Powered by Deep Web Technologies
Note: This page contains sample records for the topic "openei solar power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Solar Power | OpenEI Community  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar PowerstoriesNrelPartnerTypePonsa,Home Aimeebailey's picture Submitted by

2

Solar power prices are dropping fast, NREL says | OpenEI Community  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty Ltd Jump to:Information Silver PeakSystems Jump to:JumpSolar power prices

3

Solar | OpenEI Community  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar PowerstoriesNrelPartnerTypePonsa,Home Aimeebailey's pictureWiki PageSolar Home

4

community solar | OpenEI Community  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop,SaveWhiskey Flats GeothermalElectric Coop Home7 August,

5

solar garden | OpenEI Community  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop,SaveWhiskey Flatshydro Home Water Homerequestsoftware Home

6

solar land use | OpenEI Community  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop,SaveWhiskey Flatshydro Home Water Homerequestsoftware Home Home

7

Water Power Forum | OpenEI Community  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop,Save EnergyGlouster,Winside,Warren County Rural EHeaters Jump

8

Water Power Forum | OpenEI Community  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop,Save EnergyGlouster,Winside,Warren County Rural EHeaters

9

power plant | OpenEI Community  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop,SaveWhiskey Flatshydro Home Water Home Jweers's pictureoutagespower

10

power point | OpenEI Community  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop,SaveWhiskey Flatshydro Home Water Home Jweers's

11

wind powering america | OpenEI Community  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop,SaveWhiskey Flatshydro Homepowering america Home Graham7781's

12

OpenEI Community - Water power  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Powerstories onFocus AreaDataBusPFAN)ChangeOnPAC EnergyperMulticolor Maps

13

Water Power Forum | OpenEI Community  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop,Save EnergyGlouster,Winside,Warren County Rural EHeatersCBS (1)

14

power user | OpenEI Community  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop,SaveWhiskey Flatshydro Home Water Home Jweers'suser Home Developer

15

Solar powered desalination system  

E-Print Network [OSTI]

2008, uses concentrated solar power to split water. Figurethe main reason the potential for solar power is boundless.a clean energy source, solar power is inexhaustible, fairly

Mateo, Tiffany Alisa

2011-01-01T23:59:59.000Z

16

Solar powered desalination system  

E-Print Network [OSTI]

As a clean energy source, solar power is inexhaustible,renewables for energy sources, including solar power. Also,Requirements Energy Source Natural Gas Nuclear Solar Wind

Mateo, Tiffany Alisa

2011-01-01T23:59:59.000Z

17

OpenEI Community - Solar Power  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth'sOklahoma/Geothermal < Oklahoma JumpcommunityIdeasSpursHighlightsen

18

Concentrating Solar Power  

SciTech Connect (OSTI)

Summarizes the goals and activities of the DOE Solar Energy Technologies Program efforts within its concentrating solar power subprogram.

Not Available

2008-09-01T23:59:59.000Z

19

Solar Land Use Data on OpenEI | OpenEI Community  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar PowerstoriesNrelPartnerTypePonsa, Mallorca:upGuidebookSolSolutionSolar Land Use

20

Concentrated Solar Thermoelectric Power  

Broader source: Energy.gov (indexed) [DOE]

CONCENTRATING SOLAR POWER PROGRAM REVIEW 2013 Concentrated Solar Thermoelectric Power Principal Investigator: Prof. Gang Chen Massachusetts Institute of Technology Cambridge, MA...

Note: This page contains sample records for the topic "openei solar power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Concentrated Solar Power Generation.  

E-Print Network [OSTI]

??Solar power generation is the most promising technology to transfer energy consumption reliance from fossil fuel to renewable sources. Concentrated solar power generation is a (more)

Jin, Zhilei

2013-01-01T23:59:59.000Z

22

Solar powered desalination system  

E-Print Network [OSTI]

of the electrical power output to the solar power input), aSolar Energy Calculator using Google Maps 23 Table 1.24: PV System Power Production Average Daily Irradiance (kWh/m2) Instillation Efficiency Labeled Efficiency Output

Mateo, Tiffany Alisa

2011-01-01T23:59:59.000Z

23

Solar power satellites.  

E-Print Network [OSTI]

??During energy crisis at the end of the Sixties, a new idea to exploit solar energy arose: Solar Power Satellites. These satellites need a huge (more)

Palmas, Alessandro

2013-01-01T23:59:59.000Z

24

Solar Power  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systemsBiSite CulturalDepartment ofatRenewable Energy »Buildings Solar

25

HOUSEHOLD SOLAR POWER SYSTEM.  

E-Print Network [OSTI]

?? Photovoltaic power has become one of the most popular research area in new energy field. In this report, the case of household solar power (more)

Jiang, He

2014-01-01T23:59:59.000Z

26

Solar Federal Roadmapping Meeting | OpenEI Community  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty Ltd Jump to:Information Silver Peak AreaOutline Jump to:SolarLtd

27

Solar Permitting Roadmap Development | OpenEI Community  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty Ltd Jump to:Information Silver Peak AreaOutlineSolar Pathfinder Jump

28

Solar Power Purchase Agreements  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Solar Power Purchase Agreements Brian Millberg | Energy Manager, City of Minneapolis Direct Ownership * Financial: Even at 3kW installed cost, simple payback is 18 years (initial...

29

Concentrated Solar Thermoelectric Power  

Broader source: Energy.gov [DOE]

This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 2325, 2013 near Phoenix, Arizona.

30

Alternative Energy Technologies Solar Power  

E-Print Network [OSTI]

#12;Alternative Energy Technologies Solar Power Photovoltaics Concentrating Solar Power (CSP) Power;Concentrating Solar Power (CSP) Reflector material is Aluminum or Silver Tube material ..... Several possible ............... Mexico, Canada, Peru Alumina ............Guinea, Brazil, Australia, Jamaica Manganese ....... S. Africa

Scott, Christopher

31

Space Solar Power Program  

SciTech Connect (OSTI)

Information pertaining to the Space Solar Power Program is presented on energy analysis; markets; overall development plan; organizational plan; environmental and safety issues; power systems; space transportation; space manufacturing, construction, operations; design examples; and finance.

Arif, H.; Barbosa, H.; Bardet, C.; Baroud, M.; Behar, A.; Berrier, K.; Berthe, P.; Bertrand, R.; Bibyk, I.; Bisson, J.; Bloch, L.; Bobadilla, G.; Bourque, D.; Bush, L.; Carandang, R.; Chiku, T.; Crosby, N.; De Seixas, M.; De Vries, J.; Doll, S.; Dufour, F.; Eckart, P.; Fahey, M.; Fenot, F.; Foeckersperger, S.; Fontaine, J.E.; Fowler, R.; Frey, H.; Fujio, H.; Gasa, J.M.; Gleave, J.; Godoe, J.; Green, I.; Haeberli, R.; Hanada, T.; Ha

1992-08-01T23:59:59.000Z

32

Water Power Forum - Q & A | OpenEI Community  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop,Save EnergyGlouster,Winside,Warren County Rural EHeaters Jump to:-

33

Solar Impulse's Solar-Powered Plane  

ScienceCinema (OSTI)

Solar Impulse lands in Washington, DC at Washington Dulles International Airport as part of its journey across the United States. Secretary Ernest Moniz speaks about how advancements like those at the Department of Energy are leading the way for innovations like the solar-powered plane. Footage of the solar-powered plane courtesy of Solar Impulse.

Moniz, Ernest; Piccard, Bertrand; Reicher, Dan

2014-01-07T23:59:59.000Z

34

Solar Impulse's Solar-Powered Plane  

SciTech Connect (OSTI)

Solar Impulse lands in Washington, DC at Washington Dulles International Airport as part of its journey across the United States. Secretary Ernest Moniz speaks about how advancements like those at the Department of Energy are leading the way for innovations like the solar-powered plane. Footage of the solar-powered plane courtesy of Solar Impulse.

Moniz, Ernest; Piccard, Bertrand; Reicher, Dan

2013-07-08T23:59:59.000Z

35

How can an external application get access to OpenEI images and thumbnails?  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power BasicsGermany: EnergyPowerInformationHomer Electric| OpenEI

36

How do I access the Green Button SDK? | OpenEI Community  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power BasicsGermany: EnergyPowerInformationHomer Electric| OpenEI|

37

EIS-0449: Solar Millennium Blythe Solar Power Project in Riverside...  

Broader source: Energy.gov (indexed) [DOE]

9: Solar Millennium Blythe Solar Power Project in Riverside County, CA EIS-0449: Solar Millennium Blythe Solar Power Project in Riverside County, CA December 10, 2010 EIS-0449:...

38

EA-1683: Abengoa Solar's Solana Concentrating Solar Power Facility...  

Broader source: Energy.gov (indexed) [DOE]

83: Abengoa Solar's Solana Concentrating Solar Power Facility, Gila Bend, AZ EA-1683: Abengoa Solar's Solana Concentrating Solar Power Facility, Gila Bend, AZ May 3, 2010 EA-1683:...

39

The solar electric power outlook  

SciTech Connect (OSTI)

The outlook for solar electric power plants is discussed. The following topics are discussed: Amoco/Envon solar vision, multi-megawatt solar power projects, global carbon dioxide emission estimates, pollution and electric power generation, social costs of pollution economies of scale, thin-film power module, rooftop market strategy, regulatory issues regarding rooftop systems, and where do we go from here?

Kemp, J.W.

1995-12-31T23:59:59.000Z

40

Solar Power Purchase Agreements | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Solar Power Purchase Agreements Solar Power Purchase Agreements Provides an overview of solar power purchase agreements including how they work, benefits and challenges and...

Note: This page contains sample records for the topic "openei solar power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Capacity Value of Solar Power  

SciTech Connect (OSTI)

Evaluating the capacity value of renewable energy sources can pose significant challenges due to their variable and uncertain nature. In this paper the capacity value of solar power is investigated. Solar capacity value metrics and their associated calculation methodologies are reviewed and several solar capacity studies are summarized. The differences between wind and solar power are examined, the economic importance of solar capacity value is discussed and other assessments and recommendations are presented.

Duignan, Roisin; Dent, Chris; Mills, Andrew; Samaan, Nader A.; Milligan, Michael; Keane, Andrew; O'Malley, Mark

2012-11-10T23:59:59.000Z

42

Funding Opportunity Announcement: Concentrating Solar Power:...  

Broader source: Energy.gov (indexed) [DOE]

Funding Opportunity Announcement: Concentrating Solar Power: Advanced Projects Offering Low LCOE Opportunities Funding Opportunity Announcement: Concentrating Solar Power: Advanced...

43

Solar thermal power system  

DOE Patents [OSTI]

A solar thermal power generator includes an inclined elongated boiler tube positioned in the focus of a solar concentrator for generating steam from water. The boiler tube is connected at one end to receive water from a pressure vessel as well as connected at an opposite end to return steam back to the vessel in a fluidic circuit arrangement that stores energy in the form of heated water in the pressure vessel. An expander, condenser, and reservoir are also connected in series to respectively produce work using the steam passed either directly (above a water line in the vessel) or indirectly (below a water line in the vessel) through the pressure vessel, condense the expanded steam, and collect the condensed water. The reservoir also supplies the collected water back to the pressure vessel at the end of a diurnal cycle when the vessel is sufficiently depressurized, so that the system is reset to repeat the cycle the following day. The circuital arrangement of the boiler tube and the pressure vessel operates to dampen flow instabilities in the boiler tube, damp out the effects of solar transients, and provide thermal energy storage which enables time shifting of power generation to better align with the higher demand for energy during peak energy usage periods.

Bennett, Charles L.

2010-06-15T23:59:59.000Z

44

Energy 101: Concentrating Solar Power  

ScienceCinema (OSTI)

From towers to dishes to linear mirrors to troughs, concentrating solar power (CSP) technologies reflect and collect solar heat to generate electricity. A single CSP plant can generate enough power for about 90,000 homes. This video explains what CSP is, how it works, and how systems like parabolic troughs produce renewable power. For more information on the Office of Energy Efficiency and Renewable Energy's CSP research, see the Solar Energy Technology Program's Concentrating Solar Power Web page at http://www1.eere.energy.gov/solar/csp_program.html.

None

2013-05-29T23:59:59.000Z

45

Energy 101: Concentrating Solar Power  

SciTech Connect (OSTI)

From towers to dishes to linear mirrors to troughs, concentrating solar power (CSP) technologies reflect and collect solar heat to generate electricity. A single CSP plant can generate enough power for about 90,000 homes. This video explains what CSP is, how it works, and how systems like parabolic troughs produce renewable power. For more information on the Office of Energy Efficiency and Renewable Energy's CSP research, see the Solar Energy Technology Program's Concentrating Solar Power Web page at http://www1.eere.energy.gov/solar/csp_program.html.

None

2010-01-01T23:59:59.000Z

46

Sandia National Laboratories: Concentrating Solar Power  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Solar Power Technical Management Position On July 12, 2012, in Concentrating Solar Power, Energy, Facilities, Job Listing, National Solar Thermal Test Facility, News,...

47

Gulf Power- Solar PV Program  

Broader source: Energy.gov [DOE]

'''''All funding has currently been reserved and new applications are no longer being accepted. See Gulf Power's [http://www.gulfpower.com/renewable/solarElectricity.asp Solar PV] web site for more...

48

EA-1784: Fotowatio Nevada Solar, LLC's Apex Solar Power Project...  

Broader source: Energy.gov (indexed) [DOE]

84: Fotowatio Nevada Solar, LLC's Apex Solar Power Project in Clark County, NV EA-1784: Fotowatio Nevada Solar, LLC's Apex Solar Power Project in Clark County, NV July 1, 2010...

49

town | OpenEI Community  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop,SaveWhiskey Flatshydro Home Waterstructuredtext intown Home OpenEI

50

Concentrated solar power on demand .  

E-Print Network [OSTI]

??This thesis describes a new concentrating solar power central receiver system with integral thermal storage. Hillside mounted heliostats direct sunlight into a volumetric absorption molten (more)

Codd, Daniel Shawn

2011-01-01T23:59:59.000Z

51

Subsidizing Global Solar Power.  

E-Print Network [OSTI]

?? With national cuts on solar PV subsidies and the current oversupply of panels, the global solar market is clearly threatened by a contraction. Yet, (more)

Arnesson, Daniel

2013-01-01T23:59:59.000Z

52

Department of Defense 3 GW Solar Target | OpenEI Community  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power Basics (The following text09-0018-CXBasin JumpTexasProgramme3.1418611°,3

53

Argonne National Laboratory's Solar Energy Development Programmatic...  

Open Energy Info (EERE)

Solar Energy Development Programmatic EIS Website Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Argonne National Laboratory's Solar Energy...

54

Solar Power for Tanzania  

SciTech Connect (OSTI)

Condensed list of products and activities: 8 educational posters and 1 informational brochure (all original illustrations and text); a business plan with micro-agreements; corporation created called Tanzanian Power, LLC; business feasibility study developed with the University of Albany; Hampshire College collaborated in project development; research conducted seeking similar projects in underdeveloped countries; Citibank proposal submitted (but rejected); cleaned and sent PV panels to Tanzania; community center built in Tanzania; research and list provided to Robinson for educational TV videos and product catalogs; networked with Chase Manhattan Bank for new solar panels; maintained flow of information among many people (stateside and Tanzania); wrote and sent press releases and other outreach information. Several families purchased panels.

Chen, Christine; Gerace, Jay; Mehner, Nicole; Mohamed, Sharif; Reiss, Kelly

1999-12-06T23:59:59.000Z

55

Solar powered desalination system  

E-Print Network [OSTI]

USA, Jacksonville, FL Jacksonville Solar Energy Generation Facility Constructed Systems that produce electricity

Mateo, Tiffany Alisa

2011-01-01T23:59:59.000Z

56

Solar powered desalination system  

E-Print Network [OSTI]

1.18: Largest PV Power Plants32 TableTable 1.18: Largest PV Power Plants 19 Power (MW) LocationWorld Canada, Sarnia PV power plant Sarnia (Ontario) Italy,

Mateo, Tiffany Alisa

2011-01-01T23:59:59.000Z

57

Concentrated solar power on demand  

E-Print Network [OSTI]

This thesis describes a new concentrating solar power central receiver system with integral thermal storage. Hillside mounted heliostats direct sunlight into a volumetric absorption molten salt pool, which also functions ...

Codd, Daniel Shawn

2011-01-01T23:59:59.000Z

58

Concentrating Solar Power (Fact Sheet)  

SciTech Connect (OSTI)

Concentrating Solar Power (CSP) offers a utility-scale, firm, dispatchable renewable energy option that can help meet the nation's goal of making solar energy cost competitive with other energy sources by the end of the decade. The DOE SunShot Initiative is a collaborative national initiative to make solar energy technologies cost-competitive with other forms of energy by reducing the cost of solar energy systems by about 75% by the end of the decade. Reducing the total installed cost for utility-scale solar electricity to roughly 6 cents per kilowatt hour without subsidies will result in rapid, large-scale adoption of solar electricity across the United States. Reaching this goal will re-establish American technological leadership, improve the nation's energy security, and strengthen U.S. economic competitiveness in the global clean energy race. SunShot will work to bring down the full cost of solar - including the costs of solar cells and installation by focusing on four main pillars: (1) Technologies for solar cells and arrays that convert sunlight to energy; (2) Electronics that optimize the performance of the installation; (3) Improvements in the efficiency of solar manufacturing processes; and (4) Installation, design, and permitting for solar energy systems.

Not Available

2011-10-01T23:59:59.000Z

59

One Panel One Roof, DOE Powering Solar Workforce | Department...  

Broader source: Energy.gov (indexed) [DOE]

One Panel One Roof, DOE Powering Solar Workforce One Panel One Roof, DOE Powering Solar Workforce...

60

U.S. Solar Power Market  

SciTech Connect (OSTI)

The report provides an overview of the domestic market for solar, including a concise look at the steps being taken to grow solar power in the U.S. Topics covered include: an overview of solar power including its history, the current market environment, and its future prospects; an analysis of the key business factors that are driving interest in solar power; a description of solar power technologies; a review of the economics of solar power; a discussion of the key markets for solar power; and, profiles of domestic solar cell/module manufacturers.

NONE

2007-08-15T23:59:59.000Z

Note: This page contains sample records for the topic "openei solar power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Solar Powered Classroom  

SciTech Connect (OSTI)

A group of fourth graders in Durham, North Carolina, are showing America the way to a clean energy future. They are installing solar panels on their classroom roof for a project that goes above and beyond a normal day in school. From researching solar panel installation, to generating funds for the project via Kickstarter, these are students who put their plans into action. Their accomplishments go beyond the classroom and stress the importance of getting people of all ages involved in renewable energy.

none

2013-06-13T23:59:59.000Z

62

Solar Powered Classroom  

ScienceCinema (OSTI)

A group of fourth graders in Durham, North Carolina, are showing America the way to a clean energy future. They are installing solar panels on their classroom roof for a project that goes above and beyond a normal day in school. From researching solar panel installation, to generating funds for the project via Kickstarter, these are students who put their plans into action. Their accomplishments go beyond the classroom and stress the importance of getting people of all ages involved in renewable energy.

none

2013-06-27T23:59:59.000Z

63

Rooftop Solar Potential Distributed Solar Power in NW  

E-Print Network [OSTI]

1 Rooftop Solar Potential Distributed Solar Power in NW Massoud Jourabchi June 2013 1 Renewables;3 Regional Growth In Solar Energy Consumption Solar consumption both Thermal and PV h b t d i i lhas been on steady increase since early 1990s. From 2000-2010 Solar PV grow at annual rate of 13% and solar thermal

64

Concentrating Solar Power: Solar Energy Technologies Program (SETP) (Fact Sheet)  

SciTech Connect (OSTI)

Fact sheet summarizing the goals and activities of the DOE Solar Energy Technologies Program efforts within its concentrating solar power subprogram.

Not Available

2009-10-01T23:59:59.000Z

65

The Power of Open Data and Crowdsourcing | OpenEI Community  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop, Inc Place:InnovationFunds-BusinessOhio EnvironmentalThe Power of

66

The Solarex Solar Power Industrial Facility  

E-Print Network [OSTI]

The Solarex Corporation has designed, built and operated an industrial facility which is totally powered by a Solarex solar electric power system. The solar power system, energy-conserving building and manufacturing operations were treated as a...

Macomber, H. L.; Bumb, D. R.

1984-01-01T23:59:59.000Z

67

OpenEI dashboard | OpenEI Community  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Powerstories onFocus AreaDataBusPFAN)ChangeOnPACen 2014Version 2OpenEI Town Hall

68

OpenEI search improvements | OpenEI Community  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Powerstories onFocus AreaDataBusPFAN)ChangeOnPACen 2014Version 2OpenEI

69

Solar powered dehumidifier apparatus  

DOE Patents [OSTI]

A thermally insulated light transmitting housing forms a chamber containing a desiccant and having a first gas port open to the ambient and a second gas port connected by a two way valve to a volume to be dried. Solar energy transmitted through the housing heats and dries the desiccant. The increased air pressure due to the heating of the volume to be dried causes the air from the volume to be expelled through the valve into the chamber. The desiccant is then cooled by shielding it from solar energy before the volume cools thereby increasing its moisture absorbing capacity. Then the volume is allowed to cool drawing dehumidified air through the desiccant and the valve into the volume to be dried. This cycle is then repeated.

Jebens, Robert W. (Skillman, NJ)

1980-12-30T23:59:59.000Z

70

Sandia National Laboratories: Concentrating Solar Power  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

News & Events, Photovoltaic, Photovoltaic Systems Evaluation Laboratory (PSEL), Renewable Energy, Solar, Solar Newsletter, SunShot, Systems Analysis Sandia and Electric Power...

71

Sandia National Laboratories: Concentrating Solar Power  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Safety and Health Go Green Initiative On December 19, 2012, in Concentrating Solar Power, Energy, Events, Facilities, National Solar Thermal Test Facility, News, News...

72

Sandia National Laboratories: Concentrating Solar Power  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sandia and EMCORE: Solar Photovoltaics, Fiber Optics, MODE, and Energy Efficiency On March 29, 2013, in Concentrating Solar Power, Energy, Partnership, Photovoltaic, Renewable...

73

Sandia National Laboratories: Concentrating Solar Power  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Center in Vermont Achieves Milestone Installation On September 23, 2014, in Concentrating Solar Power, Energy, Facilities, National Solar Thermal Test Facility, News, News &...

74

Sandia National Laboratories: Concentrating Solar Power: Efficiently...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Funding Award On June 4, 2014, in Advanced Materials Laboratory, Concentrating Solar Power, Energy, Energy Storage, Facilities, National Solar Thermal Test Facility,...

75

Concentrating Solar Power (Revised) (Fact Sheet)  

SciTech Connect (OSTI)

The fact sheet summarizes the goals and activities of the DOE Solar Energy Technologies Program efforts within its concentrating solar power subprogram.

Not Available

2010-11-01T23:59:59.000Z

76

Solar Power for Deployment in Populated Areas.  

E-Print Network [OSTI]

??The thesis presents background on solar thermal energy and addresses the structural challenges associated with the deployment of concentrating solar power fields in urban areas. (more)

Hicks, Nathan Andrew

2009-01-01T23:59:59.000Z

77

Saguargo Solar Power Plant Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to: navigation, searchVirginiaRooseveltVI Solar PowerSaft PowerSaguache County,

78

Rooftop Solar Potential Distributed Solar Power in NW  

E-Print Network [OSTI]

6/19/2013 1 Rooftop Solar Potential Distributed Solar Power in NW Massoud Jourabchi June 2013 1 in 2012 4 #12;6/19/2013 3 Regional Growth In Solar Energy Consumption Solar consumption both Thermal and PV h b t d i i lhas been on steady increase since early 1990s. From 2000-2010 Solar PV grow

79

Reliable solar: powering communities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromising ScienceRecentRegionalReliability Technology earns

80

Solar Resources by Class and Country - Datasets - OpenEI Datasets  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty Ltd Jump to:Information Silver Peak AreaOutlineSolarEnergySolar Resources

Note: This page contains sample records for the topic "openei solar power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Solar thermionic power plant (II)  

SciTech Connect (OSTI)

It has been shown that the geometric configuration of a central receiver solar electric power plant (SEPP) can be optimized for the high power density and concentration required for the operation of a thermionic converter. The working period of a Thermionic Diode Converter constructed on the top of a SEPP in Riyadh area is found to be 5 to 6 hours per day in winter and 6 to 8 hours in summer. 17 refs.

Abou-Elfotouh, F.; Almassary, M.; Fatmi, H.

1981-01-01T23:59:59.000Z

82

Solar Power Generation Development  

SciTech Connect (OSTI)

This project centered on creating a solar cell prototype enabling significant reductions in module cost and increases in module efficiency. Low cost was addressed by using plentiful organic materials that only comprise 16% of the total module cost, and by leveraging building integrated PV concepts that reduce the cost of key module components to zero. High efficiency was addressed by implementing multiband organic PV, low cost spectral splitting, and possibly integrating photovoltaic and photothermal mechanisms. This research has contributed to the design of multiband organic PV, and the sealing of organic PV cells. If one assumes that the aggregate multiband efficiency can reach 12%, projected cost would be $0.97/W. If the sealing technology enables 10 to 20 year lifetimes, the LCOE will match that of domestic coal. The final report describes progress towards these goals.

Robert L. Johnson Jr.; Gary E. Carver

2011-10-28T23:59:59.000Z

83

Solar-powered cooling system  

DOE Patents [OSTI]

A solar-powered adsorption-desorption refrigeration and air conditioning system uses nanostructural materials made of high specific surface area adsorption aerogel as the adsorptive media. Refrigerant molecules are adsorbed on the high surface area of the nanostructural material. A circulation system circulates refrigerant from the nanostructural material to a cooling unit.

Farmer, Joseph C

2013-12-24T23:59:59.000Z

84

Energy 101: Concentrating Solar Power | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Concentrating Solar Power Energy 101: Concentrating Solar Power Addthis Description From towers to dishes to linear mirrors to troughs, concentrating solar power (CSP) technologies...

85

SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT  

E-Print Network [OSTI]

HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT Thomas F.CENTRAL RECEIVER SOLAR THERMAL POWER SYSTEM, PHASE progressCorporation, RECEIVER SOLAR THERMAL POWER SYSTEM, PHASE I,

Baldwin, Thomas F.

2011-01-01T23:59:59.000Z

86

Performance Analysis of XCPC Powered Solar Cooling Demonstration Project  

E-Print Network [OSTI]

is the fraction of available solar power incident on theoutput per available solar power and characterizes theintegral of available solar power over the operational time

Widyolar, Bennett

2013-01-01T23:59:59.000Z

87

SOLAR ROOF POWERS THE NJIT CAMPUS CENTER  

E-Print Network [OSTI]

SOLAR ROOF POWERS THE NJIT CAMPUS CENTER THE SKY'S THE LIMIT: BERNADETTE MOKE SITS ON THE ROOF, ARE 160 SOLAR PANELS, SOME OF WHICH AUTOMATICALLY FOLLOW THE PATH OF THE SUN. 10 NJITMAGAZINE COVER STORY'S THE LIMIT: SOLAR ROOF POWERS THE NJIT CAMPUS CENTER "The solar panels even move a little at night," says

Bieber, Michael

88

Concentrating Solar Power: Technology Overview  

SciTech Connect (OSTI)

Concentrating Solar Power (CSP) has the potential to contribute significantly to the generation of electricity by renewable energy resources in the U.S.. Thermal storage can extend the duty cycle of CSP beyond daytime hours to early evening where the value of electricity is often the highest. The potential solar resource for the southwest U.S. is identified, along with the need to add power lines to bring the power to consumers. CSP plants in the U.S. and abroad are described. The CSP cost of electricity at the busbar is discussed. With current incentives, CSP is approaching competiveness with conventional gas-fired systems during peak-demand hours when the price of electricity is the highest. It is projected that a mature CSP industry of over 4 GWe will be able to reduce the energy cost by about 50%, and that U.S. capacity could be 120 GW by 2050.

Mehos, M.

2008-01-01T23:59:59.000Z

89

Two New Reports on Utility-Scale Solar from NREL | OpenEI Community  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop, IncTipmontInformationKentucky)Bank,Turkmenistan:PwrTwnrel'sTwo

90

NREL: Concentrating Solar Power Research - Laboratory Capabilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the power of the sun to test the durability of materials and coatings, conduct high-temperature experiments, and demonstrate the potential of solar power in industrial processes....

91

Solar energy at Forest Research Solar Power at Alice Holt  

E-Print Network [OSTI]

Solar energy at Forest Research Solar Power at Alice Holt research station provides a renewable to install a solar photovoltaic system to meet some of the research station's energy needs. #12;In January dioxide emissions, when compared with traditional forms of energy generation. · The solar installation

92

SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT  

E-Print Network [OSTI]

Power Plant Solar Power Ideal Gas Turbine Topping Braytonwill require higher parasitic power for gas circulation. Theefficiency of a solar power plant with gas-turbine topping

Baldwin, Thomas F.

2011-01-01T23:59:59.000Z

93

Pv-Thermal Solar Power Assembly  

DOE Patents [OSTI]

A flexible solar power assembly includes a flexible photovoltaic device attached to a flexible thermal solar collector. The solar power assembly can be rolled up for transport and then unrolled for installation on a surface, such as the roof or side wall of a building or other structure, by use of adhesive and/or other types of fasteners.

Ansley, Jeffrey H. (El Cerrito, CA); Botkin, Jonathan D. (El Cerrito, CA); Dinwoodie, Thomas L. (Piedmont, CA)

2001-10-02T23:59:59.000Z

94

Concentrating Solar Power (Fact Sheet), SunShot Initiative, U...  

Broader source: Energy.gov (indexed) [DOE]

Concentrating Solar Power Concentrating Solar Power (CSP) offers a utility-scale, firm, dispatchable renewable energy option that can help meet the nation's goal of making solar...

95

Sandia National Laboratories: Concentrating Solar Power  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Molten Salt Test Loop Melted Salt On October 10, 2012, in Concentrating Solar Power, Energy, News, Renewable Energy, Solar The Molten Salt Test Loop (MSTL) team at Sandia National...

96

Consumers Power, Inc.- Solar Energy System Rebate  

Broader source: Energy.gov [DOE]

Consumers Power, Inc. (CPI) offers rebates to its residential customers who install solar water heating systems or solar photovoltaic (PV) systems from October 1, 2012 to September 30, 2013. The...

97

Hybrid solar-fossil fuel power generation  

E-Print Network [OSTI]

In this thesis, a literature review of hybrid solar-fossil fuel power generation is first given with an emphasis on system integration and evaluation. Hybrid systems are defined as those which use solar energy and fuel ...

Sheu, Elysia J. (Elysia Ja-Zeng)

2012-01-01T23:59:59.000Z

98

Sandia National Laboratories: solar power  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1developmentturbineredox-activeNational Solar Thermal Test Facilitysolarsolar power

99

Concentrating Solar Power Resources and Technologies  

Broader source: Energy.gov [DOE]

This page provides a brief overview of concentrating solar power (CSP) technologies supplemented by specific information to apply CSP within the Federal sector.

100

Concentrating Solar Power: Energy from Mirrors  

SciTech Connect (OSTI)

This fact sheet explains how concentrating solar power technology works and the three types of systems in development today: trough, dish, and central receiver.

Poole, L.

2001-02-27T23:59:59.000Z

Note: This page contains sample records for the topic "openei solar power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Forward converter for solar power applications .  

E-Print Network [OSTI]

??"Most solar arrays used today are connected in series and have tremendous power losses in partially shaded conditions. This document explores photovoltaic arrays in a (more)

McFowland, Nickolas Arthur, 1987-

2012-01-01T23:59:59.000Z

102

Solar Decathlon: Powered by the Sun (Revised)  

SciTech Connect (OSTI)

The Solar Decathlon is a collegiate competition to design and build the most energy efficient, solar-powered house. It is also an event on the National Mall in Washington D.C. to which the public is invited. This gatefold brochure describes the Solar Decathlon 2005 competition and event, including a schedule of activities.

Not Available

2005-08-01T23:59:59.000Z

103

PV/thermal solar power assembly  

DOE Patents [OSTI]

A flexible solar power assembly (2) includes a flexible photovoltaic device (16) attached to a flexible thermal solar collector (4). The solar power assembly can be rolled up for transport and then unrolled for installation on a surface, such as the roof (20, 25) or side wall of a building or other structure, by use of adhesive and/or other types of fasteners (23).

Ansley, Jeffrey H.; Botkin, Jonathan D.; Dinwoodie, Thomas L.

2004-01-13T23:59:59.000Z

104

Solar Power as a Source of Noise-free Power for Research  

E-Print Network [OSTI]

Solar Power as a Source of Noise-free Power for ResearchState University Keywords: solar energy, reducing backgroundhas been increasing interest in solar convertors, mostly for

Dutta, Akshita; Chorescu, Irinel

2011-01-01T23:59:59.000Z

105

Reliability Evaluation of Electric Power Generation Systems with Solar Power  

E-Print Network [OSTI]

Conventional power generators are fueled by natural gas, steam, or water flow. These generators can respond to fluctuating load by varying the fuel input that is done by a valve control. Renewable power generators such as wind or solar, however...

Samadi, Saeed

2013-11-08T23:59:59.000Z

106

Pasadena Water and Power- Solar Power Installation Rebate  

Broader source: Energy.gov [DOE]

Pasadena Water and Power (PWP) offers its electric customers a rebate for photovoltaic (PV) installations, with a goal of helping to fund the installation of 14 megawatts (MW) of solar power by...

107

$60 Million to Fund Projects Advancing Concentrating Solar Power...  

Broader source: Energy.gov (indexed) [DOE]

Concentrating Solar Power November 8, 2011 - 10:34am Addthis A 101 video on concentrating solar panel systems. | Courtesy of the Energy Department Jesse Gary Solar Energy...

108

SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT  

E-Print Network [OSTI]

Summary of the Proposed Solar Power Plant Design The ImpactGenerated by this Solar Power Plant The Impact of StorageVessel Design on the Solar Power Plant III I;l f> (I Q I)

Baldwin, Thomas F.

2011-01-01T23:59:59.000Z

109

SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT  

E-Print Network [OSTI]

of the Proposed Solar Power Plant Design The Impact ofGenerated by this Solar Power Plant The Impact of StorageDesign on the Solar Power Plant III I;l f> (I Q I) II (I

Baldwin, Thomas F.

2011-01-01T23:59:59.000Z

110

Recent Drilling Activities At The Earth Power Resources Tuscarora...  

Open Energy Info (EERE)

Drilling Activities At The Earth Power Resources Tuscarora Geothermal Power Project'S Hot Sulphur Springs Lease Area Jump to: navigation, search OpenEI Reference LibraryAdd to...

111

Solar Powering Your Community: A Guide for Local Governments...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Solar Powering Your Community: A Guide for Local Governments (Book), Energy Efficiency & Renewable Energy (EERE) Solar Powering Your Community: A Guide for Local Governments...

112

Concentrating Solar Power: Best Practices Handbook for the Collection...  

Open Energy Info (EERE)

Power: Best Practices Handbook for the Collection and Use of Solar Resource Data Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Concentrating Solar Power: Best...

113

California City Implements Solar-Powered Trash Compactors | Department...  

Broader source: Energy.gov (indexed) [DOE]

California City Implements Solar-Powered Trash Compactors California City Implements Solar-Powered Trash Compactors June 16, 2010 - 11:30am Addthis Riverside, Calif., used a...

114

World's Largest Concentrating Solar Power Plant Opens in California...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

World's Largest Concentrating Solar Power Plant Opens in California World's Largest Concentrating Solar Power Plant Opens in California February 19, 2014 - 12:00am Addthis Ivanpah,...

115

Solar Powering America by Recognizing Communities Funding Opportunity...  

Energy Savers [EERE]

Solar Powering America by Recognizing Communities Funding Opportunity Solar Powering America by Recognizing Communities Funding Opportunity March 5, 2015 5:00PM EST U.S. Department...

116

National Laboratory Concentrating Solar Power Research and Development...  

Broader source: Energy.gov (indexed) [DOE]

National Laboratory Concentrating Solar Power Research and Development National Laboratory Concentrating Solar Power Research and Development This fact sheet describes the current...

117

2014 SunShot Initiative Portfolio Book: Concentrating Solar Power...  

Broader source: Energy.gov (indexed) [DOE]

Concentrating Solar Power 2014 SunShot Initiative Portfolio Book: Concentrating Solar Power The 2014 SunShot Initiative Portfolio Book outlines the progress towards the goals...

118

National Laboratory Concentrating Solar Power Research and Development...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

National Laboratory Concentrating Solar Power Research and Development National Laboratory Concentrating Solar Power Research and Development The SunShot National Laboratory...

119

EECBG Success Story: Police Station Triples Solar Power - and...  

Broader source: Energy.gov (indexed) [DOE]

Police Station Triples Solar Power - and Savings EECBG Success Story: Police Station Triples Solar Power - and Savings July 19, 2010 - 11:00am Addthis North Community Police...

120

High-Temperatuer Solar Selective Coating Development for Power...  

Broader source: Energy.gov (indexed) [DOE]

High-Temperatuer Solar Selective Coating Development for Power Tower Receivers High-Temperatuer Solar Selective Coating Development for Power Tower Receivers This presentation was...

Note: This page contains sample records for the topic "openei solar power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Department of Veterans Affairs, FONSI - Rooftop solar PV power...  

Broader source: Energy.gov (indexed) [DOE]

Rooftop solar PV power at Calverton National Cemetery Department of Veterans Affairs, FONSI - Rooftop solar PV power at Calverton National Cemetery An Environmental Assessment (EA)...

122

Performance Analysis of XCPC Powered Solar Cooling Demonstration Project  

E-Print Network [OSTI]

solar powered cooling system by producing a seamless output of cooling powersolar COP is the ratio of cooling output per available solar power

Widyolar, Bennett

2013-01-01T23:59:59.000Z

123

SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT  

E-Print Network [OSTI]

insure constant output from a solar power plant. However. aoutput from the steam turbines is maintained. Equipment design for the proposed solar power

Baldwin, Thomas F.

2011-01-01T23:59:59.000Z

124

Development of an Efficient Solar Powered Unmanned Aerial Vehicle with an Onboard Solar Tracker.  

E-Print Network [OSTI]

??Methods were developed for the design of a solar powered UAV capable of tracking the sun to achieve maximum solar energy capture. A single-axis solar (more)

Tegeder, Troy Dixon

2007-01-01T23:59:59.000Z

125

SunLab: Concentrating Solar Power Program Overview  

SciTech Connect (OSTI)

DOE's Concentrating Solar Power (CSP) program is collaborating with its partners in the private sector to develop two new solar technologies -- power towers and dish/engines -- to meet the huge commercial potential for solar power. Concentrating solar power plants produce electric power by first converting the sun's energy into heat, and then to electricity in a conventional generator.

NONE

1998-11-24T23:59:59.000Z

126

SmartGrid: Quarterly Data Summaries from the Data Hub and SmartGrid Project Information (from OpenEI and SmartGrid.gov)  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

Both OpenEI and SmartGrid.gov are DOE portals to a wealth of information about the federal initiatives that support the development of the technologies, policies and projects transforming the electric power industry. Projects funded through the U.S. Recovery Act are organized by type and pinned to an interactive map at http://en.openei.org/wiki/Gateway:Smart_Grid. Each project title links to more detailed information. The Quarterly Data Summaries from the Data Hub at SmartGrid.gov are also available on OpenEI at http://en.openei.org/datasets/node/928. In addition, the SmartGrid Information Center contains documents and reports that can be searched or browsed. Smart Grid Resources introduces international SmartGrid programs and sites, while OpenEI encourages users to add SmartGrid information to the repository.

127

Concentrating Solar Power Basics | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

heat. This thermal energy can then be used to produce electricity via a steam turbine or heat engine that drives a generator. Concentrating solar power offers a utility-scale,...

128

Advancing Concentrating Solar Power Research (Fact Sheet)  

SciTech Connect (OSTI)

Researchers at the National Renewable Energy Laboratory (NREL) provide scientific, engineering, and analytical expertise to help advance innovation in concentrating solar power (CSP). This fact sheet summarizes how NREL is advancing CSP research.

Not Available

2014-02-01T23:59:59.000Z

129

Today`s Solar Power Towers  

SciTech Connect (OSTI)

This [updated 1/95] report outlines the technology of modern solar central receiver power plants, showing how they could be an important domestic source of energy within the next decade

NONE

1995-01-01T23:59:59.000Z

130

Maximizing Efficiency of Solar-Powered Systems by Load Matching  

E-Print Network [OSTI]

energy. However, solar powered sys- tems must also consider the output level of the solar panel for power be counterproductive. Another problem that is of particular importance to solar pan- els is load matching. Solar panels is around 0.7­1.2, solar panels have a much larger Ri value as a function of the solar output and current

Shinozuka, Masanobu

131

Efficient solar cooling: first ever non-tracking solar collectors powering a double effect absorption chiller  

E-Print Network [OSTI]

to buffer the incoming solar power to the glycol loop so asarea the available power to the solar thermal collector was

Poiry, Heather Marie

2011-01-01T23:59:59.000Z

132

Multi-objective optimization of solar tower power plants  

E-Print Network [OSTI]

Multi-objective optimization of solar tower power plants Pascal Richter Center for Computational · Optimization of solar tower power plants 1/20 #12;Introduction ­ Solar tower power plants Solar tower PS10 (11 MW) in Andalusia, Spain · Solar tower with receiver · Heliostat field with self-aligning mirrors

Ábrahám, Erika

133

Solar power tower development: Recent experiences  

SciTech Connect (OSTI)

Recent experiences with the 10 MW{sub e} Solar Two and the 2.5 MW{sub t} TSA (Technology Program Solar Air Receiver) demonstration plants are reported. The heat transfer fluids used in these solar power towers are molten-nitrate salt and atmospheric air, respectively. Lessons learned and suggested technology improvements for next-generation plants are categorized according to subsystem. The next steps to be taken in the commercialization process for each these new power plant technologies is also presented.

Tyner, C.; Kolb, G.; Prairie, M. [and others

1996-12-01T23:59:59.000Z

134

Solar thermal electric power information user study  

SciTech Connect (OSTI)

The results of a series of telephone interviews with groups of users of information on solar thermal electric power are described. These results, part of a larger study on many different solar technologies, identify types of information each group needed and the best ways to get information to each group. The report is 1 of 10 discussing study results. The overall study provides baseline data about information needs in the solar community. An earlier study identified the information user groups in the solar community and the priority (to accelerate solar energy commercialization) of getting information to each group. In the current study only high-priority groups were examined. Results from five solar thermal electric power groups of respondents are analyzed: DOE-Funded Researchers, Non-DOE-Funded Researchers, Representatives of Utilities, Electric Power Engineers, and Educators. The data will be used as input to the determination of information products and services the Solar Energy Research Institute, the Solar Energy Information Data Bank Network, and the entire information outreach community should be preparing and disseminating.

Belew, W.W.; Wood, B.L.; Marle, T.L.; Reinhardt, C.L.

1981-02-01T23:59:59.000Z

135

SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT  

E-Print Network [OSTI]

Design. Propofied Solar Cooling Tower Type Wet-Cooled Powerdry-cooling tower was used in the proposed solar power plantTower Power-Generation Subsystem Summary An Overall Summary of the Proposed Solar

Baldwin, Thomas F.

2011-01-01T23:59:59.000Z

136

Solar Power Systems Web Monitoring  

E-Print Network [OSTI]

All over the world the peak demand load is increasing and the load factor is decreasing year-by-year. The fossil fuel is considered insufficient thus solar energy systems are becoming more and more useful, not only in terms of installation but monitoring of these systems is very crucial. Monitoring becomes very important when there are a large number of solar panels. Monitoring would allow early detection if the output falls below required level or one of the solar panel out of 1000 goes down. In this study the target is to monitor and control a developed solar panel by using available internet foundation. This web-enabled software will provide more flexibility over the system such as transmitting data from panel to the host computer and disseminating information to relevant stake holders barring any geographical barrier. The software would be built around web server with dynamic HTML and JAVA, this paper presents the preliminary design of the proposed system.

Kumar, Bimal Aklesh

2011-01-01T23:59:59.000Z

137

A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System  

E-Print Network [OSTI]

Concentrating Solar Combined Heat and Power Systemfor Distributed Concentrating Solar Combined Heat and Powerof solar combined heat and power systems . . . . . . .

Norwood, Zachary Mills

2011-01-01T23:59:59.000Z

138

What Can OpenEI Do For You?  

ScienceCinema (OSTI)

Open Energy Information (OpenEI) is an open source web platform?similar to the one used by Wikipedia?developed by the US Department of Energy (DOE) and the National Renewable Energy Laboratory (NREL) to make the large amounts of energy-related data and information more easily searched, accessed, and used both by people and automated machine processes. Built utilizing the standards and practices of the Linked Open Data community, the OpenEI platform is much more robust and powerful than typical web sites and databases. As an open platform, all users can search, edit, add, and access data in OpenEI for free. The user community contributes the content and ensures its accuracy and relevance; as the community expands, so does the content's comprehensiveness and quality. The data are structured and tagged with descriptors to enable cross-linking among related data sets, advanced search functionality, and consistent, usable formatting. Data input protocols and quality standards help ensure the content is structured and described properly and derived from a credible source. Although DOE/NREL is developing OpenEI and seeding it with initial data, it is designed to become a true community model with millions of users, a large core of active contributors, and numerous sponsors.

None

2013-05-29T23:59:59.000Z

139

MAP: Concentrating Solar Power Across the United States  

Broader source: Energy.gov [DOE]

Explore our latest map, charting the location of concentrating solar power plants across the country.

140

Metrics for Evaluating the Accuracy of Solar Power Forecasting (Presentation)  

SciTech Connect (OSTI)

This presentation proposes a suite of metrics for evaluating the performance of solar power forecasting.

Zhang, J.; Hodge, B.; Florita, A.; Lu, S.; Hamann, H.; Banunarayanan, V.

2013-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "openei solar power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

SOLAR POWERING OF HIGH EFFICIENCY ABSORPTION CHILLER  

SciTech Connect (OSTI)

This is the Final Report for two solar cooling projects under this Cooperative Agreement. The first solar cooling project is a roof-integrated solar cooling and heating system, called the Power Roof{trademark}, which began operation in Raleigh, North Carolina in late July 2002. This system provides 176 kW (50 ton) of solar-driven space cooling using a unique nonimaging concentrating solar collector. The measured performance of the system during its first months of operation is reported here, along with a description of the design and operation of this system. The second solar cooling system, with a 20-ton capacity, is being retrofit to a commercial office building in Charleston, South Carolina but has not yet been completed.

Randy C. Gee

2004-11-15T23:59:59.000Z

142

Online short-term solar power forecasting  

SciTech Connect (OSTI)

This paper describes a new approach to online forecasting of power production from PV systems. The method is suited to online forecasting in many applications and in this paper it is used to predict hourly values of solar power for horizons of up to 36 h. The data used is 15-min observations of solar power from 21 PV systems located on rooftops in a small village in Denmark. The suggested method is a two-stage method where first a statistical normalization of the solar power is obtained using a clear sky model. The clear sky model is found using statistical smoothing techniques. Then forecasts of the normalized solar power are calculated using adaptive linear time series models. Both autoregressive (AR) and AR with exogenous input (ARX) models are evaluated, where the latter takes numerical weather predictions (NWPs) as input. The results indicate that for forecasts up to 2 h ahead the most important input is the available observations of solar power, while for longer horizons NWPs are the most important input. A root mean square error improvement of around 35% is achieved by the ARX model compared to a proposed reference model. (author)

Bacher, Peder; Madsen, Henrik [Informatics and Mathematical Modelling, Richard Pedersens Plads, Technical University of Denmark, Building 321, DK-2800 Lyngby (Denmark); Nielsen, Henrik Aalborg [ENFOR A/S, Lyngsoe Alle 3, DK-2970 Hoersholm (Denmark)

2009-10-15T23:59:59.000Z

143

Solar Power | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty Ltd Jump to:Information Silver Peak AreaOutlineSolar PathfinderSolar Energy

144

Solar Power | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty Ltd Jump to:Information Silver Peak AreaOutlineSolar PathfinderSolar

145

Solar Powered Radioactive Air Monitoring Stations  

SciTech Connect (OSTI)

Environmental monitoring of ambient air for radioactive material is required as stipulated in the PNNL Site radioactive air license. Sampling ambient air at identified preferred locations could not be initially accomplished because utilities were not readily available. Therefore, solar powered environmental monitoring systems were considered as a possible option. PNNL purchased two 24-V DC solar powered environmental monitoring systems which consisted of solar panels, battery banks, and sampling units. During an approximate four month performance evaluation period, the solar stations operated satisfactorily at an on-site test location. They were subsequently relocated to their preferred locations in June 2012 where they continue to function adequately under the conditions found in Richland, Washington.

Barnett, J. M.; Bisping, Lynn E.; Gervais, Todd L.

2013-10-30T23:59:59.000Z

146

Excise Tax Exemption for Solar- or Wind-Powered Systems  

Broader source: Energy.gov [DOE]

Massachusetts law exempts any "solar or wind powered climatic control unit and any solar or wind powered water heating unit or any other type unit or system powered thereby," that qualifies for the...

147

Appendix S-50 - Power Purchase Agreement (PPA) - Public Utilities...  

Open Energy Info (EERE)

Power Purchase Agreement (PPA) - Public Utilities Commission Jump to: navigation, search OpenEI Reference LibraryAdd to library PermittingRegulatory Guidance - Instructions:...

148

Idaho Public Utilities Commission Approves Neal Hot Springs Power...  

Open Energy Info (EERE)

Public Utilities Commission Approves Neal Hot Springs Power Purchase Agreement Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Idaho Public Utilities...

149

Concentrating solar power | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power Basics (The following text is derived from NREL's concentrating solar

150

Icon Solar Power, LLC | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio:GreerHiCalifornia:ISI Solar Jump to: navigation,Icon Solar Power, LLC

151

OpenEI Town Hall Meeting #4 | OpenEI Community  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Powerstories onFocus AreaDataBusPFAN)ChangeOnPACen 2014Version 2OpenEI Town Hall

152

OpenEI maintenance March 8-9, 2013 | OpenEI Community  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Powerstories onFocus AreaDataBusPFAN)ChangeOnPACen 2014Version 2OpenEI Town

153

OpenEI part of the Federal Digital Strategy | OpenEI Community  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Powerstories onFocus AreaDataBusPFAN)ChangeOnPACen 2014Version 2OpenEI Townpart

154

Sandia National Laboratories: solar power  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1developmentturbineredox-activeNational Solar Thermal Test Facilitysolar

155

Solar Powering Your Community: A Guide for Local Governments...  

Broader source: Energy.gov (indexed) [DOE]

SOLAR ENERGY TECHNOLOGIES PROGRAM SOLAR POWERING YOUR COMMUNITY: A GUIDE FOR LOCAL GOVERNMENTS Second edition Cities and local communities across the country are recognizing that...

156

High-Temperature Solar Selective Coating Development for Power...  

Broader source: Energy.gov (indexed) [DOE]

are low risk Goal: Develop solar selective coatings for next- generation concentrated solar power towers that exhibit high absorptance with low thermal emittance, that can...

157

Orbits design for Leo space based solar power satellite system.  

E-Print Network [OSTI]

?? Space Based Solar Power satellites use solar arrays to generate clean, green, and renewable electricity in space and transmit it to earth via microwave, (more)

Addanki, Neelima Krishna Murthy

2011-01-01T23:59:59.000Z

158

Optical Durability of Candidate Solar Reflectors for Concentrating Solar Power  

SciTech Connect (OSTI)

Concentrating solar power (CSP) technologies use large mirrors to collect sunlight to convert thermal energy to electricity. The viability of CSP systems requires the development of advanced reflector materials that are low in cost and maintain high specular reflectance for extended lifetimes under severe outdoor environments. The long-standing goals for a solar reflector are specular reflectance above 90% into a 4 mrad half-cone angle for at least 10 years outdoors with a cost of less than $13.8/m{sup 2} (the 1992 $10.8/m{sup 2} goal corrected for inflation to 2002 dollars) when manufactured in large volumes. Durability testing of a variety of candidate solar reflector materials at outdoor test sites and in laboratory accelerated weathering chambers is the main activity within the Advanced Materials task of the CSP Program at the National Renewable Energy Laboratory (NREL) in Golden, Colorado. Test results to date for several candidate solar reflector materials will be presented. These include the optical durability of thin glass, thick glass, aluminized reflectors, front-surface mirrors, and silvered polymer mirrors. The development, performance, and durability of these materials will be discussed. Based on accelerated exposure testing the glass, silvered polymer, and front-surface mirrors may meet the 10 year lifetime goals, but at this time because of significant process changes none of the commercially available solar reflectors and advanced solar reflectors have demonstrated the 10 year or more aggressive 20 year lifetime goal.

Kennedy, C. E.; Terwilliger, K.

2007-01-01T23:59:59.000Z

159

Green Mountain Power- Solar GMP  

Broader source: Energy.gov [DOE]

Green Mountain Power, an investor-owned electric utility operating in Vermont, offers a credit to customers with net-metered photovoltaic (PV) systems. In addition to the benefits of net metering,...

160

SES Solar Two Project Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to: navigation, searchVirginiaRooseveltVI Solar Power Plant Jump to:SES Solar Two Project

Note: This page contains sample records for the topic "openei solar power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Solar Power | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g GrantAtlas (PACA Region - France) JumpBeginner Jump to:ProspectorSolar

162

A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System  

E-Print Network [OSTI]

Concentrating Solar Combined Heat and Power Systemfor Distributed Concentrating Solar Combined Heat and Powerin parabolic trough solar power technology. Journal of Solar

Norwood, Zachary Mills

2011-01-01T23:59:59.000Z

163

Solar Power in the Desert: Are the current large-scale solar developments really improving Californias environment?  

E-Print Network [OSTI]

habitat loss from solar and thermal power expansions (Photovoltaic vs Solar Thermal. In: Planetary Stewardship.of the vegetation for thermal solar power units. The net C

Allen, Michael F.; McHughen, Alan

2011-01-01T23:59:59.000Z

164

Solar Power Beaming: From Space to Earth  

SciTech Connect (OSTI)

Harvesting solar energy in space and power beaming the collected energy to a receiver station on Earth is a very attractive way to help solve mankind's current energy and environmental problems. However, the colossal and expensive 'first step' required in achieving this goal has to-date stifled its initiation. In this paper, we will demonstrate that recent advance advances in laser and optical technology now make it possible to deploy a space-based system capable of delivering 1 MW of energy to a terrestrial receiver station, via a single unmanned commercial launch into Low Earth Orbit (LEO). Figure 1 depicts the overall concept of our solar power beaming system, showing a large solar collector in space, beaming a coherent laser beam to a receiving station on Earth. We will describe all major subsystems and provide technical and economic discussion to support our conclusions.

Rubenchik, A M; Parker, J M; Beach, R J; Yamamoto, R M

2009-04-14T23:59:59.000Z

165

Solar thermophotovoltaic space power system  

SciTech Connect (OSTI)

A study has been performed on the technical feasibility and cost of a TPV system for an alternative space power supply. An analysis of six previous studies has been performed and a consistent optical, thermal, and electrical model developed. A search of the literature for materials data has been augmented by an experimental test program on materials and breadboard subsystems of the TPV. These data have been used in the model to determine the technical feasibility and the degree of performance that might be expected from such a system. A system design study was then conducted to optimize the launch configuration, the weight, and the cost of the TPV space power system. Results from this study were used to define a specific design which could be used in a detailed cost analysis. A cost analysis was then performed to determine the relative costs of the TPV power system. It appears that a system having a specific power greater than 150 W/kg can be produced for approximately 30 dollars per watt.

Horne, W.E. (Boeing Aerospace Co., Seattle, WA); Day, A.C. (NASA, Marshall Space Flight Center, Huntsville, AL)

1980-01-01T23:59:59.000Z

166

Thermal Conductivity Enhancement of High Temperature Phase Change Materials for Concentrating Solar Power Plant Applications  

E-Print Network [OSTI]

3 Fig. 1.2. Solar power plant operation [Materials for Concentrating Solar Power Plant Applications AMaterials for Concentrating Solar Power Plant Applications

Roshandell, Melina

2013-01-01T23:59:59.000Z

167

Implications of geographic diversity for short-term variability and predictability of solar power.  

E-Print Network [OSTI]

Term variability of solar power, Lawrence Berkeley Nationaldue to wind and solar power, Environmental Science &and Predictability of Solar Power Andrew D. Mills and Ryan

Mills, Andrew

2013-01-01T23:59:59.000Z

168

Phase Change Materials for Thermal Energy Storage in Concentrated Solar Thermal Power Plants  

E-Print Network [OSTI]

STORAGE FOR CONCENTRATING SOLAR POWER PLANTS, Eurosun 2010,COST REDUCTION STUDY FOR SOLAR THERMAL POWER PLANTS, Ottawa,heat transfer in solar thermal power plants utilizing phase

Hardin, Corey Lee

2011-01-01T23:59:59.000Z

169

Concentrated Solar Power Generation Systems: The SAIC Dish  

E-Print Network [OSTI]

Concentrated Solar Power Generation Systems: The SAIC Dish Center for Energy Research at UNLV #12;Concentrating Solar Dishes Work has been underway at UNLV's Center for Energy Research since 2001 in the use of concentrating solar dishes for electrical power generation. One of these solar dishes was marketed by Science

Hemmers, Oliver

170

Helping Ensure High-Quality Installation of Solar Power Technologies...  

Energy Savers [EERE]

Ensure High-Quality Installation of Solar Power Technologies Helping Ensure High-Quality Installation of Solar Power Technologies April 15, 2013 - 12:00am Addthis The Midwest...

171

Arizona: Solar Panels Replace Inefficient Fossil Fuel-Powered...  

Energy Savers [EERE]

Arizona: Solar Panels Replace Inefficient Fossil Fuel-Powered Energy Systems Arizona: Solar Panels Replace Inefficient Fossil Fuel-Powered Energy Systems May 1, 2014 - 9:33am...

172

Concentrating Solar Power Program Review 2013 (Book) (Revised)  

SciTech Connect (OSTI)

This U.S. Department of Energy (DOE) Concentrating Solar Power Program Review Meeting booklet will be provided to attendees at the Concentrating Solar Power Review Meeting in Phoenix, Arizona on April 23-25, 2013.

Not Available

2013-06-01T23:59:59.000Z

173

Solar-powered carousel for hands-on teaching  

E-Print Network [OSTI]

This thesis is the design of a solar-powered carousel that informs the public about the setup and capabilities of solar-powered systems. It is designed as a mobile tool that can be moved among college campuses, businesses, ...

Shea, Erin C. (Erin Colleen)

2005-01-01T23:59:59.000Z

174

Concentrating Solar Power (Fact Sheet), SunShot Initiative, U...  

Broader source: Energy.gov (indexed) [DOE]

Concentrating Solar Power (Fact Sheet), SunShot Initiative, U.S. Department of Energy (DOE) Concentrating Solar Power (Fact Sheet), SunShot Initiative, U.S. Department of Energy...

175

High-Temperature Solar Selective Coating Development for Power...  

Broader source: Energy.gov (indexed) [DOE]

High-Temperature Solar Selective Coating Development for Power Tower Receivers - FY13 Q2 High-Temperature Solar Selective Coating Development for Power Tower Receivers - FY13 Q2...

176

High-Temperature Solar Selective Coating Development for Power...  

Broader source: Energy.gov (indexed) [DOE]

High-Temperature Solar Selective Coating Development for Power Tower Receivers - FY13 Q1 High-Temperature Solar Selective Coating Development for Power Tower Receivers - FY13 Q1...

177

SEP Success Story: Solar Field Powers Historic Garden Holiday...  

Energy Savers [EERE]

SEP Success Story: Solar Field Powers Historic Garden Holiday Display SEP Success Story: Solar Field Powers Historic Garden Holiday Display December 21, 2011 - 1:26pm Addthis This...

178

Sandia National Laboratories: Concentrating Solar Power  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive SolarEducation Programs:CRFProvide Insight for RotorConcentrating Solar Power

179

Solar Powering America by Recognizing Communities Funding Opportunity  

Broader source: Energy.gov [DOE]

DOE's SunShot Initiative is accepting applications for the Solar Powering America by Recognizing Communities funding opportunity.

180

Techno-economic Appraisal of Concentrating Solar Power Systems (CSP).  

E-Print Network [OSTI]

?? The diffusion of Concentrating Solar Power Systems (CSP) systems is currently taking place at a much slower pace than photovoltaic (PV) power systems. This (more)

Gasti, Maria

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "openei solar power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

A Solar Power System for High Altitude Airships.  

E-Print Network [OSTI]

??This research is intended to produce a power system suitable for an aerostat operating at 67,500 ft and powered only by solar energy. A battery (more)

Mei, Qiang

2011-01-01T23:59:59.000Z

182

SUPPORTING SOLAR ENERGY DEVELOPMENT THROUGH GREEN POWER MARKETS Blair Swezey  

E-Print Network [OSTI]

SUPPORTING SOLAR ENERGY DEVELOPMENT THROUGH GREEN POWER MARKETS Blair Swezey Lori Bird Christy are still developing, participation in these programs is supporting a significant amount of new solar energy in part through green power marketing. This paper describes the use of solar energy in green power

183

Optimisation of Concentrating Solar Thermal Power Plants with Neural Networks  

E-Print Network [OSTI]

Optimisation of Concentrating Solar Thermal Power Plants with Neural Networks Pascal Richter1 introduce our tool for the optimisation of parameterised solar thermal power plants, and report the applicability of our approach. Keywords: Optimization, Solar thermal power plants, Neural networks, Genetic

Ábrahám, Erika

184

NREL Develops Sub-Hour Solar Power Data Set  

E-Print Network [OSTI]

from photovoltaic and concentrating solar power plants of various sizes. Researchers measure global into their electric power systems. Large-scale deployment of solar energy requires a favorable environment and requirements. Utilities need tools and data to study and enable high solar penetrations on their power systems

185

Baseload Solar Power for California? Ammonia-based Solar Energy Storage Using Trough Concentrators  

E-Print Network [OSTI]

Baseload Solar Power for California? Ammonia-based Solar Energy Storage Using Trough Concentrators to eventually optimise the reactor geometry for ammonia-based solar energy storage with troughs, which.1. Storing Solar Energy with Ammonia H2 / N2 gas liquid NH3 Heat Exchangers Power Generation (Steam Cycle

186

About Solar Powering America | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergyAuthorizationSunShot Initiative1 Strategic PlanSolar Powering

187

Sandia National Laboratories: multiscale concentrated solar power  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1developmentturbine bladelifetime ismobile test systeminsideconcentrated solar power

188

A Wavelet-Based Variability Model (WVM) for Solar PV Power Plants  

E-Print Network [OSTI]

simulating solar photovoltaic (PV) power plant output givenfor simulating the power output of a solar photovoltaic (PV)

Lave, Matthew; Kleissl, Jan; Stein, Joshua S

2013-01-01T23:59:59.000Z

189

Conversion Tower for Dispatchable Solar Power: High-Efficiency Solar-Electric Conversion Power Tower  

SciTech Connect (OSTI)

HEATS Project: Abengoa Solar is developing a high-efficiency solar-electric conversion tower to enable low-cost, fully dispatchable solar energy generation. Abengoas conversion tower utilizes new system architecture and a two-phase thermal energy storage media with an efficient supercritical carbon dioxide (CO2) power cycle. The company is using a high-temperature heat-transfer fluid with a phase change in between its hot and cold operating temperature. The fluid serves as a heat storage material and is cheaper and more efficient than conventional heat-storage materials, like molten salt. It also allows the use of a high heat flux solar receiver, advanced high thermal energy density storage, and more efficient power cycles.

None

2012-01-11T23:59:59.000Z

190

Solar-powered unmanned aerial vehicles  

SciTech Connect (OSTI)

An analysis was performed to determine the impact of various power system components and mission requirements on the size of solar-powered high altitude long endurance (HALE)-type aircraft. The HALE unmanned aerial vehicle (UAV) has good potential for use in many military and civil applications. The primary power system components considered in this study were photovoltaic (PV) modules for power generation and regenerative fuel cells for energy storage. The impact of relevant component performance on UAV size and capability were considered; including PV module efficiency and mass, power electronics efficiency, and fuel cell specific energy. Mission parameters such as time of year, flight altitude, flight latitude, and payload mass and power were also varied to determine impact on UAV size. The aircraft analysis method used determines the required aircraft wing aspect ratio, wing area, and total mass based on maximum endurance or minimum required power calculations. The results indicate that the capacity of the energy storage system employed, fuel cells in this analysis, greatly impacts aircraft size, whereas the impact of PV module efficiency and mass is much less important. It was concluded that an energy storage specific energy (total system) of 250--500 Whr/kg is required to enable most useful missions, and that PV cells with efficiencies greater than {approximately} 12% are suitable for use.

Reinhardt, K.C.; Lamp, T.R.; Geis, J.W. [Wright Lab., Wright Patterson AFB, OH (United States). Aero Propulsion and Power Directorate; Colozza, A.J. [NYMA Corp., Brookpark, OH (United States). Aerospace Technology Development

1996-12-31T23:59:59.000Z

191

Review Article Solar-Thermal Powered Desalination: Its Significant  

E-Print Network [OSTI]

@kau.edu.sa Abstract Solar-desalination systems are desalination systems that are powered by solar energy review the technologies for solar energy systems used for capturing and concentrating heat energy- desalination systems that (i) first transform solar energy into electrical energy and then (ii) employed

Reif, John H.

192

Peak power tracking for a solar buck charger  

E-Print Network [OSTI]

This thesis discusses the design, implementation, and testing of a buck converter with peak power tracking. The peak power tracker uses a perturb and observe algorithm to actively track the solar panel's peak power point ...

Cohen, Jeremy Michael, M. Eng. Massachusetts Institute of Technology

2010-01-01T23:59:59.000Z

193

SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT  

E-Print Network [OSTI]

process configurations for solar power plants with sensible-heatsolar power plant with sensible-heat storage since the chemical~heat storage processsolar power plant with a sulfur-oxide storage process. chemical~heat

Baldwin, Thomas F.

2011-01-01T23:59:59.000Z

194

Solar Power in the Desert: Are the current large-scale solar developments really improving Californias environment?  

E-Print Network [OSTI]

D EVELOPMENT I SSUES Solar Power in the Desert: Are the2 Most of the large-scale solar power projects utilize largethat will be affected by solar power facilities. There are

Allen, Michael F.; McHughen, Alan

2011-01-01T23:59:59.000Z

195

An Intelligent Solar Powered Battery Buffered EV Charging Station with Solar Electricity Forecasting and EV Charging Load Projection Functions  

E-Print Network [OSTI]

fast charging, and solar power availability pose a challengeevent to a fixed SOC from solar power and/or the grid in athem without considering solar power availability and the

Zhao, Hengbing; Burke, Andrew

2014-01-01T23:59:59.000Z

196

Simulation of long term solar power feed-in and solar balancing potential in European countries Simulation of long term solar power feed-in and  

E-Print Network [OSTI]

.4 0.6 0.8 1 Hourly incremental P/Pnom (%) CumulatedFrequency PV Offshore wind Europe, 2Simulation of long term solar power feed-in and solar balancing potential in European countries Simulation of long term solar power feed-in and solar balancing potential in European countries Kabitri Nag

Heinemann, Detlev

197

Characterization of the Solar Power Resource in Europe and  

E-Print Network [OSTI]

Installations Cedric Bozonnat* and C. Adam Schlosser* Abstract The extent, availability and reliability of solar's availability of solar power is sufficient--as determined by a minimum technological threshold for photovoltaic

198

Waverly Light and Power- Residential Solar Thermal Rebates  

Broader source: Energy.gov [DOE]

Waverly Light and Power (WL&P) offers rebates for solar hot water heating systems to its residential customers. All purchases must be pre-approved through WL&P's solar water heater...

199

Sandia National Laboratories: Solar Power International  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErikGroundbreaking WorkTransformationSitingMolten SaltSandia WinsSolar Power

200

Sandia National Laboratories: Concentrating Solar Power  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared0EnergySandia Involves Wind-Farm Owners inConcentrating Solar Power

Note: This page contains sample records for the topic "openei solar power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Sandia National Laboratories: Concentrating Solar Power (CSP)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared0EnergySandia Involves Wind-Farm Owners Concentrating Solar Power

202

Capacity Value of Concentrating Solar Power Plants  

SciTech Connect (OSTI)

This study estimates the capacity value of a concentrating solar power (CSP) plant at a variety of locations within the western United States. This is done by optimizing the operation of the CSP plant and by using the effective load carrying capability (ELCC) metric, which is a standard reliability-based capacity value estimation technique. Although the ELCC metric is the most accurate estimation technique, we show that a simpler capacity-factor-based approximation method can closely estimate the ELCC value. Without storage, the capacity value of CSP plants varies widely depending on the year and solar multiple. The average capacity value of plants evaluated ranged from 45%?90% with a solar multiple range of 1.0-1.5. When introducing thermal energy storage (TES), the capacity value of the CSP plant is more difficult to estimate since one must account for energy in storage. We apply a capacity-factor-based technique under two different market settings: an energy-only market and an energy and capacity market. Our results show that adding TES to a CSP plant can increase its capacity value significantly at all of the locations. Adding a single hour of TES significantly increases the capacity value above the no-TES case, and with four hours of storage or more, the average capacity value at all locations exceeds 90%.

Madaeni, S. H.; Sioshansi, R.; Denholm, P.

2011-06-01T23:59:59.000Z

203

Life Cycle Greenhouse Gas Emissions from Concentrating Solar Power  

E-Print Network [OSTI]

Life Cycle Greenhouse Gas Emissions from Concentrating Solar Power Over the last thirty years, moreMineLand Rehabilitation · PowerGeneration · System/PlantOperation andMaintenance · AuxiliaryNaturalGas Combustion · Coal-scale concentrating solar power (CSP) systems. These LCAs have yielded wide-ranging results. Variation could

204

Low-cost distributed solar-thermal-electric power generation  

E-Print Network [OSTI]

Low-cost distributed solar-thermal-electric power generation A. Der Minassians, K. H. Aschenbach discuss the technical and economic feasibility of a low-cost distributed solar-thermal-electric power technologies should be judged by output power per dollar rather than by efficiency or other technical merits

Sanders, Seth

205

OpenEI Community - Solar  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth'sOklahoma/Geothermal < Oklahoma JumpcommunityIdeasSpursHighlightsen No

206

NREL: Concentrating Solar Power Research - NREL Forges Foundation...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

targets with systems that can supply solar power on demand through the use of thermal energy storage. The thermal energy from the receiver can be stored and subsequently...

207

Energy 101: Concentrating Solar Power | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

New Media Strategist, Office of Public Affairs How does it work? Concentrating solar power technologies use mirrors to reflect sunshine, turning it into an intense beam that's...

208

Drivers and Barriers in the Current Concentrated Solar Power...  

Open Energy Info (EERE)

Drivers and Barriers in the Current Concentrated Solar Power (CSP) Market (Webinar) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Drivers and Barriers in the Current...

209

National Laboratory Concentrating Solar Power Research and Development  

Broader source: Energy.gov (indexed) [DOE]

Laboratory Concentrating Solar Power Research and Development Motivation The U.S. Department of Energy (DOE) launched the SunShot Initiative as a collaborative national endeavor to...

210

Combined desalination and power generation using solar energy.  

E-Print Network [OSTI]

??Integrated desalination and power generation using solar energy is a prospective way to help solve the twin challenges of energy and fresh water shortage, while (more)

Zhao, Y

2009-01-01T23:59:59.000Z

211

Parabolic Trough Solar Thermal Electric Power Plants (Fact Sheet)  

SciTech Connect (OSTI)

This fact sheet provides an overview of the potential for parabolic trough solar thermal electric power plants, especially in the Southwestern U.S.

Not Available

2006-07-01T23:59:59.000Z

212

Funding Opportunity Announcement: Solar Powering America by Recognizin...  

Office of Environmental Management (EM)

support, contact SPARC@ee.doe.gov. SunShot Home About Concentrating Solar Power Photovoltaics Systems Integration Soft Costs Technology to Market Success Stories Financial...

213

2014 SunShot Initiative Concentrating Solar Power Subprogram...  

Office of Environmental Management (EM)

Integration Subprogram Overview SunShot Home About Concentrating Solar Power Photovoltaics Systems Integration Soft Costs Technology to Market Success Stories Financial...

214

The system architecting process for a solar power satellite concept.  

E-Print Network [OSTI]

??This thesis discusses the system architecting process for a Solar Power Satellite (SPS) concept.The heuristic approach allows a spectrum of concepts to be narrowed to (more)

Bidwell, Joseph Grady

2006-01-01T23:59:59.000Z

215

Simplified Methodology for Designing Parabolic Trough Solar Power Plants.  

E-Print Network [OSTI]

?? The performance of parabolic trough based solar power plants over the last 25 years has proven that this technology is an excellent alternative for (more)

Vasquez Padilla, Ricardo

2011-01-01T23:59:59.000Z

216

Simplified Methodology for Designing Parabolic Trough Solar Power Plants.  

E-Print Network [OSTI]

??The performance of parabolic trough based solar power plants over the last 25 years has proven that this technology is an excellent alternative for the (more)

Vasquez Padilla, Ricardo

2011-01-01T23:59:59.000Z

217

Why did the solar power sector develop quickly in Japan? .  

E-Print Network [OSTI]

??The solar power sector grew quickly in Japan during the decade 1994 to 2003. During this period, annual installations increased 32-fold from 7MW in 1994 (more)

Rogol, Michael G

2007-01-01T23:59:59.000Z

218

Rock bed thermal storage for concentrating solar power plants.  

E-Print Network [OSTI]

??ENGLISH ABSTRACT: Concentrating solar power plants are a promising means of generating electricity. However, they are dependent on the sun as a source of energy, (more)

Allen, Kenneth Guy

2014-01-01T23:59:59.000Z

219

Analysis of solar power generation on California turkey ranches.  

E-Print Network [OSTI]

??The objective of this thesis is to conduct a net present value analysis of installing a solar power generation system on company owned turkey grow (more)

Palermo, Rick

2009-01-01T23:59:59.000Z

220

A Scheduling Algorithm for Consistent Monitoring Results with Solar Powered High-Performance Wireless Embedded Systems  

E-Print Network [OSTI]

A Scheduling Algorithm for Consistent Monitoring Results with Solar Powered High but critical task for solar powered wireless high power embedded systems. Our algorithm relies on an energy

Simunic, Tajana

Note: This page contains sample records for the topic "openei solar power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Connective Power: Solar Electrification and Social Change in Kenya  

E-Print Network [OSTI]

Connective Power: Solar Electrification and Social Change in Kenya ARNE JACOBSON * Humboldt State development, Africa, Kenya 1. INTRODUCTION Solar electrification has emerged as a leading alternative to grid technology advocates, but my research in Kenya indicates that solar electrification is, at best, only loosely

Jacobson, Arne

222

Modeling and Simulation of Solar Chimney Power Plant with and without the Effect of Thermal Energy Storage Systems.  

E-Print Network [OSTI]

??A solar updraft tower power plant sometimes also called 'solar chimney' or just solar tower is a solar thermal power plant utilizing a (more)

Daba, Robera

2011-01-01T23:59:59.000Z

223

Strategies in tower solar power plant optimization  

E-Print Network [OSTI]

A method for optimizing a central receiver solar thermal electric power plant is studied. We parametrize the plant design as a function of eleven design variables and reduce the problem of finding optimal designs to the numerical problem of finding the minimum of a function of several variables. This minimization problem is attacked with different algorithms both local and global in nature. We find that all algorithms find the same minimum of the objective function. The performance of each of the algorithms and the resulting designs are studied for two typical cases. We describe a method to evaluate the impact of design variables in the plant performance. This method will tell us what variables are key to the optimal plant design and which ones are less important. This information can be used to further improve the plant design and to accelerate the optimization procedure.

Ramos, A

2012-01-01T23:59:59.000Z

224

Rankline-Brayton engine powered solar thermal aircraft  

DOE Patents [OSTI]

A solar thermal powered aircraft powered by heat energy from the sun. A Rankine-Brayton hybrid cycle heat engine is carried by the aircraft body for producing power for a propulsion mechanism, such as a propeller or other mechanism for enabling sustained free flight. The Rankine-Brayton engine has a thermal battery, preferably containing a lithium-hydride and lithium mixture, operably connected to it so that heat is supplied from the thermal battery to a working fluid. A solar concentrator, such as reflective parabolic trough, is movably connected to an optically transparent section of the aircraft body for receiving and concentrating solar energy from within the aircraft. Concentrated solar energy is collected by a heat collection and transport conduit, and heat transported to the thermal battery. A solar tracker includes a heliostat for determining optimal alignment with the sun, and a drive motor actuating the solar concentrator into optimal alignment with the sun based on a determination by the heliostat.

Bennett, Charles L. (Livermore, CA)

2012-03-13T23:59:59.000Z

225

Rankine-Brayton engine powered solar thermal aircraft  

DOE Patents [OSTI]

A solar thermal powered aircraft powered by heat energy from the sun. A Rankine-Brayton hybrid cycle heat engine is carried by the aircraft body for producing power for a propulsion mechanism, such as a propeller or other mechanism for enabling sustained free flight. The Rankine-Brayton engine has a thermal battery, preferably containing a lithium-hydride and lithium mixture, operably connected to it so that heat is supplied from the thermal battery to a working fluid. A solar concentrator, such as reflective parabolic trough, is movably connected to an optically transparent section of the aircraft body for receiving and concentrating solar energy from within the aircraft. Concentrated solar energy is collected by a heat collection and transport conduit, and heat transported to the thermal battery. A solar tracker includes a heliostat for determining optimal alignment with the sun, and a drive motor actuating the solar concentrator into optimal alignment with the sun based on a determination by the heliostat.

Bennett, Charles L. (Livermore, CA)

2009-12-29T23:59:59.000Z

226

Phase Change Materials for Thermal Energy Storage in Concentrated Solar Thermal Power Plants  

E-Print Network [OSTI]

COST REDUCTION STUDY FOR SOLAR THERMAL POWER PLANTS, Ottawa,Storage in Concentrated Solar Thermal Power Plants A ThesisStorage in Concentrated Solar Thermal Power Plants by Corey

Hardin, Corey Lee

2011-01-01T23:59:59.000Z

227

Comment on "Air Emissions Due to Wind and Solar Power" and Supporting Information  

E-Print Network [OSTI]

due to wind and solar power. Environ. Sci. Technol. (2)Emissions Due to Wind and Solar Power Andrew Mills, ? , due to wind and solar power. Environ. Sci. Technol. (2)

Mills, Andrew D.

2011-01-01T23:59:59.000Z

228

A Wavelet-Based Variability Model (WVM) for Solar PV Power Plants  

E-Print Network [OSTI]

Term Variability of Solar Power," LBNL Report No. 3884E,High penetration of solar power is highly desirable from ansimilarity to the shape of solar power fluctuations [11].

Lave, Matthew; Kleissl, Jan; Stein, Joshua S

2013-01-01T23:59:59.000Z

229

How Do Wind and Solar Power Affect Grid Operations: The Western Wind and Solar Integration Study  

SciTech Connect (OSTI)

The Western Wind and Solar Integration Study is one of the largest regional wind and solar integration studies to date, examining the operational impact of up to 35% wind, photovoltaics, and concentrating solar power on the WestConnect grid in Arizona, Colorado, Nevada, New Mexico, and Wyoming. This paper reviews the scope of the study, the development of wind and solar datasets, and the results to date on three scenarios.

Lew, D.; Milligan, M.; Jordan, G.; Freeman, L.; Miller, N.; Clark, K.; Piwko, R.

2009-01-01T23:59:59.000Z

230

Sensitivity of Concentrating Solar Power Trough Performance, Cost and Financing with Solar Advisor Model  

SciTech Connect (OSTI)

A comprehensive solar technology systems analysis model, the Solar Advisor Model (SAM) was developed to support the federal R&D community and the solar industry. This model, developed by staff at NREL and Sandia National Laboratory, is able to model the costs, finances, and performance of concentrating solar power and photovoltaics (PV). Currently, parabolic troughs and concentrating PV are the two concentrating technologies modeled within the SAM environment.

Blair, N.; Mehos, M.; Christensen, C.

2008-03-01T23:59:59.000Z

231

Solar Two: A successful power tower demonstration project  

SciTech Connect (OSTI)

Solar Two, a 10MWe power tower plant in Barstow, California, successfully demonstrated the production of grid electricity at utility-scale with a molten-salt solar power tower. This paper provides an overview of the project, from inception in 1993 to closure in the spring of 1999. Included are discussions of the goals of the Solar Two consortium, the planned-vs.-actual timeline, plant performance, problems encountered, and highlights and successes of the project. The paper concludes with a number of key results of the Solar Two test and evaluation program.

REILLY,HUGH E.; PACHECO,JAMES E.

2000-03-02T23:59:59.000Z

232

Metrics for Evaluating the Accuracy of Solar Power Forecasting: Preprint  

SciTech Connect (OSTI)

Forecasting solar energy generation is a challenging task due to the variety of solar power systems and weather regimes encountered. Forecast inaccuracies can result in substantial economic losses and power system reliability issues. This paper presents a suite of generally applicable and value-based metrics for solar forecasting for a comprehensive set of scenarios (i.e., different time horizons, geographic locations, applications, etc.). In addition, a comprehensive framework is developed to analyze the sensitivity of the proposed metrics to three types of solar forecasting improvements using a design of experiments methodology, in conjunction with response surface and sensitivity analysis methods. The results show that the developed metrics can efficiently evaluate the quality of solar forecasts, and assess the economic and reliability impact of improved solar forecasting.

Zhang, J.; Hodge, B. M.; Florita, A.; Lu, S.; Hamann, H. F.; Banunarayanan, V.

2013-10-01T23:59:59.000Z

233

Gulf Power- Solar Thermal Water Heating Program  

Broader source: Energy.gov [DOE]

'''''This program reopened on October 3, 2011 for 2012 applications. Funding is limited and must be reserved through online application before the installation of qualifying solar water heating...

234

PS10 Solar Power Tower Xi Jing, Fang  

E-Print Network [OSTI]

the solar energy to the grid in 2007 Operating cash flow 1.4 millions in 2007.Operating cash flow 1PS10 Solar Power Tower Xi Jing, Fang #12;Overview Magnitudes , Cost & TechnologiesMagnitudes , Cost Technological ,Social Problems and PolicyTechnological ,Social Problems and Policy ChallengesChallenges #12

Prevedouros, Panos D.

235

Excise Tax Deduction for Solar- or Wind-Powered Systems  

Broader source: Energy.gov [DOE]

In Massachusetts, businesses may deduct from net income, for state excise tax purposes, expenditures paid or incurred from the installation of any "solar or wind powered climatic control unit and...

236

Solar-thermal hybridization of Advanced Zero Emissions Power Plants  

E-Print Network [OSTI]

Carbon Dioxide emissions from power production are believed to have significant contributions to the greenhouse effect and global warming. Alternative energy resources, such as solar radiation, may help abate emissions but ...

El Khaja, Ragheb Mohamad Fawaz

2012-01-01T23:59:59.000Z

237

Minnesota Power- Solar-Thermal Water Heating Rebate Program  

Broader source: Energy.gov [DOE]

Minnesota Power offers a 25% rebate for qualifying solar thermal water heating systems. The maximum award for single-family customers is $2,000 per customer; $4,000 for 2-3 family unit buildings; ...

238

GreyStone Power- Solar Water Heating Program  

Broader source: Energy.gov [DOE]

GreyStone Power, an electricity cooperative serving 103,000 customers in Georgia, introduced a solar water heating rebate in March 2009. This $500 rebate is available to customers regardless of...

239

Silicon Valley Power- Solar Electric Buy Down Program  

Broader source: Energy.gov [DOE]

Silicon Valley Power (SVP) offers incentives for the installation of new grid-connected solar electric (photovoltaic, or PV) systems. Incentive levels will step down over the life of the program as...

240

Florida Power and Light- Solar Rebate Program (Florida)  

Broader source: Energy.gov [DOE]

Note:The Florida Power and Light (FPL) 2013 solar PV rebate program is fully subscribed and the limited "standby list" is full. Customers on the standby list will be contacted in the numerical...

Note: This page contains sample records for the topic "openei solar power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Burbank Water and Power- Solar Water Heater Rebate Program (California)  

Broader source: Energy.gov [DOE]

Burbank Water and Power is providing incentives for the purchase of solar water heaters. Incentives are only available to residential customers with electric water heaters. There is a limit of one...

242

Linear Concentrator System Basics for Concentrating Solar Power...  

Office of Environmental Management (EM)

towers and other generator equipment are in the midst of the troughs, and two water tanks are in the background. The Solar Electric Generating Station IV power plant in...

243

Power Electronics Design of a Solar Powered In-car Wireless Tag for Asset Tracking and Parking Applications  

E-Print Network [OSTI]

description Figure 1 shows the system block diagram. Maximum output power of the solar cell is extractedPower Electronics Design of a Solar Powered In-car Wireless Tag for Asset Tracking and Parking and testing of a power conditioning circuit for a solar powered in-car wireless tag for asset tracking

244

Hybrid solar central receiver for combined cycle power plant  

DOE Patents [OSTI]

A hybrid combined cycle power plant is described including a solar central receiver for receiving solar radiation and converting it to thermal energy. The power plant includes a molten salt heat transfer medium for transferring the thermal energy to an air heater. The air heater uses the thermal energy to preheat the air from the compressor of the gas cycle. The exhaust gases from the gas cycle are directed to a steam turbine for additional energy production. 1 figure.

Bharathan, D.; Bohn, M.S.; Williams, T.A.

1995-05-23T23:59:59.000Z

245

Hybrid solar central receiver for combined cycle power plant  

DOE Patents [OSTI]

A hybrid combined cycle power plant including a solar central receiver for receiving solar radiation and converting it to thermal energy. The power plant includes a molten salt heat transfer medium for transferring the thermal energy to an air heater. The air heater uses the thermal energy to preheat the air from the compressor of the gas cycle. The exhaust gases from the gas cycle are directed to a steam turbine for additional energy production.

Bharathan, Desikan (Lakewood, CO); Bohn, Mark S. (Golden, CO); Williams, Thomas A. (Arvada, CO)

1995-01-01T23:59:59.000Z

246

Planting the Seed: Greening the Grid with Concentrating Solar Power  

SciTech Connect (OSTI)

In the United States and around the world, interest in concentrating solar power (CSP) is growing rapidly and its use is increasing. This solar thermal technology can meet a significant share of our electricity demand. Yet, while CSP's market share rises, concerns about the potential impact of CSP-generated electricity on the stability and operation of the U.S. power grid might create barriers to its future expansion in America.

Mehos, M.; Kabel, D.; Smithers, P.

2009-05-01T23:59:59.000Z

247

Parabolic trough solar power for competitive U.S. markets  

SciTech Connect (OSTI)

Nine parabolic trough power plants located in the California Mojave Desert represent the only commercial development of large-scale solar power plants to date. Although all nine plants continue to operate today, no new solar power plants have been completed since 190. Over the last several years, the parabolic trough industry has focused much of its efforts on international market opportunities. Although the power market in developing countries appears to offer a number of opportunities for parabolic trough technologies due to high growth and the availability of special financial incentives for renewables, these markets are also plagued with many difficulties for developers. In recent years, there has been some renewed interest in the U.S. domestic power market as a results of an emerging green market and green pricing incentives. Unfortunately, many of these market opportunities and incentives focus on smaller, more modular technologies (such as photovoltaics or wind power), and as a result they tend to exclude or are of minimum long-term benefit to large-scale concentrating solar power technologies. This paper looks at what is necessary for large-scale parabolic trough solar power plants to compete with state-of-the-art fossil power technology in a competitive US power market.

Price, H.W.; Kistner, R.

1999-07-01T23:59:59.000Z

248

Supporting Solar Power in Renewables Portfolio Standards: Experience from the United States  

E-Print Network [OSTI]

power to the host-customers under long- term power sales agreements. Duke Energy North Carolina Solar

Wiser, Ryan

2010-01-01T23:59:59.000Z

249

THERMOCHEMICAL HEAT STORAGE FOR CONCENTRATED SOLAR POWER  

SciTech Connect (OSTI)

Thermal energy storage (TES) is an integral part of a concentrated solar power (CSP) system. It enables plant operators to generate electricity beyond on sun hours and supply power to the grid to meet peak demand. Current CSP sensible heat storage systems employ molten salts as both the heat transfer fluid and the heat storage media. These systems have an upper operating temperature limit of around 400 C. Future TES systems are expected to operate at temperatures between 600 C to 1000 C for higher thermal efficiencies which should result in lower electricity cost. To meet future operating temperature and electricity cost requirements, a TES concept utilizing thermochemical cycles (TCs) based on multivalent solid oxides was proposed. The system employs a pair of reduction and oxidation (REDOX) reactions to store and release heat. In the storage step, hot air from the solar receiver is used to reduce the oxidation state of an oxide cation, e.g. Fe3+ to Fe2+. Heat energy is thus stored as chemical bonds and the oxide is charged. To discharge the stored energy, the reduced oxide is re-oxidized in air and heat is released. Air is used as both the heat transfer fluid and reactant and no storage of fluid is needed. This project investigated the engineering and economic feasibility of this proposed TES concept. The DOE storage cost and LCOE targets are $15/kWh and $0.09/kWh respectively. Sixteen pure oxide cycles were identified through thermodynamic calculations and literature information. Data showed the kinetics of re-oxidation of the various oxides to be a key barrier to implementing the proposed concept. A down selection was carried out based on operating temperature, materials costs and preliminary laboratory measurements. Cobalt oxide, manganese oxide and barium oxide were selected for developmental studies to improve their REDOX reaction kinetics. A novel approach utilizing mixed oxides to improve the REDOX kinetics of the selected oxides was proposed. It partially replaces some of the primary oxide cations with selected secondary cations. This causes a lattice charge imbalance and increases the anion vacancy density. Such vacancies enhance the ionic mass transport and lead to faster re-oxidation. Reoxidation fractions of Mn3O4 to Mn2O3 and CoO to Co3O4 were improved by up to 16 fold through the addition of a secondary oxide. However, no improvement was obtained in barium based mixed oxides. In addition to enhancing the short term re-oxidation kinetics, it was found that the use of mixed oxides also help to stabilize or even improve the TES properties after long term thermal cycling. Part of this improvement could be attributed to a reduced grain size in the mixed oxides. Based on the measurement results, manganese-iron, cobalt-aluminum and cobalt iron mixed oxides have been proposed for future engineering scale demonstration. Using the cobalt and manganese mixed oxides, we were able to demonstrate charge and discharge of the TES media in both a bench top fixed bed and a rotary kiln-moving bed reactor. Operations of the fixed bed configuration are straight forward but require a large mass flow rate and higher fluid temperature for charging. The rotary kiln makes direct solar irradiation possible and provides significantly better heat transfer, but designs to transport the TES oxide in and out of the reactor will need to be defined. The final reactor and system design will have to be based on the economics of the CSP plant. A materials compatibility study was also conducted and it identified Inconel 625 as a suitable high temperature engineering material to construct a reactor holding either cobalt or manganese mixed oxides. To assess the economics of such a CSP plant, a packed bed reactor model was established as a baseline. Measured cobalt-aluminum oxide reaction kinetics were applied to the model and the influences of bed properties and process parameters on the overall system design were investigated. The optimal TES system design was found to be a network of eight fixed bed reactors at 18.75 MWth each with charge and

PROJECT STAFF

2011-10-31T23:59:59.000Z

250

Sun Also Rises: Planning for Large-Scale Solar Power  

SciTech Connect (OSTI)

Wind, solar, and other renewable energy are an important part of any present-day energy. The portion of energy they supply will certainly be increasing over the next few years. Arguably, large-scale wind power has reached technological maturity, and with more than 100 GW of capacity, ample experience exists on integrating wind systems. Solar technologies, on the other hand, are emerging, and substantial R&D investments are being made to achieve parity with retail electricity costs in the near future. As this happens, annual capacity additions of solar power will become significant.

Bebic, J.; Walling, R.; O'Brien, K.; Kroposki, B.

2009-05-01T23:59:59.000Z

251

Top 10 Things You Didn't Know About Concentrating Solar Power...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

solar power tower systems are viable. The Solar One project near Barstow, California, paved the way for Solar Two, the world's first large-scale molten salt power tower...

252

A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System  

E-Print Network [OSTI]

review of small solar-powered heat engines part II: Researchsince 1950-conventional engines up to 100kW. Solar Energysmall solar-powered heat engines. part III: Research since

Norwood, Zachary Mills

2011-01-01T23:59:59.000Z

253

Title: CEL Solar Photovoltaic Power Project in El Salvador Principal Investigator: Abbas Ghassemi  

E-Print Network [OSTI]

Title: CEL Solar Photovoltaic Power Project in El Salvador Principal Investigator: Abbas Ghassemi solar resource, studying different technology options, anticipating performance, and evaluating the economics of the solar power technologies. The NMSU team is evaluating the potential environmental impacts

Johnson, Eric E.

254

Siting Utility-Scale Concentrating Solar Power Projects  

SciTech Connect (OSTI)

In 2002, Congress asked the U.S. Department of Energy to develop and scope out an initiative to fulfill the goal of having 1,000 megawatts (MW) of new parabolic trough, power tower, and dish engine solar capacity supplying the southwestern United States. In this paper, we present a review of the solar resource for Arizona, California, Nevada, and New Mexico. These four states have the greatest number of ''premium'' solar sites in the country and each has a renewable portfolio standard (RPS). We present information on the generation potential of the solar resources in these states. We also present regions within New Mexico that may be ideally suited for developing large-scale concentrating solar power (CSP) plants because of their proximity to load and their access to unconstrained transmission.

Mehos, M.; Owens, B.

2005-01-01T23:59:59.000Z

255

Texas Solar Power Company | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop, Inc Place:Innovation & SolutionsKentucky)MunicipalTexasSolar

256

Solar Powering America Home | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: AlternativeEnvironment,Institutes and ResponseStaffServicesFutureU.S.Solar Cell | DepartmentSolar

257

Docket Number: 09-AFC-06C Project Title: Blythe Solar Power Project -Compliance  

E-Print Network [OSTI]

DOCKETED Docket Number: 09-AFC-06C Project Title: Blythe Solar Power Project - Compliance TN #: 200840 Document Title: Blythe Solar Power Project Staff Assessment - Part B Description: Staff Assessment - Part B Amendment to the Blythe Solar Power Project BLYTHE SOLAR POWER PROJECT #12;DISCLAIMER Staff

258

Docket Number: 09-AFC-06C Project Title: Blythe Solar Power Project -Compliance  

E-Print Network [OSTI]

DOCKETED Docket Number: 09-AFC-06C Project Title: Blythe Solar Power Project - Compliance TN #: 200629 Document Title: Blythe Solar Power Project Staff Assessment - Part A (Corrected) Description NUMBER 09-AFC-6C Staff Assessment - Part A Amendment to the Blythe Solar Power Project BLYTHE SOLAR POWER

259

A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System  

E-Print Network [OSTI]

power to local residences or businesses. Although it may seem that the decreased efficiency of solar-

Norwood, Zachary Mills

2011-01-01T23:59:59.000Z

260

AV Solar Ranch I Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop,SaveWhiskey FlatshydroMultiple2 Jump to:ASAlliances

Note: This page contains sample records for the topic "openei solar power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Beacon Solar Energy Project Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarre Biomass Facility Jump to:Sector

262

NREL: News - NREL Teams with SolarCity to Maximize Solar Power...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Testing with SolarCity and Hawaiian Electric at ESIF will cover the dynamics between inverter-based assets on a grid system, voltage regulation, and bi-directional power flows....

263

Solar Power and the Electric Grid, Energy Analysis (Fact Sheet)  

SciTech Connect (OSTI)

In today's electricity generation system, different resources make different contributions to the electricity grid. This fact sheet illustrates the roles of distributed and centralized renewable energy technologies, particularly solar power, and how they will contribute to the future electricity system. The advantages of a diversified mix of power generation systems are highlighted.

Not Available

2010-03-01T23:59:59.000Z

264

Update on the Solar Power Satellite transmitter design  

SciTech Connect (OSTI)

A number of remaining problems in the conceptual design of the transmitting antenna for the Solar Power Satellite have been solved as a result of additional technology development. Much of the technology was derived from the conceptual design of a ground-based transmitting antenna for beaming power to a high altitude airship or airplane.

Brown, W.C.

1986-01-01T23:59:59.000Z

265

Power generation considerations in a solar biomodal receiver  

SciTech Connect (OSTI)

The Integrated Solar Upper Stage (ISUS), or solar bimodal stage provides both propulsive thrust for efficient orbital transfer(s) and electrical power generation for the spacecraft. The combined propulsive and power systems allow the solar bimodal system to effectively compete for a variety of missions. Once on station, thermionic converters are used to supply continuous electrical power to the satellite, even during periods when the spacecraft is in the Earth`s shadow. The key to continuous power supply is thermal energy storage. The ISUS propulsion system also benefits through the use of thermal storage. By utilizing a graphite receiver, large amounts of sensible heat can be stored for later power generation. Waste heat is radiated to space through the use of heat pipes. Clearly, the graphite mass must be minimized without sacrificing electrical power capability. Voltage and current characteristics are carefully designed to operate within acceptable ranges. The detailed design of the receiver/absorber/converter (RAC) power system must meet these requirements with as little impact to the remainder of the bimodal system as possible. This paper addresses the key design considerations of a solar bimodal receiver as a power plant. Factors including the thermal storage and heat transfer from the graphite receiver to the thermionic converters, the support structures, electrical insulation and converter string design will be discussed.

Rochow, R.F. [NovaTech, Lynchburg, VA (United States); Miles, B.J. [Babcock and Wilcox, Lynchburg, VA (United States)

1996-12-31T23:59:59.000Z

266

The Potential for Low-Cost Concentrating Solar Power Systems  

SciTech Connect (OSTI)

Concern over the possibility of global climate change as a result of anthropogenic greenhouse gas buildup in the atmosphere is resulting in increased interest in renewable energy technologies. The World Bank recently sponsored a study to determine whether solar thermal power plants can achieve cost parity with conventional power plants. The paper reviews the conclusions of that study.

Price, H. W. (National Renewable Energy Laboratory); Carpenter, S. (Enermodal Engineering Limited)

1999-07-08T23:59:59.000Z

267

EA-1878: U.S. Department of Energy Loan Guarantee to Southwestern Solar Power, LLC for the Southwestern Solar Power Project in Palmdale, California, and near Tucson, Arizona  

Broader source: Energy.gov [DOE]

This EA evaluates the environmental impacts of a proposal to provide a DOE loan guarantee to Solar Power, LLC, for the Southwestern Solar Power Project in Palmdale, California, and near Tucson, Arizona. NOTE: EA has been cancelled.

268

Topaz Solar Farm Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-gTaguspark JumpDetective: TerminologyTolerableTop CropTopaz Solar Farm

269

SES Solar Three Project Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g Grant ofRichardton Abbey Wind Farm(CTI PFAN) |SEMCO JumpSEPCO PlcSolar

270

Concentrating Solar Power Commercial Application Study  

E-Print Network [OSTI]

Towers....................................................................... 9 Dish/Engine Systems, and dish/engine. Parabolic troughs are the most commercially available technology. Linear Fresnel and power Rankine steam cycles, similar to those used for coal and nuclear plants. Steam cycle power plants require

Laughlin, Robert B.

271

Sandia National Laboratories: Concentrating Solar Power  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive SolarEducation Programs:CRFProvide Insight for RotorConcentrating Solar

272

Sandia National Laboratories: Concentrating Solar Power  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive SolarEducation Programs:CRFProvide Insight for RotorConcentrating SolarOptics

273

Long-Term Modeling of Solar Energy: Analysis of Concentrating Solar Power (CSP) and PV Technologies  

SciTech Connect (OSTI)

This report presents an overview of research conducted on solar energy technologies and their implementation in the ObjECTS framework. The topics covered include financing assumptions and selected issues related to the integration of concentrating thermal solar power (CSP) and photovoltaics PV technologies into the electric grid. A review of methodologies for calculating the levelized energy cost of capital-intensive technologies is presented, along with sensitivity tests illustrating how the cost of a solar plant would vary depending on financing assumptions. An analysis of the integration of a hybrid concentrating thermal solar power (CSP) system into the electric system is conducted. Finally a failure statistics analysis for PV plants illustrates the central role of solar irradiance uncertainty in determining PV grid integration characteristics.

Zhang, Yabei; Smith, Steven J.

2007-08-16T23:59:59.000Z

274

A Wavelet-Based Variability Model (WVM) for Solar PV Power Plants  

E-Print Network [OSTI]

Model (WVM) for Solar PV Power Plants Matthew Lave, Jansolar photovoltaic (PV) power plant output given a singleproduce a simulated power plant output. The WVM is validated

Lave, Matthew; Kleissl, Jan; Stein, Joshua S

2013-01-01T23:59:59.000Z

275

A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System  

E-Print Network [OSTI]

solar CHP system supplying arbitrary heat and power outputs.e Electrical power output of system Q Solar CHP to PV yearlysolar Rankine CHP system, sized equally in terms of peak power output,

Norwood, Zachary Mills

2011-01-01T23:59:59.000Z

276

Implications of Wide-Area Geographic Diversity for Short- Term Variability of Solar Power  

E-Print Network [OSTI]

2010. Quantifying PV power output variability. Solar EnergyOutput power correlation between adjacent wind power plants. Journal of Solarpower system demonstrate that scaling the output from an individual solar

Mills, Andrew

2010-01-01T23:59:59.000Z

277

Cimarron I Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarreisVolcanic National ParkCimarron I Solar Power Plant Jump

278

Concentrating Solar Power Program Technology Overview (Fact Sheet)  

SciTech Connect (OSTI)

Concentrating solar power systems use the heat from the sun's rays to generate electricity. Reflective surfaces concentrate the sun's rays up to 10,000 times to heat a receiver filled with a heat-exchange fluid, such as oil. The heated fluid is then used to generate electricity in a steam turbine or heat engine. Mechanical drives slowly turn the reflective surfaces during the day to keep the solar radiation focused on the receiver.

Not Available

2001-04-01T23:59:59.000Z

279

OpenEI Community - mediawiki  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth'sOklahoma/Geothermal < Oklahomast, 2012CoastfredResult Formats on OpenEI

280

Docket Number: 09-AFC-07C Project Title: Palen Solar Power Project -Compliance  

E-Print Network [OSTI]

DOCKETED Docket Number: 09-AFC-07C Project Title: Palen Solar Power Project - Compliance TN Solar Power Project PALEN SOLAR ELECTRIC GENERATING SYSTEM #12;DISCLAIMER Staff members SYSTEM (09-AFC-7C) FINAL STAFF ASSESSMENT ­ Part A Amendment to the Palen Solar Power Project Executive

Note: This page contains sample records for the topic "openei solar power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Gain Scheduled Control of a Solar Power Plant Tor A. Johansen1  

E-Print Network [OSTI]

Gain Scheduled Control of a Solar Power Plant Tor A. Johansen1 , Kenneth J. Hunt2 and Idar Petersen to a pilot-scale solar power plant is described. A eld of parabolic collectors focus the solar radiation onto a tube where oil is pumped through in order to collect the solar power. The control problem is to keep

Johansen, Tor Arne

282

The ultra-thin solar cells that could generate power through windows  

E-Print Network [OSTI]

The ultra-thin solar cells that could generate power through windows By Claire Bates Last updated, generating enough electricity to power the GPS or air conditioning. Solar cells, which convert solar energy into tinted windows Page 1 of 3The ultra-thin solar cells that could generate power through windows | Mail

Rogers, John A.

283

Characterization of the Solar Power Resource in Europe and Assessing Benefits of Co-Location with Wind Power Installations  

E-Print Network [OSTI]

The extent, availability and reliability of solar power generation are assessed over Europe, andfollowing a previously developed methodologyspecial attention is given to the intermittency of solar power. Combined with ...

Bozonnat, C.

284

Solar Power Prospector | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar PowerstoriesNrelPartnerTypePonsa,

285

Sandia National Laboratories: Concentrating Solar Power  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive SolarEducation Programs:CRFProvide Insight for Rotor

286

Accurate Solar Power | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop,SaveWhiskey

287

ePOWER Seminar AC solar cells: A new breed of PV power generation  

E-Print Network [OSTI]

ePOWER Seminar AC solar cells: A new breed of PV power generation Professor Faisal Khan Assistant dc output which needs to be processed and inverted for ac applications. Using a modern manufacturing facility, PV panels could be mass produced without any apparent issues. Unfortunately, power converters

Abolmaesumi, Purang

288

Terra-Gen Powers Coso Geothermal Facility Obtains Critical Federal...  

Open Energy Info (EERE)

Obtains Critical Federal Permit to Increase Its Renewable Energy Generation Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Terra-Gen Powers Coso...

289

Solar thermal power systems. Annual technical progress report, FY 1979  

SciTech Connect (OSTI)

The Solar Thermal Power Systems Program is the key element in the national effort to establish solar thermal conversion technologies within the major sectors of the national energy market. It provides for the development of concentrating mirror/lens heat collection and conversion technologies for both central and dispersed receiver applications to produce electricity, provide heat at its point of use in industrial processes, provide heat and electricity in combination for industrial, commercial, and residential needs, and ultimately, drive processes for production of liquid and gaseous fuels. This report is the second Annual Technical Progress Report for the Solar Thermal Power Systems Program and is structured according to the organization of the Solar Thermal Power Systems Program on September 30, 1979. Emphasis is on the technical progress of the projects rather than on activities and individual contractor efforts. Each project description indicates its place in the Solar Thermal Power Systems Program, a brief history, the significant achievements and real progress during FY 1979, also future project activities as well as anticipated significant achievements are forecast. (WHK)

Not Available

1980-06-01T23:59:59.000Z

290

Understanding the adoption of solar power technologies in the UK domestic sector.  

E-Print Network [OSTI]

??The aim of this thesis was to provide new insights into the adoption of solar power technologies. Policy has identified solar technologies capable of providing (more)

Faiers, Adam

2009-01-01T23:59:59.000Z

291

New Mexico's pioneering steps in commercializing solar power  

SciTech Connect (OSTI)

Over the past two years, New Mexico has been engaged in a significant new approach to implement large purchases of solar power. This effort followed a regulatory process that treated solar power generation similar to conventional generation obtained by an investor owned utility under the regulation of a public utility commission. in 1997, Public Service Company of New Mexico (PNM) gained approval to purchase power from a 100-MW combustion turbine facility that would be owned and operated by a wholesale generator. At the same time it issued the approval, and following discussions with the utility, the New Mexico Public Utility Commission (NMPUC) also required PNM to issue a request for proposal for a 5-MW central station solar facility, a major step for solar technologies in the state, in what would be the world's largest of its technology type. In cooperation with the staff of the NMPUC, PNM reviewed the proposals received, and Applied Power Corporation was selected for the photovoltaic portion of the proposed plant, retaining ownership of the plant, assuming the risks connected with the technology, and operating the plant in exchange for a power purchase agreement in a first-of-its-kind contract for photovoltaic. During the NMPUC hearings, various parties raised significant opposition to the cost-recovery mechanism that was proposed and voiced issues about the type of solar plant, its size, cost, and the funding approaches to building it. Because of these issues, alternative proposals were put forth that reduced the size and costs of the plant and had implied changes in ownership and risks. The order issues by the NMPUC on October 21, 1998, requires PNM to impose a charge of 0.5% on its retail electric customers' monthly bills to be used to acquire the solar facilities, but also to obtain other renewable electric power resources, both on a pay-as-you-go basis. This paper identifies the issues and their resolution that similar projects are expected to encounter.

Hill, R.R.

1999-07-01T23:59:59.000Z

292

New Mexico's Pioneering Steps in Commercializing Solar Power  

SciTech Connect (OSTI)

Over the past two years, New Mexico has been engaged in a significant new approach to implement large purchases of solar power. This effort followed a regulatory process that treated solar power generation similar to conventional generation obtained by an investor-owned utility under the regulation of a public utility commission. In 1997, Public Service Company of New Mexico (PNM) gained approval to purchase power from a 100-MW combustion turbine facility that would be owned and operated by a wholesale generator. At the same time it issued the approval, and following discussions with the utility, the New Mexico Public Utility Commission (NMPUC) also required PNM to issue a request for proposal for a 5-MW central station solar facility, a major step for solar technologies in the state, in what would be the world's largest of its technology type. In cooperation with the staff of the NMPUC, PNM reviewed the proposals received, and Applied Power Corporation was selected for the photovoltaic portion of the proposed plan; retaining ownership of the plant, assuming the risks connected with the technology, and operating the plant in exchange for a power purchase agreement in a first-of-its-kind contract for photovoltaics. During the NMPUC hearings, various parties raised significant opposition to the cost-recovery mechanism that was proposed and voiced issues about the type of solar plant, its size, cost and the tiding approaches to building it. Because of these issues, alternative proposals were put forth that reduced the size and costs of the plant and had implied changes in ownership and risks. The order issued by the NMPUC on October 21, 1998, requires PNM to impose a charge of 0.5% on its retail electric customers' monthly bills to be used to acquire the solar facilities, but also to obtain other renewable electric power resources, both on a pay-as-you-go basis. This paper identifies the issues and their resolution that similar projects are expected to encounter.

Hill, R.R.

1999-04-09T23:59:59.000Z

293

Solar Millenium Ridgecrest Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWende New EnergyAnatoliaSciraShenhuaWindPowerSohamBG Jump

294

Prescott Airport Solar Plant Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth'sOklahoma/GeothermalOrangePeru:Job CorpPowerVerde

295

NREL: Concentrating Solar Power Research - Southwest Concentrating Solar  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements of WomenEvents Below areBecomePower 1000-MW

296

Exploration Best Practices and the OpenEI Knowledge Exchange...  

Energy Savers [EERE]

Exchange Webinar Exploration Best Practices and the OpenEI Knowledge Exchange Webinar slide presentation by Katherine Young, Timothy Reber and Kermit Witherbee on April 11, 2012....

297

OpenEI Community - OpenEI  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Powerstories onFocus AreaDataBusPFAN)ChangeOnPAC Energyper CategoryPresidential

298

Concentrated Solar Thermoelectric Power (Fact Sheet)  

SciTech Connect (OSTI)

Massachusetts Institute of Technology (MIT) is one of the 2012 SunShot CSP R&D awardees for their advanced power cycles. This fact sheet explains the motivation, description, and impact of the project.

Not Available

2012-09-01T23:59:59.000Z

299

Solar thermoelectrics for small scale power generation  

E-Print Network [OSTI]

In the past two decades, there has been a surge in the research of new thermoelectric (TE) materials, driven party by the need for clean and sustainable power generation technology. Utilizing the Seebeck effect, the ...

Amatya, Reja

2012-01-01T23:59:59.000Z

300

Designing of Hybrid Power Generation System using Wind energy- Photovoltaic Solar energy- Solar energy with Nanoantenna  

E-Print Network [OSTI]

All the natural wastage energies are used for production of Electricity. Thus, the Electrical Power or Electricity is available with a minimum cost and pollution free to anywhere in the world at all times. This process reveals a unique step in electricity generation and availability from natural resources without hampering the ecological balance. This paper describes a new and evolving Electrical Power Generation System by integrating simultaneously photovoltaic Solar Energy, solar Energy with Nano-antenna, Wind Energy and non conventional energy sources. We can have an uninterrupted power supply irrespective of the natural condition without any sort of environmental pollution. Moreover this process yields the least production cost for electricity generation. Utilization of lightning energy for generation of electricity reveals a new step. The set-up consists of combination of photo-voltaic solar-cell array & Nano-anteena array, a mast mounted wind generator, lead-acid storage batteries, an inverter unit to convert DC power to AC power, electrical lighting loads and electrical heating loads, several fuse and junction boxes and associated wiring, and test instruments for measuring voltages, currents, power factors, and harmonic contamination data throughout the system. This hybrid solar-wind power generating system will extensively use in the Industries and also in external use like home appliance.

Note: This page contains sample records for the topic "openei solar power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Sandia National Laboratories: Concentrating Solar Power  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive SolarEducation Programs:CRFProvide Insight for RotorConcentrating

302

Sandia National Laboratories: Concentrating Solar Power  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive SolarEducation Programs:CRFProvide Insight for RotorConcentratingConcentrating

303

SunShot Concentrating Solar Power Research  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of Energy Strain Rate4 RecoveryJulyEvaluation Results |Catalyst Demo Solar

304

Solar Power Inc SPI | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty Ltd Jump to:Information Silver Peak AreaOutlineSolar Pathfinder JumpSPCSPI

305

Solar Power Partners Inc | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty Ltd Jump to:Information Silver Peak AreaOutlineSolar Pathfinder

306

SolarPower Ltd | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty Ltd Jump to:Information Silver PeakSystemsSolarLab

307

Solar Powering America Home | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from the GridwiseSite Management GuideReliabilityDepartment of Energy to HelpSolar

308

Solar Powering America Home | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists' Research |RegulationRenewable Energy (EERE)SmartRemarkson solarDamien

309

Sandia National Laboratories: Concentrating Solar Power  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared0EnergySandia Involves Wind-Farm Owners inConcentrating Solar

310

Sandia National Laboratories: Concentrating Solar Power  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared0EnergySandia Involves Wind-Farm Owners inConcentrating SolarPratt

311

Sandia National Laboratories: Concentrating Solar Power Systems  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared0EnergySandia Involves Wind-Farm Owners Concentrating Solar

312

Value of Concentrating Solar Power and Thermal Energy Storage  

SciTech Connect (OSTI)

This paper examines the value of concentrating solar power (CSP) and thermal energy storage (TES) in four regions in the southwestern United States. Our analysis shows that TES can increase the value of CSP by allowing more thermal energy from a CSP plant?s solar field to be used, by allowing a CSP plant to accommodate a larger solar field, and by allowing CSP generation to be shifted to hours with higher energy prices. We analyze the sensitivity of CSP value to a number of factors, including the optimization period, price and solar forecasting, ancillary service sales, capacity value and dry cooling of the CSP plant. We also discuss the value of CSP plants and TES net of capital costs.

Sioshansi, R.; Denholm, P.

2010-02-01T23:59:59.000Z

313

Where solar thermal meets photovoltaic for high-efficiency power conversion  

E-Print Network [OSTI]

To develop disruptive techniques which generate power from the Sun, one must understand the aspects of existing technologies that limit performance. Solar thermal and solar photovoltaic schemes dominate today's solar market ...

Bierman, David M. (David Matthew)

2014-01-01T23:59:59.000Z

314

Solar-powered turbocompressor heat pump system  

DOE Patents [OSTI]

The turbocompressor comprises a power turbine and a compressor turbine having respective rotors and on a common shaft, rotatably supported by bearings. A first working fluid is supplied by a power loop and is expanded in the turbine. A second working fluid is compressed in the turbine and is circulated in a heat pump loop. A lubricant is mixed with the second working fluid but is excluded from the first working fluid. The bearings are cooled and lubricated by a system which circulates the second working fluid and the intermixed lubricant through the bearings. Such system includes a pump, a thermostatic expansion valve for expanding the working fluid into the space between the bearings, and a return conduit system for withdrawing the expanded working fluid after it passes through the bearings and for returning the working fluid to the evaporator. A shaft seal excludes the lubricant from the power turbine. The power loop includes a float operable by liquid working fluid in the condenser for controlling a recirculation valve so as to maintain a minimum liquid level in the condenser, while causing a feed pump to pump most of the working fluid into the vapor generator. The heat pump compressor loop includes a float in the condenser for operating and expansion valve to maintain a minimum liquid working fluid level in the condenser while causing most of the working fluid to be expanded into the evaporator.

Landerman, A.M.; Biancardi, F.R.; Melikian, G.; Meader, M.D.; Kepler, C.E.; Anderson, T.J.; Sitler, J.W.

1982-08-12T23:59:59.000Z

315

LOW POWER UPCONVERSION FOR SOLAR FUELS PHOTOCHEMISTRY  

SciTech Connect (OSTI)

Earth abundant copper(I) diimine complexes represent a renewable and economically feasible alternative to commonly used heavy metal containing chromophores. In the metal-to-ligand charge transfer (MLCT) excited state, copper(I) diimine complexes typically undergo a significant structural rearrangement, leading to molecules with large Stokes shifts and very short excited state lifetimes, thereby limiting their usefulness as sensitizers in bimolecular electron and triplet energy transfer reactions. Strategically placed bulky substituents on the coordinating phenanthroline ligands have proven useful in restricting the transiently produced excited state Jahn-Teller distortion, leading to longer-lived excited states. By combining bulky sec-butyl groups in the 2- and 9- positions with methyl groups in the 3-,4-, 7-, and 8- positions, a remarkably long-lived (2.8 ?s in DCM) copper(I) bis-phenanthroline complex, [Cu(dsbtmp)2]+, has been synthesized and characterized. Unlike other copper(I) diimine complexes, [Cu(dsbtmp)2]+ also retains a ?s lifetime in coordinating solvents such as acetonitrile and water as a result of the cooperative sterics inherent in the molecular design. Preliminary results on the use of this complex in hydrogen-forming homogeneous photocatalysis is presented. Photon upconversion based on sensitized triplet-triplet annihilation (TTA) represents a photochemical means to generate high-energy photons (or high-energy chemical products) from low-energy excitation, having potential applications in solar energy conversion and solar fuels producing devices. For the first time, synthetically facile and earth abundant Cu(I) MLCT sensitizers have been successfully incorporated into two distinct photochemical upconversion schemes, affording both red-to-green and orange-to-blue wavelength conversions. Preliminary results on aqueous-based photochemical upconversion as well as intramolecular Sn(IV) porphyrins containing axially coordinated aromatic hydrocarbon chromophores poised for upconversion photochemistry are also presented.

Castellano, Felix N. [Bowling Green State University

2013-08-05T23:59:59.000Z

316

Solar Power Tower Design Basis Document, Revision 0  

SciTech Connect (OSTI)

This report contains the design basis for a generic molten-salt solar power tower. A solar power tower uses a field of tracking mirrors (heliostats) that redirect sunlight on to a centrally located receiver mounted on top a tower, which absorbs the concentrated sunlight. Molten nitrate salt, pumped from a tank at ground level, absorbs the sunlight, heating it up to 565 C. The heated salt flows back to ground level into another tank where it is stored, then pumped through a steam generator to produce steam and make electricity. This report establishes a set of criteria upon which the next generation of solar power towers will be designed. The report contains detailed criteria for each of the major systems: Collector System, Receiver System, Thermal Storage System, Steam Generator System, Master Control System, and Electric Heat Tracing System. The Electric Power Generation System and Balance of Plant discussions are limited to interface requirements. This design basis builds on the extensive experience gained from the Solar Two project and includes potential design innovations that will improve reliability and lower technical risk. This design basis document is a living document and contains several areas that require trade-studies and design analysis to fully complete the design basis. Project- and site-specific conditions and requirements will also resolve open To Be Determined issues.

ZAVOICO,ALEXIS B.

2001-07-01T23:59:59.000Z

317

Diabetes hope P7 Solar energy powers on P12  

E-Print Network [OSTI]

Diabetes hope P7 Solar energy powers on P12 Post Designer stamps her cultural identity www destined way Kellie Penfold collaBoration is the currency in our Knowledge-Based econoMy australia australia's economic and social capacities. deputy vice-chancellor (research) Professor andrew Flitman 03

Liley, David

318

Minnesota Power- Solar-Electric (PV) Rebate Program  

Broader source: Energy.gov [DOE]

Minnesota Power offers a rebate of $1,000 per kilowatt (kW) DC for grid-connected solar-electric (PV) systems, with a maximum award of $20,000 per customer or 60% installed costs per customer. This...

319

Why did the solar power sector develop quickly in Japan?  

E-Print Network [OSTI]

The solar power sector grew quickly in Japan during the decade 1994 to 2003. During this period, annual installations increased 32-fold from 7MW in 1994 to 223MW in 2003, and annual production increased 22-fold, from 16MW ...

Rogol, Michael G

2007-01-01T23:59:59.000Z

320

Fast Photovoltaic Array Reconfiguration for Partial Solar Powered Vehicles  

E-Print Network [OSTI]

Fast Photovoltaic Array Reconfiguration for Partial Solar Powered Vehicles Jaemin Kim1 , Yanzhi during cruising using innovative fast photovoltaic array (PV) reconfiguration. Use of all the vehicle sur and partial PV array mounting by the car owner's driving pattern, which results in more than 20% PV cell cost

Pedram, Massoud

Note: This page contains sample records for the topic "openei solar power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Home | OpenEI Community  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power BasicsGermany: EnergyPowerInformation

322

Concentrating Solar Power | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataCombined Heat & Power Deployment »Technical

323

Solar Two is a concentrating solar power plant that can supply electric power "on demand"  

E-Print Network [OSTI]

. Solar One used water as a working fluid to generate the steam required to drive a conven- tional turbine steam, and electricity is produced by a conventional steam turbine. After the molten salt has cooled with the U.S. Department of Energy (DOE). Technical Achievement Solar Two represents a major technical

Laughlin, Robert B.

324

Utility Grid-Connected Distributed Power Systems National Solar Energy Conference  

E-Print Network [OSTI]

Utility Grid-Connected Distributed Power Systems National Solar Energy Conference ASES Solar 96 at least half of its energy obtained from energy efficiency and renewable resources by the year 2000. Solar energy, distributed generation resource. Investments made in solar power today are expected to provide

325

EPIC-RoofNet: An Experimental Testbed for Solar-powered Wireless Sensor Networks  

E-Print Network [OSTI]

EPIC-RoofNet: An Experimental Testbed for Solar-powered Wireless Sensor Networks Amitangshu Pal through a shared folder. Keywords: Wireless sensor networks, solar harvesting, adaptive protocols experiments on solar-powered sensor nodes. Due to constraints in cost and size, the solar panels

Nasipuri, Asis

326

Operational results from the Saudi Solar Village Photovoltaic power system  

SciTech Connect (OSTI)

The world's largest photovoltaic power system was carried into the operation phase a few months ago. This system was developed and fabricated in the United States and it is providing electrical energy to three remote villages in Saudi Arabia. The facility includes a 350 kW photovoltaic array, 1-MW diesel powered generator, 1100 kWH lead acid batteries, a 300 KVA inverter and a solar weather data monitoring station. The photovoltaic power system is capable of completely automatic operation. It is designed to operate in stand-alone and cogeneration modes of operation.

Huraib, F.; Al-Sani, A.; Khoshami, B.H.

1982-08-01T23:59:59.000Z

327

Software and codes for analysis of concentrating solar power technologies.  

SciTech Connect (OSTI)

This report presents a review and evaluation of software and codes that have been used to support Sandia National Laboratories concentrating solar power (CSP) program. Additional software packages developed by other institutions and companies that can potentially improve Sandia's analysis capabilities in the CSP program are also evaluated. The software and codes are grouped according to specific CSP technologies: power tower systems, linear concentrator systems, and dish/engine systems. A description of each code is presented with regard to each specific CSP technology, along with details regarding availability, maintenance, and references. A summary of all the codes is then presented with recommendations regarding the use and retention of the codes. A description of probabilistic methods for uncertainty and sensitivity analyses of concentrating solar power technologies is also provided.

Ho, Clifford Kuofei

2008-12-01T23:59:59.000Z

328

Solar Energy - Capturing and Using Power and Heat from the Sun...  

Broader source: Energy.gov (indexed) [DOE]

Solar Energy - Capturing and Using Power and Heat from the Sun Solar Energy - Capturing and Using Power and Heat from the Sun U.S. Department of Energy (DOE) Office of Energy...

329

DOE Funds 15 New Projects to Develop Solar Power Storage and...  

Broader source: Energy.gov (indexed) [DOE]

15 New Projects to Develop Solar Power Storage and Heat Transfer Projects For Up to 67.6 Million DOE Funds 15 New Projects to Develop Solar Power Storage and Heat Transfer...

330

Harnessing the Power of the Sun, Solar Impulse Plane Lands in...  

Broader source: Energy.gov (indexed) [DOE]

the Power of the Sun, Solar Impulse Plane Lands in DC Area Harnessing the Power of the Sun, Solar Impulse Plane Lands in DC Area June 17, 2013 - 6:15pm Addthis Watch Energy...

331

Solar Thin Power | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g GrantAtlas (PACA Region - France) JumpBeginnerThin Power Place: New

332

Concentrating Solar Power: Efficiently Leveraging Equilibrium Mechanisms  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power Systems EngineeringDepartmentSmart Grid RFI:Fresno U.S.Energy Order issued

333

NREL: Concentrating Solar Power Research - Systems Analysis  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements of WomenEvents Below areBecomePower 1000-MWSystems

334

NREL: Concentrating Solar Power Research - Technology Basics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements of WomenEvents Below areBecomePower

335

NREL: Concentrating Solar Power Research - Webmaster  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements of WomenEvents Below areBecomePowerResearch

336

Operation of Concentrating Solar Power Plants in the Western Wind and Solar Integration Phase 2 Study  

SciTech Connect (OSTI)

The Western Wind and Solar Integration Study (WWSIS) explores various aspects of the challenges and impacts of integrating large amounts of wind and solar energy into the electric power system of the West. The phase 2 study (WWSIS-2) is one of the first to include dispatchable concentrating solar power (CSP) with thermal energy storage (TES) in multiple scenarios of renewable penetration and mix. As a result, it provides unique insights into CSP plant operation, grid benefits, and how CSP operation and configuration may need to change under scenarios of increased renewable penetration. Examination of the WWSIS-2 results indicates that in all scenarios, CSP plants with TES provides firm system capacity, reducing the net demand and the need for conventional thermal capacity. The plants also reduced demand during periods of short-duration, high ramping requirements that often require use of lower efficiency peaking units. Changes in CSP operation are driven largely by the presence of other solar generation, particularly PV. Use of storage by the CSP plants increases in the higher solar scenarios, with operation of the plant often shifted to later in the day. CSP operation also becomes more variable, including more frequent starts. Finally, CSP output is often very low during the day in scenarios with significant PV, which helps decrease overall renewable curtailment (over-generation). However, the configuration studied is likely not optimal for High Solar Scenario implying further analysis of CSP plant configuration is needed to understand its role in enabling high renewable scenarios in the Western United States.

Denholm, P.; Brinkman, G.; Lew, D.; Hummon, M.

2014-05-01T23:59:59.000Z

337

Improved high temperature solar absorbers for use in Concentrating Solar Power central receiver applications.  

SciTech Connect (OSTI)

Concentrating solar power (CSP) systems use solar absorbers to convert the heat from sunlight to electric power. Increased operating temperatures are necessary to lower the cost of solar-generated electricity by improving efficiencies and reducing thermal energy storage costs. Durable new materials are needed to cope with operating temperatures >600 C. The current coating technology (Pyromark High Temperature paint) has a solar absorptance in excess of 0.95 but a thermal emittance greater than 0.8, which results in large thermal losses at high temperatures. In addition, because solar receivers operate in air, these coatings have long term stability issues that add to the operating costs of CSP facilities. Ideal absorbers must have high solar absorptance (>0.95) and low thermal emittance (<0.05) in the IR region, be stable in air, and be low-cost and readily manufacturable. We propose to utilize solution-based synthesis techniques to prepare intrinsic absorbers for use in central receiver applications.

Stechel, Ellen Beth; Ambrosini, Andrea; Hall, Aaron Christopher; Lambert, Timothy L.; Staiger, Chad Lynn; Bencomo, Marlene

2010-09-01T23:59:59.000Z

338

SolarPower Restoration Systems Inc | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty Ltd Jump to:Information Silver PeakSystemsSolarLabSolarPower Restoration

339

Solaren Space Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty Ltd Jump to:Information SilverSolarStructure LtdSolar Power Plant Facility

340

Hawaii | OpenEI Community  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power BasicsGermany: EnergyPower Finance Jump737002°,Havana Power &CoHome

Note: This page contains sample records for the topic "openei solar power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Intermittent cathodic protection using solar power  

SciTech Connect (OSTI)

An intermittent impressed current cathodic protection technique using photovoltaic energy was evaluated to determine it`s ability to protect bridge concrete piles in marine environments against corrosion. The technique uses commercially available anode systems to deliver the cathodic protection current to the concrete and onto the reinforcing steel. Cathodic protection current is only applied during the daytime hours. The magnitude of the applied current was based on sunlight availability. An evaluation was conducted on laboratory specimens as well as in the field. The laboratory work was performed on steel reinforced concrete specimens placed in simulated salt water tanks. For the field evaluation, ten prestressed concrete piles of a bridge structure with an existing rectifier powered cathodic protection system were used. In both cases, intermittent cathodic protection was provided. Polarization and depolarization of the steel reinforcement as well as the protection current delivered were monitored to evaluate the cathodic protection performance as well as the behavior of periodic polarization-depolarization.

Kessler, R.J.; Powers, R.G.; Lasa, I.R. [Florida Dept. of Transportation, Gainesville, FL (United States). Corrosion Research Lab.

1998-12-31T23:59:59.000Z

342

Implications of geographic diversity for short-term variability and predictability of solar power.  

E-Print Network [OSTI]

Output power correlation between adjacent wind power plants, Journal of Solarpower system demonstrate that scaling the output from an individual solar

Mills, Andrew

2013-01-01T23:59:59.000Z

343

Solar Powering Your Community: A Guide for Local Governments, 2nd Edition (Fact Sheet), Solar Energy Technologies Program (SETP)  

Broader source: Energy.gov [DOE]

This fact sheet outlines the content of the second edition of the DOE publication Solar Powering Your Local Community: A Guide for Local Governments.

344

Stirling Engines for Low-Temperature Solar-Thermal-Electric Power Generation  

E-Print Network [OSTI]

Stirling Engines for Low-Temperature Solar-Thermal- Electric Power Generation Artin Der Minassians-Temperature Solar-Thermal-Electric Power Generation by Artin Der Minassians Karshenasi (Amirkabir University-Temperature Solar-Thermal-Electric Power Generation Copyright c 2007 by Artin Der Minassians #12;1 Abstract Stirling

Sanders, Seth

345

Solar power conversion efficiency in modulated silicon nanowire photonic Alexei Deinega and Sajeev John  

E-Print Network [OSTI]

Solar power conversion efficiency in modulated silicon nanowire photonic crystals Alexei Deinega://jap.aip.org/about/rights_and_permissions #12;Solar power conversion efficiency in modulated silicon nanowire photonic crystals Alexei Deinegaa that using only 1 lm of silicon, sculpted in the form of a modulated nanowire photonic crystal, solar power

John, Sajeev

346

An Evolutionary Model for Space Solar Power Nicholas Boechler, Sameer Hameer, Sam Wanis, Narayanan Komerath  

E-Print Network [OSTI]

An Evolutionary Model for Space Solar Power Nicholas Boechler, Sameer Hameer, Sam Wanis, Narayanan.komerath@ae.gatech.edu 404-894-3017 Abstract. The primary difficulties with the dream of Space Solar Power (SSP) for earth, are the extreme launch costs of solar power satellites to Geosynchronous Earth Orbit (GEO), and the absence

347

UHF Solar Powered Active Oscillator Antenna on Low Cost Flexible Substrate for Wireless Identification Applications  

E-Print Network [OSTI]

UHF Solar Powered Active Oscillator Antenna on Low Cost Flexible Substrate for Wireless nature of the circuit and providing operational autonomy by harvesting solar power without affecting, solar power harvesting. I. INTRODUCTION The increasing use of RFIDs and wireless sensor networks

Tentzeris, Manos

348

A comparison of reversible chemical reactions for solar thermochemical power generation  

E-Print Network [OSTI]

453 A comparison of reversible chemical reactions for solar thermochemical power generation O. M storage of the reaction products. A number of reactions have been proposed for solar thermochemical power to be a good choice for first generation solar thermochemical power generation. Revue Phys. Appl. 15 (1980) 453

Boyer, Edmond

349

Solar Power Forecasting at UC San Diego Jan Kleissl, Dept of Mechanical & Aerospace Engineering, UCSD  

E-Print Network [OSTI]

show 2 cloud layers. Vaisala Fig. 4: Observed solar power output (black line) and simulation (Fig. 4). Tier 3: Power output forecast As cloud related solar radiation reductions are observed algorithm to determine actual expected solar power output at each PV array over the hour ahead. #12;

Fainman, Yeshaiahu

350

2007 IEEE Canada Electrical Power Conference Solar Photovoltaic Array's Shadow Evaluation  

E-Print Network [OSTI]

whether the maximum output power of the solar photovoltaic arrays under the system is sufficiently cost, and the the "shading factor," which is defined as the ratio of the non- maximum output power of the solar photovoltaic solar PV arrays: effects on performance, and in particular the output power of * In the numerical method

Lehman, Brad

351

A Practical Theory of Micro-Solar Power Sensor Networks JAEIN JEONG, Cisco Systems  

E-Print Network [OSTI]

9 A Practical Theory of Micro-Solar Power Sensor Networks JAEIN JEONG, Cisco Systems DAVID CULLER Reference Format: Jeong, J. and Culler, D. 2012. A practical theory of micro-solar power sensor networks planning for micro-solar power sensor networks" in Proceedings of the 7th International Conference

California at Berkeley, University of

352

A solar photovoltaic power system for use in Antarctica  

SciTech Connect (OSTI)

A solar photovoltaic power system was designed and built at the NASA Lewis Research Center as part of the NASA/NSF Antarctic Space Analog Program. The system was installed at a remote field camp at Lake Hoare in the Dry Valleys, and provided a six-person field team with electrical power for personal computers and printers, lab equipment, lighting, and a small microwave oven. The system consists of three silicon photovoltaic sub-arrays delivering a total of 1.5 kWe peak power, three lead-acid gel battery modules supplying 2.4 kWh, and an electrical distribution system which delivers 120 Vac and 12 Vdc to the user. The system was modularized for ease of deployment and operation. Previously the camp has been powered by diesel generators, which have proven to be both noisy and polluting. The NSF, in an effort to reduce their dependence on diesel fuel from both an environmental and cost standpoint, is interested in the use of alternate forms of energy, such as solar power. Such a power system also will provide NASA with important data on system level deployment and operation in a remote location by a minimally trained crew, as well as validate initial integration concepts.

Kohout, L.L.; Merolla, A.; Colozza, A.

1993-12-01T23:59:59.000Z

353

Space-based solar power generation using a distributed network of satellites and methods for efficient space power transmission  

E-Print Network [OSTI]

Space-based solar power (SSP) generation is being touted as a solution to our ever-increasing energy consumption and dependence on fossil fuels. Satellites in Earth's orbit can capture solar energy through photovoltaic ...

McLinko, Ryan M.

354

Concentrating Solar Power: Best Practices Handbook for the Collection and Use of Solar Resource Data (CSP)  

SciTech Connect (OSTI)

As the world looks for low-carbon sources of energy, solar power stands out as the most abundant energy resource. Harnessing this energy is the challenge for this century. Photovoltaics and concentrating solar power (CSP) are two primary forms of electricity generation using sunlight. These use different technologies, collect different fractions of the solar resource, and have different siting and production capabilities. Although PV systems are most often deployed as distributed generation sources, CSP systems favor large, centrally located systems. Accordingly, large CSP systems require a substantial investment, sometimes exceeding $1 billion in construction costs. Before such a project is undertaken, the best possible information about the quality and reliability of the fuel source must be made available. That is, project developers need to have reliable data about the solar resource available at specific locations to predict the daily and annual performance of a proposed CSP plant. Without these data, no financial analysis is possible. This handbook presents detailed information about solar resource data and the resulting data products needed for each stage of the project.

Stoffel, T.; Renne, D.; Myers, D.; Wilcox, S.; Sengupta, M.; George, R.; Turchi, C.

2010-09-01T23:59:59.000Z

355

Concentrating Solar Power Resources and Technologies | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTieCelebrate Earth Codestheatfor Optimized9 *Concentrating Solar Power

356

High Plains Ranch Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio:GreerHi Gtel Jump to: navigation,Solar Power Plant Jump to:

357

SEGS VI Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to: navigation, searchVirginiaRooseveltVI Solar Power Plant Jump to: navigation, search Name

358

SEGS VIII Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to: navigation, searchVirginiaRooseveltVI Solar Power Plant Jump to: navigation, search

359

Parabolic Trough Solar Power Plant Simulation Model: Preprint  

SciTech Connect (OSTI)

As interest for clean renewable electric power technologies grows, a number of parabolic trough power plants of various configurations are being considered for deployment around the globe. It is essential that plant designs be optimized for each specific application. The optimum design must consider the capital cost, operations and maintenance cost, annual generation, financial requirements, and time-of-use value of the power generated. Developers require the tools for evaluating tradeoffs between these various project elements. This paper provides an overview of a computer model that is being used by scientists and developers to evaluate the tradeoff between cost, performance, and economic parameters for parabolic trough solar power plant technologies. An example is included that shows how this model has been used for a thermal storage design optimization.

Price, H.

2003-01-01T23:59:59.000Z

360

The Tiger and the Sun: Solar Power Plants and Wildlife Sanctuaries  

E-Print Network [OSTI]

We discuss separate and integrated approaches to building scalable solar power plants and wildlife sanctuaries. Both solar power plants and wildlife sanctuaries need a lot of land. We quantify some of the requirements using various estimates of the rate of solar power production as well as the rate of adding wildlife to a sanctuary over the time range 2010-2050. We use population dynamics equations to study the evolution of solar energy and tiger populations up to and beyond 2050.

McGuigan, Michael

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "openei solar power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Efficient solar cooling: first ever non-tracking solar collectors powering a double effect absorption chiller  

E-Print Network [OSTI]

Based Performance Analysis of a Solar Absorption Cooling andExperimental Investigation of a Solar Adsorption ChillerKreith, Jan F. Kreider. "Solar Cooling." Principles of Solar

Poiry, Heather Marie

2011-01-01T23:59:59.000Z

362

IRENA | OpenEI Community  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power BasicsGermany:Information IDS Climate Change andSmartIPTCommunity

363

hydro | OpenEI Community  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop,SaveWhiskey Flatshydro Home Water Power Forum Description: Forum

364

images | OpenEI Community  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop,SaveWhiskey Flatshydro Home Water Power Forum Description:Home

365

interface | OpenEI Community  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop,SaveWhiskey Flatshydro Home Water Power Forum

366

international | OpenEI Community  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop,SaveWhiskey Flatshydro Home Water Power Foruminternational Home

367

interoperability | OpenEI Community  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop,SaveWhiskey Flatshydro Home Water Power Foruminternational

368

keyword | OpenEI Community  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop,SaveWhiskey Flatshydro Home Water Power Foruminternational

369

Cost | OpenEI Community  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power Basics (The following text is derivedCoReturnCooksonAfricaprojectRenewable

370

Databus | OpenEI Community  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power Basics (The following text09-0018-CXBasin Jump to: navigation,

371

Datapalooza | OpenEI Community  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power Basics (The following text09-0018-CXBasin Jump to:

372

Developer | OpenEI Community  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power Basics (The following text09-0018-CXBasinDeseret GenerationHome

373

EA | OpenEI Community  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power Basics (The followingDirect EnergyOrganizationsealingDynegySyndicate

374

EERE | OpenEI Community  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power Basics (The followingDirectLow Carbon Transition JumpEDISON

375

Event | OpenEI Community  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power Basics (TheEtelligence (Smart Grid Project) JumpEnergyEvanston,

376

FONSI | OpenEI Community  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power Basics (TheEtelligence (Smart Grid Project)CompanyFEM

377

FRED | OpenEI Community  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power Basics (TheEtelligence (Smart Grid Project)CompanyFEMFRED ContentFRED

378

FRED | OpenEI Community  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power Basics (TheEtelligence (Smart Grid Project)CompanyFEMFRED ContentFREDFRED

379

FRED | OpenEI Community  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power Basics (TheEtelligence (Smart Grid Project)CompanyFEMFRED ContentFREDFRED

380

FWS | OpenEI Community  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power Basics (TheEtelligence (Smart Grid

Note: This page contains sample records for the topic "openei solar power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Flora | OpenEI Community  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power Basics (TheEtelligence (SmartHome Kyoung's pictureFlint Electric Home

382

Fuel | OpenEI Community  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power Basics (TheEtelligence (SmartHomeFremont,using Renewable Fuels

383

GRR | OpenEI Community  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power Basics (TheEtelligence (SmartHomeFremont,usingGEO2GHGenius

384

Gapminder | OpenEI Community  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power Basics (TheEtelligenceGainSpan Corporation Jump to:Galveston,Wzeng's

385

Solar Powering Your Community: A Guide for Local Governments; Second Edition  

SciTech Connect (OSTI)

DOE designed this guide "Solar Powering Your Community: A Guide for Local Governments" to assist local government officials and stakeholders in designing and implementing strategic local solar plans. The 2011 edition contains the most recent lessons and successes from the 25 Solar America Cities and other communities promoting solar energy. Because DOE recognizes that there is no one path to solar market development, this guide introduces a range of policy and program options that can help a community build a local solar infrastructure.

Not Available

2011-01-01T23:59:59.000Z

386

innovati nNREL Confirms Large Potential for Grid Integration of Wind, Solar Power  

E-Print Network [OSTI]

innovati nNREL Confirms Large Potential for Grid Integration of Wind, Solar Power To fully harvest a database of potential wind power sites and detailed, time-dependent estimates of the power that would the nation's bountiful wind and solar resources, it is critical to know how much electrical power from

387

Modeling Photovoltaic and Concentrating Solar Power Trough Performance, Cost, and Financing with Solar Advisor Model  

SciTech Connect (OSTI)

A comprehensive solar technology systems analysis model, the Solar Advisor Model (SAM), has been developed to support the federal R&D community and the solar industry by staff at the National Renewable Energy Laboratory (NREL) and Sandia National Laboratory. This model is able to model the finances, incentives, and performance of flat-plate photovoltaic (PV), concentrating PV, and concentrating solar power (specifically, parabolic troughs). The primary function of the model is to allow users to investigate the impact of variations in performance, cost, and financial parameters to better understand their impact on key figures of merit. Figures of merit related to the cost and performance of these systems include, but aren't limited to, system output, system efficiencies, levelized cost of energy, return on investment, and system capital and O&M costs. SAM allows users to do complex system modeling with an intuitive graphical user interface (GUI). In fact, all tables and graphics for this paper are taken directly from the model GUI. This model has the capability to compare different solar technologies within the same interface, making use of similar cost and finance assumptions. Additionally, the ability to do parametric and sensitivity analysis is central to this model. There are several models within SAM to model the performance of photovoltaic modules and inverters. This paper presents an overview of each PV and inverter model, introduces a new generic model, and briefly discusses the concentrating solar power (CSP) parabolic trough model. A comparison of results using the different PV and inverter models is also presented.

Blair, N.; Mehos, M.; Christensen, C.; Cameron, C.

2008-01-01T23:59:59.000Z

388

A 927 MHz Solar Powered Active Antenna Oscillator Beacon Signal Generator  

E-Print Network [OSTI]

. Properly placed solar cells and a regulator are used to bias the device by scavenging solar energy from technology, which scavenges through solar energy the power necessary for operation. Starting from a folded the radiation performances. After that, solar cells were properly inserted for energy scavenging purposes

Tentzeris, Manos

389

Space-Based Solar Power | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

substantially more energy than terrestrial solar panels. How Does it Work? Solar panel equipped, energy transmitting satellites collect high intensity, uninterrupted solar...

390

Energy Policy 32 (2004) 289297 The potential of solar electric power for meeting future US energy  

E-Print Network [OSTI]

Energy Policy 32 (2004) 289­297 The potential of solar electric power for meeting future US energy needs: a comparison of projections of solar electric energy generation and Arctic National Wildlife of solar electric power in the form of photovoltaics to meet future US energy demand with the projected

Delaware, University of

391

Maximum Power Transfer Tracking in a Solar USB Charger for Smartphones  

E-Print Network [OSTI]

chargers do not perform the maximum power point tracking [2], [3] of the solar panel. We excludeMaximum Power Transfer Tracking in a Solar USB Charger for Smartphones Abstract--Battery life poor capacity utilization during solar energy harvesting. In this paper, we propose and demonstrate

Pedram, Massoud

392

Solar Power To Help Convert Carbon Dioxide Into Fuel : Renewable Energy News  

E-Print Network [OSTI]

Solar Power To Help Convert Carbon Dioxide Into Fuel : Renewable Energy News TUESDAY 25 MAY, 2010 | | Solar Power To Help Convert Carbon Dioxide Into Fuel by Energy Matters Microbiologist Derek Lovley of energy, the solar panels, can also harvest energy 100 times more effectively than plants. Other

Lovley, Derek

393

Utilizing Solar Power in Wireless Sensor Networks Thiemo Voigt, Hartmut Ritter, Jochen Schiller  

E-Print Network [OSTI]

Utilizing Solar Power in Wireless Sensor Networks Thiemo Voigt, Hartmut Ritter, Jochen Schiller propose to utilize solar power in wireless sensor networks, establishing a topology where ­ changing over propose and evaluate two protocols that perform solar- aware routing. The presented simulation results

Voigt, Thiemo

394

Design and Analysis of Micro-Solar Power Systems for Wireless  

E-Print Network [OSTI]

Design and Analysis of Micro- Solar Power Systems for Wireless Sensor Networks Jaein Jeong UC Berkeley, Computer Science with Xiaofan Jiang and David Culler 11-17-2006 LGE Talk #12;2 Solar Energy in Richmond Field Station Trio Heliomote #12;3 Our Contributions · Model for micro-solar power system

California at Berkeley, University of

395

Impact of Improved Solar Forecasts on Bulk Power System Operations in ISO-NE: Preprint  

SciTech Connect (OSTI)

The diurnal nature of solar power is made uncertain by variable cloud cover and the influence of atmospheric conditions on irradiance scattering processes. Its forecasting has become increasingly important to the unit commitment and dispatch process for efficient scheduling of generators in power system operations. This study examines the value of improved solar power forecasting for the Independent System Operator-New England system. The results show how 25% solar power penetration reduces net electricity generation costs by 22.9%.

Brancucci Martinez-Anido, C.; Florita, A.; Hodge, B. M.

2014-09-01T23:59:59.000Z

396

Investigating the Correlation Between Wind and Solar Power Forecast Errors in the Western Interconnection: Preprint  

SciTech Connect (OSTI)

Wind and solar power generations differ from conventional energy generation because of the variable and uncertain nature of their power output. This variability and uncertainty can have significant impacts on grid operations. Thus, short-term forecasting of wind and solar generation is uniquely helpful for power system operations to balance supply and demand in an electricity system. This paper investigates the correlation between wind and solar power forecasting errors.

Zhang, J.; Hodge, B. M.; Florita, A.

2013-05-01T23:59:59.000Z

397

Modeling The Potential For Thermal Concentrating Solar Power Technologies  

SciTech Connect (OSTI)

In this paper we explore the tradeoffs between thermal storage capacity, cost, and other system parameters in order to examine possible evolutionary pathways for thermal Concen-trating Solar Power (CSP) technologies. A representation of CSP performance that is suit-able for incorporation into economic modeling tools is developed. We find that, as the fraction of electricity supplied by CSP technologies grows, the application of thermal CSP technologies might progress from current hybrid plants, to plants with a modest amount of thermal storage, and potentially even to plants with sufficient thermal storage to provide base load generation capacity. The representation of CSP cost and performance developed here was implemented in the ObjECTS MiniCAM long-term integrated assessment model. Datasets for global solar resource characteristics as applied to CSP technology were also developed. The regional and global potential of thermal CSP technologies is examined.

Zhang, Yabei; Smith, Steven J.; Kyle, G. Page; Stackhouse, Jr., Paul W.

2010-10-25T23:59:59.000Z

398

OpenEI Community  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Powerstories onFocus AreaDataBusPFAN)ChangeOnPAC Energy Jumpnorth starsAPIHome

399

Testing and modeling of a solar thermophotovoltaic power system  

SciTech Connect (OSTI)

A solar thermophotovoltaic (STPV) power system has attractive attributes for both space and terrestrial applications. This paper presents the results of testing by McDonnell Douglas Aerospace (MDA) over the last year with components furnished by the NASA Lewis Research Center (LeRC) and the National Renewable Energy Lab (NREL). The testing has included a large scale solar TPV testbed system and small scale laboratory STPV simulator using a small furnace. The testing apparatus, instrumentation, and operation are discussed, including a description of the emitters and photovoltaic devices that have been tested. Over 50 on-sun tests have been conducted with the testbed system. It has accumulated over 300 hours of on-sun time, and 1.5 MWh of thermal energy incident on the receiver material while temperatures and I-V measurements were taken. A summary of the resulting test data is presented that shows the measured performance at temperatures up to 1220{degree}C. The receiver materials and PV cells have endured the high temperature operation with no major problems. The results of this investigation support MDA belief that STPV is a viable power system for both space and terrestrial power applications. {copyright} {ital 1996 American Institute of Physics.}

Stone, K.W. [McDonnell Douglas, 5301 Bolsa Ave, Huntington Bch., California 92647 (United States); Chubb, D.L.; Wilt, D.M. [NASA Lewis Research Center, 21000 Brookpark Rd., Cleveland, Ohio 44135 (United States); Wanlass, M.W. [National Renewable Energy Lab, 1617 Cole Boulevard, Golden, Colorado 80401 (United States)

1996-02-01T23:59:59.000Z

400

Dual-temperature Kalina cycle for geothermal-solar hybrid power systems  

E-Print Network [OSTI]

This thesis analyzes the thermodynamics of a power system coupling two renewable heat sources: low-temperature geothermal and a high-temperature solar. The process, referred to as a dual-temperature geothermal-solar Kalina ...

Boghossian, John G

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "openei solar power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Georgia Power- Residential Solar and Heat Pump Water Heater Rebate (Georgia)  

Broader source: Energy.gov [DOE]

Georgia Power customers may be eligible for rebates up to $250 each toward the installation costs of a 50 gallon or greater solar water heater or heat pump water heater. The solar water heater or...

402

Concentrating Solar Power (Fact Sheet), SunShot Initiative, U.S. Department of Energy (DOE)  

Broader source: Energy.gov [DOE]

Concentrating Solar Power (CSP) offers a utility-scale, firm, dispatchable renewable energy option that can help meet the nation's goal of making solar energy cost competitive with other energy sources by the end of the decade.

403

Towards Space Solar Power - Examining Atmospheric Interactions of Power Beams with the HAARP Facility  

E-Print Network [OSTI]

In the most common space solar power (SSP) system architectures, solar energy harvested by large satellites in geostationary orbit is transmitted to Earth via microwave radiation. Currently, only limited information about the interactions of microwave beams with energy densities of several tens to hundreds of W/m$^2$ with the different layers of the atmosphere is available. Governmental bodies will likely require detailed investigations of safety and atmospheric effects of microwave power beams before issuing launch licenses for SSP satellite systems. This paper proposes to collect representative and comprehensive data of the interaction of power beams with the atmosphere by extending the infrastructure of the High Frequency Active Auroral Research Program (HAARP) facility in Alaska, USA. Estimates of the transmission infrastructure performance as well as measurement devices and scientific capabilities of possible upgrade scenarios will be discussed. The proposed upgrade of the HAARP facility is expected to d...

Leitgab, M

2014-01-01T23:59:59.000Z

404

Energy Department Announces New Concentrating Solar Power Technology  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehiclesTanklessDOJ TitleDr. StevenSolar Power |Health ofNatural Gas

405

Hanford Solar Power: Cost Effective and Mobile | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG | Department ofHTS Cable Projects HTS CableMay 2009 Hanford SiteMaterialSolar

406

Tonopah Airport Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-gTaguspark JumpDetective: TerminologyTolerable PlanetToltecSolar Power

407

Nellis AFB Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's HeatMexico: EnergyMithunCenter Jump to:2 Rules,Nellis AFB Solar Power Plant

408

CalRENEW-1 Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORT Americium/CuriumSunways JV JumpBraselcoCMNA PowerCalRENEW-1 Solar

409

Amorphous silicon cell array powered solar tracking apparatus  

DOE Patents [OSTI]

An array of an even number of amorphous silicon solar cells are serially connected between first and second terminals of opposite polarity. The terminals are connected to one input terminal of a DC motor whose other input terminal is connected to the mid-cell of the serial array. Vane elements are adjacent the end cells to selectively shadow one or the other of the end cells when the array is oriented from a desired attitude relative to the sun. The shadowing of one cell of a group of cells on one side of the mid-cell reduces the power of that group substantially so that full power from the group of cells on the other side of the mid-cell drives the motor to reorient the array to the desired attitude. The cell groups each have a full power output at the power rating of the motor. When the array is at the desired attitude the power output of the two groups of cells balances due to their opposite polarity so that the motor remains unpowered.

Hanak, Joseph J. (Lawrenceville, NJ)

1985-01-01T23:59:59.000Z

410

Simulating solar power plant variability : a review of current methods.  

SciTech Connect (OSTI)

It is important to be able to accurately simulate the variability of solar PV power plants for grid integration studies. We aim to inform integration studies of the ease of implementation and application-specific accuracy of current PV power plant output simulation methods. This report reviews methods for producing simulated high-resolution (sub-hour or even sub-minute) PV power plant output profiles for variability studies and describes their implementation. Two steps are involved in the simulations: estimation of average irradiance over the footprint of a PV plant and conversion of average irradiance to plant power output. Six models are described for simulating plant-average irradiance based on inputs of ground-measured irradiance, satellite-derived irradiance, or proxy plant measurements. The steps for converting plant-average irradiance to plant power output are detailed to understand the contributions to plant variability. A forthcoming report will quantify the accuracy of each method using application-specific validation metrics.

Lave, Matthew; Ellis, Abraham [Sandia National Laboratories, Albuquerque, NM; Stein, Joshua S. [Sandia National Laboratories, Albuquerque, NM

2013-06-01T23:59:59.000Z

411

OpenEI Community - community solar  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth'sOklahoma/Geothermal < Oklahomast, 2012Coast UtilitiesUpdateHighwayoverview

412

OpenEI Community - solar garden  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth'sOklahoma/Geothermal < Oklahomast,Logistics Agency (DLA) RFP - Deadline -

413

OpenEI Community - solar land use  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth'sOklahoma/Geothermal < Oklahomast,Logistics Agency (DLA) RFP - Deadline -

414

A single dimensionless variable for solar chimney power plant modeling  

SciTech Connect (OSTI)

The solar chimney power plant is a relatively new technology for generating electricity from solar energy. In this paper dimensional analysis is used together with engineering intuition to combine eight primitive variables into only one dimensionless variable that establishes a dynamic similarity between a prototype and its scaled models. Three physical configurations of the plant were numerically tested for similarity: fully geometrically similar, partially geometrically similar, and dissimilar types. The values of the proposed dimensionless variable for all these cases were found to be nominally equal to unity. The value for the physical plant actually built and tested previously was also evaluated and found to be about the same as that of the numerical simulations, suggesting the validity of the proposition. The physical meaning of this dimensionless (similarity) variable is also interpreted; and the connection between the Richardson number and this new variable was found. It was found also that, for a fixed solar heat flux, different-sized models that are fully or partially geometrically similar share an equal excess temperature across the roof outlet. (author)

Koonsrisuk, Atit; Chitsomboon, Tawit [School of Mechanical Engineering, Institute of Engineering, Suranaree University of Technology, Muang District, Nakhon Ratchasima 30000 (Thailand)

2009-12-15T23:59:59.000Z

415

Power efficiency for very high temperature solar thermal cavity receivers  

DOE Patents [OSTI]

This invention is an improved solar energy cavity receiver for exposing materials and components to high temperatures. The receiver includes a housing having an internal reflective surface defining a cavity and having an inlet for admitting solar radiation thereto. A photothermal absorber is positioned in the cavity to receive radiation from the inlet. A reflective baffle is positioned between the absorber and the inlet to severely restrict the re-radiation of energy through the inlet. The front surface of the baffle defines a narrow annulus with the internal reflective surface of the housing. The front surface of the baffle is contoured to reflect incoming radiation onto the internal surface of the housing, from which it is reflected through the annulus and onto the front surface of the absorber. The back surface of the baffle intercepts infrared radiation from the front of the absorber. With this arrangement, a high percentage of the solar power input is retained in the cavity; thus, high internal temperatures are attained.

McDougal, Allan R. (LaCanada-Flintridge, CA); Hale, Robert R. (Upland, CA)

1984-01-01T23:59:59.000Z

416

A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System  

E-Print Network [OSTI]

A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System Combined Heat and Power System by Zachary Mills Norwood Doctor of Philosophy in the Energy and Resources of analysis of Distributed Concentrating Solar Combined Heat and Power (DCS-CHP) systems is a design

California at Berkeley, University of

417

The development of a solar thermal water purification, heating, and power generation system: A case study.  

E-Print Network [OSTI]

The development of a solar thermal water purification, heating, and power generation system: A case, none of the existing concentrated solar power systems (trough, dish, and tower) that have been the potential of an invention directed to a water purification system that also recovers power from generated

Wu, Mingshen

418

Design and Analysis of Micro-Solar Power Systems for Wireless Sensor Networks  

E-Print Network [OSTI]

Design and Analysis of Micro-Solar Power Systems for Wireless Sensor Networks Jaein Jeong, Xiaofan,fxjiang,culler}@eecs.berkeley.edu Abstract-- Wireless Sensor Networks are fundamentally limited by their energy storage resources and the power they obtain from their environment. Several micro-solar powered designs have been developed

Culler, David E.

419

Efficient solar cooling: first ever non-tracking solar collectors powering a double effect absorption chiller  

E-Print Network [OSTI]

2004) Advances in solar thermal electricity technology.1: Comparison of the pros and cons for various solar thermalof Three Concentrating Solar Thermal Units Designed with

Poiry, Heather Marie

2011-01-01T23:59:59.000Z

420

Comment on 'Air Emissions Due to Wind and Solar Power'  

SciTech Connect (OSTI)

Katzenstein and Apt investigate the important question of pollution emission reduction benefits from variable generation resources such as wind and solar. Their methodology, which couples an individual variable generator to a dedicated gas plant to produce a flat block of power, is, however, inappropriate. For CO{sub 2}, the authors conclude that variable generators ''achieve {approx}80% of the emission reductions expected if the power fluctuations caused no additional emissions.'' They find even lower NO{sub x} emission reduction benefits with steam injected gas turbines and a 2--4 times net increase in NO{sub x} emissions for systems with dry NO{sub x} control unless the ratio of energy from natural gas to variable plants is greater than 2:1. A more appropriate methodology, however, would find a significantly lower degradation of the emissions benefit than suggested by Katzenstein and Apt.

Mills, A.; Wiser, R.; Milligan, M.; O'Malley, M.

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "openei solar power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Current | OpenEI Community  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power Basics (The following text isRica NRELPower Comm Jump to:CuivreCurrent

422

Database | OpenEI Community  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power Basics (The following text09-0018-CXBasin Jump to: navigation, searchHome

423

Developer | OpenEI Community  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power Basics (The following text09-0018-CXBasinDeseret GenerationHome >

424

Developer | OpenEI Community  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power Basics (The following text09-0018-CXBasinDeseret GenerationHomeDeveloper

425

EIA | OpenEI Community  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power Basics (The followingDirectLow Carbon Transition JumpEDISON2:42 EIA

426

EIS | OpenEI Community  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power Basics (The followingDirectLow Carbon Transition JumpEDISON2:42 EIAHome

427

ESI | OpenEI Community  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power Basics (The followingDirectLow CarbonOpen Energy InformationESB

428

EZFeed | OpenEI Community  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power Basics (The followingDirectLow CarbonOpen1 June, 2013 - 09:33 Tip for

429

Environment | OpenEI Community  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power Basics (The followingDirectLowDiscussion-4,611,201.00 TotalEnergyHome

430

FOA | OpenEI Community  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power Basics (TheEtelligence (Smart Grid Project)CompanyFEM ElectricEfficiency2

431

FRED | OpenEI Community  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power Basics (TheEtelligence (Smart Grid Project)CompanyFEMFRED ContentFRED (1)

432

Fauna | OpenEI Community  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power Basics (TheEtelligence (Smart GridHome Kyoung'sTechnologies Jump to: Home

433

GE | OpenEI Community  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power Basics (TheEtelligence (SmartHomeFremont,using RenewableFurnacesWind cm

434

GEA | OpenEI Community  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power Basics (TheEtelligence (SmartHomeFremont,using RenewableFurnacesWindGEA

435

GIS | OpenEI Community  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power Basics (TheEtelligence (SmartHomeFremont,usingGEO2GHGenius Jump to:

436

GMREC | OpenEI Community  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power Basics (TheEtelligence (SmartHomeFremont,usingGEO2GHGenius Jump to: Home

437

GRC | OpenEI Community  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power Basics (TheEtelligence (SmartHomeFremont,usingGEO2GHGenius Jump to:4

438

GTO | OpenEI Community  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power Basics (TheEtelligence (SmartHomeFremont,usingGEO2GHGeniusFinance LLC

439

Google | OpenEI Community  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power BasicsGermany: Energy Resources JumpEnergyGoltry Public WorksElec AssnHome

440

Sustainable solar thermal power generation (STPG) technologies in Indian context  

SciTech Connect (OSTI)

India is a fast developing country. Some of the factors like population growth, industrialization, liberalization in economic policies, green revolution and awareness toward the environment, are increasing the electricity demand rapidly. As per the 14th Power Survey Report, an energy deficit of (+) 9% and peak demand deficit of (+) 18% have been estimated. Keeping in view the liberalization in economic policies, this deficit may be higher by the year 2000 AD. An estimation indicates that India is blessed with solar energy to the tune of 5 x 10{sup 15} kWh/yr. Being clean and inexhaustible source of energy, it can be used for large-scale power generation in the country. Keeping in view the present state-of-art technologies for STPG in MW range, best possible efforts are required to be made by all the concerned, to develop sustainable STPG technology of the future, specially for tropical regions. Standardization of vital equipment is an important aspect. There are a few required criteria like simple and robust technology, its transfer and adaptation in tropical climate conditions; high plant load factor without fossil-fired backup; availability of plant during evening peak and night hours; least use of fragile components, and capacity optimization for MW plants as per solar irradiance and environmental factors. In this paper, efforts have been made to compare the different STPG technologies. On the basis, of literature surveyed and studies carried out by the author, it may be stated that Central Receiver System technologies using molten salt and volumetric air receiver, along with molten salt and ceramic thermal storage respectively seems to be suitable and comparable in Indian context. Performance of SOLAR-TWO and PHOEBUS plants may be decisive.

Sharma, R.S. [Ministry of Non-Conventional Energy Sources, New Delhi (India). Solar Energy Centre

1996-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "openei solar power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

A Global Optimization Approach to the Design of Solar Power Plants  

E-Print Network [OSTI]

Apr 1, 2014 ... Abstract: A method for optimizing a Solar Power Tower system is proposed, in which both the location of the heliostats and the characteristics of...

E. Carrizosa

2014-04-01T23:59:59.000Z

442

Advanced Ceramic Materials and Packaging Technologies for Realizing Sensors for Concentrating Solar Power Systems  

Broader source: Energy.gov [DOE]

This is a presentation by Yiping Liu from Sporian Microsystems at the 2013 SunShot Concentrating Solar Power Program Review.

443

Advanced Ceramic Materials and Packaging Technologies for Realizing Sensors for Concentrating Solar Power Systems  

Broader source: Energy.gov [DOE]

This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 2325, 2013 near Phoenix, Arizona.

444

Developement of a digitally controlled low power single phase inverter for grid connected solar panel.  

E-Print Network [OSTI]

?? The work consists in developing a power conversion unit for solar panel connected to the grid. This unit will be a single phase inverter (more)

Marguet, Raphael

2010-01-01T23:59:59.000Z

445

High-Temperatuer Solar Selective Coating Development for Power Tower Receivers  

Broader source: Energy.gov [DOE]

This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 2325, 2013 near Phoenix, Arizona.

446

Solar Powering Your Community: A Guide for Local Governments, 2nd Edition (Fact Sheet)  

SciTech Connect (OSTI)

This fact sheet outlines the content of the second edition of the DOE publication Solar Powering Your Local Community: A Guide for Local Governments.

Ruckman, K.

2011-03-01T23:59:59.000Z

447

Using Solid Particles as Heat Transfer Fluid for use in Concentrating Solar Power (CSP) Plants  

Broader source: Energy.gov [DOE]

This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 2325, 2013 near Phoenix, Arizona.

448

A Global Optimization Approach to the Design of Solar Power Plants  

E-Print Network [OSTI]

May 8, 2014 ... A method for optimizing a Solar Power Tower system is proposed, ... at a high temperature is then transferred to the heat transfer fluid to...

2014-05-08T23:59:59.000Z

449

Planar Optical Waveguide Coupler Transformers for High-Power Solar Enegy Collection and Transmission  

Broader source: Energy.gov [DOE]

This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 2325, 2013 near Phoenix, Arizona.

450

Phase Change Materials for Thermal Energy Storage in Concentrated Solar Thermal Power Plants.  

E-Print Network [OSTI]

??Experimental studies are presented that aim to utilize phase change materials (PCM's) to enhance thermal energy storage systems for concentrated solar thermal power (CSP) systems. (more)

Hardin, Corey Lee

2011-01-01T23:59:59.000Z

451

Economic, Energy, and Environmental Benefits of Concentrating Solar Power in California  

SciTech Connect (OSTI)

This study provides a summary assessment of concentrating solar power and its potential economic return, energy supply impact, and environmental benefits for the State of California.

Stoddard, L.; Abiecunas, J.; O'Connell, R.

2006-04-01T23:59:59.000Z

452

Novel Molten Salts Thermal Energy Storage for Concentrating Solar Power Generation  

Broader source: Energy.gov [DOE]

This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 2325, 2013 near Phoenix, Arizona.

453

Assessing the costs of solar power plants for the Island of Roatn .  

E-Print Network [OSTI]

??This is an analysis assessing the installation costs of different solar power plant technologies and the current commercial availability for installation on the Island or (more)

Huwe, Ethan (Ethan L.)

2011-01-01T23:59:59.000Z

454

Factors influencing the success of decentralised solar power systems in remote villages.  

E-Print Network [OSTI]

??This study investigates organisation and design factors of decentralised rural electrification through solar power in light of views from the World Bank, the Millennium Development (more)

Millinnger, Markus

2011-01-01T23:59:59.000Z

455

Performance Analysis of XCPC Powered Solar Cooling Demonstration Project  

E-Print Network [OSTI]

Medium Temperature Non-Tracking Solar Thermal Concentrators.an outdoor LiBr/H2O solar thermal absorption cooling systemperformance of a solar-thermal-assisted HVAC system, Energy

Widyolar, Bennett

2013-01-01T23:59:59.000Z

456

Powering Your Community With Solar: Overcoming Market and Implementati...  

Broader source: Energy.gov (indexed) [DOE]

of the Solarize Portland model, overcome barriers to implementation, and permanently transform the market for solar energy in their communities. 55318.pdf More Documents &...

457

Powering Your Community With Solar: Overcoming Market and Implementati...  

Broader source: Energy.gov (indexed) [DOE]

of the Solarize Portland model, overcome barriers to implementation, and permanently transform the market for solar energy in their communities. The guide explores Portland's...

458

Power Flow Controller for Renewables: Transformer-less Unified Power Flow Controller for Wind and Solar Power Transmission  

SciTech Connect (OSTI)

GENI Project: MSU is developing a power flow controller to improve the routing of electricity from renewable sources through existing power lines. The fast, innovative, and lightweight circuitry that MSU is incorporating into its controller will eliminate the need for a separate heavy and expensive transformer, as well as the construction of new transmission lines. MSUs controller is better suited to control power flows from distributed and intermittent wind and solar power systems than traditional transformer-based controllers are, so it will help to integrate more renewable energy into the grid. MSUs power flow controller can be installed anywhere in the existing grid to optimize energy transmission and help reduce transmission congestion.

None

2012-02-08T23:59:59.000Z

459

Cloud Formation in the Plumes of Solar Chimney Power Generation Facilities: A Modeling Study  

E-Print Network [OSTI]

for a proposed solar chimney facility in southwestern Australia. A range of temperatures and updraft velocities technology for converting solar energy into electricity that has shown promise in recent years is the so1 Cloud Formation in the Plumes of Solar Chimney Power Generation Facilities: A Modeling Study

Nenes, Athanasios

460

Solar-powered WirelessMesh Networksfor Environmental Monitoring Torsten Braun, Thomas Staub, Benjamin Nyffenegger  

E-Print Network [OSTI]

unit, an 80 W solar panel as well as directional antennas. The 5GHz frequency band has been used environments. Deployment of the node hardware and solar panels was quite challenging, but successful whenSolar-powered WirelessMesh Networksfor Environmental Monitoring Torsten Braun, Thomas Staub

Braun, Torsten

Note: This page contains sample records for the topic "openei solar power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

innovati nNREL Melds Nature with Nanotech for Solar-Powered  

E-Print Network [OSTI]

are nanoparticles of the same semiconductors used to make solar cells. Light hitting a quantum dot will freeinnovati nNREL Melds Nature with Nanotech for Solar-Powered Hydrogen Production NREL researchers an electron--in a solar cell, the electrons would be collected to produce an electrical current. But because

462

Toward a Low-CarMunicipal Financing for Energy Efficiency and Solar Power  

E-Print Network [OSTI]

Toward a Low-CarMunicipal Financing for Energy Efficiency and Solar Power By Merrian C. Fuller of the Inter- governmental Panel on Climate Change (IPCC). Thus far much of the effort has been focused, such as improving energy efficiency and add- ing solar photovoltaics (PV) and solar thermal systems to buildings

Kammen, Daniel M.

463

Solar Two: A Molten Salt Power Tower Demonstration* Craig E.Tyner  

E-Print Network [OSTI]

.S. Department of Energy (DOE),Sandia National Laboratories, and industry to convert the 10-MwSolar One Power receiver, a new thermal storage system, and a new steam generator; it utilizes Solar One's heliostat field and turbine generator. Successful operation of the convertedplant, called SolarTwo, will reduce

Laughlin, Robert B.

464

Assessing the costs of solar power plants for the Island of Roatn  

E-Print Network [OSTI]

This is an analysis assessing the installation costs of different solar power plant technologies and the current commercial availability for installation on the Island or Roatn. Commercial large-scale power plants have ...

Huwe, Ethan (Ethan L.)

2011-01-01T23:59:59.000Z

465

Submodule Integrated Distributed Maximum Power Point Tracking for Solar Photovoltaic Applications  

E-Print Network [OSTI]

This paper explores the benefits of distributed power electronics in solar photovoltaic applications through the use of submodule integrated maximum power point trackers (MPPT). We propose a system architecture that provides ...

Pilawa-Podgurski, Robert C. N.

466

Integrated Solar Power Converters: Wafer-Level Sub-Module Integrated DC/DC Converter  

SciTech Connect (OSTI)

Solar ADEPT Project: CU-Boulder is developing advanced power conversion components that can be integrated into individual solar panels to improve energy yields. The solar energy that is absorbed and collected by a solar panel is converted into useable energy for the grid through an electronic component called an inverter. Many large, conventional solar energy systems use one, central inverter to convert energy. CU-Boulder is integrating smaller, microinverters into individual solar panels to improve the efficiency of energy collection. The Universitys microinverters rely on electrical components that direct energy at high speeds and ensure that minimal energy is lost during the conversion processimproving the overall efficiency of the power conversion process. CU-Boulder is designing its power conversion devices for use on any type of solar panel.

None

2012-02-09T23:59:59.000Z

467

1600 IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 22, NO. 5, SEPTEMBER 2007 Solar Battery Chargers for NiMH Batteries  

E-Print Network [OSTI]

1600 IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 22, NO. 5, SEPTEMBER 2007 Solar Battery Chargers-controller of the proposed charger. Index Terms--Battery charger, maximum power point, solar. I. INTRODUCTION W of power [1] at 12 V. These new products make solar power available to hikers, campers, soldiers

Lehman, Brad

468

Design of a High Temperature Small Particle Solar Receiver for Powering a Gas Turbine Engine  

E-Print Network [OSTI]

Design of a High Temperature Small Particle Solar Receiver for Powering a Gas Turbine Engine Dr. Fletcher Miller SDSU Department of Mechanical Engineering Abstract Solar thermal power for electricity for the California desert and in other appro- priate regions worldwide. Current technology relies on steam Rankine

Ponce, V. Miguel

469

R.Perez, K.Zweibel, T.Hoff Solar Power Generation in the US  

E-Print Network [OSTI]

energy skeptics because the cost of unsubsidized solar power appears to be much higher than that solar electric power plants deliver to utilities' rate payers and society's tax payers. Benefits that are relevant to utilities and their rate payers include traditional, measures of energy and capacity. Benefits

Perez, Richard R.

470

Project Profile: The Sacramento Municipal Utility District Consumnes Power Plant Solar Augmentation Project  

Broader source: Energy.gov [DOE]

The Sacramento Municipal Utility District (SMUD), under the Concentrating Solar Power (CSP) Heat Integration for Baseload Renewable Energy Development (HIBRED) program, is demonstrating a hybrid CSP solar energy system that takes advantage of an existing electrical generator for its power block and transmission interconnection.

471

Design and Analysis of Micro-Solar Power Systems for Wireless Sensor Networks  

E-Print Network [OSTI]

Design and Analysis of Micro-Solar Power Systems for Wireless Sensor Networks Jaein Jeong Xiaofan or to redistribute to lists, requires prior specific permission. #12;Design and Analysis of Micro-Solar Power Systems for Wireless Sensor Networks Jaein Jeong, Xiaofan Jiang and David Culler EECS Department, University

California at Berkeley, University of

472

Use of a Geothermal-Solar Hybrid Power Plant to Mitigate Declines in Geothermal Resource Productivity  

SciTech Connect (OSTI)

Many, if not all, geothermal resources are subject to decreasing productivity manifested in the form of decreasing brine temperature, flow rate, or both during the life span of the associated power generation project. The impacts of resource productivity decline on power plant performance can be significant; a reduction in heat input to a power plant not only decreases the thermal energy available for conversion to electrical power, but also adversely impacts the power plant conversion efficiency. The reduction in power generation is directly correlated to a reduction in revenues from power sales. Further, projects with Power Purchase Agreement (PPA) contracts in place may be subject to significant economic penalties if power generation falls below the default level specified. A potential solution to restoring the performance of a power plant operating from a declining productivity geothermal resource involves the use of solar thermal energy to restore the thermal input to the geothermal power plant. There are numerous technical merits associated with a renewable geothermal-solar hybrid plant in which the two heat sources share a common power block. The geo-solar hybrid plant could provide a better match to typical electrical power demand profiles than a stand-alone geothermal plant. The hybrid plant could also eliminate the stand-alone concentrated solar power plant thermal storage requirement for operation during times of low or no solar insolation. This paper identifies hybrid plant configurations and economic conditions for which solar thermal retrofit of a geothermal power plant could improve project economics. The net present value of the concentrated solar thermal retrofit of an air-cooled binary geothermal plant is presented as functions of both solar collector array cost and electricity sales price.

Dan Wendt; Greg Mines

2014-09-01T23:59:59.000Z

473

Downscaling Solar Power Output to 4-Seconds for Use in Integration Studies: Preprint  

SciTech Connect (OSTI)

High penetration renewable integration studies require solar power data with high spatial and temporal accuracy to quantify the impact of high frequency solar power ramps on the operation of the system. Our previous work concentrated on downscaling solar power from one hour to one minute by simulation. This method used clearness classifications to categorize temporal and spatial variability, and iterative methods to simulate intra-hour clearness variability. We determined that solar power ramp correlations between sites decrease with distance and the duration of the ramp, starting at around 0.6 for 30-minute ramps between sites that are less than 20 km apart. The sub-hour irradiance algorithm we developed has a noise floor that causes the correlations to approach ~0.005. Below one minute, the majority of the correlations of solar power ramps between sites less than 20 km apart are zero, and thus a new method to simulate intra-minute variability is needed. These intra-minute solar power ramps can be simulated using several methods, three of which we evaluate: a cubic spline fit to the one-minute solar power data; projection of the power spectral density toward the higher frequency domain; and average high frequency power spectral density from measured data. Each of these methods either under- or over-estimates the variability of intra-minute solar power ramps. We show that an optimized weighted linear sum of methods, dependent on the classification of temporal variability of the segment of one-minute solar power data, yields time series and ramp distributions similar to measured high-resolution solar irradiance data.

Hummon, M.; Weekley, A.; Searight, K.; Clark, K.

2013-10-01T23:59:59.000Z

474

Downscaling Solar Power Output to 4-Seconds for Use in Integration Studies (Presentation)  

SciTech Connect (OSTI)

High penetration renewable integration studies require solar power data with high spatial and temporal accuracy to quantify the impact of high frequency solar power ramps on the operation of the system. Our previous work concentrated on downscaling solar power from one hour to one minute by simulation. This method used clearness classifications to categorize temporal and spatial variability, and iterative methods to simulate intra-hour clearness variability. We determined that solar power ramp correlations between sites decrease with distance and the duration of the ramp, starting at around 0.6 for 30-minute ramps between sites that are less than 20 km apart. The sub-hour irradiance algorithm we developed has a noise floor that causes the correlations to approach ~0.005. Below one minute, the majority of the correlations of solar power ramps between sites less than 20 km apart are zero, and thus a new method to simulate intra-minute variability is needed. These intra-minute solar power ramps can be simulated using several methods, three of which we evaluate: a cubic spline fit to the one-minute solar power data; projection of the power spectral density toward the higher frequency domain; and average high frequency power spectral density from measured data. Each of these methods either under- or over-estimates the variability of intra-minute solar power ramps. We show that an optimized weighted linear sum of methods, dependent on the classification of temporal variability of the segment of one-minute solar power data, yields time series and ramp distributions similar to measured high-resolution solar irradiance data.

Hummon, M.; Weekley, A.; Searight, K.; Clark, K.

2013-10-01T23:59:59.000Z

475

Solar-air power plant. Interim report, January 1, 1980-November 1, 1981  

SciTech Connect (OSTI)

The chimney conversion efficiency of transferring solar energy into wind energy for the proposed solar-air power plant has been investigated. The application of a chimney as the air-cooling system for a large-scale photovoltaic concentration power plant to transfer solar energy into electricity has also been studied. Several conclusions in reference to this basic research project and suggestions for further research phases are also summarized in this report.

Chen, I.

1982-01-01T23:59:59.000Z

476

Components Makeover Gives Concentrating Solar Power a Boost (Fact Sheet), The Spectrum of Clean Energy Innovation  

SciTech Connect (OSTI)

Parabolic trough technology is the most mature of the various concentrating solar power (CSP) options. But scientists at the National Renewable Energy Laboratory (NREL) continue to make advances on trough systems through innovative research on various components in industrial partnerships with Acciona Solar Power, SkyFuel, Schott Solar, and others. The results are leading to improved system efficiencies and lower costs for CSP plants.

Not Available

2010-12-01T23:59:59.000Z

477

System and method for aligning heliostats of a solar power tower  

DOE Patents [OSTI]

Disclosed is a solar power tower heliostat alignment system and method that includes a solar power tower with a focal area, a plurality of heliostats that each reflect sunlight towards the focal area of the solar power tower, an off-focal area location substantially close to the focal area of the solar power tower, a communication link between the off-focal area location and a misaligned heliostat, and a processor that interprets the communication between the off-focal area location and the misaligned heliostat to identify the misaligned heliostat from the plurality of heliostats and that determines a correction for the identified misaligned heliostat to realign the misaligned heliostat to reflect sunlight towards the focal area of the solar power tower.

Convery, Mark R.

2013-01-01T23:59:59.000Z

478

952 IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 24, NO. 4, APRIL 2009 A System Design Approach for Unattended Solar  

E-Print Network [OSTI]

tolerance, and energy flow control capability. Maximum power point tracking is used to optimize solar panel versus solar panel size for a given availability. The solar panel supplies energy through a power for Unattended Solar Energy Harvesting Supply Jonathan W. Kimball, Senior Member, IEEE, Brian T. Kuhn, Senior

Kimball, Jonathan W.

479

Solar Trough Power Plants: Office of Power Technologies (OPT) Success Stories Series Fact Sheet  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systemsBiSite CulturalDepartment ofatRenewableConcentrating Solar Power

480

Reducing the Cost of Energy from Parabolic Trough Solar Power Plants: Preprint  

SciTech Connect (OSTI)

Parabolic trough solar technology is the most proven and lowest cost large-scale solar power technology available today, primarily because of the nine large commercial-scale solar power plants that are operating in the California Mojave Desert. However, no new plants have been built during the past ten years because the cost of power from these plants is more expensive than power from conventional fossil fuel power plants. This paper reviews the current cost of energy and the potential for reducing the cost of energy from parabolic trough solar power plant technology based on the latest technological advancements and projected improvements from industry and sponsored R&D. The paper also looks at the impact of project financing and incentives on the cost of energy.

Price, H.; Kearney, D.

2003-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "openei solar power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Aerodynamic optimization of a solar powered race vehicle  

E-Print Network [OSTI]

Aerodynamic optimization was performed on Tesseract, the MIT Solar Electric Vehicle Team's 2003-2005 solar car using Wind Tunnel 8 at Jacobs/Sverdrup Drivability Test Facility in Allen Park, MI. These tests include angle ...

Augenbergs, Peteris K

2006-01-01T23:59:59.000Z

482

Union Training Future Electricians in Solar Power | Department...  

Broader source: Energy.gov (indexed) [DOE]

Local 725 (IBEW 725) in Terre Haute, Ind., purchased 60 solar panels and plans to train its members in solar installation. Todd Thacker, business manager for IBEW 725, says...

483

Impact of Improved Solar Forecasts on Bulk Power System Operations in ISO-NE (Presentation)  

SciTech Connect (OSTI)

The diurnal nature of solar power is made uncertain by variable cloud cover and the influence of atmospheric conditions on irradiance scattering processes. Its forecasting has become increasingly important to the unit commitment and dispatch process for efficient scheduling of generators in power system operations. This presentation is an overview of a study that examines the value of improved solar forecasts on Bulk Power System Operations.

Brancucci Martinez-Anido, C.; Florita, A.; Hodge, B.M.

2014-11-01T23:59:59.000Z

484

Unmanned Untethered Submersible Technology Sept. 7-10, 1997 Some Design Considerations for a Solar Powered AUV;  

E-Print Network [OSTI]

Systems Institute (AUSI) is currently working on the development of a solar powered Autonomous Underwater of solar energy to power autonomous vehicles. This paper will discuss some of the technologies under of a solar powered autonomous sampling system. The work described in this paper focuses on some the energy

485

Water Power Forum | OpenEI Community  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWende NewSowitec do BrasilGmbH JumpVeronagestWKScandinaviaKch MHK

486

Water power | OpenEI Community  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWende NewSowitec do BrasilGmbH JumpVeronagestWKScandinaviaKch

487

Worldwide 'Power exchanges' | OpenEI Community  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWende NewSowitec doWinvest Financing Service GmbH CoWorld Wind

488

OpenEI Community - wind powering america  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth'sOklahoma/Geothermal < Oklahomast,Logistics Agency (DLA)

489

Water Power Forum | OpenEI Community  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 South Place: Salt LakeWashtenaw County, Michigan: Energy Type Term Title

490

Water Power Forum | OpenEI Community  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 South Place: Salt LakeWashtenaw County, Michigan: Energy Type Term

491

Water Power Forum | OpenEI Community  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 South Place: Salt LakeWashtenaw County, Michigan: Energy Type Term Type Term

492

Water Power Forum | OpenEI Community  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 South Place: Salt LakeWashtenaw County, Michigan: Energy Type Term Type

493

Water Power Forum | OpenEI Community  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 South Place: Salt LakeWashtenaw County, Michigan: Energy Type Term

494

Water Power Forum | OpenEI Community  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 South Place: Salt LakeWashtenaw County, Michigan: Energy Type Term

495

Water Power Forum | OpenEI Community  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 South Place: Salt LakeWashtenaw County, Michigan: Energy Type Term

496

Water Power Forum | OpenEI Community  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 South Place: Salt LakeWashtenaw County, Michigan: Energy Type Term Type Term

497

Water Power Forum | OpenEI Community  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 South Place: Salt LakeWashtenaw County, Michigan: Energy Type Term Type

498

Water Power Forum | OpenEI Community  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 South Place: Salt LakeWashtenaw County, Michigan: Energy Type Term Type Type

499

Water Power Forum | OpenEI Community  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 South Place: Salt LakeWashtenaw County, Michigan: Energy Type Term Type

500

Water Power Forum | OpenEI Community  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 South Place: Salt LakeWashtenaw County, Michigan: Energy Type Term Type Type