National Library of Energy BETA

Sample records for operating costs alternatively

  1. Operating Costs

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-03-28

    This chapter is focused on capital costs for conventional construction and environmental restoration and waste management projects and examines operating cost estimates to verify that all elements of the project have been considered and properly estimated.

  2. Sustainable Alternative Fuels Cost Workshop

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Alternative Fuels Cost Workshop Tuesday, November 27, 2012 9:00 a.m. - 4:00 p.m. National Renewable Energy Lab Offices - Suite 930 901 D Street, SW, Washington, DC 20585 AGENDA ...

  3. Alternative Fuels Data Center: Vehicle Cost Calculator

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Tools Printable Version Share this resource Send a link to Alternative Fuels Data Center: Vehicle Cost Calculator to someone by E-mail Share Alternative Fuels Data Center: Vehicle Cost Calculator on Facebook Tweet about Alternative Fuels Data Center: Vehicle Cost Calculator on Twitter Bookmark Alternative Fuels Data Center: Vehicle Cost Calculator on Google Bookmark Alternative Fuels Data Center: Vehicle Cost Calculator on Delicious Rank Alternative Fuels Data Center: Vehicle Cost Calculator on

  4. Alternative Fuels Data Center: Dallas Airport Operates With Alternative

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuels Dallas Airport Operates With Alternative Fuels to someone by E-mail Share Alternative Fuels Data Center: Dallas Airport Operates With Alternative Fuels on Facebook Tweet about Alternative Fuels Data Center: Dallas Airport Operates With Alternative Fuels on Twitter Bookmark Alternative Fuels Data Center: Dallas Airport Operates With Alternative Fuels on Google Bookmark Alternative Fuels Data Center: Dallas Airport Operates With Alternative Fuels on Delicious Rank Alternative Fuels Data

  5. Cost Analysis of NOx Control Alternatives for Stationary Gas...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cost Analysis of NOx Control Alternatives for Stationary Gas Turbines, November 1999 Cost Analysis of NOx Control Alternatives for Stationary Gas Turbines, November 1999 The use of ...

  6. Sustainable Alternative Fuels Cost Workshop Roster of Participants

    Broader source: Energy.gov [DOE]

    This is the list of attendees from the November 27, 2012, Sustainable Alternative Fuels Cost Workshop.

  7. Alternative Fuels Data Center: Reynolds Logistics Reduces Fuel Costs With

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    EVs Reynolds Logistics Reduces Fuel Costs With EVs to someone by E-mail Share Alternative Fuels Data Center: Reynolds Logistics Reduces Fuel Costs With EVs on Facebook Tweet about Alternative Fuels Data Center: Reynolds Logistics Reduces Fuel Costs With EVs on Twitter Bookmark Alternative Fuels Data Center: Reynolds Logistics Reduces Fuel Costs With EVs on Google Bookmark Alternative Fuels Data Center: Reynolds Logistics Reduces Fuel Costs With EVs on Delicious Rank Alternative Fuels Data

  8. Alternative Fuels Data Center: Vehicle Cost Calculator Assumptions and

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Methodology Assumptions and Methodology to someone by E-mail Share Alternative Fuels Data Center: Vehicle Cost Calculator Assumptions and Methodology on Facebook Tweet about Alternative Fuels Data Center: Vehicle Cost Calculator Assumptions and Methodology on Twitter Bookmark Alternative Fuels Data Center: Vehicle Cost Calculator Assumptions and Methodology on Google Bookmark Alternative Fuels Data Center: Vehicle Cost Calculator Assumptions and Methodology on Delicious Rank Alternative

  9. Sustainable Alternative Fuels Cost Workshop Roster of Participants...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Workshop Roster of Participants Sustainable Alternative Fuels Cost Workshop Roster of Participants This is the list of attendees from the November 27, 2012, Sustainable Alternative ...

  10. Alternative Fuels Data Center: Vehicle Cost Calculator Widget Assumptions

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    and Methodology Widget Assumptions and Methodology to someone by E-mail Share Alternative Fuels Data Center: Vehicle Cost Calculator Widget Assumptions and Methodology on Facebook Tweet about Alternative Fuels Data Center: Vehicle Cost Calculator Widget Assumptions and Methodology on Twitter Bookmark Alternative Fuels Data Center: Vehicle Cost Calculator Widget Assumptions and Methodology on Google Bookmark Alternative Fuels Data Center: Vehicle Cost Calculator Widget Assumptions and

  11. Alternative Fuels Data Center: Connecticut Utility Fleet Operates Vehicles

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    on Alternative Fuels Connecticut Utility Fleet Operates Vehicles on Alternative Fuels to someone by E-mail Share Alternative Fuels Data Center: Connecticut Utility Fleet Operates Vehicles on Alternative Fuels on Facebook Tweet about Alternative Fuels Data Center: Connecticut Utility Fleet Operates Vehicles on Alternative Fuels on Twitter Bookmark Alternative Fuels Data Center: Connecticut Utility Fleet Operates Vehicles on Alternative Fuels on Google Bookmark Alternative Fuels Data Center:

  12. Alternative Fuels Data Center: Minnesota School District Finds Cost

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Savings, Cold-Weather Reliability with Propane Buses Minnesota School District Finds Cost Savings, Cold-Weather Reliability with Propane Buses to someone by E-mail Share Alternative Fuels Data Center: Minnesota School District Finds Cost Savings, Cold-Weather Reliability with Propane Buses on Facebook Tweet about Alternative Fuels Data Center: Minnesota School District Finds Cost Savings, Cold-Weather Reliability with Propane Buses on Twitter Bookmark Alternative Fuels Data Center: Minnesota

  13. Sustainable Alternative Fuels Cost Workshop | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Workshop Sustainable Alternative Fuels Cost Workshop This is the agenda from the November 27, 2012, Sustainable Alternative Fuels Cost Workshop, held at the National Renewable Energy Lab Offices. PDF icon caafi_workshop_agenda.pdf More Documents & Publications Biomass 2013 Agenda 2015 Project Peer Review Program Booklet Symbiosis Conference: Expanding Commercialization of Mutualistic Microbes to Increase Bioenergy Crop Production

  14. Cost Analysis of NOx Control Alternatives for Stationary Gas Turbines,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    November 1999 | Department of Energy Cost Analysis of NOx Control Alternatives for Stationary Gas Turbines, November 1999 Cost Analysis of NOx Control Alternatives for Stationary Gas Turbines, November 1999 The use of stationary gas turbines for power generation has been growing rapidly with continuing trends predicted well into the future. This study compares the costs of the principal emission control technologies being employed or nearing commercialization for control of oxides of

  15. Emission control cost-effectiveness of alternative-fuel vehicles

    SciTech Connect (OSTI)

    Wang, Q.; Sperling, D.; Olmstead, J.

    1993-06-14

    Although various legislation and regulations have been adopted to promote the use of alternative-fuel vehicles for curbing urban air pollution problems, there is a lack of systematic comparisons of emission control cost-effectiveness among various alternative-fuel vehicle types. In this paper, life-cycle emission reductions and life-cycle costs were estimated for passenger cars fueled with methanol, ethanol, liquefied petroleum gas, compressed natural gas, and electricity. Vehicle emission estimates included both exhaust and evaporative emissions for air pollutants of hydrocarbon, carbon monoxide, nitrogen oxides, and air-toxic pollutants of benzene, formaldehyde, 1,3-butadiene, and acetaldehyde. Vehicle life-cycle cost estimates accounted for vehicle purchase prices, vehicle life, fuel costs, and vehicle maintenance costs. Emission control cost-effectiveness presented in dollars per ton of emission reduction was calculated for each alternative-fuel vehicle types from the estimated vehicle life-cycle emission reductions and costs. Among various alternative-fuel vehicle types, compressed natural gas vehicles are the most cost-effective vehicle type in controlling vehicle emissions. Dedicated methanol vehicles are the next most cost-effective vehicle type. The cost-effectiveness of electric vehicles depends on improvements in electric vehicle battery technology. With low-cost, high-performance batteries, electric vehicles are more cost-effective than methanol, ethanol, and liquified petroleum gas vehicles.

  16. Fundamental Drivers of the Cost and Price of Operating Reserves

    SciTech Connect (OSTI)

    Hummon, Marissa; Denholm, Paul; Jorgenson, Jennie; Palchak, David; Kirby, Brendan; Ma, Ookie

    2013-07-01

    Operating reserves impose a cost on the electric power system by forcing system operators to keep partially loaded spinning generators available for responding to system contingencies variable demand. In many regions of the United States, thermal power plants provide a large fraction of the operating reserve requirement. Alternative sources of operating reserves, such as demand response and energy storage, may provide more efficient sources of these reserves. However, to estimate the potential value of these services, the cost of reserve services under various grid conditions must first be established. This analysis used a commercial grid simulation tool to evaluate the cost and price of several operating reserve services, including spinning contingency reserves and upward regulation reserves. These reserve products were evaluated in a utility system in the western United States, considering different system flexibilities, renewable energy penetration, and other sensitivities. The analysis demonstrates that the price of operating reserves depend highly on many assumptions regarding the operational flexibility of the generation fleet, including ramp rates and the fraction of fleet available to provide reserves.

  17. Alternative windpower ownership structures: Financing terms and project costs

    SciTech Connect (OSTI)

    Wiser, R.; Kahn, E.

    1996-05-01

    Most utility-scale renewable energy projects in the United States are developed and financed by private renewable energy companies. Electric output is then sold to investor-owned and public utilities under long-term contracts. Limited partnerships, sale/leaseback arrangements, and project-financing have historically been the dominant forms of finance in the windpower industry, with project-finance taking the lead more recently. Although private ownership using project-finance is still the most popular form of windpower development, alternative approaches to ownership and financing are becoming more prevalent. U.S. public and investor-owned electric utilities (IOUs) have begun to participate directly in windpower projects by owning and financing their own facilities rather than purchasing windpower from independent non-utility generators (NUGs) through power purchase agreements (PPAs). In these utility-ownership arrangements, the wind turbine equipment vendor/developer typically designs and constructs a project under a turnkey contract for the eventual project owner (the utility). The utility will also frequently sign an operations and maintenance (O&M) contract with the project developer/equipment vendor. There appear to be a number of reasons for utility involvement in recent and planned U.S. wind projects. One important claim is that utility ownership and self-finance provides substantial cost savings compared to contracting with private NUGs to supply wind-generated power. In this report, we examine that assertion.

  18. CRADA final report: Technical assessment of roll-to-roll operation of lamination process, thermal treatment, and alternative carbon fiber precursors for low-cost, high-efficiency manufacturing of flow battery stacks and other energy devices

    SciTech Connect (OSTI)

    Daniel, Claus; Madden, Thomas; Wood, III, David L; Muth, Thomas R.; Warrington, Curtis; Ozcan, Soydan; Manson, Hunter; Tekinalp, Halil L.; Smith, Mark A.; Lu, Yuan; Loretz, Jeremy

    2015-09-23

    Among the various stationary-storage technologies under development, redox flow batteries (RFBs) offer the greatest potential to deliver inexpensive, scalable, and efficient grid-scale electrical-energy storage. Unlike traditional sealed batteries, in a flow battery power and energy are decoupled. Cell area and cell count in the stack determine the device power, and the chemical storage volume determines the total energy. Grid-scale energy-storage applications require megawatt-scale devices, which require the assembly of hundreds of large-area, bipolar cells per power plant. The cell-stack is the single system component with the largest impact on capital cost (due to the large number of highly engineered components) and operating costs (determined by overall round-trip efficiency).

  19. LIFE Cost of Electricity, Capital and Operating Costs

    SciTech Connect (OSTI)

    Anklam, T

    2011-04-14

    Successful commercialization of fusion energy requires economic viability as well as technical and scientific feasibility. To assess economic viability, we have conducted a pre-conceptual level evaluation of LIFE economics. Unit costs are estimated from a combination of bottom-up costs estimates, working with representative vendors, and scaled results from previous studies of fission and fusion plants. An integrated process model of a LIFE power plant was developed to integrate and optimize unit costs and calculate top level metrics such as cost of electricity and power plant capital cost. The scope of this activity was the entire power plant site. Separately, a development program to deliver the required specialized equipment has been assembled. Results show that LIFE power plant cost of electricity and plant capital cost compare favorably to estimates for new-build LWR's, coal and gas - particularly if indicative costs of carbon capture and sequestration are accounted for.

  20. The cost of ethanol production from lignocellulosic biomass -- A comparison of selected alternative processes. Final report

    SciTech Connect (OSTI)

    Grethlein, H.E.; Dill, T.

    1993-04-30

    The purpose of this report is to compare the cost of selected alternative processes for the conversion of lignocellulosic biomass to ethanol. In turn, this information will be used by the ARS/USDA to guide the management of research and development programs in biomass conversion. The report will identify where the cost leverages are for the selected alternatives and what performance parameters need to be achieved to improve the economics. The process alternatives considered here are not exhaustive, but are selected on the basis of having a reasonable potential in improving the economics of producing ethanol from biomass. When other alternatives come under consideration, they should be evaluated by the same methodology used in this report to give fair comparisons of opportunities. A generic plant design is developed for an annual production of 25 million gallons of anhydrous ethanol using corn stover as the model substrate at $30/dry ton. Standard chemical engineering techniques are used to give first order estimates of the capital and operating costs. Following the format of the corn to ethanol plant, there are nine sections to the plant; feed preparation, pretreatment, hydrolysis, fermentation, distillation and dehydration, stillage evaporation, storage and denaturation, utilities, and enzyme production. There are three pretreatment alternatives considered: the AFEX process, the modified AFEX process (which is abbreviated as MAFEX), and the STAKETECH process. These all use enzymatic hydrolysis and so an enzyme production section is included in the plant. The STAKETECH is the only commercially available process among the alternative processes.

  1. Reduce Operating Costs with an EnergySmart School Project

    Broader source: Energy.gov [DOE]

    EnergySmart Schools fact sheet on how school operations and maintenance (O&M) personnel can play a greater role in managing ever-increasing energy costs.

  2. CD-1, Approve Alternative Selection and Cost Range | Department of Energy

    Office of Environmental Management (EM)

    1, Approve Alternative Selection and Cost Range CD-1, Approve Alternative Selection and Cost Range CD-1, Approve Alternative Selection and Cost Range << Resource Center | CD-2 >> DescriptionCD-1 approval marks the completion of the project definition phase and the conceptual design. This is an iterative process to define, analyze, and refine project concepts and alternatives. This process uses a systems engineering methodology that integrates requirements analysis, risk

  3. Fundamental Drivers of the Cost and Price of Operating Reserves

    Broader source: Energy.gov [DOE]

    Operating reserves impose a cost on the electric power system by forcing system operators to keep partially loaded spinning generators available to respond to system contingencies and random variation in demand. Demand response and energy storage, may provide these services at lower cost to conventional generators. However, to estimate the potential value of these services, the cost of reserve services under various grid conditions must first be established. This analysis used a commercial grid simulation tool to evaluate the cost and price of several operating reserve services. These reserve products were evaluated in a utility system in the western United States, considering different system characteristics, renewable energy penetration, and several other sensitivities.

  4. Alternative Fuels Data Center: CNG Shuttles Save Fuel Costs for R&R

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Limousine and Bus CNG Shuttles Save Fuel Costs for R&R Limousine and Bus to someone by E-mail Share Alternative Fuels Data Center: CNG Shuttles Save Fuel Costs for R&R Limousine and Bus on Facebook Tweet about Alternative Fuels Data Center: CNG Shuttles Save Fuel Costs for R&R Limousine and Bus on Twitter Bookmark Alternative Fuels Data Center: CNG Shuttles Save Fuel Costs for R&R Limousine and Bus on Google Bookmark Alternative Fuels Data Center: CNG Shuttles Save Fuel Costs

  5. Discrete Event Modeling of Algae Cultivation and Harvesting at Commercial Scale: Capital Costs, Operating Costs, and System Bottlenecks

    SciTech Connect (OSTI)

    Lacey, Ph.D, P.E., Ronald E.

    2012-07-16

    Discrete Event Modeling of Algae Cultivation and Harvesting at Commercial Scale: Capital Costs, Operating Costs, and System Bottlenecks

  6. Demonstrating and evaluating heavy-duty alternative fuel operations

    SciTech Connect (OSTI)

    Peerenboom, W.

    1998-02-01

    The principal objectives of this project was to understand the effects of using an alternative fuel on a truck operating fleet through actual operation of trucks. Information to be gathered was expected to be anecdotal, as opposed to statistically viable, because the Trucking Research institute (TRI) recognized that projects could not attract enough trucks to produce statistically credible volumes of data. TRI was to collect operational data, and provide them to NREL, who would enter the data into the alternative fuels database being constructed for heavy-duty trucks at the time. NREL would also perform data analysis, with the understanding that the demonstrations were generally pre-production model engines and vehicles. Other objectives included providing information to the trucking industry on the availability of alternative fuels, developing the alternative fuels marketplace, and providing information on experience with alternative fuels. In addition to providing information to the trucking industry, an objective was for TRI to inform NREL and DOE about the industry, and give feedback on the response of the industry to developments in alternative fuels in trucking. At the outset, only small numbers of vehicles participated in most of the projects. Therefore, they had to be considered demonstrations of feasibility, rather than data gathering tests from which statistically significant conclusions might be drawn. Consequently, data gathered were expected to be useful for making estimates and obtaining valuable practical lessons. Project data and lessons learned are the subjects of separate project reports. This report concerns itself with the work of TRI in meeting the overall objectives of the TRI-NREL partnership.

  7. US nuclear power plant operating cost and experience summaries

    SciTech Connect (OSTI)

    Kohn, W.E.; Reid, R.L.; White, V.S.

    1998-02-01

    NUREG/CR-6577, U.S. Nuclear Power Plant Operating Cost and Experience Summaries, has been prepared to provide historical operating cost and experience information on U.S. commercial nuclear power plants. Cost incurred after initial construction are characterized as annual production costs, representing fuel and plant operating and maintenance expenses, and capital expenditures related to facility additions/modifications which are included in the plant capital asset base. As discussed in the report, annual data for these two cost categories were obtained from publicly available reports and must be accepted as having different degrees of accuracy and completeness. Treatment of inconclusive and incomplete data is discussed. As an aid to understanding the fluctuations in the cost histories, operating summaries for each nuclear unit are provided. The intent of these summaries is to identify important operating events; refueling, major maintenance, and other significant outages; operating milestones; and significant licensing or enforcement actions. Information used in the summaries is condensed from annual operating reports submitted by the licensees, plant histories contained in Nuclear Power Experience, trade press articles, and the Nuclear Regulatory Commission (NRC) web site (www.nrc.gov).

  8. Options to reduce the operating costs at fossil power stations

    SciTech Connect (OSTI)

    Mehl, L.; White, T.R.

    1998-12-31

    With the coming of deregulation in the electric power industry, existing power plants will have to evaluate options to reduce their operating costs in methods more commonly used in the industrial sector. Similar to organizations throughout the country, electrical generation companies are looking for ways to reduce their costs. The projected impact of figure deregulation on free enterprise production and trading have further emphasized this need. Historically, the ability to sell or dispatch electrical load based on economic advantages, has existed within local systems. Generating facilities with higher production costs must implement operating cost reductions or expect even lower capacity factors following deregulation. This paper examines various means to reducing operating costs and the methods used in their evaluation.

  9. Optimizing Blast Furnace Operation to Increase Efficiency and Lower Costs |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Blast Furnace Operation to Increase Efficiency and Lower Costs Optimizing Blast Furnace Operation to Increase Efficiency and Lower Costs PDF icon cfd_blastfurnace.pdf More Documents & Publications Energy-Intensive Processes Portfolio: Addressing Key Energy Challenges Across U.S. Industry ITP Energy Intensive Processes: Energy-Intensive Processes Portfolio: Addressing Key Energy Challenges Across U.S. Industry EA-1745: Finding of No Significant Impact

  10. Production Costs of Alternative Transportation Fuels | Open Energy...

    Open Energy Info (EERE)

    ... further results Find Another Tool FIND TRANSPORTATION TOOLS This study examines the production costs of a range of transport fuels and energy carriers under varying crude oil...

  11. Engineered alternatives cost/benefit study. Draft report

    SciTech Connect (OSTI)

    1995-09-01

    The Waste Isolation Pilot Plant (WIPP) is a United States Department of Energy (DOE) project designed to demonstrate the safe disposal of Transuranic (TRU) waste in deep, geologic, bedded salt. The WIPP site is located in southeastern New Mexico. By law the WIPP site has been withdrawn from public use and has been set aside for use in the safe disposal of TRU waste. Also by law, disposal of TRU waste must comply with rules and regulations promulgated by the U.S. Environmental Protection Agency (EPA). The disposal system design consists of multiple barriers, both natural and man-made, located in a geologic salt deposit, 2,150 feet (655.3 meters) below ground. These barriers were selected because of their ability to permanently isolate the waste from the accessible environment as required to comply with subparts B and C of Title 40 Code of Federal Regulations Part 191 (40 CFR 191). As a part of the assurance requirements, 40 CFR {section}191.14 requires that barriers of different types shall be used to isolate the waste. The WIPP design uses both a geologic (natural) and engineered barriers for waste isolation as specified by these regulations. However, to provide additional confidence in containment prediction calculations used to demonstrate compliance with the containment requirements, Engineered Alternatives (EA) could be used as additional assurance measures beyond those used to meet the containment requirements. This report uses the term EA to represent engineered barriers that are technically feasible processes, technologies, methods, repository designs, or waste from modifications which make a significant positive impact on the disposal system in terms of reducing uncertainty in performance calculations or improving long-term performance. These EAs, if used, function as barriers to the release of radioactive material.

  12. Heat exchanger efficiently operable alternatively as evaporator or condenser

    DOE Patents [OSTI]

    Ecker, Amir L.

    1981-01-01

    A heat exchanger adapted for efficient operation alternatively as evaporator or condenser and characterized by flexible outer tube having a plurality of inner conduits and check valves sealingly disposed within the outer tube and connected with respective inlet and outlet master flow conduits and configured so as to define a parallel flow path for a first fluid such as a refrigerant when flowed in one direction and to define a serpentine and series flow path for the first fluid when flowed in the opposite direction. The flexible outer tube has a heat exchange fluid, such as water, flowed therethrough by way of suitable inlet and outlet connections. The inner conduits and check valves form a package that is twistable so as to define a spiral annular flow path within the flexible outer tube for the heat exchange fluid. The inner conduits have thin walls of highly efficient heat transfer material for transferring heat between the first and second fluids. Also disclosed are specific materials and configurations.

  13. Maintenance and operation of the US Alternative Fuel Center

    SciTech Connect (OSTI)

    Erwin, J.; Ferrill, J.L.; Hetrick, D.L.

    1994-08-01

    The Alternative Fuels Utilization Program (AFUP) of the Office of Energy Efficiency and Renewable Energy has investigated the possibilities and limitations of expanded scope of fuel alternatives and replacement means for transportation fuels from alternative sources. Under the AFUP, the Alternative Fuel Center (AFC) was created to solve problems in the DOE programs that were grappling with the utilization of shale oil and coal liquids for transportation fuels. This report covers the first year at the 3-year contract. The principal objective was to assist the AFUP in accomplishing its general goals with two new fuel initiatives selected for tasks in the project year: (1) Production of low-sulfur, low-olefin catalytically cracked gasoline blendstock; and (2) production of low-reactivity/low-emission gasoline. Supporting goals included maintaining equipment in good working order, performing reformulated gasoline tests, and meeting the needs of other government agencies and industries for fuel research involving custom processing, blending, or analysis of experimental fuels.

  14. Survey Results and Analysis of the Cost and Efficiency of Various Operating Hydrogen Fueling Stations

    SciTech Connect (OSTI)

    Cornish, John

    2011-03-05

    Existing Hydrogen Fueling Stations were surveyed to determine capital and operational costs. Recommendations for cost reduction in future stations and for research were developed.

  15. Life Cycle Cost Estimate

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-03-28

    Life-cycle costs (LCCs) are all the anticipated costs associated with a project or program alternative throughout its life. This includes costs from pre-operations through operations or to the end of the alternative.This chapter discusses life cycle costs and the role they play in planning.

  16. Operational Impacts of Operating Reserve Demand Curves on Production Cost and Reliability: Preprint

    SciTech Connect (OSTI)

    Krad, Ibrahim; Ibanez, Eduardo; Ela, Erik; Gao, Wenzhong

    2015-10-27

    The electric power industry landscape is continually evolving. As emerging technologies such as wind, solar, electric vehicles, and energy storage systems become more cost-effective and present in the system, traditional power system operating strategies will need to be reevaluated. The presence of wind and solar generation (commonly referred to as variable generation) may result in an increase in the variability and uncertainty of the net load profile. One mechanism to mitigate this is to schedule and dispatch additional operating reserves. These operating reserves aim to ensure that there is enough capacity online in the system to account for the increased variability and uncertainty occurring at finer temporal resolutions. A new operating reserve strategy, referred to as flexibility reserve, has been introduced in some regions. A similar implementation is explored in this paper, and its implications on power system operations are analyzed.

  17. Control and operation cost optimization of the HISS cryogenic system

    SciTech Connect (OSTI)

    Porter, J.; Bieser, F.; Anderson, D.

    1983-08-01

    The Heavy Ion Spectrometer System (HISS) relies upon superconducting coils of cryostable design to provide a maximum particle bending field of 3 tesla. A previous paper describes the cryogenic facility including helium refrigeration and gas management. This paper discusses a control strategy which has allowed full time unattended operation, along with significant nitrogen and power cost reductions. Reduction of liquid nitrogen consumption has been accomplished by making use of the sensible heat available in the cold exhaust gas. Measured nitrogen throughput agrees with calculations for sensible heat utilization of zero to 70%. Calculated consumption saving over this range is 40 liters per hour for conductive losses to the supports only. The measured throughput differential for the total system is higher.

  18. Cost benefit analysis of waste compaction alternatives at Lawrence Livermore National Laboratory

    SciTech Connect (OSTI)

    Not Available

    1990-11-01

    This report presents a cost benefit analysis of the potential procurement and operation of various solid waste compactors, or, of the use of commercial compaction services, for compaction of solid transuranic (TRU), low-level radioactive, hazardous, and mixed wastes at Lawrence Livermore National Laboratory (LLNL) Hazardous Waste Management (HWM) facilities. The cost benefit analysis was conducted to determine if increased compaction capacity at HWM might afford the potential for significant waste volume reduction and annual savings in material, shipping, labor, and disposal costs. In the following cost benefit analysis, capital costs and recurring costs of increased HWM compaction capabilities are considered. Recurring costs such as operating and maintenance costs are estimated based upon detailed knowledge of system parameters. When analyzing the economic benefits of enhancing compaction capabilities, continued use of the existing HWM compaction units is included for comparative purposes. In addition, the benefits of using commercial compaction services instead of procuring a new compactor system are evaluated. 31 refs., 1 fig., 6 tabs.

  19. Researchers find 3-D printed parts to provide low-cost, custom alternatives

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for laboratory equipment | Princeton Plasma Physics Lab Researchers find 3-D printed parts to provide low-cost, custom alternatives for laboratory equipment By Raphael Rosen February 26, 2015 Tweet Widget Google Plus One Share on Facebook 3-D printed parts provide the stands for the aluminum globes in PPPL's Planeterrella, a device that simulates Northern Lights. (Photo by Elle Starkman/PPPL Office of Communications) 3-D printed parts provide the stands for the aluminum globes in PPPL's

  20. Researchers find 3-D printed parts to provide low-cost, custom alternatives

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for laboratory equipment | Princeton Plasma Physics Lab Researchers find 3-D printed parts to provide low-cost, custom alternatives for laboratory equipment By Raphael Rosen February 26, 2015 Tweet Widget Google Plus One Share on Facebook 3-D printed parts provide the stands for the aluminum globes in PPPL's Planeterrella, a device that simulates Northern Lights. (Photo by Elle Starkman/PPPL Office of Communications) 3-D printed parts provide the stands for the aluminum globes in PPPL's

  1. Solid Oxide Fuel Cells Operating on Alternative and Renewable Fuels

    SciTech Connect (OSTI)

    Wang, Xiaoxing; Quan, Wenying; Xiao, Jing; Peduzzi, Emanuela; Fujii, Mamoru; Sun, Funxia; Shalaby, Cigdem; Li, Yan; Xie, Chao; Ma, Xiaoliang; Johnson, David; Lee, Jeong; Fedkin, Mark; LaBarbera, Mark; Das, Debanjan; Thompson, David; Lvov, Serguei; Song, Chunshan

    2014-09-30

    This DOE project at the Pennsylvania State University (Penn State) initially involved Siemens Energy, Inc. to (1) develop new fuel processing approaches for using selected alternative and renewable fuels – anaerobic digester gas (ADG) and commercial diesel fuel (with 15 ppm sulfur) – in solid oxide fuel cell (SOFC) power generation systems; and (2) conduct integrated fuel processor – SOFC system tests to evaluate the performance of the fuel processors and overall systems. Siemens Energy Inc. was to provide SOFC system to Penn State for testing. The Siemens work was carried out at Siemens Energy Inc. in Pittsburgh, PA. The unexpected restructuring in Siemens organization, however, led to the elimination of the Siemens Stationary Fuel Cell Division within the company. Unfortunately, this led to the Siemens subcontract with Penn State ending on September 23rd, 2010. SOFC system was never delivered to Penn State. With the assistance of NETL project manager, the Penn State team has since developed a collaborative research with Delphi as the new subcontractor and this work involved the testing of a stack of planar solid oxide fuel cells from Delphi.

  2. An analysis of nuclear power plant operating costs: A 1995 update

    SciTech Connect (OSTI)

    1995-04-21

    Over the years real (inflation-adjusted) O&M cost have begun to level off. The objective of this report is to determine whether the industry and NRC initiatives to control costs have resulted in this moderation in the growth of O&M costs. Because the industry agrees that the control of O&M costs is crucial to the viability of the technology, an examination of the factors causing the moderation in costs is important. A related issue deals with projecting nuclear operating costs into the future. Because of the escalation in nuclear operating costs (and the fall in fossil fuel prices) many State and Federal regulatory commissions are examining the economics of the continued operation of nuclear power plants under their jurisdiction. The economics of the continued operation of a nuclear power plant is typically examined by comparing the cost of the plants continued operation with the cost of obtaining the power from other sources. This assessment requires plant-specific projections of nuclear operating costs. Analysts preparing these projections look at past industry-wide cost trends and consider whether these trends are likely to continue. To determine whether these changes in trends will continue into the future, information about the causal factors influencing costs and the future trends in these factors are needed. An analysis of the factors explaining the moderation in cost growth will also yield important insights into the question of whether these trends will continue.

  3. Estimating costs of low-level radioactive waste disposal alternatives for the Commonwealth of Massachusetts

    SciTech Connect (OSTI)

    Not Available

    1994-02-01

    This report was prepared for the Commonwealth of Massachusetts by the Idaho National Engineering Laboratory, National Low-Level Waste Management Program. It presents planning life-cycle cost (PLCC) estimates for four sizes of in-state low-level radioactive waste (LLRW) disposal facilities. These PLCC estimates include preoperational and operational expenditures, all support facilities, materials, labor, closure costs, and long-term institutional care and monitoring costs. It is intended that this report bc used as a broad decision making tool for evaluating one of the several complex factors that must be examined when deciding between various LLRW management options -- relative costs. Because the underlying assumptions of these analyses will change as the Board decides how it will manage Massachusett`s waste and the specific characteristics any disposal facility will have, the results of this study are not absolute and should only be used to compare the relative costs of the options presented. The disposal technology selected for this analysis is aboveground earth-mounded vaults. These vaults are reinforced concrete structures where low-level waste is emplaced and later covered with a multi-layered earthen cap. The ``base case`` PLCC estimate was derived from a preliminary feasibility design developed for the Illinois Low-Level Radioactive Waste Disposal Facility. This PLCC report describes facility operations and details the procedure used to develop the base case PLCC estimate for each facility component and size. Sensitivity analyses were performed on the base case PLCC estimate by varying several factors to determine their influences upon the unit disposal costs. The report presents the results of the sensitivity analyses for the five most significant cost factors.

  4. Analysis of Nuclear Power Plant Operating Costs: A 1995 Update, An

    Reports and Publications (EIA)

    1995-01-01

    This report provides an analysis of nuclear power plant operating costs. The Energy Information Administration published three reports on this subject during the period 1988-1995.

  5. Transportation Energy Futures Series: Alternative Fuel Infrastructure Expansion: Costs, Resources, Production Capacity, and Retail Availability for Low-Carbon Scenarios

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    FUELS Alternative Fuel Infrastructure Expansion: Costs, Resources, Production Capacity, and Retail Availability for Low-Carbon Scenarios TRANSPORTATION ENERGY FUTURES SERIES: Alternative Fuel Infrastructure Expansion: Costs, Resources, Production Capacity, and Retail Availability for Low-Carbon Scenarios A Study Sponsored by U.S. Department of Energy Office of Energy Efficiency and Renewable Energy April 2013 Prepared by NATIONAL RENEWABLE ENERGY LABORATORY Golden, Colorado 80401-3305 managed by

  6. Economic analysis of operating alternatives for the South Vandenberg Power Plant at Vandenberg Air Force Base, California

    SciTech Connect (OSTI)

    Daellenbach, K.K.; Dagle, J.E.; Reilly, R.W.; Shankle, S.A.

    1993-02-01

    Vandenberg Air Force Base (VAFB), located approximately 50 miles northwest of Santa Barbara, California, commissioned the Pacific Northwest Laboratory to conduct an economic analysis of operating alternatives of the South Vandenberg Power Plant (SVPP). Recent concern over SVPP operating and environmental costs prompted VAFB personnel to consider other means to support the Missile Operation Support Requirement (MOSR). The natural gas-fired SVPP was originally designed to support the Space Transportation System launch activities. With cancellation of this mission, the SVPP has been used to provide primary and backup electric power to support MOSR activities for the Space Launch Complexes. This document provides economic analysis in support of VAFB decisions about future operation of the SVPP. This analysis complied with the life-cycle cost (LCC) analytical approach detailed in 10 CFR 436, which is used in support of all Federal energy decisions. Many of the SVPP operational and environmental cost estimates were provided by VAFB staff, with additional information from vendors and engineering contractors. The LCC analysis consisted of three primary operating strategies, each with a level of service equal to or better than the current status-quo operation. These scenarios are: Status-quo operation where the SVPP provides both primary and backup MOSR power; Purchased utility power providing primary MOSR support with backup power provided by an Uninterruptible Power Supply (UPS) system. The SVPP would be used to provide power for long-duration power outages; Purchased utility power provides primary MOSR support with backup power provided by a UPS system. A new set of dedicated generators would provide backup power for long-duration power outages.

  7. Life-cycle cost and impacts: alternatives for managing KE basin sludge

    SciTech Connect (OSTI)

    Alderman, C.J.

    1997-06-27

    This document presents the results of a life-cycle cost and impacts evaluation of alternatives for managing sludge that will be removed from the K Basins. The two basins are located in the 100-K Area of the Hanford Site. This evaluation was conducted by Fluor Daniel Hanford, Inc. (FDH) and its subcontractors to support decisions regarding the ultimate disposition of the sludge. The long-range plan for the Hanford Site calls for spent nuclear fuel (SNF), sludge, debris, and water to be removed from the K East (KE) and K West (KW) Basins. This activity will be conducted as a removal action under the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA). The scope of the CERCLA action will be limited to removing the SNF, sludge, debris, and water from the basins and transferring them to authorized facilities for interim storage and/or treatment and disposal. The scope includes treating the sludge and water in the 100-K Area prior to the transfer. Alternatives for the removal action are evaluated in a CERCLA engineering evaluation/cost analysis (EE/CA) and include different methods for managing sludge from the KE Basins. The scope of the removal action does not include storing, treating, or disposing of the sludge once it is transferred to the receiving facility and the EE/CA does not evaluate those downstream activities. This life-cycle evaluation goes beyond the EE/CA and considers the full life-cycle costs and impacts of dispositioning sludge.

  8. A comparison of estimates of cost-effectiveness of alternative fuels and vehicles for reducing emissions

    SciTech Connect (OSTI)

    Hadder, G.R.

    1995-11-01

    The cost-effectiveness ratio (CER) is a measure of the monetary value of resources expended to obtain reductions in emissions of air pollutants. The CER can lead to selection of the most effective sequence of pollution reduction options. Derived with different methodologies and technical assumptions, CER estimates for alternative fuel vehicles (AFVs) have varied widely among pervious studies. In one of several explanations of LCER differences, this report uses a consistent basis for fuel price to re-estimate CERs for AFVs in reduction of emissions of criteria pollutants, toxics, and greenhouse gases. The re-estimated CERs for a given fuel type have considerable differences due to non-fuel costs and emissions reductions, but the CERs do provide an ordinal sense of cost-effectiveness. The category with CER less than $5,000 per ton includes compressed natural gas and ed Petroleum gas vehicles; and E85 flexible-fueled vehicles (with fuel mixture of 85 percent cellulose-derived ethanol in gasoline). The E85 system would be much less attractive if corn-derived ethanol were used. The CER for E85 (corn-derived) is higher with higher values placed on the reduction of gas emissions. CER estimates are relative to conventional vehicles fueled with Phase 1 California reformulated gasoline (RFG). The California Phase 2 RFG program will be implemented before significant market penetration by AFVs. CERs could be substantially greater if they are calculated incremental to the Phase 2 RFG program. Regression analysis suggests that different assumptions across studies can sometimes have predictable effects on the CER estimate of a particular AFV type. The relative differences in cost and emissions reduction assumptions can be large, and the effect of these differences on the CER estimate is often not predictable. Decomposition of CERs suggests that methodological differences can make large contributions to CER differences among studies.

  9. Alternative Fuel Infrastructure Expansion: Costs, Resources, Production Capacity, and Retail Availability for Low-Carbon Scenarios

    Broader source: Energy.gov [DOE]

    The petroleum-based transportation fuel system is complex and highly developed, in contrast to the nascent low-petroleum, low-carbon alternative fuel system. This report examines how expansion of the low-carbon transportation fuel infrastructure could contribute to deep reductions in petroleum use and greenhouse gas (GHG) emissions across the U.S. transportation sector. Three low-carbon scenarios, each using a different combination of low-carbon fuels, were developed to explore infrastructure expansion trends consistent with a study goal of reducing transportation sector GHG emissions to 80% less than 2005 levels by 2050.These scenarios were compared to a business-as-usual (BAU) scenario and were evaluated with respect to four criteria: fuel cost estimates, resource availability, fuel production capacity expansion, and retail infrastructure expansion.

  10. Philadelphia gas works medium-Btu coal gasification project: capital and operating cost estimate, financial/legal analysis, project implementation

    SciTech Connect (OSTI)

    Not Available

    1981-12-01

    This volume of the final report is a compilation of the estimated capital and operating costs for the project. Using the definitive design as a basis, capital and operating costs were developed by obtaining quotations for equipment delivered to the site. Tables 1.1 and 1.2 provide a summary of the capital and operating costs estimated for the PGW Coal Gasification Project. In the course of its Phase I Feasibility Study of a medium-Btu coal-gas facility, Philadelphia Gas Works (PGW) identified the financing mechanism as having great impact on gas cost. Consequently, PGW formed a Financial/Legal Task Force composed of legal, financial, and project analysis specialists to study various ownership/management options. In seeking an acceptable ownership, management, and financing arrangement, certain ownership forms were initially identified and classified. Several public ownership, private ownership, and third party ownership options for the coal-gas plant are presented. The ownership and financing forms classified as base alternatives involved tax-exempt and taxable financing arrangements and are discussed in Section 3. Project implementation would be initiated by effectively planning the methodology by which commercial operation will be realized. Areas covered in this report are sale of gas to customers, arrangements for feedstock supply and by-product disposal, a schedule of major events leading to commercialization, and a plan for managing the implementation.

  11. Independent Cost Review (ICR) and Independent Cost Estimate (ICE) Standard Operating Procedures, Revision 2

    Broader source: Energy.gov [DOE]

    This Standard Operating Procedures (SOP) provides guidance for Department of Energy (DOE) Project Management Oversight and Assessment (PM) staff and contractors performing either an Independent...

  12. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Tax Credit The state offers an income tax credit of 36% of the cost of converting a vehicle to operate on an alternative fuel, the incremental cost of purchasing an original equipment manufacturer AFV, and the cost of alternative fueling equipment. Alternatively, a taxpayer may take a tax credit of 7.2% of the cost of the motor vehicle, up to $1,500. To qualify for the tax credit, vehicles must be dedicated AFVs and registered in

  13. Table 1. Updated estimates of power plant capital and operating costs

    U.S. Energy Information Administration (EIA) Indexed Site

    Updated estimates of power plant capital and operating costs" ,"Plant Characteristics",,,"Plant Costs (2012$)" ,"Nominal Capacity (MW)","Heat Rate (Btu/kWh)",,"Overnight Capital Cost ($/kW)","Fixed O&M Cost ($/kW-yr)","Variable O&M Cost ($/MWh)" ,,,,,,,"NEMS Input" " Coal" "Single Unit Advanced PC",650,8800,,3246,37.8,4.47,"N" "Dual Unit Advanced

  14. DOE Recognizes EM Richland Operations Office Employees for Excellence in Safety, Cost Savings

    Broader source: Energy.gov [DOE]

    WASHINGTON, D.C. – DOE has honored three EM Richland Operations Office (RL) employees with awards for their exemplary service, dedication to safety, and a cost-savings initiative.

  15. Low temperature pyrotechnic smokes: A potential low cost alternative to nonpyrotechnic smoke for access delay applications

    SciTech Connect (OSTI)

    Greenholt, C.J.

    1995-07-01

    Smokes are frequently used as visual obscurants in access delay applications. A new generation of low temperature pyrotechnic smokes is being developed. Terephthalic Acid (TPA) smoke was developed by the U.S. Army and Sebacic Acid (SA) smoke is being developed by Thiokol Corp. The advantages these smokes offer over traditional pyrotechnic smokes include; low generation temperature (approximately 450{degree}C), lower toxicity, and lower corrosivity. The low generation temperature reduces smoke layering effects and allows the addition of sensory irritants, such as o-Chlorobenzylidene Malononitrile (CS), to the formulation. Some advantages low temperature pyrotechnic smokes offer over nonpyrotechnic smokes include; low cost, simplicity, compactness, light weight, long storage life, and orientation insensitive operation. Low cost permits distribution of multiple units for reduced vulnerability and refill flexibility. Some disadvantages may include the combustibility of the smoke particulate; however, the published lower explosive limit of the mentioned materials is approximately ten times greater than the concentration required for effective obscuration. The TPA smoke cloud contains small quantities of benzene, formaldehyde, and carbon monoxide; no benzene or formaldehyde was identified during preliminary SA smoke analyses performed by Thiokol Corp. Sandia performed tests and analyses on TPA smoke to determine the smoke cloud composition, the quantity of particulate produced per canister, and the relationship between airborne particulate concentration and measured optical density values. Current activities include characterization of SA smoke.

  16. Acquisition Letter 2014-01: Management and Operating Contractors' Audit Coverage of Cost_Reimbursement Subcontracts

    Broader source: Energy.gov [DOE]

    The subject Acquisition Letter's purpose is to achieve greater Department-wide emphasis on auditing cost type subcontracts by providing guidance for monitoring management and operating contractors' fulfillment of their contractual obligation to provide adequate audit coverage of cost-type subcontracts.

  17. Reissuance of Acquisition Letter on Meal Costs in Management and Operation Contracts

    Broader source: Energy.gov [DOE]

    This AL is a reissuance (under the new AL number of 2012-05) of the AL on Meal Costs in Management and Operating Contracts that was originally issued on August 2, 2005 (under AL number 2005-12). It provides additional application guidance on: understanding the standards for reimbursement of contractor meal costs

  18. Is predictive emission monitoring an acceptable low cost alternative to continuous emission monitoring for complying with enhanced monitoring requirements?

    SciTech Connect (OSTI)

    Jernigan, J.R.

    1995-12-01

    Title VII of the 1990 Clean Air Act Amendments (the {open_quotes}Act{close_quotes}) expanded and clarified the Environmental Protection Agency`s (EPA) enforcement capabilities under the Act. Section 702 of the 1990 Amendments clarified EPA`s ability to require sources to provide information. Additionally, Section 702(b) required EPA to promulgate rules on enhanced monitoring and compliance certifications by adding a new section 114(a)(3) of the Act which states in part: {open_quotes}The Administrator shall in the case of any person which is the owner or operator of a major stationary source, and any in the case of any other person, require enhanced monitoring and submission of compliance certifications. Compliance certifications shall include (A) identification of the applicable requirement that is the basis of the certification, (B) the method used for determining the compliance status of the source, (C) the compliance status, (D) whether compliance is continuous or intermittent, (E) such other facts as the Administrator may require...{close_quotes} The 1990 Amendments contained several other changes that either relate directly to section 114(a)(3) or provide additional indications of the intent behind the new section. First, section 504(b) of the Amendments permits the Administrator to promulgate appropriate tests methods and monitoring requirements for determining compliance. That section states that {open_quotes}continuous emissions monitoring need not be required if alternative methods are available that provide sufficiently reliable and timely information for determining compliance.{close_quotes} This paper will describe Predictive Emission Systems (PEMS) and how the applications of PEMS may be a low cost, accurate, and acceptable alternative to Continuous Emission Monitoring Systems (CEMS) for complying with Enhanced Monitoring requirements.

  19. Wind energy systems have low operating expenses because they have no fuel cost.

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wind energy systems have low operating expenses because they have no fuel cost. Photo by Jenny Hager Photography, NREL 15990. 1. Wind energy is cost competitive with other fuel sources. The average levelized price of wind power purchase agree- ments signed in 2013 was approximately 2.5 cents per kilowatt-hour, a price that is not only cost competitive with new gas-fired power plants but also compares favorably to a range of fuel cost projections of gas-fired generation extending out through

  20. Natural Gas Compression Technology Improves Transport and Efficiencies, Lowers Operating Costs

    Broader source: Energy.gov [DOE]

    An award-winning compressor design that decreases the energy required to compress and transport natural gas, lowers operating costs, improves efficiencies and reduces the environmental footprint of well site operations has been developed by a Massachusetts-based company with support from the U.S. Department of Energy

  1. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    and Infrastructure Tax Credit for Businesses Business owners and others may be eligible for a tax credit of 35% of eligible costs for qualified alternative fuel infrastructure projects, or the incremental or conversion cost of two or more AFVs. Qualified infrastructure includes facilities for mixing, storing, compressing, or dispensing fuels for vehicles operating on alternative fuels. Qualified alternative fuels include electricity, natural gas, gasoline blended with at least 85% ethanol (E85),

  2. ALTERNATE

    Office of Legacy Management (LM)

    0 0 0 0 AECMED INVOLVEMENT fiT SITE ; -...---------... I Control q Health Physics Protectibn ' IJ AEWMED managed operations 0 Little or None i 0 AEWMED respansible for ...

  3. TECHNICAL EVALUATION OF SOIL REMEDIATION ALTERNATIVES AT THE BUILDING 812 OPERABLE UNIT, LAWRENCE LIVERMORE NATIONAL LABORATORY SITE 300

    SciTech Connect (OSTI)

    Eddy-Dilek, C.; Miles, D.; Abitz, R.

    2009-08-14

    The Department of Energy Livermore Site Office requested a technical review of remedial alternatives proposed for the Building 812 Operable Unit, Site 300 at the Lawrence Livermore National Laboratory. The team visited the site and reviewed the alternatives proposed for soil remediation in the draft RI/FS and made the following observations and recommendations. Based on the current information available for the site, the team did not identify a single technology that would be cost effective and/or ecologically sound to remediate DU contamination at Building 812 to current remedial goals. Soil washing is not a viable alternative and should not be considered at the site unless final remediation levels can be negotiated to significantly higher levels. This recommendation is based on the results of soil washing treatability studies at Fernald and Ashtabula that suggest that the technology would only be effective to address final remediation levels higher than 50 pCi/g. The technical review team identified four areas of technical uncertainty that should be resolved before the final selection of a preferred remedial strategy is made. Areas of significant technical uncertainty that should be addressed include: (1) Better delineation of the spatial distribution of surface contamination and the vertical distribution of subsurface contamination in the area of the firing table and associated alluvial deposits; (2) Chemical and physical characterization of residual depleted uranium (DU) at the site; (3) Determination of actual contaminant concentrations in air particulates to support risk modeling; and (4) More realistic estimation of cost for remedial alternatives, including soil washing, that were derived primarily from vendor estimates. Instead of conducting the planned soil washing treatability study, the team recommends that the site consider a new phased approach that combines additional characterization approaches and technologies to address the technical uncertainty in the remedial decision making. The site should redo the risk calculations as the future use scenario has changed for the site. As a result, the existing model is based on very conservative assumptions that result in calculation of unreasonably low cleanup goals. Specifically, the review team proposes that LLNL consider: (1) Revising the industrial worker scenario to a reasonable maximum exposure (RME) for a site worker that performs a weekly walk down of the area for two hours for 25 years (or an alternative RME if the exposure scenario changes); (2) Revising the ESSI of 2 mg U per kg soil for the deer mouse to account for less than 0.05 of the total ingested uranium being adsorbed by the gut; (3) Revising bioaccumulation factors (BAFs) for vegetation and invertebrates that are based on 100 mg of soluble uranium per kg of soil, as the uranium concentration in the slope soil does not average 100 mg/kg and it is not all in a soluble form; and (4) Measuring actual contaminant concentrations in air particulates at the site and using the actual values to support risk calculations. The team recommends that the site continue a phased approach during remediation. The activities should focus on elimination of the principal threats to groundwater by excavating (1) source material from the firing table and alluvial deposits, and (2) soil hotspots from the surrounding slopes with concentrations of U-235 and U-238 that pose unacceptable risk. This phased approach allows the remediation path to be driven by the results of each phase. This reduces the possibility of costly 'surprises', such as failure of soil treatment, and reduces the impact of remediation on endangered habitat. Treatment of the excavated material with physical separation equipment may result in a decreased volume of soil for disposal if the DU is concentrated in the fine-grained fraction, which can then be disposed of in an offsite facility at a considerable cost savings. Based on existing data and a decision to implement the recommended phased approach, the cost of characterization, excavation and physical

  4. Assessment of costs and benefits of flexible and alternative fuel use in the US transportation sector

    SciTech Connect (OSTI)

    1993-01-01

    The primary objective of this report is to provide estimates of volumes and development costs of known nonassociated gas reserves in selected, potentially important supplier nations, using a standard set of costing algorithms and conventions. Estimates of undeveloped nonassociated gas reserves and the cost of drilling development wells, production equipment, gas processing facilities, and pipeline construction are made at the individual field level. A discounted cash-flow model of production, investment, and expenses is used to estimate the present value cost of developing each field on a per-thousand-cubic-foot (Mcf) basis. These gas resource cost estimates for individual accumulations (that is, fields or groups of fields) then were aggregated into country-specific price-quantity curves. These curves represent the cost of developing and transporting natural gas to an export point suitable for tanker shipments or to a junction with a transmission line. The additional costs of LNG or methanol conversion are not included. A brief summary of the cost of conversion to methanol and transportation to the United States is contained in Appendix D: Implications of Gas Development Costs for Methanol Conversion.

  5. Alternating-polarity operation for complete regeneration of electrochemical deionization system

    DOE Patents [OSTI]

    Tran, Tri D.; Lenz, David J.

    2002-01-01

    An electrically regeneratable battery of electrochemical cells for capacitive deionization (including electrochemical purification) and regeneration of electrodes is operated at alternate polarities during consecutive cycles. By polarizing the cells, ions are removed from the electrolyte and are held in the electric double layers formed at the carbon aerogel surfaces of the electrodes. As the electrodes of each cell of the battery are saturated with the removed ions, the battery is regenerated electrically at a reversed polarity from that during the deionization step of the cycle, thus significantly minimizing secondary wastes.

  6. A magnetically coupled Stirling engine driven heat pump: Design optimization and operating cost analysis

    SciTech Connect (OSTI)

    Vincent, R.J.; Waldron, W.D.

    1990-01-01

    A preliminary design for a 2nd generation, gas-fired free-piston Stirling engine driven heat pump has been developed which incorporates a linear magnetic coupling to drive the refrigerant compressor piston. The Mark 2 machine is intended for the residential heat pump market and has 3 Ton cooling capacity. The new heat pump is an evolutionary design based on the Mark 1 free-piston machine which was successfully developed and independently tested by a major heat pump/air conditioning manufacturer. This paper briefly describes test results that were obtained with the Mark 1 machine and then presents the design and operating cost analysis for the Mark 2 heat pump. Operating costs by month are given for both Chicago and Atlanta. A summary of the manufacturing cost estimates obtained from Pioneer Engineering and Manufacturing Company (PEM) are also given. 9 figs., 3 tabs.

  7. Low-cost thin-material solar technology, the key to a viable energy alternative

    SciTech Connect (OSTI)

    Wilhelm, W.G.; Ripel, B.D.

    1985-08-01

    The creation of a solar technology based on a dramatic reduction in material intensity and greater simplicity of design is the result of a cost-guided research approach. It takes advantage of a progressive material science based on polymer films and unique construction methods that optimize material requirements, performance and durability. The current level of technical maturity has revealed a solar collector design that has the potential for a dramatic reduction in installed cost while maintaining high thermal performance and durability. In addition, the same methodology has guided total solar system designs with similar economies and performance advantages.

  8. Benefits and Costs of Aggressive Energy Efficiency Programs and the Impacts of Alternative Sources of Funding: Case Study of Massachusetts

    SciTech Connect (OSTI)

    Cappers, Peter; Satchwell, Andrew; Goldman, Charles; Schlegel, Jeff

    2010-08-06

    Increased interest by state (and federal) policymakers and regulatory agencies in pursuing aggressive energy efficiency efforts could deliver significant utility bill savings for customers while having long-term implications for ratepayers (e.g. potential rate impacts). Equity and distributional concerns associated with the authorized recovery of energy efficiency program costs may necessitate the pursuit of alternative program funding approaches. In 2008, Massachusetts passed the Green Communities Act which directed its energy efficiency (EE) program administrators to obtain all cost-effective EE resources. This goal has translated into achieving annual electric energy savings equivalent to a 2.4% reduction in retail sales from energy efficiency programs in 2012. Representatives of electricity consumer groups supported the new portfolio of EE programs (and the projected bill savings) but raised concerns about the potential rate impacts associated with achieving such aggressive EE goals, leading policymakers to seek out alternative funding sources which can potentially mitigate these effects. Utility administrators have also raised concerns about under-recovery of fixed costs when aggressive energy efficiency programs are pursued and have proposed ratemaking policies (e.g. decoupling) and business models that better align the utility's financial interests with the state's energy efficiency public policy goals. Quantifying these concerns and identifying ways they can be addressed are crucial steps in gaining the support of major stakeholder groups - lessons that can apply to other states looking to significantly increase savings targets that can be achieved from their own ratepayer-funded energy efficiency programs. We use a pro-forma utility financial model to quantify the bill and rate impacts on electricity customers when very aggressive annual energy efficiency savings goals ({approx}2.4%) are achieved over the long-term and also assess the impact of different cost recovery approaches that integrate alternative revenue sources. We also analyze alternative lost fixed cost recovery approaches to better understand how to mitigate the erosion of utility shareholder returns in states that have adopted (and achieved) very aggressive savings targets.

  9. NREL: News - New Design Tool Analyzes Cost of Operating a Building Over its

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lifetime Design Tool Analyzes Cost of Operating a Building Over its Lifetime Golden, Colo., August 2, 2002 Imagine being able to estimate the energy life-cycle costs of a new building by simply entering numbers into a software program. Thanks to the new Energy-10 design tool, this is now possible. The new software - Energy-10 Version 1.5 - is an upgrade to the original program developed at the U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL). The new Energy-10

  10. Installation, Operation, and Maintenance Strategies to Reduce the Cost of Offshore Wind Energy

    SciTech Connect (OSTI)

    Maples, B.; Saur, G.; Hand, M.; van de Pietermen, R.; Obdam, T.

    2013-07-01

    Currently, installation, operation, and maintenance (IO&M) costs contribute approximately 30% to the LCOE of offshore wind plants. To reduce LCOE while ensuring safety, this paper identifies principal cost drivers associated with IO&M and quantifies their impacts on LCOE. The paper identifies technology improvement opportunities and provides a basis for evaluating innovative engineering and scientific concepts developed subsequently to the study. Through the completion of a case study, an optimum IO&M strategy for a hypothetical offshore wind project is identified.

  11. Assessment of costs and benefits of flexible and alternative fuel use in the US transportation sector

    SciTech Connect (OSTI)

    Not Available

    1991-10-01

    The DOE is conducting a comprehensive technical analysis of a flexible-fuel transportation system in the United States -- that is, a system that could easily switch between petroleum and another fuel, depending on price and availability. The DOE Alternative Fuels Assessment is aimed directly at questions of energy security and fuel availability, but covers a wide range of issues. This report examines environmental, health, and safety concerns associated with a switch to alternative- and flexible-fuel vehicles. Three potential alternatives to oil-based fuels in the transportation sector are considered: methanol, compressed natural gas (CNG), and electricity. The objective is to describe and discuss qualitatively potential environmental, health, and safety issues that would accompany widespread use of these three fuels. This report presents the results of exhaustive literature reviews; discussions with specialists in the vehicular and fuel-production industries and with Federal, State, and local officials; and recent information from in-use fleet tests. Each chapter deals with the end-use and process emissions of air pollutants, presenting an overview of the potential air pollution contribution of the fuel --relative to that of gasoline and diesel fuel -- in various applications. Carbon monoxide, particulate matter, ozone precursors, and carbon dioxide are emphasized. 67 refs., 6 figs. , 8 tabs.

  12. Methods, systems and apparatus for controlling operation of two alternating current (AC) machines

    DOE Patents [OSTI]

    Gallegos-Lopez, Gabriel; Nagashima, James M.; Perisic, Milun; Hiti, Silva

    2012-06-05

    A system is provided for controlling two alternating current (AC) machines via a five-phase PWM inverter module. The system comprises a first control loop, a second control loop, and a current command adjustment module. The current command adjustment module operates in conjunction with the first control loop and the second control loop to continuously adjust current command signals that control the first AC machine and the second AC machine such that they share the input voltage available to them without compromising the target mechanical output power of either machine. This way, even when the phase voltage available to either one of the machines decreases, that machine outputs its target mechanical output power.

  13. Wind turbine reliability : understanding and minimizing wind turbine operation and maintenance costs.

    SciTech Connect (OSTI)

    Not Available

    2004-11-01

    Wind turbine system reliability is a critical factor in the success of a wind energy project. Poor reliability directly affects both the project's revenue stream through increased operation and maintenance (O&M) costs and reduced availability to generate power due to turbine downtime. Indirectly, the acceptance of wind-generated power by the financial and developer communities as a viable enterprise is influenced by the risk associated with the capital equipment reliability; increased risk, or at least the perception of increased risk, is generally accompanied by increased financing fees or interest rates. Cost of energy (COE) is a key project evaluation metric, both in commercial applications and in the U.S. federal wind energy program. To reflect this commercial reality, the wind energy research community has adopted COE as a decision-making and technology evaluation metric. The COE metric accounts for the effects of reliability through levelized replacement cost and unscheduled maintenance cost parameters. However, unlike the other cost contributors, such as initial capital investment and scheduled maintenance and operating expenses, costs associated with component failures are necessarily speculative. They are based on assumptions about the reliability of components that in many cases have not been operated for a complete life cycle. Due to the logistical and practical difficulty of replacing major components in a wind turbine, unanticipated failures (especially serial failures) can have a large impact on the economics of a project. The uncertainty associated with long-term component reliability has direct bearing on the confidence level associated with COE projections. In addition, wind turbine technology is evolving. New materials and designs are being incorporated in contemporary wind turbines with the ultimate goal of reducing weight, controlling loads, and improving energy capture. While the goal of these innovations is reduction in the COE, there is a potential impact on reliability whenever new technologies are introduced. While some of these innovations may ultimately improve reliability, in the short term, the technology risks and the perception of risk will increase. The COE metric used by researchers to evaluate technologies does not address this issue. This paper outlines the issues relevant to wind turbine reliability for wind turbine power generation projects. The first sections describe the current state of the industry, identify the cost elements associated with wind farm O&M and availability and discuss the causes of uncertainty in estimating wind turbine component reliability. The latter sections discuss the means for reducing O&M costs and propose O&M related research and development efforts that could be pursued by the wind energy research community to reduce COE.

  14. Solid Waste Operations Complex W-113, Detail Design Report (Title II). Volume 4: Project cost estimate

    SciTech Connect (OSTI)

    1995-09-01

    The Solid Waste Retrieval Facility--Phase 1 (Project W113) will provide the infrastructure and the facility required to retrieve from Trench 04, Burial ground 4C, contact handled (CH) drums and boxes at a rate that supports all retrieved TRU waste batching, treatment, storage, and disposal plans. This includes (1) operations related equipment and facilities, viz., a weather enclosure for the trench, retrieval equipment, weighing, venting, obtaining gas samples, overpacking, NDE, NDA, shipment of waste and (2) operations support related facilities, viz., a general office building, a retrieval staff change facility, and infrastructure upgrades such as supply and routing of water, sewer, electrical power, fire protection, roads, and telecommunication. Title I design for the operations related equipment and facilities was performed by Raytheon/BNFL, and that for the operations support related facilities including infrastructure upgrade was performed by KEH. These two scopes were combined into an integrated W113 Title II scope that was performed by Raytheon/BNFL. This volume represents the total estimated costs for the W113 facility. Operating Contractor Management costs have been incorporated as received from WHC. The W113 Facility TEC is $19.7 million. This includes an overall project contingency of 14.4% and escalation of 17.4%. A January 2001 construction contract procurement start date is assumed.

  15. Alternating-polarity operation for complete regeneration of electrochemical deionization system

    DOE Patents [OSTI]

    Tran, Tri D.; Lenz, David J.

    2006-11-21

    An electrically regeneratable battery of electrochemical cells for capacitive deionization (including electrochemical purification) and regeneration of electrodes is operated at alternate polarities during consecutive cycles. In other words, after each regeneration step operated at a given polarity in a deionization-regeneration cycle, the polarity of the deionization step in the next cycle is maintained. In one embodiment, two end electrodes are arranged one at each end of the battery, adjacent to end plates. An insulator layer is interposed between each end plate and the adjacent end electrode. Each end electrode includes a single sheet of conductive material having a high specific surface area and sorption capacity, preferably a sheet formed of carbon aerogel composite. The batter further includes a plurality of generally identical double-sided intermediate electrodes that are equidistally separated from each other, between the two end electrodes. As the electrolyte enters the battery of ells, t flows through a continuous open serpentine channel defined by the electrodes, substantially parallel to the surfaces of the electrodes. By polarizing the cells, ions are removed from the electrolyte and are held in the electric double layers formed at the carbon aerogel surfaces of the electrodes. As the electrodes of each cell of the battery are saturated with the removed ions, the battery is regenerated electrically at a reversed polarity from that during the deionization step of the cycle, thus significantly minimizing secondary wastes.

  16. Alternating-polarity operation for complete regeneration of electrochemical deionization system

    DOE Patents [OSTI]

    Tran, Tri D.; Lenz, David J.

    2004-07-13

    An electrically regeneratable battery of electrochemical cells for capacitive deionization (including electrochemical purification) and regeneration of electrodes is operated at alternate polarities during consecutive cycles. In other words, after each regeneration step operated at a given polarity in a deionization-regeneration cycle, the polarity of the deionization step in the next cycle is maintained. In one embodiment, two end electrodes are arranged one at each end of the battery, adjacent to end plates. An insulator layer is interposed between each end plate and the adjacent end electrode. Each end electrode includes a single sheet of conductive material having a high specific surface area and sorption capacity, preferably a sheet formed of carbon aerogel composite. The battery further includes a plurality of generally identical double-sided intermediate electrodes that are equidistally separated from each other, between the two end electrodes. As the electrolyte enters the battery of cells, it flows through a continuous open serpentine channel defined by the electrodes, substantially parallel to the surfaces of the electrodes. By polarizing the cells, ions are removed from the electrolyte and are held in the electric double layers formed at the carbon aerogel surfaces of the electrodes. As the electrodes of each cell of the battery are saturated with the removed ions, the battery is regenerated electrically at a reversed polarity from that during the deionization step of the cycle, thus significantly minimizing secondary wastes.

  17. Considering the total cost of electricity from sunlight and the alternatives

    SciTech Connect (OSTI)

    Fthenakis, Vasilis

    2015-03-01

    Photovoltaic (PV) electricity generation has grown to about 17 GW in the United States, corresponding to one tenth of the global capacity. Most deployment in the country has happened during the last 6 years. Reflecting back, in early 2008 this author and his collaborators James Mason and Ken Zweibel, published in Scientific American and in Energy Policy a Solar Grand Plan demonstrating the feasibility of renewable energy in providing 69% of the United States electricity demand by 2050, while reducing CO2 emissions by 60% from 2005 levels; the PV contribution to this plan was assessed to be 250 GW by 2030 and 2900 GW by 2050 [1]. The DOE's more detailed SunShot vision study, released in 2012, showed the possibility of having 300 GW of PV installed in the United States by 2030, and 630 GW by 2050. Assessing the sustainability of such rapid growth of photovoltaics necessitates undertaking a careful analysis because PV markets largely are enabled by its promise to produce reliable electricity with minimum environmental burdens. Measurable aspects of sustainability include cost, resource availability, and environmental impact. The question of cost concerns the affordability of solar energy compared to other energy sources throughout the world. Environmental impacts include local-, regional-, and global-effects, as well as the usage of land and water, which must be considered in a comparable context over a long time, multigenerational horizon. As a result, the availability of material resources matters to current and future-generations under the constraint of affordability.

  18. Enabling cost-effective high-current burst-mode operation in superconducting accelerators

    SciTech Connect (OSTI)

    Sheffield, Richard L.

    2015-06-01

    Superconducting (SC) accelerators are very efficient for CW or long-pulse operation, and normal conducting (NC) accelerators are cost effective for short-pulse operation. The addition of a short NC linac section to a SC linac can correct for the energy droop that occurs when pulsed high-current operation is required that exceeds the capability of the klystrons to replenish the cavity RF fields due to the long field fill-times of SC structures, or a requirement to support a broad range of beam currents results in variable beam loading. This paper describes the implementation of this technique to enable microseconds of high beam-current, 90 mA or more, in a 12 GeV SC long-pulse accelerator designed for the MaRIE 42-keV XFEL proposed for Los Alamos National Laboratory.

  19. Enabling cost-effective high-current burst-mode operation in superconducting accelerators

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sheffield, Richard L.

    2015-06-01

    Superconducting (SC) accelerators are very efficient for CW or long-pulse operation, and normal conducting (NC) accelerators are cost effective for short-pulse operation. The addition of a short NC linac section to a SC linac can correct for the energy droop that occurs when pulsed high-current operation is required that exceeds the capability of the klystrons to replenish the cavity RF fields due to the long field fill-times of SC structures, or a requirement to support a broad range of beam currents results in variable beam loading. This paper describes the implementation of this technique to enable microseconds of high beam-current,more » 90 mA or more, in a 12 GeV SC long-pulse accelerator designed for the MaRIE 42-keV XFEL proposed for Los Alamos National Laboratory.« less

  20. Performance predictions of alternative, low cost absorbents for open-cycle absorption solar cooling

    SciTech Connect (OSTI)

    Ameel, T.A.; Gee, K.G.; Wood, B.D.

    1995-02-01

    To achieve solar fractions greater than 0.90 using the open-cycle absorption refrigeration system, considerable sorbent solution storage is necessary. Having identified the absorber as the system component whose performance is affected the most by a change in absorbent, an absorber model was selected from available literature pertaining to simultaneous heat and mass transfer. Low-cost absorbent candidates were selected and their physical properties were either located in the literature, measured, or estimated. The most promising of the absorbents considered was a mixture of two parts lithium chloride and one part zinc chloride. Both the lithium-zinc chloride mixture and lithium bromide solutions had estimated pumping powers of less than 0.1 kW. The solubility of the lithium-zinc chloride mixture at absorber conditions was improved over that of lithium bromide, reducing the risk of solidification of the solution. 16 refs., 4 figs., 2 tabs.

  1. Considering the total cost of electricity from sunlight and the alternatives

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Fthenakis, Vasilis

    2015-03-01

    Photovoltaic (PV) electricity generation has grown to about 17 GW in the United States, corresponding to one tenth of the global capacity. Most deployment in the country has happened during the last 6 years. Reflecting back, in early 2008 this author and his collaborators James Mason and Ken Zweibel, published in Scientific American and in Energy Policy a Solar Grand Plan demonstrating the feasibility of renewable energy in providing 69% of the United States electricity demand by 2050, while reducing CO2 emissions by 60% from 2005 levels; the PV contribution to this plan was assessed to be 250 GW bymore » 2030 and 2900 GW by 2050 [1]. The DOE's more detailed SunShot vision study, released in 2012, showed the possibility of having 300 GW of PV installed in the United States by 2030, and 630 GW by 2050. Assessing the sustainability of such rapid growth of photovoltaics necessitates undertaking a careful analysis because PV markets largely are enabled by its promise to produce reliable electricity with minimum environmental burdens. Measurable aspects of sustainability include cost, resource availability, and environmental impact. The question of cost concerns the affordability of solar energy compared to other energy sources throughout the world. Environmental impacts include local-, regional-, and global-effects, as well as the usage of land and water, which must be considered in a comparable context over a long time, multigenerational horizon. As a result, the availability of material resources matters to current and future-generations under the constraint of affordability.« less

  2. Low-Cost, Third Generation Solar Cells on Solid Ground | U.S...

    Office of Science (SC) Website

    Summary Current solar cell technologies are largely constrained by high production costs, low operating efficiency, and limited durability. A low-cost alternative to current ...

  3. Wind turbine reliability :understanding and minimizing wind turbine operation and maintenance costs.

    SciTech Connect (OSTI)

    Walford, Christopher A. (Global Energy Concepts. Kirkland, WA)

    2006-03-01

    Wind turbine system reliability is a critical factor in the success of a wind energy project. Poor reliability directly affects both the project's revenue stream through increased operation and maintenance (O&M) costs and reduced availability to generate power due to turbine downtime. Indirectly, the acceptance of wind-generated power by the financial and developer communities as a viable enterprise is influenced by the risk associated with the capital equipment reliability; increased risk, or at least the perception of increased risk, is generally accompanied by increased financing fees or interest rates. This paper outlines the issues relevant to wind turbine reliability for wind turbine power generation projects. The first sections describe the current state of the industry, identify the cost elements associated with wind farm O&M and availability and discuss the causes of uncertainty in estimating wind turbine component reliability. The latter sections discuss the means for reducing O&M costs and propose O&M related research and development efforts that could be pursued by the wind energy research community to reduce cost of energy.

  4. Cost impact of discretionary alternatives. OSM Permanent Regulations 30 CFR, Chapter 7. Volume 1. Executive Summary and methodology. Final report

    SciTech Connect (OSTI)

    Not Available

    1990-06-11

    The report was prepared by D'Appolonia Consulting Engineers, Inc. (D'Appolonia) for the Office of Surface Mining Reclamation and Enforcement (OSM) to assess the probable impacts on coal production costs of numerous discretionary issues involved in drafting the permanent regulations for implementation of the Surface Mining Control and Reclamation Act of 1977 (the Act). The results of the engineering cost study were used directly in OSM's Regulatory Analysis (RA) developed in compliance with Executive Order 12044. The final RA was published in March 1979 and is available from the OSM. The report details those analyses conducted by D'Appolonia and used in the RA. The results of the study are not meant to reflect the complete cost or economic impact of the Act or the resulting OSM regulations. The results do provide a basis for evaluating the relative impact of the various alternatives considered by OSM during development of the permanent regulatory program. The discretionary issues analyzed in the report pertain to both surface and underground mining activities. The volume presents the general methods of approach and final results of the study, while Volumes II and III present the individual analyses of each issue for surface and underground mines, respectively.

  5. Potential radiological impacts of upper-bound operational accidents during proposed waste disposal alternatives for Hanford defense waste

    SciTech Connect (OSTI)

    Mishima, J.; Sutter, S.L.; Hawley, K.A.; Jenkins, C.E.; Napier, B.A.

    1986-02-01

    The Geologic Disposal Alternative, the In-Place Stabilization and Disposal Alternative, and the Reference Disposal Alternative are being evaluated for disposal of Hanford defense high-level, transuranic, and tank wastes. Environmental impacts associated with disposal of these wastes according to the alternatives listed above include potential doses to the downwind population from operation during the application of the handling and processing techniques comprising each disposal alternative. Scenarios for operational accident and abnormal operational events are postulated, on the basis of the currently available information, for the application of the techniques employed for each waste class for each disposal alternative. From these scenarios, an upper-bound airborne release of radioactive material was postulated for each waste class and disposal alternative. Potential downwind radiologic impacts were calculated from these upper-bound events. In all three alternatives, the single postulated event with the largest calculated radiologic impact for any waste class is an explosion of a mixture of ferri/ferro cyanide precipitates during the mechanical retrieval or microwave drying of the salt cake in single shell waste tanks. The anticipated downwind dose (70-year dose commitment) to the maximally exposed individual is 3 rem with a total population dose of 7000 man-rem. The same individual would receive 7 rem from natural background radiation during the same time period, and the same population would receive 3,000,000 man-rem. Radiological impacts to the public from all other postulated accidents would be less than that from this accident; furthermore, the radiological impacts resulting from this accident would be less than one-half that from the natural background radiation dose.

  6. Chemical gel barriers as low-cost alternative to containment and in situ cleanup of hazardous wastes to protect groundwater

    SciTech Connect (OSTI)

    1997-01-01

    Chemical gel barriers are being considered as a low-cost alternative for containment and in situ cleanup of hazardous wastes to protect groundwater. Most of the available gels in petroleum application are non-reactive and relative impermeable, providing a physical barriers for all fluids and contaminants. However, other potential systems can be envisioned. These systems could include gels that are chemically reactive and impermeable such that most phase are captured by the barriers but the contaminants could diffuse through the barriers. Another system that is chemically reactive and permeable could have potential applications in selectivity capturing contaminants while allowing water to pass through the barriers. This study focused on chemically reactive and permeable gel barriers. The gels used in experiment are DuPont LUDOX SM colloidal silica gel and Pfizer FLOPAAM 1330S hydrolyzed polyacrylamide (HPAM) gel.

  7. Water Use in Enhanced Geothermal Systems (EGS): Geology of U.S. Stimulation Projects, Water Costs, and Alternative Water Use Policies

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Schroeder, Jenna N.

    2014-12-16

    According to the Energy Information Administration (EIA) of the U.S. Department of Energy (DOE), geothermal energy generation in the United States is projected to more than triple by 2040 (EIA 2013). This addition, which translates to more than 5 GW of generation capacity, is anticipated because of technological advances and an increase in available sources through the continued development of enhanced geothermal systems (EGSs) and low-temperature resources (EIA 2013). Studies have shown that air emissions, water consumption, and land use for geothermal electricity generation have less of an impact than traditional fossil fuel?based electricity generation; however, the long-term sustainability of geothermal power plants can be affected by insufficient replacement of aboveground or belowground operational fluid losses resulting from normal operations (Schroeder et al. 2014). Thus, access to water is therefore critical for increased deployment of EGS technologies and, therefore, growth of the geothermal sector. This paper examines water issues relating to EGS development from a variety of perspectives. It starts by exploring the relationship between EGS site geology, stimulation protocols, and below ground water loss, which is one of the largest drivers of water consumption for EGS projects. It then examines the relative costs of different potential traditional and alternative water sources for EGS. Finally it summarizes specific state policies relevant to the use of alternative water sources for EGS, and finally explores the relationship between EGS site geology, stimulation protocols, and below ground water loss, which is one of the largest drivers of water consumption for EGS projects.

  8. Water Use in Enhanced Geothermal Systems (EGS): Geology of U.S. Stimulation Projects, Water Costs, and Alternative Water Use Policies

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Schroeder, Jenna N.

    According to the Energy Information Administration (EIA) of the U.S. Department of Energy (DOE), geothermal energy generation in the United States is projected to more than triple by 2040 (EIA 2013). This addition, which translates to more than 5 GW of generation capacity, is anticipated because of technological advances and an increase in available sources through the continued development of enhanced geothermal systems (EGSs) and low-temperature resources (EIA 2013). Studies have shown that air emissions, water consumption, and land use for geothermal electricity generation have less of an impact than traditional fossil fuel?based electricity generation; however, the long-term sustainability of geothermal power plants can be affected by insufficient replacement of aboveground or belowground operational fluid losses resulting from normal operations (Schroeder et al. 2014). Thus, access to water is therefore critical for increased deployment of EGS technologies and, therefore, growth of the geothermal sector. This paper examines water issues relating to EGS development from a variety of perspectives. It starts by exploring the relationship between EGS site geology, stimulation protocols, and below ground water loss, which is one of the largest drivers of water consumption for EGS projects. It then examines the relative costs of different potential traditional and alternative water sources for EGS. Finally it summarizes specific state policies relevant to the use of alternative water sources for EGS, and finally explores the relationship between EGS site geology, stimulation protocols, and below ground water loss, which is one of the largest drivers of water consumption for EGS projects.

  9. Inspection of the cost reduction incentive program at the Department of Energy`s Idaho Operations Office

    SciTech Connect (OSTI)

    Not Available

    1994-07-07

    The purpose of this inspection was to review the economy and efficiency of Idaho`s Fiscal Year 1992 Cost Reduction Incentive Program, as well as to provide information to Departmental officials regarding any difficulties in administering these types of programs. The report is of the findings and recommendations. According to Idaho officials, their Cost Reduction Incentive Program was designed to motivate and provide incentives to management and operating contractors which would result in cost savings to the Department while increasing the efficiency and effectiveness of the contractors` operations. Idaho officials reported that over $22.5 million in costs were saved as a result of the Fiscal Year 1992 Cost Reduction Incentive Program. It was found that: (1) Idaho officials acknowledged that they did not attempt a full accounting records validation of the contractor`s submitted cost savings; (2) cost reduction incentive programs may result in conflicts of interest--contractors may defer work in order to receive an incentive fee; (3) the Department lacks written Department-wide policies and procedures--senior Procurement officials stated that the 1985 memorandum from the then-Assistant Secretary for Management and Administration was not the current policy of the Department; and (4) the Department already has the management and operating contract award fee provisions and value engineering program that can be used to provide financial rewards for contractors that operate cost effectively and efficiently.

  10. Atmospheric Photochemistry Studies of Pollutant Emissions from Transportation Vehicles Operating on Alternative Fuels

    SciTech Connect (OSTI)

    Jeffries, H.; Sexton, K.; Yu, J.

    1998-07-01

    This project was undertaken with the goal of improving our ability to predict the changes in urban ozone resulting from the widespread use of alternative fuels in automobiles. This report presents the results in detail.

  11. A heat & mass integration approach to reduce capital and operating costs of a distillation configuration

    SciTech Connect (OSTI)

    Madenoor Ramapriya, Gautham; Jiang, Zheyu; Tawarmalani, Mohit; Agrawal, Rakesh

    2015-11-11

    We propose a general method to consolidate distillation columns of a distillation configuration using heat and mass integration. The proposed method encompasses all heat and mass integrations known till date, and includes many more. Each heat and mass integration eliminates a distillation column, a condenser, a reboiler and the heat duty associated with a reboiler. Thus, heat and mass integration can potentially offer significant capital and operating cost benefits. In this talk, we will study the various possible heat and mass integrations in detail, and demonstrate their benefits using case studies. This work will lay out a framework to synthesize an entire new class of useful configurations based on heat and mass integration of distillation columns.

  12. COMPLEAT (Community-Oriented Model for Planning Least-Cost Energy Alternatives and Technologies): A planning tool for publicly owned electric utilities. [Community-Oriented Model for Planning Least-Cost Energy Alternatives and Technologies (Compleat)

    SciTech Connect (OSTI)

    Not Available

    1990-09-01

    COMPLEAT takes its name, as an acronym, from Community-Oriented Model for Planning Least-Cost Energy Alternatives and Technologies. It is an electric utility planning model designed for use principally by publicly owned electric utilities and agencies serving such utilities. As a model, COMPLEAT is significantly more full-featured and complex than called out in APPA's original plan and proposal to DOE. The additional complexity grew out of a series of discussions early in the development schedule, in which it became clear to APPA staff and advisors that the simplicity characterizing the original plan, while highly desirable in terms of utility applications, was not achievable if practical utility problems were to be addressed. The project teams settled on Energy 20/20, an existing model developed by Dr. George Backus of Policy Assessment Associates, as the best candidate for the kinds of modifications and extensions that would be required. The remainder of the project effort was devoted to designing specific input data files, output files, and user screens and to writing and testing the compute programs that would properly implement the desired features around Energy 20/20 as a core program. This report presents in outline form, the features and user interface of COMPLEAT.

  13. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuel Vehicle (AFV) and Fueling Infrastructure Loans The Nebraska Energy Office administers the Dollar and Energy Saving Loan Program, which makes low-cost loans available for a variety of alternative fuel projects, including the replacement of conventional vehicles with AFVs; the purchase of new AFVs; the conversion of conventional vehicles to operate on alternative fuels; and the construction or purchase of fueling stations or equipment. The maximum loan amount is $750,000 per borrower, and the

  14. Wind Power Impacts on Electric Power System Operating Costs: Summary and Perspective on Work to Date; Preprint

    SciTech Connect (OSTI)

    Smith, J. C.; DeMeo, E. A.; Parsons, B.; Milligan, M.

    2004-03-01

    Electric utility system planners and operators are concerned that variations in wind plant output may increase the operating costs of the system. This concern arises because the system must maintain an instantaneous balance between the aggregate demand for electric power and the total power generated by all power plants feeding the system. This is a highly sophisticated task that utility operators and automatic controls perform routinely, based on well-known operating characteristics for conventional power plants and a great deal of experience accumulated over many years. System operators are concerned that variations in wind plant output will force the conventional power plants to provide compensating variations to maintain system balance, thus causing the conventional power plants to deviate from operating points chosen to minimize the total cost of operating the system. The operators' concerns are compounded by the fact that conventional power plants are generally under their control and thus are dispatchable, whereas wind plants are controlled instead by nature. Although these are valid concerns, the key issue is not whether a system with a significant amount of wind capacity can be operated reliably, but rather to what extent the system operating costs are increased by the variability of the wind.

  15. Operating Reserve Implication of Alternative Implementations of an Energy Imbalance Service on Wind Integration in the Western Interconnection: Preprint

    SciTech Connect (OSTI)

    Milligan, M.; Kirby, B.; King, J.; Beuning, S.

    2011-07-01

    During the past few years, there has been significant interest in alternative ways to manage power systems over a larger effective electrical footprint. Large regional transmission organizations in the Eastern Interconnection have effectively consolidated balancing areas, achieving significant economies of scale that result in a reduction in required reserves. Conversely, in the Western Interconnection there are many balancing areas, which will result in challenges if there is significant wind and solar energy development in the region. A recent proposal to the Western Electricity Coordinating Council suggests a regional energy imbalance service (EIS). To evaluate this EIS, a number of analyses are in process or are planned. This paper describes one part of an analysis of the EIS's implication on operating reserves under several alternative scenarios of the market footprint and participation. We improve on the operating reserves method utilized in the Eastern Wind Integration and Transmission Study and apply this modified approach to data from the Western Wind and Solar Integration Study.

  16. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Vehicle (AFV) Low-Interest Loans Oklahoma has a private loan program with a 3% interest rate for the cost of converting private fleets to operate on alternative fuels and for the incremental cost of purchasing an original equipment manufacturer AFV. The loan repayment has a maximum six-year period. For more information, see the Oklahoma Department of Commerce loan application guidelines. Point of Contact Marshall Vogts Director of Programs Oklahoma Department of Commerce Phone: (405) 815-5339

  17. Data Collection for Current U.S. Wind Energy Projects: Component Costs, Financing, Operations, and Maintenance; January 2011 - September 2011

    SciTech Connect (OSTI)

    Martin-Tretton, M.; Reha, M.; Drunsic, M.; Keim, M.

    2012-01-01

    DNV Renewables (USA) Inc. (DNV) used an Operations and Maintenance (O&M) Cost Model to evaluate ten distinct cost scenarios encountered under variations in wind turbine component failure rates. The analysis considers: (1) a Reference Scenario using the default part failure rates within the O&M Cost Model, (2) High Failure Rate Scenarios that increase the failure rates of three major components (blades, gearboxes, and generators) individually, (3) 100% Replacement Scenarios that model full replacement of these components over a 20 year operating life, and (4) Serial Failure Scenarios that model full replacement of blades, gearboxes, and generators in years 4 to 6 of the wind project. DNV selected these scenarios to represent a broad range of possible operational experiences. Also in this report, DNV summarizes the predominant financing arrangements used to develop wind energy projects over the past several years and provides summary data on various financial metrics describing those arrangements.

  18. FIELD TEST PROGRAM TO DEVELOP COMPREHENSIVE DESIGN, OPERATING, AND COST DATA FOR MERCURY CONTROL SYSTEMS

    SciTech Connect (OSTI)

    Michael D. Durham

    2003-05-01

    With the Nation's coal-burning utilities facing the possibility of tighter controls on mercury pollutants, the U.S. Department of Energy is funding projects that could offer power plant operators better ways to reduce these emissions at much lower costs. Mercury is known to have toxic effects on the nervous system of humans and wildlife. Although it exists only in trace amounts in coal, mercury is released when coal burns and can accumulate on land and in water. In water, bacteria transform the metal into methylmercury, the most hazardous form of the metal. Methylmercury can collect in fish and marine mammals in concentrations hundreds of thousands times higher than the levels in surrounding waters. One of the goals of DOE is to develop technologies by 2005 that will be capable of cutting mercury emissions 50 to 70 percent at well under one-half of today's costs. ADA Environmental Solutions (ADA-ES) is managing a project to test mercury control technologies at full scale at four different power plants from 2000--2003. The ADA-ES project is focused on those power plants that are not equipped with wet flue gas desulfurization systems. ADA-ES has developed a portable system that will be tested at four different utility power plants. Each of the plants is equipped with either electrostatic precipitators or fabric filters to remove solid particles from the plant's flue gas. ADA-ES's technology will inject a dry sorbent, such as activated carbon, which removes the mercury and makes it more susceptible to capture by the particulate control devices. A fine water mist may be sprayed into the flue gas to cool its temperature to the range where the dry sorbent is most effective. PG&E National Energy Group is providing two test sites that fire bituminous coals and both are equipped with electrostatic precipitators and carbon/ash separation systems. Wisconsin Electric Power Company is providing a third test site that burns Powder River Basin (PRB) coal and has an electrostatic precipitator for particulate control. Alabama Power Company will host a fourth test at its Plant Gaston, which is equipped with a hot-side electrostatic precipitator and a downstream fabric filter.

  19. Integrating Volume Reduction and Packaging Alternatives to Achieve Cost Savings for Low Level Waste Disposal at the Rocky Flats Environmental Technology Site

    SciTech Connect (OSTI)

    Church, A.; Gordon, J.; Montrose, J. K.

    2002-02-26

    In order to reduce costs and achieve schedules for Closure of the Rocky Flats Environmental Technology Site (RFETS), the Waste Requirements Group has implemented a number of cost saving initiatives aimed at integrating waste volume reduction with the selection of compliant waste packaging methods for the disposal of RFETS low level radioactive waste (LLW). Waste Guidance Inventory and Shipping Forecasts indicate that over 200,000 m3 of low level waste will be shipped offsite between FY2002 and FY2006. Current projections indicate that the majority of this waste will be shipped offsite in an estimated 40,000 55-gallon drums, 10,000 metal and plywood boxes, and 5000 cargo containers. Currently, the projected cost for packaging, shipment, and disposal adds up to $80 million. With these waste volume and cost projections, the need for more efficient and cost effective packaging and transportation options were apparent in order to reduce costs and achieve future Site packaging a nd transportation needs. This paper presents some of the cost saving initiatives being implemented for waste packaging at the Rocky Flats Environmental Technology Site (the Site). There are many options for either volume reduction or alternative packaging. Each building and/or project may indicate different preferences and/or combinations of options.

  20. Alternative fuel transit buses

    SciTech Connect (OSTI)

    Motta, R.; Norton, P.; Kelly, K.

    1996-10-01

    The National Renewable Energy Laboratory (NREL) is a U.S. Department of Energy (DOE) national laboratory; this project was funded by DOE. One of NREL`s missions is to objectively evaluate the performance, emissions, and operating costs of alternative fuel vehicles so fleet managers can make informed decisions when purchasing them. Alternative fuels have made greater inroads into the transit bus market than into any other. Each year, the American Public Transit Association (APTA) surveys its members on their inventory and buying plans. The latest APTA data show that about 4% of the 50,000 transit buses in its survey run on an alternative fuel. Furthermore, 1 in 5 of the new transit buses that members have on order are alternative fuel buses. This program was designed to comprehensively and objectively evaluate the alternative fuels in use in the industry.

  1. FIELD TEST PROGRAM TO DEVELOP COMPREHENSIVE DESIGN, OPERATING, AND COST DATA FOR MERCURY CONTROL SYSTEMS

    SciTech Connect (OSTI)

    Michael D. Durham

    2004-10-01

    PG&E NEG Salem Harbor Station Unit 1 was successfully tested for applicability of activated carbon injection as a mercury control technology. Test results from this site have enabled a thorough evaluation of mercury control at Salem Harbor Unit 1, including performance, estimated cost, and operation data. This unit has very high native mercury removal, thus it was important to understand the impacts of process variables on native mercury capture. The team responsible for executing this program included plant and PG&E headquarters personnel, EPRI and several of its member companies, DOE, ADA, Norit Americas, Inc., Hamon Research-Cottrell, Apogee Scientific, TRC Environmental Corporation, Reaction Engineering, as well as other laboratories. The technical support of all of these entities came together to make this program achieve its goals. Overall the objectives of this field test program were to determine the mercury control and balance-of-plant impacts resulting from activated carbon injection into a full-scale ESP on Salem Harbor Unit 1, a low sulfur bituminous-coal-fired 86 MW unit. It was also important to understand the impacts of process variables on native mercury removal (>85%). One half of the gas stream was used for these tests, or 43 MWe. Activated carbon, DARCO FGD supplied by NORIT Americas, was injected upstream of the cold side ESP, just downstream of the air preheater. This allowed for approximately 1.5 seconds residence time in the duct before entering the ESP. Conditions tested in this field evaluation included the impacts of the Selective Non-Catalytic Reduction (SNCR) system on mercury capture, of unburned carbon in the fly ash, of adjusting ESP inlet flue gas temperatures, and of boiler load on mercury control. The field evaluation conducted at Salem Harbor looked at several sorbent injection concentrations at several flue gas temperatures. It was noted that at the mid temperature range of 322-327 F, the LOI (unburned carbon) lost some of its ability to capture vapor phase Hg, however activated carbon performed relatively well. At the normal operating temperatures of 298-306 F, mercury emissions from the ESP were so low that both particulate and elemental mercury were ''not detected'' at the detection limits of the Ontario Hydro method for both baseline and injection tests. The oxidized mercury however, was 95% lower at a sorbent injection concentration of 10 lbs/MMacf compared with baseline emissions. When the flue gas temperatures were increased to a range of 343-347 F, mercury removal efficiencies were limited to <25%, even at the same sorbent injection concentration. Other tests examined the impacts of fly ash LOI, operation of the SNCR system, and flue gas temperature on the native mercury capture without sorbent injection. Listed below are the main conclusions from this program: (1) SNCR on/off test showed no beneficial effect on mercury removal caused by the SNCR system. (2) At standard operating temperatures ({approx} 300 F), reducing LOI from 30-35% to 15-20% had minimal impact on Hg removal. (3) Increasing flue gas temperatures reduced Hg removal regardless of LOI concentrations at Salem Harbor (minimum LOI was 15%). Native mercury removal started to fall off at temperatures above 320 F. ACI effectiveness for mercury removal fell off at temperatures above 340 F. (4) Test method detection limits play an important role at Salem Harbor due to the low residual emissions. Examining the proposed MA rule, both the removal efficiency and the emission concentrations will be difficult to demonstrate on an ongoing basis. (5) Under tested conditions the baseline emissions met the proposed removal efficiency for 2006, but not the proposed emission concentration. ACI can meet the more-stringent 2012 emission limits, as long as measurement detection limits are lower than the Ontario Hydro method. SCEM testing was able to verify the low emissions. For ACI to perform at this level, process conditions need to match those obtained during testing.

  2. Text-Alternative Version: The L Prize-Winning LED A19 Replacement—What Commercial Building Owners/Operators Can Expect in 2012

    Broader source: Energy.gov [DOE]

    Below is the text-alternative version of the "The L Prize-Winning LED A19 Replacement—What Commercial Building Owners/Operators Can Expect in 2012" webcast, held January 18, 2012.

  3. Incorporation of the Department of Energy Acquisition Guide Chapter 16.2, Performance Evaluation and Measurement Plans for Cost-Reimbursement, Non-Management and Operating Contracts

    Broader source: Energy.gov [DOE]

    This subject guide chapter provides guidance for Performance Evaluation and Measurement Plans for Cost-Reimbursement, Non-Management and Operating Contracts.

  4. Strategic supply system design - a holistic evaluation of operational and production cost for a biorefinery supply chain

    SciTech Connect (OSTI)

    Lamers, Patrick; Tan, Eric C.D.; Searcy, Erin M.; Scarlata, Christopher J.; Cafferty, Kara G.; Jacobson, Jacob J.

    2015-08-20

    Pioneer cellulosic biorefineries across the United States rely on a conventional feedstock supply system based on one-year contracts with local growers, who harvest, locally store, and deliver feed-stock in low-density format to the conversion facility. While the conventional system is designed for high biomass yield areas, pilot scale operations have experienced feedstock supply shortages and price volatilities due to reduced harvests and competition from other industries. Regional supply dependency and the inability to actively manage feedstock stability and quality, provide operational risks to the biorefinery, which translate into higher investment risk. The advanced feedstock supply system based on a network of depots can mitigate many of these risks and enable wider supply system benefits. This paper compares the two concepts from a system-level perspective beyond mere logistic costs. It shows that while processing operations at the depot increase feedstock supply costs initially, they enable wider system benefits including supply risk reduction (leading to lower interest rates on loans), industry scale-up, conversion yield improvements, and reduced handling equipment and storage costs at the biorefinery. When translating these benefits into cost reductions per liter of gasoline equivalent (LGE), we find that total cost reductions between -$0.46 to -$0.21 per LGE for biochemical and -$0.32 to -$0.12 per LGE for thermochemical conversion pathways are possible. Naturally, these system level benefits will differ between individual actors along the feedstock supply chain. Further research is required with respect to depot sizing, location, and ownership structures.

  5. Strategic supply system design - a holistic evaluation of operational and production cost for a biorefinery supply chain

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lamers, Patrick; Tan, Eric C.D.; Searcy, Erin M.; Scarlata, Christopher J.; Cafferty, Kara G.; Jacobson, Jacob J.

    2015-08-20

    Pioneer cellulosic biorefineries across the United States rely on a conventional feedstock supply system based on one-year contracts with local growers, who harvest, locally store, and deliver feed-stock in low-density format to the conversion facility. While the conventional system is designed for high biomass yield areas, pilot scale operations have experienced feedstock supply shortages and price volatilities due to reduced harvests and competition from other industries. Regional supply dependency and the inability to actively manage feedstock stability and quality, provide operational risks to the biorefinery, which translate into higher investment risk. The advanced feedstock supply system based on a networkmore » of depots can mitigate many of these risks and enable wider supply system benefits. This paper compares the two concepts from a system-level perspective beyond mere logistic costs. It shows that while processing operations at the depot increase feedstock supply costs initially, they enable wider system benefits including supply risk reduction (leading to lower interest rates on loans), industry scale-up, conversion yield improvements, and reduced handling equipment and storage costs at the biorefinery. When translating these benefits into cost reductions per liter of gasoline equivalent (LGE), we find that total cost reductions between -$0.46 to -$0.21 per LGE for biochemical and -$0.32 to -$0.12 per LGE for thermochemical conversion pathways are possible. Naturally, these system level benefits will differ between individual actors along the feedstock supply chain. Further research is required with respect to depot sizing, location, and ownership structures.« less

  6. Coal flow aids reduce coke plant operating costs and improve production rates

    SciTech Connect (OSTI)

    Bedard, R.A.; Bradacs, D.J.; Kluck, R.W.; Roe, D.C.; Ventresca, B.P.

    2005-06-01

    Chemical coal flow aids can provide many benefits to coke plants, including improved production rates, reduced maintenance and lower cleaning costs. This article discusses the mechanisms by which coal flow aids function and analyzes several successful case histories. 2 refs., 10 figs., 1 tab.

  7. Cost analysis guidelines

    SciTech Connect (OSTI)

    Strait, R.S.

    1996-01-10

    The first phase of the Depleted Uranium Hexafluoride Management Program (Program)--management strategy selection--consists of several program elements: Technology Assessment, Engineering Analysis, Cost Analysis, and preparation of an Environmental Impact Statement (EIS). Cost Analysis will estimate the life-cycle costs associated with each of the long-term management strategy alternatives for depleted uranium hexafluoride (UF6). The scope of Cost Analysis will include all major expenditures, from the planning and design stages through decontamination and decommissioning. The costs will be estimated at a scoping or preconceptual design level and are intended to assist decision makers in comparing alternatives for further consideration. They will not be absolute costs or bid-document costs. The purpose of the Cost Analysis Guidelines is to establish a consistent approach to analyzing of cost alternatives for managing Department of Energy`s (DOE`s) stocks of depleted uranium hexafluoride (DUF6). The component modules that make up the DUF6 management program differ substantially in operational maintenance, process-options, requirements for R and D, equipment, facilities, regulatory compliance, (O and M), and operations risk. To facilitate a consistent and equitable comparison of costs, the guidelines offer common definitions, assumptions or basis, and limitations integrated with a standard approach to the analysis. Further, the goal is to evaluate total net life-cycle costs and display them in a way that gives DOE the capability to evaluate a variety of overall DUF6 management strategies, including commercial potential. The cost estimates reflect the preconceptual level of the designs. They will be appropriate for distinguishing among management strategies.

  8. Analysis of operations and cyber security policies for a system of cooperating Flexible Alternating Current Transmission System (FACTS) devices.

    SciTech Connect (OSTI)

    Phillips, Laurence R.; Tejani, Bankim; Margulies, Jonathan; Hills, Jason L.; Richardson, Bryan T.; Baca, Micheal J.; Weiland, Laura

    2005-12-01

    Flexible Alternating Current Transmission Systems (FACTS) devices are installed on electric power transmission lines to stabilize and regulate power flow. Power lines protected by FACTS devices can increase power flow and better respond to contingencies. The University of Missouri Rolla (UMR) is currently working on a multi-year project to examine the potential use of multiple FACTS devices distributed over a large power system region in a cooperative arrangement in which the FACTS devices work together to optimize and stabilize the regional power system. The report describes operational and security challenges that need to be addressed to employ FACTS devices in this way and recommends references, processes, technologies, and policies to address these challenges.

  9. Levelized Power Generation Cost Codes

    Energy Science and Technology Software Center (OSTI)

    1996-04-30

    LPGC is a set of nine microcomputer programs for estimating power generation costs for large steam-electric power plants. These programs permit rapid evaluation using various sets of economic and technical ground rules. The levelized power generation costs calculated may be used to compare the relative economics of nuclear and coal-fired plants based on life-cycle costs. Cost calculations include capital investment cost, operation and maintenance cost, fuel cycle cost, decommissioning cost, and total levelized power generationmore » cost. These programs can be used for quick analyses of power generation costs using alternative economic parameters, such as interest rate, escalation rate, inflation rate, plant lead times, capacity factor, fuel prices, etc. The two major types of electric generating plants considered are pressurized water reactor (PWR) and pulverized coal-fired plants. Data are also provided for the Large Scale Prototype Breeder (LSPB) type liquid metal reactor.« less

  10. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fleet Grants The Texas Commission on Environmental Quality (TCEQ) administers the Texas Clean Fleet Program (TCFP) as part of the Texas Emissions Reduction Plan. TCFP encourages owners of fleets containing diesel vehicles to permanently remove the vehicles from the road and replace them with alternative fuel vehicles (AFVs) or hybrid electric vehicles (HEVs). Grants are available to fleets to offset the incremental cost of such replacement projects. An entity that operates a fleet of at least 75

  11. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Heavy-Duty Alternative Fuel and Advanced Vehicle Purchase Vouchers The New York State Energy Research and Development Authority (NYSERDA) is providing incentives for alternative fuel trucks and buses and diesel emission controls. Incentives are released on a staggered schedule and include: Vouchers for public, private, and non-profit fleets for 80% of the incremental cost, up to $60,000, for the purchase or lease of all-electric Class 3 through 8 trucks operating 70% of the time and garaged in

  12. Depleted uranium management alternatives

    SciTech Connect (OSTI)

    Hertzler, T.J.; Nishimoto, D.D.

    1994-08-01

    This report evaluates two management alternatives for Department of Energy depleted uranium: continued storage as uranium hexafluoride, and conversion to uranium metal and fabrication to shielding for spent nuclear fuel containers. The results will be used to compare the costs with other alternatives, such as disposal. Cost estimates for the continued storage alternative are based on a life-cycle of 27 years through the year 2020. Cost estimates for the recycle alternative are based on existing conversion process costs and Capital costs for fabricating the containers. Additionally, the recycle alternative accounts for costs associated with intermediate product resale and secondary waste disposal for materials generated during the conversion process.

  13. Assessment of costs and benefits of flexible and alternative fuel use in the US transportation sector. Technical report twelve: Economic analysis of alternative uses for Alaskan North Slope natural gas

    SciTech Connect (OSTI)

    Not Available

    1993-12-01

    As part of the Altemative Fuels Assessment, the Department of Energy (DOE) is studying the use of derivatives of natural gas, including compressed natural gas and methanol, as altemative transportation fuels. A critical part of this effort is determining potential sources of natural gas and the economics of those sources. Previous studies in this series characterized the economics of unutilized gas within the lower 48 United States, comparing its value for methanol production against its value as a pipelined fuel (US Department of Energy 1991), and analyzed the costs of developing undeveloped nonassociated gas reserves in several countries (US Department of Energy 1992c). This report extends those analyses to include Alaskan North Slope natural gas that either is not being produced or is being reinjected. The report includes the following: A description of discovered and potential (undiscovered) quantities of natural gas on the Alaskan North Slope. A discussion of proposed altemative uses for Alaskan North Slope natural gas. A comparison of the economics of the proposed alternative uses for Alaskan North Slope natural gas. The purpose of this report is to illustrate the costs of transporting Alaskan North Slope gas to markets in the lower 48 States as pipeline gas, liquefied natural gas (LNG), or methanol. It is not intended to recommend one alternative over another or to evaluate the relative economics or timing of using North Slope gas in new tertiary oil recovery projects. The information is supplied in sufficient detail to allow incorporation of relevant economic relationships (for example, wellhead gas prices and transportation costs) into the Altemative Fuels Trade Model, the analytical framework DOE is using to evaluate various policy options.

  14. California Federal Facilities: Rate-Responsive Building Operation for Deeper Cost and Energy Savings

    SciTech Connect (OSTI)

    2012-05-01

    Dynamic pricing electricity tariffs, now the default for large customers in California (peak demand of 200 kW and higher for PG&E and SCE, and 20 kW and higher for SDG&E), are providing Federal facilities new opportunities to cut their electricity bills and help them meet their energy savings mandates. The U.S. Department of Energy’s (DOE) Federal Energy Management Program (FEMP) has created this fact sheet to help California federal facilities take advantage of these opportunities through “rate-responsive building operation.” Rate-responsive building operation involves designing your load management strategies around your facility’s variable electric rate, using measures that require little or no financial investment.

  15. Rough order of magnitude cost estimate for immobilization of 18.2 MT of plutonium using existing facilities at the Savannah River site: alternatives 3A/5A/6A/6B/7A/9A

    SciTech Connect (OSTI)

    DiSabatino, A., LLNL

    1998-06-01

    The purpose of this Cost Estimate Report is to identify preliminary capital and operating costs for a facility to immobilize 18.2 metric tons (nominal) of plutonium using ceramic in a new facility at Savannah River Site (SRS).

  16. FGD system capital and operating cost reductions based on improved thiosorbic scrubber system design and latest process innovations

    SciTech Connect (OSTI)

    Smith, K.; Tseng, S.; Babu, M.

    1994-12-31

    Dravo Lime Company has operated the Miami Fort wet scrubber FGD pilot test unit since late 1989 and has continued in-house R&D to improve the economics of the magnesium-enhanced scrubbing process. Areas investigated include the scrubber configuration, flue gas velocity, spray nozzle type, droplet size, mist eliminator design, additives to inhibit oxidation, improved solids dewatering, etc. Also tested was the forced oxidation Thioclear process. The data gathered from the pilot plant and in-house programs were used to evaluate the capital and operating costs for the improved systems. These evaluations were made with eye towards the choices electric utilities will need to make in the near future to meet the Phase II emission limits mandated by the 1990 Clean Air Act. Some of the process modifications investigated, for example, the dewatering improvements apply to potential beneficial retrofit of existing FGD systems today.

  17. Life-Cycle Cost and Risk Analysis of Alternative Configurations for Shipping Low-Level Radioactive Waste to the Nevada Test Site

    SciTech Connect (OSTI)

    PM Daling; SB Ross; BM Biwer

    1999-12-17

    The Nevada Test Site (NTS) is a major receiver of low-level radioactive waste (LLW) for disposal. Currently, all LLW received at NTS is shipped by truck. The trucks use highway routes to NTS that pass through the Las Vegas Valley and over Hoover Dam, which is a concern of local stakeholder groups in the State of Nevada. Rail service offers the opportunity to reduce transportation risks and costs, according to the Waste Management Programmatic Environmental Impact Statement (WM-PEIS). However, NTS and some DOE LLW generator sites are not served with direct rail service so intermodal transport is under consideration. Intermodal transport involves transport via two modes, in this case truck and rail, from the generator sites to NTS. LLW shipping containers would be transferred between trucks and railcars at intermodal transfer points near the LLW generator sites, NTS, or both. An Environmental Assessment (EA)for Intermodal Transportation of Low-Level Radioactive Waste to the Nevada Test Site (referred to as the NTSIntermodal -M) has been prepared to determine whether there are environmental impacts to alterations to the current truck routing or use of intermodal facilities within the State of Nevada. However, an analysis of the potential impacts outside the State of Nevada are not addressed in the NTS Intermodal EA. This study examines the rest of the transportation network between LLW generator sites and the NTS and evaluates the costs, risks, and feasibility of integrating intermodal shipments into the LLW transportation system. This study evaluates alternative transportation system configurations for NTS approved and potential generators based on complex-wide LLW load information. Technical judgments relative to the availability of DOE LLW generators to ship from their sites by rail were developed. Public and worker risk and life-cycle cost components are quantified. The study identifies and evaluates alternative scenarios that increase the use of rail (intermodal where needed) to transport LLW from generator sites to NTS.

  18. Alternative Compliance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Alternate Watch Office Germantown Watch Office When activated at senior leadership direction, the Forrestal Watch Office functions are transferred to a relocated Watch Office. This alternate Watch Office replicates the 24/7/365 mission and communications links resident in the Forrestal Watch Office. Related Topics emergency operations watch office

    Compliance Individual Permit: Alternative Compliance When permittees believe they have installed measures to minimize pollutants but are unable to

  19. Transportation Energy Futures Series: Alternative Fuel Infrastructure Expansion: Costs, Resources, Production Capacity, and Retail Availability for Low-Carbon Scenarios

    SciTech Connect (OSTI)

    Melaina, M. W.; Heath, G.; Sandor, D.; Steward, D.; Vimmerstedt, L.; Warner, E.; Webster, K. W.

    2013-04-01

    Achieving the Department of Energy target of an 80% reduction in greenhouse gas emissions by 2050 depends on transportation-related strategies combining technology innovation, market adoption, and changes in consumer behavior. This study examines expanding low-carbon transportation fuel infrastructure to achieve deep GHG emissions reductions, with an emphasis on fuel production facilities and retail components serving light-duty vehicles. Three distinct low-carbon fuel supply scenarios are examined: Portfolio: Successful deployment of a range of advanced vehicle and fuel technologies; Combustion: Market dominance by hybridized internal combustion engine vehicles fueled by advanced biofuels and natural gas; Electrification: Market dominance by electric drive vehicles in the LDV sector, including battery electric, plug-in hybrid, and fuel cell vehicles, that are fueled by low-carbon electricity and hydrogen. A range of possible low-carbon fuel demand outcomes are explored in terms of the scale and scope of infrastructure expansion requirements and evaluated based on fuel costs, energy resource utilization, fuel production infrastructure expansion, and retail infrastructure expansion for LDVs. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored transportation-related strategies for abating GHGs and reducing petroleum dependence.

  20. Alternative Fuels Data Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    License Fee Effective July 1, 2015, each alternative fuel supplier, refiner, distributor, terminal operator, importer or exporter of alternative fuel used in motor vehicles must...

  1. Cost of Ownership and Well-to-Wheels Carbon Emissions/Oil Use of Alternative Fuels and Advanced Light-Duty Vehicle Technologies

    SciTech Connect (OSTI)

    Elgowainy, Mr. Amgad; Rousseau, Mr. Aymeric; Wang, Mr. Michael; Ruth, Mr. Mark; Andress, Mr. David; Ward, Jacob; Joseck, Fred; Nguyen, Tien; Das, Sujit

    2013-01-01

    The U.S. Department of Energy (DOE), Argonne National Laboratory (Argonne), and the National Renewable Energy Laboratory (NREL) updated their analysis of the well-to-wheels (WTW) greenhouse gases (GHG) emissions, petroleum use, and the cost of ownership (excluding insurance, maintenance, and miscellaneous fees) of vehicle technologies that have the potential to significantly reduce GHG emissions and petroleum consumption. The analyses focused on advanced light-duty vehicle (LDV) technologies such as plug-in hybrid, battery electric, and fuel cell electric vehicles. Besides gasoline and diesel, alternative fuels considered include natural gas, advanced biofuels, electricity, and hydrogen. The Argonne Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) and Autonomie models were used along with the Argonne and NREL H2A models.

  2. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Environmental Control (DNREC) provides grant funding for public and private alternative ... The grant funds 75% of the cost of public access fueling infrastructure and 50% of the ...

  3. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    The North Carolina Department of Environment and Natural Resources Division of Air Quality provides grants for the incremental cost of original equipment manufacturer alternative ...

  4. Online tuning of impedance matching circuit for long pulse inductively coupled plasma source operationAn alternate approach

    SciTech Connect (OSTI)

    Sudhir, Dass; Bandyopadhyay, M. Chakraborty, A.; Kraus, W.; Gahlaut, A.; Bansal, G.

    2014-01-15

    Impedance matching circuit between radio frequency (RF) generator and the plasma load, placed between them, determines the RF power transfer from RF generator to the plasma load. The impedance of plasma load depends on the plasma parameters through skin depth and plasma conductivity or resistivity. Therefore, for long pulse operation of inductively coupled plasmas, particularly for high power (?100 kW or more) where plasma load condition may vary due to different reasons (e.g., pressure, power, and thermal), online tuning of impedance matching circuit is necessary through feedback. In fusion grade ion source operation, such online methodology through feedback is not present but offline remote tuning by adjusting the matching circuit capacitors and tuning the driving frequency of the RF generator between the ion source operation pulses is envisaged. The present model is an approach for remote impedance tuning methodology for long pulse operation and corresponding online impedance matching algorithm based on RF coil antenna current measurement or coil antenna calorimetric measurement may be useful in this regard.

  5. PEAT: an energy alternative

    SciTech Connect (OSTI)

    Schora, F.C.; Punwani, D.V.

    1980-01-01

    Even though peat is a low-heating value and low-bulk density fossil fuel which in its natural state contains over 80 percent moisture, it can be an economical alternative to coal, and fuel oil, as is the case in Iceland and Finland for direct combustion applications. This is because of the relative ease with which peat can be harvested, and the generally low sulfur and ash content of peat. Recent studies show that peat also has very favorable characteristics for conversion to synthetic fuels. Tests show that on the basis of chemistry and kinetics, peat is a better raw material than coal for production of synthetic fuels. Recent estimates also show that conversion of peat to high-Btu gas (>950 Btu/scf) is competitive with other alternatives of synthetic high-Btu gas. Therefore, peat can be an economical energy alternative depending upon location of peat deposits, region of energy need, scale of operation and cost of other energy alternatives.

  6. Dynamic Analysis of Hybrid Energy Systems under Flexible Operation and Variable Renewable Generation -- Part I: Dynamic Performance Analysis and Part II: Dynamic Cost

    SciTech Connect (OSTI)

    Humberto E. Garcia; Amit Mohanty; Wen-Chiao Lin; Robert S. Cherry

    2013-04-01

    Dynamic analysis of hybrid energy systems (HES) under flexible operation and variable renewable generation is considered in order to better understand various challenges and opportunities associated with the high system variability arising from the integration of renewable energy into the power grid. Unique consequences are addressed by devising advanced HES solutions in which multiple forms of energy commodities, such as electricity and chemical products, may be exchanged. Dynamic models of various unit operations are developed and integrated within two different HES options. One HES option, termed traditional, produces electricity only and consists of a primary heat generator (PHG) (e.g., a small modular reactor), a steam turbine generator, a wind farm, and a battery storage. The other HES option, termed advanced, includes not only the components present in the traditional option but also a chemical plant complex to repurpose excess energy for non-electricity services, such as for the production of chemical goods (e.g., transportation fuel). In either case, a given HES is connected to the power grid at a point of common coupling and requested to deliver a certain electricity generation profile as dictated by a regional power grid operator based on a predicted demand curve. Dynamic analysis of these highly-coupled HES are performed to identify their key dynamical properties and limitations and to prescribe solutions for best managing and mitigating the high variability introduced from incorporating renewable energy into the energy mix. A comparative dynamic cost analysis is also conducted to determine best HES options. The cost function includes a set of metrics for computing fixed costs, such as fixed operations and maintenance (O&M) and overnight capital costs, and also variable operational costs, such as cost of variability, variable O&M cost, and cost of environmental impact, together with revenues. Assuming different options for implementing PHG (e.g., natural gas, coal, nuclear), preliminary results identify the level of renewable penetration at which a given advanced HES option (e.g., a nuclear hybrid) becomes increasingly more economical than a traditional electricity-only generation solution. Conditions are also revealed under which carbon resources may be better utilized as carbon sources for chemical production rather than as combustion material for electricity generation.

  7. Use of Biostratigraphy to Increase Production, Reduce Operating Costs and Risks and Reduce Environmental Concerns in Oil Well Drilling

    SciTech Connect (OSTI)

    Edward Marks

    2005-09-09

    In the Santa Maria Basin, Santa Barbara County, California, four wells were processed and examined to determine the age and environment parameters in the oil producing sections. From west to east, we examined Cabot No. 1 Ferrero-Hopkins,from 3917.7 m (12850 ft) to 4032 m (13225 ft); Sun No. 5 Blair, from 3412 m (11190 ft) to 3722.5 m (12210 ft); Triton No. 10 Blair, from 1552 m (5090 ft) to 1863 m (6110 ft); and OTEC No. 1 Boyne, from 2058 m (6750 ft) to 2528 m (8293 ft). Lithic reports with lithic charts were prepared and submitted on each well. These tested for Sisquoc Fm lithology to be found in the Santa Maria area. This was noted in the OTEC No. 1 Boyne interval studied. The wells also tested for Monterey Fm. lithology, which was noted in all four wells examined. Composite samples of those intervals [combined into 9.15 m (30 foot) intervals] were processed for paleontology. Although the samples were very refractory and siliceous, all but one (Sun 5 Blair) yielded index fossil specimens, and as Sun 5 Blair samples below 3686 m (12090 ft) were processed previously, we were able to make identifications that would aid this study. The intervals examined were of the Sisquoc Formation, the Low Resistivity and the High Resistivity sections of the Monterey Formation. The Lower Sisquoc and the top of the late Miocene were identified by six index fossils: Bolivina barbarana, Gyroidina soldanii rotundimargo, Bulimina montereyana, Prunopyle titan, Axoprunum angelinum and Glyphodiscus stellatus. The Low Resistivity Monterey Fm. was identified by eight index fossils, all of which died out at the top of the late Miocene, late Mohnian: Nonion goudkoffi, Brizalina girardensis, Cibicides illingi, Siphocampe nodosaria, Stephanogonia hanzawai, Uvigerina modeloensis, Buliminella brevior, Tytthodiscus sp.and the wide geographic ranging index pelagic fossil, Sphaeroidinellopsis subdehiscens. The High Resistivity Monterey Fm. was identified by eight index fossils, all of which died out at the top of the late Miocene, early Mohnian: Bolivina aff hughesi, Rotalia becki, Suggrunda californica, Virgulina grandis, Virgulina ticensis, Bulimina ecuadorana, Denticula lauta and Nonion medio-costatum. Please see Appendix B, Fig. 1, Neogene Zones, p. 91 and Appendix C, chart 5, p. 99 By the use of Stratigraphy, employing both Paleontology and Lithology, we can increase hydrocarbon production, reduce operating costs and risks by the identification of the productive sections, and reduce environmental concerns by drilling less dry holes needlessly.

  8. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fueling Infrastructure Tax Credit for Residents Through the Residential Energy Tax Credit program, qualified residents may receive a tax credit for 25% of alternative fuel infrastructure project costs, up to $750. Qualified residents may receive a tax credit for 50% of project costs, up to $750. Qualified alternative fuels include electricity, natural gas, gasoline blended with at least 85% ethanol (E85), propane, and other fuels that the Oregon Department of Energy approves. A

  9. UPS CNG Truck Fleet Final Results: Alternative Fuel Truck Evaluation Project (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2002-08-01

    This report provides transportation professionals with quantitative, unbiased information on the cost, maintenance, operational and emissions characteristics of CNG as one alternative to conventional diesel fuel for heavy-duty trucking applications.

  10. MRS Action Plan Task B report: Analyses of alternative designs and operating approaches for a Monitored Retrievable Storage Facility

    SciTech Connect (OSTI)

    Woods, W.D.; Jowdy, A.K.; Keehn, C.H.; Gale, R.M.; Smith, R.I.

    1988-12-01

    The Nuclear Waste Policy Amendments Act (NWPAA) instituted a number of changes in the DOE commercial nuclear waste management system. After passage of the Act, the DOE initiated a number of systems studies to reevaluate the role of Monitored Retrievable Storage (MRS) within the federal waste management system. This report summarizes the results of a study to determine the schedules and costs of developing those MRS facilities needed under a number of scenarios, with differing functions allocated to the MRS and/or different spent fuel acceptance schedules. Nine cases were defined for the system study, seven of which included an MRS Facility. The study cases or scenarios evaluated varied relative to the specific functions to be performed at the MRS. The scenarios ranged in magnitude from storage and shipment of bare, intact spent fuel to consolidating the spent fuel into repository emplacement containers prior to storage and shipment. Each scenario required specific modifications to be made to the design developed for the MRS proposal to Congress (the Conceptual Design Report). 41 figs., 326 tabs.

  11. Alternative Financing Guide

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2012-03-12

    This directive provides guidance for identification, planning and approval of alternatively-financed projects. Alternative Financing ("AF") is a process whereby DOE and its operational elements obtain the use of privately-developed capital assets through lease.

  12. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Technician Training The Alternative Fuels Technician Certification Act (Act) regulates the training, testing, and certification of technicians and trainees who install, modify, repair, or renovate equipment used in alternative fueling infrastructure and in the conversion of any engine to operate on an alternative fuel. This includes original equipment manufacturer engines dedicated to operate on an alternative fuel. Plug-in electric vehicles (PEVs), PEV charging infrastructure, and PEV

  13. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fuel Vehicle (AFV) Decal The state motor fuel tax does not apply to passenger vehicles, certain buses, or commercial vehicles that are powered by an alternative fuel, if they obtain an AFV decal. Owners or operators of such vehicles that also own or operate their own personal fueling stations are required to pay an annual alternative fuel decal fee, as listed below. Motor vehicles licensed as historic vehicles that are powered by alternative fuels are exempt from the motor fuels tax

  14. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fueling Infrastructure Grants The Texas Commission on Environmental Quality (TCEQ) administers the Alternative Fueling Facilities Program (AFFP) as part of the Texas Emissions Reduction Plan. AFFP provides grants for 50% of eligible costs, up to $600,000, to construct, reconstruct, or acquire a facility to store, compress, or dispense alternative fuels in Texas air quality nonattainment areas. Qualified alternative fuels include biodiesel, electricity, natural gas, hydrogen, propane,

  15. Cost-effectiveness of controlling emissions for various alternative-fuel vehicle types, with vehicle and fuel price subsidies estimated on the basis of monetary values of emission reductions

    SciTech Connect (OSTI)

    Wang, M.Q.

    1993-12-31

    Emission-control cost-effectiveness is estimated for ten alternative-fuel vehicle (AFV) types (i.e., vehicles fueled with reformulated gasoline, M85 flexible-fuel vehicles [FFVs], M100 FFVs, dedicated M85 vehicles, dedicated M100 vehicles, E85 FFVS, dual-fuel liquefied petroleum gas vehicles, dual-fuel compressed natural gas vehicles [CNGVs], dedicated CNGVs, and electric vehicles [EVs]). Given the assumptions made, CNGVs are found to be most cost-effective in controlling emissions and E85 FFVs to be least cost-effective, with the other vehicle types falling between these two. AFV cost-effectiveness is further calculated for various cases representing changes in costs of vehicles and fuels, AFV emission reductions, and baseline gasoline vehicle emissions, among other factors. Changes in these parameters can change cost-effectiveness dramatically. However, the rank of the ten AFV types according to their cost-effectiveness remains essentially unchanged. Based on assumed dollars-per-ton emission values and estimated AFV emission reductions, the per-vehicle monetary value of emission reductions is calculated for each AFV type. Calculated emission reduction values ranged from as little as $500 to as much as $40,000 per vehicle, depending on AFV type, dollar-per-ton emission values, and baseline gasoline vehicle emissions. Among the ten vehicle types, vehicles fueled with reformulated gasoline have the lowest per-vehicle value, while EVs have the highest per-vehicle value, reflecting the magnitude of emission reductions by these vehicle types. To translate the calculated per-vehicle emission reduction values to individual AFV users, AFV fuel or vehicle price subsidies are designed to be equal to AFV emission reduction values. The subsidies designed in this way are substantial. In fact, providing the subsidies to AFVs would change most AFV types from net cost increases to net cost decreases, relative to conventional gasoline vehicles.

  16. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fuel Vehicle (AFV) and Infrastructure Tax Credit Businesses and individuals are eligible for an income tax credit of 50% of the incremental or conversion cost for qualified AFVs, up to $19,000 per vehicle. A tax credit is also available for 50% of the equipment and labor costs for the purchase and installation of alternative fuel infrastructure on qualified AFV fueling property. The maximum credit is $1,000 per residential electric vehicle charging station, and $10,000 per publicly

  17. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fuel and Alternative Fuel Vehicle (AFV) Fund The North Carolina State Energy Office administers the Energy Policy Act (EPAct) Credit Banking and Selling Program, which enables the state to generate funds from the sale of EPAct 1992 credits. The funds that EPAct credit sales generate are deposited into the Alternative Fuel Revolving Fund (Fund) for state agencies to offset the incremental costs of purchasing biodiesel blends of at least 20% (B20) or ethanol blends of at least 85%

  18. Assessment of costs and benefits of flexible and alternative fuel use in the U.S. transportation sector. Technical report fourteen: Market potential and impacts of alternative fuel use in light-duty vehicles -- A 2000/2010 analysis

    SciTech Connect (OSTI)

    1996-01-01

    In this report, estimates are provided of the potential, by 2010, to displace conventional light-duty vehicle motor fuels with alternative fuels--compressed natural gas (CNG), liquefied petroleum gas (LPG), methanol from natural gas, ethanol from grain and from cellulosic feedstocks, and electricity--and with replacement fuels such as oxygenates added to gasoline. The 2010 estimates include the motor fuel displacement resulting both from government programs (including the Clean Air Act and EPACT) and from potential market forces. This report also provides an estimate of motor fuel displacement by replacement and alterative fuels in the year 2000. However, in contrast to the 2010 estimates, the year 2000 estimate is restricted to an accounting of the effects of existing programs and regulations. 27 figs., 108 tabs.

  19. Transient Inverse Calibration of Site-Wide Groundwater Model to Hanford Operational Impacts from 1943 to 1996--Alternative Conceptual Model Considering Interaction with Uppermost Basalt Confined Aquifer

    SciTech Connect (OSTI)

    Vermeul, Vincent R.; Cole, Charles R.; Bergeron, Marcel P.; Thorne, Paul D.; Wurstner, Signe K.

    2001-08-29

    The baseline three-dimensional transient inverse model for the estimation of site-wide scale flow parameters, including their uncertainties, using data on the transient behavior of the unconfined aquifer system over the entire historical period of Hanford operations, has been modified to account for the effects of basalt intercommunication between the Hanford unconfined aquifer and the underlying upper basalt confined aquifer. Both the baseline and alternative conceptual models (ACM-1) considered only the groundwater flow component and corresponding observational data in the 3-Dl transient inverse calibration efforts. Subsequent efforts will examine both groundwater flow and transport. Comparisons of goodness of fit measures and parameter estimation results for the ACM-1 transient inverse calibrated model with those from previous site-wide groundwater modeling efforts illustrate that the new 3-D transient inverse model approach will strengthen the technical defensibility of the final model(s) and provide the ability to incorporate uncertainty in predictions related to both conceptual model and parameter uncertainty. These results, however, indicate that additional improvements are required to the conceptual model framework. An investigation was initiated at the end of this basalt inverse modeling effort to determine whether facies-based zonation would improve specific yield parameter estimation results (ACM-2). A description of the justification and methodology to develop this zonation is discussed.

  20. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    and Infrastructure Financing The SouthCarolinaSAVES (SCSAVES) Green Community Program provides low cost financing to eligible government entities, institutions, and commercial and industrial entities for qualified conservation measures, including natural gas and propane vehicle conversions, incremental costs of eligible vehicles, and alternative fueling infrastructure. Financing is available for up to 100% of the project cost ranging from $500,000 to $5 million; projects must have a payback

  1. Pollution prevention cost savings potential

    SciTech Connect (OSTI)

    Celeste, J.

    1994-12-01

    The waste generated by DOE facilities is a serious problem that significantly impacts current operations, increases future waste management costs, and creates future environmental liabilities. Pollution Prevention (P2) emphasizes source reduction through improved manufacturing and process control technologies. This concept must be incorporated into DOE`s overall operating philosophy and should be an integral part of Total Quality Management (TQM) program. P2 reduces the amount of waste generated, the cost of environmental compliance and future liabilities, waste treatment, and transportation and disposal costs. To be effective, P2 must contribute to the bottom fine in reducing the cost of work performed. P2 activities at LLNL include: researching and developing innovative manufacturing; evaluating new technologies, products, and chemistries; using alternative cleaning and sensor technologies; performing Pollution Prevention Opportunity Assessments (PPOAs); and developing outreach programs with small business. Examples of industrial outreach are: innovative electroplating operations, printed circuit board manufacturing, and painting operations. LLNL can provide the infrastructure and technical expertise to address a wide variety of industrial concerns.

  2. OOTW COST TOOLS

    SciTech Connect (OSTI)

    HARTLEY, D.S.III; PACKARD, S.L.

    1998-09-01

    This document reports the results of a study of cost tools to support the analysis of Operations Other Than War (OOTW). It recommends the continued development of the Department of Defense (DoD) Contingency Operational Support Tool (COST) as the basic cost analysis tool for 00TWS. It also recommends modifications to be included in future versions of COST and the development of an 00TW mission planning tool to supply valid input for costing.

  3. Phase II - final report study of alternatives for future operations of the naval petroleum and oil shale reserves NOSR 1 & 3, Colorado

    SciTech Connect (OSTI)

    1996-12-01

    The US Department of Energy (DOE) has asked Gustavson Associates, Inc. to serve as an Independent Petroleum Consultant under contract DE-AC01-96FE64202. This authorizes a study and recommendations regarding future development of Naval Petroleum Oil Shales Reserves Nos. 1 and 3 (NOSR 1 and 3) in Garfield County, Colorado (Figure 0.1). The report that follows is the Phase II Final Report for that study. Additional details are provided in the Addendum (the Phase 1 Property Description and Fact Finding Report). The key property elements that positively affect the estimated value of NOSR 1 and 3 include the following: working interest income from producing oil and gas leases, income from grazing or leasing of grazing rights, potential income from oil and gas leasing on exploratory (or nonprospective) acreage, potential value of trading surface real estate as ranch land for livestock grazing (56,577 acres). Key elements that negatively impact the estimated value include: environmental assessment costs, gas prices, operating budgets, and lease sale expenses.

  4. Policy Flash 2013-40 Acquisition Guide Chapter 43.3 Maintaining Alignment of Project Management with Contract Management of Non-Management and Operating (M&O) Cost Reimburstment Contracts

    Broader source: Energy.gov [DOE]

    Attached is Policy Flash 2013-40 Acquisition Guide Chapter 43.3 Maintaining Alignment of Project Management with Contract Management of Non-Management and Operating (M&O) Cost Reimbursement...

  5. An Alternative Low-Cost Process for Deposition of MCrAlY Bond Coats for Advanced Syngas/Hydrogen Turbine Applications

    SciTech Connect (OSTI)

    Zhang, Ying

    2015-09-11

    The objective of this project was to develop and optimize MCrAlY bond coats for syngas/hydrogen turbine applications using a low-cost electrolytic codeposition process. Prealloyed CrAlY-based powders were codeposited into a metal matrix of Ni, Co or Ni-Co during the electroplating process, and a subsequent post-deposition heat treatment converted it to the MCrAlY coating. Our research efforts focused on: (1) investigation of the effects of electro-codeposition configuration and parameters on the CrAlY particle incorporation in the NiCo-CrAlY composite coatings; (2) development of the post-deposition heat treating procedure; (3) characterization of coating properties and evaluation of coating oxidation performance; (4) exploration of a sulfurfree electroplating solution; (5) cost analysis of the present electrolytic codeposition process. Different electro-codeposition configurations were investigated, and the rotating barrel system demonstrated the capability of depositing NiCo-CrAlY composite coatings uniformly on the entire specimen surface, with the CrAlY particle incorporation in the range 37-42 vol.%. Post-deposition heat treatment at 1000-1200 °C promoted interdiffusion between the CrAlY particles and the Ni-Co metal matrix, resulting in β/γ’/γ or β/γ’ phases in the heat-treated coatings. The results also indicate that the post-deposition heat treatment should be conducted at temperatures ≤1100 °C to minimize Cr evaporation and outward diffusion of Ti. The electro-codeposited NiCrAlY coatings in general showed lower hardness and surface roughness than thermal spray MCrAlY coatings. Coating oxidation performance was evaluated at 1000-1100 °C in dry and wet air environments. The initial electro-codeposited NiCoCrAlY coatings containing relatively high sulfur did not show good oxidation resistance. After modifications of the coating process, the cleaner NiCoCrAlY coating exhibited good oxidation performance at 1000 °C during the 2,000 1-h cyclic oxidation test. A sulfur-free fluoboratebased plating solution was explored in order to reduce the sulfur level in the electro-codeposited MCrAlY coatings. However, chemical reactions occurred between the CrAlY powder and the fluoborate plating solution, resulting in dark powdery coatings. The fluoborate-based plating bath can thus only be used to codeposit more inert particles (e.g., oxides or carbides) instead of the present Al-containing metallic particles.

  6. Operation Warfighter Internship Fair

    Broader source: Energy.gov [DOE]

    Attendees: Participants of Operation Warfighter Program Cost: Free Supports: Veteran and Disability Employment Programs

  7. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fuel Excise Tax Credit NOTE: This incentive was retroactively extended multiple times, most recently through December 31, 2016, by Public Law 114-113, 2015. A tax incentive is available for alternative fuel that is sold for use or used as a fuel to operate a motor vehicle. A tax credit in the amount of $0.50 per gallon is available for the following alternative fuels: compressed natural gas (CNG), liquefied natural gas (LNG), liquefied hydrogen, liquefied petroleum gas (propane),

  8. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Vehicle Acquisition and Fuel Use Requirements for State and Alternative Fuel Provider Fleets Under the Energy Policy Act (EPAct) of 1992, as amended, certain state government and alternative fuel provider fleets are required to acquire alternative fuel vehicles (AFVs) as a portion of their annual light-duty vehicle acquisitions. Compliance is required by fleets that operate, lease, or control 50 or more light-duty vehicles within the United States. Of those 50 vehicles, at least 20 must be used

  9. Alternative Fuels Data Center: Smithtown Selects CNG to Cut Refuse

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Collection Costs Smithtown Selects CNG to Cut Refuse Collection Costs to someone by E-mail Share Alternative Fuels Data Center: Smithtown Selects CNG to Cut Refuse Collection Costs on Facebook Tweet about Alternative Fuels Data Center: Smithtown Selects CNG to Cut Refuse Collection Costs on Twitter Bookmark Alternative Fuels Data Center: Smithtown Selects CNG to Cut Refuse Collection Costs on Google Bookmark Alternative Fuels Data Center: Smithtown Selects CNG to Cut Refuse Collection Costs

  10. Capital and operating cost estimates. Volume I. Preliminary design and assessment of a 12,500 BPD coal-to-methanol-to-gasoline plant. [Grace C-M-G Plant, Henderson County, Kentucky

    SciTech Connect (OSTI)

    Not Available

    1982-08-01

    This Deliverable No. 18b - Capital and Operating Cost Estimates includes a detailed presentation of the 12,500 BPD coal-to-methanol-to-gasoline plant from the standpoint of capital, preoperations, start-up and operations cost estimation. The base capital cost estimate in June 1982 dollars was prepared by the Ralph M. Parsons Company under the direction of Grace. The escalated capital cost estimate as well as separate estimates for preoperations, startup and operations activities were developed by Grace. The deliverable consists of four volumes. Volume I contains details of methodology used in developing the capital cost estimate, summary information on a base June 1982 capital cost, details of the escalated capital cost estimate and separate sections devoted to preoperations, start-up, and operations cost. The base estimate is supported by detailed information in Volumes II, III and IV. The degree of detail for some units was constrained due to proprietary data. Attempts have been made to exhibit the estimating methodology by including data on individual equipment pricing. Proprietary details are available for inspection upon execution of nondisclosure and/or secrecy agreements with the licensors to whom the data is proprietary. Details of factoring certain pieces of equipment and/or entire modules or units from the 50,000 BPD capital estimate are also included. In the case of the escalated capital estimate, Grace has chosen to include a sensitivity analysis which allows for ready assessment of impacts of escalation rates (inflation), contingency allowances and the construction interest financing rates on the escalated capital cost. Each of the estimates associated with bringing the plant to commercial production rates has as a basis the schedule and engineering documentation found in Deliverable No. 14b - Process Engineering and Mechanical Design Report, No. 28b - Staffing Plans, No. 31b - Construction Plan, and No. 33b - Startup and Operation Plan.

  11. Beyond pollution prevention: Managing life-cycle costs

    SciTech Connect (OSTI)

    Cohan, D.; Gess, D. )

    1993-01-01

    Companies that purchases and use chemicals and materials in their everyday operation are finding that disposing of these products is becoming increasingly expensive. These disposal and liability costs have been the motivating factor behind recent efforts at pollution prevention. This paper suggests an alternative approach: considering the full life-cycle costs of chemicals and materials at the time purchase decisions are made. Life-cycle cost is the sum of all the costs that a product is expected to incur from the time of its purchase, during its use, until the disposal of any wastes or by-products and beyond as long as liabilities may remain. It represents the product's real cost to the company, and as such is a better basis for making cost-effective decisions. By using life-cycle costs to make decisions, companies can prevent uneconomical decisions on potentially hazardous materials and more effectively minimize overall costs. Life-cycle cost management can also help in the formulation of pollution prevention plans by identifying cost-effective waste-reduction alternatives. Although the concepts of life-cycle cost management are straightforward and intuitive, applying these concepts to real decisions may be challenging. This paper presents an overview of life-cycle cost management, discusses some of the challenges companies face applying this approach to real decisions, and provides solutions that meet these challenges.

  12. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Infrastructure Grants The Maryland Energy Administration (MEA) administers the Maryland Alternative Fuel Infrastructure Program (AFIP), which provides grants to develop public access alternative fueling and charging infrastructure. Only Maryland-based private businesses are eligible, and projects must take place in the state. Grant awards will range from $35,000 to $500,000 and applicant cost share must be at least 50%. Funding is not currently available for the AFIP (verified April 2016). For

  13. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fueling Infrastructure Tax Credit An income tax credit is available to eligible taxpayers who construct or purchase and install qualified alternative fueling infrastructure. The tax credit is 20% of the total allowable costs associated with construction or purchase and installation of the equipment, up to $400,000 per facility. For the purpose of this tax credit, qualified alternative fuels include natural gas and propane. This tax credit expires December 31, 2017. (Reference West Virginia Code

  14. Compressed natural gas and liquefied petroleum gas as alternative fuels

    SciTech Connect (OSTI)

    Moussavi, M.; Al-Turk, M. . Civil Engineering Dept.)

    1993-12-01

    The use of alternative fuels in the transportation industry has gained a strong support in recent years. In this paper an attempt was made to evaluate the use of liquefied petroleum gas (LPG) and compressed natural gas (NG) by 25 LPG-bifuel and 14 NG-bifuel vehicles that are operated by 33 transit systems throughout Nebraska. A set of performance measures such as average fuel efficiency in kilometers per liter, average fuel cost per kilometer, average oil consumption, and average operation and maintenance cost for alternatively fueled vehicles were calculated and compared with similar performance measures of gasoline powered vehicles. The results of the study showed that the average fuel efficiency of gasoline is greater than those of LPG and NG, and the average fuel costs (dollars per kilometer) for LPG and NG are smaller than those for gasoline for most of the vehicles under this study.

  15. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fuel and Vehicle Tax Alternative fuels used to operate on-road vehicles are taxed at a rate of $0.162 per gasoline gallon equivalent (GGE). Alternative fuels are taxed at the same rate as gasoline and gasohol (5.1% of the statewide average wholesale price of a gallon of self-serve unleaded regular gasoline). Refer to the Virginia Department of Motor Vehicles (DMV) Fuels Tax Rates and Alternative Fuels Conversion website for fuel-specific GGE calculations. All-electric vehicles (EVs)

  16. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Dealer and Commercial User License Beginning January 1, 2017, alternative fuel dealers and alternative fuel commercial users must apply for a license from the Michigan Department of Treasury. Commercial users are defined as those operating vehicles with three or more axles, or two axles and a gross vehicle weight rating exceeding 26,000 pounds, that operate in more than one state. Alternative fuel dealers must pay a license fee of $500 and commercial users must pay a license fee of $50. For the

  17. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Vehicle Incremental Cost Allocation The U.S. General Services Administration (GSA) must allocate the incremental cost of purchasing alternative fuel vehicles (AFVs) across the entire fleet of vehicles distributed by GSA. This mandate also applies to other federal agencies that procure vehicles for federal fleets. For more information, see the GSA's AFV website. (Reference 42 U.S. Code 13212 (c)) Point of Contact U.S. General Services Administration Phone: (703) 605-5630

  18. Alternative Liquid Fuels Simulation Model (AltSim).

    SciTech Connect (OSTI)

    Baker, Arnold Barry; Williams, Ryan; Drennen, Thomas E.; Klotz, Richard

    2007-10-01

    The Alternative Liquid Fuels Simulation Model (AltSim) is a high-level dynamic simulation model which calculates and compares the production costs, carbon dioxide emissions, and energy balances of several alternative liquid transportation fuels. These fuels include: corn ethanol, cellulosic ethanol, biodiesel, and diesels derived from natural gas (gas to liquid, or GTL) and coal (coal to liquid, or CTL). AltSim allows for comprehensive sensitivity analyses on capital costs, operation and maintenance costs, renewable and fossil fuel feedstock costs, feedstock conversion efficiency, financial assumptions, tax credits, CO{sub 2} taxes, and plant capacity factor. This paper summarizes the preliminary results from the model. For the base cases, CTL and cellulosic ethanol are the least cost fuel options, at $1.60 and $1.71 per gallon, respectively. Base case assumptions do not include tax or other credits. This compares to a $2.35/gallon production cost of gasoline at September, 2007 crude oil prices ($80.57/barrel). On an energy content basis, the CTL is the low cost alternative, at $12.90/MMBtu, compared to $22.47/MMBtu for cellulosic ethanol. In terms of carbon dioxide emissions, a typical vehicle fueled with cellulosic ethanol will release 0.48 tons CO{sub 2} per year, compared to 13.23 tons per year for coal to liquid.

  19. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    State Highway Electric Vehicle Supply Equipment (EVSE) Regulations The North Carolina Department of Transportation (NCDOT) may install and operate publicly-accessible EVSE at state-owned highway rest stops so long as it has developed a mechanism to charge EVSE users a fee to recover the costs related to electricity consumed, process the user fee, and operate and maintain the EVSE. NCDOT may consult with other state agencies and industry representatives to develop this required cost recovery

  20. Startup Costs

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-03-28

    This chapter discusses startup costs for construction and environmental projects, and estimating guidance for startup costs.

  1. Accurate Detection of Impurities in Hydrogen Fuel at Lower Cost | Argonne

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Laboratory Accurate Detection of Impurities in Hydrogen Fuel at Lower Cost Technology available for licensing: Two alternative strategies for detecting impurities in the hydrogen used in fuel cells. Both yield highly accurate results and use simpler, less costly equipment. Facilitates the analysis of trace impurities in high-pressure hydrogen streams Replaces costly analytical equipment with inexpensive, easy-to-operate, portable sensor devices PDF icon impurity_detection

  2. Alternative Transportation Technologies: Hydrogen, Biofuels,...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    July 26, 2010. PDF icon alttransstudy.pdf More Documents & Publications An Energy Evolution:Alternative Fueled Vehicle Comparisons AsiaITS Low-Cost Hydrogen-from-Ethanol: A ...

  3. Alternative Fuel School Bus Information Resources

    SciTech Connect (OSTI)

    Not Available

    2004-04-01

    This 4-page Clean Cities fact sheet provides a list of important resources for learning more about alternative fuels in school buses. It includes information regarding Alternative Fuel School Bus Manufacturers, Alternative Fuel HD Engine Manufacturers, Alternative Fuel School Bus Operators, and Key Web Resources for Alternative Fuels.

  4. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fuel and Plug-in Hybrid Electric Vehicle Retrofit Regulations Converting a vehicle to operate on an alternative fuel in lieu of the original gasoline or diesel fuel is prohibited unless the California Air Resources Board (ARB) has evaluated and certified the retrofit system. ARB will issue certification to the manufacturer of the system in the form of an Executive Order once the manufacturer demonstrates compliance with the emissions, warranty, and durability requirements. A

  5. Ironmaking Process Alternative Screening Study, Volume 1

    SciTech Connect (OSTI)

    Lockwood Greene, . .

    2005-01-06

    Iron in the United States is largely produced from iron ore mined in the United States or imported from Canada or South America. The iron ore is typically smelted in Blast Furnaces that use primarily iron ore, iron concentrate pellets metallurgical coke, limestone and lime as the raw materials. Under current operating scenarios, the iron produced from these Blast Furnaces is relatively inexpensive as compared to current alternative iron sources, e.g. direct iron reduction, imported pig iron, etc. The primary problem the Blast Furnace Ironmaking approach is that many of these Blast furnaces are relatively small, as compared to the newer, larger Blast Furnaces; thus are relatively costly and inefficient to operate. An additional problem is also that supplies of high-grade metallurgical grade coke are becoming increasingly in short supply and costs are also increasing. In part this is due to the short supply and costs of high-grade metallurgical coals, but also this is due to the increasing necessity for environmental controls for coke production. After year 2003 new regulations for coke product environmental requirement will likely be promulgated. It is likely that this also will either increase the cost of high-quality coke production or will reduce the available domestic U.S. supply. Therefore, iron production in the United States utilizing the current, predominant Blast Furnace process will be more costly and would likely be curtailed due to a coke shortage. Therefore, there is a significant need to develop or extend the economic viability of Alternate Ironmaking Processes to at least partially replace current and declining blast furnace iron sources and to provide incentives for new capacity expansion. The primary conclusions of this comparative Study of Alternative Ironmaking Process scenarios are: (1) The processes with the best combined economics (CAPEX and OPEX impacts in the I.R.R. calculation) can be grouped into those Fine Ore based processes with no scrap charge and those producing Hot Metal for charge to the EAF. (2) A pronounced sensitivity to Steel Scrap Cost was felt less by the Hot Metal Processes and the Fine Ore Processes that typically do not utilize much purchased scrap. (3) In terms of evolving processes, the Tecnored Process (and in particular, the lower-operating cost process with integral co-generation of electrical power) was in the most favorable groupings at all scrap cost sensitivities. (4) It should be noted also that the Conventional Blast Furnace process utilizing Non-Recovery coke (from a continuous coking process with integral co-generation of electrical power) and the lower-capital cost Mini Blast Furnace also showed favorable Relative Economics for the low and median Scrap Cost sensitivities. (5) The lower-cost, more efficient MauMee Rotary Hearth Process that uses a Briquetted Iron Unit Feed (instead of a dried or indurated iron ore pellet) also was in the most favorable process groupings. Those processes with lower-cost raw materials (i.e. fine ore and/or nonmetallurgical coal as the reductant) had favorable combined economics. In addition, the hot metal processes (in part due to the sensible heat impacts in the EAF and due to their inherently lower costs) also had favorable combined economics.

  6. ENERGY STAR® Operation Change Out Initial Results Save Nearly $11 Million in Energy Costs at 84 U.S. Military Bases

    Broader source: Energy.gov [DOE]

    WASHINGTON - The United States Department of Energy (DOE) today announced the initial results of energy cost reduction by 84 military bases that have shifted away from traditional lighting to...

  7. Federal oversight of alternative bond systems under SMCRA (Surface Mining Control and Reclamation Act)

    SciTech Connect (OSTI)

    Beier, A.E.; McElfish, J.M. Jr.

    1989-01-01

    The 1977 Surface Mining Control and Reclamation Act (SMCRA) requires mine operators to post reclamation bonds before mining begins. The Federal Office of Surface Mining Reclamation and Enforcement (OSMRE) has approved alternative bond systems in seven states. These systems, rather than requiring bond amounts at the full cost of reclamation, require operators to submit only a flat rate, acreage specific bond. Additional reclamation costs should be covered by a supplemental fund composed generally of permit fees, taxes, or penalties. In many cases, alternative bond systems fail to ensure that funds will be available to reclaim coal mined land in the event of operator default, as required by SMCRA. OSMRE needs to take a more active role in oversight of existing state alternative bond systems to ensure that reclamation occurs.

  8. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fuel Vehicle (AFV) Loan Program The Oregon Department of Energy (ODOE) AFV Revolving Fund provides loans to public agencies, private entities, and tribes for the incremental cost of AFVs and AFV conversions. Priority will be given to converting petroleum-powered vehicles to AFVs. The loan recipient may be responsible for a fee of 0.1% of the loan, up to $2,500, as well as fees to cover the cost of application processing. ODOE may set the interest rate anywhere from 0% to the current

  9. Liquid phase methanol LaPorte process development unit: Modification operation, and support studies. Task 3.6/3.7: Alternative catalyst/life run

    SciTech Connect (OSTI)

    Not Available

    1991-01-28

    In April 1987, Air Products started the third and final contract with the US Department of Energy to develop the Liquid Phase Methanol (LPMEOH) process. One of the objectives was to identify alternative commercial catalyst(s) for the process. This objective was strategically important as we want to demonstrate that the LPMEOH process is flexible and not catalyst selection limited. Among three commercially available catalysts evaluated in the lab, the catalyst with a designation of F21/0E75-43 was the most promising candidate. The initial judging criteria included not only the intrinsic catalyst activity but also the ability to be used effectively in a slurry reactor. The catalyst was then advanced for a 40-day life test in a laboratory 300 cc autoclave. The life test result also revealed superior stability when compared with that of a standard catalyst. Consequently, the new catalyst was recommended for demonstration in the Process Development Unit (PDU) at LaPorte, Texas. This report details the methodology of testing and selecting the catalyst.

  10. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fuel Vehicle (AFV) Parking Incentive Programs The California Department of General Services (DGS) and California Department of Transportation (DOT) must develop and implement AFV parking incentive programs in public parking facilities operated by DGS with 50 or more parking spaces and park-and-ride lots owned and operated by DOT. The incentives must provide meaningful and tangible benefits to drivers, such as preferential spaces, reduced fees, and fueling infrastructure. Fueling

  11. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Emissions Reductions Grants The Carl Moyer Memorial Air Quality Standards Attainment Program (Program) provides incentives to cover the incremental cost of purchasing engines and equipment that are cleaner than required by law. Eligible projects include heavy-duty fleet modernization, light-duty vehicle replacements and retrofits, idle reduction technology, off-road vehicle and equipment purchases, and alternative fuel and electric vehicle infrastructure projects. The Program provides funds for

  12. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Air Pollution Control Program The Air Pollution Control Program assists state, local, and tribal agencies in planning, developing, establishing, improving, and maintaining adequate programs for prevention and control of air pollution or implementation of national air quality standards. Plans may emphasize alternative fuels, vehicle maintenance, and transportation choices to reduce vehicle miles traveled. Eligible applicants may receive federal funding for up to 60% of project costs to implement

  13. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Diesel Emissions Reduction Grants The New Hampshire Department of Environmental Services (NHDES) provides U.S. Environmental Protection Agency Diesel Emissions Reduction Act (DERA) funding for projects that reduce diesel emissions in New Hampshire. Funding for between 25% and 100% of eligible project costs is available for businesses, individuals, and local or state agencies that reduce diesel emissions by converting engines to alternative fuels, retrofitting exhaust controls, purchasing new

  14. INDEPENDENT COST REVIEW (ICR)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Report SOP Standard Operating Procedure TEC Total Estimated Cost TIPR Technical ... FY13 FY14 FY15 FY16 Total PED Construction TEC OPC TPC Note: above values include MR...

  15. Manufacturing of Monolithic Electrodes from Low-Cost Renewable...

    Office of Scientific and Technical Information (OSTI)

    of Monolithic Electrodes from Low-Cost Renewable Resources Lignin, a low-cost, biomass derived precursor, was selected as an alternative for carbon based free standing...

  16. Alternative solvents/technologies for paint stripping

    SciTech Connect (OSTI)

    Tsang, M.N.; Harris, T.L.

    1990-01-01

    Paint stripping is a necessary part of maintenance at US Air Force Air Logistics Centers. The Waste from Air Force paint stripping operations contains toxic chemicals that require special handling and disposal at considerable cost. Solvent emissions of volatile organic compounds (VOCs) into the atmosphere are another source of pollution. These wastes are hazardous to the environment and to operating personnel, and are now regulated by the US Environmental Protection Agency, which can impose fines for discharges that exceed the established limits. This report describes the research project titled Alternative Solvents/Technologies for Paint Stripping being conducted by the Idaho National Engineering Laboratory for the Engineering and Services Center at Tyndall Air Force Base. This report also includes the results obtained in Phase 1. 8 refs., 3 tabs.

  17. Glen Ganyon Dam, Colorado River Storage Project, Arizona. The short-run economic cost of environmental constraints on hydropower operations. Final report

    SciTech Connect (OSTI)

    Harpman, D.A.

    1997-06-01

    In October of 1995, the Secretary of the Interior announced that Glen Canyon Dam would be operated under the Modified Low Fluctuating Flow (MLFF) criteria to protect downstream archeological, cultural, aquatic and riparian resources. Although the annual and monthly amounts of water released downstream remain the same, MLFF imposes a unique and complex set of constraints on hourly and daily hydropower operations. These constraints include restrictions on ramp rates (hourly rate of change in release), minimum flows, maximum flows, and the daily change in flow. In addition, a key component of MLFF operations is adaptive management which establishes a framework of research and monitoring on which future changes in operation will be based. Consequently, MLFF operations are not static and variants of these hourly constraints may be contemplated in the future. This paper summarizes the environmental concerns which led to MLFF, reviews some pertinent electric power concepts, and describes current institutional and market conditions. A generalized method for simulating and valuing hourly hydroelectric generation under various operational constraints is then introduced.

  18. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fuel Tax The excise tax imposed on compressed natural gas (CNG), liquefied natural gas (LNG), and liquefied petroleum gas (LPG or propane) used to operate a vehicle can be paid through an annual flat rate sticker tax based on the following vehicle weights: Unladen Weight Fee All passenger cars and other vehicles 4,000 pounds (lbs.) or less $36 More than 4,000 lbs. but less than 8,001 lbs. $72 More than 8,000 lbs. but less than 12,001 lbs. $120 12,001 lbs. or more $168 Alternatively,

  19. Cost-effectiveness analysis of TxDOT LPG fleet conversion. Volume 1. Interim research report

    SciTech Connect (OSTI)

    Euritt, M.A.; Taylor, D.B.; Mahmassani, H.

    1992-10-01

    Increased emphasis on energy efficiency and air quality has resulted in a number of state and federal initiatives examining the use of alternative fuels for motor vehicles. Texas' program for alternate fuels includes liquefied petroleum gas (LPG). Based on an analysis of 30-year life-cycle costs, development of a propane vehicle program for the Texas Department of Transportation (TxDOT) would cost about $24.3 million (in 1991 dollars). These costs include savings from lower-priced LPG and differentials between propane and gasoline/diesel in infrastructure costs for a fueling station, vehicle costs, and operating costs. The 30-year life-cycle costs translate into an average annual vehicle cost increase of $308, or about 2.5 cents more per vehicle mile of travel. Sensitivity analyses are performed on the discount rate, price of propane, maintenance savings, vehicle utilization, diesel vehicles, extended vehicle life, original equipment manufacturer (OEM) vehicles, and operating and infrastructure costs. The best results are obtained when not converting diesel vehicles, converting only large fleets, and extending the period the vehicle is kept in service. Combining these factors yields results that are most cost-effective for TxDOT. This is volume one of two volumes.

  20. Impacts of Western Area Power Administration`s power marketing alternatives on electric utility systems

    SciTech Connect (OSTI)

    Veselka, T.D.; Portante, E.C.; Koritarov, V.

    1995-03-01

    This technical memorandum estimates the effects of alternative contractual commitments that may be initiated by the Western Area Power Administration`s Salt Lake City Area Office. It also studies hydropower operational restrictions at the Salt Lake City Area Integrated Projects in combination with these alternatives. Power marketing and hydropower operational effects are estimated in support of Western`s Electric Power Marketing Environmental Impact Statement (EIS). Electricity production and capacity expansion for utility systems that will be directly affected by alternatives specified in the EIS are simulated. Cost estimates are presented by utility type and for various activities such as capacity expansion, generation, long-term firm purchases and sales, fixed operation and maintenance expenses, and spot market activities. Operational changes at hydropower facilities are also investigated.

  1. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fuel Use Requirement All state agencies must, to the extent practicable, use 100% biofuels or electricity to operate all publicly owned vehicles. Agencies may substitute natural gas or propane for electricity or biofuel if the Washington State Department of Commerce (Department) determines that electricity and biofuel are not reasonably available. Practicability and measures of compliance are defined in rules adopted by the Washington State Department of Commerce. In addition,

  2. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fleet Emissions Reduction Requirements - South Coast The South Coast Air Quality Management District (SCAQMD) requires government fleets and private contractors under contract with public entities to purchase non-diesel lower emission and alternative fuel vehicles. The rule applies to transit bus, school bus, refuse hauler, and other vehicle fleets of at least 15 vehicles that operate in Los Angeles, San Bernardino, Riverside, and Orange counties. (Reference SCAQMD Rules 1186.1 and 1191-1196)

  3. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Low Emission Vehicle (LEV) Standards California's LEV II exhaust emissions standards apply to Model Year (MY) 2004 and subsequent model year passenger cars, light-duty trucks, and medium-duty passenger vehicles meeting specified exhaust standards. The LEV II standards represent the maximum exhaust emissions for LEVs, Ultra Low Emission Vehicles, and Super Ultra Low Emission Vehicles, including flexible fuel, bi-fuel, and dual-fuel vehicles when operating on an alternative fuel. MY 2009 and

  4. Qualification of Alternative Fuels

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Qualification of Alternative Fuels May 8, 2012 Pyrolysis Oil Workshop Thomas Butcher Sustainable Energy Technologies Department Applications Baseline - Residential and Light Commercial Pressure-atomized burners with 100-150 psi fuel pressure, no fuel heating; Cyclic operation - to 12,000 cycles per year; Fuel filtration to 90 microns or finer; Storage for periods of 1 year, possibly longer; Storage temperature varied; Visible range flame detection for safety; Nitrile seal materials common; Fuels

  5. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Propane Education, Research, and Training The Propane Education and Research Act of 1996 established the Propane Education and Research Council (PERC) to develop programs education and training programs for safe propane use. PERC is funded and operated by the propane industry, and helps coordinate efforts to promote the use of propane as an alternative fuel. The Propane Education and Research Enhancement Act of 2014 expanded PERC's duties by tasking the council with developing training programs

  6. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Aftermarket Alternative Fuel Vehicle (AFV) Conversions Conventional original equipment manufacturer vehicles altered to operate on propane, natural gas, methane gas, ethanol, or electricity are classified as aftermarket AFV conversions. All vehicle conversions, except those that are completed for a vehicle to run on electricity, must meet current applicable U.S. Environmental Protection Agency (EPA) standards. For more information about vehicle conversion certification requirements, see the

  7. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fuel Vehicle (AFV) Registration A fee of $75 is required for the registration of an AFV that operates on electricity, solar power, or any other source of energy not otherwise taxed under the state motor fuel tax laws. Compressed natural gas, liquefied natural gas, and liquefied petroleum gas (propane) are not subject to this requirement. (Reference Nebraska Revised Statutes 60-306 and 60-3,191

  8. A Systematic Approach to Better Understanding Integration Costs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... (non-dispatchable wind and solar) impact the ... operations and maintenance costs (VO&M), fuel costs, and ... identical except for an operation parameter change (e.g., ...

  9. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Electric Vehicle Supply Equipment (EVSE) Tax Credit An eligible business enterprise may claim an income tax credit for the purchase or lease of qualified EVSE provided that the EVSE is located in the state and accessible to the public. The amount of the credit is 10% of the cost of the EVSE, up to $2,500. For more information, see the Georgia Department of Natural Resources Alternative Fuels and Tax Credits website. (Reference Georgia Code 48-7-40.16) Point of Contact James Udi Environmental

  10. 2017 Levelized Costs AEO 2012 Early Release

    U.S. Energy Information Administration (EIA) Indexed Site

    2013 AFV Definitions, Sources, and Explanatory Notes 1 March 2013 Alternative Fuel Vehicle Data Definitions, Sources, and Explanatory Notes Definitions Key Terms Definitions Aftermarket Vehicle Converter An entity (company or organization) that converts vehicles from operating on a traditional fuel (gasoline or petroleum-based diesel) to operate on an alternative fuel or from one alternative fuel to another alternative fuel. The converted vehicle may operate exclusively on the fuel or power

  11. Theoretical, Methodological, and Empirical Approaches to Cost Savings: A Compendium

    SciTech Connect (OSTI)

    M Weimar

    1998-12-10

    This publication summarizes and contains the original documentation for understanding why the U.S. Department of Energy's (DOE's) privatization approach provides cost savings and the different approaches that could be used in calculating cost savings for the Tank Waste Remediation System (TWRS) Phase I contract. The initial section summarizes the approaches in the different papers. The appendices are the individual source papers which have been reviewed by individuals outside of the Pacific Northwest National Laboratory and the TWRS Program. Appendix A provides a theoretical basis for and estimate of the level of savings that can be" obtained from a fixed-priced contract with performance risk maintained by the contractor. Appendix B provides the methodology for determining cost savings when comparing a fixed-priced contractor with a Management and Operations (M&O) contractor (cost-plus contractor). Appendix C summarizes the economic model used to calculate cost savings and provides hypothetical output from preliminary calculations. Appendix D provides the summary of the approach for the DOE-Richland Operations Office (RL) estimate of the M&O contractor to perform the same work as BNFL Inc. Appendix E contains information on cost growth and per metric ton of glass costs for high-level waste at two other DOE sites, West Valley and Savannah River. Appendix F addresses a risk allocation analysis of the BNFL proposal that indicates,that the current approach is still better than the alternative.

  12. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Clean Truck Replacement Program The Regional Truck Replacement Program (Program) through the Port Authority of New York & New Jersey provides funding for up to 50% of the cost to replace a heavily emitting truck, up to $25,000. Preference is given to trucks with Model Year 1994 to 1997 engines and funding is limited to two replacement trucks per eligible applicant. Eligible recipients include independent owner operators and licensed motor carriers servicing the port with drayage trucks

  13. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Conversion Rebate The Nebraska Energy Office (NEO) offers rebates for qualified AFV conversions completed after January 4, 2016. The rebate amount for vehicle conversions is 50% of the cost of the equipment and installation, up to $4,500 per vehicle. Qualified vehicle conversions include new equipment that is installed in Nebraska by a certified installer to convert a conventional fuel vehicle to operate using a qualified clean-burning motor fuel. These fuels include hydrogen, compressed natural

  14. Biomass fuel use in agriculture under alternative fuel prices

    SciTech Connect (OSTI)

    Bjornstad, D.J.; Hillsman, E.L.; Tepel, R.C.

    1984-11-01

    A linear programming model is used to analyze cost-competitiveness of biomass fuels in agricultural applications for the projected year 1990. With all else held constant, the prices of conventional fuels are increased and analytically compared to prices for biomass fuel products across a variety of end uses. Potential penetration of biomass fuels is measured as the share of each conventional fuel for which cost savings could be realized by substituting biomass fuels. This study examines the cost competitiveness of biomass fuels produced on farms, relative to conventional fuels (diesel, gasoline, natural gas, LPG, fuel oil, and electricity), as the prices of conventional fuels change. The study is targeted at the year 1990 and considers only fuel use in the agricultural sector. The method of analysis is to project fuel demands for ten farm operations in the year 1990 and to match these with biomass fuel substitutes from ten feedstock and nine process alternatives. In all, 61 feedstock/process combinations are possible. The matching of fuel demands and biomass fuels occurs in a linear programming model that seeks to meet fuel demands at minimum cost. Two types of biomass fuel facilities are considered, assuming a decentralized fuel distribution system. The first includes on-farm production units such as oil presses, low-Btu gasifiers, biogas digestors and direct combustion units. The second type of facility would be run by a farm co-operative. The primary data describing the biomass technologies are cost per unit output, where costs are calculated as first-year capital charges, plus al l allocable operating expenses, less any by-products of value. All costs assume commercial purchase of equipment. Homemade or makeshift installations are not considered. 1 reference.

  15. Alternate-fuel reactor studies

    SciTech Connect (OSTI)

    Evans, K. Jr.; Ehst, D.A.; Gohar, Y.; Jung, J.; Mattas, R.F.; Turner, L.R.

    1983-02-01

    A number of studies related to improvements and/or greater understanding of alternate-fueled reactors is presented. These studies cover the areas of non-Maxwellian distributions, materials and lifetime analysis, a /sup 3/He-breeding blanket, tritium-rich startup effects, high field magnet support, and reactor operation spanning the range from full D-T operation to operation with no tritium breeding.

  16. BPA's Costs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    links Financial Information Financial Public Processes Asset Management Cost Verification Process Rate Cases BP-18 Rate Case Related Publications Meetings and Workshops Customer...

  17. Low Cost, Durable Seal

    SciTech Connect (OSTI)

    Roberts, George; Parsons, Jason; Friedman, Jake

    2010-12-17

    Seal durability is critical to achieving the 2010 DOE operational life goals for both stationary and transportation PEM fuel cell stacks. The seal material must be chemically and mechanically stable in an environment consisting of aggressive operating temperatures, humidified gases, and acidic membranes. The seal must also be producible at low cost. Currentlyused seal materials do not meet all these requirements. This project developed and demonstrated a high consistency hydrocarbon rubber seal material that was able to meet the DOE technical and cost targets. Significant emphasis was placed on characterization of the material and full scale molding demonstrations.

  18. SLCA/IP power alternative screening method (SPASM)

    SciTech Connect (OSTI)

    Palmer, S.C. |; Ancrile, J.D.

    1995-03-01

    This report describes the SLCA/IP Power Alternative Screening Method (SPASM), which was used to screen 784 possible combinations of electric power marketing alternatives and dam operational scenarios to provide a representative range for analysis in the Western Area Power Administration Salt Lake City Area Integrated Projects (SLCA/IP) Electric Power Marketing Environmental Impact Statement (EIS). Each combination consists of one energy and capacity commitment level and one operational scenario for each of the hydroelectric facilities at Glen Canyon Dam, Flaming Gorge Dam, and the Aspinall Unit. The total annual cost to the SLCA/IP firm power customers of each of the 784 combinations is estimated and included in a relative frequency distribution. A relative frequency distribution is also generated for each marketing alternative. The number of combinations is reduced to 12 by taking the mean value and endpoint value for each of four marketing alternatives. Some minor deviations from this procedure, which are made for political purposes, are explained. 9 figs., 14 tabs.

  19. Operation Schedule

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Operation Schedule Daily Hours of Operation

  20. LEDSGP/Transportation Toolkit/Key Actions/Develop Alternative...

    Open Energy Info (EERE)

    and Plan Prioritize alternative development scenarios based on factors such as economic, environmental, and social benefits & costs, technical & institutional capacity & barriers,...

  1. Cost-effectiveness analysis of TxDOT LPG fleet conversion. Volume 2. Interim research report

    SciTech Connect (OSTI)

    Euritt, M.A.; Taylor, D.B.; Mahmassani, H.

    1992-11-01

    Increased emphasis on energy efficiency and air quality has resulted in a number of state and federal initiatives examining the use of alternative fuels for motor vehicles. Texas' program for alternate fuels includes liquefied petroleum gas (LPG), commonly called propane. Based on an analysis of 30-year life-cycle costs, development of a propane vehicle program for the Texas Department of Transportation (TxDOT) would cost about $24.3 million (in 1991 dollars). These costs include savings from lower-priced propane and differentials between propane and gasoline/diesel in infrastructure costs, vehicle costs, and operating costs. The 30-year life-cycle costs translate into an average annual vehicle cost increase of $308, or about 2.5 cents more per vehicle mile of travel. Based on the cost-effectiveness analysis and assumptions, there are currently no TxDOT locations that can be converted to propane without additional financial outlays. This is volume two of two volumes.

  2. Spent fuel storage alternatives

    SciTech Connect (OSTI)

    O'Connell, R.H.; Bowidowicz, M.A.

    1983-01-01

    This paper compares a small onsite wet storage pool to a dry cask storage facility in order to determine what type of spent fuel storage alternatives would best serve the utilities in consideration of the Nuclear Waste Policy Act of 1982. The Act allows the DOE to provide a total of 1900 metric tons (MT) of additional spent fuel storage capacity to utilities that cannot reasonably provide such capacity for themselves. Topics considered include the implementation of the Act (DOE away-from reactor storage), the Act's impact on storage needs, and an economic evaluation. The Waste Act mandates schedules for the determination of several sites, the licensing and construction of a high-level waste repository, and the study of a monitored retrievable storage facility. It is determined that a small wet pool storage facility offers a conservative and cost-effective approach for many stations, in comparison to dry cask storage.

  3. Primer on Motor Fuel Excise Taxes and the Role of Alternative Fuels and Energy Efficient Vehicles

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    A Primer on Motor Fuel Excise Taxes and the Role of Alternative Fuels and Energy Efficient Vehicles Alex Schroeder National Renewable Energy Laboratory Technical Report NREL/TP-5400-60975 August 2015 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. Contract No.

  4. REACT: Alternatives to Critical Materials in Magnets

    SciTech Connect (OSTI)

    2012-01-01

    REACT Project: The 14 projects that comprise ARPA-E’s REACT Project, short for “Rare Earth Alternatives in Critical Technologies”, are developing cost-effective alternatives to rare earths, the naturally occurring minerals with unique magnetic properties that are used in electric vehicle (EV) motors and wind generators. The REACT projects will identify low-cost and abundant replacement materials for rare earths while encouraging existing technologies to use them more efficiently. These alternatives would facilitate the widespread use of EVs and wind power, drastically reducing the amount of greenhouse gases released into the atmosphere.

  5. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Local Examples Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... More in this section... Search Federal State Local Examples

  6. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Tools Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... Fuel Properties Search Fuel Properties Comparison Create a custom chart

  7. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Incentives Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... More in this section... Search Federal State Local Examples

  8. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Federal Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... More in this section... Search Federal State Local Examples Summary

  9. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    State Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... More in this section... Search Federal State Local Examples Summary

  10. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Tools Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... Truckstop Electrification Truck Stop Electrification Locator Locate

  11. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... Vehicle and Infrastructure Cash-Flow Evaluation Model VICE 2.0: Vehicle

  12. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Incentives Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... More in this section... Search Federal State Local Examples

  13. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Incentives » Federal Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... More in this section... Search Federal State Local

  14. Yearly Energy Costs for Buildings

    Energy Science and Technology Software Center (OSTI)

    1991-03-20

    COSTSAFR3.0 generates a set of compliance forms which will be attached to housing Requests for Proposals (RFPs) issued by Departments or Agencies of the Federal Government. The compliance forms provide a uniform method for estimating the total yearly energy cost for each proposal. COSTSAFR3.0 analyzes specific housing projects at a given site, using alternative fuel types, and considering alternative housing types. The program is designed around the concept of minimizing overall costs through energy conservationmore » design, including first cost and future utility costs, and estabilishes a standard design to which proposed housing designs are compared. It provides a point table for each housing type that can be used to determine whether a proposed design meets the standard and how a design can be modified to meet the standard.« less

  15. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Hybrid Electric Vehicle (HEV) and Zero Emission Vehicle (ZEV) Purchase Vouchers Through the Hybrid Truck and Bus Voucher Incentive Project (HVIP), the California Air Resources Board provides vouchers to eligible fleets to reduce the incremental cost of qualified medium- and heavy-duty HEVs and ZEVs at the time of purchase. Vouchers are available on a first-come, first-served basis and range from $12,000 to $110,000. Only fleets that operate vehicles in California are eligible. HVIP funds for the

  16. Clean Cities Guide to Alternative Fuel Commercial Lawn Equipment (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01

    Guide explains the different types of alternative fuel commercial mowers and lists the makes and models of the ones available on the market. Turf grass is a fixture of the American landscape and the American economy. It is the nation's largest irrigated crop, covering more than 40 million acres. Legions of lawnmowers care for this expanse during the growing season-up to year-round in the warmest climates. The annual economic impact of the U.S. turf grass industry has been estimated at more than $62 billion. Lawn mowing also contributes to the nation's petroleum consumption and pollutant emissions. Mowers consume 1.2 billion gallons of gasoline annually, about 1% of U.S. motor gasoline consumption. Commercial mowing accounts for about 35% of this total and is the highest-intensity use. Large property owners and mowing companies cut lawns, sports fields, golf courses, parks, roadsides, and other grassy areas for 7 hours per day and consume 900 to 2,000 gallons of fuel annually depending on climate and length of the growing season. In addition to gasoline, commercial mowing consumes more than 100 million gallons of diesel annually. Alternative fuel mowers are one way to reduce the energy and environmental impacts of commercial lawn mowing. They can reduce petroleum use and emissions compared with gasoline- and diesel-fueled mowers. They may also save on fuel and maintenance costs, extend mower life, reduce fuel spillage and fuel theft, and promote a 'green' image. And on ozone alert days, alternative fuel mowers may not be subject to the operational restrictions that gasoline mowers must abide by. To help inform the commercial mowing industry about product options and potential benefits, Clean Cities produced this guide to alternative fuel commercial lawn equipment. Although the guide's focus is on original equipment manufacturer (OEM) mowers, some mowers can be converted to run on alternative fuels. For more information about propane conversions. This guide may be particularly helpful for organizations that are already using alternative fuels in their vehicles and have an alternative fuel supply or electric charging in place (e.g., golf cart charging stations at most golf courses). On the flip side, experiencing the benefits of using alternative fuels in mowing equipment may encourage organizations to try them in on-road vehicles as well. Whatever the case, alternative fuel commercial lawnmowers are a powerful and cost-effective way to reduce U.S. petroleum dependence and help protect the environment.

  17. NREL: Technology Deployment - Mobile App Puts Alternative Fueling Station

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Locations in the Palm of Your Hand Mobile App Puts Alternative Fueling Station Locations in the Palm of Your Hand News NREL Developed Mobile App for Alternative Fueling Station Locations Released Energy Department Launches Alternative Fueling Station Locator App Using the Enhanced Alternative Fueling Station Locator Alternative Fueling Stations Database Sponsors U.S. Department of Energy Related Stories Remote Shading Tool Has Potential to Reduce Solar Soft Costs by 17 Cents/Watt Contact

  18. cost savings

    National Nuclear Security Administration (NNSA)

    Savannah River Area had the opportunity to learn from the Savannah River Site's continuous improvement success stories when SRS management and operations contractor...

  19. Defense Remote Handled Transuranic Waste Cost/Schedule Optimization Study

    SciTech Connect (OSTI)

    Pierce, G.D. . Joint Integration Office); Beaulieu, D.H. ); Wolaver, R.W.; Carson, P.H. Corp., Boulder, CO )

    1986-11-01

    The purpose of this study is to provide the DOE information with which it can establish the most efficient program for the long management and disposal, in the Waste Isolation Pilot Plant (WIPP), of remote handled (RH) transuranic (TRU) waste. To fulfill this purpose, a comprehensive review of waste characteristics, existing and projected waste inventories, processing and transportation options, and WIPP requirements was made. Cost differences between waste management alternatives were analyzed and compared to an established baseline. The result of this study is an information package that DOE can use as the basis for policy decisions. As part of this study, a comprehensive list of alternatives for each element of the baseline was developed and reviewed with the sites. The principle conclusions of the study follow. A single processing facility for RH TRU waste is both necessary and sufficient. The RH TRU processing facility should be located at Oak Ridge National Laboratory (ORNL). Shielding of RH TRU to contact handled levels is not an economic alternative in general, but is an acceptable alternative for specific waste streams. Compaction is only cost effective at the ORNL processing facility, with a possible exception at Hanford for small compaction of paint cans of newly generated glovebox waste. It is more cost effective to ship certified waste to WIPP in 55-gal drums than in canisters, assuming a suitable drum cask becomes available. Some waste forms cannot be packaged in drums, a canister/shielded cask capability is also required. To achieve the desired disposal rate, the ORNL processing facility must be operational by 1996. Implementing the conclusions of this study can save approximately $110 million, compared to the baseline, in facility, transportation, and interim storage costs through the year 2013. 10 figs., 28 tabs.

  20. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... More in this section... Search Federal State Local Examples Summary Tables Key Federal Legislation The information below includes a brief chronology and

  1. Renewable Energy Cost Optimization Spreadsheet

    Energy Science and Technology Software Center (OSTI)

    2007-12-31

    The Software allow users to determine the optimum combination of renewable energy technologies to minimize life cycle cost for a facility by employing various algorithms which calculate initial and operating cost, energy delivery, and other attributes associated with each technology as a function of size.

  2. Optimizing Blast Furnace Operation to Increase Efficiency and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Blast Furnace Operation to Increase Efficiency and Lower Costs Optimizing Blast Furnace Operation to Increase Efficiency and Lower Costs PDF icon cfdblastfurnace.pdf More ...

  3. Technology advances keeping LNG cost-competitive

    SciTech Connect (OSTI)

    Bellow, E.J. Jr.; Ghazal, F.P.; Silverman, A.J.; Myers, S.D.

    1997-06-02

    LNG plants, often very expensive in the past, will in the future need to cost less to build and operate and yet maintain high safety and reliability standards, both during construction and operation. Technical advancements, both in the process and in equipment scaling, manufacturing, and metallurgy, will provide much of the impetus for the improved economics. Although world energy demand is predicted to grow on average of about 2% annually over the next decade, LNG is expected to contribute an increasing portion of this growth with annual growth rates averaging about 7%. This steep growth increase will be propelled mainly by the environmentally friendlier burning characteristics of natural gas and the strong industrial growth in Asian and pacific Rim countries. While LNG is emerging as the fuel of choice for developing economies, its delivered cost to consumers will need to stay competitive with alternate energy supplies if it is to remain in front. The paper discusses LNG process development, treating process, equipment developments (man heat exchanger, compressors, drivers, and pressure vessels), and economy of scale.

  4. Tank waste remediation system operational scenario

    SciTech Connect (OSTI)

    Johnson, M.E.

    1995-05-01

    The Tank Waste Remediation System (TWRS) mission is to store, treat, and immobilize highly radioactive Hanford waste (current and future tank waste and the strontium and cesium capsules) in an environmentally sound, safe, and cost-effective manner (DOE 1993). This operational scenario is a description of the facilities that are necessary to remediate the Hanford Site tank wastes. The TWRS Program is developing technologies, conducting engineering analyses, and preparing for design and construction of facilities necessary to remediate the Hanford Site tank wastes. An Environmental Impact Statement (EIS) is being prepared to evaluate proposed actions of the TWRS. This operational scenario is only one of many plausible scenarios that would result from the completion of TWRS technology development, engineering analyses, design and construction activities and the TWRS EIS. This operational scenario will be updated as the development of the TWRS proceeds and will be used as a benchmark by which to evaluate alternative scenarios.

  5. Alternative Fuels Data Center: Test Your Alternative Fuel IQ

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Test Your Alternative Fuel IQ to someone by E-mail Share Alternative Fuels Data Center: Test Your Alternative Fuel IQ on Facebook Tweet about Alternative Fuels Data Center: Test Your Alternative Fuel IQ on Twitter Bookmark Alternative Fuels Data Center: Test Your Alternative Fuel IQ on Google Bookmark Alternative Fuels Data Center: Test Your Alternative Fuel IQ on Delicious Rank Alternative Fuels Data Center: Test Your Alternative Fuel IQ on Digg Find More places to share Alternative Fuels Data

  6. ITP Industrial Materials: Development and Commercialization of Alternative

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Carbon Fiber Precursors and Conversion Technologies | Department of Energy Industrial Materials: Development and Commercialization of Alternative Carbon Fiber Precursors and Conversion Technologies ITP Industrial Materials: Development and Commercialization of Alternative Carbon Fiber Precursors and Conversion Technologies PDF icon alternative_carbon_fiber.pdf More Documents & Publications Carbon Fiber Technology Facility Carbon Fiber Technology Facility Lower Cost Carbon Fiber

  7. Benefits and Costs of Aggressive Energy Efficiency Programs and...

    Open Energy Info (EERE)

    and Costs of Aggressive Energy Efficiency Programs and the Impacts of Alternative Sources of Funding: Case Study of Massachusetts Jump to: navigation, search Tool Summary LAUNCH...

  8. Spent-fuel-storage alternatives

    SciTech Connect (OSTI)

    Not Available

    1980-01-01

    The Spent Fuel Storage Alternatives meeting was a technical forum in which 37 experts from 12 states discussed storage alternatives that are available or are under development. The subject matter was divided into the following five areas: techniques for increasing fuel storage density; dry storage of spent fuel; fuel characterization and conditioning; fuel storage operating experience; and storage and transport economics. Nineteen of the 21 papers which were presented at this meeting are included in this Proceedings. These have been abstracted and indexed. (ATT)

  9. Building Life-Cycle Cost (BLCC) Program | Open Energy Information

    Open Energy Info (EERE)

    useful for evaluating the costs and benefits of energy and water conservation and renewable energy projects. The life-cycle cost (LCC) of two or more alternative designs are...

  10. Green alternatives to toxic release inventory (TRI) chemicals in the process industry

    SciTech Connect (OSTI)

    Ahmed, I.; Baron, J.; Hamilton, C.

    1995-12-01

    Driven by TRI reporting requirements, the chemical process industry is searching for innovative ways to reduce pollution at the source. Distinct environmental advantages of biobased green chemicals (biochemicals) mean are attractive alternatives to petrochemicals. Biochemicals are made from renewable raw materials in biological processes, such as aerobic and anaerobic fermentation, that operate at ambient temperatures and pressures, and produce only nontoxic waste products. Key TRI chemicals and several classes of commodity and intermediate compounds, used on consumer end-products manufacturing, are examined and alternatives are suggested. Specific substitution options for chlorofluorocarbons, industrial solvents, and commodity organic and inorganic chemicals are reviewed. Currently encouraged pollution prevention alternatives in the manufacturing sector are briefly examined for their long-term feasibility such as bioalternatives to bleaching in the pulp & paper industry, solvent cleaning in the electronics and dry cleaning industries, and using petroleum-based feedstocks in the plastics industry. Total life cycle and cost/benefit analyses are employed to determine whether biochemicals are environmentally feasible and commercially viable as pollution prevention tools. Currently available green chemicals along with present and projected costs and premiums are also presented. Functional compatibility of biochemicals with petrochemicals and bioprocessing systems with conventional chemical processing methods are explored. This review demonstrates that biochemicals can be used cost effectively in certain industrial chemical operations due to their added environmental benefits.

  11. Alternate Watch Office | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Alternate Watch Office Germantown Watch Office When activated at senior leadership direction, the Forrestal Watch Office functions are transferred to a relocated Watch Office. This alternate Watch Office replicates the 24/7/365 mission and communications links resident in the Forrestal Watch Office. Related Topics emergency operations watch office

  12. Development of surface mine cost estimating equations

    SciTech Connect (OSTI)

    Not Available

    1980-09-26

    Cost estimating equations were developed to determine capital and operating costs for five surface coal mine models in Central Appalachia, Northern Appalachia, Mid-West, Far-West, and Campbell County, Wyoming. Engineering equations were used to estimate equipment costs for the stripping function and for the coal loading and hauling function for the base case mine and for several mines with different annual production levels and/or different overburden removal requirements. Deferred costs were then determined through application of the base case depreciation schedules, and direct labor costs were easily established once the equipment quantities (and, hence, manpower requirements) were determined. The data points were then fit with appropriate functional forms, and these were then multiplied by appropriate adjustment factors so that the resulting equations yielded the model mine costs for initial and deferred capital and annual operating cost. (The validity of this scaling process is based on the assumption that total initial and deferred capital costs are proportional to the initial and deferred costs for the primary equipment types that were considered and that annual operating cost is proportional to the direct labor costs that were determined based on primary equipment quantities.) Initial capital costs ranged from $3,910,470 in Central Appalachia to $49,296,785; deferred capital costs ranged from $3,220,000 in Central Appalachia to $30,735,000 in Campbell County, Wyoming; and annual operating costs ranged from $2,924,148 in Central Appalachia to $32,708,591 in Campbell County, Wyoming. (DMC)

  13. Alternative Liquid Fuels Simulation Model (AltSim) v. 2.0

    Energy Science and Technology Software Center (OSTI)

    2010-02-24

    The Alternative Liquid Fuels Simulation Model (AltSim) is a high-level dynamic simulation model which calculates and compares the production and end use costs, energy balances, and greenhouse gas emissions for several alternative liquid transportation fuels. These fuels include: corn ethanol, cellulosic ethanol from various feedstocks, biodiesel, and diesels derived from natural gas (gas to liquid, or GTL), coal (coal to liquid, or CTL), and coal with biomass (CBTL). AltSim allows for comprehensive sensitivity analyses onmore » capital costs, operation and maintenance costs, renewable and fossil fuel feedstock costs, feedstock conversion efficiency, financial assumptions, tax credits, CO2 taxes, and plant capacity factor. AltSim also includes policy tools to allow for consideration of greenhouse gas offset policies, production tax credits, and land use requirements. The main goal is to allow interested stakeholders to understand the complicated economic and environmental tradeoffs associated with the various options. The software is designed to address policy questions related to the economic competitiveness of technologies under different economic and technical assumptions. This model will be used to inform policy makers and staff about the economic and environmental tradeoffs associated with various fuel alternatives.« less

  14. Alternative fuels for vehicles fleet demonstration program final report. Volume 1: Summary

    SciTech Connect (OSTI)

    1997-03-01

    The Alternative Fuels for Vehicles Fleet Demonstration Program (AFV-FDP) was a multiyear effort to collect technical data for use in determining the costs and benefits of alternative-fuel vehicles in typical applications in New York State. During 3 years of collecting data, 7.3 million miles of driving were accumulated, 1,003 chassis-dynamometer emissions tests were performed, 862,000 gallons of conventional fuel were saved, and unique information was developed about garage safety recommendations, vehicle performance, and other topics. Findings are organized by vehicle and fuel type. For light-duty compressed natural gas (CNG) vehicles, technology has evolved rapidly and closed-loop, electronically-controlled fuel systems provide performance and emissions advantages over open-loop, mechanical systems. The best CNG technology produces consistently low tailpipe emissions versus gasoline, and can eliminate evaporative emissions. Reduced driving range remains the largest physical drawback. Fuel cost is low ($/Btu) but capital costs are high, indicating that economics are best with vehicles that are used intensively. Propane produces impacts similar to CNG and is less expensive to implement, but fuel cost is higher than gasoline and safety codes limit use in urban areas. Light-duty methanol/ethanol vehicles provide performance and emissions benefits over gasoline with little impact on capital costs, but fuel costs are high. Heavy-duty CNG engines are evolving rapidly and provide large reductions in emissions versus diesel. Capital costs are high for CNG buses and fuel efficiency is reduced, but the fuel is less expensive and overall operating costs are about equal to those of diesel buses. Methanol buses provide performance and emissions benefits versus diesel, but fuel costs are high. Other emerging technologies were also evaluated, including electric vehicles, hybrid-electric vehicles, and fuel cells.

  15. Alternative Fuels Data Center: Alternative Fuels Save Money in Indy

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fuels Save Money in Indy to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuels Save Money in Indy on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuels Save Money in Indy on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuels Save Money in Indy on Google Bookmark Alternative Fuels Data Center: Alternative Fuels Save Money in Indy on Delicious Rank Alternative Fuels Data Center: Alternative Fuels Save Money in Indy on Digg Find

  16. HTGR Cost Model Users' Manual

    SciTech Connect (OSTI)

    A.M. Gandrik

    2012-01-01

    The High Temperature Gas-Cooler Reactor (HTGR) Cost Model was developed at the Idaho National Laboratory for the Next Generation Nuclear Plant Project. The HTGR Cost Model calculates an estimate of the capital costs, annual operating and maintenance costs, and decommissioning costs for a high-temperature gas-cooled reactor. The user can generate these costs for multiple reactor outlet temperatures; with and without power cycles, including either a Brayton or Rankine cycle; for the demonstration plant, first of a kind, or nth of a kind project phases; for a single or four-pack configuration; and for a reactor size of 350 or 600 MWt. This users manual contains the mathematical models and operating instructions for the HTGR Cost Model. Instructions, screenshots, and examples are provided to guide the user through the HTGR Cost Model. This model was design for users who are familiar with the HTGR design and Excel. Modification of the HTGR Cost Model should only be performed by users familiar with Excel and Visual Basic.

  17. Appraising the sustainability of project alternatives: An increasing role for cumulative effects assessment

    SciTech Connect (OSTI)

    Senner, Robert

    2011-09-15

    Evaluating and comparing development alternatives with regard to sustainability is an important goal for comprehensive project appraisal. In the United States, this component has been largely missing from standard environmental impact assessment practice. Cumulative effects assessment provides a way to appraise the sustainability of project alternatives in terms of their probable contributions to long-term trends affecting the condition of valued environmental components. Sustainability metrics and predictors are being developed as criteria for rating systems and evaluation processes that are applied to community planning, building design, and transportation infrastructure. Increasing interest in adaptive management is also providing cost-effective solutions to optimizing safety and function throughout the long-term operation of a facility or infrastructure. Recent federal legislation is making it easier to integrate sustainability features into development alternatives through early, community-based planning.

  18. Alternative Fuels Data Center: James Madison University Teaches Alternative

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Transportation James Madison University Teaches Alternative Transportation to someone by E-mail Share Alternative Fuels Data Center: James Madison University Teaches Alternative Transportation on Facebook Tweet about Alternative Fuels Data Center: James Madison University Teaches Alternative Transportation on Twitter Bookmark Alternative Fuels Data Center: James Madison University Teaches Alternative Transportation on Google Bookmark Alternative Fuels Data Center: James Madison University

  19. Estimating Specialty Costs

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-03-28

    Specialty costs are those nonstandard, unusual costs that are not typically estimated. Costs for research and development (R&D) projects involving new technologies, costs associated with future regulations, and specialty equipment costs are examples of specialty costs. This chapter discusses those factors that are significant contributors to project specialty costs and methods of estimating costs for specialty projects.

  20. Innovative and Alternative Technology Assessment Manual

    SciTech Connect (OSTI)

    1980-02-01

    This four chapter, six appendix manual presents the procedures and methodology as well as the baseline costs and energy information necessary for the analysis and evaluation of innovative and alternative technology applications submitted for federal grant assistance under the innovative and alternative technology provisions of the Clean Water Act of 1977. The manual clarifies and interprets the intent of Congress and the Environmental Protection Agency in carrying out the mandates of the innovative and alternative provisions of the Clean Water Act of 1977. [DJE 2005

  1. Cost reductions in absorption chillers. Final report, June 1984-May 1985

    SciTech Connect (OSTI)

    Leigh, R.W.

    1986-05-01

    Absorption chillers have great difficulty competing with the electric-driven compression alternative, due in part to modest operating efficiencies and largely to high first costs. This project is an assessment of the possibility of lowering the costs of absorption chillers dramatically by the use of low material intensity in the design of a new generation of these machines. Breakeven costs for absorption chillers, their heat exchangers and heat exchanger materials were established which will allow commercial success. Polymeric and metallic materials appropriate to particular components and which meet the cost goals were identified. A subset of these materials were tested and ordered by success in tolerating conditions and materials found in absorption chiller applications. Conceptual designs which indicate the practicality of the low material intensity approach were developed. The work reported here indicates that there is a high probability that this apporach will be successful.

  2. Alternative Fuels Data Center: Alternative Fueling Station Locator

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Locate Stations Printable Version Share this resource Send a link to Alternative Fuels Data Center: Alternative Fueling Station Locator to someone by E-mail Share Alternative Fuels Data Center: Alternative Fueling Station Locator on Facebook Tweet about Alternative Fuels Data Center: Alternative Fueling Station Locator on Twitter Bookmark Alternative Fuels Data Center: Alternative Fueling Station Locator on Google Bookmark Alternative Fuels Data Center: Alternative Fueling Station Locator on

  3. Alternative Fuels Data Center: Technician Training for Alternative Fuels

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Technician Training for Alternative Fuels to someone by E-mail Share Alternative Fuels Data Center: Technician Training for Alternative Fuels on Facebook Tweet about Alternative Fuels Data Center: Technician Training for Alternative Fuels on Twitter Bookmark Alternative Fuels Data Center: Technician Training for Alternative Fuels on Google Bookmark Alternative Fuels Data Center: Technician Training for Alternative Fuels on Delicious Rank Alternative Fuels Data Center: Technician Training for

  4. Alternative Fuels Data Center: About the Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    About Printable Version Share this resource Send a link to Alternative Fuels Data Center: About the Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center: About the Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center: About the Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center: About the Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center: About the Alternative Fuels Data

  5. Alternative Fuels Data Center: Alternative Fuels and Advanced Vehicles

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Vehicles Printable Version Share this resource Send a link to Alternative Fuels Data Center: Alternative Fuels and Advanced Vehicles to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuels and Advanced Vehicles on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuels and Advanced Vehicles on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuels and Advanced Vehicles on Google Bookmark Alternative Fuels Data Center: Alternative Fuels and Advanced

  6. Alternative Fuels Data Center: Biodiesel Offers an Easy Alternative for

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fleets Biodiesel Offers an Easy Alternative for Fleets to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Offers an Easy Alternative for Fleets on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Offers an Easy Alternative for Fleets on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Offers an Easy Alternative for Fleets on Google Bookmark Alternative Fuels Data Center: Biodiesel Offers an Easy Alternative for Fleets on Delicious Rank Alternative Fuels

  7. Alternative Fuels Data Center: Boulder Commits to Alternative Fuel Vehicles

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Boulder Commits to Alternative Fuel Vehicles to someone by E-mail Share Alternative Fuels Data Center: Boulder Commits to Alternative Fuel Vehicles on Facebook Tweet about Alternative Fuels Data Center: Boulder Commits to Alternative Fuel Vehicles on Twitter Bookmark Alternative Fuels Data Center: Boulder Commits to Alternative Fuel Vehicles on Google Bookmark Alternative Fuels Data Center: Boulder Commits to Alternative Fuel Vehicles on Delicious Rank Alternative Fuels Data Center: Boulder

  8. Alternative Fuels Data Center: New Jersey Utility Saves With Alternative

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuel Jersey Utility Saves With Alternative Fuel to someone by E-mail Share Alternative Fuels Data Center: New Jersey Utility Saves With Alternative Fuel on Facebook Tweet about Alternative Fuels Data Center: New Jersey Utility Saves With Alternative Fuel on Twitter Bookmark Alternative Fuels Data Center: New Jersey Utility Saves With Alternative Fuel on Google Bookmark Alternative Fuels Data Center: New Jersey Utility Saves With Alternative Fuel on Delicious Rank Alternative Fuels Data

  9. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuels Road Tax Alternative fuels including, but not limited to, natural gas or propane sold by a licensed alternative fuel dealer and used in on-road vehicles is subject to a...

  10. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fuel and Vehicle Incentives The California Energy Commission (CEC) administers the Alternative and Renewable Fuel and Vehicle Technology Program (ARFVTP) to provide financial incentives for businesses, vehicle and technology manufacturers, workforce training partners, fleet owners, consumers, and academic institutions with the goal of developing and deploying alternative and renewable fuels and advanced transportation technologies. The CEC must prepare and adopt an annual Investment

  11. Southern Ute Alternative Energy

    Energy Savers [EERE]

    Alternative Energy Confidential Draft - For Discussion Only Oxford Solar Project Lessons Learned February, 2016 Rebecca Kauffman, SUAE President Southern Ute Alternative Energy Confidential Draft - For Discussion Only Agenda Background - Southern Ute Indian Tribe - Southern Ute Alternative Energy Solar Project Overview - Why Now? - Why this particular project? Project Development Process - Permitting - Land access - Utility Negotiation Project Next Steps - Remaining Activities 2 Southern Ute

  12. Alternative technologies for cooling and refrigeration equipment

    SciTech Connect (OSTI)

    Matchett, J.

    1995-12-01

    Significant national and international attention has focused on the role that chlorofluorocarbons (CFCs) play in stratospheric ozone depletion. The Clean Air Act of 1990 calls for the production of the most harmful CFCs to completely cease by December 31, 1995. This production phaseout affects many CFC-refrigerants which are commonly used in commercial, residential, and industrial cooling processes. The production phaseout of CFCs will require owners of CFC-based refrigeration equipment to make plans to replace their equipment. Many equipment owners find themselves in a {open_quotes}rut{close_quotes}replacing CFCs with another chemical coolant, rather than a new cooling process. Since many of the chemical alternatives are structurally similar to CFCs (i.e., HCFCs, HFCs, and blends) they require minimal changes to current equipment. However, these substances are also believed to affect the global climate. Hence, they may not be the most environmentally sound alternative and probable are subject to other Federal regulations. There are other HVAC/R alternatives which are less environmentally damaging than these chemicals and may actually be more cost-effective and energy efficient and than the {open_quotes}traditional{close_quotes} CFC chemical substitutes. Alternative cooling technologies include absorption systems, desiccant cooling, evaporative cooling, and ammonia vapor compression. These alternative technologies are proven alternatives and are commercially available. Further, significant technological developments in recent years have made these technologies feasible alternatives for applications previously believed to be unacceptable. This paper describes these alternative technologies and the conditions in which they are viable alternatives to CFC-based equipment. Additionally, energy efficiency and life-cycle cost analysis considerations are addressed to provide a more completes analysis of cooling equipment alternatives.

  13. Alternative Fuels Data Center: E85: An Alternative Fuel

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    E85: An Alternative Fuel to someone by E-mail Share Alternative Fuels Data Center: E85: An Alternative Fuel on Facebook Tweet about Alternative Fuels Data Center: E85: An Alternative Fuel on Twitter Bookmark Alternative Fuels Data Center: E85: An Alternative Fuel on Google Bookmark Alternative Fuels Data Center: E85: An Alternative Fuel on Delicious Rank Alternative Fuels Data Center: E85: An Alternative Fuel on Digg Find More places to share Alternative Fuels Data Center: E85: An Alternative

  14. Sustainable Alternative Fuels Cost Workshop Roster of Participants

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    National Renewable Energy Labortory Jeanne Binder - Department of Defense - Defense Logistics Agency Britt Boughey - Booz Allen Hamilton Nate Brown - Federal Aviation ...

  15. Alternatives to traditional water washing used to remove impurities in superheated geothermal steam

    SciTech Connect (OSTI)

    Fisher, D.W.; Jung, D.B. [Two-Phase Engineering & Research, Inc., Santa Rosa, CA (United States)

    1996-12-31

    The method of water washing impurities from superheated geothermal steam as adopted from traditional steam boiler operations in electric power generation stations has been used for a decade and a half under several pseudonyms, e.g., de-superheating, enthalpy modification, de-scaling, etc. Water washing can be effective, but it is costly. It is not necessarily expensive to implement or operate, but the cost of unrecoverable energy lost due to steam enthalpy reduction can be quite high. Are there other ways to remove these undesirables from superheated geothermal steam? That question is the focus of this paper. Several alternatives to water washing will be proposed including dry scrubbing, oil washing, and hybrid cleaning. A discussion of the advantages and disadvantages of each method will be presented along with the various geothermal steam impurities and their effects on the process and equipment.

  16. Alternative Fuels Data Center: Alternative Fueling Station Counts by State

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Locate Stations Printable Version Share this resource Send a link to Alternative Fuels Data Center: Alternative Fueling Station Counts by State to someone by E-mail Share Alternative Fuels Data Center: Alternative Fueling Station Counts by State on Facebook Tweet about Alternative Fuels Data Center: Alternative Fueling Station Counts by State on Twitter Bookmark Alternative Fuels Data Center: Alternative Fueling Station Counts by State on Google Bookmark Alternative Fuels Data Center:

  17. Alternative Fuels Data Center: About the Alternative Fueling Station Data

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Locate Stations Printable Version Share this resource Send a link to Alternative Fuels Data Center: About the Alternative Fueling Station Data to someone by E-mail Share Alternative Fuels Data Center: About the Alternative Fueling Station Data on Facebook Tweet about Alternative Fuels Data Center: About the Alternative Fueling Station Data on Twitter Bookmark Alternative Fuels Data Center: About the Alternative Fueling Station Data on Google Bookmark Alternative Fuels Data Center: About the

  18. Alternative Fuels Data Center: Alternative Fuel Vehicles Lower Emissions in

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Columbus, Ohio Alternative Fuel Vehicles Lower Emissions in Columbus, Ohio to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicles Lower Emissions in Columbus, Ohio on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicles Lower Emissions in Columbus, Ohio on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicles Lower Emissions in Columbus, Ohio on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicles

  19. Alternative Fuels Data Center: GE Showcases Innovation in Alternative Fuel

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Vehicles GE Showcases Innovation in Alternative Fuel Vehicles to someone by E-mail Share Alternative Fuels Data Center: GE Showcases Innovation in Alternative Fuel Vehicles on Facebook Tweet about Alternative Fuels Data Center: GE Showcases Innovation in Alternative Fuel Vehicles on Twitter Bookmark Alternative Fuels Data Center: GE Showcases Innovation in Alternative Fuel Vehicles on Google Bookmark Alternative Fuels Data Center: GE Showcases Innovation in Alternative Fuel Vehicles on

  20. Alternative Fuels Data Center: North Carolina City Expands Alternative Fuel

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fleet North Carolina City Expands Alternative Fuel Fleet to someone by E-mail Share Alternative Fuels Data Center: North Carolina City Expands Alternative Fuel Fleet on Facebook Tweet about Alternative Fuels Data Center: North Carolina City Expands Alternative Fuel Fleet on Twitter Bookmark Alternative Fuels Data Center: North Carolina City Expands Alternative Fuel Fleet on Google Bookmark Alternative Fuels Data Center: North Carolina City Expands Alternative Fuel Fleet on Delicious Rank

  1. Alternative Energy Technology Inc formerly The Alternative Energy...

    Open Energy Info (EERE)

    Technology Inc formerly The Alternative Energy Technology Center Inc Jump to: navigation, search Name: Alternative Energy Technology Inc (formerly The Alternative Energy Technology...

  2. Columbia River System Operation Review : Final Environmental Impact Statement, Appendix O: Economic and Social Impact.

    SciTech Connect (OSTI)

    Columbia River System Operation Review

    1995-11-01

    This Appendix O of the Final Environmental Impact Statement for the Columbia River System measures the economic and social effects of the alternative system operation strategies and includes both geographic and methodology components. Areas discussed in detail include the following: purpose, scope and process; an economic history of the Columbia River Basin and its use today including the Columbia River and Socio-economic development in the Northwest and Major uses of the River System; Analysis procedures and methodologies including national economic evaluation, the concepts, analysis of assumptions, analysis for specific river uses, water quality, Regional evaluation, analysis, and social impacts; alternatives and impacts including implementation costs, andromous fish, resident fish and wildlife, flood control, irrigation and municipal and industrial water supply, navigation impacts, power, recreation, annual costs, regional economic analysis. Extensive comparison of alternatives is included.

  3. A preliminary evaluation of alternatives for disposal of INEL low-level waste and low-level mixed waste

    SciTech Connect (OSTI)

    Smith, T.H.; Roesener, W.S.; Jorgenson-Waters, M.J.

    1993-07-01

    The Mixed and Low-Level Waste Disposal Facility (MLLWDF) project was established in 1992 by the US Department of Energy Idaho Operations Office to provide enhanced disposal capabilities for Idaho National Engineering Laboratory (INEL) low-level mixed waste and low-level waste. This Preliminary Evaluation of Alternatives for Disposal of INEL Low-Level Waste and Low-Level Mixed Waste identifies and evaluates-on a preliminary, overview basis-the alternatives for disposal of that waste. Five disposal alternatives, ranging from of no-action`` to constructing and operating the MLLWDF, are identified and evaluated. Several subalternatives are formulated within the MLLWDF alternative. The subalternatives involve various disposal technologies as well as various scenarios related to the waste volumes and waste forms to be received for disposal. The evaluations include qualitative comparisons of the projected isolation performance for each alternative, and facility, health and safety, environmental, institutional, schedule, and rough order-of-magnitude life-cycle cost comparisons. The performance of each alternative is evaluated against lists of ``musts`` and ``wants.`` Also included is a discussion of other key considerations for decisionmaking. The analysis of results indicated further study is necessary to obtain the best estimate of long-term future waste volume and characteristics from the INEL Environmental Restoration activities and the expanded INEL Decontamination and Decommissioning Program.

  4. Integrated municipal solid waste management: Six case studies of system cost and energy use. A summary report

    SciTech Connect (OSTI)

    1995-11-01

    Report documents an evaluation of the environmental, economic, and energy impacts of integrated municipal solid waste management systems in six cities: Minneapolis, NW; Springfield, MA; Seattle, WA; Scottsdale, AZ; Palm Beach County, CA; and Sevierville, TN. The primary objective of these case studies was to develop and present consistent cost, resource use (especially energy), and environmental regulator information on each operating IMSWM system. The process is defined as using two or more alternative waste management techniques. Detailed reports on each system are available.

  5. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fuel, Advanced Vehicle, and Idle Reduction Technology Tax Credit The Colorado Department of Revenue offers the Innovative Motor Vehicle Credit for a vehicle titled and registered in Colorado that uses or is converted to use an alternative fuel, is a diesel hybrid electric vehicle (HEV), is a plug-in hybrid electric vehicle (PHEV), or has its power source replaced with one that uses an alternative fuel. Electric vehicles (EVs) and PHEVs must have a maximum speed of at least 55 miles

  6. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fuel Use and Fuel-Efficient Vehicle Requirements State-owned vehicle fleets must implement petroleum displacement plans to increase the use of alternative fuels and fuel-efficient vehicles. Reductions may be met by petroleum displaced through the use of biodiesel, ethanol, other alternative fuels, the use of hybrid electric vehicles, other fuel-efficient or low emission vehicles, or additional methods the North Carolina Division of Energy, Mineral and Land Resources approves.

  7. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fuel Definition - Internal Revenue Code The Internal Revenue Service (IRS) defines alternative fuels as liquefied petroleum gas (propane), compressed natural gas, liquefied natural gas, liquefied hydrogen, liquid fuel derived from coal through the Fischer-Tropsch process, liquid hydrocarbons derived from biomass, and P-Series fuels. Biodiesel, ethanol, and renewable diesel are not considered alternative fuels by the IRS. While the term "hydrocarbons" includes liquids that

  8. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fuel Vehicle (AFV) and Hybrid Electric Vehicle (HEV) Funding The Alternative Fuels Incentive Grant (AFIG) Program provides financial assistance for qualified projects; information on alternative fuels, AFVs, HEVs, plug-in hybrid electric vehicles; and advanced vehicle technology research, development, and demonstration. Projects that result in product commercialization and the expansion of Pennsylvania companies are favored in the selection process. The AFIG Program also offers

  9. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fuel Vehicle (AFV) Procurement Preference In determining the lowest responsible qualified bidder for the award of state contracts, the Connecticut Department of Administrative Services may give a price preference of up to 10% for the purchase of AFVs or for the purchase of conventional vehicles plus the conversion equipment to convert the vehicles to dual or dedicated alternative fuel use. For these purposes, alternative fuels are natural gas, hydrogen, propane, or electricity used

  10. Washington: Seattle Rises Above with Alternative Fuels | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    on fuel due to the cost differential between compresses natural gas (CNG) and gasoline. ... who was a veteran started a taxi company with a 100% alternative fuel fleet-CNG For Hire. ...

  11. Alternative Fuels Data Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Alternative Fueling Infrastructure Development The Wisconsin Department of Agriculture, Trade and Consumer Protection must pursue the establishment and maintenance of sufficient...

  12. Alternative fuel information: Glossary

    SciTech Connect (OSTI)

    Not Available

    1994-06-01

    This short document contains definitions of acronyms and definitions of terms used in papers on the use of alternative fuels in automobiles.

  13. Alternative Fuels Data Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    alternative fuels are defined as methanol, ethanol, natural gas, liquefied petroleum gas (propane), coal-derived liquid fuels, hydrogen, electricity, biodiesel, renewable diesel,...

  14. Solar Alternative Energy Credits

    Broader source: Energy.gov [DOE]

    Pennsylvania's Alternative Energy Portfolio Standard (AEPS), created by S.B. 1030 on November 30, 2004, requires each electric distribution company (EDC) and electric generation supplier (EGS) to...

  15. Alternative Energy Portfolio Standard

    Office of Energy Efficiency and Renewable Energy (EERE)

    NOTE: On February 2016, the PA Public Service Commission (PUC) issued a final rulemaking order amending and clarifying several provisions of PA Alternative Energy Portfolio Standard (AEPS), net...

  16. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fuel Mixture Excise Tax Credit NOTE: This incentive was retroactively extended multiple times, most recently through December 31, 2016, by H.R. 2029. An alternative fuel blender that is registered with the Internal Revenue Service (IRS) may be eligible for a tax incentive on the sale or use of the alternative fuel blend (mixture) for use as a fuel in the blender's trade or business. The credit is in the amount of $0.50 per gallon of alternative fuel used to produce a mixture

  17. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    two competitive grant programs to fund projects that reduce greenhouse gas (GHG) emissions in the transportation sector. The Delaware Alternative Fueling Infrastructure Grant...

  18. Alternative Energy Portfolio Standard

    Broader source: Energy.gov [DOE]

    The “alternative energy generating sources” include combined heat and power (CHP) projects, flywheel energy storage, energy efficient steam technology. and renewable technologies that generate us...

  19. Alternative Fuels Data Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Use Requirement West Virginia higher education governing boards must use alternative fuels to the maximum extent feasible. (Reference West Virginia Code 18B-5-9)...

  20. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    tax on a gallon equivalent basis. Alternative fuels include natural gas, propane, hydrogen, and hythane. A gallon equivalent is defined as 5.660 pounds (lbs.) of compressed...

  1. Alternative Fueling Station Locator

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    19,710 alternative fuel stations in the United States Excluding private stations Location details are subject to change. We recommend calling the stations to verify location, hours...

  2. Alternative Fuels Data Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (AFV) Revolving Loan Program The Mississippi Alternative Fuel School Bus and Municipal Motor Vehicle Revolving Loan Program provides zero-interest loans for public school...

  3. Site restoration: Estimation of attributable costs from plutonium-dispersal accidents

    SciTech Connect (OSTI)

    Chanin, D.I.; Murfin, W.B.

    1996-05-01

    A nuclear weapons accident is an extremely unlikely event due to the extensive care taken in operations. However, under some hypothetical accident conditions, plutonium might be dispersed to the environment. This would result in costs being incurred by the government to remediate the site and compensate for losses. This study is a multi-disciplinary evaluation of the potential scope of the post-accident response that includes technical factors, current and proposed legal requirements and constraints, as well as social/political factors that could influence decision making. The study provides parameters that can be used to assess economic costs for accidents postulated to occur in urban areas, Midwest farmland, Western rangeland, and forest. Per-area remediation costs have been estimated, using industry-standard methods, for both expedited and extended remediation. Expedited remediation costs have been evaluated for highways, airports, and urban areas. Extended remediation costs have been evaluated for all land uses except highways and airports. The inclusion of cost estimates in risk assessments, together with the conventional estimation of doses and health effects, allows a fuller understanding of the post-accident environment. The insights obtained can be used to minimize economic risks by evaluation of operational and design alternatives, and through development of improved capabilities for accident response.

  4. Load Leveling Battery System Costs

    Energy Science and Technology Software Center (OSTI)

    1994-10-12

    SYSPLAN evaluates capital investment in customer side of the meter load leveling battery systems. Such systems reduce the customer's monthly electrical demand charge by reducing the maximum power load supplied by the utility during the customer's peak demand. System equipment consists of a large array of batteries, a current converter, and balance of plant equipment and facilities required to support the battery and converter system. The system is installed on the customer's side of themore » meter and controlled and operated by the customer. Its economic feasibility depends largely on the customer's load profile. Load shape requirements, utility rate structures, and battery equipment cost and performance data serve as bases for determining whether a load leveling battery system is economically feasible for a particular installation. Life-cycle costs for system hardware include all costs associated with the purchase, installation, and operation of battery, converter, and balance of plant facilities and equipment. The SYSPLAN spreadsheet software is specifically designed to evaluate these costs and the reduced demand charge benefits; it completes a 20 year period life cycle cost analysis based on the battery system description and cost data. A built-in sensitivity analysis routine is also included for key battery cost parameters. The life cycle cost analysis spreadsheet is augmented by a system sizing routine to help users identify load leveling system size requirements for their facilities. The optional XSIZE system sizing spreadsheet which is included can be used to identify a range of battery system sizes that might be economically attractive. XSIZE output consisting of system operating requirements can then be passed by the temporary file SIZE to the main SYSPLAN spreadsheet.« less

  5. Cost-Optimal Pathways to 75% Fuel Reduction in Remote Alaskan...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... operating and maintenance (O&M) costs, and fuel costs. ... off operation while the wind is calm. Since the objective of the RCRE program is to reduce energy costs along with ...

  6. Alternative Fuels Data Center: Alaska Transportation Data for Alternative

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuels and Vehicles Alaska Transportation Data for Alternative Fuels and Vehicles to someone by E-mail Share Alternative Fuels Data Center: Alaska Transportation Data for Alternative Fuels and Vehicles on Facebook Tweet about Alternative Fuels Data Center: Alaska Transportation Data for Alternative Fuels and Vehicles on Twitter Bookmark Alternative Fuels Data Center: Alaska Transportation Data for Alternative Fuels and Vehicles on Google Bookmark Alternative Fuels Data Center: Alaska

  7. Alternative Fuels Data Center: Arizona Transportation Data for Alternative

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuels and Vehicles Arizona Transportation Data for Alternative Fuels and Vehicles to someone by E-mail Share Alternative Fuels Data Center: Arizona Transportation Data for Alternative Fuels and Vehicles on Facebook Tweet about Alternative Fuels Data Center: Arizona Transportation Data for Alternative Fuels and Vehicles on Twitter Bookmark Alternative Fuels Data Center: Arizona Transportation Data for Alternative Fuels and Vehicles on Google Bookmark Alternative Fuels Data Center: Arizona

  8. Alternative Fuels Data Center: Colorado Transportation Data for Alternative

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuels and Vehicles Colorado Transportation Data for Alternative Fuels and Vehicles to someone by E-mail Share Alternative Fuels Data Center: Colorado Transportation Data for Alternative Fuels and Vehicles on Facebook Tweet about Alternative Fuels Data Center: Colorado Transportation Data for Alternative Fuels and Vehicles on Twitter Bookmark Alternative Fuels Data Center: Colorado Transportation Data for Alternative Fuels and Vehicles on Google Bookmark Alternative Fuels Data Center:

  9. Alternative Fuels Data Center: Florida Transportation Data for Alternative

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuels and Vehicles Florida Transportation Data for Alternative Fuels and Vehicles to someone by E-mail Share Alternative Fuels Data Center: Florida Transportation Data for Alternative Fuels and Vehicles on Facebook Tweet about Alternative Fuels Data Center: Florida Transportation Data for Alternative Fuels and Vehicles on Twitter Bookmark Alternative Fuels Data Center: Florida Transportation Data for Alternative Fuels and Vehicles on Google Bookmark Alternative Fuels Data Center: Florida

  10. Alternative Fuels Data Center: Georgia Transportation Data for Alternative

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuels and Vehicles Georgia Transportation Data for Alternative Fuels and Vehicles to someone by E-mail Share Alternative Fuels Data Center: Georgia Transportation Data for Alternative Fuels and Vehicles on Facebook Tweet about Alternative Fuels Data Center: Georgia Transportation Data for Alternative Fuels and Vehicles on Twitter Bookmark Alternative Fuels Data Center: Georgia Transportation Data for Alternative Fuels and Vehicles on Google Bookmark Alternative Fuels Data Center: Georgia

  11. Alternative Fuels Data Center: Illinois Transportation Data for Alternative

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuels and Vehicles Illinois Transportation Data for Alternative Fuels and Vehicles to someone by E-mail Share Alternative Fuels Data Center: Illinois Transportation Data for Alternative Fuels and Vehicles on Facebook Tweet about Alternative Fuels Data Center: Illinois Transportation Data for Alternative Fuels and Vehicles on Twitter Bookmark Alternative Fuels Data Center: Illinois Transportation Data for Alternative Fuels and Vehicles on Google Bookmark Alternative Fuels Data Center:

  12. Alternative Fuels Data Center: Indiana Transportation Data for Alternative

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuels and Vehicles Indiana Transportation Data for Alternative Fuels and Vehicles to someone by E-mail Share Alternative Fuels Data Center: Indiana Transportation Data for Alternative Fuels and Vehicles on Facebook Tweet about Alternative Fuels Data Center: Indiana Transportation Data for Alternative Fuels and Vehicles on Twitter Bookmark Alternative Fuels Data Center: Indiana Transportation Data for Alternative Fuels and Vehicles on Google Bookmark Alternative Fuels Data Center: Indiana

  13. Alternative Fuels Data Center: Kansas Transportation Data for Alternative

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuels and Vehicles Kansas Transportation Data for Alternative Fuels and Vehicles to someone by E-mail Share Alternative Fuels Data Center: Kansas Transportation Data for Alternative Fuels and Vehicles on Facebook Tweet about Alternative Fuels Data Center: Kansas Transportation Data for Alternative Fuels and Vehicles on Twitter Bookmark Alternative Fuels Data Center: Kansas Transportation Data for Alternative Fuels and Vehicles on Google Bookmark Alternative Fuels Data Center: Kansas

  14. Alternative Fuels Data Center: Michigan Transportation Data for Alternative

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuels and Vehicles Michigan Transportation Data for Alternative Fuels and Vehicles to someone by E-mail Share Alternative Fuels Data Center: Michigan Transportation Data for Alternative Fuels and Vehicles on Facebook Tweet about Alternative Fuels Data Center: Michigan Transportation Data for Alternative Fuels and Vehicles on Twitter Bookmark Alternative Fuels Data Center: Michigan Transportation Data for Alternative Fuels and Vehicles on Google Bookmark Alternative Fuels Data Center:

  15. Alternative Fuels Data Center: New York Transportation Data for Alternative

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuels and Vehicles New York Transportation Data for Alternative Fuels and Vehicles to someone by E-mail Share Alternative Fuels Data Center: New York Transportation Data for Alternative Fuels and Vehicles on Facebook Tweet about Alternative Fuels Data Center: New York Transportation Data for Alternative Fuels and Vehicles on Twitter Bookmark Alternative Fuels Data Center: New York Transportation Data for Alternative Fuels and Vehicles on Google Bookmark Alternative Fuels Data Center: New

  16. Alternative Fuels Data Center: Ohio Transportation Data for Alternative

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuels and Vehicles Ohio Transportation Data for Alternative Fuels and Vehicles to someone by E-mail Share Alternative Fuels Data Center: Ohio Transportation Data for Alternative Fuels and Vehicles on Facebook Tweet about Alternative Fuels Data Center: Ohio Transportation Data for Alternative Fuels and Vehicles on Twitter Bookmark Alternative Fuels Data Center: Ohio Transportation Data for Alternative Fuels and Vehicles on Google Bookmark Alternative Fuels Data Center: Ohio Transportation

  17. Alternative Fuels Data Center: Oregon Transportation Data for Alternative

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuels and Vehicles Oregon Transportation Data for Alternative Fuels and Vehicles to someone by E-mail Share Alternative Fuels Data Center: Oregon Transportation Data for Alternative Fuels and Vehicles on Facebook Tweet about Alternative Fuels Data Center: Oregon Transportation Data for Alternative Fuels and Vehicles on Twitter Bookmark Alternative Fuels Data Center: Oregon Transportation Data for Alternative Fuels and Vehicles on Google Bookmark Alternative Fuels Data Center: Oregon

  18. Alternative Fuels Data Center: Texas Transportation Data for Alternative

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuels and Vehicles Texas Transportation Data for Alternative Fuels and Vehicles to someone by E-mail Share Alternative Fuels Data Center: Texas Transportation Data for Alternative Fuels and Vehicles on Facebook Tweet about Alternative Fuels Data Center: Texas Transportation Data for Alternative Fuels and Vehicles on Twitter Bookmark Alternative Fuels Data Center: Texas Transportation Data for Alternative Fuels and Vehicles on Google Bookmark Alternative Fuels Data Center: Texas

  19. Alternative Fuels Data Center: Virginia Transportation Data for Alternative

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuels and Vehicles Virginia Transportation Data for Alternative Fuels and Vehicles to someone by E-mail Share Alternative Fuels Data Center: Virginia Transportation Data for Alternative Fuels and Vehicles on Facebook Tweet about Alternative Fuels Data Center: Virginia Transportation Data for Alternative Fuels and Vehicles on Twitter Bookmark Alternative Fuels Data Center: Virginia Transportation Data for Alternative Fuels and Vehicles on Google Bookmark Alternative Fuels Data Center:

  20. Alternative Fuels Data Center: Wyoming Transportation Data for Alternative

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuels and Vehicles Wyoming Transportation Data for Alternative Fuels and Vehicles to someone by E-mail Share Alternative Fuels Data Center: Wyoming Transportation Data for Alternative Fuels and Vehicles on Facebook Tweet about Alternative Fuels Data Center: Wyoming Transportation Data for Alternative Fuels and Vehicles on Twitter Bookmark Alternative Fuels Data Center: Wyoming Transportation Data for Alternative Fuels and Vehicles on Google Bookmark Alternative Fuels Data Center: Wyoming

  1. Alternative Fuels Data Center: Blue Ridge Parkway Incorporates Alternative

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuels in Its Fleet Blue Ridge Parkway Incorporates Alternative Fuels in Its Fleet to someone by E-mail Share Alternative Fuels Data Center: Blue Ridge Parkway Incorporates Alternative Fuels in Its Fleet on Facebook Tweet about Alternative Fuels Data Center: Blue Ridge Parkway Incorporates Alternative Fuels in Its Fleet on Twitter Bookmark Alternative Fuels Data Center: Blue Ridge Parkway Incorporates Alternative Fuels in Its Fleet on Google Bookmark Alternative Fuels Data Center: Blue Ridge

  2. AN OVERVIEW OF TOOL FOR RESPONSE ACTION COST ESTIMATING (TRACE)

    SciTech Connect (OSTI)

    FERRIES SR; KLINK KL; OSTAPKOWICZ B

    2012-01-30

    Tools and techniques that provide improved performance and reduced costs are important to government programs, particularly in current times. An opportunity for improvement was identified for preparation of cost estimates used to support the evaluation of response action alternatives. As a result, CH2M HILL Plateau Remediation Company has developed Tool for Response Action Cost Estimating (TRACE). TRACE is a multi-page Microsoft Excel{reg_sign} workbook developed to introduce efficiencies into the timely and consistent production of cost estimates for response action alternatives. This tool combines costs derived from extensive site-specific runs of commercially available remediation cost models with site-specific and estimator-researched and derived costs, providing the best estimating sources available. TRACE also provides for common quantity and key parameter links across multiple alternatives, maximizing ease of updating estimates and performing sensitivity analyses, and ensuring consistency.

  3. Normetex Pump Alternatives Study

    SciTech Connect (OSTI)

    Clark, E.

    2013-04-25

    A mainstay pump for tritium systems, the Normetex scroll pump, is currently unavailable because the Normetex company went out of business. This pump was an all-metal scroll pump that served tritium processing facilities very well. Current tritium system operators are evaluating replacement pumps for the Normetex pump and for general used in tritium service. An all-metal equivalent alternative to the Normetex pump has not yet been identified. 1. The ideal replacement tritium pump would be hermetically sealed and contain no polymer components or oils. Polymers and oils degrade over time when they contact ionizing radiation. 2. Halogenated polymers (containing fluorine, chlorine, or both) and oils are commonly found in pumps. These materials have many properties that surpass those of hydrocarbon-based polymers and oils, including thermal stability (higher operating temperature) and better chemical resistance. Unfortunately, they are less resistant to degradation from ionizing radiation than hydrocarbon-based materials (in general). 3. Polymers and oils can form gaseous, condensable (HF, TF), liquid, and solid species when exposed to ionizing radiation. For example, halogenated polymers form HF and HCl, which are extremely corrosive upon reaction with water. If a pump containing polymers or oils must be used in a tritium system, the system must be designed to be able to process the unwanted by-products. Design features to mitigate degradation products include filters and chemical or physical traps (eg. cold traps, oil traps). 4. Polymer components can work in tritium systems, but must be replaced regularly. Polymer components performance should be monitored or be regularly tested, and regular replacement of components should be viewed as an expected normal event. A radioactive waste stream must be established to dispose of used polymer components and oil with an approved disposal plan developed based on the facility location and its regulators. Polymers have varying resistances to ionizing radiation - aromatic polymers such as polyimide Vespel (TM) and the elastomer EPDM (ethylene propylene diene monomer) have been found to be more resistant to degradation in tritium than other polymers. This report presents information to help select replacement pumps for Normetex pumps in tritium systems. Several pumps being considered as Normetex replacement pumps are discussed.

  4. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fuel Vehicle Retrofit Emissions Inspection Process The California Department of Health and Safety may adopt a process by which state designated referees inspect vehicles that present prohibitive inspection circumstances, such as vehicles equipped with alternative fuel retrofit systems. (Reference California Health and Safety Code 44014

  5. Alternative Fuels Data Center

    SciTech Connect (OSTI)

    2013-06-01

    Fact sheet describes the Alternative Fuels Data Center, which provides information, data, and tools to help fleets and other transportation decision makers find ways to reduce petroleum consumption through the use of alternative and renewable fuels, advanced vehicles, and other fuel-saving measures.

  6. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Support for Growth of Alternative Fuel Sources The Louisiana Legislature urges the U.S. Congress to take actions to promote the growth of domestic alternative fuel sources, such as natural gas, and reduce dependence on foreign oil. (Reference House Concurrent Resolution 132, 2013

  7. Geography of Existing and Potential Alternative Fuel Markets in the United States

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Geography of Existing and Potential Alternative Fuel Markets in the United States Caley Johnson and Dylan Hettinger Technical Report NREL/TP-5400-60891 November 2014 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. Contract No. DE-AC36-08GO28308 National

  8. Using Backup Generators: Alternative Backup Power Options | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Alternative Backup Power Options Using Backup Generators: Alternative Backup Power Options Using Backup Generators: Alternative Backup Power Options In addition to electric generators powered by fuel, homeowners and business owners may consider alternative backup power options. Battery-stored backup power-Allows you to continue operating lights, refrigerators and other appliances, fans, and communications during a power outage. These systems can connect to renewable sources of energy,

  9. Electricity Generation Cost Simulation Model

    Energy Science and Technology Software Center (OSTI)

    2003-04-25

    The Electricity Generation Cost Simulation Model (GENSIM) is a user-friendly, high-level dynamic simulation model that calculates electricity production costs for variety of electricity generation technologies, including: pulverized coal, gas combustion turbine, gas combined cycle, nuclear, solar (PV and thermal), and wind. The model allows the user to quickly conduct sensitivity analysis on key variables, including: capital, O&M, and fuel costs; interest rates; construction time; heat rates; and capacity factors. The model also includes consideration ofmore » a wide range of externality costs and pollution control options for carbon dioxide, nitrogen oxides, sulfur dioxide, and mercury. Two different data sets are included in the model; one from the U.S. Department of Energy (DOE) and the other from Platt's Research Group. Likely users of this model include executives and staff in the Congress, the Administration and private industry (power plant builders, industrial electricity users and electric utilities). The model seeks to improve understanding of the economic viability of various generating technologies and their emission trade-offs. The base case results using the DOE data, indicate that in the absence of externality costs, or renewable tax credits, pulverized coal and gas combined cycle plants are the least cost alternatives at 3.7 and 3.5 cents/kwhr, respectively. A complete sensitivity analysis on fuel, capital, and construction time shows that these results coal and gas are much more sensitive to assumption about fuel prices than they are to capital costs or construction times. The results also show that making nuclear competitive with coal or gas requires significant reductions in capital costs, to the $1000/kW level, if no other changes are made. For renewables, the results indicate that wind is now competitive with the nuclear option and is only competitive with coal and gas for grid connected applications if one includes the federal production tax credit of 1.8 cents/kwhr.« less

  10. An Energy Evolution:Alternative Fueled Vehicle Comparisons | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy An Energy Evolution:Alternative Fueled Vehicle Comparisons An Energy Evolution:Alternative Fueled Vehicle Comparisons Presented at the U.S. Department of Energy Light Duty Vehicle Workshop in Washington, D.C. on July 26, 2010. PDF icon evolution_alternative_vehicle.pdf More Documents & Publications Fuel Cell and Battery Electric Vehicles Compared Low-Cost Hydrogen-from-Ethanol: A Distributed Production System Asia/ITS

  11. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    E15 Infrastructure Grant Program The Minnesota Department of Agriculture may establish a program to provide grants to eligible fuel retailers for equipment and installation costs ...

  12. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    The maximum loan guarantee is 250 million and the maximum grant funding is 50% of project costs. For more information, including current funding application deadlines, see the ...

  13. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    All EVSE must be available to the public at no cost for three years, with further criteria required for maximum funding. For more information, including application submission ...

  14. GNEP PEIS Alternatives

    Broader source: Energy.gov (indexed) [DOE]

    ... Path Forward to Future Commercial ABR's Improved safety, reliability and economics are needed to achieve long term commercialization of Sodium Cooled Fast Reactors Pursue cost ...

  15. Cost Model and Cost Estimating Software

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-03-28

    This chapter discusses a formalized methodology is basically a cost model, which forms the basis for estimating software.

  16. Alternative Fuels Data Center: Alternative Fuel Vehicles Beat the Heat,

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fight the Freeze, and Conquer the Mountains Alternative Fuel Vehicles Beat the Heat, Fight the Freeze, and Conquer the Mountains to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicles Beat the Heat, Fight the Freeze, and Conquer the Mountains on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicles Beat the Heat, Fight the Freeze, and Conquer the Mountains on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicles Beat

  17. Alternative Fuels Data Center: State Alternative Fuel and Advanced Vehicle

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Laws and Incentives: 2013 Year in Review Alternative Fuel and Advanced Vehicle Laws and Incentives: 2013 Year in Review to someone by E-mail Share Alternative Fuels Data Center: State Alternative Fuel and Advanced Vehicle Laws and Incentives: 2013 Year in Review on Facebook Tweet about Alternative Fuels Data Center: State Alternative Fuel and Advanced Vehicle Laws and Incentives: 2013 Year in Review on Twitter Bookmark Alternative Fuels Data Center: State Alternative Fuel and Advanced

  18. Alternative Fuels Data Center: Alternative Fuel and Advanced Technology

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Vehicles Aid in Emergency Recovery Efforts Alternative Fuel and Advanced Technology Vehicles Aid in Emergency Recovery Efforts to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel and Advanced Technology Vehicles Aid in Emergency Recovery Efforts on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel and Advanced Technology Vehicles Aid in Emergency Recovery Efforts on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel and Advanced

  19. Alternative Fuels Data Center: State Alternative Fuel and Advanced Vehicle

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Laws and Incentives: 2014 Year in Review State Alternative Fuel and Advanced Vehicle Laws and Incentives: 2014 Year in Review to someone by E-mail Share Alternative Fuels Data Center: State Alternative Fuel and Advanced Vehicle Laws and Incentives: 2014 Year in Review on Facebook Tweet about Alternative Fuels Data Center: State Alternative Fuel and Advanced Vehicle Laws and Incentives: 2014 Year in Review on Twitter Bookmark Alternative Fuels Data Center: State Alternative Fuel and Advanced

  20. Alternative Fuels Data Center: State Alternative Fuel and Advanced Vehicle

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Laws and Incentives: 2015 Year in Review State Alternative Fuel and Advanced Vehicle Laws and Incentives: 2015 Year in Review to someone by E-mail Share Alternative Fuels Data Center: State Alternative Fuel and Advanced Vehicle Laws and Incentives: 2015 Year in Review on Facebook Tweet about Alternative Fuels Data Center: State Alternative Fuel and Advanced Vehicle Laws and Incentives: 2015 Year in Review on Twitter Bookmark Alternative Fuels Data Center: State Alternative Fuel and Advanced

  1. Alternator control for battery charging

    DOE Patents [OSTI]

    Brunstetter, Craig A.; Jaye, John R.; Tallarek, Glen E.; Adams, Joseph B.

    2015-07-14

    In accordance with an aspect of the present disclosure, an electrical system for an automotive vehicle has an electrical generating machine and a battery. A set point voltage, which sets an output voltage of the electrical generating machine, is set by an electronic control unit (ECU). The ECU selects one of a plurality of control modes for controlling the alternator based on an operating state of the vehicle as determined from vehicle operating parameters. The ECU selects a range for the set point voltage based on the selected control mode and then sets the set point voltage within the range based on feedback parameters for that control mode. In an aspect, the control modes include a trickle charge mode and battery charge current is the feedback parameter and the ECU controls the set point voltage within the range to maintain a predetermined battery charge current.

  2. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Do alternative fuel vehicles (AFVs) improve air quality? How does the use of alternative fuels affect smog formation? You may find answers to these and other questions through the U.S. Department of Energy's (DOE) Alternative Fuels Data Center (AFDC)-the nation's most com- prehensive repository of perfor- mance data and general informa- tion on AFVs. To date, more than 600 vehi- cles-including light-duty cars, trucks, vans, transit buses, and heavy-duty trucks-have been tested on various

  3. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fuel Tax Rate A license tax of $0.24 per gasoline gallon equivalent (GGE) or diesel gallon equivalent (DGE) is collected on all alternative fuel used, sold, or distributed for sale or use in Wyoming. Alternative fuels include compressed natural gas (CNG), liquefied natural gas (LNG), liquefied petroleum gas (propane), electricity, and renewable diesel. For taxation purposes, one GGE of CNG is equal to 5.66 pounds (lbs.), one DGE of LNG is equal to 6.06 lbs., one GGE of propane is

  4. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuel Signage The Ohio Turnpike Commission allows businesses to place their logos on directional signs within the right-of-way of state turnpikes. An alternative fuel retailer may include a marking or symbol within their logo indicating that it sells one or more types of alternative fuel. Alternative fuels are defined as E85, fuel blends containing at least 20% biodiesel (B20), natural gas, propane, hydrogen, or any fuel that the U.S. Department of Energy determines, by final rule, to be

  5. ICR-ICE Standard Operating Procedures (Update Sept 2013) | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Documents & Publications INDEPENDENT COST REVIEW (ICR) and INDEPENDENT COST ESTIMATE (ICE) Standard Operating Procedures Contractor SOW Template - ICR Contractor SOW Template - ICE...

  6. Georgia System Operations Corporation Inc. Smart Grid Project...

    Open Energy Info (EERE)

    Power Quality Optimized Generator Operation Reduced Ancillary Service Cost Reduced Electricity Costs for Customers Reduced Greenhouse Gas and Criteria Pollutant Emissions Reduced...

  7. Life-Cycle Costs of Alternative Fuels: Is Biodiesel Cost Competitve for Urban Buses

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

  8. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Plug-In Electric Vehicle (PEV) Cost Recovery A public electric utility may seek recovery of the costs associated with programs and resources related to distributed energy resources and load management technologies, including PEV charging, as part of a rate case filing through the South Carolina Public Service Commission. (Reference South Carolina Code of Laws 58-39-120 and 58-39-13

  9. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Tax Exemption The retail sale, use, storage, and consumption of alternative fuels is exempt from the state retail sales and use tax. (Reference North Carolina General Statutes 105-164.13(11)

  10. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    CDOT and DPA must also determine opportunities to expand state pricing into alternative fuel and fuel-efficient heavy-duty equipment, as well as into idle reduction technologies ...

  11. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    findings and recommendations for alternatives to the road tax placed on hybrid and plug-in electric vehicles, as well as other fuel-efficient and emerging technology vehicles. ...

  12. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fueling Infrastructure Tax Credit For tax years beginning on or after January ... Tax credits may be carried forward for two years and may be transferred or sold, but will ...

  13. Alternative Fuels Data Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tax Refund Effective July 1, 2015, any person exporting alternative fuel for which the license tax has been paid is eligible for a refund of the license tax paid. The exporter must...

  14. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Municipal Alternative Fuel Tax Regulation A taxing jurisdiction may not levy a tax or fee, however denominated, on natural gas or propane used to propel a motor vehicle. (Reference Arizona Revised Statutes 42-6004

  15. Alternative Fuels Data Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fuels Tax Alternative fuels are subject to an excise tax at a rate of 0.205 per gasoline gallon equivalent, with a variable component equal to at least 5% of the average wholesale...

  16. Alternative Fuels Data Center: Biodiesel

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Biodiesel Printable Version Share this resource Send a link to Alternative Fuels Data Center: Biodiesel to someone by E-mail Share Alternative Fuels Data Center: Biodiesel on Facebook Tweet about Alternative Fuels Data Center: Biodiesel on Twitter Bookmark Alternative Fuels Data Center: Biodiesel on Google Bookmark Alternative Fuels Data Center: Biodiesel on Delicious Rank Alternative Fuels Data Center: Biodiesel on Digg Find More places to share Alternative Fuels Data Center: Biodiesel on

  17. Alternative Fuels Data Center: Contacts

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    About Printable Version Share this resource Send a link to Alternative Fuels Data Center: Contacts to someone by E-mail Share Alternative Fuels Data Center: Contacts on Facebook Tweet about Alternative Fuels Data Center: Contacts on Twitter Bookmark Alternative Fuels Data Center: Contacts on Google Bookmark Alternative Fuels Data Center: Contacts on Delicious Rank Alternative Fuels Data Center: Contacts on Digg Find More places to share Alternative Fuels Data Center: Contacts on AddThis.com...

  18. Alternative Fuels Data Center: Electricity

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Electricity Printable Version Share this resource Send a link to Alternative Fuels Data Center: Electricity to someone by E-mail Share Alternative Fuels Data Center: Electricity on Facebook Tweet about Alternative Fuels Data Center: Electricity on Twitter Bookmark Alternative Fuels Data Center: Electricity on Google Bookmark Alternative Fuels Data Center: Electricity on Delicious Rank Alternative Fuels Data Center: Electricity on Digg Find More places to share Alternative Fuels Data Center:

  19. Alternative Fuels Data Center: Ethanol

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Ethanol Printable Version Share this resource Send a link to Alternative Fuels Data Center: Ethanol to someone by E-mail Share Alternative Fuels Data Center: Ethanol on Facebook Tweet about Alternative Fuels Data Center: Ethanol on Twitter Bookmark Alternative Fuels Data Center: Ethanol on Google Bookmark Alternative Fuels Data Center: Ethanol on Delicious Rank Alternative Fuels Data Center: Ethanol on Digg Find More places to share Alternative Fuels Data Center: Ethanol on AddThis.com... More

  20. Alternative Fuels Data Center: Hydrogen

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Hydrogen Printable Version Share this resource Send a link to Alternative Fuels Data Center: Hydrogen to someone by E-mail Share Alternative Fuels Data Center: Hydrogen on Facebook Tweet about Alternative Fuels Data Center: Hydrogen on Twitter Bookmark Alternative Fuels Data Center: Hydrogen on Google Bookmark Alternative Fuels Data Center: Hydrogen on Delicious Rank Alternative Fuels Data Center: Hydrogen on Digg Find More places to share Alternative Fuels Data Center: Hydrogen on

  1. Alternative Fuels Data Center: Propane

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Vehicles » Propane Printable Version Share this resource Send a link to Alternative Fuels Data Center: Propane to someone by E-mail Share Alternative Fuels Data Center: Propane on Facebook Tweet about Alternative Fuels Data Center: Propane on Twitter Bookmark Alternative Fuels Data Center: Propane on Google Bookmark Alternative Fuels Data Center: Propane on Delicious Rank Alternative Fuels Data Center: Propane on Digg Find More places to share Alternative Fuels Data Center: Propane on

  2. Alternative Fuels Data Center: Publications

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Publications Printable Version Share this resource Send a link to Alternative Fuels Data Center: Publications to someone by E-mail Share Alternative Fuels Data Center: Publications on Facebook Tweet about Alternative Fuels Data Center: Publications on Twitter Bookmark Alternative Fuels Data Center: Publications on Google Bookmark Alternative Fuels Data Center: Publications on Delicious Rank Alternative Fuels Data Center: Publications on Digg Find More places to share Alternative Fuels Data

  3. Alternative Fuels Data Center: Tools

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Tools to someone by E-mail Share Alternative Fuels Data Center: Tools on Facebook Tweet about Alternative Fuels Data Center: Tools on Twitter Bookmark Alternative Fuels Data Center: Tools on Google Bookmark Alternative Fuels Data Center: Tools on Delicious Rank Alternative Fuels Data Center: Tools on Digg Find More places to share Alternative Fuels Data Center: Tools on AddThis.com... Tools The Alternative Fuels Data Center offers a large collection of helpful tools. These calculators,

  4. Alternative Fuels Data Center: Widgets

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Tools Printable Version Share this resource Send a link to Alternative Fuels Data Center: Widgets to someone by E-mail Share Alternative Fuels Data Center: Widgets on Facebook Tweet about Alternative Fuels Data Center: Widgets on Twitter Bookmark Alternative Fuels Data Center: Widgets on Google Bookmark Alternative Fuels Data Center: Widgets on Delicious Rank Alternative Fuels Data Center: Widgets on Digg Find More places to share Alternative Fuels Data Center: Widgets on AddThis.com... Widgets

  5. Alternative Fuels Data Center: Glossary

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to Alternative Fuels Data Center: Glossary to someone by E-mail Share Alternative Fuels Data Center: Glossary on Facebook Tweet about Alternative Fuels Data Center: Glossary on Twitter Bookmark Alternative Fuels Data Center: Glossary on Google Bookmark Alternative Fuels Data Center: Glossary on Delicious Rank Alternative Fuels Data Center: Glossary on Digg Find More places to share Alternative Fuels Data Center: Glossary on AddThis.com...

  6. Alternative Fuels Data Center: Newsletters

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Publications » Newsletters Printable Version Share this resource Send a link to Alternative Fuels Data Center: Newsletters to someone by E-mail Share Alternative Fuels Data Center: Newsletters on Facebook Tweet about Alternative Fuels Data Center: Newsletters on Twitter Bookmark Alternative Fuels Data Center: Newsletters on Google Bookmark Alternative Fuels Data Center: Newsletters on Delicious Rank Alternative Fuels Data Center: Newsletters on Digg Find More places to share Alternative Fuels

  7. Alternative Fuels Data Center: Webmaster

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    About Printable Version Share this resource Send a link to Alternative Fuels Data Center: Webmaster to someone by E-mail Share Alternative Fuels Data Center: Webmaster on Facebook Tweet about Alternative Fuels Data Center: Webmaster on Twitter Bookmark Alternative Fuels Data Center: Webmaster on Google Bookmark Alternative Fuels Data Center: Webmaster on Delicious Rank Alternative Fuels Data Center: Webmaster on Digg Find More places to share Alternative Fuels Data Center: Webmaster on

  8. Alternative Fuels Data Center: Disclaimer

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to Alternative Fuels Data Center: Disclaimer to someone by E-mail Share Alternative Fuels Data Center: Disclaimer on Facebook Tweet about Alternative Fuels Data Center: Disclaimer on Twitter Bookmark Alternative Fuels Data Center: Disclaimer on Google Bookmark Alternative Fuels Data Center: Disclaimer on Delicious Rank Alternative Fuels Data Center: Disclaimer on Digg Find More places to share Alternative Fuels Data Center: Disclaimer on

  9. Alternative Fuels Data Center: Publications

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Publications Printable Version Share this resource Send a link to Alternative Fuels Data Center: Publications to someone by E-mail Share Alternative Fuels Data Center: Publications on Facebook Tweet about Alternative Fuels Data Center: Publications on Twitter Bookmark Alternative Fuels Data Center: Publications on Google Bookmark Alternative Fuels Data Center: Publications on Delicious Rank Alternative Fuels Data Center: Publications on Digg Find More places to share Alternative Fuels Data

  10. Clean Cities Guide to Alternative Fuel and Advanced Medium- and Heavy-Duty Vehicles

    SciTech Connect (OSTI)

    2013-08-01

    Today's fleets are increasingly interested in medium-duty and heavy-duty vehicles that use alternative fuels or advanced technologies that can help reduce operating costs, meet emissions requirements, improve fleet sustainability, and support U.S. energy independence. Vehicle and engine manufacturers are responding to this interest with a wide range of options across a steadily growing number of vehicle applications. This guide provides an overview of alternative fuel power systems--including engines, microturbines, electric motors, and fuel cells--and hybrid propulsion systems. The guide also offers a list of individual medium- and heavy-duty vehicle models listed by application, along with associated manufacturer contact information, fuel type(s), power source(s), and related information.

  11. Clean Cities Guide to Alternative Fuel and Advanced Medium- and Heavy-Duty Vehicles (Book)

    SciTech Connect (OSTI)

    Not Available

    2013-08-01

    Today's fleets are increasingly interested in medium-duty and heavy-duty vehicles that use alternative fuels or advanced technologies that can help reduce operating costs, meet emissions requirements, improve fleet sustainability, and support U.S. energy independence. Vehicle and engine manufacturers are responding to this interest with a wide range of options across a steadily growing number of vehicle applications. This guide provides an overview of alternative fuel power systems?including engines, microturbines, electric motors, and fuel cells?and hybrid propulsion systems. The guide also offers a list of individual medium- and heavy-duty vehicle models listed by application, along with associated manufacturer contact information, fuel type(s), power source(s), and related information.

  12. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Oregon Laws and Incentives Listed below are incentives, laws, and regulations related to alternative fuels and advanced vehicles for Oregon. Your Clean Cities coordinator at your local coalition can provide you with information about grants and other opportunities. You can also access coordinator and other agency contact information in the points of contact section. Laws and Incentives View All Search Icon of a state map on a computer monitor Oregon Information Find information about alternative

  13. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Texas Laws and Incentives Listed below are incentives, laws, and regulations related to alternative fuels and advanced vehicles for Texas. Your Clean Cities coordinator at your local coalition can provide you with information about grants and other opportunities. You can also access coordinator and other agency contact information in the points of contact section. Laws and Incentives View All Search Icon of a state map on a computer monitor Texas Information Find information about alternative

  14. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Employer Invested Emissions Reduction Funding - South Coast The South Coast Air Quality Management District (SCAQMD) administers the Air Quality Investment Program (AQIP). AQIP provides funding to allow employers within SCAQMD's jurisdiction to make annual investments into an administered fund to meet employers' emissions reduction targets. The revenues collected are used to fund alternative mobile source emissions and trip reduction programs, including alternative fuel vehicle projects, on an

  15. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants The Motor Vehicle Registration Fee Program (Program) provides funding for projects that reduce air pollution from on- and off-road vehicles. Eligible projects include purchasing AFVs and developing alternative fueling infrastructure. Contact local air districts and see the Program website for more information about available grant funding and distribution from the Program. (Reference California Health and Safety Code 44220 (b))

  16. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Federal Fleets Under the Energy Policy Act (EPAct) of 1992, 75% of new light-duty vehicles acquired by covered federal fleets must be alternative fuel vehicles (AFVs). As amended in January 2008, Section 301 of EPAct 1992 defines AFVs to include hybrid electric vehicles, fuel cell vehicles, and advanced lean burn vehicles. Fleets that use fuel blends containing at least 20% biodiesel (B20) may earn credits toward their annual requirements. Federal fleets are also required to use alternative

  17. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fuel Definition The following fuels are defined as alternative fuels by the Energy Policy Act (EPAct) of 1992: pure methanol, ethanol, and other alcohols; blends of 85% or more of alcohol with gasoline; natural gas and liquid fuels domestically produced from natural gas; liquefied petroleum gas (propane); coal-derived liquid fuels; hydrogen; electricity; pure biodiesel (B100); fuels, other than alcohol, derived from biological materials; and P-Series fuels. In addition, the U.S.

  18. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fuel Labeling Requirements Alternative fuel dispensers must be labeled with information to help consumers make informed decisions about fueling a vehicle, including the name of the fuel and the minimum percentage of the main component of the fuel. Labels may also list the percentage of other fuel components. This requirement applies to, but is not limited to, the following fuel types: methanol, denatured ethanol, and/or other alcohols; mixtures containing 85% or more by volume of

  19. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fuel and Special Fuel Definitions The definition of alternative fuel includes liquefied petroleum gas (propane). Special fuel is defined as all combustible gases and liquids that are suitable for powering an internal combustion engine or motor or are used exclusively for heating, industrial, or farm purposes. Special fuels include biodiesel, blended biodiesel, and natural gas products, including liquefied and compressed natural gas. (Reference Indiana Code 6-6-2.5-1 and 6-6-2.5-22

  20. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fuel Dealer License Any person who sells natural gas and propane on which the road tax has not been paid and who is not licensed and bonded must become licensed through the New Hampshire Department of Safety. The alternative fuel dealer must collect and remit road taxes and will be subject to a penalty for noncompliance. Failure to obtain a license and demonstrate compliance may result in fines and loss of the license, respectively. (Reference New Hampshire Revised Statutes 260:36,

  1. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fuel Feasibility Study Grants The Wyoming State Energy Office (SEO) offers grants of up to $5,000 to municipalities in the state to conduct feasibility studies related to acquiring alternative fuel vehicles or developing fueling infrastructure. Awardees must submit final feasibility studies to the SEO within 180 days of the grant execution date. Eligible applicants are required to provide at least a 10% cash match. Other terms and conditions may apply. Funding is not currently

  2. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fuel Definition and Specifications Alternative fuels include biofuel, ethanol, methanol, hydrogen, coal-derived liquid fuels, electricity, natural gas, propane gas, or a synthetic transportation fuel. Biofuel is defined as a renewable, biodegradable, combustible liquid or gaseous fuel derived from biomass or other renewable resources that can be used as transportation fuel, combustion fuel, or refinery feedstock and that meets ASTM specifications and federal quality requirements for

  3. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Greenhouse Gas (GHG) Emissions Study In October 2013, the Climate Legislative and Executive Workgroup finalized a report, Evaluation of Approaches to Reduce GHG Emissions in Washington State, for the governor. The report evaluates strategies for the state to reduce its GHG emissions and makes recommendations. The evaluation includes a review of state policies to stabilize or reduce GHG emissions, including converting public vehicles to alternative fuels and public alternative fuel vehicle (AFV)

  4. Activity Based Costing

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-03-28

    Activity Based Costing (ABC) is method for developing cost estimates in which the project is subdivided into discrete, quantifiable activities or a work unit. This chapter outlines the Activity Based Costing method and discusses applicable uses of ABC.

  5. Value engineering: An alternative liner system at the La Paz County Regional Landfill

    SciTech Connect (OSTI)

    Shafer, A.L.; Purdy, S.; Tempelis, D.

    1997-11-01

    The La Paz County Regional Landfill is a 65 hectare (160 acre) municipal waste site located near the western border of Arizona between the cities of Parker and Quartzsite. The site is operated under a public/private partnership between the County of La Paz and Browning-Ferris Industries, Inc. (BFI). The County owns the landfill and infrastructure and BFI is responsible for facility improvements, environmental compliance, and daily operations. Following the initial permitting and construction of the first landfill cell, a value engineering review was conducted on the site design and permit requirements. Based on this review, substantial cost saving opportunities were identified. In order to implement the value engineering ideas, the site permit was modified and a new Solid Waste Facilities Plan was Submitted to the Arizona Department of Environmental Quality. This paper discusses the value engineering modifications that were conducted, the revisions to the permits, and the relative cost savings that were realized. The areas addressed include the liner system design, closure design, disposal capacity, and operations plan. Through the use of alternative liners a cost savings of well over 50 percent (as compared to the original permit) will be realized over the life of the landfill.

  6. Hydrogen Threshold Cost Calculation

    Broader source: Energy.gov [DOE]

    DOE Hydrogen Program Record number11007, Hydrogen Threshold Cost Calculation, documents the methodology and assumptions used to calculate that threshold cost.

  7. Systematic Approach to Better Understanding Integration Costs

    SciTech Connect (OSTI)

    Stark, Gregory B.

    2015-09-01

    This research presents a systematic approach to evaluating the costs of integrating new generation and operational procedures into an existing power system, and the methodology is independent of the type of change or nature of the generation. The work was commissioned by the U.S. Department of Energy and performed by the National Renewable Energy Laboratory to investigate three integration cost-related questions: (1) How does the addition of new generation affect a system's operational costs, (2) How do generation mix and operating parameters and procedures affect costs, and (3) How does the amount of variable generation (non-dispatchable wind and solar) impact the accuracy of natural gas orders? A detailed operational analysis was performed for seven sets of experiments: variable generation, large conventional generation, generation mix, gas prices, fast-start generation, self-scheduling, and gas supply constraints. For each experiment, four components of integration costs were examined: cycling costs, non-cycling VO&M costs, fuel costs, and reserves provisioning costs. The investigation was conducted with PLEXOS production cost modeling software utilizing an updated version of the Institute of Electrical and Electronics Engineers 118-bus test system overlaid with projected operating loads from the Western Electricity Coordinating Council for the Sacramento Municipal Utility District, Puget Sound Energy, and Public Service Colorado in the year 2020. The test system was selected in consultation with an industry-based technical review committee to be a reasonable approximation of an interconnection yet small enough to allow the research team to investigate a large number of scenarios and sensitivity combinations. The research should prove useful to market designers, regulators, utilities, and others who want to better understand how system changes can affect production costs.

  8. Alternative Liquid Fuels Simulation Model (AltSim).

    SciTech Connect (OSTI)

    Williams, Ryan; Baker, Arnold Barry; Drennen, Thomas E.

    2009-12-01

    The Alternative Liquid Fuels Simulation Model (AltSim) is a high-level dynamic simulation model which calculates and compares the production and end use costs, greenhouse gas emissions, and energy balances of several alternative liquid transportation fuels. These fuels include: corn ethanol, cellulosic ethanol from various feedstocks (switchgrass, corn stover, forest residue, and farmed trees), biodiesel, and diesels derived from natural gas (gas to liquid, or GTL), coal (coal to liquid, or CTL), and coal with biomass (CBTL). AltSim allows for comprehensive sensitivity analyses on capital costs, operation and maintenance costs, renewable and fossil fuel feedstock costs, feedstock conversion ratio, financial assumptions, tax credits, CO{sub 2} taxes, and plant capacity factor. This paper summarizes the structure and methodology of AltSim, presents results, and provides a detailed sensitivity analysis. The Energy Independence and Security Act (EISA) of 2007 sets a goal for the increased use of biofuels in the U.S., ultimately reaching 36 billion gallons by 2022. AltSim's base case assumes EPA projected feedstock costs in 2022 (EPA, 2009). For the base case assumptions, AltSim estimates per gallon production costs for the five ethanol feedstocks (corn, switchgrass, corn stover, forest residue, and farmed trees) of $1.86, $2.32, $2.45, $1.52, and $1.91, respectively. The projected production cost of biodiesel is $1.81/gallon. The estimates for CTL without biomass range from $1.36 to $2.22. With biomass, the estimated costs increase, ranging from $2.19 per gallon for the CTL option with 8% biomass to $2.79 per gallon for the CTL option with 30% biomass and carbon capture and sequestration. AltSim compares the greenhouse gas emissions (GHG) associated with both the production and consumption of the various fuels. EISA allows fuels emitting 20% less greenhouse gases (GHG) than conventional gasoline and diesels to qualify as renewable fuels. This allows several of the CBTL options to be included under the EISA mandate. The estimated GHG emissions associated with the production of gasoline and diesel are 19.80 and 18.40 kg of CO{sub 2} equivalent per MMBtu (kgCO{sub 2}e/MMBtu), respectively (NETL, 2008). The estimated emissions are significantly higher for several alternatives: ethanol from corn (70.6), GTL (51.9), and CTL without biomass or sequestration (123-161). Projected emissions for several other alternatives are lower; integrating biomass and sequestration in the CTL processes can even result in negative net emissions. For example, CTL with 30% biomass and 91.5% sequestration has estimated production emissions of -38 kgCO{sub 2}e/MMBtu. AltSim also estimates the projected well-to-wheel, or lifecycle, emissions from consuming each of the various fuels. Vehicles fueled with conventional diesel or gasoline and driven 12,500 miles per year emit 5.72-5.93 tons of CO{sub 2} equivalents per year (tCO{sub 2}e/yr). Those emissions are significantly higher for vehicles fueled with 100% ethanol from corn (8.03 tCO{sub 2}e/yr) or diesel from CTL without sequestration (10.86 to 12.85 tCO{sub 2}/yr). Emissions could be significantly lower for vehicles fueled with diesel from CBTL with various shares of biomass. For example, for CTL with 30% biomass and carbon sequestration, emissions would be 2.21 tCO{sub 2}e per year, or just 39% of the emissions for a vehicle fueled with conventional diesel. While the results presented above provide very specific estimates for each option, AltSim's true potential is as a tool for educating policy makers and for exploring 'what if?' type questions. For example, AltSim allows one to consider the affect of various levels of carbon taxes on the production cost estimates, as well as increased costs to the end user on an annual basis. Other sections of AltSim allow the user to understand the implications of various polices in terms of costs to the government or land use requirements. AltSim's structure allows the end user to explore each of these alternatives and understand the sensitivities implications a

  9. Cask fleet operations study

    SciTech Connect (OSTI)

    Not Available

    1988-01-01

    The Nuclear Waste Policy Act of 1982 assigned to the Department of Energy's (DOE) Office of Civilian Waste Management the responsibility for disposing of high-level waste and spent fuel. A significant part of that responsibility involves transporting nuclear waste materials within the federal waste management system; that is, from the waste generator to the repository. The lead responsibility for transportation operations has been assigned to Oak Ridge Operations, with Oak Ridge National Laboratory (ORNL) providing technical support through the Transportation Operations Support Task Group. One of the ORNL support activities involves assessing what facilities, equipment and services are required to assure that an acceptable, cost-effective and safe transportation operations system can be designed, operated and maintained. This study reviews, surveys and assesses the experience of Nuclear Assurance Corporation (NAC) in operating a fleet of spent-fuel shipping casks to aid in developing the spent-fuel transportation system.

  10. Site Operator Program

    SciTech Connect (OSTI)

    Warren, J.F.

    1991-01-01

    Collectively, the organizations participating in the Site Operator Program have over forty years of EV experience and have operated electric vehicles (EVs) for over 600,000 miles, providing the most extensive EV operating and knowledge base in the country. The Site Operator Program is intended to provide financial and technical support and organizational resources to organizations active in the advancement of electric vehicles. Support is provided for the demonstration of vehicles and the test and evaluation of vehicles, components, and batteries. Support is also provided for the management and support of the program for the participating organizations. The Program provides a forum for participants to exchange information among the group, as well as with vehicle and equipment manufacturers and suppliers, and the public. A central data base at the Idaho National Engineering Laboratory provides a repository for-data on the vehicles being operated by the Program participants. Data collection emphasis is in the areas of operations, maintenance, and life cycle costs.

  11. Site Operator Program

    SciTech Connect (OSTI)

    Warren, J.F.

    1991-12-31

    Collectively, the organizations participating in the Site Operator Program have over forty years of EV experience and have operated electric vehicles (EVs) for over 600,000 miles, providing the most extensive EV operating and knowledge base in the country. The Site Operator Program is intended to provide financial and technical support and organizational resources to organizations active in the advancement of electric vehicles. Support is provided for the demonstration of vehicles and the test and evaluation of vehicles, components, and batteries. Support is also provided for the management and support of the program for the participating organizations. The Program provides a forum for participants to exchange information among the group, as well as with vehicle and equipment manufacturers and suppliers, and the public. A central data base at the Idaho National Engineering Laboratory provides a repository for-data on the vehicles being operated by the Program participants. Data collection emphasis is in the areas of operations, maintenance, and life cycle costs.

  12. Technology, Safety and Costs of Decommissioning a Reference Uranium Hexafluoride Conversion Plant

    SciTech Connect (OSTI)

    Elder, H. K.

    1981-10-01

    Safety and cost information is developed for the conceptual decommissioning of a commercial uranium hexafluoride conversion (UF{sub 6}) plant. Two basic decommissioning alternatives are studied to obtain comparisons between cost and safety impacts: DECON, and passive SAFSTOR. A third alternative, DECON of the plant and equipment with stabilization and long-term care of lagoon wastes. is also examined. DECON includes the immediate removal (following plant shutdown) of all radioactivity in excess of unrestricted release levels, with subsequent release of the site for public use. Passive SAFSTOR requires decontamination, preparation, maintenance, and surveillance for a period of time after shutdown, followed by deferred decontamination and unrestricted release. DECON with stabilization and long-term care of lagoon wastes (process wastes generated at the reference plant and stored onsite during plant operation} is also considered as a decommissioning method, although its acceptability has not yet been determined by the NRC. The decommissioning methods assumed for use in each decommissioning alternative are based on state-of-the-art technology. The elapsed time following plant shutdown required to perform the decommissioning work in each alternative is estimated to be: for DECON, 8 months; for passive SAFSTOR, 3 months to prepare the plant for safe storage and 8 months to accomplish deferred decontamination. Planning and preparation for decommissioning prior to plant shutdown is estimated to require about 6 months for either DECON or passive SAFSTOR. Planning and preparation prior to starting deferred decontamination is estimated to require an additional 6 months. OECON with lagoon waste stabilization is estimated to take 6 months for planning and about 8 months to perform the decommissioning work. Decommissioning cost, in 1981 dollars, is estimated to be $5.91 million for OECON. For passive SAFSTOR, preparing the facility for safe storage is estimated to cost $0.88 million, the annual maintenance and surveillance cost is estimated to be about $0.095 million, and deferred decontamination is estimated to cost about $6.50 million. Therefore, passive SAFSTOR for 10 years is estimated to cost $8.33 million in nondiscounted 1981 dollars. DECON with lagoon waste stabilization is estimated to cost about $4.59 million, with an annual cost of $0.011 million for long-term care. All of these estimates include a 25% contingency. Waste management costs for DECON, including the net cost of disposal of the solvent extraction lagoon wastes by shipping those wastes to a uranium mill for recovery of residual uranium, comprise about 38% of the total decommissioning cost. Disposal of lagoon waste at a commercial low-level waste burial ground is estimated to add $10.01 million to decommissioning costs. Safety analyses indicate that radiological and nonradiological safety impacts from decommissioning activities should be small. The 50-year committed dose equivalent to members of the public from airborne releases during normal decommissioning activities is estimated to 'Je about 4.0 man-rem. Radiation doses to the public from accidents are found to be very low for all phases of decommissioning. Occupational radiation doses from normal decommissioning operations (excluding transport operations) are estimated to be about 79 man-rem for DECON and about 80 man-rem for passive SAFSTOR with 10 years of safe storage. Doses from DECON with lagoon waste stabilization are about the same as for DECON except there is less dose resulting from transportation of radioactive waste. The number of fatalities and serious lost-time injuries not related to radiation is found to be very small for all decommissioning alternatives. Comparison of the cost estimates shows that DECON with lagoon waste stabilization is the least expensive method. However, this alternative does not allow unrestricted release of the site. The cumulative cost of maintenance and surveillance and the higher cost of deferred decontamination makes passive SAFSTOR more expensive than DECON. Several methods to assure that the licensee has adequate funds for decommissioning are considered. The methods investigated (all based on expected decommissioning costs) range from a single payment when plant operations begin, to payments into a sinking fund during the normal plant operating period, to a single payment when normal plant operations cease and decommissioning begins.

  13. Unconventional Staging Package Selection Leads to Cost Savings

    SciTech Connect (OSTI)

    ,

    2012-06-07

    In late 2010, U.S. Department of Energy (DOE) Deputy Secretary of Energy, Daniel Poneman, directed that an analysis be conducted on the U-233 steel-clad, Zero Power Reactor (ZPR) fuel plates that were stored at Oak Ridge National Laboratory (ORNL), focusing on cost savings and any potential DOE programmatic needs for the special nuclear material (SNM). The NA-162 Nuclear Criticality Safety Program requested retention of these fuel plates for use in experiments at the Nevada National Security Site (NNSS). A Secretarial Initiative challenged ORNL to make the first shipment to the NNSS by the end of the 2011 calendar year, and this effort became known as the U-233 Project Accelerated Shipping Campaign. To meet the Secretarial Initiative, National Security Technologies, LLC (NSTec), the NNSS Management and Operations contractor, was asked to facilitate the receipt and staging of the U-233 fuel plates in the Device Assembly Facility (DAF). Because there were insufficient staging containers available for the fuel plates, NSTec conducted an analysis of alternatives. The project required a staging method that would reduce the staging footprint while addressing nuclear criticality safety and radiation exposure concerns. To accommodate an intermediate staging method of approximately five years, the NSTec project team determined that a unique and unconventional staging package, the AT-400R, was available to meet the project requirements. By using the AT-400R containers, NSTec was able to realize a cost savings of approximately $10K per container, a total cost savings of nearly $450K.

  14. Systems impacts of spent fuel disassembly alternatives

    SciTech Connect (OSTI)

    Not Available

    1984-07-01

    Three studies were completed to evaluate four alternatives to the disposal of intact spent fuel assemblies in a geologic repository. A preferred spent fuel waste form for disposal was recommended on consideration of (1) package design and fuel/package interaction, (2) long-term, in-repository performance of the waste form, and (3) overall process performance and costs for packaging, handling, and emplacement. The four basic alternative waste forms considered were (1) end fitting removal, (2) fission gas venting, (3) disassembly and close packing, and (4) shearing/immobilization. None of the findings ruled out any alternative on the basis of waste package considerations or long-term performance of the waste form. The third alternative offers flexibility in loading that may prove attractive in the various geologic media under consideration, greatly reduces the number of packages, and has the lowest unit cost. These studies were completed in October, 1981. Since then Westinghouse Electric Corporation and the Office of Nuclear Waste Isolation have completed studies in related fields. This report is now being published to provide publicly the background material that is contained within. 47 references, 28 figures, 31 tables.

  15. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    The total amount of the grant awarded may be up to 10% of the total construction costs of the facility or 5.5 million, whichever is less. This program is suspended indefinitely ...

  16. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    of 50% of the cost of establishing a biomass feedstock crop, as well as annual payments for up to five years for herbaceous feedstocks and up to 15 years for woody feedstocks. ...

  17. Alternative Fuels Data Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    rebates for qualified vehicle conversions and certain fueling infrastructure. The rebate amount for vehicle conversions is 50% of the cost of the equipment, up to 4,500 for...

  18. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Public Electric Vehicle Supply Equipment (EVSE) Funding - NIPSCO NIPSCO's IN-Charge Around Town Electric Vehicle Program (Program) offers funding for the cost of up to two public EVSE, specifically for universities, workplaces, apartments, governmental public areas, major transportation corridors, and commercial and retail locations. NIPSCO offers 50% of the cost to purchase and install qualified public EVSE, up to $3,000 for Level 2 and up to $37,500 for DC fast. The Program is in effect until

  19. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Vehicle and Fueling Infrastructure Grants and Loans The Utah Clean Fuels and Vehicle Technology Grant and Loan Program, funded through the Clean Fuels and Vehicle Technology Fund, provides grants and loans to assist businesses and government entities to include: The incremental cost of purchasing original equipment manufactured clean fuel vehicles, and The cost of fueling equipment for public/private sector business and government vehicles (grants require federal and non-federal matching funds).

  20. Project Profile: Next-Generation Low-Cost Reflector | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    reduced operation and maintenance costs and a lower overall unit cost of the reflector assembly. ... Innovation The current LS3-sized mirrors use only 55%-65% of the available ...

  1. Oil Production Capacity Expansion Costs for the Persian Gulf

    Reports and Publications (EIA)

    1996-01-01

    Provides estimates of development and operating costs for various size fields in countries surrounding the Persian Gulf. In addition, a forecast of the required reserve development and associated costs to meet the expected demand through the year 2010 is presented.

  2. A chronicle of costs

    SciTech Connect (OSTI)

    Elioff, T.

    1994-04-01

    This report contains the history of all estimated costs associated with the superconducting super collider.

  3. Cost Estimation Package

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-03-28

    This chapter focuses on the components (or elements) of the cost estimation package and their documentation.

  4. Alternative Fuels Data Center: Biobutanol

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Biobutanol to someone by E-mail Share Alternative Fuels Data Center: Biobutanol on Facebook Tweet about Alternative Fuels Data Center: Biobutanol on Twitter Bookmark Alternative Fuels Data Center: Biobutanol on Google Bookmark Alternative Fuels Data Center: Biobutanol on Delicious Rank Alternative Fuels Data Center: Biobutanol on Digg Find More places to share Alternative Fuels Data Center: Biobutanol on AddThis.com... More in this section... Biobutanol Dimethyl Ether Methanol Renewable

  5. Alternative Fuels Data Center: Methanol

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Methanol to someone by E-mail Share Alternative Fuels Data Center: Methanol on Facebook Tweet about Alternative Fuels Data Center: Methanol on Twitter Bookmark Alternative Fuels Data Center: Methanol on Google Bookmark Alternative Fuels Data Center: Methanol on Delicious Rank Alternative Fuels Data Center: Methanol on Digg Find More places to share Alternative Fuels Data Center: Methanol on AddThis.com... More in this section... Biobutanol Dimethyl Ether Methanol Renewable Hydrocarbon Biofuels

  6. Alternative Fuels Data Center: Ridesharing

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Ridesharing to someone by E-mail Share Alternative Fuels Data Center: Ridesharing on Facebook Tweet about Alternative Fuels Data Center: Ridesharing on Twitter Bookmark Alternative Fuels Data Center: Ridesharing on Google Bookmark Alternative Fuels Data Center: Ridesharing on Delicious Rank Alternative Fuels Data Center: Ridesharing on Digg Find More places to share Alternative Fuels Data Center: Ridesharing on AddThis.com... More in this section... Idle Reduction Parts & Equipment

  7. Alternative Fuel Transit Buses

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    35th St. Craig Ave. Alt Blvd. Colucci Pkwy. Final Results from the National Renewable Energy Laboratory Vehicle Evaluation Program Final Results from the National Renewable Energy Laboratory Vehicle Evaluation Program N T Y A U E O F E N E R G D E P A R T M E N I T E D S T A T S O F A E R I C M Produced for the U.S. Department of Energy (DOE) by the National Renewable Energy Laboratory (NREL), a U.S. DOE national laboratory Transit Buses Alternative Fuel Alternative Fuel Final Results from the

  8. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuels Tax Alternative fuels subject to the New Mexico excise tax include liquefied petroleum gas (propane), compressed natural gas (CNG), and liquefied natural gas (LNG). The excise tax imposed on propane is $0.12 per gallon, and the excise tax imposed on CNG and LNG is $0.133 and $0.206 per gallon, respectively. A gallon is measured as 3.785 liters of propane, 5.66 pounds (lbs.) of CNG, and 6.06 lbs. of LNG. Alternative fuel purchased for distribution is not subject to the excise tax at the

  9. ES Alternatives | Open Energy Information

    Open Energy Info (EERE)

    ES Alternatives Jump to: navigation, search Name: ES Alternatives Place: Dallas, Texas Zip: 75201 Sector: Biomass Product: Landfill gas and biomass project developer. Coordinates:...

  10. Eco Alternative | Open Energy Information

    Open Energy Info (EERE)

    Alternative Jump to: navigation, search Name: Eco'Alternative Place: Le Bourget-du-Lac, France Zip: 73370 Product: Complete PV system installer with modules supplied by companies...

  11. Manufacturing Cost Analysis of 1 kW and 5 kW Solid Oxide Fuel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturing Cost Analysis of 1 kW and 5 kW Solid Oxide Fuel Cell (SOFC) for Auxiliary ... of fuel cell manufacturing costs at varied volumes and alternative system designs. ...

  12. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fuel Vehicle (AFV) Acquisition Goal North Carolina established a goal that at least 75% of new or replacement state government light-duty cars and trucks with a gross vehicle weight rating of 8,500 pounds or less must be AFVs or low emission vehicles. (Reference North Carolina General Statutes 143-215.107C)

  13. Compensated pulsed alternator

    DOE Patents [OSTI]

    Weldon, William F. (Austin, TX); Driga, Mircea D. (Austin, TX); Woodson, Herbert H. (Austin, TX)

    1980-01-01

    This invention relates to an electromechanical energy converter with inertial energy storage. The device, a single phase, two or multi-pole alternator with stationary field coils, and a rotating armature is provided. The rotor itself may be of laminated steel for slower pulses or for faster pulses should be nonmagnetic and electrically nonconductive in order to allow rapid penetration of the field as the armature coil rotates. The armature coil comprises a plurality of power generating conductors mounted on the rotor. The alternator may also include a stationary or counterrotating compensating coil to increase the output voltage thereof and to reduce the internal impedance of the alternator at the moment of peak outout. As the machine voltage rises sinusoidally, an external trigger switch is adapted to be closed at the appropriate time to create the desired output current from said alternator to an external load circuit, and as the output current passes through zero a self-commutating effect is provided to allow the switch to disconnect the generator from the external circuit.

  14. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Clean Energy Advisory Commission The South Carolina Clean Energy Industry Manufacturing Market Development Advisory Commission (Commission) will assist with the development of clean energy technologies, materials, and products, including advanced vehicle, alternative transportation fuel, battery manufacturing, and hydrogen fuel cell industries. The Commission provided a preliminary report in 2014 with a description and analysis of the existing clean energy manufacturing industry, job development

  15. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Transportation Fuel Study The Rhode Island Office of Energy Resources (OER) will prepare a study on strategies to reduce greenhouse gas emissions and promote alternative transportation fuels in Rhode Island, including any suggested regulatory changes. OER will submit the report to the governor and the senate by January 31, 2016. (Reference Senate Resolution 1020, 2015

  16. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Infrastructure Incentives Study The Georgia Joint Alternative Fuels Infrastructure Study Committee will evaluate how providing market incentives for AFV fueling infrastructure may lead to AFV market deployment. The Committee will provide a report of its recommendations and proposed legislation by December 1, 2016. (Reference Senate Resolution 1038, 20

  17. Laboratory Operations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory Operations /newsroom/_assets/images/operations-icon.png Laboratory Operations Latest announcements from the Lab on its operations. Community, Events Laboratory Operations Environmental Stewardship Melissa Blueflower-Sanchez and Robert Sanchez, owners of R and M Construction, LLC, of Santa Clara Pueblo. Four regional businesses receive Native American Venture Acceleration Fund grants The grants are designed to help the recipients create jobs, increase their revenue base and help

  18. Audit of Electrical System Construction Projects at the Nevada Operations Office, WR-B-97-01

    Energy Savers [EERE]

    ELECTRICAL SYSTEM CONSTRUCTION PROJECTS AT THE NEVADA OPERATIONS OFFICE The Office of Inspector General wants to make the distribution of its reports as customer friendly and cost-effective as possible. Therefore, this report will be available electronically through the Internet five to seven days after publication at the following alternative addresses: Department of Energy Headquarters Gopher gopher.hr.doe.gov Department of Energy Headquarters Anonymous FTP vm1.hqadmin.doe.gov Department of

  19. Survey of LWR environmental control technology performance and cost

    SciTech Connect (OSTI)

    Heeb, C.M.; Aaberg, R.L.; Cole, B.M.; Engel, R.L.; Kennedy, W.E. Jr.; Lewallen, M.A.

    1980-03-01

    This study attempts to establish a ranking for species that are routinely released to the environment for a projected nuclear power growth scenario. Unlike comparisons made to existing standards, which are subject to frequent revision, the ranking of releases can be used to form a more logical basis for identifying the areas where further development of control technology could be required. This report describes projections of releases for several fuel cycle scenarios, identifies areas where alternative control technologies may be implemented, and discusses the available alternative control technologies. The release factors were used in a computer code system called ENFORM, which calculates the annual release of any species from any part of the LWR nuclear fuel cycle given a projection of installed nuclear generation capacity. This survey of fuel cycle releases was performed for three reprocessing scenarios (stowaway, reprocessing without recycle of Pu and reprocessing with full recycle of U and Pu) for a 100-year period beginning in 1977. The radioactivity releases were ranked on the basis of a relative ranking factor. The relative ranking factor is based on the 100-year summation of the 50-year population dose commitment from an annual release of radioactive effluents. The nonradioactive releases were ranked on the basis of dilution factor. The twenty highest ranking radioactive releases were identified and each of these was analyzed in terms of the basis for calculating the release and a description of the currently employed control method. Alternative control technology is then discussed, along with the available capital and operating cost figures for alternative control methods.

  20. Alternative transportation fuels

    SciTech Connect (OSTI)

    Askew, W.S.; McNamara, T.M.; Maxfield, D.P.

    1980-01-01

    The commercialization of alternative fuels is analyzed. Following a synopsis of US energy use, the concept of commercialization, the impacts of supply shortages and demand inelasticity upon commercialization, and the status of alternative fuels commercialization to date in the US are discussed. The US energy market is viewed as essentially numerous submarkets. The interrelationship among these submarkets precludes the need to commercialize for a specific fuel/use. However, the level of consumption, the projected growth in demand, and the inordinate dependence upon foreign fuels dictate that additional fuel supplies in general be brought to the US energy marketplace. Commercialization efforts encompass a range of measures designed to accelerate the arrival of technologies or products in the marketplace. As discussed in this paper, such a union of willing buyers and willing sellers requires that three general conditions be met: product quality comparable to existing products; price competitiveness; and adequate availability of supply. Product comparability presently appears to be the least problematic of these three requirements. Ethanol/gasoline and methanol/gasoline blends, for example, demonstrate the fact that alternative fuel technologies exist. Yet price and availability (i.e., production capacity) remain major obstacles. Given inelasticity (with respect to price) in the US and abroad, supply shortages - actual or contrived - generate upward price pressure and should make once-unattractive alternative fuels more price competitive. It is noted, however, that actual price competitiveness has been slow to occur and that even with price competitiveness, the lengthy time frame needed to achieve significant production capacity limits the near-term impact of alternative fuels.

  1. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Provision for Establishment of Hydrogen Program The Texas Department of Transportation (TxDOT) may seek funding from public and private sources to acquire and operate hydrogen vehicles and establish and operate publicly-accessible hydrogen fueling stations. TxDOT must ensure that data on emissions from the vehicles, fueling stations, and related hydrogen production are monitored and compared with data on emissions from control vehicles with internal combustion engines that operate on fuels other

  2. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Biofuel Compatibility Requirements for Underground Storage Tanks (USTs) Fueling station owners and operators must notify the appropriate state and local implementing agencies at least 30 days before switching USTs to store ethanol blends greater than 10%, biodiesel blends greater than 20%, or any other regulated fuel the agency has identified. This notification timeframe allows agencies to request information on UST compatibility before the owner or operator stores the fuel. Owners and operators

  3. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Idle Reduction Requirement A diesel- or gasoline-powered motor vehicle may not idle for more than three consecutive minutes, except under the following conditions: 1) to operate power takeoff equipment including, but not limited to, cement mixers, refrigeration systems, and delivery vehicles; 2) to operate private passenger vehicles; or 3) to operate heating equipment for five minutes when the ambient temperature is 32 degrees Fahrenheit or below. (Reference District of Columbia Municipal

  4. Alternative Fuels Data Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biodiesel Education Grants Competitive grants are available through the Biodiesel Fuel Education Program (Section 9006) to educate governmental and private entities that operate...

  5. Alternative Fuels Data Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tax Exemptions and Reductions Propane, natural gas, electricity, and hydrogen, also known as special fuel, used to operate motor vehicles are exempt from state fuel taxes, but...

  6. Alternative Fuels Data Center: Deploying Alternative Fuel Vehicles in

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Rochester, New York, Through the Congestion Mitigation and Air Quality Improvement Program Deploying Alternative Fuel Vehicles in Rochester, New York, Through the Congestion Mitigation and Air Quality Improvement Program to someone by E-mail Share Alternative Fuels Data Center: Deploying Alternative Fuel Vehicles in Rochester, New York, Through the Congestion Mitigation and Air Quality Improvement Program on Facebook Tweet about Alternative Fuels Data Center: Deploying Alternative Fuel

  7. Secretary Moniz Announces New Biofuels Projects to Drive Cost...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The projects will help boost the productivity of sustainable algae, while cutting capital and operating costs of commercial-scale production. The projects include: * Hawaii ...

  8. Subject: Cost and Price Analysis | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Subject: Cost and Price Analysis More Documents & Publications Acquisition Letter 2009-03 Acquisition Planning-Extending A Management and Operating Contract Without Full and Open...

  9. Transport Studies Enabling Efficiency Optimization of Cost-Competitive...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Studies Enabling Efficiency Optimization of Cost-Competitive Fuel Cell Stacks Transport ... More Documents & Publications Durability of Low Pt Fuel Cells Operating at High Power ...

  10. Pre-approvals Needed for Alternative Approaches | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Superior Energy Performance » Pre-approvals Needed for Alternative Approaches Pre-approvals Needed for Alternative Approaches Superior Energy Performance logo To accommodate differences in manufacturing operations, some facilities may use alternative approaches as specified in the Superior Energy Performance® (SEP(tm)) Measurement and Verification Protocol for Industry and summarized in the table below. Before submitting your application, we strongly encourage you to request pre-approval from

  11. Operations and Maintenance | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Soft Costs Operations and Maintenance Operations and Maintenance Photo of a man, wearing a yellow hard hat, looking at a wall with panels and wires mounted to it. Lower ...

  12. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Compressed Natural Gas (CNG) and Electricity Tax Exemption for Transit Use CNG and electricity that local agencies or public transit operators use as motor vehicle fuel to operate public transit services is exempt from applicable user taxes a county imposes. (Reference California Revenue and Taxation Code 7284.3

  13. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Electric Vehicle Supply Equipment (EVSE) Incentive - Austin Energy Plug-in electric vehicle owners in the Austin Energy service area may be eligible for a rebate of 50% of the cost to purchase and install a qualified Level 2 EVSE. The maximum rebate amount is $1,500. For additional information, see the Austin Energy Plug-In Rebate website.

  14. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Workplace Electric Vehicle Supply Equipment (EVSE) Grants The Massachusetts Electric Vehicle Incentive Program (MassEVIP) provides grants for 50% of the cost of Level 1 or Level 2 workplace EVSE, up to $25,000. Eligible applicants include employers with 15 or more employees in a non-residential place of business

  15. ''Measuring the Costs of Climate Change Policies''

    SciTech Connect (OSTI)

    Montgomery, W. D.; Smith, A. E.; Biggar, S. L.; Bernstein, P.M.

    2003-05-09

    Studies of the costs of climate change policies have utilized a variety of measures or metrics for summarizing costs. The leading economic models have utilized GNP, GDP, the ''area under a marginal cost curve,'' the discounted present value of consumption, and a welfare measure taken directly from the utility function of the model's representative agent (the ''Equivalent Variation''). Even when calculated using a single model, these metrics do not necessarily give similar magnitudes of costs or even rank policies consistently. This paper discusses in non-technical terms the economic concepts lying behind each concept, the theoretical basis for expecting each measure to provide a consistent ranking of policies, and the reasons why different measures provide different rankings. It identifies a method of calculating the ''Equivalent Variation'' as theoretically superior to the other cost metrics in ranking policies. When regulators put forward new economic or regulatory policies, there is a need to compare the costs and benefits of these new policies to existing policies and other alternatives to determine which policy is most cost-effective. For command and control policies, it is quite difficult to compute costs, but for more market-based policies, economists have had a great deal of success employing general equilibrium models to assess a policy's costs. Not all cost measures, however, arrive at the same ranking. Furthermore, cost measures can produce contradictory results for a specific policy. These problems make it difficult for a policy-maker to determine the best policy. For a cost measures to be of value, one would like to be confident of two things. First one wants to be sure whether the policy is a winner or loser. Second, one wants to be confident that a measure produces the correct policy ranking. That is, one wants to have confidence in a policy measure's ability to correctly rank policies from most beneficial to most harmful. This paper analyzes empirically these two properties of different costs measures as they pertain to assessing the costs of the carbon abatement policies, especially the Kyoto Protocol, under alternative assumptions about implementation.

  16. Dimethyl ether fuel proposed as an alternative to LNG

    SciTech Connect (OSTI)

    Kikkawa, Yoshitsugi; Aoki, Ichizo

    1998-04-06

    To cope with the emerging energy demand in Asia, alternative fuels to LNG must be considered. Alternative measures, which convert the natural gas to liquid fuel, include the Fischer-Tropsch conversion, methanol synthesis, and dimethyl ether (DME) synthesis. Comparisons are evaluated based on both transportation cost and feed-gas cost. The analysis will show that DME, one alternative to LNG as transportation fuel, will be more economical for longer distances between the natural-gas source and the consumer. LNG requires a costly tanker and receiving terminal. The break-even distance will be around 5,000--7,000 km and vary depending on the transported volume. There will be risk, however, since there has never been a DME plant the size of an LNG-equivalent plant [6 million metric tons/year (mty)].

  17. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    California Laws and Incentives Listed below are incentives, laws, and regulations related to alternative fuels and advanced vehicles for California. Your Clean Cities coordinator at your local coalition can provide you with information about grants and other opportunities. You can also access coordinator and other agency contact information in the points of contact section. Laws and Incentives View All Search Icon of a state map on a computer monitor California Information Find information about

  18. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    North Carolina Laws and Incentives Listed below are incentives, laws, and regulations related to alternative fuels and advanced vehicles for North Carolina. Your Clean Cities coordinator at your local coalition can provide you with information about grants and other opportunities. You can also access coordinator and other agency contact information in the points of contact section. Laws and Incentives View All Search Icon of a state map on a computer monitor North Carolina Information Find

  19. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fuel Excise Tax Compressed natural gas motor fuel is subject to the state fuel excise tax at the rate of $0.30 per 120 cubic feet, measured at 14.73 pounds per square inch and 60 degrees Fahrenheit. Propane motor fuel is subject to the excise tax $0.30 per 1.3 gallons at 60 degrees Fahrenheit. (Reference Oregon Revised Statutes 319.530

  20. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fuel and Advanced Vehicle Career Training The Clean Technology and Renewable Energy Job Training, Career Technical Education, and Dropout Prevention Program provides grant funding to school districts for occupational training programs that focus on employment in clean technology and renewable energy businesses, such as clean vehicle technologies, and cellulosic ethanol, biodiesel, biomass power, green waste, and fuel cell production. This program is subject to funding appropriation.

  1. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    and Vehicle Policy Development The California Energy Commission (CEC) must prepare and submit an Integrated Energy Policy Report (IEPR) to the governor on a biannual basis. The IEPR provides an overview of major energy trends and issues facing the state, including those related to transportation fuels, technologies, and infrastructure. The IEPR also examines potential effects of alternative fuels use, vehicle efficiency improvements, and shifts in transportation modes on public health and

  2. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fleet Vehicle Procurement Requirements When awarding a vehicle procurement contract, every city, county, and special district, including school and community college districts, may require that 75% of the passenger cars and/or light-duty trucks acquired be energy-efficient vehicles. By definition, this includes hybrid electric vehicles and alternative fuel vehicles that meet California's advanced technology partial zero emission vehicle (AT PZEV) standards. Vehicle procurement contract

  3. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fuel Vehicle (AFV) and Hybrid Electric Vehicle (HEV) Insurance Discount Farmers Insurance provides a discount of up to 10% on all major insurance coverage for HEV and AFV owners. To qualify, the automobile must be a dedicated AFV using ethanol, compressed natural gas, propane, or electricity, or be a HEV. A complete vehicle identification number is required to validate vehicle eligibility. For more information, see the Farmers California Insurance Discounts website.

  4. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fuel Vehicle (AFV) and Hybrid Electric Vehicle (HEV) Support The Clean Fuel Advanced Technology (CFAT) project provides grant funding to reducing transportation-related emissions in nonattainment and maintenance counties for National Ambient Air Quality Standards. A project that is adjacent to these areas may also be eligible for funding if the project will reduce emissions in eligible counties. The North Carolina Department of Transportation funds the CFAT project, which covers

  5. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Vehicle Acquisition and Petroleum Reduction Requirements The California Department of General Services (DGS) is responsible for maintaining specifications and standards for passenger cars and light-duty trucks that are purchased or leased for state office, agency, and department use. These specifications include minimum vehicle emissions standards and encourage the purchase or lease of fuel-efficient and alternative fuel vehicles (AFVs). On an annual basis, DGS must compile information

  6. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fuel Use and Vehicle Acquisition Requirements State agency fleets with more than 15 vehicles, excluding emergency and law enforcement vehicles, may not purchase or lease a motor vehicle unless the vehicle uses compressed or liquefied natural gas, propane, ethanol or fuel blends of at least 85% ethanol (E85), methanol or fuel blends of at least 85% methanol (M85), biodiesel or fuel blends of at least 20% biodiesel (B20), or electricity (including plug-in hybrid electric vehicles).

  7. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    State Transportation Plan The California Department of Transportation (Caltrans) must update the California Transportation Plan (Plan) by December 31, 2015, and every five years thereafter. The Plan must address how the state will achieve maximum feasible emissions reductions, taking into consideration the use of alternative fuels, new vehicle technology, and tailpipe emissions reductions. Caltrans must consult and coordinate with related state agencies, air quality management districts, public

  8. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Advanced Transportation Tax Exclusion The California Alternative Energy and Advanced Transportation Financing Authority (CAEATFA) provides a sales and use tax exclusion for qualified manufacturers of advanced transportation products, components, or systems that reduce pollution and energy use and promote economic development. Incentives are not available after December 31, 2020. For more information, including application materials, see the CAEATFA Sales and Use Tax Exclusion Program website.

  9. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fuel and Advanced Vehicle Rebate - San Joaquin Valley The San Joaquin Valley Air Pollution Control District (SJVAPCD) administers the Drive Clean! Rebate Program, which provides rebates for the purchase or lease of eligible new vehicles, including qualified natural gas, hydrogen fuel cell, propane, zero emission motorcycles, battery electric, neighborhood electric, and plug-in electric vehicles. The program offers rebates of up to $3,000, which are available on a first-come,

  10. Weighing the Alternatives

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    From their creation, during their utilization and with their disposal, nuclear materials present significant management challenges for those responsible for making decisions that may have impacts on the public and/or the environment. For over thirty years, researchers at Sandia National Laboratories have assisted these decision makers by offering expert, scientific advice when those in our government tasked with nuclear materials management weigh alternatives. The expertise that Sandia National

  11. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Clean Cities The mission of Clean Cities is to advance the energy, economic, and environmental security of the United States by supporting local initiatives to adopt practices that reduce the use of petroleum in the transportation sector. Clean Cities carries out this mission through a network of nearly 100 volunteer coalitions, which develop public/private partnerships to promote alternative fuels and advanced vehicles, fuel blends, fuel economy, hybrid vehicles, and idle reduction. Clean

  12. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Private and Local Government Fleets Under the Energy Policy Act (EPAct) of 1992, the U.S. Department of Energy (DOE) was directed to determine whether private and local government fleets should be mandated to acquire alternative fuel vehicles (AFVs). In January 2004, DOE published a final rule announcing its decision not to implement an AFV acquisition mandate for private and local government fleets. In response to a March 2006 ruling by a U.S. District Court, DOE issued a subsequent final

  13. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Improved Energy Technology Loans The U.S. Department of Energy (DOE) provides loan guarantees through the Loan Guarantee Program to eligible projects that reduce air pollution and greenhouse gases, and support early commercial use of advanced technologies, including biofuels and alternative fuel vehicles. The program is not intended for research and development projects. DOE may issue loan guarantees for up to 100% of the amount of the loan for an eligible project. For loan guarantees of over

  14. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    American Recovery and Reinvestment Act of 2009 Enacted February 17, 2009 The American Recovery and Reinvestment Act (ARRA) of 2009 (Public Law 111-5) appropriates nearly $800 billion towards the creation of jobs, economic growth, tax relief, improvements in education and healthcare, infrastructure modernization, and investments in energy independence and renewable energy technologies. ARRA supports a variety of alternative fuel and advanced vehicle technologies through grant programs, tax

  15. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Independence and Security Act of 2007 Enacted December 19, 2007 The Energy Independence and Security Act (EISA) of 2007 (Public Law 110-140) aims to improve vehicle fuel economy and reduce U.S. dependence on petroleum. EISA includes provisions to increase the supply of renewable alternative fuel sources by setting a mandatory Renewable Fuel Standard, which requires transportation fuel sold in the United States to contain a minimum of 36 billion gallons of renewable fuels annually by 2022. In

  16. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Policy Act of 2005 Enacted August 8, 2005 The table below provides a summary of the Energy Policy Act (EPAct) of 2005 (Public Law 109-58) provisions related to alternative fuels and vehicles, air quality, fuel efficiency, and other transportation topics. Note that although legislation authorizes funding for activities, the funds still must be appropriated through a separate federal budgeting process. For more information, visit the EPAct website. Reference Description Section 701 Federal Fleet

  17. Alternative Fuel Vehicle

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fuel Vehicle & Fueling Infrastructure Deployment Barriers & the Potential Role of Private Sector Financial Solutions April 2014 ACKNOWLEDGEMENTS The Center for Climate and Energy Solutions (C2ES) and the National Association of State Energy Officials (NASEO) would like to thank the U.S. Department of Energy for providing financial support for this report. C2ES would also like to thank the following for their substantial input: Jay Albert, Ken Berlin, Ken Brown, David Charron,

  18. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    State Energy Plan By October 15, 2015, the Missouri Department of Economic Development's Division of Energy will develop a comprehensive state energy plan to include information related to alternative fuels and advanced vehicles, as well as electric generation, fuels and resource extraction, energy distribution, energy usage, energy storage, energy-related land use issues, energy prices, energy security, and emergency resource planning. For more information, see the Missouri Energy Plan website.

  19. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fuel and Idle Reduction Revolving Loan Program for Public Entities The Alabama Department of Economic and Community Affairs (ADECA) provides low-interest energy efficiency loans through its Local Government Energy Loan program to local governments and educational institutions. Eligible energy efficiency improvement projects include those involving idle reduction equipment and natural gas and propane vehicle conversions or purchases. Dedicated and bi-fuel vehicles are eligible, and

  20. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fuel Vehicle (AFV) Emissions Inspection Exemption Vehicles powered exclusively by electricity, propane, or natural gas are exempt from state motor vehicle emissions inspections after receiving a one-time verification inspection. Emissions testing is required in certain counties in the Cleveland and Akron area. For more information, see the Ohio Environmental Protection Agency's E-Check website. (Reference Ohio Administrative Code 3745.26

  1. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fuel Tax An excise tax rate of 9% of the average wholesale price on a per gallon basis applies to all special fuels, including diesel, natural gas, liquefied petroleum gas (propane), ethanol, biodiesel, hydrogen, and any other combustible gases and liquids, excluding gasoline, used to propel motor vehicles. For taxation purposes, one gasoline gallon equivalent (GGE) of compressed natural gas (CNG) is equal to 5.66 pounds (lbs.) or 126.67 cubic feet. One GGE of liquefied natural gas

  2. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Innovative Transportation Project Competitive Grant Program The Maryland Energy Administration (MEA) provides funds to deploy "game changing" or innovative transportation projects that increase the use of alternative fuel vehicles, such as workplace charging. Projects must be located in Maryland and have the potential to significantly advance the clean energy market through commercially available technologies. Projects can include clean energy conversion technologies, systems, or

  3. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    High Occupancy Vehicle (HOV) Lane Exemption Dedicated AFVs are permitted to use HOV lanes, regardless of the number of passengers. Qualified vehicles must display an AFV special plate or the Clean Air - Blue Skies Energy Efficient license plate, which are available from the Arizona Department of Transportation (ADOT). Recognized alternative fuels are propane, natural gas, electricity, and hydrogen. Only certain plug-in hybrid electric vehicles are eligible for the Energy Efficient license plate.

  4. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    (AFV) and Fueling Infrastructure Grants The New Mexico Energy, Minerals, and Natural Resources Department administers the Clean Energy Grants Program, which provides grants for projects using clean energy technologies, including alternative fuel vehicles and fueling infrastructure, as well as projects that provide clean energy education, technical assistance, and training programs. These grants are provided on a competitive basis to qualifying entities such as municipalities and county

  5. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    and Vehicle Production Property Tax Incentive Alternative fuel production facilities, including biodiesel, biomass, biogas, and ethanol production facilities, may qualify for a reduced property tax rate of 3% of market value. Renewable energy manufacturing facilities, including those manufacturing plug-in electric vehicles or hybrid electric vehicles, also qualify. In addition, temporary property tax rate abatements are available for qualified biodiesel, biomass, biogas, and ethanol production

  6. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    State Plan to Reduce Petroleum Consumption The Governor's Office of Energy Independence and Security developed the Comprehensive Energy Action Plan in response to Public Law 656, 2008, in an effort to advance the principles, the programs and the integrated plans necessary to secure a safe, clean and affordable energy future for the citizens of Maine. The updated plan, published in February 2015, notes that Maine is not in the position to independently fund alternative fuel stations, mainly due

  7. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fuel Vehicle (AFV) Definition AFVs include vehicles propelled to a significant extent by electricity from a battery that has a capacity of at least four kilowatt-hours and can be recharged from an external source and vehicles propelled solely by compressed natural gas, hydrogen, or propane and that meet or exceed Tier 2, Bin 2 federal exhaust emissions standards. (Reference Nevada Revised Statutes 484A.196 through 484A.197

  8. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Loans The Oregon Department of Energy administers the State Energy Loan Program (SELP) which offers low-interest loans for qualified projects. Eligible alternative fuel projects include fuel production facilities, dedicated feedstock production, fueling infrastructure, and fleet vehicles. Loan recipients must complete a loan application and pay a loan application fee. For more information, including application forms and interest rate and fee information, see the SELP website. (Reference Oregon

  9. Direct/Indirect Costs

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-03-28

    This chapter provides recommended categories for direct and indirect elements developed by the Committee for Cost Methods Development (CCMD) and describes various estimating techniques for direct and indirect costs.

  10. Vehicle Cost Calculator

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Annual Fuel Cost gal Annual GHG Emissions (lbs of CO2) Vehicle Cost Calculator See Assumptions and Methodology Back Next U.S. Department of Energy Energy Efficiency and ...

  11. LIQUID PHASE FISCHER-TROPSCH (III & IV) DEMONSTRATION IN THE LAPORTE ALTERNATIVE FUELS DEVELOPMENT UNIT. Final Topical Report. Volume I/II: Main Report. Task 1: Engineering Modifications (Fischer-Tropsch III & IV Demonstration) and Task 2: AFDU Shakedown, Operations, Deactivation (Shut-Down) and Disposal (Fischer-Tropsch III & IV Demonstration).

    SciTech Connect (OSTI)

    Bharat L. Bhatt

    1999-06-01

    Slurry phase Fischer-Tropsch technology was successfully demonstrated in DOE's Alternative Fuels Development Unit (AFDU) at LaPorte, Texas. Earlier work at LaPorte, with iron catalysts in 1992 and 1994, had established proof-of-concept status for the slurry phase process. The third campaign (Fischer-Tropsch III), in 1996, aimed at aggressively extending the operability of the slurry reactor using a proprietary cobalt catalyst. Due to an irreversible plugging of catalyst-wax separation filters as a result of unexpected catalyst fines generation, the operations had to be terminated after seven days on-stream. Following an extensive post-run investigation by the participants, the campaign was successfully completed in March-April 1998, with an improved proprietary cobalt catalyst. These runs were sponsored by the U. S. Department of Energy (DOE), Air Products & Chemicals, Inc., and Shell Synthetic Fuels, Inc. (SSFI). A productivity of approximately 140 grams (gm) of hydrocarbons (HC)/ hour (hr)-liter (lit) of expanded slurry volume was achieved at reasonable system stability during the second trial (Fischer-Tropsch IV). The productivity ranged from 110-140 at various conditions during the 18 days of operations. The catalyst/wax filters performed well throughout the demonstration, producing a clean wax product. For the most part, only one of the four filter housings was needed for catalyst/wax filtration. The filter flux appeared to exceed the design flux. A combination of use of a stronger catalyst and some innovative filtration techniques were responsible for this success. There was no sign of catalyst particle attrition and very little erosion of the slurry pump was observed, in contrast to the Fischer-Tropsch III operations. The reactor operated hydrodynamically stable with uniform temperature profile and gas hold-ups. Nuclear density and differential pressure measurements indicated somewhat higher than expected gas hold-up (45 - 50 vol%) during Fischer-Tropsch IV operations. The high gas hold-up was confirmed by a dynamic gas disengagement test conducted at the end of the run. Heat transfer in the reactor was better than expected. Heat, mass and elemental balance calculations indicated excellent closure. After the initial learning curve with system dynamics, the plant was restarted very quickly (24 hours and 17 hours) following two plant trips. This demonstrates the ease and flexibility of the slurry technology. In-situ reduction of catalyst pre-cursor was completed successfully during F-T IV operations. Water measurements proved to be inaccurate due to wax/oil contamination of the analytical system. However, the reduction appeared to proceed well as close to expected syngas conversion was obtained at the beginning of the run. The selectivity to wax was lower than expected, with higher methane selectivity. Returning to the baseline condition indicated a productivity decline from 135-140 to 125-130 gm HC/hr-lit. of reactor volume in two weeks of operation. This may be a result of some catalyst loss from the reactor as well as initial catalyst deactivation. Significant quantities of product and samples were collected for further processing and analysis by the participants. Gas, liquid and solid phase mixing were studied as planned at two operating conditions using radioactive materials. A large amount of data were collected by ICI Tracerco using 43 detectors around the reactor. The data are being analyzed by Washington University as part of the Hydrodynamic Program with DOE.

  12. Alternative granular media for the metal casting industry. Final report, September 30, 1994

    SciTech Connect (OSTI)

    Guichelaar, P.J.; Ramrattan, S.N.; Tieder, R.E.

    1995-09-01

    Silica sand for foundry use is inexpensive to purchase, readily transported and widely available. As a result, it is universally used. However, three factors are becoming increasingly significant as more environmental regulations are promulgated. First, the disposal of waste foundry sand has become an excessively burdensome cost. Second, the phase changes which occur in the silica structure on heating and cooling cause thermal breakdown of the sand into smaller unusable fractions. Third, silica is a relatively weak mineral. Alternatives to silica sand which can withstand the rigors of repetitive reuse must be seriously evaluated as a way to control production costs of the domestic metal casting industry. Chromite sands, olivine sands and carbon sands have each been successfully used to solve operating problems and thus have developed their specific niches in the foundry materials inventory. However, there are several other materials that are candidates for replacing silica sand, such as fused alumina, sintered bauxite and sintered oil well proppants. These media, and others that are generically similar, are manufactured for specific purposes. Compositions and shapes could be readily tailored for used in a metal casting environment of total recycling and materials conservation. This study examines materials that are readily available as alternatives to silica sand from a functionality perspective and a cost perspective. Some of the alternative materials are natural and others are synthetic and thus referring to them as ``sands`` has the potential to cause confusion; the generic term ``granular medium`` is used in this study to mean any material that could functionally substitute for silica sand in the foundry process.

  13. Power Plant Cycling Costs

    SciTech Connect (OSTI)

    Kumar, N.; Besuner, P.; Lefton, S.; Agan, D.; Hilleman, D.

    2012-07-01

    This report provides a detailed review of the most up to date data available on power plant cycling costs. The primary objective of this report is to increase awareness of power plant cycling cost, the use of these costs in renewable integration studies and to stimulate debate between policymakers, system dispatchers, plant personnel and power utilities.

  14. Hydrogen Station Cost Estimates: Comparing Hydrogen Station Cost Calculator Results with other Recent Estimates

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrogen Station Cost Estimates Comparing Hydrogen Station Cost Calculator Results with other Recent Estimates M. Melaina and M. Penev National Renewable Energy Laboratory Technical Report NREL/TP-5400-56412 September 2013 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is available at no cost from the National Renewable Energy Laboratory (NREL) at

  15. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    for a pilot program to operate Type II school buses that are retrofitted with an auxiliary fuel tank to enable the use of biodiesel, waste vegetable oil, or straight vegetable oil. ...

  16. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    regardless of the number of passengers. Qualified AFVs may also use the HOT lanes toll-free. AFVs include plug-in electric vehicles and bi-fuel or dual-fuel vehicles that operate...

  17. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    To operate in HOV lanes, PEV owners must obtain a permit from the Maryland Motor Vehicle Administration (MVA). Each year the MVA and the State Highway Administration must report ...

  18. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    School Bus Idle Reduction Requirement The Mississippi State Department of Education requires public school district bus operators to minimize school bus idling to reduce exposure to diesel exhaust. (Reference Mississippi Code 37-11-71

  19. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    3 through 8 trucks operating 70% of the time and garaged in any nonattainment or maintenance area of New York State; Vouchers for private and non-profit fleets for 80% of the...

  20. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    be sold, transferred, or used to operate motor vehicles to reduce carbon monoxide emissions and attain federal or state air quality standards. (Reference Alaska Statutes 43.40.01

  1. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    All conversion systems must be certified by the U.S. Environmental Protection Agency or the California Air Resources Board. Equipment must operate in Illinois for at least three ...

  2. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    All conversion systems must be certified by the U.S. Environmental Protection Agency or the California Air Resources Board. All mowers must operate in Florida for at least one year ...

  3. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Gas Tax A use tax of 0.14 per gallon is imposed on liquefied gas used for operating motor vehicles on public highways. Liquefied gas is all combustible gas that exists in the...

  4. NUCLEAR ENERGY SYSTEM COST MODELING

    SciTech Connect (OSTI)

    Francesco Ganda; Brent Dixon

    2012-09-01

    The U.S. Department of Energys Fuel Cycle Technologies (FCT) Program is preparing to perform an evaluation of the full range of possible Nuclear Energy Systems (NES) in 2013. These include all practical combinations of fuels and transmuters (reactors and sub-critical systems) in single and multi-tier combinations of burners and breeders with no, partial, and full recycle. As part of this evaluation, Levelized Cost of Electricity at Equilibrium (LCAE) ranges for each representative system will be calculated. To facilitate the cost analyses, the 2009 Advanced Fuel Cycle Cost Basis Report is being amended to provide up-to-date cost data for each step in the fuel cycle, and a new analysis tool, NE-COST, has been developed. This paper explains the innovative Island approach used by NE-COST to streamline and simplify the economic analysis effort and provides examples of LCAE costs generated. The Island approach treats each transmuter (or target burner) and the associated fuel cycle facilities as a separate analysis module, allowing reuse of modules that appear frequently in the NES options list. For example, a number of options to be screened will include a once-through uranium oxide (UOX) fueled light water reactor (LWR). The UOX LWR may be standalone, or may be the first stage in a multi-stage system. Using the Island approach, the UOX LWR only needs to be modeled once and the module can then be reused on subsequent fuel cycles. NE-COST models the unit operations and life cycle costs associated with each step of the fuel cycle on each island. This includes three front-end options for supplying feedstock to fuel fabrication (mining/enrichment, reprocessing of used fuel from another island, and/or reprocessing of this islands used fuel), along with the transmuter and back-end storage/disposal. Results of each island are combined based on the fractional energy generated by each islands in an equilibrium system. The cost analyses use the probability distributions of key parameters and employs Monte Carlo sampling to arrive at an islands cost probability density function (PDF). When comparing two NES to determine delta cost, strongly correlated parameters can be cancelled out so that only the differences in the systems contribute to the relative cost PDFs. For example, one comparative analysis presented in the paper is a single stage LWR-UOX system versus a two-stage LWR-UOX to LWR-MOX system. In this case, the first stage of both systems is the same (but with different fractional energy generation), while the second stage of the UOX to MOX system uses the same type transmuter but the fuel type and feedstock sources are different. In this case, the cost difference between systems is driven by only the fuel cycle differences of the MOX stage.

  5. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Biodiesel Tax Exemption Biodiesel blends containing at least 20% biodiesel derived from used cooking oil are exempt from the $0.30 per gallon state fuel excise tax. The exemption does not apply to fuel used in vehicles with a gross vehicle weight rating of 26,001 pounds or more, fuel not sold in retail operations, or fuel sold in operations involving fleet fueling or bulk sales. The exemption expires after December 31, 2019. (Reference Oregon Revised Statutes 319.530

  6. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Hydrogen Fueling Station Evaluation The California Air Resources Board (ARB) may not enforce any element of regulations that would require a supplier to construct, operate, or provide funding to construct or operate a publicly available hydrogen fueling station. Annually, ARB must aggregate and share the number of hydrogen vehicles that manufacturers project will be sold or leased over the next three years and the total number of hydrogen vehicle registered in the state. Based on this

  7. Operating plan FY 1998

    SciTech Connect (OSTI)

    1997-10-01

    This document is the first edition of Argonne`s new Operating Plan. The Operating Plan complements the strategic planning in the Laboratory`s Institutional Plan by focusing on activities that are being pursued in the immediate fiscal year, FY 1998. It reflects planning that has been done to date, and it will serve in the future as a resource and a benchmark for understanding the Laboratory`s performance. The heart of the Institutional Plan is the set of major research initiatives that the Laboratory is proposing to implement in future years. In contrast, this Operating Plan focuses on Argonne`s ongoing R&D programs, along with cost-saving measures and other improvements being implemented in Laboratory support operations.

  8. Cost Contributors to Geothermal Power Production

    SciTech Connect (OSTI)

    Nathwani, Jay; Mines, Greg

    2011-07-01

    The US Department of Energy Geothermal Technologies Office (DOE-GTO) has developed the tool Geothermal Electricity Technologies Evaluation Model (GETEM) to assess the levelized cost of electricity (LCOE) of power produced from geothermal resources. Recently modifications to GETEM allow the DOE-GTO to better assess how different factors impact the generation costs, including initial project risk, time required to complete a development, and development size. The model characterizes the costs associated with project risk by including the costs to evaluate and drill those sites that are considered but not developed for commercial power generation, as well as to assign higher costs to finance those activities having more risk. This paper discusses how the important parameters impact the magnitude project costs for different project scenarios. The cost distributions presented include capital cost recovery for the exploration, confirmation, well field completion and power plant construction, as well as the operation and maintenance (O&M) costs. The paper will present these cost distributions for both EGS and hydrothermal resources.

  9. Cost Estimating Handbook for Environmental Restoration

    SciTech Connect (OSTI)

    1990-09-01

    Environmental restoration (ER) projects have presented the DOE and cost estimators with a number of properties that are not comparable to the normal estimating climate within DOE. These properties include: An entirely new set of specialized expressions and terminology. A higher than normal exposure to cost and schedule risk, as compared to most other DOE projects, due to changing regulations, public involvement, resource shortages, and scope of work. A higher than normal percentage of indirect costs to the total estimated cost due primarily to record keeping, special training, liability, and indemnification. More than one estimate for a project, particularly in the assessment phase, in order to provide input into the evaluation of alternatives for the cleanup action. While some aspects of existing guidance for cost estimators will be applicable to environmental restoration projects, some components of the present guidelines will have to be modified to reflect the unique elements of these projects. The purpose of this Handbook is to assist cost estimators in the preparation of environmental restoration estimates for Environmental Restoration and Waste Management (EM) projects undertaken by DOE. The DOE has, in recent years, seen a significant increase in the number, size, and frequency of environmental restoration projects that must be costed by the various DOE offices. The coming years will show the EM program to be the largest non-weapons program undertaken by DOE. These projects create new and unique estimating requirements since historical cost and estimating precedents are meager at best. It is anticipated that this Handbook will enhance the quality of cost data within DOE in several ways by providing: The basis for accurate, consistent, and traceable baselines. Sound methodologies, guidelines, and estimating formats. Sources of cost data/databases and estimating tools and techniques available at DOE cost professionals.

  10. Alternative schemes for production of chilled water and cogeneration of electricity at Ashley Plant

    SciTech Connect (OSTI)

    Not Available

    1989-01-01

    William Tao Associates, Inc. (TAO) evaluated alternative systems for the generation of Chilled Water at Ashley Plant. The generation of chilled water is necessary for several reason; initially as a source of revenue for St. Louis Thermal Energy Corporation (SLTEC), but more importantly as a necessary component of the Trash-to-Energy Plant proposed north of Ashley Plant. The chilled water system provides a base load for steam generated by the Trash-to-Energy Plant. The benefits include reduced tip-fees to the City of St. Louis, lower cost of energy to customers of both the district steam system and the proposed chilled water system, and will result in lower energy and operating costs for the system than if individual services are provided. This symbiotic relationship is main advantage of the Trash-to-Energy system. TAO provided preliminary engineering of the chilled water line route. The basic assumptions of an initial load of 10,000 tons with an ultimate load of 20,000 tons at a temperature difference of 16{degree}F remain. The findings of the pipeline study, although not incorporated into this document, remain valid. Assumptions include the following: An initial design load of 6000 tons which has the capability of growing to 20,000 tons; Incremental costs of steam generated by Ashley Plant and the Trash-to-Energy plant; The turbine room at Ashley Plant is suitable for gut rehab except for turbines No. 7 and No. 9 which should remain operational; and Daily chilled water flow and annual load profile. The paper describes the findings on 8 alternative chiller systems. Additional studies were performed on the following: chilled water storage; low-pressure absorption chiller for balancing plant steam loads; economizer cycle for chiller system; auxiliary equipment energy source; variable flow water pumps; and comparison to satellite chilled water plant study.

  11. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuel-Efficient Green Fleets Policy and Fleet Management Program Development The Alabama Green Fleets Review Committee (Committee) is establishing a Green Fleets Policy (Policy) outlining a procedure for procuring state vehicles based on criteria that includes fuel economy and life cycle costing. State fleet managers must classify their vehicle inventory for compliance with the Policy and submit annual plans for procuring fuel-efficient vehicles. These plans must reflect a 4% annual increase in

  12. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Electric Vehicle Supply Equipment (EVSE) Policies for Multi-Unit Dwellings A common interest development, including a community apartment, condominium, and cooperative development, may not prohibit or restrict the installation or use of EVSE in a homeowner's designated parking space. These entities may put reasonable restrictions on EVSE, but the policies may not significantly increase the cost of the EVSE or significantly decrease its efficiency or performance. If installation in the

  13. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Clean School Bus Program Any school district or charter school may receive a grant through the Texas Commission on Environmental Quality (TCEQ) to pay for the incremental costs to install diesel oxidation catalysts, diesel particulate filters, emission-reducing add-on equipment, and other emissions reduction technologies in qualified school buses. Furthermore, funds may also be used to purchase qualifying fuels, including any liquid or gaseous fuel or additive registered or verified by the U.S.

  14. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Liquefied Petroleum Gas (Propane) Vehicle and Equipment Incentive - Propane Council of Texas Propane vehicle incentives are available to private fleets with three or more vehicles that have not previously used propane as motor fuel. New dedicated propane vehicles and aftermarket conversions are eligible for an incentive equal to the incremental cost, up to $7,500. Each fleet is limited to $15,000 in total incentive awards. Additionally, an incentive up to $1,000 is available for each new or

  15. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Vehicle Emissions Reduction Grants - Sacramento The Sacramento Emergency Clean Air and Transportation (SECAT) Program provides grants to offset the costs of projects that reduce on-road emissions within the Sacramento federal ozone nonattainment area. Eligible projects include upgrades and exchanges of heavy-duty diesel vehicles with vehicles compliant with Air Resources Board diesel regulations. Other advanced technology implementation projects may also qualify. For more information, including

  16. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Low Emission Vehicle Incentives and Technical Training - San Joaquin Valley The San Joaquin Valley Air Pollution Control District (SJVAPCD) administers the REMOVE II program, which provides incentives for cost-effective projects that result in motor vehicle emissions reductions and long-term impacts on air pollution in the San Joaquin Valley. REMOVE II is providing funding for vanpool agencies that reduce or replace single occupant vehicle commutes in the San Joaquin Valley. To participate,

  17. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Biofuels Program Impact Studies The Oregon Department of Energy (ODOE) must conduct periodic impact studies related to the biofuels industry in the state. These studies should evaluate such criteria as: jobs created; current and projected feedstock availability; amount of biofuels blends produced and consumed in the state; cost comparison of biofuels blends and petroleum fuel; environmental impacts; and the extent to which Oregon producers import biofuels or biofuels feedstocks from outside the

  18. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Advanced Technology Vehicle (ATV) Manufacturing Incentives Through the Advanced Technology Vehicles Manufacturing Loan Program, ATV and ATV components manufacturers may be eligible for direct loans for up to 30% of the cost of re-equipping, expanding, or establishing manufacturing facilities in the United States used to produce qualified ATVs or ATV components. Qualified ATVs are light-duty or ultra-efficient vehicles that meet specified federal emission standards and fuel economy requirements.

  19. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Ethanol Infrastructure Grants and Loan Guarantees The Rural Energy for America Program (REAP) provides loan guarantees and grants to agricultural producers and rural small businesses to purchase renewable energy systems or make energy efficiency improvements. Eligible renewable energy systems include flexible fuel pumps, or blender pumps, that dispense intermediate ethanol blends. The maximum loan guarantee is $25 million and the maximum grant funding is 25% of project costs. At least 20% of the

  20. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Natural Gas Vehicle Loans - Communication Federal Credit Union (CFCU) CFCU offers loans to individuals and businesses that purchase new or converted compressed natural gas (CNG) vehicles. Conversion systems must be U.S. Environmental Protection Agency certified and installed by an insured and state licensed facility. New vehicle loans are available at amounts up to the manufacturer's suggested retail price plus the cost of the conversion. Pre-owned or CFCU member owned vehicles with a CNG fuel

  1. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuel Vehicle and Infrastructure Rebate Program The Arkansas Energy Office, a division of the Arkansas Economic Development Commission, administers the Arkansas Gaseous Fuels Vehicle Rebate Program (Program), funded by the Clean-Burning Motor Fuel Development Fund. The Program provides 50% of the conversion or incremental cost, up to $4,500, specifically for compressed natural gas (CNG), liquefied natural gas (LNG), or liquefied petroleum gas (propane) vehicle purchases or conversions. CNG must

  2. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Planned Community and Condominium Electric Vehicle Supply Equipment (EVSE) Installations The owner of a lot in a planned community or unit in a condominium may submit an application to install EVSE for their personal use in a parking space subject to the exclusive use of the owner. The homeowners association must approve a complete application within 60 days. The owner is responsible for all costs associated with the EVSE installation and use, must disclose the existence of the EVSE and related

  3. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    (AFV) Revolving Loan Program for Public Entities The South Carolina Energy Office (SCEO) provides low interest loans for a variety of energy efficiency improvements, including AFV conversions and incremental costs, with qualified project payback periods. Eligible recipients include state agencies, local governments, public colleges and universities, school districts, and private non-profit organizations. For state agencies and educational institutions, SCEO will provide 70% of each project's

  4. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Electric Vehicle Supply Equipment (EVSE) Rebates Funding is available from the New Hampshire Department of Environmental Services (NHDES) for EVSE deployed along major travel corridors in New Hampshire. NHDES will prioritize DC fast EVSE located on I-93 and I-89, and Level 2 EVSE located along interstates, major travel corridors, areas currently without EVSE, and for the purpose of workplace charging. Rebates are available for 75% of the project cost, up to $25,000 for DC fast, $5,000 for

  5. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Rebate The Nebraska Energy Office (NEO) offers rebates for qualified AFVs purchased after January 4, 2016. Qualified AFVs include new vehicles running on hydrogen, compressed natural gas, liquefied natural gas, or propane; leased vehicles are not eligible. The rebate amount is 50% of the incremental cost of the vehicle compared to the manufacturer's suggested retail price of the conventional equivalent, up to $4,500. For vehicles that do not have a conventional fuel equivalent, the rebate amount

  6. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Residential Compressed Natural Gas (CNG) Fueling Infrastructure Rebate The Nebraska Energy Office (NEO) offers rebates for qualified CNG fueling infrastructure that is installed at a residence after January 4, 2016. The rebate amount is 50% of the cost of the fueling infrastructure, up to $2,500 for each installation. Qualified fueling infrastructure includes new dispensers certified for use with CNG from a private home or residence for non-commercial use. Fueling infrastructure is not eligible

  7. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Ethanol Infrastructure Grants The South Dakota Governor's Office of Economic Development administers the Ethanol Infrastructure Incentive Program, providing grants to offset the cost of installing ethanol blender pumps and underground storage tanks (UST) for ethanol at retail fueling stations throughout the state. Awardees may receive up to $29,054 per blender pump. Additionally, awardees may receive up to $40,000 per station for the installation of a UST that allows for the use of ethanol

  8. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    State Agency Vehicle Procurement and Management Requirement When purchasing a motor vehicle, a state agency must select one that is capable of being powered by cleaner fuels, including electricity and natural gas, if the total life cycle cost of ownership is less than or comparable to that of a gasoline-powered vehicle. A committee of representatives from the Minnesota Departments of Administration, Agriculture, Commerce, Natural Resources, and Transportation, as well as the Pollution Control

  9. Our Operations | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Operations Infrastructure and Operations NNSA's missions require a secure production and laboratory infrastructure meeting immediate and long term needs. The Associate Administrator for Infrastructure and Operations develops and executes NNSA's infrastructure investment, maintenance, and operations programs and policies. Administration Programs Management and Budget The organization provides timely, cost-effective, and efficient administrative and financial support for NNSA headquarters staff.

  10. NPR (New Production Reactor) capacity cost evaluation

    SciTech Connect (OSTI)

    1988-07-01

    The ORNL Cost Evaluation Technical Support Group (CETSG) has been assigned by DOE-HQ Defense Programs (DP) the task defining, obtaining, and evaluating the capital and life-cycle costs for each of the technology/proponent/site/revenue possibilities envisioned for the New Production Reactor (NPR). The first part of this exercise is largely one of accounting, since all NPR proponents use different accounting methodologies in preparing their costs. In order to address this problem of comparing ''apples and oranges,'' the proponent-provided costs must be partitioned into a framework suitable for all proponents and concepts. If this is done, major cost categories can then be compared between concepts and major cost differences identified. Since the technologies proposed for the NPR and its needed fuel and target support facilities vary considerably in level of technical and operational maturity, considerable care must be taken to evaluate the proponent-derived costs in an equitable manner. The use of cost-risk analysis along with derivation of single point or deterministic estimates allows one to take into account these very real differences in technical and operational maturity. Chapter 2 summarizes the results of this study in tabular and bar graph form. The remaining chapters discuss each generic reactor type as follows: Chapter 3, LWR concepts (SWR and WNP-1); Chapter 4, HWR concepts; Chapter 5, HTGR concept; and Chapter 6, LMR concept. Each of these chapters could be a stand-alone report. 39 refs., 36 figs., 115 tabs.

  11. Alternative Fuels Data Center: Deploying Alternative Fuel Vehicles and

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Infrastructure in Chicago, Illinois, Through the Congestion Mitigation and Air Quality Improvement Program Deploying Alternative Fuel Vehicles and Infrastructure in Chicago, Illinois, Through the Congestion Mitigation and Air Quality Improvement Program to someone by E-mail Share Alternative Fuels Data Center: Deploying Alternative Fuel Vehicles and Infrastructure in Chicago, Illinois, Through the Congestion Mitigation and Air Quality Improvement Program on Facebook Tweet about Alternative

  12. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fuel Excise Tax Liquefied petroleum gas (propane) and compressed natural gas are subject to a federal excise tax of $0.183 per gasoline gallon equivalent (GGE). The liquefied natural gas tax rate is $0.243 per diesel gallon equivalent (DGE). For taxation purposes, one GGE is equal to 5.75 pounds (lbs.) of propane and 5.66 lbs. of CNG. One DGE is equal to 6.06 lbs. of LNG. (Reference Public Law 114-41 and 26 U.S. Code 4041 and 4081) Point of Contact Excise Tax Branch U.S. Internal

  13. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Tax Exemption Alternative fuels used in a manner that the Internal Revenue Service (IRS) deems as nontaxable are exempt from federal fuel taxes. Common nontaxable uses in a motor vehicle are: on a farm for farming purposes; in certain intercity and local buses; in a school bus; exclusive use by a non-profit educational organization; and exclusive use by a state, political subdivision of a state, or the District of Columbia. This exemption is not available to tax exempt entities that are not

  14. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fuels Tax The state motor fuel tax on liquefied natural gas (LNG) is imposed based on the diesel gallon equivalent (DGE) and the tax on compressed natural gas (CNG) is based on the gasoline gallon equivalent (GGE). Beginning January 1, 2016, the state motor fuel tax on propane is imposed based on a GGE basis. For taxation purposes, one GGE of propane and CNG is equal to 5.75 pounds (lbs.) and 5.66 lbs., respectively, and one DGE of LNG is equal to 6.06 lbs. The North Carolina

  15. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fuel Tax Rates A special excise tax rate of 2% is imposed on the sale of propane and an excise tax of $0.23 per gallon is imposed on all special fuels sales and deliveries, including compressed natural gas (CNG) and liquefied natural gas (LNG). One gallon of special fuel is equal to 120 cubic feet of CNG or 1.7 gallons of LNG. Retailers must obtain a license from the Office of the State Tax Commissioner to sell special fuels. Exceptions apply. (Reference House Bill 1133, 2015, and

  16. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Green Jobs Tax Credit Qualified employers are eligible for a $500 tax credit for each new green job created that offers a salary of at least $50,000, for up to 350 jobs per employer. The credit is allowed for the first five years that the job is continuously filled. For the purposes of this tax credit, a green job is defined as employment in industries relating to renewable or alternative energy, including hydrogen and fuel cell technology, landfill gas, and biofuels. The tax credit expires on

  17. Alternative institutional vehicles for geothermal district heating

    SciTech Connect (OSTI)

    Bressler, S.; Gardner, T.C.; King, D.; Nimmons, J.T.

    1980-06-01

    The attributes of various institutional entities which might participate in various phases of geothermal heating applications are described. Public entities considered include cities, counties, and special districts. Private entities discussed include cooperative organizations and non-member-owned private enterprises. The powers, authority and manner of operation of each of the institutional entities are reviewed. Some of the public utility regulatory implications which may affect choices among available alternatives are considered. (MHR)

  18. Alternative Fuels Created From Unlikely Sources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Alternative Fuels Created From Unlikely Sources Alternative Fuels Created From Unlikely Sources January 7, 2010 - 3:46pm Addthis Innovation is key for ClearFuels Technology and Rentech Inc, partners in the energy field of biomass. Both companies work on projects to produce fuels that aren't just green but also cost-effective. They're working together to bring a viable alternative fuel to the marketplace. The companies have been selected to receive a $22.6 million grant from the Department of

  19. Alternatives for Helium-3 in Multiplicity Counters

    SciTech Connect (OSTI)

    Ely, James H.; Siciliano, Edward R.; Lintereur, Azaree T.; Swinhoe, Martyn T.

    2013-04-01

    Alternatives to helium-3 are being actively pursued due to the shortage and rising costs of helium-3. For safeguards applications, there are a number of ongoing investigations to find alternatives that provide the same capability in a cost-effective manner. One of the greatest challenges is to find a comparable alternative for multiplicity counters, since they require high efficiency and short collection or die-away times. Work has been progressing on investigating three commercially available alternatives for high efficiency multiplicity counters: boron trifluoride (BF3) filled proportional tubes, boron-lined proportional tubes, and lithium fluoride with zinc sulfide coated light guides. The baseline multiplicity counter used for the investigation is the Epithermal Neutron Multiplicity Counter with 121 helium-3 filled tubes at 10 atmosphere pressure, which is a significant capability to match. The primary tool for the investigation has been modeling and simulation using the Monte Carlo N-Particle eXtended (MCNPX) radiation transport program, with experiments to validate the models. To directly calculate the coincidence rates in boron-lined (and possibly other) detectors, the MCNPX code has been enhanced to allow the existing coincidence tally to be used with energy deposition rather than neutron capture reactions. This allows boron-lined detectors to be modeled more accurately. Variations of tube number and diameter along with variations in the amount of inter-tube moderator have been conducted for the BF3 and boron-lined cases. Tube pressure was investigated for BF3, up to two atmospheres, as well as optimal boron thickness in the boron-lined tubes. The lithium fluoride was modeled as sheets of material with light guides in between, and the number and thickness of the sheets investigated. The amount of light guide, which in this case doubles as a moderator, was also optimized. The results of these modeling and simulation optimization investigations are described and results presented.

  20. Operational Excellence

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Operational Excellence /about/_assets/images/icon-70th.jpg Operational Excellence The Lab's mission is to develop and apply science and technology to ensure the safety, security, and reliability of the U.S. nuclear deterrent; reduce global threats; and solve other emerging national security and energy challenges. aeiral shot of los alamos, new mexico What Los Alamos gets done as a premier national security science laboratory depends on how we do it The Laboratory's operations and business