Powered by Deep Web Technologies
Note: This page contains sample records for the topic "operable petroleum refineries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Directory of Operable Petroleum Refineries on Tables 38 and 39  

U.S. Energy Information Administration (EIA)

Directory of Operable Petroleum Refineries on Tables 38 and 39 Refiner State(s)aRefiner State(s)a.....Age Refining Inc ...

2

,"U.S. Production Capacity of Operable Petroleum Refineries"  

U.S. Energy Information Administration (EIA) Indexed Site

Production Capacity of Operable Petroleum Refineries" Production Capacity of Operable Petroleum Refineries" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Production Capacity of Operable Petroleum Refineries",11,"Annual",2013,"6/30/1982" ,"Release Date:","6/21/2013" ,"Next Release Date:","6/20/2014" ,"Excel File Name:","pet_pnp_capprod_dcu_nus_a.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_pnp_capprod_dcu_nus_a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov"

3

,"U.S. Downstream Charge Capacity of Operable Petroleum Refineries"  

U.S. Energy Information Administration (EIA) Indexed Site

Charge Capacity of Operable Petroleum Refineries" Charge Capacity of Operable Petroleum Refineries" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Downstream Charge Capacity of Operable Petroleum Refineries",32,"Annual",2013,"6/30/1982" ,"Release Date:","6/21/2013" ,"Next Release Date:","6/20/2014" ,"Excel File Name:","pet_pnp_capchg_dcu_nus_a.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_pnp_capchg_dcu_nus_a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov"

4

Table 39. Production Capacity of Operable Petroleum Refineries by State as of January 1, 2003  

U.S. Energy Information Administration (EIA) Indexed Site

State/Refiner/Location Alkylates Aromatics State/Refiner/Location Alkylates Aromatics Isobutane Lubricants Isomers Isopentane and Isohexane Asphalt and Road Oil Marketable Petroleum Coke Hydrogen (MMcfd) Sulfur (short tons per day) Table 4. Production Capacity of Operable Petroleum Refineries by State as of January 1, 2013 (Barrels per Stream Day, Except Where Noted) Isooctane a

5

Table 2. Production Capacity of Operable Petroleum Refineries by ...  

U.S. Energy Information Administration (EIA)

Includes hydrogen production capacity of hydrogen plants on refinery grounds. MMcfd = Million cubic feet per day. a ... (EIA), Form EIA-820, "Annual Refinery Report."

6

Directory of Operable Petroleum Refineries on Tables 38 and 39  

U.S. Energy Information Administration (EIA)

ExxonMobil Refining & Supply Co.....Joliet 28,000 0 10,700 0 0 0 18,500 0 660 Marathon Ashland Petroleum LLC ...

7

Table 39. Production Capacity of Operable Petroleum Refineries ...  

U.S. Energy Information Administration (EIA)

Flint Hills Resources LP.....Saint Paul 12,500 0 45,000 0 0 0 22,000 185 997 Marathon Petroleum Co LLC ...

8

Table 4. Production Capacity of Operable Petroleum Refineries by ...  

U.S. Energy Information Administration (EIA)

ExxonMobil Refining & Supply Co.....Baton Rouge 39,700 0 0 0 0 0 19,500 31,525 0 800 Marathon Petroleum Co LLC ...

9

Directory of Operable Petroleum Refineries on Tables 38 and 39  

U.S. Energy Information Administration (EIA)

ExxonMobil Refg & Supply Co. Billings..... 4,300 0 12,700 0 0 0 2,100 24 0 Alkylates Aromatics Asphalt and RoadOil Isomers Lubricants Marketable Petroleum Coke ...

10

Georgia Refinery Marketable Petroleum Coke Production Capacity ...  

U.S. Energy Information Administration (EIA)

Georgia Refinery Marketable Petroleum Coke Production Capacity as of January 1 (Barrels per Stream Day)

11

Minnesota Refinery Marketable Petroleum Coke Production ...  

U.S. Energy Information Administration (EIA)

Minnesota Refinery Marketable Petroleum Coke Production Capacity as of January 1 (Barrels per Stream Day)

12

Texas Number and Capacity of Petroleum Refineries  

U.S. Energy Information Administration (EIA)

Atmospheric Crude Oil Distillation Capacity : Operable ... Idle refineries represent refineries where distillation units were completely idle but not ...

13

Colorado Number and Capacity of Petroleum Refineries  

U.S. Energy Information Administration (EIA)

Atmospheric Crude Oil Distillation Capacity : Operable ... Idle refineries represent refineries where distillation units were completely idle but not ...

14

Opportunities for Biorenewables in Petroleum Refineries  

SciTech Connect

A presentation by UOP based on collaborative work from FY05 using some results from PNNL for upgrading biomass pyrolysis oil to petroleum refinery feedstock

Holmgren, Jennifer; Marinangelli, Richard; Marker, Terry; McCall, Michael; Petri, John; Czernik, Stefan; Elliott, Douglas C.; Shonnard, David

2007-02-01T23:59:59.000Z

15

Opportunities for Biorenewables in Petroleum Refineries  

Science Conference Proceedings (OSTI)

a summary of our collaborative 2005 project “Opportunities for Biorenewables in Petroleum Refineries” at the Rio Oil and Gas Conference this September.

Holmgren, Jennifer; Arena, Blaise; Marinangelli, Richard; McCall, Michael; Marker, Terry; Petri, John; Czernik, Stefan; Elliott, Douglas C.; Shonnard, David

2006-10-11T23:59:59.000Z

16

Energy efficiency improvement and cost saving opportunities for petroleum refineries  

E-Print Network (OSTI)

fuels in the graph. Source: Petroleum Supply Annual, Energypetroleum products, refineries are still a substantial sourceadded produced by petroleum refineries. Source: U.S. Census,

Worrell, Ernst; Galitsky, Christina

2005-01-01T23:59:59.000Z

17

Colorado Refinery Marketable Petroleum Coke Production Capacity as ...  

U.S. Energy Information Administration (EIA)

Colorado Refinery Marketable Petroleum Coke Production Capacity as of January 1 (Barrels per Stream Day)

18

U.S. Refinery Operable Capacity is Updated  

U.S. Energy Information Administration (EIA)

Released: March 28, 2012 Notice: Reported refinery operable capacity data shown in the Weekly Petroleum Status Report (WPSR) for the week-ended March 23, 2012, has ...

19

Petroleum refineries vary by level of complexity - Today in Energy ...  

U.S. Energy Information Administration (EIA)

A refinery is an industrial complex that manufactures petroleum products, such as gasoline, from crude oil and other feedstocks. Many different types of refineries ...

20

Updated estimation of energy efficiencies of U.S. petroleum refineries.  

SciTech Connect

Evaluation of life-cycle (or well-to-wheels, WTW) energy and emission impacts of vehicle/fuel systems requires energy use (or energy efficiencies) of energy processing or conversion activities. In most such studies, petroleum fuels are included. Thus, determination of energy efficiencies of petroleum refineries becomes a necessary step for life-cycle analyses of vehicle/fuel systems. Petroleum refinery energy efficiencies can then be used to determine the total amount of process energy use for refinery operation. Furthermore, since refineries produce multiple products, allocation of energy use and emissions associated with petroleum refineries to various petroleum products is needed for WTW analysis of individual fuels such as gasoline and diesel. In particular, GREET, the life-cycle model developed at Argonne National Laboratory with DOE sponsorship, compares energy use and emissions of various transportation fuels including gasoline and diesel. Energy use in petroleum refineries is key components of well-to-pump (WTP) energy use and emissions of gasoline and diesel. In GREET, petroleum refinery overall energy efficiencies are used to determine petroleum product specific energy efficiencies. Argonne has developed petroleum refining efficiencies from LP simulations of petroleum refineries and EIA survey data of petroleum refineries up to 2006 (see Wang, 2008). This memo documents Argonne's most recent update of petroleum refining efficiencies.

Palou-Rivera, I.; Wang, M. Q. (Energy Systems)

2010-12-08T23:59:59.000Z

Note: This page contains sample records for the topic "operable petroleum refineries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Wastewater reuse and recycle in petroleum refineries  

SciTech Connect

The objectives of this study were to identify feasible reuse and recycle techniques that can be successful in reducing wastewater discharge and to estimate their associated costs. Wastewater reduction is a fundamental aspect of the US EPA's proposed regulations for the petroleum refining industry. EPA undertook this study to confirm the cost estimates used in the proposed guidelines, to identify specific technologies, and to accurately assess their costs. Fifteen refineries were chosen to represent the range of refinery characteristics including crude capacity, process employed, and wastewater generation. Significant wastewater reductions were found possible at 12 refineries studied.

Langer, B.S.

1983-05-01T23:59:59.000Z

22

U.S. Refinery Marketable Petroleum Coke Production Capacity as ...  

U.S. Energy Information Administration (EIA)

U.S. Refinery Marketable Petroleum Coke Production Capacity as of January 1 (Barrels per Stream Day)

23

New Jersey Number and Capacity of Petroleum Refineries  

U.S. Energy Information Administration (EIA)

Atmospheric Crude Oil Distillation Capacity : Operable ... Idle refineries represent refineries where distillation units were completely idle but not ...

24

Energy efficiency improvement and cost saving opportunities for petroleum refineries  

E-Print Network (OSTI)

Aspropyrgos Refinery Combined Cycle Cogeneration System.refineries operate combined cycles with higher efficiencies.in an Integrated Gasifier Combined Cycle (IGCC). In this

Worrell, Ernst; Galitsky, Christina

2005-01-01T23:59:59.000Z

25

Poland petroleum refinery sludge lagoon demonstration project  

SciTech Connect

The US Department of Energy and the Institute for Ecology of Industrial Area have been working together to develop mutually beneficial, cost-effective environmental remediation technologies such as the demonstration of bioremediation techniques for the clean up of acidic petroleum sludge impacted soils at an oil refinery in southern Poland. After an expedited site characterization, treatability study, and a risk assessment study, a remediation strategy was devised. The waste material was composed primarily of high molecular weight paraffinic and polynuclear aromatic hydrocarbons. A biopile design which employed a combination of passive and active aeration in conjunction with nutrient and surfactant application as used to increase the biodegradation of the contaminants of concern.

Altman, D.J.

2000-05-05T23:59:59.000Z

26

Economic impact analysis for the petroleum refineries NESHAP. Final report  

Science Conference Proceedings (OSTI)

An economic analysis of the industries affected by the Petroleum Refineries National Emmissions Standard for Hazardous Air Pollutants (NESHAP) was completed in support of this standard. The industry for which economic impacts was computed was the petroleum refinery industry. Affected refineries must reduce HAP emissions by the level of control required in the standard. Several types of economic impacts, among them price product changes, output changes, job impacts, and effects on foriegn trade, were computed for the selected regulatory alternative.

NONE

1995-08-01T23:59:59.000Z

27

Indiana Number and Capacity of Petroleum Refineries  

U.S. Energy Information Administration (EIA)

Notes: Idle refineries represent refineries where distillation units were completely idle but not permanently shutdown as of January 1 of the year.

28

California Number and Capacity of Petroleum Refineries  

U.S. Energy Information Administration (EIA)

Notes: Idle refineries represent refineries where distillation units were completely idle but not permanently shutdown as of January 1 of the year.

29

Refinery Capacity Report - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Respondents are operators of all operating and idle petroleum refineries ... Sources & Uses Petroleum Coal Natural Gas Renewable Nuclear Electricity Consumption

30

Coal Use in Petroleum Refineries -- Opportunities and Issues  

Science Conference Proceedings (OSTI)

This report is a brief review of the technologies and key issues involved in considering the use of coal as a replacement, supplemental, or additional fuel in petroleum refineries.

2002-10-21T23:59:59.000Z

31

U.S. Petroleum Coke Consumed at Refineries (Thousand Barrels)  

U.S. Energy Information Administration (EIA)

U.S. Petroleum Coke Consumed at Refineries (Thousand Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1980's: ...

32

U.S. Petroleum Coke Stocks at Refineries (Thousand Barrels)  

U.S. Energy Information Administration (EIA)

U.S. Petroleum Coke Stocks at Refineries (Thousand Barrels) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 1993: 10,747: 11,072: 11,444: ...

33

North Carolina Refinery Operable Atmospheric Crude Oil ...  

U.S. Energy Information Administration (EIA)

North Carolina Refinery Operable Atmospheric Crude Oil Distillation Capacity as of January 1 (Barrels per Calendar Day)

34

Louisiana Number and Capacity of Petroleum Refineries  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Idle refineries ...

35

Michigan Number and Capacity of Petroleum Refineries  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Idle refineries ...

36

Delaware Number and Capacity of Petroleum Refineries  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Idle refineries ...

37

Washington Number and Capacity of Petroleum Refineries  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Idle refineries ...

38

Ohio Number and Capacity of Petroleum Refineries  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Idle refineries ...

39

Mississippi Number and Capacity of Petroleum Refineries  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Idle refineries ...

40

Utah Number and Capacity of Petroleum Refineries  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Idle refineries ...

Note: This page contains sample records for the topic "operable petroleum refineries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Montana Number and Capacity of Petroleum Refineries  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Idle refineries ...

42

Alaska Number and Capacity of Petroleum Refineries  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Idle refineries ...

43

Florida Number and Capacity of Petroleum Refineries  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Idle refineries ...

44

Nebraska Number and Capacity of Petroleum Refineries  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Idle refineries ...

45

Total Number of Operable Refineries  

U.S. Energy Information Administration (EIA) Indexed Site

Data Series: Total Number of Operable Refineries Number of Operating Refineries Number of Idle Refineries Atmospheric Crude Oil Distillation Operable Capacity (B/CD) Atmospheric Crude Oil Distillation Operating Capacity (B/CD) Atmospheric Crude Oil Distillation Idle Capacity (B/CD) Atmospheric Crude Oil Distillation Operable Capacity (B/SD) Atmospheric Crude Oil Distillation Operating Capacity (B/SD) Atmospheric Crude Oil Distillation Idle Capacity (B/SD) Vacuum Distillation Downstream Charge Capacity (B/SD) Thermal Cracking Downstream Charge Capacity (B/SD) Thermal Cracking Total Coking Downstream Charge Capacity (B/SD) Thermal Cracking Delayed Coking Downstream Charge Capacity (B/SD Thermal Cracking Fluid Coking Downstream Charge Capacity (B/SD) Thermal Cracking Visbreaking Downstream Charge Capacity (B/SD) Thermal Cracking Other/Gas Oil Charge Capacity (B/SD) Catalytic Cracking Fresh Feed Charge Capacity (B/SD) Catalytic Cracking Recycle Charge Capacity (B/SD) Catalytic Hydro-Cracking Charge Capacity (B/SD) Catalytic Hydro-Cracking Distillate Charge Capacity (B/SD) Catalytic Hydro-Cracking Gas Oil Charge Capacity (B/SD) Catalytic Hydro-Cracking Residual Charge Capacity (B/SD) Catalytic Reforming Charge Capacity (B/SD) Catalytic Reforming Low Pressure Charge Capacity (B/SD) Catalytic Reforming High Pressure Charge Capacity (B/SD) Catalytic Hydrotreating/Desulfurization Charge Capacity (B/SD) Catalytic Hydrotreating Naphtha/Reformer Feed Charge Cap (B/SD) Catalytic Hydrotreating Gasoline Charge Capacity (B/SD) Catalytic Hydrotreating Heavy Gas Oil Charge Capacity (B/SD) Catalytic Hydrotreating Distillate Charge Capacity (B/SD) Catalytic Hydrotreating Kerosene/Jet Fuel Charge Capacity (B/SD) Catalytic Hydrotreating Diesel Fuel Charge Capacity (B/SD) Catalytic Hydrotreating Other Distillate Charge Capacity (B/SD) Catalytic Hydrotreating Residual/Other Charge Capacity (B/SD) Catalytic Hydrotreating Residual Charge Capacity (B/SD) Catalytic Hydrotreating Other Oils Charge Capacity (B/SD) Fuels Solvent Deasphalting Charge Capacity (B/SD) Catalytic Reforming Downstream Charge Capacity (B/CD) Total Coking Downstream Charge Capacity (B/CD) Catalytic Cracking Fresh Feed Downstream Charge Capacity (B/CD) Catalytic Hydro-Cracking Downstream Charge Capacity (B/CD) Period:

46

U.S. Refinery Yield of Petroleum Coke (Percent)  

U.S. Energy Information Administration (EIA)

U.S. Refinery Yield of Petroleum Coke (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1990's: 4.3: 4.3: 4.3: ...

47

U.S. Refinery Yield of Petroleum Coke (Percent)  

U.S. Energy Information Administration (EIA)

U.S. Refinery Yield of Petroleum Coke (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 1993: 4.4: 4.6: 4.5: 4.3: 4.1: 4.2: 4.4: 4.3: ...

48

Alternative future environmental regulatory approaches for petroleum refineries.  

Science Conference Proceedings (OSTI)

Recently, many industrial, regulatory, and community leaders have expressed concern that the current environmental regulatory structure disregards multimedia environmental impacts, provides few incentives to develop and use new technologies, and fails to consider site-specific conditions. For the US petroleum refining industry, faced with the need to produce higher-quality fuels from poorer-quality feedstocks, such criticisms are expected to increase. This article offers two alternative environmental regulatory approaches for existing petroleum refineries to use in the future. These alternative approaches are multimedia in scope, provide for new technology development and use, and allow flexibility in the means for meeting environmental goals. They have been reviewed and critiqued by various stakeholders, including industry representatives, regulators, and local and national community and environmental organizations. The integration of stakeholder comments and findings of ongoing national and international regulatory reinvention efforts in the development of these approaches positions them for potential use by other industries in addition to petroleum refineries.

Elcock, D.; Gasper, J.; Moses, D. O.; Emerson, D.; Arguerro, R.; Environmental Assessment; DOE; Analytical Services, Inc.

2000-01-01T23:59:59.000Z

49

Guam Refinery Operable Atmospheric Crude Oil Distillation Capacity ...  

U.S. Energy Information Administration (EIA)

Guam Refinery Operable Atmospheric Crude Oil Distillation Capacity as of January 1 (Barrels per Calendar Day)

50

Tables - Refinery Capacity Report  

U.S. Energy Information Administration (EIA)

Tables: 1: Number and Capacity of Operable Petroleum Refineries by PAD District and State as of January 1, 2009: PDF: 2: Production Capacity of Operable ...

51

Oklahoma Refinery Catalytic Hydrotreating, Heavy Gas Oil ...  

U.S. Energy Information Administration (EIA)

Cat. Hydro. Heavy Gas Oil Downstream Charge Capacity (B/SD)y ; Oklahoma Downstream Charge Capacity of Operable Petroleum Refineries ...

52

Mississippi Refinery Catalytic Hydrotreating, Heavy Gas Oil ...  

U.S. Energy Information Administration (EIA)

Cat. Hydro. Heavy Gas Oil Downstream Charge Capacity (B/SD)y ; Mississippi Downstream Charge Capacity of Operable Petroleum Refineries ...

53

Refinery Capacity Report 2007  

Reports and Publications (EIA)

Data series include fuel, electricity, and steam purchased for consumption at the refinery; refinery receipts of crude oil by method of transportation; current and projected capacities for atmospheric crude oil distillation, downstream charge, production, and storage capacities. Respondents are operators of all operating and idle petroleum refineries (including new refineries under construction) and refineries shut down during the previous year, located in the 50 States, the District of Columbia, Puerto Rico, the Virgin Islands, Guam, and other U.S. possessions.

Information Center

2007-06-29T23:59:59.000Z

54

Refinery Capacity Report 2009  

Reports and Publications (EIA)

Data series include fuel, electricity, and steam purchased for consumption at the refinery; refinery receipts of crude oil by method of transportation; current and projected capacities for atmospheric crude oil distillation, downstream charge, production, and storage capacities. Respondents are operators of all operating and idle petroleum refineries (including new refineries under construction) and refineries shut down during the previous year, located in the 50 States, the District of Columbia, Puerto Rico, the Virgin Islands, Guam, and other U.S. possessions.

Information Center

2009-06-25T23:59:59.000Z

55

Refinery Capacity Report 2008  

Reports and Publications (EIA)

Data series include fuel, electricity, and steam purchased for consumption at the refinery; refinery receipts of crude oil by method of transportation; current and projected capacities for atmospheric crude oil distillation, downstream charge, production, and storage capacities. Respondents are operators of all operating and idle petroleum refineries (including new refineries under construction) and refineries shut down during the previous year, located in the 50 States, the District of Columbia, Puerto Rico, the Virgin Islands, Guam, and other U.S. possessions.

Information Center

2008-06-20T23:59:59.000Z

56

Refinery & Blender Net Production of Total Finished Petroleum Products  

U.S. Energy Information Administration (EIA) Indexed Site

& Blender Net Production & Blender Net Production Product: Total Finished Petroleum Products Liquefied Refinery Gases Ethane/Ethylene Ethane Ethylene Propane/Propylene Propane Propylene Normal Butane/Butylene Normal Butane Butylene Isobutane/Isobutylene Isobutane Isobutylene Finished Motor Gasoline Reformulated Gasoline Reformulated Blended w/ Fuel Ethanol Reformulated Other Gasoline Conventional Gasoline Conventional Blended w/ Fuel Ethanol Conventional Blended w/ Fuel Ethanol, Ed55 and Lower Conventional Blended w/ Fuel Ethanol, Greater than Ed55 Conventional Other Finished Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Distillate Fuel Oil Distillate F.O., 15 ppm Sulfur and under Distillate F.O., Greater than 15 ppm to 500 ppm Sulfur Distillate F.O., Greater than 500 ppm Sulfur Residual Fuel Oil Residual Fuel Less Than 0.31 Percent Sulfur Residual Fuel 0.31 to 1.00 Percent Sulfur Residual Fuel Greater Than 1.00 Percent Sulfur Petrochemical Feedstocks Naphtha For Petro. Feed. Use Other Oils For Petro. Feed. Use Special Naphthas Lubricants Waxes Petroleum Coke Marketable Petroleum Coke Catalyst Petroleum Coke Asphalt and Road Oil Still Gas Miscellaneous Products Processing Gain(-) or Loss(+) Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day

57

East Coast (PADD 1) Refinery Operable Atmospheric Crude Oil ...  

U.S. Energy Information Administration (EIA)

East Coast (PADD 1) Refinery Operable Atmospheric Crude Oil Distillation Capacity as of January 1 (Barrels per Calendar Day)

58

West Coast (PADD 5) Refinery Operable Atmospheric Crude Oil ...  

U.S. Energy Information Administration (EIA)

West Coast (PADD 5) Refinery Operable Atmospheric Crude Oil Distillation Capacity as of January 1 (Barrels per Calendar Day)

59

Puerto Rico Refinery Operable Atmospheric Crude Oil Distillation ...  

U.S. Energy Information Administration (EIA)

Puerto Rico Refinery Operable Atmospheric Crude Oil Distillation Capacity as of January 1 (Barrels per Calendar Day)

60

Rocky Mountain (PADD 4) Refinery Operable Atmospheric Crude Oil ...  

U.S. Energy Information Administration (EIA)

Rocky Mountain (PADD 4) Refinery Operable Atmospheric Crude Oil Distillation Capacity as of January 1 (Barrels per Calendar Day)

Note: This page contains sample records for the topic "operable petroleum refineries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Gulf Coast (PADD 3) Refinery Operable Atmospheric Crude Oil ...  

U.S. Energy Information Administration (EIA)

Gulf Coast (PADD 3) Refinery Operable Atmospheric Crude Oil Distillation Capacity as of January 1 (Barrels per Calendar Day)

62

U.S. Refinery Operating Atmospheric Crude Oil Distillation ...  

U.S. Energy Information Administration (EIA)

U.S. Refinery Operating Atmospheric Crude Oil Distillation Capacity as of January 1 (Barrels per Calendar Day)

63

U.S. Refinery Operable Atmospheric Crude Oil Distillation Capacity ...  

U.S. Energy Information Administration (EIA)

U.S. Refinery Operable Atmospheric Crude Oil Distillation Capacity as of January 1 (Barrels per Calendar Day)

64

U.S. Refinery Operable Atmospheric Crude Oil Distillation Capacity ...  

U.S. Energy Information Administration (EIA)

U.S. Refinery Operable Atmospheric Crude Oil Distillation Capacity as of January 1 (Barrels per Stream Day)

65

Allocation of energy use in petroleum refineries to petroleum products : implications for life-cycle energy use and emission inventory of petroleum transportation fuels.  

Science Conference Proceedings (OSTI)

Studies to evaluate the energy and emission impacts of vehicle/fuel systems have to address allocation of the energy use and emissions associated with petroleum refineries to various petroleum products because refineries produce multiple products. The allocation is needed in evaluating energy and emission effects of individual transportation fuels. Allocation methods used so far for petroleum-based fuels (e.g., gasoline, diesel, and liquefied petroleum gas [LPG]) are based primarily on mass, energy content, or market value shares of individual fuels from a given refinery. The aggregate approach at the refinery level is unable to account for the energy use and emission differences associated with producing individual fuels at the next sub-level: individual refining processes within a refinery. The approach ignores the fact that different refinery products go through different processes within a refinery. Allocation at the subprocess level (i.e., the refining process level) instead of at the aggregate process level (i.e., the refinery level) is advocated by the International Standard Organization. In this study, we seek a means of allocating total refinery energy use among various refinery products at the level of individual refinery processes. We present a petroleum refinery-process-based approach to allocating energy use in a petroleum refinery to petroleum refinery products according to mass, energy content, and market value share of final and intermediate petroleum products as they flow through refining processes within a refinery. The results from this study reveal that product-specific energy use based on the refinery process-level allocation differs considerably from that based on the refinery-level allocation. We calculated well-to-pump total energy use and greenhouse gas (GHG) emissions for gasoline, diesel, LPG, and naphtha with the refinery process-based allocation approach. For gasoline, the efficiency estimated from the refinery-level allocation underestimates gasoline energy use, relative to the process-level based gasoline efficiency. For diesel fuel, the well-to-pump energy use for the process-level allocations with the mass- and energy-content-based weighting factors is smaller than that predicted with the refinery-level allocations. However, the process-level allocation with the market-value-based weighting factors has results very close to those obtained by using the refinery-level allocations. For LPG, the refinery-level allocation significantly overestimates LPG energy use. For naphtha, the refinery-level allocation overestimates naphtha energy use. The GHG emission patterns for each of the fuels are similar to those of energy use.We presented a refining-process-level-based method that can be used to allocate energy use of individual refining processes to refinery products. The process-level-based method captures process-dependent characteristics of fuel production within a petroleum refinery. The method starts with the mass and energy flow chart of a refinery, tracks energy use by individual refining processes, and distributes energy use of a given refining process to products from the process. In allocating energy use to refinery products, the allocation method could rely on product mass, product energy contents, or product market values as weighting factors. While the mass- and energy-content-based allocation methods provide an engineering perspective of energy allocation within a refinery, the market-value-ased allocation method provides an economic perspective. The results from this study show that energy allocations at the aggregate refinery level and at the refining process level could make a difference in evaluating the energy use and emissions associated with individual petroleum products. Furthermore, for the refining-process-level allocation method, use of mass -- energy content- or market value share-based weighting factors could lead to different results for diesel fuels, LPG, and naphtha. We suggest that, when possible, energy use allocations should be made at the lowest subprocess level

Wang, M.; Lee, H.; Molburg, J.

2004-01-01T23:59:59.000Z

66

Energy efficiency improvement and cost saving opportunities for petroleum refineries  

E-Print Network (OSTI)

MTC. Marano, J.J. , 2003. Refinery Technology Profiles:Deep Desulfurization of Oil Refinery Streams: A Review. FuelSavings for Flying J Refinery. Oil & Gas Journal, December 2

Worrell, Ernst; Galitsky, Christina

2005-01-01T23:59:59.000Z

67

PAD District 4 Number and Capacity of Petroleum Refineries  

U.S. Energy Information Administration (EIA)

Notes: Idle refineries represent refineries where distillation units were completely idle but not permanently shutdown as of January 1 of the year.

68

CO2 Reduction through Optimization of Steam Network in Petroleum Refineries: Evaluation of New Scenario  

E-Print Network (OSTI)

Steam network of petroleum refinery is energy intensive, and consequently contribute significantly to the greenhouse gases emissions. A simple model for the estimation of CO2 emissions associated with operation of steam network as encountered in refineries is introduced. In conjunction with a shortcut model this model has been used to calculate of the steam network of an existing refinery aiming at minimization total annualized cost with considering emissions. In this paper, the case study is steam network of southern Tehran refinery. Simulation of this case has been performed in STAR software that licensed by energy system laboratory at K.N. Toosi University of Technology. Mathematical linear programming method has been applied to optimization of steam network. In addition, the short cut model of CO2 production has been provided for evaluation of steam network with considering CO2 production taxes and other economic effects in total annualized cost. Meanwhile, in this research, new scenario has been defined and evaluated. Results shows new scenario have 45 % less TAOC rather than base scenario in optimal condition.

Manesh, M. H. K; Khodaie, H.; Amidpour, M.

2008-01-01T23:59:59.000Z

69

Improved oil refinery operations and cheaper crude oil to help...  

Annual Energy Outlook 2012 (EIA)

Improved oil refinery operations and cheaper crude oil to help reduce gasoline prices U.S. gasoline prices are expected to fall as more oil refineries come back on line and crude...

70

Energy efficiency improvement and cost saving opportunities for petroleum refineries  

E-Print Network (OSTI)

Refinery Technology Profiles: Gasification and SupportingGasification.to be carried out. 18.5 Gasification Gasification provides

Worrell, Ernst; Galitsky, Christina

2005-01-01T23:59:59.000Z

71

Virgin Islands Number and Capacity of Petroleum Refineries  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Idle refineries ...

72

Midwest (PADD 2) Number and Capacity of Petroleum Refineries  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Idle refineries ...

73

Puerto Rico Number and Capacity of Petroleum Refineries  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Idle refineries ...

74

Michigan Refinery Catalytic Hydrotreating, Kerosene/Jet Fuel ...  

U.S. Energy Information Administration (EIA)

Cat. Hydro.. Kerosene/Jet Fuel Downstream Charge Capacity (B/SD) Michigan Downstream Charge Capacity of Operable Petroleum Refineries ...

75

Refinery Net Production of Total Finished Petroleum Products  

U.S. Energy Information Administration (EIA) Indexed Site

Waxes Petroleum Coke Marketable Petroleum Coke Catalyst Petroleum Coke Asphalt and Road Oil Still Gas Miscellaneous Products Misc. Products - Fuel Use Misc. Products - Nonfuel...

76

Number of Operating Refineries - Energy Information Administration  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Idle refineries ...

77

When was the last refinery built in the United States? - FAQ ...  

U.S. Energy Information Administration (EIA)

When was the last refinery built in the United States? There were a total of 143 operable petroleum refineries in the United States as of January 1, 2013.

78

Energy efficiency improvement and cost saving opportunities for petroleum refineries  

E-Print Network (OSTI)

are also listed. The Energy Guide draws upon the experiencesmanagement programs. This Energy Guide describes researchpetroleum refineries. This Energy Guide introduces energy

Worrell, Ernst; Galitsky, Christina

2005-01-01T23:59:59.000Z

79

Energy efficiency improvement and cost saving opportunities for petroleum refineries  

E-Print Network (OSTI)

and G.E. Handwerk. 1994. Petroleum Refining: Technology andFCCU Energy Efficiency. Petroleum Technical Quarterly,Profile of the U.S. Petroleum Refining Industry, Office of

Worrell, Ernst; Galitsky, Christina

2005-01-01T23:59:59.000Z

80

Petroleum Refinery Catalytic Reforming -- Cutting High Energy Costs  

E-Print Network (OSTI)

Hydrocarbon reforming involves a variety of chemical reactions at high temperatures and pressures in the presence of suitable catalysts. The conversion of naptha to high octane aromatics requires high energy to initiate and sustain the reaction at temperatures of 850-950oF. Hydrogen - rich off - gases are fired in combinations of process furnaces. Heat is transferred to hydrocarbon fluids by radiation, principally. Feed or return stream temperatures determine the need for convection sections. It is essential that the operation and maintenance of these furnaces be optimized to minimize production costs. This paper describes the performance testing and evaluation of a set of ten refinery furnaces used to thermally drive several reforming reactors and to regenerate catalysts. Firing rates provide an input of 216.2 x 106 Btu/hr. to the furnaces, at $1.90 per 106 Btu. The units are fitted with multiple natural draft burners. There is insufficient turbulence and swirl in the burners. Operators manually set up the burners with excessive airflows for normal, full-load firing. These furnaces represent production limits. Products of combustion exhaust at high thermal levels - the range is from 985-1700oF. The mixed gases flow through a "waste heat" boiler, or they bypass the boiler and enter a single stack. Steam generation at 150 psig averages 38,200 lb/hr. Heat is wasted via the bypass at a rate of 41.1x106 Btu /hr. at 1240oF. When airflows are reduced (to 15% excess air) the loss will be 18.7x106 Btu/hr. at 1180oF. Installation of a second, parallel waste heat boiler will result in a saving of l3.4x106 Btu/hr. Energy savings at this furnace complex will be equivalent to $628,700 per year. Investment costs were estimated to be less than $250,000 for the proposed heat trap addition.

Viar, W. L.

1979-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "operable petroleum refineries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Refinery Capacity Report - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Energy Information Administration (U.S. Dept. of Energy) ... Tables: 1: Number and Capacity of Operable Petroleum Refineries by PAD District and State as of ...

82

Refinery Outages: Description and Potential Impact on Petroleum Product Prices  

Reports and Publications (EIA)

This report responds to a July 13, 2006 request from Chairman Jeff Bingaman of the Senate Committee on Energy and Natural Resources requested that EIA conduct a study of the impact that refinery shutdowns have had on the price of oil and gasoline.

Joanne Shore

2007-03-27T23:59:59.000Z

83

Petroleum refineries vary by level of complexity - Today in Energy ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

84

Energy efficiency improvement and cost saving opportunities for petroleum refineries  

E-Print Network (OSTI)

to Improve FCCU Energy Efficiency. Petroleum TechnicalACEEE Summer Study on Energy Efficiency in Industry, ACEEE,ACEEE Summer Study on Energy Efficiency in Industry – Volume

Worrell, Ernst; Galitsky, Christina

2005-01-01T23:59:59.000Z

85

U.S. Percent Utilization of Refinery Operable Capacity (Percent)  

U.S. Energy Information Administration (EIA)

Annual : Download Data (XLS File) U.S. Percent Utilization of Refinery Operable Capacity (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 1985: 74.0 ...

86

Energy efficiency improvement and cost saving opportunities for petroleum refineries  

E-Print Network (OSTI)

Asphalt Hydrogen Coke Sulfur Capacity Distribution (Barrelstill gas, natural gas, and coke. Other CO2 Emissions (MtCE)Coal Natural Gas Petroleum Coke Still Gas Residual Fuel oil

Worrell, Ernst; Galitsky, Christina

2005-01-01T23:59:59.000Z

87

Petroleum complex of Russia. Reconstruction of petroleum refineries: Means for accomplishing the task  

SciTech Connect

This report describes the refining industry in Russia with respect to production and economic factors. The modernization and reconstruction of the refineries is also discussed.

Rykunova, T.

1994-11-01T23:59:59.000Z

88

Refinery Capacity Report  

U.S. Energy Information Administration (EIA) Indexed Site

Refinery Capacity Report Refinery Capacity Report With Data as of January 1, 2013 | Release Date: June 21, 2013 | Next Release Date: June 20, 2014 Previous Issues Year: 2013 2012 2011 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2000 1999 1997 1995 1994 Go Data series include fuel, electricity, and steam purchased for consumption at the refinery; refinery receipts of crude oil by method of transportation; and current and projected atmospheric crude oil distillation, downstream charge, and production capacities. Respondents are operators of all operating and idle petroleum refineries (including new refineries under construction) and refineries shut down during the previous year, located in the 50 States, the District of Columbia, Puerto Rico, the Virgin Islands, Guam, and other U.S. possessions.

89

Refinery Stocks of Crude Oil and Petroleum Products  

Gasoline and Diesel Fuel Update (EIA)

Product: Crude Oil and Petroleum Products Crude Oil Petroleum Products Pentanes Plus Liquefied Petroleum Gases Ethane/Ethylene Propane/Propylene Normal Butane/Butylene Isobutane/Isobutylene Oxygenates/Renewables/Other Hydrocarbons Oxygenates (excl. Fuel Ethanol) Methyl Tertiary Butyl Ether (MTBE) All Other Oxygenates Renewable Fuels (incl. Fuel Ethanol) Fuel Ethanol Renewable Diesel Fuel Other Renewable Fuels Other Hydrocarbons Unfinished Oils Naphthas and Lighter Kerosene and Light Gas Oils Heavy Gas Oils Residuum Motor Gasoline Blending Components MGBC - Reformulated MGBC - Reformulated - RBOB MGBC - RBOB for Blending with Alcohol* MGBC - RBOB for Blending with Ether* MGBC - Conventional MGBC - Conventional CBOB MGBC - Conventional GTAB MGBC - Conventional Other Aviation Gasoline Blending Components Finished Motor Gasoline Reformulated Reformulated Blended with Fuel Ethanol Reformulated, Other Conventional Gasoline Conventional Gasoline Blended with Fuel Ethanol Conventional Gasoline Blended with Fuel Ethanol, Ed55 and Lower Conventional Other Gasoline Finished Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Distillate Fuel Oil Distillate Fuel Oil, 15 ppm and Under Distillate Fuel Oil, Greater than 15 ppm to 500 ppm Distillate Fuel Oil, Greater than 500 ppm Residual Fuel Oil Less than 0.31 Percent Sulfur 0.31 to 1.00 Percent Sulfur Greater than 1.00 Percent Sulfur Petrochemical Feedstocks Naphtha for Petrochemical Feedstock Use Other Oils for Petrochemical Feedstock Use Special Naphthas Lubricants Waxes Petroleum Coke Marketable Coke Asphalt and Road Oil Miscellaneous Products Period-Units: Monthly-Thousand Barrels Annual-Thousand Barrels

90

FEASIBILITY STUDY FOR A PETROLEUM REFINERY FOR THE JICARILLA APACHE TRIBE  

Science Conference Proceedings (OSTI)

A feasibility study for a proposed petroleum refinery for the Jicarilla Apache Indian Reservation was performed. The available crude oil production was identified and characterized. There is 6,000 barrels per day of crude oil production available for processing in the proposed refinery. The proposed refinery will utilize a lower temperature, smaller crude fractionation unit. It will have a Naphtha Hydrodesulfurizer and Reformer to produce high octane gasoline. The surplus hydrogen from the reformer will be used in a specialized hydrocracker to convert the heavier crude oil fractions to ultra low sulfur gasoline and diesel fuel products. The proposed refinery will produce gasoline, jet fuel, diesel fuel, and a minimal amount of lube oil. The refinery will require about $86,700,000 to construct. It will have net annual pre-tax profit of about $17,000,000. The estimated return on investment is 20%. The feasibility is positive subject to confirmation of long term crude supply. The study also identified procedures for evaluating processing options as a means for American Indian Tribes and Native American Corporations to maximize the value of their crude oil production.

John D. Jones

2004-10-01T23:59:59.000Z

91

A Case Study of Steam System Evaluation in a Petroleum Refinery  

E-Print Network (OSTI)

ASI conducted a steam system evaluation study at a multinational petroleum Refinery located in the Eastern UK during June-July, 1999. At this refinery, Steam, Fuel and Electricity systems are inter-connected. Steam is generated from direct fuel fired boilers as well from Furnace and Kiln waste heat. Steam is also supplied from the CHP waste heat boilers. Steam generation averages 1,500,000 lbs/hr and does not change significantly between winter and summer since steam needs for process and power generation dominates way above comfort heating. To generate steam, the refinery spends about £28 million per year ($46 million). The system evaluation study identified 31 Energy & steam system cost savings measures (ECM) to save fuel, steam and condensate in the areas of: Steam generation, Steam distribution, Steam Utilization, Condensate recovery, and Combustion optimization in kilns. By implementing all the above 31 ECMs, the refinery is estimated to save $3.5 million annually. Based on our preliminary investment estimate the average payback would be within 2 years. The refinery also would reduce 5600 metric tons Carbon emission to environment. Some of the opportunities address the installation defects of the steam system components that would improve the system reliability and longevity.

Venkatesan, V. V.; Iordanova, N.

2003-05-01T23:59:59.000Z

92

Total Refinery Net Input of Crude Oil and Petroleum Products  

U.S. Energy Information Administration (EIA) Indexed Site

Input Input Product: Total Crude Oil & Petroleum Products Crude Oil Natural Gas Plant Liquids Pentanes Plus Liquefied Petroleum Gases Normal Butane Isobutane Other Liquids Hydrogen/Oxygenates/Renewables/Other Hydrocarbons Hydrogen Oxygenates (excl. Fuel Ethanol) Methyl Tertiary Butyl Ether (MTBE) All Other Oxygenates Renewable Fuels (incl. Fuel Ethanol) Fuel Ethanol Renewable Diesel Fuel Other Renewable Fuels Other Hydrocarbons Unfinished Oils (net) Unfinished Oils, Naphthas and Lighter Unfinished Oils, Kerosene and Light Gas Oils Unfinished Oils, Heavy Gas Oils Residuum Motor Gasoline Blending Components (MGBC) (net) MGBC - Reformulated MGBC - Reformulated - RBOB MGBC - Reformulated, RBOB for Blending w/ Alcohol MGBC - Reformulated, RBOB for Blending w/ Ether MGBC - Conventional MGBC - CBOB MGBC - Conventional, GTAB MGBC - Other Conventional Aviation Gasoline Blending Components (net) Alaskan Crude Oil Receipts Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day

93

The potential application of fuel cell cogeneration systems in petroleum refineries. [Phosphoric acid, molten carbonate and solid oxide fuel cells  

Science Conference Proceedings (OSTI)

The market potential for fuel cell cogeneration systems within the petroleum refinery industry is evaluated. Phosphoric acid (PAFC), molten carbonate (MCFC), and solid oxide (SOFC) fuel cells were considered. Conventional competitive systems now available including purchased power plus boiler-generated steam, gas turbine combined cycle, and a relatively new coke fluidized bed-boiler were characterized. Refineries use large quantities of steam at pressures ranging from about 15 to 650 psig. PAFCs can only meet a limited number of steam requirements because of their relatively low operating temperature. The high temperature MCFC and SOFC are technically much more attractive for this application. However, current estimates of their capital costs are too large to make the technologies competitive. The capital costs of MCFCs and SOFCs would have to decrease approx.50% from their present estimated $1300/kWe. If costs could be decreased to give a 10% energy cost advantage to fuel cells, the industry projects that fuel cells might supply about 300 MWe by the year 2000, and modules in the 5- to 20-MWe size would be of interest. The market opportunities in refineries are varied - the industry is large, each plant is unique, thermal energy consumption is large, and both domestic and international competitiveness is intense. 10 refs., 26 figs., 17 tabs.

Altseimer, J.H.; Roach, F.; Anderson, J.M.; Krupka, M.C.

1987-08-01T23:59:59.000Z

94

U.S. Refinery Catalytic Hydrotreating, Kerosene/Jet Fuel ...  

U.S. Energy Information Administration (EIA)

Cat. Hydro.. Kerosene/Jet Fuel Downstream Charge Capacity (B/SD) U.S. Downstream Charge Capacity of Operable Petroleum Refineries ...

95

Environmental Regulations and Changes in Petroleum Refining Operations  

Gasoline and Diesel Fuel Update (EIA)

Environmental Regulations and Environmental Regulations and Changes in Petroleum Refining Operations By Tancred C.M. Lidderdale Contents * Introduction * Motor Gasoline Summer Volatility (RVP) Regulations o Table 1. Summer Volatility Regulations for Motor Gasoline o Table 2. Refinery Inputs and Production of Normal Butane o Figure 1. Refinery Inputs and Production of Normal Butane o Table 3. Price Relationship Between Normal Butane and Motor Gasoline o Table 4. Market Price Premium for Low Vapor Pressure (RVP) Gasoline * Oxygenate Content of Motor Gasoline o Figure 2. Oxygenate Content of Motor Gasoline o Table 5. Oxygenated and Conventional Motor Gasoline Price Relationship o Table 6. Reformulated and Conventional Motor Gasoline Price Relationship o Figure 3. Price Differences Between RFG or MTBE and Conventional Gasoline

96

CTR/ANL, July 2010 1 Updated Estimation of Energy Efficiencies of U.S. Petroleum Refineries  

E-Print Network (OSTI)

for emissions associated with hydrogen production. Hydrogen is generated in a refinery's catalytic reformer-process distillate material into commercial diesel and jet fuel. From this perspective catalytic reforming transfers refinery operations, most notably catalytic reforming. References Bredeson, L., Quiceno-Gonzalez, R., Riera

Argonne National Laboratory

97

Cracking of simulated oil refinery off-gas over a coal char, petroleum coke, and quartz  

Science Conference Proceedings (OSTI)

The cracking of oil refinery off-gas, simulated with a gas mixture containing methane (51%), ethylene (21.4%), ethane (21.1%), and propane (6.5%), over a coal char, petroleum coke, and quartz, respectively, has been studied in a fixed bed reactor. The experiments were performed at temperatures between 850 and 1000{sup o}C and at atmospheric pressure. The results show that the conversions of all species considered increased with increasing temperature. Ethane and propane completely decomposed over all three bed materials in the temperature range investigated. However, the higher initial conversion rates of methane and ethylene cracking at all temperatures were observed only over the coal char and not on the petroleum coke and quartz, indicating a significant catalytic effect of the coal char on methane and ethylene cracking. Methane and ethylene conversions decreased with reaction time due to deactivation of the coal char by carbon deposition on the char surface and, in the later stage of a cracking experiment, became negative, suggesting that methane and ethylene had been formed during the cracking of ethane and propane. 16 refs., 13 figs., 2 tabs.

Yuan Zhang; Jin-hu Wu; Dong-ke Zhang [Chinese Academy of Sciences, Taiyuan (China). Institute of Coal Chemistry

2008-03-15T23:59:59.000Z

98

Biofacts: Fueling a stronger economy. Renewable fuel solutions for petroleum refineries  

DOE Green Energy (OSTI)

The DOE Biofuels Program is investigating processes to condition synthesis gas (syngas) produced from the gasification of biomass, coke, waste oils, and other inexpensive feedstocks and low-cost by-products. Syngas technologies offer refiners economical, flexible solutions to the challenges presented by today`s market forces and regulatory environment, such as: increasingly stringent environmental regulations that dictate the composition of petroleum products; increasingly sour crudes; increased coke production and hydrogen use resulting from heavier crude; increased disposal cost for coke and residuals oils; and decreasing hydrogen supply resulting from decreased catalytic reforming severity--a necessity to comply with requirements for reduced aromatic content. Most importantly, refiners can use the DOE syngas processes to upgrade refinery residuals and coke, which minimizes environmental problems and maximizes profitability. DOE`s solution also offers refiners the flexibility to economically supplement petroleum feedstocks with a wide variety of locally available renewable feedstocks that can be fed into the gasifier--feedstocks such as energy crops, municipal solid wastes, many industrial wastes, and agricultural by-products.

NONE

1995-07-01T23:59:59.000Z

99

,"U.S. Working Storage Capacity at Operable Refineries"  

U.S. Energy Information Administration (EIA) Indexed Site

Storage Capacity at Operable Refineries" Storage Capacity at Operable Refineries" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Working Storage Capacity at Operable Refineries",28,"Annual",2013,"6/30/1982" ,"Release Date:","6/21/2013" ,"Next Release Date:","6/20/2014" ,"Excel File Name:","pet_pnp_capwork_dcu_nus_a.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_pnp_capwork_dcu_nus_a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov"

100

,"U.S. Total Shell Storage Capacity at Operable Refineries"  

U.S. Energy Information Administration (EIA) Indexed Site

Shell Storage Capacity at Operable Refineries" Shell Storage Capacity at Operable Refineries" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Total Shell Storage Capacity at Operable Refineries",28,"Annual",2013,"6/30/1982" ,"Release Date:","6/21/2013" ,"Next Release Date:","6/20/2014" ,"Excel File Name:","pet_pnp_capshell_dcu_nus_a.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_pnp_capshell_dcu_nus_a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov"

Note: This page contains sample records for the topic "operable petroleum refineries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Electricity Shortage in California: Issues for Petroleum and ...  

U.S. Energy Information Administration (EIA)

Summary 2. Electricity Reliability Issues in California 3. Petroleum Refineries 4. Constraints Outside the Refinery Gate 5. Petroleum Product Prices

102

U.S. Downstream Charge Capacity of Operable Petroleum Refineries  

U.S. Energy Information Administration (EIA) Indexed Site

Distillation 8,420,501 8,542,281 8,542,643 8,650,243 8,679,643 8,938,093 1982-2013 Thermal Cracking 2,606,260 2,639,090 2,631,676 2,672,376 2,763,356 2,877,456 1982-2013 Coking...

103

Texas Downstream Charge Capacity of Operable Petroleum Refineries  

U.S. Energy Information Administration (EIA)

Catalytic Reforming (Barrels per Calendar Day) 930,198: 920,168: 889,378: 1,008,227: 2010-2013: Fuels Solvent Deasphalting: 173,000: 171,600: 173,000: 172,000 ...

104

California Downstream Charge Capacity of Operable Petroleum Refineries  

U.S. Energy Information Administration (EIA)

Catalytic Reforming (Barrels per Calendar Day) 396,146: 371,306: 373,756: 379,406: 2010-2013: Fuels Solvent Deasphalting: 66,000: 66,000: 66,000: 66,000: 66,000 ...

105

PADD 3 Downstream Charge Capacity of Operable Petroleum Refineries  

U.S. Energy Information Administration (EIA)

Catalytic Reforming (Barrels per Calendar Day) 1,644,941: 1,629,967: 1,583,165: 1,696,615: 2010-2013: Fuels Solvent Deasphalting: 239,400: 242,000: 243,400: 242,900 ...

106

Virginia Downstream Charge Capacity of Operable Petroleum Refineries  

U.S. Energy Information Administration (EIA)

Catalytic Crackin Fresh Feed (Barrels per Calendar Day) 27,800: 27,800: 27,800: 27,800: 0: 0: 1987-2013: ... Catalytic Reforming (Barrels per Calendar Day) 11,000 ...

107

U.S. Production Capacity of Operable Petroleum Refineries  

U.S. Energy Information Administration (EIA) Indexed Site

Day, Except Where Noted) Day, Except Where Noted) Area: U.S. PAD District 1 Delaware Florida Georgia Maryland New Jersey New York North Carolina Pennsylvania Virginia West Virginia PAD District 2 Illinois Indiana Kansas Kentucky Michigan Minnesota Missouri Nebraska North Dakota Ohio Oklahoma Tennessee Wisconsin PAD District 3 Alabama Arkansas Louisiana Mississippi New Mexico Texas PAD District 4 Colorado Montana Utah Wyoming PAD District 5 Alaska Arizona California Hawaii Nevada Oregon Washington Guam Puerto Rico Virgin Islands Period: Annual (as of January 1) Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes

108

Refinery Capacity Report  

U.S. Energy Information Administration (EIA) Indexed Site

Refinery Capacity Report Refinery Capacity Report June 2013 With Data as of January 1, 2013 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the United States Government. The views in this report therefore should not be construed as representing those of the Department of Energy or other Federal agencies. Table 1. Number and Capacity of Operable Petroleum Refineries by PAD District and State as of January 1, 2013

109

Table 4b. U.S. Petroleum Refinery Balance (Million Barrels per Day ...  

U.S. Energy Information Administration (EIA)

Refinery Distillation Utilization Factor ..... 0.86 0.90 0.90 0.89 0.83 0.89 0.91 0.87 0.83 0.88 0.90 0.87 0.89 0.88 0.87 - = no data available Table 4b. U.S ...

110

AN AGGREGATED VECTORIAL MODEL OF PETROLEUM FLOW IN THE UNITED STATES  

E-Print Network (OSTI)

only; i.e. , individual refineries owned by the same companyting ~ for example. refinery production. ) (3) Supplies on21. Capacity of Petroleum Refineries U K REFINERY INPUTS 11.

Krishnan, V. V.

2011-01-01T23:59:59.000Z

111

Documentation: The automated ORAD (Oil Refinery and Distribution Model) to RYMs (Refinery Yield Model) linked system  

SciTech Connect

The Refinery Evaluation Modeling System (REMS) is an analytic tool used by the Energy Information Administration (EIA) to provide insight into the domestic operations of United States refineries. REMS can be used to determine the potential impacts of changes in demands for petroleum products, crude and feedstock qualities, refinery processing capacities, foreign and domestic crude availabilities, transportation modes and costs, and government regulations. REMS is a set of linear programming models that solve for a partial equilibrium in the US refinery market by equating supply and demand while maximizing profits for US refiners. REMS consists of two models: the Refinery Yield Model (RYM), and the Oil Refinery and Distribution Model (ORAD). RYMs consists of nine separate regional models that represent the contiguous US refinery system. These nine regions are aggregates of the 13 Bureau of Mines (BOM) refinery districts. ORAD integrates the results from the individual RYMs into a transportation network which represents the US refinery market. ORAD uses the extreme point refinery representation from RYMs to solve for the optimal product prices in ORAD.

Sanders, R.P.; Kydes, A.S.

1987-01-01T23:59:59.000Z

112

Energy Efficiency Improvement in the Petroleum Refining Industry  

E-Print Network (OSTI)

Chemical Manufacturing and Petroleum Refining Industries.Saving Opportunities for Petroleum Refineries. An ENERGYAdministration (EIA), 2002. Petroleum Supply Annual 2001,

Worrell, Ernst; Galitsky, Christina

2005-01-01T23:59:59.000Z

113

Reformulated Gasoline Foreign Refinery Rules  

Gasoline and Diesel Fuel Update (EIA)

Reformulated Gasoline Reformulated Gasoline Foreign Refinery Rules Contents * Introduction o Table 1. History of Foreign Refiner Regulations * Foreign Refinery Baseline * Monitoring Imported Conventional Gasoline * Endnotes Related EIA Short-Term Forecast Analysis Products * Areas Participating in the Reformulated Gasoline Program * Environmental Regulations and Changes in Petroleum Refining Operations * Oxygenate Supply/Demand Balances in the Short-Term Integrated Forecasting Model * Refiners Switch to Reformulated Gasoline Complex Model * Demand, Supply, and Price Outlook for Reformulated Motor Gasoline, 1995 Introduction On August 27, 1997, the EPA promulgated revised the rules that allow foreign refiners to establish and use individual baselines, but it would not be mandatory (the optional use of an

114

U.S. Total Shell Storage Capacity at Operable Refineries  

U.S. Energy Information Administration (EIA) Indexed Site

Area: U.S. East Coast (PADD 1) Midwest (PADD 2) Gulf Coast (PADD 3) Rocky Mountain (PADD 4) West Coast (PADD 5) Period: Area: U.S. East Coast (PADD 1) Midwest (PADD 2) Gulf Coast (PADD 3) Rocky Mountain (PADD 4) West Coast (PADD 5) Period: Annual (as of January 1) Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Area 2008 2009 2010 2011 2012 2013 View History Total 765,593 758,619 710,413 -- -- -- 1982-2013 Crude Oil 180,830 179,471 180,846 -- -- -- 1985-2013 Liquefied Petroleum Gases 34,772 32,498 33,842 -- -- -- 1982-2013 Propane/Propylene 10,294 8,711 8,513 -- -- -- 1982-2013 Normal Butane/Butylene 24,478 23,787 25,329 -- -- -- 1982-2013 Other Liquids 95,540 96,973 96,157 -- -- -- 1982-2013 Oxygenates 1,336 1,028 1,005 -- -- -- 1994-2013

115

Petroleum supply annual 1996: Volume 1  

SciTech Connect

The Petroleum Supply Annual (PSA) contains information on the supply and disposition of crude oil and petroleum products. The publication reflects data that were collected from the petroleum industry during 1996 through annual and monthly surveys. The PSA is divided into two volumes. This first volume contains three sections: Summary Statistics, Detailed Statistics, and Refinery Capacity; each with final annual data. The summary statistics section show 16 years of data depicting the balance between supply, disposition and ending stocks for various commodities including crude oil, motor gasoline, distillate fuel oil, residual fuel oil, jet fuel propane/propylene, and liquefied petroleum gases. The detailed statistics section provide 1996 detailed statistics on supply and disposition, refinery operations, imports and exports, stocks, and transportation of crude oil and petroleum products. The refinery capacity contain listings of refineries and associated crude oil distillation and downstream capacities by State, as of January 1, 1997, as well as summaries of corporate refinery capacities and refinery storage capacities. In addition, refinery receipts of crude oil by method of transportation for 1996 are provided. Also included are fuels consumed at refineries, and lists of shutdowns, sales, reactivations, and mergers during 1995 and 1996. 16 figs., 59 tabs.

NONE

1997-06-01T23:59:59.000Z

116

Energy Efficiency Improvement in the Petroleum Refining Industry  

E-Print Network (OSTI)

Opportunities for Petroleum Refineries. An ENERGY STAR®and the chemical industry. Refineries spend typically 50% ofStates. Typically, refineries can economically improve

Worrell, Ernst; Galitsky, Christina

2005-01-01T23:59:59.000Z

117

Production of coal-based fuels and value-added products: coal to liquids using petroleum refinery streams  

SciTech Connect

We are studying several processes that utilize coal, coal-derived materials, or biomass in existing refining facilities. A major emphasis is the production of a coal-based replacement for JP-8 jet fuel. This fuel is very similar to Jet A and jet A-1 in commercial variation, so this work has significant carry-over into the private sector. We have been focusing on three processes that would be retrofitted into a refinery: (1) coal tar/refinery stream blending and hydro-treatment; (2) coal extraction using refinery streams followed by hydro-treatment; and (3) co-coking of coal blended with refinery streams. 4 figs., 5 tabs.

Clifford, C.E.B.; Schobert, H.H. [Pennsylvania State University, PA (United States)

2008-07-01T23:59:59.000Z

118

Optimization of refinery hydrogen network  

Science Conference Proceedings (OSTI)

Tighter environmental regulations and more heavy-end upgrading in the petroleum industry lead to increased demand for hydrogen in oil refineries. In this paper, the method proposed to optimize the refinery hydrogen network is based upon mathematical ... Keywords: hydrogen management, optimization, refinery, superstructure

Yunqiang Jiao; Hongye Su

2010-09-01T23:59:59.000Z

119

Table 16. Refinery Input of Crude Oil and Petroleum Products by ...  

U.S. Energy Information Administration (EIA)

Atmospheric Crude Oil Distillation Gross Input (daily average) ..... 575 3,599 2,900 142 81 7,297 531 2,872 15,508 Operable Capacity (daily ...

120

The National Energy Modeling System: An Overview 2000 - Petroleum Market  

Gasoline and Diesel Fuel Update (EIA)

petroleum market module (PMM) represents domestic refinery operations and the marketing of petroleum products to consumption regions. PMM solves for petroleum product prices, crude oil and product import activity (in conjunction with the international energy module and the oil and gas supply module), and domestic refinery capacity expansion and fuel consumption. The solution is derived, satisfying the demand for petroleum products and incorporating the prices for raw material inputs and imported petroleum products, the costs of investment, and the domestic production of crude oil and natural gas liquids. The relationship of PMM to other NEMS modules is illustrated in Figure 17. petroleum market module (PMM) represents domestic refinery operations and the marketing of petroleum products to consumption regions. PMM solves for petroleum product prices, crude oil and product import activity (in conjunction with the international energy module and the oil and gas supply module), and domestic refinery capacity expansion and fuel consumption. The solution is derived, satisfying the demand for petroleum products and incorporating the prices for raw material inputs and imported petroleum products, the costs of investment, and the domestic production of crude oil and natural gas liquids. The relationship of PMM to other NEMS modules is illustrated in Figure 17. Figure 17. Petroleum Market Module Structure PMM is a regional, linear-programming representation of the U.S. petroleum market. Refining operations are represented by a three-region linear programming formulation of the five Petroleum Administration for Defense Districts (PADDs) (Figure 18). PADDs I and V are each treated as single regions, while PADDs II, III, and IV are aggregated into one region. Each region is considered as a single firm where more than 30 distinct refinery processes are modeled. Refining capacity is allowed to expand in each region, but the model does not distinguish between additions to existing refineries or the building of new facilities. Investment criteria are developed exogenously, although the decision to invest is endogenous.

Note: This page contains sample records for the topic "operable petroleum refineries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

New desorption process treats refinery K and F wastes in demo trial  

SciTech Connect

A new desorption process for treating refinery wastes has been proven in pilot demonstrations at Amoco Oil Co.'s Texas City, Tex., refinery. The process -- Waste-Tech Services Inc.'s desorption and recovery unit (DRU) -- treats petroleum-contaminated refinery wastes and recovers oil and water suitable for recycling to the refinery. The DRU meets Resource Conservation and Recovery Act (RCRA) recycle exemptions and produces solids that satisfy US Environmental Protection Agency (EPA) land disposal restrictions (LDRs). This paper discusses RCRA wastes, the process, the demonstration unit, operating conditions, and analyses of semivolatiles, volatiles, leachable metals, and recovered oil and water.

Rasmussen, G.P. (Waste-Tech Services Inc., Golden, CO (United States))

1994-01-10T23:59:59.000Z

122

Refinery, petrochemical plant injuries decline  

Science Conference Proceedings (OSTI)

The National Petroleum Refiners Association (NPRA) reports a 7% reduction in workplace injury and illness incidence rates for refineries in 1993, and a 21% decrease for petrochemical plants. The report summarizes data from 135 of the 162 US member refineries, and 117 of the 172 US member petrochemical plants. This paper summarizes the report findings.

Not Available

1994-07-25T23:59:59.000Z

123

Organic constituents in sour condensates from shale-oil and petroleum-crude runs at Sohio's Toledo refinery: identification and wastewater-control-technology considerations  

SciTech Connect

Samples of sour condensate generated from the continuous processing of both crude shale oil and petroleum crude were collected and extracted with methylene chloride. The extracts were analyzed using capillary-column gas chromatography/mass spectrometry at Argonne National Laboratory and Radian Corporation. Qualitatively, the predominant types of organic compounds present in the shale-oil sour condensate were pyridines and anilines; semiquantitatively, these compounds were present at a concentration of 5.7 ppM, or about 78% of the total concentration of components detected. In contrast, straight-chain alkanes were the predominant types of compounds found in the sour condensate produced during isocracking of conventional crude oil. The approximate concentration of straight-chain alkanes, 8.3 ppM, and of other branched and/or unsaturated hydrocarbons, 6.8 ppM, amounted to 88% of the total concentration of components detected in the sour condensate from the petroleum-crude run. Nitrogen compounds in the shale-oil sour condensate may necessitate alterations of the sour water and refinery wastewater-treatment facilities to provide for organics degradation and to accommodate the potentially greater ammonia loadings. This would include use of larger amounts of caustic to enhance ammonia removal by steam stripping. Possible problems associated with biological removal of organic-nitrogen compounds should be investigated in future experimental shale-oil refining runs.

Wingender, R J; Harrison, W; Raphaelian, L A

1981-02-01T23:59:59.000Z

124

by E. Lance Cole Operations Manager Petroleum Technology Transfer Council  

NLE Websites -- All DOE Office Websites (Extended Search)

World Energy Vol. 11 No. 2 2008 World Energy Vol. 11 No. 2 2008 2 by E. Lance Cole Operations Manager Petroleum Technology Transfer Council Jim Blankenship Geoscience Director American Association of Petroleum Geologists Tom Williams PTTC Board Member and Retired Vice President, Technology Services Noble Corporation Ken Oglesby Managing Partner Impact Technologies LLC E&P Technology: From Idea to Widespread Adoption in the U.S. M any factors influence the degree to which a new exploration and production (E&P) technology is accepted by industry and grows to realize its full market potential. These include the introduction of a good idea that is needed by industry, intellectual property protection, capitalization at each level of development, field testing, the business model, technology transfer and

125

DOE Announces Loans of Oil from the Strategic Petroleum Reserve |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Loans of Oil from the Strategic Petroleum Reserve Loans of Oil from the Strategic Petroleum Reserve DOE Announces Loans of Oil from the Strategic Petroleum Reserve June 28, 2006 - 2:38pm Addthis WASHINGTON, DC - U. S. Department of Energy (DOE) Secretary Samuel W. Bodman announced today that DOE has approved two loan requests totaling 750,000 barrels of crude oil from the Strategic Petroleum Reserve (SPR) to two Louisiana refineries. The refineries were not receiving scheduled shipments of crude oil because of the closure of the Calcasieu Ship Channel. "The Strategic Petroleum Reserve is a national asset that can be used in times of supply disruption. This loan will allow these two refineries to continue operations and help us maintain our nation's supply of gasoline leading into the holiday weekend," Secretary Bodman said.

126

Petroleum Supply Monthly  

Annual Energy Outlook 2012 (EIA)

1 Decemer 2011 Table 30. Refinery Net Input of Crude Oil and Petroleum Products by PAD and Refining Districts, December 2011 (Thousand Barrels, Except Where Noted) Commodity PAD...

127

Petroleum Supply Annual  

Annual Energy Outlook 2012 (EIA)

2.PDF Table 22. Refinery Stocks of Crude Oil and Petroleum Products by PAD and Refining Districts, January 2011 (Thousand Barrels) Commodity PAD District 1 - East Coast PAD...

128

Status of Texas refineries, 1982  

Science Conference Proceedings (OSTI)

This report is a survey of current operations of the Texas refineries during the 1979-82 market slump using publicly available data from the US Department of Energy and the Texas Railroad Commission. The report looks at the small inland refineries, the large inland refineries, the small coastal refineries, the large coastal refineries in Texas, and the Louisiana coastal refineries. The report suggests that about 200 mb/d of inland capacity and 1.3 million b/d of coastal capacity has been permanently idled.

Langston, V.C.

1983-03-01T23:59:59.000Z

129

Structural, energy and environmental aspects in Iranian oil refineries  

Science Conference Proceedings (OSTI)

Petroleum refineries extract and upgrade the valuable components of crude oil to produce a variety of marketable petroleum products. However Iranian refineries are old and their efficiency and structure do not satisfy demand of the country in which their ... Keywords: Iran, demand, energy, refinery

Sourena Sattari; Akram Avami

2008-02-01T23:59:59.000Z

130

Refinery Yield of Liquefied Refinery Gases  

U.S. Energy Information Administration (EIA) Indexed Site

Refinery Yield Refinery Yield (Percent) Product: Liquefied Refinery Gases Finished Motor Gasoline Finished Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Distillate Fuel Oil Residual Fuel Oil Naphtha for Petrochemical Feedstock Use Other Oils for Petrochemical Feedstock Use Special Naphthas Lubricants Waxes Petroleum Coke Asphalt and Road Oil Still Gas Miscellaneous Products Processing Gain(-) or Loss(+) Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History U.S. 5.3 5.4 5.2 5.2 5.1 3.9 1993-2013 PADD 1 4.4 5.1 4.9 4.9 4.6 2.1 1993-2013 East Coast 4.4 5.3 5.1 5.1 4.9 2.2 1993-2013

131

Petroleum supply monthly, with data from June 1996  

Science Conference Proceedings (OSTI)

The Petroleum Supply Division (PSD) of the Energy Information Administration (EIA) collects and published information on petroleum supply and disposition in the United States. The information is collected through a series of surveys that make up the Petroleum Supply Reporting System (PSRS). The PSRS data are published in the Weekly Petroleum Status Report (WPSR), Petroleum Supply Monthly (PSM), and Petroleum Supply Annual (PSA). This report presents information on crude oil production, crude oil imports and exports, refinery operations, natural gas processing, transportation, and oxygenate data.

NONE

1996-08-01T23:59:59.000Z

132

Electricity Shortage in California: Issues for Petroleum and ...  

U.S. Energy Information Administration (EIA)

electricity demand reduction that is either voluntary or motivated by high electricity prices. Petroleum Refineries ; Until early this year California refineries were ...

133

Energy efficiency improvement and cost saving opportunities forpetroleum refineries  

Science Conference Proceedings (OSTI)

The petroleum refining industry in the United States is the largest in the world, providing inputs to virtually any economic sector,including the transport sector and the chemical industry. The industry operates 146 refineries (as of January 2004) around the country,employing over 65,000 employees. The refining industry produces a mix of products with a total value exceeding $151 billion. Refineries spend typically 50 percent of cash operating costs (i.e., excluding capital costs and depreciation) on energy, making energy a major cost factor and also an important opportunity for cost reduction. Energy use is also a major source of emissions in the refinery industry making energy efficiency improvement an attractive opportunity to reduce emissions and operating costs. Voluntary government programs aim to assist industry to improve competitiveness through increased energy efficiency and reduced environmental impact. ENERGY STAR (R), a voluntary program managed by the U.S. Environmental Protection Agency, stresses the need for strong and strategic corporate energy management programs. ENERGY STAR provides energy management tools and strategies for successful corporate energy management programs. This Energy Guide describes research conducted to support ENERGY STAR and its work with the petroleum refining industry.This research provides information on potential energy efficiency opportunities for petroleum refineries. This Energy Guide introduces energy efficiency opportunities available for petroleum refineries. It begins with descriptions of the trends, structure, and production of the refining industry and the energy used in the refining and conversion processes. Specific energy savings for each energy efficiency measure based on case studies of plants and references to technical literature are provided. If available, typical payback periods are also listed. The Energy Guide draws upon the experiences with energy efficiency measures of petroleum refineries worldwide. The findings suggest that given available resources and technology, there are opportunities to reduce energy consumption cost-effectively in the petroleum refining industry while maintaining the quality of the products manufactured. Further research on the economics of the measures, as well as the applicability of these to individual refineries, is needed to assess the feasibility of implementation of selected technologies at individual plants.

Worrell, Ernst; Galitsky, Christina

2005-02-15T23:59:59.000Z

134

Monitoring near refineries or airborne chemicals on the SARA Title 3 section 313 list  

Science Conference Proceedings (OSTI)

In this volume, detailed procedures recommended for the measurement of selected petroleum refinery emissions in ambient air are presented.

Not Available

1988-01-01T23:59:59.000Z

135

Monitoring near refineries or airborne chemicals on the SARA Title 3 Section 313 list  

Science Conference Proceedings (OSTI)

This volume identifies publications and databases that address ambient air concentrations measured near petroleum refineries for the selected target chemicals.

Not Available

1988-01-01T23:59:59.000Z

136

Mr. Richard T. Thomas General Counsel for Petroleum Operations  

Office of Legacy Management (LM)

j&,J"[Di-' JAQ--- j&,J"[Di-' JAQ--- hl 3. ) :j .I Y ' ! <' Department of Energy Washington, D.C. 20545 NOV 1 1984 Mr. Richard T. Thomas General Counsel for Petroleum Operations P.O. Box 391 Ashland, Kentucky 41114 Dear Mr. Thomas: I am enclosing a copy of the radiological survey report for the Ashland Oil Company (former Haist property), Tonawanda, New York (Enclosure l), which was conducted in July 1976 (copies were sent to your Buffalo, New York, office on August 17, 1978). The results of the survey indicate levels of radioactive contamination above current guidelines. As noted in the report, the radioactive residues on the site do not pose a health hazard provided they (the residues) were not disturbed in the past or will not be disturbed in the future; i.e.,

137

Summary of Market Assessment of Planned Refinery Outages  

U.S. Energy Information Administration (EIA)

Home > Petroleum > Analysis > Summary of Market Assessment of Planned Refinery ... As required under Section 804 of the Energy Independence and Security Act of 2007 ...

138

Bioremediation of petroleum hydrocarbo-contaminated soils, comprehensive report, December 1999  

E-Print Network (OSTI)

1986. Biotechnology of petroleum pollutant biodegradation.Treatment and Disposal of Petroleum Refinery Wastes. In: R.M. Atlas (ed. ), Petroleum Microbiology. Macmillan

Hazen, Terry

2000-01-01T23:59:59.000Z

139

ENERGY STAR Petroleum Energy Guide  

NLE Websites -- All DOE Office Websites (Extended Search)

183 ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY Energy Efficiency Improvement and Cost Saving Opportunities For Petroleum Refineries An ENERGY STAR Guide for Energy and...

140

Naval Petroleum and Oil Shale Reserves annual report of operations for fiscal year 1996  

SciTech Connect

During fiscal year 1996, the Department of Energy continued to operate Naval Petroleum Reserve No. 1 in California and Naval Petroleum Reserve No. 3 in Wyoming through its contractors. In addition, natural gas operations were conducted at Naval Petroleum Reserve No. 3. All productive acreage owned by the Government at Naval Petroleum Reserve No. 2 in California was produced under lease to private companies. The locations of all six Naval Petroleum and Oil Shale Reserves are shown in a figure. Under the Naval Petroleum Reserves Production Act of 1976, production was originally authorized for six years, and based on findings of national interest, the President was authorized to extend production in three-year increments. President Reagan exercised this authority three times (in 1981, 1984, and 1987) and President Bush authorized extended production once (in 1990). President Clinton exercised this authority in 1993 and again in October 1996; production is presently authorized through April 5, 2000. 4 figs. 30 tabs.

1996-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "operable petroleum refineries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Naval Petroleum and Oil Shale Reserves. Annual report of operations, Fiscal year 1992  

SciTech Connect

During fiscal year 1992, the reserves generated $473 million in revenues, a $181 million decrease from the fiscal year 1991 revenues, primarily due to significant decreases in oil and natural gas prices. Total costs were $200 million, resulting in net cash flow of $273 million, compared with $454 million in fiscal year 1991. From 1976 through fiscal year 1992, the Naval Petroleum and Oil Shale Reserves generated more than $15 billion in revenues and a net operating income after costs of $12.5 billion. In fiscal year 1992, production at the Naval Petroleum Reserves at maximum efficient rates yielded 26 million barrels of crude oil, 119 billion cubic feet of natural gas, and 164 million gallons of natural gas liquids. From April to November 1992, senior managers from the Naval Petroleum and Oil Shale Reserves held a series of three workshops in Boulder, Colorado, in order to build a comprehensive Strategic Plan as required by Secretary of Energy Notice 25A-91. Other highlights are presented for the following: Naval Petroleum Reserve No. 1--production achievements, crude oil shipments to the strategic petroleum reserve, horizontal drilling, shallow oil zone gas injection project, environment and safety, and vanpool program; Naval Petroleum Reserve No. 2--new management and operating contractor and exploration drilling; Naval Petroleum Reserve No. 3--steamflood; Naval Oil Shale Reserves--protection program; and Tiger Team environmental assessment of the Naval Petroleum and Oil Shale Reserves in Colorado, Utah, and Wyoming.

1992-12-31T23:59:59.000Z

142

Alternative multimedia regulatory programs for next-generation refineries  

Science Conference Proceedings (OSTI)

The 25-year-old command-and-control environmental regulatory structure in the US has resulted in significant environmental improvements. Recently, however, its limitations (e.g., rigid application regardless of site-specific conditions, disregard of cross-media and multimedia impacts, limited incentives for new technology development and use) have become increasingly apparent. New regulatory approaches that recognize current and anticipated economic constraints, new knowledge of environmental processes and impacts, and the benefits of new technologies are needed. Such approaches could be especially important for the US petroleum refining industry. This industry operates under thin profit margins, releases chemicals that can produce adverse health and environmental impacts, and must meet the technological challenges of producing more highly refined fuels from poorer quality feedstocks. Under a grant from the Environmental Technology Initiative (ETI), Argonne National Laboratory and its subcontractor, Analytical Services, Inc. developed two alternative environmental regulatory programs for next-generation petroleum refineries. (In this report, next-generation refineries refers to the refineries of today as they operate in the next 20 or more years rather than to fully reengineered future refineries.) The objective of the ETI refinery project was to develop future-oriented regulatory programs for next-generation refineries that will expand the use of innovative technologies, encourage pollution prevention, demonstrate environmental responsibility, and maintain refinery economic performance. Rather than suggesting targeted, short-term modifications to existing media-specific command-and-control regulations, the ETI project suggests the use of new approaches that are broader and more flexible. It recognizes that giving refineries flexibility in meeting environmental protection goals can stimulate new technology development and use. Unlike most US Environmental Protection Agency (EPA) reinvention efforts, which seek results in 12 to 18 months, this ETI effort assumes a time frame of 20 years or more. It also assumes that existing laws and regulations can be changed. An iterative and interactive process was used by the project team to develop the alternative approaches. Information and stakeholder input were integrated to provide for constant revision and improvement. First, guidelines and principles were established to bound the study and set parameters for developing the approaches. Next, existing and projected environmental laws and regulations affecting petroleum refineries were examined to identify areas needing change. Then, to understand future challenges and opportunities, the projected refinery operating environment was described in terms of feedstock, product, technology, and economics. Finally several goals and indicators for assessing and comparing the alternatives were identified. On the basis of this background information, more than 60 options that could efficiently and effectively protect human health and the environment were identified. These options ranged from fundamental changes in program philosophy to procedural improvements. After the options were evaluated against the goals and indicators, many of them were integrated into two separate thematic paradigms: a risk-based paradigm and a goal-based paradigm. Elements common to both approaches include the following: (1) Establish the baseline--In establishing the baseline, the refinery and the regulator jointly identify residuals for which release limits must be established; (2) Set residual release limits--The refinery and the regulator jointly specify release limits on a facility-wide rather than a source-specific basis. A facility-wide permit documents the release limits; and (3) Assure compliance--Incentives provide the basis for assuring compliance, and flexibility in the compliance method is encouraged. Penalties apply if releases exceed the limits, and reporting requirements are streamlined relative to current practices.

Elcock, D.; Gasper, J.; Arguerro, R.; Emerson, D.

2000-06-22T23:59:59.000Z

143

Electricity Shortage in California: Issues for Petroleum and Natural Gas Supply  

Gasoline and Diesel Fuel Update (EIA)

Electricity Shortage in Electricity Shortage in California: Issues for Petroleum and Natural Gas Supply 1. Summary 2. Electricity Reliability Issues in California 3. Petroleum Refineries 4. Constraints Outside the Refinery Gate 5. Petroleum Product Prices and Supply Disruptions 6. Natural Gas 7. End Notes 8. Contacts 1. Summary Industry electric reliability organizations, the California Energy Commission, and the California Independent System Operator, expect California to be subject to rotating electricity outages in the summer of 2001 during the peak afternoon demand hours. These outages are expected to affect almost all sectors of the State's economy, including crude oil and natural gas producers, petroleum refineries, and pipelines. This report addresses the potential impact of rotating electrical

144

Short-Term Schedulability Analysis of Crude Oil Operations in Refinery With Oil Residency Time Constraint Using Petri Nets  

Science Conference Proceedings (OSTI)

A short-term schedule for oil refinery should arrange all the activities in every detail for the whole scheduling horizon, leading to a complex problem. There lacks efficient techniques and software tools for its solution applicable to industrial oil ... Keywords: Automated manufacturing system, Petri net (PN), hybrid Petri net, oil refinery, scheduling, short-term scheduling

NaiQi Wu; Feng Chu; Chengbin Chu; MengChu Zhou

2008-11-01T23:59:59.000Z

145

Modeling and Conflict Detection of Crude Oil Operations for Refinery Process Based on Controlled Colored Timed Petri Net  

Science Conference Proceedings (OSTI)

Recently, there has been a great interest in the modeling and analysis of process industry, and various models are proposed for different uses. It is meaningful to have a model to serve as an analytical aid tool in short-term scheduling for oil refinery ... Keywords: Hybrid systems, petri net, refinery process, system modeling

Naiqi Wu; Liping Bai; Chengbin Chu

2007-07-01T23:59:59.000Z

146

Petroleum Market Module  

Gasoline and Diesel Fuel Update (EIA)

This page intentionally left blank This page intentionally left blank 137 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2011 Petroleum Market Module The NEMS Petroleum Market Module (PMM) projects petroleum product prices and sources of supply for meeting petroleum product demand. The sources of supply include crude oil (both domestic and imported), petroleum product imports, unfinished oil imports, other refinery inputs (including alcohols, ethers, bioesters, corn, biomass, and coal), natural gas plant liquids production, and refinery processing gain. In addition, the PMM projects capacity expansion and fuel consumption at domestic refineries. The PMM contains a linear programming (LP) representation of U.S. refining activities in the five Petroleum Administration for

147

Petroleum Market Module  

Gasoline and Diesel Fuel Update (EIA)

This page inTenTionally lefT blank 135 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2012 Petroleum Market Module The NEMS Petroleum Market Module (PMM) projects petroleum product prices and sources of supply for meeting petroleum product demand. The sources of supply include crude oil (both domestic and imported), petroleum product imports, unfinished oil imports, other refinery inputs (including alcohols, ethers, esters, corn, biomass, and coal), natural gas plant liquids production, and refinery processing gain. In addition, the PMM projects capacity expansion and fuel consumption at domestic refineries. The PMM contains a linear programming (LP) representation of U.S. refining activities in the five Petroleum Administration for

148

Petroleum Supply Monthly  

Gasoline and Diesel Fuel Update (EIA)

7 Decemer 2011 Table 28. Refinery and Blender Net Input of Crude Oil and Petroleum Products by PAD and Refining Districts, December 2011 (Thousand Barrels) Commodity PAD District 1...

149

Petroleum Supply Annual  

Gasoline and Diesel Fuel Update (EIA)

6.PDF Table 16. Refinery and Blender Net Input of Crude Oil and Petroleum Products by PAD and Refining Districts, January 2011 (Thousand Barrels) Commodity PAD District 1 - East...

150

Weekly Petroleum Status Report  

U.S. Energy Information Administration (EIA)

Weekly Petroleum Status Report/Energy Information Administration v U.S. crude oil refinery inputs averaged about 14.6 million barrels per day during the week ending ...

151

Refinery Capacity Report  

U.S. Energy Information Administration (EIA) Indexed Site

1 1 Idle Operating Total Stream Day Barrels per Idle Operating Total Calendar Day Barrels per Atmospheric Crude Oil Distillation Capacity Idle Operating Total Operable Refineries Number of State and PAD District a b b 14 10 4 1,617,500 1,205,000 412,500 1,708,500 1,273,500 435,000 ............................................................................................................................................... PAD District I 1 0 1 182,200 0 182,200 190,200 0 190,200 ................................................................................................................................................................................................................................................................................................ Delaware......................................

152

Fire protection considerations for the design and operation of liquefied petroleum gas (LPG) storage facilities  

SciTech Connect

This standard addresses the design, operation, and maintenance of LPG storage facilities from the standpoint of prevention and control of releases, fire-protection design, and fire-control measures, as well as the history of LPG storage facility failure, facility design philosophy, operating and maintenance procedures, and various fire-protection and firefighting approaches and presentations. The storage facilities covered are LPG installations (storage vessels and associated loading/unloading/transfer systems) at marine and pipeline terminals, natural gas processing plants, refineries, petrochemical plants, and tank farms.

1989-01-01T23:59:59.000Z

153

Petroleum Supply Monthly  

Gasoline and Diesel Fuel Update (EIA)

December 2011 December 2011 Table 19. PAD District 4 - Daily Average Supply and Disposition of Crude Oil and Petroleum Products, December 2011 (Thousand Barrels per Day) Commodity Supply Disposition Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil ............................................................. 393 - - - - 330 -111 -46 4 562 0 0 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 406 0 2 15 -333 - - 0 20 9 61 Pentanes Plus .................................................. 58 0 - - - -33 - - 0 6 9 10 Liquefied Petroleum Gases .............................. 348 - - 2 15 -299 - -

154

Petroleum Supply Monthly  

Gasoline and Diesel Fuel Update (EIA)

December 2011 December 2011 Table 23. PAD District 5 - Daily Average Supply and Disposition of Crude Oil and Petroleum Products, December 2011 (Thousand Barrels per Day) Commodity Supply Disposition Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil ............................................................. 1,197 - - - - 1,186 - -47 -4 2,340 0 0 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 69 0 14 4 - - - -60 83 20 43 Pentanes Plus .................................................. 32 0 - - - - - - -1 26 2 5 Liquefied Petroleum Gases .............................. 37 - - 14 4 - - - -59

155

Petroleum Supply Monthly  

Gasoline and Diesel Fuel Update (EIA)

December 2011 December 2011 Table 7. PAD District 1 - Daily Average Supply and Disposition of Crude Oil and Petroleum Products, December 2011 (Thousand Barrels per Day) Commodity Supply Disposition Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil ............................................................. 24 - - - - 854 -10 42 -28 935 3 0 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 42 0 27 67 119 - - -30 26 1 259 Pentanes Plus .................................................. 7 0 - - - - - - 0 - 0 7 Liquefied Petroleum Gases .............................. 35 - - 27 67 119 - - -30 26

156

Petroleum Supply Monthly  

U.S. Energy Information Administration (EIA) Indexed Site

6 6 September 2013 Table 20. PAD District 4 - Year-to-Date Daily Average Supply and Disposition of Crude Oil and Petroleum Products, January-September 2013 (Thousand Barrels per Day) Commodity Supply Disposition Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil ............................................................. 511 - - - - 289 -169 -49 4 579 0 0 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 316 0 13 11 -264 - - 2 16 15 44 Pentanes Plus .................................................. 50 0 - - 0 -38 - - 0 6 13 -7 Liquefied Petroleum Gases ..............................

157

Assumptions to the Annual Energy Outlook - Petroleum Market Module  

Gasoline and Diesel Fuel Update (EIA)

Petroleum Market Module Petroleum Market Module Assumption to the Annual Energy Outlook Petroleum Market Module Figure 8. Petroleum Administration for Defense Districts. Having problems, call our National Energy Information Center at 202-586-8800 for help. The NEMS Petroleum Market Module (PMM) forecasts petroleum product prices and sources of supply for meeting petroleum product demand. The sources of supply include crude oil (both domestic and imported), petroleum product imports, other refinery inputs including alcohols, ethers, and bioesters natural gas plant liquids production, and refinery processing gain. In addition, the PMM estimates capacity expansion and fuel consumption of domestic refineries. The PMM contains a linear programming representation of U.S. refining

158

Petroleum Market Module  

Gasoline and Diesel Fuel Update (EIA)

other refinery inputs including alcohols, ethers, bioesters, other refinery inputs including alcohols, ethers, bioesters, natural gas plant liquids production, and refinery processing gain. In addition, the PMM estimates capacity expansion and fuel consumption of domestic refineries. The PMM contains a linear programming representation of U.S. refining activities in the five Petroleum Area Defense Districts (PADDs) (Figure 9). The model is created by aggregating individual refineries into one linear programmming representation for each PADD. This representation provides the marginal costs of production for a number of conventional and new petroleum products. In order to interact with other NEMS modules with different regional representations, certain PMM inputs and outputs are converted from PADD regions to other regional structures and vice versa. The linear programming results are used to determine

159

/Gas Plant Operators Monthly Petroleum Product Sales Report. As  

U.S. Energy Information Administration (EIA)

sales to refiners and gas plant operators represented on the list. When using this list, ... (CNG Transmission) Dominion Transmission . DCP Midstream Partners.

160

Energy Guideline Factors Provide a Better Measure of Refinery Energy Performance  

E-Print Network (OSTI)

Exxon Company, U.S.A. refineries reduced energy consumption by 25% between 1972 and 1978 compared with an 18% reduction for the U.S. Petroleum Refining Industry over the same period. The Exxon approach to conserving energy in petroleum refining operations goes beyond energy conservation housekeeping measures and investments, and uses a comprehensive method to measure energy efficiency rather than energy consumption per barrel. It uses the Exxon Research and Engineering developed energy guideline factors, which are based on energy efficient designs and criteria, to (1) Evaluate the energy efficiency performance of refineries of different complexity in a consistent manner. (2) Compensate for changes in individual process unit throughputs and in unit operating intensity/severity. (3) Identify and quantify areas of energy inefficiency. (4) Regularly monitor and steward energy efficiency performance. Effective conservation also requires the analysis of energy performance and setting goals for future improvement. The paper explains how this can be done.

Libbers, D. D.

1980-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "operable petroleum refineries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Feasibility study on the modernization and expansion of the Tema Oil Refinery. Executive Summary. Export trade information  

Science Conference Proceedings (OSTI)

The Tema Oil Refinery (TOR), which was commissioned in 1963, is a simple hydro-skimming plant which processes crude oil into LPG, gasoline, kerosene, gasoil, and fuel oil. It is the only petroleum refinery in Ghana. Over the years some of the equipment in the refinery has deteriorated or become obsolete necessitating major rehabilitation. A study of the refinery expansion project takes into consideration earlier studies and, equally important, recognizes the extensive work done by TOR in rehabilitating the refinery. The program, carried out in phases because of funding limitations, has addressed the critical repairs and replacements in the process units and utilities necessary to prolong the life of the refinery and assure reliability and safe operation. It undertook the task of investigating the feasibility of modernizing and expanding the refinery at Tema, Ghana to meet projected market demands until the year 2005. A process planning study was conducted to select the optimal process and utility configuration which would result in economic benefits to Ghana.

Not Available

1992-04-01T23:59:59.000Z

162

Potentials for fuel cells in refineries and chlor-alkali plants  

DOE Green Energy (OSTI)

The market potentials for fuel cell cogeneration systems in petroleum refineries and chlor-alkali plants were evaluated. the most promising application appears to be in chlor-alkali plants where the production process is electricity intensive. Future anticipated changes in the production process are favorable to the use of fuel cells. The energy use in refineries is steam intensive with the required steam pressures ranging from approximately 15 to 650 psig. The near-term use of fuel cell cogeneration in refineries is not as attractive as in chlor-alkali plants. The phosphoric acid fuel cell is the most developed and the most competitive, but its use is limited by its being able to produce only low-pressure steam. Over the longer term, the molten carbonate and the solid oxide fuel cell both of which operate at significantly higher temperatures, are technically very attractive. However, they do not appear to be cost competitive with conventional systems.

Altseimer, J.H.; Roach, F.

1986-01-01T23:59:59.000Z

163

Refinery Capacity Report  

U.S. Energy Information Administration (EIA)

Explanatory Notes Survey Methodology Description of Survey Form The Form EIA-820, “Annual Refinery Report,” is the primary source of data in the “Refinery ...

164

Refinery Operable Utilization Rate  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Totals may not equal sum ...

165

Refinery Operating Capacity  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Totals may not equal sum ...

166

Monitoring near refineries for airborne chemicals on the SARA Title 3 Section 313 list  

SciTech Connect

This study provides an ambient air concentration perspective to the engineering estimates of petroleum refinery emissions required under SARA Title III Section 313. It presents and discusses ambient air concentrations of 25 selected target chemicals measured at and near the perimeter (fenceline) of three refineries. Measurements were made over three consecutive 24-hour sampling periods at each refinery. The extent to which the concentrations of the target chemicals were due to fugitive emissions from the refineries is estimated.

Not Available

1989-01-01T23:59:59.000Z

167

Refinery siting workbook: appendices C to O  

Science Conference Proceedings (OSTI)

Applicable laws and permits available for the selection and building of petroleum refineries are enclosed. A glossary of pertinent terms is also included. References related to the National Environmental Policy Act, the Clean Air Act, the Federal Water Pollution Control Act, Resource Conservation and Recovery Act, Toxic Substance Control Act, and Wetlands and Coastal Zone are included. Permit information is also presented. (DC)

Not Available

1980-07-01T23:59:59.000Z

168

California Energy Commission - Petroleum Weekly Fuels Watch Report...  

Open Energy Info (EERE)

California Energy Commission - Petroleum Weekly Fuels Watch Report (2010) Contains data from the California Energy Commission on weekly refinery production and stock...

169

California Energy Commission - Petroleum Weekly Fuels Watch Report...  

Open Energy Info (EERE)

California Energy Commission - Petroleum Weekly Fuels Watch Report (2000) Contains data from the California Energy Commission on weekly refinery production and stock...

170

California Energy Commission - Petroleum Weekly Fuels Watch Report...  

Open Energy Info (EERE)

California Energy Commission - Petroleum Weekly Fuels Watch Report (1999) Contains data from the California Energy Commission on weekly refinery production and stock...

171

Documentation of the petroleum market model (PMM). Appendix: Model developer`s report  

SciTech Connect

The Office of Integrated Analysis and Forecasting (OIAF) is required to provide complete model documentation to meet the EIA Model Acceptance Standards. The EIA Model Documentation: Petroleum Market Model of the National Energy Modeling System provides a complete description of the Petroleum Market Model`s (PMM) methodology, and relation to other modules in the National Energy Modeling System (NEMS). This Model Developer`s Report (MDR) serves as an appendix to the methodology documentation and provides an assessment of the sensitivity of PMM results to changes in input data. The MDR analysis for PMM is performed by varying several sets of input variables one-at-a-time and examining the effect on a set of selected output variables. The analysis is based on stand-alone, rather than integrated, National Energy Modeling System (NEMS) runs. This means that other NEMS modules are not responding to PMM outputs. The PMM models petroleum refining and marketing. The purpose of the PMM is to project petroleum product prices, refining activities, and movements of petroleum into the United States and among domestic regions. In addition, the PMM estimates capacity expansion and fuel consumption in, the refining industry. The PMM is also used to analyze a wide variety of petroleum-related issues and policies, in order to foster better understanding of the petroleum refining and marketing industry and the effects of certain policies and regulations. The PMM simulates the operation of petroleum refineries in the United States, including the supply and transportation of crude oil to refineries, the regional processing of these raw materials into petroleum products, and the distribution of petroleum products to meet regional demands. The essential outputs of this model are product prices, a petroleum supply/demand balance, demands for refinery fuel use, and capacity expansion.

Not Available

1994-12-28T23:59:59.000Z

172

Kyrgyzstan starts up its first refinery  

Science Conference Proceedings (OSTI)

The Central Asian republic of Kyrgyzstan started up its first oil refinery in October 1996. The 10,000 b/d plant is designed to produce gasoline, diesel, and mazut (heavy fuel oil) from local Kyrgyz crude. Before construction of the Jalalabad refinery, all finished petroleum products were imported from neighboring countries. Kyrgyzstan`s demand for finished products is about 40,000 b/d. The new refinery was designed and constructed by Petrofac of Tyler, Texas, on behalf of Kyrgoil Corp., Calgary. Kyrgoil is a partner with the Kyrgyz state oil company, Kyrgyzsneft, in a venture called Kyrzgyz Petroleum Co. (KPC). KPC has undertaken restoration and continued development of the oil fields in Kyrgyzstan`s Fergana basin, in addition to the refinery project. The company also has marketing rights for finished products within Kyrgyzstan. The refinery comprises: a hydroskimming (atmospheric distillation) section, diesel steam stripping, gasoline blending, and utilities and off-sites, including steam generation, power generation, tank farm, truck and rail tank-car loading and unloading facilities, crude inlet pipeline, high-voltage power line, substation, air compression, laboratory, and maintenance facilities.

McLeod, G. [Petrofac LLC, Tyler, TX (United States)

1997-05-05T23:59:59.000Z

173

Petroleum: An energy profile, 1999  

Science Conference Proceedings (OSTI)

This report prepared by the Energy Information Administration covers the following topics: petroleum production and end-use sectors; resources and reserves; exploration and production; LPG sources and processing; motor gasoline octane enhancement; constructing pipelines; the strategic petroleum reserve; imports and exports; marketing; district descriptions and maps; and refinery processes and facilities. 33 figs., 7 tabs.

NONE

1999-07-01T23:59:59.000Z

174

Laboratory investigation of the performance of a Holden engine operating on liquified petroleum gas  

SciTech Connect

A laboratory investigation into the relative performances of an engine when operated on both liquified petroleum gas (LPG) and petrol showed that the engine operated at higher termal efficiency on LPG and also that it would operate satisfactorily at leaner air-fuel mixtures on this fuel. Engine performance was less affected by retarded ignition for LPG than for petrol. Furthermore a large increase in dwell angle from the recommended setting had no significant effect on LPG performance. The LPG carburettor when installed in its normal configuration maintained an essentially constant mixture strength with no part throttle leaning of mixtures to give better efficiency nor corresponding full throttle enrichment to give best engine torque.

Webb, N.

1979-08-01T23:59:59.000Z

175

Refinery IGCC plants are exceeding 90% capacity factor after 3 years  

SciTech Connect

Steep learning curves for commercial IGCC plants in Italy show annual capacity factors of 55-60% in the first year of service and improvement to over 90% after the third year. The article reviews the success of three IGCC projects in Italy - those of ISAB Energy, Sarlux Saras and Api Energy. EniPower is commissioning a 250 MW IGCC plant that will burn syngas produced by gasification of residues at an adjacent Eni Sannazzaro refinery in north central Italy. The article lists 14 commercially operating IGCC plants worldwide that together provide close to 3900 MW of generating capacity. These use a variety of feedstock-coals, petroleum coke and refinery residues and biomass. Experience with commercial scale plants in Europe demonstrates that IGCC plants can operate at capacity factors comparable to if not better than conventional coal plants. 2 figs., 1 photo.

Jaeger, H.

2006-01-15T23:59:59.000Z

176

Petroleum Supply Annual  

U.S. Energy Information Administration (EIA) Indexed Site

1. TABLE1.PDF 1. TABLE1.PDF Table 1. U.S. Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, January 2012 (Thousand Barrels) Commodity Supply Disposition Ending Stocks Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports Adjust- ments 1 Stock Change 2 Refinery and Blender Net Inputs Exports Products Supplied 3 Crude Oil 4 ............................................................ 190,109 - - - - 264,348 6,359 12,794 445,596 2,425 0 1,039,424 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 73,905 -587 13,044 6,935 - - -11,335 15,883 8,313 80,436 118,039 Pentanes Plus .................................................. 8,824 -587 - - 1,699 - - -805 4,946 2,754 3,041 16,791 Liquefied Petroleum Gases

177

Petroleum Supply Annual  

U.S. Energy Information Administration (EIA) Indexed Site

2.PDF 2.PDF Table 12. PAD District 5 - Daily Average Supply and Disposition of Crude Oil and Petroleum Products, January 2012 (Thousand Barrels per Day) Commodity Supply Disposition Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil ............................................................. 1,180 - - - - 1,014 - 146 29 2,312 - 0 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 69 0 33 6 - - - -25 83 20 30 Pentanes Plus .................................................. 33 0 - - - - - - -1 27 4 3 Liquefied Petroleum Gases .............................. 37 - - 33 6 - - - -24 56 17 27 Ethane/Ethylene

178

Petroleum Supply Monthly  

U.S. Energy Information Administration (EIA) Indexed Site

September 2013 Table 1. U.S. Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, September 2013 (Thousand Barrels) Commodity Supply Disposition Ending Stocks Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports Adjust- ments 1 Stock Change 2 Refinery and Blender Net Inputs Exports Products Supplied 3 Crude Oil 4 ............................................................ 233,810 - - - - 237,344 8,334 7,688 468,825 2,975 0 1,067,149 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 81,196 -552 19,023 4,020 - - 3,027 16,794 13,937 69,929 189,672 Pentanes Plus .................................................. 11,167 -552 - - 772 - - -700 5,666 2,989 3,432 18,036 Liquefied Petroleum Gases

179

Petroleum Supply Monthly  

Gasoline and Diesel Fuel Update (EIA)

December 2011 December 2011 Table 1. U.S. Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, December 2011 (Thousand Barrels) Commodity Supply Disposition Ending Stocks Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports Adjust- ments 1 Stock Change 2 Refinery and Blender Net Inputs Exports Products Supplied 3 Crude Oil 4 ............................................................ 182,188 - - - - 270,188 2,576 -6,767 460,074 1,646 0 1,026,829 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 72,869 -607 11,545 7,801 - - -12,921 17,534 6,391 80,604 128,709 Pentanes Plus .................................................. 9,170 -607 - - 2,421 - - 1,146 5,321 2,200 2,317 17,598 Liquefied Petroleum Gases

180

Petroleum Supply Monthly  

Gasoline and Diesel Fuel Update (EIA)

December 2011 December 2011 Table 17. PAD District 4 - Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, December 2011 (Thousand Barrels) Commodity Supply Disposition Ending Stocks Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil ............................................................. 12,175 - - - - 10,226 -3,426 -1,436 132 17,407 1 0 15,969 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 12,584 -10 52 460 -10,314 - - -12 611 282 1,891 1,375 Pentanes Plus .................................................. 1,788 -10 - - - -1,036 - - -15 174 273 310 180 Liquefied Petroleum Gases

Note: This page contains sample records for the topic "operable petroleum refineries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Petroleum Supply Monthly  

Gasoline and Diesel Fuel Update (EIA)

December 2011 December 2011 Table 15. PAD District 3 - Daily Average Supply and Disposition of Crude Oil and Petroleum Products, December 2011 (Thousand Barrels per Day) Commodity Supply Disposition Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil 6 ............................................................ 3,327 - - - - 4,646 -720 39 -191 7,482 - 0 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 1,380 -1 304 84 227 - - -113 306 108 1,693 Pentanes Plus .................................................. 155 -1 - - 77 -58 - - 35 106 1 31 Liquefied Petroleum Gases ..............................

182

Petroleum Supply Monthly  

U.S. Energy Information Administration (EIA) Indexed Site

2 2 September 2013 Table 16. PAD District 3 - Year-to-Date Daily Average Supply and Disposition of Crude Oil and Petroleum Products, January-September 2013 (Thousand Barrels per Day) Commodity Supply Disposition Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil 6 ............................................................ 4,354 - - - - 3,718 -413 345 75 7,905 24 0 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 1,615 0 454 39 170 - - 62 282 267 1,666 Pentanes Plus .................................................. 195 0 - - 36 -65 - - 15 113 4 35 Liquefied Petroleum Gases

183

Petroleum Supply Annual  

U.S. Energy Information Administration (EIA) Indexed Site

TABLE9.PDF TABLE9.PDF Table 9. PAD District 4 - Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, January 2012 (Thousand Barrels) Commodity Supply Disposition Ending Stocks Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil ............................................................. 12,961 - - - - 10,783 -3,879 896 2,868 17,893 0 0 18,695 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 12,770 -9 127 502 -11,116 - - -50 621 280 1,423 1,326 Pentanes Plus .................................................. 1,484 -9 - - - -1,152 - - 7 122 264 -70 187 Liquefied Petroleum Gases

184

Petroleum Supply Annual  

U.S. Energy Information Administration (EIA) Indexed Site

.PDF .PDF Table 3. PAD District 1 - Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, January 2012 (Thousand Barrels) Commodity Supply Disposition Ending Stocks Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil ............................................................. 734 - - - - 26,368 419 -1,209 627 25,554 130 0 10,529 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 1,314 -6 923 1,606 2,621 - - -1,556 707 53 7,254 6,409 Pentanes Plus .................................................. 213 -6 - - - - - - 3 5 6 193 34 Liquefied Petroleum Gases ..............................

185

Petroleum Supply Annual  

U.S. Energy Information Administration (EIA) Indexed Site

1.PDF 1.PDF Table 11. PAD District 5 - Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, January 2012 (Thousand Barrels) Commodity Supply Disposition Ending Stocks Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil ............................................................. 36,593 - - - - 31,429 - 4,534 890 71,666 - 0 55,877 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 2,154 -11 1,013 192 - - - -786 2,587 629 918 3,544 Pentanes Plus .................................................. 1,013 -11 - - - - - - -35 842 110 85 36 Liquefied Petroleum Gases ..............................

186

Petroleum Supply Monthly  

U.S. Energy Information Administration (EIA) Indexed Site

4 4 September 2013 Table 8. PAD District 1 - Year-to-Date Daily Average Supply and Disposition of Crude Oil and Petroleum Products, January-September 2013 (Thousand Barrels per Day) Commodity Supply Disposition Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil ............................................................. 32 - - - - 843 -1 230 8 1,061 35 0 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 71 0 45 40 77 - - 1 16 10 205 Pentanes Plus .................................................. 12 0 - - 1 0 - - 0 0 2 9 Liquefied Petroleum Gases ..............................

187

Petroleum Supply Monthly  

Gasoline and Diesel Fuel Update (EIA)

December 2011 December 2011 Table 3. U.S. Daily Average Supply and Disposition of Crude Oil and Petroleum Products, December 2011 (Thousand Barrels per Day) Commodity Supply Disposition Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports Adjust- ments 1 Stock Change 2 Refinery and Blender Net Inputs Exports Products Supplied 3 Crude Oil 4 ............................................................ 5,877 - - - - 8,716 83 -218 14,841 53 0 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 2,351 -20 372 252 - - -417 566 206 2,600 Pentanes Plus .................................................. 296 -20 - - 78 - - 37 172 71 75 Liquefied Petroleum Gases .............................. 2,055 - - 372 174 - - -454 394 135 2,525

188

Petroleum Supply Monthly  

Gasoline and Diesel Fuel Update (EIA)

December 2011 December 2011 Table 5. PAD District 1 - Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, December 2011 (Thousand Barrels) Commodity Supply Disposition Ending Stocks Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil ............................................................. 751 - - - - 26,471 -300 1,308 -869 28,999 100 0 9,902 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 1,313 -7 839 2,091 3,702 - - -929 816 33 8,018 7,618 Pentanes Plus .................................................. 225 -7 - - - - - - 3 - 11 204 31 Liquefied Petroleum Gases

189

Petroleum Supply Monthly  

U.S. Energy Information Administration (EIA) Indexed Site

September 2013 Table 4. U.S. Year-to-Date Daily Average Supply and Disposition of Crude Oil and Petroleum Products, January-September 2013 (Thousand Barrels per Day) Commodity Supply Disposition Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports Adjust- ments 1 Stock Change 2 Refinery and Blender Net Inputs Exports Products Supplied 3 Crude Oil 4 ............................................................ 7,340 - - - - 7,778 239 25 15,229 104 0 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 2,516 -18 716 175 - - 133 465 434 2,358 Pentanes Plus .................................................. 340 -18 - - 38 - - 20 168 134 38 Liquefied Petroleum Gases .............................. 2,176 - - 716

190

Petroleum Supply Monthly  

U.S. Energy Information Administration (EIA) Indexed Site

30 30 September 2013 Table 24. PAD District 5 - Year-to-Date Daily Average Supply and Disposition of Crude Oil and Petroleum Products, January-September 2013 (Thousand Barrels per Day) Commodity Supply Disposition Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil ............................................................. 1,101 - - - - 1,091 - 115 -14 2,320 1 0 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 65 0 67 5 - - - 13 63 14 47 Pentanes Plus .................................................. 29 0 - - - - - - 1 21 4 3 Liquefied Petroleum Gases ..............................

191

Petroleum Supply Annual  

U.S. Energy Information Administration (EIA) Indexed Site

.PDF .PDF Table 2. U.S. Daily Average Supply and Disposition of Crude Oil and Petroleum Products, January 2012 (Thousand Barrels per Day) Commodity Supply Disposition Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports Adjust- ments 1 Stock Change 2 Refinery and Blender Net Inputs Exports Products Supplied 3 Crude Oil 4 ............................................................ 6,133 - - - - 8,527 205 413 14,374 78 0 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 2,384 -19 421 224 - - -366 512 268 2,595 Pentanes Plus .................................................. 285 -19 - - 55 - - -26 160 89 98 Liquefied Petroleum Gases .............................. 2,099 - - 421 169 - - -340 353 179 2,497 Ethane/Ethylene

192

The US petroleum refining industry in the 1980's  

SciTech Connect

As part of the EIA program on petroleum, The US Petroleum Refining Industry in the 1980's, presents a historical analysis of the changes that took place in the US petroleum refining industry during the 1980's. It is intended to be of interest to analysts in the petroleum industry, state and federal government officials, Congress, and the general public. The report consists of six chapters and four appendices. Included is a detailed description of the major events and factors that affected the domestic refining industry during this period. Some of the changes that took place in the 1980's are the result of events that started in the 1970's. The impact of these events on US refinery configuration, operations, economics, and company ownership are examined. 23 figs., 11 tabs.

Not Available

1990-10-11T23:59:59.000Z

193

EIA - Assumptions to the Annual Energy Outlook 2010 - Petroleum Market  

Gasoline and Diesel Fuel Update (EIA)

Petroleum Market Module Petroleum Market Module Assumptions to the Annual Energy Outlook 2010 Petroleum Market Module The NEMS Petroleum Market Module (PMM) projects petroleum product prices and sources of supply for meeting petroleum product demand. The sources of supply include crude oil (both domestic and imported), petroleum product imports, unfinished oil imports, other refinery inputs (including alcohols, ethers, bioesters, corn, biomass, and coal), natural gas plant liquids production, and refinery processing gain. In addition, the PMM projects capacity expansion and fuel consumption at domestic refineries. Figure 9. Petroleum Administration for Defense Districts. The PMM contains a linear programming (LP) representation of U.S. refining activities in the five Petroleum Area Defense Districts (PADDs) (Figure 9),

194

Weekly Petroleum Status Report - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Weekly Petroleum Status Report/Energy Information Administration v U.S. crude oil refinery inputs averaged over 14.5 million barrels per day during the week ending ...

195

Petroleum Supply Annual  

U.S. Energy Information Administration (EIA) Indexed Site

7.PDF 7.PDF Table 17. Refinery and Blender Net Production of Finished Petroleum Products by PAD and Refining Districts, January 2012 (Thousand Barrels) Commodity PAD District 1 - East Coast PAD District 2 - Midwest East Coast Appalachian No. 1 Total Indiana, Illinois, Kentucky Minnesota, Wisconsin, North and South Dakota Oklahoma, Kansas, Missouri Total Liquefied Refinery Gases ......................................... 952 -29 923 1,600 -77 -190 1,333 Ethane/Ethylene ................................................... 3 - 3 - - - - Ethane .............................................................. - - - - - - - Ethylene ............................................................ 3 - 3 - - - - Propane/Propylene ............................................... 1,175 20 1,195 2,531 316 621 3,468 Propane ............................................................

196

Petroleum Supply Annual  

U.S. Energy Information Administration (EIA) Indexed Site

9.PDF 9.PDF Table 19. Refinery Net Production of Finished Petroleum Products by PAD and Refining Districts, January 2012 (Thousand Barrels) Commodity PAD District 1 - East Coast PAD District 2 - Midwest East Coast Appalachian No. 1 Total Indiana, Illinois, Kentucky Minnesota, Wisconsin, North and South Dakota Oklahoma, Kansas, Missouri Total Liquefied Refinery Gases ......................................... 952 -29 923 1,600 -77 -190 1,333 Ethane/Ethylene ................................................... 3 - 3 - - - - Ethane .............................................................. - - - - - - - Ethylene ............................................................ 3 - 3 - - - - Propane/Propylene ............................................... 1,175 20 1,195 2,531 316 621 3,468 Propane ............................................................

197

Petroleum Supply Monthly  

U.S. Energy Information Administration (EIA) Indexed Site

6 6 September 2013 Table 29. Refinery and Blender Net Production of Finished Petroleum Products by PAD and Refining Districts, September 2013 (Thousand Barrels) Commodity PAD District 1 - East Coast PAD District 2 - Midwest East Coast Appalachian No. 1 Total Indiana, Illinois, Kentucky Minnesota, Wisconsin, North and South Dakota Oklahoma, Kansas, Missouri Total Liquefied Refinery Gases ......................................... 719 28 747 2,872 146 444 3,462 Ethane/Ethylene ................................................... 9 - 9 - - - - Ethane .............................................................. - - - - - - - Ethylene ............................................................ 9 - 9 - - - - Propane/Propylene ............................................... 1,050 28 1,078 2,342 225 544 3,111 Propane

198

Petroleum Supply Monthly  

U.S. Energy Information Administration (EIA) Indexed Site

40 40 September 2013 Table 31. Refinery Net Production of Finished Petroleum Products by PAD and Refining Districts, September 2013 (Thousand Barrels) Commodity PAD District 1 - East Coast PAD District 2 - Midwest East Coast Appalachian No. 1 Total Indiana, Illinois, Kentucky Minnesota, Wisconsin, North and South Dakota Oklahoma, Kansas, Missouri Total Liquefied Refinery Gases ......................................... 719 28 747 2,872 146 444 3,462 Ethane/Ethylene ................................................... 9 - 9 - - - - Ethane .............................................................. - - - - - - - Ethylene ............................................................ 9 - 9 - - - - Propane/Propylene ............................................... 1,050 28 1,078 2,342 225 544 3,111 Propane ............................................................

199

Table 9. Refinery Receipts of Crude Oil by Method of ...  

U.S. Energy Information Administration (EIA)

Refinery Receipts of Crude Oil by Method of ... "Annual Refinery Report." 49 Energy Information Administration, Refinery Capacity 2011. Title: Refinery ...

200

Petroleum supply annual 1995: Volume 1  

Science Conference Proceedings (OSTI)

The {ital Petroleum Supply Annual} contains information on supply and disposition of crude oil and petroleum products. It reflects data collected from the petroleum industry during 1995 through monthly surveys, and it is divided into 2 volumes. This volume contains three sections: summary statistics, detailed statistics, and selected refinery statistics, each with final annual data. (The other volume contains final statistics for each month and replaces data previously published in the {ital Petroleum Supply Monthly}).

NONE

1996-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "operable petroleum refineries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Oklahoma, Kansas, Missouri Refinery District API Gravity ...  

U.S. Energy Information Administration (EIA)

Oklahoma, Kansas, Missouri Refinery District API Gravity (Weighted Average) of Crude Oil Input to Refineries (Degree)

202

Petroleum Coke Refinery Stocks by Type  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Crude oil stocks in the ...

203

Refinery Net Production of Marketable Petroleum Coke  

U.S. Energy Information Administration (EIA)

La. Gulf Coast: 56,266: 52,014: 52,486: 58,306: 60,363: 56,587: 2005-2012: N. La., Ark: 785: 937: 554: 277: 1,599: 1,260: 2005-2012: PADD 4: 3,991: ...

204

Nevada Number and Capacity of Petroleum Refineries  

U.S. Energy Information Administration (EIA)

Catalytic Reforming : 0: 0: 0: 0: 2010-2013: Total Coking: 0: 0: 0: 0: 0: 0: 2006-2013: Catalytic Cracking - Fresh Feed: 0: 0: 0: 0: 0: 0: 2006-2013: Catalytic Hydro ...

205

Alabama Number and Capacity of Petroleum Refineries  

U.S. Energy Information Administration (EIA)

Catalytic Reforming : 28,700: 36,000: 33,000: 33,000: 2010-2013: Total Coking: 12,600: 12,600: 12,600: 28,000: 30,000: 30,000: 1987-2013: Catalytic Cracking - Fresh ...

206

Hawaii Number and Capacity of Petroleum Refineries  

U.S. Energy Information Administration (EIA)

Catalytic Reforming : 11,800: 12,500: 12,500: 12,500: 2010-2013: Total Coking: 0: 0: 0: 0: 0: 0: 2006-2013: Catalytic Cracking - Fresh Feed: 21,000: 21,000: 21,000 ...

207

Tennessee Number and Capacity of Petroleum Refineries  

U.S. Energy Information Administration (EIA)

Catalytic Reforming : 34,200: 34,200: 33,000: 35,300: 2010-2013: Total Coking: 0: 0: 0: 0: 0: 0: 2006-2013: Catalytic Cracking - Fresh Feed: 68,000: 68,000: 68,000 ...

208

Kansas Number and Capacity of Petroleum Refineries  

U.S. Energy Information Administration (EIA)

Catalytic Reforming : 76,200: 76,700: 76,700: 76,700: 2010-2013: Total Coking: 59,530: 61,800: 61,800: 61,800: 61,800: 60,000: 1987-2013: Catalytic Cracking - Fresh ...

209

Virginia Number and Capacity of Petroleum Refineries  

U.S. Energy Information Administration (EIA)

Catalytic Reforming : 11,000: 11,000 : 2010-2011: Total Coking: 17,675: 21,800: 20,000: 20,000: 0: 0: 1987-2013: Catalytic Cracking - Fresh Feed: 27,800: 27,800: 27,800:

210

Wyoming Number and Capacity of Petroleum Refineries  

U.S. Energy Information Administration (EIA)

Catalytic Reforming : 31,420: 30,670: 31,296: 31,448: 2010-2013: Total Coking: 13,500: 29,500: 29,500: 29,000: 31,200: 31,200: 1987-2013: Catalytic Cracking - Fresh ...

211

Illinois Number and Capacity of Petroleum Refineries  

U.S. Energy Information Administration (EIA)

Catalytic Reforming : 242,158: 245,124: 245,124: 230,274: 2010-2013: Total Coking: 144,322: 144,773: 138,830: 138,830: 197,330: 197,630: 1987-2013: Catalytic Cracking ...

212

Oklahoma Number and Capacity of Petroleum Refineries  

U.S. Energy Information Administration (EIA)

Catalytic Reforming : 123,300: 118,320: 120,963: 123,044: 2010-2013: Total Coking: 34,873: 33,956: 32,861: 30,767: 29,157: 25,363: 1987-2013: Catalytic Cracking ...

213

Minnesota Number and Capacity of Petroleum Refineries  

U.S. Energy Information Administration (EIA)

Catalytic Reforming : 64,770: 56,200: 57,800: 57,800: 2010-2013: Total Coking: 63,720: 60,500: 60,500: 58,700: 61,500: 58,600: 1987-2013: Catalytic Cracking - Fresh ...

214

Guam Number and Capacity of Petroleum Refineries  

U.S. Energy Information Administration (EIA)

Catalytic Reforming : 0: 0: 0: 0: 2010-2013: Total Coking: 0: 0: 0: 0: 0: 0: 2006-2013: Catalytic Cracking - Fresh Feed: 0: 0: 0: 0: 0: 0: 2006-2013: Catalytic Hydro ...

215

Arkansas Number and Capacity of Petroleum Refineries  

U.S. Energy Information Administration (EIA)

Catalytic Reforming : 14,500: 14,500: 14,800: 14,800: 2010-2013: Total Coking: 0: 0: 0: 0: 0: 0: 2006-2013: Catalytic Cracking - Fresh Feed: 19,500: 19,500: 20,500 ...

216

Refinery Net Production of Petroleum Coke  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: See Definitions ...

217

Refinery Net Production of Catalyst Petroleum Coke  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: See Definitions ...

218

Refinery & Blender Net Production of Petroleum Coke  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: See Definitions ...

219

Market survey on products from the Tema Oil Refinery carried out as part of the feasibility study on the Tema Oil Refinery expansion project. Export trade information  

SciTech Connect

The Tema Oil Refinery (TOR), which was commissioned in 1963, is a simple hydroskimming plant which processes crude oil into LPG, gasoline, kerosene, gasoil, and fuel oil. It is the only petroleum refinery in Ghana. Over the years some of the equipment in the refinery has deteriorated or become obsolete necessitating major rehabilitation. A feasibility study is investigating the modernization and expansion of the refinery to meet projected market demands until the year 2005. The report presents the results of a market survey done on products from TOR.

Not Available

1991-10-01T23:59:59.000Z

220

EIA - Assumptions to the Annual Energy Outlook 2008 - Petroleum Market  

Gasoline and Diesel Fuel Update (EIA)

Petroleum Market Module Petroleum Market Module Assumptions to the Annual Energy Outlook 2008 Petroleum Market Module Figure 9. Petroleum Administration for Defense Districts. Need help, contact the National Energy Information Center at 202-586-8800. The NEMS Petroleum Market Module (PMM) projects petroleum product prices and sources of supply for meeting petroleum product demand. The sources of supply include crude oil (both domestic and imported), petroleum product imports, unfinished oil imports, other refinery inputs (including alcohols, ethers, bioesters, corn, biomass, and coal), natural gas plant liquids production, and refinery processing gain. In addition, the PMM projects capacity expansion and fuel consumption at domestic refineries. The PMM contains a linear programming (LP) representation of U.S. refining

Note: This page contains sample records for the topic "operable petroleum refineries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Overview of the design, construction, and operation of interstate liquid petroleum pipelines.  

Science Conference Proceedings (OSTI)

The U.S. liquid petroleum pipeline industry is large, diverse, and vital to the nation's economy. Comprised of approximately 200,000 miles of pipe in all fifty states, liquid petroleum pipelines carried more than 40 million barrels per day, or 4 trillion barrel-miles, of crude oil and refined products during 2001. That represents about 17% of all freight transported in the United States, yet the cost of doing so amounted to only 2% of the nation's freight bill. Approximately 66% of domestic petroleum transport (by ton-mile) occurs by pipeline, with marine movements accounting for 28% and rail and truck transport making up the balance. In 2004, the movement of crude petroleum by domestic federally regulated pipelines amounted to 599.6 billion tonmiles, while that of petroleum products amounted to 315.9 billion ton-miles (AOPL 2006). As an illustration of the low cost of pipeline transportation, the cost to move a barrel of gasoline from Houston, Texas, to New York Harbor is only 3 cents per gallon, which is a small fraction of the cost of gasoline to consumers. Pipelines may be small or large, up to 48 inches in diameter. Nearly all of the mainline pipe is buried, but other pipeline components such as pump stations are above ground. Some lines are as short as a mile, while others may extend 1,000 miles or more. Some are very simple, connecting a single source to a single destination, while others are very complex, having many sources, destinations, and interconnections. Many pipelines cross one or more state boundaries (interstate), while some are located within a single state (intrastate), and still others operate on the Outer Continental Shelf and may or may not extend into one or more states. U.S. pipelines are located in coastal plains, deserts, Arctic tundra, mountains, and more than a mile beneath the water's surface of the Gulf of Mexico (Rabinow 2004; AOPL 2006). The network of crude oil pipelines in the United States is extensive. There are approximately 55,000 miles of crude oil trunk lines (usually 8 to 24 inches in diameter) in the United States that connect regional markets. The United States also has an estimated 30,000 to 40,000 miles of small gathering lines (usually 2 to 6 inches in diameter) located primarily in Texas, Oklahoma, Louisiana, and Wyoming, with small systems in a number of other oil producing states. These small lines gather the oil from many wells, both onshore and offshore, and connect to larger trunk lines measuring 8 to 24 inches in diameter. There are approximately 95,000 miles of refined products pipelines nationwide. Refined products pipelines are found in almost every state in the United States, with the exception of some New England states. These refined product pipelines vary in size from relatively small, 8- to 12-inch-diameter lines, to up to 42 inches in diameter. The overview of pipeline design, installation, and operation provided in the following sections is only a cursory treatment. Readers interested in more detailed discussions are invited to consult the myriad engineering publications available that provide such details. The two primary publications on which the following discussions are based are: Oil and Gas Pipeline Fundamentals (Kennedy 1993) and the Pipeline Rules of Thumb Handbook (McAllister 2002). Both are recommended references for additional reading for those requiring additional details. Websites maintained by various pipeline operators also can provide much useful information, as well as links to other sources of information. In particular, the website maintained by the U.S. Department of Energy's Energy Information Administration (EIA) (http://www.eia.doe.gov) is recommended. An excellent bibliography on pipeline standards and practices, including special considerations for pipelines in Arctic climates, has been published jointly by librarians for the Alyeska Pipeline Service Company (operators of the Trans-Alaska Pipeline System [TAPS]) and the Geophysical Institute/International Arctic Research Center, both located in Fairbanks (Barboza and Trebelhorn 2001)

Pharris, T. C.; Kolpa, R. L.

2008-01-31T23:59:59.000Z

222

Petroleum storage and transportation capacities. Volume III. Petroleum pipeline  

SciTech Connect

Capacity data as of December 31, 1978, are presented for common carrier crude lines, refined petroleum product lines, and liquified petroleum gas/natural gas liquids (LPG/NGL) lines in the form of maps and tables. The maps include: a United States map, including all lines, for crude lines, petroleum product lines, and LPG/NGL lines, each separately; and Petroleum Administration for Defense (PAD) maps for crude and petroleum product lines, each separately. Tables presenting more detailed information than contained on the maps and intended to be used as a supplement to them are included in the Appendices. Several significant trends have developed in the years since the 1967 report was published. The United States has imported increasing amounts of foreign crude oil to supplement its declining domestic production. This foreign crude oil is imported through water terminals and their associated facilities and distributed through petroleum pipelines to inland refineries. Major amounts of imported crude oil are transported by pipeline from the Gulf Coast to the Central and upper Midwest refineries. The trend at the present time is to mix these individual crude oils having similar qualities and deliver the mixes to the refineries. Also, it has become common to batch various combinations of crude oil, refined product, LPG, and petrochemicals through a single pipeline. This ability to ship various petroleum materials in a single pipeline has enhanced the flexibility of the pipeline network.

1979-01-01T23:59:59.000Z

223

Assumptions to the Annual Energy Outlook 2000 - Petroleum Market Module  

Gasoline and Diesel Fuel Update (EIA)

Petroleum Market Module (PMM) forecasts petroleum product prices and sources of supply for meeting petroleum product demand. The sources of supply include crude oil (both domestic and imported), petroleum product imports, other refinery inputs including alcohol and ethers, natural gas plant liquids production, and refinery processing gain. In addition, the PMM estimates capacity expansion and fuel consumption of domestic refineries. Petroleum Market Module (PMM) forecasts petroleum product prices and sources of supply for meeting petroleum product demand. The sources of supply include crude oil (both domestic and imported), petroleum product imports, other refinery inputs including alcohol and ethers, natural gas plant liquids production, and refinery processing gain. In addition, the PMM estimates capacity expansion and fuel consumption of domestic refineries. The PMM contains a linear programming representation of refining activities in three U.S. regions. This representation provides the marginal costs of production for a number of traditional and new petroleum products. The linear programming results are used to determine end-use product prices for each Census Division using the assumptions and methods described below.100

224

Weekly Petroleum Status Report  

U.S. Energy Information Administration (EIA) Indexed Site

v v U.S. crude oil refinery inputs averaged 16.0 million barrels per day during the week ending December 13, 2013, 200 thousand barrels per day lower than the previous week's average. Refineries operated at 91.5% of their operable capacity last week. Gasoline production increased last week, averaging 9.3 million barrels per day. Distillate fuel production decreased last week, averaging 5.0 million barrels per day.

225

Energy Efficiency Improvement in the Petroleum RefiningIndustry  

Science Conference Proceedings (OSTI)

Information has proven to be an important barrier inindustrial energy efficiency improvement. Voluntary government programsaim to assist industry to improve energy efficiency by supplyinginformation on opportunities. ENERGY STAR(R) supports the development ofstrong strategic corporate energy management programs, by providingenergy management information tools and strategies. This paper summarizesENERGY STAR research conducted to develop an Energy Guide for thePetroleum Refining industry. Petroleum refining in the United States isthe largest in the world, providing inputs to virtually every economicsector, including the transport sector and the chemical industry.Refineries spend typically 50 percent of the cash operating costs (e.g.,excluding capital costs and depreciation) on energy, making energy amajor cost factor and also an important opportunity for cost reduction.The petroleum refining industry consumes about 3.1 Quads of primaryenergy, making it the single largest industrial energy user in the UnitedStates. Typically, refineries can economically improve energy efficiencyby 20 percent. The findings suggest that given available resources andtechnology, there are substantial opportunities to reduce energyconsumption cost-effectively in the petroleum refining industry whilemaintaining the quality of the products manufactured.

Worrell, Ernst; Galitsky, Christina

2005-05-01T23:59:59.000Z

226

Petroleum Supply Annual  

U.S. Energy Information Administration (EIA) Indexed Site

January 2012 January 2012 (Thousand Barrels) Commodity Supply Disposition Ending Stocks Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports Adjust- ments 1 Stock Change 2 Refinery and Blender Net Inputs Exports Products Supplied 3 Crude Oil 4 ............................................................ 190,109 - - - - 264,348 6,359 12,794 445,596 2,425 0 1,039,424 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 73,905 -587 13,044 6,935 - - -11,335 15,883 8,313 80,436 118,039 Pentanes Plus .................................................. 8,824 -587 - - 1,699 - - -805 4,946 2,754 3,041 16,791 Liquefied Petroleum Gases .............................. 65,081 - - 13,044 5,236 - - -10,530 10,937 5,559 77,395 101,248 Ethane/Ethylene

227

Petroleum Supply Monthly  

Gasoline and Diesel Fuel Update (EIA)

December 2011 December 2011 Table 9. PAD District 2 - Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, December 2011 (Thousand Barrels) Commodity Supply Disposition Ending Stocks Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil ............................................................. 29,019 - - - - 52,699 26,041 2,973 12 109,175 1,544 0 93,189 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 14,079 -560 812 2,541 -423 - - -6,605 4,051 2,114 16,889 48,197 Pentanes Plus .................................................. 1,354 -560 - - 21 2,843 - - 110 1,049

228

Petroleum Supply Monthly  

U.S. Energy Information Administration (EIA) Indexed Site

6 6 September 2013 Table 10. PAD District 2 - Year-to-Date Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, January-September 2013 (Thousand Barrels) Commodity Supply Disposition Ending Stocks Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil ............................................................. 366,285 - - - - 501,418 159,175 -109,633 -12,929 918,349 11,825 0 102,610 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 122,918 -4,579 37,556 21,926 4,444 - - 15,132 24,244 34,819 108,070 58,830 Pentanes Plus ..................................................

229

Petroleum Supply Monthly  

U.S. Energy Information Administration (EIA) Indexed Site

20 20 September 2013 Table 14. PAD District 3 - Year-to-Date Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, January-September 2013 (Thousand Barrels) Commodity Supply Disposition Ending Stocks Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil 6 ............................................................ 1,188,751 - - - - 1,015,091 -112,708 94,064 20,399 2,158,191 6,608 0 882,207 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 440,766 -88 123,986 10,625 46,383 - - 16,960 76,972 72,880 454,860 114,138 Pentanes Plus ..................................................

230

Petroleum Supply Monthly  

U.S. Energy Information Administration (EIA) Indexed Site

September 2013 Table 2. U.S. Year-to-Date Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, January-September 2013 (Thousand Barrels) Commodity Supply Disposition Ending Stocks Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports Adjust- ments 1 Stock Change 2 Refinery and Blender Net Inputs Exports Products Supplied 3 Crude Oil 4 ............................................................ 2,003,948 - - - - 2,123,490 65,265 6,899 4,157,486 28,318 0 1,067,149 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 686,936 -4,909 195,516 47,812 - - 36,219 127,051 118,364 643,721 189,672 Pentanes Plus .................................................. 92,842 -4,909 - - 10,243 - -

231

Petroleum Supply Annual  

U.S. Energy Information Administration (EIA) Indexed Site

TABLE7.PDF TABLE7.PDF Table 7. PAD District 3 - Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, January 2012 (Thousand Barrels) Commodity Supply Disposition Ending Stocks Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil 6 ............................................................ 109,919 - - - - 142,073 -20,272 -3,481 6,003 222,236 - 0 858,776 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 43,678 -17 9,648 1,838 7,546 - - -2,299 8,340 4,663 51,989 65,215 Pentanes Plus .................................................. 4,840 -17 - - 1,688 -3,010 - -

232

Petroleum Supply Monthly  

U.S. Energy Information Administration (EIA) Indexed Site

8 8 September 2013 Table 22. PAD District 5 - Year-to-Date Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, January-September 2013 (Thousand Barrels) Commodity Supply Disposition Ending Stocks Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil ............................................................. 300,668 - - - - 297,837 - 31,342 -3,713 633,292 267 0 52,719 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 17,739 -73 18,288 1,401 - - - 3,536 17,170 3,791 12,858 8,270 Pentanes Plus .................................................. 7,914

233

Petroleum Supply Monthly  

U.S. Energy Information Administration (EIA) Indexed Site

September 2013 Table 6. PAD District 1 - Year-to-Date Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, January-September 2013 (Thousand Barrels) Commodity Supply Disposition Ending Stocks Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil ............................................................. 8,672 - - - - 230,125 -359 62,824 2,069 289,586 9,606 0 10,326 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 19,329 -83 12,151 10,808 21,118 - - 168 4,287 2,821 56,047 6,541 Pentanes Plus ..................................................

234

Petroleum Supply Annual  

U.S. Energy Information Administration (EIA) Indexed Site

TABLE5.PDF TABLE5.PDF Table 5. PAD District 2 - Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, January 2012 (Thousand Barrels) Commodity Supply Disposition Ending Stocks Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil ............................................................. 29,902 - - - - 53,695 23,732 5,619 2,406 108,247 2,295 0 95,547 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 13,989 -544 1,333 2,797 949 - - -6,644 3,628 2,687 18,853 41,545 Pentanes Plus .................................................. 1,274 -544 - - 11 4,162 - - 233 966

235

Petroleum Supply Monthly  

U.S. Energy Information Administration (EIA) Indexed Site

4 4 September 2013 Table 18. PAD District 4 - Year-to-Date Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, January-September 2013 (Thousand Barrels) Commodity Supply Disposition Ending Stocks Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil ............................................................. 139,573 - - - - 79,019 -46,108 -13,333 1,073 158,068 10 0 19,287 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 86,184 -86 3,535 3,052 -71,945 - - 423 4,378 4,054 11,885 1,893 Pentanes Plus ..................................................

236

Petroleum Supply Annual  

U.S. Energy Information Administration (EIA) Indexed Site

2012 2012 (Thousand Barrels) Commodity Supply Disposition Ending Stocks Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports Adjust- ments 1 Stock Change 2 Refinery and Blender Net Inputs Exports Products Supplied 3 Crude Oil 4 ............................................................ 2,374,021 - - - - 3,120,755 53,567 34,134 5,489,516 24,693 0 1,060,764 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 881,306 -6,534 230,413 62,192 - - 23,894 186,270 115,054 842,159 153,268 Pentanes Plus .................................................. 116,002 -6,534 - - 10,680 - - -4,857 63,596 43,136 18,273 12,739 Liquefied Petroleum Gases .............................. 765,304 - - 230,413 51,512 - - 28,751 122,674 71,918

237

Encon Motivation in European Refineries  

E-Print Network (OSTI)

One essential element in a successful energy conservation or Encon program is effective motivation of employees and organizations to conserve energy. Encon motivation in our European refineries is a continuing effort that requires utilization of various techniques and approaches, dependent on the local environment and effectiveness of the Encon program. In this paper, we begin with the importance for stimulating personnel, note the essential ingredients required to motivate our people, and briefly review several techniques used for Encon motivation. Two examples of Encon motivation programs are presented before introducing the characteristics of a successful Encon motivation program. The paper concludes with a review of the needs and suggestions for maintaining a continuing program. Energy utilization efficiency in Esso Europe's refineries improved about 16% in the mid 70's, due primarily to Encon motivation. Experience has since demonstrated that additional improvements can be achieved through operational and maintenance practices.

Gambera, S.; Lockett, W., Jr.

1982-01-01T23:59:59.000Z

238

Petroleum Supply Monthly  

U.S. Energy Information Administration (EIA) Indexed Site

4 4 September 2013 Table 28. Refinery and Blender Net Input of Crude Oil and Petroleum Products by PAD and Refining Districts, September 2013 (Thousand Barrels) Commodity PAD District 1 - East Coast PAD District 2 - Midwest East Coast Appalachian No. 1 Total Indiana, Illinois, Kentucky Minnesota, Wisconsin, North and South Dakota Oklahoma, Kansas, Missouri Total Crude Oil ................................................................. 29,611 2,906 32,517 67,983 12,033 22,460 102,476 Natural Gas Plant Liquids and Liquefied Refinery Gases ....................................................... 793 5 798 2,014 100 1,032 3,146 Pentanes Plus ...................................................... - - - 777 2 340 1,119 Liquefied Petroleum Gases .................................. 793 5 798 1,237 98 692 2,027

239

Naval petroleum and oil shale reserves: Annual report of operations, FY 1987  

SciTech Connect

Production and reserves, development and exploration, revenues and expenditures, sales, environment and safety, and litigation are discussed for naval petroleum reserves numbers one through three and for naval oil shale reserves. 28 figs., 21 tabs. (ACT)

Not Available

1987-01-01T23:59:59.000Z

240

Assumptions to the Annual Energy Outlook 1999 - Petroleum Market Module  

Gasoline and Diesel Fuel Update (EIA)

petroleum.gif (4999 bytes) petroleum.gif (4999 bytes) The NEMS Petroleum Market Module (PMM) forecasts petroleum product prices and sources of supply for meeting petroleum product demand. The sources of supply include crude oil (both domestic and imported), petroleum product imports, other refinery inputs including alcohol and ethers, natural gas plant liquids production, and refinery processing gain. In addition, the PMM estimates capacity expansion and fuel consumption of domestic refineries. The PMM contains a linear programming representation of refining activities in three U.S. regions. This representation provides the marginal costs of production for a number of traditional and new petroleum products. The linear programming results are used to determine end-use product prices for each Census Division using the assumptions and methods described below. 75

Note: This page contains sample records for the topic "operable petroleum refineries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Assumptions to the Annual Energy Outlook 2001 - Petroleum Market Module  

Gasoline and Diesel Fuel Update (EIA)

Petroleum Market Module Petroleum Market Module The NEMS Petroleum Market Module (PMM) forecasts petroleum product prices and sources of supply for meeting petroleum product demand. The sources of supply include crude oil (both domestic and imported), petroleum product imports, other refinery inputs including alcohol and ethers, natural gas plant liquids production, and refinery processing gain. In addition, the PMM estimates capacity expansion and fuel consumption of domestic refineries. The PMM contains a linear programming representation of refining activities in three U.S. regions. This representation provides the marginal costs of production for a number of traditional and new petroleum products. The linear programming results are used to determine end-use product prices for

242

Assumptions to the Annual Energy Outlook 2002 - Petroleum Market Module  

Gasoline and Diesel Fuel Update (EIA)

Petroleum Market Module Petroleum Market Module The NEMS Petroleum Market Module (PMM) forecasts petroleum product prices and sources of supply for meeting petroleum product demand. The sources of supply include crude oil (both domestic and imported), petroleum product imports, other refinery inputs including alcohol and ethers, natural gas plant liquids production, and refinery processing gain. In addition, the PMM estimates capacity expansion and fuel consumption of domestic refineries. The PMM contains a linear programming representation of refining activities in three U.S. regions. This representation provides the marginal costs of production for a number of traditional and new petroleum products. The linear programming results are used to determine end-use product prices for

243

Petroleum Supply Monthly  

U.S. Energy Information Administration (EIA) Indexed Site

2 2 September 2013 Table 32. Blender Net Inputs of Petroleum Products by PAD District, September 2013 (Thousand Barrels) Commodity PAD District 1 - East Coast PAD District 2 - Midwest East Coast Appalachian No. 1 Total Indiana, Illinois, Kentucky Minnesota, Wisconsin, North and South Dakota Oklahoma, Kansas, Missouri Total Natural Gas Plant Liquids and Liquefied Refinery Gases ....................................................... 308 5 313 45 44 345 434 Pentanes Plus ...................................................... - - - - 2 75 77 Liquefied Petroleum Gases .................................. 308 5 313 45 42 270 357 Normal Butane .................................................. 308 5 313 45 42 270 357 Isobutane .......................................................... - - - - - - - Other Liquids ..........................................................

244

Petroleum Supply Annual  

U.S. Energy Information Administration (EIA) Indexed Site

0.PDF 0.PDF Table 20. Blender Net Inputs of Petroleum Products by PAD Districts, January 2012 (Thousand Barrels) Commodity PAD District 1 - East Coast PAD District 2 - Midwest East Coast Appalachian No. 1 Total Indiana, Illinois, Kentucky Minnesota, Wisconsin, North and South Dakota Oklahoma, Kansas, Missouri Total Natural Gas Plant Liquids and Liquefied Refinery Gases ....................................................... 158 5 163 47 18 168 233 Pentanes Plus ...................................................... 5 - 5 - - 5 5 Liquefied Petroleum Gases .................................. 153 5 158 47 18 163 228 Normal Butane .................................................. 153 5 158 47 18 163 228 Isobutane .......................................................... - - - - - - - Other Liquids ..........................................................

245

Petroleum: An Energy Profile 1999  

Reports and Publications (EIA)

Explains in laymen's terms the major components and operations of the U.S. petroleum industry that include: petroleum products, resources and reserves, drilling and exploration, refining, storage and transportation, imports, exports, and petroleum marketing

Information Center

1999-07-01T23:59:59.000Z

246

PETROLEUM INDUSTRY INFORMATION REPORTING ACT  

E-Print Network (OSTI)

, dealer tank wagon prices, terminal stocks, and refinery inventory levels were used in the Spring 2006 Petroleum Fuels Price Spike Report to the Governor, CEC-600-2006-012. The data supported calculations,000 individual gas stations in the state. With this tremendous reporting requirement 100 percent compliance

247

Potentials for Fuel Cells in Refineries and Chlor-Alkali Plants  

E-Print Network (OSTI)

The market potentials for fuel cell cogeneration systems in petroleum refineries and chlor-alkali plants were evaluated. Costs of the total energy consumed (power plus steam) were calculated and compared with those for more conventional cogeneration systems. Questionnaires were sent to major plants in both industries to determine technical requirements and data required for the assessment of the market potential. The most promising application appears to be in chlor-alkali plants where the production process is electricity intensive. Future anticipated changes in the production process are favorable to the use of fuel cells. The energy use in refineries is steam intensive with the required steam pressures ranging from approximately 15 to 650 psig. The near-term use of fuel cell cogeneration in refineries is not as attractive as in chlor-alkali plants. The phosphoric acid fuel cell is the most developed and the most cost competitive, but its use is limited by its being able to produce only low-pressure steam. Over the longer term, the molten carbonate and the solid oxide fuel cell, both of which operate at significantly higher temperatures, are technically very attractive. However, they do not appear to be cost competitive with conventional systems.

Altseimer, J. H.; Roach, F.

1986-06-01T23:59:59.000Z

248

Production of ethanol from refinery waste gases. Phase 2, technology development, annual report  

DOE Green Energy (OSTI)

Oil refineries discharge large volumes of H{sub 2}, CO, and CO{sub 2} from cracking, coking, and hydrotreating operations. This program seeks to develop a biological process for converting these waste gases into ethanol, which can be blended with gasoline to reduce emissions. Production of ethanol from all 194 US refineries would save 450 billion BTU annually, would reduce crude oil imports by 110 million barrels/year and emissions by 19 million tons/year. Phase II efforts has yielded at least 3 cultures (Clostridium ljungdahlii, Isolate O-52, Isolate C-01) which are able to produce commercially viable concentrations of ethanol from CO, CO{sub 2}, and H{sub 2} in petroleum waste gas. Single continuous stirred tank reactor studies have shown that 15-20 g/L of ethanol can be produced, with less than 5 g/L acetic acid byproduct. Culture and reactor optimization in Phase III should yield even higher ethanol concentrations and minimal acetic acid. Product recovery studies showed that ethanol is best recovered in a multi-step process involving solvent extraction/distillation to azeotrope/azeotropic distillation or pervaporation, or direct distillation to the azeotrope/azeotropic distillation or pervaporation. Projections show that the ethanol facility for a typical refinery would require an investment of about $30 million, which would be returned in less than 2 years.

Arora, D.; Basu, R.; Phillips, J.R.; Wikstrom, C.V.; Clausen, E.C.; Gaddy, J.L.

1995-07-01T23:59:59.000Z

249

Flare Gas Recovery in Shell Canada Refineries  

E-Print Network (OSTI)

Two of Shell Canada's refineries have logged about six years total operating experience with modern flare gas recovery facilities. The flare gas recovery systems were designed to recover the normal continuous flare gas flow for use in the refinery fuel gas system. The system consists of liquid knock-out, compression, and liquid seal facilities. Now that the debugging-stage challenges have been dealt with, Shell Canada is more than satisfied with the system performance. A well-thought-out installation can today be safe, trouble-free, and attractive from an economic and environmental viewpoint. This paper highlights general guidelines for the sizing, design and operation of a refinery flare gas recovery facility.

Allen, G. D.; Wey, R. E.; Chan, H. H.

1983-01-01T23:59:59.000Z

250

Lyondell, Citgo join for heavy oil upgrade project at Houston refinery  

Science Conference Proceedings (OSTI)

Lyondell-Citgo Refining Co. Ltd. is beginning an $800-million upgrade and expansion of its Houston refinery. The project will enable the refinery. The project will enable the refinery to produce clean fuels while processing about 80% heavy, high-sulfur Venezuelan crude oil. The paper describes the Houston refinery, the expansion project, the technologies to be used, operational changes, environmental impacts, and construction.

Rhodes, A.K.

1994-03-21T23:59:59.000Z

251

A Louisiana Refinery Success Story  

E-Print Network (OSTI)

"Refining 155,000 barrels of crude oil daily, a Louisiana plant markets oil products to gas stations in at least 26 states, including Washington, D.C. The plant uses 8,538 steam traps with 1,200-, 600-, 250-, 75-, 40- and 15-psi nominal pressures. Standardized with inverted bucket steam traps, the Louisiana refinery’s maintenance and energy coordinator was content with the results. The Spirax Sarco Inc (SSI) team demonstrated SSI’s Energy Service Group (ESG) capabilities and successes to the refinery manager, operations manager and production manager. From 2004 through 2006, the team presented a series of ESG seminars at the refinery site. The numerous models demonstrated quantitative savings with 3- to 12-mo paybacks. For a complete SSI turnkey program, for example, the SSI team presented an ROI with less than six months payback. The ESG survey found that only 3,952 (46.3%) of the steam traps were operating correctly. The remaining steam traps experienced a variety of failures, including: 613 (7.2%) that failed open; 2,763 (32.4%) were cold; 1,012 (11.9%) that failed closed; 6 (0.0%) exhibited rapid cycling; and 192 (2.2%) were disconnected. The team also found performance and temperature issues with the HP sulfur reactors in the SRU units, largely due to the application of inverted bucket steam traps. Plus, as a result of excessive steam leaks, the sulfur reactors were creating a safety hazard. When these results were presented, management agreed that the sulfur reactors needed process improvement. The SSI team recommended replacing the inverted bucket steam traps with 1-1/2-in. strainers and 1-1/2-in. flanged float & thermostatic steam traps. They also suggested that the existing trap discharge piping should be removed and re-piped with globe-style bypass valves and gate-style isolation valves to reduce flow velocity. Once the SSI team began negotiations, it only took one survey for the Louisiana refinery to realize all the energy savings opportunities. In fact, the ESG survey uncovered more than $1.3 million in steam losses through failed steam traps and another $1 million in steam leak opportunities and production, process, safety and environmental improvements. Impressed with the survey results, the refinery approved the estimated $110,000 turnkey project, which offered a 5.3-month payback. Further negotiations netted the team annual steam trap surveys for the next three years, as well as an approved 2008 energy budget of $600,000. Additionally, the Louisiana refinery has indicated that upon successful completion of the ESG program, SSI’s annual energy budget will increase to $1,000,000."

Kacsur, D.

2009-05-01T23:59:59.000Z

252

Naval petroleum and oil shale reserves: Annual report of operations, Fiscal Year 1986  

Science Conference Proceedings (OSTI)

Market prices for curde oil experienced their greatest decline in history during 1986, with substantial effect on the Naval Petroleum and Oil Shale Reserves. Sales procedures which had served the Department well in prior years during periods when oil prices were stable or rising were found inadequate to cope with these declines, and new sales procedures were developed and implemented. Congressional concern that the Government receive fair prices from Naval Petroleum Reserves (NPR) petroleum sales also led to Public Law No. 99-413, enacted on August 29, 1986, which amended title 10, United States Code, Chapter 641. This law sets a minimum price, using two criteria, under which petroleum from the NPR cannot be sold. Notwithstanding the decline in oil and gas prices, revenues from the sale of NPR petroleum totaled $763 million in 1986. Although this represented a 41% decline from 1985 receipts, the 1986 revenues well exceeded net program expenditures of $157 million. Because of the decline in prevailing oil prices during the second quarter of 1986, major cost reductions of $3.4 million were implemented at NPR-3, and even greater reductions are planned for 1987 to ensure the profitability of that field. The decline in energy prices also affected plans to protect natural gas underlying Naval Oil Shale Reserve No. 3 (NOSR-3). Two of 14 planned wells were drilled and are available for production. Unfortunately, efforts to sell gas from these wells have been unsuccessful, and further drilling has been delayed until the gas market is stronger. 16 figs., 20 tabs.

Not Available

1987-01-01T23:59:59.000Z

253

Gulf Coast (PADD 3) Catalyst Petroleum Coke Consumed at ...  

U.S. Energy Information Administration (EIA)

Gulf Coast (PADD 3) Catalyst Petroleum Coke Consumed at Refineries (Thousand Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 ...

254

Monitoring and Management of Refinery Energy Consumption  

E-Print Network (OSTI)

Since 1972, the U.S. refining industry has made much progress in reducing energy consumption. Lately, falling energy prices have de-emphasized the need to appropriate new capital for additional energy conservation projects. One area neglected in most refineries is the need to monitor and manage the daily use of energy. Setting up an energy auditing system will tell management how well each unit in the refinery is being operated and can be used as a valuable tool in reducing energy costs. An example of an energy monitorirg and management system is discussed and illustrated with examples.

Pelham, R. O.; Moriarty, R. D.; Hudgens, P. D.

1986-06-01T23:59:59.000Z

255

Petroleum Supply Monthly  

U.S. Energy Information Administration (EIA) Indexed Site

4 4 September 2013 Table 34. Refinery Stocks of Crude Oil and Petroleum Products by PAD and Refining Districts, September 2013 (Thousand Barrels) Commodity PAD District 1 - East Coast PAD District 2 - Midwest East Coast Appalachian No. 1 Total Indiana, Illinois, Kentucky Minnesota, Wisconsin, North and South Dakota Oklahoma, Kansas, Missouri Total Crude Oil ..................................................................... 7,701 438 8,139 9,500 1,435 1,985 12,920 Petroleum Products ................................................... 14,683 1,697 16,380 31,875 7,020 10,626 49,521 Pentanes Plus .......................................................... - - - 120 - 295 415 Liquefied Petroleum Gases ...................................... 771 66 837 4,084 535 1,142 5,761 Ethane/Ethylene ...................................................

256

Petroleum supply monthly, April 1994  

Science Conference Proceedings (OSTI)

Data presented in the Petroleum Supply Monthly (PSM) describe the supply and disposition of petroleum products in the United States and major US geographical regions. The data series describe production, imports and exports, inter-Petroleum Administration for Defense (PAD) District movements, and inventories by the primary suppliers of petroleum products in the US. The reporting universe includes those petroleum sectors in primary supply. Included are: petroleum refiners, motor gasoline blenders, operators of natural gas processing plants and fractionators, inter-PAD transporters, importers, and major inventory holders of petroleum products and crude oil. When aggregated, the data reported by these sectors approximately represent the consumption of petroleum products in the US.

Not Available

1994-04-01T23:59:59.000Z

257

Naval Petroleum and Oil Shale Reserves. Annual report of operations, Fiscal year 1993  

Science Conference Proceedings (OSTI)

During fiscal year 1993, the reserves generated $440 million in revenues, a $33 million decrease from the fiscal year 1992 revenues, primarily due to significant decreases in oil and natural gas prices. Total costs were $207 million, resulting in net cash flow of $233 million, compared with $273 million in fiscal year 1992. From 1976 through fiscal year 1993, the Naval Petroleum and Oil Shale Reserves generated $15.7 billion in revenues for the US Treasury, with expenses of $2.9 billion. The net revenues of $12.8 billion represent a return on costs of 441 percent. See figures 2, 3, and 4. In fiscal year 1993, production at the Naval Petroleum and Oil Shale Reserves at maximum efficient rates yielded 25 million barrels of crude oil, 123 billion cubic feet of natural gas, and 158 million gallons of natural gas liquids. The Naval Petroleum and Oil Shale Reserves has embarked on an effort to identify additional hydrocarbon resources on the reserves for future production. In 1993, in cooperation with the US Geological Survey, the Department initiated a project to assess the oil and gas potential of the program`s oil shale reserves, which remain largely unexplored. These reserves, which total a land area of more than 145,000 acres and are located in Colorado and Utah, are favorably situated in oil and gas producing regions and are likely to contain significant hydrocarbon deposits. Alternatively the producing assets may be sold or leased if that will produce the most value. This task will continue through the first quarter of fiscal year 1994.

Not Available

1993-12-31T23:59:59.000Z

258

EIA-Assumptions to the Annual Energy Outlook - Petroleum Market Module  

Gasoline and Diesel Fuel Update (EIA)

Petroleum Market Module Petroleum Market Module Assumptions to the Annual Energy Outlook 2007 Petroleum Market Module Figure 9. Petroleum Administration for Defense Districts. Need help, contact the National Energy Information Center at 202-586-8800. The NEMS Petroleum Market Module (PMM) forecasts petroleum product prices and sources of supply for meeting petroleum product demand. The sources of supply include crude oil (both domestic and imported), petroleum product imports, unfinished oil imports, other refinery inputs (including alcohols, ethers, and bioesters), natural gas plant liquids production, and refinery processing gain. In addition, the PMM projects capacity expansion and fuel consumption at domestic refineries. The PMM contains a linear programming (LP) representation of U.S. refining

259

Impact of Higher Vanadium Levels on Smelter Operations  

Science Conference Proceedings (OSTI)

This was driven by crude oil changes at a refinery supplying one of the primary ... Changes in Global Refining and Its Impact on Anode Quality Petroleum Coke.

260

Petroleum supply annual 1994. Volume 1  

SciTech Connect

The Petroleum Supply Annual (PSA) contains information on the supply and disposition of crude oil and petroleum products. The publication reflects data that were collected from the petroleum industry during 1994 through annual and monthly surveys. The PSA is divided into two volumes. This first volume contains four sections: Summary Statistics, Detailed Statistics, Refinery Capacity, and Oxygenate Capacity each with final annual data. The second volume contains final statistics for each month of 1994, and replaces data previously published in the Petroleum Supply Monthly (PSM). The tables in Volumes 1 and 2 are similarly numbered to facilitate comparison between them. Below is a description of each section in Volume 1 of the PSA.

NONE

1995-05-22T23:59:59.000Z

Note: This page contains sample records for the topic "operable petroleum refineries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Petroleum supply annual 1993. Volume 1  

Science Conference Proceedings (OSTI)

The Petroleum Supply Annual (PSA) contains information on the supply and disposition of crude oil and petroleum products. The publication reflects data that were collected from the petroleum industry during 1993 through annual and monthly surveys. The PSA is divided into two volumes. This first volume contains four sections: Summary Statistics, Detailed Statistics, Refinery Capacity, and Oxygenate Capacity each with final annual data. The second volume contains final statistics for each month of 1993, and replaces data previously published in the Petroleum Supply Monthly (PSM). The tables in Volumes 1 and 2 are similarly numbered to facilitate comparison between them. Below is a description of each section in Volume 1 of the PSA.

Not Available

1994-06-01T23:59:59.000Z

262

Naval Petroleum and Oil Shale Reserves annual report of operations, Fiscal year 1991  

Science Conference Proceedings (OSTI)

During FY 1991 the Reserves generating $654 million in revenues, a $52 million increase from the Fy 1990 revenues, reflecting the increase in FY 1991 oil prices during the Gulf War. Total costs were $200 million, resulting in net cash flow of $454 million, compared with $423 million in FY 1990. Revenues for FY 1992 are expected to decrease, reflecting a decrease in production and prices. In FY 1991, production at the NPRs at maximum efficient rates yielded 28 million barrels of crude oil, 125 billion cubic feet of natural gas, and 183 million gallons of natural gas liquids. Additional highlights on the following topics are included: legislative change, Naval Petroleum Reserve-1 (NPR-1) exploration, NPR-1 horizontal drilling, NPR-1 shallow oil zone gas injection project, NPR-1 FY 1991-1997 long range plan, NPR-1 environment and safety, NPR-2 exploration drilling, NPR-3 steamflood, Naval Oil Shale Reserves gas migration prevention.

Not Available

1991-01-01T23:59:59.000Z

263

Naval Petroleum and Oil Shale Reserves annual report of operations, Fiscal year 1991  

Science Conference Proceedings (OSTI)

During FY 1991 the Reserves generating $654 million in revenues, a $52 million increase from the Fy 1990 revenues, reflecting the increase in FY 1991 oil prices during the Gulf War. Total costs were $200 million, resulting in net cash flow of $454 million, compared with $423 million in FY 1990. Revenues for FY 1992 are expected to decrease, reflecting a decrease in production and prices. In FY 1991, production at the NPRs at maximum efficient rates yielded 28 million barrels of crude oil, 125 billion cubic feet of natural gas, and 183 million gallons of natural gas liquids. Additional highlights on the following topics are included: legislative change, Naval Petroleum Reserve-1 (NPR-1) exploration, NPR-1 horizontal drilling, NPR-1 shallow oil zone gas injection project, NPR-1 FY 1991-1997 long range plan, NPR-1 environment and safety, NPR-2 exploration drilling, NPR-3 steamflood, Naval Oil Shale Reserves gas migration prevention.

Not Available

1991-12-31T23:59:59.000Z

264

Flare-gas recovery success at Canadian refineries  

SciTech Connect

It appears that some North American refining companies still cling to an old philosophy that flare gas recovery systems are unsafe, unreliable, uneconomic, or unnecessary. Shell Canada's recent experience with two modern systems has proven otherwise. Two of Shell Canada's refineries, at Sarnia, Ont., and Montreal East, Que., have now logged about 6 years' total operating experience with modern flare gas recovery units. The compression facilities in each utilize a two-stage reciprocating machine, one liquid seal drum per flare stack, and an automated load control strategy. The purpose was to recover the normal continuous flow of refinery flare gas for treatment and use in the refinery fuel gas system.

Allen, G.D.; Chan, H.H.; Wey, R.E.

1983-06-01T23:59:59.000Z

265

Petroleum Supply Annual  

U.S. Energy Information Administration (EIA) Indexed Site

5.PDF 5.PDF Table 35. Refinery, Bulk Terminal, and Natural Gas Plant Stocks of Selected Petroleum Products by PAD District and State, January 2012 (Thousand Barrels) Commodity Motor Gasoline Motor Gasoline Blending Components Kerosene Reformulated Conventional Total Reformulated Conventional Total PAD District 1 ............................................ 244 3,987 4,231 16,344 28,462 44,806 1,585 Connecticut ............................................. - - - 927 - 927 28 Delaware ................................................ - - - 887 652 1,539 148 District of Columbia ................................ - - - - - - - Florida ..................................................... - 978 978 - 5,532 5,532 - Georgia ................................................... - 370 370 - 2,767 2,767 20 Maine ......................................................

266

Production of ethanol from refinery waste gases. Phase 3. Engineering development. Annual report, April 1, 1995--May 15, 1996  

DOE Green Energy (OSTI)

Refineries discharge large volumes of H2, CO, and CO 2 from cracking, coking, and hydrotreating operations. This R&D program seeks to develop, demonstrate, and commercialize a biological process for converting these waste gases into ethanol for blending with gasoline. A 200,000 BPD refinery could produce up to 38 million gallons ethanol per year. The program is being conducted in 3 phases: II, technology development; III, engineering development; and IV, demonstration. Phase I, exploratory development, has been completed. The research effort has yielded two strains (Isolates O-52 and C-01) which are to be used in the pilot studies to produce ethanol from CO, CO2, and H2 in petroleum waste gas. Results from single continuous stirred tank reactor (CSTR) laboratory tests have shown that 20-25 g/L ethanol can be produced with < 5 g/L acetic acid byproduct. Laboratory studies with two CSTRs in series have yielded ethanol concentrations of 30-35 g/L with 2-4 g/L acetic acid byproduct. Water recycle from distillation back to the fermenter shows that filtration of the water before distillation eliminates the recycle of toxic materials back to the fermenter. Product recovery in the process will use direct distillation to the azeotrope, followed by adsorption to produce neat ethanol. This is less energy intensive than e.g. solvent extraction, azeotropic distillation, or pervaporation. Economic projections are quite attractive; the economics are refinery stream dependent and thus vary depending on refinery location and operation.

Arora, D.; Basu, R.; Phillips, J.R.; Wikstrom, C.V.; Clausen, E.C; Gaddy, J.L.

1996-11-01T23:59:59.000Z

267

Bioremediation of Petroleum and Radiological Contaminated Soils at the Savannah River Site: Laboratory to Field Scale Applications  

DOE Green Energy (OSTI)

In the process of Savannah River Site (SRS) operations limited amounts of waste are generated containing petroleum, and radiological contaminated soils. Currently, this combination of radiological and petroleum contaminated waste does not have an immediate disposal route and is being stored in low activity vaults. SRS developed and implemented a successful plan for clean up of the petroleum portion of the soils in situ using simple, inexpensive, bioreactor technology. Treatment in a bioreactor removes the petroleum contamination from the soil without spreading radiological contamination to the environment. This bioreactor uses the bioventing process and bioaugmentation or the addition of the select hydrocarbon degrading bacteria. Oxygen is usually the initial rate-limiting factor in the biodegradation of petroleum hydrocarbons. Using the bioventing process allowed control of the supply of nutrients and moisture based on petroleum contamination concentrations and soil type. The results of this work have proven to be a safe and cost-effective means of cleaning up low level radiological and petroleum-contaminated soil. Many of the other elements of the bioreactor design were developed or enhanced during the demonstration of a ''biopile'' to treat the soils beneath a Polish oil refinery's waste disposal lagoons. Aerobic microorganisms were isolated from the aged refinery's acidic sludge contaminated with polycyclic aromatic hydrocarbons (PAHs). Twelve hydrocarbon-degrading bacteria were isolated from the sludge. The predominant PAH degraders were tentatively identified as Achromobacter, Pseudomonas Burkholderia, and Sphingomonas spp. Several Ralstonia spp were also isolated that produce biosurfactants. Biosurfactants can enhance bioremediation by increasing the bioavailability of hydrophobic contaminants including hydrocarbons. The results indicated that the diversity of acid-tolerant PAH-degrading microorganisms in acidic oil wastes may be much greater than previously demonstrated and they have numerous applications to environmental restoration. Twelve of the isolates were subsequently added to the bioreactor to enhance bioremediation. In this study we showed that a bioreactor could be bioaugmented with select bacteria to enhance bioremediation of petroleum-contaminated soils under radiological conditions.

BRIGMON, ROBINL.

2004-06-07T23:59:59.000Z

268

Texas Gulf Coast Refinery District API Gravity (Weighted Average ...  

U.S. Energy Information Administration (EIA)

Texas Gulf Coast Refinery District API Gravity (Weighted Average) of Crude Oil Input to Refineries (Degree)

269

Texas Gulf Coast Refinery District API Gravity (Weighted ...  

U.S. Energy Information Administration (EIA)

Texas Gulf Coast Refinery District API Gravity (Weighted Average) of Crude Oil Input to Refineries (Degree)

270

Appalachian No. 1 Refinery District Sulfur Content (Weighted ...  

U.S. Energy Information Administration (EIA)

Appalachian No. 1 Refinery District Sulfur Content (Weighted Average) of Crude Oil Input to Refineries (Percent)

271

Petroleum supply monthly, February 1994  

Science Conference Proceedings (OSTI)

The Petroleum Supply Monthly presents data describing the supply and disposition of petroleum products in the United States and major US geographic regions. The data series describe production, imports and exports, inter-Petroleum Administration for Defense (PAD) District movements, and inventories by the primary suppliers of petroleum products in the US. The reporting universe includes those petroleum sectors in primary supply. Included are: petroleum refiners, motor gasoline blenders; operators of natural gas processing plants and fractionators, inter-PAD transporters, importers, and major inventory holders of petroleum products and crude oil. Data are divided into two sections: Summary statistics and Detailed statistics.

Not Available

1994-03-01T23:59:59.000Z

272

Petroleum supply monthly, January 1994  

SciTech Connect

Data presented describe the supply and disposition of petroleum products in the United States and major US geographic regions. The data series describe production, imports and exports, inter-Petroleum Administration for Defense (PAD) District movements, and inventories by the primary suppliers of petroleum products in the United States. The reporting universe includes those petroleum sectors in primary supply. Included are: petroleum refiners, motor gasoline blenders, operators of natural gas processing plants and fractionators, inter-PAD transporters, importers, and major inventory holders of petroleum products and crude oil. When aggregated, the data reported by these sectors approximately represent the consumption of petroleum products in the United States.

Not Available

1994-01-01T23:59:59.000Z

273

Flexible hydrogen plant utilizing multiple refinery hydrocarbon streams  

Science Conference Proceedings (OSTI)

Numerous processes are available to produce hydrogen, however, steam reforming is still the dominant and currently preferred process because it can economically process a variety of refinery feedstocks into hydrogen. This paper discusses the Air Products 88 MMSCFD hydrogen plant built by KTI, adjacent to Shell`s Martinez refinery, which utilizes up to eight separate refinery hydrocarbon streams as feed and fuel for the production of hydrogen in the steam reforming unit. The integration of refinery hydrocarbon purge streams, normally sent to fuel, allows greater flexibility in refinery operations and increases the overall refinery fuel efficiencies. The hydrogen plant also incorporates a number of process control design features to enhance reliability, such as two out of three voting systems, in-line sparing, and reduced bed PSA operation. The final section of the paper describes the environmental features of the plant required for operation in the Bay Area Air Quality Management District (BAAQMD). Air Products and KTI designed BACT features into the hydrogen plant to minimize emissions from the facility.

Kramer, K.A.; Patel, N.M. [Air Products and Chemicals Inc., Allentown, PA (United States); Sekhri, S. [Kinetics Technology International Corp., San Dimas, CA (United States); Brown, M.G. [Shell Oil Products Co., Martinez, CA (United States)

1996-12-01T23:59:59.000Z

274

Petroleum Supply Monthly  

U.S. Energy Information Administration (EIA) Indexed Site

8 8 September 2013 Table 55. Stocks of Crude Oil and Petroleum Products by PAD District, September 2013 (Thousand Barrels) Commodity PAD Districts U.S. Total 1 2 3 4 5 Crude Oil ....................................................................... 10,326 102,610 882,207 19,287 52,719 1,067,149 Refinery ...................................................................... 8,139 12,920 44,531 2,484 22,704 90,778 Tank Farms and Pipelines (Includes Cushing, OK) .... 2,033 84,878 122,497 12,956 26,534 248,898 Cushing, Oklahoma ................................................ - 33,017 - - - 33,017 Leases ........................................................................ 154 4,812 19,210 3,847 678 28,701 Strategic Petroleum Reserve 1 .................................... - - 695,969 - - 695,969 Alaskan In Transit

275

Petroleum Supply Monthly  

U.S. Energy Information Administration (EIA) Indexed Site

0 0 September 2013 Table 49. Exports of Crude Oil and Petroleum Products by PAD District, September 2013 (Thousand Barrels) Commodity PAD Districts U.S. Total 1 2 3 4 5 Total Daily Average Crude Oil 1 ............................................................ 94 2,282 598 1 - 2,975 99 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 453 2,129 10,579 380 396 13,937 465 Pentanes Plus .................................................. 300 1,599 652 346 92 2,989 100 Liquefied Petroleum Gases .............................. 153 530 9,927 34 304 10,947 365 Ethane/Ethylene ........................................... - - - - - - - Propane/Propylene ....................................... 126 199 9,412 4 299 10,040 335 Normal Butane/Butylene ...............................

276

Petroleum Supply Annual  

U.S. Energy Information Administration (EIA) Indexed Site

4.PDF 4.PDF Table 34. Stocks of Crude Oil and Petroleum Products by PAD District, January 2012 (Thousand Barrels) Commodity PAD Districts U.S. Total 1 2 3 4 5 Crude Oil ....................................................................... 10,529 95,547 858,776 18,695 55,877 1,039,424 Refinery ...................................................................... 9,549 12,590 42,259 2,422 25,335 92,155 Tank Farms and Pipelines (Includes Cushing, OK) .... 875 79,613 102,575 12,976 27,151 223,190 Cushing, Oklahoma ................................................ - 31,118 - - - - Leases ........................................................................ 105 3,344 17,991 3,297 854 25,591 Strategic Petroleum Reserve 1 .................................... - - 695,951 - - 695,951 Alaskan In Transit .......................................................

277

Petroleum Supply Annual  

U.S. Energy Information Administration (EIA) Indexed Site

8.PDF 8.PDF Table 18. Refinery Net Input of Crude Oil and Petroleum Products by PAD and Refining Districts, January 2012 (Thousand Barrels, Except Where Noted) Commodity PAD District 1 - East Coast PAD District 2 - Midwest East Coast Appalachian No. 1 Total Indiana, Illinois, Kentucky Minnesota, Wisconsin, North and South Dakota Oklahoma, Kansas, Missouri Total Crude Oil ................................................................. 22,762 2,792 25,554 70,449 14,098 23,700 108,247 Natural Gas Plant Liquids ...................................... 544 - 544 2,607 144 644 3,395 Pentanes Plus ...................................................... - - - 689 5 267 961 Liquefied Petroleum Gases .................................. 544 - 544 1,918 139 377 2,434 Normal Butane ..................................................

278

Petroleum Supply Annual  

U.S. Energy Information Administration (EIA) Indexed Site

5.PDF 5.PDF Table 25. Imports of Crude Oil and Petroleum Products by PAD District, January 2012 (Thousand Barrels, Except Where Noted) Commodity PAD Districts U.S. Total 1 2 3 4 5 Total Daily Average Crude Oil 1,2 ................................................................................. 26,390 54,466 143,796 8,286 31,410 264,348 8,527 Natural Gas Plant Liquids and Liquefied Refinery Gases ...... 1,606 2,797 1,838 502 192 6,935 224 Pentanes Plus .......................................................................... - 11 1,688 - - 1,699 55 Liquefied Petroleum Gases ...................................................... 1,606 2,786 150 502 192 5,236 169 Ethane .................................................................................. - - - - - - - Ethylene ................................................................................

279

Petroleum Supply Monthly  

U.S. Energy Information Administration (EIA) Indexed Site

38 38 September 2013 Table 30. Refinery Net Input of Crude Oil and Petroleum Products by PAD and Refining Districts, September 2013 (Thousand Barrels, Except Where Noted) Commodity PAD District 1 - East Coast PAD District 2 - Midwest East Coast Appalachian No. 1 Total Indiana, Illinois, Kentucky Minnesota, Wisconsin, North and South Dakota Oklahoma, Kansas, Missouri Total Crude Oil ................................................................. 29,611 2,906 32,517 67,983 12,033 22,460 102,476 Natural Gas Plant Liquids ...................................... 485 - 485 1,969 56 687 2,712 Pentanes Plus ...................................................... - - - 777 - 265 1,042 Liquefied Petroleum Gases .................................. 485 - 485 1,192 56 422 1,670 Normal Butane ..................................................

280

Petroleum Supply Monthly  

Gasoline and Diesel Fuel Update (EIA)

4 4 December 2011 Table 50. Year-to-Date Exports of Crude Oil and Petroleum Products by PAD District, January-December 2011 (Thousand Barrels) Commodity PAD Districts U.S. Total 1 2 3 4 5 Total Daily Average Crude Oil 1 ............................................................ 2,147 13,574 1,237 191 9 17,158 47 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 3,739 15,542 42,403 2,288 6,081 70,053 192 Pentanes Plus .................................................. 2,075 11,913 179 1,415 340 15,922 44 Liquefied Petroleum Gases .............................. 1,664 3,628 42,224 873 5,741 54,131 148 Ethane/Ethylene ........................................... - - - - - - - Propane/Propylene ....................................... 401 514 40,084 58 4,187 45,243

Note: This page contains sample records for the topic "operable petroleum refineries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Short-Term Energy Outlook Model Documentation: Other Petroleum Products Consumption Model  

Reports and Publications (EIA)

The other petroleum product consumption module of the Short-Term Energy Outlook (STEO) model is designed to provide U.S. consumption forecasts for 6 petroleum product categories: asphalt and road oil, petrochemical feedstocks, petroleum coke, refinery still gas, unfinished oils, and other miscvellaneous products

Tancred Lidderdale

2011-11-30T23:59:59.000Z

282

EIA-820 ANNUAL REFINERY REPORT INSTRUCTIONS  

U.S. Energy Information Administration (EIA)

EIA-820, Annual Refinery Report Page 1 U.S. DEPARTMENT OF ENERGY ... production outside the refinery gate. Note: capacity should include base stocks and process oils

283

Number of Idle Refineries - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Notes: Idle refineries represent refineries where distillation units were completely idle but not permanently shutdown as of January 1 of the year.

284

Opportunities for Biorenewables in Oil Refineries  

Science Conference Proceedings (OSTI)

Abstract: The purpose of this study was to evaluate the potential for using biorenewable feedstocks in oil refineries. Economic analyses were conducted, with support from process modeling and proof of principle experiments, to assess a variety of potential processes and configurations. The study considered two primary alternatives: the production of biodiesel and green diesel from vegetable oils and greases and opportunities for utilization of pyrolysis oil. The study identified a number of promising opportunities for biorenewables in existing or new refining operations.

Marker, T.L.

2005-12-19T23:59:59.000Z

285

PETROLEUM PLANTATIONS  

E-Print Network (OSTI)

Science 198, 942 (1977). Petroleum Plantations (continued)Diu is ion, Ext. 6782 PETROLEUM PLANT AT I ONs''e MelvinJapan April 1, 1978 PETROLEUM PLANTATIONS Melvin Calvin

Calvin, Melvin

2011-01-01T23:59:59.000Z

286

Phillips Petroleum  

Office of Legacy Management (LM)

Phillips Petroleum Phillips Petroleum -Q-Y SPERT at NRTS - Scope and purpose is to subject heterogeneous reactor cores of differing designs. to power excurstons of increasing magnitude to determine the safe upper limit of avaIlable excess re- activity and the rates at which this ex- cess may safely be added. Of pfbrticuler interest also is the mechanism of the physic81 reactions which result in core damsge, i.e., movements and possible oc- currence of chemical reactions between fuel elements and coolants. SPERT I is still in operation with core A. However, they are now Working With 8 nine foot head of water in place of the original tvo foot head of water. Core B will be 8 core with physical design such that the pl8tes of the fuel elements may be variably spaced.

287

Engineering firm has designed refinery of the future  

SciTech Connect

Four years ago, JGC Corp. organized a project team called ``Refinery Engineering for the Future in the Twenty-First Century,`` or REF-21. The purpose of the team was to forecast the environment facing the refining industry in Japan, long-range energy supply and demand, population and economic growth, traffic system trends, and technology and science progress through the middle of the twenty-first century. The REF-21 team also was charged with developing a conceptual design for the future refinery. The team proposed four types of configurations for the so-called new-generation refineries. These schemes included some new technologies that it deemed commercializable by 2000. JGC evaluated these new-generation refinery schemes in terms of overall yields, energy efficiencies, emissions, and economics, as compared with existing refineries. JGC also has developed an amenity design program (ADP), and is applying it to a refinery in Japan to produce a new-concept operation center. Through amenity design, JGC intends to improve the operating environment for employees in order to enhance overall productivity.

Inomata, Makoto; Sato, Kyohei; Yamada, Yu; Sasaki, Hajime [JGC Corp., Yokohama (Japan)

1997-04-28T23:59:59.000Z

288

Environmental Regulations and Changes in Petroleum Refining Operations (Released in the STEO June 1998)  

Reports and Publications (EIA)

Changes in domestic refining operations are identified and related to the summer Reid vapor pressure (RVP) restrictions and oxygenate blending requirements. This analysis uses published EIA survey data and linear regression equations from the Short-Term Integrated Forecasting System (STIFS). The STIFS model is used for producing forecasts appearing in the Short-Term Energy Outlook.

Information Center

1998-06-01T23:59:59.000Z

289

Upgrade Your Refinery for Energy Conservation  

E-Print Network (OSTI)

Upgrading existing refineries for efficient energy utilization imposes strict restraints upon design engineers. Present and future production requirements must be defined. Reliable operating data must be obtained from historical records and test runs to accurately define actual performance of each piece of equipment. A complete simulation model of the facility is developed and tested. Future operations are evaluated using the model to define heat and material balance requirements for all projected operations. Energy conservation projects are evaluated with the model to define energy savings over the life of each project. A discounted cash flow analysis is formulated and an optimum set of projects yielding maximum rates of return are selected for implementation.

Johnnie, D. H., Jr.; Klooster, H. J.

1983-01-01T23:59:59.000Z

290

PAD District / Refinery Location Total Atmospheric Distillation  

U.S. Energy Information Administration (EIA) Indexed Site

Operable Date of Last Operation Date Shutdown Table 11. New, Shutdown and Reactivated Refineries During 2012 a b REACTIVATED PAD District I 185,000 366,700 Monroe Energy LLC Trainer, PA 185,000 366,700 09/12 c SHUTDOWN PAD District I 80,000 47,000 ChevronUSA Inc Perth Amboy, NJ 80,000 47,000 03/08 07/12 PAD District III 16,800 19,500 Western Refining Southwest Inc Bloomfield, NM 16,800 19,500 12/09 11/12 PAD District VI 500,000 1,086,000 Hovensa LLC Kingshill, VI 500,000 1,086,000 02/12 02/12 a b bbl/cd=Barrels per calendar day. bbl/sd=Barrels per stream day. Sources: Energy Information Administration (EIA) Form EIA-810, "Monthly Refinery Report" and Form EIA-820, "Annual Refinery Report." c Formerly owned by ConocoPhillips Company.

291

Puerto Rico Refinery Catalytic Reforming Downstream Charge ...  

U.S. Energy Information Administration (EIA)

Puerto Rico Refinery Catalytic Reforming Downstream Charge Capacity as of January 1 (Barrels per Stream Day)

292

Puerto Rico Refinery Desulfurization, Gasoline Downstream Charge ...  

U.S. Energy Information Administration (EIA)

Puerto Rico Refinery Desulfurization, Gasoline Downstream Charge Capacity as of January 1 (Barrels per Stream Day)

293

Mississippi Refinery Catalytic Reforming Downstream Charge ...  

U.S. Energy Information Administration (EIA)

Mississippi Refinery Catalytic Reforming Downstream Charge Capacity as of January 1 (Barrels per Stream Day)

294

Louisiana Refinery Catalytic Reforming Downstream Charge Capacity ...  

U.S. Energy Information Administration (EIA)

Louisiana Refinery Catalytic Reforming Downstream Charge Capacity as of January 1 (Barrels per Stream Day)

295

Oklahoma Refinery Vacuum Distillation Downstream Charge Capacity ...  

U.S. Energy Information Administration (EIA)

Oklahoma Refinery Vacuum Distillation Downstream Charge Capacity as of January 1 (Barrels per Stream Day)

296

Mississippi Refinery Vacuum Distillation Downstream Charge ...  

U.S. Energy Information Administration (EIA)

Mississippi Refinery Vacuum Distillation Downstream Charge Capacity as of January 1 (Barrels per Stream Day)

297

Petroleum supply annual 1998: Volume 1  

SciTech Connect

The ``Petroleum Supply Annual`` (PSA) contains information on the supply and disposition of crude oil and petroleum products. The publication reflects data that were collected from the petroleum industry during 1998 through annual and monthly surveys. The PSA is divided into two volumes. This first volume contains three sections: Summary Statistics, Detailed Statistics, and Refinery Statistics; each with final annual data. The second volume contains final statistics for each month of 1998, and replaces data previously published in the PSA. The tables in Volumes 1 and 2 are similarly numbered to facilitate comparison between them. 16 figs., 59 tabs.

NONE

1999-06-01T23:59:59.000Z

298

U.S. Refinery  

U.S. Energy Information Administration (EIA)

930: 1,094: 1,184: 1993-2013: Lubricants: 5,546: 5,093: 5,082: 5,532: 5,743: 5,901: 1993-2013: Waxes: 633: 649: 661: 698: 702: 761: 1993-2013: Petroleum Coke: 9,278 ...

299

Increasing Distillate Production at U.S. Refineries Â… Past Changes and Future Potential  

Gasoline and Diesel Fuel Update (EIA)

Increasing Distillate Production at U.S. Refineries - Past Changes and Future Increasing Distillate Production at U.S. Refineries - Past Changes and Future Potential U.S. Energy Information Administration Office of Petroleum, Gas, and Biofuels Analysis Department of Energy Office of Policy and International Affairs October 2010 Summary World consumption growth for middle distillate fuels (diesel fuel, heating oil, kerosene, and jet fuel) has exceeded the consumption growth for gasoline for some time, and the United States is no exception. Although the decrease in the ratio of total gasoline consumption to consumption for middle distillate fuels has been small in the United States, recent legislation requiring increased use of renewable fuels has resulted in forecasts that project a decline in consumption for petroleum-based gasoline from refineries, which would accelerate the decline in the

300

Economic forces push down selling prices of U.S. refineries  

Science Conference Proceedings (OSTI)

Recent data on US refinery sales reveal that selling prices have continued to decline in the 1990s. Reasons for this decrease include increased plant investments to meet regulatory requirements, excess refining capacity, increased imports of refined products, and reduced margins. While these expenditures enable a refinery to continue operating, they do not make the refinery more profitable or valuable. Other factors contributing to reduced selling prices of US refineries are: declining local crude production; unstable crude costs; increased energy conservation; growing competition from alternative fuels.

NONE

1996-03-25T23:59:59.000Z

Note: This page contains sample records for the topic "operable petroleum refineries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Vacuum distillation is a key part of the petroleum refining ...  

U.S. Energy Information Administration (EIA)

About 80% of the refineries operating in the United States have a vacuum distillation unit (VDU), a secondary processing unit consisting of vacuum distillation columns.

302

Carbon Emissions: Petroleum Refining Industry  

U.S. Energy Information Administration (EIA) Indexed Site

Petroleum Refining Industry Petroleum Refining Industry Carbon Emissions in the Petroleum Refining Industry The Industry at a Glance, 1994 (SIC Code: 2911) Total Energy-Related Emissions: 79.9 million metric tons of carbon (MMTC) -- Pct. of All Manufacturers: 21.5% -- Nonfuel Emissions: 16.5 MMTC Total First Use of Energy: 6,263 trillion Btu -- Pct. of All Manufacturers: 28.9% Nonfuel Use of Energy Sources: 3,110 trillion Btu (49.7%) -- Naphthas and Other Oils: 1,328 trillion Btu -- Asphalt and Road Oil: 1,224 trillion Btu -- Lubricants: 416 trillion Btu Carbon Intensity: 12.75 MMTC per quadrillion Btu Energy Information Administration, "1994 Manufacturing Energy Consumption Survey", "Monthly Refinery Report" for 1994, and Emissions of Greenhouse Gases in the United States 1998.

303

Integrating hazardous waste management into a multimedia pollution prevention paradigm. A protoype regulatory program for petroleum refinesments  

SciTech Connect

An emerging trend in environmental regulatory management promises enhanced environmental protection and more flexibility for regulated entities. This trend reflects three concepts. First, regulations designed to reduce one type of environmental pollution (e.g., air pollution) should not increase other types of pollution (e.g. hazardous waste). Second, pollution prevention is an important alternative to end-of-pipe control requirements. Third, offering polluting entities the flexibility of meeting certain performance criteria may produce better environmental results than prescribing specific technologies or approaches. A significant body of literature supports the need to develop regulatory programs that incorporate these concepts. However, there is little evidence that these concepts have been integrated into actual multimedia regulatory programs. Argonne National Laboratory and the U.S. Department of Energy are developing a prototype regulatory program for petroleum refineries that embraces these concepts. The development approach in this case study comprises several steps: (1) identifying and evaluating existing regulations governing petroleum refineries (if any); (2) characterizing expected future operating conditions of refineries; (3) setting goals for the regulatory program; (4) identifying and evaluating options for the program; (5) developing a prototype based on selected options; (6) identifying and addressing implementation issues; and (7) testing the prototype on a pilot basis. The approach being used in the U.S. effort is flexible and can be used in environmental management efforts throughout the Pacific Basin--in both developing and developed countries.

Elcock, D.; Gasper, J.

1996-12-31T23:59:59.000Z

304

Biological treatment of refinery wastes  

SciTech Connect

A detailed study of the treatment situation at a Thai refinery that used an API separator with no equalization tank, followed by an activated-sludge system, showed that only 42% of the total COD and 57% of the soluble COD was degradable. In a study of the possibility of additional treatments, an aerated lagoon showed promising results. The wastewater composition of the three main Thai refineries was surveyed.

Mahmud, Z.; Thanh, N.C.

1978-01-01T23:59:59.000Z

305

U.S. Refinery  

U.S. Energy Information Administration (EIA) Indexed Site

Crude Oil and Petroleum Products Crude Oil and Petroleum Products 354,918 353,802 345,413 343,062 345,025 342,763 1993-2013 Crude Oil 98,082 97,563 90,880 93,075 97,586 90,778 1981-2013 All Oils (Excluding Crude Oil) 256,836 256,239 254,533 249,987 247,439 251,985 1993-2013 Pentanes Plus 947 867 828 805 708 856 1993-2013 Liquefied Petroleum Gases 12,896 14,096 15,761 16,662 18,296 18,683 1993-2013 Ethane/Ethylene 281 321 261 242 205 171 1993-2013 Propane/Propylene 2,692 2,994 3,569 3,518 4,099 4,104 1993-2013 Normal Butane/Butylene 7,627 8,451 9,511 10,757 11,921 12,147 1993-2013 Isobutane/Butylene 2,296 2,330 2,420 2,145 2,071 2,261 1993-2013 Other Hydrocarbons 19 43 49 33 26 21 2009-2013 Oxygenates (excluding Fuel Ethanol) 116 99 100 82 71 78 2009-2013

306

U.S. Refinery  

U.S. Energy Information Administration (EIA) Indexed Site

Crude Oil and Petroleum Products Crude Oil and Petroleum Products 346,915 338,782 331,615 339,907 336,327 341,211 1993-2012 Crude Oil 89,070 86,598 90,944 88,982 90,640 88,781 1981-2012 All Oils (Excluding Crude Oil) 257,845 252,184 240,671 250,925 245,687 252,430 1993-2012 Pentanes Plus 949 997 1,006 971 895 884 1993-2012 Liquefied Petroleum Gases 13,161 12,456 12,611 14,896 14,429 15,934 1993-2012 Ethane/Ethylene 31 185 118 220 223 214 1993-2012 Propane/Propylene 4,120 3,293 3,577 4,278 4,087 4,574 1993-2012 Normal Butane/Butylene 6,320 6,482 6,478 7,818 7,794 8,774 1993-2012 Isobutane/Butylene 2,690 2,496 2,438 2,580 2,325 2,372 1993-2012 Other Hydrocarbons 29 20 41 42 2009-2012 Oxygenates (excluding Fuel Ethanol) 47 24 58 112 2009-2012

307

DOE - Office of Legacy Management -- International Rare Metals Refinery Inc  

Office of Legacy Management (LM)

Rare Metals Refinery Rare Metals Refinery Inc - NY 38 FUSRAP Considered Sites Site: International Rare Metals Refinery, Inc. (NY.38 ) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: Canadian Radium and Uranium Corporation NY.38-1 Location: 69 Kisko Avenue , Mt. Kisko , New York NY.38-1 NY.38-3 Evaluation Year: 1987 NY.38-4 Site Operations: Manufactured and distributed radium and polonium products. NY.38-5 Site Disposition: Eliminated - No Authority - Site was a commercial operation not under the jurisdiction of DOE predecessor agencies NY.38-2 NY.38-4 Radioactive Materials Handled: Yes Primary Radioactive Materials Handled: Radium, Plutonium NY.38-5 Radiological Survey(s): Yes NY.38-1 NY.38-5 Site Status: Eliminated from consideration under FUSRAP

308

Assessment of coal liquids as refinery feedstocks  

Science Conference Proceedings (OSTI)

The R D of direct coal liquefaction has reached such a stage that current two-stage processes can produce coal liquids with high yields and improved quality at a reasonable cost. To fully realize the potential value, these coal liquids should be refined into high-value liquid transportation fuels. The purpose of this study is to assess coal liquids as feedstocks to be processed by modern petroleum refining technologies. After the introduction, Section 2.0 summarizes ASTM specifications for major transportation fuels: gasoline, jet fuel, and diesel fuel, which serve as a target for coal-liquid refining. A concise description of modern refining processes follows with an emphasis on the requirements for the raw materials. These provide criteria to judge the quality of coal liquids as a refinery feedstock for the production of marketable liquid fuels. Section 3.0 surveys the properties of coal liquids produced by various liquefaction processes. Compared with typical petroleum oils, the current two-stage coal liquids are: Light in boiling range and free of resids and metals; very low in sulfur but relatively high in oxygen; relatively low in hydrogen and high in cyclics content; and essentially toxicologically inactive when end point is lower than 650[degrees]F, particularly after hydroprocessing. Despite these characteristics, the coal liquids are basically similar to petroleum. The modern refining technology is capable of processing coal liquids into transportation fuels meeting all specifications, and hydroprocessinq is obviously the major tool. The important point is the determination of a reasonable product slate and an appropriate refining scheme.

Zhou, P.

1992-02-01T23:59:59.000Z

309

Assessment of coal liquids as refinery feedstocks  

Science Conference Proceedings (OSTI)

The R&D of direct coal liquefaction has reached such a stage that current two-stage processes can produce coal liquids with high yields and improved quality at a reasonable cost. To fully realize the potential value, these coal liquids should be refined into high-value liquid transportation fuels. The purpose of this study is to assess coal liquids as feedstocks to be processed by modern petroleum refining technologies. After the introduction, Section 2.0 summarizes ASTM specifications for major transportation fuels: gasoline, jet fuel, and diesel fuel, which serve as a target for coal-liquid refining. A concise description of modern refining processes follows with an emphasis on the requirements for the raw materials. These provide criteria to judge the quality of coal liquids as a refinery feedstock for the production of marketable liquid fuels. Section 3.0 surveys the properties of coal liquids produced by various liquefaction processes. Compared with typical petroleum oils, the current two-stage coal liquids are: Light in boiling range and free of resids and metals; very low in sulfur but relatively high in oxygen; relatively low in hydrogen and high in cyclics content; and essentially toxicologically inactive when end point is lower than 650{degrees}F, particularly after hydroprocessing. Despite these characteristics, the coal liquids are basically similar to petroleum. The modern refining technology is capable of processing coal liquids into transportation fuels meeting all specifications, and hydroprocessinq is obviously the major tool. The important point is the determination of a reasonable product slate and an appropriate refining scheme.

Zhou, P.

1992-02-01T23:59:59.000Z

310

Petroleum Supply and Market Outlook  

U.S. Energy Information Administration (EIA)

Petroleum Supply and Market Outlook Briefing for the 7th Annual International Airport Operations/Jet Fuel Conference Orlando, Florida Mike Burdette

311

Petroleum supply monthly, July 1993  

SciTech Connect

Data presented in the Petroleum Supply Monthly (PSM) describe the supply and disposition of petroleum products in the United States and major US geographic regions. The data series describe production, imports and exports, inter-Petroleum Administration for Defense (PAD) District movements, and inventories by the primary suppliers of petroleum products in the United States (50 States and the District of Columbia). The reporting universe includes those petroleum sectors in primary supply. Included are: Petroleum refiners, motor gasoline blenders, operators of natural gas processing plants and fractionators, inter-PAD transporters, importers, and major inventory holders of petroleum products and crude oil. When aggregated, the data reported by these sectors approximately represent the consumption of petroleum products in the United States.

1993-07-29T23:59:59.000Z

312

Petroleum Supply Monthly  

U.S. Energy Information Administration (EIA) Indexed Site

6 6 September 2013 Table 35. Percent Yield of Petroleum Products by PAD and Refining Districts, September 2013 Commodity PAD District 1 - East Coast PAD District 2 - Midwest East Coast Appalachian No. 1 Total Indiana, Illinois, Kentucky Minnesota, Wisconsin, North and South Dakota Oklahoma, Kansas, Missouri Total Liquefied Refinery Gases ......................................... 2.2 1.0 2.1 4.3 1.3 2.0 3.4 Finished Motor Gasoline 1 ......................................... 46.0 35.4 45.2 51.1 50.3 48.6 50.4 Finished Aviation Gasoline 2 ..................................... - - - - 1.2 - 0.1 Kerosene-Type Jet Fuel ........................................... 7.4 - 6.8 7.6 6.9 3.6 6.6 Kerosene .................................................................. 0.3 - 0.2 0.0 - 0.1 0.0 Distillate Fuel Oil .......................................................

313

Petroleum Market Model of the National Energy Modeling System. Part 1  

SciTech Connect

The purpose of this report is to define the objectives of the Petroleum Market Model (PMM), describe its basic approach, and provide detail on how it works. This report is intended as a reference document for model analysts, users, and the public. The PMM models petroleum refining activities, the marketing of petroleum products to consumption regions, the production of natural gas liquids in gas processing plants, and domestic methanol production. The PMM projects petroleum product prices and sources of supply for meeting petroleum product demand. The sources of supply include crude oil, both domestic and imported; other inputs including alcohols and ethers; natural gas plant liquids production; petroleum product imports; and refinery processing gain. In addition, the PMM estimates domestic refinery capacity expansion and fuel consumption. Product prices are estimated at the Census division level and much of the refining activity information is at the Petroleum Administration for Defense (PAD) District level.

NONE

1997-12-18T23:59:59.000Z

314

Refinery suppliers face tough times  

SciTech Connect

Despite a handful of bright spots in hydroprocessing and petrochemical sectors, economic woes plague much of the refinery and petrochemical catalysts business, as suppliers are feeling the impact of mature markets and refiners` ongoing cost cutting. Industry experts say the doldrums could spur further restructuring in the catalyst business, with suppliers scrambling for market share and jockeying for position in growing sectors. Expect further consolidation over the next several years, says Pierre Bonnifay, president of IFP Enterprises (New York). {open_quotes}There are still too many players for the mature [refinery catalyst] markets.{close_quotes} Others agree. {open_quotes}Only about seven [or] eight major suppliers will survive,{close_quotes} says Robert Allsmiller, v.p./refinery and petrochemical catalysts at United Catalysts Inc. (UCI; Louisville, KY). {open_quotes}Who they [will be] is still up in the air.{close_quotes}

Rotman, D.; Walsh, K.

1997-03-12T23:59:59.000Z

315

Motiva Refinery | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Refinery Refinery Motiva Refinery May 18, 2006 - 10:45am Addthis Remarks Prepared for Energy Secretary Bodman Much of my time lately has been devoted to explaining why the price of gasoline has risen so sharply. President Bush understands the pinch this is creating for American consumers and has come forward with a variety of steps to address the problem. Rapid economic growth in emerging economies like China and India-and the growth here in the U.S.-have pushed up demand. Political unrest in some oil-producing regions has tightened supply. The transition from winter gasoline to summer blends, and the phase out of the additive MTBE in favor of ethanol, have increased the pressure on the market. Most significantly, we have very little spare refining capacity in this

316

EIA - The National Energy Modeling System: An Overview 2003-Petroleum  

Gasoline and Diesel Fuel Update (EIA)

Petroleum Market Module Petroleum Market Module The National Energy Modeling System: An Overview 2003 Petroleum Market Module Figure 17. Petroleum Market Module Structure. Need help, contact the National Energy Information Center. Need help, contact the National Energy Information Center at 202-586-8800. Figure 18. Petroleum Administration for Defense Districts. Need help, contact the National Energy Information Center at 202-586-8800. Petroleum Market Module Table. Need help, contact the National Energy Information Center at 202-586-8800. Petroleum Products Modeled in PMM. Need help, contact the National Energy Information Center at 202-586-8800. Crude Oil Categories in PMM Table. Need help, contact the National Energy Information Center at 202-586-8800. Refinery Processing Units Modeled in PMM. Need help, contact the National Energy Information Center at 202-586-8800.

317

Refinery & Blenders Net Input of Crude Oil  

U.S. Energy Information Administration (EIA) Indexed Site

Input Input Product: Total Crude Oil & Petroleum Products Crude Oil Natural Gas Plant Liquids and Liquefied Refinery Gases Pentanes Plus Liquefied Petroleum Gases Ethane Normal Butane Isobutane Other Liquids Hydrogen/Oxygenates/Renewables/Other Hydrocarbons Hydrogen Oxygenates (excl. Fuel Ethanol) Methyl Tertiary Butyl Ether (MTBE) All Other Oxygenates Renewable Fuels (incl. Fuel Ethanol) Fuel Ethanol Renewable Diesel Fuel Other Renewable Fuels Other Hydrocarbons Unfinished Oils (net) Unfinished Oils, Naphthas and Lighter Unfinished Oils, Kerosene and Light Gas Oils Unfinished Oils, Heavy Gas Oils Residuum Motor Gasoline Blending Components (MGBC) (net) MGBC - Reformulated MGBC - Reformulated - RBOB MGBC - Reformulated, RBOB for Blending w/ Alcohol MGBC - Reformulated, RBOB for Blending w/ Ether MGBC - Reformulated, GTAB MGBC - Conventional MGBC - CBOB MGBC - Conventional, GTAB MGBC - Other Conventional Aviation Gasoline Blending Components (net) Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day

318

Feasibility study report for the Imperial Valley Ethanol Refinery: a 14. 9-million-gallon-per-year ethanol synfuel refinery utilizing geothermal energy  

DOE Green Energy (OSTI)

The construction and operation of a 14,980,000 gallon per year fuel ethanol from grain refinery in the Imperial Valley of California is proposed. The Imperial Valley Ethanol Refinery (refinery) will use hot geothermal fluid from geothermal resources at the East Mesa area as the source of process energy. In order to evaluate the economic viability of the proposed Project, exhaustive engineering, cost analysis, and financial studies have been undertaken. This report presents the results of feasibility studies undertaken in geothermal resource, engineering, marketing financing, management, environment, and permits and approvals. The conclusion of these studies is that the Project is economically viable. US Alcohol Fuels is proceeding with its plans to construct and operate the Refinery.

Not Available

1981-03-01T23:59:59.000Z

319

Models and algorithms for a multilevel control system of primary oil refinery installations  

Science Conference Proceedings (OSTI)

Algorithms and mathematical models for the technological process of primary oil refinery operating in the uncertain conditions are developed; the solution of the optimal control problem in the form of stochastic programming with probabilistic characteristics ...

I. A. Guseinov; E. A. Melikov; N. A. Khanbutaeva; I. R. Efendiev

2012-02-01T23:59:59.000Z

320

Petroleum supply annual 1994, Volume 2  

Science Conference Proceedings (OSTI)

The Petroleum Supply Annual (PSA) contains information on the supply and disposition of crude oil and petroleum products. The publication reflects data that were collected from the petroleum industry during 1994 through annual and monthly surveys. The PSA is divided into two volumes. This first volume contains four sections: Summary Statistics, Detailed Statistics, Refinery Capacity, and Oxygenate Capacity each with final annual data. The second volume contains final statistics for each month of 1994, and replaces data previously published in the Petroleum Supply Monthly (PSM). The tables in Volumes 1 and 2 are similarly numbered to facilitate comparison between them. Explanatory Notes, located at the end of this publication, present information describing data collection, sources, estimation methodology, data quality control procedures, modifications to reporting requirements and interpretation of tables. Industry terminology and product definitions are listed alphabetically in the Glossary.

NONE

1995-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "operable petroleum refineries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Petroleum Supply Monthly, July 1990  

Science Conference Proceedings (OSTI)

Data presented in the PSM describe the supply and disposition of petroleum products in the United States and major US geographic regions. The data series describe production, imports and exports, inter-Petroleum Administration for Defense (PAD) District movements, and inventories by the primary suppliers of petroleum products in the United States (50 states and the District of Columbia). The reporting universe includes those petroleum sectors in Primary Supply. Included are: petroleum refiners, motor gasoline blenders, operators of natural gas processing plants and fractionators, inter-PAD transporters, importers, and major inventory holders of petroleum products and crude oil. When aggregated, the data reported by these sectors approximately represent the consumption of petroleum products in the United States.

Not Available

1990-09-28T23:59:59.000Z

322

Kansas refinery starts up coke gasification unit  

SciTech Connect

Texaco Refining and Marketing Inc. has started up a gasification unit at its El Dorado, Kan., refinery. The unit gasifies delayed coke and other refinery waste products. This is the first refinery to install a coke-fueled gasification unit for power generation. Start-up of the $80-million gasification-based power plant was completed in mid-June. The gasifier produces syngas which, along with natural gas, fuels a combustion turbine. The turbine produces virtually 100% of the refinery`s electricity needs and enough heat to generate 40% of its steam requirements.

Rhodes, A.K.

1996-08-05T23:59:59.000Z

323

Energy efficiency improvement and cost saving opportunities for petroleum refineries  

E-Print Network (OSTI)

Ultramar Inc. Sunoco Inc. ExxonMobil Willaims Shell BPBrian Eidt and staff at ExxonMobil, F.L. Oaks (MarathonVicksburg Newell (Congo) ExxonMobil Baton Rouge Baytown

Worrell, Ernst; Galitsky, Christina

2005-01-01T23:59:59.000Z

324

Energy efficiency improvement and cost saving opportunities for petroleum refineries  

E-Print Network (OSTI)

Council of Industrial Boiler Owners (CIBO). 1998. PersonalBorras, T. 1998. "Improving Boilers and Furnaces." ChemicalAnalysis of the Industrial Boiler Population” Prepared by

Worrell, Ernst; Galitsky, Christina

2005-01-01T23:59:59.000Z

325

Refinery & Blender Net Production of Total Finished Petroleum ...  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: See Definitions ...

326

U.S. Number and Capacity of Petroleum Refineries  

U.S. Energy Information Administration (EIA) Indexed Site

Area: U.S. PAD District 1 Delaware Florida Georgia Maryland New Jersey New York North Carolina Pennsylvania Virginia West Virginia PAD District 2 Illinois Indiana Kansas Kentucky Michigan Minnesota Missouri Nebraska North Dakota Ohio Oklahoma Tennessee Wisconsin PAD District 3 Alabama Arkansas Louisiana Mississippi New Mexico Texas PAD District 4 Colorado Montana Utah Wyoming PAD District 5 Alaska Arizona California Hawaii Nevada Oregon Washington Guam Puerto Rico Virgin Islands Period: Area: U.S. PAD District 1 Delaware Florida Georgia Maryland New Jersey New York North Carolina Pennsylvania Virginia West Virginia PAD District 2 Illinois Indiana Kansas Kentucky Michigan Minnesota Missouri Nebraska North Dakota Ohio Oklahoma Tennessee Wisconsin PAD District 3 Alabama Arkansas Louisiana Mississippi New Mexico Texas PAD District 4 Colorado Montana Utah Wyoming PAD District 5 Alaska Arizona California Hawaii Nevada Oregon Washington Guam Puerto Rico Virgin Islands Period: Annual (as of January 1) Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes

327

Energy efficiency improvement and cost saving opportunities for petroleum refineries  

E-Print Network (OSTI)

Power Generation 74 18.1 Combined Heat and Power Generation (as feedstock, and power generation. In the view of Katzer et

Worrell, Ernst; Galitsky, Christina

2005-01-01T23:59:59.000Z

328

Energy efficiency improvement and cost saving opportunities for petroleum refineries  

E-Print Network (OSTI)

Energy Efficiency of Crude Oil Distillation. Heat TransferMitigation of Fouling in Crude Oil Pre-Heat Trains. Proc. 24Mitigation of Fouling in Crude Oil Preheat Trains. Proc. 24

Worrell, Ernst; Galitsky, Christina

2005-01-01T23:59:59.000Z

329

Energy efficiency improvement and cost saving opportunities for petroleum refineries  

E-Print Network (OSTI)

Steam Distribution .Process Integration Steam Distribution Power Generation7 summarizes the steam distribution system measures. Steam,

Worrell, Ernst; Galitsky, Christina

2005-01-01T23:59:59.000Z

330

Energy efficiency improvement and cost saving opportunities for petroleum refineries  

E-Print Network (OSTI)

Repair Flash Steam Recovery/ Condensate Return CondensateRecover flash steam Return condensate Distillation OptimizedFlash Steam. When a steam trap purges condensate from a

Worrell, Ernst; Galitsky, Christina

2005-01-01T23:59:59.000Z

331

Energy efficiency improvement and cost saving opportunities for petroleum refineries  

E-Print Network (OSTI)

National Energy Technologies Laboratory, U.S. Department ofProfitability. Energy Information Administration, U.S.1999, Energy Information Administration, U.S. Department of

Worrell, Ernst; Galitsky, Christina

2005-01-01T23:59:59.000Z

332

Energy efficiency improvement and cost saving opportunities for petroleum refineries  

E-Print Network (OSTI)

U.S. Department of Energy, Washington, DC, October 1997.U.S. Department of Energy, Washington, DC. Panchal, C.B. andU.S. Department of Energy, Washington, DC. U.S. DOE-OIT.

Worrell, Ernst; Galitsky, Christina

2005-01-01T23:59:59.000Z

333

Energy efficiency improvement and cost saving opportunities for petroleum refineries  

E-Print Network (OSTI)

Technologies, National Energy Technologies Laboratory, U.S.22 nd Industrial Energy Technology Conference, Houston, TX,Oil Refining Ltd. , Energy technology Support Unit, Harwell,

Worrell, Ernst; Galitsky, Christina

2005-01-01T23:59:59.000Z

334

Energy efficiency improvement and cost saving opportunities for petroleum refineries  

E-Print Network (OSTI)

use of natural gas as feedstock, and power generation. InNatural gas is used for the production of hydrogen, fuel for co-generation of heat and power (

Worrell, Ernst; Galitsky, Christina

2005-01-01T23:59:59.000Z

335

Energy efficiency improvement and cost saving opportunities for petroleum refineries  

E-Print Network (OSTI)

in an entrained bed gasifier. Due to the limited oxygenof power in an Integrated Gasifier Combined Cycle (IGCC). In

Worrell, Ernst; Galitsky, Christina

2005-01-01T23:59:59.000Z

336

Energy efficiency improvement and cost saving opportunities for petroleum refineries  

E-Print Network (OSTI)

1991). Shenoy, U. 1994. Heat Exchanger Network Synthesis.Retrofit Analysis of a Heat Exchanger Network of a FluidD.C King. 2002. Emerging Heat Exchanger Technologies for the

Worrell, Ernst; Galitsky, Christina

2005-01-01T23:59:59.000Z

337

Energy efficiency improvement and cost saving opportunities for petroleum refineries  

E-Print Network (OSTI)

N. Nath. 2000. Improve Steam Turbine Efficiency. Hydrocarbonas well as selection of steam turbines or electric motors toand minimizing losses in the steam turbines) can result in

Worrell, Ernst; Galitsky, Christina

2005-01-01T23:59:59.000Z

338

Energy efficiency improvement and cost saving opportunities for petroleum refineries  

E-Print Network (OSTI)

V. 1994. "Understand Steam Generator Performance." Chemicaland two heat recovery steam generators (boilers). The system

Worrell, Ernst; Galitsky, Christina

2005-01-01T23:59:59.000Z

339

Energy efficiency improvement and cost saving opportunities for petroleum refineries  

E-Print Network (OSTI)

Technologies, National Energy Technologies Laboratory, U.S.Department of Energy/Energy Information Administration, Washington, DC, June

Worrell, Ernst; Galitsky, Christina

2005-01-01T23:59:59.000Z

340

Energy efficiency improvement and cost saving opportunities for petroleum refineries  

E-Print Network (OSTI)

in steam generation, distribution and end-use are possible.that steam generation, distribution, and cogeneration offerIntegration Steam Distribution Power Generation Power

Worrell, Ernst; Galitsky, Christina

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "operable petroleum refineries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Total Refinery Net Input of Crude Oil and Petroleum Products  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: RBOB with Ether and RBOB ...

342

Refinery & Blender Net Production of Catalyst Petroleum Coke  

U.S. Energy Information Administration (EIA)

East Coast: 32: 33: 29: 25: 26: 24: 1993-2012: Appalachian No. 1: 1: 1: 1: 1: 1: 1: 1995-2012: PADD 2: 43: 41: 42: 45: 46: 48: ... La. Gulf Coast: 43: ...

343

Refinery Net Production of Total Finished Petroleum Products  

U.S. Energy Information Administration (EIA)

La. Gulf Coast: 3,339: 3,007: 2,779: 2,633: 2,523: 2,416: 2005-2012: N. La., Ark: 188: 181: 164: 192: 216: 173: 2005-2012: New Mexico: 101: 102: 95: ...

344

Refinery Net Production of Total Finished Petroleum Products  

U.S. Energy Information Administration (EIA)

La. Gulf Coast: 2,474: 2,468: 2,551: 2,556: 2,541: 2,565: 2005-2013: N. La., Ark: 171: 177: 177: 174: 170: 177: 2005-2013: New Mexico: 120: 124: 123: ...

345

Energy efficiency improvement and cost saving opportunities for petroleum refineries  

E-Print Network (OSTI)

28 6.1 Energy Management Systems (EMS) and99 Appendix C: Energy Management System Assessment for Bestthe Global Energy Management System (GEMS) of ExxonMobil has

Worrell, Ernst; Galitsky, Christina

2005-01-01T23:59:59.000Z

346

Energy efficiency improvement and cost saving opportunities for petroleum refineries  

E-Print Network (OSTI)

recover heat from processes and transfer heat to the processProcess Integration.. 43 9.1 Heat Transfer–optimization of heat transfer among processes is therefore

Worrell, Ernst; Galitsky, Christina

2005-01-01T23:59:59.000Z

347

West Virginia Number and Capacity of Petroleum Refineries  

U.S. Energy Information Administration (EIA)

Catalytic Reforming : 3,350: 3,850: 3,850: 3,850: 2010-2013: Total Coking: 0: 0: 0: 0: 0: 0: 2006-2013: Catalytic Cracking - Fresh Feed: 0: 0: 0: 0: 0: 0: 2006-2013 ...

348

New Mexico Number and Capacity of Petroleum Refineries  

U.S. Energy Information Administration (EIA)

Catalytic Reforming : 34,243: 34,243: 34,243: 29,800: 2010-2013: Total Coking: 0: 0: 0: 0: 0: 0: 2006-2013: Catalytic Cracking - Fresh Feed: 39,631: 39,631: 39,631 ...

349

East Coast (PADD 1) Number and Capacity of Petroleum Refineries  

U.S. Energy Information Administration (EIA)

Catalytic Reforming : 226,266: 266,950: 195,550: 240,550: 2010-2013: Total Coking: 91,575: 95,500: 45,300: 93,700: 74,900: 74,900: 1987-2013: Catalytic Cracking ...

350

PAD District 5 Number and Capacity of Petroleum Refineries  

U.S. Energy Information Administration (EIA)

Catalytic Reforming : 543,246: 517,106: 527,756: 529,406: 2010-2013: Total Coking: 567,655: 573,008: 559,955: 530,400: 537,900: 529,700: 1987-2013: Catalytic Cracking ...

351

North Carolina Number and Capacity of Petroleum Refineries  

U.S. Energy Information Administration (EIA)

Catalytic Reforming : 0: 0: 0: 0: 2010-2013: Total Coking: 0: 0: 0: 0: 0: 0: 2007-2013: Catalytic Cracking - Fresh Feed: 0: 0: 0: 0: 0: 0: 2007-2013: Catalytic Hydro ...

352

Gulf Coast (PADD 3) Number and Capacity of Petroleum Refineries  

U.S. Energy Information Administration (EIA)

Catalytic Reforming : 1,644,941: 1,629,967: 1,583,165: 1,696,615: 2010-2013: Total Coking: 1,281,539: 1,293,674: 1,321,900: 1,318,440: 1,373,056: 1,459,176: 1987-2013:

353

Energy efficiency improvement and cost saving opportunities for petroleum refineries  

E-Print Network (OSTI)

requiring cooling, absorption cooling can be combined within combination with absorption cooling has been demonstrated

Worrell, Ernst; Galitsky, Christina

2005-01-01T23:59:59.000Z

354

Energy efficiency improvement and cost saving opportunities for petroleum refineries  

E-Print Network (OSTI)

the ENERGY STAR energy management matrix to evaluate andManagement Assessment Matrix ENERGY STAR Guidelines ForSTAR Guidelines For Energy Management Assessment Matrix 0 -

Worrell, Ernst; Galitsky, Christina

2005-01-01T23:59:59.000Z

355

Refinery Yield of Petroleum Coke - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Totals may not equal ...

356

Refinery and Blender Net Inputs  

Annual Energy Outlook 2012 (EIA)

Refinery and Blender Net Inputs Crude OIl ... 14.54 15.14 15.26 15.08 14.51 15.30 15.70 14.93 14.47 15.30 15.54 14.97 15.01...

357

Trends of petroleum fuels  

SciTech Connect

Trends in properties of motor gasolines for the years 1942 through 1984; diesel fuels for the years 1950 through 1983; aviation fuels for the years 1947 through 1983; and heating oils for the years 1955 through 1984, have been evaluated based upon data contained in surveys prepared and published by the National Institute for Petroleum and Energy Research (NIPER) formerly the Bartlesville Energy Technology Center (BETC). The surveys for motor gasolines were conducted under a cooperative agreement with the Coordinating Research Council (CRC) and the Bureau of Mines from 1935 through 1948 and in cooperation with the American Petroleum Institute (API) since 1948 for all surveys. The motor gasoline surveys have been published twice annually since 1935 describing the properties of motor gasolines throughout the country. Other surveys prepared in cooperation with API and the Bureau of Mines, the Energy Research and Development Administration, the Department of Energy, and currently NIPER were aviation gasolines beginning in 1947, diesel fuels in 1950, aviation turbine fuels in 1951, and heating oils, formerly burner fuel oils, in 1955. Various companies throughout the country obtain samples of motor gasolines from retail outlets and refinery samples for the other surveys, and analyze the samples using American Society for Testing and Materials (ASTM) procedures. The analytical data are sent to the Bartlesville Center for survey preparation and distribution. A summary report has been assembled from data in 83 semiannual surveys for motor gasolines that shows trends throughout the entire era from winter 19

Shelton, E.M.; Woodward, P.W.

1985-02-01T23:59:59.000Z

358

Assuring Mechanical Integrity of Refinery Equipment Through Global ON-Stream Inspection  

SciTech Connect

The development of global on-stream inspection technology will have a dramatic effect on how refinery operations are managed in the U.S. in the future. Global on-stream inspection will provide assurance of the mechanical integrity of critical plant equipment and will allow refineries to operate more efficiently with less impact on our environment and with an increased margin of safety.

John W. Berthold

2006-02-22T23:59:59.000Z

359

Petroleum Supply Monthly, August 1990  

SciTech Connect

The Petroleum Supply Monthly (PSM) is one of a family of three publications produced by the Petroleum Supply Division within the Energy Information administration (EIA) reflecting different levels of data timeliness and completeness. The other two publications are the Weekly Petroleum Status Report (WPSR) and the Petroleum Supply Annual (PSA). Data presented in the PSM describe the supply and disposition of petroleum products in the United States and major US geographic regions. The data series describe production, imports and exports, inter-Petroleum Administration for Defense (PAD) district movements, and inventories by the primary suppliers of petroleum products in the United States (50 States and the District of Columbia). The reporting universe includes those petroleum sectors in Primary Supply. Included are: petroleum refiners, motor gasoline blenders, operators of natural gas processing plants and fractionators, inter-PAD transporters, importers, and major inventory holders of petroleum products and crude oil. When aggregated, the data reported by these sectors approximately represent the consumption of petroleum products in the United States. Data presented in the PSM are divided into two sections (1) the Summary Statistics and (2) the Detailed Statistics.

Not Available

1990-10-30T23:59:59.000Z

360

Petroleum supply monthly, September 1991  

SciTech Connect

The Petroleum Supply Monthly (PSM) is one of a family of three publications produced by the Petroleum Supply Division within the Energy Information Administration (EIA) reflecting different levels of data timeliness and completeness. The other two publications are the Weekly Petroleum Status Report (WPSR) and the Petroleum Supply Annual (PSA). Data presented in PSM describe the supply and disposition of petroleum products in the United States and major US geographic regions. The data series describe production, imports and exports, inter-Petroleum Administrations for Defense (PAD) District movements, and inventories by the primary suppliers of petroleum products in the United States (50 states and the District of Columbia). The reporting universe includes those petroleum sectors in Primary Supply. Included are: petroleum refiners, motor gasoline blenders, operators of natural gas processing plants and fractionators, inter-PAD transporters, importers, and major inventory holders of petroleum products and crude oil. When aggregated, the data reported by these sectors approximately represent the consumption of petroleum products in the United States. Data presented in the PSM are divided into two sections (1) the Summary Statistics and (2) the Detailed Statistics. 65 tabs.

Not Available

1991-09-30T23:59:59.000Z

Note: This page contains sample records for the topic "operable petroleum refineries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Petroleum supply monthly, January 1996  

SciTech Connect

The Petroleum Supply Monthly (PSM) is one of a family of four publications produced by the Petroleum Supply Division within the Energy Information Administration (EIA) reflecting different levels of data timeliness and completeness. The other publications are the Weekly Petroleum Status Report (WPSR), the Winter Fuels Report, and the Petroleum Supply Annual (PSA). Data presented in the PSM describe the supply and disposition of petroleum products in the United States and major US geographic regions. The data series describe production, imports and exports, inter-Petroleum Administration for Defense (PAD) District movements, and inventories by the primary suppliers of petroleum products in the United States (50 States and the District of Columbia). The reporting universe includes those petroleum sectors in primary supply. Included are: petroleum refiners, motor gasoline blenders, operators of natural gas processing plants and fractionators, inter-PAD transporters, importers, and major inventory holders of petroleum products and crude oil. When aggregated, the data reported by these sectors approximately represent the consumption of petroleum products in the United States. Data presented in the PSM are divided into two sections: Summary Statistics and Detailed Statistics.

NONE

1996-02-15T23:59:59.000Z

362

Refinery Integration of By-Products from Coal-Derived Jet Fuels  

Science Conference Proceedings (OSTI)

This report summarizes the accomplishments toward project goals during the first twelve months of the project to assess the properties and performance of coal based products. These products are in the gasoline, diesel and fuel oil range and result from coal based jet fuel production from an Air Force funded program. Specific areas of progress include generation of coal based material that has been fractionated into the desired refinery cuts, acquisition and installation of a research gasoline engine, and modification of diesel engines for use in evaluating diesel produced in the project. The desulfurization of sulfur containing components of coal and petroleum is being studied so that effective conversion of blended coal and petroleum streams can be efficiently converted to useful refinery products. Equipment is now in place to begin fuel oil evaluations to assess the quality of coal based fuel oil. Coal samples have procured and are being assessed for cleaning prior to use in coking studies.

Leslie R. Rudnick; Andre Boehman; Chunshan Song; Bruce Miller; John Andresen

2004-09-17T23:59:59.000Z

363

REFINERY INTEGRATION OF BY-PRODUCTS FROM COAL-DERIVED JET FUELS  

Science Conference Proceedings (OSTI)

This report summarizes the accomplishments toward project goals during the first six months of the project to assess the properties and performance of coal based products. These products are in the gasoline, diesel and fuel oil range and result from coal based jet fuel production from an Air Force funded program. Specific areas of progress include generation of coal based material that has been fractionated into the desired refinery cuts, acquisition and installation of a research gasoline engine, and modification of diesel engines for use in evaluating diesel produced in the project. The desulfurization of sulfur containing components of coal and petroleum is being studied so that effective conversion of blended coal and petroleum streams can be efficiently converted to useful refinery products. Equipment is now in place to begin fuel oil evaluations to assess the quality of coal based fuel oil. Coal samples have procured and are being assessed for cleaning prior to use in coking studies.

Leslie R. Rudnick; Andre Boehman; Chunshan Song; Bruce Miller; John Andresen

2004-04-23T23:59:59.000Z

364

REFINERY INTEGRATION OF BY-PRODUCTS FROM COAL-DERIVED JET FUELS  

SciTech Connect

This report summarizes the accomplishments toward project goals during the first six months of the second year of the project to assess the properties and performance of coal based products. These products are in the gasoline, diesel and fuel oil range and result from coal based jet fuel production from an Air Force funded program. Specific areas of progress include generation of coal based material that has been fractionated into the desired refinery cuts, acquisition and installation of a research gasoline engine, and modification of diesel engines for use in evaluating diesel produced in the project. The desulfurization of sulfur containing components of coal and petroleum is being studied so that effective conversion of blended coal and petroleum streams can be efficiently converted to useful refinery products. Equipment is now in place to begin fuel oil evaluations to assess the quality of coal based fuel oil. Coal samples have procured and are being assessed for cleaning prior to use in coking studies.

Leslie R. Rudnick; Andre Boehman; Chunshan Song; Bruce Miller; Gareth Mitchell

2005-05-18T23:59:59.000Z

365

Refinery Integration of By-Products from Coal-Derived Jet Fuels  

Science Conference Proceedings (OSTI)

This report summarizes the accomplishments toward project goals during the first six months of the second year of the project to assess the properties and performance of coal based products. These products are in the gasoline, diesel and fuel oil range and result from coal based jet fuel production from an Air Force funded program. Specific areas of progress include generation of coal based material that has been fractionated into the desired refinery cuts, acquisition and installation of a research gasoline engine, and modification of diesel engines for use in evaluating diesel produced in the project. The desulfurization of sulfur containing components of coal and petroleum is being studied so that effective conversion of blended coal and petroleum streams can be efficiently converted to useful refinery products. Evaluations to assess the quality of coal based fuel oil are reported. Coal samples have procured and are being assessed for cleaning prior to use in coking studies.

Leslie R. Rudnick; Andre Boehman; Chunshan Song; Bruce Miller; Gareth Mitchell

2005-11-17T23:59:59.000Z

366

Refinery Operable Capacity - Energy Information Administration  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Totals may not equal sum ...

367

Table 12. Refinery Sales During 2010  

U.S. Energy Information Administration (EIA)

Former Corporation/Refiner Total Atmospheric Crude Oil Distillation Capacity (bbl/cd) New Corporation/Refiner Date of Sale Table 12. Refinery Sales During 2010

368

Areas of Corrosion in the Refinery  

Science Conference Proceedings (OSTI)

...J.D. Poindexter, Corrosion Inhibitors for Crude Oil Refineries, Corrosion: Fundamentals, Testing, and Protection, Vol 13A, ASM Handbook, ASM International, 2003, p 887â??890...

369

Refinery Investments and Future Market Incentives  

U.S. Energy Information Administration (EIA)

Presentation given at the Annual NPRA Meeting that discusses factors affecting refinery investments. Refiners have plunged from a seeming “golden age” investment ...

370

Petroleum Market Model of the National Energy Modeling System  

Science Conference Proceedings (OSTI)

The purpose of this report is to define the objectives of the Petroleum Market Model (PMM), describe its basic approach, and provide detail on how it works. This report is intended as a reference document for model analysts, users, and the public. The PMM models petroleum refining activities, the marketing of petroleum products to consumption regions. The production of natural gas liquids in gas processing plants, and domestic methanol production. The PMM projects petroleum product prices and sources of supply for meeting petroleum product demand. The sources of supply include crude oil, both domestic and imported; other inputs including alcohols and ethers; natural gas plant liquids production; petroleum product imports; and refinery processing gain. In addition, the PMM estimates domestic refinery capacity expansion and fuel consumption. Product prices are estimated at the Census division level and much of the refining activity information is at the Petroleum Administration for Defense (PAD) District level. This report is organized as follows: Chapter 2, Model Purpose; Chapter 3, Model Overview and Rationale; Chapter 4, Model Structure; Appendix A, Inventory of Input Data, Parameter Estimates, and Model Outputs; Appendix B, Detailed Mathematical Description of the Model; Appendix C, Bibliography; Appendix D, Model Abstract; Appendix E, Data Quality; Appendix F, Estimation methodologies; Appendix G, Matrix Generator documentation; Appendix H, Historical Data Processing; and Appendix I, Biofuels Supply Submodule.

NONE

1997-01-01T23:59:59.000Z

371

Definition: Petroleum coke | Open Energy Information  

Open Energy Info (EERE)

coke coke Jump to: navigation, search Dictionary.png Petroleum coke A residue high in carbon content and low in hydrogen that is the final product of thermal decomposition in the condensation process in cracking (breaking of carbon-carbon bonds). This product is reported as marketable coke or catalyst coke.Coke from petroleum has a heating value of 6.024 million Btu per barrel.[1] View on Wikipedia Wikipedia Definition Petroleum coke (often abbreviated Pet coke or petcoke) is a carbonaceous solid derived from oil refinery coker units or other cracking processes. Other coke has traditionally been derived from coal. This coke can either be fuel grade (high in sulphur and metals) or anode grade (low in sulphur and metals). The raw coke directly out of the coker is often

372

Refinery receipts of crude oil by rail, truck, and barge ...  

U.S. Energy Information Administration (EIA)

While refinery receipts of crude by truck, rail, and barge remain a small percentage of total receipts, EIA's recently released Refinery Capacity ...

373

EIA-800 WEEKLY REFINERY AND FRACTIONATOR REPORT INSTRUCTIONS  

U.S. Energy Information Administration (EIA)

EIA-800, Weekly Refinery and Fractionator Report Page 3 Crude Oil (Code 050) Report all refinery input of domestic and foreign crude oil (including ...

374

Martinez Refinery Completes Plant-Wide Energy Assessment  

SciTech Connect

This OIT BestPractices Case Study describes how the Equilon Enterprises oil refinery in Martinez, California undertook a plant-wide energy assessment that focused on three key areas: waste minimization, process debottlenecking, and operations optimization. The assessment yielded recommendations, which, if implemented, can save more than 6,000,000 MMBtu per year and an estimated $52,000,000 per year, plus improve process control and reduce waste.

Not Available

2002-11-01T23:59:59.000Z

375

The potential for low petroleum gasoline  

DOE Green Energy (OSTI)

The Energy Policy Act requires the Secretary of Energy to determine the feasibility of producing sufficient replacement fuels to replace at least 30 percent of the projected consumption of motor fuels by light duty vehicles in the year 2010. The Act also requires the Secretary to determine the greenhouse gas implications of the use of replacement fuels. A replacement fuel is a non-petroleum portion of gasoline, including certain alcohols, ethers, and other components. The Oak Ridge National Laboratory Refinery Yield Model has been used to study the cost and refinery impacts for production of {open_quotes}low petroleum{close_quotes} gasolines, which contain replacement fuels. The analysis suggests that high oxygenation is the key to meeting the replacement fuel target, and a major contributor to cost increase is investment in processes to produce and etherify light olefins. High oxygenation can also increase the costs of control of vapor pressure, distillation properties, and pollutant emissions of gasolines. Year-round low petroleum gasoline with near-30 percent non-petroleum components might be produced with cost increases of 23 to 37 cents per gallon of gasoline, and with greenhouse gas emissions changes between a 3 percent increase and a 16 percent decrease. Crude oil reduction, with decreased dependence on foreign sources, is a major objective of the low petroleum gasoline program. For year-round gasoline with near-30 percent non-petroleum components, crude oil use is reduced by 10 to 12 percent, at a cost $48 to $89 per barrel. Depending upon resolution of uncertainties about extrapolation of the Environmental Protection Agency Complex Model for pollutant emissions, availability of raw materials and other issues, costs could be lower or higher.

Hadder, G.R.; Webb, G.M.; Clauson, M.

1996-06-01T23:59:59.000Z

376

Petroleum Supply and Market Outlook  

Reports and Publications (EIA)

A presentation to the 7th Annual International Airport Operations/Jet Fuel Conference, in Orlando, Florida, on February 3, 2005, giving EIA¿s outlook for petroleum supply and prices, with particular attention to jet fuel.

Information Center

2005-02-09T23:59:59.000Z

377

Refinery Integration of By-Products from Coal-Derived Jet Fuels  

Science Conference Proceedings (OSTI)

This report summarizes the accomplishments toward project goals during the first six months of the third year of the project to assess the properties and performance of coal based products. These products are in the gasoline, diesel and fuel oil range and result from coal based jet fuel production from an Air Force funded program. Specific areas of progress include generation of coal based material that has been fractionated into the desired refinery cuts, acquisition and installation of a research gasoline engine, and modification of diesel engines for use in evaluating diesel produced in the project. Characterization of the gasoline fuel indicates a dominance of single ring alkylcycloalkanes that have a low octane rating; however, blends containing these compounds do not have a negative effect upon gasoline when blended in refinery gasoline streams. Characterization of the diesel fuel indicates a dominance of 3-ring aromatics that have a low cetane value; however, these compounds do not have a negative effect upon diesel when blended in refinery diesel streams. The desulfurization of sulfur containing components of coal and petroleum is being studied so that effective conversion of blended coal and petroleum streams can be efficiently converted to useful refinery products. Equipment is now in place to begin fuel oil evaluations to assess the quality of coal based fuel oil. Combustion and characterization of fuel oil indicates that the fuel is somewhere in between a No. 4 and a No. 6 fuel oil. Emission testing indicates the fuel burns similarly to these two fuels, but trace metals for the coal-based material are different than petroleum-based fuel oils. Co-coking studies using cleaned coal are highly reproducible in the pilot-scale delayed coker. Evaluation of the coke by Alcoa, Inc. indicated that while the coke produced is of very good quality, the metals content of the carbon is still high in iron and silica. Coke is being evaluated for other possible uses. Methods to reduce metal content are being evaluated.

Caroline E. Burgess Clifford; Andre Boehman; Chunshan Song; Bruce Miller; Gareth Mitchell

2006-05-17T23:59:59.000Z

378

Regional Refinery Utilization Shows Gulf Coast Pressure  

Gasoline and Diesel Fuel Update (EIA)

5 5 Notes: But there is some room for hope. Refineries generally begin maintenance in February or March, and finish in April. The East Coast was experiencing some lengthy refinery maintenance outages, as shown by the drop in utilization that remained low in most of March and April. In the meantime, the East Coast was drawing on extra supplies from the Gulf Coast and imports. The Midwest refineries seem to have been ramping up in April as they finished what maintenance was needed. But the Midwest no longer has the Blue Island refinery, so it also is pulling more product from the Gulf Coast. The high Gulf Coast prices this spring reflect extra "pull" on product from both the Midwest and the East Coast, and probably from California as well. Inputs into Gulf Coast refineries over the last 4 weeks

379

Take an integrated approach to refinery automation  

Science Conference Proceedings (OSTI)

An integrated approach to designing refinery automation systems is essential to guaranteeing systems compatibility and maximizing benefits. Several aspects of implementing integrated refinery automation should be considered early in the project. Many refineries have major parts of their business automated, starting from corporate planning at the higher level, down to DCS and field instrumentation. A typical refinery automation system architecture of the mid-eighties is shown. Automation systems help refineries improve their business through: Rationalization of man power; Increased throughputs; Reduced give-away; Reduced energy consumption; Better response to market demands and changes; Effective use of offsite areas through scheduling and automatic line-up systems; Reduced losses; and Decision support systems.

Wadi, I. (Abu Dhabi National Oil Co. (United Arab Emirates))

1993-09-01T23:59:59.000Z

380

Refinery burner simulation design architecture summary.  

SciTech Connect

This report describes the architectural design for a high fidelity simulation of a refinery and refinery burner, including demonstrations of impacts to the refinery if errors occur during the refinery process. The refinery burner model and simulation are a part of the capabilities within the Sandia National Laboratories Virtual Control System Environment (VCSE). Three components comprise the simulation: HMIs developed with commercial SCADA software, a PLC controller, and visualization software. All of these components run on different machines. This design, documented after the simulation development, incorporates aspects not traditionally seen in an architectural design, but that were utilized in this particular demonstration development. Key to the success of this model development and presented in this report are the concepts of the multiple aspects of model design and development that must be considered to capture the necessary model representation fidelity of the physical systems.

Pollock, Guylaine M.; McDonald, Michael James; Halbgewachs, Ronald D.

2011-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "operable petroleum refineries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Petroleum supply monthly, June 1993  

SciTech Connect

Data presented in the Petroleum Supply Monthly (PSM) describe the supply and disposition of petroleum products in the United States and major US geographic regions. The data series describe production, imports and exports, inter-Petroleum Administration for Defense (PAD) District movements, and inventories by the primary suppliers of petroleum products in the United States (50 States and the District of Columbia). The reporting universe includes those petroleum sectors in primary supply. Included are: petroleum refiners, motor gasoline blenders, operators of natural gas processing plants and fractionators, inter-PAD transporters, importers, and major inventory holders of petroleum products and crude oil. When aggregated, the data reported by these sectors approximately represent the consumption of petroleum products in the United States. Data presented in the PSM are divided into two sections: Summary Statistics and Detailed Statistics. The tables and figures ih the Summary Statistics section of the PSM present a time series of selected petroleum data on a US level. Most time series include preliminary estimates for one month based on the Weekly Petroleum Supply Reporting System; statistics based on the most recent data from the Monthly Petroleum Supply Reporting System (MPSRS); and statistics published in prior issues of the PSM and PSA. The Detailed Statistics tables of the PSM present statistics for the most current month available as well as year-to-date. In most cases, the statistics are presented for several geographic areas - - the United States (50 States and the District of Columbia), five PAD Districts, and 12 Refining Districts. At the US and PAD District level, the total volume and the daily rate of activities are presented. The statistics are developed from monthly survey forms submitted by respondents to the EIA and from data provided firom other sources.

Not Available

1993-06-28T23:59:59.000Z

382

Ohio Distillate Fuel Oil Stocks at Refineries, Bulk Terminals, and ...  

U.S. Energy Information Administration (EIA)

Ohio Distillate Fuel Oil Stocks at Refineries, Bulk Terminals, and Natural Gas Plants (Thousand Barrels)

383

Wisconsin Propane and Propylene Stocks at Refineries, Bulk ...  

U.S. Energy Information Administration (EIA)

Wisconsin Propane and Propylene Stocks at Refineries, Bulk Terminals, and Natural Gas Plants (Thousand Barrels)

384

Midwest (PADD 2) Refinery and Blender Net Production of ...  

U.S. Energy Information Administration (EIA)

Midwest (PADD 2) Refinery and Blender Net Production of Finished Motor Gasoline (Thousand Barrels per Day)

385

Michigan Finished Motor Gasoline Stocks at Refineries, Bulk ...  

U.S. Energy Information Administration (EIA)

Michigan Finished Motor Gasoline Stocks at Refineries, Bulk Terminals, and Natural Gas Plants (Thousand Barrels)

386

Colorado Propane and Propylene Stocks at Refineries, Bulk ...  

U.S. Energy Information Administration (EIA)

Colorado Propane and Propylene Stocks at Refineries, Bulk Terminals, and Natural Gas Plants (Thousand Barrels)

387

Colorado Finished Motor Gasoline Stocks at Refineries, Bulk ...  

U.S. Energy Information Administration (EIA)

Colorado Finished Motor Gasoline Stocks at Refineries, Bulk Terminals, and Natural Gas Plants (Thousand Barrels)

388

Rocky Mountains (PADD 4) Gross Inputs to Refineries (Thousand ...  

U.S. Energy Information Administration (EIA)

Gross Input to Atmospheric Crude Oil Distillation Units ; PAD District 4 Refinery Utilization and Capacity ...

389

South Dakota Distillate Fuel Oil Stocks at Refineries, Bulk ...  

U.S. Energy Information Administration (EIA)

South Dakota Distillate Fuel Oil Stocks at Refineries, Bulk Terminals, and Natural Gas Plants (Thousand Barrels)

390

South Dakota Propane and Propylene Stocks at Refineries, Bulk ...  

U.S. Energy Information Administration (EIA)

South Dakota Propane and Propylene Stocks at Refineries, Bulk Terminals, and Natural Gas Plants (Thousand Barrels)

391

Texas facility treats, recycles refinery, petrochemical wastes  

Science Conference Proceedings (OSTI)

A US Gulf Coast environmental services company is treating refinery and petrochemical plant wastes to universal treatment standards (UTS). DuraTherm Inc.`s recycling center uses thermal desorption to treat a variety of refinery wastes and other hazardous materials. The plant is located in San Leon, Tex., near the major Houston/Texas City refining and petrochemical center. DuraTherm`s customers include major US refining companies, plus petrochemical, terminal, pipeline, transportation, and remediation companies. Examples of typical contaminant concentrations and treatment levels for refinery wastes are shown. The paper discusses thermal desorption, the process description and testing.

NONE

1996-09-16T23:59:59.000Z

392

Former Soviet refineries face modernization, restructuring  

Science Conference Proceedings (OSTI)

A massive modernization and restructuring program is under way in the refining sector of Russia and other former Soviet republics. Economic reforms and resulting economic dislocation following the collapse of the Soviet Union has left refineries in the region grappling with a steep decline and changes in product demand. At the same time, rising oil prices and an aging, dilapidated infrastructure promise a massive shakeout. Even as many refineries in the former Soviet Union (FSU) face possible closure because they are running at a fraction of capacity, a host of revamps, expansions, and grass roots refineries are planned or under way. The paper discusses plans.

Not Available

1993-11-29T23:59:59.000Z

393

A Texas Refinery Success Story  

E-Print Network (OSTI)

"Common knowledge rules that maintenance is the key to long-lasting machinery performance. Yet steam traps are often left to their own devices, to fail or succeed alone. And without steam trap programs, plants are certain to experience a high failure rate. An oil refinery in Texas was continuously experiencing a high failure rate on its 4,790-steam trap system. Finally, the steam losses were judged to be too high, and plant management called on Spirax Sarco Inc. (SSI) to reduce costs. The SSI team noticed symptoms of subpar efficiency within the steam system. Steam traps were improperly installed, water hammer problems were evident and the condensate recovery system was damaged."

Kacsur, D.

2009-05-01T23:59:59.000Z

394

Monthly petroleum product price report  

SciTech Connect

Monthly report supplies national weighted average prices on a monthly basis at different levels of the marketing chain, for petroleum products sold by refiners, large resellers, gas plant operators, and importers. Data are for the year to date and previous year. Some historic data are included to indicate trends. Gasoline price data are collected from retail gasoline dealers. Heating oil prices come from sellers of heating oil to ultimate consumers. A glossary of petroleum products is appended. Petroleum products include motor gasoline, distillate fuel oil, diesel fuel, heating oil, residual fuel oil, aviation fuel, kerosene, petrochemical feedstocks, propane, butane, ethane, and natural gasoline. 12 tables.

1977-11-01T23:59:59.000Z

395

Price Competitive Sale of Strategic Petroleum Reserve Petroleum...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Price Competitive Sale of Strategic Petroleum Reserve Petroleum; Standard Sales Provisions; Final Rule Price Competitive Sale of Strategic Petroleum Reserve Petroleum; Standard...

396

Inbicon Biomass Refinery Cellulosic Ethanol Technology Platforms  

U.S. Energy Information Administration (EIA)

for biogas production Inbicon Biomass Refinery Energy integrated solutions Wheat Straw 50 t/h (at 86 % dm) C5 molasses Power The Lignin and biogas are used in power

397

Motiva Enterprises Refinery Expansion Groundbreaking | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

it. When this expansion is complete this facility which is now one of the preeminent refineries on the Gulf Coast will become the largest in the United States and one of the...

398

Accuracy of Petroleum Supply Data  

Reports and Publications (EIA)

Accuracy of published data in the Weekly Petroleum Status Report, the Petroleum Supply Monthly, and the Petroleum Supply Annual.

Tammy G. Heppner

2009-02-27T23:59:59.000Z

399

Petroleum Supply Annual  

U.S. Energy Information Administration (EIA) Indexed Site

Coast Appalachian No. 1 Total Indiana, Illinois, Kentucky Minnesota, Wisconsin, North and South Dakota Oklahoma, Kansas, Missouri Total Liquefied Refinery Gases...

400

Refinery siting workbook: appendices A and B  

Science Conference Proceedings (OSTI)

The objective of this effort is to develop and provide basic refinery-related information for use by state and local government officials as a basis for establishing responsible refinery siting requirements and policies consistent with the federal clean air and water standards and socio-economic concerns. The report will be organized into two volumes. The main text comprises the basic topics of physical concerns, regulatory requirements, and permitting activities, while the second volume includes the detailed appendix materials such as the applicable laws, and the necessary permits, as available and a glossary of pertinent terms. As a means to this objective, three refinery sizes, 200,000, 100,000 and 30,000 barrels per day crude charge will be discussed in technical terms. Process unit configuration will be presented which will maximize either gasoline or heating oil production with either sweet or sour crude oil feedstocks. The major issues affecting the socio-economic impact of siting the refinery in a given locale will be presented. These data will review the factors affecting the human environment and the issues that must be addressed to assess the impact that a refinery will have on a community. The key federal registrations which impact upon a refinery siting decision shall be reviewed. Summaries of these regulations and a simplified decision diagram for the air and water acts shall be presented to assist both government and refinery officials in understanding the scope of regulatory impact. All pertinent procedures required for refinery permitting shall be reviewed under the generalized headings of air, water, health and safety, land use, and miscellaneous permits. This categorization at the federal, state and local levels of government shall be used as a basis for establishing degrees of emphasis.

Not Available

1980-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "operable petroleum refineries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Refinery analytical techniques optimize unit performance  

Science Conference Proceedings (OSTI)

Refinery process engineers need to consider benefits of laboratory analytical techniques when evaluating unit performance. Refinery heavy-oil laboratory analytical techniques use both old and new technologies. Knowing how to use available laboratory analytical techniques within their limitations are critical to obtain correct refinery optimization decisions. Better refinery stream distillation and contaminant data ultimately improves the accuracy of various refinery decision-making tools. These laboratory analytical techniques are covered: high-temperature simulated distillation (HTSD); true boiling point (TBP) distillation--ASTM D2892; vacuum distillation--ASTM D5236; continuous-flash vaporizers; wiped-film evaporators; inductively coupled plasma atomic-emission spectroscopy (ICP-AES); Conradson--ASTM D189/Microcarbon residue--ASTM D4530; and asphaltene IP-143, ASTM D3279, ASTM D4124. Analysis of atmospheric crude, vacuum crude and delayed coker units highlight these laboratory techniques to identify potential yield and product quality benefits. Physical distillation or wiped-film evaporation in conjunction with HTSD, ICP-AES, microcarbon residue and asphaltened data will better characterize a feedstock as well as determine the source of contaminants. Economics are refinery specific, therefore, these examples focus on applying laboratory techniques as opposed to discussing specifics of unit improvement. These are discussed qualitatively.

Golden, S.W. [Process Consulting Services Inc., Grapevine, TX (United States); Craft, S. [Chempro, Inc., LaPorte, TX (United States); Villalanti, D.C. [Triton Analytics Corp., Houston, TX (United States)

1995-11-01T23:59:59.000Z

402

Complexity index indicates refinery capability, value  

Science Conference Proceedings (OSTI)

Refinery size usually is measured in terms of distillation capacity. Relative size, however, can be measured using refinery complexity--a concept developed by W.L. Nelson in the 1960s. Nelson developed the complexity index to quantify the relative cost of components that make up a refinery. It is a pure cost index that provides a relative measure of the construction costs of a particular refinery based on its crude and upgrading capacity. The Nelson index compares the costs of various upgrading units--such as a fluid catalytic cracking (FCC) unit or a catalytic reformer--to the cost of a crude distillation unit. Computation of the index is an attempt to quantify the relative cost of a refinery based on the added cost of various upgrading units and the relative upgrading capacity. A review of complexity calculations, and an explanation of how indices have changed, provide a simple means of determining the complexity of single refineries or refining regions. The impact of complexity on product slate is also examined in this paper.

Johnston, D. [Daniel Johnston and Co. Inc., Dallas, TX (United States)

1996-03-18T23:59:59.000Z

403

Retrofitting analysis of integrated bio-refineries  

E-Print Network (OSTI)

A bio-refinery is a processing facility that produces liquid transportation fuels and/or value-added chemicals and other products. Because of the dwindling resources and escalating prices of fossil fuels, there are emerging situations in which the economic performance of fossil-based facilities can be enhanced by retrofitting and incorporation of bio-mass feedstocks. These systems can be regarded as bio-refineries or integrated fossilbio- refineries. This work presents a retrofitting analysis to integrated bio-refineries. Focus is given to the problem of process modification to an existing plant by considering capacity expansion and material substitution with biomass feedstocks. Process integration studies were conducted to determine cost-effective strategies for enhancing production and for incorporating biomass into the process. Energy and mass integration approaches were used to induce synergism and to reduce cost by exchanging heat, material utilities, and by sharing equipment. Cost-benefit analysis was used to guide the decision-making process and to compare various production routes. Ethanol production from two routes was used as a case study to illustrate the applicability of the proposed approach and the results were bio-refinery has become more attractive then fossil-refinery.

Cormier, Benjamin R.

2005-12-01T23:59:59.000Z

404

Petroleum Supply Monthly, September 1990. [Contains glossary  

Science Conference Proceedings (OSTI)

Data presented in this PSM describe the supply and disposition of petroleum products in the United States and major US geographic regions. The data series describe production, imports and exports, inter-Petroleum Administration for Defense (PAD) District movements, and inventories by the primary suppliers of petroleum products in the United States (50 States and the District of Columbia). The reporting universe includes those petroleum sectors in Primary Supply. Included are: petroleum refiners, motor gasoline blenders, operators of natural gas processing plants and fractionators, inter-PAD transporters, importers, and major inventory holders of petroleum products and crude oil. When aggregated, the data reported by these sectors approximately represent the consumption of petroleum products in the United States. 12 figs., 46 tabs.

Whited, D.; Jacobus, P. (eds.)

1990-11-28T23:59:59.000Z

405

Petroleum supply monthly, October 1990. [Contains Glossary  

SciTech Connect

Data presented in this report describes the supply and disposition of petroleum products in the United States and major US geographic regions. The data series describe production, imports and exports, inter-Petroleum Administration for Defense (PAD) District movements, and inventories by the primary suppliers of petroleum products in the United States (50 States and the District of Columbia). The reporting universe includes those petroleum sectors in Primary Supply. Included are: petroleum refiners, motor gasoline blenders, operators of natural gas processing plants and fractionators, inter-PAD transporters, importers, and major inventory holders of petroleum products and crude oil. When aggregated, the data reported by these sectors approximately represent the consumption of petroleum products in the United States. 12 figs., 54 tabs.

Not Available

1990-12-27T23:59:59.000Z

406

PAD District / Refinery Location Total Atmospheric Distillation  

U.S. Energy Information Administration (EIA) Indexed Site

of Last of Last Operation Date Shutdown Table 13. Refineries Permanently Shutdown By PAD District Between January 1, 1990 and January 1, 2013 PAD District I 542,450 GNC Energy Corp Greensboro, NC 3,000 0 a Primary Energy Corp Richmond, VA 6,100 0 a Saint Mary's Refining Co Saint Mary's, WV 4,000 4,480 02/93 03/93 Cibro Refining Albany, NY 41,850 27,000 07/93 09/93 Calumet Lubricants Co LP Rouseville, PA 12,800 26,820 03/00 06/00 Young Refining Corp. Douglasville, GA 5,400 0 07/04 07/04 Sunoco Inc Westville, NJ 145,000 263,000 11/09 02/10 Western Refining Yorktown Inc Yorktown, VA 66,300 182,600 09/10 12/11 Sunoco Inc Marcus Hook, PA 178,000 278,000 12/11 12/11 ChevronUSA Inc Perth Amboy, NJ 80,000 47,000 03/08 07/12 PAD District II 460,315 Coastal Refining & Mktg El Dorado, KS 0 20,000 b Intercoastal Energy Svcs

407

Energy savings in petroleum refining using absorption heat pumping  

SciTech Connect

There is now a new and highly economic technology available for saving energy in petroleum refineries. This technology--absorption heat pumping--is gaining rapid acceptance overseas, but to date is relatively unknown and untried in the U.S. Packaged units now can be supplied in virtually any capacity rating desired. These units are economical, with paybacks typically in less than two years, and are highly reliable compared to heat pumps incorporating large rotating members. This paper provides an overview of how an absorption heat pump (AHP) works, the different configurations possible, and how they can be applied to fractional distillation in a petroleum refinery. A detailed example flowsheet and economic estimate are presented for a specific petroleum refinery application--modernization of the energy intensive alkylation unit--which is of interest currently. A stand-alone isobutane splitter is compared to a mechanically heat pumped alternative and an absorption heat pumped alternative. In general, the AHP requires less than half the capital investment of the next best alternative and provides numerous important intangible benefits as well. The AHP will show even larger margins of advantage on columns involving higher temperature differentials between top and bottom (temperature ''lifts'').

Davidson, W.F.; Campagne, W.V.L.

1985-03-01T23:59:59.000Z

408

Test plan, the Czechowice Oil Refinery bioremediation demonstration of a process waste lagoon. Revision 1  

SciTech Connect

The overall objective of the bioremediation project is to provide a cost effective bioremediation demonstration of petroleum contaminated soil at the Czechowice Oil Refinery. Additional objectives include training of personnel, and transfer of this technology by example to Poland, and the Risk Abatement Center for Central and Eastern Europe (RACE). The goal of the remediation is to reduce the risk of PAH compounds in soil and provide a green zone (grassy area) adjacent to the site boundary. Initial project discussions with the Czechowice Oil Refinery resulted in helping the refinery find an immediate cost effective solution for the dense organic sludge in the lagoons. They found that when mixed with other waste materials, the sludge could be sold as a fuel source to local cement kilns. Thus the waste was incinerated and provided a revenue stream for the refinery to cleanup the lagoon. This allowed the bioremediation project to focus on remediation of contaminated soil that unusable as fuel, less recalcitrant and easier to handle and remediate. The assessment identified 19 compounds at the refinery that represented significant risk and would require remediation. These compounds consisted of metals, PAH`s, and BTEX. The contaminated soil to be remediated in the bioremediation demonstration contains only PAH (BTEX and metals are not significantly above background concentrations). The final biopile design consists of (1) dewatering and clearing lagoon A to clean clay, (2) adding a 20 cm layer of dolomite with pipes for drainage, leachate collection, air injection, and pH adjustment, (3) adding a 1.1 m layer of contaminated soil mixed with wood chips to improve permeability, and (4) completing the surface with 20 cm of top soil planted with grass.

Altman, D.J.; Hazen, T.C.; Tien, A.J. [Westinghouse Savannah River Co., Aiken, SC (United States). Savannah River Technology Center; Worsztynowicz, A.; Ulfig, K. [Inst. for Ecology of Industrial Areas, Katowice (Poland)

1997-05-10T23:59:59.000Z

409

Rocky Mountain area petroleum product availability with reduced PADD IV refining capacity  

Science Conference Proceedings (OSTI)

Studies of Rocky Mountain area petroleum product availability with reduced refining capacity in Petroleum Administration for Defense IV (PADD IV, part of the Rocky Mountain area) have been performed with the Oak Ridge National Laboratory Refinery Yield Model, a linear program which has been updated to blend gasolines to satisfy constraints on emissions of nitrogen oxides and winter toxic air pollutants. The studies do not predict refinery closures in PADD IV. Rather, the reduced refining capacities provide an analytical framework for probing the flexibility of petroleum refining and distribution for winter demand conditions in the year 2000. Industry analysts have estimated that, for worst case scenarios, 20 to 35 percent of PADD IV refining capacity could be shut-down as a result of clean air and energy tax legislation. Given these industry projections, the study scenarios provide the following conclusions: The Rocky Mountain area petroleum system would have the capability to satisfy winter product demand with PADD IV refinery capacity shut-downs in the middle of the range of industry projections, but not in the high end of the range of projections. PADD IV crude oil production can be maintained by re-routing crude released from PADD IV refinery demands to satisfy increased crude oil demands in PADDs II (Midwest), III (Gulf Coast), and Washington. Clean Air Act product quality regulations generally do not increase the difficulty of satisfying emissions reduction constraints in the scenarios.

Hadder, G.R.; Chin, S.M.

1994-02-01T23:59:59.000Z

410

Maximize Process Energy Efficiency -- Pinch Screening Analysis: Marathon Ashland Petroleum LLC -- Catlettsburg, Kentucky  

Science Conference Proceedings (OSTI)

EPRI and its subcontractor, Veritech, were commissioned to conduct a strategic analysis of the steam utility system at the Marathon Ashland Petroleum LLC (MAPLLC) Catlettsburg refinery. During the strategic analysis, we determined the marginal costs of steam and the marginal costs of steam-derived power. We also developed a preliminary steam model to evaluate energy cost reduction opportunities.

1999-11-18T23:59:59.000Z

411

OMB No. 1905-0165 Version No.:xxxx.xx FORM EIA-820 ANNUAL REFINERY ...  

U.S. Energy Information Administration (EIA)

the comparable capacity numbers reported on the Form EIA-810, "Monthly Refinery Report," filed for January 2014. ... ANNUAL REFINERY REPORT.

412

U.S. Exports of Natural Gas Liquids and Liquid Refinery Gases ...  

U.S. Energy Information Administration (EIA)

Natural Gas Plant Liquids and Liquefied Refinery Gases Exports; Natural Gas Plant Liquids and Liquefied Refinery Gases Supply and Disposition;

413

This Week In Petroleum Crude Oil Section  

Gasoline and Diesel Fuel Update (EIA)

Refinery Inputs Refinery Inputs Crude Oil Futures and Estimated Contract Prices (Dollars per Barrel) Crude Oil Futures Prices Petroleum Data Tables more data Most Recent Year Ago 11/29/13 12/06/13 12/13/13 12/20/13 12/27/13 01/03/14 01/10/14 01/11/13 Contract 1 92.72 97.65 96.60 99.32 100.32 93.96 92.72 93.56 Contract 2 93.01 97.90 96.93 99.26 100.39 94.14 92.95 93.99 Contract 3 93.24 97.94 96.91 98.73 99.97 94.06 92.92 94.35 Contract 4 93.32 97.66 96.55 97.91 99.18 93.75 92.68 94.66 Crude Oil Futures Price Graph. Crude Oil Stocks (Million Barrels) and Days of Supply Crude Oil Stocks Petroleum Data Tables more data Most Recent Year Ago 11/29/13 12/06/13 12/13/13 12/20/13 12/27/13 01/03/14 01/10/14 01/11/13 U.S. 385.8 375.2 372.3 367.6 360.6 357.9 350.2 360.3

414

U.S. Refinery Stocks  

Gasoline and Diesel Fuel Update (EIA)

Area: U.S. PADD 1 East Coast Appalachian No. 1 PADD 2 Ind., Ill. and Ky. Minn., Wis., N. Dak., S. Dak. Okla., Kans., Mo. PADD 3 Texas Inland Texas Gulf Coast La. Gulf Coast N. La., Ark New Mexico PADD 4 PADD 5 Period-Units: Monthly-Thousand Barrels Annual-Thousand Barrels Area: U.S. PADD 1 East Coast Appalachian No. 1 PADD 2 Ind., Ill. and Ky. Minn., Wis., N. Dak., S. Dak. Okla., Kans., Mo. PADD 3 Texas Inland Texas Gulf Coast La. Gulf Coast N. La., Ark New Mexico PADD 4 PADD 5 Period-Units: Monthly-Thousand Barrels Annual-Thousand Barrels Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Area May-13 Jun-13 Jul-13 Aug-13 Sep-13 Oct-13 View History Crude Oil and Petroleum Products 353,802 345,413 343,062 345,025 342,763 342,727 1993-2013 Crude Oil 97,563 90,880 93,075 97,586 90,778 91,946 1981-2013 Petroleum Products 256,239 254,533 249,987 247,439 251,985 250,781 1993-2013

415

Petroleum Coke VBD  

Science Conference Proceedings (OSTI)

Mar 1, 2011 ... Electrode Technology for Aluminium Production: Petroleum Coke VBD ... of Calcined Petroleum Coke: Jignesh Panchal1; Mark Wyborney1; ...

416

Petroleum Marketing Monthly  

U.S. Energy Information Administration (EIA)

ii U.S. Energy Information Administration/Petroleum Marketing Monthly August 2011 Preface The Petroleum Marketing Monthly (PMM) provides information and statistical ...

417

Petroleum Supply Monthly  

U.S. Energy Information Administration (EIA)

Energy Information Administration/Petroleum Supply Monthly, October 2011 49 Table 37. Imports of Crude Oil and Petroleum Products by PAD District, ...

418

Total Crude Oil and Petroleum Products Exports  

U.S. Energy Information Administration (EIA) Indexed Site

Exports Exports Product: Total Crude Oil and Petroleum Products Crude Oil Natural Gas Plant Liquids and Liquefied Refinery Gases Pentanes Plus Liquefied Petroleum Gases Ethane/Ethylene Propane/Propylene Normal Butane/Butylene Isobutane/Isobutylene Other Liquids Hydrogen/Oxygenates/Renewables/Other Hydrocarbons Oxygenates (excl. Fuel Ethanol) Methyl Tertiary Butyl Ether (MTBE) Other Oxygenates Renewable Fuels (incl. Fuel Ethanol) Fuel Ethanol Biomass-Based Diesel Motor Gasoline Blend. Comp. (MGBC) MGBC - Reformulated MGBC - Conventional Aviation Gasoline Blend. Comp. Finished Petroleum Products Finished Motor Gasoline Reformulated Gasoline Conventional Gasoline Finished Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Distillate Fuel Oil Distillate F.O., 15 ppm and under Distillate F.O., Greater than 15 to 500 ppm Distillate F.O., Greater than 500 ppm Residual Fuel Oil Naphtha for Petro. Feed. Use Other Oils Petro. Feed. Use Special Naphthas Lubricants Waxes Petroleum Coke Asphalt and Road Oil Miscellaneous Products Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day

419

U.S. Refinery Yield  

U.S. Energy Information Administration (EIA) Indexed Site

Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History Liquefied Refinery Gases 5.3 5.4 5.2 5.2 5.1 3.9 1993-2013 Finished Motor Gasoline 44.4 44.1 44.4 43.9 43.9 44.9 1993-2013 Finished Aviation Gasoline 0.1 0.1 0.1 0.1 0.1 0.1 1993-2013 Kerosene-Type Jet Fuel 10.0 9.1 9.3 9.4 9.8 9.6 1993-2013 Kerosene 0.0 0.1 0.1 0.1 0.0 0.0 1993-2013 Distillate Fuel Oil 28.4 29.4 28.7 29.2 29.3 29.7 1993-2013 Residual Fuel Oil 3.3 2.9 2.8 2.8 2.5 2.6 1993-2013 Naphtha for Petrochemical Feedstock Use 1.4 1.5 1.5 1.6 1.5 1.5 1993-2013 Other Oils for Petrochemical Feedstock Use 0.6 0.6 0.7 0.7 0.6 0.7 1993-2013 Special Naphthas 0.3 0.3 0.3 0.2 0.3 0.2 1993-2013 Lubricants 0.9 1.1 1.1 1.1 1.1 1.1 1993-2013 Waxes

420

U.S. Refinery Yield  

U.S. Energy Information Administration (EIA) Indexed Site

2007 2008 2009 2010 2011 2012 View 2007 2008 2009 2010 2011 2012 View History Liquefied Refinery Gases 4.1 4.1 4.1 4.3 4.0 4.1 1993-2012 Finished Motor Gasoline 45.5 44.2 46.1 45.7 44.9 45.0 1993-2012 Finished Aviation Gasoline 0.1 0.1 0.1 0.1 0.1 0.1 1993-2012 Kerosene-Type Jet Fuel 9.1 9.7 9.3 9.3 9.4 9.5 1993-2012 Kerosene 0.2 0.1 0.1 0.1 0.1 0.1 1993-2012 Distillate Fuel Oil 26.1 27.8 26.9 27.5 28.9 29.1 1993-2012 Residual Fuel Oil 4.2 4.0 4.0 3.8 3.4 3.2 1993-2012 Naphtha for Petrochemical Feedstock Use 1.3 1.0 1.3 1.4 1.3 1.3 1993-2012 Other Oils for Petrochemical Feedstock Use 1.3 1.2 0.8 0.8 0.7 0.6 1993-2012 Special Naphthas 0.3 0.3 0.2 0.2 0.2 0.3 1993-2012 Lubricants 1.1 1.1 1.0 1.1 1.1 1.0 1993-2012 Waxes 0.1 0.1 0.1 0.1 0.1 0.1 1993-2012

Note: This page contains sample records for the topic "operable petroleum refineries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Implementing an Energy Management Strategy for a Houston Refinery  

E-Print Network (OSTI)

Intense competition and environmental regulation of industries utilizing combustion equipment have motivated many owners and operators to seek ways to reduce costs, improve performance, and minimize emissions. Energy management programs are being implemented throughout industry to improve equipment operating efficiencies, profitability, extend equipment life, prevent forced shutdowns, generate substantial fuel savings, track valuable information, and enhance compliance margins. A well designed and maintained energy management program translates to PROFIT added directly to the BOTTOM LINE. Woodward-Clyde Consultants (WCC) recently implemented and energy management program at the Lyondell-Citgo Refinery in Houston, Texas. The basis of the program is the 80/20 rule where 80% of the total potential savings are derived from optimizing the energy utilization from 20% of the combustion equipment. In this case, 11 out of 55 heaters were targeted for inclusion in the program. The fuel savings potential alone exceeded $1,250,000. In addition to the fuel savings, there were reduced costs from improved operation, as well as reduction in maintenance requirements and forced shutdowns. The remainder of this paper discusses the technical approach, the benefits, and the results of the program implemented at the Lyondell-Citgo Refinery.

Wood, S. C.; Agrawal, R. K.; Canon, D.

1996-04-01T23:59:59.000Z

422

Texas City Refinery Update: The Price of Safety Complacency  

NLE Websites -- All DOE Office Websites (Extended Search)

Texas City Refinery Update: The Price of Safety Complacency DOEEH-0699 2006-01 January 2006 ES&H Safety Bulletin 2005-09 (July 2005) discussed the Texas City Refinery accident in...

423

Indiana, Illinois, Kentucky Refinery District Gross Inputs to ...  

U.S. Energy Information Administration (EIA)

Indiana, Illinois, Kentucky Refinery District Gross Inputs to Refineries (Thousand Barrels per Day) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 1985: 1,739 ...

424

H. R. 4564: a bill to amend the Internal Revenue Code of 1954 to provide a deduction and special net operating loss rules with respect to certain losses on domestic crude oil, to increase tariffs on petroleum and petroleum products, to require the Strategic Petroleum Reserve to be filled with stripper well oil, and to eliminate certain restrictions on the sale of natural gas and on the use of natural gas and oil. Introduced in the House of Representatives, Ninety-Ninth Congress, Second Session, April 10, 1986  

SciTech Connect

The Secure Energy Supply Act of 1986 amends the Internal Revenue Code of 1954. Title I provides a deduction and special net operating loss treatment for certain losses on crude oil. Title II increases tariffs on petroleum and petroleum products, the revenues of which will cover authorized refunds. Title III provides that only stripper well oil or oil exchanged for stripper well oil will be used to fill the Strategic Petroleum Reserve. Title IV removes wellhead price controls and repeals Natural Gas Act jurisdiction over certain first sales of natural gas. Later titles repeal certain restrictions on the use of natural gas and petroleum, repeal incremental pricing requirements, and promote flexibility in rescheduling or marking down troubled loans. The bill was referred to the House Committees on Ways and Means, Energy and Commerce, and Banking, Finance, and Urban Affairs.

Not Available

1986-01-01T23:59:59.000Z

425

Biodegradation of petroleum hydrocarbons in contaminated aqueous and sediment environments  

E-Print Network (OSTI)

Six bioremediation methods were tested in laboratory microcosms using field soil and water samples from within the fire-wall area of a petroleum storage tank. This soil had been intermittently contaminated with Bunker C fuel oil and other petroleum materials over an extended period of time. This study focuses on the behavior of the laboratory microcosms designed to simulate the in situ conditions and the six bioremedial methods employed in a related field study. The six treatment methods were: 1) aeration with essential nutrients and indigenous organisms, 2) aeration with essential nutrients and an inoculation from a refinery wastewater treatment facility, 3) aeration with oleophilic fertilizer and indigenous organisms, 4) aeration with essential nutrients and biosurfactant organisms, 5) aeration with nutrients and proprietary organisms, and 6) aeration only. Total petroleum hydrocarbons (TPH) analyses and gas chromatographic/mass spectrophotometric (GC-MS) analyses of the petroleum fractions were used to determine if the enhancement methods were more effective than the control in biodegrading the contaminants. Results indicated that there was no significant difference in the petroleum reduction rates among the six treatment methods. The conclusions were that the petroleum was not bioavailable --transfer from soil-to-water was likely the rate controlling factor in this study. Biodegradation rates were significantly slowed by the highly weathered state of the petroleum, and the extreme spatial heterogeneity hindered the sampling and analysis of the petroleum. These conclusions were further supported in a second experiment using only the extracted petroleum contaminant. The extracted petroleum was biodegraded when made available in shake flasks. Three different ,consortia were shown to significantly biodegrade the petroleum contaminant when made bioavailable. These consortia were able to reduce the TPH and many other specific hydrocarbons.

Mills, Marc Allyn

1994-01-01T23:59:59.000Z

426

Refineries are also indirectly exposed to forced processing rate ...  

U.S. Energy Information Administration (EIA)

Refineries receive crude oil from two sources: waterborne deliveries by ship and domestic production from California crude oil producing fields.

427

Potential Impacts of Reductions in Refinery Activity on Northeast ...  

U.S. Energy Information Administration (EIA)

receipt of crude oil at idled refineries require considerable modification before they can be used to receive products. Moreover, ...

428

Market Assessment of Refinery Outages Planned for October 2009 ...  

U.S. Energy Information Administration (EIA)

January fuel demand with availability of the refinery process units for distillate and gasoline production net of outages.

429

U.S. Refinery Thermal Cracking, Visbreaking Downstream Charge ...  

U.S. Energy Information Administration (EIA)

U.S. Refinery Thermal Cracking, Visbreaking Downstream Charge Capacity as of January 1 (Barrels per Stream Day)

430

Guam Refinery Thermal Cracking/Visbreaking Downstream Charge ...  

U.S. Energy Information Administration (EIA)

Guam Refinery Thermal Cracking/Visbreaking Downstream Charge Capacity as of January 1 (Barrels per Stream Day)

431

Guam Refinery Thermal Cracking/Other (including Gas Oil ...  

U.S. Energy Information Administration (EIA)

Guam Refinery Thermal Cracking/Other (including Gas Oil) Downstream Charge Capacity as of January 1 (Barrels per Stream Day)

432

U.S. Refinery Thermal Cracking, Fluid Coking Downstream Charge ...  

U.S. Energy Information Administration (EIA)

U.S. Refinery Thermal Cracking, Fluid Coking Downstream Charge Capacity as of January 1 (Barrels per Stream Day)

433

Puerto Rico Refinery Thermal Cracking/Visbreaking Downstream ...  

U.S. Energy Information Administration (EIA)

Puerto Rico Refinery Thermal Cracking/Visbreaking Downstream Charge Capacity as of January 1 (Barrels per Stream Day)

434

Puerto Rico Refinery Catalytic Hydrotreating, Kerosene/Jet Fuel ...  

U.S. Energy Information Administration (EIA)

Puerto Rico Refinery Catalytic Hydrotreating, Kerosene/Jet Fuel Downstream Charge Capacity as of January 1 (Barrels per Stream Day)

435

Puerto Rico Refinery Catalytic Hydrocracking, Gas Oil Downstream ...  

U.S. Energy Information Administration (EIA)

Puerto Rico Refinery Catalytic Hydrocracking, Gas Oil Downstream Charge Capacity as of January 1 (Barrels per Stream Day)

436

Refining District Oklahoma-Kansas-Missouri Refinery and ...  

U.S. Energy Information Administration (EIA)

Refining District Oklahoma-Kansas-Missouri Refinery and Blender Net Input of Fuel Ethanol (Thousand Barrels per Day)

437

Colorado Refinery Catalytic Hydrotreating, Other/Residual Fuel Oil ...  

U.S. Energy Information Administration (EIA)

Colorado Refinery Catalytic Hydrotreating, Other/Residual Fuel Oil Downstream Charge Capacity as of January 1 (Barrels per Stream Day)

438

New Jersey Refinery Catalytic Reforming/High Pressure Downstream ...  

U.S. Energy Information Administration (EIA)

New Jersey Refinery Catalytic Reforming/High Pressure Downstream Charge Capacity as of January 1 (Barrels per Stream Day)

439

Arkansas Refinery Catalytic Reforming/High Pressure Downstream ...  

U.S. Energy Information Administration (EIA)

Arkansas Refinery Catalytic Reforming/High Pressure Downstream Charge Capacity as of January 1 (Barrels per Stream Day)

440

U.S. Refinery Catalytic Hydrotreating, Heavy Gas Oil ...  

U.S. Energy Information Administration (EIA)

U.S. Refinery Catalytic Hydrotreating, Heavy Gas Oil Downstream Charge Capacity as of January 1 (Barrels per Stream Day)

Note: This page contains sample records for the topic "operable petroleum refineries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

East Coast (PADD 1) Refinery Vacuum Distillation Downstream Charge ...  

U.S. Energy Information Administration (EIA)

East Coast (PADD 1) Refinery Vacuum Distillation Downstream Charge Capacity as of January 1 (Barrels per Stream Day)

442

How refinery fuel indexes have varied  

Science Conference Proceedings (OSTI)

Refinery fuels costs have endured a steady incline since 1993, except for a period in 1993. As shown in the accompanying table, these increases in cost have occurred for residual fuel oil costs in three of the five PADD districts. The cost for natural gas for refinery usage also dropped steadily during the 3-year study. These conclusions are based on costs of an average refinery fuel consisting of 1 bbl each of PADD Districts 1--5 and an average US cost of 4.4 MMscf natural gas (a 1 bbl equivalent on a BTU content basis). Raw residual fuel oil and natural gas prices come from publications put out by the US Department of Labor.

Farrar, G.

1997-01-06T23:59:59.000Z

443

Exxon reduces production at U. S. refineries  

SciTech Connect

This paper reports that Exxon Co. U.S.A. has trimmed output of its U.S. refineries by a combined 15% because of depressed margins on products markets. The company made the announcement last week as it began increasing crude runs at its 396,000 b/cd refinery at Baytown, Tex., on the Houston Ship Channel. Exxon trimmed Baytown crude runs late last month to manage feedstock inventories after a barge was rammed and sunk in the ship channel, briefly halting traffic. Most feedstock is delivered to the Baytown plant by water.

Not Available

1993-01-11T23:59:59.000Z

444

Texas Tech University's New Petroleum Engineering Building  

E-Print Network (OSTI)

Texas Tech University's New Petroleum Engineering Building: A New Era in Petroleum Engineering Production and Operations Education Summer 2012 Engineering Our Future Texas Tech University - Edward E. Whitacre Jr. College of Engineering Texas Tech Makes Progress to Tier One Five Distinguished Engineers

Zhang, Yuanlin

445

The Use of Oil Refinery Wastes as a Dust Suppression Surfactant for Use in Mining  

Science Conference Proceedings (OSTI)

In this research, the suitability of a selection of petroleum refinery wastes as a dust suppressant were examined. Dust is a significant problem in surface and underground mining mainly because of its adverse effects on human health and machinery. Hence, dust control and suppression is a vital part of mine planning for mining engineers. Water is the oldest and the cheapest suppressant in dealing with the mine dusts. However, surfactant use has recently been used for a wider range of applications in the mining industry. In order to carry out laboratory experiments, a dust chamber was designed and manufactured. The chamber has an inlet for coal dust entrance and a nozzle for spraying water and the oil refinery wastes. Water and the surfactants were mixed at various ratios and then sprayed onto the coal dusts within the cell. Dust concentration was measured systematically to determine the effects of surfactant containing solution on the coal dust and the data obtained by the measurements were analyzed. The results showed that the oil refinery wastes could be used as a dust suppressant, which may create an economical utilization for the wastes concerned.

Dixon-Hardy, D.W.; Beyhan, S.; Ediz, I.G.; Erarslan, K. [University of Leeds, Leeds (United Kingdom)

2008-10-15T23:59:59.000Z

446

Strategic Petroleum Reserve annual/quarterly report  

SciTech Connect

During 1992 the Department continued planning activities for the expansion of the Strategic Petroleum Reserve to one billion barrels. A draft Environmental Impact Statement for the five candidate sites was completed in October 1992, and a series of public hearings was held during December 1992. Conceptual design engineering activities, life cycle cost estimates and geotechnical studies to support the technical requirements for an Strategic Petroleum Reserve Plan Amendment were essentially completed in December 1992. At the end of 1992, the Strategic Petroleum Reserve crude oil inventory was 574.7 million barrels and an additional 1.7 million barrels was in transit to the Reserve. During 1992 approximately 6.2 million barrels of crude oil were acquired for the Reserve. A Department of Energy Tiger Team Environmental, Safety and Health (ES&H) Assessment was conducted at the Strategic Petroleum Reserve from March 9 through April 10, 1992. In general, the Tiger Team found that Strategic Petroleum Reserve activities do not pose undue environmental, safety or health risks. The Strategic Petroleum Reserve`s Final Corrective Action Plan, prepared in response to the Tiger Team assessment, was submitted for Department approval in December 1992. On November 18, 1992, the Assistant Secretary for Fossil Energy selected DynMcDennott Petroleum Operations Company to provide management and operating services for the Strategic Petroleum Reserve for a period of 5 years commencing April 1, 1993. DynMcDermott will succeed Boeing Petroleum Services, Inc.

1993-02-16T23:59:59.000Z

447

Petroleum Institute Scholarly Publications  

E-Print Network (OSTI)

Abu Dhabi The Petroleum Institute Scholarly Publications January 1st ­ December 31st 2007 #12;The Petroleum Institute Scholarly Publications January 1st ­ December 31st 2007 v #12;- 2 - Scholarly Publications 2007 | The Petroleum Institute #12;- 3 - Scholarly Publications 2007 | The Petroleum Institute

448

Petroleum supply monthly, May 1998, with data for March 1998  

Science Conference Proceedings (OSTI)

The Petroleum Supply Monthly (PSM) is one of a family of four publications produced by the Petroleum Supply Division within the Energy Information Administration (EIA) reflecting different levels of data timeliness and completeness. Data presented in the PSM describe the supply and disposition of petroleum products in the United States and major US geographic regions. The data series describe production, imports and exports, inter-Petroleum Administration for Defense (PAD) District movements, and inventories by the primary suppliers of petroleum products in the United States (50 States and the District of Columbia). The reporting universe includes those petroleum sectors in primary supply. Included are: petroleum refiners, motor gasoline blenders, operators of natural gas processing plants and fractionators, inter-PAD transporters, importers, and major inventory holders of petroleum products and crude oil. When aggregated, the data reported by these sectors approximately represent the consumption of petroleum products in the United States. 16 figs., 66 tabs.

NONE

1998-05-01T23:59:59.000Z

449

Petroleum supply monthly with data from January 1998  

Science Conference Proceedings (OSTI)

The Petroleum Supply Monthly (PSM) is one of a family of four publications produced by the Petroleum Supply Division within the Energy Information Administration (EIA) reflecting different levels of data timeliness and completeness. Data presented in the PSM describe the supply and disposition of petroleum products in the United States and major US geographic regions. The data series describe production, imports and exports, inter-Petroleum Administration for Defense (PAD) District movements, and inventories by the primary suppliers of petroleum products in the United States (50 States and the District of Columbia). The reporting universe includes those petroleum sectors in primary supply. Included are: petroleum refiners, motor gasoline blenders, operators of natural gas processing plants and fractionators, inter-PAD transporters, importers, and major inventory holders of petroleum products and crude oil. When aggregated, the data reported by these sectors approximately represent the consumption of petroleum products in the United States.

NONE

1998-03-01T23:59:59.000Z

450

Petroleum supply monthly with data for March 1997  

SciTech Connect

The Petroleum Supply Monthly (PSM) is one of a family of four publications produced by the Petroleum Supply Division within the Energy Information Administration reflecting different levels of data timeliness and completeness. Data presented in the PSM describe the supply and disposition of petroleum products in the United States and major U.S. geographic regions. The data series describe production, imports and exports, inter-Petroleum Administration for Defense (PAD) District movements, and inventories by the primary suppliers of petroleum products in the United States (50 states and the District of Columbia). The reporting universe includes those petroleum sectors in primary supply. Included are: petroleum refiners, motor gasoline blenders, operators of natural gas processing plants and fractionators, inter-PAD transporters, importers, and major inventory holders of petroleum products and crude oil. When aggregated, the data reported by these sectors approximately represent the consumption of petroleum products in the United States.

NONE

1997-05-01T23:59:59.000Z

451

EIA model documentation: Petroleum market model of the national energy modeling system  

Science Conference Proceedings (OSTI)

The purpose of this report is to define the objectives of the Petroleum Market Model (PMM), describe its basic approach, and provide detail on how it works. This report is intended as a reference document for model analysts, users, and the public. Documentation of the model is in accordance with EIA`s legal obligation to provide adequate documentation in support of its models. The PMM models petroleum refining activities, the marketing of petroleum products to consumption regions, the production of natural gas liquids in gas processing plants, and domestic methanol production. The PMM projects petroleum product prices and sources of supply for meeting petroleum product demand. The sources of supply include crude oil, both domestic and imported; other inputs including alcohols and ethers; natural gas plant liquids production; petroleum product imports; and refinery processing gain. In addition, the PMM estimates domestic refinery capacity expansion and fuel consumption. Product prices are estimated at the Census division level and much of the refining activity information is at the Petroleum Administration for Defense (PAD) District level.

NONE

1995-12-28T23:59:59.000Z

452

U.S. Refinery Net Production  

U.S. Energy Information Administration (EIA)

Liquefied Refinery Gases: 11,903: 12,936: 13,591: 20,226: 24,599: 26,928: 2005-2013: ... Asphalt and Road Oil: 10,230: 9,328: 8,595: 9,973: 9,494: 9,914: 2005-2013 ...

453

Refinery Investments and Future Market Incentives  

Reports and Publications (EIA)

Presentation given at the Annual NPRA Meeting that discusses factors affecting refinery investments. Refiners have plunged from a seeming "golden age" investment environment to a world with excess capacity, flat to declining demand, and weak margins. What is happening to refining investments in this turbulent and uncertain situation?

Information Center

2009-03-25T23:59:59.000Z

454

Department of Energy Announces Oil Loan from the Strategic Petroleum  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oil Loan from the Strategic Oil Loan from the Strategic Petroleum Reserve Department of Energy Announces Oil Loan from the Strategic Petroleum Reserve January 20, 2006 - 11:07am Addthis WASHINGTON, DC - The Department of Energy (DOE) today announced that Secretary Samuel W. Bodman has approved an emergency loan of 871,000 barrels of crude oil from the Strategic Petroleum Reserve (SPR) to the Total Petrochemicals USA, Inc. refinery in Port Arthur, Texas. This loan comes in response to a barge accident in the Sabine Neches Ship Channel earlier this week, during which 94 concrete pilings dropped from the barge into the channel. In order to ensure that this accident does not put a strain on U.S. supplies of refined products, the delivery of crude oil from the West Hackberry SPR site will begin tomorrow.

455

President Bush Directs Energy Secretary to Draw Down Strategic Petroleum  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Directs Energy Secretary to Draw Down Strategic Directs Energy Secretary to Draw Down Strategic Petroleum Reserve President Bush Directs Energy Secretary to Draw Down Strategic Petroleum Reserve September 3, 2005 - 9:49am Addthis Washington, DC - U.S. Secretary of Energy Samuel W. Bodman today released the following statement regarding President Bush's historic decision to authorize the drawdown and sale of oil from America's Strategic Petroleum Reserve. "We continue to work hard to aggressively address the oil and gasoline supply interruption caused by Hurricane Katrina. Over the past several days we have seen the capacity to ship gasoline by pipeline slowly return, so it is critical that our refineries remain supplied with crude oil. "Last night, President Bush took the historic step of directing me to

456

Petroleum Supply Monthly  

U.S. Energy Information Administration (EIA) Indexed Site

Production is the sum of crude oil producion and natural gas plant liquids and liquefied refinery gases production. Crude oil production is an estimate based on data received from...

457

Petroleum Supply Monthly  

Annual Energy Outlook 2012 (EIA)

and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil 6...

458

Firing Excess Refinery Butane in Peaking Gas Turbines  

E-Print Network (OSTI)

New environmentally-driven regulations for motor gasoline volatility will significantly alter refinery light ends supply/demand balancing. This, in turn, will impact refinery economics. This paper presumes that one outcome will be excess refinery normal butane production, which will reduce refinery normal butane value and price. Explored is an opportunity for a new use for excess refinery normal butane- as a fuel for utility peaking gas turbines which currently fire kerosene and #2 oil. Our paper identifies the fundamental driving forces which are changing refinery butane economics, examines how these forces influence refinery production, and evaluates the potential for using normal butanes as peaking utility gas turbine fuel, especially on the US East Coast.

Pavone, A.; Schreiber, H.; Zwillenberg, M.

1989-09-01T23:59:59.000Z

459

U.S. Refinery & Blender Net Input  

U.S. Energy Information Administration (EIA) Indexed Site

Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History Total 526,996 566,851 559,032 581,600 578,456 543,388 1981-2013 Crude Oil 445,937 474,296 474,991 497,241 489,887 468,825 1981-2013 Natural Gas Plant Liquids and Liquefied Refinery Gases 12,805 11,759 12,769 13,227 13,760 16,794 1981-2013 Pentanes Plus 4,949 4,341 4,752 4,734 5,331 5,666 1981-2013 Liquefied Petroleum Gases 7,856 7,418 8,017 8,493 8,429 11,128 1981-2013 Ethane 1981-1992 Normal Butane 2,668 1,880 1,998 2,014 2,083 4,711 1981-2013 Isobutane 5,188 5,538 6,019 6,479 6,346 6,417 1981-2013 Other Liquids 68,254 80,796 71,272 71,132 74,809 57,769 1981-2013 Hydrogen/Oxygenates/Renewables/ Other Hydrocarbons 32,667 34,665 34,097 35,446 36,356 33,881 1981-2013

460

U.S. Refinery & Blender Net Input  

U.S. Energy Information Administration (EIA) Indexed Site

2007 2008 2009 2010 2011 2012 View 2007 2008 2009 2010 2011 2012 View History Total 6,204,500 6,277,893 6,169,893 6,345,372 6,422,710 6,406,693 1981-2012 Crude Oil 5,532,097 5,361,287 5,232,656 5,374,094 5,404,347 5,489,516 1981-2012 Natural Gas Plant Liquids and Liquefied Refinery Gases 184,383 177,559 177,194 161,479 178,884 186,270 1981-2012 Pentanes Plus 64,603 55,497 59,100 56,686 63,385 63,596 1981-2012 Liquefied Petroleum Gases 119,780 122,062 118,094 104,793 115,499 122,674 1981-2012 Ethane 1981-1992 Normal Butane 48,292 50,024 48,509 43,802 47,571 52,246 1981-2012 Isobutane 71,488 72,038 69,585 60,991 67,928 70,428 1981-2012 Other Liquids 488,020 739,047 760,043 809,799 839,479 730,907 1981-2012 Hydrogen/Oxygenates/Renewables/ Other Hydrocarbons

Note: This page contains sample records for the topic "operable petroleum refineries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Petroleum Market Model of the National Energy Modeling System. Part 2  

SciTech Connect

This report contains the following: Bibliography; Petroleum Market Model abstract; Data quality; Estimation methodologies (includes refinery investment recovery thresholds, gas plant models, chemical industry demand for methanol, estimation of refinery fixed costs, estimation of distribution costs, estimation of taxes gasoline specifications, estimation of gasoline market shares, estimation of low-sulfur diesel market shares, low-sulfur diesel specifications, estimation of regional conversion coefficients, estimation of SO{sub 2} allowance equations, unfinished oil imports methodology, product pipeline capacities and tariffs, cogeneration methodology, natural gas plant fuel consumption, and Alaskan crude oil exports); Matrix generator documentation; Historical data processing; and Biofuels supply submodule.

1997-12-18T23:59:59.000Z

462

Carbon Emissions: Petroleum Refining Industry  

U.S. Energy Information Administration (EIA)

Energy-Related Carbon Emissions for the Petroleum and Coal Products Industry, 1994. Petroleum refining is by far the largest component of the petroleum and ...

463

Optimization of Steam Network in Tehran Oil Refinery  

E-Print Network (OSTI)

Dominated energy crisis in the world dictates to reduce energy consumption and identify energy saving opportunities in large and complex industries especially in oil refining industry. In this paper, Tehran oil refinery is considered as a proper case study and its steam network is analyzed. At the first step, using STAR software, the steam network is simulated and then optimized, which determines the optimum conditions. In this regard, energy saving potential was identified and total operating costs (TOC) in two states of fixed fuel fraction and changeable fuel fraction was calculated. In addition, different scenarios were proposed like using HRSG instead of two boilers. The results showed that amount of total operating cost has been reduced, as the result the best scenario regarding TOC is selected.

Khodaie, H.; Nasr, M. R. J.

2008-01-01T23:59:59.000Z

464

DOE Awards Management and Operating Contract for DOE's Strategic...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Awards Management and Operating Contract for DOE's Strategic Petroleum Reserve DOE Awards Management and Operating Contract for DOE's Strategic Petroleum Reserve September 18, 2013...

465

DOE Issues Solicitation for Purchase of Oil for the Strategic Petroleum  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solicitation for Purchase of Oil for the Strategic Solicitation for Purchase of Oil for the Strategic Petroleum Reserve DOE Issues Solicitation for Purchase of Oil for the Strategic Petroleum Reserve March 16, 2007 - 11:37am Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) today announced that it will seek solicitations to purchase up to four million barrels of crude oil for the Strategic Petroleum Reserve (SPR). This is the first of a series of solicitations planned to replace 11 million barrels of oil sold in the fall of 2005 after Hurricane Katrina disrupted refinery supplies. This would be the first direct purchase of crude oil for the reserve since 1994. The Strategic Petroleum Reserve will use the proceeds from the emergency sale totaling $584 million to complete the purchases. "The Strategic Petroleum Reserve is a critical national asset that bolsters

466

Petroleum Marketing Monthly, October 1984  

SciTech Connect

This report presents monthly summaries of petroleum product statistics for the US, Petroleum Administration for Defense (PAD) Districts, and individual states. Four types of petroleum product statistics are included: sale prices, sale volumes, percentages of product sales, and first sales of products for consumption. Salient statistics are highlighted in a summary section, and each of the four subjects are treated in detail in other sections. The first three sections provide national-level statistics on sales of the various products to end-users and for resale. Data on motor gasoline, aviation fuel, jet engine fuel, kerosene, distillate fuel oils, residual fuel oils, and propane are included. The preliminary statistics for October 1984 show that total refiner/gas plant operator sales of selected petroleum products increased by 1.9% compared with final September sales. Increases in sales were reported for the four seasonal fuels (kerosene, No. 1 distillate, No. 2 fuel oil, and propane) as well as for unleaded and premium gasolines, No. 4 fuel oil, and high-sulfur residual fuel oil. Refiner/gas plant operator price changes were mixed in October. While most retail prices increased slightly, retail prices for aviation gasoline, No. 4 fuel oil, and propane declined. At the wholesale level, refiner/gas plant operator prices also declined for aviation gasoline, kerosene, and No. 4 fuel oil. The October sales activity for each of the major product groups is summarized.

1985-01-01T23:59:59.000Z

467

New Filtration Material Could Make Petroleum Refining ...  

Science Conference Proceedings (OSTI)

... Creating premium fuel requires a refinery to boil the mixture at precise ... The new MOF, however, could allow refineries to sidestep this problem by ...

2013-05-28T23:59:59.000Z

468

Petroleum supply monthly, December 1998 with data for October 1998  

SciTech Connect

Data presented in the Petroleum Supply Monthly (PSM) describe the supply and disposition of petroleum products in the US and major US geographic regions. The data series describe production, imports and exports, inter-Petroleum Administration for Defense (PAD) District movements, and inventories by the primary suppliers of petroleum products in the US (50 States and the District of Columbia). The reporting universe includes those petroleum sectors in primary supply. Included are: petroleum refiners, motor gasoline blenders, operators of natural gas processing plants and fractionators, inter-PAD transporters, importers, and major inventory holders of petroleum products and crude oil. When aggregated, the data reported by these sectors approximately represent the consumption of petroleum products in the US. Data presented in the PSM are divided into two sections: Summary Statistics and Detailed Statistics. 82 tabs.

NONE

1998-12-01T23:59:59.000Z

469

DOE/EIA-0487(98) Petroleum Marketing Annual  

Gasoline and Diesel Fuel Update (EIA)

Pur- Pur- chase Report"; Form EIA-856, "Monthly For-eign Crude Oil Acquisition Report"; and Form EIA-14, "Re- finers' Monthly Cost Report." The statistics on petroleum product sales prices and volumes are derived from Form EIA-782A, "Refin-ers'/Gas Plant Operators' Monthly Petroleum Product Sales Report" and Form EIA-782B, "Re- sellers'/Retailers' Monthly Petroleum Product Sales Report." The data presented in Tables 48 to 50 are derived from aggregations of data from Form EIA-782C, "Monthly Report of Prime Supplier Sales of Petroleum Products Sold for Local Consumption." Sections Monthly statistics on purchases of crude oil and sales of petroleum products are presented in the Petroleum Marketing Annual in five sections: * Summary Statistics * Crude Oil Prices * Prices of Petroleum Products * Volumes of Petroleum

470

Petroleum supply monthly, November 1996 with data for September 1996  

SciTech Connect

Data presented in this report describes the supply and disposition of petroleum products in the US and major US geographic regions. The data series describe production, imports and exports, inter-Petroleum Administration for Defense (PAD) District movements, and inventories by the primary suppliers of petroleum products fin the US (50 States and the District of Columbia). The reporting universe includes those petroleum sectors in primary supply. Included are: petroleum refiners, motor gasoline blenders, operators of natural gas processing plants and fractionators, inter-PAD transporters, importers, and major inventory holders of petroleum products and crude oil. When aggregated, the data reported by these sectors approximately represent the consumption of petroleum products in the US. The tables and figures in the Summary Statistics section present a time series of selected petroleum data on a US level. The Detailed Statistics tables present statistics for the most current month available as well as year-to-date. 16 figs., 66 tabs.

NONE

1996-11-01T23:59:59.000Z

471

Petroleum Marketing Annual 2009  

Gasoline and Diesel Fuel Update (EIA)

Petroleum Marketing Annual 2009 Petroleum Marketing Annual 2009 Released: August 6, 2010 Monthly price and volume statistics on crude oil and petroleum products at a national, regional and state level. Notice: Changes to EIA Petroleum Data Program Petroleum Marketing Annual --- Full report in PDF (1.2 MB) Previous Issues --- Previous reports are available on the historical page. Summary Statistics Summary Statistics Tables PDF 1 Crude Oil Prices PDF TXT 1A Refiner Acquisition Cost of Crude Oil by PAD Districts HTML PDF TXT 2 U.S. Refiner Prices of Petroleum Products to End Users HTML PDF TXT 3 U.S. Refiner Volumes of Petroleum Products to End Users PDF TXT Motor Gasoline to End Users HTML Residual Fuel Oil and No. 4 Fuel to End Users HTML Other Petroleum Products to End Users HTML

472

100% petroleum house  

E-Print Network (OSTI)

I am designing a Case Study House to be sponsored by Royal Dutch Shell which utilizes the by-product of oil extraction, petroleum gas, to produce a zero waste, 100% petroleum based house. The motivation of the Case Study ...

Costanza, David (David Nicholas)

2013-01-01T23:59:59.000Z

473

Petroleum Supply Monthly  

U.S. Energy Information Administration (EIA)

Energy Information Administration/Petroleum Supply Monthly, October 2011 11 Table 4. U.S. Year-to-Date Daily Average Supply and Disposition of Crude Oil and Petroleum ...

474

(National Institute for Petroleum and Energy Research): 1986 annual report  

SciTech Connect

Significant research accomplishments were made by the National Institute for Petroleum and Energy Research (NIPER) during its third year of operation. Some of the achievements of the FY86 program are: (1) extrapolation of energy supply trends was used to develop a research plan for improving the energy capability of the United States; (2) the finding of correlations between outcrop core samples and reservoir core samples will enable better predictions of heterogeneity in the reservoir and the application of these properties to prediction and planning of EOR projects; (3) the development of hydrocarbon reaction paths under hydrotreating or catalytic cracking is being approached by calculation of thermodynamic functions (Gibbs Energy); (4) micromodel studies were used to elucidate the mechanisms of oil mobilization by microbes and results were found to correlate with coreflooding results; (5) degradation and compatibility problems have been identified in utility fuel oils, jet fuels, and diesel fuels; (6) a new surfactant-enhanced alkaline flooding method that results in less reaction with reservoir minerals has been developed; (7) the effect on farm equipment of the phase-out of lead in gasoline was studied; (8) a thermophysical property prediction package has been developed for gas injection EOR projects using nitrogen; (9) a survey of applicable information on groundwater pollution by refinery operations was made; (10) the construction and testing of an apparatus to measure three-phase relative permeabilities based on x-ray and microwave measurements were completed. These reports on ten of NIPER's 35 projects serve to show some of the more important achievements. A more complete discussion of these and the other projects is given in this annual report. These reports have been processed for inclusion in the Energy Data Base.

Not Available

1987-03-01T23:59:59.000Z

475

Total Blender Net Input of Petroleum Products  

U.S. Energy Information Administration (EIA) Indexed Site

Input Input Product: Total Input Natural Gas Plant Liquids and Liquefied Refinery Gases Pentanes Plus Liquid Petroleum Gases Normal Butane Isobutane Other Liquids Oxygenates/Renewables Methyl Tertiary Butyl Ether (MTBE) Renewable Fuels (incl. Fuel Ethanol) Fuel Ethanol Renewable Diesel Fuel Other Renewable Fuels Unfinished Oils (net) Unfinished Oils, Naphthas and Lighter Unfinished Oils, Kerosene and Light Gas Oils Unfinished Oils, Heavy Gas Oils Residuum Motor Gasoline Blending Components (MGBC) (net) MGBC - Reformulated MGBC - Reformulated - RBOB MGBC - Reformulated, RBOB for Blending w/ Alcohol MGBC - Reformulated, RBOB for Blending w/ Ether MGBC - Reformulated, GTAB MGBC - Conventional MGBC - Conventional, CBOB MGBC - Conventional, GTAB MGBC - Other Conventional Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day

476

GreenHunter Biodiesel Refinery Grand Opening | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

GreenHunter Biodiesel Refinery Grand Opening GreenHunter Biodiesel Refinery Grand Opening GreenHunter Biodiesel Refinery Grand Opening June 2, 2008 - 12:51pm Addthis Remarks as Prepared for (Acting) Deputy Secretary Kupfer Today, Acting Deputy Secretary Jeffrey Kupfer delivered remarks at the launch of GreenHunter Energy's biodiesel refinery, which will be the nation's single largest biodiesel refinery, producing 105 million gallons of "white-water" B100 biodiesel per year. Thank you Gary. I'm pleased to join with Governor Perry, Congressmen Green and Lampson, and Mayor Garcia in celebrating this important occasion. Today, as we open the nation's largest biodiesel refinery, we reach another milestone in our effort to make America more energy secure. As you know, global energy demand is surging. We must act swiftly and aggressively to

477

Environmentally advanced refinery nears start-up in Germany  

SciTech Connect

Mitteldeutsche Erdoel-Raffinerie GmbH (Mider), is building a 170,000 b/d, grassroots refinery in Leuna, Germany. The refinery is scheduled to start up in third quarter of this year. At the heart of the new refinery is a new technology called progressive distillation. Other major units include: vacuum distillation, catalytic reforming, alkylation, visbreaking, fluid catalytic cracking (FCC), and hydrodesulfurization (HDS). In addition, an existing partial oxidation (POX)/methanol production unit will be integrated with the new refinery. The paper describes the plant and its major processes.

Rhodes, A.K.

1997-03-17T23:59:59.000Z

478

U.S. refineries and blenders produced record amounts of ...  

U.S. Energy Information Administration (EIA)

Because of its chemical composition, crude oil run through a refinery typically yields roughly twice as much motor gasoline as distillate fuels.

479

U.S. Refinery Thermal Cracking, Other (including Gas Oil ...  

U.S. Energy Information Administration (EIA)

U.S. Refinery Thermal Cracking, Other (including Gas Oil) Downstream Charge Capacity as of January 1 (Barrels per Stream Day)

480

Gulf Coast (PADD 3) Refinery Grade Butane Stocks at Bulk ...  

U.S. Energy Information Administration (EIA)

Gulf Coast (PADD 3) Refinery Grade Butane Stocks at Bulk Terminals (Thousand Barrels) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 2005: 935: ...

Note: This page contains sample records for the topic "operable petroleum refineries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

EIA Energy Kids - Carson Refinery - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Hydrogen. Recent Statistics ... and then distributed to gas stations all over Los Angeles and Southern ... you are probably filling up with gas from the Carson refinery.

482

Market Assessment of Refinery Outages Planned for March 2010 ...  

U.S. Energy Information Administration (EIA)

DOE/EIA-0641(2010)/1 Market Assessment of Refinery Outages Planned for March 2010 through June 2010 March 2010 Energy Information Administration

483

Petroleum marketing monthly  

SciTech Connect

The Petroleum Marketing Monthly (PMM) provides information and statistical data on a variety of crude oils and refined petroleum products. The publication presents statistics on crude oil costs and refined petroleum products sales for use by industry, government, private sector analysts, educational institutions, and consumers. Data on crude oil include the domestic first purchase price, the f.o.b. and landed cost of imported crude oil, and the refiners` acquisition cost of crude oil. Refined petroleum product sales data include motor gasoline, distillates, residuals, aviation fuels, kerosene, and propane. The Petroleum Marketing Division, Office of Oil and Gas, Energy Information Administration ensures the accuracy, quality, and confidentiality of the published data.

NONE

1995-11-01T23:59:59.000Z

484

Petroleum marketing annual 1994  

SciTech Connect

The Petroleum Marketing Annual (PMA) provides information and statistical data on a variety of crude oils and refined petroleum products. The publication presents statistics on crude oil costs and refined petroleum products sales for use by industry, government, private sector analysis, educational institutions, and consumers. Data on crude oil include the domestic first purchase price, the fob and landed cost of imported crude oil, and the refiners` acquisition cost of crude oil. Refined petroleum product sales data include motor gasoline, distillates, residuals, aviation fuels, kerosene, and propane. The Petroleum Marketing Division, Office of Oil and Gas, Energy Information Administration ensures the accuracy, quality, and confidentiality of the published data in the Petroleum Marketing Annual. For this production, all estimates have been recalculated since their earlier publication in the Petroleum Marketing Monthly (PMM). These calculations made use of additional data and corrections that were received after the PMM publication date.

NONE

1995-08-24T23:59:59.000Z

485

Restoration of Refinery Heaters Using the Technique of Prefabricated Ceramic Fiber Lined Panels  

E-Print Network (OSTI)

Refinery heater fuel requirements often represent 50% of a units operating cost. A one percent change in the efficiency of a heater firing 100 MBtu/hr amounts to more than $25,000 per year. Heater efficiency is influenced by casing hot spots, air leakage, corbel damage, flue gas obstruction and dirty tubes. Efficiency impact is greatest in the convection section since conventional repairs only permit accessing from the outside, thus only hot spots and some air leakage are repaired. Exxon USA's Baton Rouge refinery has adopted a restoration procedure, using the technique of ceramic fiber lined panels, which corrects all the problem areas and returns the heater to new condition. Restorations have been successfully completed on convection sections as well as total heaters. All restorations have been within a normal turnaround period. Efficiency increases greater than 3% have been realized, as well as improvements in the heater's operation.

Sento, H. D.

1981-01-01T23:59:59.000Z

486

Petroleum supply monthly, March 1999, with data for January 1999  

Science Conference Proceedings (OSTI)

The Petroleum Supply Monthly (PSM) is one of a family of four petroleum supply publications produced by the Petroleum Division within the Energy Information Administration (EIA) reflecting different levels of data timeliness and completeness. The other publications are the Weekly Petroleum Status Report (WPSR), the Winter Fuels Report, and the Petroleum Supply Annual (PSA). Data presented in the PSM describe the supply and disposition of petroleum products in the US and major US geographic regions. The data series describe production, imports and exports, inter-Petroleum Administration for Defense (PAD) District movements, and inventories by the primary suppliers of petroleum products in the US (50 States and the District of Columbia). The reporting universe includes those petroleum sectors in primary supply. Included are: petroleum refiners, motor gasoline blenders, operators of natural gas processing plants and fractionators, inter-PAD transporters, importers, and major inventory holders of petroleum products and crude oil. When aggregated, the data reported by these sectors approximately represent the consumption of petroleum products in the US. Data presented in the PSM are divided into two sections: Summary Statistics and Detailed Statistics.

NONE

1999-03-01T23:59:59.000Z

487

REDUCING POWER PRODUCTION COSTS BY UTILIZING PETROLEUM COKE  

Science Conference Proceedings (OSTI)

Petroleum coke, a byproduct of the petroleum-refining process, is an attractive primary or supplemental fuel for power production primarily because of a progressive and predictable increase in the production volumes of petroleum coke (1, 2). Petroleum coke is most commonly blended with coal in proportions suitable to meet sulfur emission compliance. Petroleum coke is generally less reactive than coal; therefore, the cofiring of petroleum coke with coal typically improves ignition, flame stability, and carbon loss relative to the combustion of petroleum coke alone. Although petroleum coke is a desirable fuel for producing relatively inexpensive electrical power, concerns about the effects of petroleum coke blending on combustion and pollution control processes exist in the coal-fired utility industry (3). The Energy & Environmental Research Center (EERC) completed a 2-year technical assessment of petroleum coke as a supplemental fuel. A survey questionnaire was sent to seven electric utility companies that are currently cofiring coal and petroleum coke in an effort to solicit specific suggestions on research needs and fuel selections. An example of the letter and survey questionnaire is presented in Appendix A. Interest was expressed by most utilities in evaluating the effects of petroleum coke blending on grindability, combustion reactivity, fouling, slagging, and fly ash emissions control. Unexpectedly, concern over corrosion was not expressed by the utilities contacted. Although all seven utilities responded to the question, only two utilities, Northern States Power Company (NSP) and Ameren, sent fuels to the EERC for evaluation. Both utilities sent subbituminous coals from the Power River Basin and petroleum shot coke samples. Petroleum shot coke is produced unintentionally during operational upsets in the petroleum refining process. This report evaluates the effects of petroleum shot coke blending on grindability, fuel reactivity, fouling/slagging, and electrostatic precipitator (ESP) fly ash collection efficiency.

Kevin C. Galbreath; Donald L. Toman; Christopher J. Zygarlicke

1999-09-01T23:59:59.000Z

488

PETROLEUM BIOREFINING FOR POLLUTION PREVENTION  

DOE Green Energy (OSTI)

The objective of this project was to isolate and characterize thermophilic bacterial cultures that can be used for the selective removal of nitrogen, sulfur, and/or metals in the biorefining of petroleum. The project was completed on schedule and no major difficulties were encountered. Significant progress was made on multiple topics relevant to the development of a petroleum biorefining process capable of operating at thermophilic temperatures. New cultures capable of selectively cleaving C-N or C-S bonds in molecules relevant to petroleum were obtained, and the genes encoding the enzymes for these unique biochemical reactions were cloned and sequenced. Genetic tools were developed that enable the use of Thermus thermophilus as a host to express any gene of interest, and information was obtained regarding the optimum conditions for the growth of T. thermophilus. The development of a practical biorefining process still requires further research and the future research needs identified in this project include the development of new enzymes and pathways for the selective cleavage of C-N or C-S bonds that have higher specific activities, increased substrate range, and are capable of functioning at thermophilic temperatures. Additionally, there is a need for process engineering research to determine the maximum yield of biomass and cloned gene products that can be obtained in fed-batch cultures using T. thermophilus, and to determine the best configuration for a process employing biocatalysts to treat petroleum.

John J. Kilbane II

2002-03-01T23:59:59.000Z

489

Petroleum & Other Liquids - Data - U.S. Energy Information Administration  

Gasoline and Diesel Fuel Update (EIA)

March 23, 2012: Interactive graphing has been added to the petroleum data March 23, 2012: Interactive graphing has been added to the petroleum data tables, complete with zooming and high quality downloads and printouts. Find statistics on crude oil, gasoline, diesel, propane, jet fuel, ethanol, and other liquid fuels. Click on the blue bars below for information on petroleum prices, crude reserves and production, refining and processing, imports/exports, stocks, and consumption/sales. + EXPAND ALL Summary Additional Formats Weekly Supply Estimates › Production, refinery inputs and utilization, stocks, days of supply, imports, exports, and product supplied estimates for crude oil and petroleum products by U.S., PAD District weekly and 4-week average Supply and Disposition Monthly Annual Release Date: September 27, 2013

490

DOE Issues Solicitation for Purchase of Oil for the Strategic Petroleum  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Issues Solicitation for Purchase of Oil for the Strategic Issues Solicitation for Purchase of Oil for the Strategic Petroleum Reserve DOE Issues Solicitation for Purchase of Oil for the Strategic Petroleum Reserve March 16, 2007 - 11:37am Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) today announced that it will seek solicitations to purchase up to four million barrels of crude oil for the Strategic Petroleum Reserve (SPR). This is the first of a series of solicitations planned to replace 11 million barrels of oil sold in the fall of 2005 after Hurricane Katrina disrupted refinery supplies. This would be the first direct purchase of crude oil for the reserve since 1994. The Strategic Petroleum Reserve will use the proceeds from the emergency sale totaling $584 million to complete the purchases.

491

Petroleum supply monthly, March 1995 with data for January 1995  

SciTech Connect

Data presented in this report for March 1995, describes the supply and disposition of petroleum products in the United States and major US geographic regions. The data series describe production, imports and exports, inter-Petroleum Administration for Defense (PAD) District movements, and inventories by the primary suppliers of petroleum products in the United States (50 States and the District of Columbia). The reporting universe includes those petroleum sectors in primary supply. Included are: petroleum refiners, motor gasoline blenders, operators of natural gas processing plants and fractionators, inter-PAD transporters, importers, and major inventory holders of petroleum products and crude oil. When aggregated, the data reported by these sectors approximately represent the consumption of petroleum products in the United States.

NONE

1995-03-30T23:59:59.000Z

492

Petroleum Marketing Annual  

Gasoline and Diesel Fuel Update (EIA)

6 6 Entire . The entire report as a single file. PDF 2.9MB . . Front Matter . Petroleum Marketing Annual Cover Page, Contacts, Preface, and Table of Contents PDF . . Highlights . Petroleum Marketing Annual Highlights PDF . . Summary Statistics . Summary Statistics Tables PDF 1 Crude Oil Prices PDF 2 U.S. Refiner Prices of Petroleum Products to End Users PDF 3 U.S. Refiner Volumes of Petroleum Products to End Users PDF 4 U.S. Refiner Prices of Petroleum Products for Resale PDF 5 U.S. Refiner Volumes of Petroleum Products for Resale PDF 6 U.S. Refiner Motor Gasoline Prices by Grade and Sales Type PDF 7 U.S. Refiner Motor Gasoline Volumes by Grade and Sales Type PDF 8 U.S. Refiner Conventional Motor Gasoline Prices by Grade and Sales Type PDF 9 U.S. Refiner Conventional Motor Gasoline Volumes by Grade and Sales Type PDF

493

Petroleum marketing monthly  

SciTech Connect

Petroleum Marketing Monthly (PPM) provides information and statistical data on a variety of crude oils and refined petroleum products. The publication presents statistics on crude oil costs and refined petroleum products sales for use by industry, government, private sector analysts, educational institutions, and consumers. Data on crude oil include the domestic first purchase price, the f.o. b. and landed cost of imported crude oil, and the refiners` acquisition cost of crude oil. Refined petroleum product sales data include motor gasoline, distillates, residuals, aviation fuels, kerosene, and propane. The Petroleum Marketing Division, Office of Oil and Gas, Energy Information Administration ensures the accuracy, quality, and confidentiality of the published data in the Petroleum Marketing Monthly.

1996-07-01T23:59:59.000Z

494

Petroleum Marketing Annual 1997  

Gasoline and Diesel Fuel Update (EIA)

7 7 Entire . The entire report as a single file. PDF 1.2MB . . Front Matter . Petroleum Marketing Annual Cover Page, Contacts, Preface, and Table of Contents PDF . . Highlights . Petroleum Marketing Annual Highlights PDF . . Summary Statistics . Summary Statistics Tables PDF 1 Crude Oil Prices PDF TXT 2 U.S. Refiner Prices of Petroleum Products to End Users PDF TXT 3 U.S. Refiner Volumes of Petroleum Products to End Users PDF TXT 4 U.S. Refiner Prices of Petroleum Products for Resale PDF TXT 5 U.S. Refiner Volumes of Petroleum Products for Resale PDF TXT 6 U.S. Refiner Motor Gasoline Prices by Grade and Sales Type PDF TXT 7 U.S. Refiner Motor Gasoline Volumes by Grade and Sales Type PDF TXT 8 U.S. Refiner Conventional Motor Gasoline Prices by Grade and Sales Type PDF TXT

495

Petroleum Marketing Annual 2009  

Gasoline and Diesel Fuel Update (EIA)

Released: August 6, 2010 Released: August 6, 2010 Notice: Price data for petroleum products will be changed from cents per gallon to dollars per gallon later this year for the 2010 data. Petroleum Marketing Annual --- Full report in PDF (1.2 MB) Summary Statistics Summary Statistics Tables PDF 1 Crude Oil Prices PDF TXT 1A Refiner Acquisition Cost of Crude Oil by PAD Districts PDF TXT 2 U.S. Refiner Prices of Petroleum Products to End Users PDF TXT 3 U.S. Refiner Volumes of Petroleum Products to End Users PDF TXT 4 U.S. Refiner Prices of Petroleum Products for Resale PDF TXT 5 U.S. Refiner Volumes of Petroleum Products for Resale PDF TXT 6 U.S. Refiner Motor Gasoline Prices by Grade and Sales Type PDF TXT 7 U.S. Refiner Motor Gasoline Volumes by Grade and Sales Type PDF TXT

496

Petroleum Marketing Annual  

Gasoline and Diesel Fuel Update (EIA)

9 9 Entire . The entire report as a single file. PDF 1.2MB . Front Matter . Petroleum Marketing Annual Cover Page, Preface, and Table of Contents PDF . Highlights . Petroleum Marketing Annual Highlights PDF . . Summary Statistics . Summary Statistics Tables PDF 1 Crude Oil Prices PDF TXT 2 U.S. Refiner Prices of Petroleum Products to End Users PDF TXT 3 U.S. Refiner Volumes of Petroleum Products to End Users PDF TXT 4 U.S. Refiner Prices of Petroleum Products for Resale PDF TXT 5 U.S. Refiner Volumes of Petroleum Products for Resale PDF TXT 6 U.S. Refiner Motor Gasoline Prices by Grade and Sales Type PDF TXT 7 U.S. Refiner Motor Gasoline Volumes by Grade and Sales Type PDF TXT 8 U.S. Refiner Conventional Motor Gasoline Prices by Grade and Sales Type PDF TXT

497

Petroleum Marketing Annual  

Gasoline and Diesel Fuel Update (EIA)

5 5 Entire . The entire report as a single file. PDF 2.9MB . . Front Matter . Petroleum Marketing Annual Cover Page, Contacts, Preface, and Table of Contents PDF . . Highlights . Petroleum Marketing Annual Highlights PDF . . Summary Statistics . Summary Statistics Tables PDF 1 Crude Oil Prices PDF 2 U.S. Refiner Prices of Petroleum Products to End Users PDF 3 U.S. Refiner Volumes of Petroleum Products to End Users PDF 4 U.S. Refiner Prices of Petroleum Products for Resale PDF 5 U.S. Refiner Volumes of Petroleum Products for Resale PDF 6 U.S. Refiner Motor Gasoline Prices by Grade and Sales Type PDF 7 U.S. Refiner Motor Gasoline Volumes by Grade and Sales Type PDF 8 U.S. Refiner Conventional Motor Gasoline Prices by Grade and Sales Type PDF 9 U.S. Refiner Conventional Motor Gasoline Volumes by Grade and Sales Type PDF

498

Petroleum marketing monthly  

SciTech Connect

The Petroleum Marketing Monthly (PMM) provides information and statistical data on a variety of crude oils and refined petroleum products. The publication presents statistics on crude oil costs and refined petroleum products sales for use by industry, government, private sector analysts, educational institutions, and consumers. Data on crude oil include the domestic first purchase price, the f.o.b. and landed cost of imported crude oil, and the refiners acquisition cost of crude oil. Refined petroleum product sales data include motor gasoline, distillates, residuals, aviation fuels, kerosene, and propane. The Petroleum Marketing Division, Office of Oil and Gas, Energy Information Administration ensures the accuracy, quality, and confidentiality of the published data in the Petroleum Marketing Monthly.

NONE

1996-02-01T23:59:59.000Z

499

Petroleum marketing monthly  

Science Conference Proceedings (OSTI)

The Petroleum Marketing Monthly (PMM) provides information and statistical data on a variety of crude oils and refined petroleum products. The publication presents statistics on crude oil costs and refined petroleum products sales for use by industry, government, private sector analysts, educational institutions, and consumers. Data on crude oil include the domestic first purchase price, the f.o.b. and landed cost of imported crude oil, and the refiners` acquisition cost of crude oil. Refined petroleum product sales data include motor gasoline, distillates, residuals, aviation fuels, kerosene, and propane. The Petroleum Marketing Division, Office of Oil and Gas, Energy Information Administration ensures the accuracy, quality, and confidentiality of the published data in the Petroleum Marketing Monthly.

NONE

1995-08-01T23:59:59.000Z

500

Market Assessment of Refinery Outages Planned for October 2010 through January 2011  

Gasoline and Diesel Fuel Update (EIA)

10)/2 10)/2 Market Assessment of Refinery Outages Planned for October 2010 through January 2011 November 2010 Energy Information Administration Office of Petroleum, Gas, and Biofuels Analysis U.S. Department of Energy Washington, DC 20585 This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the United States Government. The views in this report therefore should not be construed as representing those of the Department of Energy or other Federal agencies. E nergy Information Adminis tration Market As s es s ment of P lanned R