National Library of Energy BETA

Sample records for operating powertech uranium

  1. Renewable Powertech Inc | Open Energy Information

    Open Energy Info (EERE)

    Powertech Inc Jump to: navigation, search Name: Renewable Powertech Inc Place: Las Vegas, Nevada Sector: Efficiency, Renewable Energy Product: Las Vegas-based renewable energy...

  2. Powertech: Hydrogen Expertise Storage Needs | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Powertech: Hydrogen Expertise Storage Needs Powertech: Hydrogen Expertise Storage Needs This presentation by Angela Das of Powertech was given at the DOE Hydrogen Compression, Storage, and Dispensing Workshop in March 2013. PDF icon csd_workshop_10_das.pdf More Documents & Publications CNG and Hydrogen Tank Safety, R&D, and Testing Hydrogen Tank Testing R&D Type 4 Tank Testing, Certification and Field Performance Data

  3. DOE Extends Contract to Operate Depleted Uranium Hexafluoride...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Extends Contract to Operate Depleted Uranium Hexafluoride Conversion Plants DOE Extends Contract to Operate Depleted Uranium Hexafluoride Conversion Plants December 24, 2015 -...

  4. DOE Extends Contract to Operate Depleted Uranium Hexafluoride Conversion

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Plants | Department of Energy Extends Contract to Operate Depleted Uranium Hexafluoride Conversion Plants DOE Extends Contract to Operate Depleted Uranium Hexafluoride Conversion Plants December 24, 2015 - 11:06am Addthis LEXINGTON, Ky. (Dec. 24, 2015) - The U.S. Department of Energy's Office of Environmental Management (EM) today announced it is extending its contract for Operations of Depleted Uranium Hexafluoride (DUF6) Conversion Facilities at Paducah, Kentucky and Portsmouth, Ohio for a

  5. DOE Extends Contract to Operate Depleted Uranium Hexafluoride Conversion

    Office of Environmental Management (EM)

    Plants | Department of Energy Contract to Operate Depleted Uranium Hexafluoride Conversion Plants DOE Extends Contract to Operate Depleted Uranium Hexafluoride Conversion Plants December 24, 2015 - 10:00am Addthis Media Contact Brad Mitzelfelt, 859-219-4035 brad.mitzelfelt@lex.doe.gov LEXINGTON, Ky. - The U.S. Department of Energy's Office of Environmental Management (EM) today announced it is extending its contract for Operations of Depleted Uranium Hexafluoride (DUF6) Conversion Facilities

  6. Depleted Uranium Hexafluoride (DUF6) Fully Operational at the Portsmouth

    Office of Environmental Management (EM)

    and Paducah Gaseous Diffusion Sites | Department of Energy Depleted Uranium Hexafluoride (DUF6) Fully Operational at the Portsmouth and Paducah Gaseous Diffusion Sites Depleted Uranium Hexafluoride (DUF6) Fully Operational at the Portsmouth and Paducah Gaseous Diffusion Sites October 20, 2011 - 9:16am Addthis When Babcock & Wilcox Conversion Services took over the DUF6 Project on March 29 of this year, the company had one thing in mind: Bring all seven conversion lines at both plants to

  7. CRAD, Training- Y-12 Enriched Uranium Operations Oxide Conversion Facility

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a January 2005 assessment of the Training Program at the Y-12 - Enriched Uranium Operations Oxide Conversion Facility.

  8. CRAD, Management- Y-12 Enriched Uranium Operations Oxide Conversion Facility

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a January 2005 assessment of Management program at the Y-12 - Enriched Uranium Operations Oxide Conversion Facility.

  9. CRAD, Conduct of Operations- Y-12 Enriched Uranium Operations Oxide Conversion Facility

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a January, 2005 assessment of Conduct of Operations program at the Y-12 - Enriched Uranium Operations Oxide Conversion Facility.

  10. Operating limit evaluation for disposal of uranium enrichment plant wastes

    SciTech Connect (OSTI)

    Lee, D.W.; Kocher, D.C.; Wang, J.C.

    1996-02-01

    A proposed solid waste landfill at Paducah Gaseous Diffusion Plant (PGDP) will accept wastes generated during normal plant operations that are considered to be non-radioactive. However, nearly all solid waste from any source or facility contains small amounts of radioactive material, due to the presence in most materials of trace quantities of such naturally occurring radionuclides as uranium and thorium. This paper describes an evaluation of operating limits, which are protective of public health and the environment, that would allow waste materials containing small amounts of radioactive material to be sent to a new solid waste landfill at PGDP. The operating limits are expressed as limits on concentrations of radionuclides in waste materials that could be sent to the landfill based on a site-specific analysis of the performance of the facility. These limits are advantageous to PGDP and DOE for several reasons. Most importantly, substantial cost savings in the management of waste is achieved. In addition, certain liabilities that could result from shipment of wastes to a commercial off-site solid waste landfill are avoided. Finally, assurance that disposal operations at the PGDP landfill are protective of public health and the environment is provided by establishing verifiable operating limits for small amounts of radioactive material; rather than relying solely on administrative controls. The operating limit determined in this study has been presented to the Commonwealth of Kentucky and accepted as a condition to be attached to the operating permit for the solid waste landfill.

  11. EIS-0329: Proposed Construction, Operation, Decontamination/Decommissioning of Depleted Uranium Hexafluoride Conversion Facilities

    Broader source: Energy.gov [DOE]

    This EIS analyzes DOE's proposal to construct, operate, maintain, and decontaminate and decommission two depleted uranium hexafluoride (DUF 6) conversion facilities, at Portsmouth, Ohio, and Paducah, Kentucky.

  12. DOE Seeks Contractor for Depleted Uranium Hexafluoride (DUF6) Operations at

    Energy Savers [EERE]

    Ohio and Kentucky Facilities | Department of Energy Contractor for Depleted Uranium Hexafluoride (DUF6) Operations at Ohio and Kentucky Facilities DOE Seeks Contractor for Depleted Uranium Hexafluoride (DUF6) Operations at Ohio and Kentucky Facilities April 1, 2015 - 3:30pm Addthis Media Contact: Lynette Chafin, 513-246-0461, Lynette.Chafin@emcbc.doe.gov Cincinnati -- The U.S. Department of Energy (DOE) today issued a Draft Request for Proposal (RFP) seeking a contractor to perform Depleted

  13. uranium

    National Nuclear Security Administration (NNSA)

    to prepare surplus plutonium for disposition, and readiness to begin the Second Uranium Cycle, to start processing spent nuclear fuel.

    H Canyon is also being...

  14. CRAD, Safety Basis- Y-12 Enriched Uranium Operations Oxide Conversion Facility

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a January 2005 assessment of the Safety Basis at the Y-12 - Enriched Uranium Operations Oxide Conversion Facility.

  15. CRAD, Occupational Safety & Health- Y-12 Enriched Uranium Operations Oxide Conversion Facility

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a January 2005 assessment of Industrial Safety and Industrial Health programs at the Y-12 - Enriched Uranium Operations Oxide Conversion Facility.

  16. CRAD, Radiological Controls- Y-12 Enriched Uranium Operations Oxide Conversion Facility

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a January 2005 assessment of the Radiation Protection Program at the Y-12 - Enriched Uranium Operations Oxide Conversion Facility.

  17. CRAD, DOE Oversight- Y-12 Enriched Uranium Operations Oxide Conversion Facility

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a DOE independent oversight assessment of the Y-12 Site Office's programs for oversight of its contractors at the Y-12 Enriched Uranium Operations Oxide Conversion Facility.

  18. CRAD, Emergency Management- Y-12 Enriched Uranium Operations Oxide Conversion Facility

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a January 2005 assessment of Emergency Management program at the Y-12 Enriched Uranium Operations Oxide Conversion Facility.

  19. CRAD, Environmental Protection- Y-12 Enriched Uranium Operations Oxide Conversion Facility

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a January 2005 assessment of Environmental Compliance program at the Y-12 - Enriched Uranium Operations Oxide Conversion Facility.

  20. Depleted Uranium Hexafluoride (DUF6) Fully Operational at the...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Because much of the equipment had not been operated since installation, we expected a lot of gremlins and breakdowns, and in fact, we got them." The DUF6 Project paused briefly ...

  1. Establishing Specifications for Low Enriched Uranium Fuel Operations Conducted Outside the High Flux Isotope Reactor Site

    SciTech Connect (OSTI)

    Pinkston, Daniel [ORNL; Primm, Trent [ORNL; Renfro, David G [ORNL; Sease, John D [ORNL

    2010-10-01

    The National Nuclear Security Administration (NNSA) has funded staff at Oak Ridge National Laboratory (ORNL) to study the conversion of the High Flux Isotope Reactor (HFIR) from the current, high enriched uranium fuel to low enriched uranium fuel. The LEU fuel form is a metal alloy that has never been used in HFIR or any HFIR-like reactor. This report provides documentation of a process for the creation of a fuel specification that will meet all applicable regulations and guidelines to which UT-Battelle, LLC (UTB) the operating contractor for ORNL - must adhere. This process will allow UTB to purchase LEU fuel for HFIR and be assured of the quality of the fuel being procured.

  2. DOE Issues Final Request for Proposal for the Operation of Depleted Uranium Hexafluoride (DUF6) Conversion Facilities

    Broader source: Energy.gov [DOE]

    Cincinnati -- The U.S. Department of Energy (DOE) today issued a Final Request for Proposal (RFP), for the Operation of Depleted Uranium Hexafluoride (DUF6) Conversion Facilities at Paducah, Kentucky and Portsmouth, Ohio. A cost-plus award fee and firm-fixed-price contract line item contract will be awarded from this Final RFP.

  3. Modulated Tool-Path Chip Breaking For Depleted Uranium Machining Operations

    SciTech Connect (OSTI)

    Barkman, W. E.; Babelay Jr., E. F.; Smith, K. S.; Assaid T. S.; McFarland, J. T.; Tursky, D. A.

    2010-04-15

    Turning operations involving depleted uranium frequently generate long, stringy chips that present a hazard to both the machinist and the machine tool. While a variety of chip-breaking techniques are available, they generally depend on a mechanism that increases the bending of the chip or the introduction of a one dimensional vibration that produces an interrupted cutting pattern. Unfortunately, neither of these approaches is particularly effective when making a 'light depth-of-cut' on a contoured workpiece. The historical solution to this problem has been for the machinist to use long-handled tweezers to 'pull the chip' and try to keep it submerged in the chip pan; however, this approach is not practical for all machining operations. This paper discusses a research project involving the Y-12 National Security Complex and the University of North Carolina at Charlotte in which unique, oscillatory part programs are used to continuously create an interrupted cut that generates pre-defined, user-selectable chip lengths.

  4. MILDOS - A Computer Program for Calculating Environmental Radiation Doses from Uranium Recovery Operations

    SciTech Connect (OSTI)

    Strange, D. L.; Bander, T. J.

    1981-04-01

    The MILDOS Computer Code estimates impacts from radioactive emissions from uranium milling facilities. These impacts are presented as dose commitments to individuals and the regional population within an 80 km radius of the facility. Only airborne releases of radioactive materials are considered: releases to surface water and to groundwater are not addressed in MILDOS. This code is multi-purposed and can be used to evaluate population doses for NEPA assessments, maximum individual doses for predictive 40 CFR 190 compliance evaluations, or maximum offsite air concentrations for predictive evaluations of 10 CFR 20 compliance. Emissions of radioactive materials from fixed point source locations and from area sources are modeled using a sector-averaged Gaussian plume dispersion model, which utilizes user-provided wind frequency data. Mechanisms such as deposition of particulates, resuspension. radioactive decay and ingrowth of daughter radionuclides are included in the transport model. Annual average air concentrations are computed, from which subsequent impacts to humans through various pathways are computed. Ground surface concentrations are estimated from deposition buildup and ingrowth of radioactive daughters. The surface concentrations are modified by radioactive decay, weathering and other environmental processes. The MILDOS Computer Code allows the user to vary the emission sources as a step function of time by adjustinq the emission rates. which includes shutting them off completely. Thus the results of a computer run can be made to reflect changing processes throughout the facility's operational lifetime. The pathways considered for individual dose commitments and for population impacts are: • Inhalation • External exposure from ground concentrations • External exposure from cloud immersion • Ingestioo of vegetables • Ingestion of meat • Ingestion of milk • Dose commitments are calculated using dose conversion factors, which are ultimately based on recommendations of the International Commission on Radiological Protection (ICRP). These factors are fixed internally in the code, and are not part of the input option. Dose commitments which are available from the code are as follows: • Individual dose commitments for use in predictive 40 CFR 190 compliance evaluations (Radon and short-lived daughters are excluded) • Total individual dose commitments (impacts from all available radionuclides are considered) • Annual population dose commitments (regional, extraregional, total and cummulative). This model is primarily designed for uranium mill facilities, and should not be used for operations with different radionuclides or processes.

  5. CRAD, Criticality Safety- Y-12 Enriched Uranium Operations Oxide Conversion Facility

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a January 2005 assessment of the Criticality Safety program at the Y-12 - Enriched Uranium Facility.

  6. Uranium Processing Facility | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Y-12 Uranium Processing Facility Uranium Processing Facility UPF will be a state-of-the-art, consolidated facility for enriched uranium operations including assembly,...

  7. Integration of health physics, safety and operational processes for management and disposition of recycled uranium wastes at the Fernald Environmental Management Project (FEMP)

    SciTech Connect (OSTI)

    Barber, James; Buckley, James

    2003-02-23

    Fluor Fernald, Inc. (Fluor Fernald), the contractor for the U. S. Department of Energy (DOE) Fernald Environmental Management Project (FEMP), recently submitted a new baseline plan for achieving site closure by the end of calendar year 2006. This plan was submitted at DOE's request, as the FEMP was selected as one of the sites for their accelerated closure initiative. In accordance with the accelerated baseline, the FEMP Waste Management Project (WMP) is actively evaluating innovative processes for the management and disposition of low-level uranium, fissile material, and thorium, all of which have been classified as waste. These activities are being conducted by the Low Level Waste (LLW) and Uranium Waste Disposition (UWD) projects. Alternatives associated with operational processing of individual waste streams, each of which poses potentially unique health physics, industrial hygiene and industrial hazards, are being evaluated for determination of the most cost effective and safe met hod for handling and disposition. Low-level Mixed Waste (LLMW) projects are not addressed in this paper. This paper summarizes historical uranium recycling programs and resultant trace quantity contamination of uranium waste streams with radionuclides, other than uranium. The presentation then describes how waste characterization data is reviewed for radiological and/or chemical hazards and exposure mitigation techniques, in conjunction with proposed operations for handling and disposition. The final part of the presentation consists of an overview of recent operations within LLW and UWD project dispositions, which have been safely completed, and a description of several current operations.

  8. Draft Environmental Impact Statement for Construction and Operation of a Depleted Uranium Hexafluoride Conversion Facility at the Portsmouth, Ohio, Site

    SciTech Connect (OSTI)

    N /A

    2003-11-28

    This document is a site-specific environmental impact statement (EIS) for construction and operation of a proposed depleted uranium hexafluoride (DUF{sub 6}) conversion facility at the U.S. Department of Energy (DOE) Portsmouth site in Ohio (Figure S-1). The proposed facility would convert the DUF{sub 6} stored at Portsmouth to a more stable chemical form suitable for use or disposal. The facility would also convert the DUF{sub 6} from the East Tennessee Technology Park (ETTP) site near Oak Ridge, Tennessee. In a Notice of Intent (NOI) published in the Federal Register on September 18, 2001 (Federal Register, Volume 66, page 48123 [66 FR 48123]), DOE announced its intention to prepare a single EIS for a proposal to construct, operate, maintain, and decontaminate and decommission two DUF{sub 6} conversion facilities at Portsmouth, Ohio, and Paducah, Kentucky, in accordance with the National Environmental Policy Act of 1969 (NEPA) (United States Code, Title 42, Section 4321 et seq. [42 USC 4321 et seq.]) and DOE's NEPA implementing procedures (Code of Federal Regulations, Title 10, Part 1021 [10 CFR Part 1021]). Subsequent to award of a contract to Uranium Disposition Services, LLC (hereafter referred to as UDS), Oak Ridge, Tennessee, on August 29, 2002, for design, construction, and operation of DUF{sub 6} conversion facilities at Portsmouth and Paducah, DOE reevaluated its approach to the NEPA process and decided to prepare separate site-specific EISs. This change was announced in a Federal Register Notice of Change in NEPA Compliance Approach published on April 28, 2003 (68 FR 22368); the Notice is included as Attachment B to Appendix C of this EIS. This EIS addresses the potential environmental impacts from the construction, operation, maintenance, and decontamination and decommissioning (D&D) of the proposed conversion facility at three alternative locations within the Portsmouth site; from the transportation of all ETTP cylinders (DUF{sub 6}, low-enriched UF6 [LEU-UF{sub 6}], and empty) to Portsmouth; from the transportation of depleted uranium conversion products to a disposal facility; and from the transportation, sale, use, or disposal of the fluoride-containing conversion products (hydrogen fluoride [HF] or calcium fluoride [CaF{sub 2}]). An option of shipping the ETTP cylinders to Paducah is also considered. In addition, this EIS evaluates a no action alternative, which assumes continued storage of DUF{sub 6} in cylinders at the Portsmouth and ETTP sites. A separate EIS (DOE/EIS-0359) evaluates potential environmental impacts for the proposed Paducah conversion facility.

  9. Draft Environmental Impact Statement for Construction and Operation of a Depleted Uranium Hexafluoride Conversion Facility at the Paducah, Kentucky, Site

    SciTech Connect (OSTI)

    N /A

    2003-11-28

    This document is a site-specific environmental impact statement (EIS) for construction and operation of a proposed depleted uranium hexafluoride (DUF{sub 6}) conversion facility at the U.S. Department of Energy (DOE) Paducah site in northwestern Kentucky (Figure S-1). The proposed facility would convert the DUF{sub 6} stored at Paducah to a more stable chemical form suitable for use or disposal. In a Notice of Intent (NOI) published in the ''Federal Register'' (FR) on September 18, 2001 (''Federal Register'', Volume 66, page 48123 [66 FR 48123]), DOE announced its intention to prepare a single EIS for a proposal to construct, operate, maintain, and decontaminate and decommission two DUF{sub 6} conversion facilities at Portsmouth, Ohio, and Paducah, Kentucky, in accordance with the National Environmental Policy Act of 1969 (NEPA) (''United States Code'', Title 42, Section 4321 et seq. [42 USC 4321 et seq.]) and DOE's NEPA implementing procedures (''Code of Federal Regulations'', Title 10, Part 1021 [10 CFR Part 1021]). Subsequent to award of a contract to Uranium Disposition Services, LLC (hereafter referred to as UDS), Oak Ridge, Tennessee, on August 29, 2002, for design, construction, and operation of DUF{sub 6} conversion facilities at Portsmouth and Paducah, DOE reevaluated its approach to the NEPA process and decided to prepare separate site-specific EISs. This change was announced in a ''Federal Register'' Notice of Change in NEPA Compliance Approach published on April 28, 2003 (68 FR 22368); the Notice is included as Attachment B to Appendix C of this EIS. This EIS addresses the potential environmental impacts from the construction, operation, maintenance, and decontamination and decommissioning (D&D) of the proposed conversion facility at three alternative locations within the Paducah site; from the transportation of depleted uranium conversion products to a disposal facility; and from the transportation, sale, use, or disposal of the fluoride-containing conversion products (hydrogen fluoride [HF] or calcium fluoride [CaF{sub 2}]). Although not part of the proposed action, an option of shipping all cylinders (DUF{sub 6}, low-enriched UF{sub 6} [LEU-UF{sub 6}], and empty) stored at the East Tennessee Technology Park (ETTP) near Oak Ridge, Tennessee, to Paducah rather than to Portsmouth is also considered. In addition, this EIS evaluates a no action alternative, which assumes continued storage of DUF{sub 6} in cylinders at the Paducah site. A separate EIS (DOE/EIS-0360) evaluates the potential environmental impacts for the proposed Portsmouth conversion facility.

  10. Process for continuous production of metallic uranium and uranium alloys

    DOE Patents [OSTI]

    Hayden, Jr., Howard W. (Oakridge, TN); Horton, James A. (Livermore, CA); Elliott, Guy R. B. (Los Alamos, NM)

    1995-01-01

    A method is described for forming metallic uranium, or a uranium alloy, from uranium oxide in a manner which substantially eliminates the formation of uranium-containing wastes. A source of uranium dioxide is first provided, for example, by reducing uranium trioxide (UO.sub.3), or any other substantially stable uranium oxide, to form the uranium dioxide (UO.sub.2). This uranium dioxide is then chlorinated to form uranium tetrachloride (UCl.sub.4), and the uranium tetrachloride is then reduced to metallic uranium by reacting the uranium chloride with a metal which will form the chloride of the metal. This last step may be carried out in the presence of another metal capable of forming one or more alloys with metallic uranium to thereby lower the melting point of the reduced uranium product. The metal chloride formed during the uranium tetrachloride reduction step may then be reduced in an electrolysis cell to recover and recycle the metal back to the uranium tetrachloride reduction operation and the chlorine gas back to the uranium dioxide chlorination operation.

  11. Process for continuous production of metallic uranium and uranium alloys

    DOE Patents [OSTI]

    Hayden, H.W. Jr.; Horton, J.A.; Elliott, G.R.B.

    1995-06-06

    A method is described for forming metallic uranium, or a uranium alloy, from uranium oxide in a manner which substantially eliminates the formation of uranium-containing wastes. A source of uranium dioxide is first provided, for example, by reducing uranium trioxide (UO{sub 3}), or any other substantially stable uranium oxide, to form the uranium dioxide (UO{sub 2}). This uranium dioxide is then chlorinated to form uranium tetrachloride (UCl{sub 4}), and the uranium tetrachloride is then reduced to metallic uranium by reacting the uranium chloride with a metal which will form the chloride of the metal. This last step may be carried out in the presence of another metal capable of forming one or more alloys with metallic uranium to thereby lower the melting point of the reduced uranium product. The metal chloride formed during the uranium tetrachloride reduction step may then be reduced in an electrolysis cell to recover and recycle the metal back to the uranium tetrachloride reduction operation and the chlorine gas back to the uranium dioxide chlorination operation. 4 figs.

  12. Uranium Marketing Annual Report

    Gasoline and Diesel Fuel Update (EIA)

    4. Uranium sellers to owners and operators of U.S. civilian nuclear power reactors, 2012-14 2012 2013 2014 Advance Uranium Asset Management Ltd. (was Uranium Asset Management) American Fuel Resources, LLC Advance Uranium Asset Management Ltd. American Fuel Resources, LLC AREVA NC, Inc. AREVA / AREVA NC, Inc. AREVA NC, Inc. BHP Billiton Olympic Dam Corporation Pty Ltd ARMZ (AtomRedMetZoloto) BHP Billiton Olympic Dam Corporation Pty Ltd CAMECO BHP Billiton Olympic Dam Corporation Pty Ltd CAMECO

  13. Uranium Purchases Report

    Reports and Publications (EIA)

    1996-01-01

    Final issue. This report details natural and enriched uranium purchases as reported by owners and operators of commercial nuclear power plants. 1996 represents the most recent publication year.

  14. Domestic Uranium Production Report

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Resources, Inc. dba Cameco Resources Smith Ranch-Highland Operation Converse, Wyoming ... Uranium is first processed at the Nichols Ranch plant and then transported to the Smith ...

  15. Assessment of the Portsmouth/Paducah Project Office Conduct of Operations Oversight of the Depleted Uranium Hexafluoride Conversion Plants, May 2012

    Office of Environmental Management (EM)

    Assessment of the Portsmouth/Paducah Project Office Conduct of Operations Oversight of the Depleted Uranium Hexafluoride Conversion Plants May 2012 Office of Safety and Emergency Management Evaluations Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy i Table of Contents 1.0 Purpose ................................................................................................................................................... 1 2.0 Background

  16. Uranium Marketing Annual Report

    Gasoline and Diesel Fuel Update (EIA)

    S2. Uranium feed deliveries, enrichment services, and uranium loaded by owners and operators of U.S. civilian nuclear power reactors, 1994-2014 million pounds U3O8 equivalent million separative work units (SWU) Year Feed deliveries by owners and operators of U.S. civilian nuclear power reactors Uranium in fuel assemblies loaded into U.S. civilian nuclear power reactors U.S.-origin enrichment services purchased Foreign-origin enrichment services purchased Total purchased enrichment services

  17. 2014 Uranium Marketing Annual Report

    U.S. Energy Information Administration (EIA) Indexed Site

    2014 Uranium Marketing Annual Report Release Date: May 13, 2015 Next Release Date: May 2016 Table S1a. Uranium purchased by owners and operators of U.S. civilian nuclear power ...

  18. DOE Seeks Contractor for Depleted Uranium Hexafluoride (DUF6...

    Office of Environmental Management (EM)

    Seeks Contractor for Depleted Uranium Hexafluoride (DUF6) Operations at Ohio and Kentucky Facilities DOE Seeks Contractor for Depleted Uranium Hexafluoride (DUF6) Operations at...

  19. Inherently safe in situ uranium recovery (Patent) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Inherently safe in situ uranium recovery Citation Details In-Document Search Title: Inherently safe in situ uranium recovery An in situ recovery of uranium operation involves...

  20. METHOD OF ROLLING URANIUM

    DOE Patents [OSTI]

    Smith, C.S.

    1959-08-01

    A method is described for rolling uranium metal at relatively low temperatures and under non-oxidizing conditions. The method involves the steps of heating the uranium to 200 deg C in an oil bath, withdrawing the uranium and permitting the oil to drain so that only a thin protective coating remains and rolling the oil coated uranium at a temperature of 200 deg C to give about a 15% reduction in thickness at each pass. The operation may be repeated to accomplish about a 90% reduction without edge cracking, checking or any appreciable increase in brittleness.

  1. Highly Enriched Uranium Materials Facility

    National Nuclear Security Administration (NNSA)

    Appropriations Subcommittee, is shown some of the technology in the Highly Enriched Uranium Materials Facility by Warehousing and Transportation Operations Manager Byron...

  2. Domestic Uranium Production Report - Quarterly

    Gasoline and Diesel Fuel Update (EIA)

    Resources, Inc. dba Cameco Resources Smith Ranch-Highland Operation Converse, Wyoming ... Uranium is first processed at the Nichols Ranch plant and then transported to the Smith ...

  3. Uranium Marketing Annual Report -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    b. Uranium purchased by owners and operators of U.S. civilian nuclear power reactors ranked by price and distributed by purchaser, 2012-14 deliveries thousand pounds U3O8...

  4. Uranium Marketing Annual Report -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1. Foreign sales of uranium from U.S. suppliers and owners and operators of U.S. civilian nuclear power reactors by origin and delivery year, 2010-14 thousands pounds U3O8...

  5. Uranium Marketing Annual Report -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    9. Contracted purchases of uranium by owners and operators of U.S. civilian nuclear power reactors, signed in 2014, by delivery year, 2015-24 thousand pounds U3O8 equivalent Year...

  6. Uranium Marketing Annual Report

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a. Foreign purchases, foreign sales, and uranium inventories owned by U.S. suppliers and owners and operators of U.S. civilian nuclear power reactors, 1994-2014 million pounds U3O8...

  7. Uranium Marketing Annual Report -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7. Uranium purchased by owners and operators of U.S. civilian nuclear power reactors by contract type and material type, 2014 deliveries thousand pounds U3O8 equivalent; dollars...

  8. Uranium Marketing Annual Report -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4. Deliveries of uranium feed for enrichment by owners and operators of U.S. civilian nuclear power reactors by origin country and delivery year, 2012-14 thousand pounds U3O8...

  9. Uranium Marketing Annual Report -

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    a. Uranium purchased by owners and operators of U.S. civilian nuclear power reactors ranked by price and distributed by quantity, 2012-14 deliveries thousand pounds U3O8...

  10. Uranium Marketing Annual Report

    Gasoline and Diesel Fuel Update (EIA)

    a. Uranium purchased by owners and operators of U.S. civilian nuclear power reactors, 1994-2014 million pounds U3O8 equivalent Delivery year Total purchased Purchased from U.S. producers Purchased from U.S. brokers and traders Purchased from other owners and operators of U.S. civilian nuclear power reactors, other U.S. suppliers, (and U.S. government for 2007)1 Purchased from foreign suppliers U.S.-origin uranium Foreign-origin uranium Spot contracts2 Short, medium, and long-term contracts3 1994

  11. Implementation of conduct of operations at Paducah uranium hexafluoride (UF{sub 6}) sampling and transfer facility

    SciTech Connect (OSTI)

    Penrod, S.R.

    1991-12-31

    This paper describes the initial planning and actual field activities associated with the implementation of {open_quotes}Conduct of Operations{close_quotes}, Conduct of Operations is an operating philosophy that was developed through the Institute of Nuclear Power Operations (INPO). Conduct of Operations covers many operating practices and is intended to provide formality and discipline to all aspects of plant operation. The implementation of these operating principles at the UF{sub 6} Sampling and Transfer Facility resulted in significant improvements in facility operations.

  12. Implementation of conduct of operations at Paducah uranium hexafluoride (UF{sub 6}) sampling and transfer facility

    SciTech Connect (OSTI)

    Penrod, S.R.

    1991-12-31

    This paper describes the initial planning and actual field activities associated with the implementation of {open_quotes}Conduct of Operations{close_quotes}. Conduct of Operations is an operating philosophy that was developed through the Institute of Nuclear Power Operations (INPO). Conduct of Operations covers many operating practices and is intended to provide formality and discipline to all aspects of plant operation. The implementation of these operating principles at the UF{sub 6} Sampling and Transfer Facility resulted in significant improvements in facility operations.

  13. Uranium Marketing Annual Report -

    Gasoline and Diesel Fuel Update (EIA)

    . Uranium purchased by owners and operators of U.S. civilian nuclear power reactors by supplier and delivery year, 2010-14 thousand pounds U3O8 equivalent, dollars per pound U3O8 equivalent Deliveries 2010 2011 2012 2013 2014 Purchased from U.S. producers Purchases of U.S.-origin and foreign-origin uranium 350 550 W W W Weighted-average price 47.13 58.12 W W W Purchased from U.S. brokers and traders Purchases of U.S.-origin and foreign-origin uranium 11,745 14,778 11,545 12,835 17,111

  14. Inherently safe in situ uranium recovery

    DOE Patents [OSTI]

    Krumhansl, James L; Brady, Patrick V

    2014-04-29

    An in situ recovery of uranium operation involves circulating reactive fluids through an underground uranium deposit. These fluids contain chemicals that dissolve the uranium ore. Uranium is recovered from the fluids after they are pumped back to the surface. Chemicals used to accomplish this include complexing agents that are organic, readily degradable, and/or have a predictable lifetime in an aquifer. Efficiency is increased through development of organic agents targeted to complexing tetravalent uranium rather than hexavalent uranium. The operation provides for in situ immobilization of some oxy-anion pollutants under oxidizing conditions as well as reducing conditions. The operation also artificially reestablishes reducing conditions on the aquifer after uranium recovery is completed. With the ability to have the impacted aquifer reliably remediated, the uranium recovery operation can be considered inherently safe.

  15. India's Worsening Uranium Shortage

    SciTech Connect (OSTI)

    Curtis, Michael M.

    2007-01-15

    As a result of NSG restrictions, India cannot import the natural uranium required to fuel its Pressurized Heavy Water Reactors (PHWRs); consequently, it is forced to rely on the expediency of domestic uranium production. However, domestic production from mines and byproduct sources has not kept pace with demand from commercial reactors. This shortage has been officially confirmed by the Indian Planning Commission’s Mid-Term Appraisal of the country’s current Five Year Plan. The report stresses that as a result of the uranium shortage, Indian PHWR load factors have been continually decreasing. The Uranium Corporation of India Ltd (UCIL) operates a number of underground mines in the Singhbhum Shear Zone of Jharkhand, and it is all processed at a single mill in Jaduguda. UCIL is attempting to aggrandize operations by establishing new mines and mills in other states, but the requisite permit-gathering and development time will defer production until at least 2009. A significant portion of India’s uranium comes from byproduct sources, but a number of these are derived from accumulated stores that are nearing exhaustion. A current maximum estimate of indigenous uranium production is 430t/yr (230t from mines and 200t from byproduct sources); whereas, the current uranium requirement for Indian PHWRs is 455t/yr (depending on plant capacity factor). This deficit is exacerbated by the additional requirements of the Indian weapons program. Present power generation capacity of Indian nuclear plants is 4350 MWe. The power generation target set by the Indian Department of Atomic Energy (DAE) is 20,000 MWe by the year 2020. It is expected that around half of this total will be provided by PHWRs using indigenously supplied uranium with the bulk of the remainder provided by breeder reactors or pressurized water reactors using imported low-enriched uranium.

  16. Uranium Management and Policy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Uranium Management and Policy Uranium Management and Policy The Paducah Gaseous Diffusion Plant is located 3 miles south of the Ohio River and is 12 miles west of Paducah, Kentucky. Paducah remains the only operating gaseous diffusion uranium enrichment plant in the United States. The Paducah Gaseous Diffusion Plant is located 3 miles south of the Ohio River and is 12 miles west of Paducah, Kentucky. Paducah remains the only operating gaseous diffusion uranium enrichment plant in the United

  17. Results from a "Proof-of-Concept" Demonstration of RF-Based Tracking of UF6 Cylinders during a Processing Operation at a Uranium Enrichment Plant

    SciTech Connect (OSTI)

    Pickett, Chris A; Kovacic, Donald N; Whitaker, J Michael; Younkin, James R; Hines, Jairus B; Laughter, Mark D; Morgan, Jim; Carrick, Bernie; Boyer, Brian; Whittle, K.

    2008-01-01

    Approved industry-standard cylinders are used globally for processing, storing, and transporting uranium hexafluoride (UF{sub 6}) at uranium enrichment plants. To ensure that cylinder movements at enrichment facilities occur as declared, the International Atomic Energy Agency (IAEA) must conduct time-consuming periodic physical inspections to validate facility records, cylinder identity, and containment. By using a robust system design that includes the capability for real-time unattended monitoring (of cylinder movements), site-specific rules-based event detection algorithms, and the capability to integrate with other types of monitoring technologies, one can build a system that will improve overall inspector effectiveness. This type of monitoring system can provide timely detection of safeguard events that could be used to ensure more timely and appropriate responses by the IAEA. It also could reduce reliance on facility records and have the additional benefit of enhancing domestic safeguards at the installed facilities. This paper will discuss the installation and evaluation of a radio-frequency- (RF-) based cylinder tracking system that was installed at a United States Enrichment Corporation Centrifuge Facility. This system was installed primarily to evaluate the feasibility of using RF technology at a site and the operational durability of the components under harsh processing conditions. The installation included a basic system that is designed to support layering with other safeguard system technologies and that applies fundamental rules-based event processing methodologies. This paper will discuss the fundamental elements of the system design, the results from this site installation, and future efforts needed to make this technology ready for IAEA consideration.

  18. 2014 Uranium Marketing Annual Report

    Gasoline and Diesel Fuel Update (EIA)

    Uranium Marketing Annual Report 2014 Uranium Marketing Annual Report Release Date: May 13, 2015 Next Release Date: May 2016 Delivery year Total purchased (weighted- average price) Purchased from U.S. producers Purchased from U.S. brokers and traders Purchased from other owners and operators of U.S. civilian nuclear power reactors, other U.S. suppliers, (and U.S. government for 2007) 1 Purchased from foreign suppliers U.S.-origin uranium (weighted- average price) Foreign-origin uranium (weighted-

  19. Domestic Uranium Production Report

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4. U.S. uranium mills by owner, location, capacity, and operating status at end of the year, 2010-14 Owner Mill and Heap Leach1 Facility name County, state (existing and planned locations) Capacity (short tons of ore per day) Operating status at end of the year 2010 2011 2012 2013 2014 EFR White Mesa LLC White Mesa Mill San Juan, Utah 2,000 Operating Operating Operating Operating Processing Alternate Feed Operating-Processing Alternate Feed Energy Fuels Resources Corp Pinon Ridge Mill Montrose,

  20. Uranium Marketing Annual Report

    Gasoline and Diesel Fuel Update (EIA)

    b. Weighted-average price of uranium purchased by owners and operators of U.S. civilian nuclear power reactors, 1994-2014 dollars per pound U3O8 equivalent Delivery year Total purchased (weighted-average price) Purchased from U.S. producers Purchased from U.S. brokers and traders Purchased from other owners and operators of U.S. civilian nuclear power reactors, other U.S. suppliers, (and U.S. government for 2007)1 Purchased from foreign suppliers U.S.-origin uranium (weighted-average price)

  1. Uranium hexafluoride handling. Proceedings

    SciTech Connect (OSTI)

    Not Available

    1991-12-31

    The United States Department of Energy, Oak Ridge Field Office, and Martin Marietta Energy Systems, Inc., are co-sponsoring this Second International Conference on Uranium Hexafluoride Handling. The conference is offered as a forum for the exchange of information and concepts regarding the technical and regulatory issues and the safety aspects which relate to the handling of uranium hexafluoride. Through the papers presented here, we attempt not only to share technological advances and lessons learned, but also to demonstrate that we are concerned about the health and safety of our workers and the public, and are good stewards of the environment in which we all work and live. These proceedings are a compilation of the work of many experts in that phase of world-wide industry which comprises the nuclear fuel cycle. Their experience spans the entire range over which uranium hexafluoride is involved in the fuel cycle, from the production of UF{sub 6} from the naturally-occurring oxide to its re-conversion to oxide for reactor fuels. The papers furnish insights into the chemical, physical, and nuclear properties of uranium hexafluoride as they influence its transport, storage, and the design and operation of plant-scale facilities for production, processing, and conversion to oxide. The papers demonstrate, in an industry often cited for its excellent safety record, continuing efforts to further improve safety in all areas of handling uranium hexafluoride. Selected papers were processed separately for inclusion in the Energy Science and Technology Database.

  2. Floodplain/wetland assessment of the effects of construction and operation ofa depleted uranium hexafluoride conversion facility at the Paducah, Kentucky,site.

    SciTech Connect (OSTI)

    Van Lonkhuyzen, R.

    2005-09-09

    The U.S. Department of Energy (DOE) Depleted Uranium Hexafluoride (DUF{sub 6}) Management Program evaluated alternatives for managing its inventory of DUF{sub 6} and issued the ''Programmatic Environmental Impact Statement for Alternative Strategies for the Long-Term Management and Use of Depleted Uranium Hexafluoride'' (DUF{sub 6} PEIS) in April 1999 (DOE 1999). The DUF{sub 6} inventory is stored in cylinders at three DOE sites: Paducah, Kentucky; Portsmouth, Ohio; and East Tennessee Technology Park (ETTP), near Oak Ridge, Tennessee. In the Record of Decision for the DUF{sub 6} PEIS, DOE stated its decision to promptly convert the DUF{sub 6} inventory to a more stable chemical form. Subsequently, the U.S. Congress passed, and the President signed, the ''2002 Supplemental Appropriations Act for Further Recovery from and Response to Terrorist Attacks on the United States'' (Public Law No. 107-206). This law stipulated in part that, within 30 days of enactment, DOE must award a contract for the design, construction, and operation of a DUF{sub 6} conversion plant at the Department's Paducah, Kentucky, and Portsmouth, Ohio, sites, and for the shipment of DUF{sub 6} cylinders stored at ETTP to the Portsmouth site for conversion. This floodplain/wetland assessment has been prepared by DOE, pursuant to Executive Order 11988 (''Floodplain Management''), Executive Order 11990 (Protection of Wetlands), and DOE regulations for implementing these Executive Orders as set forth in Title 10, Part 1022, of the ''Code of Federal Regulations'' (10 CFR Part 1022 [''Compliance with Floodplain and Wetland Environmental Review Requirements'']), to evaluate potential impacts to floodplains and wetlands from the construction and operation of a conversion facility at the DOE Paducah site. Reconstruction of the bridge crossing Bayou Creek would occur within the Bayou Creek 100-year floodplain. Replacement of bridge components, including the bridge supports, however, would not be expected to result in measurable long-term changes to the floodplain. Approximately 0.16 acre (0.064 ha) of palustrine emergent wetlands would likely be eliminated by direct placement of fill material within Location A. Some wetlands that are not filled may be indirectly affected by an altered hydrologic regime, due to the proximity of construction, possibly resulting in a decreased frequency or duration of inundation or soil saturation and potential loss of hydrology necessary to sustain wetland conditions. Indirect impacts could be minimized by maintaining a buffer near adjacent wetlands. Wetlands would likely be impacted by construction at Location B; however, placement of a facility in the northern portion of this location would minimize wetland impacts. Construction at Location C could potentially result in impacts to wetlands, however placement of a facility in the southeastern portion of this location may best avoid direct impacts to wetlands. The hydrologic characteristics of nearby wetlands could be indirectly affected by adjacent construction. Executive Order 11990, ''Protection of Wetlands'', requires federal agencies to minimize the destruction, loss, or degradation of wetlands, and to preserve and enhance the natural and beneficial uses of wetlands. DOE regulations for implementing Executive Order 11990 as well as Executive Order 11988, ''Floodplain Management'', are set forth in 10 CFR Part 1022. Mitigation for unavoidable impacts may be developed in coordination with the appropriate regulatory agencies. Unavoidable impacts to wetlands that are within the jurisdiction of the USACE may require a CWA Section 404 Permit, which would trigger the requirement for a CWA Section 401 Water Quality Certification from the Commonwealth of Kentucky. A mitigation plan may be required prior to the initiation of construction. Cumulative impacts to floodplains and wetlands are anticipated to be negligible to minor under the proposed action, in conjunction with the effects of existing conditions and other activities. Habitat disturbance would involve settings commonly found i

  3. Uranium Transport Modeling

    SciTech Connect (OSTI)

    Bostick, William D.

    2008-01-15

    Uranium contamination is prevalent at many of the U.S. DOE facilities and at several civilian sites that have supported the nuclear fuel cycle. The potential off-site mobility of uranium depends on the partitioning of uranium between aqueous and solid (soil and sediment) phases. Hexavalent U (as uranyl, UO{sub 2}{sup 2+}) is relatively mobile, forming strong complexes with ubiquitous carbonate ion which renders it appreciably soluble even under mild reducing conditions. In the presence of carbonate, partition of uranyl to ferri-hydrate and select other mineral phases is usually maximum in the near-neutral pH range {approx} 5-8. The surface complexation reaction of uranyl with iron-containing minerals has been used as one means to model subsurface migration, used in conjunction with information on the site water chemistry and hydrology. Partitioning of uranium is often studied by short-term batch 'equilibrium' or long-term soil column testing ; MCLinc has performed both of these methodologies, with selection of method depending upon the requirements of the client or regulatory authority. Speciation of uranium in soil may be determined directly by instrumental techniques (e.g., x-ray photoelectron spectroscopy, XPS; x-ray diffraction, XRD; etc.) or by inference drawn from operational estimates. Often, the technique of choice for evaluating low-level radionuclide partitioning in soils and sediments is the sequential extraction approach. This methodology applies operationally-defined chemical treatments to selectively dissolve specific classes of macro-scale soil or sediment components. These methods recognize that total soil metal inventory is of limited use in understanding bioavailability or metal mobility, and that it is useful to estimate the amount of metal present in different solid-phase forms. Despite some drawbacks, the sequential extraction method can provide a valuable tool to distinguish among trace element fractions of different solubility related to mineral phases. Four case studies are presented: Water and Soil Characterization, Subsurface Stabilization of Uranium and other Toxic Metals, Reductive Precipitation (in situ bioremediation) of Uranium, and Physical Transport of Particle-bound Uranium by Erosion.

  4. Inherently safe in situ uranium recovery.

    SciTech Connect (OSTI)

    Krumhansl, James Lee; Beauheim, Richard Louis; Brady, Patrick Vane; Arnold, Bill Walter; Kanney, Joseph F.; McKenna, Sean Andrew

    2009-05-01

    Expansion of uranium mining in the United States is a concern to some environmental groups and sovereign Native American Nations. An approach which may alleviate some problems is to develop inherently safe in situ uranium recovery ('ISR') technologies. Current ISR technology relies on chemical extraction of trace levels of uranium from aquifers that, once mined, can still contain dissolved uranium and other trace metals that are a health concern. Existing ISR operations are few in number; however, high uranium prices are driving the industry to consider expanding operations nation-wide. Environmental concerns and enforcement of the new 30 ppb uranium drinking water standard may make opening new mining operations more difficult and costly. Here we propose a technological fix: the development of inherently safe in situ recovery (ISISR) methods. The four central features of an ISISR approach are: (1) New 'green' leachants that break down predictably in the subsurface, leaving uranium, and associated trace metals, in an immobile form; (2) Post-leachant uranium/metals-immobilizing washes that provide a backup decontamination process; (3) An optimized well-field design that increases uranium recovery efficiency and minimizes excursions of contaminated water; and (4) A combined hydrologic/geochemical protocol for designing low-cost post-extraction long-term monitoring. ISISR would bring larger amounts of uranium to the surface, leave fewer toxic metals in the aquifer, and cost less to monitor safely - thus providing a 'win-win-win' solution to all stakeholders.

  5. Disposition of DOE Excess Depleted Uranium, Natural Uranium, and

    Office of Environmental Management (EM)

    Low-Enriched Uranium | Department of Energy Disposition of DOE Excess Depleted Uranium, Natural Uranium, and Low-Enriched Uranium Disposition of DOE Excess Depleted Uranium, Natural Uranium, and Low-Enriched Uranium The U.S. Department of Energy (DOE) owns and manages an inventory of depleted uranium (DU), natural uranium (NU), and low-enriched uranium (LEU) that is currently stored in large cylinders as depleted uranium hexafluoride (DUF6), natural uranium hexafluoride (NUF6), and

  6. 2014 Domestic Uranium Production Report

    Gasoline and Diesel Fuel Update (EIA)

    7 2014 Domestic Uranium Production Report Release Date: April 30, 2015 Next Release Date: May 2016 Capacity (short tons of ore per day) 2010 2011 2012 2013 2014 EFR White Mesa LLC White Mesa Mill San Juan, Utah 2,000 Operating Operating Operating Operating-Processing Alternate Feed Operating-Processing Alternate Feed Energy Fuels Resources Corp Pinon Ridge Mill Montrose, Colorado 500 Developing Permitted And Licensed Partially Permitted And Licensed Permitted And Licensed Permitted And Licensed

  7. Uranium Marketing Annual Report -

    Gasoline and Diesel Fuel Update (EIA)

    5. Enrichment service sellers to owners and operators of U.S. civilian nuclear power reactors, 2012-14 2012 2013 2014 Advance Uranium Asset Management Ltd. AREVA NC, Inc AREVA Enrichment Services, LLC / AREVA NC, Inc. AREVA NC, Inc. .CNEIC (China Nuclear Energy Industry Corporation) CNEIC (China Nuclear Energy Industry Corporation) CNEIC (China Nuclear Energy Industry Corporation) LES, LLC (Louisiana Energy Services) LES, LLC (Louisiana Energy Services) LES, LLC (Louisiana Energy Services)

  8. Uranium enrichment

    SciTech Connect (OSTI)

    Not Available

    1991-04-01

    This book presents the GAO's views on the Department of Energy's (DOE) program to develop a new uranium enrichment technology, the atomic vapor laser isotope separation process (AVLIS). Views are drawn from GAO's ongoing review of AVLIS, in which the technical, program, and market issues that need to be addressed before an AVLIS plant is built are examined.

  9. Uranium industry annual 1996

    SciTech Connect (OSTI)

    1997-04-01

    The Uranium Industry Annual 1996 (UIA 1996) provides current statistical data on the US uranium industry`s activities relating to uranium raw materials and uranium marketing. The UIA 1996 is prepared for use by the Congress, Federal and State agencies, the uranium and nuclear electric utility industries, and the public. Data on uranium raw materials activities for 1987 through 1996 including exploration activities and expenditures, EIA-estimated reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities for 1994 through 2006, including purchases of uranium and enrichment services, enrichment feed deliveries, uranium fuel assemblies, filled and unfilled market requirements, uranium imports and exports, and uranium inventories are shown in Chapter 2. A feature article, The Role of Thorium in Nuclear Energy, is included. 24 figs., 56 tabs.

  10. Final environmental assessment for the U.S. Department of Energy, Oak Ridge Operations receipt and storage of uranium materials from the Fernald Environmental Management Project site

    SciTech Connect (OSTI)

    1999-06-01

    Through a series of material transfers and sales agreements over the past 6 to 8 years, the Fernald Environmental Management Project (FEMP) has reduced its nuclear material inventory from 14,500 to approximately 6,800 metric tons of uranium (MTU). This effort is part of the US Department of energy`s (DOE`s) decision to change the mission of the FEMP site; it is currently shut down and the site is being remediated. This EA focuses on the receipt and storage of uranium materials at various DOE-ORO sites. The packaging and transportation of FEMP uranium material has been evaluated in previous NEPA and other environmental evaluations. A summary of these evaluation efforts is included as Appendix A. The material would be packaged in US Department of Transportation-approved shipping containers and removed from the FEMP site and transported to another site for storage. The Ohio Field Office will assume responsibility for environmental analyses and documentation for packaging and transport of the material as part of the remediation of the site, and ORO is preparing this EA for receipt and storage at one or more sites.

  11. Domestic Uranium Production Report - Quarterly

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3. U.S. uranium mills and heap leach facilities by owner, location, capacity, and operating status Operating status at the end of Owner Mill and Heap Leach1 Facility name County, state (existing and planned locations) Capacity (short tons of ore per day) 2014 1st quarter 2015 2nd quarter 2015 3rd quarter 2015 4th Quarter 2015 Anfield Resources Shootaring Canyon Uranium Mill Garfield, Utah 750 Standby Standby Standby Standby Standby EFR White Mesa LLC White Mesa Mill San Juan, Utah 2,000

  12. Uranium enrichment

    SciTech Connect (OSTI)

    Not Available

    1991-08-01

    This paper reports that in 1990 the Department of Energy began a two-year project to illustrate the technical and economic feasibility of a new uranium enrichment technology-the atomic vapor laser isotope separation (AVLIS) process. GAO believes that completing the AVLIS demonstration project will provide valuable information about the technical viability and cost of building an AVLIS plant and will keep future plant construction options open. However, Congress should be aware that DOE still needs to adequately demonstrate AVLIS with full-scale equipment and develop convincing cost projects. Program activities, such as the plant-licensing process, that must be completed before a plant is built, could take many years. Further, an updated and expanded uranium enrichment analysis will be needed before any decision is made about building an AVLIS plant. GAO, which has long supported legislation that would restructure DOE's uranium enrichment program as a government corporation, encourages DOE's goal of transferring AVLIS to the corporation. This could reduce the government's financial risk and help ensure that the decision to build an AVLIS plant is based on commercial concerns. DOE, however, has no alternative plans should the government corporation not be formed. Further, by curtailing a planned public access program, which would have given private firms an opportunity to learn about the technology during the demonstration project, DOE may limit its ability to transfer AVLIS to the private sector.

  13. Uranium Metal Analysis via Selective Dissolution

    SciTech Connect (OSTI)

    Delegard, Calvin H.; Sinkov, Sergey I.; Schmidt, Andrew J.; Chenault, Jeffrey W.

    2008-09-10

    Uranium metal, which is present in sludge held in the Hanford Site K West Basin, can create hazardous hydrogen atmospheres during sludge handling, immobilization, or subsequent transport and storage operations by its oxidation/corrosion in water. A thorough knowledge of the uranium metal concentration in sludge therefore is essential to successful sludge management and waste process design. The goal of this work was to establish a rapid routine analytical method to determine uranium metal concentrations as low as 0.03 wt% in sludge even in the presence of up to 1000-fold higher total uranium concentrations (i.e., up to 30 wt% and more uranium) for samples to be taken during the upcoming sludge characterization campaign and in future analyses for sludge handling and processing. This report describes the experiments and results obtained in developing the selective dissolution technique to determine uranium metal concentration in K Basin sludge.

  14. Excess Uranium Management

    Broader source: Energy.gov [DOE]

    The Department's Notice of Issues for Public Comment on the effects of DOE transfers of excess uranium on domestic uranium mining, conversion, and enrichment industries.

  15. Potentiometric determination of uranium in organic extracts

    SciTech Connect (OSTI)

    Bodnar, L.Z.

    1980-05-01

    The potentimetric determination of uranium in organic extracts was studied. A mixture of 30% TBP, (tributylphosphate), in carbon tetrachloride was used, with the NBL (New Brunswick Laboratory) titrimetric procedure. Results include a comparative analysis performed on organic extracts of fissium alloys vs those performed on aqueous samples of the same alloys which had been treated to remove interfering elements. Also comparative analyses were performed on sample solutions from a typical scrap recovery operation common in the uranium processing industry. A limited number of residue type materials, calciner products, and presscakes were subjected to analysis by organic extraction. The uranium extraction was not hindered by 30% TBP/CCl/sub 4/. To fully demonstrate the capabilities of the extraction technique and its compatibility with the NBL potentiometric uranium determination, a series of uranium standards was subjected to uranium extraction with 30% TBP/CCl/sub 4/. The uranium was then stripped out of the organic phase with 40 mL of H/sub 3/PO/sub 4/, 15 mL of H/sub 2/0, and 1 mL of 1M FeSO/sub 4/ solution. The uranium was then determined in the aqueous phosphoric phase by the regular NBL potentiometric method, omitting only the addition of another 40 mL of H/sub 3/PO/sub 4/. Uranium determinations ranging from approximately 20 to 150 mg of U were successfully made with the same accuracy and precision normally achieved. 8 tables. (DP)

  16. Uranium Marketing Annual Report -

    Gasoline and Diesel Fuel Update (EIA)

    0. Contracted purchases of uranium from suppliers by owners and operators of U.S. civilian nuclear power reactors, in effect at the end of 2014, by delivery year, 2015-24 thousand pounds U3O8 equivalent Contracted purchases from U.S. suppliers Contracted purchases from foreign suppliers Contracted purchases from all suppliers Year of delivery Minimum Maximum Minimum Maximum Minimum Maximum 2015 8,405 8,843 31,468 34,156 39,873 42,999 2016 7,344 7,757 29,660 31,787 37,004 39,544 2017 5,980 6,561

  17. 2014 Uranium Market Annual Report

    Gasoline and Diesel Fuel Update (EIA)

    U.S. Energy Information Administration / 2014 Uranium Marketing Annual Report 2014 Uranium Marketing Annual Report Release Date: May 13, 2015 Next Release Date: May 2016 Purchase contract type (Signed in 2014) Quantity of deliveries received in 2014 Weighted-average price Number of purchase contracts for deliveries in 2014 Spot W W 67 Long-term W W 2 Total 12,263 34.83 69 Table 8. Contracts signed in 2014 by owners and operators of U.S. civilian nuclear power reactors by contract type thousand

  18. 2014 Uranium Marketing Annual Report

    Gasoline and Diesel Fuel Update (EIA)

    U.S. Energy Information Administration / 2014 Uranium Marketing Annual Report 2014 Uranium Marketing Annual Report Release Date: May 13, 2015 Next Release Date: May 2016 thousand pounds U 3 O 8 equivalent 2010 2011 2012 2013 P2014 Owners and operators of U.S. civilian nuclear power reactors inventories 86,527 89,835 97,647 113,077 116,047 Uranium concentrate (U 3 O 8 ) 13,076 14,718 15,963 18,131 20,501 Natural UF 6 35,767 35,883 29,084 38,332 40,972 Enriched UF 6 25,392 19,596 38,428 40,841

  19. Domestic Uranium Production Report - Quarterly

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2. Number of uranium mills and plants producing uranium concentrate in the United States Uranium concentrate processing facilities End of Mills - conventional milling 1 Mills - other operations 2 In-situ-leach plants 3 Byproduct recovery plants 4 Total 1996 0 2 5 2 9 1997 0 3 6 2 11 1998 0 2 6 1 9 1999 1 2 4 0 7 2000 1 2 3 0 6 2001 0 1 3 0 4 2002 0 1 2 0 3 2003 0 0 2 0 2 2004 0 0 3 0 3 2005 0 1 3 0 4 2006 0 1 5 0 6 2007 0 1 5 0 6 2008 1 0 6 0 7 2009 0 1 3 0 4 2010 1 0 4 0 5 2011 1 0 5 0 6 2012 1

  20. Continuous reduction of uranium tetrafluoride

    SciTech Connect (OSTI)

    DeMint, A.L.; Maxey, A.W.

    1993-10-21

    Operation of a pilot-scale system for continuous metallothermic reduction of uranium tetrafluoride (UF{sub 4} or green salt) has been initiated. This activity is in support of the development of a cost- effective process to produce uranium-iron (U-Fe) alloy feed for the Uranium-Atomic Vapor Laser Isotope Separation (U-AVLIS) program. To date, five runs have been made to reduce green salt (UF{sub 4}) with magnesium. During this quarter, three runs were made to perfect the feeding system, examine feed rates, and determine the need for a crust breaker/stirrer. No material was drawn off in any of the runs; both product metal and by-product salt were allowed to accumulate in the reactor.

  1. Uranium-Loaded Water Treatment Resins: 'Equivalent Feed' at NRC and Agreement State-Licensed Uranium Recovery Facilities - 12094

    SciTech Connect (OSTI)

    Camper, Larry W.; Michalak, Paul; Cohen, Stephen; Carter, Ted

    2012-07-01

    Community Water Systems (CWSs) are required to remove uranium from drinking water to meet EPA standards. Similarly, mining operations are required to remove uranium from their dewatering discharges to meet permitted surface water discharge limits. Ion exchange (IX) is the primary treatment strategy used by these operations, which loads uranium onto resin beads. Presently, uranium-loaded resin from CWSs and mining operations can be disposed as a waste product or processed by NRC- or Agreement State-licensed uranium recovery facilities if that licensed facility has applied for and received permission to process 'alternate feed'. The disposal of uranium-loaded resin is costly and the cost to amend a uranium recovery license to accept alternate feed can be a strong disincentive to commercial uranium recovery facilities. In response to this issue, the NRC issued a Regulatory Issue Summary (RIS) to clarify the agency's policy that uranium-loaded resin from CWSs and mining operations can be processed by NRC- or Agreement State-licensed uranium recovery facilities without the need for an alternate feed license amendment when these resins are essentially the same, chemically and physically, to resins that licensed uranium recovery facilities currently use (i.e., equivalent feed). NRC staff is clarifying its current alternate feed policy to declare IX resins as equivalent feed. This clarification is necessary to alleviate a regulatory and financial burden on facilities that filter uranium using IX resin, such as CWSs and mine dewatering operations. Disposing of those resins in a licensed facility could be 40 to 50 percent of the total operations and maintenance (O and M) cost for a CWS. Allowing uranium recovery facilities to treat these resins without requiring a license amendment lowers O and M costs and captures a valuable natural resource. (authors)

  2. URANIUM RECOVERY PROCESS

    DOE Patents [OSTI]

    Bailes, R.H.; Long, R.S.; Olson, R.S.; Kerlinger, H.O.

    1959-02-10

    A method is described for recovering uranium values from uranium bearing phosphate solutions such as are encountered in the manufacture of phosphate fertilizers. The solution is first treated with a reducing agent to obtain all the uranium in the tetravalent state. Following this reduction, the solution is treated to co-precipitate the rcduced uranium as a fluoride, together with other insoluble fluorides, thereby accomplishing a substantially complete recovery of even trace amounts of uranium from the phosphate solution. This precipitate usually takes the form of a complex fluoride precipitate, and after appropriate pre-treatment, the uranium fluorides are leached from this precipitate and rccovered from the leach solution.

  3. PRODUCTION OF PURIFIED URANIUM

    DOE Patents [OSTI]

    Burris, L. Jr.; Knighton, J.B.; Feder, H.M.

    1960-01-26

    A pyrometallurgical method for processing nuclear reactor fuel elements containing uranium and fission products and for reducing uranium compound; to metallic uranium is reported. If the material proccssed is essentially metallic uranium, it is dissolved in zinc, the sulution is cooled to crystallize UZn/sub 9/ , and the UZn/sub 9/ is distilled to obtain uranium free of fission products. If the material processed is a uranium compound, the sollvent is an alloy of zinc and magnesium and the remaining steps are the same.

  4. METHOD OF OPERATING NUCLEAR REACTORS

    DOE Patents [OSTI]

    Untermyer, S.

    1958-10-14

    A method is presented for obtaining enhanced utilization of natural uranium in heavy water moderated nuclear reactors by charging the reactor with an equal number of fuel elements formed of natural uranium and of fuel elements formed of uranium depleted in U/sup 235/ to the extent that the combination will just support a chain reaction. The reactor is operated until the rate of burnup of plutonium equals its rate of production, the fuel elements are processed to recover plutonium, the depleted uranium is discarded, and the remaining uranium is formed into fuel elements. These fuel elements are charged into a reactor along with an equal number of fuel elements formed of uranium depleted in U/sup 235/ to the extent that the combination will just support a chain reaction, and reuse of the uranium is continued as aforesaid until it wlll no longer support a chain reaction when combined with an equal quantity of natural uranium.

  5. METHOD FOR PURIFYING URANIUM

    DOE Patents [OSTI]

    Knighton, J.B.; Feder, H.M.

    1960-04-26

    A process is given for purifying a uranium-base nuclear material. The nuclear material is dissolved in zinc or a zinc-magnesium alloy and the concentration of magnesium is increased until uranium precipitates.

  6. Uranium Marketing Annual Report -

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    3. Inventories of uranium by owner as of end of year, 2010-14 thousand pounds U3O8 equivalent Inventories at the end of the year Owner of uranium inventory 2010 2011 2012 2013...

  7. Uranium Marketing Annual Report -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2. Inventories of natural and enriched uranium by material type as of end of year, 2010-14 thousand pounds U3O8 equivalent Inventories at the end of the year Type of uranium...

  8. Synthesis of Uranium Trichloride for the Pyrometallurgical Processing of Used Nuclear Fuel

    SciTech Connect (OSTI)

    B.R. Westphal; J.C. Price; R.D. Mariani

    2011-11-01

    The pyroprocessing of used nuclear fuel via electrorefining requires the continued addition of uranium trichloride to sustain operations. Uranium trichloride is utilized as an oxidant in the system to allow separation of uranium metal from the minor actinides and fission products. The inventory of uranium trichloride had diminished to a point that production was necessary to continue electrorefiner operations. Following initial experimentation, cupric chloride was chosen as a reactant with uranium metal to synthesize uranium trichloride. Despite the variability in equipment and charge characteristics, uranium trichloride was produced in sufficient quantities to maintain operations in the electrorefiner. The results and conclusions from several experiments are presented along with a set of optimized operating conditions for the synthesis of uranium trichloride.

  9. Degradation problems with the solvent extraction organic at Roessing uranium

    SciTech Connect (OSTI)

    Munyungano, Brodrick; Feather, Angus; Virnig, Michael

    2008-07-01

    Roessing Uranium Ltd recovers uranium from a low-grade ore in Namibia. Uranium is recovered and purified from an ion-exchange eluate in a solvent-extraction plant. The solvent-extraction plant uses Alamine 336 as the extractant for uranium, with isodecanol used as a phase modifier in Sasol SSX 210, an aliphatic hydrocarbon diluent. Since the plant started in the mid 1970's, there have been a few episodes where the tertiary amine has been quickly and severely degraded when the plant was operated outside certain operating parameters. The Rossing experience is discussed in more detail in this paper. (authors)

  10. Method of fabricating a uranium-bearing foil

    DOE Patents [OSTI]

    Gooch, Jackie G. (Seymour, TN); DeMint, Amy L. (Kingston, TN)

    2012-04-24

    Methods of fabricating a uranium-bearing foil are described. The foil may be substantially pure uranium, or may be a uranium alloy such as a uranium-molybdenum alloy. The method typically includes a series of hot rolling operations on a cast plate material to form a thin sheet. These hot rolling operations are typically performed using a process where each pass reduces the thickness of the plate by a substantially constant percentage. The sheet is typically then annealed and then cooled. The process typically concludes with a series of cold rolling passes where each pass reduces the thickness of the plate by a substantially constant thickness amount to form the foil.

  11. Final Uranium Leasing Program Programmatic Environmental Impact...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Uranium Leasing Program Programmatic Environmental Impact Statement (PEIS) Final Uranium Leasing Program Programmatic Environmental Impact Statement (PEIS) Uranium Leasing...

  12. uranium | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    uranium | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo Gallery Jobs Apply for Our Jobs Our Jobs Working at NNSA Blog Home

  13. URANIUM RECOVERY PROCESS

    DOE Patents [OSTI]

    Yeager, J.H.

    1958-08-12

    In the prior art processing of uranium ores, the ore is flrst digested with nitric acid and filtered, and the uranium values are then extracted tom the filtrate by contacting with an organic solvent. The insoluble residue has been processed separately in order to recover any uranium which it might contain. The improvement consists in contacting a slurry, composed of both solution and residue, with the organic solvent prior to filtration. Tbe result is that uranium values contained in the residue are extracted along with the uranium values contained th the solution in one step.

  14. Uranium Marketing Annual Report -

    Gasoline and Diesel Fuel Update (EIA)

    3. Deliveries of uranium feed by owners and operators of U.S. civilian nuclear power reactors by enrichment country and delivery year, 2012-14 thousand pounds U3O8 equivalent Feed deliveries in 2012 Feed deliveries in 2013 Feed deliveries in 2014 Enrichment country U.S.-origin Foreign-origin Total U.S.-origin Foreign-origin Total U.S.-origin Foreign-origin Total China 0 W W 0 W W W W W France 0 4,578 4,578 0 1,606 1,606 0 3.055 3,055 Germany W W 1,904 W W W W W 2,140 Netherlands W W 2,674 1,058

  15. Method for converting uranium oxides to uranium metal

    DOE Patents [OSTI]

    Duerksen, Walter K. (Norris, TN)

    1988-01-01

    A process is described for converting scrap and waste uranium oxide to uranium metal. The uranium oxide is sequentially reduced with a suitable reducing agent to a mixture of uranium metal and oxide products. The uranium metal is then converted to uranium hydride and the uranium hydride-containing mixture is then cooled to a temperature less than -100.degree. C. in an inert liquid which renders the uranium hydride ferromagnetic. The uranium hydride is then magnetically separated from the cooled mixture. The separated uranium hydride is readily converted to uranium metal by heating in an inert atmosphere. This process is environmentally acceptable and eliminates the use of hydrogen fluoride as well as the explosive conditions encountered in the previously employed bomb-reduction processes utilized for converting uranium oxides to uranium metal.

  16. Electron Backscatter Diffraction (EBSD) Characterization of Uranium and Uranium Alloys

    SciTech Connect (OSTI)

    McCabe, Rodney J.; Kelly, Ann Marie; Clarke, Amy J.; Field, Robert D.; Wenk, H. R.

    2012-07-25

    Electron backscatter diffraction (EBSD) was used to examine the microstructures of unalloyed uranium, U-6Nb, U-10Mo, and U-0.75Ti. For unalloyed uranium, we used EBSD to examine the effects of various processes on microstructures including casting, rolling and forming, recrystallization, welding, and quasi-static and shock deformation. For U-6Nb we used EBSD to examine the microstructural evolution during shape memory loading. EBSD was used to study chemical homogenization in U-10Mo, and for U-0.75Ti, we used EBSD to study the microstructure and texture evolution during thermal cycling and deformation. The studied uranium alloys have significant microstructural and chemical differences and each of these alloys presents unique preparation challenges. Each of the alloys is prepared by a sequence of mechanical grinding and polishing followed by electropolishing with subtle differences between the alloys. U-6Nb and U-0.75Ti both have martensitic microstructures and both require special care in order to avoid mechanical polishing artifacts. Unalloyed uranium has a tendency to rapidly oxidize when exposed to air and a two-step electropolish is employed, the first step to remove the damaged surface layer resulting from the mechanical preparation and the second step to passivate the surface. All of the alloying additions provide a level of surface passivation and different one and two step electropolishes are employed to create good EBSD surfaces. Because of its low symmetry crystal structure, uranium exhibits complex deformation behavior including operation of multiple deformation twinning modes. EBSD was used to observe and quantify twinning contributions to deformation and to examine the fracture behavior. Figure 1 shows a cross section of two mating fracture surfaces in cast uranium showing the propensity of deformation twinning and intergranular fracture largely between dissimilarly oriented grains. Deformation of U-6Nb in the shape memory regime occurs by the motion of twin boundaries formed during the martensitic transformation. Deformation actually results in a coarsening of the microstructure making EBSD more practical following a limited amount of strain. Figure 2 shows the microstructure resulting from 6% compression. Casting of U-10Mo results in considerable chemical segregation as is apparent in Figure 2a. The segregation subsists through rolling and heat treatment processes as shown in Figure 2b. EBSD was used to study the effects of homogenization time and temperature on chemical heterogeneity. It was found that times and temperatures that result in a chemically homogeneous microstructure also result in a significant increase in grain size. U-0.75Ti forms an acicular martinsite as shown in Figure 4. This microstructure prevails through cycling into the higher temperature solid uranium phases.

  17. Process for reducing beta activity in uranium

    DOE Patents [OSTI]

    Briggs, Gifford G. (Cincinnatti, OH); Kato, Takeo R. (Cincinnatti, OH); Schonegg, Edward (Cleves, OH)

    1986-01-01

    This invention is a method for lowering the beta radiation hazards associated with the casting of uranium. The method reduces the beta radiation emitted from the as-cast surfaces of uranium ingots. The method also reduces the amount of beta radiation emitters retained on the interiors of the crucibles that have been used to melt the uranium charges and which have undergone cleaning in a remote handling facility. The lowering of the radioactivity is done by scavenging the beta emitters from the molten uranium with a molten mixture containing the fluorides of magnesium and calcium. The method provides a means of collection and disposal of the beta emitters in a manner that reduces radiation exposure to operating personnel in the work area where the ingots are cast and processed.

  18. Process for reducing beta activity in uranium

    DOE Patents [OSTI]

    Briggs, G.G.; Kato, T.R.; Schonegg, E.

    1985-04-11

    This invention is a method for lowering the beta radiation hazards associated with the casting of uranium. The method reduces the beta radiation emitted from the as-cast surfaces of uranium ingots. The method also reduces the amount of beta radiation emitters retained on the interiors of the crucibles that have been used to melt the uranium charges and which undergone cleaning in a remote handling facility. The lowering of the radioactivity is done by scavenging the beta emitters from the molten uranium with a molten mixture containing the fluorides of magnesium and calcium. The method provides a means of collection and disposal of the beta emitters in a manner that reduces radiation exposure to operating personnel in the work area where the ingots are cast and processed. 5 tabs.

  19. About the Uranium Mine Team | Department of Energy

    Energy Savers [EERE]

    Uranium Mine Team About the Uranium Mine Team Text coming

  20. 2014 Uranium Marketing Annual Report

    Gasoline and Diesel Fuel Update (EIA)

    7 2014 Uranium Marketing Annual Report Release Date: May 13, 2015 Next Release Date: May 2016 Table S3b. Weighted-average price of foreign purchases and foreign sales by U.S. suppliers and owners and operators of U.S. civilian nuclear power reactors, 1994-2014 Delivery year Foreign purchases by U.S. suppliers Foreign purchases by owners and operators of U.S. civilian nuclear power reactors Total foreign purchases (weighted-average price) U.S. broker and trader purchases from foreign suppliers

  1. Conversion and Blending Facility highly enriched uranium to low enriched uranium as metal. Revision 1

    SciTech Connect (OSTI)

    1995-07-05

    The mission of this Conversion and Blending Facility (CBF) will be to blend surplus HEU metal and alloy with depleted uranium metal to produce an LEU product. The primary emphasis of this blending operation will be to destroy the weapons capability of large, surplus stockpiles of HEU. The blended LEU product can only be made weapons capable again by the uranium enrichment process. The blended LEU will be produced as a waste suitable for storage or disposal.

  2. Uranium Marketing Annual Report - Energy Information Administration

    Gasoline and Diesel Fuel Update (EIA)

    Uranium Marketing Annual Report With Data for 2014 | Release Date: May 13, 2015 | Next Release Date: May 2016 | full report Previous reports Year: 2013 2012 2011 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2000 1999 1998 1997 1996 1995 1994 1993 1992 Go Uranium purchases and prices Owners and operators of U.S. civilian nuclear power reactors ("civilian owner/operators" or "COOs") purchased a total of 53 million pounds U3O8e (equivalent1) of deliveries from U.S.

  3. Preparation of uranium compounds

    DOE Patents [OSTI]

    Kiplinger, Jaqueline L; Montreal, Marisa J; Thomson, Robert K; Cantat, Thibault; Travia, Nicholas E

    2013-02-19

    UI.sub.3(1,4-dioxane).sub.1.5 and UI.sub.4(1,4-dioxane).sub.2, were synthesized in high yield by reacting turnings of elemental uranium with iodine dissolved in 1,4-dioxane under mild conditions. These molecular compounds of uranium are thermally stable and excellent precursor materials for synthesizing other molecular compounds of uranium including alkoxide, amide, organometallic, and halide compounds.

  4. In-line assay monitor for uranium hexafluoride

    DOE Patents [OSTI]

    Wallace, S.A.

    1980-03-21

    An in-line assay monitor for determining the content of uranium-235 in a uranium hexafluoride gas isotopic separation system is provided which removes the necessity of complete access to the operating parameters of the system for determining the uranium-235 content. The method and monitor for carrying out the method involve cooling of a radiation pervious chamber connected in fluid communication with the selected point in the system to withdraw a specimen and solidify the specimen in the chamber. The specimen is irradiated by means of an ionizing radiation source of energy different from that of the 185 keV gamma emissions from uranium-235. The uranium-235 content of the specimen is determined from comparison of the accumulated 185 keV energy counts and reference energy counts. The latter is used to measure the total uranium isotopic content of the specimen.

  5. The uranium cylinder assay system for enrichment plant safeguards

    SciTech Connect (OSTI)

    Miller, Karen A; Swinhoe, Martyn T; Marlow, Johnna B; Menlove, Howard O; Rael, Carlos D; Iwamoto, Tomonori; Tamura, Takayuki; Aiuchi, Syun

    2010-01-01

    Safeguarding sensitive fuel cycle technology such as uranium enrichment is a critical component in preventing the spread of nuclear weapons. A useful tool for the nuclear materials accountancy of such a plant would be an instrument that measured the uranium content of UF{sub 6} cylinders. The Uranium Cylinder Assay System (UCAS) was designed for Japan Nuclear Fuel Limited (JNFL) for use in the Rokkasho Enrichment Plant in Japan for this purpose. It uses total neutron counting to determine uranium mass in UF{sub 6} cylinders given a known enrichment. This paper describes the design of UCAS, which includes features to allow for unattended operation. It can be used on 30B and 48Y cylinders to measure depleted, natural, and enriched uranium. It can also be used to assess the amount of uranium in decommissioned equipment and waste containers. Experimental measurements have been carried out in the laboratory and these are in good agreement with the Monte Carlo modeling results.

  6. 2014 Uranium Marketing Annual Report

    U.S. Energy Information Administration (EIA) Indexed Site

    Uranium Marketing Annual Report 2014 Uranium Marketing Annual Report Release Date: May 13, 2015 Next Release Date: May 2016 Table S3a. Foreign purchases, foreign sales, and uranium ...

  7. 2014 Uranium Marketing Annual Report

    U.S. Energy Information Administration (EIA) Indexed Site

    5 2014 Uranium Marketing Annual Report Release Date: May 13, 2015 Next Release Date: May 2016 Table S2. Uranium feed deliveries, enrichment services, and uranium loaded by owners ...

  8. highly enriched uranium

    National Nuclear Security Administration (NNSA)

    and radioisotope supply capabilities of MURR and Nordion with General Atomics' selective gas extraction technology-which allows their low-enriched uranium (LEU) targets to remain...

  9. Uranium Marketing Annual Report -

    Gasoline and Diesel Fuel Update (EIA)

    Note: Totals may not equal sum of components because of independent rounding. Source: U.S. Energy Information Administration: Form EIA-858 "Uranium Marketing Annual Survey" (20...

  10. Uranium Marketing Annual Report -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Note: Totals may not equal sum of components because of independent rounding. Source: U.S. Energy Information Administration, Form EIA-858 "Uranium Marketing Annual Survey" (20...

  11. Uranium Marketing Annual Report -

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    rounding. Weighted-average prices are not adjusted for inflation. Source: U.S. Energy Information Administration: Form EIA-858 "Uranium Marketing Annual Survey" (2010-14)....

  12. Uranium Marketing Annual Report -

    Gasoline and Diesel Fuel Update (EIA)

    of the United States. Weighted-average prices are not adjusted for inflation. Source: U.S. Energy Information Administration: Form EIA-858 "Uranium Marketing Annual Survey" (2010...

  13. Uranium Marketing Annual Report -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Totals may not equal sum of components because of independent rounding. Source: U.S. Energy Information Administration, Form EIA-858 "Uranium Marketing Annual Survey" (2011...

  14. Uranium Marketing Annual Report -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    independent rounding. Weighted-average prices are not adjusted for inflation. Source: U.S. Energy Information Administration: Form EIA-858 "Uranium Marketing Annual Survey" (2013...

  15. Uranium Marketing Annual Report -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    independent rounding. Weighted-average prices are not adjusted for inflation. Source: U.S. Energy Information Administration: Form EIA-858 "Uranium Marketing Annual Survey" (2010-...

  16. Uranium Marketing Annual Report -

    Gasoline and Diesel Fuel Update (EIA)

    Note: Totals may not equal sum of components because of independent rounding. Source: U.S. Energy Information Administration: Form EIA-858 "Uranium Marketing Annual Survey" (2013...

  17. 2014 Domestic Uranium Production Report

    Gasoline and Diesel Fuel Update (EIA)

    Domestic Uranium Production Report 2014 Domestic Uranium Production Report Release Date: April 30, 2015 Next Release Date: May 2016 Table 9. Summary production statistics of the U.S. uranium industry, 1993-2014 Exploration and Development Surface Drilling Exploration and Development Drilling Expenditures 1 Mine Production of Uranium Uranium Concentrate Production Uranium Concentrate Shipments Employment Year (million feet) (million dollars) (million pounds U 3 O 8 ) (million pounds U 3 O 8 )

  18. U.S.Uranium Reserves

    Gasoline and Diesel Fuel Update (EIA)

    Uranium Reserves Data for: 2003 Release Date: June 2004 Next Release: Not determined Uranium Reserves Estimates The Energy Information Administration (EIA) has reported the...

  19. 2014 Uranium Marketing Annual Report

    U.S. Energy Information Administration (EIA) Indexed Site

    Uranium Marketing Annual Report May 2015 Independent ... DC 20585 U.S. Energy Information Administration | 2014 ... Team, Office of Electricity, Renewables, and Uranium ...

  20. 2014 Domestic Uranium Production Report

    U.S. Energy Information Administration (EIA) Indexed Site

    Domestic Uranium Production Report April 2015 Independent ... by the U.S. Energy Information Administration (EIA), ... Team, Office of Electricity, Renewables, and Uranium ...

  1. 2014 Uranium Marketing Annual Report

    U.S. Energy Information Administration (EIA) Indexed Site

    U.S. Energy Information Administration 2014 Uranium Marketing Annual Report 2014 Uranium Marketing Annual Report Release Date: May 13, 2015 Next Release Date: May 2016 thousand ...

  2. 2014 Uranium Marketing Annual Report

    U.S. Energy Information Administration (EIA) Indexed Site

    U.S. Energy Information Administration 2014 Uranium Marketing Annual Report 2014 Uranium Marketing Annual Report Release Date: May 13, 2015 Next Release Date: May 2016 Minimum ...

  3. 2014 Uranium Marketing Annual Report

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Energy Information Administration, Form EIA-858 ""Uranium Marketing Annual Survey"" (2012-14)." "32 U.S. Energy Information Administration 2014 Uranium Marketing Annual Report

  4. 2014 Uranium Marketing Annual Report

    U.S. Energy Information Administration (EIA) Indexed Site

    U.S. Energy Information Administration 2014 Uranium Marketing Annual Report 2014 Uranium Marketing Annual Report Release Date: May 13, 2015 Next Release Date: May 2016 Origin of ...

  5. Uranium dioxide electrolysis

    DOE Patents [OSTI]

    Willit, James L.; Ackerman, John P.; Williamson, Mark A.

    2009-12-29

    This is a single stage process for treating spent nuclear fuel from light water reactors. The spent nuclear fuel, uranium oxide, UO.sub.2, is added to a solution of UCl.sub.4 dissolved in molten LiCl. A carbon anode and a metallic cathode is positioned in the molten salt bath. A power source is connected to the electrodes and a voltage greater than or equal to 1.3 volts is applied to the bath. At the anode, the carbon is oxidized to form carbon dioxide and uranium chloride. At the cathode, uranium is electroplated. The uranium chloride at the cathode reacts with more uranium oxide to continue the reaction. The process may also be used with other transuranic oxides and rare earth metal oxides.

  6. 2014 Uranium Marketing Annual Report

    Gasoline and Diesel Fuel Update (EIA)

    5 2014 Uranium Marketing Annual Report Release Date: May 13, 2015 Next Release Date: May 2016 Enrichment service contract type U.S. enrichment Foreign enrichment Total Spot W W 628 Long-term W W 12,310 Total 3,773 9,165 12,939 Table 17. Purchases of enrichment services by owners and operators of U.S. civilian nuclear power reactors by contract type in delivery year, 2014 thousand separative work units (SWU) W = Data withheld to avoid disclosure of individual company data. Note: Totals may not

  7. 2014 Uranium Marketing Annual Report

    U.S. Energy Information Administration (EIA) Indexed Site

    5. Enrichment service sellers to owners and operators of U.S. civilian nuclear power reactors, 2012-14" 2012,2013,2014 "Advance Uranium Asset Management Ltd.","AREVA NC, Inc.","AREVA Enrichment Services, LLC / AREVA NC, Inc." "AREVA NC, Inc.","CNEIC (China Nuclear Energy Industry Corporation)","CNEIC (China Nuclear Energy Industry Corporation)" "CNEIC (China Nuclear Energy Industry Corporation)","LES, LLC (Louisiana

  8. 2014 Uranium Marketing Annual Report

    U.S. Energy Information Administration (EIA) Indexed Site

    6a. Uranium purchased by owners and operators of U.S. civilian nuclear power reactors ranked by price and distributed by quantity, 2012-14 deliveries" "thousand pounds U3O8 equivalent; dollars per pound U3O8 equivalent" "Quantity distribution 1","Deliveries in 2012",,"Deliveries in 2013",,"Deliveries in 2014" ,"Quantity with reported price","Weighted-average price","Quantity with reported

  9. 2014 Uranium Marketing Annual Report

    U.S. Energy Information Administration (EIA) Indexed Site

    b. Uranium purchased by owners and operators of U.S. civilian nuclear power reactors ranked by price and distributed by purchaser, 2012-14 deliveries" "thousand pounds U3O8 equivalent; dollars per pound U3O8 equivalent" "Distribution of purchasers","Deliveries in 2012",,,"Deliveries in 2013",,,"Deliveries in 2014" ,"Number of purchasers","Quantity with reported price","Weighted-average price","Number of

  10. 2014 Uranium Marketing Annual Survey

    U.S. Energy Information Administration (EIA) Indexed Site

    7. Uranium purchased by owners and operators of U.S. civilian nuclear power reactors by contract type and material type, 2014 deliveries" "thousand pounds U3O8 equivalent; dollars per pound U3O8 equivalent" "Material Type","Spot Contracts 1",,"Long-Term Contracts 2",,"Total" ,"Quantity with reported price","Weighted-average price","Quantity with reported price","Weighted-average price","Quantity

  11. DOE - Office of Legacy Management -- Colonial Uranium Co - CO 10

    Office of Legacy Management (LM)

    Colonial Uranium Co - CO 10 FUSRAP Considered Sites Site: Colonial Uranium Co. (CO.10 ) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: Grand Junction , Colorado CO.10-1 Evaluation Year: 1987 CO.10-2 Site Operations: Processed thorium concentrates for commercial market at another site. AEC purchased small quantity (100 lbs) for testing. CO.10-1 Site Disposition: Eliminated - No Authority - Commercial operation CO.10-2 Radioactive

  12. In-line assay monitor for uranium hexafluoride

    DOE Patents [OSTI]

    Wallace, Steven A. (Knoxville, TN)

    1981-01-01

    An in-line assay monitor for determining the content of uranium-235 in a uranium hexafluoride gas isotopic separation system is provided which removes the necessity of complete access to the operating parameters of the system for determining the uranium-235 content. The monitor is intended for uses such as safeguard applications to assure that weapons grade uranium is not being produced in an enrichment cascade. The method and monitor for carrying out the method involve cooling of a radiation pervious chamber connected in fluid communication with the selected point in the system to withdraw a specimen and solidify the specimen in the chamber. The specimen is irradiated by means of an ionizing radiation source of energy different from that of the 185 keV gamma emissions from the uranium-235 present in the specimen. Simultaneously, the gamma emissions from the uranium-235 of the specimen and the source emissions transmitted through the sample are counted and stored in a multiple channel analyzer. The uranium-235 content of the specimen is determined from the comparison of the accumulated 185 keV energy counts and the reference energy counts. The latter is used to measure the total uranium isotopic content of the specimen. The process eliminates the necessity of knowing the system operating conditions and yet obtains the necessary data without need for large scintillation crystals and sophisticated mechanical designs.

  13. 2014 Uranium Marketing Annual Report

    Gasoline and Diesel Fuel Update (EIA)

    2 U.S. Energy Information Administration / 2014 Uranium Marketing Annual Report 2014 Uranium Marketing Annual Report Release Date: May 13, 2015 Next Release Date: May 2016 2012 2013 2014 Advance Uranium Asset Management Ltd. (was Uranium Asset Management) American Fuel Resources, LLC Advance Uranium Asset Management Ltd. American Fuel Resources, LLC AREVA NC, Inc. AREVA / AREVA NC, Inc. AREVA NC, Inc. BHP Billiton Olympic Dam Corporation Pty Ltd ARMZ (AtomRedMetZoloto) BHP Billiton Olympic Dam

  14. Depleted uranium management alternatives

    SciTech Connect (OSTI)

    Hertzler, T.J.; Nishimoto, D.D.

    1994-08-01

    This report evaluates two management alternatives for Department of Energy depleted uranium: continued storage as uranium hexafluoride, and conversion to uranium metal and fabrication to shielding for spent nuclear fuel containers. The results will be used to compare the costs with other alternatives, such as disposal. Cost estimates for the continued storage alternative are based on a life-cycle of 27 years through the year 2020. Cost estimates for the recycle alternative are based on existing conversion process costs and Capital costs for fabricating the containers. Additionally, the recycle alternative accounts for costs associated with intermediate product resale and secondary waste disposal for materials generated during the conversion process.

  15. Domestic Uranium Production Report

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    9. Summary production statistics of the U.S. uranium industry, 1993-2014 Year Exploration and development surface drilling (million feet) Exploration and development drilling expenditures 1 (million dollars) Mine production of uranium (million pounds U3O8) Uranium concentrate production (million pounds U3O8) Uranium concentrate shipments (million pounds U3O8) Employment (person-years) 1993 1.1 5.7 2.1 3.1 3.4 871 1994 0.7 1.1 2.5 3.4 6.3 980 1995 1.3 2.6 3.5 6.0 5.5 1,107 1996 3.0 7.2 4.7 6.3

  16. Uranium Marketing Annual Report -

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    0. U.S. broker and trader purchases of uranium by origin, supplier, and delivery year, 2010-14 thousand pounds U3O8 equivalent; dollars per pound U3O8 equivalent Deliveries 2010...

  17. Manhattan Project: The Uranium Path to the Bomb, 1942-1944

    Office of Scientific and Technical Information (OSTI)

    Alpha Racetrack, Y-12 Electromagnetic Plant, Oak Ridge THE URANIUM PATH TO THE BOMB (1942-1944) Events > The Uranium Path to the Bomb, 1942-1944 Y-12: Design, 1942-1943 Y-12: Construction, 1943 Y-12: Operation, 1943-1944 Working K-25 into the Mix, 1943-1944 The Navy and Thermal Diffusion, 1944 The uranium path to the atomic bomb ran through Oak Ridge, Tennessee. Only if the new plants built at Oak Ridge produced enough enriched uranium-235 would a uranium bomb be possible. General Groves

  18. Method for the recovery of uranium values from uranium tetrafluoride

    DOE Patents [OSTI]

    Kreuzmann, A.B.

    1982-10-27

    The invention is a novel method for the recovery of uranium from dry, particulate uranium tetrafluoride. In one aspect, the invention comprises reacting particulate uranium tetrafluoride and calcium oxide in the presence of gaseous oxygen to effect formation of the corresponding alkaline earth metal uranate and alkaline earth metal fluoride. The product uranate is highly soluble in various acidic solutions whereas the product fluoride is virtually insoluble therein. The product mixture of uranate and alkaline earth metal fluoride is contacted with a suitable acid to provide a uranium-containing solution, from which the uranium is recovered. The invention can achieve quantitative recovery of uranium in highly pure form.

  19. Method for the recovery of uranium values from uranium tetrafluoride

    DOE Patents [OSTI]

    Kreuzmann, Alvin B. (Cincinnati, OH)

    1983-01-01

    The invention is a novel method for the recovery of uranium from dry, particulate uranium tetrafluoride. In one aspect, the invention comprises reacting particulate uranium tetrafluoride and calcium oxide in the presence of gaseous oxygen to effect formation of the corresponding alkaline earth metal uranate and alkaline earth metal fluoride. The product uranate is highly soluble in various acidic solutions wherein the product fluoride is virtually insoluble therein. The product mixture of uranate and alkaline earth metal fluoride is contacted with a suitable acid to provide a uranium-containing solution, from which the uranium is recovered. The invention can achieve quantitative recovery of uranium in highly pure form.

  20. Uranium and cesium diffusion in fuel cladding of electrogenerating channel

    SciTech Connect (OSTI)

    Vasil’ev, I. V. Ivanov, A. S.; Churin, V. A.

    2014-12-15

    The results of reactor tests of a carbonitride fuel in a single-crystal cladding from a molybdenum-based alloy can be used in substantiating the operational reliability of fuels in developing a project of a megawatt space nuclear power plant. The results of experimental studies of uranium and cesium penetration into the single-crystal cladding of fuel elements with a carbonitride fuel are interpreted. Those fuel elements passed nuclear power tests in the Ya-82 pilot plant for 8300 h at a temperature of about 1500°C. It is shown that the diffusion coefficients for uranium diffusion into the cladding are virtually coincident with the diffusion coefficients measured earlier for uranium diffusion into polycrystalline molybdenum. It is found that the penetration of uranium into the cladding is likely to occur only in the case of a direct contact between the cladding and fuel. The experimentally observed nonmonotonic uranium-concentration profiles are explained in terms of predominant uranium diffusion along grain boundaries. It is shown that a substantially nonmonotonic behavior observed in our experiment for the uranium-concentration profile may be explained by the presence of a polycrystalline structure of the cladding in the surface region from its inner side. The diffusion coefficient is estimated for the grain-boundary diffusion of uranium. The diffusion coefficients for cesium are estimated on the basis of experimental data obtained in the present study.

  1. Nuclear Fuel Facts: Uranium | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Facts: Uranium Nuclear Fuel Facts: Uranium Nuclear Fuel Facts: Uranium Uranium is a silvery-white metallic chemical element in the periodic table, with atomic number 92. It is assigned the chemical symbol U. A uranium atom has 92 protons and 92 electrons, of which 6 are valence electrons. Uranium has the highest atomic weight (19 kg m) of all naturally occurring elements. Uranium occurs naturally in low concentrations in soil, rock and water, and is commercially extracted from uranium-bearing

  2. file://\\\\fs-f1\\shared\\uranium\\uranium.html

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Glossary Home > Nuclear > U.S. Uranium Reserves Estimates U.S. Uranium Reserves Estimates Data for: 2008 Report Released: July 2010 Next Release Date: 2012 Summary The U.S. Energy...

  3. Influence of uranium hydride oxidation on uranium metal behaviour

    SciTech Connect (OSTI)

    Patel, N.; Hambley, D.; Clarke, S.A.; Simpson, K.

    2013-07-01

    This work addresses concerns that the rapid, exothermic oxidation of active uranium hydride in air could stimulate an exothermic reaction (burning) involving any adjacent uranium metal, so as to increase the potential hazard arising from a hydride reaction. The effect of the thermal reaction of active uranium hydride, especially in contact with uranium metal, does not increase in proportion with hydride mass, particularly when considering large quantities of hydride. Whether uranium metal continues to burn in the long term is a function of the uranium metal and its surroundings. The source of the initial heat input to the uranium, if sufficient to cause ignition, is not important. Sustained burning of uranium requires the rate of heat generation to be sufficient to offset the total rate of heat loss so as to maintain an elevated temperature. For dense uranium, this is very difficult to achieve in naturally occurring circumstances. Areas of the uranium surface can lose heat but not generate heat. Heat can be lost by conduction, through contact with other materials, and by convection and radiation, e.g. from areas where the uranium surface is covered with a layer of oxidised material, such as burned-out hydride or from fuel cladding. These rates of heat loss are highly significant in relation to the rate of heat generation by sustained oxidation of uranium in air. Finite volume modelling has been used to examine the behaviour of a magnesium-clad uranium metal fuel element within a bottle surrounded by other un-bottled fuel elements. In the event that the bottle is breached, suddenly, in air, it can be concluded that the bulk uranium metal oxidation reaction will not reach a self-sustaining level and the mass of uranium oxidised will likely to be small in relation to mass of uranium hydride oxidised. (authors)

  4. Process for electrolytically preparing uranium metal

    DOE Patents [OSTI]

    Haas, Paul A. (Knoxville, TN)

    1989-01-01

    A process for making uranium metal from uranium oxide by first fluorinating uranium oxide to form uranium tetrafluoride and next electrolytically reducing the uranium tetrafluoride with a carbon anode to form uranium metal and CF.sub.4. The CF.sub.4 is reused in the fluorination reaction rather than being disposed of as a hazardous waste.

  5. PRODUCTION OF URANIUM HEXAFLUORIDE

    DOE Patents [OSTI]

    Fowler, R.D.

    1957-08-27

    A process for the production of uranium hexafluoride from the oxides of uranium is reported. In accordance with the method, the higher oxides of uranium may be reduced to uranium dioxide (UO/sub 2/), the latter converted into uranium tetrafluoride by reaction with hydrogen fluoride, and the UF/sub 4/ converted to UF/sub 6/ by reaction with a fluorinating agent, such as CoF/sub 3/. The UO/sub 3/ or U/sub 3/O/sub 8/ is placed in a reac tion chamber in a copper boat or tray enclosed in a copper oven, and heated to 500 to 650 deg C while hydrogen gas is passed through the oven. After nitrogen gas is used to sweep out the hydrogen and the water vapor formed, and while continuing to inaintain the temperature between 400 deg C and 600 deg C, anhydrous hydrogen fluoride is passed through. After completion of the conversion of UO/sub 2/ to UF/sub 4/ the temperature of the reaction chamber is lowered to about 400 deg C or less, the UF/sub 4/ is mixed with the requisite quantity of CoF/sub 3/, and after evacuating the chamber, the mixture is heated to 300 to 400 deg C, and the resulting UF/sub 6/ is led off and delivered to a condenser.

  6. Uranium-titanium-niobium alloy

    DOE Patents [OSTI]

    Ludtka, Gail M. (Oak Ridge, TN); Ludtka, Gerard M. (Oak Ridge, TN)

    1990-01-01

    A uranium alloy having small additions of Ti and Nb shows improved strength and ductility in cross section of greater than one inch over prior uranium alloy having only Ti as an alloying element.

  7. 2014 Uranium Marketing Annual Report

    U.S. Energy Information Administration (EIA) Indexed Site

    Uranium Marketing Annual Report 2014 Uranium Marketing Annual Report Release Date: May 13, 2015 Next Release Date: May 2016 2013 2014 2013 2014 2013 2014 Weighted-average price ...

  8. 2014 Uranium Marketing Annual Report

    U.S. Energy Information Administration (EIA) Indexed Site

    2014 Uranium Marketing Annual Report 2014 Uranium Marketing Annual Report Release Date: May 13, 2015 Next Release Date: May 2016 thousand pounds U 3 O 8 equivalent Year Maximum ...

  9. 2014 Uranium Marketing Annual Report

    U.S. Energy Information Administration (EIA) Indexed Site

    1 2014 Uranium Marketing Annual Report Release Date: May 13, 2015 Next Release Date: May 2016 Deliveries Uranium concentrate Natural UF 6 Enriched UF 6 Total Purchases 2,004 1,312 ...

  10. METHOD OF SINTERING URANIUM DIOXIDE

    DOE Patents [OSTI]

    Henderson, C.M.; Stavrolakis, J.A.

    1963-04-30

    This patent relates to a method of sintering uranium dioxide. Uranium dioxide bodies are heated to above 1200 nif- C in hydrogen, sintered in steam, and then cooled in hydrogen. (AEC)

  11. 4th Quarter 2015 Domestic Uranium Production Report

    Gasoline and Diesel Fuel Update (EIA)

    Capacity (short tons of ore per day) 2014 1st quarter 2015 2nd quarter 2015 3rd quarter 2015 4th quarter 2015 Anfield Resources Shootaring Canyon Uranium Mill Garfield, Utah 750 Standby Standby Standby Standby Standby EFR White Mesa LLC White Mesa Mill San Juan, Utah 2,000 Operating- Processing Alternate Feed Operating Operating- Processing Alternate Feed Operating- Processing Alternate Feed Operating- Processing Alternate Feed Energy Fuels Wyoming Inc Sheep Mountain Fremont, Wyoming 725

  12. 2014 Domestic Uranium Production Report

    U.S. Energy Information Administration (EIA) Indexed Site

    9. Summary production statistics of the U.S. uranium industry, 1993-2014" ,"Exploration and Development Surface ","Exploration and Development Drilling","Mine Production of Uranium ","Uranium Concentrate Production ","Uranium Concentrate Shipments ","Employment " "Year","Drilling (million feet)"," Expenditures 1 (million dollars)","Mine Production (million pounds U3O8)","(million pounds

  13. Domestic Uranium Production Report

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3. U.S. uranium concentrate production, shipments, and sales, 2003-14 Activity at U.S. mills and In-Situ-Leach plants 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 Estimated contained U3O8 (thousand pounds) Ore from Mines and Stockpiles Fed to Mills1 0 W W W 0 W W W W W W W Other Feed Materials 2 W W W W W W W W W W W W Total Mill Feed W W W W W W W W W W W W Uranium Concentrate Produced at U.S. Mills (thousand pounds U3O8) W W W W W W W W W W W W Uranium Concentrate Produced at

  14. PROCESS OF PREPARING URANIUM CARBIDE

    DOE Patents [OSTI]

    Miller, W.E.; Stethers, H.L.; Johnson, T.R.

    1964-03-24

    A process of preparing uranium monocarbide is de scribed. Uranium metal is dissolved in cadmium, zinc, cadmium-- zinc, or magnesium-- zinc alloy and a small quantity of alkali metal is added. Addition of stoichiometric amounts of carbon at 500 to 820 deg C then precipitates uranium monocarbide. (AEC)

  15. Uranium immobilization and nuclear waste

    SciTech Connect (OSTI)

    Duffy, C.J.; Ogard, A.E.

    1982-02-01

    Considerable information useful in nuclear waste storage can be gained by studying the conditions of uranium ore deposit formation. Further information can be gained by comparing the chemistry of uranium to nuclear fission products and other radionuclides of concern to nuclear waste disposal. Redox state appears to be the most important variable in controlling uranium solubility, especially at near neutral pH, which is characteristic of most ground water. This is probably also true of neptunium, plutonium, and technetium. Further, redox conditions that immobilize uranium should immobilize these elements. The mechanisms that have produced uranium ore bodies in the Earth's crust are somewhat less clear. At the temperatures of hydrothermal uranium deposits, equilibrium models are probably adequate, aqueous uranium (VI) being reduced and precipitated by interaction with ferrous-iron-bearing oxides and silicates. In lower temperature roll-type uranium deposits, overall equilibrium may not have been achieved. The involvement of sulfate-reducing bacteria in ore-body formation has been postulated, but is uncertain. Reduced sulfur species do, however, appear to be involved in much of the low temperature uranium precipitation. Assessment of the possibility of uranium transport in natural ground water is complicated because the system is generally not in overall equilibrium. For this reason, Eh measurements are of limited value. If a ground water is to be capable of reducing uranium, it must contain ions capable of reducing uranium both thermodynamically and kinetically. At present, the best candidates are reduced sulfur species.

  16. Corrosion-resistant uranium

    DOE Patents [OSTI]

    Hovis, Jr., Victor M.; Pullen, William C.; Kollie, Thomas G.; Bell, Richard T.

    1983-01-01

    The present invention is directed to the protecting of uranium and uranium alloy articles from corrosion by providing the surfaces of the articles with a layer of an ion-plated metal selected from aluminum and zinc to a thickness of at least 60 microinches and then converting at least the outer surface of the ion-plated layer of aluminum or zinc to aluminum chromate or zinc chromate. This conversion of the aluminum or zinc to the chromate form considerably enhances the corrosion resistance of the ion plating so as to effectively protect the coated article from corrosion.

  17. Corrosion-resistant uranium

    DOE Patents [OSTI]

    Hovis, V.M. Jr.; Pullen, W.C.; Kollie, T.G.; Bell, R.T.

    1981-10-21

    The present invention is directed to the protecting of uranium and uranium alloy articles from corrosion by providing the surfaces of the articles with a layer of an ion-plated metal selected from aluminum and zinc to a thickness of at least 60 microinches and then converting at least the outer surface of the ion-plated layer of aluminum or zinc to aluminum chromate or zinc chromate. This conversion of the aluminum or zinc to the chromate form considerably enhances the corrosion resistance of the ion plating so as to effectively protect the coated article from corrosion.

  18. Domestic Uranium Production Report

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    10. Uranium reserve estimates at the end of 2013 and 2014 million pounds U3O8 End of 2013 End of 2014 Forward Cost2 Uranium Reserve Estimates1 by Mine and Property Status, Mining Method, and State(s) $0 to $30 per pound $0 to $50 per pound $0 to $100 per pound $0 to $30 per pound $0 to $50 per pound $0 to $100 per pound Properties with Exploration Completed, Exploration Continuing, and Only Assessment Work W W 130.7 W W 154.6 Properties Under Development for Production and Development Drilling W

  19. Uranium enrichment management review: summary of analysis

    SciTech Connect (OSTI)

    Not Available

    1981-01-01

    In May 1980, the Assistant Secretary for Resource Applications within the Department of Energy requested that a group of experienced business executives be assembled to review the operation, financing, and management of the uranium enrichment enterprise as a basis for advising the Secretary of Energy. After extensive investigation, analysis, and discussion, the review group presented its findings and recommendations in a report on December 2, 1980. The following pages contain background material on which that final report was based. This report is arranged in chapters that parallel those of the uranium enrichment management review final report - chapters that contain summaries of the review group's discussion and analyses in six areas: management of operations and construction; long-range planning; marketing of enrichment services; financial management; research and development; and general management. Further information, in-depth analysis, and discussion of suggested alternative management practices are provided in five appendices.

  20. highly enriched uranium | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    highly enriched uranium | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo Gallery Jobs Apply for Our Jobs Our Jobs Working at

  1. High loading uranium fuel plate

    DOE Patents [OSTI]

    Wiencek, Thomas C.; Domagala, Robert F.; Thresh, Henry R.

    1990-01-01

    Two embodiments of a high uranium fuel plate are disclosed which contain a meat comprising structured uranium compound confined between a pair of diffusion bonded ductile metal cladding plates uniformly covering the meat, the meat having a uniform high fuel loading comprising a content of uranium compound greater than about 45 Vol. % at a porosity not greater than about 10 Vol. %. In a first embodiment, the meat is a plurality of parallel wires of uranium compound. In a second embodiment, the meat is a dispersion compact containing uranium compound. The fuel plates are fabricated by a hot isostatic pressing process.

  2. 2014 Uranium Marketing Annual Report

    Gasoline and Diesel Fuel Update (EIA)

    1 2014 Uranium Marketing Annual Report Release Date: May 13, 2015 Next Release Date: May 2016 thousand pounds U 3 O 8 equivalent 2010 2011 2012 2013 P2014 Owners and operators of U.S. civilian nuclear power reactors 86,527 89,835 97,647 113,007 116,047 U.S. brokers and traders 11,125 6,841 5,677 7,926 5,798 U.S. converter, enrichers, fabricators, and producers 13,608 15,428 17,611 13,416 12,766 Total commercial inventories 111,259 112,104 120,936 134,418 134,611 thousand pounds U 3 O 8

  3. Uranium Reduction by Clostridia

    SciTech Connect (OSTI)

    Francis, A.J.; Dodge, Cleveland J.; Gillow, Jeffrey B.

    2006-04-05

    The FRC groundwater and sediment contain significant concentrations of U and Tc and are dominated by low pH, and high nitrate and Al concentrations where dissimilatory metal reducing bacterial activity may be limited. The presence of Clostridia in Area 3 at the FRC site has been confirmed and their ability to reduce uranium under site conditions will be determined. Although the phenomenon of uranium reduction by Clostridia has been firmly established, the molecular mechanisms underlying such a reaction are not very clear. The authors are exploring the hypothesis that U(VI) reduction occurs through hydrogenases and other enzymes (Matin and Francis). Fundamental knowledge of metal reduction using Clostridia will allow us to exploit naturally occurring processes to attenuate radionuclide and metal contaminants in situ in the subsurface. The outline for this report are as follows: (1) Growth of Clostridium sp. under normal culture conditions; (2) Fate of metals and radionuclides in the presence of Clostridia; (3) Bioreduction of uranium associated with nitrate, citrate, and lepidocrocite; and (4) Utilization of Clostridium sp. for immobilization of uranium at the FRC Area 3 site.

  4. DOE - Office of Legacy Management -- Climax Uranium Co Grand Junction Mill

    Office of Legacy Management (LM)

    - CO 0-03 Climax Uranium Co Grand Junction Mill - CO 0-03 FUSRAP Considered Sites Site: Climax Uranium Co. (Grand Junction Mill) (CO.0-03) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials Handled: Radiological Survey(s): Site Status: Also see Grand Junction, Colorado, Processing Site Documents Related to Climax Uranium Co. (Grand Junction Mill) Data Validation Package for the August

  5. Small cell experiments for electrolytic reduction of uranium oxides to uranium metal using fluoride salts

    SciTech Connect (OSTI)

    Haas, P.A.; Adcock, P.W.; Coroneos, A.C.; Hendrix, D.E. )

    1994-08-01

    Electrolytic reduction of uranium oxide was proposed for the preparation of uranium metal feed for the atomic vapor laser isotope separation (AVLIS) process. A laboratory cell of 25-cm ID was operated to obtain additional information in areas important to design and operation of a pilot plant cell. Reproducible test results and useful operating and control procedures were demonstrated. About 20 kg of uranium metal of acceptable purity were prepared. A good supply of dissolved UO[sub 2] feed at the anode is the most important controlling requirement for efficient cell operation. A large fraction of the cell current is nonproductive in that it does not produce a metal product nor consume carbon anodes. All useful test conditions gave some reduction of UF[sub 4] to produce CF[sub 4] in addition to the reduction of UO[sub 2], but the fraction of metal from the reduction of UF[sub 4] can be decreased by increasing the concentration of dissolved UO[sub 2]. Operation of large continuous cells would probably be limited to current efficiencies of less than 60 pct, and more than 20 pct of the metal would result from the reduction of UF[sub 4].

  6. Method of preparation of uranium nitride

    DOE Patents [OSTI]

    Kiplinger, Jaqueline Loetsch; Thomson, Robert Kenneth James

    2013-07-09

    Method for producing terminal uranium nitride complexes comprising providing a suitable starting material comprising uranium; oxidizing the starting material with a suitable oxidant to produce one or more uranium(IV)-azide complexes; and, sufficiently irradiating the uranium(IV)-azide complexes to produce the terminal uranium nitride complexes.

  7. Reaction of uranium oxides with chlorine and carbon or carbon monoxide to prepare uranium chlorides

    SciTech Connect (OSTI)

    Haas, P.A.; Lee, D.D.; Mailen, J.C.

    1991-11-01

    The preferred preparation concept of uranium metal for feed to an AVLIS uranium enrichment process requires preparation of uranium tetrachloride (UCI{sub 4}) by reacting uranium oxides (UO{sub 2}/UO{sub 3}) and chlorine (Cl{sub 2}) in a molten chloride salt medium. UO{sub 2} is a very stable metal oxide; thus, the chemical conversion requires both a chlorinating agent and a reducing agent that gives an oxide product which is much more stable than the corresponding chloride. Experimental studies in a quartz reactor of 4-cm ID have demonstrated the practically of some chemical flow sheets. Experimentation has illustrated a sequence of results concerning the chemical flow sheets. Tests with a graphite block at 850{degrees}C demonstrated rapid reactions of Cl{sub 2} and evolution of carbon dioxide (CO{sub 2}) as a product. Use of carbon monoxide (CO) as the reducing agent also gave rapid reactions of Cl{sub 2} and formation of CO{sub 2} at lower temperatures, but the reduction reactions were slower than the chlorinations. Carbon powder in the molten salt melt gave higher rates of reduction and better steady state utilization of Cl{sub 2}. Addition of UO{sub 2} feed while chlorination was in progress greatly improved the operation by avoiding the plugging effects from high UO{sub 2} concentrations and the poor Cl{sub 2} utilizations from low UO{sub 2} concentrations. An UO{sub 3} feed gave undesirable effects while a feed of UO{sub 2}-C spheres was excellent. The UO{sub 2}-C spheres also gave good rates of reaction as a fixed bed without any molten chloride salt. Results with a larger reactor and a bottom condenser for volatilized uranium show collection of condensed uranium chlorides as a loose powder and chlorine utilizations of 95--98% at high feed rates. 14 refs., 7 figs., 14 tabs.

  8. Method for fabricating uranium foils and uranium alloy foils

    DOE Patents [OSTI]

    Hofman, Gerard L.; Meyer, Mitchell K.; Knighton, Gaven C.; Clark, Curtis R.

    2006-09-05

    A method of producing thin foils of uranium or an alloy. The uranium or alloy is cast as a plate or sheet having a thickness less than about 5 mm and thereafter cold rolled in one or more passes at substantially ambient temperatures until the uranium or alloy thereof is in the shape of a foil having a thickness less than about 1.0 mm. The uranium alloy includes one or more of Zr, Nb, Mo, Cr, Fe, Si, Ni, Cu or Al.

  9. Uranium Oxide Aerosol Transport in Porous Graphite

    SciTech Connect (OSTI)

    Blanchard, Jeremy; Gerlach, David C.; Scheele, Randall D.; Stewart, Mark L.; Reid, Bruce D.; Gauglitz, Phillip A.; Bagaasen, Larry M.; Brown, Charles C.; Iovin, Cristian; Delegard, Calvin H.; Zelenyuk, Alla; Buck, Edgar C.; Riley, Brian J.; Burns, Carolyn A.

    2012-01-23

    The objective of this paper is to investigate the transport of uranium oxide particles that may be present in carbon dioxide (CO2) gas coolant, into the graphite blocks of gas-cooled, graphite moderated reactors. The transport of uranium oxide in the coolant system, and subsequent deposition of this material in the graphite, of such reactors is of interest because it has the potential to influence the application of the Graphite Isotope Ratio Method (GIRM). The GIRM is a technology that has been developed to validate the declared operation of graphite moderated reactors. GIRM exploits isotopic ratio changes that occur in the impurity elements present in the graphite to infer cumulative exposure and hence the reactor’s lifetime cumulative plutonium production. Reference Gesh, et. al., for a more complete discussion on the GIRM technology.

  10. recycled_uranium.cdr

    Office of Legacy Management (LM)

    Recycled Uranium and Transuranics: Their Relationship to Weldon Spring Site Remedial Action Project Introduction Historical Perspective On August 8, 1999, Energy Secretary Bill Richardson announced a comprehensive set of actions to address issues raised at the Paducah, Kentucky, Gaseous Diffusion Plant that may have had the potential to affect the health of the workers. One of the issues addressed the need to determine the extent and significance of radioactive fission products and transuranic

  11. DOE Announces Transfer of Depleted Uranium to Advance the U.S. National

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Security Interests, Extend Operations at Paducah Gaseous Diffusion Plant | Department of Energy Transfer of Depleted Uranium to Advance the U.S. National Security Interests, Extend Operations at Paducah Gaseous Diffusion Plant DOE Announces Transfer of Depleted Uranium to Advance the U.S. National Security Interests, Extend Operations at Paducah Gaseous Diffusion Plant May 15, 2012 - 4:00pm Addthis News Media Contact (202) 386-4940 WASHINGTON - The Department of Energy - in collaboration

  12. ELECTROLYSIS OF THORIUM AND URANIUM

    DOE Patents [OSTI]

    Hansen, W.N.

    1960-09-01

    An electrolytic method is given for obtaining pure thorium, uranium, and thorium-uranium alloys. The electrolytic cell comprises a cathode composed of a metal selected from the class consisting of zinc, cadmium, tin, lead, antimony, and bismuth, an anode composed of at least one of the metals selected from the group consisting of thorium and uranium in an impure state, and an electrolyte composed of a fused salt containing at least one of the salts of the metals selected from the class consisting of thorium, uranium. zinc, cadmium, tin, lead, antimony, and bismuth. Electrolysis of the fused salt while the cathode is maintained in the molten condition deposits thorium, uranium, or thorium-uranium alloys in pure form in the molten cathode which thereafter may be separated from the molten cathode product by distillation.

  13. Reductive stripping process for uranium recovery from organic extracts

    DOE Patents [OSTI]

    Hurst, F.J. Jr.

    1983-06-16

    In the reductive stripping of uranium from an organic extractant in a uranium recovery process, the use of phosphoric acid having a molarity in the range of 8 to 10 increases the efficiency of the reductive stripping and allows the strip step to operate with lower aqueous to organic recycle ratios and shorter retention time in the mixer stages. Under these operating conditions, less solvent is required in the process, and smaller, less expensive process equipment can be utilized. The high strength H/sub 3/PO/sub 4/ is available from the evaporator stage of the process.

  14. Reductive stripping process for uranium recovery from organic extracts

    DOE Patents [OSTI]

    Hurst, Jr., Fred J. (Oak Ridge, TN)

    1985-01-01

    In the reductive stripping of uranium from an organic extractant in a uranium recovery process, the use of phosphoric acid having a molarity in the range of 8 to 10 increases the efficiency of the reductive stripping and allows the strip step to operate with lower aqueous to organic recycle ratios and shorter retention time in the mixer stages. Under these operating conditions, less solvent is required in the process, and smaller, less expensive process equipment can be utilized. The high strength H.sub.3 PO.sub.4 is available from the evaporator stage of the process.

  15. NGSI FY15 Final Report. Innovative Sample Preparation for in-Field Uranium Isotopic Determinations

    SciTech Connect (OSTI)

    Yoshida, Thomas M.; Meyers, Lisa

    2015-11-10

    Our FY14 Final Report included an introduction to the project, background, literature search of uranium dissolution methods, assessment of commercial off the shelf (COTS) automated sample preparation systems, as well as data and results for dissolution of bulk quantities of uranium oxides, and dissolution of uranium oxides from swipe filter materials using ammonium bifluoride (ABF). Also, discussed were reaction studies of solid ABF with uranium oxide that provided a basis for determining the ABF/uranium oxide dissolution mechanism. This report details the final experiments for optimizing dissolution of U3O8 and UO2 using ABF and steps leading to development of a Standard Operating Procedure (SOP) for dissolution of uranium oxides on swipe filters.

  16. VANE Uranium One JV | Open Energy Information

    Open Energy Info (EERE)

    VANE Uranium One JV Jump to: navigation, search Name: VANE-Uranium One JV Place: London, England, United Kingdom Zip: EC4V 6DX Product: JV between VANE Minerals Plc & Uranium One....

  17. SEPARATION OF THORIUM FROM URANIUM

    DOE Patents [OSTI]

    Bane, R.W.

    1959-09-01

    A description is given for the separation of thorium from uranium by forming an aqueous acidic solution containing ionic species of thorium, uranyl uranium, and hydroxylamine, flowing the solution through a column containing the phenol-formaldehyde type cation exchange resin to selectively adsorb substantially all the thorium values and a portion of the uranium values, flowing a dilute solution of hydrochloric acid through the column to desorb the uranium values, and then flowing a dilute aqueous acidic solution containing an ion, such as bisulfate, which has a complexing effect upon thortum through the column to desorb substantially all of the thorium.

  18. 2014 Domestic Uranium Production Report

    U.S. Energy Information Administration (EIA) Indexed Site

    or dissolving-out from mined rock, of the soluble uranium constituents by the natural action of percolating a prepared chemical solution through mounded (heaped) rock material. ...

  19. 2014 Domestic Uranium Production Report

    U.S. Energy Information Administration (EIA) Indexed Site

    Jab and Antelope Sweetwater, Wyoming 2,000,000 Developing Developing Developing Developing Developing Uranium One Americas, Inc. Moore Ranch Campbell, Wyoming 500,000 Permitted And ...

  20. 2014 Domestic Uranium Production Report

    U.S. Energy Information Administration (EIA) Indexed Site

    ...ing","Developing","Developing","Developing","Developing" "Uranium One Americas, Inc.","Moore Ranch","Campbell, Wyoming",500000,"Permitted And Licensed","Permitted And ...

  1. 2014 Uranium Marketing Annual Survey

    U.S. Energy Information Administration (EIA) Indexed Site

    5 2014 Uranium Marketing Annual Report Release Date: May 13, 2015 Next Release Date: May 2016 Quantity with reported price Weighted-average price Quantity with reported price ...

  2. Calculating Atomic Number Densities for Uranium

    Energy Science and Technology Software Center (OSTI)

    1993-01-01

    Provides method to calculate atomic number densities of selected uranium compounds and hydrogenous moderators for use in nuclear criticality safety analyses at gaseous diffusion uranium enrichment facilities.

  3. Nuclear radiation cleanup and uranium prospecting (Patent) |...

    Office of Scientific and Technical Information (OSTI)

    Nuclear radiation cleanup and uranium prospecting Citation Details In-Document Search Title: Nuclear radiation cleanup and uranium prospecting Apparatus, systems, and methods for...

  4. Nuclear radiation cleanup and uranium prospecting (Patent) |...

    Office of Scientific and Technical Information (OSTI)

    Nuclear radiation cleanup and uranium prospecting Citation Details In-Document Search Title: Nuclear radiation cleanup and uranium prospecting You are accessing a document from...

  5. Multiple Mechanisms of Uranium Immobilization by Cellulomonas...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Multiple Mechanisms of Uranium Immobilization by Cellulomonas sp. Strain ES6 Citation Details In-Document Search Title: Multiple Mechanisms of Uranium ...

  6. Uranium Resources Inc URI | Open Energy Information

    Open Energy Info (EERE)

    exploring, developing and mining uranium properties using the in situ recovery (ISR) or solution mining process. References: Uranium Resources, Inc. (URI)1 This article...

  7. Uranium Enrichment Decontamination and Decommissioning Fund's...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Uranium Enrichment Decontamination and Decommissioning Fund's Fiscal Year 2008 and 2007 Financial Statement Audit, OAS-FS-10-05 Uranium Enrichment Decontamination and...

  8. Conversion of depleted uranium hexafluoride to a solid uranium compound

    DOE Patents [OSTI]

    Rothman, Alan B. (Willowbrook, IL); Graczyk, Donald G. (Lemont, IL); Essling, Alice M. (Elmhurst, IL); Horwitz, E. Philip (Naperville, IL)

    2001-01-01

    A process for converting UF.sub.6 to a solid uranium compound such as UO.sub.2 and CaF. The UF.sub.6 vapor form is contacted with an aqueous solution of NH.sub.4 OH at a pH greater than 7 to precipitate at least some solid uranium values as a solid leaving an aqueous solution containing NH.sub.4 OH and NH.sub.4 F and remaining uranium values. The solid uranium values are separated from the aqueous solution of NH.sub.4 OH and NH.sub.4 F and remaining uranium values which is then diluted with additional water precipitating more uranium values as a solid leaving trace quantities of uranium in a dilute aqueous solution. The dilute aqueous solution is contacted with an ion-exchange resin to remove substantially all the uranium values from the dilute aqueous solution. The dilute solution being contacted with Ca(OH).sub.2 to precipitate CaF.sub.2 leaving dilute NH.sub.4 OH.

  9. Method for providing uranium with a protective copper coating

    DOE Patents [OSTI]

    Waldrop, Forrest B. (Powell, TN); Jones, Edward (Knoxville, TN)

    1981-01-01

    The present invention is directed to a method for providing uranium metal with a protective coating of copper. Uranium metal is subjected to a conventional cleaning operation wherein oxides and other surface contaminants are removed, followed by etching and pickling operations. The copper coating is provided by first electrodepositing a thin and relatively porous flash layer of copper on the uranium in a copper cyanide bath. The resulting copper-layered article is then heated in an air or inert atmosphere to volatilize and drive off the volatile material underlying the copper flash layer. After the heating step an adherent and essentially non-porous layer of copper is electro-deposited on the flash layer of copper to provide an adherent, multi-layer copper coating which is essentially impervious to corrosion by most gases.

  10. Domestic Uranium Production Report

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7. Employment in the U.S. uranium production industry by state, 2003-14 person-years State(s) 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 Wyoming 134 139 181 195 245 301 308 348 424 512 531 416 Colorado and Texas 48 140 269 263 557 696 340 292 331 248 198 105 Nebraska and New Mexico 92 102 123 160 149 160 159 134 127 W W W Arizona, Utah, and Washington 47 40 75 120 245 360 273 281 W W W W Alaska, Michigan, Nevada, and South Dakota 0 0 0 16 25 30 W W W W W 0 California, Montana,

  11. Belgium Highly Enriched Uranium and Plutonium Removals | National Nuclear

    National Nuclear Security Administration (NNSA)

    Security Administration Highly Enriched Uranium and Plutonium Removals | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo

  12. GTRI's Convert Program: Minimizing the Use of Highly Enriched Uranium |

    National Nuclear Security Administration (NNSA)

    National Nuclear Security Administration GTRI's Convert Program: Minimizing the Use of Highly Enriched Uranium | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact

  13. Italy Highly Enriched Uranium and Plutonium Removals | National Nuclear

    National Nuclear Security Administration (NNSA)

    Security Administration Highly Enriched Uranium and Plutonium Removals | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo

  14. US, Kazakhstan Cooperate to Eliminate Highly Enriched Uranium | National

    National Nuclear Security Administration (NNSA)

    Nuclear Security Administration Kazakhstan Cooperate to Eliminate Highly Enriched Uranium | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters

  15. President Truman Increases Production of Uranium and Plutonium | National

    National Nuclear Security Administration (NNSA)

    Nuclear Security Administration Increases Production of Uranium and Plutonium | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases

  16. Report on the Effect the Low Enriched Uranium Delivered Under the Highly Enriched Uranium Agreement Between the Government of the United States and the Government of the Russian Federation has on the

    Energy Savers [EERE]

    Report on the Effect the Low Enriched Uranium Delivered Under the Highly Enriched Uranium Agreement Between the Government of the United States of America and the Government of the Russian Federation has on the Domestic Uranium Mining, Conversion, and Enrichment Industries and the Operation of the Gaseous Diffusion Plant 2008 Information Date: December 31, 2008 1 Introduction The Agreement Between the Government of the United States of America and the Government of the Russian Federation

  17. The strategy on rehabilitation of the former uranium facilities at the 'Pridneprovsky chemical plant' in Ukraine

    SciTech Connect (OSTI)

    Voitsekhovich, O.; Lavrova, T. [Ukrainian Hydrometeorological Institute, Kiev (Ukraine); Skalskiy, A.S. [Institute of Geological Sciences of Ac.of Sc., Kiev (Ukraine); Ryazantsev, V.F. [State Nuclear Regulatory Committee of Ukraine, 9/11 Arsenalna str., Kyiv-11, 01011 (Ukraine)

    2007-07-01

    This paper describes current status of the former Uranium Facilities at the Pridneprovsky Chemical Plant in Ukraine, which are currently under development of action plan for its territory rehabilitation. The monitoring data carried out during recent several years show its impact to the Environment and gives a basis for justification of the number of measures aiming to reduce radiological and ecological risks of the Uranium tailings situated at the territory of PChP. The monitoring data and strategy for its remediation are considered in the presentation. Uranium mining has been intensively conducted in Ukraine since the end of the 40-s. Most of the uranium deposits have been explored in the Dnieper river basin, while some smaller deposits can be found within the basins of the Southern Bug and Severskiy Donets rivers. There also several large Uranium Milling facilities were in operation since the end of the 40-s till 1991, when due to disintegration of the former Soviet Union system the own uranium production has been significantly declined. The Milling Plant and Uranium extraction Facilities in ZhevtiVody is still in operation with UkrAtomprom Industrial Consortium. Therefore rehabilitation programme for all Uranium facilities in this site are in duty of the East Mining Combine and the Consortium. The most difficult case is to provide rehabilitation Action Plan for Uranium tailings and number of other facilities situated in Dnieprodzerzhinsk town and which were in operation by the former State Industrial Enterprise Pridneprovskiy Chemical Plant (PChP). In past PChP was one of the largest Uranium Milling facilities of the Former Soviet Union and has been in operation since 1948 till 1991. During Soviet time the Uranium extraction at this legacy site has been carried out using the ore raw products delivered also from Central Asia, Germany and Checz Republic. After extraction the uranium residue has been putting to the nearest landscape depressions at the vicinity of the Milling facilities. This plant is being in the sanitation stage since 1991 with the 9 Uranium tailings dumps at its territory, containing about 42 million tonnes of Uranium Residues. There were no engineering barriers created at most of the tailings. After fulfilment of the tailing dumps capacity their surfaces usually were covering by the local soils, debris and other industrial wastes. (authors)

  18. Uranium Downblending and Disposition Project Technology Readiness

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Assessment | Department of Energy Uranium Downblending and Disposition Project Technology Readiness Assessment Uranium Downblending and Disposition Project Technology Readiness Assessment Full Document and Summary Versions are available for download PDF icon Uranium Downblending and Disposition Project Technology Readiness Assessment PDF icon Summary - Uranium233 Downblending and Disposition Project More Documents & Publications Compilation of TRA Summaries EA-1574: Final Environmental

  19. PREPARATION OF URANIUM-ALUMINUM ALLOYS

    DOE Patents [OSTI]

    Moore, R.H.

    1962-09-01

    A process is given for preparing uranium--aluminum alloys from a solution of uranium halide in an about equimolar molten alkali metal halide-- aluminum halide mixture and excess aluminum. The uranium halide is reduced and the uranium is alloyed with the excess aluminum. The alloy and salt are separated from each other. (AEC)

  20. Method for cleaning bomb-reduced uranium derbies

    DOE Patents [OSTI]

    Banker, John G. (Boulder, CO); Wigginton, Hubert L. (Oak Ridge, TN); Beck, David E. (Knoxville, TN); Holcombe, Cressie E. (Knoxville, TN)

    1981-01-01

    The concentration of carbon in uranium metal ingots induction cast from derbies prepared by the bomb-reduction of uranium tetrafluoride in the presence of magnesium is effectively reduced to less than 100 ppm by removing residual magnesium fluoride from the surface of the derbies prior to casting. This magnesium fluoride is removed from the derbies by immersing them in an alkali metal salt bath which reacts with and decomposes the magnesium fluoride. A water quenching operation followed by a warm nitric acid bath and a water rinse removes the residual salt and reaction products from the derbies.

  1. Uranium hexafluoride bibliography

    SciTech Connect (OSTI)

    Burnham, S.L.

    1988-01-01

    This bibliography is a compilation of reports written about the transportation, handling, safety, and processing of uranium hexafluoride. An on-line literature search was executed using the DOE Energy files and the Nuclear Science Abstracts file to identify pertinent reports. The DOE Energy files contain unclassified information that is processed at the Office of Scientific and Technical Information of the US Department of Energy. The reports selected from these files were published between 1974 and 1983. Nuclear Science Abstracts contains unclassified international nuclear science and technology literature published from 1948 to 1976. In addition, scientific and technical reports published by the US Atomic Energy Commission and the US Energy Research and Development Administration, as well as those published by other agencies, universities, and industrial and research organizations, are included in the Nuclear Science Abstracts file. An alphabetical listing of the acronyms used to denote the corporate sponsors follows the bibliography.

  2. Domestic Uranium Production Report

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1. U.S. uranium drilling activities, 2003-14 Exploration drilling Development drilling Exploration and development drilling Year Number of holes Feet (thousand) Number of holes Feet (thousand) Number of holes Feet (thousand) 2003 NA NA NA NA W W 2004 W W W W 2,185 1,249 2005 W W W W 3,143 1,668 2006 1,473 821 3,430 1,892 4,903 2,713 2007 4,351 2,200 4,996 2,946 9,347 5,146 2008 5,198 2,543 4,157 2,551 9,355 5,093 2009 1,790 1,051 3,889 2,691 5,679 3,742 2010 2,439 1,460 4,770 3,444 7,209 4,904

  3. Domestic Uranium Production Report

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6. Employment in the U.S. uranium production industry by category, 2003-14 person-years Year Exploration Mining Milling Processing Reclamation Total 2003 W W W W 117 321 2004 18 108 W W 121 420 2005 79 149 142 154 124 648 2006 188 121 W W 155 755 2007 375 378 107 216 155 1,231 2008 457 558 W W 154 1,563 2009 175 441 W W 162 1,096 2010 211 400 W W 125 1,073 2011 208 462 W W 102 1,191 2012 161 462 W W 179 1,196 2013 149 392 W W 199 1,156 2014 86 246 W W 161

  4. Domestic Uranium Production Report

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2. U.S. uranium mine production and number of mines and sources, 2003-14 Production / Mining method 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 Underground (estimated contained thousand pounds U3O8) W W W W W W W W W W W W Open Pit (estimated contained thousand pounds U3O8) 0 0 0 0 0 0 0 0 0 0 0 0 In-Situ Leaching (thousand pounds U3O8) W W 2,681 4,259 W W W W W W W W Other1 (thousand pounds U3O8) W W W W W W W W W W W W Total Mine Production (thousand pounds U3O8) E2,200 2,452

  5. 4th Quarter 2015 Domestic Uranium Production Report

    U.S. Energy Information Administration (EIA) Indexed Site

    2. Number of uranium mills and plants producing uranium concentrate in the United States" ,"Uranium concentrate processing facilities" "End of","Mills - conventional milling 1","Mills - other operations 2","In-situ-leach plants 3","Byproduct recovery plants 4","Total" 1996,0,2,5,2,9 1997,0,3,6,2,11 1998,0,2,6,1,9 1999,1,2,4,0,7 2000,1,2,3,0,6 2001,0,1,3,0,4 2002,0,1,2,0,3 2003,0,0,2,0,2 2004,0,0,3,0,3 2005,0,1,3,0,4

  6. Albuquerque Operations Office

    Office of Legacy Management (LM)

    %r © J~4 aDepartment of Energy Albuquerque Operations Office P.O. Box 5400 Albuquerue. New Mexico 87118 JUIl 0 198 Vicinity Property No. CA-401 _ U l Address; Mayer Street Bridgeville, Pennsylvania Cyclops Corporation 650 Washington Road Pittsburgh, Pennsylvania 15228 Dear Sir: Under the Uranium Mill Tailings Radiation Control Act of 1978, Public Law 95-604, the Department of Energy (DOE) is authorized to conduct remedial action at properties contaminated with residual radioactive material from

  7. 2014 Uranium Marketing Annual Report

    Gasoline and Diesel Fuel Update (EIA)

    Uranium Marketing Annual Report 2014 Uranium Marketing Annual Report Release Date: May 13, 2015 Next Release Date: May 2016 Deliveries 2010 2011 2012 2013 2014 Purchases of U.S.-origin and foreign-origin uranium 350 550 W W W Weighted-average price 47.13 58.12 W W W Purchases of U.S.-origin and foreign-origin uranium 11,745 14,778 11,545 12,835 17,111 Weighted-average price 44.98 53.29 54.44 50.44 42.90 Purchases 0 0 0 0 0 Weighted-average price -- -- -- -- -- Purchases of U.S.-origin and

  8. Y-12 and uranium history

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    did happen six days after he was given the assignment. The history of uranium at Y-12 began with that decision, which will be commemorated on September 19, 2012, at...

  9. 2014 Uranium Marketing Annual Report

    U.S. Energy Information Administration (EIA) Indexed Site

    9 2014 Uranium Marketing Annual Report Release Date: May 13, 2015 Next Release Date: May 2016 Annual Cumulative Annual Cumulative 2014 2,494 2,494 - -- 2015 6,014 8,507 3,496 3,496 ...

  10. 2014 Uranium Marketing Annual Report

    U.S. Energy Information Administration (EIA) Indexed Site

    1 2014 Uranium Marketing Annual Report Release Date: May 13, 2015 Next Release Date: May 2016 thousand pounds U 3 O 8 equivalent U.S.-origin Foreign- origin Total U.S.-origin ...

  11. 2014 Uranium Marketing Annual Report

    U.S. Energy Information Administration (EIA) Indexed Site

    9 2014 Uranium Marketing Annual Report Release Date: May 13, 2015 Next Release Date: May 2016 Deliveries to foreign suppliers and utilities 2010 2011 2012 2013 2014 Foreign sales ...

  12. 2014 Uranium Marketing Annual Report

    U.S. Energy Information Administration (EIA) Indexed Site

    9 2014 Uranium Marketing Annual Report Release Date: May 13, 2015 Next Release Date: May 2016 thousand pounds U 3 O 8 equivalent; dollars per pound U 3 O 8 equivalent Deliveries ...

  13. Laser induced phosphorescence uranium analysis

    DOE Patents [OSTI]

    Bushaw, B.A.

    1983-06-10

    A method is described for measuring the uranium content of aqueous solutions wherein a uranyl phosphate complex is irradiated with a 5 nanosecond pulse of 425 nanometer laser light and resultant 520 nanometer emissions are observed for a period of 50 to 400 microseconds after the pulse. Plotting the natural logarithm of emission intensity as a function of time yields an intercept value which is proportional to uranium concentration.

  14. 2014 Uranium Marketing Annual Report

    Gasoline and Diesel Fuel Update (EIA)

    3 2014 Uranium Marketing Annual Report Release Date: May 13, 2015 Next Release Date: May 2016 2012 2013 2014 Advance Uranium Asset Management Ltd. AREVA NC, Inc. AREVA Enrichment Services, LLC / AREVA NC, Inc. AREVA NC, Inc. CNEIC (China Nuclear Energy Industry Corporation) CNEIC (China Nuclear Energy Industry Corporation) CNEIC (China Nuclear Energy Industry Corporation) LES, LLC (Louisiana Energy Services) LES, LLC (Louisiana Energy Services) LES, LLC (Louisiana Energy Services) NUKEM, Inc.

  15. Laser induced phosphorescence uranium analysis

    DOE Patents [OSTI]

    Bushaw, Bruce A. (Kennewick, WA)

    1986-01-01

    A method is described for measuring the uranium content of aqueous solutions wherein a uranyl phosphate complex is irradiated with a 5 nanosecond pulse of 425 nanometer laser light and resultant 520 nanometer emissions are observed for a period of 50 to 400 microseconds after the pulse. Plotting the natural logarithm of emission intensity as a function of time yields an intercept value which is proportional to uranium concentration.

  16. Operation Schedule

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Operation Schedule Daily Hours of Operation

  17. Beneficial Uses of Depleted Uranium

    SciTech Connect (OSTI)

    Brown, C.; Croff, A.G.; Haire, M. J.

    1997-08-01

    Naturally occurring uranium contains 0.71 wt% {sup 235}U. In order for the uranium to be useful in most fission reactors, it must be enriched the concentration of the fissile isotope {sup 235}U must be increased. Depleted uranium (DU) is a co-product of the processing of natural uranium to produce enriched uranium, and DU has a {sup 235}U concentration of less than 0.71 wt%. In the United States, essentially all of the DU inventory is in the chemical form of uranium hexafluoride (UF{sub 6}) and is stored in large cylinders above ground. If this co-product material were to be declared surplus, converted to a stable oxide form, and disposed, the costs are estimated to be several billion dollars. Only small amounts of DU have at this time been beneficially reused. The U.S. Department of Energy (DOE) has begun the Beneficial Uses of DU Project to identify large-scale uses of DU and encourage its reuse for the primary purpose of potentially reducing the cost and expediting the disposition of the DU inventory. This paper discusses the inventory of DU and its rate of increase; DU disposition options; beneficial use options; a preliminary cost analysis; and major technical, institutional, and regulatory issues to be resolved.

  18. Impacts of uranium-utilization improvements on light water reactor radionuclide releases

    SciTech Connect (OSTI)

    Aaberg, R.L.

    1981-08-01

    This report discusses potential changes to radionuclide releases as a result of uranium-saving plant modifications and altered operating practices. Only releases to the environment from routine operation are considered; releases resulting from abnormal conditions outside the technical specifications covering plant operation are not considered.

  19. National Uranium Resource Evaluation. Bibliographic index of Grand Junction office uranium reports

    SciTech Connect (OSTI)

    Johnson, J.B.

    1981-05-01

    In October 1978, Mesa College entered into subcontract with Bendix Field Engineering Corporation (BFEC) to prepare a bibliographic index of the uranium raw materials reports issued by the Grand Junction Office of the US Department of Energy (DOE). Bendix, prime contractor to the Grand Junction Office, operates the Technical Library at the DOE facility. Since the early 1950s, approximately 2700 reports have been issued by the Grand Junction Office. These reports were the results of uranium investigations conducted by federal agencies and their subcontractors. The majority of the reports cover geology, mineralogy, and metallurgy of uranium and/or thorium. No single, complete list of these reports existed. The purpose of this subcontract was to compile a comprehensive index to these reports. The Mesa College geology faculty worked with the BFEC and DOE staffs to develop the format for the index. Undergraduate geology students from Mesa compiled a master record sheet for each report. All reports issued up to January 1, 1979 were included in the bibliography. The bibliography is in preliminary, unedited form. It is being open-filed at this time, on microfiche, to make the information available to the public on a timely basis. The bibliography is divided into a master record list arranged in alpha-numeric order by report identification number, with separate indices arranged by title, author, state and county, 1/sup 0/ x 2/sup 0/ NTMS quadrangle, key words, and exploration area.

  20. Design Study for a Low-Enriched Uranium Core for the High Flux Isotope Reactor, Annual report for FY 2009

    SciTech Connect (OSTI)

    Chandler, David; Freels, James D; Ilas, Germina; Miller, James Henry; Primm, Trent; Sease, John D; Guida, Tracey; Jolly, Brian C

    2010-02-01

    This report documents progress made during FY 2009 in studies of converting the High Flux Isotope Reactor (HFIR) from high enriched uranium (HEU) fuel to low enriched uranium (LEU) fuel. Conversion from HEU to LEU will require a change in fuel form from uranium oxide to a uranium-molybdenum alloy. With axial and radial grading of the fuel foil and an increase in reactor power to 100 MW, calculations indicate that the HFIR can be operated with LEU fuel with no degradation in reactor performance from the current level. Results of selected benchmark studies imply that calculations of LEU performance are accurate. Studies are reported of the application of a silicon coating to surrogates for spheres of uranium-molybdenum alloy. A discussion of difficulties with preparing a fuel specification for the uranium-molybdenum alloy is provided. A description of the progress in developing a finite element thermal hydraulics model of the LEU core is provided.

  1. Uranium Fate and Transport Modeling, Guterl Specialty Steel Site, New York - 13545

    SciTech Connect (OSTI)

    Frederick, Bill; Tandon, Vikas

    2013-07-01

    The Former Guterl Specialty Steel Corporation Site (Guterl Site) is located 32 kilometers (20 miles) northeast of Buffalo, New York, in Lockport, Niagara County, New York. Between 1948 and 1952, up to 15,875 metric tons (35 million pounds) of natural uranium metal (U) were processed at the former Guterl Specialty Steel Corporation site in Lockport, New York. The resulting dust, thermal scale, mill shavings and associated land disposal contaminated both the facility and on-site soils. Uranium subsequently impacted groundwater and a fully developed plume exists below the site. Uranium transport from the site involves legacy on-site pickling fluid handling, the leaching of uranium from soil to groundwater, and the groundwater transport of dissolved uranium to the Erie Canal. Groundwater fate and transport modeling was performed to assess the transfer of dissolved uranium from the contaminated soils and buildings to groundwater and subsequently to the nearby Erie Canal. The modeling provides a tool to determine if the uranium contamination could potentially affect human receptors in the vicinity of the site. Groundwater underlying the site and in the surrounding area generally flows southeasterly towards the Erie Canal; locally, groundwater is not used as a drinking water resource. The risk to human health was evaluated outside the Guterl Site boundary from the possibility of impacted groundwater discharging to and mixing with the Erie Canal waters. This condition was evaluated because canal water is infrequently used as an emergency water supply for the City of Lockport via an intake located approximately 122 meters (m) (400 feet [ft]) southeast of the Guterl Site. Modeling was performed to assess whether mixing of groundwater with surface water in the Erie Canal could result in levels of uranium exceeding the U.S. Environmental Protection Agency (USEPA) established drinking water standard for total uranium; the Maximum Concentration Limit (MCL). Geotechnical test data indicate that the major portion of uranium in the soil will adsorb or remain bound to soil, yet leaching to groundwater appears as an on-site source. Soil leaching was modeled using low adsorption factors to replicate worst-case conditions where the uranium leaches to the groundwater. Results indicate that even after several decades, which is the period of time since uranium was processed at the Guterl Site, leaching from soil does not fully account for the currently observed levels of groundwater contamination. Modeling results suggest that there were historic releases of uranium from processing operations directly to the shallow fractured rock and possibly other geochemical conditions that have produced the current groundwater contamination. Groundwater data collected at the site between 1997 and 2011 do not indicate an increasing level of uranium in the main plume, thus the uranium adsorbed to the soil is in equilibrium with the groundwater geochemistry and transport conditions. Consequently, increases in the overall plume concentration or size are not expected. Groundwater flowing through fractures under the Guterl Site transports dissolved uranium from the site to the Erie Canal, where the groundwater has been observed to seep from the northern canal wall at some locations. The seeps discharge uranium at concentrations near or below the MCL to the Erie Canal. Conservative mixing calculations were performed using two worst-case assumptions: 1) the seeps were calculated as contiguous discharges from the Erie Canal wall and 2) the uranium concentration of the seepage is 274 micrograms per liter (?g/L) of uranium, which is the highest on-site uranium concentration in groundwater and nearly ten-fold the actual seep concentrations. The results indicate that uranium concentrations in the seep water would have to be more than 200 times greater than the highest observed on-site groundwater concentrations (or nearly 55,000 ?g/L) to potentially exceed the drinking water standard (the MCL) for total uranium in the Erie Canal. (authors)

  2. Domestic Uranium Production Report

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8. U.S. uranium expenditures, 2003-14 million dollars Year Drilling1 Production2 Land and other 3 Total expenditures Total land and other Land Exploration Reclamation 2003 W W 31.3 NA NA NA W 2004 10.6 27.8 48.4 NA NA NA 86.9 2005 18.1 58.2 59.7 NA NA NA 136.0 2006 40.1 65.9 115.2 41.0 23.3 50.9 221.2 2007 67.5 90.4 178.2 77.7 50.3 50.2 336.2 2008 81.9 221.2 164.4 65.2 50.2 49.1 467.6 2009 35.4 141.0 104.0 17.3 24.2 62.4 280.5 2010 44.6 133.3 99.5 20.2 34.5 44.7 277.3 2011 53.6 168.8 96.8 19.6

  3. Safeguarding a NWS International Enrichment Center as an Enriched Uranium Store

    SciTech Connect (OSTI)

    Curtis, Michael M.

    2008-03-31

    The operational and regulatory singularities of a multilateral facility designed to provide enriched uranium to a consortium of members may engender a new sub-category of safeguard criteria for the International Atomic Energy Agency (IAEA). This paper introduces the contingency of monitoring such a facility as a uranium storage center with cylinders containing low-enriched uranium (LEU) as the principal, and perhaps only, material open to verification. Accountancy and verification techniques will be proffered together with disparate means for maintaining continuity of knowledge (CoK) on verified stock.

  4. Method and apparatus for storing hydrogen isotopes. [stored as uranium hydride in a block of copper

    DOE Patents [OSTI]

    McMullen, J.W.; Wheeler, M.G.; Cullingford, H.S.; Sherman, R.H.

    1982-08-10

    An improved method and apparatus for storing isotopes of hydrogen (especially tritium) are provided. The hydrogen gas is stored as hydrides of material (for example uranium) within boreholes in a block of copper. The mass of the block is critically important to the operation, as is the selection of copper, because no cooling pipes are used. Because no cooling pipes are used, there can be no failure due to cooling pipes. And because copper is used instead of stainless steel, a significantly higher temperature can be reached before the eutectic formation of uranium with copper occurs, (the eutectic of uranium with the iron in stainless steel forms at a significantly lower temperature).

  5. Uranium-233 purification and conversion to stabilized ceramic grade urania for LWBR fuel fabrication (LWBR Development Program)

    SciTech Connect (OSTI)

    Lloyd, R.

    1980-10-01

    High purity ceramic grade urania (/sup 233/UO/sub 2/) used in manufacturing the fuel for the Light Water Breeder Reactor (LWBR) core was made from uranium-233 that was obtained by irradiating thoria under special conditions to result in not more than 10 ppM of uranium-232 in the recovered uranium-233 product. A developmental study established the operating parameters of the conversion process for transforming the uranium-233 into urania powder with the appropriate chemical and physical attributes for use in fabricating the LWBR core fuel. This developmental study included the following: (a) design of an ion exchange purification process for removing the gamma-emitting alpha-decay daughters of uranium-232, to reduce the gamma-radiation field of the uranium-233 during LWBR fuel manufacture; (b) definition of the parameters for precipitating the uranium-233 as ammonium uranate (ADU) and for reducing the ADU with hydrogen to yield a urania conversion product of the proper particle size, surface area and sinterability for use in manufacturing the LWBR fuel; (c) establishment of parameters and design of equipment for stabilizing the urania conversion product to prevent it from undergoing excessive oxidation on exposure to the air during LWBR fuel manufacturing operations; and (d) development of a procedure and a facility to reprocess the unirradiated thoria-urania fuel scrap from the LWBR core manufacturing operations to recover the uranium-233 and convert it into high purity ceramic grade urania for LWBR core fabrication.

  6. Uranium Pyrophoricity Phenomena and Prediction (FAI/00-39)

    SciTech Connect (OSTI)

    PLYS, M.G.

    2000-10-10

    The purpose of this report is to provide a topical reference on the phenomena and prediction of uranium pyrophoricity for the Hanford Spent Nuclear Fuel (SNF) Project with specific applications to SNF Project processes and situations. Spent metallic uranium nuclear fuel is currently stored underwater at the K basins in the Hanford 100 area, and planned processing steps include: (1) At the basins, cleaning and placing fuel elements and scrap into stainless steel multi-canister overpacks (MCOs) holding about 6 MT of fuel apiece; (2) At nearby cold vacuum drying (CVD) stations, draining, vacuum drying, and mechanically sealing the MCOs; (3) Shipping the MCOs to the Canister Storage Building (CSB) on the 200 Area plateau; and (4) Welding shut and placing the MCOs for interim (40 year) dry storage in closed CSB storage tubes cooled by natural air circulation through the surrounding vault. Damaged fuel elements have exposed and corroded fuel surfaces, which can exothermically react with water vapor and oxygen during normal process steps and in off-normal situations, A key process safety concern is the rate of reaction of damaged fuel and the potential for self-sustaining or runaway reactions, also known as uranium fires or fuel ignition. Uranium metal and one of its corrosion products, uranium hydride, are potentially pyrophoric materials. Dangers of pyrophoricity of uranium and its hydride have long been known in the U.S. Department of Energy (Atomic Energy Commission/DOE) complex and will be discussed more below; it is sufficient here to note that there are numerous documented instances of uranium fires during normal operations. The motivation for this work is to place the safety of the present process in proper perspective given past operational experience. Steps in development of such a perspective are: (1) Description of underlying physical causes for runaway reactions, (2) Modeling physical processes to explain runaway reactions, (3) Validation of the method against experimental data, (4) Application of the method to plausibly explain operational experience, and (5) Application of the method to present process steps to demonstrate process safety and margin. Essentially, the logic above is used to demonstrate that runaway reactions cannot occur during normal SNF Project process steps, and to illustrate the depth of the technical basis for such a conclusion. Some off-normal conditions are identified here that could potentially lead to runaway reactions. However, this document is not intended to provide an exhaustive analysis of such cases. In summary, this report provides a ''toolkit'' of models and approaches for analysis of pyrophoricity safety issues at Hanford, and the technical basis for the recommended approaches. A summary of recommended methods appears in Section 9.0.

  7. EIS-0359: Uranium Hexafluoride Conversion Facility at the Paducah, Kentucky Site

    Broader source: Energy.gov [DOE]

    This site-specific EIS considers the construction, operation, maintenance, and decontamination and decommissioning of the proposed depleted uranium hexafluoride (DUF6) conversion facility at three locations within the Paducah site; transportation of depleted uranium conversion products and waste materials to a disposal facility; transportation and sale of the hydrogen fluoride (HF) produced as a conversion co-product; and neutralization of HF to calcium fluoride and its sale or disposal in the event that the HF product is not sold.

  8. DESIGN STUDY FOR A LOW-ENRICHED URANIUM CORE FOR THE HIGH FLUX ISOTOPE REACTOR, ANNUAL REPORT FOR FY 2010

    SciTech Connect (OSTI)

    Cook, David Howard; Freels, James D; Ilas, Germina; Jolly, Brian C; Miller, James Henry; Primm, Trent; Renfro, David G; Sease, John D; Pinkston, Daniel

    2011-02-01

    This report documents progress made during FY 2010 in studies of converting the High Flux Isotope Reactor (HFIR) from high enriched uranium (HEU) fuel to low enriched uranium (LEU) fuel. Conversion from HEU to LEU will require a change in fuel form from uranium oxide to a uranium-molybdenum alloy. With axial and radial grading of the fuel foil and an increase in reactor power to 100 MW, calculations indicate that the HFIR can be operated with LEU fuel with no degradation in performance to users from the current level. Studies are reported of support to a thermal hydraulic test loop design, the implementation of finite element, thermal hydraulic analysis capability, and infrastructure tasks at HFIR to upgrade the facility for operation at 100 MW. A discussion of difficulties with preparing a fuel specification for the uranium-molybdenum alloy is provided. Continuing development in the definition of the fuel fabrication process is described.

  9. Uranium Biomineralization By Natural Microbial Phosphatase Activities...

    Office of Scientific and Technical Information (OSTI)

    Uranium Biomineralization By Natural Microbial Phosphatase Activities in the Subsurface ... Country of Publication: United States Language: English Subject: 54 ENVIRONMENTAL ...

  10. Uranium Marketing Annual Report -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8. Contracts signed in 2014 by owners and operators of U.S. civilian nuclear power reactors by contract type thousand pounds U3O8 equivalent; dollars per pound U3O8 equivalent...

  11. Uranium Marketing Annual Report

    Gasoline and Diesel Fuel Update (EIA)

    b. Weighted-average price of foreign purchases and foreign sales by U.S. suppliers and owners and operators of U.S. civilian nuclear power reactors, 1994-2014 dollars per pound...

  12. High strength uranium-tungsten alloys

    DOE Patents [OSTI]

    Dunn, Paul S. (Santa Fe, NM); Sheinberg, Haskell (Los Alamos, NM); Hogan, Billy M. (Los Alamos, NM); Lewis, Homer D. (Bayfield, CO); Dickinson, James M. (Los Alamos, NM)

    1991-01-01

    Alloys of uranium and tungsten and a method for making the alloys. The amount of tungsten present in the alloys is from about 4 wt % to about 35 wt %. Tungsten particles are dispersed throughout the uranium and a small amount of tungsten is dissolved in the uranium.

  13. High strength uranium-tungsten alloy process

    DOE Patents [OSTI]

    Dunn, Paul S. (Santa Fe, NM); Sheinberg, Haskell (Los Alamos, NM); Hogan, Billy M. (Los Alamos, NM); Lewis, Homer D. (Bayfield, CO); Dickinson, James M. (Los Alamos, NM)

    1990-01-01

    Alloys of uranium and tungsten and a method for making the alloys. The amount of tungsten present in the alloys is from about 4 wt % to about 35 wt %. Tungsten particles are dispersed throughout the uranium and a small amount of tungsten is dissolved in the uranium.

  14. Uranium hexafluoride: Safe handling, processing, and transporting: Conference proceedings

    SciTech Connect (OSTI)

    Strunk, W.D.; Thornton, S.G.

    1988-01-01

    This conference seeks to provide a forum for the exchange of information and ideas of the safety aspects and technical issue related to the handling of uranium hexafluoride. By allowing operators, engineers, scientists, managers, educators, and others to meet and share experiences of mutual concern, the conference is also intended to provide the participants with a more complete knowledge of technical and operational issues. The topics for the papers in the proceedings are widely varied and include the results of chemical, metallurgical, mechanical, thermal, and analytical investigations, as well as the developed philosophies of operational, managerial, and regulatory guidelines. Papers have been entered individually into EDB and ERA. (LTN)

  15. Operations start and shipments begin

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Operations start and shipments begin Y-12's formal operational start date of record is January 27, 1944. George Robinson, in The Oak Ridge Story, tells us that on that date, "a select group of Manhattan [Engineer] District personnel and officials of Stone and Webster and the Tennessee Eastman Corporation...witnessed the epochal first 'run' of uranium 235 on a mass basis by the electromagnetic method." Even this first successful production run had its share of frustrating problems.

  16. 2014 Domestic Uranium Production Report

    Gasoline and Diesel Fuel Update (EIA)

    Domestic Uranium Production Report 2014 Domestic Uranium Production Report Release Date: April 30, 2015 Next Release Date: May 2016 State(s) 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 Wyoming 134 139 181 195 245 301 308 348 424 512 531 416 Colorado and Texas 48 140 269 263 557 696 340 292 331 248 198 105 Nebraska and New Mexico 92 102 123 160 149 160 159 134 127 W W W Arizona, Utah, and Washington 47 40 75 120 245 360 273 281 W W W W Alaska, Michigan, Nevada, and South Dakota 0

  17. 2014 Domestic Uranium Production Report

    Gasoline and Diesel Fuel Update (EIA)

    Domestic Uranium Production Report 2014 Domestic Uranium Production Report Release Date: April 30, 2015 Next Release Date: May 2016 million pounds U 3 O 8 $0 to $30 per pound $0 to $50 per pound $0 to $100 per pound $0 to $30 per pound $0 to $50 per pound $0 to $100 per pound Properties with Exploration Completed, Exploration Continuing, and Only Assessment Work W W 130.7 W W 154.6 Properties Under Development for Production and Development Drilling W 31.8 W W 38.2 W Mines in Production W 19.6 W

  18. METHOD OF PROTECTIVELY COATING URANIUM

    DOE Patents [OSTI]

    Eubank, L.D.; Boller, E.R.

    1959-02-01

    A method is described for protectively coating uranium with zine comprising cleaning the U for coating by pickling in concentrated HNO/sub 3/, dipping the cleaned U into a bath of molten zinc between 430 to 600 C and containing less than 0 01% each of Fe and Pb, and withdrawing and cooling to solidify the coating. The zinccoated uranium may be given a; econd coating with another metal niore resistant to the corrosive influences particularly concerned. A coating of Pb containing small proportions of Ag or Sn, or Al containing small proportions of Si may be applied over the zinc coatings by dipping in molten baths of these metals.

  19. 2014 Domestic Uranium Production Report

    U.S. Energy Information Administration (EIA) Indexed Site

    10. Uranium reserve estimates at the end of 2013 and 2014" "million pounds U3O8" ,"End of 2013",,,"End of 2014" "Uranium Reserve Estimates1 by Mine and Property Status, Mining Method, and State(s)","Forward Cost 2" ,"$0 to $30 per pound","$0 to $50 per pound","$0 to $100 per pound","$0 to $30 per pound","$0 to $50 per pound","$0 to $100 per pound" "Properties with Exploration

  20. Richland Operations Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Exposure to the dusts of uranium or to an insoluble uranium compound may cause respiratory irritation, cough, and shortness of breath. Dermatitis has also been reported, and ...

  1. Updated Conceptual Model for the 300 Area Uranium Groundwater Plume

    SciTech Connect (OSTI)

    Zachara, John M.; Freshley, Mark D.; Last, George V.; Peterson, Robert E.; Bjornstad, Bruce N.

    2012-11-01

    The 300 Area uranium groundwater plume in the 300-FF-5 Operable Unit is residual from past discharge of nuclear fuel fabrication wastes to a number of liquid (and solid) disposal sites. The source zones in the disposal sites were remediated by excavation and backfilled to grade, but sorbed uranium remains in deeper, unexcavated vadose zone sediments. In spite of source term removal, the groundwater plume has shown remarkable persistence, with concentrations exceeding the drinking water standard over an area of approximately 1 km2. The plume resides within a coupled vadose zone, groundwater, river zone system of immense complexity and scale. Interactions between geologic structure, the hydrologic system driven by the Columbia River, groundwater-river exchange points, and the geochemistry of uranium contribute to persistence of the plume. The U.S. Department of Energy (DOE) recently completed a Remedial Investigation/Feasibility Study (RI/FS) to document characterization of the 300 Area uranium plume and plan for beginning to implement proposed remedial actions. As part of the RI/FS document, a conceptual model was developed that integrates knowledge of the hydrogeologic and geochemical properties of the 300 Area and controlling processes to yield an understanding of how the system behaves and the variables that control it. Recent results from the Hanford Integrated Field Research Challenge site and the Subsurface Biogeochemistry Scientific Focus Area Project funded by the DOE Office of Science were used to update the conceptual model and provide an assessment of key factors controlling plume persistence.

  2. Development of pulsed neutron uranium logging instrument

    SciTech Connect (OSTI)

    Wang, Xin-guang; Liu, Dan; Zhang, Feng

    2015-03-15

    This article introduces a development of pulsed neutron uranium logging instrument. By analyzing the temporal distribution of epithermal neutrons generated from the thermal fission of {sup 235}U, we propose a new method with a uranium-bearing index to calculate the uranium content in the formation. An instrument employing a D-T neutron generator and two epithermal neutron detectors has been developed. The logging response is studied using Monte Carlo simulation and experiments in calibration wells. The simulation and experimental results show that the uranium-bearing index is linearly correlated with the uranium content, and the porosity and thermal neutron lifetime of the formation can be acquired simultaneously.

  3. Process for alloying uranium and niobium

    DOE Patents [OSTI]

    Holcombe, Cressie E. (Farragut, TN); Northcutt, Jr., Walter G. (Oak Ridge, TN); Masters, David R. (Knoxville, TN); Chapman, Lloyd R. (Knoxville, TN)

    1991-01-01

    Alloys such as U-6Nb are prepared by forming a stacked sandwich array of uraniun sheets and niobium powder disposed in layers between the sheets, heating the array in a vacuum induction melting furnace to a temperature such as to melt the uranium, holding the resulting mixture at a temperature above the melting point of uranium until the niobium dissolves in the uranium, and casting the uranium-niobium solution. Compositional uniformity in the alloy product is enabled by use of the sandwich structure of uranium sheets and niobium powder.

  4. Domestic Uranium Production Report - Energy Information Administration

    Gasoline and Diesel Fuel Update (EIA)

    Domestic Uranium Production Report - Annual With Data for 2014 | Release Date: April 30, 2015 | Next Release Date: May 2016 | full report Previous domestic uranium production reports Year: 2013 2012 2011 2010 2009 2008 2007 2006 2005 2004 Go Drilling Figure 1. U.S. Uranium drilling by number of holes, 2004-14 Total uranium drilling was 1,752 holes covering 1.3 million feet, 67% fewer holes than in 2013 and the lowest since 2004. Expenditures for uranium drilling in the United States were $28

  5. US developments in technology for uranium enrichment

    SciTech Connect (OSTI)

    Wilcox, W.J. Jr.; McGill, R.M.

    1982-01-01

    The purpose of this paper is to review recent progress and the status of the work in the United States on that part of the fuel cycle concerned with uranium enrichment. The United States has one enrichment process, gaseous diffusion, which has been continuously operated in large-scale production for the past 37 years; another process, gas centrifugation, which is now in the construction phase; and three new processes, molecular laser isotope separation, atomic vapor laser isotope separation, plasma separation process, in which the US has also invested sizable research and development efforts over the last few years. The emphasis in this paper is on the technical aspects of the various processes, but the important economic factors which will define the technological mix which may be applied in the next two decades are also discussed.

  6. 2014 Uranium Marketing Annual Report

    U.S. Energy Information Administration (EIA) Indexed Site

    7 2014 Uranium Marketing Annual Report Release Date: May 13, 2015 Next Release Date: May 2016 Year of delivery Minimum Maximum 2015 2,838 2,838 2016 3,573 3,573 2017 2,718 2,818 ...

  7. The potential for criticality following disposal of uranium at low-level waste facilities: Uranium blended with soil

    SciTech Connect (OSTI)

    Toran, L.E.; Hopper, C.M.; Naney, M.T.

    1997-06-01

    The purpose of this study was to evaluate whether or not fissile uranium in low-level-waste (LLW) facilities can be concentrated by hydrogeochemical processes to permit nuclear criticality. A team of experts in hydrology, geology, geochemistry, soil chemistry, and criticality safety was formed to develop achievable scenarios for hydrogeochemical increases in concentration of special nuclear material (SNM), and to use these scenarios to aid in evaluating the potential for nuclear criticality. The team`s approach was to perform simultaneous hydrogeochemical and nuclear criticality studies to (1) identify some achievable scenarios for uranium migration and concentration increase at LLW disposal facilities, (2) model groundwater transport and subsequent concentration increase via sorption or precipitation of uranium, and (3) evaluate the potential for nuclear criticality resulting from potential increases in uranium concentration over disposal limits. The analysis of SNM was restricted to {sup 235}U in the present scope of work. The outcome of the work indicates that criticality is possible given established regulatory limits on SNM disposal. However, a review based on actual disposal records of an existing site operation indicates that the potential for criticality is not a concern under current burial practices.

  8. DOE Issues Request for Quotations for Depleted Uranium Hexafluoride Conversion Technical Services

    Broader source: Energy.gov [DOE]

    Cincinnati – The U.S. Department of Energy (DOE) today issued a Request for Quotation (RFQ) for engineering and operations technical services to support the Portsmouth Paducah Project Office and the oversight of operations of the Depleted Uranium Hexafluoride (DUF6) Conversion Project located in Paducah KY, and Portsmouth OH.

  9. Uranium isotopes fingerprint biotic reduction

    SciTech Connect (OSTI)

    Stylo, Malgorzata; Neubert, Nadja; Wang, Yuheng; Monga, Nikhil; Romaniello, Stephen J.; Weyer, Stefan; Bernier-Latmani, Rizlan

    2015-04-20

    Knowledge of paleo-redox conditions in the Earth’s history provides a window into events that shaped the evolution of life on our planet. The role of microbial activity in paleo-redox processes remains unexplored due to the inability to discriminate biotic from abiotic redox transformations in the rock record. The ability to deconvolute these two processes would provide a means to identify environmental niches in which microbial activity was prevalent at a specific time in paleo-history and to correlate specific biogeochemical events with the corresponding microbial metabolism. Here, we demonstrate that the isotopic signature associated with microbial reduction of hexavalent uranium (U), i.e., the accumulation of the heavy isotope in the U(IV) phase, is readily distinguishable from that generated by abiotic uranium reduction in laboratory experiments. Thus, isotope signatures preserved in the geologic record through the reductive precipitation of uranium may provide the sought-after tool to probe for biotic processes. Because uranium is a common element in the Earth’s crust and a wide variety of metabolic groups of microorganisms catalyze the biological reduction of U(VI), this tool is applicable to a multiplicity of geological epochs and terrestrial environments. The findings of this study indicate that biological activity contributed to the formation of many authigenic U deposits, including sandstone U deposits of various ages, as well as modern, Cretaceous, and Archean black shales. In addition, engineered bioremediation activities also exhibit a biotic signature, suggesting that, although multiple pathways may be involved in the reduction, direct enzymatic reduction contributes substantially to the immobilization of uranium.

  10. Uranium isotopes fingerprint biotic reduction

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Stylo, Malgorzata; Neubert, Nadja; Wang, Yuheng; Monga, Nikhil; Romaniello, Stephen J.; Weyer, Stefan; Bernier-Latmani, Rizlan

    2015-04-20

    Knowledge of paleo-redox conditions in the Earth’s history provides a window into events that shaped the evolution of life on our planet. The role of microbial activity in paleo-redox processes remains unexplored due to the inability to discriminate biotic from abiotic redox transformations in the rock record. The ability to deconvolute these two processes would provide a means to identify environmental niches in which microbial activity was prevalent at a specific time in paleo-history and to correlate specific biogeochemical events with the corresponding microbial metabolism. Here, we demonstrate that the isotopic signature associated with microbial reduction of hexavalent uranium (U),more » i.e., the accumulation of the heavy isotope in the U(IV) phase, is readily distinguishable from that generated by abiotic uranium reduction in laboratory experiments. Thus, isotope signatures preserved in the geologic record through the reductive precipitation of uranium may provide the sought-after tool to probe for biotic processes. Because uranium is a common element in the Earth’s crust and a wide variety of metabolic groups of microorganisms catalyze the biological reduction of U(VI), this tool is applicable to a multiplicity of geological epochs and terrestrial environments. The findings of this study indicate that biological activity contributed to the formation of many authigenic U deposits, including sandstone U deposits of various ages, as well as modern, Cretaceous, and Archean black shales. In addition, engineered bioremediation activities also exhibit a biotic signature, suggesting that, although multiple pathways may be involved in the reduction, direct enzymatic reduction contributes substantially to the immobilization of uranium.« less

  11. Fabrication of Cerium Oxide and Uranium Oxide Microspheres for Space Nuclear Power Applications

    SciTech Connect (OSTI)

    Jeffrey A. Katalenich; Michael R. Hartman; Robert C. O'Brien

    2013-02-01

    Cerium oxide and uranium oxide microspheres are being produced via an internal gelation sol-gel method to investigate alternative fabrication routes for space nuclear fuels. Depleted uranium and non-radioactive cerium are being utilized as surrogates for plutonium-238 (Pu-238) used in radioisotope thermoelectric generators and for enriched uranium required by nuclear thermal rockets. While current methods used to produce Pu-238 fuels at Los Alamos National Laboratory (LANL) involve the generation of fine powders that pose a respiratory hazard and have a propensity to contaminate glove boxes, the sol-gel route allows for the generation of oxide microsphere fuels through an aqueous route. The sol-gel method does not generate fine powders and may require fewer processing steps than the LANL method with less operator handling. High-quality cerium dioxide microspheres have been fabricated in the desired size range and equipment is being prepared to establish a uranium dioxide microsphere production capability.

  12. Toxic Substances Control Act Uranium Enrichment Federal Facility Compliance

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Agreement | Department of Energy Toxic Substances Control Act Uranium Enrichment Federal Facility Compliance Agreement Toxic Substances Control Act Uranium Enrichment Federal Facility Compliance Agreement Toxic Substances Control Act (TSCA) Uranium Enrichment Federal Facility Compliance Agreement establishes a plan to bring DOE's Uranium Enrichment Plants (and support facilities) located in Portsmouth, Ohio and Paducah, Kentucky and DOE's former Uranium Enrichment Plant (and support

  13. Energy Department Selects Global Laser Enrichment for Future Operations at

    Energy Savers [EERE]

    Paducah Site | Department of Energy Global Laser Enrichment for Future Operations at Paducah Site Energy Department Selects Global Laser Enrichment for Future Operations at Paducah Site November 27, 2013 - 12:00pm Addthis Workers inspect cylinders containing depleted uranium hexafluoride. Workers inspect cylinders containing depleted uranium hexafluoride. Media Contact (202) 586-4940 Washington, D.C. - The U.S. Department of Energy announced today that it will open negotiations with Global

  14. 2014 Domestic Uranium Production Report

    Gasoline and Diesel Fuel Update (EIA)

    Domestic Uranium Production Report 2014 Domestic Uranium Production Report Release Date: April 30, 2015 Next Release Date: May 2016 Number of Holes Feet (thousand) Number of Holes Feet (thousand) Number of Holes Feet (thousand) 2003 NA NA NA NA W W 2004 W W W W 2,185 1,249 2005 W W W W 3,143 1,668 2006 1,473 821 3,430 1,892 4,903 2,713 2007 4,351 2,200 4,996 2,946 9,347 5,146 2008 5,198 2,543 4,157 2,551 9,355 5,093 2009 1,790 1,051 3,889 2,691 5,679 3,742 2010 2,439 1,460 4,770 3,444 7,209

  15. 2014 Domestic Uranium Production Report

    Gasoline and Diesel Fuel Update (EIA)

    Domestic Uranium Production Report 2014 Domestic Uranium Production Report Release Date: April 30, 2015 Next Release Date: May 2016 Activity at U.S. Mills and In-Situ-Leach Plants 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 Ore from Underground Mines and Stockpiles Fed to Mills 1 0 W W W 0 W W W W W W W Other Feed Materials 2 W W W W W W W W W W W W Total Mill Feed W W W W W W W W W W W W (thousand pounds U 3 O 8 ) W W W W W W W W W W W W (thousand pounds U 3 O 8 ) W W W W W W W

  16. 2014 Uranium Marketing Annual Report

    Gasoline and Diesel Fuel Update (EIA)

    U.S. Energy Information Administration / 2014 Uranium Marketing Annual Report 2014 Uranium Marketing Annual Report Release Date: May 13, 2015 Next Release Date: May 2016 thousand separative work units (SWU) Country of enrichment service (SWU-origin) 2010 2011 2012 2013 2014 China 0 W W W 636 France W W 0 0 0 Germany 681 1,539 1,075 753 1,005 Netherlands 2,292 1,506 1,496 2,112 1,801 Russia 5,055 5,308 6,560 2,491 3,083 United Kingdom 2,119 2,813 2,648 2,674 2,435 Europe 1 W 670 W 0 W Other 2 W

  17. 2014 Uranium Marketing Annual Report

    Gasoline and Diesel Fuel Update (EIA)

    8 U.S. Energy Information Administration / 2014 Uranium Marketing Annual Report 2014 Uranium Marketing Annual Report Release Date: May 13, 2015 Next Release Date: May 2016 Deliveries 2010 2011 2012 2013 2014 Purchases 2,226 1,668 1,194 W 410 Weighted-average price 43.36 54.85 51.78 W 33.55 Purchases 27,186 24,695 24,606 W 28,743 Weighted-average price 41.42 49.69 47.75 W 38.42 Purchases 29,412 26,363 25,800 30,191 29,153 Weighted-average price 41.57 50.02 47.94 42.95 38.35 Purchases 24,693

  18. 2014 Uranium Marketing Annual Report

    Gasoline and Diesel Fuel Update (EIA)

    Uranium Marketing Annual Report 2014 Uranium Marketing Annual Report Release Date: May 13, 2015 Next Release Date: May 2016 Purchases Weighted- average price Purchases Weighted- average price Purchases Weighted- average price Purchases Weighted- average price Purchases Weighted- average price Australia 7,112 51.35 6,001 57.47 6,724 51.17 10,741 49.92 10,511 48.03 Brazil W W W W W W W W W W Canada 10,238 50.35 10,832 56.08 13,584 56.75 7,808 52.61 9,789 45.87 China 0 -- W W W W W W W W Czech

  19. 2014 Uranium Marketing Annual Report

    Gasoline and Diesel Fuel Update (EIA)

    Uranium Marketing Annual Report 2014 Uranium Marketing Annual Report Release Date: May 13, 2015 Next Release Date: May 2016 Number of purchasers Quantity with reported price Weighted- average price Number of purchasers Quantity with reported price Weighted- average price Number of purchasers Quantity with reported price Weighted- average price First 8 10,981 45.58 8 12,328 42.01 8 11,681 37.64 Second 7 11,659 53.03 8 13,143 49.94 7 8,493 42.68 Third 7 21,146 57.22 7 18,057 53.43 7 21,805 48.04

  20. Depleted uranium disposal options evaluation

    SciTech Connect (OSTI)

    Hertzler, T.J.; Nishimoto, D.D.; Otis, M.D.

    1994-05-01

    The Department of Energy (DOE), Office of Environmental Restoration and Waste Management, has chartered a study to evaluate alternative management strategies for depleted uranium (DU) currently stored throughout the DOE complex. Historically, DU has been maintained as a strategic resource because of uses for DU metal and potential uses for further enrichment or for uranium oxide as breeder reactor blanket fuel. This study has focused on evaluating the disposal options for DU if it were considered a waste. This report is in no way declaring these DU reserves a ``waste,`` but is intended to provide baseline data for comparison with other management options for use of DU. To PICS considered in this report include: Retrievable disposal; permanent disposal; health hazards; radiation toxicity and chemical toxicity.

  1. Russian Experience in the Regulatory Supervision of the Uranium Legacy Sites - 12441

    SciTech Connect (OSTI)

    Kiselev, M.F.; Romanov, V.V.; Shandala, N.K.; Titov, A.V.; Kiselev, S.M.; Seregin, V.A.; Metlyaev, E.G.; Novikova, N.; Khokhlova, E.A.

    2012-07-01

    Management of the uranium legacy is accompanied with environmental impact intensity of which depends on the amount of the waste generated, the extent of that waste localization and environmental spreading. The question is: how hazardous is such impact on the environment and human health? The criterion for safety assurance is adequate regulation of the uranium legacy. Since the establishment of the uranium industry, the well done regulatory system operates in the FMBA of Russia. Such system covers inter alia, the uranium legacy. This system includes the extent laboratory network of independent control and supervision, scientific researches, regulative practices. The current Russian normative and legal basis of the regulation and its application practice has a number of problems relating to the uranium legacy, connected firstly with the environmental remediation. To improve the regulatory system, the urgent tasks are: -To introduce the existing exposure situation into the national laws and standards in compliance with the ICRP system. - To develop criteria for site remediation and return, by stages, to uncontrolled uses. The similar criteria have been developed within the Russian-Norwegian cooperation for the purpose of remediation of the sites for temporary storage of SNF and RW. - To consider possibilities and methods of optimization for the remediation strategies under development. - To separate the special category - RW resulted from uranium ore mining and dressing. The current Russian RW classification is based on the waste subdivision in terms of the specific activities. Having in mind the new RW-specific law, we receive the opportunity to separate some special category - RW originated from the uranium mining and milling. Introduction of such category can simplify significantly the situation with management of waste of uranium mining and milling processes. Such approach is implemented in many countries and approved by IAEA. The category of 'RW originated from uranium mining and milling' is to be introduced as the legal acts and regulatory documents. The recent ICRP recommendations provide the flexible approaches for solving of such tasks. The FMBA of Russia recognizes the problems of radiation safety assurance related to the legacy of the former USSR in the uranium mining industry. Some part of the regulatory problems assumes to be solved within the EurAsEC inter-state target program 'Reclamation of the territories of the EurAsEC member states affected by the uranium mining and milling facilities'. Using the example of the uranium legacy sites in Kyrgyz and Tajikistan which could result in the tran-boundary disasters and require urgent reclamation, the experience will be gained to be used in other states as well. Harmonization of the national legislations and regulative documents on radiation safety assurance is envisaged. (authors)

  2. 4th Quarter 2015 Domestic Uranium Production Report

    Gasoline and Diesel Fuel Update (EIA)

    Table 2. Number of uranium mills and plants producing uranium concentrate in the United States End of Mills - conventional milling 1 Mills - other operations 2 In-situ-leach plants 3 Byproduct recovery plants 4 Total 1996 0 2 5 2 9 1997 0 3 6 2 11 1998 0 2 6 1 9 1999 1 2 4 0 7 2000 1 2 3 0 6 2001 0 1 3 0 4 2002 0 1 2 0 3 2003 0 0 2 0 2 2004 0 0 3 0 3 2005 0 1 3 0 4 2006 0 1 5 0 6 2007 0 1 5 0 6 2008 1 0 6 0 7 2009 0 1 3 0 4 2010 1 0 4 0 5 2011 1 0 5 0 6 2012 1 0 5 0 6 2013 0 1 6 0 7 2014 0 0 7 0

  3. :- : DRILLING URANIUM BILLETS ON A

    Office of Legacy Management (LM)

    'Xxy";^ ...... ' '. .- -- Metals, Ceramics, and Materials. : . - ,.. ; - . _ : , , ' z . , -, .- . >. ; . .. :- : DRILLING URANIUM BILLETS ON A .-... r .. .. i ' LEBLOND-CARLSTEDT RAPID BORER 4 r . _.i'- ' ...... ' -'".. :-'' ,' :... : , '.- ' ;BY R.' J. ' ANSEN .AEC RESEARCH AND DEVELOPMENT REPORT PERSONAL PROPERTY OF J. F. Schlltz .:- DECLASSIFIED - PER AUTHORITY OF (DAlE) (NhTI L (DATE)UE) FEED MATERIALS PRODUCTION CENTER NATIONAL LFE A COMPANY OF OHIO 26 1 3967 3035406 NLCO -

  4. Uranium Marketing Annual Report -

    Gasoline and Diesel Fuel Update (EIA)

    6. Purchases of enrichment services by owners and operators of U.S. civilian nuclear power reactors by origin country and year, 2010-14 thousand separative work units (SWU) Country of enrichment service (SWU-origin) 2010 2011 2012 2013 2014 China 0 W W W 636 France W W 0 0 0 Germany 681 1,539 1,075 753 1,005 Netherlands 2,292 1,506 1,496 2,112 1,801 Russia 5,055 5,308 6,560 2,491 3,083 United Kingdom 2,119 2,813 2,648 2,674 2,435 Europe 1 W 670 W 0 W Other 2 W 0 W W W Foreign total 11,526 12,395

  5. Uranium Leasing Program | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    » Uranium Leasing Program Uranium Leasing Program Abandoned Mine Reclamation, Uravan Mineral Belt, Colorado Abandoned Mine Reclamation, Uravan Mineral Belt, Colorado LM currently manages the Uranium Leasing Program and continues to administer 31 lease tracts, all located within the Uravan Mineral Belt in southwestern Colorado. Twenty-nine of these lease tracts are actively held under lease and two tracts have been placed in inactive status indefinitely. Administrative duties include ongoing

  6. Consent Order, Uranium Disposition Services, LLC - NCO-2010-01...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Uranium Disposition Services, LLC - NCO-2010-01 Consent Order, Uranium Disposition Services, LLC - NCO-2010-01 March 26, 2010 Issued to Uranium Disposition Services, LLC related to ...

  7. Uranium metal reactions with hydrogen and water vapour and the reactivity of the uranium hydride produced

    SciTech Connect (OSTI)

    Godfrey, H.; Broan, C.; Goddard, D.; Hodge, N.; Woodhouse, G.; Diggle, A.; Orr, R.

    2013-07-01

    Within the nuclear industry, metallic uranium has been used as a fuel. If this metal is stored in a hydrogen rich environment then the uranium metal can react with the hydrogen to form uranium hydride which can be pyrophoric when exposed to air. The UK National Nuclear Laboratory has been carrying out a programme of research for Sellafield Limited to investigate the conditions required for the formation and persistence of uranium hydride and the reactivity of the material formed. The experimental results presented here have described new results characterising uranium hydride formed from bulk uranium at 50 and 160 C. degrees and measurements of the hydrolysis kinetics of these materials in liquid water. It has been shown that there is an increase in the proportion of alpha-uranium hydride in material formed at lower temperatures and that there is an increase in the rate of reaction with water of uranium hydride formed at lower temperatures. This may at least in part be attributable to a difference in the reaction rate between alpha and beta-uranium hydride. A striking observation is the strong dependence of the hydrolysis reaction rate on the temperature of preparation of the uranium hydride. For example, the reaction rate of uranium hydride prepared at 50 C. degrees was over ten times higher than that prepared at 160 C. degrees at 20% extent of reaction. The decrease in reaction rate with the extent of reaction also depended on the temperature of uranium hydride preparation.

  8. Uranium Processing Facility Team Signs Partnering Agreement ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Processing Facility ... Uranium Processing Facility Team Signs Partnering Agreement Posted: July 18, 2014 - 4:39pm Front row, left to right: Bill Priest, Consolidated Nuclear...

  9. Oxidation and crystal field effects in uranium

    SciTech Connect (OSTI)

    Tobin, J. G.; Booth, C. H.; Shuh, D. K.; van der Laan, G.; Sokaras, D.; Weng, T. -C.; Yu, S. W.; Bagus, P. S.; Tyliszczak, T.; Nordlund, D.

    2015-07-06

    An extensive investigation of oxidation in uranium has been pursued. This includes the utilization of soft x-ray absorption spectroscopy, hard x-ray absorption near-edge structure, resonant (hard) x-ray emission spectroscopy, cluster calculations, and a branching ratio analysis founded on atomic theory. The samples utilized were uranium dioxide (UO2), uranium trioxide (UO3), and uranium tetrafluoride (UF4). As a result, a discussion of the role of non-spherical perturbations, i.e., crystal or ligand field effects, will be presented.

  10. Colorimetric detection of uranium in water

    DOE Patents [OSTI]

    DeVol, Timothy A.; Hixon, Amy E.; DiPrete, David P.

    2012-03-13

    Disclosed are methods, materials and systems that can be used to determine qualitatively or quantitatively the level of uranium contamination in water samples. Beneficially, disclosed systems are relatively simple and cost-effective. For example, disclosed systems can be utilized by consumers having little or no training in chemical analysis techniques. Methods generally include a concentration step and a complexation step. Uranium concentration can be carried out according to an extraction chromatographic process and complexation can chemically bind uranium with a detectable substance such that the formed substance is visually detectable. Methods can detect uranium contamination down to levels even below the MCL as established by the EPA.

  11. Radiological Safety Training for Uranium Facilities

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Continued on Next Page * Stein, F., Instructor Competencies: the Standards. International ... and acute exposures to significant amounts of uranium may result in kidney damage. ...

  12. Uranium Enrichment Decontamination and Decommissioning Fund's...

    Broader source: Energy.gov (indexed) [DOE]

    Uranium Enrichment Decontamination and Decommissioning Fund's Fiscal Year 2011 Financial ... Dear Mr. Friedman: We have audited the financial statements of the Department of Energy's ...

  13. Plutonium Uranium Extraction Plant (PUREX) - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Site. The Plutonium Uranium Extraction Plant is massive. It is longer than three football fields, stands 64 feet above the ground, and extends another 40 feet below ground....

  14. Highly Enriched Uranium Materials Facility | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Highly Enriched Uranium ... Highly Enriched Uranium Materials Facility HEUMF The Highly Enriched Uranium Materials Facility is our nation's central repository for highly enriched uranium, a vital national security asset. HEUMF is a massive concrete and steel structure that provides maximum security for the highly enriched uranium material that it protects. Approximately 300 feet by 475 feet, HEUMF has areas for receiving, shipping and providing long-term storage of the enriched uranium, as well

  15. High strength and density tungsten-uranium alloys

    DOE Patents [OSTI]

    Sheinberg, Haskell (Los Alamos, NM)

    1993-01-01

    Alloys of tungsten and uranium and a method for making the alloys. The amount of tungsten present in the alloys is from about 55 vol % to about 85 vol %. A porous preform is made by sintering consolidated tungsten powder. The preform is impregnated with molten uranium such that (1) uranium fills the pores of the preform to form uranium in a tungsten matrix or (2) uranium dissolves portions of the preform to form a continuous uranium phase containing tungsten particles.

  16. Liquid uranium alloy-helium fission reactor

    DOE Patents [OSTI]

    Minkov, Vladimir (Skokie, IL)

    1986-01-01

    This invention teaches a nuclear fission reactor having a core vessel and at least one tandem heat exchanger vessel coupled therewith across upper and lower passages to define a closed flow loop. Nuclear fuel such as a uranium alloy in its liquid phase fills these vessels and flow passages. Solid control elements in the reactor core vessel are adapted to be adjusted relative to one another to control fission reaction of the liquid fuel therein. Moderator elements in the other vessel and flow passages preclude fission reaction therein. An inert gas such as helium is bubbled upwardly through the heat exchanger vessel operable to move the liquid fuel upwardly therein and unidirectionally around the closed loop and downwardly through the core vessel. This helium gas is further directed to heat conversion means outside of the reactor vessels to utilize the heat from the fission reaction to generate useful output. The nuclear fuel operates in the 1200.degree.-1800.degree. C. range, and even higher to 2500.degree. C., limited only by the thermal effectiveness of the structural materials, increasing the efficiency of power generation from the normal 30-35% with 300.degree.-500.degree. C. upper limit temperature to 50-65%. Irradiation of the circulating liquid fuel, as contrasted to only localized irradiation of a solid fuel, provides improved fuel utilization.

  17. Liquid uranium alloy-helium fission reactor

    DOE Patents [OSTI]

    Minkov, V.

    1984-06-13

    This invention describes a nuclear fission reactor which has a core vessel and at least one tandem heat exchanger vessel coupled therewith across upper and lower passages to define a closed flow loop. Nuclear fuel such as a uranium alloy in its liquid phase fills these vessels and flow passages. Solid control elements in the reactor core vessel are adapted to be adjusted relative to one another to control fission reaction of the liquid fuel therein. Moderator elements in the other vessel and flow passages preclude fission reaction therein. An inert gas such as helium is bubbled upwardly through the heat exchanger vessel operable to move the liquid fuel upwardly therein and unidirectionally around the closed loop and downwardly through the core vessel. This helium gas is further directed to heat conversion means outside of the reactor vessels to utilize the heat from the fission reaction to generate useful output. The nuclear fuel operates in the 1200 to 1800/sup 0/C range, and even higher to 2500/sup 0/C.

  18. Determination of the origin of elevated uranium at a Former Air Force Landfill using non-parametric statistics analysis and uranium isotope ratio analysis

    SciTech Connect (OSTI)

    Weismann, J.; Young, C.; Masciulli, S.; Caputo, D.

    2007-07-01

    Lowry Air Force Base (Lowry) was closed in September 1994 as part of the Base Realignment and Closure (BRAC) program and the base was transferred to the Lowry Redevelopment Authority in 1995. As part of the due diligence activities conducted by the Air Force, a series of remedial investigations were conducted across the base. A closed waste landfill, designated Operable Unit 2 (OU 2), was initially assessed in a 1990 Remedial Investigation (RI; [1]). A Supplemental Remedial Investigation was conducted in 1995 [2] and additional studies were conducted in a 1998 Focused Feasibility Study. [3] The three studies indicated that gross alpha, gross beta, and uranium concentrations were consistently above regulatory standards and that there were detections of low concentrations other radionuclides. Results from previous investigations at OU 2 have shown elevated gross alpha, gross beta, and uranium concentrations in groundwater, surface water, and sediments. The US Air Force has sought to understand the provenance of these radionuclides in order to determine if they could be due to leachates from buried radioactive materials within the landfill or whether they are naturally-occurring. The Air Force and regulators agreed to use a one-year monitoring and sampling program to seek to explain the origins of the radionuclides. Over the course of the one-year program, dissolved uranium levels greater than the 30 {mu}g/L Maximum Contaminant Level (MCL) were consistently found in both up-gradient and down-gradient wells at OU 2. Elevated Gross Alpha and Gross Beta measurements that were observed during prior investigations and confirmed during the LTM were found to correlate with high dissolved uranium content in groundwater. If Gross Alpha values are corrected to exclude uranium and radon contributions in accordance with US EPA guidance, then the 15 pCi/L gross alpha level is not exceeded. The large dataset also allowed development of gross alpha to total uranium correlation factors so that gross alpha action levels can be applied to future long-term landfill monitoring to track radiological conditions at lower cost. Ratios of isotopic uranium results were calculated to test whether the elevated uranium displayed signatures indicative of military use. Results of all ratio testing strongly supports the conclusion that the uranium found in groundwater, surface water, and sediment at OU 2 is naturally-occurring and has not undergone anthropogenic enrichment or processing. U-234:U-238 ratios also show that a disequilibrium state, i.e., ratio greater than 1, exists throughout OU 2 which is indicative of long-term aqueous transport in aged aquifers. These results all support the conclusion that the elevated uranium observed at OU 2 is due to the high concentrations in the regional watershed. Based on the results of this monitoring program, we concluded that the elevated uranium concentrations measured in OU 2 groundwater, surface water, and sediment are due to the naturally-occurring uranium content of the regional watershed and are not the result of waste burials in the former landfill. Several lines of evidence indicate that natural uranium has been naturally concentrated beneath OU 2 in the geologic past and the higher of uranium concentrations in down-gradient wells is the result of geochemical processes and not the result of a uranium ore disposal. These results therefore provide the data necessary to support radiological closure of OU 2. (authors)

  19. DOE Evaluates Environmental Impacts of Uranium Mining on Government...

    Energy Savers [EERE]

    Evaluates Environmental Impacts of Uranium Mining on Government Land in Western Colorado DOE Evaluates Environmental Impacts of Uranium Mining on Government Land in Western...

  20. Record of Decision for the Uranium Leasing Program Programmatic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Record of Decision for the Uranium Leasing Program Programmatic Environmental Impact Statement Record of Decision for the Uranium Leasing Program Programmatic Environmental Impact...

  1. Toxic Substances Control Act Uranium Enrichment Federal Facility...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Toxic Substances Control Act Uranium Enrichment Federal Facility Compliance Agreement Toxic Substances Control Act Uranium Enrichment Federal Facility Compliance Agreement Toxic...

  2. DOE/NNSA Successfully Establishes Uranium Lease and Takeback...

    National Nuclear Security Administration (NNSA)

    Apply for Our Jobs Our Jobs Working at NNSA Blog Home NNSA Blog DOENNSA Successfully Establishes Uranium Lease and Takeback ... DOENNSA Successfully Establishes Uranium Lease ...

  3. Decommissioning of U.S. Uranium Production Facilities

    Reports and Publications (EIA)

    1995-01-01

    This report analyzes the uranium production facility decommissioning process and its potential impact on uranium supply and prices. 1995 represents the most recent publication year.

  4. Legacy Management Work Progresses on Defense-Related Uranium...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    defense-related legacy uranium mine sites located within 11 uranium mining districts in 6 western states. At these sites, photographs and global positioning location data were...

  5. Highly Enriched Uranium Materials Facility, Major Design Changes...

    Energy Savers [EERE]

    Highly Enriched Uranium Materials Facility, Major Design Changes Late...Lessons Learned Report, NNSA, Dec 2010 Highly Enriched Uranium Materials Facility, Major Design Changes...

  6. Sequestering Uranium from Seawater: Binding Strength and Modes...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sequestering Uranium from Seawater: Binding Strength and Modes of Uranyl Complexes with Glutarimidedioxime Sequestering Uranium from Seawater: Binding Strength and Modes of Uranyl...

  7. 3rd Quarter 2015 Domestic Uranium Production Report

    U.S. Energy Information Administration (EIA) Indexed Site

    U.S. Energy Information Administration: Form EIA-851A and Form EIA-851Q, ""Domestic Uranium Production Report.""" " U.S. Energy Information Administration Domestic Uranium...

  8. Domestic Uranium Production Report 4th Quarter 2015

    U.S. Energy Information Administration (EIA) Indexed Site

    Domestic Uranium Production Report 4th Quarter 2015 February ... DC 20585 U.S. Energy Information Administration | ... Team, Office of Electricity, Renewables, and Uranium ...

  9. Use of solvent extraction technique in Brazilian uranium mills - an overview

    SciTech Connect (OSTI)

    Gomiero, Luiz A.

    2008-07-01

    Solvent extraction has been applied to uranium-concentrate production in Brazil. At the first plant, uranium minerals associated with Zr and Mo were acid leached. Extraction was carried out by a mixture of Alamine 336 and Alamine 304, followed by selective Zr, U, and Mo stripping. At the currently operating facilities, a single U mineral is processed by acid heap leaching. Uranium is extracted with Alamine 336 and stripped with NaCl solution. As all water is recycled, chloride contents in the liquor have increased, causing detrimental effects to the extraction process. The current plant operating conditions and the improvements arisen from the research developed to solve these problems are presented. (authors)

  10. Evaluation of kinetic phosphorescence analysis for the determination of uranium

    SciTech Connect (OSTI)

    Croatto, P.V.; Frank, I.W.; Johnson, K.D.; Mason, P.B.; Smith, M.M.

    1997-12-01

    In the past, New Brunswick Laboratory (NBL) has used a fluorometric method for the determination of sub-microgram quantities of uranium. In its continuing effort to upgrade and improve measurement technology, NBL has evaluated the commercially-available KPA-11 kinetic phosphorescence analyzer (Chemchek, Richland, WA). The Chemchek KPA-11 is a bench-top instrument which performs single-measurement, quench-corrected analyses for trace uranium. It incorporates patented kinetic phosphorimetry techniques to measure and analyze sample phosphorescence as a function of time. With laser excitation and time-corrected photon counting, the KPA-11 has a lower detection limit than conventional fluorometric methods. Operated with a personal computer, the state-of-the-art KPA-11 offers extensive time resolution and phosphorescence lifetime capabilities for additional specificity. Interferences are thereby avoided while obtaining precise measurements. Routine analyses can be easily and effectively accomplished, with the accuracy and precision equivalent to the pulsed-laser fluorometric method presently performed at NBL, without the need for internal standards. Applications of kinetic phosphorimetry at NBL include the measurement of trace level uranium in retention tank, waste samples, and low-level samples. It has also been used to support other experimental activities at NBL by the measuring of nanogram amounts of uranium contamination (in blanks) in isotopic sample preparations, and the determining of elution curves of different ion exchange resins used for uranium purification. In many cases, no pretreatment of samples was necessary except to fume them with nitric acid, and then to redissolve and dilute them to an appropriate concentration with 1 M HNO{sub 3} before measurement. Concentrations were determined on a mass basis ({micro}g U/g of solution), but no density corrections were needed since all the samples (including the samples used for calibration) were in the same density matrix (1 M HNO{sub 3}). A statistical evaluation of the determination of uranium using kinetic phosphorimetry is described in this report, along with a discussion of the method, and an evaluation of the use of plastic versus quartz cuvettes. Measurement with a precision of {+-} 3--4% relative standard deviation (RSD) and an accuracy of better than {+-} 2% relative difference (RD) are obtained in the 0.0006 to 5 {micro}g U/g-solution range. The instrument detection limit is 0.04 ppb (4 x 10{sup {minus}5} {micro}g U/g solution) using quartz cells, and 0.11 ppb (11 x 10{sup {minus}5} {micro}g U/g solution) using disposable methacrylate cuvettes.

  11. 230Th-234U Age-Dating Uranium by Mass Spectrometry

    SciTech Connect (OSTI)

    Williams, R W; Gaffney, A M

    2012-04-18

    This is the standard operating procedure used by the Isotope Ratio Mass Spectrometry Group of the Chemical Sciences Division at LLNL for the preparation of a sample of uranium oxide or uranium metal for {sup 230}Th-{sup 234}U age-dating. The method described here includes the dissolution of a sample of uranium oxide or uranium metal, preparation of a secondary dilution, spiking of separate aliquots for uranium and thorium isotope dilution measurements, and purification of uranium and thorium aliquots for mass spectrometry. This SOP may be applied to uranium samples of unknown purity as in a nuclear forensic investigation, and also to well-characterized samples such as, for example, U{sub 3}O{sub 8} and U-metal certified reference materials. The sample of uranium is transferred to a quartz or PFA vial, concentrated nitric acid is added and the sample is heated on a hotplate at approximately 100 C for several hours until it dissolves. The sample solution is diluted with water to make the solution approximately 4 M HNO{sub 3} and hydrofluoric acid is added to make it 0.05 M HF. A secondary dilution of the primary uranium solution is prepared. Separate aliquots for uranium and thorium isotope dilution measurements are taken and spiked with {sup 233}U and {sup 229}Th, respectively. The spiked aliquot for uranium isotope dilution analysis is purified using EiChrom UTEVA resin. The spiked aliquot for thorium isotope dilution analysis is purified by, first, a 1.8 mL AG1x8 resin bed in 9 M HCl on which U adsorbs and Th passes through; second, adsorbing Th on a 1 mL AG1x8 resin bed in 8 M HNO{sub 3} and then eluting it with 9 M HCl followed by 0.1 M HCl + 0.005 M HF; and third, by passing the Th through a final 1.0 mL AG1x8 resin bed in 9 M HCl. The mass spectrometry is performed using the procedure 'Th and U Mass Spectrometry for {sup 230}Th-{sup 234}U Age Dating'.

  12. Final Environmental assessment for the Uranium Lease Management Program

    SciTech Connect (OSTI)

    1995-07-01

    The US Department of Energy (DOE) has prepared a programmatic environmental assessment (EA) of the proposed action to continue leasing withdrawn lands and DOE-owned patented claims for the exploration and production of uranium and vanadium ores. The Domestic Uranium Program regulation, codified at Title 10, Part 760.1, of the US Code of Federal Regulations (CFR), gives DOE the flexibility to continue leasing these lands under the Uranium Lease Management Program (ULMP) if the agency determines that it is in its best interest to do so. A key element in determining what is in DOE`s ``best interest`` is the assessment of the environmental impacts that may be attributable to lease tract operations and associated activities. On the basis of the information and analyses presented in the EA for the ULMP, DOE has determined that the proposed action does not constitute a major Federal action significantly affecting the quality of the human environment, as defined in the National Environmental Policy Act (NEPA) of 1969 (42 United States Code 4321 et seq.), as amended.Therefore, preparation of an environmental impact statement is not required for the ULMP,and DOE is issuing this Finding, of No Significant Impact (FONSI).

  13. Future of the Department of Energy's uranium enrichment enterprise

    SciTech Connect (OSTI)

    Sewell, P.G.

    1991-11-01

    The national energy strategy (NES) developed at President Bush's direction provides a focus for the US Department of Energy (DOE) future policy and funding initiatives including those of the uranium enrichment enterprise. The NES identifies an important and continuing role for nuclear energy as part of a balanced array of energy sources for meeting US energy needs, especially the growing demand for electricity. For many years, growth in US electricity demand has exhibited a strong correlation with growth in gross national product. NEW projections indicate that the US will need between 190 and 275 GW of additional system capacity by 2010. In order to unable nuclear power to help meet this need, the NEW establishes basic objectives for nuclear power. These objectives are to have a first order of a new nuclear power plant by 1995 and to have such a plant operational by 2000. The expansion of nuclear power anticipated in the NEW affirms a continuing need for a strong domestic uranium enrichment services supply capability. In terms of the future outlook for uranium enrichment, the atomic vapor laser isotope separation (AVLIS) technology continues to hold great promise for commercial application. If AVLIS efforts are successful, significant financial benefits from the commercial use of AVLIS will be realized by customers and the AVLIS deployment entity by approximately the year 2000 and thereafter.

  14. 2014 Domestic Uranium Production Report

    U.S. Energy Information Administration (EIA) Indexed Site

    7. Employment in the U.S. uranium production industry by state, 2003-14" "person-years" "State(s)",2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013,2014 "Wyoming",134,139,181,195,245,301,308,348,424,512,531,416 "Colorado and Texas",48,140,269,263,557,696,340,292,331,248,198,105 "Nebraska and New Mexico",92,102,123,160,149,160,159,134,127,"W","W","W" "Arizona, Utah, and

  15. 2014 Domestic Uranium Production Report

    U.S. Energy Information Administration (EIA) Indexed Site

    2. U.S. uranium mine production and number of mines and sources, 2003-14" "Production / Mining Method",2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013,2014 "Underground" "(estimated contained thousand pounds U3O8)","W","W","W","W","W","W","W","W","W","W","W","W" "Open Pit" "(estimated contained thousand pounds

  16. 2014 Domestic Uranium Production Report

    U.S. Energy Information Administration (EIA) Indexed Site

    3. U.S. uranium concentrate production, shipments, and sales, 2003-14" "Activity at U.S. Mills and In-Situ-Leach Plants",2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013,2014 "Estimated contained U3O8 (thousand pounds)" "Ore from Underground Mines and Stockpiles Fed to Mills 1",0,"W","W","W",0,"W","W","W","W","W","W","W" "Other Feed Materials

  17. Method for fabricating laminated uranium composites

    DOE Patents [OSTI]

    Chapman, L.R.

    1983-08-03

    The present invention is directed to a process for fabricating laminated composites of uranium or uranium alloys and at least one other metal or alloy. The laminated composites are fabricated by forming a casting of the molten uranium with the other metal or alloy which is selectively positioned in the casting and then hot-rolling the casting into a laminated plate in or around which the casting components are metallurgically bonded to one another to form the composite. The process of the present invention provides strong metallurgical bonds between the laminate components primarily since the bond disrupting surface oxides on the uranium or uranium alloy float to the surface of the casting to effectively remove the oxides from the bonding surfaces of the components.

  18. Scrap uranium recycling via electron beam melting

    SciTech Connect (OSTI)

    McKoon, R.

    1993-11-01

    A program is underway at the Lawrence Livermore National Laboratory (LLNL) to recycle scrap uranium metal. Currently, much of the material from forging and machining processes is considered radioactive waste and is disposed of by oxidation and encapsulation at significant cost. In the recycling process, uranium and uranium alloys in various forms will be processed by electron beam melting and continuously cast into ingots meeting applicable specifications for virgin material. Existing vacuum processing facilities at LLNL are in compliance with all current federal and state environmental, safety and health regulations for the electron beam melting and vaporization of uranium metal. One of these facilities has been retrofitted with an auxiliary electron beam gun system, water-cooled hearth, crucible and ingot puller to create an electron beam melt furnace. In this furnace, basic process R&D on uranium recycling will be performed with the goal of eventual transfer of this technology to a production facility.

  19. Uranium Pyrophoricity Phenomena and Prediction

    SciTech Connect (OSTI)

    DUNCAN, D.R.

    2000-04-20

    We have compiled a topical reference on the phenomena, experiences, experiments, and prediction of uranium pyrophoricity for the Hanford Spent Nuclear Fuel Project (SNFP) with specific applications to SNFP process and situations. The purpose of the compilation is to create a reference to integrate and preserve this knowledge. Decades ago, uranium and zirconium fires were commonplace at Atomic Energy Commission facilities, and good documentation of experiences is surprisingly sparse. Today, these phenomena are important to site remediation and analysis of packaging, transportation, and processing of unirradiated metal scrap and spent nuclear fuel. Our document, bearing the same title as this paper, will soon be available in the Hanford document system [Plys, et al., 2000]. This paper explains general content of our topical reference and provides examples useful throughout the DOE complex. Moreover, the methods described here can be applied to analysis of potentially pyrophoric plutonium, metal, or metal hydride compounds provided that kinetic data are available. A key feature of this paper is a set of straightforward equations and values that are immediately applicable to safety analysis.

  20. EIS-0089: PUREX Plant and Uranium Oxide Plant Facilities, Hanford Site, Richland, Washington

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy developed this statement to evaluate the environmental impacts of resumption of operations of the PUREX/Uranium Oxide facilities at the Hanford Site to produce plutonium and other special nuclear materials for national defense needs.

  1. Summary history of domestic uranium procurement under US Atomic Energy Commission contracts. Final report

    SciTech Connect (OSTI)

    Albrethsen, H. Jr.; McGinley, F.E.

    1982-09-01

    During the period 1947 through 1970, the Atomic Energy Commission (AEC) fostered the rapid development and expansion of the domestic uranium mining and milling industry by providing a market for uranium. Some thirty-two mills were constructed during that period to produce U/sub 3/O/sub 8/ concentrates for sale to the AEC. In addition, there were various pilot plants, concentrators, upgraders, heap leach, and solution mining facilities that operated during the period. The purpose of this report is to compile a short narrative history of the AEC's uranium concentrate procurement program and to describe briefly each of the operations that produced uranium for sale to the AEC. Contractual arrangements are described and data are given on quantities of U/sub 3/O/sub 8/ purchased and prices paid. Similar data are included for V/sub 2/O/sub 5/, where applicable. Mill and other plant operating data were also compiled from old AEC records. These latter data were provided by the companies, as a contractual requirement, during the period of operation under AEC contracts. Additionally, an effort was made to determine the present status of each facility by reference to other recently published reports. No sites were visited nor were the individual reports reviewed by the companies, many of which no longer exist. The authors relied almost entirely on published information for descriptions of facilities and milling processes utilized.

  2. Uranium Leasing Program Environmental Documents | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Environmental Documents Uranium Leasing Program Environmental Documents Uranium Leasing Program Mitigation Action Plan for the Final Uranium Leasing Program Programmatic Environmental Impact Statement DOE/EIS-0472 (November 2014) Record of Decision Final Uranium Leasing Program Programmatic Environmental Impact Statement (PEIS)

  3. Uranium Lease Tracts Location Map | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Uranium Lease Tracts Location Map Uranium Lease Tracts Location Map Uranium Lease Tracts Location Map PDF icon Uranium Lease Tracts Location Map More Documents & Publications EA-1037: Final Environmental Assessment EA-1535: Final Programmatic Environmental Assessment EIS-0472: Notice of Intent to Prepare a Programmatic Environmental Impact Statement

  4. The solubility of uranium hexafluoride in perfluoroethers

    SciTech Connect (OSTI)

    Barber, E.J.

    1984-07-15

    The polyperfluoroethers are compatible with uranium hexafluoride (UF/sub 6/) and are suitable for use in diffusion pumps and in mechanical vacuum pumps which rely on oil as both the lubricant and the seal. The UF/sub 6/ is soluble in all fluids with which it is compatible. Because a number of vacuum pumps in the BOP facilities of the GCEP plant employ these perfluoroether oils as the working fluid and have oil chambers which are large, questions have been raised as to the relationships governing the solubility of UF/sub 6/ in these materials and the maximum quantities of UF/sub 6/ which could be dissolved in these oils under credible accident conditions. This report summarizes these solubility relations and the interaction of the UF/sub 6/ solubility and the pumping capability of this type of vacuum pump. It will be shown that, whereas the solubility of UF/sub 6/ in Fomblin Y25 fluoroether fluid under a UF/sub 6/ pressure of 760 torr and at the pump operating temperature of 160/sup 0/F is about 500 g of UF/sub 6/ per liter of oil, the system controls are such as to isolate the system from the pumps before the quantity of UF/sub 6/ dissolved in the perfluoroether exceeds about 10 g of UF/sub 6/ per liter of oil. 13 refs., 7 figs.

  5. Interdiffusion and Reaction between Uranium and Iron

    SciTech Connect (OSTI)

    K. Huang; Y. Park; A. Ewh; B. H. Sencer; J. R. Kennedy; K. R. Coffey; Y. H. Sohn

    2012-05-01

    Metallic uranium alloy fuels cladded in stainless steel are being examined for fast reactors that operate at high temperature. In this work, solid-to-solid diffusion couples were assembled between pure U and Fe, and annealed at 853K, 888K and 923K where U exists as orthorhombic {alpha}, and at 953K and 973K where U exists as tetragonal {beta}. The microstructures and concentration profiles developed during annealing were examined by scanning electron microscopy and electron probe microanalysis, respectively. U{sub 6}Fe and UFe{sub 2} intermetallics developed in all diffusion couples, and U{sub 6}Fe was observed to grow faster than UFe{sub 2}. The interdiffusion fluxes of U and Fe were calculated to determine the integrated interdiffusion coefficients in U{sub 6}Fe and UFe{sub 2}. The extrinsic (K{sub I}) and intrinsic growth constants (K{sub II}) of U{sub 6}Fe and UFe{sub 2} were also calculated according to Wagner's formalism. The difference between K{sub I} and K{sub II} of UFe{sub 2} indicate that its growth was impeded by the fast-growing U{sub 6}Fe phase. However, the thin UFe{sub 2} played only a small role on the growth of U{sub 6}Fe as its K{sub I} and K{sub II} values were determined to be similar. The allotropic transformation of uranium (orthorhombic {alpha} to tetragonal {beta} phase) was observed to influence the growth of U{sub 6}Fe directly, because the growth rate of U{sub 6}Fe changed based on variation of activation energy. The change in chemical potential and crystal structure of U due to the allotropic transformation affected the interdiffusion between U and U{sub 6}Fe. Faster growth of U{sub 6}Fe is also examined with respect to various factors including crystal structure, phase diagram, and diffusion.

  6. uranium

    National Nuclear Security Administration (NNSA)

    a>

    NNSA Removes U.S.-Origin HEU from Jamaica, Makes the Caribbean HEU Free http:nnsa.energy.govmediaroompressreleasesnnsa-removes-u.s.-origin-heu-jamaica-mak...

  7. Technical Basis for Assessing Uranium Bioremediation Performance

    SciTech Connect (OSTI)

    PE Long; SB Yabusaki; PD Meyer; CJ Murray; AL N’Guessan

    2008-04-01

    In situ bioremediation of uranium holds significant promise for effective stabilization of U(VI) from groundwater at reduced cost compared to conventional pump and treat. This promise is unlikely to be realized unless researchers and practitioners successfully predict and demonstrate the long-term effectiveness of uranium bioremediation protocols. Field research to date has focused on both proof of principle and a mechanistic level of understanding. Current practice typically involves an engineering approach using proprietary amendments that focuses mainly on monitoring U(VI) concentration for a limited time period. Given the complexity of uranium biogeochemistry and uranium secondary minerals, and the lack of documented case studies, a systematic monitoring approach using multiple performance indicators is needed. This document provides an overview of uranium bioremediation, summarizes design considerations, and identifies and prioritizes field performance indicators for the application of uranium bioremediation. The performance indicators provided as part of this document are based on current biogeochemical understanding of uranium and will enable practitioners to monitor the performance of their system and make a strong case to clients, regulators, and the public that the future performance of the system can be assured and changes in performance addressed as needed. The performance indicators established by this document and the information gained by using these indicators do add to the cost of uranium bioremediation. However, they are vital to the long-term success of the application of uranium bioremediation and provide a significant assurance that regulatory goals will be met. The document also emphasizes the need for systematic development of key information from bench scale tests and pilot scales tests prior to full-scale implementation.

  8. Secretarial Determination for the Sale or Transfer of Uranium | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Secretarial Determination for the Sale or Transfer of Uranium Secretarial Determination for the Sale or Transfer of Uranium Secretarial Determination for the Sale or Transfer of Uranium, May 15, 2012 PDF icon Secretarial Determination for the Sale or Transfer of Uranium.pdf More Documents & Publications Secretarial Determination Pursuant to USEC Privatization Act for the Sale or Transfer of Low-Enriched Uranium Before the House Committee on Oversight and Government Reform

  9. Record of Decision for the Uranium Leasing Program Programmatic

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Environmental Impact Statement | Department of Energy Record of Decision for the Uranium Leasing Program Programmatic Environmental Impact Statement Record of Decision for the Uranium Leasing Program Programmatic Environmental Impact Statement The U.S. Department of Energy (DOE) issued its Record of Decision for the Uranium Leasing Program on May 6, 2014, announcing that it will continue managing the Uranium Leasing Program for another 10 years. PDF icon Record of Decision for the Uranium

  10. Special Nuclear Materials: EM Manages Plutonium, Highly Enriched Uranium

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Uranium-233 | Department of Energy Waste Management » Nuclear Materials & Waste » Special Nuclear Materials: EM Manages Plutonium, Highly Enriched Uranium and Uranium-233 Special Nuclear Materials: EM Manages Plutonium, Highly Enriched Uranium and Uranium-233 105-K building houses the K-Area Material Storage (KAMS) facility, designated for the consolidated storage of surplus plutonium at Savannah River Site pending disposition. The plutonium shipped to KAMS is sealed inside a

  11. Uranium Leasing Program: Program Summary | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Uranium Leasing Program » Uranium Leasing Program: Program Summary Uranium Leasing Program: Program Summary Uranium Leasing Program: Program Summary The Atomic Energy Act and other legislative actions authorized the U.S. Atomic Energy Commission (AEC), predecessor agency to the DOE, to withdraw lands from the public domain and then lease them to private industry for mineral exploration and for development and mining of uranium and vanadium ore. A total of 25,000 acres of land in southwestern

  12. Mined Land Reclamation on DOE's Uranium Lease Tracts, Southwestern

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Colorado | Department of Energy Mined Land Reclamation on DOE's Uranium Lease Tracts, Southwestern Colorado Mined Land Reclamation on DOE's Uranium Lease Tracts, Southwestern Colorado Mined Land Reclamation on DOE's Uranium Lease Tracts, Southwestern Colorado PDF icon Mined Land Reclamation on DOE's Uranium Lease Tracts, Southwestern Colorado More Documents & Publications EA-1535: Final Programmatic Environmental Assessment EA-1037: Final Environmental Assessment Final Uranium Leasing

  13. Final Uranium Leasing Program Programmatic Environmental Impact Statement

    Office of Environmental Management (EM)

    (PEIS) | Department of Energy Uranium Leasing Program Programmatic Environmental Impact Statement (PEIS) Final Uranium Leasing Program Programmatic Environmental Impact Statement (PEIS) Uranium Leasing Program-Mesa, Montrose, and San Miguel Counties, Colorado EIS-0472 evaluated the environmental impacts of management alternatives for DOE's Uranium Leasing Program, under which DOE administers tracts of land in western Colorado for exploration, development, and the extraction of uranium and

  14. RECOVERY OF URANIUM FROM CARBONATE LEACH LIQUORS

    DOE Patents [OSTI]

    Wilson, H.F.

    1958-07-01

    An improved process is described for the recovery of uranium from vanadifrous ores. In the prior art such ores have been digested with alkali carbonate solutions at a pH of less than 10 and then contacted with a strong base anion exchange resin to separate uranium from vanadium. It has been found that if the exchamge resin feed solution has its pH adjusted to the range 10.8 to 11.8, that vanadium adsorption on the resin is markedly decreased and the separation of uranium from the vanadium is thereby improved.

  15. Electrolytic process for preparing uranium metal

    DOE Patents [OSTI]

    Haas, Paul A. (Knoxville, TN)

    1990-01-01

    An electrolytic process for making uranium from uranium oxide using Cl.sub.2 anode product from an electrolytic cell to react with UO.sub.2 to form uranium chlorides. The chlorides are used in low concentrations in a melt comprising fluorides and chlorides of potassium, sodium and barium in the electrolytic cell. The electrolysis produces Cl.sub.2 at the anode that reacts with UO.sub.2 in the feed reactor to form soluble UCl.sub.4, available for a continuous process in the electrolytic cell, rather than having insoluble UO.sub.2 fouling the cell.

  16. Uranium Mining, Conversion, and Enrichment Industries

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Analysis of Potential Impacts of Uranium Transfers on the Domestic Uranium Mining, Conversion, and Enrichment Industries May 1, 2015 ii EXECUTIVE SUMMARY: The Department of Energy ("Department" or "DOE") plans to transfer the equivalent of up to 2,100 metric tons ("MTU") of natural uranium per year (with a higher total for calendar year 2015, mainly because of transfers already executed or under way before today's determination). These transfers would include 1,600

  17. A top-down assessment of energy, water and land use in uranium mining, milling, and refining

    SciTech Connect (OSTI)

    E. Schneider; B. Carlsen; E. Tavrides; C. van der Hoeven; U. Phathanapirom

    2013-11-01

    Land, water and energy use are key measures of the sustainability of uranium production into the future. As the most attractive, accessible deposits are mined out, future discoveries may prove to be significantly, perhaps unsustainably, more intensive consumers of environmental resources. A number of previous attempts have been made to provide empirical relationships connecting these environmental impact metrics to process variables such as stripping ratio and ore grade. These earlier attempts were often constrained by a lack of real world data and perform poorly when compared against data from modern operations. This paper conditions new empirical models of energy, water and land use in uranium mining, milling, and refining on contemporary data reported by operating mines. It shows that, at present, direct energy use from uranium production represents less than 1% of the electrical energy produced by the once-through fuel cycle. Projections of future energy intensity from uranium production are also possible by coupling the empirical models with estimates of uranium crustal abundance, characteristics of new discoveries, and demand. The projections show that even for the most pessimistic of scenarios considered, by 2100, the direct energy use from uranium production represents less than 3% of the electrical energy produced by the contemporary once-through fuel cycle.

  18. Thermodynamic properties of uranium dioxide

    SciTech Connect (OSTI)

    Fink, J.K.; Chasanov, M.G.; Leibowitz, L.

    1981-04-01

    In order to provide reliable and consistent data on the thermophysical properties of reactor materials for reactor safety studies, this revision is prepared for the thermodynamic properties of the uranium dioxide portion of the fuel property section of the report Properties for LMFBR Safety Analysis. Since the original report was issued in 1976, there has been international agreement on a vapor pressure equation for the total pressure over UO/sub 2/, new methods have been suggested for the calculation of enthalpy and heat capacity, and a phase change at 2670 K has been proposed. In this report, an electronic term is used in place of the Frenkel defect term in the enthalpy and heat capacity equation and the phase transition is accepted.

  19. 2014 Domestic Uranium Production Report

    Gasoline and Diesel Fuel Update (EIA)

    9 2014 Domestic Uranium Production Report Release Date: April 30, 2015 Next Release Date: May 2016 Year Exploration Mining Milling Processing Reclamation Total 2003 W W W W 117 321 2004 18 108 W W 121 420 2005 79 149 142 154 124 648 2006 188 121 W W 155 755 2007 375 378 107 216 155 1,231 2008 457 558 W W 154 1,563 2009 175 441 W W 162 1,096 2010 211 400 W W 125 1,073 2011 208 462 W W 102 1,191 2012 161 462 W W 179 1,196 2013 149 392 W W 199 1,156 2014 86 246 W W 161 787 Figure 3. Employment in

  20. 2014 Domestic Uranium Production Report

    Gasoline and Diesel Fuel Update (EIA)

    5 2014 Domestic Uranium Production Report Release Date: April 30, 2015 Next Release Date: May 2016 Production / Mining Method 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 (estimated contained thousand pounds U 3 O 8 ) W W W W W W W W W W W W (estimated contained thousand pounds U 3 O 8 ) 0 0 0 0 0 0 0 0 0 0 0 0 (thousand pounds U 3 O 8 ) W W 2,681 4,259 W W W W W W W W (thousand pounds U 3 O 8 ) W W W W W W W W W W W W (thousand pounds U 3 O 8 ) E2,200 2,452 3,045 4,692 4,541

  1. 2014 Uranium Marketing Annual Report

    Gasoline and Diesel Fuel Update (EIA)

    3 2014 Uranium Marketing Annual Report Release Date: May 13, 2015 Next Release Date: May 2016 As of As of December 31, 2013 December 31, 2014 2015 45,498 48,206 2,708 2,708 2016 48,693 46,529 -2,164 544 2017 47,005 49,924 2,919 3,463 2018 52,138 51,169 -969 2,494 2019 50,041 46,184 -3,857 -1,363 2020 49,726 49,598 -128 -1,491 2021 50,455 51,793 1,338 -153 2022 49,320 50,286 966 813 2023 49,688 49,118 -570 243 2024 - 51,829 -- -- thousand pounds U 3 O 8 equivalent Cumulative Figure 14. Shipments

  2. 2014 Uranium Marketing Annual Report

    Gasoline and Diesel Fuel Update (EIA)

    7 2014 Uranium Marketing Annual Report Release Date: May 13, 2015 Next Release Date: May 2016 Deliveries 2010 2011 2012 2013 2014 Foreign purchases 24,985 19,318 20,196 23,233 24,199 Weighted-average price 41.30 48.80 46.80 43.25 39.13 Foreign purchases 30,362 35,071 36,037 34,095 34,404 Weighted-average price 51.69 56.87 54.08 51.64 47.62 Foreign purchases 55,347 54,388 56,233 57,328 58,603 Weighted-average price 47.01 54.00 51.44 48.24 44.11 thousand pounds U 3 O 8 equivalent Figure 17.

  3. 2014 Uranium Marketing Annual Report

    Gasoline and Diesel Fuel Update (EIA)

    3 2014 Uranium Marketing Annual Report Release Date: May 13, 2015 Next Release Date: May 2016 Quantity with reported price Weighted-average price Quantity with reported price Weighted-average price Quantity with reported price Weighted- average price First 7,119 38.24 7,175 34.34 6,665 30.26 Second 7,119 48.64 7,175 41.29 6,665 35.11 Third 7,119 51.16 7,175 45.89 6,665 39.29 Fourth 7,119 54.15 7,175 49.84 6,665 43.36 Fifth 7,119 56.93 7,175 53.17 6,665 46.74 Sixth 7,119 59.98 7,175 57.24 6,665

  4. Domestic Uranium Production Report - Quarterly

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1. Total production of uranium concentrate in the United States, 1996 - 4th quarter 2015 pounds U3O8 Calendar-year quarter 1st quarter 2nd quarter 3rd quarter 4th quarter Calendar-year total 1996 1,734,427 1,460,058 1,691,796 1,434,425 6,320,706 1997 1,149,050 1,321,079 1,631,384 1,541,052 5,642,565 1998 1,151,587 1,143,942 1,203,042 1,206,003 4,704,574 1999 1,196,225 1,132,566 1,204,984 1,076,897 4,610,672 2000 1,018,683 983,330 981,948 973,585 3,975,545 2001 709,177 748,298 628,720 553,060

  5. Design Study for a Low-Enriched Uranium Core for the High Flux Isotope Reactor, Annual Report for FY 2008

    SciTech Connect (OSTI)

    Primm, Trent [ORNL; Chandler, David [ORNL; Ilas, Germina [ORNL; Miller, James Henry [ORNL; Sease, John D [ORNL; Jolly, Brian C [ORNL

    2009-03-01

    This report documents progress made during FY 2008 in studies of converting the High Flux Isotope Reactor (HFIR) from highly enriched uranium (HEU) fuel to low-enriched uranium (LEU) fuel. Conversion from HEU to LEU will require a change in fuel form from uranium oxide to a uranium-molybdenum alloy. With axial and radial grading of the fuel foil and an increase in reactor power to 100 MW, calculations indicate that the HFIR can be operated with LEU fuel with no degradation in reactor performance from the current level. Results of selected benchmark studies imply that calculations of LEU performance are accurate. Scoping experiments with various manufacturing methods for forming the LEU alloy profile are presented.

  6. Fuel Grading Study on a Low-Enriched Uranium Fuel Design for the High Flux Isotope Reactor

    SciTech Connect (OSTI)

    Ilas, Germina; Primm, Trent

    2009-11-01

    An engineering design study that would enable the conversion of the High Flux Isotope Reactor (HFIR) from high-enriched uranium to low-enriched uranium fuel is ongoing at Oak Ridge National Laboratory. The computational models used to search for a low-enriched uranium (LEU) fuel design that would meet the requirements for the conversion study, and the recent results obtained with these models during FY 2009, are documented and discussed in this report. Estimates of relevant reactor performance parameters for the LEU fuel core are presented and compared with the corresponding data for the currently operating high-enriched uranium fuel core. These studies indicate that the LEU fuel design would maintain the current performance of the HFIR with respect to the neutron flux to the central target region, reflector, and beam tube locations.

  7. Uranium isotopic composition and uranium concentration in special reference material SRM A (uranium in KCl/LiCl salt matrix)

    SciTech Connect (OSTI)

    Graczyk, D.G.; Essling, A.M.; Sabau, C.S.; Smith, F.P.; Bowers, D.L.; Ackerman, J.P.

    1997-07-01

    To help assure that analysis data of known quality will be produced in support of demonstration programs at the Fuel Conditioning Facility at Argonne National Laboratory-West (Idaho Falls, ID), a special reference material has been prepared and characterized. Designated SRM A, the material consists of individual units of LiCl/KCl eutectic salt containing a nominal concentration of 2.5 wt. % enriched uranium. Analyses were performed at Argonne National Laboratory-East (Argonne, IL) to determine the uniformity of the material and to establish reference values for the uranium concentration and uranium isotopic composition. Ten units from a batch of approximately 190 units were analyzed by the mass spectrometric isotope dilution technique to determine their uranium concentration. These measurements provided a mean value of 2.5058 {+-} 0.0052 wt. % U, where the uncertainty includes estimated limits to both random and systematic errors that might have affected the measurements. Evidence was found of a small, apparently random, non-uniformity in uranium content of the individual SRM A units, which exhibits a standard deviation of 0.078% of the mean uranium concentration. Isotopic analysis of the uranium from three units, by means of thermal ionization mass spectrometry with a special, internal-standard procedure, indicated that the uranium isotopy is uniform among the pellets with a composition corresponding to 0.1115 {+-} 0.0006 wt. % {sup 234}U, 19.8336 {+-} 0.0059 wt. % {sup 235}U, 0.1337 {+-} 0.0006 wt. % {sup 236}U, and 79.9171 {+-} 0.0057 wt. % {sup 238}U.

  8. Synthesis of uranium nitride and uranium carbide powder by carbothermic reduction

    SciTech Connect (OSTI)

    Dunwoody, J.T.; Stanek, C.R.; McClellan, K.J.; Voit, S.L.; Volz, H.M.; Hickman, R.R.

    2007-07-01

    Uranium nitride and uranium carbide are being considered as high burnup fuels in next generation nuclear reactors and accelerated driven systems for the transmutation of nuclear waste. The same characteristics that make nitrides and carbides candidates for these applications (i.e. favorable thermal properties, mutual solubility of nitrides, etc.), also make these compositions candidate fuels for space nuclear reactors. In this paper, we discuss the synthesis and characterization of depleted uranium nitride and carbide for a space nuclear reactor program. Importantly, this project emphasized that to synthesize high quality uranium nitride and carbide, it is necessary to understand the exact stoichiometry of the oxide feedstock. (authors)

  9. Table 4.10 Uranium Reserves, 2008 (Million Pounds Uranium Oxide)

    U.S. Energy Information Administration (EIA) Indexed Site

    0 Uranium Reserves,1 2008 (Million Pounds Uranium Oxide) State Forward-Cost 2 Category (dollars 3 per pound) $50 or Less $100 or Less Total 539 1,227 Wyoming 220 446 New Mexico 179 390 Arizona, Colorado, Utah 63 198 Texas 27 40 Others 4 50 154 1The U.S. Energy Information Administration (EIA) category of uranium reserves is equivalent to the internationally reported category of "Reasonably Assured Resources" (RAR). Notes: * Estimates are at end of year. * See "Uranium Oxide"

  10. Estimated dose to man from uranium milling via the terrestrial food-chain pathway

    SciTech Connect (OSTI)

    Rayno, D.R.

    1982-01-01

    One of the major pathways of radiological exposure to man from uranium milling operations is through the terrestrial food chain. Studies by various investigators have shown the extent of uptake and distribution of U-238, U-234, Th-230, Ra-226, Pb-210, and Po-210 in plants and animals. These long-lived natural radioisotopes, all nuclides of the uranium decay series, are found in concentrated amounts in uranium mill tailings. Data from these investigations are used to estimate the dose to man from consumption of beef and milk contaminated by the tailings. This dose estimate from this technologically enhanced source is compared with that from average normal dietary intake of these radionuclides from natural sources.

  11. Environmental assessment of remedial action at the Naturita uranium processing site near Naturita, Colorado: Revision 5

    SciTech Connect (OSTI)

    Not Available

    1994-10-01

    Title 1 of the Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978, Public Law (PL) 95-604, authorized the US Department of Energy (DOE) to perform remedial action at the inactive Naturita, Colorado, uranium processing site to reduce the potential health effects from the radioactive materials at the site and at vicinity properties associated with the site. Title 2 of the UMTRCA authorized the US Nuclear Regulatory Commission (NRC) or agreement state to regulate the operation and eventual reclamation of active uranium processing sites. The uranium mill tailings at the site were removed and reprocessed from 1977 to 1979. The contaminated areas include the former tailings area, the mill yard, the former ore storage area, and adjacent areas that were contaminated by uranium processing activities and wind and water erosion. The Naturita remedial action would result in the loss of 133 acres (ac) of contaminated soils at the processing site. If supplemental standards are approved by the NRC and the state of Colorado, approximately 112 ac of steeply sloped contaminated soils adjacent to the processing site would not be cleaned up. Cleanup of this contamination would have adverse environmental consequences and would be potentially hazardous to remedial action workers.

  12. Highly Enriched Uranium Disposition | National Nuclear Security...

    National Nuclear Security Administration (NNSA)

    needs primarily by down-blending, or converting, it into low enriched uranium (LEU). Once down-blended, the material can no longer be used for nuclear weapons. To the extent...

  13. The Uranium Resource: A Comparative Analysis

    SciTech Connect (OSTI)

    Schneider, Erich A.; Sailor, William C.

    2007-07-01

    An analogy was drawn between uranium and thirty five minerals for which the USGS maintains extensive records. The USGS mineral price data, which extends from 1900 to the present, was used to create a simple model describing long term price evolution. Making the assumption that the price of uranium, a geologically unexceptional mineral, will evolve in a manner similar to that of the USGS minerals, the model was used to project its price trend for this century. Based upon the precedent set by the USGS data, there is an 80% likelihood that the price of uranium will decline. Moreover, the most likely scenario would see the equilibrium price of uranium decline by about 40% by mid-century. (authors)

  14. Ex Parte Communications- Uranium Producers of America

    Broader source: Energy.gov [DOE]

    On Thursday, February 12, 2015, representatives from the Uranium  Producers  of America (UPA) met with the Department of Energy (DOE) officials to discuss the management of the federal excess...

  15. PROCESSES OF RECLAIMING URANIUM FROM SOLUTIONS

    DOE Patents [OSTI]

    Zumwalt, L.R.

    1959-02-10

    A process is described for reclaiming residual enriched uranium from calutron wash solutions containing Fe, Cr, Cu, Ni, and Mn as impurities. The solution is adjusted to a pH of between 2 and 4 and is contacted with a metallic reducing agent, such as iron or zinc, in order to reduce the copper to metal and thereby remove it from the solution. At the same time the uranium present is reduced to the uranous state The solution is then contacted with a precipitate of zinc hydroxide or barium carbonate in order to precipitate and carry uranium, iron, and chromium away from the nickel and manganese ions in the solution. The uranium is then recovered fronm this precipitate.

  16. U.S. Uranium Reserves Estimates

    Gasoline and Diesel Fuel Update (EIA)

    1. U.S. Forward-Cost Uranium Reserves by State, Year-End 2008 State 50lb 100lb Ore (million tons) Gradea (%) U3O8 (million lbs) Ore (million tons) Gradea (%) U3O8 (million lbs)...

  17. U.S. Uranium Reserves Estimates

    Gasoline and Diesel Fuel Update (EIA)

    Methodology The U.S. uranium ore reserves reported by EIA for specific MFC categories represent the sums of quantities estimated to occur in known deposits on properties where data...

  18. U.S. Uranium Reserves Estimates

    Gasoline and Diesel Fuel Update (EIA)

    2. U.S. Forward-Cost Uranium Reserves by Mining Method, Year-End 2008 Mining Method 50 per pound 100 per pound Ore (million tons) Gradea (percent U3O8) U3O8 (million pounds) Ore...

  19. Highly Enriched Uranium Transparency Program | National Nuclear...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Program reduces nuclear risk by monitoring the conversion of 500 metric tons (MT) of Russian HEU, enough material for 20,000 nuclear weapons, into low enriched uranium (LEU). ...

  20. Federal Actions to Address Impacts of Uranium

    Office of Legacy Management (LM)

    Federal Actions to Address Impacts of Uranium Contamination in the Navajo Nation 2014 Page | i TABLE OF CONTENTS Executive Summary ....................................................................................................................... 1 Introduction .................................................................................................................................... 2 Summary of Work Completed 2008-2012

  1. The ultimate disposition of depleted uranium

    SciTech Connect (OSTI)

    Lemons, T.R.

    1991-12-31

    Depleted uranium (DU) is produced as a by-product of the uranium enrichment process. Over 340,000 MTU of DU in the form of UF{sub 6} have been accumulated at the US government gaseous diffusion plants and the stockpile continues to grow. An overview of issues and objectives associated with the inventory management and the ultimate disposition of this material is presented.

  2. Depleted uranium: A DOE management guide

    SciTech Connect (OSTI)

    1995-10-01

    The U.S. Department of Energy (DOE) has a management challenge and financial liability in the form of 50,000 cylinders containing 555,000 metric tons of depleted uranium hexafluoride (UF{sub 6}) that are stored at the gaseous diffusion plants. The annual storage and maintenance cost is approximately $10 million. This report summarizes several studies undertaken by the DOE Office of Technology Development (OTD) to evaluate options for long-term depleted uranium management. Based on studies conducted to date, the most likely use of the depleted uranium is for shielding of spent nuclear fuel (SNF) or vitrified high-level waste (HLW) containers. The alternative to finding a use for the depleted uranium is disposal as a radioactive waste. Estimated disposal costs, utilizing existing technologies, range between $3.8 and $11.3 billion, depending on factors such as applicability of the Resource Conservation and Recovery Act (RCRA) and the location of the disposal site. The cost of recycling the depleted uranium in a concrete based shielding in SNF/HLW containers, although substantial, is comparable to or less than the cost of disposal. Consequently, the case can be made that if DOE invests in developing depleted uranium shielded containers instead of disposal, a long-term solution to the UF{sub 6} problem is attained at comparable or lower cost than disposal as a waste. Two concepts for depleted uranium storage casks were considered in these studies. The first is based on standard fabrication concepts previously developed for depleted uranium metal. The second converts the UF{sub 6} to an oxide aggregate that is used in concrete to make dry storage casks.

  3. Uranium Leasing Program Documents | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Documents Uranium Leasing Program Documents U.S. District Court's Order of October 18, 2011, in Colorado Environmental Coalition v. Office of Legacy Management, Civil Action No. 08-cv-01624 (D. Colo.). The Court has issued the injunctive relief described on pages 51-52 of the Order. U.S. District Court's Order of February 27, 2012, in Colorado Environmental Coalition v. Office of Legacy Management, Civil Action No. 08-cv-01624 (D. Colo.). Uranium Lease Tracts Location Map

  4. Electrochemical method of producing eutectic uranium alloy and apparatus

    DOE Patents [OSTI]

    Horton, James A. (Livermore, CA); Hayden, H. Wayne (Oakridge, TN)

    1995-01-01

    An apparatus and method for continuous production of liquid uranium alloys through the electrolytic reduction of uranium chlorides. The apparatus includes an electrochemical cell formed from an anode shaped to form an electrolyte reservoir, a cathode comprising a metal, such as iron, capable of forming a eutectic uranium alloy having a melting point less than the melting point of pure uranium, and molten electrolyte in the reservoir comprising a chlorine or fluorine containing salt and uranium chloride. The method of the invention produces an eutectic uranium alloy by creating an electrolyte reservoir defined by a container comprising an anode, placing an electrolyte in the reservoir, the electrolyte comprising a chlorine or fluorine containing salt and uranium chloride in molten form, positioning a cathode in the reservoir where the cathode comprises a metal capable of forming an uranium alloy having a melting point less than the melting point of pure uranium, and applying a current between the cathode and the anode.

  5. Mitigation of Hydrogen Gas Generation from the Reaction of Water with Uranium Metal in K Basins Sludge

    SciTech Connect (OSTI)

    Sinkov, Sergey I.; Delegard, Calvin H.; Schmidt, Andrew J.

    2010-01-29

    Means to decrease the rate of hydrogen gas generation from the chemical reaction of uranium metal with water were identified by surveying the technical literature. The underlying chemistry and potential side reactions were explored by conducting 61 principal experiments. Several methods achieved significant hydrogen gas generation rate mitigation. Gas-generating side reactions from interactions of organics or sludge constituents with mitigating agents were observed. Further testing is recommended to develop deeper knowledge of the underlying chemistry and to advance the technology aturation level. Uranium metal reacts with water in K Basin sludge to form uranium hydride (UH3), uranium dioxide or uraninite (UO2), and diatomic hydrogen (H2). Mechanistic studies show that hydrogen radicals (H·) and UH3 serve as intermediates in the reaction of uranium metal with water to produce H2 and UO2. Because H2 is flammable, its release into the gas phase above K Basin sludge during sludge storage, processing, immobilization, shipment, and disposal is a concern to the safety of those operations. Findings from the technical literature and from experimental investigations with simple chemical systems (including uranium metal in water), in the presence of individual sludge simulant components, with complete sludge simulants, and with actual K Basin sludge are presented in this report. Based on the literature review and intermediate lab test results, sodium nitrate, sodium nitrite, Nochar Acid Bond N960, disodium hydrogen phosphate, and hexavalent uranium [U(VI)] were tested for their effects in decreasing the rate of hydrogen generation from the reaction of uranium metal with water. Nitrate and nitrite each were effective, decreasing hydrogen generation rates in actual sludge by factors of about 100 to 1000 when used at 0.5 molar (M) concentrations. Higher attenuation factors were achieved in tests with aqueous solutions alone. Nochar N960, a water sorbent, decreased hydrogen generation by no more than a factor of three while disodium phosphate increased the corrosion and hydrogen generation rates slightly. U(VI) showed some promise in attenuating hydrogen but only initial testing was completed. Uranium metal corrosion rates also were measured. Under many conditions showing high hydrogen gas attenuation, uranium metal continued to corrode at rates approaching those observed without additives. This combination of high hydrogen attenuation with relatively unabated uranium metal corrosion is significant as it provides a means to eliminate uranium metal by its corrosion in water without the accompanying hazards otherwise presented by hydrogen generation.

  6. S. 210: This Act may be referred to as the Comprehensive Uranium Act of 1991, introduced in the Senate of the United States, One Hundred Second Congress, First Session, January 15, 1991

    SciTech Connect (OSTI)

    Not Available

    1991-01-01

    This bill would establish the United States Enrichment Corporation to operate the Federal uranium enrichment program on a profitable and efficient basis in order to maximize the long term economic value to the US, provide assistance to the domestic uranium industry, and provide a Federal contribution for the reclamation of mill tailings generated pursuant to Federal defense contracts at active uranium and thorium processing sites. The bill describes congressional findings; definitions, establishment of corporation, and purposes; corporate offices; powers and duties of the corporation; organization, finance, and management; licensing, taxation, and miscellaneous provisions; decontamination and decommissioning; and uranium security and tailing reclamation.

  7. 2014 Domestic Uranium Production Report

    Gasoline and Diesel Fuel Update (EIA)

    11 2014 Domestic Uranium Production Report Release Date: April 30, 2015 Next Release Date: May 2016 Total Land and Other 2003 W W 31.3 NA NA NA W 2004 10.6 27.8 48.4 NA NA NA 86.9 2005 18.1 58.2 59.7 NA NA NA 136.0 2006 40.1 65.9 115.2 41.0 23.3 50.9 221.2 2007 67.5 90.4 178.2 77.7 50.3 50.2 336.2 2008 81.9 221.2 164.4 65.2 50.2 49.1 467.6 2009 35.4 141.0 104.0 17.3 24.2 62.4 280.5 2010 44.6 133.3 99.5 20.2 34.5 44.7 277.3 2011 53.6 168.8 96.8 19.6 43.5 33.7 319.2 2012 66.6 186.9 99.4 16.8 33.3

  8. Uranium mill ore dust characterization

    SciTech Connect (OSTI)

    Knuth, R.H.; George, A.C.

    1980-11-01

    Cascade impactor and general air ore dust measurements were taken in a uranium processing mill in order to characterize the airborne activity, the degree of equilibrium, the particle size distribution and the respirable fraction for the /sup 238/U chain nuclides. The sampling locations were selected to limit the possibility of cross contamination by airborne dusts originating in different process areas of the mill. The reliability of the modified impactor and measurement techniques was ascertained by duplicate sampling. The results reveal no significant deviation from secular equilibrium in both airborne and bulk ore samples for the /sup 234/U and /sup 230/Th nuclides. In total airborne dust measurements, the /sup 226/Ra and /sup 210/Pb nuclides were found to be depleted by 20 and 25%, respectively. Bulk ore samples showed depletions of 10% for the /sup 226/Ra and /sup 210/Pb nuclides. Impactor samples show disequilibrium of /sup 226/Ra as high as +-50% for different size fractions. In these samples the /sup 226/Ra ratio was generally found to increase as particle size decreased. Activity median aerodynamic diameters of the airborne dusts ranged from 5 to 30 ..mu..m with a median diameter of 11 ..mu..m. The maximum respirable fraction for the ore dusts, based on the proposed International Commission on Radiological Protection's (ICRP) definition of pulmonary deposition, was < 15% of the total airborne concentration. Ore dust parameters calculated for impactor duplicate samples were found to be in excellent agreement.

  9. RESOLUTION OF URANIUM ISOTOPES WITH KINETIC PHOSPHORESCENCE ANALYSIS

    SciTech Connect (OSTI)

    Miley, Sarah M.; Hylden, Anne T.; Friese, Judah I.

    2013-04-01

    This study was conducted to test the ability of the Chemchek™ Kinetic Phosphorescence Analyzer Model KPA-11 with an auto-sampler to resolve the difference in phosphorescent decay rates of several different uranium isotopes, and therefore identify the uranium isotope ratios present in a sample. Kinetic phosphorescence analysis (KPA) is a technique that provides rapid, accurate, and precise determination of uranium concentration in aqueous solutions. Utilizing a pulsed-laser source to excite an aqueous solution of uranium, this technique measures the phosphorescent emission intensity over time to determine the phosphorescence decay profile. The phosphorescence intensity at the onset of decay is proportional to the uranium concentration in the sample. Calibration with uranium standards results in the accurate determination of actual concentration of the sample. Different isotopes of uranium, however, have unique properties which should result in different phosphorescence decay rates seen via KPA. Results show that a KPA is capable of resolving uranium isotopes.

  10. LM Progressing with Uranium Mines Report to Congress | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Progressing with Uranium Mines Report to Congress LM Progressing with Uranium Mines Report to Congress July 12, 2013 - 10:50am Addthis As reported in an earlier Program Update...

  11. DOE - Office of Legacy Management -- Abandoned Uranium Mines

    Office of Legacy Management (LM)

    Uranium Mines Report to Congress The U.S. Department of Energy (DOE) Office of Legacy Management completed a report on defense-related uranium mines in consultation with...

  12. Uranium at Y-12: Inspection | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Inspection Uranium at Y-12: Inspection Posted: July 22, 2013 - 3:36pm | Y-12 Report | Volume 10, Issue 1 | 2013 Inspection of enriched uranium is performed by dimensional checks...

  13. Uranium at Y-12: Recovery | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Recovery Uranium at Y-12: Recovery Posted: July 22, 2013 - 3:44pm | Y-12 Report | Volume 10, Issue 1 | 2013 Recovery involves reclaiming uranium from numerous sources and...

  14. Uranium at Y-12: Accountability | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Uranium at Y-12: Accountability Posted: July 22, 2013 - 3:37pm | Y-12 Report | Volume 10, Issue 1 | 2013 Accountability of enriched uranium is facilitated by the ability to put...

  15. Think Uranium. Think Y-12 | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    | Y-12 Report | Volume 10, Issue 1 | 2013 Uranium fever: Much like the California gold rush of 1849, the uranium flurry of 1949 led Geiger counter-toting prospectors to scour...

  16. Y-12 Bulletin Uranium Articles | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bulletin Uranium ... Y-12 Bulletin Uranium Articles Posted: July 22, 2013 - 3:13pm | Y-12 Report | Volume 10, Issue 1 | 2013 These and other articles can be found in archived...

  17. EA-1290: Disposition of Russian Federation Titled Natural Uranium

    Broader source: Energy.gov [DOE]

    This EA evaluates the potential environmental impacts of a proposal to transport up to an average of 9,000 metric tons per year of natural uranium as uranium hexafluoride (UF6) from the United...

  18. Uranium distribution in relation to sedimentary facies, Kern Lake, California

    SciTech Connect (OSTI)

    Merifield, P.M.; Carlisle, D.; Idiz, E.; Anderhalt, R.; Reed, W.E.; Lamar, D.L.

    1980-04-01

    Kern Lake has served as a sink for drainage from the southern Sierra Nevada and, in lesser amounts, from the southern Temblor Range. Both areas contain significant uranium source rocks. The uranium content in Holocene Kern Lake sediments correlates best with the mud (silt and clay) fraction. It correlates less well with organic carbon. Biotite grains could account for much of the uranium in the sand fraction, and perhaps the silt fraction as well. The data suggest that fixation of uranium by adsorption on mineral grains is a dominant process in this lake system. Further work is required to determine the importance of cation-exchange of uranium on clays and micas and of organically complexed uranium adsorbed to mineral surfaces. These findings also raise the question of whether uranium transport down the Kern River occurs largely as uranium adsorbed to mineral surfaces.

  19. Ir L (I.~ DEPARTMENT OF ENERGY ALBUQUERQUE OPERATIONS OFFICE

    Office of Legacy Management (LM)

    Ir L (I.~ DEPARTMENT OF ENERGY ALBUQUERQUE OPERATIONS OFFICE I.: ~ CONTRACT NO. DE-AC04-83AL18796 1. Vicinity Property i: Completion Report i , . Remedial Actions , cContractor 4,. -~'~ ~for the Uranium Mill Tailings ~~~z ~ Remedial Actions Project - MK-FEROUSON COMPANY *C~Ad PEE *CMIWN>tfIOW VICINITY PROPERTY COMPLETION REPORT AT CA-401 MAYERS STREET BRIDGEVILLE, PA 15017 JUNE 30, 1987 FOR URANIUM MILL TAILINGS REMEDIAL ACTION PROJECT OFFICE ALBUQUERQUE OPERATIONS OFFICE U.S. DEPARTMENT OF

  20. The Uranium Processing Facility (UPF) Finite Element Meshing Discussion |

    Office of Environmental Management (EM)

    Department of Energy The Uranium Processing Facility (UPF) Finite Element Meshing Discussion The Uranium Processing Facility (UPF) Finite Element Meshing Discussion The Uranium Processing Facility (UPF) Finite Element Meshing Discussion Loring Wyllie Arne Halterman Degenkolb Engineers, San Francisco PDF icon The Uranium Processing Facility (UPF) Finite Element Meshing Discussion More Documents & Publications SASSI Subtraction Method Effects at Various DOE projects October 2009 Seismic

  1. Monitoring Uranium Transformations Determined by the Evolution of Biogeochemical Processes

    SciTech Connect (OSTI)

    Marsh, Terence L.

    2013-07-30

    Our contribution to the larger project (ANL) was the phylogenetic analysis of evolved communities capable of reducing metals including uranium.

  2. Sequestering Uranium from Seawater: Binding Strength and Modes of Uranyl

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Complexes with Glutarimidedioxime Sequestering Uranium from Seawater: Binding Strength and Modes of Uranyl Complexes with Glutarimidedioxime Sequestering Uranium from Seawater: Binding Strength and Modes of Uranyl Complexes with Glutarimidedioxime Print Sunday, 14 October 2012 00:00 The ocean is an important source of uranium if it can be extracted economically. Extraction of uranium from seawater is very challenging, not only because it is in an extremely low concentration, but also because

  3. Manhattan Project: Early Uranium Research, 1939-1941

    Office of Scientific and Technical Information (OSTI)

    Ernest Lawrence, Arthur Compton, Vannevar Bush, and James Conant discuss uranium research, Berkeley, March 29, 1940. EARLY URANIUM RESEARCH (1939-1941) Events > Early Government Support, 1939-1942 Einstein's Letter, 1939 Early Uranium Research, 1939-1941 Piles and Plutonium, 1939-1941 Reorganization and Acceleration, 1940-1941 The MAUD Report, 1941 A Tentative Decision to Build the Bomb, 1941-1942 President Franklin D. Roosevelt responded to the call for government support of uranium research

  4. DOE Releases Excess Uranium Inventory Plan | Department of Energy

    Energy Savers [EERE]

    Excess Uranium Inventory Plan DOE Releases Excess Uranium Inventory Plan December 16, 2008 - 8:51am Addthis WASHINGTON, D.C. - The United States Department of Energy (DOE) today issued its Excess Uranium Inventory Management Plan (the Plan), which outlines the Department's strategy for the management and disposition of its excess uranium inventories. The Plan highlights DOE's ongoing efforts to enhance national security and promote a healthy domestic nuclear infrastructure through the efficient

  5. Testing for Uranium Deuteride Initiation in Liquid Deuterium

    SciTech Connect (OSTI)

    Siekhaus, W. J.; Teslich, N. E.; Kucheyev, S. O.; Go, J.

    2015-10-29

    This report offers a description of the testing related to Uranium foil and its interaction with liquid deuterium.

  6. Los Alamos probes mysteries of uranium dioxide's thermal conductivity

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mysteries of uranium dioxide's thermal conductivity Los Alamos probes mysteries of uranium dioxide's thermal conductivity New research is showing that the thermal conductivity of cubic uranium dioxide is strongly affected by interactions between phonons carrying heat and magnetic spins. August 4, 2014 Illustration of anisotropic thermal conductivity in uranium dioxide (UO2). Scientists are studying the thermal conductivity related to the material's different crystallographic directions, hoping

  7. Excess Uranium Inventory Management Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Excess Uranium Inventory Management Plan Excess Uranium Inventory Management Plan The 2013 Excess Uranium Inventory Management Plan describes a framework for the effective management of the Energy Department's surplus uranium inventory in support of meeting its critical environmental cleanup and national security missions. The Plan is not a commitment to specific activities beyond those that have already been contracted nor is it a restriction on actions that the Department may undertake in the

  8. Uranium Leasing Program Draft Programmatic EIS Issued for Public Comment |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Uranium Leasing Program Draft Programmatic EIS Issued for Public Comment Uranium Leasing Program Draft Programmatic EIS Issued for Public Comment March 15, 2013 - 11:08am Addthis Uranium Leasing Program Draft Programmatic EIS Issued for Public Comment DOE has issued the Draft Uranium Leasing Program Programmatic Environmental Impact Statement (ULP PEIS)(DOE/EIS-0472D) for public review and comment. The document is available here and on the ULP PEIS website. Under the

  9. Retrieval of buried depleted uranium from the T-1 trench

    SciTech Connect (OSTI)

    Burmeister, M.; Castaneda, N.; Greengard, T. |; Hull, C.; Barbour, D.; Quapp, W.J.

    1998-07-01

    The Trench 1 remediation project will be conducted this year to retrieve depleted uranium and other associated materials from a trench at Rocky Flats Environmental Technology Site. The excavated materials will be segregated and stabilized for shipment. The depleted uranium will be treated at an offsite facility which utilizes a novel approach for waste minimization and disposal through utilization of a combination of uranium recycling and volume efficient uranium stabilization.

  10. Borehole Logging Methods for Exploration and Evaluation of Uranium Deposits

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (1967) | Department of Energy Borehole Logging Methods for Exploration and Evaluation of Uranium Deposits (1967) Borehole Logging Methods for Exploration and Evaluation of Uranium Deposits (1967) Borehole Logging Methods for Exploration and Evaluation of Uranium Deposits (1967) PDF icon Borehole Logging Methods for Exploration and Evaluation of Uranium Deposits (1967) More Documents & Publications Gamma-Ray Logging Workshop (February 1981) Grade Assignments for Models Used for

  11. Uranium Processing Facility Site Readiness Subproject Completed on Time and

    National Nuclear Security Administration (NNSA)

    Under Budget | National Nuclear Security Administration Library / Press Releases / Uranium Processing Facility Site Readiness Subproject Completed ... Uranium Processing Facility Site Readiness Subproject Completed on Time and Under Budget Press Release Mar 13, 2015 Washington D.C.--The Uranium Processing Facility (UPF) project celebrates its first major milestone with the completion of site readiness work, delivered on time and under budget. "UPF is essential to our Nation's uranium

  12. Reimbursements to Licensees of Active Uranium and Thorium Processing Sites,

    Energy Savers [EERE]

    Fiscal Year 2009 and 2010 Status Report | Department of Energy Reimbursements to Licensees of Active Uranium and Thorium Processing Sites, Fiscal Year 2009 and 2010 Status Report Reimbursements to Licensees of Active Uranium and Thorium Processing Sites, Fiscal Year 2009 and 2010 Status Report Reimbursements to Licensees of Active Uranium and Thorium Processing Sites, Fiscal Year 2009 and 2010 Status Report (March 2010) PDF icon Reimbursements to Licensees of Active Uranium and Thorium

  13. Method for fluorination of uranium oxide

    DOE Patents [OSTI]

    Petit, George S. (Oak Ridge, TN)

    1987-01-01

    Highly pure uranium hexafluoride is made from uranium oxide and fluorine. The uranium oxide, which includes UO.sub.3, UO.sub.2, U.sub.3 O.sub.8 and mixtures thereof, is introduced together with a small amount of a fluorine-reactive substance, selected from alkali chlorides, silicon dioxide, silicic acid, ferric oxide, and bromine, into a constant volume reaction zone. Sufficient fluorine is charged into the zone at a temperature below approximately 0.degree. C. to provide an initial pressure of at least approximately 600 lbs/sq. in. at the ambient atmospheric temperature. The temperature is then allowed to rise in the reaction zone until reaction occurs.

  14. TRACE ELEMENT ANALYSES OF URANIUM MATERIALS

    SciTech Connect (OSTI)

    Beals, D; Charles Shick, C

    2008-06-09

    The Savannah River National Laboratory (SRNL) has developed an analytical method to measure many trace elements in a variety of uranium materials at the high part-per-billion (ppb) to low part-per-million (ppm) levels using matrix removal and analysis by quadrapole ICP-MS. Over 35 elements were measured in uranium oxides, acetate, ore and metal. Replicate analyses of samples did provide precise results however none of the materials was certified for trace element content thus no measure of the accuracy could be made. The DOE New Brunswick Laboratory (NBL) does provide a Certified Reference Material (CRM) that has provisional values for a series of trace elements. The NBL CRM were purchased and analyzed to determine the accuracy of the method for the analysis of trace elements in uranium oxide. These results are presented and discussed in the following paper.

  15. Hazardous waste operational plan for site 300

    SciTech Connect (OSTI)

    Roberts, R.S.

    1982-02-12

    This plan outlines the procedures and operations used at LLNL's Site 300 for the management of the hazardous waste generated. This waste consists primarily of depleted uranium (a by-product of U-235 enrichment), beryllium, small quantities of analytical chemicals, industrial type waste such as solvents, cleaning acids, photographic chemicals, etc., and explosives. This plan details the operations generating this waste, the proper handling of this material and the procedures used to treat or dispose of the hazardous waste. A considerable amount of information found in this plan was extracted from the Site 300 Safety and Operational Manual written by Site 300 Facility personnel and the Hazards Control Department.

  16. Chapter 20 - Uranium Enrichment Decontamination & Decommissioning Fund

    Energy Savers [EERE]

    0. Uranium Enrichment Decontamination and Decommissioning Fund 20-1 CHAPTER 20 URANIUM ENRICHMENT DECONTAMINATION AND DECOMMISSIONING FUND 1. INTRODUCTION. a. Purpose. To establish policies and procedures for the financial management, accounting, budget preparation, cash management of the Uranium Enrichment Decontamination and Decommissioning Fund, referred to hereafter as the Fund. b. Applicability. This chapter applies to all Departmental elements, including the National Nuclear Security

  17. Plutonium recovery from spent reactor fuel by uranium displacement

    DOE Patents [OSTI]

    Ackerman, John P.

    1992-01-01

    A process for separating uranium values and transuranic values from fission products containing rare earth values when the values are contained together in a molten chloride salt electrolyte. A molten chloride salt electrolyte with a first ratio of plutonium chloride to uranium chloride is contacted with both a solid cathode and an anode having values of uranium and fission products including plutonium. A voltage is applied across the anode and cathode electrolytically to transfer uranium and plutonium from the anode to the electrolyte while uranium values in the electrolyte electrolytically deposit as uranium metal on the solid cathode in an amount equal to the uranium and plutonium transferred from the anode causing the electrolyte to have a second ratio of plutonium chloride to uranium chloride. Then the solid cathode with the uranium metal deposited thereon is removed and molten cadmium having uranium dissolved therein is brought into contact with the electrolyte resulting in chemical transfer of plutonium values from the electrolyte to the molten cadmium and transfer of uranium values from the molten cadmium to the electrolyte until the first ratio of plutonium chloride to uranium chloride is reestablished.

  18. Plutonium recovery from spent reactor fuel by uranium displacement

    DOE Patents [OSTI]

    Ackerman, J.P.

    1992-03-17

    A process is described for separating uranium values and transuranic values from fission products containing rare earth values when the values are contained together in a molten chloride salt electrolyte. A molten chloride salt electrolyte with a first ratio of plutonium chloride to uranium chloride is contacted with both a solid cathode and an anode having values of uranium and fission products including plutonium. A voltage is applied across the anode and cathode electrolytically to transfer uranium and plutonium from the anode to the electrolyte while uranium values in the electrolyte electrolytically deposit as uranium metal on the solid cathode in an amount equal to the uranium and plutonium transferred from the anode causing the electrolyte to have a second ratio of plutonium chloride to uranium chloride. Then the solid cathode with the uranium metal deposited thereon is removed and molten cadmium having uranium dissolved therein is brought into contact with the electrolyte resulting in chemical transfer of plutonium values from the electrolyte to the molten cadmium and transfer of uranium values from the molten cadmium to the electrolyte until the first ratio of plutonium chloride to uranium chloride is reestablished.

  19. Uranium Processing Facility Site Readiness Subproject Completed on Time and

    National Nuclear Security Administration (NNSA)

    Under Budget | National Nuclear Security Administration Field Offices / Welcome to the NNSA Production Office / NPO News Releases / Uranium Processing Facility Site Readiness Subproject Completed ... Uranium Processing Facility Site Readiness Subproject Completed on Time and Under Budget The Uranium Processing Facility (UPF) project celebrates its first major milestone with the completion of site readiness work, delivered on time and under budget.

  20. Operating Oak Ridge's "Calutrons"

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    those exciting times when isotopes other than uranium 235 were first being separated. His memory of the exact locations of the controls, offices and laboratories within 9731 was...

  1. Evaluation of an automatic uranium titration system

    SciTech Connect (OSTI)

    Lewis, K.

    1980-01-01

    The titration system utilizes the constant current coulometric titration of Goldbeck and Lerner. U(VI) is reduced to U(IV) by Fe(II). V(V) is generated to titrate the U(IV), and the titration is followed potentiometrically. The evaluation shows that the recovery of uranium is 100% at the 40-mg level. The accuracy is generally +-0.10% or better. The smallest sample weight at which reliable results were obtained was 40 mg of uranium. Time for one analysis is 15 minutes. Advantages and disadvantages of the automated titrator are listed. (DLC)

  2. Aseismic design criteria for uranium enrichment plants

    SciTech Connect (OSTI)

    Beavers, J.E.

    1980-01-01

    In this paper technological, economical, and safety issues of aseismic design of uranium enrichment plants are presented. The role of management in the decision making process surrounding these issues is also discussed. The resolution of the issues and the decisions made by management are controlling factors in developing aseismic design criteria for any facility. Based on past experience in developing aseismic design criteria for the GCEP various recommendations are made for future enrichment facilities, and since uranium enrichment plants are members of the nuclear fuel cycle the discussion and recommendations presented herein are applicable to other nonreactor nuclear facilities.

  3. Uranium in the Savannah River Site environment

    SciTech Connect (OSTI)

    Evans, A.G.; Bauer, L.R.; Haselow, J.S.; Hayes, D.W.; Martin, H.L.; McDowell, W.L.; Pickett, J.B.

    1992-12-09

    The purpose of this report is to consolidate the history of environmental uranium studies conducted by SRS and to describe the status of uranium in the environment. The report is intended to be a living document'' that will be updated periodically. This draft issue, February 1992, documents studies that occurred from 1954 to 1989. Data in this report are taken primarily from annual and semiannual environmental reports for SRS. Semiannual reports were published from 1954 through 1962. Annual reports have been published since 1963. Occasionally unpublished data are included in this report for completeness.

  4. Uranium in the Savannah River Site environment

    SciTech Connect (OSTI)

    Evans, A.G.; Bauer, L.R.; Haselow, J.S.; Hayes, D.W.; Martin, H.L.; McDowell, W.L.; Pickett, J.B.

    1992-12-09

    The purpose of this report is to consolidate the history of environmental uranium studies conducted by SRS and to describe the status of uranium in the environment. The report is intended to be a ``living document`` that will be updated periodically. This draft issue, February 1992, documents studies that occurred from 1954 to 1989. Data in this report are taken primarily from annual and semiannual environmental reports for SRS. Semiannual reports were published from 1954 through 1962. Annual reports have been published since 1963. Occasionally unpublished data are included in this report for completeness.

  5. METHOD OF HOT ROLLING URANIUM METAL

    DOE Patents [OSTI]

    Kaufmann, A.R.

    1959-03-10

    A method is given for quickly and efficiently hot rolling uranium metal in the upper part of the alpha phase temperature region to obtain sound bars and sheets possessing a good surface finish. The uranium metal billet is heated to a temperature in the range of 1000 deg F to 1220 deg F by immersion iii a molten lead bath. The heated billet is then passed through the rolls. The temperature is restored to the desired range between successive passes through the rolls, and the rolls are turned down approximately 0.050 inch between successive passes.

  6. SPEAR Operations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Operations SPEAR Status SPEAR Status SPEAR Status Web Message Management (authorized access only) ED's stuff Run statistic (preliminary and unofficial) Training Sessions 10/20/03 rev-3 The schedule of talks listed below have a machine operations focus and are intended for operators, physicists and support personnel who will participate in SPEAR3 commissioning and operation. The talks are video taped and stored in the control room along with any pertinent hardcopies for future reference. Date

  7. Groundwater Cleanup Operational Changes Are Being Implemented at Fernald

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Preserve | Department of Energy Groundwater Cleanup Operational Changes Are Being Implemented at Fernald Preserve Groundwater Cleanup Operational Changes Are Being Implemented at Fernald Preserve October 13, 2014 - 6:38pm Addthis What does this project do? Goal 1. Protect human health and the environment. Uranium contamination in the Great Miami Aquifer-at the Fernald Preserve, Ohio, Site-is being removed from the groundwater through a pump-and-treatment operation, which until this year,

  8. Uranium Transport in a High-Throughput Electrorefiner for EBR-II Blanket Fuel

    SciTech Connect (OSTI)

    Ahluwalia, Rajesh K.; Hua, Thanh Q.; Vaden, DeeEarl

    2004-01-15

    A unique high-throughput Mk-V electrorefiner is being used in the electrometallurgical treatment of the metallic sodium-bonded blanket fuel from the Experimental Breeder Reactor II. Over many cycles, it transports uranium back and forth between the anodic fuel dissolution baskets and the cathode tubes until, because of imperfect adherence of the dendrites, it all ends up in the product collector at the bottom. The transport behavior of uranium in the high-throughput electrorefiner can be understood in terms of the sticking coefficients for uranium adherence to the cathode tubes in the forward direction and to the dissolution baskets in the reverse direction. The sticking coefficients are inferred from the experimental voltage and current traces and are correlated in terms of a single parameter representing the ratio of the cell current to the limiting current at the surface acting as the cathode. The correlations are incorporated into an engineering model that calculates the transport of uranium in the different modes of operation. The model also uses the experimentally derived electrorefiner operating maps that describe the relationship between the cell voltage and the cell current for the three principal transport modes. It is shown that the model correctly simulates the cycle-to-cycle variation of the voltage and current profiles. The model is used to conduct a parametric study of electrorefiner throughput rate as a function of the principal operating parameters. The throughput rate is found to improve with lowering of the basket rotation speed, reduction of UCl{sub 3} concentration in salt, and increasing the maximum cell current or cut-off voltage. Operating conditions are identified that can improve the throughput rate by 60 to 70% over that achieved at present.

  9. NNSA Authorizes Start-Up of Highly Enriched Uranium Materials Facility at

    National Nuclear Security Administration (NNSA)

    Y-12 | National Nuclear Security Administration Authorizes Start-Up of Highly Enriched Uranium Materials Facility at Y-12 | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional

  10. Possibility of nuclear pumped laser experiment using low enriched uranium

    SciTech Connect (OSTI)

    Obara, Toru; Takezawa, Hiroki [Center for Research into Innovative Nuclear Energy Systems Tokyo Institute of Technology 2-12-1-N1-19, Ookayama Meguro-ku, Tokyo 152-8550 (Japan)

    2012-06-06

    Possibility to perform experiments for nuclear pumped laser oscillation by using low enriched uranium is investigated. Kinetic analyses are performed for two types of reactor design, one is using highly enriched uranium and the other is using low enriched uranium. The reactor design is based on the experiment reactor in IPPE. The results show the oscillation of nuclear pumped laser in the case of low enriched uranium reactor is also possible. The use of low enriched uranium in the experiment will make experiment easier.

  11. Feasibility Study on the Use of On-line Multivariate Statistical Process Control for Safeguards Applications in Natural Uranium Conversion Plants

    SciTech Connect (OSTI)

    Ladd-Lively, Jennifer L

    2014-01-01

    The objective of this work was to determine the feasibility of using on-line multivariate statistical process control (MSPC) for safeguards applications in natural uranium conversion plants. Multivariate statistical process control is commonly used throughout industry for the detection of faults. For safeguards applications in uranium conversion plants, faults could include the diversion of intermediate products such as uranium dioxide, uranium tetrafluoride, and uranium hexafluoride. This study was limited to a 100 metric ton of uranium (MTU) per year natural uranium conversion plant (NUCP) using the wet solvent extraction method for the purification of uranium ore concentrate. A key component in the multivariate statistical methodology is the Principal Component Analysis (PCA) approach for the analysis of data, development of the base case model, and evaluation of future operations. The PCA approach was implemented through the use of singular value decomposition of the data matrix where the data matrix represents normal operation of the plant. Component mole balances were used to model each of the process units in the NUCP. However, this approach could be applied to any data set. The monitoring framework developed in this research could be used to determine whether or not a diversion of material has occurred at an NUCP as part of an International Atomic Energy Agency (IAEA) safeguards system. This approach can be used to identify the key monitoring locations, as well as locations where monitoring is unimportant. Detection limits at the key monitoring locations can also be established using this technique. Several faulty scenarios were developed to test the monitoring framework after the base case or normal operating conditions of the PCA model were established. In all of the scenarios, the monitoring framework was able to detect the fault. Overall this study was successful at meeting the stated objective.

  12. Design Study for a Low-Enriched Uranium Core for the High Flux Isotope Reactor, Annual Report for FY 2006

    SciTech Connect (OSTI)

    Primm, R. T.; Ellis, R. J.; Gehin, J. C.; Clarno, K. T.; Williams, K. A.; Moses, D. L.

    2006-11-01

    Neutronics and thermal-hydraulics studies show that, for equivalent operating power [85 MW(t)], a low-enriched uranium (LEU) fuel cycle based on uranium-10 wt % molybdenum (U-10Mo) metal foil with radially, “continuously graded” fuel meat thickness results in a 15% reduction in peak thermal flux in the beryllium reflector of the High Flux Isotope Reactor (HFIR) as compared to the current highly enriched uranium (HEU) cycle. The uranium-235 content of the LEU core is almost twice the amount of the HEU core when the length of the fuel cycle is kept the same for both fuels. Because the uranium-238 content of an LEU core is a factor of 4 greater than the uranium-235 content, the LEU HFIR core would weigh 30% more than the HEU core. A minimum U-10Mo foil thickness of 84 ?m is required to compensate for power peaking in the LEU core although this value could be increased significantly without much penalty. The maximum U-10Mo foil thickness is 457?m. Annual plutonium production from fueling the HFIR with LEU is predicted to be 2 kg. For dispersion fuels, the operating power for HFIR would be reduced considerably below 85 MW due to thermal considerations and due to the requirement of a 26-d fuel cycle. If an acceptable fuel can be developed, it is estimated that $140 M would be required to implement the conversion of the HFIR site at Oak Ridge National Laboratory from an HEU fuel cycle to an LEU fuel cycle. To complete the conversion by fiscal year 2014 would require that all fuel development and qualification be completed by the end of fiscal year 2009. Technological development areas that could increase the operating power of HFIR are identified as areas for study in the future.

  13. Steady State Sputtering Yields and Surface Compositions of Depleted Uranium and Uranium Carbide bombarded by 30 keV Gallium or 16 keV Cesium Ions.

    SciTech Connect (OSTI)

    Siekhaus, W. J.; Teslich, N. E.; Weber, P. K.

    2014-10-23

    Depleted uranium that included carbide inclusions was sputtered with 30-keV gallium ions or 16-kev cesium ions to depths much greater than the ions’ range, i.e. using steady-state sputtering. The recession of both the uranium’s and uranium carbide’s surfaces and the ion corresponding fluences were used to determine the steady-state target sputtering yields of both uranium and uranium carbide, i.e. 6.3 atoms of uranium and 2.4 units of uranium carbide eroded per gallium ion, and 9.9 uranium atoms and 3.65 units of uranium carbide eroded by cesium ions. The steady state surface composition resulting from the simultaneous gallium or cesium implantation and sputter-erosion of uranium and uranium carbide were calculated to be U??Ga??, (UC)??Ga?? and U??Cs?, (UC)??Cs??, respectively.

  14. Statistical design of a uranium corrosion experiment

    SciTech Connect (OSTI)

    Wendelberger, Joanne R; Moore, Leslie M

    2009-01-01

    This work supports an experiment being conducted by Roland Schulze and Mary Ann Hill to study hydride formation, one of the most important forms of corrosion observed in uranium and uranium alloys. The study goals and objectives are described in Schulze and Hill (2008), and the work described here focuses on development of a statistical experiment plan being used for the study. The results of this study will contribute to the development of a uranium hydriding model for use in lifetime prediction models. A parametric study of the effect of hydrogen pressure, gap size and abrasion on hydride initiation and growth is being planned where results can be analyzed statistically to determine individual effects as well as multi-variable interactions. Input to ESC from this experiment will include expected hydride nucleation, size, distribution, and volume on various uranium surface situations (geometry) as a function of age. This study will also address the effect of hydrogen threshold pressure on corrosion nucleation and the effect of oxide abrasion/breach on hydriding processes. Statistical experiment plans provide for efficient collection of data that aids in understanding the impact of specific experiment factors on initiation and growth of corrosion. The experiment planning methods used here also allow for robust data collection accommodating other sources of variation such as the density of inclusions, assumed to vary linearly along the cast rods from which samples are obtained.

  15. Uranium Battery Development Project Final Report

    SciTech Connect (OSTI)

    Dunbar, Paul D; Lee-Desautels, Rhonda

    2007-06-01

    This report summarizes the research funded by the Department of Energy, Oak Ridge National Labs, and the Kentucky Science and Engineering Foundation. This report briefly presents the theory behind our experimental methods and the most important experiments that were performed. This research focused on the reuse of uranium materials in lithium ion batteries. The majority of experiments involved lithium salts and organic solvents.

  16. Operational Excellence

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Operational Excellence /about/_assets/images/icon-70th.jpg Operational Excellence The Lab's mission is to develop and apply science and technology to ensure the safety, security, and reliability of the U.S. nuclear deterrent; reduce global threats; and solve other emerging national security and energy challenges. aeiral shot of los alamos, new mexico What Los Alamos gets done as a premier national security science laboratory depends on how we do it The Laboratory's operations and business

  17. operations center

    National Nuclear Security Administration (NNSA)

    servers and other critical Operations Center equipment

  18. Independent air supply system filtered to protect against biological and radiological agents (99.7%).
  19. <...

  20. Extraction of uranium(VI) by N,N-di-(2-ethylhexyl)isobutyramide (DEHIBA): from the batch experimental data to the countercurrent process

    SciTech Connect (OSTI)

    Miguirditchian, M.; Sorel, C.; Cames, B.; Bisel, I.; Baron, P.

    2008-07-01

    The selective separation of uranium(VI) in the first cycle of the GANEX process is operated by a hydrometallurgical process using a monoamide extractant DEHiBA (N,N-di-(2-ethylhexyl)isobutyramide). Distribution ratios of uranium(VI) and nitric acid in 1 M DEHiBA/HTP were determined with macro-concentrations of uranium, and the experimental data were modelled by taking into account the activity coefficients of the constituents in aqueous phases. A flowsheet was designed and tested in a countercurrent process in laboratory-scale mixer-settlers on a surrogate U(VI)/HNO 3 feed. More than 99.999% of the uranium was recovered. (authors)

  21. Office of Environmental Management Uranium Enrichment Decontamination and Decommissioning Fund financial statements, September 30, 1995 and 1994

    SciTech Connect (OSTI)

    1996-02-21

    The Energy Policy Act of 1992 (Act) requires the Department of Energy to retain ownership and responsibility for the costs of environmental cleanup resulting from the Government`s operation of the three gaseous diffusion facilities located at the K-25 site in Oak Ridge, Tennessee; Paducah, Kentucky; and Portsmouth, Ohio. The Act transferred the uranium enrichment enterprise to the United States Enrichment Corporation (USEC) as of July 1, 1993, and established the Uranium Enrichment Decontamination and Decommissioning Fund (D&D Fund) to: Pay for the costs of decontamination and decommissioning at the diffusion facilities; pay the annual costs for remedial action at the diffusion facilities to the extent that the amount in the Fund is sufficient; and reimburse uranium/thorium licensees for the costs of decontamination, decommissioning, reclamation, and other remedial actions which are incident to sales to the Government.

  22. Office of Environmental Management uranium enrichment decontamination and decommissioning fund financial statements. September 30, 1994 and 1993

    SciTech Connect (OSTI)

    Marwick, P.

    1994-12-15

    The Energy Policy Act of 1992 (Act) transferred the uranium enrichment enterprise to the United States Enrichment Corporation as of July 1, 1993. However, the Act requires the Department of Energy to retain ownership and responsibility for the costs of environmental cleanup resulting from the Government`s operation of the three gaseous diffusion facilities located in Oak Ridge, Tennessee; Paducah, Kentucky; and Portsmouth, Ohio (diffusion facilities). The Act established the Uranium Enrichment Decontamination and Decommissioning Fund (D&D Fund) to: Pay for the costs of decontamination and decommissioning at the diffusion facilities; Pay the annual costs for remedial action at the diffusion facilities to the extent that the amount in the Fund is sufficient; and Reimburse uranium/thorium licensees for the costs of decontamination, decommissioning, reclamation, and other remedial actions which are incident to sales to the Government.

  1. Interlaboratory comparison program for nondestructive assay of prototype uranium reference materials

    SciTech Connect (OSTI)

    Trahey, N.M.; Smith, M.M.; Voeks, A.M.; Bracey, J.T.

    1986-12-01

    The US Department of Energy (DOE), New Brunswick Laboratory (NBS), designed and administered an interlaboratory comparison program based on the measurement of NBL-produced prototype uranium nondestructive assay (NDA) reference materials for scrap and waste. The objectives of the program were to evaluate the reliability of NDA techniques as applied to nuclear safeguards materials control and accountability needs and to investigate the feasibility of providing practical NDA scrap and waste reference materials for use throughout the nuclear safeguards community. Fourteen facilities representing seven DOE contractors, four US Nuclear Regulatory Commission (NRC) licensees, one EURATOM Laboratory, and NBL, participated in this program. Three stable, well-characterized uranium reference materials were developed and certified for this program. Synthetic calcined ash, cellulose fiber, and ion-exchange resin simulate selected uranium scrap and waste forms which are often encountered in fabrication and recovery operations. The synthetic calcined ash represents an intermediate density inorganic matrix while the cellulose fiber and ion-exchange resin are representative of low-density organic matrices. The materials, containing from 0 to 13% uranium enriched at 93% /sup 235/U, were sealed in specially selected containers. Nineteen prototype reference samples, plus three empty containers, one to accompany each set, was circulated to the participants between August 1979 and May 1984. Triplicate measurements for /sup 235/U on each of the 19 filled containers were required. In addition, participants could opt to perform modular configuration measurements using containers from Sets IIA and IIB to simulate non-homogeneously dispersed uranium in waste containers. All data were reported to NBL for evaluation.

  2. Emery Station Operations Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Emery Station Operations Center

  3. Fermentation and Hydrogen Metabolism Affect Uranium Reduction by Clostridia

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gao, Weimin; Francis, Arokiasamy J.

    2013-01-01

    Previously, it has been shown that not only is uranium reduction under fermentation condition common among clostridia species, but also the strains differed in the extent of their capability and the pH of the culture significantly affected uranium(VI) reduction. In this study, using HPLC and GC techniques, metabolic properties of those clostridial strains active in uranium reduction under fermentation conditions have been characterized and their effects on capability variance of uranium reduction discussed. Then, the relationship between hydrogen metabolism and uranium reduction has been further explored and the important role played by hydrogenase in uranium(VI) and iron(III) reduction bymore » clostridia demonstrated. When hydrogen was provided as the headspace gas, uranium(VI) reduction occurred in the presence of whole cells of clostridia. This is in contrast to that of nitrogen as the headspace gas. Without clostridia cells, hydrogen alone could not result in uranium(VI) reduction. In alignment with this observation, it was also found that either copper(II) addition or iron depletion in the medium could compromise uranium reduction by clostridia. In the end, a comprehensive model was proposed to explain uranium reduction by clostridia and its relationship to the overall metabolism especially hydrogen (H 2 ) production.« less

  4. 2014 Uranium Market Annual Report

    U.S. Energy Information Administration (EIA) Indexed Site

    8. Contracts signed in 2014 by owners and operators of U.S. civilian nuclear power reactors by contract type" "thousand pounds U3O8 equivalent; dollars per pound U3O8 equivalent" "Purchase contract type (Signed in 2014)","Quantity of deliveries received in 2014","Weighted-average price","Number of purchase contracts for deliveries in 2014" "Spot","W","W",67 "Long-term","W","W",2

  5. 2014 Uranium Marketing Annual Report

    U.S. Energy Information Administration (EIA) Indexed Site

    17. Purchases of enrichment services by owners and operators of U.S. civilian nuclear power reactors by contract type in delivery year, 2014" "thousand separative work units (SWU)" "Enrichment service contract type","U.S. enrichment","Foreign enrichment","Total" "Spot ","W","W",628 "Long-term ","W","W",12310 "Total",3773,9165,12939 "W = Data withheld to avoid

  6. Uranium molecular laser isotope separation

    SciTech Connect (OSTI)

    Jensen, R.J.; Sullivan, A.

    1982-01-01

    The Molecular Laser Isotope Separation program is moving into the engineering phase, and it is possible to determine in some detail the plant cost terms involved in the process economics. A brief description of the MLIS process physics is given as a motivation to the engineering and economics discussion. Much of the plant cost arises from lasers and the overall optical system. In the paper, the authors discuss lasers as operating units and systems, along with temporal multiplexing and Raman shifting. Estimates of plant laser costs are given.

  7. Uranium Mill Tailings Remedial Action Project Safety Advancement Field Effort (SAFE) Program

    SciTech Connect (OSTI)

    Not Available

    1994-02-01

    In 1992, the Uranium Mill Tailings Remedial Action (UMTRA) Project experienced several health and safety related incidents at active remediation project sites. As a result, the U.S. Department of Energy (DOE) directed the Technical Assistance Contractor (TAC) to establish a program increasing the DOE`s overall presence at operational remediation sites to identify and minimize risks in operations to the fullest extent possible (Attachments A and B). In response, the TAC, in cooperation with the DOE and the Remedial Action Contractor (RAC), developed the Safety Advancement Field Effort (SAFE) Program.

  8. Treatment of Uranium and Plutonium Solutions Generated in the Atalante Facility, France - 12004

    SciTech Connect (OSTI)

    Lagrave, Herve

    2012-07-01

    The Atalante complex operated by the French Alternative Energies and Atomic Energy Commission (CEA) at the Rhone Valley Research Center consolidates research programs on actinide chemistry, especially separation chemistry, processing for recycling spent fuel, and fabrication of actinide targets for innovative concepts in future nuclear systems. The design of future systems (Generation IV reactors, material recycling) will increase the uranium and plutonium flows in the facility, making it important to anticipate the stepped-up activity and provide Atalante with equipment dedicated to processing these solutions to obtain a mixed uranium-plutonium oxide that will be stored pending reuse. Ongoing studies for integral recycling of the actinides have highlighted the need for reserving equipment to produce actinides mixed oxide powder and also minor actinides bearing oxide for R and D purpose. To meet this double objective a new shielded line should be built in the facility and should be operational 6 years after go decision. The main functions of the new unit would be to receive, concentrate and store solutions, purify them, ensure group conversion of actinides and conversion of excess uranium. This new unit will be constructed in a completely refurbished building devoted to subcritical and safe geometry of the process equipments. (author)

  9. UNITED STATES ATOMIC ENERGY COMMISSION OAK RIDGE OPERATIONS

    Office of Legacy Management (LM)

    AL, 3 UNITED STATES ATOMIC ENERGY COMMISSION OAK RIDGE OPERATIONS CINCINNATI AREA P. 0. BOX 39198, CINCINNATI 39, OHIO IN REPLY REFER TO: 0:OJT --r.LAal Cl E:c Mr. J. H. Noyes, Plant Manager National Lead Company of Ohio P. 0. Box 39158 Cincinnati 39, Ohio Subject: HOT TENSILE TESTS OF URANIUM - SOUTHERN RESEARCH INSTITUTE Dear Mr. Noyee: I / Reference is made to your letter of May 17, 1962, on the above subject. Approval is granted for the off-site movement of up to 300 pounds of normal uranium

  10. Assessment of Preferred Depleted Uranium Disposal Forms

    SciTech Connect (OSTI)

    Croff, A.G.; Hightower, J.R.; Lee, D.W.; Michaels, G.E.; Ranek, N.L.; Trabalka, J.R.

    2000-06-01

    The Department of Energy (DOE) is in the process of converting about 700,000 metric tons (MT) of depleted uranium hexafluoride (DUF6) containing 475,000 MT of depleted uranium (DU) to a stable form more suitable for long-term storage or disposal. Potential conversion forms include the tetrafluoride (DUF4), oxide (DUO2 or DU3O8), or metal. If worthwhile beneficial uses cannot be found for the DU product form, it will be sent to an appropriate site for disposal. The DU products are considered to be low-level waste (LLW) under both DOE orders and Nuclear Regulatory Commission (NRC) regulations. The objective of this study was to assess the acceptability of the potential DU conversion products at potential LLW disposal sites to provide a basis for DOE decisions on the preferred DU product form and a path forward that will ensure reliable and efficient disposal.

  11. Operating Costs

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-03-28

    This chapter is focused on capital costs for conventional construction and environmental restoration and waste management projects and examines operating cost estimates to verify that all elements of the project have been considered and properly estimated.

  12. EIS-0360: Depleted Uranium Oxide Conversion Product at the Portsmouth, Ohio Site

    Broader source: Energy.gov [DOE]

    This site-specific EIS analyzes the construction, operation, maintenance, and decontamination and decommissioning of the proposed depleted uranium hexafluoride (DUF6) conversion facility at three alternative locations within the Paducah site; transportation of all cylinders (DUF6, enriched, and empty) currently stored at the East Tennessee Technology Park (ETTP) near Oak Ridge, Tennessee, to Portsmouth; construction of a new cylinder storage yard at Portsmouth (if required) for ETTP cylinders; transportation of depleted uranium conversion products and waste materials to a disposal facility; transportation and sale of the hydrogen fluoride (HF) produced as a conversion coproduct; and neutralization of HF to calcium fluoride and its sale or disposal in the event that the HF product is not sold.

  13. Cleanup of inactive Uranium Mill Tailings Sites in the Navajo Nation

    SciTech Connect (OSTI)

    Martin, B.

    1994-12-31

    The U.S. Congress passed the Uranium Mill Tailings Radiation Control Act (UMTRCA) in 1978 to address potential and significant radiation health hazards to the public from active and inactive mill operations. Title I to the UMTRCA identified sites to be designated for remedial action. These include four uranium mill tailings remedial action (UMTRA) sites in the Navajo Nation. These sites are located in Shiprock, New Mexico; Tuba City, Arizona; Cane Valley, Arizona; and Halchita, Utah. The U.S. Department of Energy (DOE) was directed to select and execute a plan of remedial action that provides long-term stabilization and control of radioactive materials and satisfies the U.S. Environmental Protection Agency standards and other applicable laws and regulations.

  14. Production of small uranium dioxide microspheres for cermet nuclear fuel using the internal gelation process

    SciTech Connect (OSTI)

    Collins, Robert T; Collins, Jack Lee; Hunt, Rodney Dale; Ladd-Lively, Jennifer L; Patton, Kaara K; Hickman, Robert

    2014-01-01

    The U.S. National Aeronautics and Space Administration (NASA) is developing a uranium dioxide (UO2)/tungsten cermet fuel for potential use as the nuclear cryogenic propulsion stage (NCPS). The first generation NCPS is expected to be made from dense UO2 microspheres with diameters between 75 and 150 m. Previously, the internal gelation process and a hood-scale apparatus with a vibrating nozzle were used to form gel spheres, which became UO2 kernels with diameters between 350 and 850 m. For the NASA spheres, the vibrating nozzle was replaced with a custom designed, two-fluid nozzle to produce gel spheres in the desired smaller size range. This paper describes the operational methodology used to make 3 kg of uranium oxide microspheres.

  15. Engineering assessment of inactive uranium mill tailings

    SciTech Connect (OSTI)

    Not Available

    1981-07-01

    The Grand Junction site has been reevaluated in order to revise the October 1977 engineering assessment of the problems resulting from the existence of radioactive uranium mill tailings at Grand Junction, Colorado. This engineering assessment has included the preparation of topographic maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of tailings and radiation exposures of individuals and nearby populations, the investigations of site hydrology and meteorology, and the evaluation and costing of alternative corrective actions. Radon gas released from the 1.9 million tons of tailings at the Grand Junction site constitutes the most significant environmental impact, although windblown tailings and external gamma radiation are also factors. The eight alternative actions presented herein range from millsite and off-site decontamination with the addition of 3 m of stabilization cover material (Option I), to removal of the tailings to remote disposal sites and decontamination of the tailings site (Options II through VIII). Cost estimates for the eight options range from about $10,200,000 for stabilization in-place to about $39,500,000 for disposal in the DeBeque area, at a distance of about 35 mi, using transportation by rail. If transportation to DeBeque were by truck, the cost estimated to be about $41,900,000. Three principal alternatives for the reprocessing of the Grand Junction tailings were examined: (a) heap leaching; (b) treatment at an existing mill; and (c) reprocessing at a new conventional mill constructed for tailings reprocessing. The cost of the uranium recovered would be about $200/lb by heap leach and $150/lb by conventional plant processes. The spot market price for uranium was $25/lb early in 1981. Therefore, reprocessing the tailings for uranium recovery appears not to be economically attractive.

  16. PROCESSING OF URANIUM-METAL-CONTAINING FUEL ELEMENTS

    DOE Patents [OSTI]

    Moore, R.H.

    1962-10-01

    A process is given for recovering uranium from neutronbombarded uranium- aluminum alloys. The alloy is dissolved in an aluminum halide--alkali metal halide mixture in which the halide is a mixture of chloride and bromide, the aluminum halide is present in about stoichiometric quantity as to uranium and fission products and the alkali metal halide in a predominant quantity; the uranium- and electropositive fission-products-containing salt phase is separated from the electronegative-containing metal phase; more aluminum halide is added to the salt phase to obtain equimolarity as to the alkali metal halide; adding an excess of aluminum metal whereby uranium metal is formed and alloyed with the excess aluminum; and separating the uranium-aluminum alloy from the fission- productscontaining salt phase. (AEC)

  17. Uranium accountancy in Atomic Vapor Laser Isotope Separation

    SciTech Connect (OSTI)

    Carver, R.D.

    1986-01-01

    The AVLIS program pioneers the large scale industrial application of lasers to produce low cost enriched uranium fuel for light water reactors. In the process developed at Lawrence Livermore National Laboratory, normal uranium is vaporized by an electron beam, and a precisely tuned laser beam selectively photo-ionizes the uranium-235 isotopes. These ions are moved in an electromagnetic field to be condensed on the product collector. All other uranium isotopes remain uncharged and pass through the collector section to condense as tails. Tracking the three types of uranium through the process presents special problems in accountancy. After demonstration runs, the uranium on the collector was analyzed for isotopic content by Battelle Pacific Northwest Laboratory. Their results were checked at LLNL by analysis of parallel samples. The differences in isotopic composition as reported by the two laboratories were not significant.

  18. Colloids generation from metallic uranium fuel

    SciTech Connect (OSTI)

    Metz, C.; Fortner, J.; Goldberg, M.; Shelton-Davis, C.

    2000-07-20

    The possibility of colloid generation from spent fuel in an unsaturated environment has significant implications for storage of these fuels in the proposed repository at Yucca Mountain. Because colloids can act as a transport medium for sparingly soluble radionuclides, it might be possible for colloid-associated radionuclides to migrate large distances underground and present a human health concern. This study examines the nature of colloidal materials produced during corrosion of metallic uranium fuel in simulated groundwater at elevated temperature in an unsaturated environment. Colloidal analyses of the leachates from these corrosion tests were performed using dynamic light scattering and transmission electron microscopy. Results from both techniques indicate a bimodal distribution of small discrete particles and aggregates of the small particles. The average diameters of the small, discrete colloids are {approximately}3--12 nm, and the large aggregates have average diameters of {approximately}100--200 nm. X-ray diffraction of the solids from these tests indicates a mineral composition of uranium oxide or uranium oxy-hydroxide.

  19. Uranium Measurement Improvements at the Savannah River Technology Center

    SciTech Connect (OSTI)

    Shick, C. Jr.

    2002-02-13

    Uranium isotope ratio and isotope dilution methods by mass spectrometry are used to achieve sensitivity, precision and accuracy for various applications. This report presents recent progress made at SRTC in the analysis of minor isotopes of uranium. Comparison of routine measurements of NBL certified uranium (U005a) using the SRTC Three Stage Mass Spectrometer (3SMS) and the SRTC Single Stage Mass Spectrometer (SSMS). As expected, the three stage mass spectrometer yielded superior sensitivity, precision, and accuracy for this application.

  20. Multiple Mechanisms of Uranium Immobilization by Cellulomonas sp. Strain

    Office of Scientific and Technical Information (OSTI)

    ES6 (Journal Article) | SciTech Connect Journal Article: Multiple Mechanisms of Uranium Immobilization by Cellulomonas sp. Strain ES6 Citation Details In-Document Search Title: Multiple Mechanisms of Uranium Immobilization by Cellulomonas sp. Strain ES6 Removal of hexavalent uranium (U(VI)) from aqueous solution was studied using a Gram-positive facultative anaerobe, Cellulomonas sp. strain ES6, under anaerobic, non-growth conditions in bicarbonate and PIPES buffers. Inorganic phosphate was

  1. Excess Uranium Inventory Management Plan | Department of Energy

    Energy Savers [EERE]

    Plan Excess Uranium Inventory Management Plan The 2013 Excess Uranium Inventory Management Plan describes a framework for the effective management of the Energy Department's surplus uranium inventory in support of meeting its critical environmental cleanup and national security missions. The Plan is not a commitment to specific activities beyond those that have already been contracted nor is it a restriction on actions that the Department may undertake in the future as a result of changing

  2. DOE Extends Public Comment Period for Uranium Program Environmental Impact

    Energy Savers [EERE]

    Statement | Department of Energy Uranium Program Environmental Impact Statement DOE Extends Public Comment Period for Uranium Program Environmental Impact Statement April 18, 2013 - 1:08pm Addthis Contractor, Bob Darr, S.M. Stoller Corporation Public Affairs, (720) 377-9672, ULinfo@lm.doe.gov GRAND JUNCTION, Colo. - The U.S. Department of Energy (DOE) today announced that the public comment period for the Draft Uranium Leasing Program Programmatic Environmental Impact Statement (ULP PEIS)

  3. In Situ Biological Uranium Remediation within a Highly Contaminated Aquifer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    In Situ Biological Uranium Remediation within a Highly Contaminated Aquifer Matthew Ginder-Vogel1, Wei-Min Wu1, Jack Carley2, Phillip Jardine2, Scott Fendorf1 and Craig Criddle1 1Stanford University, Stanford, CA 2Oak Ridge National Laboratory, Oak Ridge, TN Microbial Respiration Figure 1. Uranium(VI) reduction is driven by microbial respiration resulting in the precipitation of uraninite. Uranium contamination of ground and surface waters has been detected at numerous sites throughout the

  4. Uranium Mill Tailings Radiation Control Act Sites Fact Sheet

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    This fact sheet provides information about the Uranium Mill Tailings Radiation Control Act Title I and II disposal and processing sites. The sites are managed by the U.S. Department of Energy Office of Legacy Management. Introduction The Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978 (Public Law 95-604) is a federal law that provides for the safe and environmentally sound disposal, long-term stabilization, and control of uranium mill tailings in a manner that minimizes or

  5. Nuclear & Uranium - U.S. Energy Information Administration (EIA)

    Gasoline and Diesel Fuel Update (EIA)

    Nuclear & Uranium Glossary › FAQS › Overview Data Status of U.S. Nuclear Outages (interactive) Summary Uranium & nuclear fuel Nuclear power plants Spent nuclear fuel International All nuclear data reports Analysis & Projections Major Topics Most popular Nuclear plants and reactors Projections Recurring Uranium All reports Browse by Tag Alphabetical Frequency Tag Cloud Current Issues & Trends See more › Updated EIA survey provides data on spent nuclear fuel in the United

  6. Enterprise Assessments Targeted Review of the Paducah Depleted Uranium

    Office of Environmental Management (EM)

    Hexafluoride Conversion Facility Fire Protection Program - September 2015 | Department of Energy Review of the Paducah Depleted Uranium Hexafluoride Conversion Facility Fire Protection Program - September 2015 Enterprise Assessments Targeted Review of the Paducah Depleted Uranium Hexafluoride Conversion Facility Fire Protection Program - September 2015 September 2015 Targeted Review of the Fire Protection Program at the Paducah Depleted Uranium Hexafluoride Conversion Facility The U.S.

  7. Defense-Related Uranium Mines Report to Congress (August 2014) |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Defense-Related Uranium Mines Report to Congress (August 2014) Defense-Related Uranium Mines Report to Congress (August 2014) Section 3151 of the National Defense Authorization Act for Fiscal Year 2013 directed the Secretary of Energy, in consultation with the Secretary of the Interior and the Administrator of the U.S. Environmental Protection Agency (EPA), to undertake a review of, and prepare a report on, abandoned uranium mines in the United States that provided

  8. LM Issues Final Programmatic Environmental Impact Statement on the Uranium

    Office of Environmental Management (EM)

    Leasing Program | Department of Energy Issues Final Programmatic Environmental Impact Statement on the Uranium Leasing Program LM Issues Final Programmatic Environmental Impact Statement on the Uranium Leasing Program April 8, 2014 - 6:26pm Addthis What does this project do? Goal 4. Optimize the use of land and assets The U.S. Department of Energy (DOE) has released the Final Uranium Leasing Program Programmatic Environmental Impact Statement (PEIS) to the public. The document can be found

  9. The US uranium industry: Regulatory and policy impediments

    SciTech Connect (OSTI)

    Drennen, T.E.; Glicken, J.

    1995-06-01

    The Energy Policy Act of 1992 required the DOE to develop recommendations and implement government programs to assist the domestic uranium industry in increasing export opportunities. In 1993, as part of that effort, the Office of Nuclear Energy identified several key factors that could (or have) significantly impact(ed) export opportunities for domestic uranium. This report addresses one of these factors: regulatory and policy impediments to the flow of uranium products between the US and other countries. It speaks primarily to the uranium market for civil nuclear power. Changes in the world political and economic order have changed US national security requirements, and the US uranium industry has found itself without the protected market it once enjoyed. An unlevel playing field for US uranium producers has resulted from a combination of geology, history, and a general US political philosophy of nonintervention that precludes the type of industrial policy practiced in other uranium-exporting countries. The US has also been hampered in its efforts to support the domestic uranium-producing industry by its own commitment to free and open global markets and by international agreements such as GATT and NAFTA. Several US policies, including the imposition of NRC fees and licensing costs and Harbor Maintenance fees, directly harm the competitiveness of the domestic uranium industry. Finally, requirements under US law, such as those in the 1979 Nuclear Nonproliferation Act, place very strict limits on the use of US-origin uranium, limitations not imposed by other uranium-producing countries. Export promotion and coordination are two areas in which the US can help the domestic uranium industry without violating existing trade agreements or other legal or policy constraints.

  10. Microsoft Word - L15 01-22 Uranium Tranfers

    Office of Environmental Management (EM)

    To: Office of Nuclear Energy Department of Energy 1000 Independence Ave., SW Washington, DC 20585 From: Nan Swift Federal Affairs Manager National Taxpayers Union 108 N. Alfred Street Alexandria, VA 22314 Subject: Request for Information: Excess Uranium Management: Effects of DOE Transfers of Excess Uranium on Domestic Uranium Mining, Conversion, and Enrichment Industries To whom it may concern: On behalf of the members of the National Taxpayers Union (NTU), I write to express our concerns

  11. Uranium from Seawater Program Review; Fuel Resources Uranium from Seawater Program DOE Office of Nuclear Energy

    SciTech Connect (OSTI)

    2013-07-01

    For nuclear energy to remain sustainable in the United States, economically viable sources of uranium beyond terrestrial ores must be developed. The goal of this program is to develop advanced adsorbents that can extract uranium from seawater at twice the capacity of the best adsorbent developed by researchers at the Japan Atomic Energy Agency (JAEA), 1.5 mg U/g adsorbent. A multidisciplinary team from Oak Ridge National Laboratory, Lawrence Berkeley National Laboratory, Pacific Northwest National Laboratory, and the University of Texas at Austin was assembled to address this challenging problem. Polymeric adsorbents, based on the radiation grafting of acrylonitrile and methacrylic acid onto high surface-area polyethylene fibers followed by conversion of the nitriles to amidoximes, have been developed. These poly(acrylamidoxime-co-methacrylic acid) fibers showed uranium adsorption capacities for the extraction of uranium from seawater that exceed 3 mg U/g adsorbent in testing at the Pacific Northwest National Laboratory Marine Sciences Laboratory. The essence of this novel technology lies in the unique high surface-area trunk material that considerably increases the grafting yield of functional groups without compromising its mechanical properties. This technology received an R&D100 Award in 2012. In addition, high surface area nanomaterial adsorbents are under development with the goal of increasing uranium adsorption capacity by taking advantage of the high surface areas and tunable porosity of carbon-based nanomaterials. Simultaneously, de novo structure-based computational design methods are being used to design more selective and stable ligands and the most promising candidates are being synthesized, tested and evaluated for incorporation onto a support matrix. Fundamental thermodynamic and kinetic studies are being carried out to improve the adsorption efficiency, the selectivity of uranium over other metals, and the stability of the adsorbents. Understanding the rate-limiting step of uranium uptake from seawater is also essential in designing an effective uranium recovery system. Finally, economic analyses have been used to guide these studies and highlight what parameters, such as capacity, recyclability, and stability, have the largest impact on the cost of extraction of uranium from seawater. Initially, the cost estimates by the JAEA for extraction of uranium from seawater with braided polymeric fibers functionalized with amidoxime ligands were evaluated and updated. The economic analyses were subsequently updated to reflect the results of this project while providing insight for cost reductions in the adsorbent development through “cradle-to-grave” case studies for the extraction process. This report highlights the progress made over the last three years on the design, synthesis, and testing of new materials to extract uranium for seawater. This report is organized into sections that highlight the major research activities in this project: (1) Chelate Design and Modeling, (2) Thermodynamics, Kinetics and Structure, (3) Advanced Polymeric Adsorbents by Radiation Induced Grafting, (4) Advanced Nanomaterial Adsorbents, (5) Adsorbent Screening and Modeling, (6) Marine Testing, and (7) Cost and Energy Assessment. At the end of each section, future research directions are briefly discussed to highlight the challenges that still remain to reduce the cost of extractions of uranium for seawater. Finally, contributions from the Nuclear Energy University Programs (NEUP), which complement this research program, are included at the end of this report.

  12. Development of Integrated Online Monitoring Systems for Detection of Diversion at Natural Uranium Conversion Facilities

    SciTech Connect (OSTI)

    Dewji, Shaheen A; Lee, Denise L; Croft, Stephen; McElroy, Robert Dennis; Hertel, Nolan; Chapman, Jeffrey Allen; Cleveland, Steven L

    2013-01-01

    Recent work at Oak Ridge National Laboratory (ORNL) has focused on some source term modeling of uranyl nitrate (UN) as part of a comprehensive validation effort employing gamma-ray detector instrumentation for the detection of diversion from declared conversion activities. Conversion, the process by which natural uranium ore (yellowcake) is purified and converted through a series of chemical processes into uranium hexafluoride gas (UF6), has historically been excluded from the nuclear safeguards requirements of the 235U-based nuclear fuel cycle. The undeclared diversion of this product material could potentially provide feedstock for a clandestine weapons program for state or non-state entities. Given the changing global political environment and the increased availability of dual-use nuclear technology, the International Atomic Energy Agency has evolved its policies to emphasize safeguarding this potential feedstock material in response to dynamic and evolving potential diversion pathways. To meet the demand for instrumentation testing at conversion facilities, ORNL developed the Uranyl Nitrate Calibration Loop Equipment (UNCLE) facility to simulate the full-scale operating conditions of a purified uranium-bearing aqueous stream exiting the solvent extraction process in a natural uranium conversion plant. This work investigates gamma-ray signatures of UN circulating in the UNCLE facility and evaluates detector instrumentation sensitivity to UN for safeguards applications. These detector validation activities include assessing detector responses to the UN gamma-ray signatures for spectrometers based on sodium iodide, lanthanum bromide, and germanium detectors. The results of measurements under static and dynamic operating conditions at concentrations ranging from 10-90g U/L of naturally enriched UN will be presented. A range of gamma-ray lines was examined and self-attenuation factors were calculated, in addition to attenuation for transmission measurement of density, concentration and enrichment. A detailed uncertainty analysis will be presented providing insights into instrumentation limitations to spoofing.

  13. Uranium Recovery from Seawater: Development of Fiber Adsorbents Prepared via Atom-Transfer Radical Polymerization

    SciTech Connect (OSTI)

    Saito, Tomonori; Brown, Suree; Chatterjee, Sabornie; Kim, Jungseung; Tsouris, Constantinos; Mayes, Richard; Kuo, Li-Jung; Gill, Gary A.; Oyola, Yatsandra; Janke, C.; Dai, Sheng

    2014-07-09

    Uranium exists uniformly at a concentration of ~3.3 ppb in seawater. The extraction of uranium from seawater presents a very attractive alternative source of uranium for nuclear fuel needs.

  14. Uranium at Y-12: Rolling and Forming | Y-12 National Security...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rolling ... Uranium at Y-12: Rolling and Forming Posted: July 22, 2013 - 3:40pm | Y-12 Report | Volume 10, Issue 1 | 2013 Rolling involves preheating a uranium or uranium alloy...

  15. Selective leaching of uranium from uranium-contaminated soils: Progress report 1

    SciTech Connect (OSTI)

    Francis, C.W.; Mattus, A.J.; Farr, L.L.; Elless, M.P.; Lee, S.Y.

    1993-02-01

    Three soils and a sediment contaminated with uranium were used to determine the effectiveness of sodium carbonate and citric acid leaching to decontaminated or remove uranium to acceptable regulatory levels. Two of the soils were surface soils from the DOE facility formerly called the Feed Materials Production Center (FMPC) at Fernald, Ohio. This facility is presently called the Femald Environmental Management Project (FEMP). Carbonate extractions generally removed from 70 to 90% of the uranium from the Fernald storage pad soil. Uranium was slightly more difficult to extract from the Fernald incinerator and the Y-12 landfarm soils. Very small amounts of uranium could be extracted from the storm sewer sediment. Extraction with carbonate at high solution-to-soil ratios were as effective as extractions at low solution-to-soil ratios, indicating attrition by the paddle mixer was not significantly different than that provided in a rotary extractor. Also, pretreatments such as milling or pulverizing the soil sample did not appear to increase extraction efficiency when carbonate extractions were carried out at elevated temperatures (60{degree}C) or long extraction times (23 h). Adding KMnO{sub 4} in the carbonate extraction appeared to increase extraction efficiency from the Fernald incinerator soil but not the Fernald storage pad soil. The most effective leaching rates (> 90 % from both Fernald soils) were obtained using a citrate/dithionite extraction procedure designed to remove amorphous (noncrystalline) iron/aluminum sesquioxides from surfaces of clay minerals. Citric acid also proved to be a very good extractant for uranium.

  16. Selective leaching of uranium from uranium-contaminated soils: Progress report 1

    SciTech Connect (OSTI)

    Francis, C.W.; Mattus, A.J.; Farr, L.L.; Elless, M.P.; Lee, S.Y.

    1993-02-01

    Three soils and a sediment contaminated with uranium were used to determine the effectiveness of sodium carbonate and citric acid leaching to decontaminated or remove uranium to acceptable regulatory levels. Two of the soils were surface soils from the DOE facility formerly called the Feed Materials Production Center (FMPC) at Fernald, Ohio. This facility is presently called the Femald Environmental Management Project (FEMP). Carbonate extractions generally removed from 70 to 90% of the uranium from the Fernald storage pad soil. Uranium was slightly more difficult to extract from the Fernald incinerator and the Y-12 landfarm soils. Very small amounts of uranium could be extracted from the storm sewer sediment. Extraction with carbonate at high solution-to-soil ratios were as effective as extractions at low solution-to-soil ratios, indicating attrition by the paddle mixer was not significantly different than that provided in a rotary extractor. Also, pretreatments such as milling or pulverizing the soil sample did not appear to increase extraction efficiency when carbonate extractions were carried out at elevated temperatures (60[degree]C) or long extraction times (23 h). Adding KMnO[sub 4] in the carbonate extraction appeared to increase extraction efficiency from the Fernald incinerator soil but not the Fernald storage pad soil. The most effective leaching rates (> 90 % from both Fernald soils) were obtained using a citrate/dithionite extraction procedure designed to remove amorphous (noncrystalline) iron/aluminum sesquioxides from surfaces of clay minerals. Citric acid also proved to be a very good extractant for uranium.

  17. German Pebble Bed Research Reactor Highly Enriched Uranium (HEU...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Potential Acceptance and Disposition of German Pebble Bed Research Reactor Highly Enriched Uranium (HEU) Fuel Environmental Assessment Maxcine Maxted, DOE-SR Used Nuclear Fuel...

  18. The quantitative ion exchange separation of uranium from impurities

    SciTech Connect (OSTI)

    Narayanan, U.I.; Mason, P.B.; Zebrowski, J.P.; Rocca, M.; Frank, I.W.; Smith, M.M.; Johnson, K.D.; Orlowicz, G.J.; Dallmann, E.

    1995-03-01

    Two methods were tested for the quantitative separation of uranium from elemental impurities using commercially available resins. The sorption and elution behavior of uranium and the separation of it from a variety of other elements was studied. The first method utilized an anion exchange resin while the second method employed an extraction resin. The first method, the anion exchange of uranium (VI) in an acid chloride medium, was optimized and statistically tested for quantitative recovery of uranium. This procedure involved adsorption of uranium onto Blo-Rad AG 1-X8 or MP-1 ion exchange resins in 8 M HCl, separation of uncompleted or weakly complexed matrix ions with an 8 M HCI wash, and subsequent elution of uranium with 1 M HCl. Matrix ions more strongly adsorbed than uranium were left on the resin. Uranium recoveries with this procedure averaged greater than 99.9% with a standard deviation of 0.1%. In the second method, recovery of uranium on the extraction resin did not meet the criteria of this study and further examination was terminated.

  19. Uranium and Strontium Batch Sorption and Diffusion Kinetics into...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Uranium and Strontium Batch Sorption and Diffusion Kinetics into Mesoporous Silica Friday, February 27, 2015 Figure 1 Figure 1. Transmission electron microscopy images of (A)...

  20. Y-12 Knows Uranium | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    science and the esoteric things related to uranium's behavior," said engineer Alan Moore. "Such a deep, detailed understanding comes from experience, excellent procedures,...

  1. Probing Uranium's Mysteries | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    resonance probe, chemist Ashley Stowe explores previously unseen properties of uranium. He also aims to prevent illegal trafficking of that commodity through his...

  2. President Truman Increases Production of Uranium and Plutonium...

    National Nuclear Security Administration (NNSA)

    Increases Production of Uranium and Plutonium | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing...

  3. 4th Quarter 2015 Domestic Uranium Production Report

    U.S. Energy Information Administration (EIA) Indexed Site

    or dissolving-out from mined rock, of the soluble uranium constituents by the natural action of percolating a prepared chemical solution through mounded (heaped) rock material. ...

  4. NNSA Authorizes Start-Up of Highly Enriched Uranium Materials...

    National Nuclear Security Administration (NNSA)

    Authorizes Start-Up of Highly Enriched Uranium Materials Facility at Y-12 | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the...

  5. Electrochemical method of producing eutectic uranium alloy and apparatus

    DOE Patents [OSTI]

    Horton, J.A.; Hayden, H.W.

    1995-01-10

    An apparatus and method are disclosed for continuous production of liquid uranium alloys through the electrolytic reduction of uranium chlorides. The apparatus includes an electrochemical cell formed from an anode shaped to form an electrolyte reservoir, a cathode comprising a metal, such as iron, capable of forming a eutectic uranium alloy having a melting point less than the melting point of pure uranium, and molten electrolyte in the reservoir comprising a chlorine or fluorine containing salt and uranium chloride. The method of the invention produces an eutectic uranium alloy by creating an electrolyte reservoir defined by a container comprising an anode, placing an electrolyte in the reservoir, the electrolyte comprising a chlorine or fluorine containing salt and uranium chloride in molten form, positioning a cathode in the reservoir where the cathode comprises a metal capable of forming an uranium alloy having a melting point less than the melting point of pure uranium, and applying a current between the cathode and the anode. 2 figures.

  6. Abandoned Uranium Mine Technical Services and Cleanup Industry...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Abandoned Uranium Mine Technical Services and Cleanup Industry Day In January 2015, the United States (U.S.) and the Anadarko Litigation Trust ("Litigation Trust") entered into a...

  7. 4th Quarter 2015 Domestic Uranium Production Report

    U.S. Energy Information Administration (EIA) Indexed Site

    Jab and Antelope Sweetwater, Wyoming 2,000,000 Developing Developing Developing Developing Developing Uranium One Americas, Inc. Moore Ranch Campbell, Wyoming 500,000 Permitted And ...

  8. 4th Quarter 2015 Domestic Uranium Production Report

    U.S. Energy Information Administration (EIA) Indexed Site

    ...ing","Developing","Developing","Developing","Developing" "Uranium One Americas, Inc.","Moore Ranch","Campbell, Wyoming",500000,"Permitted And Licensed","Permitted And ...

  9. The Hydrogen Corrosion of Uranium: Identification of Underlying...

    Office of Scientific and Technical Information (OSTI)

    Mitigation Strategies Citation Details In-Document Search Title: The Hydrogen Corrosion of Uranium: Identification of Underlying Causes and Proposed Mitigation Strategies Authors: ...

  10. The Hydrogen Corrosion of Uranium: Identification of Underlying...

    Office of Scientific and Technical Information (OSTI)

    Mitigation Strategies Citation Details In-Document Search Title: The Hydrogen Corrosion of Uranium: Identification of Underlying Causes and Proposed Mitigation Strategies You ...

  11. Abandoned Uranium Mines Report to Congress: LM Wants Your Input

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) Office of Legacy Management (LM) is seeking stakeholder input on an abandoned uranium mines report to Congress.

  12. Researchers use light to create rare uranium molecule

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The uranium nitride molecule derived from the photolysis process is well defined, unlike solid-state compounds from alternative processes, making it ideal for the controlled study...

  13. DOE - Office of Legacy Management -- Falls City Uranium Ore Stockpile...

    Office of Legacy Management (LM)

    The history of domestic uranium procurement under U.S. Atomic Energy Commission (AEC) contracts identifies a number of ore buying stations (sampling and storage sites) that were ...

  14. Uranium Marketing Annual Report - Release Date: May 31, 2011

    Gasoline and Diesel Fuel Update (EIA)

    Note: Totals may not equal sum of components because of independent rounding. Source: U.S. Energy Information Administration, Form EIA-858 "Uranium Marketing Annual Survey" (2013-...

  15. Uranium Marketing Annual Report - Release Date: May 31, 2011

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and does not include the conversion service and enrichment service components. Source: U.S. Energy Information Administration, Form EIA-858 "Uranium Marketing Annual Survey" (20...

  16. Neutron-Induced Fission Cross Section Measurements for Uranium...

    Office of Scientific and Technical Information (OSTI)

    SCIENCE; 43 PARTICLE ACCELERATORS; 73 NUCLEAR PHYSICS AND RADIATION PHYSICS; ... PROGRAMS; STAINLESS STEELS; TARGETS; TIME-OF-FLIGHT METHOD; URANIUM ISOTOPES; WEAPONS

  17. URANIUM-SERIES CONSTRAINTS ON RADIONUCLIDE TRANSPORT AND GROUNDWATER FLOW AT NOPAL I URANIUM DEPOSIT, SIERRA PENA BLANCA, MEXICO

    SciTech Connect (OSTI)

    S. J. Goldstein, S. Luo, T. L. Ku, and M. T. Murrell

    2006-04-01

    Uranium-series data for groundwater samples from the vicinity of the Nopal I uranium ore deposit are used to place constraints on radionuclide transport and hydrologic processes at this site, and also, by analogy, at Yucca Mountain. Decreasing uranium concentrations for wells drilled in 2003 suggest that groundwater flow rates are low (< 10 m/yr). Field tests, well productivity, and uranium isotopic constraints also suggest that groundwater flow and mixing is limited at this site. The uranium isotopic systematics for water collected in the mine adit are consistent with longer rock-water interaction times and higher uranium dissolution rates at the front of the adit where the deposit is located. Short-lived nuclide data for groundwater wells are used to calculate retardation factors that are on the order of 1,000 for radium and 10,000 to 10,000,000 for lead and polonium. Radium has enhanced mobility in adit water and fractures near the deposit.

  18. Corrosion Evaluation of RERTR Uranium Molybdenum Fuel

    SciTech Connect (OSTI)

    A K Wertsching

    2012-09-01

    As part of the National Nuclear Security Agency (NNSA) mandate to replace the use of highly enriched uranium (HEU) fuel for low enriched uranium (LEU) fuel, research into the development of LEU fuel for research reactors has been active since the late 1970’s. Originally referred to as the Reduced Enrichment for Research and Test Reactor (RERTR) program the new effort named Global Threat Reduction Initiative (GTRI) is nearing the goal of replacing the standard aluminum clad dispersion highly enriched uranium aluminide fuel with a new LEU fuel. The five domestic high performance research reactors undergoing this conversion are High Flux Isotope reactor (HFIR), Advanced Test Reactor (ATR), National Institute of Standards and Technology (NIST) Reactor, Missouri University Research Reactor (MURR) and the Massachusetts Institute of Technology Reactor II (MITR-II). The design of these reactors requires a higher neutron flux than other international research reactors, which to this point has posed unique challenges in the design and development of the new mandated LEU fuel. The new design utilizes a monolithic fuel configuration in order to obtain sufficient 235U within the LEU stoichoimetry to maintain the fission reaction within the domestic test reactors. The change from uranium aluminide dispersion fuel type to uranium molybdenum (UMo) monolithic configuration requires examination of possible corrosion issues associated with the new fuel meat. A focused analysis of the UMo fuel under potential corrosion conditions, within the ATR and under aqueous storage indicates a slow and predictable corrosion rate. Additional corrosion testing is recommended for the highest burn-up fuels to confirm observed corrosion rate trends. This corrosion analysis will focus only on the UMo fuel and will address corrosion of ancillary components such as cladding only in terms of how it affects the fuel. The calculations and corrosion scenarios are weighted with a conservative bias to provide additional confidence with the results. The actual corrosion rates of UMo fuel is very likely to be lower than assumed within this report which can be confirmed with additional testing.

  19. Low-Enriched Uranium Fuel Conversion Activities for the High Flux Isotope Reactor, Annual Report for FY 2011

    SciTech Connect (OSTI)

    Renfro, David G; Cook, David Howard; Freels, James D; Griffin, Frederick P; Ilas, Germina; Sease, John D; Chandler, David

    2012-03-01

    This report describes progress made during FY11 in ORNL activities to support converting the High Flux Isotope Reactor (HFIR) from high-enriched uranium (HEU) fuel to low-enriched uranium (LEU) fuel. Conversion from HEU to LEU will require a change in fuel form from uranium oxide to a uranium-molybdenum (UMo) alloy. With both radial and axial contouring of the fuel foil and an increase in reactor power to 100 MW, calculations indicate that the HFIR can be operated with LEU fuel with no degradation in performance to users from the current levels achieved with HEU fuel. Studies are continuing to demonstrate that the fuel thermal safety margins can be preserved following conversion. Studies are also continuing to update other aspects of the reactor steady state operation and accident response for the effects of fuel conversion. Technical input has been provided to Oregon State University in support of their hydraulic testing program. The HFIR conversion schedule was revised and provided to the GTRI program. In addition to HFIR conversion activities, technical support was provided directly to the Fuel Fabrication Capability program manager.

  20. Report on the Effect the Low Enriched Uranium Delivered Under the Highly

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Enriched Uranium Agreement Between the USA and the Russian Federation has on the Domestic Uranium Mining, Conversion, and Enrichment Industries and the Ops of the Gaseous Diffusion | Department of Energy on the Effect the Low Enriched Uranium Delivered Under the Highly Enriched Uranium Agreement Between the USA and the Russian Federation has on the Domestic Uranium Mining, Conversion, and Enrichment Industries and the Ops of the Gaseous Diffusion Report on the Effect the Low Enriched Uranium

  1. Evolution of isotopic composition of reprocessed uranium during the multiple recycling in light water reactors with natural uranium feed

    SciTech Connect (OSTI)

    Smirnov, A. Yu. Sulaberidze, G. A.; Alekseev, P. N.; Dudnikov, A. A.; Nevinitsa, V. A. Proselkov, V. N.; Chibinyaev, A. V.

    2012-12-15

    A complex approach based on the consistent modeling of neutron-physics processes and processes of cascade separation of isotopes is applied for analyzing physical problems of the multiple usage of reprocessed uranium in the fuel cycle of light water reactors. A number of scenarios of multiple recycling of reprocessed uranium in light water reactors are considered. In the process, an excess absorption of neutrons by the {sup 236}U isotope is compensated by re-enrichment in the {sup 235}U isotope. Specific consumptions of natural uranium for re-enrichment of the reprocessed uranium depending on the content of the {sup 232}U isotope are obtained.

  2. Process for recovering uranium from waste hydrocarbon oils containing the same. [Uranium contaminated lubricating oils from gaseous diffusion compressors

    DOE Patents [OSTI]

    Conrad, M.C.; Getz, P.A.; Hickman, J.E.; Payne, L.D.

    1982-06-29

    The invention is a process for the recovery of uranium from uranium-bearing hydrocarbon oils containing carboxylic acid as a degradation product. In one aspect, the invention comprises providing an emulsion of water and the oil, heating the same to a temperature effecting conversion of the emulsion to an organic phase and to an acidic aqueous phase containing uranium carboxylate, and recovering the uranium from the aqueous phase. The process is effective, simple and comparatively inexpensive. It avoids the use of toxic reagents and the formation of undesirable intermediates.

  3. EA-1172: Sale of Surplus Natural and Low Enriched Uranium, Piketon, Ohio

    Office of Energy Efficiency and Renewable Energy (EERE)

    This EA evaluates the environmental impacts for the proposal to sell uranium for subsequent enrichment and fabrication into commercial nuclear power reactor fuel.  The uranium is currently stored...

  4. Inherently safe in situ uranium recovery (Patent) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Inherently safe in situ uranium recovery Citation Details In-Document Search Title: Inherently safe in situ uranium recovery You are accessing a document from the Department of...

  5. Development of Novel Sorbents for Uranium Extraction from Seawater

    SciTech Connect (OSTI)

    Lin, Wenbin; Taylor-Pashow, Kathryn

    2014-01-08

    As the uranium resource in terrestrial ores is limited, it is difficult to ensure a long-term sustainable nuclear energy technology. The oceans contain approximately 4.5 billion tons of uranium, which is one thousand times the amount of uranium in terrestrial ores. Development of technologies to recover the uranium from seawater would greatly improve the uranium resource availability, sustaining the fuel supply for nuclear energy. Several methods have been previously evaluated including solvent extraction, ion exchange, flotation, biomass collection, and adsorption; however, none have been found to be suitable for reasons such as cost effectiveness, long term stability, and selectivity. Recent research has focused on the amidoxime functional group as a promising candidate for uranium sorption. Polymer beads and fibers have been functionalized with amidoxime functional groups, and uranium adsorption capacities as high as 1.5 g U/kg adsorbent have recently been reported with these types of materials. As uranium concentration in seawater is only ~3 ppb, great improvements to uranium collection systems must be made in order to make uranium extraction from seawater economically feasible. This proposed research intends to develop transformative technologies for economic uranium extraction from seawater. The Lin group will design advanced porous supports by taking advantage of recent breakthroughs in nanoscience and nanotechnology and incorporate high densities of well-designed chelators into such nanoporous supports to allow selective and efficient binding of uranyl ions from seawater. Several classes of nanoporous materials, including mesoporous silica nanoparticles (MSNs), mesoporous carbon nanoparticles (MCNs), meta-organic frameworks (MOFs), and covalent-organic frameworks (COFs), will be synthesized. Selective uranium-binding liagnds such as amidoxime will be incorporated into the nanoporous materials to afford a new generation of sorbent materials that will be evaluated for their uranium extraction efficiency. The initial testing of these materials for uranium binding will be carried out in the Lin group, but more detailed sorption studies will be carried out by Dr. Taylor-Pashow of Savannah River National Laboratory in order to obtain quantitative uranyl sorption selectivity and kinetics data for the proposed materials. The proposed nanostructured sorbent materials are expected to have higher binding capacities, enhanced extraction kinetics, optimal stripping efficiency for uranyl ions, and enhanced mechanical and chemical stabilities. This transformative research will significantly impact uranium extraction from seawater as well as benefit DOE’s efforts on environmental remediation by developing new materials and providing knowledge for enriching and sequestering ultralow concentrations of other metals.

  6. Uranium isotopes in ground water as a prospecting technique

    SciTech Connect (OSTI)

    Cowart, J.B.; Osmond, J.K.

    1980-02-01

    The isotopic concentrations of dissolved uranium were determined for 300 ground water samples near eight known uranium accumulations to see if new approaches to prospecting could be developed. It is concluded that a plot of /sup 234/U//sup 238/U activity ratio (A.R.) versus uranium concentration (C) can be used to identify redox fronts, to locate uranium accumulations, and to determine whether such accumulations are being augmented or depleted by contemporary aquifer/ground water conditions. In aquifers exhibiting flow-through hydrologic systems, up-dip ground water samples are characterized by high uranium concentration values (> 1 to 4 ppB) and down-dip samples by low uranium concentration values (less than 1 ppB). The boundary between these two regimes can usually be identified as a redox front on the basis of regional water chemistry and known uranium accumulations. Close proximity to uranium accumulations is usually indicated either by very high uranium concentrations in the ground water or by a combination of high concentration and high activity ratio values. Ground waters down-dip from such accumulations often exhibit low uranium concentration values but retain their high A.R. values. This serves as a regional indicator of possible uranium accumulations where conditions favor the continued augmentation of the deposit by precipitation from ground water. Where the accumulation is being dispersed and depleted by the ground water system, low A.R. values are observed. Results from the Gulf Coast District of Texas and the Wyoming districts are presented.

  7. Mixed uranium dicarbide and uranium dioxide microspheres and process of making same

    DOE Patents [OSTI]

    Stinton, David P. (Knoxville, TN)

    1983-01-01

    Nuclear fuel microspheres are made by sintering microspheres containing uranium dioxide and uncombined carbon in a 1 mole percent carbon monoxide/99 mole percent argon atmosphere at 1550.degree. C. and then sintering the microspheres in a 3 mole percent carbon monoxide/97 mole percent argon atmosphere at the same temperature.

  8. A Uranium Bioremediation Reactive Transport Benchmark

    SciTech Connect (OSTI)

    Yabusaki, Steven B.; Sengor, Sevinc; Fang, Yilin

    2015-06-01

    A reactive transport benchmark problem set has been developed based on in situ uranium bio-immobilization experiments that have been performed at a former uranium mill tailings site in Rifle, Colorado, USA. Acetate-amended groundwater stimulates indigenous microorganisms to catalyze the reduction of U(VI) to a sparingly soluble U(IV) mineral. The interplay between the flow, acetate loading periods and rates, microbially-mediated and geochemical reactions leads to dynamic behavior in metal- and sulfate-reducing bacteria, pH, alkalinity, and reactive mineral surfaces. The benchmark is based on an 8.5 m long one-dimensional model domain with constant saturated flow and uniform porosity. The 159-day simulation introduces acetate and bromide through the upgradient boundary in 14-day and 85-day pulses separated by a 10 day interruption. Acetate loading is tripled during the second pulse, which is followed by a 50 day recovery period. Terminal electron accepting processes for goethite, phyllosilicate Fe(III), U(VI), and sulfate are modeled using Monod-type rate laws. Major ion geochemistry modeled includes mineral reactions, as well as aqueous and surface complexation reactions for UO2++, Fe++, and H+. In addition to the dynamics imparted by the transport of the acetate pulses, U(VI) behavior involves the interplay between bioreduction, which is dependent on acetate availability, and speciation-controlled surface complexation, which is dependent on pH, alkalinity and available surface complexation sites. The general difficulty of this benchmark is the large number of reactions (74), multiple rate law formulations, a multisite uranium surface complexation model, and the strong interdependency and sensitivity of the reaction processes. Results are presented for three simulators: HYDROGEOCHEM, PHT3D, and PHREEQC.

  9. Process for recovering niobium from uranium-niobium alloys

    DOE Patents [OSTI]

    Wallace, S.A.; Creech, E.T.; Northcutt, W.G.

    1982-09-27

    Niobium is recovered from scrap uranium-niobium alloy by melting the scrap with tin, solidifying the billet thus formed, heating the billet to combine niobium with tin therein, placing the billet in hydrochloric acid to dissolve the uranium and form a precipitate of niobium stannide, then separating the precipitate from the acid.

  10. Nuclear power fleets and uranium resources recovered from phosphates

    SciTech Connect (OSTI)

    Gabriel, S.; Baschwitz, A.; Mathonniere, G.

    2013-07-01

    Current light water reactors (LWR) burn fissile uranium, whereas some future reactors, as Sodium fast reactors (SFR) will be capable of recycling their own plutonium and already-extracted depleted uranium. This makes them a feasible solution for the sustainable development of nuclear energy. Nonetheless, a sufficient quantity of plutonium is needed to start up an SFR, with the plutonium already being produced in light water reactors. The availability of natural uranium therefore has a direct impact on the capacity of the reactors (both LWR and SFR) that we can build. It is therefore important to have an accurate estimate of the available uranium resources in order to plan for the world's future nuclear reactor fleet. This paper discusses the correspondence between the resources (uranium and plutonium) and the nuclear power demand. Sodium fast reactors will be built in line with the availability of plutonium, including fast breeders when necessary. Different assumptions on the global uranium resources are taken into consideration. The largely quoted estimate of 22 Mt of uranium recovered for phosphate rocks can be seriously downscaled. Based on our current knowledge of phosphate resources, 4 Mt of recoverable uranium already seems to be an upper bound value. The impact of the downscaled estimate on the deployment of a nuclear fleet is assessed accordingly. (authors)

  11. Process for recovering niobium from uranium-niobium alloys

    DOE Patents [OSTI]

    Wallace, Steven A. (Knoxville, TN); Creech, Edward T. (Oak Ridge, TN); Northcutt, Walter G. (Oak Ridge, TN)

    1983-01-01

    Niobium is recovered from scrap uranium-niobium alloy by melting the scrap with tin, solidifying the billet thus formed, heating the billet to combine niobium with tin therein, placing the billet in hydrochloric acid to dissolve the uranium and leave an insoluble residue of niobium stannide, then separating the niobium stannide from the acid.

  12. Adsorption study for uranium in Rocky Flats groundwater

    SciTech Connect (OSTI)

    Laul, J.C.; Rupert, M.C.; Harris, M.J.; Duran, A.

    1995-01-01

    Six adsorbents were studied to determine their effectiveness in removing uranium in Rocky Flats groundwater. The bench column and batch (Kd) tests showed that uranium can be removed (>99.9%) by four adsorbents. Bone Charcoal (R1O22); F-1 Alumina (granular activated alumina); BIOFIX (immobilized biological agent); SOPBPLUS (mixed metal oxide); Filtrasorb 300 (granular activated carbon); and Zeolite (clinoptilolite).

  13. Environmental factors affecting long-term stabilization of radon suppression covers for uranium mill tailings

    SciTech Connect (OSTI)

    Young, J.K.; Long, L.W.; Reis, J.W.

    1982-04-01

    Pacific Northwest Laboratory is investigating the use of a rock armoring blanket (riprap) to mitigate wind and water erosion of an earthen radon suppression cover applied to uranium mill tailings. To help determine design stresses for the tailings piles, environmental parameters are characterized for the five active uranium-producing regions on a site-specific basis. Only conventional uranium mills that are currently operating or that are scheduled to open in the mid 1980s are considered. Available data indicate that flooding has the most potential for disrupting a tailings pile. The arid regions of the Wyoming Basins and the Colorado Plateau are subject to brief storms of high intensity. The Texas Gulf Coast has the highest potential for extreme precipitation from hurricane-related storms. Wind data indicate average wind speeds from 3 to 6 m/sec for the sites, but extremes of 40 m/sec can be expected. Tornado risks range from low to moderate. The Colorado Plateau has the highest seismic potential, with maximum acceleration caused by earthquakes ranging from 0.2 to 0.4 g. Any direct effect from volcanic eruption is negligible, as all mills are located 90 km or more from an igneous or hydrothermal system.

  14. Neutronics Studies of Uranium-bearing Fully Ceramic Micro-encapsulated Fuel for PWRs

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    George, Nathan M.; Maldonado, G. Ivan; Terrani, Kurt A.; Godfrey, Andrew T.; Gehin, Jess C.; Powers, Jeffrey J.

    2014-12-01

    Our study evaluated the neutronics and some of the fuel cycle characteristics of using uranium-based fully ceramic microencapsulated (FCM) fuel in a pressurized water reactor (PWR). Specific PWR lattice designs with FCM fuel have been developed that are expected to achieve higher specific burnup levels in the fuel while also increasing the tolerance to reactor accidents. The SCALE software system was the primary analysis tool used to model the lattice designs. A parametric study was performed by varying tristructural isotropic particle design features (e.g., kernel diameter, coating layer thicknesses, and packing fraction) to understand the impact on reactivity and resultingmore » operating cycle length. Moreover, to match the lifetime of an 18-month PWR cycle, the FCM particle fuel design required roughly 10% additional fissile material at beginning of life compared with that of a standard uranium dioxide (UO2) rod. Uranium mononitride proved to be a favorable fuel for the fuel kernel due to its higher heavy metal loading density compared with UO2. The FCM fuel designs evaluated maintain acceptable neutronics design features for fuel lifetime, lattice peaking factors, and nonproliferation figure of merit.« less

  15. Economic evaluation of inactive uranium mill tailings, Gunnison Site, Gunnison, Colorado

    SciTech Connect (OSTI)

    Teel, J H

    1982-12-01

    Mountain States Research and Development was contracted on March 1, 1981 to make an economic evaluation study at each of 12 abandoned uranium mill tailings sites in the western states. The objective of this work was to obtain the data necessary at each site to determine the possible revenue that could be derived from reprocessing the tailings. To accomplish this objective a drilling and sampling program was established for each site to determine the total amount of tailings and subbase material available for treatment and the amount of recoverable uranium, vanadium and molybdenum. These three metals were selected due to their common occurrence in uranium ores and common extractability in the leaching process. Laboratory leaching was then conducted on the samples obtained to determine the extractability of each of these metals and the optimum plant process to be applied. As the metal contents were generally low and represented mineral that had not been leached during previous processing, the economic evaluation is limited to consideration of the direct capital and operating costs required in connection with processing of each respective site material. Excavating, transportation and disposal of the material from each site in an environmentally acceptable location and manner was not within the scope of this project. It will be necessary to complete a separate study of these areas in order to determine the total costs involved. This report contains the results of the investigations of the Old Rifle Site.

  16. Neutronics Studies of Uranium-bearing Fully Ceramic Micro-encapsulated Fuel for PWRs

    SciTech Connect (OSTI)

    George, Nathan M.; Maldonado, G. Ivan; Terrani, Kurt A.; Godfrey, Andrew T.; Gehin, Jess C.; Powers, Jeffrey J.

    2014-12-01

    Our study evaluated the neutronics and some of the fuel cycle characteristics of using uranium-based fully ceramic microencapsulated (FCM) fuel in a pressurized water reactor (PWR). Specific PWR lattice designs with FCM fuel have been developed that are expected to achieve higher specific burnup levels in the fuel while also increasing the tolerance to reactor accidents. The SCALE software system was the primary analysis tool used to model the lattice designs. A parametric study was performed by varying tristructural isotropic particle design features (e.g., kernel diameter, coating layer thicknesses, and packing fraction) to understand the impact on reactivity and resulting operating cycle length. Moreover, to match the lifetime of an 18-month PWR cycle, the FCM particle fuel design required roughly 10% additional fissile material at beginning of life compared with that of a standard uranium dioxide (UO2) rod. Uranium mononitride proved to be a favorable fuel for the fuel kernel due to its higher heavy metal loading density compared with UO2. The FCM fuel designs evaluated maintain acceptable neutronics design features for fuel lifetime, lattice peaking factors, and nonproliferation figure of merit.

  17. The use of laser diodes for control of uranium vaporization rates

    SciTech Connect (OSTI)

    Hagans, K.; Galkowski, J.

    1993-09-01

    Within the Atomic Vapor Laser Isotope Separation (AVLIS) program we have successfully used the laser absorption spectroscopy technique (LAS) to diagnose process physics performance and control vaporization rate. In the LAS technique, a narrow line-width laser is tuned to an absorption line of the species to be measured. The laser light that is propagated through the sample is and, from this data, the density of the species can be calculated. These laser systems have exclusively consisted of expensive, cumbersome, and difficult to maintain argon-ion-pumped ring dye lasers. While the wavelength flexibility of dye lasers is very useful in a laboratory environment, these laser systems are not well suited for the industrial process control system under development for an AVLIS plant. Diode-lasers offer lower system costs, reduced man power requirements, reduced space requirements, higher system availability, and improved operator safety. We report the. successful deployment and test of a prototype laser diode based uranium vapor rate control system. Diode-laser generated LAS data was used to control the uranium vaporization rate in a hands-off mode for greater than 50 hours. With one minor adjustment the system successfully controlled the vaporization rate for greater than 147 hours. We report excellent agreement with ring dye laser diagnostics and uranium weigh-back measurements.

  18. Impact of homogeneous strain on uranium vacancy diffusion in uranium dioxide

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Goyal, Anuj; Phillpot, Simon R.; Subramanian, Gopinath; Andersson, David A.; Stanek, Chris R.; Uberuaga, Blas P.

    2015-03-03

    We present a detailed mechanism of, and the effect of homogeneous strains on, the migration of uranium vacancies in UO2. Vacancy migration pathways and barriers are identified using density functional theory and the effect of uniform strain fields are accounted for using the dipole tensor approach. We report complex migration pathways and noncubic symmetry associated with the uranium vacancy in UO2 and show that these complexities need to be carefully accounted for to predict the correct diffusion behavior of uranium vacancies. We show that under homogeneous strain fields, only the dipole tensor of the saddle with respect to the minimummore » is required to correctly predict the change in the energy barrier between the strained and the unstrained case. Diffusivities are computed using kinetic Monte Carlo simulations for both neutral and fully charged state of uranium single and divacancies. We calculate the effect of strain on migration barriers in the temperature range 800–1800 K for both vacancy types. Homogeneous strains as small as 2% have a considerable effect on diffusivity of both single and divacancies of uranium, with the effect of strain being more pronounced for single vacancies than divacancies. In contrast, the response of a given defect to strain is less sensitive to changes in the charge state of the defect. Further, strain leads to anisotropies in the mobility of the vacancy and the degree of anisotropy is very sensitive to the nature of the applied strain field for strain of equal magnitude. Our results indicate that the influence of strain on vacancy diffusivity will be significantly greater when single vacancies dominate the defect structure, such as sintering, while the effects will be much less substantial under irradiation conditions where divacancies dominate.« less

  19. Impact of homogeneous strain on uranium vacancy diffusion in uranium dioxide

    SciTech Connect (OSTI)

    Goyal, Anuj; Phillpot, Simon R.; Subramanian, Gopinath; Andersson, David A.; Stanek, Chris R.; Uberuaga, Blas P.

    2015-03-03

    We present a detailed mechanism of, and the effect of homogeneous strains on, the migration of uranium vacancies in UO2. Vacancy migration pathways and barriers are identified using density functional theory and the effect of uniform strain fields are accounted for using the dipole tensor approach. We report complex migration pathways and noncubic symmetry associated with the uranium vacancy in UO2 and show that these complexities need to be carefully accounted for to predict the correct diffusion behavior of uranium vacancies. We show that under homogeneous strain fields, only the dipole tensor of the saddle with respect to the minimum is required to correctly predict the change in the energy barrier between the strained and the unstrained case. Diffusivities are computed using kinetic Monte Carlo simulations for both neutral and fully charged state of uranium single and divacancies. We calculate the effect of strain on migration barriers in the temperature range 800–1800 K for both vacancy types. Homogeneous strains as small as 2% have a considerable effect on diffusivity of both single and divacancies of uranium, with the effect of strain being more pronounced for single vacancies than divacancies. In contrast, the response of a given defect to strain is less sensitive to changes in the charge state of the defect. Further, strain leads to anisotropies in the mobility of the vacancy and the degree of anisotropy is very sensitive to the nature of the applied strain field for strain of equal magnitude. Our results indicate that the influence of strain on vacancy diffusivity will be significantly greater when single vacancies dominate the defect structure, such as sintering, while the effects will be much less substantial under irradiation conditions where divacancies dominate.

  20. Operating Strategies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Operating Strategies and Design Recommendations for Mitigating Local Damage Effects in Offshore Turbine Blades Phillip W. Richards phillip@gatech.edu Graduate Research Assistant Daniel Guggenheim School of Aerospace Engineering Atlanta, Georgia, USA D. Todd Griffith dgriffi@sandia.gov Principal Member of the Technical Staff Sandia National Laboratories Albuquerque, New Mexico, USA Dewey H. Hodges dhodges@gatech.edu Professor Daniel Guggenheim School of Aerospace Engineering Atlanta, Georgia, USA

  1. Hot rolling of thick uranium molybdenum alloys

    DOE Patents [OSTI]

    DeMint, Amy L.; Gooch, Jack G.

    2015-11-17

    Disclosed herein are processes for hot rolling billets of uranium that have been alloyed with about ten weight percent molybdenum to produce cold-rollable sheets that are about one hundred mils thick. In certain embodiments, the billets have a thickness of about 7/8 inch or greater. Disclosed processes typically involve a rolling schedule that includes a light rolling pass and at least one medium rolling pass. Processes may also include reheating the rolling stock and using one or more heavy rolling passes, and may include an annealing step.

  2. Port Radium Canada's Original Radium/Uranium Mine, The Complete Story of Canada's Historic Radium/Uranium Mine, 1932 to 2012 - 13159

    SciTech Connect (OSTI)

    Chambers, Doug; Wiatzka, Gerd; Brown, Steve

    2013-07-01

    This paper provides the life story of Canada's original radium/uranium mine. In addition to the history of operations, it discusses the unique and successful approach used to identify the key issues and concerns associated with the former radium, uranium and silver mining property and the activities undertaken to define the remedial actions and subsequent remedial plan. The Port Radium Mine site, situated approximately 275 km north of Yellowknife on the east shore of Great Bear Lake, Northwest Territories, was discovered in 1930 and underground mining began in 1932. The mine operated almost continuously from 1932 to 1982, initially for recovery of radium, then uranium and finally, for recovery of silver. Tailings production totaled an estimated 900,000 tons and 800,000 tons from uranium and silver processing operations respectively. In the early days of mining, Port Radium miners were exposed to radon and associated decay product levels (in Working Level Months of exposure - WLM) hundreds of times greater than modern standards. The experience of the Port Radium miners provides important contribution to understanding the risks from radon. While the uranium mine was originally decommissioned in the early 1960's, to the standards of the day, the community of Deline (formerly Fort Franklin) had concerns about residual contamination at the mine site and the potential effects arising from use of traditional lands. The Deline people were also concerned about the possible risks to Deline Dene arising from their work as ore carriers. In the late 1990's, the community of Deline brought these concerns to national attention and consequently, the Government of Canada and the community of Deline agreed to move forward in a collaborative manner to address these concerns. The approach agreed to was to establish the Canada-Deline Uranium Table (CDUT) to provide a joint process by which the people of Deline could have their concerns expressed and addressed. A great deal of work was done through the CDUT, including efforts to assess site environment and safety issues in the context of modern reclamation standards. In addition to the environmental and remediation studies, an assessment of historic exposures of Deline ore carriers to radiation and a follow-up epidemiological feasibility study were performed. SENES Consultants Limited (SENES) carried out the dose reconstruction for the Port Radium miners in the 1990's, was the environmental consultant to the CDUT from 2000 to 2005, developed the Remedial Action Plan (RAP), engineering plans and specifications for decommissioning the Port Radium mine and vicinity sites in 2005/6, supervised the remedial works in 2007 and carried out the long term post closure monitoring from 2008 to 2012. Our firsthand experience from working cooperatively with the CDUT provides insights into effective decommissioning of historic contaminated sites. (authors)

  3. 300 Area Uranium Stabilization Through Polyphosphate Injection: Final Report

    SciTech Connect (OSTI)

    Vermeul, Vincent R.; Bjornstad, Bruce N.; Fritz, Brad G.; Fruchter, Jonathan S.; Mackley, Rob D.; Newcomer, Darrell R.; Mendoza, Donaldo P.; Rockhold, Mark L.; Wellman, Dawn M.; Williams, Mark D.

    2009-06-30

    The objective of the treatability test was to evaluate the efficacy of using polyphosphate injections to treat uranium-contaminated groundwater in situ. A test site consisting of an injection well and 15 monitoring wells was installed in the 300 Area near the process trenches that had previously received uranium-bearing effluents. This report summarizes the work on the polyphosphate injection project, including bench-scale laboratory studies, a field injection test, and the subsequent analysis and interpretation of the results. Previous laboratory tests have demonstrated that when a soluble form of polyphosphate is injected into uranium-bearing saturated porous media, immobilization of uranium occurs due to formation of an insoluble uranyl phosphate, autunite [Ca(UO2)2(PO4)2•nH2O]. These tests were conducted at conditions expected for the aquifer and used Hanford soils and groundwater containing very low concentrations of uranium (10-6 M). Because autunite sequesters uranium in the oxidized form U(VI) rather than forcing reduction to U(IV), the possibility of re-oxidation and subsequent re-mobilization is negated. Extensive testing demonstrated the very low solubility and slow dissolution kinetics of autunite. In addition to autunite, excess phosphorous may result in apatite mineral formation, which provides a long-term source of treatment capacity. Phosphate arrival response data indicate that, under site conditions, the polyphosphate amendment could be effectively distributed over a relatively large lateral extent, with wells located at a radial distance of 23 m (75 ft) reaching from between 40% and 60% of the injection concentration. Given these phosphate transport characteristics, direct treatment of uranium through the formation of uranyl-phosphate mineral phases (i.e., autunite) could likely be effectively implemented at full field scale. However, formation of calcium-phosphate mineral phases using the selected three-phase approach was problematic. Although amendment arrival response data indicate some degree of overlap between the reactive species and thus potential for the formation of calcium-phosphate mineral phases (i.e., apatite formation), the efficiency of this treatment approach was relatively poor. In general, uranium performance monitoring results support the hypothesis that limited long-term treatment capacity (i.e., apatite formation) was established during the injection test. Two separate overarching issues affect the efficacy of apatite remediation for uranium sequestration within the 300 Area: 1) the efficacy of apatite for sequestering uranium under the present geochemical and hydrodynamic conditions, and 2) the formation and emplacement of apatite via polyphosphate technology. In addition, the long-term stability of uranium sequestered via apatite is dependent on the chemical speciation of uranium, surface speciation of apatite, and the mechanism of retention, which is highly susceptible to dynamic geochemical conditions. It was expected that uranium sequestration in the presence of hydroxyapatite would occur by sorption and/or surface complexation until all surface sites have been depleted, but that the high carbonate concentrations in the 300 Area would act to inhibit the transformation of sorbed uranium to chernikovite and/or autunite. Adsorption of uranium by apatite was never considered a viable approach for in situ uranium sequestration in and of itself, because by definition, this is a reversible reaction. The efficacy of uranium sequestration by apatite assumes that the adsorbed uranium would subsequently convert to autunite, or other stable uranium phases. Because this appears to not be the case in the 300 Area aquifer, even in locations near the river, apatite may have limited efficacy for the retention and long-term immobilization of uranium at the 300 Area site..

  4. Assuaging Nuclear Energy Risks: The Angarsk International Uranium Enrichment Center

    SciTech Connect (OSTI)

    Myers, Astasia [Stanford University, Stanford, CA 94305, USA and MonAme Scientific Research Center, Ulaanbaatar (Mongolia)

    2011-06-28

    The recent nuclear renaissance has motivated many countries, especially developing nations, to plan and build nuclear power reactors. However, domestic low enriched uranium demands may trigger nations to construct indigenous enrichment facilities, which could be redirected to fabricate high enriched uranium for nuclear weapons. The potential advantages of establishing multinational uranium enrichment sites are numerous including increased low enrichment uranium access with decreased nuclear proliferation risks. While multinational nuclear initiatives have been discussed, Russia is the first nation to actualize this concept with their Angarsk International Uranium Enrichment Center (IUEC). This paper provides an overview of the historical and modern context of the multinational nuclear fuel cycle as well as the evolution of Russia's IUEC, which exemplifies how international fuel cycle cooperation is an alternative to domestic facilities.

  5. National uranium resource evaluation, Marble Canyon Quadrangle, Arizona and Utah

    SciTech Connect (OSTI)

    Field, M T; Blauvelt, R P

    1982-05-01

    The Marble Canyon Quadrangle (2/sup 0/), northeast Arizona, was evaluated to a depth of 1500 m for uranium favorability using National Uranium Resource Evaluation criteria. Known mines and prospects were examined; field reconnaissance was done in selected areas of the quadrangle; and a ground-water geochemical survey was made in the southeast third of the quadrangle. The Shinarump and Petrified Forest Members of the Triassic Chinle Formation, which is exposed in the western and northeastern parts of the quadrangle and is present beneath the surface of much of the quadrangle, were found favorable for channel-sandstone uranium deposits. A portion of the Cretaceous Toreva Formation in the southeast part of the quadrangle was found favorable for peneconcordant-sandstone uranium deposits. The western part of the quadrangle was found favorable for uranium concentrations in breccia pipes.

  6. Selective Extraction of Uranium from Liquid or Supercritical Carbon Dioxide

    SciTech Connect (OSTI)

    Farawila, Anne F.; O'Hara, Matthew J.; Wai, Chien M.; Taylor, Harry Z.; Liao, Yu-Jung

    2012-07-31

    Current liquid-liquid extraction processes used in recycling irradiated nuclear fuel rely on (1) strong nitric acid to dissolve uranium oxide fuel, and (2) the use of aliphatic hydrocarbons as a diluent in formulating the solvent used to extract uranium. The nitric acid dissolution process is not selective. It dissolves virtually the entire fuel meat which complicates the uranium extraction process. In addition, a solvent washing process is used to remove TBP degradation products, which adds complexity to the recycling plant and increases the overall plant footprint and cost. A liquid or supercritical carbon dioxide (l/sc -CO2) system was designed to mitigate these problems. Indeed, TBP nitric acid complexes are highly soluble in l/sc -CO2 and are capable of extracting uranium directly from UO2, UO3 and U3O8 powders. This eliminates the need for total acid dissolution of the irradiated fuel. Furthermore, since CO2 is easily recycled by evaporation at room temperature and pressure, it eliminates the complex solvent washing process. In this report, we demonstrate: (1) A reprocessing scheme starting with the selective extraction of uranium from solid uranium oxides into a TBP-HNO3 loaded Sc-CO2 phase, (2) Back extraction of uranium into an aqueous phase, and (3) Conversion of recovered purified uranium into uranium oxide. The purified uranium product from step 3 can be disposed of as low level waste, or mixed with enriched uranium for use in a reactor for another fuel cycle. After an introduction on the concept and properties of supercritical fluids, we first report the characterization of the different oxides used for this project. Our extraction system and our online monitoring capability using UV-Vis absorbance spectroscopy directly in sc-CO2 is then presented. Next, the uranium extraction efficiencies and kinetics is demonstrated for different oxides and under different physical and chemical conditions: l/sc -CO2 pressure and temperature, TBP/HNO3 complex used, reductant or complexant used for selectivity, and ionic liquids used as supportive media. To complete the extraction and recovery cycle, we then demonstrate uranium back extraction from the TBP loaded sc-CO2 phase into an aqueous phase and the characterization of the uranium complex formed at the end of this process. Another aspect of this project was to limit proliferation risks by either co-extracting uranium and plutonium, or by leaving plutonium behind by selectively extracting uranium. We report that the former is easily achieved, since plutonium is in the tetravalent or hexavalent oxidation state in the oxidizing environment created by the TBP-nitric acid complex, and is therefore co-extracted. The latter is more challenging, as a reductant or complexant to plutonium has to be used to selectively extract uranium. After undertaking experiments on different reducing or complexing systems (e.g., AcetoHydroxamic Acid (AHA), Fe(II), ascorbic acid), oxalic acid was chosen as it can complex tetravalent actinides (Pu, Np, Th) in the aqueous phase while allowing the extraction of hexavalent uranium in the sc-CO2 phase. Finally, we show results using an alternative media to commonly used aqueous phases: ionic liquids. We show the dissolution of uranium in ionic liquids and its extraction using sc-CO2 with and without the presence of AHA. The possible separation of trivalent actinides from uranium is also demonstrated in ionic liquids using neodymium as a surrogate and diglycolamides as the extractant.

  7. Innovative Elution Processes for Recovering Uranium from Seawater

    SciTech Connect (OSTI)

    Wai, Chien; Tian, Guoxin; Janke, Christopher

    2014-05-29

    Utilizing amidoxime-based polymer sorbents for extraction of uranium from seawater has attracted considerable interest in recent years. Uranium collected in the sorbent is recovered typically by elution with an acid. One drawback of acid elution is deterioration of the sorbent which is a significant factor that limits the economic competitiveness of the amidoxime-based sorbent systems for sequestering uranium from seawater. Developing innovative elution processes to improve efficiency and to minimize loss of sorbent capacity become essential in order to make this technology economically feasible for large-scale industrial applications. This project has evaluated several elution processes including acid elution, carbonate elution, and supercritical fluid elution for recovering uranium from amidoxime-based polymer sorbents. The elution efficiency, durability and sorbent regeneration for repeated uranium adsorption- desorption cycles in simulated seawater have been studied. Spectroscopic techniques are used to evaluate chemical nature of the sorbent before and after elution. A sodium carbonate-hydrogen peroxide elution process for effective removal of uranium from amidoxime-based sorbent is developed. The cause of this sodium carbonate and hydrogen peroxide synergistic leaching of uranium from amidoxime-based sorbent is attributed to the formation of an extremely stable uranyl peroxo-carbonato complex. The efficiency of uranium elution by the carbonate-hydrogen peroxide method is comparable to that of the hydrochloric acid elution but damage to the sorbent material is much less for the former. The carbonate- hydrogen peroxide elution also does not need any elaborate step to regenerate the sorbent as those required for hydrochloric acid leaching. Several CO2-soluble ligands have been tested for extraction of uranium from the sorbent in supercritical fluid carbon dioxide. A mixture of hexafluoroacetylacetone and tri-n-butylphosphate shows the best result but uranium removal from the sorbent reaches only 80% after 10 hours of leaching. Some information regarding coordination of vanadium with amidoxime molecules and elution of vanadium from amidoxime- based sorbents is also given in the report.

  8. Low-Enriched Uranium Fuel Design with Two-Dimensional Grading for the High Flux Isotope Reactor

    SciTech Connect (OSTI)

    Ilas, Germina [ORNL; Primm, Trent [ORNL

    2011-05-01

    An engineering design study of the conversion of the High Flux Isotope Reactor (HFIR) from high-enriched uranium (HEU) to low-enriched uranium (LEU) fuel is ongoing at Oak Ridge National Laboratory. The computational models developed during fiscal year 2010 to search for an LEU fuel design that would meet the requirements for the conversion and the results obtained with these models are documented and discussed in this report. Estimates of relevant reactor performance parameters for the LEU fuel core are presented and compared with the corresponding data for the currently operating HEU fuel core. The results obtained indicate that the LEU fuel design would maintain the current performance of the HFIR with respect to the neutron flux to the central target region, reflector, and beam tube locations under the assumption that the operating power for the reactor fueled with LEU can be increased from the current value of 85 MW to 100 MW.

  9. Characterization of past and present solid waste streams from the Plutonium-Uranium Extraction Plant

    SciTech Connect (OSTI)

    Pottmeyer, J.A.; Weyns, M.I.; Lorenzo, D.S.; Vejvoda, E.J. [Los Alamos Technical Associates, Inc., NM (US); Duncan, D.R. [Westinghouse Hanford Co., Richland, WA (US)

    1993-04-01

    During the next two decades the transuranic wastes, now stored in the burial trenches and storage facilities at the Hanford Site, are to be retrieved, processed at the Waste Receiving and Processing Facility, and shipped to the Waste Isolation Pilot Plant near Carlsbad, New Mexico for final disposal. Over 7% of the transuranic waste to be retrieved for shipment to the Waste Isolation Pilot Plant has been generated at the Plutonium-Uranium Extraction (PUREX) Plant. The purpose of this report is to characterize the radioactive solid wastes generated by PUREX using process knowledge, existing records, and oral history interviews. The PUREX Plant is currently operated by the Westinghouse Hanford Company for the US Department of Energy and is now in standby status while being prepared for permanent shutdown. The PUREX Plant is a collection of facilities that has been used primarily to separate plutonium for nuclear weapons from spent fuel that had been irradiated in the Hanford Site`s defense reactors. Originally designed to reprocess aluminum-clad uranium fuel, the plant was modified to reprocess zirconium alloy clad fuel elements from the Hanford Site`s N Reactor. PUREX has provided plutonium for research reactor development, safety programs, and defense. In addition, the PUREX was used to recover slightly enriched uranium for recycling into fuel for use in reactors that generate electricity and plutonium. Section 2.0 provides further details of the PUREX`s physical plant and its operations. The PUREX Plant functions that generate solid waste are as follows: processing operations, laboratory analyses and supporting activities. The types and estimated quantities of waste resulting from these activities are discussed in detail.

  10. Uranium hexafluoride packaging tiedown systems overview at Portsmouth Gaseous Diffusion Plant, Piketon, Ohio. Revision 1

    SciTech Connect (OSTI)

    Becker, D.L.; Green, D.J.; Lindquist, M.R.

    1993-07-01

    The Portsmouth Gaseous Diffusion Plant (PORTS) in Piketon, Ohio, is operated by Martin Marietta Energy Systems, Inc., through the US Department of Energy-Oak Ridge Operations Office (DOE-ORO) for the US Department of Energy-Headquarters, Office of Nuclear Energy. The PORTS conducts those operations that are necessary for the production, packaging, and shipment of uranium hexafluoride (UF{sub 6}). Uranium hexafluoride enriched uranium than 1.0 wt percent {sup 235}U shall be packaged in accordance with the US Department of Transportation (DOT) regulations of Title 49 CFR Parts 173 (Reference 1) and 178 (Reference 2), or in US Nuclear Regulatory Commission (NRC) or US Department of Energy (DOE) certified package designs. Concerns have been expressed regarding the various tiedown methods and condition of the trailers being used by some shippers/carriers for international transport of the UF{sub 6} cylinders/overpacks. Because of the concerns about international shipments, the US Department of Energy-Headquarters (DOE-HQ) Office of Nuclear Energy, through DOE-HQ Transportation Management Division, requested Westinghouse Hanford Company (Westinghouse Hanford) to review UF{sub 6} packaging tiedown and shipping practices used by PORTS, and where possible and appropriate, provide recommendations for enhancing these practices. Consequently, a team of two individuals from Westinghouse Hanford visited PORTS on March 5 and 6, 1990, for the purpose of conducting this review. The paper provides a brief discussion of the review activities and a summary of the resulting findings and recommendations. A detailed reporting of the is documented in Reference 4.

  11. Operations Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (~ii~,Richland Operations Office ~Z4TESO~Richland, Washington 99352 SEP 2 2009 CERTIFIED MAIL Ms. Sarah Washburn Heart of America Northwest 1314 N.E. 5 6 th Street Suite 100 Seattle, Washington 98105 Dear Ms. Washburn: FREEDOM OF INFORMATION ACT REQUEST (FOI 2009-0067) You requested, pursuant to the Freedom of Information Act (FOJA), the following documents relating to: 1 . "The authorization, decision to use, and actual use of any and all pesticides and herbicides anywhere within the

  12. Electrorefining process and apparatus for recovery of uranium and a mixture of uranium and plutonium from spent fuels

    DOE Patents [OSTI]

    Ackerman, J.P.; Miller, W.E.

    1987-11-05

    An electrorefining process and apparatus for the recovery of uranium and a mixture of uranium and plutonium from spent fuels is disclosed using an electrolytic cell having a lower molten cadmium pool containing spent nuclear fuel, an intermediate electrolyte pool, an anode basket containing spent fuels, two cathodes and electrical power means connected to the anode basket, cathodes and lower molten cadmium pool for providing electrical power to the cell. Using this cell, additional amounts of uranium and plutonium from the anode basket are dissolved in the lower molten cadmium pool, and then purified uranium is electrolytically transported and deposited on a first molten cadmium cathode. Subsequently, a mixture of uranium and plutonium is electrotransported and deposited on a second cathode. 3 figs.

  13. Electrorefining process and apparatus for recovery of uranium and a mixture of uranium and plutonium from spent fuels

    DOE Patents [OSTI]

    Ackerman, John P.; Miller, William E.

    1989-01-01

    An electrorefining process and apparatus for the recovery of uranium and a mixture of uranium and plutonium from spent fuel using an electrolytic cell having a lower molten cadmium pool containing spent nuclear fuel, an intermediate electrolyte pool, an anode basket containing spent fuel, and two cathodes, the first cathode composed of either a solid alloy or molten cadmium and the second cathode composed of molten cadmium. Using this cell, additional amounts of uranium and plutonium from the anode basket are dissolved in the lower molten cadmium pool, and then substantially pure uranium is electrolytically transported and deposited on the first alloy or molten cadmium cathode. Subsequently, a mixture of uranium and plutonium is electrotransported and deposited on the second molten cadmium cathode.

  14. Use of the UNCLE Facility to Assess Integrated Online Monitoring Systems for Detection of Diversions at Uranium Conversion Facilities

    SciTech Connect (OSTI)

    Dewji, Shaheen A; Chapman, Jeffrey Allen; Lee, Denise L; Rauch, Eric; Hertel, Nolan

    2011-01-01

    Historically, the approach to safeguarding nuclear material in the front end of the fuel cycle was implemented only at the stage when UF6 was declared as feedstock for enrichment plants. Recent International Atomic Energy Agency (IAEA) circulars and policy papers have sought to implement safeguards when any purified aqueous uranium solution or uranium oxides suitable for isotopic enrichment or fuel fabrication exist. Oak Ridge National Laboratory has developed the Uranyl Nitrate Calibration Loop Equipment (UNCLE) facility to simulate the full-scale operating conditions for a purified uranium-bearing aqueous stream exiting the solvent extraction process conducted in a natural uranium conversion plant (NUCP) operating at 6000 MTU/year. Monitoring instruments, including the 3He passive neutron detector developed at Los Alamos National Laboratory and the Endress+Hauser Promass 83F Coriolis meter, have been tested at UNCLE and field tested at Springfields. The field trials demonstrated the need to perform full-scale equipment testing under controlled conditions prior to field deployment of operations and safeguards monitoring at additional plants. Currently, UNCLE is testing neutron-based monitoring for detection of noncompliant activities; however, gamma-ray source term monitoring is currently being explored complementary to the neutron detector in order to detect undeclared activities in a more timely manner. The preliminary results of gamma-ray source term modeling and monitoring at UNCLE are being analyzed as part of a comprehensive source term and detector benchmarking effort. Based on neutron source term detection capabilities, alternative gamma-based detection and monitoring methods will be proposed to more effectively monitor NUCP operations in verifying or detecting deviations from declared conversion activities.

  15. Environmental Survey preliminary report, Portsmouth Uranium Enrichment Complex, Piketon, Ohio

    SciTech Connect (OSTI)

    Not Available

    1987-08-01

    This report presents the preliminary findings from the first phase of the Environmental Survey of the United States Department of Energy (DOE) Portsmouth Uranium Enrichment Complex (PUEC), conducted August 4 through August 15, 1986. The Survey is being conducted by an interdisciplinary team of environmental specialists, led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. Team specialists are being supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. This phase of the Survey involves the review of existing site environmental data, observations of the operations performed at PUEC, and interviews with site personnel. The Survey team developed a Sampling and Analysis Plan to assist in further assessing certain of the environmental problems identified during its on-site activities. The Sampling and Analysis Plan will be executed by Argonne National Laboratory. When completed, the results will be incorporated into the PUEC Environmental Survey Interim Report. The Interim Report will reflect the final determinations of the PUEC Survey. 55 refs., 22 figs., 21 tabs.

  16. Methodology for comparing the health effects of electricity generation from uranium and coal fuels

    SciTech Connect (OSTI)

    Rhyne, W.R.; El-Bassioni, A.A.

    1981-12-08

    A methodology was developed for comparing the health risks of electricity generation from uranium and coal fuels. The health effects attributable to the construction, operation, and decommissioning of each facility in the two fuel cycle were considered. The methodology is based on defining (1) requirement variables for the materials, energy, etc., (2) effluent variables associated with the requirement variables as well as with the fuel cycle facility operation, and (3) health impact variables for effluents and accidents. The materials, energy, etc., required for construction, operation, and decommissioning of each fuel cycle facility are defined as primary variables. The materials, energy, etc., needed to produce the primary variable are defined as secondary requirement variables. Each requirement variable (primary, secondary, etc.) has associated effluent variables and health impact variables. A diverging chain or tree is formed for each primary variable. Fortunately, most elements reoccur frequently to reduce the level of analysis complexity. 6 references, 11 figures, 6 tables.

  17. Extracting Uranium from Seawater: Promising AI Series Adsorbents

    SciTech Connect (OSTI)

    Janke, Christopher James; Das, Sadananda; Mayes, Richard T; Kuo, Li-Jung; Gill, Gary; Wood, Jordana; Dai, Sheng

    2015-11-10

    A series of adsorbent (AI10 through AI17) were successfully developed at ORNL by radiation induced graft polymerization (RIGP) of acrylonitrile (AN) and vinylphosphonic acid (VPA) (at different mole/mole ratios) onto high surface area polyethylene fiber, with higher degree of grafting which ranges from 110 300%. The grafted nitrile groups were converted to amidoxime groups by reaction with 10 wt% hydroxylamine at 80 C for 72 hours. The amidoximated adsorbents were then conditioned with 0.44M KOH at 80 C followed by screening at ORNL with simulated seawater spiked with 8 ppm uranium. Uranium adsorption capacity in simulated seawater screening ranged from 171-187 g-U/kg-ads irrespective of %DOG. The performance of the adsorbents for uranium adsorption in natural seawater was also carried out using flow-through-column at Pacific Northwest National Laboratory (PNNL). The three hours KOH conditioning was better for higher uranium uptake than one hour. The adsorbent AI11 containing AN and VPA at the mole ration of 3.52, emerged as the potential candidate for higher uranium adsorption (3.35 g-U/Kg-ads.) after 56 days of exposure in the seawater in the flow-through-column. The rate vanadium adsorption over uranium was linearly increased throughout the 56 days exposure. The total vanadium uptake was ~5 times over uranium after 56 days.

  18. Extracting uranium from seawater: Promising AI series adsorbents

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Das, Sadananda; Oyola, Y.; Mayes, Richard T.; Janke, Christopher James; Kuo, Li-Jung; Gill, Gary; Wood, Jordana; Dai, Sheng

    2015-11-10

    A series of adsorbent (AI10 through AI17) were successfully developed at ORNL by radiation induced graft polymerization (RIGP) of acrylonitrile (AN) and vinylphosphonic acid (VPA) (at different mole/mole ratios) onto high surface area polyethylene fiber, with higher degree of grafting which ranges from 110 300%. The grafted nitrile groups were converted to amidoxime groups by reaction with 10 wt% hydroxylamine at 80 C for 72 hours. The amidoximated adsorbents were then conditioned with 0.44M KOH at 80 C followed by screening at ORNL with simulated seawater spiked with 8 ppm uranium. Uranium adsorption capacity in simulated seawater screening ranged frommore » 171-187 g-U/kg-ads irrespective of %DOG. The performance of the adsorbents for uranium adsorption in natural seawater was also carried out using flow-through-column at Pacific Northwest National Laboratory (PNNL). The three hours KOH conditioning was better for higher uranium uptake than one hour. The adsorbent AI11 containing AN and VPA at the mole ration of 3.52, emerged as the potential candidate for higher uranium adsorption (3.35 g-U/Kg-ads.) after 56 days of exposure in the seawater in the flow-through-column. The rate vanadium adsorption over uranium was linearly increased throughout the 56 days exposure. The total vanadium uptake was ~5 times over uranium after 56 days.« less

  19. Uranium (VI) solubility in carbonate-free ERDA-6 brine

    SciTech Connect (OSTI)

    Lucchini, Jean-francois; Khaing, Hnin; Reed, Donald T

    2010-01-01

    When present, uranium is usually an element of importance in a nuclear waste repository. In the Waste Isolation Pilot Plant (WIPP), uranium is the most prevalent actinide component by mass, with about 647 metric tons to be placed in the repository. Therefore, the chemistry of uranium, and especially its solubility in the WIPP conditions, needs to be well determined. Long-term experiments were performed to measure the solubility of uranium (VI) in carbonate-free ERDA-6 brine, a simulated WIPP brine, at pC{sub H+} values between 8 and 12.5. These data, obtained from the over-saturation approach, were the first repository-relevant data for the VI actinide oxidation state. The solubility trends observed pointed towards low uranium solubility in WIPP brines and a lack of amphotericity. At the expected pC{sub H+} in the WIPP ({approx} 9.5), measured uranium solubility approached 10{sup -7} M. The objective of these experiments was to establish a baseline solubility to further investigate the effects of carbonate complexation on uranium solubility in WIPP brines.

  20. Uranium deposition study on aluminum: results of early tests

    SciTech Connect (OSTI)

    Hughes, M.R.; Nolan, T.A.

    1984-06-19

    Laboratory experiments to quantify uranium compound deposition on Aluminum 3003 test coupons have been initiated. These experiments consist of exposing the coupons to normal assay UF/sub 6/ (0.7% /sup 235/U) in nickel reaction vessels under various conditions of UF/sub 6/ pressure, temperature, and time. To-date, runs from 5 minutes to 2000 hr have been completed at a UF/sub 6/ pressure of 100 torr and at a temperature of 60/sup 0/C. Longer exposure times are in progress. Initial results indicated that a surface film of uranium, primarily as uranyl fluoride (UO/sub 2/F/sub 2/), is deposited very soon after exposure to UF/sub 6/. In a five minute UF/sub 6/ exposure at a temperature of 60/sup 0/C, an average of 2.9 ..mu..g U/cm/sup 2/ was deposited; after 24 hr the deposit typically increased to 5.0 ..mu..g/cm/sup 2/ and then increased to 10.4 ..mu..g/cm/sup 2/ after 2000 hr. This amount of deposit (at 2000 hr exposure) would contribute roughly 10 to 20% to the total 186 keV gamma signal obtained from a GCEP product header pipe being operated at UF/sub 6/ pressures of 2 to 5 torr. The amount of isotopic exchange which would occur in the deposit in the event that HEU and LEU productions were alternated is considered. It is felt that isotopic exchange would not occur to any significant amount within the fixed deposit during relatively short HEU production periods since the HEU would be present primarily as adsorbed UF/sub 6/ molecules on the surface of the deposit. The adsorbed HEU molecules would be removed by evacuation and diluted by LEU production. Major increases in the deposit count would be observed if a leak occurred or moisture was introduced into the system while HEU was being produced.