulic output capable of delivering approximately 25 kW of electrical power to the electric utility grid. Target cost of the engine/alternator is 300 dollars per kilowatt at a manufacturing rate of 10,000 units per year. The design life of the ASCS is 60,000 h (30 y) with an engine overhaul at 40,000 h (20 y). Also discussed are the key features and characteristics of the ASCS conceptual designs.

  18. Oriented Nanostructures for Energy Conversion and Storage

    SciTech Connect (OSTI)

    Liu, Jun; Cao, Guozhong H.; Yang, Zhenguo; Wang, Donghai; DuBois, Daniel L.; Zhou, Xiao Dong; Graff, Gordon L.; Pederson, Larry R.; Zhang, Jiguang

    2008-08-28

    Recently the role of nanostructured materials in addressing the challenges in energy and natural resources has attracted wide attention. In particular, oriented nanostructures have demonstrated promising properties for energy harvesting, conversion and storage. The purpose of the paper is to review the synthesis and application of oriented nanostructures in a few key areas of energy technologies, namely photovoltaics, batteries, supercapacitors and thermoelectrics. Although the applications differ from field to field, one of the fundamental challenges is to improve the generation and transport of electrons and ions. We will first briefly review the several major approaches to attain oriented nanostructured films that are applicable for energy applications. We will then discuss how such controlled nanostructures can be used in photovoltaics, batteries, capacitors, thermoelectrics, and other unconventional ways of energy conversion. We will highlight the role of high surface area to maximize the surface activity, and the importance of optimum dimension and architecture, controlled pore channels and alignment of the nanocrystalline phase to optimize the electrons and ion transport. Finally, the paper will discuss the challenges in attaining integrated architectures to achieve the desired performance. Brief background information will be provided for the relevant technologies, but the emphasis is focused mainly on the nanoeffects of mostly inorganic based materials and devices.

  19. Operations Information

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeeding access toOctober 1996Technologies /JuneOperating Oakoak ridge

  20. Operations Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeeding access toOctober 1996Technologies /JuneOperating Oakoak

  1. Wyoming’s “Rosy” Financial Picture

    E-Print Network [OSTI]

    Schuhmann, Robert A.; Skopek, Tracy A.

    2012-01-01

    pushing down prices. Gas well drilling in the state wasefficiencies in the well drilling process, production

  2. Wyoming-Wyoming Natural Gas Plant Processing

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan3Additions (Million2.8 2.6 2.7Decade Year-0Year Jan 2012 2013

  3. Closed Brayton cycle power conversion systems for nuclear reactors :

    SciTech Connect (OSTI)

    Wright, Steven A.; Lipinski, Ronald J.; Vernon, Milton E.; Sanchez, Travis

    2006-04-01

    This report describes the results of a Sandia National Laboratories internally funded research program to study the coupling of nuclear reactors to gas dynamic Brayton power conversion systems. The research focused on developing integrated dynamic system models, fabricating a 10-30 kWe closed loop Brayton cycle, and validating these models by operating the Brayton test-loop. The work tasks were performed in three major areas. First, the system equations and dynamic models for reactors and Closed Brayton Cycle (CBC) systems were developed and implemented in SIMULINKTM. Within this effort, both steady state and dynamic system models for all the components (turbines, compressors, reactors, ducting, alternators, heat exchangers, and space based radiators) were developed and assembled into complete systems for gas cooled reactors, liquid metal reactors, and electrically heated simulators. Various control modules that use proportional-integral-differential (PID) feedback loops for the reactor and the power-conversion shaft speed were also developed and implemented. The simulation code is called RPCSIM (Reactor Power and Control Simulator). In the second task an open cycle commercially available Capstone C30 micro-turbine power generator was modified to provide a small inexpensive closed Brayton cycle test loop called the Sandia Brayton test-Loop (SBL-30). The Capstone gas-turbine unit housing was modified to permit the attachment of an electrical heater and a water cooled chiller to form a closed loop. The Capstone turbine, compressor, and alternator were used without modification. The Capstone systems nominal operating point is 1150 K turbine inlet temperature at 96,000 rpm. The annular recuperator and portions of the Capstone control system (inverter) and starter system also were reused. The rotational speed of the turbo-machinery is controlled by adjusting the alternator load by using the electrical grid as the load bank. The SBL-30 test loop was operated at the manufacturers site (Barber-Nichols Inc.) and installed and operated at Sandia. A sufficiently detailed description of the loop is provided in this report along with the design characteristics of the turbo-alternator-compressor set to allow other researchers to compare their results with those measured in the Sandia test-loop. The third task consisted of a validation effort. In this task the test loop was operated and compared with the modeled results to develop a more complete understanding of this electrically heated closed power generation system and to validate the model. The measured and predicted system temperatures and pressures are in good agreement, indicating that the model is a reasonable representation of the test loop. Typical deviations between the model and the hardware results are less than 10%. Additional tests were performed to assess the capability of the Brayton engine to continue to remove decay heat after the reactor/heater is shutdown, to develop safe and effective control strategies, and to access the effectiveness of gas inventory control as an alternative means to provide load following. In one test the heater power was turned off to simulate a rapid reactor shutdown, and the turbomachinery was driven solely by the sensible heat stored in the heater for over 71 minutes without external power input. This is an important safety feature for CBC systems as it means that the closed Brayton loop will keep cooling the reactor without the need for auxiliary power (other than that needed to circulate the waste heat rejection coolant) provided the heat sink is available.

  4. Feedstock Supply System Design and Economics for Conversion of Lignocellulosic Biomass to Hydrocarbon Fuels Conversion Pathway: Fast Pyrolysis and Hydrotreating Bio-Oil Pathway "The 2017 Design Case"

    SciTech Connect (OSTI)

    Kevin L. Kenney; Kara G. Cafferty; Jacob J. Jacobson; Ian J. Bonner; Garold L. Gresham; J. Richard Hess; William A. Smith; David N. Thompson; Vicki S. Thompson; Jaya Shankar Tumuluru; Neal Yancey

    2014-01-01

    The U.S. Department of Energy promotes the production of liquid fuels from lignocellulosic biomass feedstocks by funding fundamental and applied research that advances the state of technology in biomass sustainable supply, logistics, conversion, and overall system sustainability. As part of its involvement in this program, Idaho National Laboratory (INL) investigates the feedstock logistics economics and sustainability of these fuels. Between 2000 and 2012, INL quantified and the economics and sustainability of moving biomass from the field or stand to the throat of the conversion process using conventional equipment and processes. All previous work to 2012 was designed to improve the efficiency and decrease costs under conventional supply systems. The 2012 programmatic target was to demonstrate a biomass logistics cost of $55/dry Ton for woody biomass delivered to fast pyrolysis conversion facility. The goal was achieved by applying field and process demonstration unit-scale data from harvest, collection, storage, preprocessing, handling, and transportation operations into INL’s biomass logistics model.

  5. Microclimatic Performance of a Free-Air Warming and CO2 Enrichment Experiment in Windy Wyoming, USA

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    LeCain, Daniel; Smith, David; Morgan, Jack; Kimball, Bruce A.; Pendall, Elise; Miglietta, Franco; Liang, Wenju

    2015-02-06

    In order to plan for global changing climate experiments are being conducted in many countries, but few have monitored the effects of the climate change treatments (warming, elevated CO2) on the experimental plot microclimate. During three years of an eight year study with year-round feedback-controlled infra-red heater warming (1.5/3.0°C day/night) and growing season free-air CO2 enrichment (600 ppm) in the mixed-grass prairie of Wyoming, USA, we monitored soil, leaf, canopy-air, above-canopy-air temperatures and relative humidity of control and treated experimental plots and evaluated ecologically important temperature differentials. Leaves were warmed somewhat less than the target settings (1.1 & 1.5°C day/night)more »but soil was warmed more creating an average that matched the target settings extremely well both during the day and night plus the summer and winter. The site typically has about 50% bare or litter covered soil, therefore soil heat transfer is more critical than in dense canopy ecosystems. The Wyoming site commonly has strong winds (5 ms-1 average) and significant daily and seasonal temperature fluctuations (as much as 30°C daily) but the warming system was nearly always able to maintain the set temperatures regardless of abiotic variation. The within canopy-air was only slightly warmed and above canopy-air was not warmed by the system, therefore convective warming was minor. Elevated CO2 had no direct effect nor interaction with the warming treatment on microclimate. Relative humidity within the plant canopy was only slightly reduced by warming. Soil water content was reduced by warming but increased by elevated CO2. This study demonstrates the importance of monitoring the microclimate in manipulative field global change experiments so that critical physiological and ecological conclusions can be determined. Highly variable energy demand fluctuations showed that passive IR heater warming systems will not maintain desired warming for much of the time.« less

  6. Enzymantic Conversion of Coal to Liquid Fuels

    SciTech Connect (OSTI)

    Richard Troiano

    2011-01-31

    The work in this project focused on the conversion of bituminous coal to liquid hydrocarbons. The major steps in this process include mechanical pretreatment, chemical pretreatment, and finally solubilization and conversion of coal to liquid hydrocarbons. Two different types of mechanical pretreatment were considered for the process: hammer mill grinding and jet mill grinding. After research and experimentation, it was decided to use jet mill grinding, which allows for coal to be ground down to particle sizes of 5 {mu}m or less. A Fluid Energy Model 0101 JET-O-MIZER-630 size reduction mill was purchased for this purpose. This machine was completed and final testing was performed on the machine at the Fluid Energy facilities in Telford, PA. The test results from the machine show that it can indeed perform to the required specifications and is able to grind coal down to a mean particle size that is ideal for experimentation. Solubilization and conversion experiments were performed on various pretreated coal samples using 3 different approaches: (1) enzymatic - using extracellular Laccase and Manganese Peroxidase (MnP), (2) chemical - using Ammonium Tartrate and Manganese Peroxidase, and (3) enzymatic - using the live organisms Phanerochaete chrysosporium. Spectral analysis was used to determine how effective each of these methods were in decomposing bituminous coal. After analysis of the results and other considerations, such as cost and environmental impacts, it was determined that the enzymatic approaches, as opposed to the chemical approaches using chelators, were more effective in decomposing coal. The results from the laccase/MnP experiments and Phanerochaete chrysosporium experiments are presented and compared in this final report. Spectra from both enzymatic methods show absorption peaks in the 240nm to 300nm region. These peaks correspond to aromatic intermediates formed when breaking down the coal structure. The peaks then decrease in absorbance over time, corresponding to the consumption of aromatic intermediates as they undergo ring cleavage. The results show that this process happens within 1 hour when using extracellular enzymes, but takes several days when using live organisms. In addition, live organisms require specific culture conditions, control of contaminants and fungicides in order to effectively produce extracellular enzymes that degrade coal. Therefore, when comparing the two enzymatic methods, results show that the process of using extracellular lignin degrading enzymes, such as laccase and manganese peroxidase, appears to be a more efficient method of decomposing bituminous coal.

  7. Operations Research Analysts

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural GasNatural GasEIARegionalMethodologyNorth093 *Oil

  8. Heavy element radionuclides (Pu, Np, U) and {sup 137}Cs in soils collected from the Idaho National Engineering and Environmental Laboratory and other sites in Idaho, Montana, and Wyoming

    SciTech Connect (OSTI)

    Beasley, T.M.; Rivera, W. Jr. [Dept. of Energy, New York, NY (United States). Environmental Measurements Lab.; Kelley, J.M.; Bond, L.A. [Pacific Northwest National Lab., Richland, WA (United States); Liszewski, M.J. [Bureau of Reclamation (United States); Orlandini, K.A. [Argonne National Lab., IL (United States)

    1998-10-01

    The isotopic composition of Pu in soils on and near the Idaho National Engineering and Environmental Laboratory (INEEL) has been determined in order to apportion the sources of the Pu into those derived from stratospheric fallout, regional fallout from the Nevada Test Site (NTS), and facilities on the INEEL site. Soils collected offsite in Idaho, Montana, and Wyoming were collected to further characterize NTS fallout in the region. In addition, measurements of {sup 237}Np and {sup 137}Cs were used to further identify the source of the Pu from airborne emissions at the Idaho Chemical Processing Plant (ICPP) or fugitive releases from the Subsurface Disposal Area (SDA) in the Radioactive Waste Management Complex (RWMC). There is convincing evidence from this study that {sup 241}Am, in excess of that expected from weapons-grade Pu, constituted a part of the buried waste at the SDA that has subsequently been released to the environment. Measurements of {sup 236}U in waters from the Snake River Plain aquifer and a soil core near the ICPP suggest that this radionuclide may be a unique interrogator of airborne releases from the ICPP. Neptunium-237 and {sup 238}Pu activities in INEEL soils suggest that airborne releases of Pu from the ICPP, over its operating history, may have recently been overestimated.

  9. Review of pyroelectric thermal energy harvesting and new MEMs based resonant energy conversion techniques

    SciTech Connect (OSTI)

    Hunter, Scott Robert [ORNL; Lavrik, Nickolay V [ORNL; Mostafa, Salwa [ORNL; Rajic, Slobodan [ORNL; Datskos, Panos G [ORNL

    2012-01-01

    Harvesting electrical energy from thermal energy sources using pyroelectric conversion techniques has been under investigation for over 50 years, but it has not received the attention that thermoelectric energy harvesting techniques have during this time period. This lack of interest stems from early studies which found that the energy conversion efficiencies achievable using pyroelectric materials were several times less than those potentially achievable with thermoelectrics. More recent modeling and experimental studies have shown that pyroelectric techniques can be cost competitive with thermoelectrics and, using new temperature cycling techniques, has the potential to be several times as efficient as thermoelectrics under comparable operating conditions. This paper will review the recent history in this field and describe the techniques that are being developed to increase the opportunities for pyroelectric energy harvesting. The development of a new thermal energy harvester concept, based on temperature cycled pyroelectric thermal-to-electrical energy conversion, are also outlined. The approach uses a resonantly driven, pyroelectric capacitive bimorph cantilever structure that can be used to rapidly cycle the temperature in the energy harvester. The device has been modeled using a finite element multi-physics based method, where the effect of the structure material properties and system parameters on the frequency and magnitude of temperature cycling, and the efficiency of energy recycling using the proposed structure, have been modeled. Results show that thermal contact conductance and heat source temperature differences play key roles in dominating the cantilever resonant frequency and efficiency of the energy conversion technique. This paper outlines the modeling, fabrication and testing of cantilever and pyroelectric structures and single element devices that demonstrate the potential of this technology for the development of high efficiency thermal-to-electrical energy conversion devices.

  10. OCEAN THERMAL ENERGY CONVERSION PROGRAMMATIC ENVIRONMENTAL ASSESSMENT

    SciTech Connect (OSTI)

    Sands, M.Dale

    1980-08-01

    Significant achievements in Ocean Thermal Energy Conversion (OTEC) technology have increased the probability of producing OTEC-derived power in this decade with subsequent large-scale commercialization to follow by the turn of the century. Under U.S. Department of Energy funding, Interstate Electronics has prepared an OTEC Programmatic Environmental Assessment (EA) that considers tne development, demonstration, and commercialization of OTEC power systems. The EA considers several tecnnological designs (open cycle and closed cycle), plant configurations (land-based, moored, and plantship), and power usages (baseload electricity and production of ammonia and aluminum). Potencial environmental impacts, health and safety issues, and a status update of international, federal, and state plans and policies, as they may influence OTEC deployments, are included.

  11. Bioenergy Technologies Office Conversion R&D Pathway: Whole Algae...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Whole Algae Hydrothermal Liquefaction Bioenergy Technologies Office Conversion R&D Pathway: Whole Algae Hydrothermal Liquefaction Whole algae hydrothermal liquefaction is one of...

  12. Semiconductor nanowires for photovoltaic and photoelectrochemical energy conversion

    E-Print Network [OSTI]

    Dasgupta, Neil

    2014-01-01

    low-cost, high efficiency solar energy conversion devices.Awards under the SunShot Solar Energy Technologies Program.Photoelectrochemistry, Solar Energy Abstract Semiconductor

  13. Solar-Driven Microbial Photoelectrochemical System for Energy Conversion

    E-Print Network [OSTI]

    Wang, Hanyu

    2015-01-01

    photo-anode based solar microbial energy conversion system,C. J. N. , Solar Energy Powered Microbial Fuel Cell with aLight Energy to Bioelectricity: Photosynthetic Microbial

  14. Workshop on Conversion Technologies for Advanced Biofuels - Carbohydra...

    Energy Savers [EERE]

    Carbohydrates Workshop on Conversion Technologies for Advanced Biofuels - Carbohydrates DOE report-out presentation at the CTAB webinar on carbohydrates. ctabwebinarcarbohydrates...

  15. Symposium on the Physical Chemistry of Solar Energy Conversion...

    Office of Scientific and Technical Information (OSTI)

    Symposium on the Physical Chemistry of Solar Energy Conversion, Indianapolis American Chemical Society Meetings, Fall 2013 Citation Details In-Document Search Title: Symposium on...

  16. Center on Nanostructuring for Efficient Energy Conversion - Tutorials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Atomic Layer Deposition | Prof. Stacey Bent - Jun 3, 2013 Center on Nanostructuring for Efficient Energy Conversion is an Energy Frontier Research Center funded by the U.S....

  17. Center on Nanostructuring for Efficient Energy Conversion - Partners

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    them for specific reductive or energy-generating processes. Center on Nanostructuring for Efficient Energy Conversion is an Energy Frontier Research Center funded by the U.S....

  18. Center on Nanostructuring for Efficient Energy Conversion - Outside...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    contact Elizabeth Mattson at emattson(at)stanford.edu. Center on Nanostructuring for Efficient Energy Conversion is an Energy Frontier Research Center funded by the U.S....

  19. Center on Nanostructuring for Efficient Energy Conversion - Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technical University of Denmark on computational modeling. Center on Nanostructuring for Efficient Energy Conversion is an Energy Frontier Research Center funded by the U.S....

  20. Center on Nanostructuring for Efficient Energy Conversion - Team...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Staff Team & Research Slideshow Center on Nanostructuring for Efficient Energy Conversion is an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of...

  1. EIS-0359: Uranium Hexafluoride Conversion Facility at the Paducah...

    Broader source: Energy.gov (indexed) [DOE]

    and decontamination and decommissioning of the proposed depleted uranium hexafluoride (DUF6) conversion facility at three locations within the Paducah site; transportation of...

  2. EIS-0360: Depleted Uranium Oxide Conversion Product at the Portsmouth...

    Broader source: Energy.gov (indexed) [DOE]

    and decontamination and decommissioning of the proposed depleted uranium hexafluoride (DUF6) conversion facility at three alternative locations within the Portsmouth site;...

  3. April 2013 Most Viewed Documents for Energy Storage, Conversion...

    Office of Scientific and Technical Information (OSTI)

    for Energy Storage, Conversion, And Utilization Science Subject Feed Seventh Edition Fuel Cell Handbook NETL (2004) 628 > Continuously variable transmissions: theory and...

  4. Process Design and Economics for Biochemical Conversion of Lignocellul...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biochemical Conversion of Lignocellulosic Biomass to Ethanol: Dilute-Acid Pretreatment and Enzymatic Hydrolysis of Corn Stover Process Design and Economics for Biochemical...

  5. New process speeds conversion of biomass to fuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nancy Ambrosiano Communications Office (505) 667-0471 Email Efficient conversion of non-food biomass into fuels and chemical feedstocks could reduce society's dependence on...

  6. Workshop on Conversion Technologies for Advanced Biofuels - Bio...

    Energy Savers [EERE]

    Bio-Oil Production Conversion Technologies for Advanced Biofuels - Bio-Oil Upgrading Challenge 2 Logistics and Compatibility with Existing Infrastructure Throughout Supply Chain...

  7. Thermoelectrici Conversion of Waste Heat to Electricity in an...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Thermoelectrici Conversion of Waste Heat to Electricity in an IC Engine-Powered Vehicle 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters...

  8. Suite of Cellulase Enzyme Technologies for Biomass Conversion...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biomass and Biofuels Biomass and Biofuels Find More Like This Return to Search Suite of Cellulase Enzyme Technologies for Biomass Conversion National Renewable Energy Laboratory...

  9. Thermoelectric Conversion of Waste Heat to Electricity in an...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    unit in an over-the-road truck system. schock.pdf More Documents & Publications Thermoelectric Conversion of Wate Heat to Electricity in an IC Engine Powered Vehicle...

  10. Thermoelectric Conversion of Waste Heat to Electricity in an...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in an Over the Road Diesel Powered Engine System by the Application of Advanced Thermoelectric Systems Implemented in a Hybrid Configuration Thermoelectric Conversion of Waste...

  11. Thermoelectric Conversion of Waste Heat to Electricity in an...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    using thermoelectrics on a OTR truck schock.pdf More Documents & Publications Thermoelectric Conversion of Waste Heat to Electricity in an IC Engine Powered Vehicle...

  12. Thermoelectric Conversion of Waste Heat to Electricity in an...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Review and Peer Evaluation ace049schock2011o.pdf More Documents & Publications Thermoelectric Conversion of Waste Heat to Electricity in an IC Engine Powered Vehicle...

  13. Biological Conversion of Sugars to Hydrocarbons Technology Pathway...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pathway This technology pathway case investigates the biological conversion of biomass-derived sugars to hydrocarbon biofuels, utilizing data from recent literature references and...

  14. Dual-fuel engine conversions evaluated by U.S. Navy

    SciTech Connect (OSTI)

    NONE

    1996-10-01

    In seeking ways to reduce emissions from two-stroke locomotive type engines, the Navy has evaluated dual-fuel conversions operating on a compression ignition cycle, using up to 94% natural gas and 6% diesel pilot fuel. The Navy has conducted an evaluation and test program under the direction of Dr. Normnn L. Helgeson, at the Naval Facilities Engineering Service Center in Port Hueneme, California. Of the Navy`s many diesel engines, those installed in its MUSE (mobile utility support equipment) units for temporary electrical power were the first Navy off-road engines to be affected by emissions regulations. Most of the units are powered by the EMD 645 engine, and when burning diesel fuel do not meet the emission requirements in many areas of the country. This paper discusses the changes and results of the conversion and shakedown tests.

  15. Evaluation of aftermarket LPG conversion kits in light-duty vehicle applications. Final report

    SciTech Connect (OSTI)

    Bass, E.A.

    1993-06-01

    SwRI was contracted by NREL to evaluate three LPG conversion kits on a Chevrolet Lumina. The objective of the project was to measure the Federal Test Procedure (FTP) emissions and fuel economy of these kits, and compare their performance to gasoline-fueled operation and to each other. Varying LPG fuel blends allowed a preliminary look at the potential for fuel system disturbance. The project required kit installation and adjustment according to manufacturer`s instructions. A limited amount of trouble diagnosis was also performed on the fuel systems. A simultaneous contract from the Texas Railroad Commission, in cooperation with NREL, provided funds for additional testing with market fuels (HD5 propane and industry average gasoline) and hydrocarbon (HC) emissions speciation to determine the ozone-forming potential of LPG HC emissions. This report documents the procurement, installation, and testing of these LPG conversion kits.

  16. Status of the Pit Disassembly and Conversion Facility

    SciTech Connect (OSTI)

    Zygmunt, S. [Los Alamos National Lab., NM (United States); Peko, D. [Dept. of Energy, Washington, DC (United States). Office of Fissile Materials Disposition

    1998-12-31

    A planned new facility, the Pit Disassembly and Conversion Facility (PDCF) will be used to disassemble the nation`s inventory of surplus nuclear weapons pits and convert the plutonium recovered from those pits into a form suitable for storage, international inspection, and final disposition. Sized to handle 35 metric tons of plutonium from pits and other sources over its 10-year operating life, the PDCF will apply the Advanced Recovery and Integrated Extraction System (ARIES) technology. ARIES process technology has been developed at Los Alamos National Laboratory (LANL) and Lawrence Livermore National Laboratory (LLNL) and an integrated system is being demonstrated LANL. Four sites were considered for locating the PDCF: Pantex Plant, Savannah River Site (SRS), Idaho National Engineering and Environmental Laboratory (INEEL), and Hanford Site. Each site offers a different opportunity for constructing the PDCF, ranging from a new building at Pantex Plant to using an existing building at Hanford Site or INEEL. The Surplus Plutonium Disposition Environmental Impact Statement was prepared by the Department of Energy (DOE) Office of Fissile Materials Disposition (OFMD) to aid in site selection. This paper describes the initial scoping activities, preconceptual and conceptual design work, and the status of the PDCF.

  17. Conditions during syntectonic vein formation in the footwall of the Absaroka thrust fault of the Idaho-Wyoming-Utah fold and thrust belt 

    E-Print Network [OSTI]

    Lambert, George Randall

    1993-01-01

    Results. . Isotope Thermometry . FRACTURE MECHANICS . Analysis Procedure and Results DISCUSSION . Thrust Faulting and Overburden Temperatures. Geothermal Gradient Constraints. Twtn Creek Formation Fluid Flow? Closed system. Open System. . tv vt...C. The lithostatic and hydrostatic thermobartc gradients were calculated using a 26 MPa/km hthostatic gradient, a 10 MPa/km hydrostatic gradient and a 25oC/km geothermal gradient. The present mean surface temperature in this portion of the Idaho-Wyoming-Utah fold...

  18. Development of Integrated Online Monitoring Systems for Detection of Diversion at Natural Uranium Conversion Facilities

    SciTech Connect (OSTI)

    Dewji, Shaheen A; Lee, Denise L; Croft, Stephen; McElroy, Robert Dennis; Hertel, Nolan; Chapman, Jeffrey Allen; Cleveland, Steven L

    2013-01-01

    Recent work at Oak Ridge National Laboratory (ORNL) has focused on some source term modeling of uranyl nitrate (UN) as part of a comprehensive validation effort employing gamma-ray detector instrumentation for the detection of diversion from declared conversion activities. Conversion, the process by which natural uranium ore (yellowcake) is purified and converted through a series of chemical processes into uranium hexafluoride gas (UF6), has historically been excluded from the nuclear safeguards requirements of the 235U-based nuclear fuel cycle. The undeclared diversion of this product material could potentially provide feedstock for a clandestine weapons program for state or non-state entities. Given the changing global political environment and the increased availability of dual-use nuclear technology, the International Atomic Energy Agency has evolved its policies to emphasize safeguarding this potential feedstock material in response to dynamic and evolving potential diversion pathways. To meet the demand for instrumentation testing at conversion facilities, ORNL developed the Uranyl Nitrate Calibration Loop Equipment (UNCLE) facility to simulate the full-scale operating conditions of a purified uranium-bearing aqueous stream exiting the solvent extraction process in a natural uranium conversion plant. This work investigates gamma-ray signatures of UN circulating in the UNCLE facility and evaluates detector instrumentation sensitivity to UN for safeguards applications. These detector validation activities include assessing detector responses to the UN gamma-ray signatures for spectrometers based on sodium iodide, lanthanum bromide, and germanium detectors. The results of measurements under static and dynamic operating conditions at concentrations ranging from 10-90g U/L of naturally enriched UN will be presented. A range of gamma-ray lines was examined and self-attenuation factors were calculated, in addition to attenuation for transmission measurement of density, concentration and enrichment. A detailed uncertainty analysis will be presented providing insights into instrumentation limitations to spoofing.

  19. An evaluation of health risk to the public as a consequence of in situ uranium mining in Wyoming, USA

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ruedig, Elizabeth; Johnson, Thomas E.

    2015-08-30

    In the United States there is considerable public concern regarding the health effects of in situ recovery uranium mining. These concerns focus principally on exposure to contaminants mobilized in groundwater by the mining process. However, the risk arising as a result of mining must be viewed in light of the presence of naturally occurring uranium ore and other constituents which comprise a latent hazard. The United States Environmental Protection Agency recently proposed new guidelines for successful restoration of an in situ uranium mine by limiting concentrations of thirteen groundwater constituents: arsenic, barium, cadmium, chromium, lead, mercury, selenium, silver, nitrate (asmore »nitrogen), molybdenum, radium, total uranium, and gross ? activity. We investigated the changes occurring to these constituents at an ISR uranium mine in Wyoming, USA by comparing groundwater quality at baseline measurement to that at stability (post-restoration) testing. Of the groundwater constituents considered, only uranium and radium-226 showed significant (p –1. As a result, higher concentrations of uranium correspond to increased biomarkers of nephrotoxicity, however the clinical significance of this increase is unclear.« less

  20. Using HEM surveys to evaluate disposal of by-product water from CBNG development in the Powder River Basin, Wyoming

    SciTech Connect (OSTI)

    Lipinski, B.A.; Sams, J.I.; Smith, B.D. (USGS, Denver, CO); Harbert, W.P.

    2008-05-01

    Production of methane from thick, extensive coal beds in the Powder River Basin ofWyoming has created water management issues. Since development began in 1997, more than 650 billion liters of water have been produced from approximately 22,000 wells. Infiltration impoundments are used widely to dispose of by-product water from coal bed natural gas (CBNG) production, but their hydrogeologic effects are poorly understood. Helicopter electromagnetic surveys (HEM) were completed in July 2003 and July 2004 to characterize the hydrogeology of an alluvial aquifer along the Powder River. The aquifer is receiving CBNG produced water discharge from infiltration impoundments. HEM data were subjected to Occam’s inversion algorithms to determine the aquifer bulk conductivity, which was then correlated to water salinity using site-specific sampling results. The HEM data provided high-resolution images of salinity levels in the aquifer, a result not attainable using traditional sampling methods. Interpretation of these images reveals clearly the produced water influence on aquifer water quality. Potential shortfalls to this method occur where there is no significant contrast in aquifer salinity and infiltrating produced water salinity and where there might be significant changes in aquifer lithology. Despite these limitations, airborne geophysical methods can provide a broadscale (watershed-scale) tool to evaluate CBNG water disposal, especially in areas where field-based investigations are logistically prohibitive. This research has implications for design and location strategies of future CBNG water surface disposal facilities within the Powder River Basin.