National Library of Energy BETA

Sample records for operable atmospheric crude

  1. Gross Input to Atmospheric Crude Oil Distillation Units

    U.S. Energy Information Administration (EIA) Indexed Site

    Day) Process: Gross Input to Atmospheric Crude Oil Dist. Units Operable Capacity (Calendar Day) Operating Capacity Idle Operable Capacity Operable Utilization Rate Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Process Area Jan-16 Feb-16 Mar-16 Apr-16 May-16 Jun-16 View History U.S. 16,365 16,167 16,261 16,222 16,477 16,803 1985-2016 PADD 1 1,136 1,080 1,052 1,148 1,174 1,155 1985-2016 East

  2. Atmospheric Crude Oil Distillation Operable Capacity

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Charge Capacity (BSD) Catalytic Hydrotreating NaphthaReformer Feed Charge Cap (BSD) Catalytic Hydrotreating Gasoline Charge Capacity (BSD) Catalytic Hydrotreating...

  3. Atmospheric Crude Oil Distillation Operable Capacity

    Gasoline and Diesel Fuel Update (EIA)

    U.S. Offshore U.S. State Offshore Federal Offshore U.S. Alaska Alaska Onshore Alaska Offshore Alaska State Offshore Arkansas California California Onshore California Offshore California State Offshore Federal Offshore California Colorado Federal Offshore Gulf of Mexico Federal Offshore Alabama Federal Offshore Louisiana Federal Offshore Texas Kansas Louisiana Louisiana Onshore Louisiana Offshore Louisiana State Offshore Montana New Mexico North Dakota Ohio Oklahoma Pennsylvania Texas Texas

  4. Total Number of Operable Refineries

    U.S. Energy Information Administration (EIA) Indexed Site

    Data Series: Total Number of Operable Refineries Number of Operating Refineries Number of Idle Refineries Atmospheric Crude Oil Distillation Operable Capacity (B/CD) Atmospheric Crude Oil Distillation Operating Capacity (B/CD) Atmospheric Crude Oil Distillation Idle Capacity (B/CD) Atmospheric Crude Oil Distillation Operable Capacity (B/SD) Atmospheric Crude Oil Distillation Operating Capacity (B/SD) Atmospheric Crude Oil Distillation Idle Capacity (B/SD) Vacuum Distillation Downstream Charge

  5. Atmospheric Radiation Measurement Climate Research Facility (ARM) | U.S.

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (Barrels per Calendar Day) Data Series: Total Number of Operable Refineries Number of Operating Refineries Number of Idle Refineries Atmospheric Crude Oil Distillation Operable Capacity (B/CD) Atmospheric Crude Oil Distillation Operating Capacity (B/CD) Atmospheric Crude Oil Distillation Idle Capacity (B/CD) Atmospheric Crude Oil Distillation Operable Capacity (B/SD) Atmospheric Crude Oil Distillation Operating Capacity (B/SD) Atmospheric Crude Oil Distillation Idle Capacity (B/SD) Vacuum

  6. Atmospheric Radiation Measurement Climate Research Facility Operations...

    Office of Scientific and Technical Information (OSTI)

    Title: Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly ... Atmospheric Radiation Measurement (ARM) Climate Research Facility fixed and mobile sites ...

  7. Atmospheric Radiation Measurement Climate Research Facility Operations...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    27 Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report ... DOESC-ARM-16-027 Atmospheric Radiation Measurement Climate Research Facility Operations ...

  8. Atmospheric Radiation Measurement Climate Research Facility Operations...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7 Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report ... DOESC-ARM-16-037 Atmospheric Radiation Measurement Climate Research Facility Operations ...

  9. Atmospheric Radiation Measurement Climate Research Facility Operations...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    01 Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report ... DOESC-ARM-16-001 Atmospheric Radiation Measurement Climate Research Facility Operations ...

  10. Atmospheric Radiation Measurement Climate Research Facility Operations...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    9 Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report ... DOESC-ARM-15-069 Atmospheric Radiation Measurement Climate Research Facility Operations ...

  11. Atmospheric Radiation Measurement Climate Research Facility Operations...

    Office of Scientific and Technical Information (OSTI)

    Title: Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly ... are collected and sent to the Data Management Facility (DMF) at Pacific Northwest ...

  12. Atmospheric Radiation Measurement Climate Research Facility Operations

    Office of Scientific and Technical Information (OSTI)

    Quarterly Report October 1-December 31, 2012 (Program Document) | SciTech Connect Program Document: Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report October 1-December 31, 2012 Citation Details In-Document Search Title: Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report October 1-December 31, 2012 Individual datastreams from instrumentation at the Atmospheric Radiation Measurement (ARM) Climate Research Facility

  13. Operating Experience Level 3, Atmospheric Dispersion Parameter...

    Broader source: Energy.gov (indexed) [DOE]

    5 OE-3 2015-02: Atmospheric Dispersion Parameter (xQ) for Calculation of Co-located Worker Dose This Operating Experience Level 3 (OE-3) document informs the complex of the...

  14. Improved oil refinery operations and cheaper crude oil to help reduce gasoline prices

    U.S. Energy Information Administration (EIA) Indexed Site

    Improved oil refinery operations and cheaper crude oil to help reduce gasoline prices U.S. gasoline prices are expected to fall as more oil refineries come back on line and crude oil prices decline. In its new monthly forecast, the U.S. Energy Information Administration expects pump prices will average $3.38 a gallon during the second half of this year. That's down from the current weekly price of $3.50. A recovery in oil refinery fuel production, particularly from facilities that were temporary

  15. U.S. Crude Oil Rotary Rigs in Operation (Number of Elements)

    Gasoline and Diesel Fuel Update (EIA)

    Crude Oil Export Policy EIA Energy Conference Jason Bordoff July 14, 2014 Washington, DC 420 West 118 th St, New York, NY 10027 | http://energypolicy.columbia.edu | @ColumbiaUEnergy * Crude transported by pipeline over federal rights-of-way (with exceptions). * Crude produced from OCS. * Crude from Naval Petroleum Reserve. Other restrictions (waived in the above cases) barring export of: Current Crude Export Law 2 * Shipments to Canada for consumption or use therein. * Crude exported from

  16. ROSE{reg_sign} - A flexible process for upgrading heavy crude, atmospheric residue, or vaccum residue

    SciTech Connect (OSTI)

    Lynch, K.Z.; Hood, H.L.; Gomez, O.

    1995-12-31

    The ROSE{reg_sign} Pilot Plant was used to evaluate various fractions of Boscan and Zuata heavy crude oils. The results demonstrated the ability of the ROSE process to remove asphaltene fractions using n-pentane, n-butane, or propane as the solvent while leaving behind an oil that has been greatly reduced in its metal, nitrogen, sulfur, and Conradson carbon contents. The recovered oil could then be used as feedstock to a conventional hydrotreater/FCC process combination. The flexibility of the process is evidenced by its ability to process various feeds. Because of this flexibility, the opportunity exists to use the ROSE process at a wellhead location to reduce the diluent requirements for making a suitable pipeline feed. This technology is also able to process changing feeds when upstream units in a refinery are down during major turnarounds, for example, or when there are problems with a vacuum tower or downstream unit.

  17. Atmospheric Radiation Measurement Program Climate Research Facility Operations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    9 Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report July 1-September 30, 2010 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or

  18. Atmospheric Radiation Measurement Program Climate Research Facility Operations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report October 1-December 31, 2010 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or

  19. Atmospheric Radiation Measurement Program Climate Research Facility Operations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8 Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report January 1-March 31, 2011 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or

  20. Atmospheric Radiation Measurement Program Climate Research Facility Operations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    9 Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report April 1-June 30, 2011 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents

  1. Atmospheric Radiation Measurement Program Climate Research Facility Operations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report July 1-September 30, 2011 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents

  2. Atmospheric Radiation Measurement Program Climate Research Facility Operations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report October 1-December 31, 2011 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents

  3. Atmospheric Radiation Measurement Program Climate Research Facility Operations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7 Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report January 1-March 31, 2012 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that

  4. Crude Oil Domestic Production

    U.S. Energy Information Administration (EIA) Indexed Site

    Data Series: Crude Oil Domestic Production Refinery Crude Oil Inputs Refinery Gross Inputs Refinery Operable Capacity (Calendar Day) Refinery Percent Operable Utilization Net Inputs of Motor Gasoline Blending Components Net Inputs of RBOB Blending Components Net Inputs of CBOB Blending Components Net Inputs of GTAB Blending Components Net Inputs of All Other Blending Components Net Inputs of Fuel Ethanol Net Production - Finished Motor Gasoline Net Production - Finished Motor Gasoline (Excl.

  5. Atmospheric Radiation Measurement program climate research facility operations quarterly report.

    SciTech Connect (OSTI)

    Sisterson, D. L.; Decision and Information Sciences

    2006-09-06

    Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year dating back to 1998. The U.S. Department of Energy requires national user facilities to report time-based operating data. The requirements concern the actual hours of operation (ACTUAL); the estimated maximum operation or uptime goal (OPSMAX), which accounts for planned downtime; and the VARIANCE [1-(ACTUAL/OPSMAX)], which accounts for unplanned downtime. The OPSMAX time for the third quarter for the Southern Great Plains (SGP) site is 2,074.80 hours (0.95 x 2,184 hours this quarter). The OPSMAX for the North Slope Alaska (NSA) locale is 1,965.60 hours (0.90 x 2,184), and that for the Tropical Western Pacific (TWP) locale is 1,856.40 hours (0.85 x 2,184). The OPSMAX time for the ARM Mobile Facility (AMF) is 2,074.80 hours (0.95 x 2,184). The differences in OPSMAX performance reflect the complexity of local logistics and the frequency of extreme weather events. It is impractical to measure OPSMAX for each instrument or data stream. Data availability reported here refers to the average of the individual, continuous data streams that have been received by the Archive. Data not at the Archive are caused by downtime (scheduled or unplanned) of the individual instruments. Therefore, data availability is directly related to individual instrument uptime. Thus, the average percent of data in the Archive

  6. Controlling vanadium from high metals crude oils

    SciTech Connect (OSTI)

    Golden, S.W.; Martin, G.R.

    1995-09-01

    Processing heavier high metals crude oils continues to be an objective of many refiners. Refiners manage the vanadium and other contaminants with hydroprocessing and FCC catalysts that are more tolerant to metals. Although hydroprocessing and FCC catalyst formulations are critical and will be required for the bulk of the metals removal, many times primary distillation impacts on vanadium are ignored. Distillation system designs can significantly impact the metals content of the gas oil pool or the total gas yields for a targeted metals level. Commercial experience shows that total gas oil metals to the hydroprocessing unit can be reduced by 20 to 40% for a given gas yield or the total gas oil yield can be increased for a given metals target by optimizing primary distillation system performance. Total gas oil vanadium content has varied from 5 to 2 weight ppm depending on crude oil metals level, unit process design, distillation unit operation, and equipment design. An actual example using a 22.0 API Bochequero Field blend will be used to illustrate the points covered. The source of the vanadium in the various gas oil pool components will be evaluated and show potential gas oil quality improvements based on primary distillation system design and operation modifications. In the example, the refiner processes 145,000 bpd of crude oil through a conventional integrated atmospheric/vacuum unit and processes the vacuum residue in a delayed coker. The gas oil blend streams consists of atmospheric gas oil, light vacuum gas oil, and heavy vacuum gas oil from the crude unit and heavy coker gas oil from the delayed coker. All the modifications which will be discussed have been operating successfully for several years.

  7. Crude Oil

    U.S. Energy Information Administration (EIA) Indexed Site

    Barrels) Product: Crude Oil Liquefied Petroleum Gases Distillate Fuel Oil Residual Fuel Oil Still Gas Petroleum Coke Marketable Petroleum Coke Catalyst Petroleum Coke Other Petroleum Products Natural Gas Coal Purchased Electricity Purchased Steam Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Area 2010 2011 2012 2013 2014 2015 View History U.S. 0 0 0 0 0 0 1986-2015 East Coast (PADD 1) 0 0 0 0

  8. World Crude Oil Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    World Crude Oil Prices (Dollars per Barrel) The data on this page are no longer available.

  9. Implications of Increasing U.S. Crude Oil Production

    U.S. Energy Information Administration (EIA) Indexed Site

    Implications of Increasing U.S. Crude Oil Production By John Powell June 18, 2013 U.S. crude oil production is up dramatically since 2010 and will continue to grow rapidly; this has implications for: John Powell June 18, 2013 2 * Refinery operations * Refinery investment * Logistics infrastructure investment * Exports of petroleum products * Exports of crude oil Increased U.S. crude oil production has resulted in: John Powell June 18, 2013 3 * Declines in U.S. crude imports * Changes to refinery

  10. US Crude oil exports

    Gasoline and Diesel Fuel Update (EIA)

    2014 EIA Energy Conference U.S. Crude Oil Exports July 14, 2014 By Lynn D. Westfall U.S. Energy Information Administration U.S. crude oil production has grown by almost 50% since ...

  11. Long-Term Operation Of Ground-Based Atmospheric Sensing Systems In The Tropical Western Pacific

    SciTech Connect (OSTI)

    Ivey, Mark; Jones, Larry J.; Porch, W. M.; Apple, Monty L.; Widener, Kevin B.

    2004-10-14

    Three semi-autonomous atmospheric sensing systems were installed in the tropical western Pacific region. The first of these Atmospheric Radiation and Cloud Stations (ARCS) began operation in 1996. Each ARCS is configured as a system-of-systems since it comprises an ensemble of independent instrument systems. The ARCS collect, process, and transmit large volumes of cloud, solar and thermal radiation, and meteorological data to support climate studies and climate-modeling improvements as part of the U.S Department of Energy’s Atmospheric and Radiation Measurement (ARM) Program. Data from these tropical ARCS stations have been used for satellite ground-truth data comparisons and validations, including comparisons for MTI and AQUA satellite data. Our experiences with these systems in the tropics led to modifications in their design. An ongoing international logistics effort is required to keep gigabytes per day of quality-assured data flowing to the ARM program’s archives. Design criteria, performance, communications methods, and the day-to-day logistics required to support long-term operations of ground-based remote atmospheric sensing systems are discussed. End-to-end data flow from the ARCS systems to the ARM Program archives is discussed.

  12. A comprehensive study of different gases in inductively coupled plasma torch operating at one atmosphere

    SciTech Connect (OSTI)

    Punjabi, Sangeeta B.; Joshi, N. K.; Mangalvedekar, H. A.; Lande, B. K.; Das, A. K.; Kothari, D. C.

    2012-01-15

    A numerical study is done to understand the possible operating regimes of RF-ICP torch (3 MHz, 50 kW) using different gases for plasma formation at atmospheric pressure. A two dimensional numerical simulation of RF-ICP torch using argon, nitrogen, oxygen, and air as plasma gas has been investigated using computational fluid dynamic (CFD) software fluent{sup (c)}. The operating parameters varied here are central gas flow, sheath gas flow, RF-power dissipated in plasma, and plasma gas. The temperature contours, flow field, axial, and radial velocity profiles were investigated under different operating conditions. The plasma resistance, inductance of the torch, and the heat distribution for various plasma gases have also been investigated. The plasma impedance of ICP torch varies with different operating parameters and plays an important role for RF oscillator design and power coupling. These studies will be useful to decide the design criteria for ICP torches required for different material processing applications.

  13. Crude Oil Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    Information AdministrationPetroleum Marketing Annual 2001 41 Table 21. Domestic Crude Oil First Purchase Prices (Dollars per Barrel) - Continued Year Month PAD District II...

  14. Crude Oil Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    Information AdministrationPetroleum Marketing Annual 1998 41 Table 21. Domestic Crude Oil First Purchase Prices (Dollars per Barrel) - Continued Year Month PAD District II...

  15. Crude Oil Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    Information AdministrationPetroleum Marketing Annual 1999 41 Table 21. Domestic Crude Oil First Purchase Prices (Dollars per Barrel) - Continued Year Month PAD District II...

  16. An early warning indicator for atmospheric blocking events using transfer operators

    SciTech Connect (OSTI)

    Tantet, Alexis Burgt, Fiona R. van der; Dijkstra, Henk A.

    2015-03-15

    The existence of persistent midlatitude atmospheric flow regimes with time-scales larger than 5–10 days and indications of preferred transitions between them motivates to develop early warning indicators for such regime transitions. In this paper, we use a hemispheric barotropic model together with estimates of transfer operators on a reduced phase space to develop an early warning indicator of the zonal to blocked flow transition in this model. It is shown that the spectrum of the transfer operators can be used to study the slow dynamics of the flow as well as the non-Markovian character of the reduction. The slowest motions are thereby found to have time scales of three to six weeks and to be associated with meta-stable regimes (and their transitions) which can be detected as almost-invariant sets of the transfer operator. From the energy budget of the model, we are able to explain the meta-stability of the regimes and the existence of preferred transition paths. Even though the model is highly simplified, the skill of the early warning indicator is promising, suggesting that the transfer operator approach can be used in parallel to an operational deterministic model for stochastic prediction or to assess forecast uncertainty.

  17. Wilmington crude oil and addendum

    SciTech Connect (OSTI)

    Not Available

    1983-03-29

    Ten (10) ampoules of the Wilmington crude oil material have been analyzed by gas chromatography/mass spectrometry (GC/MS). The measurements were made directly on samples of the diluted oil by GC/MS with selected ion monitoring (SIM). The mass spectrometer was operated in the chemical ionization mode using methane as the reagent gas, and the method of internal standards was used for the quantitative measurements. The analytes determined in the Wilmington crude oil are shown in Table 1. For most of the analytes, the quasi-molecular ion (M+H)/sup +/ was the species on which the SIM measurements were made. For measurements on the second set of ampoules, m/z 252 (M)/sup +/ was monitored for the benzo(a)pyrene, benzo(e)pyrene, and perylene. The ion(s) monitored for each of the analytes is also shown in Table 1. 4 tabs.

  18. Crude Oil Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    20.86 20.67 20.47 20.24 20.32 19.57 See footnotes at end of table. 21. Domestic Crude Oil First Purchase Prices Energy Information Administration Petroleum Marketing Annual...

  19. Crude Oil Characteristics Research

    Broader source: Energy.gov (indexed) [DOE]

    SAE Plan June 29, 2015 Page 1 Crude Oil Characteristics Research Sampling, Analysis and Experiment (SAE) Plan The U.S. is experiencing a renaissance in oil and gas production. The ...

  20. Assays for important Mexican crudes updated

    SciTech Connect (OSTI)

    Manriguez, L.; Moreno, A.; Anaya, C.G. )

    1991-03-04

    Compared to Isthmus and Maya, Olmeca crude is the lightest of the Mexican export. It has fewer contaminants, and its 540{degrees} C. TBP distillation produces the largest quantity of distillate. The Olmeca fractions also have the lowest total sulfur content. The Maya crude is heavy, with an API gravity of 22.2{sup {degrees}}. It has a high contaminant content that induces corrosion in process equipment and causes low running times in thermal cracking units, such as visbreakers and cokers. A proposed refining scheme for the bottom of the Maya barrel consists of atmospheric distillation, vacuum distillation, the Impex process, and visbreaking.

  1. Atmospheric Radiation Measurement program climate research facility operations quarterly report October 1 - December 31, 2008.

    SciTech Connect (OSTI)

    Sisterson, D. L.

    2009-01-15

    Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, they calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998. The US Department of Energy (DOE) requires national user facilities to report time-based operating data. The requirements concern the actual hours of operation (ACTUAL); the estimated maximum operation or uptime goal (OPSMAX), which accounts for planned downtime; and the VARIANCE [1-(ACTUAL/OPSMAX)], which accounts for unplanned downtime. The OPSMAX time for the first quarter of FY 2009 for the Southern Great Plains (SGP) site is 2,097.60 hours (0.95 x 2,208 hours this quarter). The OPSMAX for the North Slope Alaska (NSA) locale is 1,987.20 hours (0.90 x 2,208), and for the Tropical Western Pacific (TWP) locale is 1,876.80 hours (0.85 x 2,208). The OPSMAX time for the ARM Mobile Facility (AMF) is not reported this quarter because the data have not yet been released from China to the DMF for processing. The differences in OPSMAX performance reflect the complexity of local logistics and the frequency of extreme weather events. It is impractical to measure OPSMAX for each instrument or data stream. Data availability reported here refers to the average of the individual, continuous data streams that have been received by the Archive. Data not at the Archive are caused by downtime (scheduled or unplanned) of the individual instruments. Therefore, data availability is

  2. Atmospheric Radiation Measurement program climate research facility operations quarterly report January 1 - March 31, 2008.

    SciTech Connect (OSTI)

    Sisterson, D. L.

    2008-05-22

    Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998. Table 1 shows the accumulated maximum operation time (planned uptime), actual hours of operation, and variance (unplanned downtime) for the period January 1 - March 31, 2008, for the fixed sites. The AMF is being deployed to China and is not in operation this quarter. The second quarter comprises a total of 2,184 hours. The average as well as the individual site values exceeded our goal this quarter. The Site Access Request System is a web-based database used to track visitors to the fixed and mobile sites, all of which have facilities that can be visited. The NSA locale has the Barrow and Atqasuk sites. The SGP site has a central facility, 23 extended facilities, 4 boundary facilities, and 3 intermediate facilities. The TWP locale has the Manus, Nauru, and Darwin sites. FKB represents the AMF statistics for the Haselbach, Germany, past deployment in 2007. NIM represents the AMF statistics for the Niamey, Niger, Africa, past deployment in 2006. PYE represents just the AMF Archive statistics for the Point Reyes, California, past deployment in 2005. In addition, users who do not want to wait for data to be provided through the ACRF Archive can request a research account on the local site data system. The seven computers for the research accounts are located at the Barrow

  3. Atmospheric Radiation Measurement program climate research facility operations quarterly report October 1 - December 31, 2007.

    SciTech Connect (OSTI)

    Sisterson, D. L.

    2008-01-24

    Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998. Table 1 shows the accumulated maximum operation time (planned uptime), actual hours of operation, and variance (unplanned downtime) for the period October 1 - December 31, 2007, for the fixed sites and the mobile site. The AMF has been deployed to Germany and this was the final operational quarter. The first quarter comprises a total of 2,208 hours. Although the average exceeded our goal this quarter, a series of severe weather events (i.e., widespread ice storms) disrupted utility services, which affected the SGP performance measures. Some instruments were covered in ice and power and data communication lines were down for more than 10 days in some areas of Oklahoma and Kansas, which resulted in lost data at the SGP site. The Site Access Request System is a web-based database used to track visitors to the fixed sites, all of which have facilities that can be visited. The NSA locale has the Barrow and Atqasuk sites. The SGP site has a central facility, 23 extended facilities, 4 boundary facilities, and 3 intermediate facilities. The TWP locale has the Manus, Nauru, and Darwin sites. The AMF completed its mission at the end of this quarter in Haselback, Germany (FKB designation). NIM represents the AMF statistics for the Niamey, Niger, Africa, past deployment in 2006. PYE

  4. Crude butadiene to styrene process

    SciTech Connect (OSTI)

    Dixit, R.S.; Murchison, C.B.

    1994-12-31

    One of the natural by-products of ethylene manufacture is a mixture of C4`s containing butadiene, butenes and butane. This C4 stream is the predominant feed stock for producing pure butadiene by an extraction process. The demand growth for ethylene far exceeds that for butadiene resulting in a world wide surplus of butadiene. The ethylene producer has a number of options available to process the crude C4 stream if the market price does not justify isolation of the pure butadiene. The first option is recycle the crude C4 stream back to the ethylene cracker and co-crack with fresh feed. A second option that has become popular in the last few years has been the partial or complete hydrogenation of the butadiene and butenes in the crude C4 stream. Partial or selective hydrogenation is preferred when there is a market for iso-butene which finds use in MTBE manufacture. Full hydrogenation is used when cracker feed stock is limited, there is excess hydrogen and no cost effective outlets exist for butenes. Full hydrogenation produces butanes that are excellent crack feed stock. Both selective and full hydrogenation require low to moderate capital expenditure. Both of these options are currently being practiced to remove excess butadiene from the market. The crude C4 to styrene process developed by Dow offers an attractive, high value alternative to an olefins producer. This process selectively upgrades butadiene in C4 streams to styrene monomer and produces raffinate-1 as a by-product. The process is currently being operated at the 18--40 lb/hr scale in a Dow Texas pilot plant.

  5. Atmospheric Radiation Measurement program climate research facility operations quarterly report July 1 - September 30, 2008.

    SciTech Connect (OSTI)

    Sisterson, D. L.

    2008-10-08

    Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998. Table 1 shows the accumulated maximum operation time (planned uptime), actual hours of operation, and variance (unplanned downtime) for the period July 1 - September 30, 2008, for the fixed sites. The AMF has been deployed to China, but the data have not yet been released. The fourth quarter comprises a total of 2,208 hours. The average exceeded our goal this quarter. The Site Access Request System is a web-based database used to track visitors to the fixed and mobile sites, all of which have facilities that can be visited. The NSA locale has the Barrow and Atqasuk sites. The SGP site has a central facility, 23 extended facilities, 4 boundary facilities, and 3 intermediate facilities. The TWP locale has the Manus, Nauru, and Darwin sites. HFE represents the AMF statistics for the Shouxian, China, deployment in 2008. FKB represents the AMF statistics for the Haselbach, Germany, past deployment in 2007. NIM represents the AMF statistics for the Niamey, Niger, Africa, past deployment in 2006. PYE represents just the AMF Archive statistics for the Point Reyes, California, past deployment in 2005. In addition, users who do not want to wait for data to be provided through the ACRF Archive can request a research account on the local site data system. The seven computers for the

  6. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report. October 1 - December 31, 2010.

    SciTech Connect (OSTI)

    Sisterson, D. L.

    2011-02-01

    Individual raw datastreams from instrumentation at the Atmospheric Radiation Measurement (ARM) Climate Research Facility fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near-real time. Raw and processed data are then sent approximately daily to the ARM Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of processed data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual datastream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998. The U.S. Department of Energy (DOE) requires national user facilities to report time-based operating data. The requirements concern the actual hours of operation (ACTUAL); the estimated maximum operation or uptime goal (OPSMAX), which accounts for planned downtime; and the VARIANCE [1 - (ACTUAL/OPSMAX)], which accounts for unplanned downtime. The OPSMAX time for the first quarter of FY2010 for the Southern Great Plains (SGP) site is 2097.60 hours (0.95 x 2208 hours this quarter). The OPSMAX for the North Slope Alaska (NSA) locale is 1987.20 hours (0.90 x 2208) and for the Tropical Western Pacific (TWP) locale is 1876.80 hours (0.85 x 2208). The first ARM Mobile Facility (AMF1) deployment in Graciosa Island, the Azores, Portugal, continued through this quarter, so the OPSMAX time this quarter is 2097.60 hours (0.95 x 2208). The second ARM Mobile Facility (AMF2) began deployment this quarter to Steamboat Springs, Colorado. The experiment officially began November 15, but most of the instruments were up and running by November 1. Therefore, the OPSMAX time for the AMF2 was 1390.80 hours (.95 x 1464 hours) for November and December (61 days). The differences in OPSMAX performance reflect the complexity of local logistics and the frequency of extreme weather events. It

  7. Atmospheric Radiation Measurement program climate research facility operations quarterly report July 1 - Sep. 30, 2009.

    SciTech Connect (OSTI)

    Sisterson, D. L.

    2009-10-15

    Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near-real time. Raw and processed data are then sent approximately daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998. The U.S. Department of Energy (DOE) requires national user facilities to report time-based operating data. The requirements concern the actual hours of operation (ACTUAL); the estimated maximum operation or uptime goal (OPSMAX), which accounts for planned downtime; and the VARIANCE [1 - (ACTUAL/OPSMAX)], which accounts for unplanned downtime. The OPSMAX time for the fourth quarter of FY 2009 for the Southern Great Plains (SGP) site is 2,097.60 hours (0.95 ? 2,208 hours this quarter). The OPSMAX for the North Slope Alaska (NSA) locale is 1,987.20 hours (0.90 ? 2,208) and for the Tropical Western Pacific (TWP) locale is 1,876.8 hours (0.85 ? 2,208). The ARM Mobile Facility (AMF) was officially operational May 1 in Graciosa Island, the Azores, Portugal, so the OPSMAX time this quarter is 2,097.60 hours (0.95 x 2,208). The differences in OPSMAX performance reflect the complexity of local logistics and the frequency of extreme weather events. It is impractical to measure OPSMAX for each instrument or data stream. Data availability reported here refers to the average of the individual, continuous data streams that have been received by the Archive. Data not at the Archive result from downtime (scheduled or unplanned) of the individual instruments. Therefore, data

  8. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report October 1 - December 31, 2005

    SciTech Connect (OSTI)

    Sisterson, DL

    2005-12-31

    Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year dating back to 1998. The U.S. Department of Energy requires national user facilities to report time-based operating data. The requirements concern the actual hours of operation (ACTUAL); the estimated maximum operation or uptime goal (OPSMAX), which accounts for planned downtime; and the VARIANCE [1 – (ACTUAL/OPSMAX)], which accounts for unplanned downtime. The OPSMAX time for the third quarter for the Southern Great Plains (SGP) site is 2,097.6 hours (0.95 × 2,208 hours this quarter). The OPSMAX for the North Slope of Alaska (NSA) locale is 1,987.2 hours (0.90 × 2,208), and that for the Tropical Western Pacific (TWP) locale is 1,876.8 hours (0.85 × 2,208). The OPSMAX time for the ARM Mobile Facility (AMF) is 2,097.6 hours (0.95 × 2,208). The differences in OPSMAX performance reflect the complexity of local logistics and the frequency of extreme weather events. It is impractical to measure OPSMAX for each instrument or data stream. Data availability reported here refers to the average of the individual, continuous data streams that have been received by the ACRF Archive. Data not at the Archive are caused by downtime (scheduled or unplanned) of the individual instruments. Therefore, data availability is directly related to individual instrument uptime. Thus, the average percent

  9. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report October 1 - December 31, 2004

    SciTech Connect (OSTI)

    Sisterson, DL

    2004-12-31

    Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year dating back to 1998. The United States Department of Energy requires national user facilities to report time-based operating data. The requirements concern the actual hours of operation (ACTUAL); the estimated maximum operation or uptime goal (OPSMAX), which accounts for planned downtime; and the VARIANCE [1 – (ACTUAL/OPSMAX)], which accounts for unplanned downtime. The annual OPSMAX time for the Southern Great Plains (SGP) site is 8,322 hours per year (0.95 × 8,760, the number hours in a year, not including leap year). The annual OPSMAX for the North Slope Alaska (NSA) site is 7,884 hours per year (0.90 × 8,760), and that for the Tropical Western Pacific (TWP) site is 7,446 hours per year (0.85 × 8,760). The differences in OPSMAX performance reflect the complexity of local logistics and the frequency of extreme weather events. It is impractical to measure OPSMAX for each instrument or data stream. Data availability reported here refers to the average of the individual, continuous data streams that have been received by the ACRF Archive. Data not at the Archive are caused by downtime (scheduled or unplanned) of the individual instruments. Therefore, data availability is directly related to individual instrument uptime. Thus, the average percent of data in the Archive represents the

  10. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report January 1 - March 31, 2005

    SciTech Connect (OSTI)

    Sisterson, DL

    2005-03-31

    Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year dating back to 1998. The United States Department of Energy requires national user facilities to report time-based operating data. The requirements concern the actual hours of operation (ACTUAL); the estimated maximum operation or uptime goal (OPSMAX), which accounts for planned downtime; and the VARIANCE [1 – (ACTUAL/OPSMAX)], which accounts for unplanned downtime. The OPSMAX time for this second quarter for the Southern Great Plains (SGP) site is 2052 hours (0.95 × 2,160 hours this quarter). The annual OPSMAX for the North Slope Alaska (NSA) site is 1944 hours (0.90 × 2,160), and that for the Tropical Western Pacific (TWP) site is 1836 hours (0.85 × 2,160). The differences in OPSMAX performance reflect the complexity of local logistics and the frequency of extreme weather events. It is impractical to measure OPSMAX for each instrument or data stream. Data availability reported here refers to the average of the individual, continuous data streams that have been received by the ACRF Archive. Data not at the Archive are caused by downtime (scheduled or unplanned) of the individual instruments. Therefore, data availability is directly related to individual instrument uptime. Thus, the average percent of data in the Archive represents the average percent of the time (24 hours per day, 90

  11. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report January-March 2006

    SciTech Connect (OSTI)

    Sisterson, DL

    2006-03-31

    Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year; and (2) site and fiscal year dating back to 1998. The U.S. Department of Energy requires national user facilities to report time-based operating data. The requirements concern the actual hours of operation (ACTUAL); the estimated maximum operation or uptime goal (OPSMAX), which accounts for planned downtime; and the VARIANCE [1 – (ACTUAL/OPSMAX)], which accounts for unplanned downtime. The OPSMAX time for the second quarter for the Southern Great Plains (SGP) site is 2,052 hours (0.95 × 2,160 hours this quarter). The OPSMAX for the North Slope Alaska (NSA) locale is 1,944 hours (0.90 × 2,160), and that for the Tropical Western Pacific (TWP) locale is 1,836 hours (0.85 × 2,160). The OPSMAX time for the ARM Mobile Facility (AMF) is 2,052 hours (0.95 × 2,160). The differences in OPSMAX performance reflect the complexity of local logistics and the frequency of extreme weather events. It is impractical to measure OPSMAX for each instrument or data stream. Data availability reported here refers to the average of the individual, continuous data streams that have been received by the Archive. Data not at the Archive are caused by downtime (scheduled or unplanned) of the individual instruments. Therefore, data availability is directly related to individual instrument uptime. Thus, the average percent of data in the

  12. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report July 1 – September 30, 2008

    SciTech Connect (OSTI)

    Sisterson, DL

    2008-09-30

    Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998. The U.S. Department of Energy (DOE) requires national user facilities to report time-based operating data. The requirements concern the actual hours of operation (ACTUAL); the estimated maximum operation or uptime goal (OPSMAX), which accounts for planned downtime; and the VARIANCE [1 – (ACTUAL/OPSMAX)], which accounts for unplanned downtime. The OPSMAX time for the fourth quarter of FY 2008 for the Southern Great Plains (SGP) site is 2,097.60 hours (0.95 x 2,208 hours this quarter). The OPSMAX for the North Slope Alaska (NSA) locale is 1,987.20 hours (0.90 x 2,208), and for the Tropical Western Pacific (TWP) locale is 1,876.80 hours (0.85 x 2,208). The OPSMAX time for the ARM Mobile Facility (AMF) is not reported this quarter because the data have not yet been released from China to the DMF for processing. The differences in OPSMAX performance reflect the complexity of local logistics and the frequency of extreme weather events. It is impractical to measure OPSMAX for each instrument or data stream. Data availability reported here refers to the average of the individual, continuous data streams that have been received by the Archive. Data not at the Archive are caused by downtime (scheduled or unplanned) of the individual instruments. Therefore, data availability is

  13. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report April 1 - June 30, 2005

    SciTech Connect (OSTI)

    DL Sisterson

    2005-06-30

    Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year dating back to 1998. The United States Department of Energy requires national user facilities to report time-based operating data. The requirements concern the actual hours of operation (ACTUAL); the estimated maximum operation or uptime goal (OPSMAX), which accounts for planned downtime; and the VARIANCE [1 – (ACTUAL/OPSMAX)], which accounts for unplanned downtime. The OPSMAX time for the third quarter for the Southern Great Plains (SGP) site is 2,074.8 hours (0.95 × 2,184 hours this quarter). The annual OPSMAX for the North Slope Alaska (NSA) site is 1,965.6 hours (0.90 × 2,184), and that for the Tropical Western Pacific (TWP) site is 1,856.4 hours (0.85 × 2,184). The OPSMAX time for the ARM Mobile Facility (AMF) is 2,074.8 (0.95 × 2,184). The differences in OPSMAX performance reflect the complexity of local logistics and the frequency of extreme weather events. It is impractical to measure OPSMAX for each instrument or data stream. Data availability reported here refers to the average of the individual, continuous data streams that have been received by the ACRF Archive. Data not at the Archive are caused by downtime (scheduled or unplanned) of the individual instruments. Therefore, data availability is directly related to individual instrument uptime. Thus, the average percent of data in

  14. Crude Oil Analysis Database

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Shay, Johanna Y.

    The composition and physical properties of crude oil vary widely from one reservoir to another within an oil field, as well as from one field or region to another. Although all oils consist of hydrocarbons and their derivatives, the proportions of various types of compounds differ greatly. This makes some oils more suitable than others for specific refining processes and uses. To take advantage of this diversity, one needs access to information in a large database of crude oil analyses. The Crude Oil Analysis Database (COADB) currently satisfies this need by offering 9,056 crude oil analyses. Of these, 8,500 are United States domestic oils. The database contains results of analysis of the general properties and chemical composition, as well as the field, formation, and geographic location of the crude oil sample. [Taken from the Introduction to COAMDATA_DESC.pdf, part of the zipped software and database file at http://www.netl.doe.gov/technologies/oil-gas/Software/database.html] Save the zipped file to your PC. When opened, it will contain PDF documents and a large Excel spreadsheet. It will also contain the database in Microsoft Access 2002.

  15. Atmospheric Radiation Measurement program climate research facility operations quarterly report April 1 - June 30, 2007.

    SciTech Connect (OSTI)

    Sisterson, D. L.

    2007-07-26

    Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998. The U.S. Department of Energy requires national user facilities to report time-based operating data. The requirements concern the actual hours of operation (ACTUAL); the estimated maximum operation or uptime goal (OPSMAX), which accounts for planned downtime; and the VARIANCE [1 - (ACTUAL/OPSMAX)], which accounts for unplanned downtime. The OPSMAX time for the third quarter of FY 2007 for the Southern Great Plains (SGP) site is 2,074.8 hours (0.95 x 2,184 hours this quarter). The OPSMAX for the North Slope Alaska (NSA) locale is 1,965.6 hours (0.90 x 2,184), and that for the Tropical Western Pacific (TWP) locale is 1,856.4 hours (0.85 x 2,184). The OPSMAX time for the ARM Mobile Facility (AMF) is 2,074.8 hours (0.95 x 2,184). The differences in OPSMAX performance reflect the complexity of local logistics and the frequency of extreme weather events. It is impractical to measure OPSMAX for each instrument or data stream. Data availability reported here refers to the average of the individual, continuous data streams that have been received by the Archive. Data not at the Archive are caused by downtime (scheduled or unplanned) of the individual instruments. Therefore, data availability is directly related to individual instrument uptime. Thus, the average percent of data in

  16. Electrical studies and plasma characterization of an atmospheric pressure plasma jet operated at low frequency

    SciTech Connect (OSTI)

    Giuliani, L.; Xaubet, M.; Grondona, D.; Minotti, F.; Kelly, H.

    2013-06-15

    Low-temperature, high-pressure plasma jets have an extensive use in medical and biological applications. Much work has been devoted to study these applications while comparatively fewer studies appear to be directed to the discharge itself. In this work, in order to better understand the kind of electrical discharge and the plasma states existing in those devices, a study of the electrical characteristics of a typical plasma jet, operated at atmospheric pressure, using either air or argon, is reported. It is found that the experimentally determined electrical characteristics are consistent with the model of a thermal arc discharge, with a highly collisional cathode sheet. The only exception is the case of argon at the smallest electrode separation studied, around 1 mm in which case the discharge is better modeled as either a non-thermal arc or a high-pressure glow. Also, variations of the electrical behavior at different gas flow rates are interpreted, consistently with the arc model, in terms of the development of fluid turbulence in the external jet.

  17. Atmospheric Radiation Measurement program climate research facility operations quarterly report January 1 - March 31, 2009.

    SciTech Connect (OSTI)

    Sisterson, D. L.

    2009-04-23

    Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998. The U.S. Department of Energy (DOE) requires national user facilities to report time-based operating data. The requirements concern the actual hours of operation (ACTUAL); the estimated maximum operation or uptime goal (OPSMAX), which accounts for planned downtime; and the VARIANCE [1 - (ACTUAL/OPSMAX)], which accounts for unplanned downtime. The OPSMAX time for the second quarter of FY 2009 for the Southern Great Plains (SGP) site is 2,052.00 hours (0.95 x 2,160 hours this quarter). The OPSMAX for the North Slope Alaska (NSA) locale is 1,944.00 hours (0.90 x 2,160), and for the Tropical Western Pacific (TWP) locale is 1,836.00 hours (0.85 x 2,160). The OPSMAX time for the ARM Mobile Facility (AMF) is not reported this quarter because not all of the metadata have been acquired that are used to generate this metric. The differences in OPSMAX performance reflect the complexity of local logistics and the frequency of extreme weather events. It is impractical to measure OPSMAX for each instrument or data stream. Data availability reported here refers to the average of the individual, continuous data streams that have been received by the Archive. Data not at the Archive are caused by downtime (scheduled or unplanned) of the individual instruments. Therefore, data availability

  18. Crude Oil Characteristics Research

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SAE Plan June 29, 2015 Page 1 Crude Oil Characteristics Research Sampling, Analysis and Experiment (SAE) Plan The U.S. is experiencing a renaissance in oil and gas production. The Energy Information Administration projects that U.S. oil production will reach 9.3 million barrels per day in 2015 - the highest annual average level of oil production since 1972. This domestic energy boom is due primarily to new unconventional production of light sweet crude oil from tight-oil formations like the

  19. Costs of Imported Crude Oil for Selected Crude Streams

    U.S. Energy Information Administration (EIA) Indexed Site

    18.19 17.14 18.84 20.97 See footnotes at end of table. 29. F.O.B. Costs of Imported Crude Oil for Selected Crude Streams Energy Information Administration Petroleum Marketing...

  20. Competitiveness of Mexican crude

    SciTech Connect (OSTI)

    Not Available

    1983-12-28

    Mexico is under great pressure to maintain oil export revenue levels if it is to avoid a reversal in its economic recovery program. While the country's vulnerability to a price plunge is also applicable to OPEC countries, the North Sea producers, and others, Mexico does have an ace. The ace is that its heavier, metals-ridden and sulfur-laden Maya crude, which had to be pushed on customers until about 1981, is now in strong demand. Comparisons are presented of the market value of five crude oils refined in the US Gulf Coast: West Texas Intermediate (or WTI, a 40/sup 0/ API, light), Arabian Light and Isthmus (both 34/sup 0/ medium-light), Alaska North Slope (or ANS, a 27/sup 0/ API, a medium), and Maya (22/sup 0/ API, medium-heavy). In this mix, the heavier the crude, the greater is the refining margin (except for Arabian Light, for which freight cost and product yield provide lower margins than those derived from WTI). The sacrifice by OPEC and other producers cutting crude oil prices was to the benefit to refiners' improved margins during the first half of 1983. Those cuts were on the lighter-quality oils. But prices for heavier Venezuelan, Californian, and Mexican crudes increased during the second half of 1983, due to developing refinery technologies in extracting favorable product yields from them. This issue of Energy Detente presents their fuel price/tax series and industrial fuel prices for December 1983 for countries of the Western Hemisphere.

  1. Atmospheric Radiation Measurement Program Climate Research Facility Operation quarterly report July 1 - September 30, 2010.

    SciTech Connect (OSTI)

    Sisterson, D. L.

    2010-10-26

    Individual raw datastreams from instrumentation at the Atmospheric Radiation Measurement (ARM) Climate Research Facility fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent approximately daily to the ARM Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual datastream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998. The U.S. Department of Energy (DOE) requires national user facilities to report time-based operating data. The requirements concern the actual hours of operation (ACTUAL); the estimated maximum operation or uptime goal (OPSMAX), which accounts for planned downtime; and the VARIANCE [1-(ACTUAL/OPSMAX)], which accounts for unplanned downtime. The OPSMAX time for the fourth quarter of FY2010 for the Southern Great Plains (SGP) site is 2097.60 hours (0.95 2208 hours this quarter). The OPSMAX for the North Slope of Alaska (NSA) locale is 1987.20 hours (0.90 2208) and for the Tropical Western Pacific (TWP) locale is 1876.80 hours (0.85 2208). The first ARM Mobile Facility (AMF1) deployment in Graciosa Island, the Azores, Portugal, continues, so the OPSMAX time this quarter is 2097.60 hours (0.95 x 2208). The differences in OPSMAX performance reflect the complexity of local logistics and the frequency of extreme weather events. It is impractical to measure OPSMAX for each instrument or datastream. Data availability reported here refers to the average of the individual, continuous datastreams that have been received by the Archive. Data not at the Archive are caused by downtime (scheduled or unplanned) of the individual instruments. Therefore, data availability is directly related to

  2. Atmospheric Radiation Measurement program climate research facility operations quarterly report October 1 - December 31, 2006.

    SciTech Connect (OSTI)

    Sisterson, D. L.

    2007-03-14

    Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year dating back to 1998. Table 1 shows the accumulated maximum operation time (planned uptime), the actual hours of operation, and the variance (unplanned downtime) for the period October 1 through December 31, 2006, for the fixed and mobile sites. Although the AMF is currently up and running in Niamey, Niger, Africa, the AMF statistics are reported separately and not included in the aggregate average with the fixed sites. The first quarter comprises a total of 2,208 hours. For all fixed sites, the actual data availability (and therefore actual hours of operation) exceeded the individual (and well as aggregate average of the fixed sites) operational goal for the first quarter of fiscal year (FY) 2007. The Site Access Request System is a web-based database used to track visitors to the fixed sites, all of which have facilities that can be visited. The NSA locale has the Barrow and Atqasuk sites. The SGP site has a Central Facility, 23 extended facilities, 4 boundary facilities, and 3 intermediate facilities. The TWP locale has the Manus, Nauru, and Darwin sites. NIM represents the AMF statistics for the current deployment in Niamey, Niger, Africa. PYE represents the AMF statistics for the Point Reyes, California, past deployment in 2005. In addition, users who do not want to wait for data to be

  3. Development of reduced crude cracking catalysts

    SciTech Connect (OSTI)

    Hettinger, W.P. Jr. )

    1987-08-01

    In 1974 OPEC imposed an embargo on oil to the United States and caused a rapid rise in the price of a barrel of oil. At the time of the embargo, Ashland imported a considerable portion of its oil from the Middle East, thus raising the question of oil availability. As the problem increased in severity, Messrs. George Meyer, Oliver Zandona and Llyod Busch, began to explore alternative ways of squeezing more product from a given barrel of crude. After considering many alternatives, they arrived at the innovative thought that it might be possible to catalytically crack the 1050{degree}F plus fraction of the barrel directly to gasoline which would in effect, give them an additional volume of crude oil. Also, if vacuum fractionation were eliminated and if the entire 650{degree}F plus (reduced crude) portion of the barrel processed, this would further reduce operating costs. With these objectives and some new process innovations in mind, they began reduced crude cracking experimentation in a small 12,000 B/D FCC operating unit at Louisville. It was from these goals, concepts and a small operating unit, that the RCC process was born.

  4. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report. October 1 - December 31, 2009.

    SciTech Connect (OSTI)

    D. L. Sisterson

    2010-01-12

    Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent approximately daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998. The U.S. Department of Energy (DOE) requires national user facilities to report time-based operating data. The requirements concern the actual hours of operation (ACTUAL); the estimated maximum operation or uptime goal (OPSMAX), which accounts for planned downtime; and the VARIANCE [1 - (ACTUAL/OPSMAX)], which accounts for unplanned downtime. The OPSMAX time for the first quarter of FY 2010 for the North Slope Alaska (NSA) locale is 1,987.20 hours (0.90 x 2,208); for the Southern Great Plains (SGP) site is 2,097.60 hours (0.95 x 2,208); and for the Tropical Western Pacific (TWP) locale is 1,876.8 hours (0.85 x 2,208). The ARM Mobile Facility (AMF) deployment in Graciosa Island, the Azores, Portugal, continues; its OPSMAX time this quarter is 2,097.60 hours (0.95 x 2,208). The differences in OPSMAX performance reflect the complexity of local logistics and the frequency of extreme weather events. It is impractical to measure OPSMAX for each instrument or data stream. Data availability reported here refers to the average of the individual, continuous data streams that have been received by the Archive. Data not at the Archive are the result of downtime (scheduled or unplanned) of the individual instruments. Therefore, data availability is directly related to

  5. Operating Experience Level 3, Atmospheric Dispersion Parameter (x/Q) for Calculation of Co-located Worker Dose

    Broader source: Energy.gov [DOE]

    This Operating Experience Level 3 (OE-3) document informs the complex of the issuance of a technical document on the basis for the default atmospheric dispersion parameter (x/Q) used to determine co¬-located worker dose in accident analysis calculations. It also provides recommendations for ensuring an appropriate x/Q is used where the default x/Q may not result in a conservative estimate of dispersion.

  6. Crude Oil Prices Table 21. Domestic Crude Oil First Purchase...

    U.S. Energy Information Administration (EIA) Indexed Site

    Information Administration Petroleum Marketing Annual 1995 41 Table 21. Domestic Crude Oil First Purchase Prices (Dollars per Barrel) - Continued Year Month PAD District II...

  7. Landed Costs of Imported Crude for Selected Crude Streams

    U.S. Energy Information Administration (EIA) Indexed Site

    Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Crude Stream Oct-15 Nov-15 Dec-15 Jan-16 Feb-16 Mar-16 View History ...

  8. Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report October 1–December 31, 2012

    SciTech Connect (OSTI)

    Voyles, JW

    2013-01-11

    Individual datastreams from instrumentation at the Atmospheric Radiation Measurement (ARM) Climate Research Facility fixed and mobile research sites are collected and routed to the Data Management Facility (DMF) for processing in near-real-time. Instrument and processed data are then delivered approximately daily to the ARM Data Archive, where they are made freely available to the research community. For each instrument, we calculate the ratio of the actual number of processed data records received daily at the Data Archive to the expected number of data records. The results are tabulated by (1) individual datastream, site, and month for the current year and (2) site and fiscal year dating back to 1998.

  9. Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report July 1–September 30, 2012

    SciTech Connect (OSTI)

    Voyles, JW

    2012-10-10

    Individual datastreams from instrumentation at the Atmospheric Radiation Measurement (ARM) Climate Research Facility fixed and mobile research sites are collected and routed to the Data Management Facility (DMF) for processing in near-real-time. Instrument and processed data are then delivered approximately daily to the ARM Data Archive, where they are made freely available to the research community. For each instrument, we calculate the ratio of the actual number of processed data records received daily at the Data Archive to the expected number of data records. The results are tabulated by (1) individual datastream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  10. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report July 1 – September 30, 2009

    SciTech Connect (OSTI)

    DL Sisterson

    2009-10-15

    Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data then are sent approximately daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by 1) individual data stream, site, and month for the current year and 2) site and fiscal year (FY) dating back to 1998.

  11. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report - July 1 - September 30, 2008

    SciTech Connect (OSTI)

    DL Sisterson

    2008-09-30

    Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  12. Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report October 1–December 31, 2011

    SciTech Connect (OSTI)

    Voyles, JW

    2012-01-09

    Individual raw datastreams from instrumentation at the Atmospheric Radiation Measurement (ARM) Climate Research Facility fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent approximately daily to the ARM Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of processed data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual datastream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  13. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report January 1 – March 31, 2007

    SciTech Connect (OSTI)

    DL Sisterson

    2007-04-01

    Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  14. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report April 1 - June 30, 2007

    SciTech Connect (OSTI)

    DL Sisterson

    2007-07-01

    Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  15. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report - January 1 - March 31, 2008

    SciTech Connect (OSTI)

    Sisterson, DL

    2008-04-01

    Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  16. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report January 1 - March 31, 2009

    SciTech Connect (OSTI)

    DL Sisterson

    2009-03-17

    Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  17. Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report July 1–September 30, 2011

    SciTech Connect (OSTI)

    Voyles, JW

    2011-10-10

    Individual raw datastreams from instrumentation at the Atmospheric Radiation Measurement (ARM) Climate Research Facility fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent approximately daily to the ARM Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of processed data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual datastream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  18. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report: October 1 - December 31, 2010

    SciTech Connect (OSTI)

    Sisterson, DL

    2011-03-02

    Individual raw datastreams from instrumentation at the Atmospheric Radiation Measurement (ARM) Climate Research Facility fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent approximately daily to the ARM Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of processed data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual datastream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  19. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report October 1 - December 31, 2007

    SciTech Connect (OSTI)

    DL Sisterson

    2008-01-08

    Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  20. Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report January 1–March 31, 2012

    SciTech Connect (OSTI)

    Voyles, JW

    2012-04-13

    Individual raw datastreams from instrumentation at the Atmospheric Radiation Measurement (ARM) Climate Research Facility fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent approximately daily to the ARM Data Archive, where they are made available to the research community. For each instrument, we calculate the ratio of the actual number of processed data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual datastream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  1. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report July 1 - September 30, 2007

    SciTech Connect (OSTI)

    DL Sisterson

    2007-10-01

    Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real time. Raw and processed data are then sent daily to the ARM Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  2. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report April 1 - June 30, 2008

    SciTech Connect (OSTI)

    DL Sisterson

    2008-06-01

    Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  3. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report April 1 – June 30, 2006

    SciTech Connect (OSTI)

    DL Sisterson

    2006-07-01

    Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year; and (2) site and fiscal year dating back to 1998.

  4. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report - October 1 - December 31, 2008

    SciTech Connect (OSTI)

    Sisterson, DL

    2009-01-15

    Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  5. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report July 1 – September 30, 2006

    SciTech Connect (OSTI)

    DL Sisterson

    2006-10-01

    Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year dating back to 1998.

  6. Replacement Cost of Domestic Crude

    Energy Science and Technology Software Center (OSTI)

    1994-12-01

    The DEEPWATER model forecasts the replacement cost of domestic crude oil for 13 offshore regions in the lower 48 states. The replacement cost of domestic crude oil is the constant or levelized selling price that will recover the full expense of exploration, development, and productions with a reasonable return on capital.

  7. Numerical investigation on operation mode influenced by external frequency in atmospheric pressure barrier discharge

    SciTech Connect (OSTI)

    Wang Qi [Dalian Institute of Semiconductor Technology, School of Electronics Science and Technology, Dalian University of Technology, Dalian 116023 (China); Sun Jizhong; Wang Dezhen [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116023 (China)

    2011-10-15

    The influence of external driving frequency on the discharge mode in the dielectric barrier discharge was investigated with a two-dimensional, self-consistent fluid model. The simulation results show that the helium discharge exhibits three operation modes: Townsend, homogeneous glow, and local glow discharges from the lower frequency (1 kHz) to the higher frequency (100 kHz) under discharge parameters specified in this work. The discharge operates in a Townsend mode when the driving frequency varies from 1 to about 7 kHz; while it exhibits homogenous glow characteristics in an approximate range from 7 to 65 kHz; when the external frequency exceeds 65 kHz, it turns into a local glow discharge. The effects of external driving frequency on the discharge mode were revealed and the physical reasons were discussed.

  8. Texas State Offshore Crude Oil + Lease Condensate Proved Reserves...

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Texas State Offshore Crude ... Crude Oil plus Lease Condensate Proved Reserves, as of Dec. 31 TX, State Offshore Crude ...

  9. Louisiana - North Crude Oil + Lease Condensate Proved Reserves...

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Louisiana - North Crude Oil ... Crude Oil plus Lease Condensate Proved Reserves, as of Dec. 31 North Louisiana Crude Oil ...

  10. This Week In Petroleum Crude Oil Section

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Crude oil futures and estimated contract prices (dollars per barrel) Contract 1 Contract 2 Contract 3 Contract 4 Crude oil futures price contract 1 graph Crude oil futures price ...

  11. ,"U.S. Crude Oil Imports"

    U.S. Energy Information Administration (EIA) Indexed Site

    Imports from Denmark of Crude Oil (Thousand Barrels per Day)","U.S. Imports from Egypt of Crude Oil (Thousand Barrels per Day)","U.S. Imports from Equatorial Guinea of Crude...

  12. ,"U.S. Crude Oil Imports"

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Imports from Oman of Crude Oil (Thousand Barrels per Day)","U.S. Imports from Papua New Guinea of Crude Oil (Thousand Barrels per Day)","U.S. Imports from Peru of Crude Oil ...

  13. ,"U.S. Crude Oil Imports"

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Imports from Oman of Crude Oil (Thousand Barrels)","U.S. Imports from Papua New Guinea of Crude Oil (Thousand Barrels)","U.S. Imports from Peru of Crude Oil (Thousand ...

  14. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report July 1 - September 30, 2005

    SciTech Connect (OSTI)

    DL Sisterson

    2005-09-30

    Description. Individual raw data streams from instrumentation at the ACRF fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at PNNL for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year dating back to 1998. The DOE requires national user facilities to report time-based operating data. The requirements concern the actual hours of operation (ACTUAL); the estimated maximum operation or uptime goal (OPSMAX), which accounts for planned downtime; and the VARIANCE [1 – (ACTUAL/OPSMAX)], which accounts for unplanned downtime. The OPSMAX time for the third quarter for the Southern Great Plains (SGP) site is 2,097.6 hours (0.95 × 2,208 hours this quarter). The OPSMAX for the North Slope Alaska (NSA) site is 1,987.2 hours (0.90 × 2,208), and that for the Tropical Western Pacific (TWP) site is 1,876.8 hours (0.85 × 2,208). The OPSMAX time for the ARM Mobile Facility (AMF) is 2,097.6 hours (0.95 × 2,208). The differences in OPSMAX performance reflect the complexity of local logistics and the frequency of extreme weather events. It is impractical to measure OPSMAX for each instrument or data stream. Data availability reported here refers to the average of the individual, continuous data streams that have been received by the ACRF Archive. Data not at the Archive are caused by downtime (scheduled or unplanned) of the individual instruments. Therefore, data availability is directly related to individual instrument uptime. Thus, the average percent of data in the Archive represents the average percent of the time (24 hours per day, 92 days for this quarter) the instruments were operating this

  15. U.S. Crude Oil Export Policy

    Gasoline and Diesel Fuel Update (EIA)

    Crude Oil Export Policy EIA Energy Conference Jason Bordoff July 14, 2014 Washington, DC ... Cook Inlet. * Heavy California crude oil. * Exports connected to refining or ...

  16. ,"Total Crude Oil and Petroleum Products Exports"

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Total Crude Oil and Petroleum Products ... "Back to Contents","Data 1: Total Crude Oil and Petroleum Products Exports" ...

  17. Nigeria: after crude, the gas

    SciTech Connect (OSTI)

    Not Available

    1980-11-01

    Misinterpretation of the laws of the marketplace have already brought Nigeria to the brink of a catastrophe in 1978, when the government had built up heavy stocks expecting a substantial increase in price. When it did not materialize and the production had to be dropped to 50% of the previous rate, in a country where crude constitutes 90% of the export revenues, the system was changed. The new plan is intended to reduce the dependence of Nigeria on oil exports. The production rate is set at between 2.2 and 2.5 million bpd. Due to a significant increase in domestic demand, the 2 existing refineries cannot fill the gap; 2 more refineries are planned. There also are substantial gas reserves; the associated gas, now flared, is to be recovered. A gas liquefaction plant also is in operation, with one-half of the output going to Europe and one-half to the US. Some of the oil and gas is earmarked for local petrochemical plants.

  18. Atmospheric Radiation Measurement (ARM) Data from Field Campaigns or Intensive Operational Periods (IOP)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    ARM Climate Research Facility users regularly conduct field campaigns to augment routine data acquisitions and to test and validate new instruments. Any field campaign which is proposed, planned, and implemented at one or more research sites is referred to as an intensive operational period (IOP). IOPs are held using the fixed and mobile sites; Southern Great Plains, North Slope of Alaska, Tropical Western Pacific, ARM Mobile Facility (AMF), and Aerial Vehicles Program (AVP). [Taken from http://www.arm.gov/science/fc.stm] Users may search with the specialized interface or browse campaigns/IOPs in table format. Browsing allows users to see the start date of the IOP, the status (Past, In Progress, etc.), the duration, the Principal Investigator, and the research site, along with the title of the campaign/IOP. Clicking on the title leads to a descriptive summary of the campaign, names of co-investigators, contact information, links to related websites, and a link to available data in the ARM Archive. Users will be requested to create a password, but the data files are free for viewing and downloading. The URL to go directly to the ARM Archive, bypassing the information pages, is http://www.archive.arm.gov/. The Office of Biological and Environmental Research in DOE's Office of Science is responsible for the ARM Program. The ARM Archive physically resides at the Oak Ridge National Laboratory.

  19. The legacy of Cf-252 operations at Savannah River Technology Center: Continuous releases of radioiodine to the atmosphere

    SciTech Connect (OSTI)

    Kantelo, M.V.; Crandall, B.S.

    1992-12-31

    The iodine isotopes I-132, 1-133, I-134, and I-135, which have half-lives ranging from 53 minutes to 21 hours, are measured in the atmospheric effluent from the Savannah River Technology Center (SRTC) at the Savannah River Site (SRS) near Aiken, South Carolina. SRS is operated by Westinghouse Savannah River Company for the US Department of Energy (DOE). The isotopes` release rates range from 10 to 300 microcuries per week compared to the rate. The resulting annual dose from all iodine isotopes is minor; it comprises 0.01 percent of the total offsite dose due to atmospheric releases from SRS in 1990. Circumstantial evidence indicates the radioiodine originates from traces of unencapsulated Cf-252. The determination that spontaneous fission of Cf-252 is the source of the radioiodine has several ramifications. Radioactive fission-product isotopes of the noble gas elements krypton and xenon must also be released. Noble gases are more volatile and mobile than iodine. Also, the released iodine isotopes decay to xenon isotopes. The noble gases decay to non-gaseous elements that are transported along with radioiodine to the terrestrial environment by deposition from the SRTC plume. Only Sr-89 is believed to accumulate sufficiently in the environment to approach detectable levels. Given similar conditions in earlier years, releases of short-lived radioiodine have occurred undetected in routine monitoring since the early 1970s. Release rates 20 years ago would have been 200 times greater than current release rates. This report documents preliminary experiments conducted by SRTC and Environmental Monitoring Section (EMS) scientists. The release process and the environmental impact of fission products from Cf-252 should be thoroughly researched.

  20. Atmospheric Radiation Measurement Program Climate Research Facility Operations Cumulative Quarterly Report October 1, 2003 - September 30, 2004

    SciTech Connect (OSTI)

    Sisterson, DL

    2004-09-30

    Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998. The United States Department of Energy requires national user facilities to report time-based operating data. The requirements concern the actual hours of operation (ACTUAL); the estimated maximum operation or uptime goal (OPSMAX), which accounts for planned downtime; and the VARIANCE [1 – (ACTUAL/OPSMAX)], which accounts for unplanned downtime. The annual OPSMAX time for the Southern Great Plains (SGP) site is 8,322 hours per year (0.95 × 8,760, the number hours in a year, not including leap year). The annual OPSMAX for the North Slope Alaska (NSA) site is 7,884 hours per year (0.90 × 8,760), and that for the Tropical Western Pacific (TWP) site is 7,446 hours per year (0.85 × 8,760). The differences in OPSMAX performance reflect the complexity of local logistics and the frequency of extreme weather events. It is impractical to measure OPSMAX for each instrument or data stream. Data availability reported here refers to the average of the individual, continuous data streams that have been received by the ACRF Archive. Data not at the Archive are caused by downtime (scheduled or unplanned) of the individual instruments. Therefore, data availability is directly related to individual instrument uptime. Thus, the average percent of data in the Archive represents the

  1. Low pour crude oil compositions

    SciTech Connect (OSTI)

    Motz, K.L.; Latham, R.A.; Statz, R.J.

    1990-05-22

    This patent describes and improvement in the process of transporting waxy crude oils through a pipeline. It comprises: incorporating into the crude oil an effective pour point depressant amount of an additive comprising a polymer selected from the group consisting of copolymers of ethylene and acrylonitrile, and terpolymers of ethylene, acrylonitrile and a third monomer selected from the group consisting of vinyl acetate, carbon monoxide, alkyl acrylates, alkyl methacrylates, alkyl vinyl ethers, vinyl chloride, vinyl fluoride, acrylic acid, and methacrylic acid, wherein the amount of third monomer in the terpolymer ranges from about 0.1 to about 10.0 percent by weight.

  2. Heavy crude upgrading using remote natural gas

    SciTech Connect (OSTI)

    Grosboll, M.P.

    1991-12-03

    This paper describes a method of forming an upgraded crude. It comprises: forming hydrogen from methane gas for hydroconverting heavy crude to form a better crude and reduce its viscosity; hydrogenating under hydroconverting conditions of 650 degrees Fahrenheit ({degrees}F)-1000{degrees}F; and 500-3000 pounds per square inch gauge (psig) only a first portion of a crude oil stream less than the total crude oil stream to produce a light oil that has a lowered viscosity; admixing the light oil with the remainder of the crude oil stream not hydrogenated to produce a flowable crude; and transporting the flowable crude to a refinery including a substep of flowing the crude through a pipeline.

  3. Table 22. Domestic Crude Oil First Purchase Prices for Selected...

    U.S. Energy Information Administration (EIA) Indexed Site

    Form EIA-182, "Domestic Crude Oil First Purchase Report." 22. Domestic Crude Oil First Purchase Prices for Selected Crude Streams 44 Energy Information Administration ...

  4. Louisiana State Offshore Crude Oil + Lease Condensate Proved...

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Louisiana State Offshore ... Crude Oil plus Lease Condensate Proved Reserves, as of Dec. 31 LA, State Offshore Crude ...

  5. Louisiana--North Crude Oil Reserves in Nonproducing Reservoirs...

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Louisiana--North Crude Oil ... Referring Pages: Proved Nonproducing Reserves of Crude Oil North Louisiana Proved ...

  6. ,"U.S. Crude Oil Imports"

    U.S. Energy Information Administration (EIA) Indexed Site

    AM" "Back to Contents","Data 1: U.S. Crude Oil Imports" "Sourcekey","MCRIMUS1","MCRIMUSPG1... "Date","U.S. Imports of Crude Oil (Thousand Barrels)","U.S. Imports from ...

  7. "ENDING STOCKS OF CRUDE OIL (excluding SPR)"

    U.S. Energy Information Administration (EIA) Indexed Site

    ENDING STOCKS OF CRUDE OIL (excluding SPR)" "Sourcekey","WCESTP11","WCESTP11","WCESTP21","... 1) Ending Stocks excluding SPR of Crude Oil (Thousand Barrels)","Weekly East Coast ...

  8. ,"U.S. Crude Oil Imports"

    U.S. Energy Information Administration (EIA) Indexed Site

    AM" "Back to Contents","Data 1: U.S. Crude Oil Imports" "Sourcekey","MCRIMUS2","MCRIMUSPG2... "Date","U.S. Imports of Crude Oil (Thousand Barrels per Day)","U.S. Imports ...

  9. Crude Oil Characteristics Research | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Crude Oil Characteristics Research Crude Oil Characteristics Research July 9, 2015 - 1:00pm Addthis Paula Gant Paula Gant Principal Deputy Assistant Secretary The DOE Office of Fossil Energy wanted to identify the actions needed to obtain a science-based understanding of outstanding questions associated with the production, treatment, and transportation of various types of crude oil, including Bakken crude oil. In support of that effort, DOE - in collaboration with the Department of

  10. Virent is Replacing Crude Oil

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Virent 2014 Virent is Replacing Crude Oil. Biomass 2014 July 30, 2014 Randy D. Cortright, Ph.D. CTO/Founder © Virent 2014 Slide 2 Virent at a Glance The global leader in catalytic biorefinery research, development, and commercialization Employees Technology Infrastructure 25x Development Pilot Plants 2x Process Plants Partners & Investors Converting plant-based feedstocks to fuels and chemicals 75 Employees © Virent 2014 Slide 3 Energy Cost Comparison Heating Value Data Sources: GREET and

  11. PROCESS FOR PURIFYING CRUDE PERFLUOROCARBONS

    DOE Patents [OSTI]

    Holeton, R.E.

    1959-03-24

    A method is described for refining organic perfluoro compounds. In the manufacture of perfluorinated compounds by the fluorination of hydrocarbons, the product frequently is contaminated ny incompletely fluorimated hydrogen containing impurities. These impurities can be removed by contacting the products in a fluid conditions with an active adsorbents such as silica gel or alumina gel. The patent claims are restricted to this refining of crude perfluorinated lubricating oil.

  12. Benchmark West Texas Intermediate crude assayed

    SciTech Connect (OSTI)

    Rhodes, A.K.

    1994-08-15

    The paper gives an assay of West Texas Intermediate, one of the world's market crudes. The price of this crude, known as WTI, is followed by market analysts, investors, traders, and industry managers around the world. WTI price is used as a benchmark for pricing all other US crude oils. The 41[degree] API < 0.34 wt % sulfur crude is gathered in West Texas and moved to Cushing, Okla., for distribution. The WTI posted prices is the price paid for the crude at the wellhead in West Texas and is the true benchmark on which other US crudes are priced. The spot price is the negotiated price for short-term trades of the crude. And the New York Mercantile Exchange, or Nymex, price is a futures price for barrels delivered at Cushing.

  13. Pump packages for Colombian crude oil pipeline

    SciTech Connect (OSTI)

    1994-05-01

    The Caterpillar Large Engine Center recently packaged ten engine-driven centrifugal pump packages for British Petroleum Exploration`s crude oil pipeline in South America. The ten sets, which use Ingersoll-Dresser centrifugal pumps, are designed to increase significantly the output of BP`s Central LLanos pipeline located in a remote region near Bogota, Colombia. BP anticipates that the addition of the new pump packages will increase daily volume from the current 100000 barrels to approximately 210000 barrels when the upgrade of the pipeline is completed in September. The ten sets are installed at three separate pumping stations. The stations are designed to operate continuously while unmanned, with only periodic maintenance required. The pump packages are powered by Caterpillar 3612 engines rated 3040 kW at 1000 r/min. The 12-cylinder engines are turbocharged and charge-air cooled and use the pipeline oil as both fuel and a cooling medium for the fuel injectors.

  14. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report January 1–March 31, 2010

    SciTech Connect (OSTI)

    Sisterson, DL

    2010-04-08

    The U.S. Department of Energy (DOE) requires national user facilities to report time-based operating data. The requirements concern the actual hours of operation (ACTUAL); the estimated maximum operation or uptime goal (OPSMAX), which accounts for planned downtime; and the VARIANCE [1 – (ACTUAL/OPSMAX)], which accounts for unplanned downtime.

  15. Methodology for Monthly Crude Oil Production Estimates

    U.S. Energy Information Administration (EIA) Indexed Site

    015 U.S. Energy Information Administration | Methodology for Monthly Crude Oil Production Estimates 1 Methodology for Monthly Crude Oil Production Estimates Executive summary The U.S. Energy Information Administration (EIA) relies on data from state and other federal agencies and does not currently collect survey data directly from crude oil producers. Summarizing the estimation process in terms of percent of U.S. production: * 20% is based on state agency data, including North Dakota and

  16. Recent Trends in Crude Oil Stock Levels

    Reports and Publications (EIA)

    1996-01-01

    This article, the third in a series of three on petroleum stocks, attempts to identify the components of the decline in the EIA crude oil stock data.

  17. Microsoft Word - Crude by rail July 2014

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... However, in places like North Dakota that have seen huge increases in crude oil production, the existing pipeline network lacks the capacity to handle the higher production. ...

  18. Crude Oil and Gasoline Price Monitoring

    U.S. Energy Information Administration (EIA) Indexed Site

    What drives crude oil prices? September 7, 2016 | Washington, DC An analysis of 7 factors that influence oil markets, with chart data updated monthly and quarterly price per barrel (real 2010 dollars) imported refiner acquisition cost of crude oil WTI crude oil price 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 0 25 50 75 100 125 150 Crude oil prices react to a variety of geopolitical and economic events September 7, 2016 2 Low spare capacity Iraq invades Kuwait Saudis abandon swing

  19. Crude Oil Movements of Crude Oil by Rail

    U.S. Energy Information Administration (EIA) Indexed Site

    Product: Crude Oil Fuel Ethanol Biodiesel Period-Unit: Monthly-Thousand Barrels Annual-Thousand Barrels Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Areas Jan-16 Feb-16 Mar-16 Apr-16 May-16 Jun-16 View History Summary Total 18,421 16,159 17,552 14,150 16,711 12,134 2010-2016 Intra-U.S. Movements 15,661 13,187 14,712 11,470 13,928 10,885 2010-2016 U.S. Exports to Canada 0 0 0 0 0 0 2010-2016 U.S. Imports

  20. U.S. Crude Oil Production Forecast-Analysis of Crude Types

    U.S. Energy Information Administration (EIA) Indexed Site

    of Energy Washington, DC 20585 U.S. Energy Information Administration | U.S. Crude Oil Production Forecast-Analysis of Crude Types i This report was prepared by the U.S....

  1. ,"F.O.B. Costs of Imported Crude Oil for Selected Crude Streams...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","F.O.B. Costs of Imported Crude Oil for Selected ... 1:35:11 PM" "Back to Contents","Data 1: F.O.B. Costs of Imported Crude Oil for Selected ...

  2. U.S. Crude Oil Production to 2025: Updated Production of Crude...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Figure data Previous Issues 5-29-2014 U.S. Crude Oil Production to 2025: Updated Projection of Crude Types Release date: May 28, 2015 Preface U.S. oil production has grown rapidly ...

  3. U.S. Crude Oil Production to 2025: Updated Projection of Crude...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Information Administration | U.S. Crude Oil Production to 2025 - Updated Projection of ... May 2015 U.S. Energy Information Administration | U.S. Crude Oil Production to 2025 - ...

  4. ,"F.O.B. Costs of Imported Crude Oil for Selected Crude Streams...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...s","Frequency","Latest Data for" ,"Data 1","F.O.B. Costs of Imported Crude Oil for ... 1:35:11 PM" "Back to Contents","Data 1: F.O.B. Costs of Imported Crude Oil for ...

  5. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report July 1–September 30, 2010

    SciTech Connect (OSTI)

    Sisterson, DL

    2010-10-15

    Individual raw datastreams from instrumentation at the Atmospheric Radiation Measurement (ARM) Climate Research Facility fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent approximately daily to the ARM Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual datastream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  6. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report April 1–June 30, 2010

    SciTech Connect (OSTI)

    Sisterson, DL

    2010-07-09

    Individual raw datastreams from instrumentation at the Atmospheric Radiation Measurement (ARM) Climate Research Facility fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent approximately daily to the ARM Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual datastream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  7. Focus on Venezuelan heavy crude: refining margins

    SciTech Connect (OSTI)

    Not Available

    1984-01-25

    Of six crudes refined in the US Gulf Coast, heavy Venezuelan crude Lagunillas (15/sup 0/ API) provides the best margin per barrel. Data for end of December 1983 and the first three weeks of January show that margins on all crudes are on the rise in this market, due to a turnaround in product prices. The lighter crudes are showing the greatest increase in Gross Product Worth. This is having a modest shrinking effect on the margin differential between light and heavy crudes in this market. The domestic crude West Texas Intermediate, at 40/sup 0/ API, provides the highest GPW in this crude slate sample, over US $31 per barrel, compared to GPW of under US $28 per barrel for Lagunillas. Still, as Lagunillas cost about US $8 less than does WTI, refiners with sufficient residue conversion capacity can be earning about US $3.50 more in margin per barrel than they can with WTI. Although few refiners would be using a 15/sup 0/ API crude exclusively for any length of time, heavier oil's inclusion in modern refiners' diets is enhancing their competitive position more than any other single factor. This issue of Energy Detente presents the fuel price/tax series and industrial fuel prices for January 1984 for countries of the Western Hemisphere.

  8. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report January 1–March 31, 2011

    SciTech Connect (OSTI)

    Sisterson, DL

    2011-04-11

    Individual raw datastreams from instrumentation at the Atmospheric Radiation Measurement (ARM) Climate Research Facility fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent approximately daily to the ARM Data Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of processed data records received daily at the Data Archive to the expected number of data records. The results are tabulated by (1) individual datastream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  9. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report April 1–June 30, 2011

    SciTech Connect (OSTI)

    Voyles, JW

    2011-07-25

    Individual raw datastreams from instrumentation at the Atmospheric Radiation Measurement (ARM) Climate Research Facility fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent approximately daily to the ARM Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of processed data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual datastream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  10. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report October 1–December 31, 2009

    SciTech Connect (OSTI)

    DL Sisterson

    2010-01-15

    Individual raw datastreams from instrumentation at the Atmospheric Radiation Measurement (ARM) Climate Research Facility fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent approximately daily to the ARM Data Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual datastream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  11. Literature Survey of Crude Oil Properties Relevant to Handling and Fire Safety in Transport

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    823 Unlimited Release Printed March 2015 Literature Survey of Crude Oil Properties Relevant to Handling and Fire Safety in Transport DOE/DOT Tight Crude Oil Flammability and Transportation Spill Safety Project David Lord, Anay Luketa, Chad Wocken, Steve Schlasner, Ted Aulich, Ray Allen, and David Rudeen Prepared by Sandia National Laboratories Albuquerque, New Mexico 87185 and Livermore, California 94550 Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia

  12. New Mexico Crude Oil + Lease Condensate Proved Reserves (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    New Mexico Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Decade Year-0 ... Crude Oil plus Lease Condensate Proved Reserves, as of Dec. 31 New Mexico Crude Oil plus ...

  13. North Dakota Crude Oil + Lease Condensate Proved Reserves (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    North Dakota Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Decade Year-0 ... Crude Oil plus Lease Condensate Proved Reserves, as of Dec. 31 North Dakota Crude Oil plus ...

  14. Maximize revenue by analyzing crude oil treating parameters

    SciTech Connect (OSTI)

    Pellegrino, V.L.; Crane, T.L.; Heiman, M.S.; Pantermuhl, L.

    1983-10-01

    In the past the Chemshare Design 2000 program has been utilized to model gas processing plant streams. This paper describes how the Chemshare Design 2000 program may be used to maximize lease revenues by modeling a crude oil treating system and presents a technique of recombining an ASTM Distillation and a gas sample to arrive at the original composition of the inlet oil stream for use with the Chemshare Program. Next the treating facility operations are evaluated in order to maximize revenues which depending on the crude could mean an increase or decrease in the treating temperatures and pressures. For a lease producing 21,000 BOPD the losses can easily surpass $2 MM per year due to oil shrinkage and gravity differential.

  15. Maximize revenue by analyzing crude oil treating parameters

    SciTech Connect (OSTI)

    Heiman, M.S.; Pellegrino, V.L.; Pantermuehl, L.A.; Crane, T.L.

    1983-01-01

    In the past, the Chemshare Design 2000 program has been utilized to model gas processing plant streams. This study describes how the Chemshare Design 2000 program may be used to maximize lease revenues by modeling a crude oil treating system and presents a technique of recombining an ASTM distillation and a gas sample to arrive at the original composition of the inlet oil stream for use with the Chemshare Program. Next the treating facility operations are evaluated in order to maximize revenues which, depending on the crude, could mean an increase or decrease in the treating temperatures and pressures. For a lease producing 21,000 bopd the losses can easily surpass $2.0 MM/yr due to oil shrinkage and gravity differential.

  16. Virent is Replacing Crude Oil | Department of Energy

    Energy Savers [EERE]

    Virent is Replacing Crude Oil Virent is Replacing Crude Oil Breakout Session 2A-Conversion Technologies II: Bio-Oils, Sugar Intermediates, Precursors, Distributed Models, and ...

  17. Literature Survey of Crude Oil Properties Relevant to Handling...

    Office of Scientific and Technical Information (OSTI)

    Literature Survey of Crude Oil Properties Relevant to Handling and Fire Safety in Transport. Citation Details In-Document Search Title: Literature Survey of Crude Oil Properties ...

  18. US Crude Oil Production Surpasses Net Imports | Department of...

    Office of Environmental Management (EM)

    US Crude Oil Production Surpasses Net Imports US Crude Oil Production Surpasses Net Imports Source: Energy Information Administration Short Term Energy Outlook. Chart by Daniel...

  19. SPR Crude Oil Acquisition Procedures | Department of Energy

    Office of Environmental Management (EM)

    Services Petroleum Reserves Strategic Petroleum Reserve SPR Crude Oil Acquisition Procedures SPR Crude Oil Acquisition Procedures Section 301(e)(2) of the Energy Policy ...

  20. EIA-914 Monthly Crude Oil, Lease Condensate, and Natural Gas...

    Gasoline and Diesel Fuel Update (EIA)

    Administration | EIA-94 Monthly Crude Oil, Lease Condensate, and Natural Gas ... June 2016 U.S. Energy Information Administration | EIA-94 Monthly Crude Oil, Lease ...

  1. ,"Domestic Crude Oil First Purchase Prices by Area"

    U.S. Energy Information Administration (EIA) Indexed Site

    "Back to Contents","Data 1: Domestic Crude Oil First Purchase Prices by Area" ...0050063","F0050743" "Date","U.S. Crude Oil First Purchase Price (Dollars per ...

  2. US Crude Oil Production Surpasses Net Imports | Department of...

    Office of Environmental Management (EM)

    US Crude Oil Production Surpasses Net Imports US Crude Oil Production Surpasses Net Imports Source: Energy Information Administration Short Term Energy Outlook. Chart by Daniel ...

  3. ,"Crude Oil and Petroleum Products Total Stocks Stocks by Type...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Crude Oil and Petroleum Products Total Stocks Stocks ... AM" "Back to Contents","Data 1: Crude Oil and Petroleum Products Total Stocks Stocks ...

  4. Energy Department Announces Conclusion of Crude Oil Overcharge...

    Office of Environmental Management (EM)

    Conclusion of Crude Oil Overcharge Refund Program Energy Department Announces Conclusion of Crude Oil Overcharge Refund Program August 18, 2016 - 9:31am Addthis David M. Klaus ...

  5. West Virginia Crude Oil Reserves in Nonproducing Reservoirs ...

    U.S. Energy Information Administration (EIA) Indexed Site

    Reserves in Nonproducing Reservoirs (Million Barrels) West Virginia Crude Oil Reserves in ... Referring Pages: Proved Nonproducing Reserves of Crude Oil West Virginia Proved ...

  6. Louisiana--State Offshore Crude Oil Reserves in Nonproducing...

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Louisiana--State Offshore ... Referring Pages: Proved Nonproducing Reserves of Crude Oil LA, State Offshore Proved ...

  7. ,"Louisiana--State Offshore Crude Oil Reserves in Nonproducing...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Louisiana--State Offshore Crude Oil Reserves in Nonproducing ... to Contents","Data 1: Louisiana--State Offshore Crude Oil Reserves in Nonproducing ...

  8. Federal Offshore--Louisiana and Alabama Crude Oil Reserves in...

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Federal Offshore--Louisian... Proved Nonproducing Reserves of Crude Oil Federal Offshore, Gulf of Mexico, Louisiana & ...

  9. ,"Texas--State Offshore Crude Oil Reserves in Nonproducing Reservoirs...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Texas--State Offshore Crude Oil Reserves in Nonproducing ... "Back to Contents","Data 1: Texas--State Offshore Crude Oil Reserves in Nonproducing ...

  10. ,"Texas State Offshore Crude Oil + Lease Condensate Proved Reserves...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Texas State Offshore Crude Oil + Lease Condensate Proved ... "Back to Contents","Data 1: Texas State Offshore Crude Oil + Lease Condensate Proved ...

  11. ,"Louisiana State Offshore Crude Oil + Lease Condensate Proved...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Louisiana State Offshore Crude Oil + Lease Condensate Proved ... to Contents","Data 1: Louisiana State Offshore Crude Oil + Lease Condensate Proved ...

  12. Texas--State Offshore Crude Oil Reserves in Nonproducing Reservoirs...

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Texas--State Offshore ... Referring Pages: Proved Nonproducing Reserves of Crude Oil TX, State Offshore Proved ...

  13. New Mexico Crude Oil Reserves in Nonproducing Reservoirs (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Reserves in Nonproducing Reservoirs (Million Barrels) New Mexico Crude Oil Reserves in ... Referring Pages: Proved Nonproducing Reserves of Crude Oil New Mexico Proved Nonproducing

  14. New Mexico - West Crude Oil + Lease Condensate Proved Reserves...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Crude Oil + Lease Condensate Proved Reserves (Million Barrels) New Mexico - West Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 ...

  15. New Mexico - East Crude Oil + Lease Condensate Proved Reserves...

    Gasoline and Diesel Fuel Update (EIA)

    Crude Oil + Lease Condensate Proved Reserves (Million Barrels) New Mexico - East Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 ...

  16. Gulf of Mexico Federal Offshore - Texas Crude Oil + Lease Condensate...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gulf of Mexico Federal Offshore - Texas Crude Oil + Lease Condensate Proved Reserves ... as of Dec. 31 Federal Offshore, Gulf of Mexico, Texas Crude Oil plus Lease Condensate ...

  17. Gulf of Mexico Federal Offshore - Louisiana and Alabama Crude...

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Gulf of Mexico Federal ... as of Dec. 31 Federal Offshore, Gulf of Mexico, Louisiana & Alabama Crude Oil plus Lease ...

  18. North Dakota Crude Oil Reserves in Nonproducing Reservoirs (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Reserves in Nonproducing Reservoirs (Million Barrels) North Dakota Crude Oil Reserves in ... Referring Pages: Proved Nonproducing Reserves of Crude Oil North Dakota Proved ...

  19. Michigan Crude Oil + Lease Condensate Proved Reserves (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Michigan Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Decade Year-0 ... Release Date: 11192015 Next Release Date: 12312016 Referring Pages: Crude Oil plus ...

  20. Utah Crude Oil + Lease Condensate Proved Reserves (Million Barrels...

    U.S. Energy Information Administration (EIA) Indexed Site

    Utah Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Decade Year-0 Year-1 ... Release Date: 11192015 Next Release Date: 12312016 Referring Pages: Crude Oil plus ...

  1. Alaska Crude Oil + Lease Condensate Proved Reserves (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Alaska Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 ...

  2. Mississippi Crude Oil + Lease Condensate Proved Reserves (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Mississippi Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 ...

  3. Nebraska Crude Oil + Lease Condensate Proved Reserves (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Nebraska Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 ...

  4. Louisiana Crude Oil + Lease Condensate Proved Reserves (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Louisiana Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 ...

  5. Miscellaneous States Crude Oil + Lease Condensate Proved Reserves...

    U.S. Energy Information Administration (EIA) Indexed Site

    Miscellaneous States Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Decade ... Release Date: 11192015 Next Release Date: 12312016 Referring Pages: Crude Oil plus ...

  6. Kentucky Crude Oil + Lease Condensate Proved Reserves (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Kentucky Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Decade Year-0 ... Release Date: 11192015 Next Release Date: 12312016 Referring Pages: Crude Oil plus ...

  7. Ohio Crude Oil + Lease Condensate Proved Reserves (Million Barrels...

    U.S. Energy Information Administration (EIA) Indexed Site

    Ohio Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Decade Year-0 Year-1 ... Release Date: 11192015 Next Release Date: 12312016 Referring Pages: Crude Oil plus ...

  8. Colorado Crude Oil + Lease Condensate Proved Reserves (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Colorado Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Decade Year-0 ... Release Date: 11192015 Next Release Date: 12312016 Referring Pages: Crude Oil plus ...

  9. Alabama Crude Oil + Lease Condensate Proved Reserves (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Alabama Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 ...

  10. ,"West Virginia Crude Oil Reserves in Nonproducing Reservoirs...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","West Virginia Crude Oil Reserves in Nonproducing Reservoirs ... to Contents","Data 1: West Virginia Crude Oil Reserves in Nonproducing Reservoirs ...

  11. West Virginia Crude Oil + Lease Condensate Proved Reserves (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    West Virginia Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Decade Year-0 ... Release Date: 11192015 Next Release Date: 12312016 Referring Pages: Crude Oil plus ...

  12. Oklahoma Crude Oil + Lease Condensate Proved Reserves (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Oklahoma Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Decade Year-0 ... Release Date: 11192015 Next Release Date: 12312016 Referring Pages: Crude Oil plus ...

  13. Arkansas Crude Oil + Lease Condensate Proved Reserves (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Arkansas Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Decade Year-0 ... Release Date: 11192015 Next Release Date: 12312016 Referring Pages: Crude Oil plus ...

  14. Illinois Crude Oil + Lease Condensate Proved Reserves (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Illinois Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Decade Year-0 ... Release Date: 11192015 Next Release Date: 12312016 Referring Pages: Crude Oil plus ...

  15. Indiana Crude Oil + Lease Condensate Proved Reserves (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Indiana Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 ...

  16. ,"Miscellaneous States Crude Oil Reserves in Nonproducing Reservoirs...

    U.S. Energy Information Administration (EIA) Indexed Site

    for" ,"Data 1","Miscellaneous States Crude Oil Reserves in Nonproducing Reservoirs ... Contents","Data 1: Miscellaneous States Crude Oil Reserves in Nonproducing Reservoirs ...

  17. Wyoming Crude Oil + Lease Condensate Proved Reserves (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Wyoming Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Decade Year-0 ... Release Date: 11192015 Next Release Date: 12312016 Referring Pages: Crude Oil plus ...

  18. Montana Crude Oil + Lease Condensate Proved Reserves (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Montana Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Decade Year-0 ... Release Date: 11192015 Next Release Date: 12312016 Referring Pages: Crude Oil plus ...

  19. Pennsylvania Crude Oil + Lease Condensate Proved Reserves (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Pennsylvania Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Decade Year-0 ... Release Date: 11192015 Next Release Date: 12312016 Referring Pages: Crude Oil plus ...

  20. Florida Crude Oil + Lease Condensate Proved Reserves (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Florida Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Decade Year-0 ... Release Date: 11192015 Next Release Date: 12312016 Referring Pages: Crude Oil plus ...

  1. Crude Oil Imports From Persian Gulf

    Gasoline and Diesel Fuel Update (EIA)

    8,515 8,460 8,445 8,597 8,548 8,488 1983-2016 Lower 48 8,033 8,033 8,020 8,120 8,065 8,015 2003-2016 Alaska 482 427 425 477 483 473 2003

    Crude Oil Imports From Persian Gulf January - December 2015 | Release Date: February 29, 2016 | Next Release Date: September 2016 2015 Crude Oil Imports From Persian Gulf Highlights It should be noted that several factors influence the source of a company's crude oil imports. For example, a company like Motiva, which is partly owned by Saudi Refining Inc.,

  2. On the physical processes ruling an atmospheric pressure air glow discharge operating in an intermediate current regime

    SciTech Connect (OSTI)

    Prevosto, L. Mancinelli, B.; Chamorro, J. C.; Cejas, E.; Kelly, H.

    2015-02-15

    Low-frequency (100 Hz), intermediate-current (50 to 200 mA) glow discharges were experimentally investigated in atmospheric pressure air between blunt copper electrodes. Voltage–current characteristics and images of the discharge for different inter-electrode distances are reported. A cathode-fall voltage close to 360 V and a current density at the cathode surface of about 11 A/cm{sup 2}, both independent of the discharge current, were found. The visible emissive structure of the discharge resembles to that of a typical low-pressure glow, thus suggesting a glow-like electric field distribution in the discharge. A kinetic model for the discharge ionization processes is also presented with the aim of identifying the main physical processes ruling the discharge behavior. The numerical results indicate the presence of a non-equilibrium plasma with rather high gas temperature (above 4000 K) leading to the production of components such as NO, O, and N which are usually absent in low-current glows. Hence, the ionization by electron-impact is replaced by associative ionization, which is independent of the reduced electric field. This leads to a negative current-voltage characteristic curve, in spite of the glow-like features of the discharge. On the other hand, several estimations show that the discharge seems to be stabilized by heat conduction; being thermally stable due to its reduced size. All the quoted results indicate that although this discharge regime might be considered to be close to an arc, it is still a glow discharge as demonstrated by its overall properties, supported also by the presence of thermal non-equilibrium.

  3. Methods of cracking a crude product to produce additional crude products

    DOE Patents [OSTI]

    Mo, Weijian; Roes, Augustinus Wilhelmus Maria; Nair, Vijay

    2009-09-08

    A method for producing a crude product is disclosed. Formation fluid is produced from a subsurface in situ heat treatment process. The formation fluid is separated to produce a liquid stream and a first gas stream. The first gas stream includes olefins. The liquid stream is fractionated to produce one or more crude products. At least one of the crude products has a boiling range distribution from 38.degree. C. and 343.degree. C. as determined by ASTM Method D5307. The crude product having the boiling range distribution from 38.degree. C. and 343.degree. C. is catalytically cracked to produce one or more additional crude products. At least one of the additional crude products is a second gas stream. The second gas stream has a boiling point of at most 38.degree. C. at 0.101 MPa.

  4. Process for upgrading heavy crude oils

    SciTech Connect (OSTI)

    Rankel, L. A.; Shu, P.

    1985-07-23

    A combination process of oxidation/mild coking and in-situ deasphalting provides a process wherein upgraded crude with high levels of demetalation and low solids rejection is produced.

  5. Heavy crudes, stocks pose desalting problems

    SciTech Connect (OSTI)

    Bartley, D.

    1982-02-02

    The design of electrostatic desalters for crudes lighter than 30 API is well established and is no longer considered a problem. However, since 1970, the number of desalting applications involving heavy crudes (less than 20 API), syncrudes, and residual fuels has increased markedly. These stocks present unique problems that require additional design considerations. All produced crude oils, including synthetic crude from shale, tar sands, and coal liquefaction, contain impurities that adversely affect production and refining processes, the equipment used in these processes, and the final products. The most common of these impurities are water, salt, solids, metals, and sulfur. The desalting process consists of (1) adding water with a low salt content (preferably fresh) to the feedstock; (2) adequately mixing this added water with the feedstock, which already contains some quantities of salty water, sediment, and/or crystalline salt; and (3) extracting as much water as possible from the feedstock.

  6. Crude Oil and Gasoline Price Monitoring

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    What drives crude oil prices? July 12, 2016 | Washington, DC An analysis of 7 factors that influence oil markets, with chart data updated monthly and quarterly price per barrel ...

  7. Total Crude Oil and Petroleum Products Exports

    U.S. Energy Information Administration (EIA) Indexed Site

    Product: Total Crude Oil and Petroleum Products Crude Oil Natural Gas Plant Liquids and Liquefied Refinery Gases Pentanes Plus Liquefied Petroleum Gases Ethane/Ethylene Propane/Propylene Normal Butane/Butylene Isobutane/Isobutylene Other Liquids Hydrogen/Oxygenates/Renewables/Other Hydrocarbons Oxygenates (excl. Fuel Ethanol) Methyl Tertiary Butyl Ether (MTBE) Other Oxygenates Renewable Fuels (incl. Fuel Ethanol) Fuel Ethanol Biomass-Based Diesel Unfinished Oils Naphthas and Lighter Kerosene and

  8. Table 30. Landed Costs of Imported Crude Oil for Selected Crude...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    1978; Form ERA-51, "Transfer Pricing Report," January 1979 through September 1982; Form EP-51, "Monthly Foreign Crude Oil Transaction Report," October 1982 through June 1984; Form...

  9. Crude Oil Movements of Crude of by Rail between PAD Districts

    U.S. Energy Information Administration (EIA) Indexed Site

    Product: Crude Oil Fuel Ethanol Biodiesel Period-Unit: Monthly-Thousand Barrels Annual-Thousand Barrels Download Series History Download Series History Definitions, Sources & Notes ...

  10. Impacts of the Venezuelan Crude Oil Production Loss

    Reports and Publications (EIA)

    2003-01-01

    This assessment of the Venezuelan petroleum loss examines two areas. The first part of the analysis focuses on the impact of the loss of Venezuelan crude production on crude oil supply for U.S. refiners who normally run a significant fraction of Venezuelan crude oil. The second part of the analysis looks at the impact of the Venezuelan production loss on crude markets in general, with particular emphasis on crude oil imports, refinery crude oil throughput levels, stock levels, and the changes in price differences between light and heavy crude oils.

  11. Literature Survey of Crude Oil Properties Relevant to Handling and Fire Safety in Transport.

    SciTech Connect (OSTI)

    Lord, David; Luketa, Anay; Wocken, Chad; Schlasner, Steve; Aulich, Ted; Allen, Ray; Rudeen, David Keith

    2015-03-01

    Several fiery rail accidents in 2013-2015 in the U.S. and Canada carrying crude oil produced from the Bakken region of North Dakota have raised questions at many levels on the safety of transporting this, and other types of crude oil, by rail. Sandia National Laboratories was commissioned by the U.S. Department of Energy to investigate the material properties of crude oils, and in particular the so-called "tight oils" like Bakken that comprise the majority of crude oil rail shipments in the U.S. at the current time. The current report is a literature survey of public sources of information on crude oil properties that have some bearing on the likelihood or severity of combustion events that may occur around spills associated with rail transport. The report also contains background information including a review of the notional "tight oil" field operating environment, as well a basic description of crude oils and potential combustion events in rail transport. This page intentionally blank

  12. Papua New Guinea's first commercial crude assayed

    SciTech Connect (OSTI)

    Rhodes, A.K.

    1993-02-15

    Light, sweet Kutubu crude from near Lake Kutubu in Papua New Guinea has been assayed. Production of the 44[degree]-gravity, 0.04-wt% sulfur crude-Papua New Guinea's first commercial oil-began in June 1992. Most of the early production will likely be sold to refineries in Sydney and Brisbane. Production of Kutubu is expected to reach 100,000 b/d, and possibly 140,000 b/d. The paper lists the properties of the whole crude and the following boiling point ranges (C): 21--70; 70--140; 140--190; 140--230; 190--230; 230--360; 360--540; 360+; and 540+.

  13. Atmospheric Chemistry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    chemistry Atmospheric Chemistry Atmospheric Chemistry is the study of the composition of the atmosphere, the sources and fates of gases and particles in air, and changes induced by ...

  14. Future of heavy crude and tar sands

    SciTech Connect (OSTI)

    Meyer, R.F.; Steele, C.T.

    1981-01-01

    The 106 papers which were presented at the First International Conference on the Future of Heavy Crude and Tar Sands, held in Edmonton, Alberta are incorporated in this volume. They are grouped under the following sections: (1) role of heavy crude oils and tar sands in world energy; (2) major known occurrences; (3) chemistry and geochemistry; (4) geology; (5) resource evaluation techniques; (6) production research and pilot projects; (7) current production; (8) upgrading and refining; (9) transportation; (10) environmental research; (11) economics; (12) technological problems; (13) institutional factors; and (14) bibliography. All papers have been abstracted and indexed. (ATT)

  15. Pipeline transportation of heavy crude oil

    SciTech Connect (OSTI)

    Kessick, M.A.; St. Denis, C.E.

    1982-08-10

    Heavy crude oils are transported by pipeline from deposit location to a remote upgrading location by emulsifying the crude oil using deaerated sodium hydroxide solution, conveying the oilin-water emulsion through the pipeline, and recovery of the oil from the oil-in-water emulsion by inverting the emulsion and dewatering the resulting water-in-oil emulsion. The emulsion inversion may be effected using slaked lime, resulting in recovery of a substantial proportion of the sodium hydroxide used in the initial emulsification. The sodium hydroxide solution may be recycled by a separate pipeline for reuse or treated for discharge.

  16. New short contact time processes upgrade residual oils and heavy crudes

    SciTech Connect (OSTI)

    Not Available

    1991-08-12

    This paper reports on new short contact time carbon rejection technology developed for upgrading residual oils and converting heavier crudes into high-quality synthetic crudes. The process, called discriminatory destructive distillation, or 3D, has been demonstrated in a Kansas refinery on feedstocks ranging from 13.5 to 30.6{degrees} API. For the past year, Coastal Derby Refining Co. has been operating a revolutionary, according to Bartholic, circulating fluid solids processing apparatus that can be run as either a 3D process unit, to virtually eliminate the residual oil component of crude, or as an MSCC process unit, to upgrade VGO residual oils. Because both of these processes circulate a fluid solid in a manner similar to the well known and commercially accepted fluid catalytic cracking (FCC) process, existing FCC-type units can be easily and economically converted to either 3D or MSCC operation. The 3D process is a low-pressure, carbon-rejection residual oil treating process for preparation of gas oils for fluid catalytic cracking (or MSCC), hydrotreating, mild hydrocracking, or full hydrocracking, says Bartholic. The process is also applicable, he says to upgrading heavy crudes or tar sands bitumen to high-quality reconstituted crudes for world markets.

  17. Iraqi crude exports may rise further

    SciTech Connect (OSTI)

    Not Available

    1980-12-08

    Iraq will soon start exporting crude oil through a 550 mi, 500,000 bbl/day capacity pipeline from Iraq to Banias, Syria, on the Mediterranean. Iraq has already been transporting a reported 400,000 bbl/day in a 700,000 bbl/day capacity pipeline that goes to Dortyol, Turk., on the Mediterranean. Iraq's theoretical export capacity will soon reach 1.2 million bbl/day (compared with 3.2 million bbl/day before the war), assuming that the facilities are undamaged. Iran has been exporting some crude from its Kharg Island terminal, presumably by Iranian boat to the Lavan Island terminal at the southern end of the gulf, where it would be transported along with crude from offshore fields in the area. The exports apparently had been large enough to keep spot-market prices from rising much above the $40/bbl level, and in Dec. 1980, the spot-market prices eased to just under the $40 mark. Indonesia has raised the premium on its Sumatran light crude by $1/bbl, bringing the total to $35.20. Other producers have not yet raised their prices correspondingly. The agenda of the Dec. 1980 price-fixing meeting in Indonesia (assuming it takes place as planned) is discussed.

  18. Crude Oil Movements of Crude of by Rail between PAD Districts

    U.S. Energy Information Administration (EIA) Indexed Site

    2010 2011 2012 2013 2014 2015 View History From PADD 1 to PADD 2 0 0 0 0 0 0 2010-2015 ... See movements of crude oil by rail for movements by rail within PADDs and tofrom Canada. ...

  19. Recovery Act Production of Algal BioCrude Oil from Cement Plant Carbon Dioxide

    SciTech Connect (OSTI)

    Robert Weber; Norman Whitton

    2010-09-30

    The consortium, led by Sunrise Ridge Algae Inc, completed financial, legal, siting, engineering and environmental permitting preparations for a proposed demonstration project that would capture stack gas from an operating cement plant and convert the carbon dioxide to beneficial use as a liquid crude petroleum substitute and a coal substitute, using algae grown in a closed system, then harvested and converted using catalyzed pyrolysis.

  20. ,"U.S. Total Crude Oil and Products Imports"

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Georgia of Crude Oil and Petroleum Products (Thousand Barrels)","U.S. Imports from Germany of Crude Oil and Petroleum Products (Thousand Barrels)","U.S. Imports from Ghana of ...

  1. ,"U.S. Total Crude Oil and Products Imports"

    U.S. Energy Information Administration (EIA) Indexed Site

    to Contents","Data 1: U.S. Total Crude Oil and Products Imports" "Sourcekey","MTTIMUS1... "Date","U.S. Imports of Crude Oil and Petroleum Products (Thousand ...

  2. ,"U.S. Total Crude Oil and Products Imports"

    U.S. Energy Information Administration (EIA) Indexed Site

    to Contents","Data 1: U.S. Total Crude Oil and Products Imports" "Sourcekey","MTTIMUS2... "Date","U.S. Imports of Crude Oil and Petroleum Products (Thousand Barrels ...

  3. Secretary Bodman Announces Sale of 11 Million Barrels of Crude...

    Office of Environmental Management (EM)

    Sale of 11 Million Barrels of Crude Oil from the Nation's Strategic Petroleum Reserve Secretary Bodman Announces Sale of 11 Million Barrels of Crude Oil from the Nation's Strategic ...

  4. ,"U.S. Total Crude Oil and Products Imports"

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Crude Oil and Petroleum Products (Thousand Barrels per Day)","U.S. Imports from Papua New Guinea of Crude Oil and Petroleum Products (Thousand Barrels per Day)","U.S. Imports ...

  5. ,"U.S. Total Crude Oil and Products Imports"

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Panama of Crude Oil and Petroleum Products (Thousand Barrels)","U.S. Imports from Papua New Guinea of Crude Oil and Petroleum Products (Thousand Barrels)","U.S. Imports from Peru ...

  6. New Mexico--East Crude Oil Reserves in Nonproducing Reservoirs...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) New Mexico--East Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 ...

  7. ,"New Mexico Crude Oil + Lease Condensate Proved Reserves (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...","Frequency","Latest Data for" ,"Data 1","New Mexico Crude Oil + Lease Condensate Proved ... 8:48:22 AM" "Back to Contents","Data 1: New Mexico Crude Oil + Lease Condensate Proved ...

  8. New Mexico--West Crude Oil Reserves in Nonproducing Reservoirs...

    Gasoline and Diesel Fuel Update (EIA)

    Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) New Mexico--West Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 ...

  9. ,"New Mexico--West Crude Oil Reserves in Nonproducing Reservoirs...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...","Frequency","Latest Data for" ,"Data 1","New Mexico--West Crude Oil Reserves in ... 8:48:09 AM" "Back to Contents","Data 1: New Mexico--West Crude Oil Reserves in ...

  10. ,"New York Crude Oil Reserves in Nonproducing Reservoirs (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...","Frequency","Latest Data for" ,"Data 1","New York Crude Oil Reserves in Nonproducing ... 8:48:14 AM" "Back to Contents","Data 1: New York Crude Oil Reserves in Nonproducing ...

  11. ,"New Mexico Crude Oil Reserves in Nonproducing Reservoirs (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...","Frequency","Latest Data for" ,"Data 1","New Mexico Crude Oil Reserves in Nonproducing ... 8:48:14 AM" "Back to Contents","Data 1: New Mexico Crude Oil Reserves in Nonproducing ...

  12. ,"New Mexico--East Crude Oil Reserves in Nonproducing Reservoirs...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...","Frequency","Latest Data for" ,"Data 1","New Mexico--East Crude Oil Reserves in ... 8:48:09 AM" "Back to Contents","Data 1: New Mexico--East Crude Oil Reserves in ...

  13. ,"North Dakota Crude Oil Reserves in Nonproducing Reservoirs...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","North Dakota Crude Oil Reserves in Nonproducing ... 9:20:57 AM" "Back to Contents","Data 1: North Dakota Crude Oil Reserves in Nonproducing ...

  14. ,"North Dakota Crude Oil + Lease Condensate Proved Reserves ...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","North Dakota Crude Oil + Lease Condensate Proved ... 9:21:07 AM" "Back to Contents","Data 1: North Dakota Crude Oil + Lease Condensate Proved ...

  15. ,"U.S. Refinery Crude Oil Input Qualities"

    U.S. Energy Information Administration (EIA) Indexed Site

    Content (Weighted Average) of Crude Oil Input to Refineries (Percent)","U.S. API Gravity (Weighted Average) of Crude Oil Input to Refineries (Degrees)" 31062,0.88,32.64 ...

  16. ,"U.S. Refinery Crude Oil Input Qualities"

    U.S. Energy Information Administration (EIA) Indexed Site

    Content (Weighted Average) of Crude Oil Input to Refineries (Percent)","U.S. API Gravity (Weighted Average) of Crude Oil Input to Refineries (Degrees)" 31228,0.91,32.46 ...

  17. Texas Crude Oil + Lease Condensate Proved Reserves (Million Barrels...

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Texas Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 ...

  18. Improved measurement of crude oil vapor pressure via PVT study methods

    SciTech Connect (OSTI)

    Roehner, R.; Wetzel, G.; Stonestreet, W.; Lievios, J.; Reed, D.

    1996-12-31

    A technical task force created by owner companies of the Trans-Alaska Pipeline System (TAPS) including BP Pipelines (Alaska), and Arco Transportation Alaska, Inc., and Alyeska Pipeline Service Company (APSC), the operator of TAPS, have investigated new technology for measuring the saturated liquid bubble point vapor pressure (BPVP) of crude oils. This technology is based on Pressure-Volume-Temperature (PVT) Cell study methods and consists of an on-line Vapor Pressure Analyzer (VPA) developed by Arco Oil & Gas Company and marketed by Fluid Data (TVP-1000), and a mercury-free automated PVT lab system (RUSKA 2370 Lab System) marketed by Ruska Instrument Corporation and modified to meet APSC requirements. In this methodology, the BPVP for the multicomponent fluid crude oil is defined and approximated by the intersection of the liquid compressibility and two phase lines on the isothermal pressure-volume (PV) curve for the fluid. The Task Force finds that this new technology provides saturated liquid bubble point vapor pressure values of TAPS crude oils which differ by 15 to 95 kPa from True Vapor Pressure (TVP) values obtained using API Publication 2517, Figure 18B-Equation for of Crude Oils With A Reid Vapor Pressure of 2-15 Pounds per Square Inch and corresponding RVP data from the crude oils tested. The range in difference between the BPVP and the TVP for each of five different TAPS crude oils tested was found to be due to differences in crude oil composition. 3 refs., 1 fig., 1 tab.

  19. Venezuela bets on heavy crude for long term

    SciTech Connect (OSTI)

    Abraham, K.S.

    1997-01-01

    In the heart of eastern Venezuela lies the Orinoco Belt, a vast reserve of heavy crudes and bitumen that equate to only 8{degree} to 10{degree} API. At the beginning of the 1920s, a number of foreign companies explored this area. However, they realized that this crude was too heavy to be produced commercially and abandoned their exploratory sites. In 1978--1980, state firm PDVSA made a large effort to quantify the resources. Geologists finally estimated the in-place reserves at 1.2 trillion bbl, of which 267 billion bbl (41 billion t) were considered recoverable. If produced at a rate of 1.5 million bopd, these reserves would last nearly 500 years. PDVSA experimented with various methods to produce the bitumen. Finally, in the mid-1980s, a breakthrough of sorts was achieved, almost by accident. Lab technicians discovered that bitumen will continue to burn effectively when emulsified with water. Company officials describe the flame as resembling burning gas. This discovery began the rapidly accelerating process to develop what is called the now-patented Orimulsion production. PDVSA managers discarded their plans to supply refineries with bitumen and adopted a new strategy of targeting Orimulsion as an alternative boiler fuel for electric power-generating stations. To oversee this project, a new subsidiary, Bitor (a compressed combination of the terms, bitumen and Orinoco), was created. Bitor operations are described.

  20. Tanker spills Norwegian crude oil off Shetlands

    SciTech Connect (OSTI)

    Not Available

    1993-01-11

    This paper reports that crude oil was spilling last week from the U.S. owned Braer tanker after the 89,000 dwt vessel ran aground on the south end of Scotland's Shetland Islands. Workers were trying to assess the extent of damage to the tanker, shoreline, and wildlife after the January 5 accident. Braer's cargo amounted to 607,000 bbl of Norwegian oil bound for Canada. Braer loaded its cargo and sailed January 3 from Den norske stats oljeselskap AS's Mongstad, Norway, terminal with crude from Gullfaks field in the Norwegian North Sea. The $11 million shipment was destined for Ultramar Canada Inc.'s 125,000 b/d refinery at St. Romuald, Que.

  1. Marine crude oil terminal measuring systems

    SciTech Connect (OSTI)

    Jakubenas, P.P.

    1995-12-01

    The accurate determination of quantity and quality of crude oil transferred from shore to tanker or tanker to shore, is the function of Marine Crude Oil Terminal Measuring Systems. From the measurement data, a Bill of Lading can be prepared and transport costs, taxes, royalties, and customs fees can be computed Accuracy is essential as each tanker load represents a value of ten to twenty million dollars. Even errors of {+-} 0.1% represent a significant amount of revenue. In addition to accuracy, meter systems offer several other advantages over older more traditional tank gaging methods. Specification guidelines for meter systems and associated equipment are presented in this paper. Since most ports are in environmentally sensitive areas, design for protection from spills is also essential.

  2. Crude oil as refinery feed stock

    SciTech Connect (OSTI)

    Boduszynski, M.M.; Farrell, T.R.

    1995-12-31

    This paper gives a brief overview of the integrated oil refinery. It illustrates that crude oil refining involves {open_quotes}molecular tailoring,{close_quotes} where feed stock molecules are {open_quotes}tailored{close_quotes} through catalytic processing to make products with the most desirable composition. Chemical composition of crude oil as refinery feed stock is discussed. The emphasis is on the understanding of molecular transformations which occur in refinery processes to manufacture light transportation fuels. Diesel fuel manufacturing is used as an example. Recent environmental legislation in the United States has necessitated a significant upgrade in the quality of diesel fuel used for highway transportation. Examples are given to illustrate the impact that petroleum chemistry may have on the industry`s response to government regulations.

  3. Electronic overfill protection for crude oil transfer

    SciTech Connect (OSTI)

    Kilgore, D.R.; Miles, D.C.

    1995-12-31

    There are many considerations involved in the transfer of crude oil, but the most catastrophic consequences may come as the result of a spill during loading or unloading. The safety and well-being of personnel in the vicinity is of the utmost concern. Should one be fortunate enough that an explosion or fire is not the results of a spill, the one must contend with the dilemma of containment. Preserving environmental integrity is a subject that is high on everyone`s list. The phrase ``reportable spill`` can send chills up and down anyone`s back. The repercussions continue: Ground water contamination; Soil remediation; Regulatory fines and penalties; Litigation. And this is all topped off by the ``black eye`` that the company receives with the perception of the public. For these reasons, and more, the carriers of crude oil are choosing self imposed compliances to reduce the frequency of spills. Electronic Overfill Protection has been modified to meet the specific needs and requirements of the crude oil industry. Here, the authors will examine how this type of system evolved, how it functions, and where it may lead.

  4. DOE/SC-ARM-020 Atmospheric Radiation Measurement Climate Research...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    20 Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report ... DOESC-ARM-020 Atmospheric Radiation Measurement Climate Research Facility Operations ...

  5. System developed to predict waxy crude`s breakaway yield stress

    SciTech Connect (OSTI)

    Williams, T.M.; Hsu, J.J.C.; Patterson, H.L.

    1996-12-16

    Breakaway yield stress (BAYS) was measured on waxy crude oil from the South China Sea to help develop appropriate design specifications for the HZ field subsea production system there. The measured BAYS at seabed temperature indicated that if production were interrupted and the crude in the pipeline cooled to seabed temperature, restart pressure would exceed the pressure rating of the originally planned pipeline. Texaco Inc. has designed a system to measure the BAYS of stock tank and live crude oils at selected temperatures. The cooling rate of the oil can be controlled and measurement of BAYS at the selected temperatures delayed to best model field conditions. The paper describes the measurement apparatus, pressure equation, results of the measurement of HZ 32 oils, rate of cooling, special field design, and implications.

  6. F.O.B. Costs of Imported Crude Oil for Selected Crude Streams

    U.S. Energy Information Administration (EIA) Indexed Site

    for Selected Crude Streams (Dollars per Barrel) Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Crude Stream Jan-16 Feb-16 Mar-16 Apr-16 May-16 Jun-16 View History Angolan Cabinda 1983-2010 Canadian Bow River 1996-2010 Canadian Light Sour Blend 26.40 26.16 29.95 36.13 39.21 43.32 2010-2016 Canadian Lloydminster 1983-2015 Ecuadorian Oriente 1983-2008 Gabon Rabi-Kouanga 1996-2008 Iraqi Basrah Light 24.24 W W W

  7. Deasphalting and gasification - A new approach for converting heavy crudes into petrochemicals

    SciTech Connect (OSTI)

    Tellez, E.; Moca, N.; Gomez, O.

    1995-12-31

    The huge amount of heavy and extra-heavy crudes of Maraven has led our company to develop a medium/long term strategic plan for disposition and optimum use of these resources. One of these crudes, Boscan, has been used only in asphalt manufacturing and in some deep conversion refineries (with volumetric limits, 10-15 vol% as coker feed), due to its low quality for fuel manufacturing (10.2{degrees}API, 5.4 wt% sulphur, 1122 ppm vanadium) and high residuum yield (78% LV of 700{degrees}F+ residue). In 1992, Maraven undertook a series of studies that brought about the definition of an industrial complex to convert Boscan extra-heavy crude oil to higher value distillates and chemical products. The combination of Rose Solvent Deasphalting of the Boscan atmospheric residue with the gasification of the deasphalting raffinate produces 79% yield of high quality liquid distillates and clean syngas for chemical synthesis. Under this new approach syngas is used to produce 1600 tons/day of grade AA (99.9 wt%) methanol: 1330 tons/day are available for export and 270 tons/day are dedicated for the production of 500 tons/day of acetic acid. The remaining syngas is used to supply the hydrogen requirements of the Boscan extra heavy crude upgrading complex and for power generation. The technical feasibility of this route, based on commercially proven processes together with adequate economics for this type of business, will allow the conversion of extra-heavy crude oil into higher value distillates and chemical products.

  8. Proved Nonproducing Reserves of Crude Oil

    U.S. Energy Information Administration (EIA) Indexed Site

    Product: Crude Oil Lease Condensate Total Gas Nonassociated Gas Associated Gas Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Area 2009 2010 2011 2012 2013 2014 View History U.S. 6,015 6,980 9,049 11,884 13,200 14,816 1996-2014 Federal Offshore U.S. 2,150 1,710 2,662 2,189 2,456 2,306 1996-2014 Pacific (California) 12 13 13 25 17 18 1996-2014 Gulf of Mexico (Louisiana & Alabama) 2,013

  9. Prepermit work starts on California crude line

    SciTech Connect (OSTI)

    Not Available

    1991-04-08

    This paper reports on preliminary work leading to permitting efforts for a 171 mile pipeline to move low gravity crude from giant fields of California to the Los Angeles area. The 20 in., unheated pipeline would cost $180-190 million and could go on stream in 3-3 1/2 years. The project has the backing of partners in development of giant Point Arguello field in the Santa Maria basin off Santa Barbara County, a project blocked from start-up for more than 3 years by permitting wrangles. Pipeline sponsors also have proposed moving oil production from development of Santa Ynez Unit in the Santa Barbara Channel. Point Arguello production is expected to start this year with flow limited to 20,000 b/d, moving moved by pipeline to refineries outside Los Angeles. Point Arguello partners want to ship full Arguello production of 80,000-100,00 b/d by tanker until the PPC project is complete, which the county opposes. The group has appealed the county's denial of an interim tankering permit to the California Coastal Commission, which is expected to hold a hearing on the matter this month. The controversy has been further complicated by other, competing projects designed to move Point Arguello crude to market.

  10. Ecuador plans expanded crude-oil line

    SciTech Connect (OSTI)

    Boschat, J.; Sabathier, J. )

    1995-01-23

    Ecuador plans to increase throughput of the 309 mile, 20 and 26-in. Trans Ecuadorian pipeline that moves crude oil from the Oriente in the Amazon basin to the Pacific coast for refining in local refineries and export. Increasing crude-oil production is driving the expansion. In investment, it is the largest pipeline project in the country in more than 20 years. In August 1992, Petro-ecuador, the Ecuadorian state company in charge of petroleum, hired the French petroleum consulting firm Beicip-Franlab to carry out the basic engineering and preparation of the technical tender documents for increasing the pipeline's throughput. The revamped Trans Ecuadorian pipeline, together with the Triunfo Nuevo-Condijua pipeline, will form the new Trans Ecuadorian pipeline system. This means that they will be integrated into a single system controlled and monitored from a main dispatching center in Guajalo near Quito which is now Petroecuador's maintenance center for the existing pipeline. As there is no supervisory control and data acquisition (scada) system now on the Trans Ecuadorian pipeline, scada will be built along with a new telecommunication network covering the entire new Trans Ecuadorian pipeline system. Also, to comply with the most modern requirements in terms of environmental protection, especially in a country subject to seismic activity, a leak-detection system will be implemented on all lines.

  11. Ultrasonic corrosion inspection of crude oil pipeline

    SciTech Connect (OSTI)

    Kondo, Munetaka; Kobayashi Motoi; Kurashima, Mineo

    1999-07-01

    An ultrasonic in-line inspection tool has successfully inspected a crude oil pipeline, which is 48-inches in diameter and 1,287 kms in length. This is one of the biggest crude oil pipeline systems in the world. The longest distance of a single inspection run is 1,055 km. The survey runs have been carried out total eight times from 1989 to 1998. The ultrasonic instruments were upgraded and the new ultrasonic tool was built in 1995. The new ultrasonic tool has 512 ultrasonic transducers and the firing interval of each transducer is 1.6 ms (625 Hz). The specified criterion for the grading of the data collected by the ultrasonic tool is single transducer grading. This criterion requires that corrosion will be reported when a single transducer detects a metal loss. The data observation software for personal computers is supplied to show inspection results and measured data collected by the ultrasonic tool. This paper describes the ultrasonic corrosion inspection technology of the ultrasonic tool applied for this project.

  12. Processing heavy crudes: residuum hydroprocessing in the 80s

    SciTech Connect (OSTI)

    Green, D.C.; Broderick, D.H.

    1981-12-01

    Recent developments in residuum hydroprocessing reflect worldwide trends in product demands and crude oil quality. The challenge of the 1980s for the petroleum refining industry is to convert more of the heaviest portion of crude oil into more valuable transpotation fuels. It is believed that residuum hydroprocessing will contribute in an important way to meet new refinery demands. This paper reviews developments in residuum hydroprocessing, and how they reflect changes in crude oil supplies and the market for refined products. 23 refs.

  13. Process for demetallizing and desulfurizing heavy crude oil

    SciTech Connect (OSTI)

    Brown, R.E.; Hogan, R.J.; Combs, D.M.; Kukes, S.G.

    1989-12-05

    This patent describes a process for producing a synthetic crude oil of improved properties by desulfurizing, denitrogenating and demetallizing a heavy crude oil feed stock. The feed stock being a crude oil having an average boiling point at least as high as 500{degrees} F., an API gravity at 60{degrees} F. of less than 20, and containing at least about 1 weight percent sulfur.

  14. Australia`s Cossack crude oil is light and sweet

    SciTech Connect (OSTI)

    Rhodes, A.K.

    1997-05-05

    In early 1995, the characteristics of Australia`s light, sweet Cossack crude were analyzed. The 47{degree} API, 0.03 wt% crude oil is produced off the coast of Western Australia. Woodside Petroleum Pty. Group started production from the Wanaea/Cossack complex in late 1995. Wanea is produced from five conventional subsea wells and Cossack from one horizontal subsea well. This paper lists physical and chemical properties for the whole crude and fractions.

  15. Crude Oil and Petroleum Products Total Stocks Stocks by Type

    U.S. Energy Information Administration (EIA) Indexed Site

    Product: Crude Oil and Petroleum Products Crude Oil All Oils (Excluding Crude Oil) Pentanes Plus Liquefied Petroleum Gases Ethane/Ethylene Propane/Propylene Normal Butane/Butylene Isobutane/Butylene Other Hydrocarbons Oxygenates (excluding Fuel Ethanol) MTBE Other Oxygenates Renewables (including Fuel Ethanol) Fuel Ethanol Renewable Diesel Fuel Other Renewable Fuels Unfinished Oils Unfinished Oils, Naphthas & Lighter Unfinished Oils, Kerosene & Light Gas Unfinished Oils, Heavy Gas Oils

  16. Crude Oil and Lease Condensate Production by API Gravity

    Gasoline and Diesel Fuel Update (EIA)

    ... Petroleum Institute's measure of specific gravity of crude oil or condensate in degrees. ... At the individual statearea level, production volumes in the "Unknown" category are ...

  17. Table 7. Crude oil proved reserves, reserves changes, and production...

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude oil proved reserves, reserves changes, and production, 2014" "million barrels" ,,"Changes in Reserves During 2014" ,"Published",,,..."New Reservoir" ,"Proved",,"Revision","...

  18. Costs of Imported Crude Oil by API Gravity

    U.S. Energy Information Administration (EIA) Indexed Site

    1978; Form ERA-51, "Transfer Pricing Report," January 1979 through September 1982; Form EP-51, "Monthly Foreign Crude Oil Transaction Report," October 1982 through June 1984; Form...

  19. ,"Federal Offshore, Gulf of Mexico, Texas Crude Oil plus Lease...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore, Gulf of Mexico, Texas Crude Oil plus Lease Condensate Proved Reserves",10,"Annual",2014,"06302009"...

  20. ,"Federal Offshore, Gulf of Mexico, Louisiana & Alabama Crude...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore, Gulf of Mexico, Louisiana & Alabama Crude Oil plus Lease Condensate Proved Reserves",10,"Annual",2014...

  1. ,"New Mexico Crude Oil plus Lease Condensate Proved Reserves...

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Crude Oil plus Lease Condensate Proved Reserves",10,"Annual",2014,"06302009"...

  2. Analysis shows greenhouse gas emissions similar for shale, crude...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Michael Wang, Argonne senior scientist and lead on the GREET model Analysis shows greenhouse gas emissions similar for shale, crude oil By Tona Kunz * October 15, 2015 Tweet ...

  3. China facing revamp of outmoded crude tanker terminal system

    SciTech Connect (OSTI)

    Not Available

    1994-05-09

    Expectations of soaring growth in China's crude oil imports has officials taking another look at the country's coastal crude oil tanker terminals. At first glance, plans to add China's coastal tanker terminal capacity would seem to slightly exceed projected needs. However, officials say, existing major terminals are already woefully underutilized. That over capacity will only worsen as plans proceed to construct a number of major new terminals to accommodate the expected surge in calls by large ocean going tankers as exports increase. The paper describes China's existing crude tanker terminals, expansion plans, the reason for terminal underutilization, and the outlook for China becoming a net crude importer by 1995.

  4. Table 21. Domestic Crude Oil First Purchase Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    Administration Petroleum Marketing Annual 1996 41 Table 21. Domestic Crude Oil First Purchase Prices (Dollars per Barrel) - Continued Year Month PAD District II...

  5. Table 21. Domestic Crude Oil First Purchase Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    AdministrationPetroleum Marketing Annual 1998 41 Table 21. Domestic Crude Oil First Purchase Prices (Dollars per Barrel) - Continued Year Month PAD District II...

  6. Table 22. Domestic Crude Oil First Purchase Prices for Selected...

    U.S. Energy Information Administration (EIA) Indexed Site

    data. Source: Energy Information Administration, Form EIA-182, "Domestic Crude Oil First Purchase Report." 44 Energy Information AdministrationPetroleum Marketing Annual...

  7. Table 21. Domestic Crude Oil First Purchase Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    Administration Petroleum Marketing Annual 1995 41 Table 21. Domestic Crude Oil First Purchase Prices (Dollars per Barrel) - Continued Year Month PAD District II...

  8. Table 22. Domestic Crude Oil First Purchase Prices for Selected...

    U.S. Energy Information Administration (EIA) Indexed Site

    data. Source: Energy Information Administration, Form EIA-182, "Domestic Crude Oil First Purchase Report." 44 Energy Information Administration Petroleum Marketing Annual...

  9. Relationship Between Crude Oil and Natural Gas Prices, The

    Reports and Publications (EIA)

    2006-01-01

    This paper examines the time series econometric relationship between the Henry Hub natural gas price and the West Texas Intermediate (WTI) crude oil price.

  10. ,"TX, RRC District 10 Crude Oil plus Lease Condensate Proved...

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil plus Lease Condensate Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...