National Library of Energy BETA

Sample records for operate motor vehicles

  1. Vermont Single Trip Permit to Operate a Motor Vehicle in Excess...

    Open Energy Info (EERE)

    Single Trip Permit to Operate a Motor Vehicle in Excess of Statutory Weight or Dimension Limits (Form OSD-002) Jump to: navigation, search OpenEI Reference LibraryAdd to library...

  2. Hybrid vehicle motor alignment

    SciTech Connect (OSTI)

    Levin, Michael Benjamin

    2001-07-03

    A rotor of an electric motor for a motor vehicle is aligned to an axis of rotation for a crankshaft of an internal combustion engine having an internal combustion engine and an electric motor. A locator is provided on the crankshaft, a piloting tool is located radially by the first locator to the crankshaft. A stator of the electric motor is aligned to a second locator provided on the piloting tool. The stator is secured to the engine block. The rotor is aligned to the crankshaft and secured thereto.

  3. Physical context management for a motor vehicle

    DOE Patents [OSTI]

    Dixon, Kevin R.; Forsythe, James C.; Lippitt, Carl E.; Lippitt, legal representative, Lois Diane

    2009-10-27

    Computer software for and a method of enhancing safety for an operator of a motor vehicle comprising employing a plurality of sensors of vehicle and operator conditions, matching collective output from the sensors against a plurality of known dangerous conditions, and preventing certain activity of the operator if a known dangerous condition is detected.

  4. Thermoelectric generator for motor vehicle

    DOE Patents [OSTI]

    Bass, John C.

    1997-04-29

    A thermoelectric generator for producing electric power for a motor vehicle from the heat of the exhaust gasses produced by the engine of the motor vehicle. The exhaust gasses pass through a finned heat transfer support structure which has seat positions on its outside surface for the positioning of thermoelectric modules. A good contact cylinder provides a framework from which a spring force can be applied to the thermoelectric modules to hold them in good contact on their seats on the surface of the heat transfer support structure.

  5. Nevada Department of Motor Vehicles | Open Energy Information

    Open Energy Info (EERE)

    Nevada Department of Motor Vehicles Name: Nevada Department of Motor Vehicles Address: 555 Wright Way Place: Carson City, Nevada Zip: 89711 Phone Number: 702-486-4368 Website:...

  6. Motor-operated gearbox efficiency

    SciTech Connect (OSTI)

    DeWall, K.G.; Watkins, J.C.; Bramwell, D.; Weidenhamer, G.H.

    1996-12-01

    Researchers at the Idaho National Engineering Laboratory recently conducted tests investigating the operating efficiency of the power train (gearbox) in motor-operators typically used in nuclear power plants to power motor-operated valves. Actual efficiency ratios were determined from in-line measurements of electric motor torque (input to the operator gearbox) and valve stem torque (output from the gearbox) while the operators were subjected to gradually increasing loads until the electric motor stalled. The testing included parametric studies under reduced voltage and elevated temperature conditions. As part of the analysis of the results, the authors compared efficiency values determined from testing to the values published by the operator manufacturer and typically used by the industry in calculations for estimating motor-operator capabilities. The operators they tested under load ran at efficiencies lower than the running efficiency (typically 50%) published by the operator manufacturer.

  7. VIA Motors electric vehicle platform | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    VIA Motors electric vehicle platform VIA Motors electric vehicle platform extended range electric vehicle technologies VIA Motors electric vehicle platform (1.1 MB) More Documents & Publications QTR Ex Parte Communications Vehicle Technologies Office Merit Review 2014: Electric Drive and Advanced Battery and Components Testbed (EDAB) Advanced Engine Trends, Challenges and Opportunities

  8. Electrical system for a motor vehicle

    DOE Patents [OSTI]

    Tamor, M.A.

    1999-07-20

    In one embodiment of the present invention, an electrical system for a motor vehicle comprises a capacitor, an engine cranking motor coupled to receive motive power from the capacitor, a storage battery and an electrical generator having an electrical power output, the output coupled to provide electrical energy to the capacitor and to the storage battery. The electrical system also includes a resistor which limits current flow from the battery to the engine cranking motor. The electrical system further includes a diode which allows current flow through the diode from the generator to the battery but which blocks current flow through the diode from the battery to the cranking motor. 2 figs.

  9. Electrical system for a motor vehicle

    DOE Patents [OSTI]

    Tamor, Michael Alan

    1999-01-01

    In one embodiment of the present invention, an electrical system for a motor vehicle comprises a capacitor, an engine cranking motor coupled to receive motive power from the capacitor, a storage battery and an electrical generator having an electrical power output, the output coupled to provide electrical energy to the capacitor and to the storage battery. The electrical system also includes a resistor which limits current flow from the battery to the engine cranking motor. The electrical system further includes a diode which allows current flow through the diode from the generator to the battery but which blocks current flow through the diode from the battery to the cranking motor.

  10. Fuel-based motor vehicle emission inventory

    SciTech Connect (OSTI)

    Singer, B.C.; Harley, R.A.

    1996-06-01

    A fuel-based methodology for calculating motor vehicle emission inventories is presented. In the fuel-based method, emission factors are normalized to fuel consumption and expressed as grams of pollutant emitted per gallon of gasoline burned. Fleet-average emission factors are calculated from the measured on-road emissions of a large, random sample of vehicles. Using this method, a fuel-based motor vehicle CO inventory was calculated for the South Coast Air Basin in California for summer 1991. Emission factors were calculated from remote sensing measurements of more than 70,000 in-use vehicles. Results of the study are presented and a conclusion is provided. 40 refs., 4 figs., 6 tabs.

  11. Texas Department of Motor Vehicles | Open Energy Information

    Open Energy Info (EERE)

    Vehicles Name: Texas Department of Motor Vehicles Abbreviation: TxDMV Address: 4000 Jackson Ave. Place: Austin, Texas Zip: 78731 Phone Number: 1-888-368-4689 Website:...

  12. Vehicle Technologies Office: Electric Motors Research and Development |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Vehicle Technologies Office: Electric Motors Research and Development Vehicle Technologies Office: Electric Motors Research and Development To reach the EV Everywhere Grand Challenge goal, the Vehicle Technologies Office (VTO) is supporting research and development (R&D) to improve motors in hybrid and plug-in electric vehicles, with a particular focus on reducing the use of rare earth materials currently used for permanent magnet-based motors. In an electric drive

  13. Electric machine for hybrid motor vehicle

    SciTech Connect (OSTI)

    Hsu, John Sheungchun

    2007-09-18

    A power system for a motor vehicle having an internal combustion engine and an electric machine is disclosed. The electric machine has a stator, a permanent magnet rotor, an uncluttered rotor spaced from the permanent magnet rotor, and at least one secondary core assembly. The power system also has a gearing arrangement for coupling the internal combustion engine to wheels on the vehicle thereby providing a means for the electric machine to both power assist and brake in relation to the output of the internal combustion engine.

  14. Improve Motor Operation at Off-Design Voltages

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Improve Motor Operation at Off-Design Voltages Motors are designed to operate within ... When motors operate at conditions of over and undervoltage, motor effciency and other ...

  15. Motor current signature analysis method for diagnosing motor operated devices

    DOE Patents [OSTI]

    Haynes, Howard D.; Eissenberg, David M.

    1990-01-01

    A motor current noise signature analysis method and apparatus for remotely monitoring the operating characteristics of an electric motor-operated device such as a motor-operated valve. Frequency domain signal analysis techniques are applied to a conditioned motor current signal to distinctly identify various operating parameters of the motor driven device from the motor current signature. The signature may be recorded and compared with subsequent signatures to detect operating abnormalities and degradation of the device. This diagnostic method does not require special equipment to be installed on the motor-operated device, and the current sensing may be performed at remote control locations, e.g., where the motor-operated devices are used in accessible or hostile environments.

  16. Scalable, Low-Cost, High Performance IPM Motor for Hybrid Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Scalable, Low-Cost, High Performance IPM Motor for Hybrid Vehicles Scalable, Low-Cost, High Performance IPM Motor for Hybrid Vehicles Vehicle ...

  17. Method for assessing motor insulation on operating motors

    DOE Patents [OSTI]

    Kueck, John D.; Otaduy, Pedro J.

    1997-01-01

    A method for monitoring the condition of electrical-motor-driven devices. The method is achieved by monitoring electrical variables associated with the functioning of an operating motor, applying these electrical variables to a three phase equivalent circuit and determining non-symmetrical faults in the operating motor based upon symmetrical components analysis techniques.

  18. Method for assessing motor insulation on operating motors

    DOE Patents [OSTI]

    Kueck, J.D.; Otaduy, P.J.

    1997-03-18

    A method for monitoring the condition of electrical-motor-driven devices is disclosed. The method is achieved by monitoring electrical variables associated with the functioning of an operating motor, applying these electrical variables to a three phase equivalent circuit and determining non-symmetrical faults in the operating motor based upon symmetrical components analysis techniques. 15 figs.

  19. Table 5.1. U.S. Number of Vehicles, Vehicle-Miles, Motor Fuel...

    U.S. Energy Information Administration (EIA) Indexed Site

    Energy Information AdministrationHousehold Vehicles Energy Consumption 1994 43 Table 5.1. U.S. Number of Vehicles, Vehicle-Miles, Motor Fuel Consumption and Expenditures, 1994...

  20. Table 5.1. U.S. Number of Vehicles, Vehicle-Miles, Motor Fuel...

    U.S. Energy Information Administration (EIA) Indexed Site

    Table 5.1. U.S. Number of Vehicles, Vehicle-Miles, Motor Fuel Consumption and Expenditures, 1994 (Continued) 1993 Household and 1994 Vehicle Characteristics RSE Column Factor:...

  1. Operator interface for vehicles

    DOE Patents [OSTI]

    Bissontz, Jay E

    2015-03-10

    A control interface for drivetrain braking provided by a regenerative brake and a non-regenerative brake is implemented using a combination of switches and graphic interface elements. The control interface comprises a control system for allocating drivetrain braking effort between the regenerative brake and the non-regenerative brake, a first operator actuated control for enabling operation of the drivetrain braking, and a second operator actuated control for selecting a target braking effort for drivetrain braking. A graphic display displays to an operator the selected target braking effort and can be used to further display actual braking effort achieved by drivetrain braking.

  2. Exposure to motor vehicle emissions: An intake fraction approach

    SciTech Connect (OSTI)

    Marshall, Julian D.

    2002-05-01

    Motor vehicles are a significant source of population exposure to air pollution. Focusing on California's South Coast Air Basin as a case study, the author combines ambient monitoring station data with hourly time-activity patterns to determine the population intake of motor vehicle emissions during 1996-1999. Three microenvironments are considered wherein the exposure to motor vehicle emissions is higher than in ambient air: in and near vehicles, inside a building that is near a freeway, and inside a residence with an attached garage. Total motor vehicle emissions are taken from the EMFAC model. The 15 million people in the South Coast inhale 0.0048% of primary, nonreactive compounds emitted into the basin by motor vehicles. Intake of motor vehicle emissions is 46% higher than the average ambient concentration times the average breathing rate, because of microenvironments and because of temporal and spatial correlation among breathing rates, concentrations, and population densities. Intake fraction (iF) summarizes the emissions-to-intake relationship as the ratio of population intake to total emissions. iF is a population level exposure metric that incorporates spatial, temporal, and interindividual variability in exposures. iFs can facilitate the calculation of population exposures by distilling complex emissions-transport-receptor relationships. The author demonstrates this point by predicting the population intake of various primary gaseous emissions from motor vehicles, based on the intake fraction for benzene and carbon monoxide.

  3. Scalable, Low-Cost, High Performance IPM Motor for Hybrid Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Scalable, Low-Cost, High Performance IPM Motor for Hybrid Vehicles Scalable, Low-Cost, High Performance IPM Motor for Hybrid Vehicles ...

  4. Improve Motor Operation at Off-Design Voltages | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Motor Operation at Off-Design Voltages Improve Motor Operation at Off-Design Voltages Motors are designed to operate within 10% of their nameplate rated voltages. When motors ...

  5. Method for controlling a motor vehicle powertrain

    DOE Patents [OSTI]

    Burba, J.C.; Landman, R.G.; Patil, P.B.; Reitz, G.A.

    1990-05-22

    A multiple forward speed automatic transmission produces its lowest forward speed ratio when a hydraulic clutch and hydraulic brake are disengaged and a one-way clutch connects a ring gear to the transmission casing. Second forward speed ratio results when the hydraulic clutch is engaged to connect the ring gear to the planetary carrier of a second gear set. Reverse drive and regenerative operation result when an hydraulic brake fixes the planetary and the direction of power flow is reversed. Various sensors produce signals representing the position of the gear selector lever operated manually by the vehicle operator, the speed of the power source, the state of the ignition key, and the rate of release of an accelerator pedal. A control algorithm produces input data representing a commanded upshift, a commanded downshift and a torque command and various constant torque signals. A microprocessor processes the input and produces a response to them in accordance with the execution of a control algorithm. Output or response signals cause selective engagement and disengagement of the clutch and brake to produce the forward drive, reverse and regenerative operation of the transmission. 7 figs.

  6. Method for controlling a motor vehicle powertrain

    DOE Patents [OSTI]

    Burba, Joseph C.; Landman, Ronald G.; Patil, Prabhakar B.; Reitz, Graydon A.

    1990-01-01

    A multiple forward speed automatic transmission produces its lowest forward speed ratio when a hydraulic clutch and hydraulic brake are disengaged and a one-way clutch connects a ring gear to the transmission casing. Second forward speed ratio results when the hydraulic clutch is engaged to connect the ring gear to the planetary carrier of a second gear set. Reverse drive and regenerative operation result when an hydraulic brake fixes the planetary and the direction of power flow is reversed. Various sensors produce signals representing the position of the gear selector lever operated manually by the vehicle operator, the speed of the power source, the state of the ignition key, and the rate of release of an accelerator pedal. A control algorithm produces input data representing a commanded upshift, a commanded downshift and a torque command and various constant torque signals. A microprocessor processes the input and produces a response to them in accordance with the execution of a control algorithm. Output or response signals cause selective engagement and disengagement of the clutch and brake to produce the forward drive, reverse and regenerative operation of the transmission.

  7. Use of hydrides in motor vehicles

    SciTech Connect (OSTI)

    Toepler, J.; Bernauer, O.; Buchner, H.

    1980-09-01

    Results of research on hydrogen driven vehicles and hydride storage tanks are presented, along with a detailed discussion of the operational possibilities of low temperature hydrides, such as TiFe-H2, and of high temperature hydrides, such as Mg2Ni-H4. Attention is given to their cyclization stability and thermal conductivity. Heat storage and heat recovery with the aid of hydrides are discussed, and a theoretical hydride storage capacity of a Mg-Ni-alloy is presented. It was concluded that all hydride tanks will be 10 to 20 times heavier than the conventional gasoline tank. The problems of tank weight and gasoline shortage can be solved by a combination hydrogen/gasoline fuel. Existing energy infrastructures must be utilized, as the setting up of a hydrogen infrastructure is, at the present time, both technically and economically unfeasible.

  8. Low cost, compact, and high efficiency traction motor for electric and hybrid electric vehicles

    SciTech Connect (OSTI)

    Ehsani, Mark

    2002-10-07

    A new motor drive, the switched reluctance motor drive, has been developed for hybrid-electric vehicles. The motor drive has been designed, built and tested in the test bed at a near vehicle scale. It has been shown that the switched reluctance motor drive is more suitable for traction application than any other motor drive.

  9. Motor vehicle output and GDP, 1968-2007.

    SciTech Connect (OSTI)

    Santini, D. J.; Poyer, D. A.

    2008-01-01

    In this paper, we assess the performance of the BEA series 'value of motor vehicle output' as an indicator of the business cycle over the period 1968-2007. We statistically assess the causal relationship between real motor vehicle output (RMVO) and real gross domestic product (RGDP). This is accomplished by standard estimation and statistical methods used to assess vector autoregressive models. This assessment represents the initial results of a more encompassing research project, the intent of which is to determine the dynamic interaction of the transport sector with the overall economy. It's a start to a more comprehensive assessment of how transport and economic activity interrelate.

  10. Improve Motor Operation at Off-Design Voltages - Motor Tip Sheet #9

    SciTech Connect (OSTI)

    2008-07-01

    Motors are designed to operate within +/- 10% of their nameplate rated voltages. When motors operate at conditions of over- or under-voltage, motor efficiency and other performance parameters are degraded.

  11. Motor vehicle fuel economy, the forgotten HC control stragegy?

    SciTech Connect (OSTI)

    Deluchi, M.; Wang, Quanlu; Greene, D.L.

    1992-06-01

    Emissions of hydrocarbons from motor vehicles are recognized as major contributors to ozone pollution in urban areas. Petroleum-based motor fuels contain volatile organic compounds (VOC) which, together with oxides of nitrogen, promote the formation of ozone in the troposphere via complex photochemical reactions. VOC emissions from the tailpipe and evaporation from the fuel and engine systems of highway vehicles are believed to account for about 40% of total VOC emissions in any region. But motor fuels also generate emissions throughout the fuel cycle, from crude oil production to refining, storage, transportation, and handling, that can make significant contributions to the total inventory of VOC emissions. Many of these sources of emissions are directly related to the quantity of fuel produced and handled throughout the fuel cycle. It is, therefore, reasonable to expect that a reduction in total fuel throughput might result in a reduction of VOC emissions. In particular, reducing vehicle fuel consumption by increasing vehicle fuel economy should reduce total fuel throughput, thereby cutting total emissions of VOCS. In this report we identify the sources of VOC emissions throughout the motor fuel cycle, quantify them to the extent possible, and describe their dependence on automobile and light truck fuel economy.

  12. Fact #784: June 17, 2013 Direct Employment of Motor Vehicle Parts Manufacturing by State

    Broader source: Energy.gov [DOE]

    The manufacture of motor vehicle parts accounts for a substantial amount of employment, particularly in the Midwest and in the South. Motor vehicle parts manufacturing directly employed more than...

  13. Solar panel driven air purging apparatus for motor vehicles

    SciTech Connect (OSTI)

    Bobier, J.A.; Brown, G.E.

    1992-02-18

    This patent describes improvement in a motor vehicle having an enclosable cabin an internal combustion engine, a battery, an ignition switch having an on position for enabling the internal combustion engine and an off position, an electric motor coupled in driving relationship with an air circulating fan for circulating air through the cabin. The improvement comprises: a solar panel mounted upon the vehicle having a panel output exhibiting variable voltage levels including a peak voltage level and substantially constant current; a power transfer regulator for transferring power form the panel to the motor when enabled, including: energy storage means connectable across the panel output and chargeable by the current to variable charge levels; solid-state switch means connected in energy transfer relationship with the energy storage means and actuable between conducting and non-conducting states when the power transfer regulator is enabled; inductor means connected with the solid-state switch means and connectable with the electric motor for conveying current thereto from the panel and the energy storage means when the solid-state switch means is in the conducting state.

  14. Primer on Motor Fuel Excise Taxes and the Role of Alternative Fuels and Energy Efficient Vehicles

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    A Primer on Motor Fuel Excise Taxes and the Role of Alternative Fuels and Energy Efficient Vehicles Alex Schroeder National Renewable Energy Laboratory Technical Report NREL/TP-5400-60975 August 2015 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. Contract No.

  15. Parking heater and method using hydrides in motor vehicles powered by hydrogen

    SciTech Connect (OSTI)

    Buchner, H.; Saufferer, H.

    1980-07-29

    A method for parking heating of at least the passenger compartment of motor vehicles operated at least partially on hydrogen and having a hydride reservoir, wherein the hydride reservoir is a Lt/Ht hydride combination, comprising supplying the heat capacity of the Ht reservoir, present after the engine is shut off or produced by charging with hydrogen, at least partially to the passenger compartment.

  16. Analysis of Vehicle-Based Security Operations

    SciTech Connect (OSTI)

    Carter, Jason M; Paul, Nate R

    2015-01-01

    Vehicle-to-vehicle (V2V) communications promises to increase roadway safety by providing each vehicle with 360 degree situational awareness of other vehicles in proximity, and by complementing onboard sensors such as radar or camera in detecting imminent crash scenarios. In the United States, approximately three hundred million automobiles could participate in a fully deployed V2V system if Dedicated Short-Range Communication (DSRC) device use becomes mandatory. The system s reliance on continuous communication, however, provides a potential means for unscrupulous persons to transmit false data in an attempt to cause crashes, create traffic congestion, or simply render the system useless. V2V communications must be highly scalable while retaining robust security and privacy preserving features to meet the intra-vehicle and vehicle-to-infrastructure communication requirements for a growing vehicle population. Oakridge National Research Laboratory is investigating a Vehicle-Based Security System (VBSS) to provide security and privacy for a fully deployed V2V and V2I system. In the VBSS an On-board Unit (OBU) generates short-term certificates and signs Basic Safety Messages (BSM) to preserve privacy and enhance security. This work outlines a potential VBSS structure and its operational concepts; it examines how a vehicle-based system might feasibly provide security and privacy, highlights remaining challenges, and explores potential mitigations to address those challenges. Certificate management alternatives that attempt to meet V2V security and privacy requirements have been examined previously by the research community including privacy-preserving group certificates, shared certificates, and functional encryption. Due to real-world operational constraints, adopting one of these approaches for VBSS V2V communication is difficult. Timely misbehavior detection and revocation are still open problems for any V2V system. We explore the alternative approaches that may be

  17. Fact #601: December 14, 2009 World Motor Vehicle Production | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy 1: December 14, 2009 World Motor Vehicle Production Fact #601: December 14, 2009 World Motor Vehicle Production The number of vehicles produced, including cars, trucks, and buses, has risen substantially from 1950 to 2008. In 1950, the majority of the vehicles were produced in the U.S. and Western Europe. In 2008, Japan, China, and other countries around the world produce the majority of vehicles. The U.S. share of world vehicle production declined to 12.5% in 2008. World Motor

  18. Thermal Management of Power Electronics and Electric Motors for Electric-Drive Vehicles (Presentation)

    SciTech Connect (OSTI)

    Narumanchi, S.

    2014-09-01

    This presentation is an overview of the power electronics and electric motor thermal management and reliability activities at NREL. The focus is on activities funded by the Department of Energy Vehicle Technologies Office Advanced Power Electronics and Electric Motors Program.

  19. Motor operated valves problems tests and simulations

    SciTech Connect (OSTI)

    Pinier, D.; Haas, J.L.

    1996-12-01

    An analysis of the two refusals of operation of the EAS recirculation shutoff valves enabled two distinct problems to be identified on the motorized valves: the calculation methods for the operating torques of valves in use in the power plants are not conservative enough, which results in the misadjustement of the torque limiters installed on their motorizations, the second problem concerns the pressure locking phenomenon: a number of valves may entrap a pressure exceeding the in-line pressure between the disks, which may cause a jamming of the valve. EDF has made the following approach to settle the first problem: determination of the friction coefficients and the efficiency of the valve and its actuator through general and specific tests and models, definition of a new calculation method. In order to solve the second problem, EDF has made the following operations: identification of the valves whose technology enables the pressure to be entrapped: the tests and numerical simulations carried out in the Research and Development Division confirm the possibility of a {open_quotes}boiler{close_quotes} effect: determination of the necessary modifications: development and testing of anti-boiler effect systems.

  20. Vehicle Technologies Office Merit Review 2014: Unique Lanthide-Free Motor

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Construction | Department of Energy Unique Lanthide-Free Motor Construction Vehicle Technologies Office Merit Review 2014: Unique Lanthide-Free Motor Construction Presentation given by UQM Technologies, Inc. at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about unique lanthide-free motor construction. ape044_lutz_2014_o.pdf (1.33 MB) More Documents & Publications Vehicle Technologies Office Merit Review 2015:

  1. Scalable, Low-Cost, High Performance IPM Motor for Hybrid Vehicles |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy 09 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. ape_08_elrefaie.pdf (451.62 KB) More Documents & Publications Scalable, Low-Cost, High Performance IPM Motor for Hybrid Vehicles Scalable, Low-Cost, High Performance IPM Motor for Hybrid Vehicles Alternative High-Performance Motors

  2. Vehicle Technologies Office Merit Review 2015: Unique Lanthide-Free Motor

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Construction | Department of Energy Unique Lanthide-Free Motor Construction Vehicle Technologies Office Merit Review 2015: Unique Lanthide-Free Motor Construction Presentation given by UQM Technologies, Inc. at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about unique lanthide-free motor construction. edt044_gilbert_2015_o.pdf (1.41 MB) More Documents & Publications Vehicle Technologies Office Merit Review 2016:

  3. Method and apparatus for monitoring motor operated valve motor output torque and power at valve seating

    DOE Patents [OSTI]

    Casada, D.A.

    1996-01-16

    A method and apparatus are provided for monitoring a motor operated valve during the brief period when the valve seats and the torque switch trips to deenergize the valve motor. The method uses voltage measurements on the load side of a deenergizing switch that opens to deenergize the motor to determine, among other things, final motor rotational speed and the decelerating torque at motor deenergization. 14 figs.

  4. Method and apparatus for monitoring motor operated valve motor output torque and power at valve seating

    DOE Patents [OSTI]

    Casada, Donald A.

    1996-01-01

    A method and apparatus are provided for monitoring a motor operated valve during the brief period when the valve seats and the torque switch trips to deenergize the valve motor. The method uses voltage measurements on the load side of a deenergizing switch that opens to deenergize the motor to determine, among other things, final motor rotational speed and the decelerating torque at motor deenergization.

  5. A Soft-Switching Inverter for High-Temperature Advanced Hybrid Electric Vehicle Traction Motor Drives

    SciTech Connect (OSTI)

    Lai, Jason; Yu, Wensong; Sun, Pengwei; Leslie, Scott; Prusia, Duane; Arnet, Beat; Smith, Chris; Cogan, Art

    2012-03-31

    The state-of-the-art hybrid electric vehicles (HEVs) require the inverter cooling system to have a separate loop to avoid power semiconductor junction over temperatures because the engine coolant temperature of 105°C does not allow for much temperature rise in silicon devices. The proposed work is to develop an advanced soft-switching inverter that will eliminate the device switching loss and cut down the power loss so that the inverter can operate at high-temperature conditions while operating at high switching frequencies with small current ripple in low inductance based permanent magnet motors. The proposed tasks also include high-temperature packaging and thermal modeling and simulation to ensure the packaged module can operate at the desired temperature. The developed module will be integrated with the motor and vehicle controller for dynamometer and in-vehicle testing to prove its superiority. This report will describe the detailed technical design of the soft-switching inverters and their test results. The experiments were conducted both in module level for the module conduction and switching characteristics and in inverter level for its efficiency under inductive and dynamometer load conditions. The performance will be compared with the DOE original specification.

  6. Fact #637: August 23, 2010 World Motor Vehicle Production | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy 7: August 23, 2010 World Motor Vehicle Production Fact #637: August 23, 2010 World Motor Vehicle Production The number of vehicles produced, including cars, trucks, and buses, rose substantially from 1950 to 2005. In 1950, the majority of the vehicles were produced in the U.S. and Western Europe. In 2009, Japan, China, and other countries around the world produced about two-thirds of the vehicles. The U.S. share of world vehicle production declined to 9.5% in 2009. The category

  7. Motor-operated valve research update

    SciTech Connect (OSTI)

    Steele, R. Jr.; Watkins, J.C.; DeWall, K.G.; Russell, M.J. )

    1992-06-01

    This report provides an update on the valve research sponsored by the US Nuclear Regulatory Commission (NRC) that is being conducted at the Idaho National Engineering Laboratory. The update focuses on the information applicable to the following requests from the NRC staff: Examine the use of in situ tests results to estimate the response of a valve at design-basis conditions; Examine the methods used by industry to predict required valve stem forces or torques; Identify guidelines for satisfactory performance of motor-operated valve diagnostics systems; and participate in writing a performance standard or guidance document for acceptable design-basis tests. The authors have reviewed past, current, and ongoing research programs to provide the information available to address these items.

  8. Extend the Operating Life of Your Motor | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Extend the Operating Life of Your Motor Extend the Operating Life of Your Motor Certain components of motors degrade with time and operating stress. Electrical insulation weakens over time with exposure to voltage unbalance, over and undervoltage, voltage disturbances, and temperature. Contact between moving surfaces causes wear. Wear is affected by dirt, moisture, and corrosive fumes and is greatly accelerated when lubricant is misapplied, becomes overheated or contaminated, or is not replaced

  9. Alternative Fuels Data Center: Connecticut Utility Fleet Operates Vehicles

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    on Alternative Fuels Connecticut Utility Fleet Operates Vehicles on Alternative Fuels to someone by E-mail Share Alternative Fuels Data Center: Connecticut Utility Fleet Operates Vehicles on Alternative Fuels on Facebook Tweet about Alternative Fuels Data Center: Connecticut Utility Fleet Operates Vehicles on Alternative Fuels on Twitter Bookmark Alternative Fuels Data Center: Connecticut Utility Fleet Operates Vehicles on Alternative Fuels on Google Bookmark Alternative Fuels Data Center:

  10. Lack of Familiarity with Infrequently Operated Vehicles Puts...

    Energy Savers [EERE]

    3-01 Lack of Familiarity with Infrequently Operated Vehicles Puts Drivers in Danger PURPOSE This Operating Experience Level 3 (OE-3) document provides information on a significant...

  11. Study of the Advantages of Internal Permanent Magnet Drive Motor with Selectable Windings for Hybrid-Electric Vehicles

    SciTech Connect (OSTI)

    Otaduy, P.J.; Hsu, J.S.; Adams, D.J.

    2007-11-30

    This report describes research performed on the viability of changing the effectively active number of turns in the stator windings of an internal permanent magnet (IPM) electric motor to strengthen or weaken the magnetic fields in order to optimize the motor's performance at specific operating speeds and loads. Analytical and simulation studies have been complemented with research on switching mechanisms to accomplish the task. The simulation studies conducted examine the power and energy demands on a vehicle following a series of standard driving cycles and the impact on the efficiency and battery size of an electrically propelled vehicle when it uses an IPM motor with turn-switching capabilities. Both full driving cycle electric propulsion and propulsion limited starting from zero to a set speed have been investigated.

  12. Carbonyl Emissions from Gasoline and Diesel Motor Vehicles

    SciTech Connect (OSTI)

    Destaillats, Hugo; Jakober, Chris A.; Robert, Michael A.; Riddle, Sarah G.; Destaillats, Hugo; Charles, M. Judith; Green, Peter G.; Kleeman, Michael J.

    2007-12-01

    Carbonyls from gasoline powered light-duty vehicles (LDVs) and heavy-duty diesel powered vehicles (HDDVs) operated on chassis dynamometers were measured using an annular denuder-quartz filter-polyurethane foam sampler with O-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine derivatization and chromatography-mass spectrometry analyses. Two internal standards were utilized based on carbonyl recovery, 4-fluorobenzaldehyde for_C8 compounds. Gas- and particle-phase emissions for 39 aliphatic and 20 aromatic carbonyls ranged from 0.1 ? 2000 ?g/L fuel for LDVs and 1.8 - 27000 mu g/L fuel for HDDVs. Gas-phase species accounted for 81-95percent of the total carbonyls from LDVs and 86-88percent from HDDVs. Particulate carbonyls emitted from a HDDV under realistic driving conditions were similar to concentrations measured in a diesel particulate matter (PM) standard reference material. Carbonyls accounted for 19percent of particulate organic carbon (POC) emissions from low-emission LDVs and 37percent of POC emissions from three-way catalyst equipped LDVs. This identifies carbonyls as one of the largest classes of compounds in LDV PM emissions. The carbonyl fraction of HDDV POC was lower, 3.3-3.9percent depending upon operational conditions. Partitioning analysis indicates the carbonyls had not achieved equilibrium between the gas- and particle-phase under the dilution factors of 126-584 used in the current study.

  13. EA-1723: General Motors LLC Electric Drive Vehicle Battery and Component Manufacturing Initiative Application White Marsh, Maryland and Wixom, Michigan

    Broader source: Energy.gov [DOE]

    DOE’s Proposed Action is to provide GM with $105,387,000 in financial assistance in a cost sharing arrangement to facilitate construction and operation of a manufacturing facility to produce electric motor components and assemble an electric drive unit. This Proposed Action through the Vehicle Technologies Program will accelerate the development and production of electric-drive vehicle systems and reduce the United States’ consumption of petroleum. This Proposed Action will also meaningfully assist in the nation’s economic recovery by creating manufacturing jobs in the United States in accordance with the objectives of the Recovery Act.

  14. Compressed natural gas vehicles motoring towards a green Beijing

    SciTech Connect (OSTI)

    Yang, Ming; Kraft-Oliver, T.; Guo Xiao Yan

    1996-12-31

    This paper first describes the state-of-the-art of compressed natural gas (CNG) technologies and evaluates the market prospects for CNG vehicles in Beijing. An analysis of the natural gas resource supply for fleet vehicles follows. The costs and benefits of establishing natural gas filling stations and promoting the development of vehicle technology are evaluated. The quantity of GHG reduction is calculated. The objective of the paper is to provide information of transfer niche of CNG vehicle and equipment production in Beijing. This paper argues that the development of CNG vehicles is a cost-effective strategy for mitigating both air pollution and GHG.

  15. Efficient, High-Torque Electric Vehicle Motor: Advanced Electric Vehicle Motors with Low or No Rare Earth Content

    SciTech Connect (OSTI)

    2012-01-01

    REACT Project: QM Power will develop a new type of electric motor with the potential to efficiently power future generations of EVs without the use of rare-earth-based magnets. Many of todays EV motors use rare earth magnets to efficiently provide torque to the wheels. QM Powers motors would contain magnets that use no rare earth minerals, are light and compact, and can deliver more power with greater efficiency and at reduced cost. Key innovations in this project include a new motor design with iron-based magnetic materials, a new motor control technique, and advanced manufacturing techniques that substantially reduce the cost of the motor. The ultimate goal of this project is to create a cost-effective EV motor that offers the rough peak equivalent of 270 horsepower.

  16. Heat engine and electric motor torque distribution strategy for a hybrid electric vehicle

    DOE Patents [OSTI]

    Boberg, Evan S.; Gebby, Brian P.

    1999-09-28

    A method is provided for controlling a power train system for a hybrid electric vehicle. The method includes a torque distribution strategy for controlling the engine and the electric motor. The engine and motor commands are determined based upon the accelerator position, the battery state of charge and the amount of engine and motor torque available. The amount of torque requested for the engine is restricted by a limited rate of rise in order to reduce the emissions from the engine. The limited engine torque is supplemented by motor torque in order to meet a torque request determined based upon the accelerator position.

  17. Primer on Motor Fuel Excise Taxes and the Role of Alternative Fuels and Energy Efficient Vehicles

    SciTech Connect (OSTI)

    Schroeder, Alex

    2015-08-26

    Motor fuel taxes were established to finance our nation’s transportation infrastructure, yet evolving economic, political, and technological influences are constraining this ability. At the federal level, the Highway Trust Fund (HTF), which is primarily funded by motor fuel taxes, has become increasingly dependent on general fund contributions and short-term reauthorizations to prevent insolvency. As a result, there are discussions at both the federal and state levels in which stakeholders are examining the future of motor fuel excise taxes as well as the role of electric and alternative fuel vehicles in that future. On July 1, 2015, six states increased their motor fuel tax rates.

  18. Chapter 31: Transportation: Motor Vehicles (Book) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Sponsoring Org: USDOE Office of Vehicle Technologies Program Country of Publication: United States Language: English Subject: 32 ENERGY CONSERVATION, CONSUMPTION, AND UTILIZATION; ...

  19. System and method of vehicle operating condition management

    DOE Patents [OSTI]

    Sujan, Vivek A.; Vajapeyazula, Phani; Follen, Kenneth; Wu, An; Moffett, Barty L.

    2015-10-20

    A vehicle operating condition profile can be determined over a given route while also considering imposed constraints such as deviation from time targets, deviation from maximum governed speed limits, etc. Given current vehicle speed, engine state and transmission state, the present disclosure optimally manages the engine map and transmission to provide a recommended vehicle operating condition that optimizes fuel consumption in transitioning from one vehicle state to a target state. Exemplary embodiments provide for offline and online optimizations relative to fuel consumption. The benefit is increased freight efficiency in transporting cargo from source to destination by minimizing fuel consumption and maintaining drivability.

  20. Rare-Earth-Free Traction Motor: Rare Earth-Free Traction Motor for Electric Vehicle Applications

    SciTech Connect (OSTI)

    2012-01-01

    REACT Project: Baldor will develop a new type of traction motor with the potential to efficiently power future generations of EVs. Unlike todays large, bulky EV motors which use expensive, imported rare-earth-based magnets, Baldors motor could be light, compact, contain no rare earth materials, and have the potential to deliver more torque at a substantially lower cost. Key innovations in this project include the use of a unique motor design, incorporation of an improved cooling system, and the development of advanced materials manufacturing techniques. These innovations could significantly reduce the cost of an electric motor.

  1. Vehicle Technologies Office Merit Review 2016: Advanced Electric Motor Research

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Oak Ridge National Laboratory (ORNL) at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting about...

  2. Application of diagnostics to determine motor-operated valve operational readiness

    SciTech Connect (OSTI)

    Eissenberg, D.M.

    1986-01-01

    ORNL has been carrying out an aging assessment of motor-operated valves (MOVs) with the primary objective of recommending diagnostic methods for detecting and trending aging. As a result of experimental investigations at ORNL, it was discovered that the motor current during a valve stroke was a very useful diagnostic parameter for detecting and trending many MOV drive train load variations. The motor curent signatures were analyzed at four levels: mean value for a stroke, gross trends during a stroke, transients, and noise frequency spectra. Examples illustrating the use of this technique are presented. The use of motor current signature analysis was also shown to apply to other electric motor driven equipment. Future work includes developing a data base of MOV diagnostics, including criteria for determining the extent of degradation and application of the technique to other LWR motor driven safety equipment.

  3. Comparison of a synergetic battery pack drive system to a pulse width modulated AC induction motor drive for an electric vehicle

    SciTech Connect (OSTI)

    Davis, A.; Salameh, Z.M.; Eaves, S.S.

    1999-06-01

    A new battery configuration technique and accompanying control circuitry, termed a Synergetic Battery Pack (SBP), is designed to work with Lithium batteries, and can be used as both an inverter for an electric vehicle AC induction motor drive and as a battery charger. In this paper, the performance of a Synergetic Battery Pack during motor drive operation is compared via computer simulation with a conventional motor drive which uses sinusoidal pulse width modulation (SPWM) to determine its effectiveness as a motor drive. The study showed that the drive efficiency was compatible with the conventional system, and offered a significant advantage in the lower frequency operating ranges. The voltage total harmonic distortion (THD) of the SBP was significantly lower than the PWM drive output, but the current THD was slightly higher due to the shape of the harmonic spectrum. In conclusion, the SBP is an effective alternative to a conventional drive, but the real advantage lies in its battery management capabilities and charger operation.

  4. Vehicle Technologies Office: 2010 Advanced Power Electronics and Electric Motors R&D Annual Progress Report

    Broader source: Energy.gov [DOE]

    The APEEM subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on developing revolutionary new power electronics (PE) and electric motor technologies that will leapfrog current on-the-road technologies.

  5. Motor vehicle fuel economy, the forgotten HC control stragegy. [Hydrocarbon (HC)

    SciTech Connect (OSTI)

    Deluchi, M.; Wang, Quanlu; Greene, D.L.

    1992-06-01

    Emissions of hydrocarbons from motor vehicles are recognized as major contributors to ozone pollution in urban areas. Petroleum-based motor fuels contain volatile organic compounds (VOC) which, together with oxides of nitrogen, promote the formation of ozone in the troposphere via complex photochemical reactions. VOC emissions from the tailpipe and evaporation from the fuel and engine systems of highway vehicles are believed to account for about 40% of total VOC emissions in any region. But motor fuels also generate emissions throughout the fuel cycle, from crude oil production to refining, storage, transportation, and handling, that can make significant contributions to the total inventory of VOC emissions. Many of these sources of emissions are directly related to the quantity of fuel produced and handled throughout the fuel cycle. It is, therefore, reasonable to expect that a reduction in total fuel throughput might result in a reduction of VOC emissions. In particular, reducing vehicle fuel consumption by increasing vehicle fuel economy should reduce total fuel throughput, thereby cutting total emissions of VOCS. In this report we identify the sources of VOC emissions throughout the motor fuel cycle, quantify them to the extent possible, and describe their dependence on automobile and light truck fuel economy.

  6. Projections of motor vehicle growth, fuel consumption and CO{sub 2} emissions for the next thirty years in China.

    SciTech Connect (OSTI)

    He, D.; Wang, M.

    2000-12-12

    Since the early 1990s, China's motor vehicles have entered a period of fast growth resultant from the rapid economic expansion. As the largest developing country, the fast growth of China's motor vehicles will have tremendous effects on the world's automotive and fuel market and on global CO{sub 2} emissions. In this study, we projected Chinese vehicle stocks for different vehicle types on the provincial level. First, we reviewed the historical data of China's vehicle growth in the past 10 years and the correlations between vehicle growth and economic growth in China. Second, we investigated historical vehicle growth trends in selected developed countries over the past 50 or so years. Third, we established a vehicle growth scenario based on the historical trends in several developed nations. Fourth, we estimated fuel economy, annual mileage and other vehicle usage parameters for Chinese vehicles. Finally, we projected vehicle stocks and estimated motor fuel use and CO{sub 2} emissions in each Chinese province from 2000 to 2030. Our results show that China will continue the rapid vehicle growth, increase gasoline and diesel consumption and increased CO{sub 2} emissions in the next 30 years. We estimated that by year 2030, Chinese motor vehicle fuel consumption and CO{sub 2} emissions could reach the current US levels.

  7. Low cost, compact high efficiency, traction motor for electric vehicles/hybrid electric vehicles. Final report for the period September 1998 - December 1999

    SciTech Connect (OSTI)

    Mitchell, Jerry; Kessinger, Roy

    2000-04-28

    This final report details technical accomplishments for Phase I of the ''Low Cost, Compact High Efficiency, Traction Motor for Electric Vehicles/Hybrid Electric Vehicles'' program. The research showed that the segmented-electromagnetic array (SEMA) technology combined with an Integrated Motion Module (IMM) concept is highly suited for electric vehicles. IMMs are essentially mechatronic systems that combine the motor, sensing, power electronics, and control functions for a single axis of motion into a light-weight modular unit. The functional integration of these components makes possible significant reductions in motor/alternator size, weight, and cost, while increasing power density and electromechanical conversion efficiency.

  8. Electric vehicle fleet operations in the United States

    SciTech Connect (OSTI)

    Francfort, J.E.; O`Hara, D.

    1997-10-01

    The United States Department of Energy (DOE) is actively supporting the development and commercialization of advanced electric vehicles, and advanced batteries and propulsion systems. As part of this effort, the DOE Field Operations Program is performing commercial validation of electric vehicles. These efforts have included on-board data acquisition of electric vehicle operations and baseline performance testing. The baseline performance tests focus on parameters such as range, acceleration, and battery charging. This testing, performed in conjunction with EV America, has included the baseline performance testing of 14 electric vehicles will also be baseline performance tested. The baseline performance testing has documented annual improvements in performance. This and additional information is made available to the public via the internet homepage (http://ev.inel.gov). The Field Operations Program continues to support the development of electric vehicles and infrastructure in conjunction with its new qualified vehicle test partners: Electric Transportation Application of Phoenix, and Southern California Edison. The Field Operations Program is managed by the Lockheed Martin Idaho Technologies Company, at the Idaho National Engineering Laboratory. 4 refs., 5 figs., 2 tabs.

  9. Motor vehicle MPG and market shares report: model year 1984

    SciTech Connect (OSTI)

    Hu, P.S.; Holcomb, M.C.

    1985-01-01

    This issue of the publication reports the sales, market shares, estimated sales-weighted fuel economies, and other estimated sales-weighted vehicle characteristics of automobiles and light trucks for the model year 1984 and for the previous five model years. Comparisons and observations are made on the trends in these vehicles from one model year to the next. An improved methodology is used to allocate the yearly MPG changes among eight components, rather than the four reported in the previous reports. Sales of automobiles showed an increase of 16.6% from model year 1983. An even more striking increase was observed in the sales of light trucks: 30.5% from model year 1983. The 1984 model year experienced a gain of 0.23 mpg in sales-weighted automobile fuel economy. In contrast, light trucks experienced a loss of 0.59 mpg in fuel economy, from 20.50 mpg in model year 1983 to 19.91 mpg in model year 1984.

  10. Motor vehicle MPG and market shares report: model year 1985

    SciTech Connect (OSTI)

    Hu, P.S.

    1986-02-01

    Sales of automobiles jumped dramatically from 10,211,058 units in model year 1984 to 10,968,515 units in model year 1985, an incease of 7.4%. Light trucks had an even more striking increase in sales, rising 17.2% from the previous model year. The sales-weighted fuel economy for the entire automobile fleet continued to climb in model year 1985, from 26.3 mpg in model year 1984 to 27.0 mpg in this model year. The sales-weighted fuel economies in light trucks have remained relatively constant since model year 1979. The trends of various vehicle characteristics from model year 1978 through 1985 are illustrated. 34 figs., 45 tabs.

  11. Vehicle Technologies Office: 2012 Advanced Power Electronics and Electric Motors R&D Annual Progress Report

    Broader source: Energy.gov [DOE]

    The Advanced Power Electronics and Electric Motors (APEEM) program within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on developing revolutionary new power electronics (PE), electric motor (EM), thermal management, and traction drive system technologies that will leapfrog current on-the-road technologies. The research and development (R&D) is also aimed at achieving a greater understanding of and improvements in the way the various new components of tomorrows automobiles will function as a unified system to improve fuel efficiency.

  12. Electric and Hybrid Vehicle Program; Site Operator Program

    SciTech Connect (OSTI)

    Warren, J.F.

    1992-01-01

    Activities during the first quarter centered around integrating the new participants into the program. A meeting of the Site Operators, in conjunction with the first meeting of the Electric Vehicle Users Task Force, was held in October. A second meeting of the Task Force was held in December. During these meetings the new contractual requirements were explained to the participants. The Site Operator Data Base was distributed and explained. The Site Operators will begin using the data base in December 1991 and will supply the operating and maintenance data to the INEL on a monthly basis. The Operators requested that they be able to have access to the data of the other Operators and it was agreed that they would be provided this on floppy disk monthly from the INEL. Presentations were made to the DOE sponsored Automotive Technology Development-Contractors Coordination Meeting in October. An overview of the program was given by EG G. Representatives from Arizona Public Service, Texas A M University, and York Technical College provided details of their programs and the results and future goals. Work was begun on commercializing the Versatile Data Acquisition System (VDAS). A Scope of Work has been written for a Cooperative Research and Development Agreement (CRADA) to be submitted to the USABC. If implemented, the CRADA will provide funds for the development and commercialization of the VDAS. Participants in the Site Operator Program will test prototypes of the system within their fleets, making the data available to the USABC and other interested organizations. The USABC will provide recommendations on the data to be collected. Major activities by the majority of the Operators were involved with the continued operation and demonstration of existing vehicles. In addition, several of the operators were involved in identifying and locating vehicles to be added to their fleets. A list of the vehicles in each Site Operator fleet is included as Appendix A to this report.

  13. Characterization of polycyclic aromatic hydrocarbons in motor vehicle fuels and exhaust emissions

    SciTech Connect (OSTI)

    Marr, L.C.; Kirchstetter, T.W.; Harley, R.A.; Hammond, S.K.; Miguel, A.H.; Hering, S.V.

    1999-09-15

    Motor vehicles are a significant source of polycyclic aromatic hydrocarbon (PAH) emissions. Improved understanding of the relationship between fuel composition and PAH emissions is needed to determine whether fuel reformulation is a viable approach for reducing PAH emissions. PAH concentrations were quantified in gasoline and diesel fuel samples collected in summer 1997 in northern California. Naphthalene was the predominant PAH in both fuels, with concentrations of up to 2,600 mg L{sup {minus}1} in gasoline and 1,600 mg L{sup {minus}1} in diesel fuel. Particle-phase PAH size distributions and exhaust emission factors were measured in two bores of a roadway tunnel. Emission factors were determined separately for light-duty vehicles and for heavy-duty diesel trucks, based on measurements of PAHs, CO, and CO{sub 2}. Particle-phase emission factors, expressed per unit mass of fuel burned, ranged up to 21 {micro}g kg{sup {minus}1} for benzo[ghi]perylene for light-duty vehicles and up to {approximately} 1,000 {micro}g kg{sup {minus}1} for pyrene for heavy-duty diesel vehicles. Light-duty vehicles were found to be a significant source of heavier (four- and five-ring) PAHs, whereas heavy-duty diesel engines were the dominant source of three-ring PAHs, such as fluoranthene and pyrene. While no correlation between heavy-duty diesel truck PAH emission factors and PAH concentrations in diesel fuel was found, light-duty vehicle PAH emission factors were found to be correlated with PAH concentrations in gasoline, suggesting that gasoline reformulation may be effective in reducing PAH emissions from motor vehicles.

  14. Improve Motor Operation at Off-Design Voltages

    SciTech Connect (OSTI)

    Not Available

    2008-07-01

    This is one in a series of tip sheets to help manufacturers optimize their industrial motor and motor-driven systems.

  15. Projection of Chinese motor vehicle growth, oil demand, and CO{sub 2}emissions through 2050.

    SciTech Connect (OSTI)

    Wang, M.; Huo, H.; Johnson, L.; He, D.

    2006-12-20

    As the vehicle population in China increases, oil consumption and carbon dioxide (CO{sub 2}) emissions associated with on-road transportation are rising dramatically. During this study, we developed a methodology to project trends in the growth of the vehicle population, oil demand, and CO{sub 2} emissions associated with on-road transportation in China. By using this methodology, we projected--separately--the number of highway vehicles, motorcycles, and rural vehicles in China through 2050. We used three scenarios of highway vehicle growth (high-, mid-, and low-growth) to reflect patterns of motor vehicle growth that have occurred in different parts of the world (i.e., Europe and Asia). All are essentially business-as-usual scenarios in that almost none of the countries we examined has made concerted efforts to manage vehicle growth or to offer serious alternative transportation means to satisfy people's mobility needs. With this caveat, our projections showed that by 2030, China could have more highway vehicles than the United States has today, and by 2035, it could have the largest number of highway vehicles in the world. By 2050, China could have 486-662 million highway vehicles, 44 million motorcycles, and 28 million rural vehicles. These numbers, which assume essentially unmanaged vehicle growth, would result in potentially disastrous effects on the urban infrastructure, resources, and other social and ecological aspects of life in China. We designed three fuel economy scenarios, from conservative to aggressive, on the basis of current policy efforts and expectations of near-future policies in China and in developed countries. It should be noted that these current and near-future policies have not taken into consideration the significant potential for further fuel economy improvements offered by advanced technologies such as electric drive technologies (e.g., hybrid electric vehicles and fuel-cell vehicles). By using vehicle growth projections and potential

  16. An evaluation of the effects of valve body erosion on motor-operated valve operability

    SciTech Connect (OSTI)

    Hunt, T.H.; Nitzel, M.E.; Weidenhamer, G.H.

    1995-12-01

    INEL engineers evaluated effects of erosion-induced valve wall thinning on motor-operated valve operability. The authors reviewed reports that identified the extent and location of erosion damage in nuclear plant valves and chose a globe valve with severe erosion damage to assess the potential for loss of operability. They developed a finite element model of the selected valve and performed structural analyses with valve closing forces, seismic effects, and increased erosion areas to analyze effects of erosion on structural integrity. Results indicate that while some local stresses at the points of maximum erosion exceeded yield, the general stresses were well below yield. Therefore, displacements will be small and bending will not occur. It is concluded that erosion-related wall thinning is not likely to create an operability problem for motor-operated valves.

  17. Electric and hybrid vehicle program; Site Operator Program

    SciTech Connect (OSTI)

    Warren, J.F.

    1992-05-01

    Activities during the second quarter included the second meeting of the Site Operators in Phoenix, AZ in late April. The meeting was held in conjunction with the Solar and Electric 500 Race activities. Delivery of vehicles ordered previously has begun, although two of the operators are experiencing some delays in receiving their vehicles. Public demonstration activities continue, with an apparent increasing level of awareness and interest being displayed by the public. Initial problems with the Site Operator Database have been corrected and revised copies of the program have been supplied to the Program participants. Operating and Maintenance data is being supplied and submitted to INEL on a monthly basis. Interest in the Site Operator Program is being reflected in requests for information from several organizations from across the country, representing a wide diversity of interests. These organizations have been referred to existing Site Operators with the explanation that the program will not be adding new participants, but that most of the existing organizations are willing to work with other groups. The exception to this was the addition of Potomac Electric Power Company (PEPCO) to the program. PEPCO has been awarded a subcontract to operate and maintain the DOE owned G-Van and Escort located in Washington, DC. They will provide data on these vehicles, as well as a Solectria Force which PEPCO has purchased. The Task Force intends to be actively involved in the infrastructure development in a wide range of areas. These include, among others, personnel development, safety, charging, and servicing. Work continues in these areas. York Technical College (YORK) has completed the draft outline for the EV Technician course. This is being circulated to organizations around the country for comments. Kansas State University (KSU) is working with a private sector company to develop a energy dispensing meter for opportunity charging in public areas.

  18. Propulsion system for a motor vehicle using a bidirectional energy converter

    DOE Patents [OSTI]

    Tamor, Michael Alan; Gale, Allan Roy

    1999-01-01

    A motor vehicle propulsion system includes an electrical energy source and a traction motor coupled to receive electrical energy from the electrical energy source. The system also has a first bus provided electrical energy by the electrical energy source and a second bus of relatively lower voltage than the first bus. In addition, the system includes an electrically-driven source of reaction gas for the electrical energy source, the source of reaction gas coupled to receive electrical energy from the first bus. Also, the system has an electrical storage device coupled to the second bus for storing electrical energy at the lower voltage. The system also includes a bidirectional energy converter coupled to convert electrical energy from the first bus to the second bus and from the second bus to the first bus.

  19. A fuel-based motor vehicle emission inventory for the San Francisco Bay area

    SciTech Connect (OSTI)

    Black, D.R.; Singer, B.C.; Harley, R.A.; Martien, P.T.; Fanai, A.K.

    1997-12-31

    Traditionally, regional motor vehicle emission inventories (MVEI) have been estimated by combining travel demand model and emission factor model predictions. The accuracy of traditional MVEIs is frequently challenged, and development of independent methods for estimating vehicle emissions has been identified as a high priority for air quality research. In this study, an alternative fuel-based MVEI was developed for the San Francisco Bay Area using data from 1990--1992. To estimate CO emissions from motor vehicles in the Bay Area, estimates of gasoline sales were combined with infrared remote sensing measurements of CO and CO{sub 2} exhaust concentrations from over 10,000 light-duty vehicles in summer 1991. Once absolute estimates of CO emissions have been computed, it is possible to use ambient NO{sub x}/CO and NMOC/CO ratios from high traffic areas to estimate emissions for NO{sub x} and NMOC (excluding some resting loss and diurnal evaporative emissions). Ambient ratios were generated from special-study measurements of NMOC and CO in 1990 and 1992, and from routine sampling of NO{sub x} and CO in 1991. All pollutant concentrations were measured on summer mornings at Bay Area monitoring sites in areas with high levels of vehicle traffic and no other significant sources nearby. Stabilized CO emissions calculated by the fuel-based method for cars and light-duty trucks were 1720{+-}420 tons/day. This value is close to California`s MVEI 7G model estimates. Total on-road vehicle emissions of CO in the Bay Area were estimated to be 2900{+-}800 tons/day. Emissions of NMOC were estimated to be 570{+-}200 tons/day, which is 1.6{+-}0.6 times the value predicted by MVEI 7G. In the present study, emissions of NO{sub x} from on-road vehicles were estimated to be 250{+-}90 tons/day, which is 0.6{+-}0.2 times the value predicted by MVEI 7G.

  20. Method and system for operating an electric motor

    DOE Patents [OSTI]

    Gallegos-Lopez, Gabriel; Hiti, Silva; Perisic, Milun

    2013-01-22

    Methods and systems for operating an electric motor having a plurality of windings with an inverter having a plurality of switches coupled to a voltage source are provided. A first plurality of switching vectors is applied to the plurality of switches. The first plurality of switching vectors includes a first ratio of first magnitude switching vectors to second magnitude switching vectors. A direct current (DC) current associated with the voltage source is monitored during the applying of the first plurality of switching vectors to the plurality of switches. A second ratio of the first magnitude switching vectors to the second magnitude switching vectors is selected based on the monitoring of the DC current associated with the voltage source. A second plurality of switching vectors is applied to the plurality of switches. The second plurality of switching vectors includes the second ratio of the first magnitude switching vectors to the second magnitude switching vectors.

  1. Phase 1 STTR flywheel motor/alternator for hybrid electric vehicles. CRADA final report

    SciTech Connect (OSTI)

    McKeever, J.W.; Scudiere, M.B.; Ott, G.W. Jr.; White, C.P.; Kessinger, R.L. Jr.; Robinson, S.T.; Seymour, K.P.; Dockstadter, K.D.

    1997-12-31

    Visual Computing Systems (VCS) and the Oak Ridge National Laboratory (ORNL) have teamed, through a Phase 1 Small Business Technology Transfer (STTR) grant from the US Department of Energy (DOE), to develop an advanced, low-cost motor/alternator drive system suitable for Flywheel Energy Storage (FES) applications. During Phase 1, system performance and design requirements were established, design concepts were generated, and preliminary motor/alternator designs were developed and analyzed. ORNL provided mechanical design and finite element collaboration and Lynx Motion Technology, a spin-off from VCS to commercialize their technology, constructed a proof-of-concept axial-gap permanent magnet motor/alternator that employed their Segmented Electromagnetic Array (SEMA) with a survivable design speed potential of 10,000 rpm. The VCS motor/alternator was successfully tested in ORNL`s Motor Test Tank using an ORNL inverter and ORNL control electronics. It was first operated as an unloaded motor to 6,000 rpm and driven as an unloaded generator to 6,000 rpm. Output from the generator was then connected to a resistance bank, which caused the loaded generator to decelerate to 3,860 rpm where data was collected. After about 4-1/2 minutes, the test was terminated because of an impact noise. Subsequent inspection and operation at low speeds did not reveal the source of the noise. Electrical performance of the motor was excellent, encouraging continued development of this technology. Phase 2 efforts will focus on further design development and optimization, manufacturing development and prototype construction, testing, and evaluation.

  2. Gate valve and motor-operator research findings

    SciTech Connect (OSTI)

    Steele, R. Jr.; DeWall, K.G.; Watkins, J.C.; Russell, M.J.; Bramwell, D.

    1995-09-01

    This report provides an update on the valve research being sponsored by the US Nuclear Regulatory Commission (NRC) and conducted at the Idaho National Engineering Laboratory (INEL). The research addresses the need to provide assurance that motor-operated valves can perform their intended safety function, usually to open or close against specified (design basis) flow and pressure loads. This report describes several important developments: Two methods for estimating or bounding the design basis stem factor (in rising-stem valves), using data from tests less severe than design basis tests; a new correlation for evaluating the opening responses of gate valves and for predicting opening requirements; an extrapolation method that uses the results of a best effort flow test to estimate the design basis closing requirements of a gate valve that exhibits atypical responses (peak force occurs before flow isolation); and the extension of the original INEL closing correlation to include low- flow and low-pressure loads. The report also includes a general approach, presented in step-by-step format, for determining operating margins for rising-stem valves (gate valves and globe valves) as well as quarter-turn valves (ball valves and butterfly valves).

  3. Local government energy management: liquid petroleum gas (LPG) as a motor vehicle fuel

    SciTech Connect (OSTI)

    McCoy, G.A.; Kerstetter, J.

    1983-10-01

    The retrofit or conversion of automotive engines to operate on liquid petroleum gas (LPG) or propane fuel is one of many potentially cost-effective strategies for reducing a local government's annual fleet operating and maintenance costs. The cost effectiveness of an LPG conversion decision is highly dependent on the initial conversion cost, vehicle type, current and projected fuel costs, vehicle fuel economy (miles per gallon), and yearly average mileage. A series of plots have been developed which indicate simple paybacks for the conversion of several vehicle types (passenger car, small and standard pickups, and two and three ton trucks) over a wide range of fuel economies and annual usage patterns. A simple payback of less than three years can be achieved for vehicles with poor fuel economy and high annual use. The figures provided in this report may be used by fleet management personnel as a screening tool to identify those passenger cars, small or standard pickups, or light duty trucks which are candidates for LPG conversion. In addition to examining the benefits of an LPG conversion, local governments should also consider the competing energy management strategies of downsizing, and the acquisition of fuel efficient, diesel powered vehicles.

  4. Myers Motors | Open Energy Information

    Open Energy Info (EERE)

    Myers Motors Jump to: navigation, search Name: Myers Motors Place: Tallmadge, Ohio Zip: 44278 Sector: Vehicles Product: Myers Motors produces three wheeled electric vehicles....

  5. Apparatus and method for modifying the operation of a robotic vehicle in a real environment, to emulate the operation of the robotic vehicle operating in a mixed reality environment

    DOE Patents [OSTI]

    Garretson, Justin R.; Parker, Eric P.; Gladwell, T. Scott; Rigdon, J. Brian; Oppel, III, Fred J.

    2012-05-29

    Apparatus and methods for modifying the operation of a robotic vehicle in a real environment to emulate the operation of the robotic vehicle in a mixed reality environment include a vehicle sensing system having a communications module attached to the robotic vehicle for communicating operating parameters related to the robotic vehicle in a real environment to a simulation controller for simulating the operation of the robotic vehicle in a mixed (live, virtual and constructive) environment wherein the affects of virtual and constructive entities on the operation of the robotic vehicle (and vice versa) are simulated. These effects are communicated to the vehicle sensing system which generates a modified control command for the robotic vehicle including the effects of virtual and constructive entities, causing the robot in the real environment to behave as if virtual and constructive entities existed in the real environment.

  6. A power system includes an engine, a motor/generator operatively connected to the engine, and a starter operatively connected to at least one of the engine and the motor/generator.

    DOE Patents [OSTI]

    Hoff, Brian D.; Algrain, Marcelo C.

    2008-12-09

    A power system includes an engine, a motor/generator operatively connected to the engine, and a starter operatively connected to at least one of the engine and the motor/generator.

  7. Air pollution EPA'S efforts to control gasoline vapors from motor vehicles

    SciTech Connect (OSTI)

    Not Available

    1989-01-01

    This report examines ozone, often called smog, which is a respiratory irritant, and long-term exposure may cause permanent lung damage. Attempts by EPA to reduce gasoline vapors, a major contributor to ozone, by requiring refiners to lower the volatility (evaporation rate) of gasoline sold during the summer months when most high ozone levels occur and auto manufacturers to install vapor recovery equipment (onboard controls) on motor vehicles. Beginning in 1989 (Phase I), the maximum volatility of gasoline sold during the summer would fall to 10.5 pounds per square inch and beginning in 1992 (Phase II), the maximum volatility would fall to 9.0 pounds per square inch. EPA has not yet acted on Phase II reductions because it disagrees with the Department of Transportation on the dangers of adding onboard controls to vehicles. DOT believes the onboard controls may pose an increased risk of fire during crashes. In this report's view, the Stage II controls are a practical and feasible way to control refueling vapors and that onboard controls may well surpass the effectiveness of Phase II controls and therefore should not be abandoned as a way to reduce gasoline vapors.

  8. Composition of motor-vehicle organic emissions under elevated-temperature summer driving conditions (75 to 105 deg F)

    SciTech Connect (OSTI)

    Stump, F.D.; Knapp, K.T.; Ray, W.D.; Snow, R.; Burton, C.

    1992-01-01

    Emissions from seven late-model popular V-6 and V-8 motor vehicles were characterized at three test temperatures. The Urban Dynamometer Driving Schedule was used for vehicle tailpipe testing. Six vehicles fueled by port fuel injection (PFI) and one vehicle with a carbureted fuel system were tested at temperatures of 75, 90, and 105 F with unleaded regular summer grade gasoline. Tailpipe and evaporative emissions were determined at each test temperature. Measured emissions were the total hydrocarbons (THCs), speciated hydrocarbons, speciated aldehydes, carbon monoxide (CO), oxides of nitrogen (NOx), benzene, and 1,3-butadiene. In general, tailpipe emissions of THC, benzene, and 1,3-butadiene from the vehicles were not temperature sensitive, but the CO and NOx emissions showed some temperature sensitivity. Formaldehyde, acetaldehyde, and total aldehyde emissions from the PFI vehicles were also not temperature dependent, while formaldehyde emissions from the carbureted vehicle decreased slightly with increasing test temperature. Evaporative THC emissions generally increased with increasing test temperature. Hydrocarbon emissions saturated and broke through the evaporative carbon canister of one PFI vehicle during the 105 F hot soak while the other six vehicles showed no hydrocarbon breakthrough.

  9. Motors

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    motor fails? When a motor fails, the user or owner faces three choices: to rewind to a lower efficiency; to rewind and maintain the original efficiency; or to replace it with a...

  10. Fact #659: January 24, 2011 Fuel Economy Ratings for Vehicles Operating on

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electricity | Department of Energy 9: January 24, 2011 Fuel Economy Ratings for Vehicles Operating on Electricity Fact #659: January 24, 2011 Fuel Economy Ratings for Vehicles Operating on Electricity The Environmental Protection Agency has developed a new methodology for determining how fuel economy information will be displayed on the window sticker of a vehicle that operates on electricity. The fuel economy will be displayed in miles per gallon equivalent (MPGequivalent), so that

  11. Latest techniques and equipment for the conversion of motor vehicles to LPG/petroleum use

    SciTech Connect (OSTI)

    Armstrong, R.

    1980-01-01

    Liquified petroleum gases (LPG) has been used for transportation in Europe, the United States, Japan and to a much lesser extent in Australia for many years. In most cases, the vehicles have been powered by engines designed for petrol operation and subsequently converted to use LPG. The application of LPG as an automotive fuel in different countries depends heavily on the availability of the fuel and the tax policy of the government. The demand for dual fuel equipment is increasing. Some of the problems facing Australia to convert vehicles to LPG use emphasize the institutional and hardware obstacles. Before LPG can be considered to be a safe, viable alternative fuel to petrol, improvements will have to be made in safety standards, in reduced exhaust emissions, in increased fuel efficiency, and in the involvement of car manufacturers. (SAC)

  12. PM Motor Parametric Design Analyses for a Hybrid Electric Vehicle Traction Drive Application

    SciTech Connect (OSTI)

    Staunton, R.H.

    2004-10-11

    The Department of Energy's (DOE) Office of FreedomCAR (Cooperative Automotive Research) and Vehicle Technologies office has a strong interest in making rapid progress in permanent magnet (PM) machine development. The DOE FreedomCAR program is directing various technology development projects that will advance the technology and hopefully lead to a near-term request for proposals (RFP) for a to-be-determined level of initial production. This aggressive approach is possible because the technology is clearly within reach and the approach is deemed essential, based on strong market demand, escalating fuel prices, and competitive considerations. In response, this study began parallel development paths that included a literature search/review, development and utilization of multiple parametric models, verification of the modeling methodology, development of an interior PM (IPM) machine baseline design, development of alternative machine baseline designs, and cost analyses for several candidate machines. This report summarizes the results of these activities as of September 2004. This report provides background and summary information for recent machine parametric studies and testing programs that demonstrate both the potential capabilities and technical limitations of brushless PM machines (axial gap and radial gap), the IPM machine, the surface-mount PM machines (interior or exterior rotor), induction machines, and switched-reluctance machines. The FreedomCAR program, while acknowledging the progress made by Oak Ridge National Laboratory (ORNL), Delphi, Delco-Remy International, and others in these programs, has redirected efforts toward a ''short path'' to a marketable and competitive PM motor for hybrid electric vehicle (HEV) traction applications. The program has developed a set of performance targets for the type of traction machine desired. The short-path approach entails a comprehensive design effort focusing on the IPM machine and meeting the performance targets

  13. PM Motor Parametric Design Analyses for Hybrid Electric Vehicle Traction Drive Application: Interim Report

    SciTech Connect (OSTI)

    Staunton, R.H.

    2004-08-11

    The Department of Energy's (DOE) Office of FreedomCAR (Cooperative Automotive Research) and Vehicle Technologies has a strong interest in making rapid progress in permanent magnet (PM) machine development. The program is directing various technology development projects that will advance the technology and lead to request for proposals (RFP) for manufacturer prototypes. This aggressive approach is possible because the technology is clearly within reach and the approach is deemed essential, based on strong market demand, escalating fuel prices, and competitive considerations. In response, this study began parallel development paths that included a literature search/review, development and utilization of multiple parametric models to determine the effects of design parameters, verification of the modeling methodology, development of an interior PM (IPM) machine baseline design, development of alternative machine baseline designs, and cost analyses for several candidate machines. This interim progress report summarizes the results of these activities as of June 2004. This report provides background and summary information for recent machine parametric studies and testing programs that demonstrate both the potential capabilities and technical limitations of brushless PM machines (axial gap and radial gap), the IPM machine, the surface-mount PM machines (interior or exterior rotor), induction machines, and switched reluctance machines. The FreedomCAR program, while acknowledging the progress made by Oak Ridge National Laboratory, Delphi, Delco-Remy International, and others in these programs, has redirected efforts toward a ''short path'' to a marketable and competitive PM motor for hybrid electric vehicle traction applications. The program has developed a set of performance targets for the type of traction machine desired. The short-path approach entails a comprehensive design effort focusing on the IPM machine and meeting the performance targets. The selection of the

  14. Electric vehicles | Open Energy Information

    Open Energy Info (EERE)

    existence in the mid-19th century, when electricity was among the preferred methods for motor vehicle propulsion, providing a level of comfort and ease of operation that could not...

  15. Advanced Vehicle Testing Activity: High-Percentage Hydrogen/CNG Blend, Ford F-150 -- Operating Summary

    SciTech Connect (OSTI)

    Don Karner; Francfort, James Edward

    2003-01-01

    Over the past two years, Arizona Public Service, a subsidiary of Pinnacle West Capital Corporation, in cooperation with the U.S. Department of Energy’s Advanced Vehicle Testing Activity, tested four gaseous fuel vehicles as part of its alternative fueled vehicle fleet. One vehicle operated initially using compressed natural gas (CNG) and later a blend of CNG and hydrogen. Of the other three vehicles, one was fueled with pure hydrogen and two were fueled with a blend of CNG and hydrogen. The three blended-fuel vehicles were originally equipped with either factory CNG engines or factory gasoline engines that were converted to run CNG fuel. The vehicles were variously modified to operate on blended fuel and were tested using 15 to 50% blends of hydrogen (by volume). The pure-hydrogen-fueled vehicle was converted from gasoline fuel to operate on 100% hydrogen. All vehicles were fueled from the Arizona Public Service’s Alternative Fuel Pilot Plant, which was developed to dispense gaseous fuels, including CNG, blends of CNG and hydrogen, and pure hydrogen with up to 99.9999% purity. The primary objective of the test was to evaluate the safety and reliability of operating vehicles on hydrogen and blended hydrogen fuel, and the interface between the vehicles and the hydrogen fueling infrastructure. A secondary objective was to quantify vehicle emissions, cost, and performance. Over a total of 40,000 fleet test miles, no safety issues were found. Also, significant reductions in emissions were achieved by adding hydrogen to the fuel. This report presents the results of 4,695 miles of testing for one of the blended fuel vehicles, a Ford F-150 pickup truck, operating on up to 50% hydrogen–50% CNG fuel.

  16. Advanced Vehicle Testing Activity: Low-Percentage Hydrogen/CNG Blend, Ford F-150 -- Operating Summary

    SciTech Connect (OSTI)

    Karner, D.; Francfort, James Edward

    2003-01-01

    Over the past two years, Arizona Public Service, a subsidiary of Pinnacle West Capital Corporation, in cooperation with the U.S. Department of Energy’s Advanced Vehicle Testing Activity, tested four gaseous fuel vehicles as part of its alternative fueled vehicle fleet. One vehicle operated initially using compressed natural gas (CNG) and later a blend of CNG and hydrogen. Of the other three vehicles, one was fueled with pure hydrogen and two were fueled with a blend of CNG and hydrogen. The three blended-fuel vehicles were originally equipped with either factory CNG engines or factory gasoline engines that were converted to run CNG fuel. The vehicles were variously modified to operate on blended fuel and were tested using 15 to 50% blends of hydrogen (by volume). The pure-hydrogen-fueled vehicle was converted from gasoline fuel to operate on 100% hydrogen. All vehicles were fueled from the Arizona Public Service’s Alternative Fuel Pilot Plant, which was developed to dispense gaseous fuels, including CNG, blends of CNG and hydrogen, and pure hydrogen with up to 99.9999% purity The primary objective of the test was to evaluate the safety and reliability of operating vehicles on hydrogen and blended hydrogen fuel, and the interface between the vehicles and the hydrogen fueling infrastructure. A secondary objective was to quantify vehicle emissions, cost, and performance. Over a total of 40,000 fleet test miles, no safety issues were found. Also, significant reductions in emissions were achieved by adding hydrogen to the fuel. This report presents results of 16,942 miles of testing for one of the blended fuel vehicles, a Ford F-150 pickup truck, operating on up to 30% hydrogen/70% CNG fuel.

  17. Electric vehicles

    SciTech Connect (OSTI)

    Not Available

    1990-03-01

    Quiet, clean, and efficient, electric vehicles (EVs) may someday become a practical mode of transportation for the general public. Electric vehicles can provide many advantages for the nation's environment and energy supply because they run on electricity, which can be produced from many sources of energy such as coal, natural gas, uranium, and hydropower. These vehicles offer fuel versatility to the transportation sector, which depends almost solely on oil for its energy needs. Electric vehicles are any mode of transportation operated by a motor that receives electricity from a battery or fuel cell. EVs come in all shapes and sizes and may be used for different tasks. Some EVs are small and simple, such as golf carts and electric wheel chairs. Others are larger and more complex, such as automobile and vans. Some EVs, such as fork lifts, are used in industries. In this fact sheet, we will discuss mostly automobiles and vans. There are also variations on electric vehicles, such as hybrid vehicles and solar-powered vehicles. Hybrid vehicles use electricity as their primary source of energy, however, they also use a backup source of energy, such as gasoline, methanol or ethanol. Solar-powered vehicles are electric vehicles that use photovoltaic cells (cells that convert solar energy to electricity) rather than utility-supplied electricity to recharge the batteries. This paper discusses these concepts.

  18. Field Operations Program, Toyota PRIUS Hybrid Electric Vehicle Performance Characterization Report

    SciTech Connect (OSTI)

    Francfort, James Edward; Nguyen, N.; Phung, J.; Smith, J.; Wehrey, M.

    2001-12-01

    The U.S. Department of Energy’s Field Operations Program evaluates advanced technology vehicles in real-world applications and environments. Advanced technology vehicles include pure electric, hybrid electric, hydrogen, and other vehicles that use emerging technologies such as fuel cells. Information generated by the Program is targeted to fleet managers and others considering the deployment of advanced technology vehicles. As part of the above activities, the Field Operations Program has initiated the testing of the Toyota Prius hybrid electric vehicle (HEV), a technology increasingly being considered for use in fleet applications. This report describes the Pomona Loop testing of the Prius, providing not only initial operational and performance information, but also a better understanding of HEV testing issues. The Pomona Loop testing includes both Urban and Freeway drive cycles, each conducted at four operating scenarios that mix minimum and maximum payloads with different auxiliary (e.g., lights, air conditioning) load levels.

  19. Advanced Vehicle Testing Activity: Hydrogen-Fueled Mercedes Sprinter Van -- Operating Summary

    SciTech Connect (OSTI)

    Karner, D.; Francfort, James Edward

    2003-01-01

    Over the past two years, Arizona Public Service, a subsidiary of Pinnacle West Capital Corporation, in cooperation with the U.S. Department of Energy's Advanced Vehicle Testing Activity, tested four gaseous fuel vehicles as part of its alternative fueled vehicle fleet. One vehicle operated initially using compressed natural gas (CNG) and later a blend of CNG and hydrogen. Of the other three vehicles, one was fueled with pure hydrogen and two were fueled with a blend of CNG and hydrogen. The three blended-fuel vehicles were originally equipped with either factory CNG engines or factory gasoline engines that were converted to run CNG fuel. The vehicles were variously modified to operate on blended fuel and were tested using 15 to 50% blends of hydrogen (by volume). The pure- hydrogen-fueled vehicle was converted from gasoline fuel to operate on 100% hydrogen. All vehicles were fueled from the Arizona Public Service's Alternative Fuel Pilot Plant, which was developed to dispense gaseous fuels, including CNG, blends of CNG and hydrogen, and pure hydrogen with up to 99.9999% purity. The primary objective of the test was to evaluate the safety and reliability of operating vehicles on hydrogen and blended hydrogen fuel, and the interface between the vehicles and the hydrogen fueling infrastructure. A secondary objective was to quantify vehicle emissions, cost, and performance. Over a total of 40,000 fleet test miles, no safety issues were found. Also, significant reductions in emissions were achieved by adding hydrogen to the fuel. This report presents results of testing conducted over 6,864 kilometers (4,265 miles) of operation using the pure-hydrogen-fueled Mercedes Sprinter van.

  20. Advanced Vehicle Testing Activity: Hydrogen-Fueled Mercedes Sprinter Van Operating Summary - January 2003

    SciTech Connect (OSTI)

    Karner, D.; Francfort, J.E.

    2003-01-22

    Over the past two years, Arizona Public Service, a subsidiary of Pinnacle West Capital Corporation, in cooperation with the U.S. Department of Energy's Advanced Vehicle Testing Activity, tested four gaseous fuel vehicles as part of its alternative fueled vehicle fleet. One vehicle operated initially using compressed natural gas (CNG) and later a blend of CNG and hydrogen. Of the other three vehicles, one was fueled with pure hydrogen and two were fueled with a blend of CNG and hydrogen. The three blended-fuel vehicles were originally equipped with either factory CNG engines or factory gasoline engines that were converted to run CNG fuel. The vehicles were variously modified to operate on blended fuel and were tested using 15 to 50% blends of hydrogen (by volume). The pure-hydrogen-fueled vehicle was converted from gasoline fuel to operate on 100% hydrogen. All vehicles were fueled from the Arizona Public Service's Alternative Fuel Pilot Plant, which was developed to dispense gaseous fuels, including CNG, blends of CNG and hydrogen, and pure hydrogen with up to 99.9999% purity. The primary objective of the test was to evaluate the safety and reliability of operating vehicles on hydrogen and blended hydrogen fuel, and the interface between the vehicles and the hydrogen fueling infrastructure. A secondary objective was to quantify vehicle emissions, cost, and performance. Over a total of 40,000 fleet test miles, no safety issues were found. Also, significant reductions in emissions were achieved by adding hydrogen to the fuel. This report presents results of testing conducted over 6,864 kilometers (4,265 miles) of operation using the pure-hydrogen-fueled Mercedes Sprinter van.

  1. Advanced Vehicle Testing Activity: Dodge Ram Wagon Van - Hydrogen/CNG Operations Summary - January 2003

    SciTech Connect (OSTI)

    Karner, D.; Francfort, J.E.

    2003-01-16

    Over the past two years, Arizona Public Service, a subsidiary of Pinnacle West Capital Corporation, in cooperation with the U.S. Department of Energy's Advanced Vehicle Testing Activity, tested four gaseous fuel vehicles as part of its alternative fueled vehicle fleet. One vehicle, a Dodge Ram Wagon Van, operated initially using compressed natural gas (CNG) and later a blend of CNG and hydrogen. Of the other three vehicles, one was fueled with pure hydrogen and two were fueled with a blend of CNG and hydrogen. The three blended-fuel vehicles were originally equipped with either factory CNG engines or factory gasoline engines that were converted to run CNG fuel. The vehicles were variously modified to operate on blended fuel and were tested using 15 to 50% blends of hydrogen (by volume). The pure-hydrogen-fueled vehicle was converted from gasoline fuel to operate on 100% hydrogen. All vehicles were fueled from the Arizona Public Service's Fuel Pilot Plant, which was developed to dispense gaseous fuels, including CNG, blends of CNG and hydrogen, and pure hydrogen with up to 99.9999% purity. The primary objective of the test was to evaluate the safety and reliability of operating vehicles on hydrogen and blended hydrogen fuel, and the interface between the vehicles and the hydrogen fueling infrastructure. A secondary objective was to quantify vehicle emissions, cost, and performance. Over a total of 40,000 fleet test miles, no safety issues were found. Also, significant reductions in emissions were achieved by adding hydrogen to the fuel. This report presents results of 22,816 miles of testing for the Dodge Ram Wagon Van, operating on CNG fuel, and a blended fuel of 15% hydrogen-85% CNG.

  2. Advanced Vehicle Testing Activity: Dodge Ram Wagon Van -- Hydrogen/CNG Operations Summary

    SciTech Connect (OSTI)

    Don Karner; Francfort, James Edward

    2003-01-01

    Over the past two years, Arizona Public Service, a subsidiary of Pinnacle West Capital Corporation, in cooperation with the U.S. Department of Energy’s Advanced Vehicle Testing Activity, tested four gaseous fuel vehicles as part of its alternative fueled vehicle fleet. One vehicle, a Dodge Ram Wagon Van, operated initially using compressed natural gas (CNG) and later a blend of CNG and hydrogen. Of the other three vehicles, one was fueled with pure hydrogen and two were fueled with a blend of CNG and hydrogen. The three blended-fuel vehicles were originally equipped with either factory CNG engines or factory gasoline engines that were converted to run CNG fuel. The vehicles were variously modified to operate on blended fuel and were tested using 15 to 50% blends of hydrogen (by volume). The pure-hydrogen-fueled vehicle was converted from gasoline fuel to operate on 100% hydrogen. All vehicles were fueled from the Arizona Public Service’s Alternative Fuel Pilot Plant, which was developed to dispense gaseous fuels, including CNG, blends of CNG and hydrogen, and pure hydrogen with up to 99.9999% purity. The primary objective of the test was to evaluate the safety and reliability of operating vehicles on hydrogen and blended hydrogen fuel, and the interface between the vehicles and the hydrogen fueling infrastructure. A secondary objective was to quantify vehicle emissions, cost, and performance. Over a total of 40,000 fleet test miles, no safety issues were found. Also, significant reductions in emissions were achieved by adding hydrogen to the fuel. This report presents results of 22,816 miles of testing for the Dodge Ram Wagon Van, operating on CNG fuel, and a blended fuel of 15% hydrogen–85% CNG.

  3. Federal certification test results for 1992 model year. Control of air pollution from new motor vehicles and new motor vehicle engines

    SciTech Connect (OSTI)

    Not Available

    1992-01-01

    Each manufacturer of a passenger car, (light-duty-vehicle), light-duty truck, motorcycle, heavy-duty gasoline engine, and heavy-duty diesel engine is required to demonstrate compliance with the applicable exhaust emission standard. This report contains all of the individual tests that were required by the certification-procedures found in Title 40 of the Code of Federal Regulations in Part 86. These data were submitted to the Environmental Protection Agency's Certification Division at the National Vehicle and Fuel Emissions Laboratory.

  4. Melter feed system 3-way feed valve Auma motorized operator

    SciTech Connect (OSTI)

    Phillips, T.D.; O`Rourke, J.M.

    1987-04-07

    This document discusses the Scale Melter currently testing feed systems. One component of that system is a valve operator, which directs the feed slurry or flush water through the 3-way ball valve to the melter. This valve operator may be causing problems on the TNX Scale Melter by failing to accurately align the feed valve ports.

  5. Subcontract Report: Final Report on Assessment of Motor Technologies for Traction Drives of Hybrid and Electric Vehicles (Subcontract #4000080341)

    SciTech Connect (OSTI)

    Fezzler, Raymond

    2011-03-01

    Currently, interior permanent magnet (IPM) motors with rare-earth (RE) magnets are almost universally used for hybrid and electric vehicles (EVs) because of their superior properties, particularly power density. However, there is now a distinct possibility of limited supply or very high cost of RE magnets that could make IPM motors unavailable or too expensive. Because development of electric motors is a critical part of the U.S. Department of Energy (DOE) Advanced Power Electronics and Motors activity, DOE needs to determine which options should be investigated and what barriers should be addressed. Therefore, in order to provide a basis for deciding which research topics should be pursued, an assessment of various motor technologies was conducted to determine which, if any, is potentially capable of meeting FreedomCAR 2015 and 2020 targets. Highest priority was given to IPM, surface mounted permanent magnet (SPM), induction, and switched reluctance (SR) motors. Also of interest, but with lesser emphasis, were wheel motors, multiple-rotor motors, motors with external excitation, and several others that emerged from the assessment. Cost and power density (from a design perspective, the power density criterion translates to torque density) are emerging as the two most important properties of motors for traction drives in hybrid and EVs, although efficiency and specific power also are very important. The primary approach for this assessment involved interviews with original equipment manufacturers (OEMs), their suppliers, and other technical experts. For each technology, the following issues were discussed: (1) The current state-of-the-art performance and cost; (2) Recent trends in the technology; (3) Inherent characteristics of the motor - which ones limit the ability of the technology to meet the targets and which ones aid in meeting the target; (4) What research and development (R&D) would be needed to meet the targets; and (5) The potential for the technology to

  6. Electric and hybrid vehicle program site operator program. Quarterly progress report, January 1995--March 1995

    SciTech Connect (OSTI)

    Kiser, D.M.; Brown, H.L.

    1995-08-01

    The Site Operator Program was initially established by the Department of Energy (DOE) to incorporate the electric vehicle activities dictated by the Electric and Hybrid Vehicle Research, Development and Demonstration Act of 1976. In the ensuing years, the Program has evolved in response to new legislation and interests. The Program currently includes twelve sites located in diverse geographic, metrologic, and metropolitan areas across the United States. Information is shared reciprocally with a thirteenth site, not under Program contract. The vehicles are operator-owned. The Mission Statement of the Site Operator Program includes three major activities: (1) Advancement of electric vehicle technologies; (2) Development of infrastructure elements necessary to support significant electric vehicle use; and (3) Increasing the awareness and acceptance of electric vehicles (EVs) by the public. The current participants in the Site Operator Program are shown. Table 1 indicates the EVs in each of the Site Operator fleets. Table 2 provides baseline information on several EVs currently in use by the Site Operators, or which have evolved to the point that they may be introduced in the near future. The Program is currently managed by personnel of the Electric and Hybrid Vehicle Program at the Idaho National Engineering Laboratory (INEL). The current principal management functions include: Coordination of Site Operator efforts in the areas of public awareness and infrastructure development (program-related meetings, and educational presentations).

  7. Electric and Hybrid Vehicle Program: Site Operation Program. Quarterly progress report, July--September 1995

    SciTech Connect (OSTI)

    Francfort, J.; Bassett, R.R.; Briasco, S.

    1995-12-01

    The Site Operator Program has evolved substantially since its inception in response to the Electric Vehicle Research and Demonstration Act of 1976. In its original form, a commercialization effort was intended but this was not feasible for lack of vehicle suppliers and infrastructure. Nonetheless, with DOE sponsorship and technical participation, a few results (primarily operating experience and data) were forthcoming. The current Program comprises eleven sites and over 200 vehicles, of which about 50 are latest generation vehicles. DOE partially funds the Program participant expenditures and the INEL receives operating and maintenance data for the DOE-owned, and participant-owned or monitored vehicles, as well as Program reports. As noted elsewhere in this report, participants represent several widely differing categories: electric utilities, academic institutions, and federal agencies. While both the utilities and the academic institutions tend to establish beneficial relationships with the industrial community.

  8. Aurica Motors | Open Energy Information

    Open Energy Info (EERE)

    Aurica Motors Jump to: navigation, search Name: Aurica Motors Place: California Product: California-based Aurica Motors is planning to develop and manufacture an electric vehicle...

  9. Electric drive mechanism for vehicles

    SciTech Connect (OSTI)

    Bader, C.

    1983-06-21

    An electric drive mechanism is disclosed for vehicles, especially buses with overhead trolley routes, which routes are provided with relatively short interruptions in the overhead trolley. The drive mechanism includes a flywheel two externally excited electric motors which are adapted to be switched over from prime mover operation to generator operation, and which motors are effective as a ward-leonard drive during flywheel operation. The first electric motor is constructed for half of a maximum drive power and the second electric motor is likewise constructed for half or for square root 2/2 times the maximum drive power. Both electric motors are connected electrically in parallel during operation from the main electrical supply. The first and second motors are electrically connected in parallel during operation of the vehicle from the main electrical supply when a change-speed transmission is provided for connecting a drive shaft of one of the motors with driven vehicle wheels. A planetary gear transmission and a further transmission are provided for mechanically connecting the drive shaft of one of the motors with the second motor and with the flywheel.

  10. Scalable, Low-Cost, High Performance IPM Motor for Hybrid Vehicles

    Broader source: Energy.gov [DOE]

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  11. Vehicle Technologies Office Merit Review 2014: Convective Cooling and Passive Stack Improvements in Motors

    Broader source: Energy.gov [DOE]

    Presentation given by National Renewable Energy Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about...

  12. Vehicle Technologies Office Merit Review 2015: Electric Motor Thermal Management R&D

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by National Renewable Energy Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about electric...

  13. Vehicle Technologies Office Merit Review 2016: Electric Motor Thermal Management R&D

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by National Renewable Energy Laboratory (NREL) at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting...

  14. Vehicle Technologies Office Merit Review 2014: Permanent Magnet Development for Automotive Traction Motors

    Broader source: Energy.gov [DOE]

    Presentation given by Ames Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about permanent magnet development...

  15. Electric and Hybrid Vehicle Program, Site Operator Program. Quarterly progress report, January--March 1996

    SciTech Connect (OSTI)

    Francfort, J.E.; Bassett, R.R.; Briasco, S.

    1996-08-01

    Goals of the site operator program include field evaluation of electric vehicles (EVs) in real-world applications and environments, advancement of electric vehicle technologies, development of infrastructure elements necessary to support significant EV use, and increasing the awareness and acceptance of EVs by the public. The site operator program currently consists of 11 participants under contract and two other organizations with data-sharing agreements with the program. The participants (electric utilities, academic institutions, Federal agencies) are geographically dispersed within US and their vehicles see a broad spectrum of service conditions. Current EV inventories of the site operators exceeds 250 vehicles. Several national organizations have joined DOE to further the introduction and awareness of EVs, including: (1) EVAmerica (a utility program) and DOE conduct performance and evaluation tests to support market development for EVs; (2) DOE, DOT, the Electric Transportation Coalition, and the Electric Vehicle Association of the Americas are conducting a series of workshops to encourage urban groups in Clean Cities (a DOE program) to initiate the policies and infrastructure development necessary to support large-scale demonstrations, and ultimately the mass market use, of EVs. Current focus of the program is collection and dissemination of EV operations and performance data to aid in the evaluation of real- world EV use. This report contains several sections with vehicle evaluation as a focus: EV testing results, energy economics of EVs, and site operators activities.

  16. Vehicle Technologies Office Merit Review 2015: Multi-Speed Range Electric Motor R&D

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about multi-speed...

  17. Vehicle Technologies Office Merit Review 2016: North American Supply Chain for Traction Motors and PE

    Broader source: Energy.gov [DOE]

    Presentation given by Synthesis Partners at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting about Electric Drive Systems

  18. Vehicle Technologies Office Merit Review 2016: Electric Motor Performance Improvement Techniques

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory (ORNL) at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting about...

  19. Vehicle Technologies Office Merit Review 2015: Non-Rare Earth Motor Development

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Oak Ridge National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about non-rare earth...

  20. Vehicle Technologies Office Merit Review 2014: Scalable Non-Rare Earth Motor Development

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about scalable non...

  1. Vehicle Technologies Office Merit Review 2016: Unique Lanthide-Free Motor Construction

    Broader source: Energy.gov [DOE]

    Presentation given by UQM Technologies, Inc. at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting about Electric Drive...

  2. Scalable, Low-Cost, High Performance IPM Motor for Hybrid Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    10 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. PDF icon ape013elrefaie2010o

  3. Vehicle Technologies Office Merit Review 2016: SAE J2907 Motor Power Ratings Standards Support

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory (ORNL) at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting about...

  4. Vehicle Technologies Office Merit Review 2014: SAE J2907 Hybrid Motor Ratings Support

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about SAE J2907...

  5. Plug-In Electric Vehicle Fast Charge Station Operational Analysis with Integrated Renewables: Preprint

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plug-in Electric Vehicle Fast Charge Station Operational Analysis with Integrated Renewables Preprint M. Simpson and T. Markel Presented at the International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium 26 (EVS26) Los Angeles, California May 6 - 9, 2012 Conference Paper NREL/CP-5400-53914 August 2012 NOTICE The submitted manuscript has been offered by an employee of the Alliance for Sustainable Energy, LLC (Alliance), a contractor of the US Government under Contract No.

  6. Remote operated vehicle with carbon dioxide blasting (ROVCO{sub 2})

    SciTech Connect (OSTI)

    Resnick, A.M.

    1995-10-01

    The Remote Operated Vehicle with Carbon Dioxide Blasting (ROVCO{sub 2}), as shown in a front view is a six-wheeled remote land vehicle used to decontaminate concrete floors. The remote vehicle has a high pressure Cryogenesis blasting subsystem, Oceaneering Technologies (OTECH) developed a CO{sub 2} xY Orthogonal Translational End Effector (COYOTEE) subsystem, and a vacuum/filtration and containment subsystem. The cryogenesis subsystem performs the actual decontamination work and consists of the dry ice supply unit, the blasting nozzle, the remotely controlled electric and pneumatic valves, and the vacuum work-head. The COYOTEE subsystem positions the blasting work-head within a planar work space and the vacuum subsystem provides filtration and containment of the debris generated by the CO{sub 2} blasting. It employs a High Efficiency Particulate Air (HEPA) filtration unit to separate contaminants for disposal. All of the above systems are attached to the vehicle subsystem via the support structure.

  7. Electric and Hybrid Vehicle Program; Site Operator Program. Quarterly progress report, October--December 1991

    SciTech Connect (OSTI)

    Warren, J.F.

    1992-01-01

    Activities during the first quarter centered around integrating the new participants into the program. A meeting of the Site Operators, in conjunction with the first meeting of the Electric Vehicle Users Task Force, was held in October. A second meeting of the Task Force was held in December. During these meetings the new contractual requirements were explained to the participants. The Site Operator Data Base was distributed and explained. The Site Operators will begin using the data base in December 1991 and will supply the operating and maintenance data to the INEL on a monthly basis. The Operators requested that they be able to have access to the data of the other Operators and it was agreed that they would be provided this on floppy disk monthly from the INEL. Presentations were made to the DOE sponsored Automotive Technology Development-Contractors Coordination Meeting in October. An overview of the program was given by EG&G. Representatives from Arizona Public Service, Texas A&M University, and York Technical College provided details of their programs and the results and future goals. Work was begun on commercializing the Versatile Data Acquisition System (VDAS). A Scope of Work has been written for a Cooperative Research and Development Agreement (CRADA) to be submitted to the USABC. If implemented, the CRADA will provide funds for the development and commercialization of the VDAS. Participants in the Site Operator Program will test prototypes of the system within their fleets, making the data available to the USABC and other interested organizations. The USABC will provide recommendations on the data to be collected. Major activities by the majority of the Operators were involved with the continued operation and demonstration of existing vehicles. In addition, several of the operators were involved in identifying and locating vehicles to be added to their fleets. A list of the vehicles in each Site Operator fleet is included as Appendix A to this report.

  8. Enhanced Component Performance Study: Motor-Operated Valves 1998–2012

    SciTech Connect (OSTI)

    T. E. Wierman

    2013-10-01

    This report presents an enhanced performance evaluation of motor-operated valves (MOVs) at U.S. commercial nuclear power plants. The data used in this study are based on the operating experience failure reports from fiscal year 1998 through 2012 for the component reliability as reported in the Equipment Performance and Information Exchange (EPIX). The MOV failure modes considered are failure to open/close, failure to operate or control, and spurious operation. The component reliability estimates and the reliability data are trended for the most recent 10-year period while yearly estimates for reliability are provided for the entire active period. No statistically significant increasing trends were identified in the MOV results. Statistically significant decreasing trends were identified for failure to open/close and operation demands.

  9. Fact #845: November 3, 2014 From 1970 to 2013 the Share of Older Vehicles in Operation has Increased – Dataset

    Broader source: Energy.gov [DOE]

    Excel file with dataset for Fact #845: From 1970 to 2013 the Share of Older Vehicles in Operation has Increased

  10. Hydrogen and Hydrogen/Natural Gas Station and Vehicle Operations - 2006 Summary Report

    SciTech Connect (OSTI)

    Francfort; Donald Karner; Roberta Brayer

    2006-09-01

    This report is a summary of the operations and testing of internal combustion engine vehicles that were fueled with 100% hydrogen and various blends of hydrogen and compressed natural gas (HCNG). It summarizes the operations of the Arizona Public Service Alternative Fuel Pilot Plant, which produces, compresses, and dispenses hydrogen fuel. Other testing activities, such as the destructive testing of a CNG storage cylinder that was used for HCNG storage, are also discussed. This report highlights some of the latest technology developments in the use of 100% hydrogen fuels in internal combustion engine vehicles. Reports are referenced and WWW locations noted as a guide for the reader that desires more detailed information. These activities are conducted by Arizona Public Service, Electric Transportation Applications, the Idaho National Laboratory, and the U.S. Department of Energy’s Advanced Vehicle Testing Activity.

  11. Apparatus and method for non-invasive diagnosis and control of motor operated valve condition

    DOE Patents [OSTI]

    Lyon, Richard H.; Chai, Jangbom; Lang, Jeffrey H.; Hagman, Wayne H.; Umans, Stephen D.; Saarela, Olli J.

    1997-01-01

    An apparatus compares the torque from an MOV motor with the valve displacement, and from the comparison assesses MOV operating condition. A transducer measures the vibration of the housing of an MOV. The vibrations are due to the motions of the rotating elements within the housing, which motions are directly related to the motion of the valve relative to its seat. Signal processing apparatus analyzes the vibrations to recover the rotations of the rotating elements and thus the motion of the valve plug. Lost motion can also be determined (if a lost motion connection exists) by demodulating the vibration signal and thus taking into account also the lost motion. Simultaneously, the forces applied to the valve are estimated by estimating the torque between the stator and the rotor of the motor. Such torque can be estimated from measuring the input current and voltage alone, using a forgetting factor and a correction for the forgetting factor. A signature derived from relating the torque to the valve position can be used to assess the condition of the MOV, by comparing the signature to signatures for MOVs of known conditions. The vibration analysis components generate signals that relate to the position of elements in the operator. Similarly, the torque estimator estimates the torque output by any type of electric motor, whether or not part of an MOV analysis unit.

  12. Apparatus and method for non-invasive diagnosis and control of motor operated valve condition

    DOE Patents [OSTI]

    Lyon, R.H.; Chai, J.; Lang, J.H.; Hagman, W.H.; Umans, S.D.; Saarela, O.J.

    1997-01-14

    An apparatus compares the torque from an MOV motor with the valve displacement, and from the comparison assesses MOV operating condition. A transducer measures the vibration of the housing of an MOV. The vibrations are due to the motions of the rotating elements within the housing, which motions are directly related to the motion of the valve relative to its seat. Signal processing apparatus analyzes the vibrations to recover the rotations of the rotating elements and thus the motion of the valve plug. Lost motion can also be determined (if a lost motion connection exists) by demodulating the vibration signal and thus taking into account also the lost motion. Simultaneously, the forces applied to the valve are estimated by estimating the torque between the stator and the rotor of the motor. Such torque can be estimated from measuring the input current and voltage alone, using a forgetting factor and a correction for the forgetting factor. A signature derived from relating the torque to the valve position can be used to assess the condition of the MOV, by comparing the signature to signatures for MOVs of known conditions. The vibration analysis components generate signals that relate to the position of elements in the operator. Similarly, the torque estimator estimates the torque output by any type of electric motor, whether or not part of an MOV analysis unit. 28 figs.

  13. Vehicles

    Broader source: Energy.gov [DOE]

    Vehicles, and the fuel it takes to power them, are an essential part of our American infrastructure and economy. The Energy Department works to develop transportation technologies that will reduce our dependence on foreign oil.

  14. Exhaust particle characterization for lean and stoichiometric DI vehicles operating on ethanol-gasoline blends

    SciTech Connect (OSTI)

    Storey, John Morse; Barone, Teresa L; Thomas, John F; Huff, Shean P

    2012-01-01

    Gasoline direct injection (GDI) engines can offer better fuel economy and higher performance over their port fuel-injected (PFI) counterparts, and are now appearing in increasingly more U.S. and European vehicles. Small displacement, turbocharged GDI engines are replacing large displacement engines, particularly in light-duty trucks and sport utility vehicles, in order for manufacturers to meet the U.S. fuel economy standards for 2016. Furthermore, lean-burn GDI engines can offer even higher fuel economy than stoichiometric GDI engines and have overcome challenges associated with cost-effective aftertreatment for NOx control. Along with changes in gasoline engine technology, fuel composition may increase in ethanol content beyond the current 10% due to the recent EPA waiver allowing 15% ethanol. In addition, the Renewable Fuels Standard passed as part of the 2007 Energy Independence and Security Act (EISA) mandates the use of biofuels in upcoming years. GDI engines are of environmental concern due to their high particulate matter (PM) emissions relative to port-fuel injected (PFI) gasoline vehicles; widespread market penetration of GDI vehicles may result in additional PM from mobile sources at a time when the diesel contribution is declining. In this study, we characterized particulate emissions from a European certified lean-burn GDI vehicle operating on ethanol-gasoline blends. Particle mass and particle number concentration emissions were measured for the Federal Test Procedure urban driving cycle (FTP 75) and the more aggressive US06 driving cycle. Particle number-size distributions and organic to elemental carbon ratios (OC/EC) were measured for 30 MPH and 80 MPH steady-state operation. In addition, particle number concentration was measured during wide open throttle accelerations (WOTs) and gradual accelerations representative of the FTP 75. Fuels included certification gasoline and 10% (E10) and 20% (E20) ethanol blends from the same supplier. The particle

  15. Magnet Motor Corp | Open Energy Information

    Open Energy Info (EERE)

    Magnet Motor Corp Jump to: navigation, search Name: Magnet Motor Corp. Place: Starnberg, Germany Zip: 82319 Sector: Vehicles Product: Magnet motor Corp has been developing and...

  16. Motor vehicle mpg and market shares report: first six months of model year 1984

    SciTech Connect (OSTI)

    Hu, P.S.; Greene, D.L.; Till, L.E.

    1984-10-01

    This issue of the publication reports the sales, market shares, estimated sales-weighted fuel economies, and other estimated sales-weighted vehicle characteristics of automobiles and light trucks for the first six months of model year 1984 and for the previous five model years. Comparisons and observations are made on the trends in these vehicles from one model year to the next. An improved methodology is used to allocate the yearly mpg changes among eight components, rather than the four reported in the previous reports. Sales of automobiles showed an increase of 21.8% from the first half of model year 1983. An even more striking increase was observed in the sales of light trucks: 42.2% from the first half of model year 1983. The first six months of model year 1984 experienced a gain of 0.21 mpg in sales-weighted automobile fuel economy. In contrast, light trucks experienced a loss of 0.83 mpg in fuel economy, from 20.52 mpg in model year 1983 to 19.69 mpg in the first half of model year 1984.

  17. Torsional fatigue model for limitorque type SMB/SB/SBD actuators for motor-operated valves

    SciTech Connect (OSTI)

    Somogyi, D.; Alvarez, P.D.; Kalsi, M.S.

    1996-12-01

    Kalsi Engineering, Inc. has recently developed a computer program to predict the torsional fatigue life of Limitorque Type SMB/SB/SBD actuators for motor-operated valves under given loading levels, including those that exceed the ratings. The development effort was an outgrowth of the {open_quote}Thrust Rating Increase{close_quote} test program. The fatigue model computes all pertinent stress components and their variations as a function of the loading ramp. The cumulative damage and fatigue life due to stress cycling is computed by use of a modification of Miner`s rule. Model predictions were validated against actual cyclic loading test results.

  18. Los Angeles Department of Water and Power Electric and Hybrid Vehicle Program site operator program

    SciTech Connect (OSTI)

    1998-02-01

    During the term of the above mentioned agreement, the Los Angeles Department of Water and Power (LADWP), a municipal utility serving the citizens of Los Angeles, marked its tenth year of involvement in testing and promoting electric vehicles as part of Los Angeles` overall air quality improvement program, and as a means of improving the regions` economic competitiveness through the creation of new industries. LADWP maintained and operated twenty electric vehicles (EVs) during the test period. These vehicles consisted of six G-Vans, four Chrysler TEVans, five U.S. Electricar pickup trucks, and five U.S. Electricar Prizms. LADWP`s electric transportation program also included infrastructure, public transit development, public and awareness, and legislative and regulatory activities.

  19. Results from the Operational Testing of the Eaton Smart Grid Capable Electric Vehicle Supply Equipment

    SciTech Connect (OSTI)

    Bennett, Brion

    2014-10-01

    The Idaho National Laboratory conducted testing and analysis of the Eaton smart grid capable electric vehicle supply equipment (EVSE), which was a deliverable from Eaton for the U.S. Department of Energy FOA-554. The Idaho National Laboratory has extensive knowledge and experience in testing advanced conductive and wireless charging systems though INL’s support of the U.S. Department of Energy’s Advanced Vehicle Testing Activity. This document details the findings from the EVSE operational testing conducted at the Idaho National Laboratory on the Eaton smart grid capable EVSE. The testing conducted on the EVSE included energy efficiency testing, SAE J1772 functionality testing, abnormal conditions testing, and charging of a plug-in vehicle.

  20. Calculators for Estimating Greenhouse Gas Emissions from Public Transit Agency Vehicle Fleet Operations

    SciTech Connect (OSTI)

    Weigel, Brent; Southworth, Frank; Meyer, Michael D

    2010-01-01

    This paper reviews calculation tools available for quantifying the greenhouse gas emissions associated with different types of public transit service, and their usefulness in helping a transit agency to reduce its carbon footprint through informed vehicle and fuel procurement decisions. Available calculators fall into two categories: registry/inventory based calculators most suitable for standardized voluntary reporting, carbon trading, and regulatory compliance; and multi-modal life cycle analysis calculators that seek comprehensive coverage of all direct and indirect emissions. Despite significant progress in calculator development, no single calculator as yet contains all of the information needed by transit agencies to develop a truly comprehensive, life cycle analysis-based accounting of the emissions produced by its vehicle fleet operations, and for a wide range of vehicle/fuel technology options.

  1. Results from Operational Testing of the Siemens Smart Grid-Capable Electric Vehicle Supply Equipment

    SciTech Connect (OSTI)

    Bennett, Brion

    2015-05-01

    The Idaho National Laboratory conducted testing and analysis of the Siemens smart grid capable electric vehicle supply equipment (EVSE), which was a deliverable from Siemens for the U.S. Department of Energy FOA-554. The Idaho National Laboratory has extensive knowledge and experience in testing advanced conductive and wireless charging systems though INL’s support of the U.S. Department of Energy’s Advanced Vehicle Testing Activity. This document details the findings from the EVSE operational testing conducted at the Idaho National Laboratory on the Siemens smart grid capable EVSE. The testing conducted on the EVSE included energy efficiency testing, SAE J1772 functionality testing, abnormal conditions testing, and charging of a plug-in vehicle.

  2. Advanced Vehicle Testing Activity: Low-Percentage Hydrogen/CNG Blend Ford F-150 Operating Summary - January 2003

    SciTech Connect (OSTI)

    Karner, D.; Francfort, J.E.

    2003-01-22

    Over the past two years, Arizona Public Service, a subsidiary of Pinnacle West Capital Corporation, in cooperation with the U.S. Department of Energy's Advanced Vehicle Testing Activity, tested four gaseous fuel vehicles as part of its alternative fueled vehicle fleet. One vehicle operated initially using compressed natural gas (CNG) and later a blend of CNG and hydrogen. Of the other three vehicles, one was fueled with pure hydrogen and two were fueled with a blend of CNG and hydrogen. The three blended-fuel vehicles were originally equipped with either factory CNG engines or factory gasoline engines that were converted to run CNG fuel. The vehicles were variously modified to operate on blended fuel and were tested using 15 to 50% blends of hydrogen (by volume). The pure-hydrogen-fueled vehicle was converted from gasoline fuel to operate on 100% hydrogen. All vehicles were fueled from the Arizona Public Service's Alternative Fuel Pilot Plant, which was developed to dispense gaseous fuels, including CNG, blends of CNG and hydrogen, and pure hydrogen with up to 99.9999% purity. The primary objective of the test was to evaluate the safety and reliability of operating vehicles on hydrogen and blended hydrogen fuel, and the interface between the vehicles and the hydrogen fueling infrastructure. A secondary objective was to quantify vehicle emissions, cost, and performance. Over a total of 40,000 fleet test miles, no safety issues were found. Also, significant reductions in emissions were achieved by adding hydrogen to the fuel. This report presents results of 16,942 miles of testing for one of the blended fuel vehicles, a Ford F-150 pickup truck, operating on up to 30% hydrogen/70% CNG fuel.

  3. Advanced Vehicle Testing Activity: High-Percentage Hydrogen/CNG Blend Ford F-150 Operating Summary - January 2003

    SciTech Connect (OSTI)

    Karner, D.; Francfort, J.E.

    2003-01-22

    Over the past two years, Arizona Public Service, a subsidiary of Pinnacle West Capital Corporation, in cooperation with the U.S. Department of Energy's Advanced Vehicle Testing Activity, tested four gaseous fuel vehicles as part of its alternative fueled vehicle fleet. One vehicle operated initially using compressed natural gas (CNG) and later a blend of CNG and hydrogen. Of the other three vehicles, one was fueled with pure hydrogen and two were fueled with a blend of CNG and hydrogen. The three blended-fuel vehicles were originally equipped with either factory CNG engines or factory gasoline engines that were converted to run CNG fuel. The vehicles were variously modified to operate on blended fuel and were tested using 15 to 50% blends of hydrogen (by volume). The pure-hydrogen-fueled vehicle was converted from gasoline fuel to operate on 100% hydrogen. All vehicles were fueled from the Arizona Public Service's Alternative Fuel Pilot Plant, which was developed to dispense gaseous fuels, including CNG, blends of CNG and hydrogen, and pure hydrogen with up to 99.9999% purity. The primary objective of the test was to evaluate the safety and reliability of operating vehicles on hydrogen and blended fuel, and the interface between the vehicles and the hydrogen fueling infrastructure. A secondary objective was to quantify vehicle emissions, cost, and performance. Over a total of 40,000 fleet test miles, no safety issues were found. Also, significant reductions in emissions were achieved by adding hydrogen to the fuel. This report presents the results of 4,695 miles of testing for one of the blended fuel vehicles, a Ford F-150 pickup truck, operating on up to 50% hydrogen-50% CNG fuel.

  4. Aptera Motors | Open Energy Information

    Open Energy Info (EERE)

    Aptera Motors Jump to: navigation, search Name: Aptera Motors Address: 2778 Loker Avenue West Place: Carlsbad, California Zip: 92008 Region: Southern CA Area Sector: Vehicles...

  5. Powertrain system for a hybrid electric vehicle

    DOE Patents [OSTI]

    Reed, Jr., Richard G. (Royal Oak, MI); Boberg, Evan S. (Hazel Park, MI); Lawrie, Robert E. (Whitmore Lake, MI); Castaing, Francois J. (Bloomfield Township, MI)

    1999-08-31

    A hybrid electric powertrain system is provided including an electric motor/generator drivingly engaged with the drive shaft of a transmission. The electric is utilized for synchronizing the rotation of the drive shaft with the driven shaft during gear shift operations. In addition, a mild hybrid concept is provided which utilizes a smaller electric motor than typical hybrid powertrain systems. Because the electric motor is drivingly engaged with the drive shaft of the transmission, the electric motor/generator is driven at high speed even when the vehicle speed is low so that the electric motor/generator provides more efficient regeneration.

  6. Powertrain system for a hybrid electric vehicle

    DOE Patents [OSTI]

    Reed, R.G. Jr.; Boberg, E.S.; Lawrie, R.E.; Castaing, F.J.

    1999-08-31

    A hybrid electric powertrain system is provided including an electric motor/generator drivingly engaged with the drive shaft of a transmission. The electric is utilized for synchronizing the rotation of the drive shaft with the driven shaft during gear shift operations. In addition, a mild hybrid concept is provided which utilizes a smaller electric motor than typical hybrid powertrain systems. Because the electric motor is drivingly engaged with the drive shaft of the transmission, the electric motor/generator is driven at high speed even when the vehicle speed is low so that the electric motor/generator provides more efficient regeneration. 34 figs.

  7. Universal adaptive torque control for PM motors for field-weakening region operation

    DOE Patents [OSTI]

    Royak, Semyon; Harbaugh, Mark M.; Breitzmann, Robert J.; Nondahl, Thomas A.; Schmidt, Peter B.; Liu, Jingbo

    2011-03-29

    The invention includes a motor controller and method for controlling a permanent magnet motor. In accordance with one aspect of the present technique, a permanent magnet motor is controlled by, among other things, receiving a torque command, determining a normalized torque command by normalizing the torque command to a characteristic current of the motor, determining a normalized maximum available voltage, determining an inductance ratio of the motor, and determining a direct-axis current based upon the normalized torque command, the normalized maximum available voltage, and the inductance ratio of the motor.

  8. Electric vehicle climate control

    SciTech Connect (OSTI)

    Dauvergne, J.

    1994-04-01

    EVs have insufficient energy sources for a climatic comfort system. The heat rejection of the drivetrain is dispersed in the vehicle (electric motor, batteries, electronic unit for power control). Its level is generally low (no more than 2-kW peaks) and variable according to the trip profile, with no heat rejection at rest and a maximum during regenerative braking. Nevertheless, it must be used for heating. It is not realistic to have the A/C compressor driven by the electric traction motor: the motor does not operate when the vehicle is at rest, precisely when maximum cooling power is required. The same is true for hybrid vehicles during electric operation. It is necessary to develop solutions that use stored onboard energy either from the traction batteries or specific storage source. In either case, it is necessary to design the climate control system to use the energy efficiently to maximize range and save weight. Heat loss through passenger compartment seals and the walls of the passenger compartment must be limited. Plastic body panes help to reduce heat transfer, and heat gain is minimized with insulating glazing. This article describes technical solutions to solve the problem of passenger thermal comfort. However, the heating and A/C systems of electrically operated vehicles may have marginal performance at extreme outside temperatures.

  9. Electric vehicle regenerative antiskid braking and traction control system

    DOE Patents [OSTI]

    Cikanek, S.R.

    1995-09-12

    An antiskid braking and traction control system for an electric or hybrid vehicle having a regenerative braking system operatively connected to an electric traction motor, and a separate hydraulic braking system includes one or more sensors for monitoring present vehicle parameters and a processor, responsive to the sensors, for calculating vehicle parameters defining the vehicle behavior not directly measurable by the sensors and determining if regenerative antiskid braking control, requiring hydraulic braking control, or requiring traction control are required. The processor then employs a control strategy based on the determined vehicle state and provides command signals to a motor controller to control the operation of the electric traction motor and to a brake controller to control fluid pressure applied at each vehicle wheel to provide the appropriate regenerative antiskid braking control, hydraulic braking control, and traction control. 10 figs.

  10. Electric vehicle regenerative antiskid braking and traction control system

    DOE Patents [OSTI]

    Cikanek, Susan R.

    1995-01-01

    An antiskid braking and traction control system for an electric or hybrid vehicle having a regenerative braking system operatively connected to an electric traction motor, and a separate hydraulic braking system includes one or more sensors for monitoring present vehicle parameters and a processor, responsive to the sensors, for calculating vehicle parameters defining the vehicle behavior not directly measurable by the sensors and determining if regenerative antiskid braking control, requiring hydrualic braking control, or requiring traction control are required. The processor then employs a control strategy based on the determined vehicle state and provides command signals to a motor controller to control the operation of the electric traction motor and to a brake controller to control fluid pressure applied at each vehicle wheel to provide the appropriate regenerative antiskid braking control, hydraulic braking control, and traction control.

  11. AGNI Motors | Open Energy Information

    Open Energy Info (EERE)

    India Zip: 370 230 Sector: Vehicles Product: UK-based manufacturer of DC Motors and Battery Management Systems for Electric Vehicles References: AGNI Motors1 This article is a...

  12. Brushed permanent magnet DC MLC motor operation in an external magnetic field

    SciTech Connect (OSTI)

    Yun, J.; St Aubin, J.; Rathee, S.; Fallone, B. G.

    2010-05-15

    Purpose: Linac-MR systems for real-time image-guided radiotherapy will utilize the multileaf collimators (MLCs) to perform conformal radiotherapy and tumor tracking. The MLCs would be exposed to the external fringe magnetic fields of the linac-MR hybrid systems. Therefore, an experimental investigation of the effect of an external magnetic field on the brushed permanent magnet DC motors used in some MLC systems was performed. Methods: The changes in motor speed and current were measured for varying external magnetic field strengths up to 2000 G generated by an EEV electromagnet. These changes in motor characteristics were measured for three orientations of the motor in the external magnetic field, mimicking changes in motor orientations due to installation and/or collimator rotations. In addition, the functionality of the associated magnetic motor encoder was tested. The tested motors are used with the Varian 120 leaf Millennium MLC (Maxon Motor half leaf and full leaf motors) and the Varian 52 leaf MKII MLC (MicroMo Electronics leaf motor) including a carriage motor (MicroMo Electronics). Results: In most cases, the magnetic encoder of the motors failed prior to any damage to the gearbox or the permanent magnet motor itself. This sets an upper limit of the external magnetic field strength on the motor function. The measured limits of the external magnetic fields were found to vary by the motor type. The leaf motor used with a Varian 52 leaf MKII MLC system tolerated up to 450{+-}10 G. The carriage motor tolerated up to 2000{+-}10 G field. The motors used with the Varian 120 leaf Millennium MLC system were found to tolerate a maximum of 600{+-}10 G. Conclusions: The current Varian MLC system motors can be used for real-time image-guided radiotherapy coupled to a linac-MR system, provided the fringe magnetic fields at their locations are below the determined tolerance levels. With the fringe magnetic fields of linac-MR systems expected to be larger than the

  13. Multi-Material Lightweight Vehicles

    Broader source: Energy.gov (indexed) [DOE]

    * Ford 2,773,175 Partners * Vehma International * Ford Motor Company This presentation ... and test the vehicle, c) demonstrate integration of the light weight material vehicle ...

  14. Motor vehicle fuel analyzer

    DOE Patents [OSTI]

    Hoffheins, B.S.; Lauf, R.J.

    1997-08-05

    A gas detecting system is described for classifying the type of liquid fuel in a container or tank. The system includes a plurality of semiconductor gas sensors, each of which differs from the other in its response to various organic vapors. The system includes a means of processing the responses of the plurality of sensors such that the responses to any particular organic substance or mixture is sufficiently distinctive to constitute a recognizable ``signature``. The signature of known substances are collected and divided into two classes based on some other known characteristic of the substances. A pattern recognition system classifies the signature of an unknown substance with reference to the two user-defined classes, thereby classifying the unknown substance with regard to the characteristic of interest, such as its suitability for a particular use. 14 figs.

  15. Motor vehicle fuel analyzer

    DOE Patents [OSTI]

    Hoffheins, Barbara S. (Knoxville, TN); Lauf, Robert J. (Oak Ridge, TN)

    1997-01-01

    A gas detecting system for classifying the type of liquid fuel in a container or tank. The system includes a plurality of semiconductor gas sensors, each of which differs from the other in its response to various organic vapors. The system includes a means of processing the responses of the plurality of sensors such that the responses to any particular organic substance or mixture is sufficiently distinctive to constitute a recognizable "signature". The signature of known substances are collected and divided into two classes based on some other known characteristic of the substances. A pattern recognition system classifies the signature of an unknown substance with reference to the two user-defined classes, thereby classifying the unknown substance with regard to the characteristic of interest, such as its suitability for a particular use.

  16. Indirect sensing for rotor flux position of permanent magnet AC motors operating over a wide speed range

    SciTech Connect (OSTI)

    Moreira, J.C.

    1996-11-01

    This paper describes an indirect sensing, or sensorless, method for rotor flux position for brushless permanent magnet (BPM) motors operating over a wide speed range, while keeping maximum torque per ampere and/or maximum efficiency capabilities. The method described is particularly applicable to trapezoidal back emf type of BPM motors. The typical trapezoidal waveform of the motor internal voltages (or back emf) contains a fundamental and higher order frequency harmonics. In particular, the third harmonic component is extracted from the stator phase voltages while the fundamental and other polyphase components are eliminated via a simple summation of the three phase voltages. The resulting third harmonic signal keeps a constant phase relationship with the rotor flux for any motor speed and load condition, and is practically free of noise that can be introduced by the inverter switching, making this a robust sensing method. In contrast with indirect sensing methods based on detection of the back-emf signal that require heavy filtering, the third harmonic signal needs only a small amount of filtering to eliminate the switching frequency and its side bands. As a result, the method described here is not sensitive to filtering delays, allowing the motor to achieve a good performance over a wide speed range. Motor starting is also superior with this method since the third harmonic signal can be detected and processed at lower speeds than for the conventional method of back-emf sensing. Moreover, an alternative way to acquire the third harmonic signal without the need to access the stator neutral terminal is discussed. This is particularly interesting with the motor neutral connection is not available or expensive to have access. The third harmonic indirect sensing scheme is implemented in the laboratory and compared to a conventional back-emf sensing method.

  17. Vehicle Technologies Office Merit Review 2015: North American Electric Traction Drive Supply Chain Analysis: Focus on Motors

    Broader source: Energy.gov [DOE]

    Presentation given by Synthesis Partners at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about North American electric...

  18. Vehicle Technologies Office Merit Review 2015: Alternative High-Performance Motors with Non-Rare Earth Materials

    Broader source: Energy.gov [DOE]

    Presentation given by General Electric Global at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about alternative high...

  19. Vehicle Technologies Office Merit Review 2014: Alternative High-Performance Motors with Non-Rare Earth Materials

    Broader source: Energy.gov [DOE]

    Presentation given by General Electric Global at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about alternative high...

  20. Vehicle Technologies Office Merit Review 2016: Novel Manufacturing Technologies for High Power Induction and Permanent Magnet Electric Motors

    Broader source: Energy.gov [DOE]

    Presentation given by Pacific Northwest National Laboratory (PNNL) at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting...

  1. Vehicle Technologies Office Merit Review 2014: Novel Manufacturing Technologies for High Power Induction and Permanent Magnet Electric Motors

    Broader source: Energy.gov [DOE]

    Presentation given by Pacific Northwest National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about novel...

  2. Vehicle Technologies Office Merit Review 2015: Novel Manufacturing Technologies for High Power Induction and Permanent Magnet Electric Motors

    Broader source: Energy.gov [DOE]

    Presentation given by Pacific Northwest National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about novel...

  3. Vehicle Technologies Office Merit Review 2016: Development of Radically Enhanced alnico Magnets (DREaM) for Traction Drive Motors

    Broader source: Energy.gov [DOE]

    Presentation given by Ames at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting about Electric Drive Systems

  4. Vehicle Technologies Office Merit Review 2015: Development of Radically Enhanced alnico Magnets (DREaM) for Traction Drive Motors

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Ames Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Development of Radically...

  5. Vehicle Technologies Office Merit Review 2016: Unique Lanthide...

    Broader source: Energy.gov (indexed) [DOE]

    Vehicle Technologies Office Merit Review 2015: Unique Lanthide-Free Motor Construction Vehicle Technologies Office Merit Review 2014: Unique Lanthide-Free Motor Construction Unique ...

  6. Vehicle security apparatus and method

    DOE Patents [OSTI]

    Veligdan, J.T.

    1996-02-13

    A vehicle security apparatus for use in a motor vehicle is disclosed, the apparatus comprising an optical key, a receptacle, a receiver and at least one optical fiber. The optical key has a transmitter having at least one first preprogrammed coded signal stored in a first electric circuit. The receptacle receives the optical key and at least one transmittable coded optical signal from the transmitter corresponding to the at least one preprogrammed coded signal stored in the first electric circuit. The receiver compares the at least one transmittable coded optical signal to at least one second preprogrammed coded signal stored in a second electric circuit and the receiver is adapted to trigger switching effects for at least one of enabling starting the motor vehicle and starting the motor vehicle upon determination that the at least one transmittable coded optical signal corresponds to the at least one second preprogrammed signal in the second electric circuit. The at least one optical fiber is operatively connected between the receptacle and the receiver for carrying the optical signal from the receptacle to the receiver. Also disclosed is a method for permitting only authorized use of a motor vehicle. 7 figs.

  7. Vehicle security apparatus and method

    DOE Patents [OSTI]

    Veligdan, James T. (Manorville, NY)

    1996-02-13

    A vehicle security apparatus for use in a motor vehicle, the apparatus comprising an optical key, a receptacle, a receiver and at least one optical fiber. The optical key has a transmitter having at least one first preprogrammed coded signal stored in a first electric circuit. The receptacle receives the optical key and at least one transmittable coded optical signal from the transmitter corresponding to the at least one preprogrammed coded signal stored in the first electric circuit. The receiver compares the at least one transmittable coded optical signal to at least one second preprogrammed coded signal stored in a second electric circuit and the receiver is adapted to trigger switching effects for at least one of enabling starting the motor vehicle and starting the motor vehicle upon determination that the at least one transmittable coded optical signal corresponds to the at least one second preprogrammed signal in the second electric circuit. The at least one optical fiber is operatively connected between the receptacle and the receiver for carrying the optical signal from the receptacle to the receiver. Also disclosed is a method for permitting only authorized use of a motor vehicle.

  8. Plug-In Electric Vehicle Fast Charge Station Operational Analysis with Integrated Renewables: Preprint

    SciTech Connect (OSTI)

    Simpson, M.; Markel, T.

    2012-08-01

    The growing, though still nascent, plug-in electric vehicle (PEV) market currently operates primarily via level 1 and level 2 charging in the United States. Fast chargers are still a rarity, but offer a confidence boost to oppose 'range anxiety' in consumers making the transition from conventional vehicles to PEVs. Because relatively no real-world usage of fast chargers at scale exists yet, the National Renewable Energy Laboratory developed a simulation to help assess fast charging needs based on real-world travel data. This study documents the data, methods, and results of the simulation run for multiple scenarios, varying fleet sizes, and the number of charger ports. The grid impact of this usage is further quantified to assess the opportunity for integration of renewables; specifically, a high frequency of fast charging is found to be in demand during the late afternoons and evenings coinciding with grid peak periods. Proper integration of a solar array and stationary battery thus helps ease the load and reduces the need for new generator construction to meet the demand of a future PEV market.

  9. Torque limit of PM motors for field-weakening region operation

    DOE Patents [OSTI]

    Royak, Semyon; Harbaugh, Mark M.

    2012-02-14

    The invention includes a motor controller and technique for controlling a permanent magnet motor. In accordance with one aspect of the present technique, a permanent magnet motor is controlled by receiving a torque command, determining a physical torque limit based on a stator frequency, determining a theoretical torque limit based on a maximum available voltage and motor inductance ratio, and limiting the torque command to the smaller of the physical torque limit and the theoretical torque limit. Receiving the torque command may include normalizing the torque command to obtain a normalized torque command, determining the physical torque limit may include determining a normalized physical torque limit, determining a theoretical torque limit may include determining a normalized theoretical torque limit, and limiting the torque command may include limiting the normalized torque command to the smaller of the normalized physical torque limit and the normalized theoretical torque limit.

  10. Electric vehicle drive train with direct coupling transmission

    DOE Patents [OSTI]

    Tankersley, Jerome B.; Boothe, Richard W.; Konrad, Charles E.

    1995-01-01

    An electric vehicle drive train includes an electric motor and an associated speed sensor, a transmission operable in a speed reduction mode or a direct coupled mode, and a controller responsive to the speed sensor for operating the transmission in the speed reduction mode when the motor is below a predetermined value, and for operating the motor in the direct coupled mode when the motor speed is above a predetermined value. The controller reduces the speed of the motor, such as by regeneratively braking the motor, when changing from the speed reduction mode to the direct coupled mode. The motor speed may be increased when changing from the direct coupled mode to the speed reduction mode. The transmission is preferably a single stage planetary gearbox.

  11. Electric vehicle drive train with direct coupling transmission

    DOE Patents [OSTI]

    Tankersley, J.B.; Boothe, R.W.; Konrad, C.E.

    1995-04-04

    An electric vehicle drive train includes an electric motor and an associated speed sensor, a transmission operable in a speed reduction mode or a direct coupled mode, and a controller responsive to the speed sensor for operating the transmission in the speed reduction mode when the motor is below a predetermined value, and for operating the motor in the direct coupled mode when the motor speed is above a predetermined value. The controller reduces the speed of the motor, such as by regeneratively braking the motor, when changing from the speed reduction mode to the direct coupled mode. The motor speed may be increased when changing from the direct coupled mode to the speed reduction mode. The transmission is preferably a single stage planetary gearbox. 6 figures.

  12. Size-Resolved Particle Number and Volume Emission Factors for On-Road Gasoline and Diesel Motor Vehicles

    SciTech Connect (OSTI)

    Ban-Weiss, George A.; Lunden, Melissa M.; Kirchstetter, Thomas W.; Harley, Robert A.

    2009-04-10

    Average particle number concentrations and size distributions from {approx}61,000 light-duty (LD) vehicles and {approx}2500 medium-duty (MD) and heavy-duty (HD) trucks were measured during the summer of 2006 in a San Francisco Bay area traffic tunnel. One of the traffic bores contained only LD vehicles, and the other contained mixed traffic, allowing pollutants to be apportioned between LD vehicles and diesel trucks. Particle number emission factors (particle diameter D{sub p} > 3 nm) were found to be (3.9 {+-} 1.4) x 10{sup 14} and (3.3 {+-} 1.3) x 10{sup 15} kg{sup -1} fuel burned for LD vehicles and diesel trucks, respectively. Size distribution measurements showed that diesel trucks emitted at least an order of magnitude more particles for all measured sizes (10 < D{sub p} < 290 nm) per unit mass of fuel burned. The relative importance of LD vehicles as a source of particles increased as D{sub p} decreased. Comparing the results from this study to previous measurements at the same site showed that particle number emission factors have decreased for both LD vehicles and diesel trucks since 1997. Integrating size distributions with a volume weighting showed that diesel trucks emitted 28 {+-} 11 times more particles by volume than LD vehicles, consistent with the diesel/gasoline emission factor ratio for PM{sub 2.5} mass measured using gravimetric analysis of Teflon filters, reported in a companion paper.

  13. NREL: Transportation Research - Electric Motor Thermal Management

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electric Motor Thermal Management A photo of a piece of laboratory testing equipment. NREL ... motors is helping to improve the performance and reliability of electric-drive vehicles. ...

  14. Trexa Motor Corporation TMC | Open Energy Information

    Open Energy Info (EERE)

    Trexa Motor Corporation TMC Jump to: navigation, search Name: Trexa Motor Corporation (TMC) Place: Los Angeles, California Sector: Vehicles Product: Los Angeles - based subsidiary...

  15. Vehicle Technologies Office Merit Review 2016: Alternative High-Performance Motors with Non-Rare Earth Materials

    Broader source: Energy.gov [DOE]

    Presentation given by General Electric (GE) Global at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting about Electric...

  16. Vehicle Technologies Office Merit Review 2015: Brushless and Permanent Magnet Free Wound Field Synchronous Motors for EV Traction

    Broader source: Energy.gov [DOE]

    Presentation given by U of Wisconsin-Madison at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about brushless and...

  17. Electric and Hybrid Vehicle Program, Site Operator Program. Quarterly progress report, October--December 1995 (first quarter of fiscal year 1996)

    SciTech Connect (OSTI)

    Francfort, J.E.; Bassett, R.R.; Briasco, S.

    1996-03-01

    This is the Site Operator Program quarterly report for USDOE electric and hybrid vehicle research. Its mission now includes the three major activity categories of advancement of electric vehicle (EV) technologies, development of infrastructure elements needed to support significant EV use and increasing public awareness and acceptance of EVs. The 11 Site Operator Program participants, their geographic locations, and the principal thrusts of their efforts are identified. The EV inventories of the site operators totals about 250 vehicles. The individual fleets are summarized.

  18. Fuzzy logic electric vehicle regenerative antiskid braking and traction control system

    DOE Patents [OSTI]

    Cikanek, S.R.

    1994-10-25

    An regenerative antiskid braking and traction control system using fuzzy logic for an electric or hybrid vehicle having a regenerative braking system operatively connected to an electric traction motor, and a separate hydraulic braking system includes sensors for monitoring present vehicle parameters and a processor, responsive to the sensors, for calculating vehicle parameters defining the vehicle behavior not directly measurable by the sensor and determining if regenerative antiskid braking control, requiring hydraulic braking control, and requiring traction control are required. The processor then employs fuzzy logic based on the determined vehicle state and provides command signals to a motor controller to control operation of the electric traction motor and to the brake controller to control fluid pressure applied at each vehicle wheel to provide the appropriate regenerative braking control, hydraulic braking control, and traction control. 123 figs.

  19. Fuzzy logic electric vehicle regenerative antiskid braking and traction control system

    DOE Patents [OSTI]

    Cikanek, Susan R.

    1994-01-01

    An regenerative antiskid braking and traction control system using fuzzy logic for an electric or hybrid vehicle having a regenerative braking system operatively connected to an electric traction motor, and a separate hydraulic braking system includes sensors for monitoring present vehicle parameters and a processor, responsive to the sensors, for calculating vehicle parameters defining the vehicle behavior not directly measurable by the sensor and determining if regenerative antiskid braking control, requiring hydraulic braking control, and requiring traction control are required. The processor then employs fuzzy logic based on the determined vehicle state and provides command signals to a motor controller to control operation of the electric traction motor and to the brake controller to control fluid pressure applied at each vehicle wheel to provide the appropriate regenerative braking control, hydraulic braking control, and traction control.

  20. Method and apparatus for sensorless operation of brushless permanent magnet motors

    DOE Patents [OSTI]

    Sriram, T.V.

    1998-04-14

    A sensorless method and apparatus for providing commutation timing signals for a brushless permanent magnet motor extracts the third harmonic back-emf of a three-phase stator winding and independently cyclically integrates the positive and negative half-cycles thereof and compares the results to a reference level associated with a desired commutation angle. 23 figs.

  1. Method and apparatus for sensorless operation of brushless permanent magnet motors

    DOE Patents [OSTI]

    Sriram, Tillasthanam V.

    1998-01-01

    A sensorless method and apparatus for providing commutation timing signals for a brushless permanent magnet motor extracts the third harmonic back-emf of a three-phase stator winding and independently cyclically integrates the positive and negative half-cycles thereof and compares the results to a reference level associated with a desired commutation angle.

  2. Vehicle Technologies Office Merit Review 2014: High Compression Ratio Turbo Gasoline Engine Operation Using Alcohol Enhancement

    Broader source: Energy.gov [DOE]

    Presentation given by Massachusetts Institute of Technology at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high...

  3. Alternative Motor Fuel Use Model

    Energy Science and Technology Software Center (OSTI)

    1992-11-16

    AMFU is a tool for the analysis and prediction of motor fuel use by highway vehicles. The model advances the art of vehicle stock modeling by including a representation of the choice of motor fuel for flexible and dual fuel vehicles.

  4. Vehicle Technologies Office: 2013 Advanced Power Electronics...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Power Electronics and Electric Motors R&D Annual Progress Report Vehicle Technologies Office: 2013 Advanced Power Electronics and Electric Motors R&D Annual Progress Report The ...

  5. Vehicle Technologies Office: 2012 Advanced Power Electronics...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Power Electronics and Electric Motors R&D Annual Progress Report Vehicle Technologies Office: 2012 Advanced Power Electronics and Electric Motors R&D Annual Progress Report The ...

  6. Vehicle Technologies Office: 2011 Advanced Power Electronics...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Power Electronics and Electric Motors R&D Annual Progress Report Vehicle Technologies Office: 2011 Advanced Power Electronics and Electric Motors R&D Annual Progress Report The ...

  7. Vehicle Technologies Office: 2010 Advanced Power Electronics...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Power Electronics and Electric Motors R&D Annual Progress Report Vehicle Technologies Office: 2010 Advanced Power Electronics and Electric Motors R&D Annual Progress Report The ...

  8. Electric and hybrid vehicle program site operator program. Quarterly progress report, October 1994--December 1994 (First quarter of FY-95)

    SciTech Connect (OSTI)

    Kiser, D.M.; Brown, H.L.

    1995-07-01

    The DOE Site Operator Program was initially established to meet the requirements of the Electric and Hybrid Vehicle Research, Development, and Demonstration Act of 1976. The Program has since evolved in response to new legislation and interests. Its mission now includes three ma or activity categories: (1) Advancement of Electric Vehicle (EV) technologies, (2) Development of infrastructure elements needed to support significant EV use, and (3) Increasing public awareness and acceptance of EVs. The 13 Program participants, their geographic locations, and the principal thrusts of their efforts are identified in Table ES-1. The EV inventories of each participant are summarized in Table ES-2.

  9. Advanced Motors

    SciTech Connect (OSTI)

    Knoth, Edward A; Chelluri, Bhanumathi; Schumaker, Edward J

    2012-12-14

    vProject Summary Transportation energy usage is predicted to increase substantially by 2020. Hybrid vehicles and fuel cell powered vehicles are destined to become more prominent as fuel prices rise with the demand. Hybrid and fuel cell vehicle platforms are both dependent on high performance electric motors. Electric motors for transportation duty will require sizeable low-speed torque to accelerate the vehicle. As motor speed increases, the torque requirement decreases which results in a nearly constant power motor output. Interior permanent magnet synchronous motors (IPMSM) are well suited for this duty. , , These rotor geometries are configured in straight lines and semi circular arc shapes. These designs are of limited configurations because of the lack of availability of permanent magnets of any other shapes at present. We propose to fabricate rotors via a novel processing approach where we start with magnet powders and compact them into a net shape rotor in a single step. Using this approach, widely different rotor designs can be implemented for efficiency. The current limitation on magnet shape and thickness will be eliminated. This is accomplished by co-filling magnet and soft iron powders at specified locations in intricate shapes using specially designed dies and automatic powder filling station. The process fundamentals for accomplishing occurred under a previous Applied Technology Program titled, Motors and Generators for the 21st Century. New efficient motor designs that are not currently possible (or cost prohibitive) can be accomplished by this approach. Such an approach to motor fabrication opens up a new dimension in motor design. Feasibility Results We were able to optimize a IPMSM rotor to take advantage of the powder co-filling and DMC compaction processing methods. The minimum low speed torque requirement of 5 N-m can be met through an optimized design with magnet material having a Br capability of 0.2 T. This level of magnetic performance can

  10. Results from the Operational Testing of the General Electric Smart Grid Capable Electric Vehicle Supply Equipment (EVSE)

    SciTech Connect (OSTI)

    Richard Barney Carlson; Don Scoffield; Brion Bennett

    2013-12-01

    The Idaho National Laboratory conducted testing and analysis of the General Electric (GE) smart grid capable electric vehicle supply equipment (EVSE), which was a deliverable from GE for the U.S. Department of Energy FOA-554. The Idaho National Laboratory has extensive knowledge and experience in testing advanced conductive and wireless charging systems though INL’s support of the U.S. Department of Energy’s Advanced Vehicle Testing Activity. This document details the findings from the EVSE operational testing conducted at the Idaho National Laboratory on the GE smart grid capable EVSE. The testing conducted on the EVSE included energy efficiency testing, SAE J1772 functionality testing, abnormal conditions testing, and charging of a plug-in vehicle.

  11. NDMV - Longer Combination Vehicle (LCV) Permit Application |...

    Open Energy Info (EERE)

    Vehicle (LCV) Permit Application Abstract This form is the Nevada Department of Motor Vehicles LCV Application. Form Type ApplicationNotice Form Topic Longer Combination...

  12. Improving Energy Efficiency in Pharmaceutical ManufacturingOperations -- Part I: Motors, Drives and Compressed Air Systems

    SciTech Connect (OSTI)

    Galitsky, Christina; Chang, Sheng-chien; Worrell, Ernst; Masanet,Eric

    2006-04-01

    In Part I of this two-part series, we focus on efficient use of motors, drives and pumps, both for process equipment and compressed air systems. Pharmaceutical manufacturing plants in the U.S. spend nearly $1 billion each year for the fuel and electricity they need to keep their facilities running (Figure 1, below). That total that can increase dramatically when fuel supplies tighten and oil prices rise, as they did last year. Improving energy efficiency should be a strategic goal for any plant manager or manufacturing professional working in the drug industry today. Not only can energy efficiency reduce overall manufacturing costs, it usually reduces environmental emissions, establishing a strong foundation for a corporate greenhouse-gas-management program. For most pharmaceutical manufacturing plants, Heating, Ventilation and Air Conditioning (HVAC) is typically the largest consumer of energy, as shown in Table 1 below. This two-part series will examine energy use within pharmaceutical facilities, summarize best practices and examine potential savings and return on investment. In this first article, we will focus on efficient use of motors, drives and pumps, both for process equipment and compressed air systems. Part 2, to be published in May, will focus on overall HVAC systems, building management and boilers.

  13. Preliminary Assessment of Overweight Mainline Vehicles

    SciTech Connect (OSTI)

    Siekmann, Adam; Capps, Gary J; Lascurain, Mary Beth

    2011-11-01

    The Federal Motor Carrier Safety Administration requested information regarding overweight and oversized vehicle traffic entering inspection stations (ISs) in order to develop strategies for future research efforts and possibly help guide regulatory issues involving overweight commercial motor vehicles (CMVs). For a period of one month, inspection stations in Knox County and Greene County, Tennessee, recorded overweight and oversized vehicles that entered these ISs. During this period, 435 CMVs were recorded using an electronic form filled out by enforcement personnel at the IS. Of the 435 CMVs recorded, 381 had weight information documented with them. The majority (52.2%) of the vehicles recorded were five-axle combination vehicles, and 50.6% of all the vehicles were permitted to operate above the legal weight limit in Tennessee, which is 80,000 lb for vehicles with five or more axles. Only 16.8% of the CMVs recorded were overweight gross (11.5% of permitted vehicles) and 54.1% were overweight on an axle group. The low percentage of overweight gross CMVs was because only 45 of the vehicles over 80,000 lb. were not permitted. On average, axles that were overweight were 2,000 lb. over the legal limit for an axle or group of axles. Of the vehicles recorded, 172 vehicles were given a North American Standard (NAS) inspection during the assessment. Of those, 69% of the inspections were driver-only inspections (Level III) and only 25% of the inspections had a vehicle component (such as a Level I or Level II). The remaining 6% of inspections did not have valid Aspen numbers; the type of was inspection unknown. Data collected on the types of trailers of each vehicle showed that about half of the recorded CMVs could realistically be given a Level I (full vehicle and driver) inspection; this estimate was solely based on trailer type. Enforcement personnel at ISs without an inspection pit have difficulty fully inspecting certain vehicles due to low clearance below the trailer

  14. Electric and hybrid vehicle program, site operator program quarterly progress report for April through June 1996 (third quarter of fiscal year 1996)

    SciTech Connect (OSTI)

    Francfort, J.; Bassett, R.R.; Briasco, S.

    1997-01-01

    The US Department of Energy (DOE) Site Operator Program was initially established to meet the requirements of the Electric and Hybrid Vehicle Research, Development, and Demonstration Act of 1976. The Program has since evolved in response to new legislation and interests. The goals of the Site Operator Program include the field evaluation of electric vehicles (EVs) in real-world applications and environments; the advancement of electric vehicle technologies; the development of infrastructure elements necessary to support significant electric vehicle use; and increasing the awareness and acceptance of EVs by the public. The Site Operator Program currently consists of eleven participants under contract and two other organizations that have data-sharing agreements with the Program (Table ES-1). Several national organizations have joined DOE to further the introduction and awareness of electric vehicles, including: (1) EVAmerica (a utility program) and DOE conduct performance and evaluation tests to support market development for electric vehicles; and (2) DOE, the Department of Transportation, the Electric Transportation Coalition, and the Electric Vehicle Association of the Americas are conducting a series of workshops to encourage urban groups in Clean Cities (a DOE program) to initiate the policies and infrastructure development necessary to support large-scale demonstrations, and ultimately the mass market use, of electric vehicles. The current focus of the Program is the collection and dissemination of EV operations and performance data to aid in the evaluation of real-world EV use. This report contains several sections with vehicle evaluation as a focus.

  15. U.S. Department of Energy electric and hybrid vehicle Site Operator Program at Platte River Power Authority. Final report, July 3, 1991--August 31, 1996

    SciTech Connect (OSTI)

    Emmert, R.A.

    1996-12-31

    The Platte River Power Authority (Platte River) is a political subdivision of the state of Colorado, owned by the four municipalities of Fort Collins, Loveland, Longmont and Estes Park, Colorado. Platte River is a non-profit, publicly owned, joint-action agency formed to construct, operate and maintain generating plants, transmission systems and related facilities for the purpose of delivering to the four municipalities electric energy for distribution and resale. Platte River, as a participant in the US Department of Energy (DOE) Site Operator Program, worked to accomplish the Site Operator Program goals and objectives to field test and evaluate electric and electric-hybrid vehicles and electric vehicle systems in a real world application/environment. This report presents results of Platte River`s program (Program) during the five-years Platte River participated in the DOE Site Operator Program. Platte River participated in DOE Site Operator Program from July 3, 1991 through August 31, 1996. During its Program, Platte River conducted vehicle tests and evaluations, and electric vehicle demonstrations in the Front Range region of Northern Colorado. Platte River also investigated electric vehicle infrastructure issues and tested infrastructure components. Platte River`s Program objectives were as follows: evaluate the year round performance, operational costs, reliability, and life cycle costs of electric vehicles in the Front Range region of Northern Colorado; evaluate an electric vehicle`s usability and acceptability as a pool vehicle; test any design improvements or technological improvements on a component level that may be made available to PRPA and which can be retrofit into vehicles; and develop, test and evaluate, and demonstrate components to be used in charging electric vehicles.

  16. DOE Hybrid and Electric Vehicle Test Platform

    SciTech Connect (OSTI)

    Gao, Yimin

    2012-03-31

    Based on the contract NT-42790 to the Department of Energy, “Plug-in Hybrid Ethanol Research Platform”, Advanced Vehicle Research Center (AVRC) Virginia has successfully developed the phase I electric drive train research platform which has been named as Laboratory Rapid Application Testbed (LabRAT). In phase II, LabRAT is to be upgraded into plug-in hybrid research platform, which will be capable of testing power systems for electric vehicles, and plug-in hybrid electric vehicles running on conventional as well as alternative fuels. LabRAT is configured as a rolling testbed with plentiful space for installing various component configurations. Component connections are modularized for flexibility and are easily replaced for testing various mechanisms. LabRAT is designed and built as a full functional vehicle chassis with a steering system, brake system and four wheel suspension. The rear drive axle offers maximum flexibility with a quickly changeable gear ratio final drive to accommodate different motor speed requirements. The electric drive system includes an electric motor which is mechanically connected to the rear axle through an integrated speed/torque sensor. Initially, a 100 kW UQM motor and corresponding UQM motor controller is used which can be easily replaced with another motor/controller combination. A lithium iron phosphate (LiFePO4) battery pack is installed, which consists of 108 cells of 100 AH capacity, giving the total energy capacity of 32.5 kWh. Correspondingly, a fully functional battery management system (BMS) is installed to perform battery cell operation monitoring, cell voltage balancing, and reporting battery real time operating parameters to vehicle controller. An advanced vehicle controller ECU is installed for controlling the drive train. The vehicle controller ECU receives traction or braking torque command from driver through accelerator and brake pedal position sensors and battery operating signals from the BMS through CAN BUS

  17. Electric and Hybrid Vehicle Program, Site Operator Program. Quarterly progress report for July through September 1994 (Fourth quarter of fiscal year 1994)

    SciTech Connect (OSTI)

    Kiser, D.M.; Brown, H.L.

    1995-03-01

    The Site Operator Program was initially established by the Department of Energy (DOE) to incorporate the electric vehicle activities dictated by the Electric and Hybrid Vehicle Research, Development and Demonstration Act of 1976. In the ensuing years, the Program has evolved in response to new legislation and interests. The Program currently includes twelve sites located in diverse geographic, metrologic, and metropolitan areas across the US. Information is shared reciprocally with a thirteenth site, not under Program contract. The vehicles are operator-owned, except for two Griffon vans. The Mission Statement of the Site Operator Program includes three major activities: advancement of electric vehicle technologies; development of infrastructure elements necessary to support significant electric vehicle use; and increasing the awareness and acceptance of electric vehicles (EVs) by the public. The current participants in the Site Operator Program are shown. The ultimate thrust of program activities varies among sites, reflecting not only the Operator`s business interests but also geographic and climate-related operating conditions. This fourth quarter report (FY-94) includes a summary of activities from the previous three quarters. The report section sequence has been revised to provide a more easily seen program overview, and specific operator activities are now found in Appendix A.

  18. 23 V.S.A. Section 1400 Permit to Operate in excess of Weight...

    Open Energy Info (EERE)

    HighwaysLegal Abstract Sets forth requirements for issuing permits for operating a motor vehicle in excess of weight and size limits. Published NA Year Signed or Took Effect...

  19. MotorWeek Fuel Cell Video | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cell Video MotorWeek Fuel Cell Video Learn how fuel cells are being used in specialty vehicles, auxiliary power, standby power generators, and for supplying power and heat to buildings and warehouse operations. Text Version MotorWeek Host: The emergence of cars like the Nissan Leaf and Chevrolet Volt have generated a lot of buzz for electric drive vehicles lately. But hydrogen fuel cells, seen by many as one of the most promising long-term clean driving solutions, are making their way into

  20. A New Class of Switched Reluctance Motors without Permanent Magnets...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Motors without Permanent Magnets A New Class of Switched Reluctance Motors without Permanent Magnets 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program ...

  1. Battery/Heat Engine Vehicle Analysis

    Energy Science and Technology Software Center (OSTI)

    1991-03-01

    MARVEL performs least-life-cycle-cost analyses of battery/heat engine/hybrid vehicle systems to determine the combination of battery and heat engine characteristics for different vehicle types and missions. Simplified models are used for the transmission, motor/generator, controller, and other vehicle components, while a rather comprehensive model is used for the battery. Battery relationships available include the Ragone curve, peak power versus specific energy and depth-of-discharge (DOD), cycle life versus DOD, effects of battery scale, and capacity recuperation duemore » to intermittent driving patterns. Energy management in the operation of the vehicle is based on the specified mission requirements, type and size of the battery, allowable DOD, size of the heat engine, and the management strategy employed. Several optional management strategies are available in MARVEL. The program can be used to analyze a pure electric vehicle, a pure heat engine vehicle, or a hybrid vehicle that employs batteries as well as a heat engine. Cost comparisons for these vehicles can be made on the same basis. Input data for MARVEL are contained in three files generated by the user using three preprocessors which are included. MVDATA processes vehicle specification and mission requirements information, while MBDATA creates a file containing specific peak power as a function of specific energy and DOD, and MPDATA produces the file containing vehicle velocity specification data based on driving cycle information.« less

  2. Li ion Motors Corp formerly EV Innovations Inc | Open Energy...

    Open Energy Info (EERE)

    Vegas, Nevada Zip: 89110 Sector: Vehicles Product: Las Vegas - based manufacturer of lithium-powered plug-in vehicles. References: Li-ion Motors Corp (formerly EV Innovations...

  3. Vehicle Technologies Office Merit Review 2014: Unique Lanthide...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Unique Lanthide-Free Motor Construction Vehicle Technologies Office Merit Review 2014: Unique Lanthide-Free Motor Construction Presentation given by UQM Technologies, Inc. at 2014 ...

  4. Vehicle Technologies Office Merit Review 2015: Unique Lanthide...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Unique Lanthide-Free Motor Construction Vehicle Technologies Office Merit Review 2015: Unique Lanthide-Free Motor Construction Presentation given by UQM Technologies, Inc. at 2015 ...

  5. DOE Vehicle Technologies Program 2009 Merit Review Report - Power...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Power Electronics and Electric Motors DOE Vehicle Technologies Program 2009 Merit Review Report - Power Electronics and Electric Motors 2009meritreview3.pdf (747.75 KB) More ...

  6. Vehicle Technologies Office: 2009 Propulsion Materials R&D Annual...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PDF icon 2009propulsionmaterials.pdf More Documents & Publications Magnetic Material for PM Motors Permanent Magnet Development for Automotive Traction Motors Vehicle ...

  7. Unique Lanthide-Free Motor Construction | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lanthide-Free Motor Construction Unique Lanthide-Free Motor Construction 2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting ape044_lutz_2013_o.pdf (1.69 MB) More Documents & Publications Vehicle Technologies Office Merit Review 2014: Unique Lanthide-Free Motor Construction Unique Lanthide-Free Motor Construction Vehicle Technologies Office Merit Review 2015: Unique Lanthide-Free Motor Construction

  8. Electric and Hybrid Vehicle Program: Site Operator Program. Quarterly progress report, April--June 1995

    SciTech Connect (OSTI)

    Kiser, D.M.; Brown, H.L.

    1995-09-01

    This quarterly report details activities of the Department of Energy (DOE) Site Operator Program for the months of April, May, and June 1995. The 12 program participants, their geographic locations, and the principal thrusts of their efforts are provided.

  9. Honda Motor Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Motor Co Ltd Jump to: navigation, search Name: Honda Motor Co Ltd Place: Tokyo, Tokyo, Japan Zip: 107-8556 Sector: Vehicles Product: Leading global car manufacturer which began...

  10. Hybrid Electric Vehicle Basics | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hybrid Electric Vehicle Basics Today's hybrid electric vehicles (HEVs) range from small passenger cars to sport utility vehicles (SUVs) and large trucks. Though they often look just like conventional vehicles, HEVs usually include an electric motor as well as a small internal combustion engine (ICE). This combination provides greater fuel economy and fewer emissions than most conventional ICE vehicles do. Photo of the front and part of the side of a bus parked at the curb of a city street with

  11. Tesla Motors Inc | Open Energy Information

    Open Energy Info (EERE)

    Vehicles Product: California-based producer of luxury electric vehicles, such as sports cars. References: Tesla Motors Inc1 This article is a stub. You can help OpenEI by...

  12. EA-1869: Supplement to General Motors Corp., Electric Vehicle/Battery Manufacturing Application, White Marsh, Maryland, and Wixom, Michigan (DOE/EA-1723-S1)

    Broader source: Energy.gov [DOE]

    Based on the analysis in the Environmental Assessment DOE determined that its proposed action, to award a federal grant to General Motors to establish an electric motor components manufacturing and electric drive assembly facility would result in no significant adverse impacts.

  13. Determining Electric Motor Load and Efficiency | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electric Motor Load and Efficiency Determining Electric Motor Load and Efficiency To compare the operating costs of an existing standard motor with an appropriately-sized ...

  14. HMAX ®:Active Energy Control for Electric Motors | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    HMAX :Active Energy Control for Electric Motors HMAX :Active Energy Control for Electric Motors Real-Time Sensing and Control of Electric Motor Operation Optimizes Energy ...

  15. Direct-hydrogen-fueled proton-exchange-membrane fuel cell system for transportation applications. Hydrogen vehicle safety report

    SciTech Connect (OSTI)

    Thomas, C.E.

    1997-05-01

    This report reviews the safety characteristics of hydrogen as an energy carrier for a fuel cell vehicle (FCV), with emphasis on high pressure gaseous hydrogen onboard storage. The authors consider normal operation of the vehicle in addition to refueling, collisions, operation in tunnels, and storage in garages. They identify the most likely risks and failure modes leading to hazardous conditions, and provide potential countermeasures in the vehicle design to prevent or substantially reduce the consequences of each plausible failure mode. They then compare the risks of hydrogen with those of more common motor vehicle fuels including gasoline, propane, and natural gas.

  16. Report on Toyota Prius Motor Thermal Management

    SciTech Connect (OSTI)

    Hsu, J.S.

    2005-02-11

    In the current hybrid vehicle market, the Toyota Prius drive system is considered the leader in electrical, mechanical, and manufacturing innovations. It is a significant accomplishment that Toyota is able to manufacture and sell the vehicle for a profit. The Toyota Prius traction motor design approach for reducing manufacturing costs and the motor s torque capability have been studied and tested. The findings were presented in two previous Oak Ridge National Laboratory (ORNL) reports. The conclusions from this report reveal, through temperature rise tests, that the 2004 Toyota Prius (THSII) motor is applicable only for use in a hybrid automobile. It would be significantly undersized if used in a fuel cell vehicle application. The power rating of the Prius motor is limited by the permissible temperature rise of the motor winding (170 C) and the motor cooling oil (158 C). The continuous ratings at base speed (1200 rpm) with different coolant temperatures are projected from test data at 900 rpm. They are approximately 15 kW with 105 C coolant and 21 kW with 35 C coolant. These continuous ratings are much lower than the 30 kW specified as a technical motor target of the U.S. Department of Energy FreedomCAR Program. All tests were conducted at about 24 C ambient temperature. The load angle of each torque adjustment was monitored to prevent a sudden stop of the motor if the peak torque were exceeded, as indicated by the load angle in the region greater than 90 electrical degrees. For peak power with 400 Nm torque at 1200 rpm, the permissible running time depends upon the initial winding temperature condition. The projected rate of winding temperature rise is approximately 2.1 C/sec. The cooling-oil temperature does not change much during short peak power operation. For light and medium load situations, the efficiency varies from 80% to above 90%, and the power factor varies from 70% to above 90%, depending on the load and speed. When the motor is loaded heavily near the

  17. Autonomous vehicles

    SciTech Connect (OSTI)

    Meyrowitz, A.L.; Blidberg, D.R.; Michelson, R.C. |

    1996-08-01

    There are various kinds of autonomous vehicles (AV`s) which can operate with varying levels of autonomy. This paper is concerned with underwater, ground, and aerial vehicles operating in a fully autonomous (nonteleoperated) mode. Further, this paper deals with AV`s as a special kind of device, rather than full-scale manned vehicles operating unmanned. The distinction is one in which the AV is likely to be designed for autonomous operation rather than being adapted for it as would be the case for manned vehicles. The authors provide a survey of the technological progress that has been made in AV`s, the current research issues and approaches that are continuing that progress, and the applications which motivate this work. It should be noted that issues of control are pervasive regardless of the kind of AV being considered, but that there are special considerations in the design and operation of AV`s depending on whether the focus is on vehicles underwater, on the ground, or in the air. The authors have separated the discussion into sections treating each of these categories.

  18. Vehicle Technologies Office Propulsion Materials Technologies

    Broader source: Energy.gov (indexed) [DOE]

    Construction | Department of Energy UQM Technologies, Inc. at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting about Electric Drive Systems edt044_ley_2016_o_web.pdf (1.13 MB) More Documents & Publications Vehicle Technologies Office Merit Review 2015: Unique Lanthide-Free Motor Construction Vehicle Technologies Office Merit Review 2014: Unique Lanthide-Free Motor Construction Unique Lanthide-Free Motor

  19. Co-Optimization of Fuels and Vehicles

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Optimization of Fuels and Vehicles Jim Anderson, Ford Motor Company Bioenergy 2015 June ... LDV Pathways Source: DOE Hydrogen and Fuel Cells Program Record 14006, http:...

  20. Executive Fleet Vehicles Report | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    fleets are required to achieve maximum fuel efficiency; be limited in motor vehicle body size, engine size, and optional equipment to what is essential to meet agency mission; ...

  1. NREL: Transportation Research - Hybrid Electric Fleet Vehicle...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    an energy storage system, and an electric motor to achieve a combination of emissions, ... This collected energy is used to propel the vehicle during normal drive cycles. The ...

  2. Household Vehicles Energy Use: Latest Data & Trends

    U.S. Energy Information Administration (EIA) Indexed Site

    fuel, diesel motor fuel, electric, and natural gas, excluding propane because NHTSA's CAFE program does not track these vehicles. See Gasoline, Gasohol, Unleaded Gasoline, Leaded...

  3. Straight and chopped dc performance data for a General Electric 5BT 2366C10 motor and an EV-1 controller. Final report

    SciTech Connect (OSTI)

    Edie, P.C.

    1981-01-01

    This report is intended to supply the electric vehicle manufacturer with performance data on the General Electric 5BT 2366C10 series wound dc motor and EV-1 chopper controller. Data are provided for both straight and chopped dc input to the motor, at 2 motor temperature levels. Testing was done at 6 voltage increments to the motor, and 2 voltage increments to the controller. Data results are presented in both tabular and graphical forms. Tabular information includes motor voltage and current input data, motor speed and torque output data, power data and temperature data. Graphical information includes torque-speed, motor power output-speed, torque-current, and efficiency-speed plots under the various operating conditions. The data resulting from this testing shows the speed-torque plots to have the most variance with operating temperature. The maximum motor efficiency is between 86% and 87%, regardless of temperature or mode of operation. When the chopper is utilized, maximum motor efficiency occurs when the chopper duty cycle approaches 100%. At low duty cycles the motor efficiency may be considerably less than the efficiency for straight dc. Chopper efficiency may be assummed to be 95% under all operating conditions. For equal speeds at a given voltage level, the motor operated in the chopped mode develops slightly more torque than it does in the straight dc mode. System block diagrams are included, along with test setup and procedure information.

  4. Turn Motors Off When Not in Use - Motor Tip Sheet #10

    SciTech Connect (OSTI)

    2008-07-01

    Motors use no energy when turned off. Reducing motor operating time by just 10% usually saves more energy than replacing a standard efficiency motor with a NEMA Premium® efficiency motor. In fact, given that 97% of the life cycle cost of purchasing and operating a motor is energy-related, turning a motor off 10% of the time could reduce energy costs enough to purchase three new motors.

  5. Celebrating Electric Vehicles | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electric Vehicles Celebrating Electric Vehicles September 29, 2015 - 4:01pm Addthis The United States has the largest electric vehicle fleet in the world, which includes cars like the Chevrolet Volt. | Photo courtesy of General Motors The United States has the largest electric vehicle fleet in the world, which includes cars like the Chevrolet Volt. | Photo courtesy of General Motors Paul Lester Paul Lester Digital Content Specialist, Office of Public Affairs KEY FACTS More than 1 million plug-in

  6. Robotic vehicle

    DOE Patents [OSTI]

    Box, W.D.

    1997-02-11

    A robotic vehicle is described for travel through a conduit. The robotic vehicle includes forward and rear housings each having a hub portion, and each being provided with surface engaging mechanisms for selectively engaging the walls of the conduit such that the housings can be selectively held in stationary positions within the conduit. The surface engaging mechanisms of each housing includes a plurality of extendable appendages, each of which is radially extendable relative to the operatively associated hub portion between a retracted position and a radially extended position. The robotic vehicle also includes at least three selectively extendable members extending between the forward and rear housings, for selectively changing the distance between the forward and rear housings to effect movement of the robotic vehicle. 20 figs.

  7. Robotic vehicle

    DOE Patents [OSTI]

    Box, W.D.

    1998-08-11

    A robotic vehicle is described for travel through a conduit. The robotic vehicle includes forward and rear housings each having a hub portion, and each being provided with surface engaging mechanisms for selectively engaging the walls of the conduit such that the housings can be selectively held in stationary positions within the conduit. The surface engaging mechanisms of each housing includes a plurality of extendible appendages, each of which is radially extendible relative to the operatively associated hub portion between a retracted position and a radially extended position. The robotic vehicle also includes at least three selectively extendible members extending between the forward and rear housings, for selectively changing the distance between the forward and rear housings to effect movement of the robotic vehicle. 20 figs.

  8. Robotic vehicle

    DOE Patents [OSTI]

    Box, W. Donald

    1997-01-01

    A robotic vehicle for travel through a conduit. The robotic vehicle includes forward and rear housings each having a hub portion, and each being provided with surface engaging mechanisms for selectively engaging the walls of the conduit such that the housings can be selectively held in stationary positions within the conduit. The surface engaging mechanisms of each housing includes a plurality of extendable appendages, each of which is radially extendable relative to the operatively associated hub portion between a retracted position and a radially extended position. The robotic vehicle also includes at least three selectively extendable members extending between the forward and rear housings, for selectively changing the distance between the forward and rear housings to effect movement of the robotic vehicle.

  9. Robotic vehicle

    DOE Patents [OSTI]

    Box, W. Donald

    1998-01-01

    A robotic vehicle for travel through a conduit. The robotic vehicle includes forward and rear housings each having a hub portion, and each being provided with surface engaging mechanisms for selectively engaging the walls of the conduit such that the housings can be selectively held in stationary positions within the conduit. The surface engaging mechanisms of each housing includes a plurality of extendable appendages, each of which is radially extendable relative to the operatively associated hub portion between a retracted position and a radially extended position. The robotic vehicle also includes at least three selectively extendable members extending between the forward and rear housings, for selectively changing the distance between the forward and rear housings to effect movement of the robotic vehicle.

  10. Advanced Vehicle Testing and Evaluation

    SciTech Connect (OSTI)

    Garetson, Thomas

    2013-03-31

    The objective of the United States (U.S.) Department of Energy's (DOEs) Advanced Vehicle Testing and Evaluation (AVTE) project was to provide test and evaluation services for advanced technology vehicles, to establish a performance baseline, to determine vehicle reliability, and to evaluate vehicle operating costs in fleet operations.Vehicles tested include light and medium-duty vehicles in conventional, hybrid, and all-electric configurations using conventional and alternative fuels, including hydrogen in internal combustion engines. Vehicles were tested on closed tracks and chassis dynamometers, as well as operated on public roads, in fleet operations, and over prescribed routes. All testing was controlled by procedures developed specifically to support such testing.

  11. Effects of Biodiesel Blends on Vehicle Emissions: Fiscal Year 2006 Annual Operating Plan Milestone 10.4

    SciTech Connect (OSTI)

    McCormick, R. L.; Williams, A.; Ireland, J.; Hayes, R. R.

    2006-10-01

    The objective was to determine if testing entire vehicles, vs. just the engines, on a heavy-duty chassis dynamometer provides a better, measurement of the impact of B20 on emissions.

  12. Electric and hybrid vehicle program: Site operator program. Quarterly progress report, April--June, 1994 (3rd quarter of FY-1994)

    SciTech Connect (OSTI)

    Kiser, D.M.; Brown, H.L.

    1994-10-01

    The DOE Site Operator Program was initially established to meet the requirements of the Electric and Hybrid Vehicle Research, Development, and Demonstration Act of 1976. The Program has since evolved in response to new legislation and interests. Its mission now includes three major activity categories; advancement of Electric Vehicle (EV) technologies, development of infrastructure elements needed to support significant EV use, and increasing public awareness and acceptance of EVs. The 13 Program participants, their geographic locations, and the principal thrusts of their efforts are identified. The EV inventories of each participant are summarized. This third quarter report (FY-94) will include a summary of activities from the previous three quarters. The report section sequence has been revised to provide a more easily seen program overview, and specific operator activities are now included.

  13. Short-Term Energy Outlook Model Documentation: Motor Gasoline Consumption Model

    Reports and Publications (EIA)

    2011-01-01

    The motor gasoline consumption module of the Short-Term Energy Outlook (STEO) model is designed to provide forecasts of total U.S. consumption of motor gasolien based on estimates of vehicle miles traveled and average vehicle fuel economy.

  14. Electric and hybrid vehicle program; Site Operator Program. Quarterly progress report, January--March 1992 (Second quarter of fiscal year 1992)

    SciTech Connect (OSTI)

    Warren, J.F.

    1992-05-01

    Activities during the second quarter included the second meeting of the Site Operators in Phoenix, AZ in late April. The meeting was held in conjunction with the Solar and Electric 500 Race activities. Delivery of vehicles ordered previously has begun, although two of the operators are experiencing some delays in receiving their vehicles. Public demonstration activities continue, with an apparent increasing level of awareness and interest being displayed by the public. Initial problems with the Site Operator Database have been corrected and revised copies of the program have been supplied to the Program participants. Operating and Maintenance data is being supplied and submitted to INEL on a monthly basis. Interest in the Site Operator Program is being reflected in requests for information from several organizations from across the country, representing a wide diversity of interests. These organizations have been referred to existing Site Operators with the explanation that the program will not be adding new participants, but that most of the existing organizations are willing to work with other groups. The exception to this was the addition of Potomac Electric Power Company (PEPCO) to the program. PEPCO has been awarded a subcontract to operate and maintain the DOE owned G-Van and Escort located in Washington, DC. They will provide data on these vehicles, as well as a Solectria Force which PEPCO has purchased. The Task Force intends to be actively involved in the infrastructure development in a wide range of areas. These include, among others, personnel development, safety, charging, and servicing. Work continues in these areas. York Technical College (YORK) has completed the draft outline for the EV Technician course. This is being circulated to organizations around the country for comments. Kansas State University (KSU) is working with a private sector company to develop a energy dispensing meter for opportunity charging in public areas.

  15. Electric Vehicles | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    ... Tesla: In January 2010, the Department of Energy issued a 465 million loan to Tesla Motors to produce specially designed, all-electric plug-in vehicles and to develop a ...

  16. Hydrogen Fuel Pilot Plant and Hydrogen ICE Vehicle Testing

    SciTech Connect (OSTI)

    J. Francfort

    2005-03-01

    The U.S. Department Energy's Advanced Vehicle Testing Activity (AVTA) teamed with Electric Transportation Applications (ETA) and Arizona Public Service (APS) to develop the APS Alternative Fuel (Hydrogen) Pilot Plant that produces and compresses hydrogen on site through an electrolysis process by operating a PEM fuel cell in reverse; natural gas is also compressed onsite. The Pilot Plant dispenses 100% hydrogen, 15 to 50% blends of hydrogen and compressed natural gas (H/CNG), and 100% CNG via a credit card billing system at pressures up to 5,000 psi. Thirty internal combustion engine (ICE) vehicles (including Daimler Chrysler, Ford and General Motors vehicles) are operating on 100% hydrogen and 15 to 50% H/CNG blends. Since the Pilot Plant started operating in June 2002, they hydrogen and H/CNG ICE vehicels have accumulated 250,000 test miles.

  17. Advanced Technology Vehicle Testing

    SciTech Connect (OSTI)

    James Francfort

    2003-11-01

    The light-duty vehicle transportation sector in the United States depends heavily on imported petroleum as a transportation fuel. The Department of Energy’s Advanced Vehicle Testing Activity (AVTA) is testing advanced technology vehicles to help reduce this dependency, which would contribute to the economic stability and homeland security of the United States. These advanced technology test vehicles include internal combustion engine vehicles operating on 100% hydrogen (H2) and H2CNG (compressed natural gas) blended fuels, hybrid electric vehicles, neighborhood electric vehicles, urban electric vehicles, and electric ground support vehicles. The AVTA tests and evaluates these vehicles with closed track and dynamometer testing methods (baseline performance testing) and accelerated reliability testing methods (accumulating lifecycle vehicle miles and operational knowledge within 1 to 1.5 years), and in normal fleet environments. The Arizona Public Service Alternative Fuel Pilot Plant and H2-fueled vehicles are demonstrating the feasibility of using H2 as a transportation fuel. Hybrid, neighborhood, and urban electric test vehicles are demonstrating successful applications of electric drive vehicles in various fleet missions. The AVTA is also developing electric ground support equipment (GSE) test procedures, and GSE testing will start during the fall of 2003. All of these activities are intended to support U.S. energy independence. The Idaho National Engineering and Environmental Laboratory manages these activities for the AVTA.

  18. Energy control strategy for a hybrid electric vehicle

    DOE Patents [OSTI]

    Phillips, Anthony Mark; Blankenship, John Richard; Bailey, Kathleen Ellen; Jankovic, Miroslava

    2002-08-27

    An energy control strategy (10) for a hybrid electric vehicle that controls an electric motor during bleed and charge modes of operation. The control strategy (10) establishes (12) a value of the power level at which the battery is to be charged. The power level is used to calculate (14) the torque to be commanded to the electric motor. The strategy (10) of the present invention identifies a transition region (22) for the electric motor's operation that is bounded by upper and lower speed limits. According to the present invention, the desired torque is calculated by applying equations to the regions before, during and after the transition region (22), the equations being a function of the power level and the predetermined limits and boundaries.

  19. Energy control strategy for a hybrid electric vehicle

    DOE Patents [OSTI]

    Phillips, Anthony Mark; Blankenship, John Richard; Bailey, Kathleen Ellen; Jankovic, Miroslava

    2002-01-01

    An energy control strategy (10) for a hybrid electric vehicle that controls an electric motor during bleed and charge modes of operation. The control strategy (10) establishes (12) a value of the power level at which the battery is to be charged. The power level is used to calculate (14) the torque to be commanded to the electric motor. The strategy (10) of the present invention identifies a transition region (22) for the electric motor's operation that is bounded by upper and lower speed limits. According to the present invention, the desired torque is calculated by applying equations to the regions before, during and after the transition region (22), the equations being a function of the power level and the predetermined limits and boundaries.

  20. Method and system for vehicle refueling

    DOE Patents [OSTI]

    Surnilla, Gopichandra; Leone, Thomas G; Prasad, Krishnaswamy Venkatesh; Argarwal, Apoorv; Hinds, Brett Stanley

    2012-11-20

    Methods and systems are provided for facilitating refueling operations in vehicles operating with multiple fuels. A vehicle operator may be assisted in refueling the multiple fuel tanks of the vehicle by being provided one or more refueling profiles that take into account the vehicle's future trip plans, the predicted environmental conditions along a planned route, and the operator's preferences.

  1. Method and system for vehicle refueling

    DOE Patents [OSTI]

    Surnilla, Gopichandra; Leone, Thomas G; Prasad, Krishnaswamy Venkatesh; Agarwal, Apoorv; Hinds, Brett Stanley

    2014-06-10

    Methods and systems are provided for facilitating refueling operations in vehicles operating with multiple fuels. A vehicle operator may be assisted in refueling the multiple fuel tanks of the vehicle by being provided one or more refueling profiles that take into account the vehicle's future trip plans, the predicted environmental conditions along a planned route, and the operator's preferences.

  2. Vehicle for carrying an object of interest

    DOE Patents [OSTI]

    Zollinger, W.T.; Ferrante, T.A.

    1998-10-13

    A vehicle for carrying an object of interest across a supporting surface including a frame having opposite first and second ends; a first pair of wheels fixedly mounted on the first end of the frame; a second pair of wheels pivotally mounted on the second end of the frame; and a pair of motors borne by the frame, each motor disposed in driving relation relative to one of the pairs of wheels, the motors propelling the vehicle across the supporting surface. 8 figs.

  3. Vehicle for carrying an object of interest

    DOE Patents [OSTI]

    Zollinger, W. Thor; Ferrante, Todd A.

    1998-01-01

    A vehicle for carrying an object of interest across a supporting surface including a frame having opposite first and second ends; a first pair of wheels fixedly mounted on the first end of the frame; a second pair of wheels pivotally mounted on the second end of the frame; and a pair of motors borne by the frame, each motor disposed in driving relation relative to one of the pairs of wheels, the motors propelling the vehicle across the supporting surface.

  4. JV between Hybrid Electric and Mullen Motors | Open Energy Information

    Open Energy Info (EERE)

    Name: JV between Hybrid Electric and Mullen Motors Product: Joint Venture to develop a vehicle fitted with hybrid and lithium technologies References: JV between Hybrid Electric...

  5. Advanced Power Electronics and Electric Motors R&D | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    R&D Advanced Power Electronics and Electric Motors R&D 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Vehicle ...

  6. Vehicle Technologies Office Merit Review 2014: Overview of the...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Power Electronics and Electric Motor R&D Program Vehicle Technologies Office Merit Review 2014: Overview of the DOE Advanced Power Electronics and Electric Motor R&D Program ...

  7. DOE Vehicle Technologies Program 2009 Merit Review Report - Power

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electronics and Electric Motors | Department of Energy Power Electronics and Electric Motors DOE Vehicle Technologies Program 2009 Merit Review Report - Power Electronics and Electric Motors 2009_merit_review_3.pdf (747.75 KB) More Documents & Publications DOE Vehicle Technologies Program 2009 Merit Review Report - Propulsion Materials DOE Vehicle Technologies Program 2009 Merit Review Report - Lightweight Materials 2012 Annual Merit Review Results Report - Power Electronics and

  8. Integrated Vehicle Thermal Management - Combining Fluid Loops in Electric Drive Vehicles (Presentation)

    SciTech Connect (OSTI)

    Rugh, J. P.

    2013-07-01

    Plug-in hybrid electric vehicles and electric vehicles have increased vehicle thermal management complexity, using separate coolant loop for advanced power electronics and electric motors. Additional thermal components result in higher costs. Multiple cooling loops lead to reduced range due to increased weight. Energy is required to meet thermal requirements. This presentation for the 2013 Annual Merit Review discusses integrated vehicle thermal management by combining fluid loops in electric drive vehicles.

  9. Vehicle Technologies Office: 2011 Advanced Power Electronics and Electric

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Motors R&D Annual Progress Report | Department of Energy Power Electronics and Electric Motors R&D Annual Progress Report Vehicle Technologies Office: 2011 Advanced Power Electronics and Electric Motors R&D Annual Progress Report The Advanced Power Electronics and Electric Motors (APEEM) program within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on developing

  10. Vehicle Technologies Office: 2013 Advanced Power Electronics and Electric

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Motors R&D Annual Progress Report | Department of Energy Power Electronics and Electric Motors R&D Annual Progress Report Vehicle Technologies Office: 2013 Advanced Power Electronics and Electric Motors R&D Annual Progress Report The Advanced Power Electronics and Electric Motors (APEEM) technology area within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on

  11. Developing SAE Safety Standards for Hydrogen and Fuel Cell Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Developing SAE Safety Standards for Hydrogen and Fuel Cell Vehicles (FCVs) Presentation by Michael Veenstra, Ford Motor Company, at the U.S. Department of Energy's Polymer and ...

  12. Vehicle Technologies Office Merit Review 2014: Next Generation Inverter

    Broader source: Energy.gov [DOE]

    Presentation given by General Motors at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about next generation inverter.

  13. Vehicle Technologies Office Merit Review 2015: Next Generation Inverter

    Broader source: Energy.gov [DOE]

    Presentation given by General Motors at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about next generation inverter.

  14. Department of Energy Offers Vehicle Production Group Nearly ...

    Energy Savers [EERE]

    The Department has provided over 8 billion in loans to advanced technology vehicle manufacturers, including Ford Motor Company, Fisker Automotive, Nissan North America and Tesla ...

  15. Department of Energy Finalizes $50 Million Loan for Vehicle Production...

    Energy Savers [EERE]

    The Department has provided over 8 billion in loans to advanced technology vehicle manufacturers, including Ford Motor Company, Fisker Automotive, Nissan North America and Tesla ...

  16. Vehicle Technologies Office Merit Review 2014: A Combined Experimental...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Presentation given by General Motors at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about a combined ...

  17. Vehicle Technologies Office Merit Review 2015: Brushless and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Brushless and Permanent Magnet Free Wound Field Synchronous Motors for EV Traction Vehicle Technologies Office Merit Review 2015: Brushless and Permanent Magnet Free Wound Field...

  18. Vehicle Technologies Office: 2012 DOE Hydrogen and Fuel Cells...

    Broader source: Energy.gov (indexed) [DOE]

    Overview Ward Technology Integration Smith and Bezanson Vehicle & Systems Simulation ... Liang ORNL Next Generation Inverter Smith General Motors Air Cooled Traction Drive ...

  19. Control system and method for a hybrid electric vehicle

    DOE Patents [OSTI]

    Phillips, Anthony Mark; Blankenship, John Richard; Bailey, Kathleen Ellen; Jankovic, Miroslava

    2001-01-01

    A vehicle system controller (20) is presented for a LSR parallel hybrid electric vehicle having an engine (10), a motor (12), wheels (14), a transmission (16) and a battery (18). The vehicle system controller (20) has a state machine having a plurality of predefined states (22-32) that represent operating modes for the vehicle. A set of rules is defined for controlling the transition between any two states in the state machine. The states (22-32) are prioritized according to driver demands, energy management concerns and system fault occurrences. The vehicle system controller (20) controls the transitions from a lower priority state to a higher priority state based on the set of rules. In addition, the vehicle system controller (20) will control a transition to a lower state from a higher state when the conditions no longer warrant staying in the current state. A unique set of output commands is defined for each state for the purpose of controlling lower level subsystem controllers. These commands serve to achieve the desire vehicle functionality within each state and insure smooth transitions between states.

  20. Electric vehicle test report, Cutler-Hammer Corvette

    SciTech Connect (OSTI)

    Not Available

    1981-01-01

    The work described was part of the effort to characterize vehicles for the state-of-the-art assessment of electric vehicles. The vehicle evaluated was a Chevrolet Corvette converted to electric operation. The vehicle was based on a standard production 1967 chassis and body. The original internal combustion engine was replaced by an electric traction motor. Eighteen batteries supplied the electrical energy. A controller, an onboard battery charger, and several dashboard instruments completed the conversion. The remainder of the vehicle, and in particular the remainder of the drive-train (clutch, driveshaft, and differential), was stock, except for the transmission. The overall objective of the tests was to develop performance data at the system and subsystem level. The emphasis was on the electrical portion of the drive train, although some analysis and discussion of the mechanical elements are included. There was no evaluation of other aspects of the vehicle such as braking, ride, handling, passenger accomodations, etc. Included are a description of the vehicle, the tests performed and a discussion of the results. Tests were conducted both on the road (actually a mile long runway) and in a chassis dynamometer equipped laboratory. The majority of the tests performed were according to SAE Procedure J227a and included maximum effort accelerations, constant-speed range, and cyclic range. Some tests that are not a part of the SAE Procedure J227a are described and the analysis of the data from all tests is discussed. (LCL)

  1. The Importance of Motor Shaft Alignment | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Importance of Motor Shaft Alignment The Importance of Motor Shaft Alignment The objective of optimized shaft alignment is to increase the operating life span of rotating ...

  2. Overview of the DOE Advanced Power Electronics and Electric Motor R&D Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Power Electronics and Electric Motor R&D Program Susan Rogers Steven Boyd Advanced Power Electronics and Electric Motors Vehicle Technologies Office June 17, 2014 VEHICLE TECHNOLOGIES OFFICE 2 APEEM R&D Program Vehicle Technologies Office Hybrid Electric Systems R&D Vehicle Systems Advanced Power Electronics & Electric Motors (APEEM) R&D Industry Federal Agencies Academia National Labs Energy Storage 3 APEEM R&D Mission and Budget Develop advanced power electronics,

  3. Synchronous motor with soft start element formed between the motor rotor and motor output shaft to successfully synchronize loads that have high inertia and/or high torque

    DOE Patents [OSTI]

    Umans, Stephen D; Nisley, Donald L; Melfi, Michael J

    2014-10-28

    A line-start synchronous motor has a housing, a rotor shaft, and an output shaft. A soft-start coupling portion is operatively coupled to the output shaft and the rotor shaft. The soft-start coupling portion is configurable to enable the synchronous motor to obtain synchronous operation and to drive, at least near synchronous speed during normal steady state operation of the motor, a load having characteristics sufficient to prevent obtaining normal synchronous operation of the motor when the motor is operatively connected to the load in the absence of the soft-start coupling. The synchronous motor is sufficiently rated to obtain synchronous operation and to drive, at least near synchronous speed during normal steady state operation of the motor, a load having characteristics sufficient to prevent obtaining normal synchronous operation of the motor when the motor is operatively connected to the load in the absence of the soft-start coupling.

  4. 2015 Annual Merit Review, Vehicle Technologies Office

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    By using lightweight structural materials, cars can carry additional advanced emission control systems, safety devices, and integrated electronic systems without increasing the overall weight of the vehicle. While any vehicle can use lightweight materials, they are especially important for hybrid electric, plug-in hybrid electric, and electric vehicles. Using lightweight materials in these vehicles can offset the weight of power systems such as batteries and electric motors, improving the

  5. Oscillation control system for electric motor drive

    DOE Patents [OSTI]

    Slicker, James M.; Sereshteh, Ahmad

    1988-01-01

    A feedback system for controlling mechanical oscillations in the torsionally complaint drive train of an electric or other vehicle. Motor speed is converted in a processor to estimate state signals in which a plant model which are used to electronically modify thetorque commands applied to the motor.

  6. Oscillation control system for electric motor drive

    DOE Patents [OSTI]

    Slicker, J.M.; Sereshteh, A.

    1988-08-30

    A feedback system for controlling mechanical oscillations in the torsionally complaint drive train of an electric or other vehicle. Motor speed is converted in a processor to estimate state signals in which a plant model which are used to electronically modify the torque commands applied to the motor. 5 figs.

  7. Propulsion and stabilization system for magnetically levitated vehicles

    DOE Patents [OSTI]

    Coffey, Howard T.

    1993-06-29

    A propulsion and stabilization system for an inductive repulsion type magnetically levitated vehicle which is propelled and stabilized by a system which includes propulsion windings mounted above and parallel to vehicle-borne suspension magnets. A linear synchronous motor is part of the vehicle guideway and is mounted above and parallel to superconducting magnets attached to the magnetically levitated vehicle.

  8. Motor Repair Tech Brief | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Repair Tech Brief Motor Repair Tech Brief This Tech Brief answers: Why do motors fail? When should you repair instead of replace? And how can reliability and efficiency be assured in a repair? Motor Repair Tech Brief (March 2000) (941.96 KB) More Documents & Publications Extend the Operating Life of Your Motor Service Center Evaluation Guide Premium Efficiency Motor Selection and Application Guide - A Handbook for Industry

  9. Battery control system for hybrid vehicle and method for controlling a hybrid vehicle battery

    DOE Patents [OSTI]

    Bockelmann, Thomas R.; Beaty, Kevin D.; Zou, Zhanijang; Kang, Xiaosong

    2009-07-21

    A battery control system for controlling a state of charge of a hybrid vehicle battery includes a detecting arrangement for determining a vehicle operating state or an intended vehicle operating state and a controller for setting a target state of charge level of the battery based on the vehicle operating state or the intended vehicle operating state. The controller is operable to set a target state of charge level at a first level during a mobile vehicle operating state and at a second level during a stationary vehicle operating state or in anticipation of the vehicle operating in the stationary vehicle operating state. The invention further includes a method for controlling a state of charge of a hybrid vehicle battery.

  10. Turn Motors Off When Not in Use | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Turn Motors Off When Not in Use Turn Motors Off When Not in Use Motors do not use energy when turned off. Reducing motor operating time by just 10% usually saves more energy than replacing a standard efficiency motor with a premium efficiency motor. This tip sheet discusses pros and cons of repeated motor starts and stops and provides suggested actions. Motor Systems Tip Sheet #10 Turn Motors Off When Not in Use (November 2012) (458 KB) More Documents & Publications Improving Motor and Drive

  11. Electric vehicle drive train with rollback detection and compensation

    DOE Patents [OSTI]

    Konrad, C.E.

    1994-12-27

    An electric vehicle drive train includes a controller for detecting and compensating for vehicle rollback, as when the vehicle is started upward on an incline. The vehicle includes an electric motor rotatable in opposite directions corresponding to opposite directions of vehicle movement. A gear selector permits the driver to select an intended or desired direction of vehicle movement. If a speed and rotational sensor associated with the motor indicates vehicle movement opposite to the intended direction of vehicle movement, the motor is driven to a torque output magnitude as a nonconstant function of the rollback speed to counteract the vehicle rollback. The torque function may be either a linear function of speed or a function of the speed squared. 6 figures.

  12. Electric vehicle drive train with rollback detection and compensation

    DOE Patents [OSTI]

    Konrad, Charles E. (Roanoke, VA)

    1994-01-01

    An electric vehicle drive train includes a controller for detecting and compensating for vehicle rollback, as when the vehicle is started upward on an incline. The vehicle includes an electric motor rotatable in opposite directions corresponding to opposite directions of vehicle movement. A gear selector permits the driver to select an intended or desired direction of vehicle movement. If a speed and rotational sensor associated with the motor indicates vehicle movement opposite to the intended direction of vehicle movement, the motor is driven to a torque output magnitude as a nonconstant function of the rollback speed to counteract the vehicle rollback. The torque function may be either a linear function of speed or a function of the speed squared.

  13. Avoid Nuisance Tripping with Premium Efficiency Motors

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    rotor value during acceleration until the motor approaches its operating speed. (Note: The ... LRC for specifc new motor models can be looked up in the U.S. Department of Energy's (DOE) ...

  14. Motor Fuel Excise Taxes

    SciTech Connect (OSTI)

    2015-09-01

    A new report from the National Renewable Energy Laboratory (NREL) explores the role of alternative fuels and energy efficient vehicles in motor fuel taxes. Throughout the United States, it is common practice for federal, state, and local governments to tax motor fuels on a per gallon basis to fund construction and maintenance of our transportation infrastructure. In recent years, however, expenses have outpaced revenues creating substantial funding shortfalls that have required supplemental funding sources. While rising infrastructure costs and the decreasing purchasing power of the gas tax are significant factors contributing to the shortfall, the increased use of alternative fuels and more stringent fuel economy standards are also exacerbating revenue shortfalls. The current dynamic places vehicle efficiency and petroleum use reduction polices at direct odds with policies promoting robust transportation infrastructure. Understanding the energy, transportation, and environmental tradeoffs of motor fuel tax policies can be complicated, but recent experiences at the state level are helping policymakers align their energy and environmental priorities with highway funding requirements.

  15. Hybrid and Plug-In Electric Vehicles (Brochure), Clean Cities, Energy Efficiency & Renewable Energy (EERE)

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Electric-drive vehicles use electricity as their primary fuel or to improve the efficiency of conventional vehicle designs. These vehicles can be divided into three categories: * Hybrid electric vehicles (HEVs) * Plug-in hybrid electric vehicles (PHEVs) * All-electric vehicles (EVs). Together, they have great potential to cut U.S. petroleum use and vehicle emissions. Hybrid Electric Vehicles HEVs are powered by an internal combustion engine (ICE) and by an electric motor that uses energy stored

  16. Magnetic Material for PM Motors | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Magnetic Material for PM Motors Magnetic Material for PM Motors 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. pmp_23_anderson.pdf (2.23 MB) More Documents & Publications Permanent Magnet Development for Automotive Traction Motors Vehicle Technologies Office: 2009 Propulsion Materials R&D Annual Progress Report Iver Anderson, Division of Materials Sciences and Engineering, The Ames Laboratory,

  17. Ford's CNG vehicle research

    SciTech Connect (OSTI)

    Nichols, R.J.

    1983-06-01

    Several natural gas vehicles have been built as part of Ford's Alternative Fuel Demonstration Fleet. Two basic methods, compressed gas (CNG), and liquified gas (LNG) were used. Heat transfer danger and the expense and special training needed for LNG refueling are cited. CNG in a dual-fuel engine was demonstrated first. The overall results were unsatisfactory. A single fuel LNG vehicle was then demonstrated. Four other demonstrations, testing different tank weights and engine sizes, lead to the conclusion that single fuel vehicles optimized for CNG use provide better fuel efficiency than dual-fuel vehicles. Lack of public refueling stations confines use to fleet operations.

  18. Electric Motors

    Broader source: Energy.gov [DOE]

    Section 313 of the Energy Independence and Security Act (EISA) of 2007 raised Federal minimum efficiency standards for general-purpose, single-speed, polyphase induction motors of 1 to 500 horsepower (hp). This new standard took effect in December 2010. The new minimum efficiency levels match FEMP's performance requirement for these motors.

  19. Household vehicles energy consumption 1994

    SciTech Connect (OSTI)

    1997-08-01

    Household Vehicles Energy Consumption 1994 reports on the results of the 1994 Residential Transportation Energy Consumption Survey (RTECS). The RTECS is a national sample survey that has been conducted every 3 years since 1985. For the 1994 survey, more than 3,000 households that own or use some 6,000 vehicles provided information to describe vehicle stock, vehicle-miles traveled, energy end-use consumption, and energy expenditures for personal vehicles. The survey results represent the characteristics of the 84.9 million households that used or had access to vehicles in 1994 nationwide. (An additional 12 million households neither owned or had access to vehicles during the survey year.) To be included in then RTECS survey, vehicles must be either owned or used by household members on a regular basis for personal transportation, or owned by a company rather than a household, but kept at home, regularly available for the use of household members. Most vehicles included in the RTECS are classified as {open_quotes}light-duty vehicles{close_quotes} (weighing less than 8,500 pounds). However, the RTECS also includes a very small number of {open_quotes}other{close_quotes} vehicles, such as motor homes and larger trucks that are available for personal use.

  20. Advanced Technology Vehicle Testing

    SciTech Connect (OSTI)

    James Francfort

    2004-06-01

    The goal of the U.S. Department of Energy's Advanced Vehicle Testing Activity (AVTA) is to increase the body of knowledge as well as the awareness and acceptance of electric drive and other advanced technology vehicles (ATV). The AVTA accomplishes this goal by testing ATVs on test tracks and dynamometers (Baseline Performance testing), as well as in real-world applications (Fleet and Accelerated Reliability testing and public demonstrations). This enables the AVTA to provide Federal and private fleet managers, as well as other potential ATV users, with accurate and unbiased information on vehicle performance and infrastructure needs so they can make informed decisions about acquiring and operating ATVs. The ATVs currently in testing include vehicles that burn gaseous hydrogen (H2) fuel and hydrogen/CNG (H/CNG) blended fuels in internal combustion engines (ICE), and hybrid electric (HEV), urban electric, and neighborhood electric vehicles. The AVTA is part of DOE's FreedomCAR and Vehicle Technologies Program.

  1. Experiences with CNG and LPG operated heavy duty vehicles with emphasis on US HD diesel emission standards

    SciTech Connect (OSTI)

    VanDerWeide, J.; Seppen, J.J.; VanLing, J.A.N.; Dekker, H.J

    1988-01-01

    The lengthy experience of TNO with the application of gaseous fuels in engines is discussed. The emphasis is on emissions and efficiency of optimal gaseous fuelled engines in comparison to systems with partial diesel fuel replacement. In spark ignition operation (100% diesel fuel replacement) lean-burn and stoichiometric (electronic control and 3-way catalyst) concepts have been developed. In the optimization mathematical modelling of combustion and flow phenomena is used in combination with engine test bed work. Essential new hardware including micro-electronic control systems is developed.

  2. Chapter 8: Advancing Clean Transportation and Vehicle Systems and Technologies | Connected and Automated Vehicles Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Connected and Automated Vehicles Chapter 8: Technology Assessments Introduction to Connected and Automated Vehicles Summary Connected vehicles are able to communicate with other vehicles and infrastructure automatically to improve transportation system function. Vehicle automation refers to the ability of a vehicle to operate with reduced or without direct human operation. Using a combination of advanced sensors and controls, sophisticated learning algorithms, and GPS and mapping technologies,

  3. Vehicle Crashworthiness

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Battery Basics Vehicle Battery Basics November 22, 2013 - 1:58pm Addthis Vehicle Battery Basics Batteries are essential for electric drive technologies such as hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and all-electric vehicles (AEVs). WHAT IS A BATTERY? A battery is a device that stores chemical energy and converts it on demand into electrical energy. It carries out this process through an electrochemical reaction, which is a chemical reaction involving the

  4. Fuel savings and emissions reductions from light duty fuel cell vehicles

    SciTech Connect (OSTI)

    Mark, J; Ohi, J M; Hudson, Jr, D V

    1994-04-01

    Fuel cell vehicles (FCVs) operate efficiently, emit few pollutants, and run on nonpetroleum fuels. Because of these characteristics, the large-scale deployment of FCVs has the potential to lessen US dependence on foreign oil and improve air quality. This study characterizes the benefits of large-scale FCV deployment in the light duty vehicle market. Specifically, the study assesses the potential fuel savings and emissions reductions resulting from large-scale use of these FCVs and identifies the key parameters that affect the scope of the benefits from FCV use. The analysis scenario assumes that FCVs will compete with gasoline-powered light trucks and cars in the new vehicle market for replacement of retired vehicles and will compete for growth in the total market. Analysts concluded that the potential benefits from FCVs, measured in terms of consumer outlays for motor fuel and the value of reduced air emissions, are substantial.

  5. Clean Cities Guide to Alternative Fuel and Advanced Medium- and Heavy-Duty Vehicles (Book)

    SciTech Connect (OSTI)

    Not Available

    2013-08-01

    Today's fleets are increasingly interested in medium-duty and heavy-duty vehicles that use alternative fuels or advanced technologies that can help reduce operating costs, meet emissions requirements, improve fleet sustainability, and support U.S. energy independence. Vehicle and engine manufacturers are responding to this interest with a wide range of options across a steadily growing number of vehicle applications. This guide provides an overview of alternative fuel power systems?including engines, microturbines, electric motors, and fuel cells?and hybrid propulsion systems. The guide also offers a list of individual medium- and heavy-duty vehicle models listed by application, along with associated manufacturer contact information, fuel type(s), power source(s), and related information.

  6. Clean Cities Guide to Alternative Fuel and Advanced Medium- and Heavy-Duty Vehicles

    SciTech Connect (OSTI)

    2013-08-01

    Today's fleets are increasingly interested in medium-duty and heavy-duty vehicles that use alternative fuels or advanced technologies that can help reduce operating costs, meet emissions requirements, improve fleet sustainability, and support U.S. energy independence. Vehicle and engine manufacturers are responding to this interest with a wide range of options across a steadily growing number of vehicle applications. This guide provides an overview of alternative fuel power systems--including engines, microturbines, electric motors, and fuel cells--and hybrid propulsion systems. The guide also offers a list of individual medium- and heavy-duty vehicle models listed by application, along with associated manufacturer contact information, fuel type(s), power source(s), and related information.

  7. Permanent Magnet Development for Automotive Traction Motors | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Permanent Magnet Development for Automotive Traction Motors Permanent Magnet Development for Automotive Traction Motors 2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. ape015_anderson_2010_o.pdf (2.46 MB) More Documents & Publications Permanent Magnet Development for Automotive Traction Motors Permanent Magnet Development for Automotive Traction Motors Permanent Magnet Development for

  8. Renewables and Efficiency in State Facilities & Operations

    Broader source: Energy.gov [DOE]

    State law requires energy efficiency and environmental standards for state facilities, motor vehicles, and transportation fuels. Each state agency must meet the following requirements to the...

  9. Vehicle Technologies Office: Electric Drive Systems Research and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Development | Department of Energy Plug-in Electric Vehicles & Batteries » Vehicle Technologies Office: Electric Drive Systems Research and Development Vehicle Technologies Office: Electric Drive Systems Research and Development Vehicle Technologies Office: Electric Drive Systems Research and Development Electric drive technologies, including the electric motor, inverter, boost converter, and on-board charger, are essential components of hybrid and plug-in electric vehicles (PEV)

  10. Vehicle Technologies Office: Materials for Hybrid and Electric Drive

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Systems | Department of Energy Hybrid and Electric Drive Systems Vehicle Technologies Office: Materials for Hybrid and Electric Drive Systems The Vehicle Technologies Office (VTO) is working to lower the cost and increase the convenience of electric drive vehicles, which include hybrid and plug-in electric vehicles. These vehicles use advanced power electronics and electric motors that face barriers because their subcomponents have specific material limitations. Novel propulsion materials

  11. Co-Optimization of Fuels and Vehicles | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Co-Optimization of Fuels and Vehicles Co-Optimization of Fuels and Vehicles Plenary IV: Fuels of the Future: Accelerating the Co-Optimization of Fuels and Engines Co-Optimization of Fuels and Vehicles James E. Anderson, Technical Expert, Ford Motor Company anderson_bioenergy_2015.pdf (217.53 KB) More Documents & Publications A Vehicle Manufacturer's Perspective on Higher-Octane Fuels Co-Optima Stakeholder Listening Day Summary Report Vehicle Technologies Office Merit Review 2016: Overview of

  12. Housing assembly for electric vehicle transaxle

    DOE Patents [OSTI]

    Kalns, Ilmars

    1981-01-01

    Disclosed is a drive assembly (10) for an electrically powered vehicle (12). The assembly includes a transaxle (16) having a two-speed transmission (40) and a drive axle differential (46) disposed in a unitary housing assembly (38), an oil-cooled prime mover or electric motor (14) for driving the transmission input shaft (42), an adapter assembly (24) for supporting the prime mover on the transaxle housing assembly, and a hydraulic system (172) providing pressurized oil flow for cooling and lubricating the electric motor and transaxle and for operating a clutch (84) and a brake (86) in the transmission to shift between the two-speed ratios of the transmission. The adapter assembly allows the prime mover to be supported in several positions on the transaxle housing. The brake is spring-applied and locks the transmission in its low-speed ratio should the hydraulic system fail. The hydraulic system pump is driven by an electric motor (212) independent of the prime mover and transaxle.

  13. Alternative High-Performance Motors with Non-Rare Earth Materials...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High-Performance Motors with Non-Rare Earth Materials Alternative High-Performance Motors with Non-Rare Earth Materials 2012 DOE Hydrogen and Fuel Cells Program and Vehicle ...

  14. Method for assessing in-service motor efficiency and in-service motor/load efficiency

    DOE Patents [OSTI]

    Kueck, John D.; Otaduy, Pedro J.

    1997-01-01

    A method and apparatus for assessing the efficiency of an in-service motor. The operating characteristics of the in-service motor are remotely measured. The operating characteristics are then applied to an equivalent circuit for electrical motors. Finally the equivalent circuit is evaluated to determine the performance characteristics of said in-service motor. Based upon the evaluation an individual is able to determine the rotor speed, power output, efficiency, and toque of the in-service motor. Additionally, an individual is able to confirm the calculations by comparing measured values with values obtained as a result of the motor equivalent circuit evaluation.

  15. Idaho National Laboratory’s Analysis of ARRA-Funded Plug-in Electric Vehicle and Charging Infrastructure Projects: Final Report

    SciTech Connect (OSTI)

    Francfort, Jim; Bennett, Brion; Carlson, Richard; Garretson, Thomas; Gourley, LauraLee; Karner, Donal; McGuire, Patti; Scoffield, Don; Kirkpatrick, Mindy; Shrik, Matthew; Salisbury, Shawn; Schey, Stephen; Smart, John; White, Sera; Wishard, Jeffery

    2015-09-01

    Battelle Energy Alliance, LLC, managing and operating contractor for the U.S. Department of Energy’s (DOE) Idaho National Laboratory (INL), is the lead laboratory for U.S. Department of Energy’s Advanced Vehicle Testing Activity (AVTA). INL’s conduct of the AVTA resulted in a significant base of knowledge and experience in the area of testing light-duty vehicles that reduced transportation-related petroleum consumption. Due to this experience, INL was tasked by DOE to develop agreements with companies that were the recipients of The American Recovery and Reinvestment Act of 2009 (ARRA) grants, that would allow INL to collect raw data from light-duty vehicles and charging infrastructure. INL developed non-disclosure agreements (NDAs) with several companies and their partners that resulted in INL being able to receive raw data via server-to-server connections from the partner companies. This raw data allowed INL to independently conduct data quality checks, perform analysis, and report publicly to DOE, partners, and stakeholders, how drivers used both new vehicle technologies and the deployed charging infrastructure. The ultimate goal was not the deployment of vehicles and charging infrastructure, cut rather to create real-world laboratories of vehicles, charging infrastructure and drivers that would aid in the design of future electric drive transportation systems. The five projects that INL collected data from and their partners are: • ChargePoint America - Plug-in Electric Vehicle Charging Infrastructure Demonstration • Chrysler Ram PHEV Pickup - Vehicle Demonstration • General Motors Chevrolet Volt - Vehicle Demonstration • The EV Project - Plug-in Electric Vehicle Charging Infrastructure Demonstration • EPRI / Via Motors PHEVs – Vehicle Demonstration The document serves to benchmark the performance science involved the execution, analysis and reporting for the five above projects that provided lessons learned based on driver’s use of the

  16. Smith Electric Vehicles: Advanced Vehicle Electrification + Transporta...

    Broader source: Energy.gov (indexed) [DOE]

    Confidential, 4222013 2013 DOE VEHICLE TECHNOLOGIES PROGRAM REVIEW PRESENTATION Smith Electric Vehicles: Advanced Vehicle Electrification + Transportation Sector Electrification...

  17. Vehicle Technologies Office Merit Review 2016: Lean Miller Cycle System Development for Light-Duty Vehicles

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by General Motors (GM) at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting about Combustion Engines 

  18. Vehicle Technologies Office Merit Review 2015: Lean Miller Cycle System Development for Light-Duty Vehicles

    Broader source: Energy.gov [DOE]

    Presentation given by General Motors at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about lean miller cycle system...

  19. Vehicle Energy Management | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Management Vehicle Energy Management Vehicles are complex systems with multiple power sources (such as an internal combustion engine and battery), multiple power conversion components (such as the motor and gearbox) and must satisfy numerous safety and comfort constraints, under various environmental constraints (such as temperature or grade). At Argonne, we explore how to control all these variables to make cars and trucks as energy-efficient as possible. Furthermore, vehicles are increasingly

  20. Frequency modulation drive for a piezoelectric motor

    DOE Patents [OSTI]

    Mittas, Anthony

    2001-01-01

    A piezoelectric motor has peak performance at a specific frequency f.sub.1 that may vary over a range of frequencies. A drive system is disclosed for operating such a motor at peak performance without feedback. The drive system consists of the motor and an ac source connected to power the motor, the ac source repeatedly generating a frequency over a range from f.sub.1 -.DELTA.x to f.sub.1 +.DELTA.y.

  1. DOE/KEURP Site Operator Program year 5 first quarter report, July 1-- September 30, 1995

    SciTech Connect (OSTI)

    1995-12-01

    Kansas State University, with funding support from federal, state, public, and private companies, is participating in the Department of Energy` s Electric Vehicle Site Operator Program. Through participation in this program, Kansas State is displaying, testing, and evaluating electric or hybrid vehicle technology. This participation will provide organizations the opportunity to examine the latest EHV prototypes under actual operating conditions. KSU now has two electric cars. Both are electric conversion vehicles from Soleq Corporation out of Chicago. KSU in conjunction with KEURP also initiated procurement for the purchase of four (4) Chevy S-10 pickup trucks. Since the supplier, GE-Spartan, canceled its effort concerning the production of vehicles other appropriate sources were sought. Today, K-State and the Kansas Utilities are working with Troy Design and Manufacturing (TDM), Redford, Michigan. TDM is working with Ford Motor Company and expects to become the first certified electric vehicle Quality Vehicle Modifier (QVM). Kansas State has entered into an agreement to assist TDM in supporting the infrastructure and technical manual development for these vehicles. The Soleq EVcorts have not been signed to illustrate to the public that it is an electric vehicle. Magnetic signs have been made for special functions to ensure sponsor support is recognized and acknowledged. As soon as TDM`s Ford Ranger electric vehicles are delivered they will be used throughout the state by utility companies that are participating with K-State`s Site Operator Program.

  2. Hybrid and Electric Traction Motor | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A World-Class Traction Motor for Hybrid and Electric Vehicles Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) A World-Class Traction Motor for Hybrid and Electric Vehicles Engineers at GE Global Research are advancing motor technology that could have a substantial impact on hybrid and electric vehicles (EVs) of the

  3. Unmanned Aerial Vehicle (UAV) Dynamic-Tracking Directional Wireless Antennas for Low Powered Applications that Require Reliable Extended Range Operations in Time Critical Scenarios

    SciTech Connect (OSTI)

    Scott G. Bauer; Matthew O. Anderson; James R. Hanneman

    2005-10-01

    The proven value of DOD Unmanned Aerial Vehicles (UAVs) will ultimately transition to National and Homeland Security missions that require real-time aerial surveillance, situation awareness, force protection, and sensor placement. Public services first responders who routinely risk personal safety to assess and report a situation for emergency actions will likely be the first to benefit from these new unmanned technologies. ‘Packable’ or ‘Portable’ small class UAVs will be particularly useful to the first responder. They require the least amount of training, no fixed infrastructure, and are capable of being launched and recovered from the point of emergency. All UAVs require wireless communication technologies for real- time applications. Typically on a small UAV, a low bandwidth telemetry link is required for command and control (C2), and systems health monitoring. If the UAV is equipped with a real-time Electro-Optical or Infrared (EO/Ir) video camera payload, a dedicated high bandwidth analog/digital link is usually required for reliable high-resolution imagery. In most cases, both the wireless telemetry and real-time video links will be integrated into the UAV with unity gain omni-directional antennas. With limited on-board power and payload capacity, a small UAV will be limited with the amount of radio-frequency (RF) energy it transmits to the users. Therefore, ‘packable’ and ‘portable’ UAVs will have limited useful operational ranges for first responders. This paper will discuss the limitations of small UAV wireless communications. The discussion will present an approach of utilizing a dynamic ground based real-time tracking high gain directional antenna to provide extend range stand-off operation, potential RF channel reuse, and assured telemetry and data communications from low-powered UAV deployed wireless assets.

  4. S. 790: This Act may be cited as the Motor Fuel Consumer Protection Act of 1991, introduced in the Senate of the United States, One Hundred Second Congress, First Session, April 9, 1991

    SciTech Connect (OSTI)

    Not Available

    1991-01-01

    This bill would amend the antitrust laws in order to preserve and promote wholesale and retail competition in the retail gasoline market. The bill describes limits on the ownership and operation of service stations. The main provision is the it shall be unlawful for any producer or refiner to require any retail motor fuel dealer to purchase more than 70% of the monthly retail sales of motor fuel from such refiner or producer. Motor fuel refers to gasoline, diesel fuel, alcohol, or any mixture of these sold for use in automobiles and related vehicles.

  5. EERE Success Story-UQM Patents Non-Rare Earth Magnet Motor under...

    Office of Environmental Management (EM)

    for electric, hybrid electric, plug-in hybrid electric and fuel cell electric vehicles recently patented a new design for electric vehicle motors that use non-rare earth magnets. ...

  6. Electric Vehicles

    Broader source: Energy.gov [DOE]

    This album contains a variety of all-electric, plug-in hybrid electric and fuel cell electric vehicles. For a full list of all electric vehicles visit the EV Everywhere website.

  7. Vehicle Aerodynamics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vehicle Aerodynamics Background Tougher emissions standards, as well as industry demands for more powerful engines and new vehicle equipment, continue to increase the heat rejection requirements of heavy-duty vehicles. However, changes in the physical configuration and weight of these vehicles can affect how they handle wind resistance and energy loss due to aerodynamic drag. Role of High-Performance Computing The field of computational fluid dynamics (CFD) offers researchers the ability to

  8. Rapid road repair vehicle

    DOE Patents [OSTI]

    Mara, Leo M.

    1999-01-01

    Disclosed are improvments to a rapid road repair vehicle comprising an improved cleaning device arrangement, two dispensing arrays for filling defects more rapidly and efficiently, an array of pre-heaters to heat the road way surface in order to help the repair material better bond to the repaired surface, a means for detecting, measuring, and computing the number, location and volume of each of the detected surface imperfection, and a computer means schema for controlling the operation of the plurality of vehicle subsystems. The improved vehicle is, therefore, better able to perform its intended function of filling surface imperfections while moving over those surfaces at near normal traffic speeds.

  9. Effect of Premixed Charge Compression Ignition on Vehicle Fuel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Effect of Premixed Charge Compression Ignition on Vehicle Fuel Economy and Emissions Reduction over Transient Driving Cycles In conventional vehicles, most engine operating points ...

  10. Vehicle Technologies Program - Multi-Year Program Plan 2011-2015

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    R&D 2.1 - 1 2.1.2 ADVANCED POWER ELECTRONICS AND ELECTRIC MOTORS R&D 2.1-14 2.2 ... vehicles: advanced batteries and power electronics & electric motors (the electric drive). ...

  11. Magnetic levitation configuration incorporating levitation, guidance and linear synchronous motor

    DOE Patents [OSTI]

    Coffey, Howard T.

    1993-01-01

    A propulsion and suspension system for an inductive repulsion type magnetically levitated vehicle which is propelled and suspended by a system which includes propulsion windings which form a linear synchronous motor and conductive guideways, adjacent to the propulsion windings, where both combine to partially encircling the vehicle-borne superconducting magnets. A three phase power source is used with the linear synchronous motor to produce a traveling magnetic wave which in conjunction with the magnets propel the vehicle. The conductive guideway combines with the superconducting magnets to provide for vehicle leviation.

  12. Magnetic levitation configuration incorporating levitation, guidance and linear synchronous motor

    DOE Patents [OSTI]

    Coffey, H.T.

    1993-10-19

    A propulsion and suspension system for an inductive repulsion type magnetically levitated vehicle which is propelled and suspended by a system which includes propulsion windings which form a linear synchronous motor and conductive guideways, adjacent to the propulsion windings, where both combine to partially encircling the vehicle-borne superconducting magnets. A three phase power source is used with the linear synchronous motor to produce a traveling magnetic wave which in conjunction with the magnets propel the vehicle. The conductive guideway combines with the superconducting magnets to provide for vehicle levitation. 3 figures.

  13. General Motors | Energy Systems Integration | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    General Motors General Motors (GM) is partnering with NREL on a multiyear, multimillion-dollar joint research and development effort to lower the cost of automotive fuel cell stacks through improvements in materials and manufacturing. Photo of fuel stack hardware in a laboratory Photo by Dennis Schroeder Lowering the cost and improving the durability and performance of fuel cell systems will help get more drivers behind the wheel of these zero-emission vehicles. GM is working with NREL to find

  14. Utilization of rotor kinetic energy storage for hybrid vehicles

    SciTech Connect (OSTI)

    Hsu, John S.

    2011-05-03

    A power system for a motor vehicle having an internal combustion engine, the power system comprises an electric machine (12) further comprising a first excitation source (47), a permanent magnet rotor (28) and a magnetic coupling rotor (26) spaced from the permanent magnet rotor and at least one second excitation source (43), the magnetic coupling rotor (26) also including a flywheel having an inertial mass to store kinetic energy during an initial acceleration to an operating speed; and wherein the first excitation source is electrically connected to the second excitation source for power cycling such that the flywheel rotor (26) exerts torque on the permanent magnet rotor (28) to assist braking and acceleration of the permanent magnet rotor (28) and consequently, the vehicle. An axial gap machine and a radial gap machine are disclosed and methods of the invention are also disclosed.

  15. Therma motor

    DOE Patents [OSTI]

    Kandarian, R.

    The disclosure is directed to a thermal motor utilizing two tapered prestressed parallel adjacent cylinders lengthwise disposed about one third in a coolant. Heat is applied to contacting portions of the cylinders outside the coolant to cause them to deform and turn. Heat sources such as industrial waste heat, geothermal hot water, solar radiation, etc. can be used.

  16. Method and apparatus for controlling multiple motors

    DOE Patents [OSTI]

    Jones, Rollin G.; Kortegaard, Bert L.; Jones, David F.

    1987-01-01

    A method and apparatus are provided for simultaneously controlling a plurality of stepper motors. Addressing circuitry generates address data for each motor in a periodic address sequence. Memory circuits respond to the address data for each motor by accessing a corresponding memory location containing a first operational data set functionally related to a direction for moving the motor, speed data, and rate of speed change. First logic circuits respond to the first data set to generate a motor step command. Second logic circuits respond to the command from the first logic circuits to generate a third data set for replacing the first data set in memory with a current operational motor status, which becomes the first data set when the motor is next addressed.

  17. Hydrogen vehicle fueling station

    SciTech Connect (OSTI)

    Daney, D.E.; Edeskuty, F.J.; Daugherty, M.A.

    1995-09-01

    Hydrogen fueling stations are an essential element in the practical application of hydrogen as a vehicle fuel, and a number of issues such as safety, efficiency, design, and operating procedures can only be accurately addressed by a practical demonstration. Regardless of whether the vehicle is powered by an internal combustion engine or fuel cell, or whether the vehicle has a liquid or gaseous fuel tank, the fueling station is a critical technology which is the link between the local storage facility and the vehicle. Because most merchant hydrogen delivered in the US today (and in the near future) is in liquid form due to the overall economics of production and delivery, we believe a practical refueling station should be designed to receive liquid. Systems studies confirm this assumption for stations fueling up to about 300 vehicles. Our fueling station, aimed at refueling fleet vehicles, will receive hydrogen as a liquid and dispense it as either liquid, high pressure gas, or low pressure gas. Thus, it can refuel any of the three types of tanks proposed for hydrogen-powered vehicles -- liquid, gaseous, or hydride. The paper discusses the fueling station design. Results of a numerical model of liquid hydrogen vehicle tank filling, with emphasis on no vent filling, are presented to illustrate the usefulness of the model as a design tool. Results of our vehicle performance model illustrate our thesis that it is too early to judge what the preferred method of on-board vehicle fuel storage will be in practice -- thus our decision to accommodate all three methods.

  18. New York: EERE-Funded Project Used on Toyota Vehicles | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    New York: EERE-Supported Catalyst Licensed for Use in Fuel Cell Hybrid Advanced Vehicles ... Partners Brookhaven National Laboratory, N.E. Chemcat Corporation, Toyota Motor Company

  19. Vehicle Technologies Office Merit Review 2014: Advanced Gasoline Turbocharged Direct Injection (GTDI) Engine Development

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Ford Motor Companyh at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced gasoline...

  20. Urea SCR and DPF System for Diesel Sport Utility Vehicle Meeting...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Urea SCR and DPF System for Diesel Sport Utility Vehicle Meeting Tier II Bin 5 DOE and Ford Motor Company Advanced CIDI Emission Control System Development Program ...

  1. Urea SCR and DPF System for Deisel Sport Utility Vehicle Meeting...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Urea SCR and DPF System for Diesel Sport Utility Vehicle Meeting Tier II Bin 5 DOE and Ford Motor Company Advanced CIDI Emission Control System Development Program ...

  2. Electric Motor Thermal Management R&D: Annual Report

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... NREL Technical Report NRELTP- 5400-63887, June 2015. 5 K. Bennion. "Electric Motor Thermal Management R&D." 2015 DOE Vehicle Technologies Office (VTO) Annual Merit Review, June ...

  3. State observer for synchronous motors

    DOE Patents [OSTI]

    Lang, Jeffrey H.

    1994-03-22

    A state observer driven by measurements of phase voltages and currents for estimating the angular orientation of a rotor of a synchronous motor such as a variable reluctance motor (VRM). Phase voltages and currents are detected and serve as inputs to a state observer. The state observer includes a mathematical model of the electromechanical operation of the synchronous motor. The characteristics of the state observer are selected so that the observer estimates converge to the actual rotor angular orientation and velocity, winding phase flux linkages or currents.

  4. Permanent Magnet Development for Automotive Traction Motors | Department of

    Broader source: Energy.gov (indexed) [DOE]

    Energy 1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation ape015_anderson_2011_o.pdf (1.01 MB) More Documents & Publications Permanent Magnet Development for Automotive Traction Motors Permanent Magnet Development for Automotive Traction Motors Vehicle Technologies Office Merit Review 2015: Development of Radically Enhanced alnico Magnets (DREaM) for Traction Drive

  5. UQM Patents Non-Rare Earth Magnet Motor under DOE-Supported Project...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... this week. | Photo courtesy of INL. EV Technology Accelerates in Colorado The General Motors Baltimore Operations facility at White Marsh is producing electric motors for the ...

  6. Electric Vehicles

    ScienceCinema (OSTI)

    Ozpineci, Burak

    2014-07-23

    Burak Ozpineci sees a future where electric vehicles charge while we drive them down the road, thanks in part to research under way at ORNL.

  7. Electric Vehicles

    SciTech Connect (OSTI)

    Ozpineci, Burak

    2014-05-02

    Burak Ozpineci sees a future where electric vehicles charge while we drive them down the road, thanks in part to research under way at ORNL.

  8. Flexible Fuel Vehicle Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicles & Fuels » Vehicles » Flexible Fuel Vehicle Basics Flexible Fuel Vehicle Basics August 20, 2013 - 9:05am Addthis Photo of a gray van with 'E85 Ethanol' written on the side. Flexible fuel vehicles (FFVs) have an internal combustion engine and are capable of operating on gasoline, E85 (a high-level blend of gasoline and ethanol), or a mixture of both. There are more than 10.6 million flexible fuel vehicles on U.S. roads today. However, many flexible fuel vehicle owners don't realize

  9. Hybrid vehicle control

    SciTech Connect (OSTI)

    Shallvari, Iva; Velnati, Sashidhar; DeGroot, Kenneth P.

    2015-07-28

    A method and apparatus for heating a catalytic converter's catalyst to an efficient operating temperature in a hybrid electric vehicle when the vehicle is in a charge limited mode such as e.g., the charge depleting mode or when the vehicle's high voltage battery is otherwise charge limited. The method and apparatus determine whether a high voltage battery of the vehicle is incapable of accepting a first amount of charge associated with a first procedure to warm-up the catalyst. If it is determined that the high voltage battery is incapable of accepting the first amount of charge, a second procedure with an acceptable amount of charge is performed to warm-up the catalyst.

  10. Tool - Vehicle System Simulation (Autonomie) | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tool - Vehicle System Simulation (Autonomie) Tool - Vehicle System Simulation (Autonomie) Autonomie s a most powerful and robust system simulation tool for vehicle energy consumption and performance analysis. Developed in collaboration with General Motors, Autonomie is a MATLAB©-based software environment and framework for automotive control-system design, simulation, and analysis. Its application covers energy consumption, performance analysis throughout the entire vehicle development process

  11. EV Everywhere: Electric Vehicle Benefits | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Benefits EV Everywhere: Electric Vehicle Benefits EV Everywhere: Electric Vehicle Benefits Plug-in electric vehicles (also known as electric cars or EVs) are connected, fun, and practical. They can reduce emissions and even save you money. Fueling with electricity offers some advantages not available in conventional internal combustion engine vehicles. Because electric motors react quickly, EVs are very responsive and have very good torque. EVs are often more digitally connected than

  12. 10 Questions with Advanced Tech Vehicle Engineer, Pam Fletcher | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy with Advanced Tech Vehicle Engineer, Pam Fletcher 10 Questions with Advanced Tech Vehicle Engineer, Pam Fletcher March 3, 2015 - 3:39pm Addthis Pamela Fletcher, GM Executive Chief Engineer for Electrified Vehicles, poses with the 2016 Chevrolet Volt at the 2015 North American International Auto Show | Photo Courtesy of General Motors, Steve Fecht. Pamela Fletcher, GM Executive Chief Engineer for Electrified Vehicles, poses with the 2016 Chevrolet Volt at the 2015 North American

  13. Integration of Novel Flux Coupling Motor and Current Source Inverter |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy ape034_hsu_2011_p.pdf (317.88 KB) More Documents & Publications Integration of Novel Flux Coupling Motor and Current Source Inverter Novel Flux Coupling Machine without Permanent Magnets John Hsu, Oak Ridge National Laboratory, Flux Coupling Machines and Switched Reluctance Motors to Replace Permanent Magnets in Electric Vehicles

  14. Vehicle Technologies Office: 2009 Advanced Vehicle Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Well-to-Wheels Analysis of Energy Use and Greenhouse Gas Emissions of Plug-In Hybrid Electric Vehicles Vehicle Technologies Office: 2008 Advanced Vehicle Technology Analysis and ...

  15. Vehicle Technologies Office: AVTA - Electric Vehicle Community...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Technologies Office: AVTA - Electric Vehicle Community and Fleet Readiness Data and Reports Making plug-in electric vehicles (PEVs, also known as electric cars) as ...

  16. Brake blending strategy for a hybrid vehicle

    DOE Patents [OSTI]

    Boberg, Evan S.

    2000-12-05

    A hybrid electric powertrain system is provided including a transmission for driving a pair of wheels of a vehicle and a heat engine and an electric motor/generator coupled to the transmission. A friction brake system is provided for applying a braking torque to said vehicle. A controller unit generates control signals to the electric motor/generator and the friction brake system for controllably braking the vehicle in response to a drivers brake command. The controller unit determines and amount of regenerative torque available and compares this value to a determined amount of brake torque requested for determining the control signals to the electric motor/generator and the friction brake system.

  17. MotorMaster+

    Broader source: Energy.gov [DOE]

    MotorMaster+ is a free online National Electrical Manufacturers Association (NEMA) Premium® efficiency motor selection and management tool that supports motor and motor systems planning by identifying the most efficient action for a given repair or motor purchase decision. The tool includes a catalog of more than 20,000 low-voltage induction motors, and features motor inventory management tools, maintenance log tracking, efficiency analysis, savings evaluation, energy accounting, and environmental reporting capabilities.

  18. Smart Infrared Inspection System Field Operational Test Final Report

    SciTech Connect (OSTI)

    Siekmann, Adam; Capps, Gary J; Franzese, Oscar; Lascurain, Mary Beth

    2011-06-01

    The Smart InfraRed Inspection System (SIRIS) is a tool designed to assist inspectors in determining which vehicles passing through the SIRIS system are in need of further inspection by measuring the thermal data from the wheel components. As a vehicle enters the system, infrared cameras on the road measure temperatures of the brakes, tires, and wheel bearings on both wheel ends of commercial motor vehicles (CMVs) in motion. This thermal data is then presented to enforcement personal inside of the inspection station on a user friendly interface. Vehicles that are suspected to have a violation are automatically alerted to the enforcement staff. The main goal of the SIRIS field operational test (FOT) was to collect data to evaluate the performance of the prototype system and determine the viability of such a system being used for commercial motor vehicle enforcement. From March 2010 to September 2010, ORNL facilitated the SIRIS FOT at the Greene County Inspection Station (IS) in Greeneville, Tennessee. During the course of the FOT, 413 CMVs were given a North American Standard (NAS) Level-1 inspection. Of those 413 CMVs, 384 were subjected to a SIRIS screening. A total of 36 (9.38%) of the vehicles were flagged by SIRIS as having one or more thermal issues; with brakes issues making up 33 (91.67%) of those. Of the 36 vehicles flagged as having thermal issues, 31 (86.11%) were found to have a violation and 30 (83.33%) of those vehicles were placed out-of-service (OOS). Overall the enforcement personnel who have used SIRIS for screening purposes have had positive feedback on the potential of SIRIS. With improvements in detection algorithms and stability, the system will be beneficial to the CMV enforcement community and increase overall trooper productivity by accurately identifying a higher percentage of CMVs to be placed OOS with minimal error. No future evaluation of SIRIS has been deemed necessary and specifications for a production system will soon be drafted.

  19. Submersible canned motor mixer pump

    DOE Patents [OSTI]

    Guardiani, Richard F.; Pollick, Richard D.

    1997-01-01

    A mixer pump used in a waste tank for mobilizing high-level radioactive liquid waste having a column assembly containing power cables, a motor housing with electric motor means which includes a stator can of a stator assembly and a rotor can of a rotor assembly, and an impeller assembly with an impeller connected to a shaft of the rotor assembly. The column assembly locates the motor housing with the electric motor means adjacent to the impeller which creates an hydraulic head, and which forces the liquid waste into the motor housing to cool the electric motor means and to lubricate radial and thrust bearing assemblies. Hard-on-hard bearing surfaces of the bearing assemblies and a ring assembly between the impeller and electric motor means act to grind down large particles in the liquid waste flow. These larger particles are received in slots in the static bearing members of the radial bearing assemblies. Only solid waste particles smaller than the clearances in the system can pass therethrough, thereby resisting damage to and the interruption of the operation of the mixer pump.

  20. Submersible canned motor mixer pump

    DOE Patents [OSTI]

    Guardiani, R.F.; Pollick, R.D.

    1997-10-07

    A mixer pump is described used in a waste tank for mobilizing high-level radioactive liquid waste having a column assembly containing power cables, a motor housing with electric motor means which includes a stator can of a stator assembly and a rotor can of a rotor assembly, and an impeller assembly with an impeller connected to a shaft of the rotor assembly. The column assembly locates the motor housing with the electric motor means adjacent to the impeller which creates an hydraulic head, and which forces the liquid waste into the motor housing to cool the electric motor means and to lubricate radial and thrust bearing assemblies. Hard-on-hard bearing surfaces of the bearing assemblies and a ring assembly between the impeller and electric motor means act to grind down large particles in the liquid waste flow. These larger particles are received in slots in the static bearing members of the radial bearing assemblies. Only solid waste particles smaller than the clearances in the system can pass there through, thereby resisting damage to and the interruption of the operation of the mixer pump. 10 figs.

  1. Submersible canned motor transfer pump

    DOE Patents [OSTI]

    Guardiani, Richard F.; Pollick, Richard D.; Nyilas, Charles P.; Denmeade, Timothy J.

    1997-01-01

    A transfer pump used in a waste tank for transferring high-level radioactive liquid waste from a waste tank and having a column assembly, a canned electric motor means, and an impeller assembly with an upper impeller and a lower impeller connected to a shaft of a rotor assembly. The column assembly locates a motor housing with the electric motor means adjacent to the impeller assembly which creates an hydraulic head, and which forces the liquid waste, into the motor housing to cool the electric motor means and to cool and/or lubricate the radial and thrust bearing assemblies. Hard-on-hard bearing surfaces of the bearing assemblies and a ring assembly between the upper impeller and electric motor means grind large particles in the liquid waste flow. Slots in the static bearing member of the radial bearing assemblies further grind down the solid waste particles so that only particles smaller than the clearances in the system can pass therethrough, thereby resisting damage to and the interruption of the operation of the transfer pump. The column assembly is modular so that sections can be easily assembled, disassembled and/or removed. A second embodiment employs a stator jacket which provides an alternate means for cooling the electric motor means and lubricating and/or cooling the bearing assemblies, and a third embodiment employs a variable level suction device which allows liquid waste to be drawn into the transfer pump from varying and discrete levels in the waste tank.

  2. Vehicle Technologies Office Merit Review 2016: Next Generation Inverter

    Broader source: Energy.gov [DOE]

    Presentation given by General Motors (GM) at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting about Electric Drive Systems

  3. NREL: Learning - Plug-In Hybrid Electric Vehicle Basics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Credit: Keith Wipke Image of the cutaway top view of a passenger vehicle showing the drive train that contains an electric motor and a small internal combustion engine side by side ...

  4. Distributing Urea for the On-Road Vehicle Market | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SCR and DPF System for Diesel Sport Utility Vehicle Meeting Tier II Bin 5 DOE and Ford Motor Company Advanced CIDI Emission Control System Development Program (DE-FC26-01NT41103)

  5. A Vehicle Manufacturer's Perspective on Higher-Octane Fuels

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Manufacturer's Perspective on Higher-Octane Fuels Tom Leone, Ford Motor Company DOE "Biomass 2014" meeting Washington, D.C. July 29, 2014 2 Octane rating of fuel The octane ...

  6. EcoCAR 3 Pushes the Vehicle Efficiency Envelope

    Broader source: Energy.gov [DOE]

    The Department of Energy is partnering with Argonne National Laboratory and General Motors to support the EcoCAR 3 collegiate competition to design, build and optimize eco-friendly powertrains for vehicles.

  7. Department of Energy Announces Advanced Vehicle Technology Competition...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Vehicle Technology Competition, EcoCar2: Plugging into the Future Department of ... EcoCar2 is a unique educational partnership between General Motors and the Department of ...

  8. Vehicle Technologies Office: Laboratory Facilities and Collaborative

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research for Electric Drive Technologies | Department of Energy Electric Drive Technologies Vehicle Technologies Office: Laboratory Facilities and Collaborative Research for Electric Drive Technologies The Vehicle Technologies Office (VTO) works with a variety of U.S. Department of Energy (DOE) National Laboratories to maintain unique user facilities and conduct research and development (R&D) on power electronics, electric motors, and other aspects of electric drive technology. The

  9. Rare-Earth-Free Nanostructure Magnets: Rare-Earth-Free Permanent Magnets for Electric Vehicle Motors and Wind Turbine Generators: Hexagonal Symmetry Based Materials Systems Mn-Bi and M-type Hexaferrite

    SciTech Connect (OSTI)

    2012-01-01

    REACT Project: The University of Alabama is developing new iron- and manganese-based composite materials for use in the electric motors of EVs and renewable power generators that will demonstrate magnetic properties superior to todays best rare-earth-based magnets. Rare earths are difficult and expensive to refine. EVs and renewable power generators typically use rare earths to make their electric motors smaller and more powerful. The University of Alabama has the potential to improve upon the performance of current state-of-the-art rare-earth-based magnets using low-cost and more abundant materials such as manganese and iron. The ultimate goal of this project is to demonstrate improved performance in a full-size prototype magnet at reduced cost.

  10. Site Operator Program

    SciTech Connect (OSTI)

    Warren, J.F.

    1991-01-01

    Collectively, the organizations participating in the Site Operator Program have over forty years of EV experience and have operated electric vehicles (EVs) for over 600,000 miles, providing the most extensive EV operating and knowledge base in the country. The Site Operator Program is intended to provide financial and technical support and organizational resources to organizations active in the advancement of electric vehicles. Support is provided for the demonstration of vehicles and the test and evaluation of vehicles, components, and batteries. Support is also provided for the management and support of the program for the participating organizations. The Program provides a forum for participants to exchange information among the group, as well as with vehicle and equipment manufacturers and suppliers, and the public. A central data base at the Idaho National Engineering Laboratory provides a repository for-data on the vehicles being operated by the Program participants. Data collection emphasis is in the areas of operations, maintenance, and life cycle costs.

  11. Site Operator Program

    SciTech Connect (OSTI)

    Warren, J.F.

    1991-12-31

    Collectively, the organizations participating in the Site Operator Program have over forty years of EV experience and have operated electric vehicles (EVs) for over 600,000 miles, providing the most extensive EV operating and knowledge base in the country. The Site Operator Program is intended to provide financial and technical support and organizational resources to organizations active in the advancement of electric vehicles. Support is provided for the demonstration of vehicles and the test and evaluation of vehicles, components, and batteries. Support is also provided for the management and support of the program for the participating organizations. The Program provides a forum for participants to exchange information among the group, as well as with vehicle and equipment manufacturers and suppliers, and the public. A central data base at the Idaho National Engineering Laboratory provides a repository for-data on the vehicles being operated by the Program participants. Data collection emphasis is in the areas of operations, maintenance, and life cycle costs.

  12. Robotic vehicle with multiple tracked mobility platforms

    DOE Patents [OSTI]

    Salton, Jonathan R. (Albuquerque, NM); Buttz, James H. (Albuquerque, NM); Garretson, Justin (Albuquerque, NM); Hayward, David R. (Wetmore, CO); Hobart, Clinton G. (Albuquerque, NM); Deuel, Jr., Jamieson K. (Albuquerque, NM)

    2012-07-24

    A robotic vehicle having two or more tracked mobility platforms that are mechanically linked together with a two-dimensional coupling, thereby forming a composite vehicle of increased mobility. The robotic vehicle is operative in hazardous environments and can be capable of semi-submersible operation. The robotic vehicle is capable of remote controlled operation via radio frequency and/or fiber optic communication link to a remote operator control unit. The tracks have a plurality of track-edge scallop cut-outs that allow the tracks to easily grab onto and roll across railroad tracks, especially when crossing the railroad tracks at an oblique angle.

  13. Method and apparatus for controlling battery charging in a hybrid electric vehicle

    DOE Patents [OSTI]

    Phillips, Anthony Mark; Blankenship, John Richard; Bailey, Kathleen Ellen; Jankovic, Miroslava

    2003-06-24

    A starter/alternator system (24) for hybrid electric vehicle (10) having an internal combustion engine (12) and an energy storage device (34) has a controller (30) coupled to the starter/alternator (26). The controller (30) has a state of charge manager (40) that monitors the state of charge of the energy storage device. The controller has eight battery state-of-charge threshold values that determine the hybrid operating mode of the hybrid electric vehicle. The value of the battery state-of-charge relative to the threshold values is a factor in the determination of the hybrid mode, for example; regenerative braking, charging, battery bleed, boost. The starter/alternator may be operated as a generator or a motor, depending upon the mode.

  14. Motor Repair Tech Brief

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... This will assist in optimizing lubrication for your own ... Today's motors are more efficient. The National Electric ... and devices for assessing motor efficiency in the field. ...

  15. Introduction to LNG vehicle safety. Topical report

    SciTech Connect (OSTI)

    Bratvold, D.; Friedman, D.; Chernoff, H.; Farkhondehpay, D.; Comay, C.

    1994-03-01

    Basic information on the characteristics of liquefied natural gas (LNG) is assembled in this report to provide an overview of safety issues and practices for the use of LNG vehicles. This document is intended for those planning or considering the use of LNG vehicles, including vehicle fleet owners and operators, public transit officials and boards, local fire and safety officials, manufacturers and distributors, and gas industry officials. Safety issues and mitigation measures that should be considered for candidate LNG vehicle projects are addressed.

  16. Heavy and Overweight Vehicle Defects Interim Report

    SciTech Connect (OSTI)

    Siekmann, Adam; Capps, Gary J

    2012-12-01

    The Federal Highway Administration (FHWA), along with the Federal Motor Carrier Safety Administration (FMCSA), has an interest in overweight commercial motor vehicles, how they affect infrastructure, and their impact on safety on the nation s highways. To assist both FHWA and FMCSA in obtaining more information related to this interest, data was collected and analyzed from two separate sources. A large scale nationwide data collection effort was facilitated by the Commercial Vehicle Safety Alliance as part of a special study on overweight vehicles and an additional, smaller set, of data was collected from the state of Tennessee which included a much more detailed set of data. Over a six-month period, 1,873 Level I inspections were performed in 18 different states that volunteered to be a part of this study. Of the 1,873 inspections, a vehicle out-of-service (OOS) violation was found on 44.79% of the vehicles, a rate significantly higher than the national OOS rate of 27.23%. The main cause of a vehicle being placed OOS was brake-related defects, with approximately 30% of all vehicles having an OOS brake violation. Only about 4% of vehicles had an OOS tire violation, and even fewer had suspension and wheel violations. Vehicle weight violations were most common on an axle group as opposed to a gross vehicle weight violation. About two thirds of the vehicles cited with a weight violation were overweight on an axle group with an average amount of weight over the legal limit of about 2,000 lbs. Data collection is scheduled to continue through January 2014, with more potentially more states volunteering to collect data. More detailed data collections similar to the Tennessee data collection will also be performed in multiple states.

  17. Three phase AC motor controller

    DOE Patents [OSTI]

    Vuckovich, Michael; Wright, Maynard K.; Burkett, John P.

    1984-03-20

    A motor controller for a three phase AC motor (10) which is adapted to operate bidirectionally from signals received either from a computer (30) or a manual control (32). The controller is comprised of digital logic circuit means which implement a forward and reverse command signal channel (27, 29) for the application of power through the forward and reverse power switching relays (16, 18, 20, 22). The digital logic elements are cross coupled to prevent activation of both channels simultaneously and each includes a plugging circuit (65, 67) for stopping the motor upon the removal of control signal applied to one of the two channels (27, 29) for a direction of rotation desired. Each plugging circuit (65, 67) includes a one-shot pulse signal generator (88, 102) which outputs a single pulse signal of predetermined pulsewidth which is adapted to inhibit further operation of the application of power in the channel which is being activated and to apply a reversal command signal to the other channel which provides a reversed phase application of power to the motor for a period defined by the pulse-width output of the one-shot signal generator to plug the motor (10) which will then be inoperative until another rotational command signal is applied to either of the two channels.

  18. Using the motor to monitor pump conditions

    SciTech Connect (OSTI)

    Casada, D.

    1996-12-01

    When the load of a mechanical device being driven by a motor changes, whether in response to changes in the overall process or changes in the performance of the driven device, the motor inherently responds. For induction motors, the current amplitude and phase angle change as the shaft load changes. By examining the details of these changes in amplitude and phase, load fluctuations of the driven device can be observed. The usefulness of the motor as a transducer to improve the understanding of devices with high torque fluctuations, such as positive displacement compressors and motor-operated valves, has been recognized and demonstrated for a number of years. On such devices as these, the spectrum of the motor current amplitude, phase, or power normally has certain characteristic peaks associated with various load components, such as the piston stroke or gear tooth meshing frequencies. Comparison and trending of the amplitudes of these peaks has been shown to provide some indication of their mechanical condition. For most centrifugal pumps, the load fluctuations are normally low in torque amplitude, and as a result, the motor experiences a correspondingly lower level of load fluctuation. However, both laboratory and field test data have demonstrated that the motor does provide insight into some important pump performance conditions, such as hydraulic stability and pump-to-motor alignment. Comparisons of other dynamic signals, such as vibration and pressure pulsation, to motor data for centrifugal pumps are provided. The effects of inadequate suction head, misalignment, mechanical and hydraulic unbalance on these signals are presented.

  19. Vehicle Technologies Office Merit Review 2014: Overview of the DOE Advanced

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Power Electronics and Electric Motor R&D Program | Department of Energy Power Electronics and Electric Motor R&D Program Vehicle Technologies Office Merit Review 2014: Overview of the DOE Advanced Power Electronics and Electric Motor R&D Program Presentation given by U.S. Department of Energy at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting providing an overview of the Advanced Power Electronics and

  20. Target Explanation Document: Onboard Hydrogen Storage for Light-Duty Fuel Cell Vehicles

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Target Explanation Document: Onboard Hydrogen Storage for Light-Duty Fuel Cell Vehicles Revised May 2015 This target explanation is a document of the U.S. DRIVE Partnership. U.S. DRIVE (Driving Research and Innovation for Vehicle efficiency and Energy sustainability) is a voluntary, non-binding, and nonlegal partnership among the U.S. Department of Energy; USCAR, representing Fiat Chrysler Automotive, Ford Motor Company, and General Motors; Tesla Motors; five energy companies -BP America,

  1. Think City Electric Vehicle Demonstration Program

    SciTech Connect (OSTI)

    Ford Motor Company

    2005-03-01

    The THINK city Electric Vehicle (EV) Demonstration Program Project, initiated late 2001, has been successfully completed as of April 2005. US. Partners include Federal, State and Municipal agencies as well as commercial partners. Phase I, consisting of placement of the vehicles in demonstration programs, was completed in 2002. Phase II, the monitoring of these programs was completed in 2004. Phase III, the decommissioning and/or exporting of vehicles concluded in 2005. Phase I--the Program successfully assigned 192 EV's with customers (including Hertz) in the state of California, 109 in New York (including loaner and demo vehicles), 16 in Georgia, 7 to customers outside of the US and 52 in Ford's internal operations in Dearborn Michigan for a total of 376 vehicles. The Program was the largest operating Urban EV Demonstration Project in the United States. Phase II--the monitoring of the operational fleet was ongoing and completed in 2004, and all vehicles were returned throughout 2004 and 2005. The Department of Energy (DOE) was involved with the monitoring of the New York Power Authority/THINK Clean Commute Program units through partnership with Electric Transportation Engineering Corporation (ETEC), which filed separate reports to DOE. The remainder of the field fleet was monitored through Ford's internal operations. Vehicles were retired from lease operation throughout the program for various operator reasons. Some of the vehicles were involved in re-leasing operations. At the end of the program, 376 vehicles had been involved, 372 of which were available for customer use while 4 were engineering prototype and study vehicles. Phase III--decommissioning and/or export of vehicles. In accordance with the NHTSA requirement, City vehicles could not remain in the United States past their three-year allowed program timeframe. At the end of leases, City vehicles have been decommissioned and/or exported to KamKorp in Norway.

  2. Electric vehicles move closer to market

    SciTech Connect (OSTI)

    O`Connor, L.

    1995-03-01

    This article reports that though battery technology is currently limiting the growth of EVs, the search for improvements is spurring innovative engineering developments. As battery makers, automakers, national laboratories, and others continue their search for a practical source of electric power that will make electric vehicles (EVs) more viable, engineers worldwide are making progress in other areas of EV development. Vector control, for example, enables better regulation of motor torque and speed; composite and aluminum parts reduce the vehicle`s weight, which in turn reduces the load on the motor and battery; and flywheel energy storage systems, supercapacitors, regenerative brake systems, and hybrid/electric drive trains increase range and acceleration. Despite efforts to develop an electric vehicle from the ground up, most of the early EVs to be sold in the United States will likely be converted from gasoline-powered vehicles. Chrysler Corp., for example, is expected to sell electric versions of its minivans and build them on the same assembly line as its gasoline-powered vehicles to reduce costs. The pace of engineering development in this field is fast and furious. Indeed, it is virtually impossible to monitor all emerging EV technology. To meet their quotas, the major automakers may even consider buying credits from smaller, innovative EV manufacturers. But whatever stopgap measures vehicle makers take, technology development will be the driving force behind long-term EV growth.

  3. Control system and method for a hybrid electric vehicle

    DOE Patents [OSTI]

    Tamor, Michael Alan

    2001-03-06

    Several control methods are presented for application in a hybrid electric vehicle powertrain including in various embodiments an engine, a motor/generator, a transmission coupled at an input thereof to receive torque from the engine and the motor generator coupled to augment torque provided by the engine, an energy storage device coupled to receive energy from and provide energy to the motor/generator, an engine controller (EEC) coupled to control the engine, a transmission controller (TCM) coupled to control the transmission and a vehicle system controller (VSC) adapted to control the powertrain.

  4. Design of wheel motor using Maxwell 2D simulation

    SciTech Connect (OSTI)

    Chen, G.H.; Tseng, K.J.

    1995-12-31

    This paper presents a high efficiency direct wheel motor drive for electric vehicles (EVs). The proposed motor is a permanent magnet square-wave motor whose rotor with rare earth magnets forms the outside of the motor to be set within each rear wheel tire to realize the direct drive. The inner stator with its windings is rigidly linked to the suspension and frame structure of the vehicle. In order to achieve the direct drive without any mechanical transmission for EVs, the wheel motor has been designed as a low-speed high-torque motor. The design and optimization of the motor was done with the aid of finite element electromagnetic field analysis using the Maxwell 2D Simulator software. The motor parameters and characteristics can be accurately calculated and predicted in terms of field computation and analysis results. The design procedure of the 6.6 kW, 1,000 rpm wheel motor and its technical data are given in this paper.

  5. Demodulation circuit for AC motor current spectral analysis

    DOE Patents [OSTI]

    Hendrix, Donald E.; Smith, Stephen F.

    1990-12-18

    A motor current analysis method for the remote, noninvasive inspection of electric motor-operated systems. Synchronous amplitude demodulation and phase demodulation circuits are used singly and in combination along with a frequency analyzer to produce improved spectral analysis of load-induced frequencies present in the electric current flowing in a motor-driven system.

  6. Vehicle Technologies Office Merit Review 2016: Overview of the DOE VTO

    Broader source: Energy.gov (indexed) [DOE]

    Electric Drive Technologies R&D Program | Department of Energy Electric Drive Systems edt000_rogers_2016_o_web.pdf (2.96 MB) More Documents & Publications Vehicle Technologies Office Merit Review 2014: Overview of the DOE Advanced Power Electronics and Electric Motor R&D Program Vehicle Technologies Office Merit Review 2015: Overview of the TO Electric Drive Technologies Program Vehicle Technologies Office Merit Review 2015: Electric Motor Thermal Management Propulsion Materials

  7. Vehicles | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE has also pioneered better combustion engines that have saved billions of gallons of petroleum fuel, while making diesel vehicles as clean as gasoline-fueled vehicles. Vehicle ...

  8. Fractional-Slot Surface Mounted PM Motors with Concentrated Windings for HEV Traction Drives

    SciTech Connect (OSTI)

    Bailey, J.M.

    2005-10-24

    High-power density and efficiency resulting from elimination of rotor windings and reduced magnetic-flux losses have made the rare earth permanent magnet (PM) motor a leading candidate for the Department of Energy's Office of FreedomCAR and Vehicle Technologies (FCVTs) traction drive motor. These traction drives are generally powered by radial-gap motors, having the magnets on or embedded in a rotating cylinder separated from the inside surface of a slotted cylindrical stator by an annular gap. The two main types of radial-gap PM rotors are those with magnets mounted on the surface of a supporting back iron, called PM surface mounted (PMSM) motors, and those with magnets mounted in slots in the rotor, called interior PM (IPM) motors. Most early PM motor research was on the PMSM motor, which was thought to have an inherently low stator inductance. A low stator inductance can lead to currents dangerously exceeding rated current as the back-emf across the inductance increases with speed; consequently, part of the attempted solution has been to increase the stator inductance to reduce the rate of current rise. Although analysis suggested that there should be no problem designing sufficiently high stator inductance into PMSMs, attempts to do so were often not successful and a motor design was sought that would have a higher intrinsic inductance. Commercial research at Toyota has focused on IPM motors because they can achieve a high-saliency ratio, which helps them operate over a high constant power speed ratio (CPSR), but they are more difficult to fabricate. The Oak Ridge National Laboratory's (ORNL) position has been to continue research on brushless direct current (dc) motors (BDCMs) because of ease of fabrication and increased power output. Recently there has been a revival of interest in a fractional-slot PMSMs [15] made with concentrated windings because they possess three important features. First, they can increase the motor's inductance sufficiently to reduce

  9. Real Time Flux Control in PM Motors

    SciTech Connect (OSTI)

    Otaduy, P.J.

    2005-09-27

    Significant research at the Oak Ridge National Laboratory (ORNL) Power Electronics and Electric Machinery Research Center (PEEMRC) is being conducted to develop ways to increase (1) torque, (2) speed range, and (3) efficiency of traction electric motors for hybrid electric vehicles (HEV) within existing current and voltage bounds. Current is limited by the inverter semiconductor devices' capability and voltage is limited by the stator wire insulation's ability to withstand the maximum back-electromotive force (emf), which occurs at the upper end of the speed range. One research track has been to explore ways to control the path and magnitude of magnetic flux while the motor is operating. The phrase, real time flux control (RTFC), refers to this mode of operation in which system parameters are changed while the motor is operating to improve its performance and speed range. RTFC has potential to meet an increased torque demand by introducing additional flux through the main air gap from an external source. It can augment the speed range by diverting flux away from the main air gap to reduce back-emf at high speeds. Conventional RTFC technology is known as vector control [1]. Vector control decomposes the stator current into two components; one that produces torque and a second that opposes (weakens) the magnetic field generated by the rotor, thereby requiring more overall stator current and reducing the efficiency. Efficiency can be improved by selecting a RTFC method that reduces the back-emf without increasing the average current. This favors methods that use pulse currents or very low currents to achieve field weakening. Foremost in ORNL's effort to develop flux control is the work of J. S. Hsu. Early research [2,3] introduced direct control of air-gap flux in permanent magnet (PM) machines and demonstrated it with a flux-controlled generator. The configuration eliminates the problem of demagnetization because it diverts all the flux from the magnets instead of

  10. Robotic vehicle

    DOE Patents [OSTI]

    Box, W.D.

    1994-03-15

    A robotic vehicle is described for travel through an enclosed or partially enclosed conduit or pipe including vertical and/or horizontal conduit or pipe. The robotic vehicle comprises forward and rear housings each provided with a surface engaging mechanism for selectively engaging the walls of the conduit through which the vehicle is travelling, whereby the housings are selectively held in a stationary position within the conduit. The vehicle also includes at least three selectively extendable members, each of which defines a cavity therein. The forward end portion of each extendable member is secured to the forward housing and the rear end portion of each housing is secured to the rear housing. Each of the extendable members is independently extendable from a retracted position to an extended position upon the injection of a gas under pressure into the cavity of the extendable member such that the distance between the forward housing and the rear housing can be selectively increased. Further, each of the extendable members is independently retractable from the extended position to the retracted position upon the application of a vacuum to the cavity of the extendable member such that the distance between the forward housing and the rear housing can be selectively decreased. 11 figures.

  11. Robotic vehicle

    DOE Patents [OSTI]

    Box, W. Donald

    1994-01-01

    A robotic vehicle (10) for travel through an enclosed or partially enclosed conduit or pipe including vertical and/or horizontal conduit or pipe. The robotic vehicle (10) comprises forward and rear housings (32 and 12) each provided with a surface engaging mechanism for selectively engaging the walls of the conduit through which the vehicle is travelling, whereby the housings (32 and 12) are selectively held in a stationary position within the conduit. The vehicle (10) also includes at least three selectively extendable members (46), each of which defines a cavity (56) therein. The forward end portion (50) of each extendable member (46) is secured to the forward housing (32) and the rear end portion (48) of each housing is secured to the rear housing (12). Each of the extendable members (46) is independently extendable from a retracted position to an extended position upon the injection of a gas under pressure into the cavity (56) of the extendable member such that the distance between the forward housing (32 ) and the rear housing (12) can be selectively increased. Further, each of the extendable members (46) is independently retractable from the extended position to the retracted position upon the application of a vacuum to the cavity (56) of the extendable member (46) such that the distance between the forward housing (32) and the rear housing (12) can be selectively decreased.

  12. Robotic vehicle

    DOE Patents [OSTI]

    Box, W. Donald

    1996-01-01

    A robotic vehicle (10) for travel through an enclosed or partially enclosed conduit or pipe including vertical and/or horizontal conduit or pipe. The robotic vehicle (10) comprises forward and rear housings (32 and 12) each provided with a surface engaging mechanism for selectively engaging the walls of the conduit through which the vehicle is travelling, whereby the housings (32 and 12) are selectively held in a stationary position within the conduit. The vehicle (10) also includes at least three selectively extendable members (46), each of which defines a cavity (56) therein. The forward end portion (50) of each extendable member (46) is secured to the forward housing (32) and the rear end portion (48) of each housing is secured to the rear housing (12). Each of the extendable members (46) is independently extendable from a retracted position to an extended position upon the injection of a gas under pressure into the cavity (56) of the extendable member such that the distance between the forward housing (32 ) and the rear housing (12) can be selectively increased. Further, each of the extendable members (46) is independently retractable from the extended position to the retracted position upon the application of a vacuum to the cavity (56) of the extendable member (46) such that the distance between the forward housing (32) and the rear housing (12) can be selectively decreased.

  13. Robotic vehicle

    DOE Patents [OSTI]

    Box, W.D.

    1996-03-12

    A robotic vehicle is described for travel through an enclosed or partially enclosed conduit or pipe including vertical and/or horizontal conduit or pipe. The robotic vehicle comprises forward and rear housings each provided with a surface engaging mechanism for selectively engaging the walls of the conduit through which the vehicle is travelling, whereby the housings are selectively held in a stationary position within the conduit. The vehicle also includes at least three selectively extendable members, each of which defines a cavity therein. The forward end portion of each extendable member is secured to the forward housing and the rear end portion of each housing is secured to the rear housing. Each of the extendable members is independently extendable from a retracted position to an extended position upon the injection of a gas under pressure into the cavity of the extendable member such that the distance between the forward housing and the rear housing can be selectively increased. Further, each of the extendable members is independently retractable from the extended position to the retracted position upon the application of a vacuum to the cavity of the extendable member such that the distance between the forward housing and the rear housing can be selectively decreased. 14 figs.

  14. Hydrogen ICE Vehicle Testing Activities

    SciTech Connect (OSTI)

    J. Francfort; D. Karner

    2006-04-01

    The Advanced Vehicle Testing Activity teamed with Electric Transportation Applications and Arizona Public Service to develop and monitor the operations of the APS Alternative Fuel (Hydrogen) Pilot Plant. The Pilot Plant provides 100% hydrogen, and hydrogen and compressed natural gas (H/CNG)-blended fuels for the evaluation of hydrogen and H/CNG internal combustion engine (ICE) vehicles in controlled and fleet testing environments. Since June 2002, twenty hydrogen and H/CNG vehicles have accumulated 300,000 test miles and 5,700 fueling events. The AVTA is part of the Department of Energy’s FreedomCAR and Vehicle Technologies Program. These testing activities are managed by the Idaho National Laboratory. This paper discusses the Pilot Plant design and monitoring, and hydrogen ICE vehicle testing methods and results.

  15. Sensor Network for Motor Energy Management | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Remote Sensing Electric Motor Operation Optimizes Maintenance and Energy Efficiency ... and the additional benefits of optimized preventative maintenance and improved uptime. ...

  16. Vehicle Technologies Office: 2008 Advanced Vehicle Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Use and Greenhouse Gas Emissions of Plug-In Hybrid Electric Vehicles Vehicle Technologies Office: 2010 Vehicle and Systems Simulation and Testing R&D Annual Progress Report

  17. Vehicle Technologies Office Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Annual Merit Review and Peer Evaluation Meeting Christy Cooper Acting Director Vehicle Technologies Office June 6, 2016 2 Today: * What's new in VTO * Priorities and Initiatives * Hot Off the Press! 3 Analysis Jacob Ward Rachael Nealer Communications and Education Connie Bezanson Budget Cindy McMullen Office Administration Bernadette Jackson Operations Supervisor Christy Cooper Director Christy Cooper (Acting) Hybrid Electric Systems Program Manager David Howell Materials Technology Program

  18. EV Everywhere: America's Plug-In Electric Vehicle Market Charges Forward

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy America's Plug-In Electric Vehicle Market Charges Forward EV Everywhere: America's Plug-In Electric Vehicle Market Charges Forward January 22, 2014 - 6:35pm Addthis Hyundai Fuel Cell 1 of 14 Hyundai Fuel Cell Pictured here is Secretary Moniz looking at the fuel cell and motor used to power Hyundai's Tucson fuel cell vehicle. Fuel cell vehicles use hydrogen to produce electricity, which powers an electric motor to make the vehicle and its accessories work. Image: Sarah

  19. Pulp and Paper Mills: Profiting from Efficient Motor System Use |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Pulp and Paper Mills: Profiting from Efficient Motor System Use Pulp and Paper Mills: Profiting from Efficient Motor System Use This 2-page fact sheet describes The Paper and Allied Products Industry spending to operate electric motor systems and opportunities to reduce these costs. Pulp and Paper Mills: Profiting from Efficient Motor System Use (January 1999) (70.34 KB) More Documents & Publications Bandwidth Study U.S. Pulp and Paper Manufacturing United States

  20. Submersible canned motor transfer pump

    DOE Patents [OSTI]

    Guardiani, R.F.; Pollick, R.D.; Nyilas, C.P.; Denmeade, T.J.

    1997-08-19

    A transfer pump is described which is used in a waste tank for transferring high-level radioactive liquid waste from a waste tank and having a column assembly, a canned electric motor means, and an impeller assembly with an upper impeller and a lower impeller connected to a shaft of a rotor assembly. The column assembly locates a motor housing with the electric motor means adjacent to the impeller assembly which creates an hydraulic head, and which forces the liquid waste, into the motor housing to cool the electric motor means and to cool and/or lubricate the radial and thrust bearing assemblies. Hard-on-hard bearing surfaces of the bearing assemblies and a ring assembly between the upper impeller and electric motor means grind large particles in the liquid waste flow. Slots in the static bearing member of the radial bearing assemblies further grind down the solid waste particles so that only particles smaller than the clearances in the system can pass there through, thereby resisting damage to and the interruption of the operation of the transfer pump. The column assembly is modular so that sections can be easily assembled, disassembled and/or removed. A second embodiment employs a stator jacket which provides an alternate means for cooling the electric motor means and lubricating and/or cooling the bearing assemblies, and a third embodiment employs a variable level suction device which allows liquid waste to be drawn into the transfer pump from varying and discrete levels in the waste tank. 17 figs.

  1. NREL: Transportation Research - Fleet DNA: Commercial Fleet Vehicle

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Operating Data Fleet DNA: Commercial Fleet Vehicle Operating Data Contribute Data Learn how to contribute to Fleet DNA anonymously to help other fleets analyze and improve their drive cycle metrics. The Fleet DNA clearinghouse of commercial fleet vehicle operating data helps vehicle manufacturers and developers optimize vehicle designs and helps fleet managers choose advanced technologies for their fleets. This online tool provides data summaries and visualizations similar to real-world

  2. Smith Electric Vehicles: Advanced Vehicle Electrification + Transporta...

    Broader source: Energy.gov (indexed) [DOE]

    Peer Evaluation Meeting arravt072vssmackie2013o.pdf More Documents & Publications Smith Electric Vehicles: Advanced Vehicle Electrification + Transportation Sector...

  3. Control of Multiple Robotic Sentry Vehicles

    SciTech Connect (OSTI)

    Feddema, J.; Klarer, P.; Lewis, C.

    1999-04-01

    As part of a project for the Defense Advanced Research Projects Agency, Sandia National Laboratories is developing and testing the feasibility of using of a cooperative team of robotic sentry vehicles to guard a perimeter and to perform surround and diversion tasks. This paper describes on-going activities in the development of these robotic sentry vehicles. To date, we have developed a robotic perimeter detection system which consists of eight ''Roving All Terrain Lunar Explorer Rover'' (RATLER{trademark}) vehicles, a laptop-based base-station, and several Miniature Intrusion Detection Sensors (MIDS). A radio frequency receiver on each of the RATLER vehicles alerts the sentry vehicles of alarms from the hidden MIDS. When an alarm is received, each vehicle decides whether it should investigate the alarm based on the proximity of itself and the other vehicles to the alarm. As one vehicle attends an alarm, the other vehicles adjust their position around the perimeter to better prepare for another alarm. We have also demonstrated the ability to drive multiple vehicles in formation via tele-operation or by waypoint GPS navigation. This is currently being extended to include mission planning capabilities. At the base-station, the operator can draw on an aerial map the goal regions to be surrounded and the repulsive regions to be avoided. A potential field path planner automatically generates a path from the vehicles' current position to the goal regions while avoiding the repulsive regions and the other vehicles. This path is previewed to the operator before the regions are downloaded to the vehicles. The same potential field path planner resides on the vehicle, except additional repulsive forces from on-board proximity sensors guide the vehicle away from unplanned obstacles.

  4. Modifications for use of methanol or methanol-gasoline blends in automotive vehicles, September 1976-January 1980

    SciTech Connect (OSTI)

    Patterson, D.J.; Bolt, J.A.; Cole, D.E.

    1980-01-01

    Methanol or blends of methanol and gasoline as automotive fuels may be attractive means for extending the nation's petroleum reserves. The present study was aimed at identifying potential problems and solutions for this use of methanol. Retrofitting of existing vehicles as well as future vehicle design have been considered. The use of ethanol or higher alcohols was not addressed in this study but will be included at a later date. Several potentially serious problems have been identified with methanol use. The most attractive solutions depend upon an integrated combination of vehicle modifications and fuel design. No vehicle problems were found which could not be solved with relatively minor developments of existing technology providing the methanol or blend fuel was itself engineered to ameliorate the solution. Research needs have been identified in the areas of lubrication and materials. These, while apparently solvable, must precede use of methanol or methanol-gasoline blends as motor fuels. Because of the substantial costs and complexities of a retrofitting program, use of methanol must be evaluated in relation to other petroleum-saving alternatives. Future vehicles can be designed initially to operate satisfactorily on these alternate fuels. However a specific fuel composition must be specified around which the future engines and vehicles can be designed.

  5. Advanced underground Vehicle Power and Control: The locomotive Research Platform

    SciTech Connect (OSTI)

    Vehicle Projects LLC

    2003-01-28

    Develop a fuelcell mine locomotive with metal-hydride hydrogen storage. Test the locomotive for fundamental limitations preventing successful commercialization of hydride fuelcells in underground mining. During Phase 1 of the DOE-EERE sponsored project, FPI and its partner SNL, completed work on the development of a 14.4 kW fuelcell power plant and metal-hydride energy storage. An existing battery-electric locomotive with similar power requirements, minus the battery module, was used as the base vehicle. In March 2001, Atlas Copco Wagner of Portland, OR, installed the fuelcell power plant into the base vehicle and initiated integration of the system into the vehicle. The entire vehicle returned to Sandia in May 2001 for further development and integration. Initial system power-up took place in December 2001. A revision to the original contract, Phase 2, at the request of DOE Golden Field Office, established Vehicle Projects LLC as the new prime contractor,. Phase 2 allowed industry partners to conduct surface tests, incorporate enhancements to the original design by SNL, perform an extensive risk and safety analysis, and test the fuelcell locomotive underground under representative production mine conditions. During the surface tests one of the fuelcell stacks exhibited reduced power output resulting in having to replace both fuelcell stacks. The new stacks were manufactured with new and improved technology resulting in an increase of the gross power output from 14.4 kW to 17 kW. Further work by CANMET and Hatch Associates, an engineering consulting firm specializing in safety analysis for the mining industry, both under subcontract to Vehicle Projects LLC, established minimum requirements for underground testing. CANMET upgraded the Programmable Logic Control (PLC) software used to monitor and control the fuelcell power plant, taking into account locomotive operator's needs. Battery Electric, a South Africa manufacturer, designed and manufactured (at no cost to

  6. Flexible Fuel Vehicles: Providing a Renewable Fuel Choice, Vehicle Technologies Program (VTP) (Fact Sheet)

    Broader source: Energy.gov [DOE]

    Flexible Fuel vehicles are able to operate using more than one type of fuel. FFVs can be fueled with unleaded gasoline, E85, or any combination of the two. Today more than 7 million vehicles on U.S. highways are flexible fuel vehicles. The fact sheet discusses how E85 affects vehicle performance, the costs and benefits of using E85, and how to find E85 station locations.

  7. Vehicle to Electric Vehicle Supply Equipment Smart Grid Communications Interface Research and Testing Report

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    INL/EXT-11-23221 Vehicle to Electric Vehicle Supply Equipment Smart Grid Communications Interface Research and Testing Report Final Report Kevin Morrow Dimitri Hochard Jeff Wishart James Francfort September 2011 The Idaho National Laboratory is a U.S. Department of Energy National Laboratory Operated by Battelle Energy Alliance ii INL/EXT-11-23221 Vehicle to Electric Vehicle Supply Equipment Smart Grid Communications Interface Research and Testing Report Kevin Morrow Dimitri Hochard Jeffrey

  8. General Motors | Open Energy Information

    Open Energy Info (EERE)

    Motors Jump to: navigation, search Name: General Motors Place: Detroit, MI Website: www.generalmotors.com References: General Motors1 Information About Partnership with NREL...

  9. Motor Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technical Assistance Motor Systems Motor Systems Dramatic energy and cost savings can be achieved in motor systems by applying best energy management practices and purchasing ...

  10. Halbach array DC motor/generator

    DOE Patents [OSTI]

    Merritt, B.T.; Dreifuerst, G.R.; Post, R.F.

    1998-01-06

    A new configuration of DC motor/generator is based on a Halbach array of permanent magnets. This motor does not use ferrous materials so that the only losses are winding losses and losses due to bearings and windage. An ``inside-out`` design is used as compared to a conventional motor/generator design. The rotating portion, i.e., the rotor, is on the outside of the machine. The stationary portion, i.e., the stator, is formed by the inside of the machine. The rotor contains an array of permanent magnets that provide a uniform field. The windings of the motor are placed in or on the stator. The stator windings are then ``switched`` or ``commutated`` to provide a DC motor/generator much the same as in a conventional DC motor. The commutation can be performed by mechanical means using brushes or by electronic means using switching circuits. The invention is useful in electric vehicles and adjustable speed DC drives. 17 figs.

  11. Halbach array DC motor/generator

    DOE Patents [OSTI]

    Merritt, Bernard T.; Dreifuerst, Gary R.; Post, Richard F.

    1998-01-01

    A new configuration of DC motor/generator is based on a Halbach array of permanent magnets. This motor does not use ferrous materials so that the only losses are winding losses and losses due to bearings and windage. An "inside-out" design is used as compared to a conventional motor/generator design. The rotating portion, i.e., the rotor, is on the outside of the machine. The stationary portion, i.e., the stator, is formed by the inside of the machine. The rotor contains an array of permanent magnets that provide a uniform field. The windings of the motor are placed in or on the stator. The stator windings are then "switched" or "commutated" to provide a DC motor/generator much the same as in a conventional DC motor. The commutation can be performed by mechanical means using brushes or by electronic means using switching circuits. The invention is useful in electric vehicles and adjustable speed DC drives.

  12. PWM Inverter control and the application thereof within electric vehicles

    DOE Patents [OSTI]

    Geppert, Steven

    1982-01-01

    An inverter (34) which provides power to an A.C. machine (28) is controlled by a circuit (36) employing PWM control strategy whereby A.C. power is supplied to the machine at a preselectable frequency and preselectable voltage. This is accomplished by the technique of waveform notching in which the shapes of the notches are varied to determine the average energy content of the overall waveform. Through this arrangement, the operational efficiency of the A.C. machine is optimized. The control circuit includes a micro-computer and memory element which receive various parametric inputs and calculate optimized machine control data signals therefrom. The control data is asynchronously loaded into the inverter through an intermediate buffer (38). In its preferred embodiment, the present invention is incorporated within an electric vehicle (10) employing a 144 VDC battery pack (32) and a three-phase induction motor (18).

  13. Premium Efficiency Motor Selection and Application Guide – A Handbook for Industry

    SciTech Connect (OSTI)

    Gilbert A. McCoy and John G. Douglass

    2014-02-01

    This handbook informs new motor purchase decisions by identifying energy and cost savings that can come from replacing motors with premium efficiency units. The handbook provides an overview of current motor use in the industrial sector, including the development of motor efficiency standards, currently available and emerging advanced efficiency motor technologies, and guidance on how to evaluate motor efficiency opportunities. It also several tips on getting the most out of industrial motors, such as how to avoid adverse motor interactions with electronic adjustable speed drives and how to ensure efficiency gains are not lost to undervoltage operation or excessive voltage unbalance.

  14. Alcohol-fueled vehicles: An alternative fuels vehicle, emissions, and refueling infrastructure technology assessment

    SciTech Connect (OSTI)

    McCoy, G.A.; Kerstetter, J.; Lyons, J.K.

    1993-06-01

    Interest in alternative motor vehicle fuels has grown tremendously over the last few years. The 1990 Clean Air Act Amendments, the National Energy Policy Act of 1992 and the California Clean Air Act are primarily responsible for this resurgence and have spurred both the motor fuels and vehicle manufacturing industries into action. For the first time, all three U.S. auto manufacturers are offering alternative fuel vehicles to the motoring public. At the same time, a small but growing alternative fuels refueling infrastructure is beginning to develop across the country. Although the recent growth in alternative motor fuels use is impressive, their market niche is still being defined. Environmental regulations, a key driver behind alternative fuel use, is forcing both car makers and the petroleum industry to clean up their products. As a result, alternative fuels no longer have a lock on the clean air market and will have to compete with conventional vehicles in meeting stringent future vehicle emission standards. The development of cleaner burning gasoline powered vehicles has signaled a shift in the marketing of alternative fuels. While they will continue to play a major part in the clean vehicle market, alternative fuels are increasingly recognized as a means to reduce oil imports. This new role is clearly defined in the National Energy Policy Act of 1992. The Act identifies alternative fuels as a key strategy for reducing imports of foreign oil and mandates their use for federal and state fleets, while reserving the right to require private and municipal fleet use as well.

  15. Dynein Motor Domain Shows Ring-Shaped Motor, Buttress

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dynein Motor Domain Shows Ring-Shaped Motor, Buttress Dynein Motor Domain Shows Ring-Shaped Motor, Buttress Print Monday, 28 November 2011 14:52 Movement is fundamental to life. It...

  16. High-speed electrical motor evaluation

    SciTech Connect (OSTI)

    Not Available

    1989-02-03

    Under this task, MTI conducted a general review of state-of-the-art high-speed motors. The purpose of this review was to assess the operating parameters, limitations and performance of existing motor designs, and to establish commercial sources for a motor compatible with the requirements of the Brayton-cycle system. After the motor requirements were established, a list of motor types, manufacturers and designs capable of achieving the requisite performance was compiled. This list was based on an in-house evaluation of designs. Following the establishment of these options, a technical evaluation of the designs selected was conducted. In parallel with their evaluations, MTI focused on the establishment of commercial sources.

  17. The Role of Reluctance in PM Motors

    SciTech Connect (OSTI)

    Otaduy, P.J.

    2005-06-16

    The international research community has lately focused efforts on interior permanent magnet (IPM) motors to produce a traction motor for hybrid electric vehicles (HEV). One of the beneficial features of this technology is the additional torque produced by reluctance. The objective of this report is to analytically describe the role that reluctance plays in permanent magnet (PM) motors, to explore ways to increase reluctance torque without sacrificing the torque produced by the PMs, and to compare three IPM configurations with respect to torque, power, amount of magnet material required (cost), and percentage of reluctance torque. Results of this study will be used to determine future research directions in utilizing reluctance to obtain maximum torque and power while using a minimum amount of magnet material.

  18. Vehicle Technologies Office Merit Review 2015: Computational Design and Development of a New, Lightweight Cast Alloy for Advanced Cylinder Heads in High-Efficiency, Light-Duty Engines

    Broader source: Energy.gov [DOE]

    Presentation given by General Motors at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about computational design and...

  19. Vehicle Technologies Office Merit Review 2016: Predictive Models for Integrated Manufacturing and Structural Performance of Carbon Fiber Composites for Automotive Applications

    Broader source: Energy.gov [DOE]

    Presentation given by General Motors (GM) at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting about Lightweighting

  20. Vehicle Technologies Office Merit Review 2016: A Combined Experimental and Modeling Approach for the Design of High Coulombic Efficiency Si Electrodes

    Broader source: Energy.gov [DOE]

    Presentation given by General Motors (GM) at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting about Batteries

  1. Report on Toyota/Prius Motor Design and Manufacturing Assessment

    SciTech Connect (OSTI)

    Hsu, J.S.

    2004-07-28

    In today's hybrid vehicle market the Toyota Prius drive system is currently considered the leader in electrical, mechanical, and manufacturing innovations. It is significant that in today's marketplace Toyota is able to manufacture and sell the vehicle for a profit. This project's objective is to analyze and study the Prius drive system to understand the design and manufacturing mechanisms Toyota utilized to achieved their performance and cost goals. During the course of this research effort ORNL has dissected both the 2003 and 2004 Toyota/Prius drive motors. This study is focused primarily on motor design considerations and an assessment of manufacturing issues.

  2. INFOGRAPHIC: The Fuel Cell Electric Vehicle | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    INFOGRAPHIC: The Fuel Cell Electric Vehicle INFOGRAPHIC: The Fuel Cell Electric Vehicle INFOGRAPHIC: The Fuel Cell Electric Vehicle This infographic shows how fuel cell electric vehicles (FCEVs) work and some of the benefits of FCEVs, such as how they reduce greenhouse gas emissions, emit only water, and operate efficiently. INFOGRAPHIC: The Fuel Cell Electric Vehicle (FCEV) (497.65 KB) More Documents & Publications Amped Up! Volume 1, No. 4: The Transportation Issue Fuel Cell Technologies

  3. Energy 101: Heavy Duty Vehicle Efficiency | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heavy Duty Vehicle Efficiency Energy 101: Heavy Duty Vehicle Efficiency Addthis Description Although Class 8 Trucks only make up 4% of the vehicles on the road, they use about 20% of the nation's transportation fuel. In this video, learn how new fuel-efficient technologies are making our country's big rigs quieter, less polluting, more energy-efficient, and less expensive to operate over time. Topic Vehicles Text Version Below is the text version for the Energy 101: Heavy Duty Vehicle Efficiency

  4. Minimize Adverse Motor and Adjustable Speed Drive Interactions - Motor Tip Sheet #15

    SciTech Connect (OSTI)

    2008-07-01

    Electronic adjustable speed drives (ASDs) are an extremely efficient and valuable asset to motor systems. They allow precise process control and provide energy savings within systems that do not need to continuously operate at full output.

  5. Vehicle barrier

    DOE Patents [OSTI]

    Hirsh, Robert A. (Bethel Park, PA)

    1991-01-01

    A vehicle security barrier which can be conveniently placed across a gate opening as well as readily removed from the gate opening to allow for easy passage. The security barrier includes a barrier gate in the form of a cable/gate member in combination with laterally attached pipe sections fixed by way of the cable to the gate member and lateral, security fixed vertical pipe posts. The security barrier of the present invention provides for the use of cable restraints across gate openings to provide necessary security while at the same time allowing for quick opening and closing of the gate areas without compromising security.

  6. UQM Patents Non-Rare Earth Magnet Motor under DOE-Supported Project...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    While most plug-in electric vehicles (PEVs) use motors with rare earth metals, these materials are expensive, their prices have been highly volatile (from 80kg to 750kg), and ...

  7. Advanced Power Electronics and Electric Motors (APEEM) R&D Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Battery On-Board Battery Charger Bi-directional Converter Electric Motor Inverter DC-DC Converter Ancillary Loads 120 V AC 240 V AC Fast Charger 6 | Vehicle Technologies ...

  8. Development of Ulta-Efficient Electric Motors

    SciTech Connect (OSTI)

    Shoykhet, B.; Schiferl, R.; Duckworth, R.; Rey, C.M.; Schwenterly, S.W.; Gouge, M.J.

    2008-05-01

    Electric motors utilize a large amount of electrical energy in utility and industrial applications. Electric motors constructed with high temperature superconducting (HTS) materials have the potential to dramatically reduce electric motor size and losses. HTS motors are best suited for large motor applications at ratings above 1000 horsepower (hp), where the energy savings from the efficiency improvement can overcome the additional power required to keep the superconductors on the rotor cooled. Large HTS based motors are expected to be half the volume and have half the losses of conventional induction motors of the same rating. For a 5000 hp industrial motor, this energy savings can result in $50,000 in operating cost savings over the course of a single year of operation. Since large horsepower motors utilize (or convert) about 30% of the electrical power generated in the United States and about 70% of large motors are candidates for replacement by HTS motors, the annual energy savings potential through the utilization of HTS motors can be up to $1 Billion in the United States alone. Research in the application of HTS materials to electric motors has lead to a number of HTS motor prototypes yet no industrial HTS motor product has yet been introduced. These motor demonstrations have been synchronous motors with HTS field windings, on the rotor. Figure 1-1 shows a solid model rendering of this type of motor. The rotor winding is made with HTS coils that are held at cryogenic temperature by introducing cooling fluid from the cryocooler to the rotor through a transfer coupling. The stator winding is made of copper wire. The HTS winding is thermally isolated from the warm armature and motor shafts by a vacuum insulation space and through the use of composite torque tubes. The stator in Figure 1-1 is an air core stator in that the stator teeth and a small part of the yoke is made up of nonmagnetic material so the magnetic fields distribute themselves as if in air

  9. Hybrid vehicle powertrain system with power take-off driven vehicle accessory

    DOE Patents [OSTI]

    Beaty, Kevin D.; Bockelmann, Thomas R.; Zou, Zhanijang; Hope, Mark E.; Kang, Xiaosong; Carpenter, Jeffrey L.

    2006-09-12

    A hybrid vehicle powertrain system includes a first prime mover, a first prime mover driven power transmission mechanism having a power take-off adapted to drive a vehicle accessory, and a second prime mover. The second prime mover is operable to drive the power transmission mechanism alone or in combination with the first prime mover to provide power to the power take-off through the power transmission mechanism. The invention further includes methods for operating a hybrid vehicle powertrain system.

  10. Flexible Fuel Vehicles: Providing a Renewable Fuel Choice

    SciTech Connect (OSTI)

    Clean Cities

    2010-03-01

    Flexible fuel vehicles can operate on either gasoline or E85, a mixture of 85% ethanol and 15% gasoline. The fact sheet discusses the costs, benefits, and vehicle performance of using E85.

  11. Motor Current Data Collection System

    Energy Science and Technology Software Center (OSTI)

    1992-12-01

    The Motor Current Data Collection System (MCDCS) uses IBM compatible PCs to collect, process, and store Motor Current Signature information.

  12. MotorMaster+ Fact Sheet

    Office of Energy Efficiency and Renewable Energy (EERE)

    Fact sheet describing how industrial plants can improve their motor system performance using AMO's MotorMaster+ software tool.

  13. Vehicle Technologies Office Merit Review 2014: Cost-Competitive Advanced Thermoelectric Generators for Direct Conversion of Vehicle Waste Heat into Useful Electrical Power

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by General Motors at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about cost-competitive advanced...

  14. AVTA: Chevrolet Volt ARRA Vehicle Demonstration Project Data

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The American Recovery and Reinvestment Act supported a number of projects that together made up the largest ever deployment of plug-in electric vehicles and charging infrastructure in the U.S. The following reports summarize data collected from a project General Motors conducted to deploy 150 2011 Chevrolet Volts around the country. This research was conducted by Idaho National Laboratory.

  15. Vehicle Technologies Office Merit Review 2014: Vehicle & Systems...

    Energy Savers [EERE]

    Vehicle Technologies Office: 2013 Vehicle and Systems Simulation and Testing R&D Annual Progress Report Vehicle Technologies Office Merit Review 2014: Wireless Charging Vehicle ...

  16. Vehicle Technologies Office: Natural Gas Vehicle Research and...

    Office of Environmental Management (EM)

    Alternative Fuels Vehicle Technologies Office: Natural Gas Vehicle Research and Development (R&D) Vehicle Technologies Office: Natural Gas Vehicle Research and Development (R&D) ...

  17. Vehicle Technologies Office: 2015 Vehicle Systems Annual Progress...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Technologies Office: 2015 Vehicle Systems Annual Progress Report The Vehicle Systems research and development (R&D) subprogram within the DOE Vehicle Technologies Office ...

  18. As Electric Vehicles Take Charge, Costs Power Down | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    As Electric Vehicles Take Charge, Costs Power Down As Electric Vehicles Take Charge, Costs Power Down January 13, 2012 - 1:29pm Addthis Thanks to a cost-sharing project with the Energy Department, General Motors has been able to develop the capacity to build electric and hybrid motors internally. That capacity has made cars like the upcoming Chevy Spark EV (above) possible. | Image courtesy of General Motors. Thanks to a cost-sharing project with the Energy Department, General Motors has been

  19. Statistical Characterization of Medium-Duty Electric Vehicle Drive Cycles; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    Prohaska, R.; Duran, A.; Ragatz, A.; Kelly, K.

    2015-05-03

    With funding from the U.S. Department of Energy’s Vehicle Technologies Office, the National Renewable Energy Laboratory (NREL) conducts real-world performance evaluations of advanced medium- and heavy-duty fleet vehicles. Evaluation results can help vehicle manufacturers fine-tune their designs and assist fleet managers in selecting fuel-efficient, low-emission vehicles that meet their economic and operational goals. In 2011, NREL launched a large-scale performance evaluation of medium-duty electric vehicles. With support from vehicle manufacturers Smith and Navistar, NREL research focused on characterizing vehicle operation and drive cycles for electric delivery vehicles operating in commercial service across the nation.

  20. Motor/generator

    DOE Patents [OSTI]

    Hickam, Christopher Dale

    2008-05-13

    A motor/generator is provided for connecting between a transmission input shaft and an output shaft of a prime mover. The motor/generator may include a motor/generator housing, a stator mounted to the motor/generator housing, a rotor mounted at least partially within the motor/generator housing and rotatable about a rotor rotation axis, and a transmission-shaft coupler drivingly coupled to the rotor. The transmission-shaft coupler may include a clamp, which may include a base attached to the rotor and a plurality of adjustable jaws.

  1. Motorized support jack

    DOE Patents [OSTI]

    Haney, Steven J. (Tracey, CA); Herron, Donald Joe (Manteca, CA)

    2001-01-01

    A compact, vacuum compatible motorized jack for supporting heavy loads and adjusting their positions is provided. The motorized jack includes: (a) a housing having a base; (b) a first roller device that provides a first slidable surface and that is secured to the base; (c) a second roller device that provides a second slidable surface and that has an upper surface; (d) a wedge that is slidably positioned between the first roller device and the second roller device so that the wedge is in contact with the first slidable surface and the second slidable surface; (e) a motor; and (d) a drive mechanism that connects the motor and the wedge to cause the motor to controllably move the wedge forwards or backwards. Individual motorized jacks can support and lift of an object at an angle. Two or more motorized jacks can provide tip, tilt and vertical position adjustment capabilities.

  2. Motorized support jack

    DOE Patents [OSTI]

    Haney, Steven J.; Herron, Donald Joe

    2003-05-13

    A compact, vacuum compatible motorized jack for supporting heavy loads and adjusting their positions is provided. The motorized jack includes: (a) a housing having a base; (b) a first roller device that provides a first slidable surface and that is secured to the base; (c) a second roller device that provides a second slidable surface and that has an upper surface; (d) a wedge that is slidably positioned between the first roller device and the second roller device so that the wedge is in contact with the first slidable surface and the second slidable surface; (e) a motor; and (d) a drive mechanism that connects the motor and the wedge to cause the motor to controllably move the wedge forwards or backwards. Individual motorized jacks can support and lift of an object at an angle. Two or more motorized jacks can provide tip, tilt and vertical position adjustment capabilities.

  3. Extend the Operating Life of Your Motor

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electrical insulation weakens over time with exposure to voltage unbalance, over and undervoltage, voltage disturbances, and temperature. Contact between moving surfaces causes ...

  4. Instrument for analysis of electric motors based on slip-poles component

    DOE Patents [OSTI]

    Haynes, H.D.; Ayers, C.W.; Casada, D.A.

    1996-11-26

    A new instrument is described for monitoring the condition and speed of an operating electric motor from a remote location. The slip-poles component is derived from a motor current signal. The magnitude of the slip-poles component provides the basis for a motor condition monitor, while the frequency of the slip-poles component provides the basis for a motor speed monitor. The result is a simple-to-understand motor health monitor in an easy-to-use package. Straightforward indications of motor speed, motor running current, motor condition (e.g., rotor bar condition) and synthesized motor sound (audible indication of motor condition) are provided. With the device, a relatively untrained worker can diagnose electric motors in the field without requiring the presence of a trained engineer or technician. 4 figs.

  5. Instrument for analysis of electric motors based on slip-poles component

    DOE Patents [OSTI]

    Haynes, Howard D.; Ayers, Curtis W.; Casada, Donald A.

    1996-01-01

    A new instrument for monitoring the condition and speed of an operating electric motor from a remote location. The slip-poles component is derived from a motor current signal. The magnitude of the slip-poles component provides the basis for a motor condition monitor, while the frequency of the slip-poles component provides the basis for a motor speed monitor. The result is a simple-to-understand motor health monitor in an easy-to-use package. Straightforward indications of motor speed, motor running current, motor condition (e.g., rotor bar condition) and synthesized motor sound (audible indication of motor condition) are provided. With the device, a relatively untrained worker can diagnose electric motors in the field without requiring the presence of a trained engineer or technician.

  6. Electric Vehicle Service Personnel Training Program

    SciTech Connect (OSTI)

    Bernstein, Gerald

    2013-06-21

    As the share of hybrid, plug-in hybrid (PHEV), electric (EV) and fuel-cell (FCV) vehicles grows in the national automotive fleet, an entirely new set of diagnostic and technical skills needs to be obtained by the maintenance workforce. Electrically-powered vehicles require new diagnostic tools, technique and vocabulary when compared to existing internal combustion engine-powered models. While the manufacturers of these new vehicles train their own maintenance personnel, training for students, independent working technicians and fleet operators is less focused and organized. This DOE-funded effort provided training to these three target groups to help expand availability of skills and to provide more competition (and lower consumer cost) in the maintenance of these hybrid- and electric-powered vehicles. Our approach was to start locally in the San Francisco Bay Area, one of the densest markets in the United States for these types of automobiles. We then expanded training to the Los Angeles area and then out-of-state to identify what types of curriculum was appropriate and what types of problems were encountered as training was disseminated. The fact that this effort trained up to 800 individuals with sessions varying from 2- day workshops to full-semester courses is considered a successful outcome. Diverse programs were developed to match unique time availability and educational needs of each of the three target audiences. Several key findings and observations arising from this effort include: • Recognition that hybrid and PHEV training demand is immediate; demand for EV training is starting to emerge; while demand for FCV training is still over the horizon • Hybrid and PHEV training are an excellent starting point for all EV-related training as they introduce all the basic concepts (electric motors, battery management, controllers, vocabulary, testing techniques) that are needed for all EVs, and these skills are in-demand in today’s market. • Faculty

  7. Electric Motor Thermal Management

    Broader source: Energy.gov [DOE]

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

  8. Electric Motor Thermal Management

    Broader source: Energy.gov [DOE]

    2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  9. Electric Motor Thermal Management

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  10. Hybrid options for light-duty vehicles.

    SciTech Connect (OSTI)

    An, F., Stodolsky, F.; Santini, D.

    1999-07-19

    Hybrid electric vehicles (HEVs) offer great promise in improving fuel economy. In this paper, we analyze why, how, and by how much vehicle hybridization can reduce energy consumption and improve fuel economy. Our analysis focuses on efficiency gains associated solely with vehicle hybridization. We do not consider such other measures as vehicle weight reduction or air- and tire-resistance reduction, because such measures would also benefit conventional technology vehicles. The analysis starts with understanding the energy inefficiencies of light-duty vehicles associated with different operation modes in US and Japanese urban and highway driving cycles, with the corresponding energy-saving potentials. The potential for fuel economy gains due to vehicle hybridization can be estimated almost exclusively on the basis of three elements: the reducibility of engine idling operation, the recoverability of braking energy losses, and the capability of improving engine load profiles to gain efficiency associated with specific HEV configurations and control strategies. Specifically, we evaluate the energy efficiencies and fuel economies of a baseline MY97 Corolla-like conventional vehicle (CV), a hypothetical Corolla-based minimal hybrid vehicle (MHV), and a MY98 Prius-like full hybrid vehicle (FHV). We then estimate energy benefits of both MHVs and FHVs over CVs on a performance-equivalent basis. We conclude that the energy benefits of hybridization vary not only with test cycles, but also with performance requirements. The hybrid benefits are greater for ''Corolla (high) performance-equivalent'' vehicles than for ''Prius (low) performance-equivalent'' vehicles. An increasing acceleration requirement would result in larger fuel economy benefits from vehicle hybridization.

  11. Motor Fuel Excise Taxes (Fact Sheet), NREL (National Renewable Energy Laboratory)

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Motor Fuel Excise Taxes A new report from the National Renewable Energy Laboratory (NREL) explores the role of alternative fuels and energy efficient vehicles in motor fuel taxes. Throughout the United States, it is common practice for federal, state, and local governments to tax motor fuels on a per gallon basis to fund construction and maintenance of our transportation infrastructure. In recent years, however, expenses have outpaced revenues-creating substantial funding shortfalls that have

  12. Fuel cell power system for utility vehicle

    SciTech Connect (OSTI)

    Graham, M.; Barbir, F.; Marken, F.; Nadal, M.

    1996-12-31

    Based on the experience of designing and building the Green Car, a fuel cell/battery hybrid vehicle, and Genesis, a hydrogen/oxygen fuel cell powered transporter, Energy Partners has developed a fuel cell power system for propulsion of an off-road utility vehicle. A 10 kW hydrogen/air fuel cell stack has been developed as a prototype for future mass production. The main features of this stack are discussed in this paper. Design considerations and selection criteria for the main components of the vehicular fuel cell system, such as traction motor, air compressor and compressor motor, hydrogen storage and delivery, water and heat management, power conditioning, and control and monitoring subsystem are discussed in detail.

  13. Simple cost model for EV traction motors

    SciTech Connect (OSTI)

    Cuenca, R.M.

    1995-02-01

    A simple cost model has been developed that allows the calculation of the OEM cost of electric traction motors of three different types, normalized as a function of power in order to accommodate different power and size. The model includes enough information on the various elements integrated in the motors to allow analysis of individual components and to factor-in the effects of changes in commodities prices. A scalable cost model for each of the main components of an electric vehicle (EV) is a useful tool that can have direct application in computer simulation or in parametric studies. For the cost model to have wide usefulness, it needs to be valid for a range of values of some parameter that determines the magnitude or size of the component. For instance, in the case of batteries, size may be determined by energy capacity, usually expressed in kilowatt-hours (kWh), while in the case of traction motors, size is better determined by rated power, usually expressed in kilowatts (kW). The simplest case is when the cost of the component in question is a direct function of its size; then cost is simply the product of its specific cost ($/unit size) and the number of units (size) in the vehicle in question. Batteries usually fall in this category (cost = energy capacity x $/kWh). But cost is not always linear with size or magnitude; motors (and controllers), for instance, become relatively less expensive as power rating increases. Traction motors, one of the main components for EV powertrains are examined in this paper, and a simplified cost model is developed for the three most popular design variations.

  14. Vehicles | Open Energy Information

    Open Energy Info (EERE)

    our nation's growing reliance on imported oil by running our vehicles on renewable and alternative fuels. Advanced vehicles and fuels can also put the brakes on air pollution...

  15. Vehicle Technologies Office Merit Review 2014: Validation of Material Models for Automotive Carbon Fiber Composite Structures

    Broader source: Energy.gov [DOE]

    Presentation given by General Motors at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about validation of material models...

  16. Vehicle Technologies Office Merit Review 2015: Development of Computer-Aided Design Tools for Automotive Batteries

    Broader source: Energy.gov [DOE]

    Presentation given by General Motors at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about development of computer-aided...

  17. Vehicle Technologies Office Merit Review 2014: Development of Computer-Aided Design Tools for Automotive Batteries

    Broader source: Energy.gov [DOE]

    Presentation given by General Motors at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about development of computer-aided...

  18. Fact #790: July 29, 2013 States Beginning to Tax Electric Vehicles for Road Use

    Broader source: Energy.gov [DOE]

    The maintenance of our highways has traditionally been funded from a combination or Federal and state taxes collected at the pump from the sale of motor fuels. Because electric vehicles (EVs) do...

  19. Vehicle Technologies Office Merit Review 2015: Polyalkylene Glycol (PAG) Based Lubricant for Light & Medium Duty Axles

    Broader source: Energy.gov [DOE]

    Presentation given by Ford Motor Company at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about polyalkylene glycol (PAG)...

  20. Vehicle Technologies Office Merit Review 2014: Fuel Properties to Enable Lifted Flame Combustion

    Broader source: Energy.gov [DOE]

    Presentation given by Ford Motor Company at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about fuel properties to enable...

  1. Fact #685: July 25, 2011 Reasons for Buying a Plug-in Hybrid Vehicle

    Broader source: Energy.gov [DOE]

    General Motors has been gathering feedback from customers who purchased the 2011 Chevrolet Volt, which is the only plug-in hybrid vehicle (PHEV) on the market today. Through May 2011, about 2,100...

  2. A Vehicle Manufacturer’s Perspective on Higher-Octane Fuels

    Broader source: Energy.gov [DOE]

    Breakout Session 1C—Fostering Technology Adoption I: Building the Market for Renewables with High Octane Fuels A Vehicle Manufacturer’s Perspective on Higher-Octane Fuels Tom Leone, Technical Expert, Powertrain Evaluation and Analysis, Ford Motor Company

  3. Fact #841: October 6, 2014 Vehicles per Thousand People: U.S. vs. Other World Regions

    Office of Energy Efficiency and Renewable Energy (EERE)

    The graphs below show the number of motor vehicles per thousand people for select countries and regions. The data for the United States are displayed in the line which goes from 1900 to 2012. The...

  4. Fourth annual report to Congress, Federal Alternative Motor Fuels Programs

    SciTech Connect (OSTI)

    1995-07-01

    This annual report to Congress presents the current status of the alternative fuel vehicle programs being conducted across the country in accordance with the Alternative Motor Fuels Act of 1988. These programs, which represent the most comprehensive data collection effort ever undertaken on alternative fuels, are beginning their fifth year. This report summarizes tests and results from the fourth year.

  5. ORNL Lightweighting Research Featured on MotorWeek

    ScienceCinema (OSTI)

    None

    2014-06-03

    PBS MotorWeek, television's longest running automotive series, featured ORNL lightweighting research for vehicle applications in an episode that aired in early April 2014. The crew captured footage of research including development of new metal alloys, additive manufacturing, carbon fiber production, advanced batteries, power electronics components, and neutron imaging applications for materials evaluation.

  6. ORNL Lightweighting Research Featured on MotorWeek

    SciTech Connect (OSTI)

    2014-04-15

    PBS MotorWeek, television's longest running automotive series, featured ORNL lightweighting research for vehicle applications in an episode that aired in early April 2014. The crew captured footage of research including development of new metal alloys, additive manufacturing, carbon fiber production, advanced batteries, power electronics components, and neutron imaging applications for materials evaluation.

  7. vehicles | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    vehicles Bay Area national labs team to tackle long-standing automotive hydrogen storage challenge Sandia National Laboratories chemist Mark Allendorf, shown here at Berkeley Lab's Advanced Light Source facility, is leading the Hydrogen Materials - Advanced Research Consortium (HyMARC) to advance solid-state materials for onboard hydrogen storage. Sandia National Laboratories will lead a new tri... Nevada National Security Site operator recognized for green fleet The management and operating

  8. Electric vehicle drive train with contactor protection

    DOE Patents [OSTI]

    Konrad, Charles E.; Benson, Ralph A.

    1994-01-01

    A drive train for an electric vehicle includes a traction battery, a power drive circuit, a main contactor for connecting and disconnecting the traction battery and the power drive circuit, a voltage detector across contacts of the main contactor, and a controller for controlling the main contactor to prevent movement of its contacts to the closed position when the voltage across the contacts exceeds a predetermined threshold, to thereby protect the contacts of the contactor. The power drive circuit includes an electric traction motor and a DC-to-AC inverter with a capacitive input filter. The controller also inhibits the power drive circuit from driving the motor and thereby discharging the input capacitor if the contacts are inadvertently opened during motoring. A precharging contactor is controlled to charge the input filter capacitor prior to closing the main contactor to further protect the contacts of the main contactor.

  9. Electric vehicle drive train with contactor protection

    DOE Patents [OSTI]

    Konrad, C.E.; Benson, R.A.

    1994-11-29

    A drive train for an electric vehicle includes a traction battery, a power drive circuit, a main contactor for connecting and disconnecting the traction battery and the power drive circuit, a voltage detector across contacts of the main contactor, and a controller for controlling the main contactor to prevent movement of its contacts to the closed position when the voltage across the contacts exceeds a predetermined threshold, to thereby protect the contacts of the contactor. The power drive circuit includes an electric traction motor and a DC-to-AC inverter with a capacitive input filter. The controller also inhibits the power drive circuit from driving the motor and thereby discharging the input capacitor if the contacts are inadvertently opened during motoring. A precharging contactor is controlled to charge the input filter capacitor prior to closing the main contactor to further protect the contacts of the main contactor. 3 figures.

  10. Method and apparatus for large motor control

    DOE Patents [OSTI]

    Rose, Chris R.; Nelson, Ronald O.

    2003-08-12

    Apparatus and method for providing digital signal processing method for controlling the speed and phase of a motor involves inputting a reference signal having a frequency and relative phase indicative of a time based signal; modifying the reference signal to introduce a slew-rate limited portion of each cycle of the reference signal; inputting a feedback signal having a frequency and relative phase indicative of the operation of said motor; modifying the feedback signal to introduce a slew-rate limited portion of each cycle of the feedback signal; analyzing the modified reference signal and the modified feedback signal to determine the frequency of the modified reference signal and of the modified feedback signal and said relative phase between said modified reference signal and said modified feedback signal; and outputting control signals to the motor for adjusting said speed and phase of the motor based on the frequency determination and determination of the relative phase.

  11. Urea SCR and DPF System for Diesel Sport Utility Vehicle Meeting Tier II

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bin 5 DOE and Ford Motor Company Advanced CIDI Emission Control System Development Program (DE-FC26-01NT41103) | Department of Energy 4 Diesel Engine Emissions Reduction (DEER) Conference Presentation: Ford Motor Company 2004_deer_hammerle.pdf (444.2 KB) More Documents & Publications Urea SCR and DPF System for Deisel Sport Utility Vehicle Meeting Tier II Bin 5 Urea SCR and DPF System for Diesel Sport Utility Vehicle Meeting Tier II Bin 5

  12. Vehicle Technologies Office: 2014 Electric Drive Technologies Annual

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Progress Report | Department of Energy Electric Drive Technologies Annual Progress Report Vehicle Technologies Office: 2014 Electric Drive Technologies Annual Progress Report The Electric Drive Technologies research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies under development. Research is focused on developing power electronics (PE), electric motor, and traction drive system

  13. When to Purchase Premium Efficiency Motors

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Premium Efficiency Motors Consider premium effciency motors for new motor procurements when specifying motor-driven equipment, repairing or rewinding failed standard effciency ...

  14. Challenges for the vehicle tester in characterizing hybrid electric vehicles

    SciTech Connect (OSTI)

    Duoba, M.

    1997-08-01

    Many problems are associated with applying test methods, like the Federal Test Procedure (FTP), for HEVs. Although there has been considerable progress recently in the area of HEV test procedure development, many challenges are still unsolved. A major hurdle to overcoming the challenges of developing HEV test procedures is the lack of HEV designs available for vehicle testing. Argonne National Laboratory has tested hybrid electric vehicles (HEVs) built by about 50 colleges and universities from 1994 to 1997 in annual vehicle engineering competitions sponsored in part by the U.S. Department of Energy (DOE). From this experience, the Laboratory has gathered information about the basics of HEV testing and issues important to successful characterization of HEVs. A collaboration between ANL and the Society of Automotive Engineer`s (SAE) HEV Test Procedure Task Force has helped guide the development of test protocols for their proposed procedures (draft SAE J1711) and test methods suited for DOE vehicle competitions. HEVs use an electrical energy storage device, which requires that HEV testing include more time and effort to deal with the effects of transient energy storage as the vehicle is operating in HEV mode. HEV operation with electric-only capability can be characterized by correcting the HEV mode data using results from electric-only operation. HEVs without electric-only capability require multiple tests conducted to form data correlations that enable the tester to find the result that corresponds to a zero net change in SOC. HEVs that operate with a net depletion of charge cannot be corrected for battery SOC and are characterized with emissions and fuel consumption results coupled with the electrical energy usage rate. 9 refs., 8 figs.

  15. Variable current speed controller for eddy current motors

    DOE Patents [OSTI]

    Gerth, H.L.; Bailey, J.M.; Casstevens, J.M.; Dixon, J.H.; Griffith, B.O.; Igou, R.E.

    1982-03-12

    A speed control system for eddy current motors is provided in which the current to the motor from a constant frequency power source is varied by comparing the actual motor speed signal with a setpoint speed signal to control the motor speed according to the selected setpoint speed. A three-phase variable voltage autotransformer is provided for controlling the voltage from a three-phase power supply. A corresponding plurality of current control resistors is provided in series with each phase of the autotransformer output connected to inputs of a three-phase motor. Each resistor is connected in parallel with a set of normally closed contacts of plurality of relays which are operated by control logic. A logic circuit compares the selected speed with the actual motor speed obtained from a digital tachometer monitoring the motor spindle speed and operated the relays to add or substract resistance equally in each phase of the motor input to vary the motor current to control the motor at the selected speed.

  16. Heavy Vehicle Simulator

    SciTech Connect (OSTI)

    2015-03-09

    Idaho National Laboratory Heavy Vehicle Simulator located at the Center for Advanced Energy Studies.

  17. Propane Vehicle Basics

    Broader source: Energy.gov [DOE]

    There are more than 147,000 on-road propane vehicles in the United States. Many are used in fleets, including light- and heavy-duty trucks, buses, taxicabs, police cars, and rental and delivery vehicles. Compared with vehicles fueled with conventional diesel and gasoline, propane vehicles can produce fewer harmful emissions.

  18. Hickam Air Force Base Fuel Cell Vehicles: Early Implementation Experience

    Office of Energy Efficiency and Renewable Energy (EERE)

    This report sumarizes early implementation experience from an evaluation of two prototype fuel cell vehicles operating at Hickam Air Force Base in Honolulu, Hawaii.

  19. Status of Segmented Element Thermoelectric Generator for Vehicle...

    Broader source: Energy.gov (indexed) [DOE]

    Discusses progress of thermoelectric generator development at BSST and assessment of potential to enter commercial operation in vehicles crane.pdf (2.32 MB) More Documents & ...

  20. Now Available: Evaluating Electric Vehicle Charging Impacts and...

    Broader source: Energy.gov (indexed) [DOE]

    Under OE's Smart Grid Investment Grant (SGIG) program, six utilities evaluated operations and customer charging behaviors for in-home and public electric vehicle charging stations. ...

  1. Evaluating Electric Vehicle Charging Impacts and Customer Charging...

    Office of Environmental Management (EM)

    Under OE's Smart Grid Investment Grant (SGIG) program, six utilities evaluated operations and customer charging behaviors for in-home and public electric vehicle charging stations. ...

  2. Registrations and vehicle miles of travel of light duty vehicles, 1985--1995

    SciTech Connect (OSTI)

    Hu, P.S.; Davis, S.C.; Schmoyer, R.L.

    1998-02-01

    To obtain vehicle registration data that consistently and accurately reflect the distinction between automobiles and light-duty trucks, Oak Ridge National Laboratory (ORNL) was asked by FHWA to estimate the current and historical vehicle registration numbers of automobiles and of other two-axle four-tire vehicles (i.e., light-duty trucks), and their associated travel. The term automobile is synonymous with passenger car. Passenger cars are defined as all sedans, coupes, and station wagons manufactured primarily for the purpose of carrying passengers. This includes taxicabs, rental cars, and ambulances and hearses on an automobile chassis. Light-duty trucks refer to all two-axle four-tire vehicles other than passenger cars. They include pickup trucks, panel trucks, delivery and passenger vans, and other vehicles such as campers, motor homes, ambulances on a truck chassis, hearses on a truck chassis, and carryalls. In this study, light-duty trucks include four major types: (1) pickup truck, (2) van, (3) sport utility vehicle, and (4) other 2-axle 4-tire truck. Specifically, this project re-estimates statistics that appeared in Tables MV-1 and MV-9 of the 1995 Highway Statistics. Given the complexity of the approach developed in this effort and the incompleteness and inconsistency of the state-submitted data, it is recommended that alternatives be considered by FHWA to obtain vehicle registration data. One alternative is the Polk`s NVPP data (via the US Department of Transportation`s annual subscription to Polk). The second alternative is to obtain raw registration files from individual states` Departments of Motor Vehicles and to decode individual VINs.

  3. Dynein Motor Domain Shows Ring-Shaped Motor, Buttress

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dynein Motor Domain Shows Ring-Shaped Motor, Buttress Dynein Motor Domain Shows Ring-Shaped Motor, Buttress Print Monday, 28 November 2011 14:52 Movement is fundamental to life. It takes place even at the cellular level where cargo is continually being transported by motor proteins. These tiny machines convert the energy gained from hydrolysing ATP into a series of small conformational changes that allow them to literally "walk" along microscopic tracks. Motor proteins (in the kinesin

  4. Aging assessment of large electric motors in nuclear power plants

    SciTech Connect (OSTI)

    Villaran, M.; Subudhi, M.

    1996-03-01

    Large electric motors serve as the prime movers to drive high capacity pumps, fans, compressors, and generators in a variety of nuclear plant systems. This study examined the stressors that cause degradation and aging in large electric motors operating in various plant locations and environments. The operating history of these machines in nuclear plant service was studied by review and analysis of failure reports in the NPRDS and LER databases. This was supplemented by a review of motor designs, and their nuclear and balance of plant applications, in order to characterize the failure mechanisms that cause degradation, aging, and failure in large electric motors. A generic failure modes and effects analysis for large squirrel cage induction motors was performed to identify the degradation and aging mechanisms affecting various components of these large motors, the failure modes that result, and their effects upon the function of the motor. The effects of large motor failures upon the systems in which they are operating, and on the plant as a whole, were analyzed from failure reports in the databases. The effectiveness of the industry`s large motor maintenance programs was assessed based upon the failure reports in the databases and reviews of plant maintenance procedures and programs.

  5. Stepping motor controller

    DOE Patents [OSTI]

    Bourret, S.C.; Swansen, J.E.

    1982-07-02

    A stepping motor is microprocessor controlled by digital circuitry which monitors the output of a shaft encoder adjustably secured to the stepping motor and generates a subsequent stepping pulse only after the preceding step has occurred and a fixed delay has expired. The fixed delay is variable on a real-time basis to provide for smooth and controlled deceleration.

  6. Stepping motor controller

    DOE Patents [OSTI]

    Bourret, Steven C.; Swansen, James E.

    1984-01-01

    A stepping motor is microprocessingly controlled by digital circuitry which monitors the output of a shaft encoder adjustably secured to the stepping motor and generates a subsequent stepping pulse only after the preceding step has occurred and a fixed delay has expired. The fixed delay is variable on a real-time basis to provide for smooth and controlled deceleration.

  7. Vehicle Technologies Office Merit Review 2014: Computational design and development of a new, lightweight cast alloy for advanced cylinder heads in high-efficiency, light-duty engines FOA 648-3a

    Broader source: Energy.gov [DOE]

    Presentation given by General Motors at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about computational design and...

  8. Improve Motor System Performance with MotorMaster+

    SciTech Connect (OSTI)

    2010-08-01

    Fact sheet describes how industrial plants can improve their motor system performance using DOE-AMO's MotorMaster+ software tool.

  9. OIT Forest Products Motor Challenge Industry Profile: Motor System...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... ANNUAL MOTOR SYSTEM ELECTRICITY SAVINGS FOR SIC 26 The greatest opportunities for motor system savings are in the pump systems, particularly for substituting speed control for ...

  10. BSA Motors | Open Energy Information

    Open Energy Info (EERE)

    BSA Motors Jump to: navigation, search Name: BSA Motors Place: India Product: India-based maker of 2-wheel electric scooters. References: BSA Motors1 This article is a stub. You...

  11. Energy Storage Systems Considerations for Grid-Charged Hybrid Electric Vehicles: Preprint

    SciTech Connect (OSTI)

    Markel, T.; Simpson, A.

    2005-09-01

    This paper calculates battery power and energy requirements for grid-charged hybrid electric vehicles (HEVs) with different operating strategies.

  12. Motor torque compensation of an induction electric motor by adjusting a slip command during periods of supposed change in motor temperature

    DOE Patents [OSTI]

    Kelledes, William L.; St. John, Don K.

    1992-01-01

    The present invention maintains constant torque in an inverter driven AC induction motor during variations in rotor temperature. It is known that the torque output of a given AC induction motor is dependent upon rotor temperature. At rotor temperatures higher than the nominal operating condition the rotor impedance increases, reducing the rotor current and motor torque. In a similar fashion, the rotor impedance is reduced resulting in increased rotor current and motor torque when the rotor temperature is lower than the nominal operating condition. The present invention monitors the bus current from the DC supply to the inverter and adjusts the slip frequency of the inverter drive to maintain a constant motor torque. This adjustment is based upon whether predetermined conditions implying increased rotor temperature or decreased rotor temperature exist for longer that a predetermined interval of time.

  13. Flexible Fuel Vehicles: Providing a Renewable Fuel Choice (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-03-01

    Flexible Fuel vehicles are able to operate using more than one type of fuel. FFVs can be fueled with unleaded gasoline, E85, or any combination of the two. Today more than 7 million vehicles on U.S. highways are flexible fuel vehicles. The fact sheet discusses how E85 affects vehicle performance, the costs and benefits of using E85, and how to find E85 station locations.

  14. Motor Thermal Control

    Broader source: Energy.gov [DOE]

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  15. AQWON Motors | Open Energy Information

    Open Energy Info (EERE)

    search Name: AQWON-Motors Place: Speinshart, Germany Zip: 92676 Sector: Hydro, Hydrogen Product: AQWON-Motors has developed the first hydrogen powered 2 stroke-engine...

  16. Brandl Motor | Open Energy Information

    Open Energy Info (EERE)

    Brandl Motor Jump to: navigation, search Name: Brandl Motor Address: Calvinstr 24 Place: Berlin Zip: 10557 Region: Germany Sector: Marine and Hydrokinetic Phone Number: +49 30 39...

  17. Motor VFDs | Open Energy Information

    Open Energy Info (EERE)

    VFDs Jump to: navigation, search TODO: Add description List of Motor VFDs Incentives Retrieved from "http:en.openei.orgwindex.php?titleMotorVFDs&oldid521368" Feedback...

  18. New Methodology for Estimating Fuel Economy by Vehicle Class

    SciTech Connect (OSTI)

    Chin, Shih-Miao; Dabbs, Kathryn; Hwang, Ho-Ling

    2011-01-01

    Office of Highway Policy Information to develop a new methodology to generate annual estimates of average fuel efficiency and number of motor vehicles registered by vehicle class for Table VM-1 of the Highway Statistics annual publication. This paper describes the new methodology developed under this effort and compares the results of the existing manual method and the new systematic approach. The methodology developed under this study takes a two-step approach. First, the preliminary fuel efficiency rates are estimated based on vehicle stock models for different classes of vehicles. Then, a reconciliation model is used to adjust the initial fuel consumption rates from the vehicle stock models and match the VMT information for each vehicle class and the reported total fuel consumption. This reconciliation model utilizes a systematic approach that produces documentable and reproducible results. The basic framework utilizes a mathematical programming formulation to minimize the deviations between the fuel economy estimates published in the previous year s Highway Statistics and the results from the vehicle stock models, subject to the constraint that fuel consumptions for different vehicle classes must sum to the total fuel consumption estimate published in Table MF-21 of the current year Highway Statistics. The results generated from this new approach provide a smoother time series for the fuel economies by vehicle class. It also utilizes the most up-to-date and best available data with sound econometric models to generate MPG estimates by vehicle class.

  19. Improve Motor System Efficiency for a Broad Range of Motors with MotorMaster+ International

    SciTech Connect (OSTI)

    2005-05-01

    Available at no charge, MotorMaster+ International is designed to support motor systems improvement planning at industrial facilities by identifying the most cost-effective choice when deciding to repair or replace older motor models.

  20. Reactor coolant pump testing using motor current signatures analysis

    SciTech Connect (OSTI)

    Burstein, N.; Bellamy, J.

    1996-12-01

    This paper describes reactor coolant pump motor testing carried out at Florida Power Corporation`s Crystal River plant using Framatome Technologies` new EMPATH (Electric Motor Performance Analysis and Trending Hardware) system. EMPATH{trademark} uses an improved form of Motor Current Signature Analysis (MCSA), technology, originally developed at Oak Ridge National Laboratories, for detecting deterioration in the rotors of AC induction motors. Motor Current Signature Analysis (MCSA) is a monitoring tool for motor driven equipment that provides a non-intrusive means for detecting the presence of mechanical and electrical abnormalities in the motor and the driven equipment. The base technology was developed at the Oak Ridge National Laboratory as a means for determining the affects of aging and service wear specifically on motor-operated valves used in nuclear power plant safety systems, but it is applicable to a broad range of electric machinery. MCSA is based on the recognition that an electric motor (ac or dc) driving a mechanical load acts as an efficient and permanently available transducer by sensing mechanical load variations, large and small, long-term and rapid, and converting them into variations in the induced current generated in the motor windings. The motor current variations, resulting from changes in load caused by gears, pulleys, friction, bearings, and other conditions that may change over the life of the motor, are carried by the electrical cables powering the motor and are extracted at any convenient location along the motor lead. These variations modulate the 60 Hz carrier frequency and appear as sidebands in the spectral plot.

  1. Demonstration of Alternative Fuel, Light and Heavy Duty Vehicles in State and Municipal Vehicle Fleets

    SciTech Connect (OSTI)

    Kennedy, John H.; Polubiatko, Peter; Tucchio, Michael A.

    2002-02-06

    This project involved the purchase of two Compressed Natural Gas School Buses and two electric Ford Rangers to demonstrate their viability in a municipal setting. Operational and maintenance data were collected for analysis. In addition, an educational component was undertaken with middle school children. The children observed and calculated how electric vehicles could minimize pollutants through comparison to conventionally powered vehicles.

  2. Boost Converters for Gas Electric and Fuel Cell Hybrid Electric Vehicles

    SciTech Connect (OSTI)

    McKeever, JW

    2005-06-16

    Hybrid electric vehicles (HEVs) are driven by at least two prime energy sources, such as an internal combustion engine (ICE) and propulsion battery. For a series HEV configuration, the ICE drives only a generator, which maintains the state-of-charge (SOC) of propulsion and accessory batteries and drives the electric traction motor. For a parallel HEV configuration, the ICE is mechanically connected to directly drive the wheels as well as the generator, which likewise maintains the SOC of propulsion and accessory batteries and drives the electric traction motor. Today the prime energy source is an ICE; tomorrow it will very likely be a fuel cell (FC). Use of the FC eliminates a direct drive capability accentuating the importance of the battery charge and discharge systems. In both systems, the electric traction motor may use the voltage directly from the batteries or from a boost converter that raises the voltage. If low battery voltage is used directly, some special control circuitry, such as dual mode inverter control (DMIC) which adds a small cost, is necessary to drive the electric motor above base speed. If high voltage is chosen for more efficient motor operation or for high speed operation, the propulsion battery voltage must be raised, which would require some type of two-quadrant bidirectional chopper with an additional cost. Two common direct current (dc)-to-dc converters are: (1) the transformer-based boost or buck converter, which inverts a dc voltage, feeds the resulting alternating current (ac) into a transformer to raise or lower the voltage, and rectifies it to complete the conversion; and (2) the inductor-based switch mode boost or buck converter [1]. The switch-mode boost and buck features are discussed in this report as they operate in a bi-directional chopper. A benefit of the transformer-based boost converter is that it isolates the high voltage from the low voltage. Usually the transformer is large, further increasing the cost. A useful feature

  3. Vehicle Technologies Office: Advanced Vehicle Testing Activity...

    Energy Savers [EERE]

    The Vehicle Technologies Office (VTO) supports work to develop test procedures and carry ... The standard procedures and test specifications are used to test and collect data from ...

  4. Electric Drive Vehicle Demonstration and Vehicle Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon arravt066vsskarner2011

  5. Electric Drive Vehicle Demonstration and Vehicle Infrastructure...

    Broader source: Energy.gov (indexed) [DOE]

    2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon arravt066vsskarner2012

  6. Smith Electric Vehicles: Advanced Vehicle Electrification + Transporta...

    Broader source: Energy.gov (indexed) [DOE]

    1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation arravt072vssmackie2011o.pdf (335.31 KB

  7. Energy efficient motor application

    SciTech Connect (OSTI)

    Koenig, S.R.

    1999-01-20

    Motor driven processes represent a large portion of the energy consumption in the United States and, as a result, present a large opportunity for energy savings. Energy efficient motors reduce energy use and will see wider implementation as the impact of the Energy Policy Act of 1992 is felt. These motors are made possible by design and material improvements without compromising reliability, quality, or performance. One drawback is their potential for nuisance tripping due to a high inrush current at starting. Solutions do exist to this problem. Economics also play a large role in energy efficient motor application. The cost of repairing a motor or installing a new machine as well as any utility rebates determine if the efficient motor price premium is offset by energy savings. Other issues such as adjustable speed drives, belts and supply voltage affect efficiency as well. Several industry examples demonstrate the potential results. A thorough understanding of these factors show the energy efficient motor can be a good choice for most applications.

  8. Vehicle Technologies Office Merit Review 2015: Vehicle Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Technologies Office Overview Vehicle Technologies Office Merit Review 2015: Vehicle Technologies Office Overview Presentation given by U.S. Department of Energy at 2015 DOE ...

  9. Next generation of underwater vehicles

    SciTech Connect (OSTI)

    Winchester, R.G.J.

    1995-11-01

    The needs of undersea defense, and indeed those of the scientific community, overlap those of the offshore oil and gas industry, not least when it comes to subsea operations. They share problems encountered in the design and use of unmanned underwater vehicles, particularly in relation to reliability, efficiency, cost-effectiveness, and capabilities. The U.K. Marine Technology Directorate Ltd. (MTD) is managing a research program - Technology for Unmanned Underwater Vehicles (TUUV) - formulated with the particular aim of solving the problems identified by industry in relation to the operation of UUVs. The overall goal of the first three TUUV phases is to provide a convincing demonstration that the production of such advanced systems is practical, credible and cost-effective. Despite the advances in TUUV1, discussions with operators and program participants show that broad concerns over vehicle operations remain. TUUV2 and TUUV3 will transform the current purely technical and largely independent projects into an integrated concept demonstration that will justify the mainly industrial investment needed to make TUUV4 a reality in time for the millennium.

  10. Selected Bibliography on Electric Motor Repair

    Office of Energy Efficiency and Renewable Energy (EERE)

    The following series of repair documents related to electric motors were produced by the U.S. Department of Energy's Advanced Manufacturing Office (formerly the Office of Industrial Technologies) with input from trade associations, consulting companies, manufacturers, non-profit operations, and others.

  11. MOtor Vehicle Emission Simulator (MOVES) | Open Energy Information

    Open Energy Info (EERE)

    of low-emission development strategies (LEDS). Key Outputs Greenhouse gas and air toxic emissions. How to Use This Tool Training Available Training available at http:...

  12. Motor Vehicle Emission Simulator (MOVES) 2010: User Guide (EPA...

    National Nuclear Security Administration (NNSA)

    ... Users may wish to leave it blank. 2.2.9.5 Saving and Transferring Strategy Files ... Using the File menu to save and open RunSpecs automatically saves and loads the Strategies ...

  13. Motor Vehicle Emission Simulator (MOVES) 2010: User Guide (EPA...

    National Nuclear Security Administration (NNSA)

    ... MOVES2010 is intended for official use. Please see the MOVES2010 policy statement available on the EPA's MOVES web site http:www.epa.govotaqmodelsmovesindex.htm for EPA's ...

  14. Motor Vehicle Emission Simulator (MOVES) | Open Energy Information

    Open Energy Info (EERE)

    AgencyCompany Organization: United States Environmental Protection Agency Sector: Energy Focus Area: Transportation Topics: GHG inventory Resource Type: Softwaremodeling...

  15. Voltage Vehicles | Open Energy Information

    Open Energy Info (EERE)

    distributor specializing in the full spectrum of electric vehicles (EV) and full-performance alternative fuel vehicles (AFV). References: Voltage Vehicles1 This article is a...

  16. Fleet Vehicles | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fleet Vehicles General Information: The Materials and Transportation Fleet Vehicle section provides acquisition, utilization and maintenance records, and disposal of vehicles used...

  17. MotorMaster+ Tool | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    MotorMaster+ Tool MotorMaster+ Tool This presentation discusses industrial motor systems and introduces the MotorMaster+ Tool Suite. MotorMaster+ Tool Presentation (March 19, 2009) ...

  18. System and method for motor parameter estimation

    DOE Patents [OSTI]

    Luhrs, Bin; Yan, Ting

    2014-03-18

    A system and method for determining unknown values of certain motor parameters includes a motor input device connectable to an electric motor having associated therewith values for known motor parameters and an unknown value of at least one motor parameter. The motor input device includes a processing unit that receives a first input from the electric motor comprising values for the known motor parameters for the electric motor and receive a second input comprising motor data on a plurality of reference motors, including values for motor parameters corresponding to the known motor parameters of the electric motor and values for motor parameters corresponding to the at least one unknown motor parameter value of the electric motor. The processor determines the unknown value of the at least one motor parameter from the first input and the second input and determines a motor management strategy for the electric motor based thereon.

  19. Improving Costs and Efficiency of PEM Fuel Cell Vehicles by Modifying the

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Surface of Stainless Steel Bipolar Plates - Energy Innovation Portal Hydrogen and Fuel Cell Hydrogen and Fuel Cell Find More Like This Return to Search Improving Costs and Efficiency of PEM Fuel Cell Vehicles by Modifying the Surface of Stainless Steel Bipolar Plates National Renewable Energy Laboratory Contact NREL About This Technology Technology Marketing SummaryFuel cell vehicles have the potential to reduce our dependence on foreign oil and lower emissions. Running the vehicle's motor

  20. MotorWeek

    ScienceCinema (OSTI)

    None

    2013-04-19

    In 2008, PBS's MotorWeek, television's original automotive magazine, visited Argonne's Transportation Technology R&D Center "to learn what it really takes to make clean power sources a viable reality."