Powered by Deep Web Technologies
Note: This page contains sample records for the topic "open water lubricated" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

The Development of Open Water-lubricated Polycrystalline Diamond (PCD) Thrust Bearings for Use in Marine Hydrokinetic (MHK) Energy Machines  

Science Conference Proceedings (OSTI)

Polycrstalline diamond (PCD) bearings were designed, fabricated and tested for marine-hydro-kinetic (MHK) application. Bearing efficiency and life were evaluated using the US Synthetic bearing test facility. Three iterations of design, build and test were conducted to arrive at the best bearing design. In addition life testing that simulated the starting and stopping and the loading of real MHK applications were performed. Results showed polycrystalline diamond bearings are well suited for MHK applications and that diamond bearing technology is TRL4 ready. Based on life tests results bearing life is estimated to be at least 11.5 years. A calculation method for evaluating the performance of diamond bearings of round geometry was also investigated and developed. Finally, as part of this effort test bearings were supplied free of charge to the University of Alaska for further evaluation. The University of Alaska test program will subject the diamond bearings to sediment laden lubricating fluid.

Cooley, Craig, H.; Khonsari, Michael,, M; Lingwall, Brent

2012-11-28T23:59:59.000Z

2

Lubricant Selection  

Science Conference Proceedings (OSTI)

...are lubricated with one of the following types: Oil Grease Adhesive open-gear lubricant Solid lubricant The optimum lubricant for any application is the product that is the

3

Water-based lubricants for metalworking  

Science Conference Proceedings (OSTI)

Metalworking fluids currently constitute 17% of the total US industrial lubricant market. Market forces favor semisynthetic and synthetic formulations because they are more economical, and trends differ substantially from those of other lubricant markets as demand patterns shift. Lubricant manufacturers continue to reduce the use of mineral oil as a component in their formulations because synthetic and semisynthetic formulations are more cost-effective. The introduction of new engineering materials also has increased the demand for tailor-made lubricants in industrial applications. Synthetic and semisynthetic formulations are favored for cutting and metalworking applications because they perform better than the existing commercial product does. The literature strongly supports the development of environmentally friendly synthetic and semisynthetic metalworking lubricants that have longer useful lives, therefore decreasing the amount of fluid for disposal. Future lubricant formulations will focus on environmental issues, process compatibility, and worker health and safety. Biological control of fluids, in use and in disposal, will also draw attention.

Shukla, D.S.; Jain, V.K. [Indian Inst. of Petroleum, Dehradun (India)

1997-05-01T23:59:59.000Z

4

LG/BV series water lubrication VSD oil-free screw compressor ...  

U.S. Energy Information Administration (EIA)

LG/BV series water lubrication VSD oil-free screw compressor,Kunshan CompAirs Machinery Plant Co.,Ltd is the leading air compressor manufacturer and ...

5

Effects of Water in Synthetic Lubricant Systems and Clathrate Formation: A Literature Search and Review  

Science Conference Proceedings (OSTI)

An extensive literature search and a confidential survey were critically analyzed to determine the effects of water on the stability of hydrofluorocarbon/synthetic lubricant systems and to identify key areas requiring further investigation. Following are highlights from the analysis: Clathrate hydrates are solid solutions formed when water molecules are linked through hydrogen bonding creating cavities that can enclose various guest molecules from hydrate formers, such as hydrofluorocarbons R-32, R-125, R-134a, R-407C and R-410A. The four methods for preventing clathrate formation were drying the gas, heating it, reducing its pressure, or using inhibitors. The hydrolysis of polyolester lubricants was mostly acid-catalyzed and its reaction rate constant typically followed the Arrhenius equation of an activated process. Hydrolytic stability improved with hindered molecular structures, and with the presence of acid catcher additives and desiccants. Water vapor can effect the adsorption of long-chain fatty acids and the chemistry of formation of protective oxide film. However, these effects on lubrication can be either positive or negative. Fifty to sixty percent of the moisture injected into an air-conditioning system remained in the refrigerant and the rest mixed with the compressor oil. In an automotive air-conditioning system using R-134a, ice would form at 0 C evaporating temperature when the water content in the vapor refrigerant on the low-pressure side was more than 350 ppm. Moisture would cause the embrittlement of polyethylene terephthalate and the hydrolysis of polyesters, but would reduce the effect of amine additives on fluoroelastomer rubbers. The reactions of water with refrigerants and lubricants would cause formicary and large-pit corrosion in copper tubes, as well as copper plating and sludge formation. Moreover, blockage of capillary tubes increased rapidly in the presence of water. Twenty-four companies responded to the survey. From the responses, the water concentrations specified and expected for different refrigerant/lubricant systems varied depending on the products, their capacities and applications, and also on the companies. Among the problems associated with high moisture level, lubricant breakdown was of greatest concern, followed by acid formation, compressor failure and expansion valve sticking. The following research topics are suggested: 1. The air-conditioning and refrigeration industry needs to measure and record the water content and total acid number of the lubricant of newly installed systems as well as operating systems that are shutdown for service or repair. The reason for the shutdown needs to be documented. A database can then be established to correlate water content with type and cause of breakdown. 2. Detailed studies on the distribution of water in refrigeration and air-conditioning systems should be conducted to pinpoint problem areas associated with free water. 3. Research is needed to validate the current theories and mechanisms of formicary corrosion. Corrosion inhibitors need to be developed. 4. The conditions for clathrate formation and decomposition of other alternative refrigerants, such as R-23, R-41, R-116, R-125, R-143a, R-404A and R-507C, and water should be determined to avoid possible problems associated with tube plugging. The mechanism by which water facilitates or hinders lubrication needs to be studied.

Rohatgi, Ngoc Dung T.

2001-08-08T23:59:59.000Z

6

Open Cooling Water Chemistry Guideline  

Science Conference Proceedings (OSTI)

State-of-the-art chemistry programs help to ensure the continued operation of open cooling water systems while mitigating corrosion and fouling mechanisms. This document, Open Cooling Water Chemistry Guideline, prepared by a committee of industry experts, reflects field and laboratory data on corrosion and fouling issues of open cooling systems.BackgroundService Water System Chemical Addition Guideline (Electric Power Research Institute ...

2012-09-17T23:59:59.000Z

7

Water | OpenEI  

Open Energy Info (EERE)

Water Water Dataset Summary Description This dataset is from the report Operational water consumption and withdrawal factors for electricity generating technologies: a review of existing literature (J. Macknick, R. Newmark, G. Heath and K.C. Hallett) and provides estimates of operational water withdrawal and water consumption factors for electricity generating technologies in the United States. Estimates of water factors were collected from published primary literature and were not modified except for unit conversions. Source National Renewable Energy Laboratory Date Released August 28th, 2012 (2 years ago) Date Updated Unknown Keywords coal consumption csp factors geothermal PV renewable energy technologies Water wind withdrawal Data application/vnd.openxmlformats-officedocument.spreadsheetml.sheet icon Operational water consumption and withdrawal factors for electricity generating technologies (xlsx, 77.7 KiB)

8

Lubricant compositions  

Science Conference Proceedings (OSTI)

The invention provides a lubricant additive having improved antioxidant and antiwear properties made by (1) reacting an alkenylsuccinic anhydride (Asa) with an aminopolyhydroxy compound and (2) reacting the product thus obtained with a phosphorus trihalide and a polyhydroxyaromatic compound. The invention also provides a lubricant composition containing the additive.

Frangatos, G.

1980-03-18T23:59:59.000Z

9

Lubricant compositions  

Science Conference Proceedings (OSTI)

The invention provides a lubricant additive and a lubricant composition having improved demulsifying and anti-wear properties resulting from the addition thereto of such additive, which is made by reacting a partially esterified multifunctional alcohol with a phosphorus oxyhalide or a trihydrocarbyl phosphate.

Frangatos, G.

1980-10-21T23:59:59.000Z

10

OpenEI - Water  

Open Energy Info (EERE)

for years 1989 through 2010 for UT at Austin; specifically, electricity usage (kWh), natural gas usage (Mcf), associated costs. Also provides water consumption for 2005...

11

OpenEI Community - Water power  

Open Energy Info (EERE)

http:en.openei.orgcommunitytaxonomyterm2330 en OpenEI launches new Water Power Gateway and Community Forum http:en.openei.orgcommunityblogopenei-launches-new-water-powe...

12

Process for preparing lubricating oil from used waste lubricating oil  

DOE Patents (OSTI)

A re-refining process is described by which high-quality finished lubricating oils are prepared from used waste lubricating and crankcase oils. The used oils are stripped of water and low-boiling contaminants by vacuum distillation and then dissolved in a solvent of 1-butanol, 2-propanol and methylethyl ketone, which precipitates a sludge containing most of the solid and liquid contaminants, unspent additives, and oxidation products present in the used oil. After separating the purified oil-solvent mixture from the sludge and recovering the solvent for recycling, the purified oil is preferably fractional vacuum-distilled, forming lubricating oil distillate fractions which are then decolorized and deodorized to prepare blending stocks. The blending stocks are blended to obtain a lubricating oil base of appropriate viscosity before being mixed with an appropriate additive package to form the finished lubricating oil product.

Whisman, Marvin L. (Bartlesville, OK); Reynolds, James W. (Bartlesville, OK); Goetzinger, John W. (Bartlesville, OK); Cotton, Faye O. (Bartlesville, OK)

1978-01-01T23:59:59.000Z

13

Water Power Forum | OpenEI Community  

Open Energy Info (EERE)

Water power Type Term Title Author Replies Last Post sort icon Blog entry Water power OpenEI launches new Water Power Gateway and Community Forum Graham7781 28 Mar 2013 - 15:16...

14

Water Power Forum | OpenEI Community  

Open Energy Info (EERE)

Term Title Author Replies Last Post sort icon Blog entry OpenEI OpenEI launches new Water Power Gateway and Community Forum Graham7781 28 Mar 2013 - 15:16 Groups Menu You must...

15

Formation damage studies of lubricants used with drill-in fluids systems on horizontal open-hole wells  

E-Print Network (OSTI)

Tests were conducted to evaluate the effect of lubricants in formation damage. Two types of lubricants were tested along with two types of drill-in fluids. The DIF's tested included a sized-calcium carbonate (SCC) and a sized-salt (SS). Also a set of variables including drill solids content (2%-6%), hydrochloric acid concentration (2%-10%), and temperature (110F-160F) were changed during the testing procedure. A matrix design was used to determine the behavior in regain permeability and break through time depending on the different variables in the testing, and two devices were used to measure responses, Conoco cell and ceramic disc cell respectively. Results have shown that regain permeability and break through time responses are not affected in a greater degree when lubricants (Idlube or Mil-Lube) are added to the DIF systems (SS and SCC). When comparing results between lubricants, Idlube gives a higher regain permeability percentage and faster break through time at higher concentrations than Mil-Lube in both DIF systems. Overall, sized calcium carbonate seems to be a better DIF system than Sized salt for these types of experiments, being much more efficient in reducing break through times than in increasing regain permeability.

Gutierrez, Fernando A

2000-01-01T23:59:59.000Z

16

Water power | OpenEI Community  

Open Energy Info (EERE)

Water power Home Graham7781's picture Submitted by Graham7781(1992) Super contributor 28 March, 2013 - 15:16 OpenEI launches new Water Power Gateway and Community Forum community...

17

Engine lubrication oil aeration  

E-Print Network (OSTI)

The lubrication system of an internal combustion engine serves many purposes. It lubricates moving parts, cools the engine, removes impurities, supports loads, and minimizes friction. The entrapment of air in the lubricating ...

Baran, Bridget A. (Bridget Anne)

2007-01-01T23:59:59.000Z

18

Vehicle Technologies Office: Lubricants  

NLE Websites -- All DOE Office Websites (Extended Search)

Lubricants to someone by Lubricants to someone by E-mail Share Vehicle Technologies Office: Lubricants on Facebook Tweet about Vehicle Technologies Office: Lubricants on Twitter Bookmark Vehicle Technologies Office: Lubricants on Google Bookmark Vehicle Technologies Office: Lubricants on Delicious Rank Vehicle Technologies Office: Lubricants on Digg Find More places to share Vehicle Technologies Office: Lubricants on AddThis.com... Just the Basics Hybrid & Vehicle Systems Energy Storage Advanced Power Electronics & Electrical Machines Advanced Combustion Engines Fuels & Lubricants Fuel Effects on Combustion Lubricants Natural Gas Research Biofuels End-Use Research Materials Technologies Lubricants As most vehicles are on the road for more than 15 years before they are retired, investigating technologies that will improve today's vehicles is

19

Water | OpenEI Community  

Open Energy Info (EERE)

Water Home Water Power Forum Description: Forum for information related to the Water Power Gateway The Water Power Community Forum provides you with a way to engage with other...

20

Water Sampling | Open Energy Information  

Open Energy Info (EERE)

Water Sampling Water Sampling Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Water Sampling Details Activities (51) Areas (45) Regions (5) NEPA(2) Exploration Technique Information Exploration Group: Field Techniques Exploration Sub Group: Field Sampling Parent Exploration Technique: Field Sampling Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Water composition and source of fluids Thermal: Water temperature Dictionary.png Water Sampling: Water sampling is done to characterize the chemical, thermal, or hydrological properties of a surface or subsurface aqueous system. Other definitions:Wikipedia Reegle Introduction Water sampling is done to characterize the geothermal system under investigation. A geothermal water typically has a unique chemical signature

Note: This page contains sample records for the topic "open water lubricated" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

OIL IN THE OPEN WATER Oil in the open water may a ect the health of  

E-Print Network (OSTI)

OIL IN THE OPEN WATER Oil in the open water may a ect the health of microscopic plants and animals. Far beneath the surface, corals and other deepwater communities might also be a ected. OIL AND HUMAN AND SEDIMENTS · Water quality surveys · Transect surveys to detect submerged oil · Oil plume modeling · Sediment

22

Water Cooling | Open Energy Information  

Open Energy Info (EERE)

Cooling: Cooling: Water cooling is commonly defined as a method of using water as a heat conduction to remove heat from an object, machine, or other substance by passing cold water over or through it. In energy generation, water cooling is typically used to cool steam back into water so it can be used again in the generation process. Other definitions:Wikipedia Reegle Water Cooling Typical water cooled condenser used for condensing steam Water or liquid cooling is the most efficient cooling method and requires the smallest footprint when cold water is readily available. When used in power generation the steam/vapor that exits the turbine is condensed back into water and reused by means of a heat exchanger. Water cooling requires a water resource that is cold enough to bring steam, typically

23

Water Heaters | Open Energy Information  

Open Energy Info (EERE)

Heaters Jump to: navigation, search TODO: Add description List of Water Heaters Incentives Retrieved from "http:en.openei.orgwindex.php?titleWaterHeaters&oldid267202...

24

Water Quantity | Open Energy Information  

Open Energy Info (EERE)

Quantity Jump to: navigation, search Retrieved from "http:en.openei.orgwindex.php?titleWaterQuantity&oldid612364...

25

Water Power Forum | OpenEI Community  

Open Energy Info (EERE)

Water Power Forum Water Power Forum Home > Water Power Forum > Posts by term > Water Power Forum Content Group Activity By term Q & A Feeds Term: gateway Type Term Title Author Replies Last Post sort icon Blog entry gateway OpenEI launches new Water Power Gateway and Community Forum Graham7781 28 Mar 2013 - 15:16 Groups Menu You must login in order to post into this group. Recent content MHK LCOE Reporting Guidance Draft MHK Cost Breakdown Structure Draft Global Marine Renewable Energy Conference (GMREC) OpenEI launches new Water Power Gateway and Community Forum Group members (8) Managers: Graham7781 Recent members: Gdavis Jim mcveigh Ocop Thomas.heibel NickL Kch Rmckeel 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 2084454102

26

Water Heating | OpenEI  

Open Energy Info (EERE)

Water Heating Water Heating Dataset Summary Description Provides total and average household expenditures on energy for water heating in the United States in 2005. Source EIA Date Released September 01st, 2008 (6 years ago) Date Updated January 01st, 2009 (6 years ago) Keywords Energy Expenditures Residential Water Heating Data application/vnd.ms-excel icon 2005_Total.Expenditures.for_.Water_.Heating_EIA.Sep_.2008.xls (xls, 70.1 KiB) application/vnd.ms-excel icon 2005_Avg.Expenditures.for_.Water_.Heating_EIA.Sep_.2008.xls (xls, 69.1 KiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Time Period 2005 License License Other or unspecified, see optional comment below Comment Rate this dataset Usefulness of the metadata Average vote Your vote

27

OpenEI - Water Heating  

Open Energy Info (EERE)

http:en.openei.orgdatasetstaxonomyterm560 en Residential Energy Expenditures for Water Heating (2005) http:en.openei.orgdatasetsnode59

Provides total and average...

28

OpenEI Community - Water  

Open Energy Info (EERE)

http:en.openei.orgcommunitytaxonomyterm2280 en Water Power Forum http:en.openei.orgcommunitygroupwater-power-forum

29

Nestle Waters | Open Energy Information  

Open Energy Info (EERE)

Nestle Waters Nestle Waters Jump to: navigation, search Name Nestle Waters Facility Nestle Waters Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Foundation Windpower Developer Foundation Windpower Energy Purchaser Nestle Waters Location Cabazon CA Coordinates 33.916949°, -116.749931° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.916949,"lon":-116.749931,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

30

Water Power Forum | OpenEI Community  

Open Energy Info (EERE)

Water Power Forum Water Power Forum Home > Water Power Forum > Posts by term Content Group Activity By term Q & A Feeds CBS (1) community (1) Cost (1) Current (1) current energy (1) DOE (1) forum (1) gateway (1) GMREC (1) LCOE (2) levelized cost of energy (1) marine energy (1) MHK (1) numerical modeling (1) ocean energy (1) OpenEI (1) Performance (1) Tidal (1) Water power (1) Wave (1) Groups Menu You must login in order to post into this group. Recent content MHK LCOE Reporting Guidance Draft MHK Cost Breakdown Structure Draft Global Marine Renewable Energy Conference (GMREC) OpenEI launches new Water Power Gateway and Community Forum Group members (8) Managers: Graham7781 Recent members: Gdavis Jim mcveigh Ocop Thomas.heibel NickL Kch Rmckeel 429 Throttled (bot load) Error 429 Throttled (bot load)

31

Trees Water People | Open Energy Information  

Open Energy Info (EERE)

Trees Water People Trees Water People Jump to: navigation, search Name Trees, Water & People Place Fort Collins, Colorado Zip 80524 Sector Renewable Energy Product Trees, Water & People develops and manages, on a not-for-profit basis, continuing reforestation, watershed protection, renewable energy, appropriate technology, and environmental education programs in Latin America and the American West. References Trees, Water & People[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Trees, Water & People is a company located in Fort Collins, Colorado . References ↑ "Trees, Water & People" Retrieved from "http://en.openei.org/w/index.php?title=Trees_Water_People&oldid=352382

32

Vidler Water Company Inc | Open Energy Information  

Open Energy Info (EERE)

Vidler Water Company Inc Vidler Water Company Inc Jump to: navigation, search Name Vidler Water Company Inc Place Carson City, Nevada Zip 89703 Sector Solar Product Nevada-based water and land resource company which is also enegaged in the development of solar power projects on its properties. References Vidler Water Company Inc[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Vidler Water Company Inc is a company located in Carson City, Nevada . References ↑ "Vidler Water Company Inc" Retrieved from "http://en.openei.org/w/index.php?title=Vidler_Water_Company_Inc&oldid=352826" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes

33

Water Power | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Gateway Edit History Facebook icon Twitter icon » Water Power Jump to: navigation, search Water Power Basics High-level information about about water power: the clean, affordable electricity that will move our nation towards energy independence by harnessing tides, rivers, currents, wave, and marine energy. Click to learn about Hydropower: Hydroelectric-collage2.jpg When flowing water is captured and turned into electricity, it is called hydroelectric power or hydropower. Hydropower is the largest source of renewable electricity in the United States, allows the nation to avoid 200 million metric tons of carbon emissions each year, and is responsible for

34

Oasys Water | Open Energy Information  

Open Energy Info (EERE)

Oasys Water Oasys Water Jump to: navigation, search Name Oasys Water Place Cambridge, Massachusetts Product Cambridge-based developer of Engineered Osmosis, desalination and water treatment technology. Coordinates 43.003745°, -89.017499° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.003745,"lon":-89.017499,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

35

Carderock Circulating Water Channel | Open Energy Information  

Open Energy Info (EERE)

Circulating Water Channel Circulating Water Channel Jump to: navigation, search Basic Specifications Facility Name Carderock Circulating Water Channel Overseeing Organization United States Naval Surface Warfare Center Hydrodynamic Testing Facility Type Channel Length(m) 18.3 Beam(m) 6.7 Depth(m) 2.7 Water Type Freshwater Cost(per day) Contact POC Special Physical Features The Circulating Water Channel is a vertical plane, open to the atmosphere test section with a free surface in a closed recirculating water circuit, variable speed, rectangular cross-sectional shape facility. There are 10 large viewing windows on either side of the test section at different elevations and 9 in the bottom; movable bridge spans the test section for ease and versatility in mounting models, rigging bridge is capable of taking towing loads at any one of numerous points up to 35,584 N

36

Thermal Waters of Nevada | Open Energy Information  

Open Energy Info (EERE)

Thermal Waters of Nevada Thermal Waters of Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Thermal Waters of Nevada Abstract Abstract unavailable. Authors Larry J. Garside and John H. Schilling Organization Nevada Bureau of Mines and Geology Published Nevada Bureau of Mines and Geology, 1979 Report Number Bulletin 91 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Thermal Waters of Nevada Citation Larry J. Garside,John H. Schilling (Nevada Bureau of Mines and Geology). 1979. Thermal Waters of Nevada. Reno, NV: Nevada Bureau of Mines and Geology. Report No.: Bulletin 91. Retrieved from "http://en.openei.org/w/index.php?title=Thermal_Waters_of_Nevada&oldid=690515" Categories: References Geothermal References

37

Exchange flow between open water and floating vegetation  

E-Print Network (OSTI)

This study describes the exchange flow between a region with open water and a region with a partial-depth porous obstruction, which represents the thermally-driven exchange that occurs between open water and floating ...

Zhang, Xueyan

38

Water Power Forum | OpenEI Community  

Open Energy Info (EERE)

Water Power Forum Water Power Forum Home > Water Power Forum > Posts by term > Water Power Forum Content Group Activity By term Q & A Feeds Term: community Type Term Title Author Replies Last Post sort icon Blog entry community OpenEI launches new Water Power Gateway and Community Forum Graham7781 28 Mar 2013 - 15:16 Groups Menu You must login in order to post into this group. Recent content Hi Vanessa-I connected wit... 2013 projects and funding Comments on MHK Cost Reduction Pathway White Papers MHK LCOE Reporting Guidance Draft MHK Cost Breakdown Structure Draft more Group members (10) Managers: Graham7781 Recent members: Vanessa.gregory Alison.labonte Gdavis Jim mcveigh Ocop Thomas.heibel NickL Kch Rmckeel 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load)

39

Texas Water Development Board | Open Energy Information  

Open Energy Info (EERE)

Development Board Development Board Jump to: navigation, search Logo: Texas Water Development Board Name Texas Water Development Board Short Name TWDB Address 1700 North Congress Avenue Place Austin, Texas Zip 78701 Phone number 512-463-7847 Website http://www.twdb.state.tx.us/ References TWDB[1] This article is a stub. You can help OpenEI by expanding it. Texas Water Development Board is an organization based in Austin, Texas. The Texas Water Development Board's (TWDB) mission is to provide leadership, planning, financial assistance, information, and education for the conservation and responsible development of water for Texas. Our mission is a vital part of Texas' overall vision and its mission and goals which relate to maintaining the viability of the state's natural resources,

40

Water Power Forum | OpenEI Community  

Open Energy Info (EERE)

Water Power Forum Water Power Forum Home > Water Power Forum > Posts by term > Water Power Forum Content Group Activity By term Q & A Feeds Term: numerical modeling Type Term Title Author Replies Last Post sort icon Document numerical modeling MHK LCOE Reporting Guidance Draft Ocop 1 18 Apr 2013 - 13:56 Groups Menu You must login in order to post into this group. Recent content MHK LCOE Reporting Guidance Draft MHK Cost Breakdown Structure Draft Global Marine Renewable Energy Conference (GMREC) OpenEI launches new Water Power Gateway and Community Forum Group members (8) Managers: Graham7781 Recent members: Gdavis Jim mcveigh Ocop Thomas.heibel NickL Kch Rmckeel 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 208438428

Note: This page contains sample records for the topic "open water lubricated" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Water Power Forum | OpenEI Community  

Open Energy Info (EERE)

Water Power Forum Water Power Forum Home > Water Power Forum > Posts by term > Water Power Forum Content Group Activity By term Q & A Feeds Term: forum Type Term Title Author Replies Last Post sort icon Blog entry forum OpenEI launches new Water Power Gateway and Community Forum Graham7781 28 Mar 2013 - 15:16 Groups Menu You must login in order to post into this group. Recent content Hi Vanessa-I connected wit... 2013 projects and funding Comments on MHK Cost Reduction Pathway White Papers MHK LCOE Reporting Guidance Draft MHK Cost Breakdown Structure Draft more Group members (10) Managers: Graham7781 Recent members: Vanessa.gregory Alison.labonte Gdavis Jim mcveigh Ocop Thomas.heibel NickL Kch Rmckeel 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load)

42

SweetWater Energy | Open Energy Information  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » SweetWater Energy Jump to: navigation, search Name SweetWater Energy Place Rochester, New York Zip 14623 Sector Biofuels Product Rochester-based company creating concentrated feedstocks for biofuels and biochemical refineries using a liquid feedstock from the cellulosic portion of sorghum. References SweetWater Energy[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. SweetWater Energy is a company located in Rochester, New York . References ↑ "SweetWater Energy"

43

Building Technologies Office: Open-Standard Wireless Controllers for Water  

NLE Websites -- All DOE Office Websites (Extended Search)

Open-Standard Wireless Open-Standard Wireless Controllers for Water Heaters Research Project to someone by E-mail Share Building Technologies Office: Open-Standard Wireless Controllers for Water Heaters Research Project on Facebook Tweet about Building Technologies Office: Open-Standard Wireless Controllers for Water Heaters Research Project on Twitter Bookmark Building Technologies Office: Open-Standard Wireless Controllers for Water Heaters Research Project on Google Bookmark Building Technologies Office: Open-Standard Wireless Controllers for Water Heaters Research Project on Delicious Rank Building Technologies Office: Open-Standard Wireless Controllers for Water Heaters Research Project on Digg Find More places to share Building Technologies Office: Open-Standard Wireless Controllers for Water Heaters Research Project on

44

DIESEL FUEL LUBRICATION  

Science Conference Proceedings (OSTI)

The diesel fuel injector and pump systems contain many sliding interfaces that rely for lubrication upon the fuels. The combination of the poor fuel lubricity and extremely tight geometric clearance between the plunger and bore makes the diesel fuel injector vulnerable to scuffing damage that severely limits the engine life. In order to meet the upcoming stricter diesel emission regulations and higher engine efficiency requirements, further fuel refinements that will result in even lower fuel lubricity due to the removal of essential lubricating compounds, more stringent operation conditions, and tighter geometric clearances are needed. These are expected to increase the scuffing and wear vulnerability of the diesel fuel injection and pump systems. In this chapter, two approaches are discussed to address this issue: (1) increasing fuel lubricity by introducing effective lubricity additives or alternative fuels, such as biodiesel, and (2) improving the fuel injector scuffing-resistance by using advanced materials and/or surface engineering processes. The developing status of the fuel modification approach is reviewed to cover topics including fuel lubricity origins, lubricity improvers, alternative fuels, and standard fuel lubricity tests. The discussion of the materials approach is focused on the methodology development for detection of the onset of scuffing and evaluation of the material scuffing characteristics.

Qu, Jun [ORNL

2012-01-01T23:59:59.000Z

45

Dry lubricant films for aluminum forming.  

DOE Green Energy (OSTI)

During metal forming process, lubricants are crucial to prevent direct contact, adhesion, transfer and scuffing of workpiece materials and tools. Boric acid films can be firmly adhered to the clean aluminum surfaces by spraying their methanol solutions and provide extremely low friction coefficient (about 0.04). The cohesion strengths of the bonded films vary with the types of aluminum alloys (6061, 6111 and 5754). The sheet metal forming tests indicate that boric acid films and the combined films of boric acid and mineral oil can create larger strains than the commercial liquid and solid lubricants, showing that they possess excellent lubricities for aluminum forming. SEM analyses indicate that boric acid dry films separate the workpiece and die materials, and prevent their direct contact and preserve their surface qualities. Since boric acid is non-toxic and easily removed by water, it can be expected that boric acid films are environmentally friendly, cost effective and very efficient lubricants for sheet aluminum cold forming.

Wei, J.; Erdemir, A.; Fenske, G. R.

1999-03-30T23:59:59.000Z

46

Yuba County Water Agency | Open Energy Information  

Open Energy Info (EERE)

Yuba County Water Agency Yuba County Water Agency Place California Utility Id 21140 Utility Location Yes Ownership P NERC Location WECC NERC WECC Yes ISO CA Yes Operates Generating Plant Yes Activity Wholesale Marketing Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates No Rates Available References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Yuba_County_Water_Agency&oldid=412223" Categories: EIA Utility Companies and Aliases Utility Companies Organizations

47

Modern Electric Water Company | Open Energy Information  

Open Energy Info (EERE)

Modern Electric Water Company Modern Electric Water Company Jump to: navigation, search Name Modern Electric Water Company Place Washington Utility Id 12744 Utility Location Yes Ownership C NERC Location WECC NERC WECC Yes Activity Buying Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png COMMERCIAL - SCHEDULE 30 Industrial COMMERCIAL - SCHEDULE 32 Industrial RESIDENTIAL - SCHEDULE 35 Residential STREET LIGHTS 100 Watt Lighting STREET LIGHTS 200 Watt Lighting Average Rates Residential: $0.0559/kWh Commercial: $0.0551/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a"

48

atmoshperic water vapor | OpenEI  

Open Energy Info (EERE)

atmoshperic water vapor atmoshperic water vapor Dataset Summary Description (Abstract): Monthly Average Solar Resource for flat-plate collectors tilted at latitude for China. Source NREL Date Released April 12th, 2005 (9 years ago) Date Updated October 30th, 2007 (7 years ago) Keywords atmoshperic water vapor China GEF GIS NREL solar SWERA TILT UNEP Data application/zip icon Download Shapefile (zip, 625.6 KiB) text/csv icon Download Data (csv, 704.1 KiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Time Period 01/01/1985 - 12/31/1991 License License Open Data Commons Public Domain Dedication and Licence (PDDL) Comment Rate this dataset Usefulness of the metadata Average vote Your vote Usefulness of the dataset Average vote Your vote Ease of access

49

Evaluation and Test of Improved Fire Resistant Fluid Lubricants for Water Reactor Coolant Pump Motors, Volume 1: Fluid Evaluation, Bearing Model Tests, Motor Tests, and Fire Tests  

Science Conference Proceedings (OSTI)

Commercially available fire-resistant fluid lubricants were evaluated to determine their suitability for use in primary-system pump motors in nuclear reactors. Volume 1 describes the procedures and results of tests of lubrication properties; fire and radiation resistance; and thermal, oxidative, and hydrolytic stability.

1980-07-01T23:59:59.000Z

50

Vehicle Technologies Office: Lubricants  

NLE Websites -- All DOE Office Websites (Extended Search)

Lubricants Lubricants As most vehicles are on the road for more than 15 years before they are retired, investigating technologies that will improve today's vehicles is essential. Because 11.5 percent of fuel energy is consumed by engine friction, decreasing this friction through lubricants can lead to substantial improvements in the fuel economy of current vehicles, without needing to wait for the fleet to turn over. In fact, a 1 percent fuel savings in the existing vehicle fleet possible through lubricants could save 97 thousand barrels of oil a day or $3.5 billion a year. Because of these benefits, the Vehicle Technologies Office supports research on lubricants that can improve the efficiency of internal combustion engine vehicles, complementing our work on advanced combustion engine technology.

51

United States lubricant demand  

Science Conference Proceedings (OSTI)

This paper examines United States Lubricant Demand for Automotive and Industrial Lubricants by year from 1978 to 1992 and 1997. Projected total United States Lubricant Demand for 1988 is 2,725 million (or MM) gallons. Automotive oils are expected to account for 1,469MM gallons or (53.9%), greases 59MM gallons (or 2.2%), and Industrial oils will account for the remaining 1,197MM gallons (or 43.9%) in 1988. This proportional relationship between Automotive and Industrial is projected to remain relatively constant until 1992 and out to 1997. Projections for individual years between 1978 to 1992 and 1997 are summarized.

Solomon, L.K.; Pruitt, P.R.

1988-01-01T23:59:59.000Z

52

Methods to improve lubricity of fuels and lubricants  

DOE Patents (OSTI)

A method for providing lubricity in fuels and lubricants includes adding a boron compound to a fuel or lubricant to provide a boron-containing fuel or lubricant. The fuel or lubricant may contain a boron compound at a concentration between about 30 ppm and about 3,000 ppm and a sulfur concentration of less than about 500 ppm. A method of powering an engine to minimize wear, by burning a fuel containing boron compounds. The boron compounds include compound that provide boric acid and/or BO.sub.3 ions or monomers to the fuel or lubricant.

Erdemir, Ali (Naperville, IL)

2009-06-16T23:59:59.000Z

53

Washington 401 Water Quality Certification JARPA Process | Open...  

Open Energy Info (EERE)

Washington 401 Water Quality Certification JARPA Process Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- OtherOther: Washington 401 Water Quality...

54

Colorado Ground Water Commission | Open Energy Information  

Open Energy Info (EERE)

Water Commission Jump to: navigation, search Name Colorado Ground Water Commission Place Colorado Website http:water.state.co.usgroun References Colorado Ground Water Commission...

55

Consolidated Water Power Co | Open Energy Information  

Open Energy Info (EERE)

Co Co Jump to: navigation, search Name Consolidated Water Power Co Place Wisconsin Utility Id 4247 Utility Location Yes Ownership I NERC Location RFC NERC RFC Yes Operates Generating Plant Yes Activity Generation Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates Residential: $0.0843/kWh Commercial: $0.0557/kWh Industrial: $0.0533/kWh The following table contains monthly sales and revenue data for Consolidated Water Power Co (Wisconsin). Month RES REV (THOUSAND $) RES SALES (MWH) RES CONS COM REV (THOUSAND $) COM SALES (MWH) COM CONS IND_REV (THOUSAND $) IND SALES (MWH) IND CONS OTH REV (THOUSAND $) OTH SALES (MWH) OTH CONS TOT REV (THOUSAND $) TOT SALES (MWH) TOT CONS

56

Method for reclaiming waste lubricating oils  

DOE Patents (OSTI)

A method for purifying and reclaiming used lubricating oils containing additives such as detergents, antioxidants, corrosion inhibitors, extreme pressure agents and the like and other solid and liquid contaminants by preferably first vacuum distilling the used oil to remove water and low-boiling contaminants, and treating the dried oil with a solvent mixture of butanol, isopropanol and methylethyl ketone which causes the separation of a layer of sludge containing contaminants, unspent additives and oxidation products. After solvent recovery, the desludged oil is then subjected to conventional lubricating oil refining steps such as distillation followed by decolorization and deodorization.

Whisman, Marvin L. (Bartlesville, OK); Goetzinger, John W. (Bartlesville, OK); Cotton, Faye O. (Bartlesville, OK)

1978-01-01T23:59:59.000Z

57

PAO lubricant inhibits bit balling, speeds drilling  

Science Conference Proceedings (OSTI)

For drilling operations, a new polyalphaolefin (PAO) lubricant improves penetration rates by reducing bit balling tendencies in water-based mud. The additive also reduces drillstring drag. This enables the effective transmission of weight to the bit and thereby increases drilling efficiency in such applications as directional and horizontal drilling. The paper describes drilling advances, bit balling, laboratory testing, and test analysis.

Mensa-Wilmot, G. [GeoDiamond, Houston, TX (United States); Garrett, R.L. [Garrett Fluid Technology, The Woodlands, TX (United States); Stokes, R.S. [Coastal Superior Solutions Inc., Lafayette, LA (United States)

1997-04-21T23:59:59.000Z

58

Materials - Coatings & Lubricants  

NLE Websites -- All DOE Office Websites (Extended Search)

Coatings and Lubricants: Coatings and Lubricants: Super-Hard and Ultra-Low-Friction Films for Friction and Wear Control Ali Erdemir researches nanolubricants. Ali Erdemir researches nanolubricants. The many rolling, rotating and sliding mechanical assemblies in advanced transportation vehicles present friction and wear challenges for automotive engineers. These systems operate under severe conditions-high loads, speeds and temperatures-that currently available materials and lubricants do not tolerate well. Improving the surface friction and wear characteristics of the mechanical system components is an opportunity for engineers, and the use of super-hard, slippery surface films offers promise. Argonne scientists have developed a number of smooth, wear-resistant, low-friction nanocomposite nitride and diamond-like carbon films that have

59

Lubrication with boric acid additives  

DOE Patents (OSTI)

Self-lubricating resin compositions including a boric acid additive and a synthetic polymer including those thermoset materials.

Erdemir, Ali (Naperville, IL)

2000-01-01T23:59:59.000Z

60

Turbine Oil Lubrication Compatibility Testing  

Science Conference Proceedings (OSTI)

EPRI's Nuclear Maintenance Application Center (NMAC) has been assisting member utilities with Lubrication issues for a number of years. This assistance includes providing answers to lubrication related problems over the phone, testing samples sent by members, providing written answers when required, publication of the NMAC newsletter (Lube Notes) once a year, and providing a Lubrication Guide which provides guidance on lubrication technology and practices that relate to the nuclear power industry. Part o...

2004-07-27T23:59:59.000Z

Note: This page contains sample records for the topic "open water lubricated" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Water Power Forum | OpenEI Community  

Open Energy Info (EERE)

Notices My stuff Energy blogs Login | Sign Up Search Facebook icon Twitter icon Water Power Forum Home > Water Power Forum > Posts by term > Water Power Forum Content Group...

62

Tahoe Water Systems | Open Energy Information  

Open Energy Info (EERE)

Tahoe Water Systems Jump to: navigation, search Name Tahoe Water Systems Sector Solar, Wind energy Product Develops a self-contained solarwind based water pumping technology....

63

Definition: Surface Water Sampling | Open Energy Information  

Open Energy Info (EERE)

Water Sampling Jump to: navigation, search Dictionary.png Surface Water Sampling Water sampling is done to characterize the chemical, thermal, or hydrological properties of a...

64

Westlands Water District | Open Energy Information  

Open Energy Info (EERE)

Westlands Water District Jump to: navigation, search Name Westlands Water District Place California Sector Solar Product Water district in central California which administers a...

65

Vehicle Technologies Office: Fuels and Lubricants Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuels and Lubricants Fuels and Lubricants Research to someone by E-mail Share Vehicle Technologies Office: Fuels and Lubricants Research on Facebook Tweet about Vehicle Technologies Office: Fuels and Lubricants Research on Twitter Bookmark Vehicle Technologies Office: Fuels and Lubricants Research on Google Bookmark Vehicle Technologies Office: Fuels and Lubricants Research on Delicious Rank Vehicle Technologies Office: Fuels and Lubricants Research on Digg Find More places to share Vehicle Technologies Office: Fuels and Lubricants Research on AddThis.com... Just the Basics Hybrid & Vehicle Systems Energy Storage Advanced Power Electronics & Electrical Machines Advanced Combustion Engines Fuels & Lubricants Fuel Effects on Combustion Lubricants Natural Gas Research Biofuels End-Use Research

66

Surface Water Sampling | Open Energy Information  

Open Energy Info (EERE)

Surface Water Sampling Surface Water Sampling Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Surface Water Sampling Details Activities (1) Areas (1) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Field Techniques Exploration Sub Group: Field Sampling Parent Exploration Technique: Water Sampling Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Water composition and source of fluids Thermal: Water temperature Dictionary.png Surface Water Sampling: Water sampling is done to characterize the chemical, thermal, or hydrological properties of a surface or subsurface aqueous system. Other definitions:Wikipedia Reegle Introduction Surface water sampling of hot and cold spring discharges has traditionally

67

Water Valley, Mississippi: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Low Emission Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind Page Actions View form View source History View New Pages Recent Changes All...

68

Davenport Water Pollution Control Plant Biomass Facility | Open...  

Open Energy Info (EERE)

Low Emission Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind Page Actions View form View source History View New Pages Recent Changes All...

69

Water Valley, Kentucky: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Low Emission Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind Page Actions View form View source History View New Pages Recent Changes All...

70

CPS Energy - Solar Hot Water Rebate Program (Texas) | Open Energy...  

Open Energy Info (EERE)

Clean Energy Analysis Low Emission Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind Page Actions View form View source History View New...

71

Orange County - Solar Hot Water Rebate Program (Florida) | Open...  

Open Energy Info (EERE)

Clean Energy Analysis Low Emission Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind Page Actions View form View source History View New...

72

Measurements of Lagrangian Atmospheric Dispersion Statistics over Open Water  

Science Conference Proceedings (OSTI)

Atmospheric dispersion statistics in the Lagrangian frame have been evaluated over open water by using a double-theodolite system to track neutrally buoyant balloons released a few kilometers off-shore during onshore winds. Analysis of the ...

C. M. Sheih; P. Frenzen; R. L. Hart

1980-05-01T23:59:59.000Z

73

Porter-Cologne Water Quality Control Act | Open Energy Information  

Open Energy Info (EERE)

Low Emission Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind Page Actions View form View source History View New Pages Recent Changes All...

74

Clean Water Partnership Law (Minnesota) | Open Energy Information  

Open Energy Info (EERE)

Low Emission Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind Page Actions View form View source History View New Pages Recent Changes All...

75

Solar Water Heater Rebate Program (Kentucky) | Open Energy Information  

Open Energy Info (EERE)

Low Emission Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind Page Actions View form View source History View New Pages Recent Changes All...

76

Comprehensive Local Water Management Act (Minnesota) | Open Energy...  

Open Energy Info (EERE)

Low Emission Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind Page Actions View form View source History View New Pages Recent Changes All...

77

City Water Light and Power - Solar Rewards Program | Open Energy...  

Open Energy Info (EERE)

Low Emission Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind Page Actions View form View source History View New Pages Recent Changes All...

78

Conservation of Water Resources (Virginia) | Open Energy Information  

Open Energy Info (EERE)

Low Emission Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind Page Actions View form View source History View New Pages Recent Changes All...

79

Appropriation of Water (North Dakota) | Open Energy Information  

Open Energy Info (EERE)

Low Emission Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind Page Actions View form View source History View New Pages Recent Changes All...

80

Solar Water Heating Incentive Program (Oregon) | Open Energy...  

Open Energy Info (EERE)

Low Emission Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind Page Actions View form View source History View New Pages Recent Changes All...

Note: This page contains sample records for the topic "open water lubricated" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Surface Water Quality Standards (New Jersey) | Open Energy Information  

Open Energy Info (EERE)

Low Emission Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind Page Actions View form View source History View New Pages Recent Changes All...

82

Drinking Water State Revolving Loan Fund (New Mexico) | Open...  

Open Energy Info (EERE)

Low Emission Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind Page Actions View form View source History View New Pages Recent Changes All...

83

Big Water, Utah: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Low Emission Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind Page Actions View form View source History View New Pages Recent Changes All...

84

Columbia River PUD - Water Heater Rebate Program (Oregon) | Open...  

Open Energy Info (EERE)

Low Emission Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind Page Actions View form View source History View New Pages Recent Changes All...

85

Solar Hot Water Contractor Licensing (Arkansas) | Open Energy...  

Open Energy Info (EERE)

Low Emission Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind Page Actions View form View source History View New Pages Recent Changes All...

86

Clean Water Legacy Act (Minnesota) | Open Energy Information  

Open Energy Info (EERE)

Low Emission Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind Page Actions View form View source History View New Pages Recent Changes All...

87

Chapter 10 Water Quality Standards (Kentucky) | Open Energy Informatio...  

Open Energy Info (EERE)

Low Emission Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind Page Actions View form View source History View New Pages Recent Changes All...

88

EWEB - Residential Solar Water Heating Rebate (Oregon) | Open...  

Open Energy Info (EERE)

Low Emission Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind Page Actions View form View source History View New Pages Recent Changes All...

89

EPUD - Solar Water Heater Loan (Oregon) | Open Energy Information  

Open Energy Info (EERE)

Low Emission Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind Page Actions View form View source History View New Pages Recent Changes All...

90

Commercial Solar Hot Water Financing Program | Open Energy Information  

Open Energy Info (EERE)

Low Emission Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind Page Actions View form View source History View New Pages Recent Changes All...

91

GreyStone Power - Solar Water Heating Program (Georgia) | Open...  

Open Energy Info (EERE)

Low Emission Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind Page Actions View form View source History View New Pages Recent Changes All...

92

Austin Energy - Solar Water Heating Rebate (Texas) | Open Energy...  

Open Energy Info (EERE)

Low Emission Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind Page Actions View form View source History View New Pages Recent Changes All...

93

EWEB - Bright Way To Heat Water Rebate (Oregon) | Open Energy...  

Open Energy Info (EERE)

Low Emission Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind Page Actions View form View source History View New Pages Recent Changes All...

94

Connecticut Water Diversion Policy Act (Connecticut) | Open Energy...  

Open Energy Info (EERE)

Low Emission Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind Page Actions View form View source History View New Pages Recent Changes All...

95

EPUD - Solar Water Heater Rebate (Oregon) | Open Energy Information  

Open Energy Info (EERE)

Low Emission Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind Page Actions View form View source History View New Pages Recent Changes All...

96

Columbia Water & Light - Solar Rebates (Missouri) | Open Energy...  

Open Energy Info (EERE)

Low Emission Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind Page Actions View form View source History View New Pages Recent Changes All...

97

Residential Solar Water Heating Rebates (New Hampshire) | Open...  

Open Energy Info (EERE)

Low Emission Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind Page Actions View form View source History View New Pages Recent Changes All...

98

Local Solar Water Heating Rebate Programs (Colorado) | Open Energy...  

Open Energy Info (EERE)

Low Emission Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind Page Actions View form View source History View New Pages Recent Changes All...

99

Solar water heaters | Open Energy Information  

Open Energy Info (EERE)

water heaters water heaters (Redirected from - Solar Hot Water) Jump to: navigation, search (The following text is derived from the United States Department of Energy's description of Solar Water Heating technology.)[1] Solar Water Heater One of the most cost-effective ways to include renewable technologies into a building is by incorporating solar hot water. A typical residential solar water-heating system reduces the need for conventional water heating by about two-thirds. It minimizes the expense of electricity or fossil fuel to heat the water and reduces the associated environmental impacts. Solar Water Heating for Buildings Most solar water-heating systems for buildings have two main parts: (1) a solar collector and (2) a storage tank. The most common collector used in solar hot water systems is the

100

Water Power Forum | OpenEI Community  

Open Energy Info (EERE)

Water Power Forum Home > Water Power Forum > Posts by term > Water Power Forum Content Group Activity By term Q & A Feeds Term: Performance Type Term Title Author Replies Last Post...

Note: This page contains sample records for the topic "open water lubricated" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Solar Water Heat | Open Energy Information  

Open Energy Info (EERE)

Water Heat Jump to: navigation, search TODO: Add description List of Solar Water Heat Incentives Retrieved from "http:en.openei.orgwindex.php?titleSolarWaterHeat&oldid26719...

102

Water Sampling (Healy, 1970) | Open Energy Information  

Open Energy Info (EERE)

Water Sampling (Healy, 1970) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling (Healy, 1970) Exploration Activity Details Location...

103

Houlton Water Company | Open Energy Information  

Open Energy Info (EERE)

Houlton Water Company Jump to: navigation, search Name Houlton Water Company Place Maine Utility Id 8883 Utility Location Yes Ownership M NERC Location NPCC NERC NPCC Yes Activity...

104

Water-Gas Sampling | Open Energy Information  

Open Energy Info (EERE)

Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon Water-Gas Sampling (Redirected from Water-Gas Samples) Redirect page Jump to: navigation,...

105

Definition: Water Sampling | Open Energy Information  

Open Energy Info (EERE)

Sampling Jump to: navigation, search Dictionary.png Water Sampling Water sampling is done to characterize the chemical, thermal, or hydrological properties of a surface or...

106

Category:Water References | Open Energy Information  

Open Energy Info (EERE)

Water References Jump to: navigation, search Pages in category "Water References" This category contains only the following page. A Assessment and Mapping of the Riverine...

107

Morenci Water and Electric | Open Energy Information  

Open Energy Info (EERE)

Morenci Water and Electric Jump to: navigation, search Name Morenci Water and Electric Place Arizona Utility Id 12919 References Energy Information Administration.1 LinkedIn...

108

Water-Gas Sampling | Open Energy Information  

Open Energy Info (EERE)

Water-Gas Sampling Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Water-Gas Sampling edit Details Activities (21) Areas (18) Regions (1)...

109

Holyoke Water Power Company | Open Energy Information  

Open Energy Info (EERE)

Holyoke Water Power Company Jump to: navigation, search Name Holyoke Water Power Company Place Massachusetts Utility Id 8779 Ownership I NERC Location NPCC NERC NPCC Yes Activity...

110

Golden State Water Company | Open Energy Information  

Open Energy Info (EERE)

State Water Company Jump to: navigation, search Name Golden State Water Company Place California Utility Id 17612 References Energy Information Administration.1 LinkedIn...

111

Placer County Water Agency | Open Energy Information  

Open Energy Info (EERE)

Placer County Water Agency Jump to: navigation, search Name Placer County Water Agency Place California Utility Id 15127 Utility Location Yes Ownership P NERC Location WECC NERC...

112

Strawberry Water Users Assn | Open Energy Information  

Open Energy Info (EERE)

Strawberry Water Users Assn Jump to: navigation, search Name Strawberry Water Users Assn Place Utah Utility Id 18205 Utility Location Yes Ownership I NERC Location WECC NERC WECC...

113

Clean Water Act | Open Energy Information  

Open Energy Info (EERE)

Clean Water Act Clean Water Act Year 1972 Url CWA.jpg Description The Clean Water Act was established to restore and maintain the chemical, physical, and biological integrity of the nation's waters. References CWA[1] Federal Oil and Gas[2] The Clean Water Act (CWA) (33 U.S.C. § 1251 et seq.) - The Clean Water Act was established to restore and maintain the chemical, physical, and biological integrity of the nation's waters. The CWA aims to protect water quality through development of water quality standards, anti-degradation policies, water quality permitting procedures, water body monitoring and assessment programs, and elimination or point and nonpoint pollution sources. The CWA regulates the National Pollutant Discharge Elimination System (NPDES) permitting process, which establishes, through a permit,

114

Solar water heaters | Open Energy Information  

Open Energy Info (EERE)

heaters heaters Jump to: navigation, search (The following text is derived from the United States Department of Energy's description of Solar Water Heating technology.)[1] Solar Water Heater One of the most cost-effective ways to include renewable technologies into a building is by incorporating solar hot water. A typical residential solar water-heating system reduces the need for conventional water heating by about two-thirds. It minimizes the expense of electricity or fossil fuel to heat the water and reduces the associated environmental impacts. Solar Water Heating for Buildings Most solar water-heating systems for buildings have two main parts: (1) a solar collector and (2) a storage tank. The most common collector used in solar hot water systems is the flat-plate collector. Solar water heaters use the sun to heat either water

115

Geothermal/Water Use | Open Energy Information  

Open Energy Info (EERE)

Water Use Water Use < Geothermal(Redirected from Water Use) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Land Use Leasing Exploration Well Field Power Plant Transmission Environment Water Use Print PDF Geothermal Water Use General Regulatory Roadmap The Geysers in northern California is the world's largest producer of geothermal power. The dry-steam field has successfully produced power since the early 1960s when Pacific Gas & Electric installed the first 11-megawatt plant. The dry steam plant consumes water by emitting water vapor into the atmosphere. Geothermal power production utilizes water in two major ways: The first method, which is inevitable in geothermal production, uses hot water from an underground reservoir to power the facility. The second is using water for cooling (for some plants only).

116

Definition: Water Cooling | Open Energy Information  

Open Energy Info (EERE)

Water Cooling Water Cooling Water cooling is commonly defined as a method of using water as a heat conduction to remove heat from an object, machine, or other substance by passing cold water over or through it. In energy generation, water cooling is typically used to cool steam back into water so it can be used again in the generation process.[1] View on Wikipedia Wikipedia Definition Water cooling is a method of heat removal from components and industrial equipment. As opposed to air cooling, water is used as the heat conductor. Water cooling is commonly used for cooling automobile internal combustion engines and large industrial facilities such as steam electric power plants, hydroelectric generators, petroleum refineries and chemical plants. Other uses include cooling the barrels of machine guns, cooling of

117

Geothermal/Water Use | Open Energy Information  

Open Energy Info (EERE)

Geothermal/Water Use Geothermal/Water Use < Geothermal Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Land Use Leasing Exploration Well Field Power Plant Transmission Environment Water Use Print PDF Geothermal Water Use General Regulatory Roadmap The Geysers in northern California is the world's largest producer of geothermal power. The dry-steam field has successfully produced power since the early 1960s when Pacific Gas & Electric installed the first 11-megawatt plant. The dry steam plant consumes water by emitting water vapor into the atmosphere. Geothermal power production utilizes water in two major ways: The first method, which is inevitable in geothermal production, uses hot water from an underground reservoir to power the facility. The second is using water for cooling (for some plants only).

118

Safe Drinking Water Act | Open Energy Information  

Open Energy Info (EERE)

Act Act Jump to: navigation, search Statute Name Safe Drinking Water Act Year 1974 Url SDWA.jpg Description The Safe Drinking Water Act was established to protect the quality of drinking water in the U.S. References SDWA of 1974[1] Federal Oil and Gas[2] The Safe Drinking Water Act was established to protect the quality of drinking water in the U.S. This law focuses on all waters actually or potentially designated for drinking use, whether from above ground or underground sources. The Act authorized EPA to establish safe standards of purity and required all owners or operators of public water systems to comply with primary (health-related) standards. State governments, which assume this power from EPA, also encourage attainment of secondary standards (nuisance-related).

119

Definition: Water Wheels | Open Energy Information  

Open Energy Info (EERE)

Wheels Wheels Jump to: navigation, search Dictionary.png Water Wheels A water wheel is a large wheel that takes energy in free-flowing or falling water and converts it into a useful form of energy.[1] View on Wikipedia Wikipedia Definition A water wheel is a machine for converting the energy of free-flowing or falling water into useful forms of power, often in a watermill. A water wheel consists of a large wooden or metal wheel, with a number of blades or buckets arranged on the outside rim forming the driving surface. Most commonly, the wheel is mounted vertically on a horizontal axle, but the tub or Norse wheel is mounted horizontally on a vertical shaft. Vertical wheels can transmit power either through the axle or via a ring gear and typically drive belts or gears; horizontal wheels usually directly drive their load.

120

Definition: Solar Water Heating | Open Energy Information  

Open Energy Info (EERE)

Definition Definition Edit with form History Facebook icon Twitter icon » Definition: Solar Water Heating Jump to: navigation, search Dictionary.png Solar Water Heating A low-energy intensive system that uses solar rays to heat water. It is a viable option in developing countries[1] View on Wikipedia Wikipedia Definition Solar water heating (SWH) or solar hot water (SHW) systems comprise several innovations and many mature renewable energy technologies that have been well established for many years. SWH has been widely used in Australia, Austria, China, Cyprus, Greece, India, Israel, Japan and Turkey. In a "close-coupled" SWH system the storage tank is horizontally mounted immediately above the solar collectors on the roof. No pumping is required as the hot water naturally rises into the tank through thermosiphon flow.

Note: This page contains sample records for the topic "open water lubricated" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Water and energy studies | Open Energy Information  

Open Energy Info (EERE)

Water and energy studies Water and energy studies Jump to: navigation, search This page tracks studies, reports and analyses of the Energy-Water Nexus. When adding a study, report or publication to this list, please observe the following guidelines: It should substantively address some aspect of the energy-water nexus. It should be publicly accessible online, and/or be published in a refereed technical journal. Please include a link to a publicly accessible URL where the study, report or publication can be downloaded. Please also include a brief set of keywords summarizing the topic area. Topic area definitions "Water intensity of electricity generation" relates to the amount of water withdrawn and/or consumed in the generation of electricity (generally thermal power plants, but also including other electricity-generation

122

Definition: District chilled water | Open Energy Information  

Open Energy Info (EERE)

chilled water chilled water Jump to: navigation, search Dictionary.png District chilled water Water chilled outside of a building in a central plant and piped into the building as an energy source for cooling. Chilled water may be purchased from a utility or provided by a central physical plant in a separate building that is part of the same multibuilding facility (e.g. a hospital complex or university).[1][2] View on Wikipedia Wikipedia Definition Related Terms District heat References ↑ http://205.254.135.24/tools/glossary/index.cfm?id=D ↑ http://buildingsdatabook.eren.doe.gov/Glossary.aspx#Tech Ret LikeLike UnlikeLike You like this.Sign Up to see what your friends like. rieved from "http://en.openei.org/w/index.php?title=Definition:District_chilled_water&oldid=423381"

123

Category:Water Sampling | Open Energy Information  

Open Energy Info (EERE)

Login | Sign Up Search Category Edit History Facebook icon Twitter icon Category:Water Sampling Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home...

124

Water Power Forum | OpenEI Community  

Open Energy Info (EERE)

Polls Q & A Events Notices My stuff Linked Data Search: Community search... within: Water Power Forum Entire site People Search Share this page on Facebook icon Twitter icon...

125

Property:Water Type | Open Energy Information  

Open Energy Info (EERE)

Type Type Jump to: navigation, search Property Name Water Type Property Type String Pages using the property "Water Type" Showing 25 pages using this property. (previous 25) (next 25) 1 1.5-ft Wave Flume Facility + Freshwater + 10-ft Wave Flume Facility + Freshwater + 11-ft Wave Flume Facility + Freshwater + 2 2-ft Flume Facility + Freshwater + 3 3-ft Wave Flume Facility + Freshwater + 5 5-ft Wave Flume Facility + Freshwater + 6 6-ft Wave Flume Facility + Freshwater + A Alden Large Flume + Freshwater + Alden Small Flume + Freshwater + Alden Tow Tank + Freshwater + Alden Wave Basin + Freshwater + B Breakwater Research Facility + Freshwater + Bucknell Hydraulic Flume + Freshwater + C Carderock 2-ft Variable Pressure Cavitation Water Tunnel + Freshwater +

126

Valley Center Municipal Water District | Open Energy Information  

Open Energy Info (EERE)

Municipal Water District Municipal Water District Jump to: navigation, search Name Valley Center Municipal Water District Place Valley Center, California Zip 92082 Product VCMWD is the second largest water provider in San Diego County behind the City of San Diego. References Valley Center Municipal Water District[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Valley Center Municipal Water District is a company located in Valley Center, California . References ↑ "Valley Center Municipal Water District" Retrieved from "http://en.openei.org/w/index.php?title=Valley_Center_Municipal_Water_District&oldid=352717" Categories: Clean Energy Organizations Companies Organizations

127

Water Power Forum | OpenEI Community  

Open Energy Info (EERE)

Water Power Forum Water Power Forum Home > Water Power Forum > Posts by term > Water Power Forum Content Group Activity By term Q & A Feeds Term: MHK Type Term Title Author Replies Last Post sort icon Document MHK MHK Cost Breakdown Structure Draft Kch 1 18 Apr 2013 - 13:33 Groups Menu You must login in order to post into this group. Recent content Hi Vanessa-I connected wit... 2013 projects and funding Comments on MHK Cost Reduction Pathway White Papers MHK LCOE Reporting Guidance Draft MHK Cost Breakdown Structure Draft more Group members (10) Managers: Graham7781 Recent members: Vanessa.gregory Alison.labonte Gdavis Jim mcveigh Ocop Thomas.heibel NickL Kch Rmckeel 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 2142253780

128

Water Power Forum | OpenEI Community  

Open Energy Info (EERE)

Water Power Forum Water Power Forum Home > Water Power Forum > Posts by term > Water Power Forum Content Group Activity By term Q & A Feeds Term: marine energy Type Term Title Author Replies Last Post sort icon Document marine energy MHK Cost Breakdown Structure Draft Kch 1 18 Apr 2013 - 13:33 Groups Menu You must login in order to post into this group. Recent content Hi Vanessa-I connected wit... 2013 projects and funding Comments on MHK Cost Reduction Pathway White Papers MHK LCOE Reporting Guidance Draft MHK Cost Breakdown Structure Draft more Group members (10) Managers: Graham7781 Recent members: Vanessa.gregory Alison.labonte Gdavis Jim mcveigh Ocop Thomas.heibel NickL Kch Rmckeel 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation:

129

Water Power Forum | OpenEI Community  

Open Energy Info (EERE)

Water Power Forum Water Power Forum Home > Water Power Forum > Posts by term > Water Power Forum Content Group Activity By term Q & A Feeds Term: Cost Type Term Title Author Replies Last Post sort icon Document Cost MHK LCOE Reporting Guidance Draft Ocop 1 18 Apr 2013 - 13:56 Groups Menu You must login in order to post into this group. Recent content Hi Vanessa-I connected wit... 2013 projects and funding Comments on MHK Cost Reduction Pathway White Papers MHK LCOE Reporting Guidance Draft MHK Cost Breakdown Structure Draft more Group members (10) Managers: Graham7781 Recent members: Vanessa.gregory Alison.labonte Gdavis Jim mcveigh Ocop Thomas.heibel NickL Kch Rmckeel 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 2142286501

130

Water Power Forum | OpenEI Community  

Open Energy Info (EERE)

Water Power Forum Water Power Forum Home > Water Power Forum > Posts by term > Water Power Forum Content Group Activity By term Q & A Feeds Term: CBS Type Term Title Author Replies Last Post sort icon Document CBS MHK Cost Breakdown Structure Draft Kch 1 18 Apr 2013 - 13:33 Groups Menu You must login in order to post into this group. Recent content Hi Vanessa-I connected wit... 2013 projects and funding Comments on MHK Cost Reduction Pathway White Papers MHK LCOE Reporting Guidance Draft MHK Cost Breakdown Structure Draft more Group members (10) Managers: Graham7781 Recent members: Vanessa.gregory Alison.labonte Gdavis Jim mcveigh Ocop Thomas.heibel NickL Kch Rmckeel 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 2142234690

131

Water Power Forum | OpenEI Community  

Open Energy Info (EERE)

Water Power Forum Water Power Forum Home > Water Power Forum > Posts by term > Water Power Forum Content Group Activity By term Q & A Feeds Term: Current Type Term Title Author Replies Last Post sort icon Document Current MHK LCOE Reporting Guidance Draft Ocop 1 18 Apr 2013 - 13:56 Groups Menu You must login in order to post into this group. Recent content Hi Vanessa-I connected wit... 2013 projects and funding Comments on MHK Cost Reduction Pathway White Papers MHK LCOE Reporting Guidance Draft MHK Cost Breakdown Structure Draft more Group members (10) Managers: Graham7781 Recent members: Vanessa.gregory Alison.labonte Gdavis Jim mcveigh Ocop Thomas.heibel NickL Kch Rmckeel 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 2142235402

132

Ag & Water Pump | OpenEI  

Open Energy Info (EERE)

Ag & Water Pump Ag & Water Pump Dataset Summary Description Natural gas consumption data from the California Energy Commission by planning area for Commercial, Residential, Ag & Water Pump, Streetlight, Industry, Mining & Construction and Total Usage. Source California Energy Commission Date Released Unknown Date Updated Unknown Keywords Ag & Water Pump annual energy consumption Commercial Energy Consumption Industry Residential Streetlight Data text/csv icon Natural Gas Consumption by Planning Area (csv, 12.6 KiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Time Period 1990-2009 License License Other or unspecified, see optional comment below Comment http://www.energy.ca.gov/conditions.html Rate this dataset Usefulness of the metadata

133

Penn Large Water Tunnel | Open Energy Information  

Open Energy Info (EERE)

Penn Large Water Tunnel Penn Large Water Tunnel Jump to: navigation, search Basic Specifications Facility Name Penn Large Water Tunnel Overseeing Organization Pennsylvania State University Hydrodynamics Hydrodynamic Testing Facility Type Tunnel Length(m) 4.3 Beam(m) 1.2 Depth(m) 1.2 Water Type Freshwater Cost(per day) Contact POC Special Physical Features Closed loop; Turbulence level = 0.1%; Pressure range = 3-60psi; Controlled cavitation = # >0.1; Control Air content = >1ppm per mole Towing Capabilities Towing Capabilities None Wavemaking Capabilities Wavemaking Capabilities None Channel/Tunnel/Flume Channel/Tunnel/Flume Yes Velocity(m/s) 16.8 Recirculating Yes Pressure Range(Psi) 3 - 60 Wind Capabilities Wind Capabilities None Control and Data Acquisition Description National Instruments steady 24 bit

134

Water Wall Turbine | Open Energy Information  

Open Energy Info (EERE)

Wall Turbine Jump to: navigation, search Name Water Wall Turbine Sector Marine and Hydrokinetic Website http:www.wwturbine.com Region Canada LinkedIn Connections CrunchBase...

135

Oregon Water Resources Department | Open Energy Information  

Open Energy Info (EERE)

Oregon Water Resources Department Oregon Water Resources Department Jump to: navigation, search Logo: Oregon Water Resources Department Name Oregon Water Resources Department Address 725 Summer Street NE, Suite A Place Salem, Oregon Zip 97301 Phone number 503-986-0900 Website http://www.oregon.gov/owrd/Pag Coordinates 44.945748°, -123.028013° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.945748,"lon":-123.028013,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

136

Sandusky Water Filtration | Open Energy Information  

Open Energy Info (EERE)

Filtration Filtration Jump to: navigation, search Name Sandusky Water Filtration Facility Sandusky Water Filtration Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Sandusky Water Filtration Energy Purchaser Sandusky Water Filtration Location Sandusky OH Coordinates 41.45008487°, -82.67055273° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.45008487,"lon":-82.67055273,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

137

Penn Small Water Tunnel | Open Energy Information  

Open Energy Info (EERE)

Water Tunnel Water Tunnel Jump to: navigation, search Basic Specifications Facility Name Penn Small Water Tunnel Overseeing Organization Pennsylvania State University Hydrodynamics Hydrodynamic Testing Facility Type Tunnel Length(m) 0.8 Beam(m) 0.3 Depth(m) 0.3 Water Type Freshwater Cost(per day) Contact POC Special Physical Features Closed loop; Turbulence level = 0.1%; Pressure range = 3-60psi; Controlled cavitation = # >0.1; Control Air content = >1ppm per mole Towing Capabilities Towing Capabilities None Wavemaking Capabilities Wavemaking Capabilities None Channel/Tunnel/Flume Channel/Tunnel/Flume Yes Velocity(m/s) 21 Recirculating Yes Pressure Range(Psi) 3 - 60 Wind Capabilities Wind Capabilities None Control and Data Acquisition Description National Instruments dynamic analyzer, 24-bit

138

OpenEI launches new Water Power Gateway and Community Forum | OpenEI  

Open Energy Info (EERE)

Skip to Main Content Area Skip to Main Content Area Wiki Apps Datasets Community Home Groups Community Central Green Button Applications Developer Utility Rate FRED: FRee Energy Database More Public Groups Private Groups Features Groups Blog posts Content Stream Documents Discussions Polls Q & A Events Notices My stuff Energy blogs Login | Sign Up Search Facebook icon Twitter icon » OpenEI launches new Water Power Gateway and Community Forum Home > Groups > Water Power Forum Graham7781's picture Submitted by Graham7781(1992) Super contributor 28 March, 2013 - 15:16 community forum gateway OpenEI Water power OpenEI has launched a new Water Power Gateway, which contains links to critical public data sets, up-to-date information on technologies and events, a community forum to discuss topics of interest, links to major

139

Flat Water Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Flat Water Wind Farm Flat Water Wind Farm Jump to: navigation, search Name Flat Water Wind Farm Facility Flat Water Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Gestamp Wind North America Developer Flat Water Wind Farm Energy Purchaser Omaha Public Power District Location Richardson County NE Coordinates 40.001077°, -95.955119° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.001077,"lon":-95.955119,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

140

atmospheric water vapor | OpenEI  

Open Energy Info (EERE)

atmospheric water vapor atmospheric water vapor Dataset Summary Description (Abstract): Monthly Average Solar Resource for 2-axis tracking concentrating collectors for Mexico, Central America, and the Caribbean Islands. (Purpose): Provide information on the solar resource potential for the data domain. The insolation values represent the average solar energy available to a concentrating collector, such as a dish collector, which tracks the sun continuously. Source NREL Date Released July 31st, 2006 (8 years ago) Date Updated October 30th, 2007 (7 years ago) Keywords atmospheric water vapor Carribean Islands Central America DNI GIS Mexico NREL GEF solar SWERA UNEP Data application/zip icon Download Shapefile (zip, 247.8 KiB) text/csv icon Download Data (csv, 370.6 KiB) Quality Metrics Level of Review Some Review

Note: This page contains sample records for the topic "open water lubricated" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Water Power Forum | OpenEI Community  

Open Energy Info (EERE)

Water Power Forum Water Power Forum Home > Groups > Groups > Water Power Forum Content Group Activity By term Q & A Feeds There are no feeds from external sites for this group. Groups Menu You must login in order to post into this group. Groups Menu You must login in order to post into this group. Group members (10) Managers: Graham7781 Recent members: Vanessa.gregory Alison.labonte Gdavis Jim mcveigh Ocop Thomas.heibel NickL Kch Rmckeel Recent content Hi Vanessa-I connected wit... 2013 projects and funding Comments on MHK Cost Reduction Pathway White Papers MHK LCOE Reporting Guidance Draft MHK Cost Breakdown Structure Draft more Group members (10) Managers: Graham7781 Recent members: Vanessa.gregory Alison.labonte Gdavis Jim mcveigh Ocop Thomas.heibel NickL Kch Rmckeel 429 Throttled (bot load)

142

SolarWaterWorld AG | Open Energy Information  

Open Energy Info (EERE)

SolarWaterWorld AG SolarWaterWorld AG Jump to: navigation, search Name SolarWaterWorld AG Place Berlin, Berlin, Germany Zip 10559 Sector Solar Product Berlin-headquartered maker of solar-powered boats. References SolarWaterWorld AG[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. SolarWaterWorld AG is a company located in Berlin, Berlin, Germany . References ↑ "SolarWaterWorld AG" Retrieved from "http://en.openei.org/w/index.php?title=SolarWaterWorld_AG&oldid=351441" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load)

143

Water Power Forum | OpenEI Community  

Open Energy Info (EERE)

Water Power Forum Water Power Forum Home > Features > Groups Content Group Activity By term Q & A Feeds Content type Blog entry Discussion Document Event Poll Question Keywords Author Apply NickL Hi Vanessa-I connected wit... Posted by: NickL 13 Dec 2013 - 14:38 Hi Vanessa- I connected with one of our MHK experts regarding your question, please see his responses below: 1. There was only one US commercial deployment (selling power to a utility) in... Vanessa.gregory 2013 projects and funding Posted by: Vanessa.gregory 13 Dec 2013 - 09:12 Good morning, I am researching energy generation from waves, tides, ocean currents, and marine thermal gradients for a report and I am looking for two specific sets of information. 1. Any new U.... Alison.labonte Comments on MHK Cost Reduction Pathway White Papers

144

Defining the role of elastic lubricants and micro textured surfaces in lubricated, sliding friction  

E-Print Network (OSTI)

Solutions for reducing friction in sliding, lubricated systems include modifying lubricant rheology using polymers and adding a micro-scale texture to the sliding surfaces, but the mechanism of how lubrication properties ...

Hupp, Sara J. (Sara Jean), 1979-

2008-01-01T23:59:59.000Z

145

Carderock 2-ft Variable Pressure Cavitation Water Tunnel | Open Energy  

Open Energy Info (EERE)

2-ft Variable Pressure Cavitation Water Tunnel 2-ft Variable Pressure Cavitation Water Tunnel Jump to: navigation, search Basic Specifications Facility Name Carderock 2-ft Variable Pressure Cavitation Water Tunnel Overseeing Organization United States Naval Surface Warfare Center Hydrodynamic Testing Facility Type Tunnel Beam(m) 0.6 Depth(m) 0.6 Water Type Freshwater Cost(per day) Contact POC Special Physical Features The 2-Foot Variable Pressure Cavitation Water Tunnel is a vertical plane, closed recirculating, variable-speed, variable-pressure, open jet test section, closed jet test section, and semi-rectangular test section. Towing Capabilities Towing Capabilities None Wavemaking Capabilities Wavemaking Capabilities None Channel/Tunnel/Flume Channel/Tunnel/Flume Yes Velocity(m/s) 17 Recirculating Yes

146

Fuels & Lubricant Technologies- FEERC  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuels & Lubricants Technology Fuels & Lubricants Technology Fuels and lubricants research at FEERC involves study of the impacts of fuel and lubricant properties on advanced combustion processes as well as on emissions and emission control strategies and devices. The range of fuels studied includes liquid fuels from synthetic and renewable sources as well as conventional and unconventional fossil-based sources. Combustion and emissions studies are leveraged with relevant single and multi-cylinder engine setups in the FEERC and access to a suite of unique diagnostic tools and a vehicle dynamometer laboratory. ORNL/DOE research has been cited by EPA in important decisions such as the 2006 diesel sulfur rule and the 2010/2011 E15 waiver decision. Major program categories and examples

147

Geochemical Sampling of Thermal Waters in Nevada | Open Energy Information  

Open Energy Info (EERE)

Geochemical Sampling of Thermal Waters in Nevada Geochemical Sampling of Thermal Waters in Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Geochemical Sampling of Thermal Waters in Nevada Abstract There are 1000 thermal springs in Nevada for which a location is known, but for which there are no available temperature (or chemical) measurements. Although many of these sites are within known geothermal areas and are located near springs for which temperature and/or geochemical data are available for one of the springs, many of these sites are not so located and require evaluation before the geothermal potential of the area can be assessed. In order to begin filling in data gaps, water sampling commenced in 2002 when over 70 analyses were obtained from springs with previously

148

South Feather Water and Power Agency | Open Energy Information  

Open Energy Info (EERE)

Feather Water and Power Agency Feather Water and Power Agency Jump to: navigation, search Name South Feather Water and Power Agency Place California Utility Id 14191 Utility Location Yes Ownership P NERC Location WECC NERC WECC Yes ISO CA Yes Operates Generating Plant Yes Activity Generation Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates No Rates Available References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=South_Feather_Water_and_Power_Agency&oldid=41154

149

Redlands Water & Power Company | Open Energy Information  

Open Energy Info (EERE)

Redlands Water & Power Company Redlands Water & Power Company Jump to: navigation, search Name Redlands Water & Power Company Place Colorado Utility Id 15787 Utility Location Yes Ownership I NERC Location WECC NERC WECC Yes Operates Generating Plant Yes Activity Generation Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates No Rates Available References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Redlands_Water_%26_Power_Company&oldid=411435" Categories:

150

Lockwood Water & Light Company | Open Energy Information  

Open Energy Info (EERE)

Lockwood Water & Light Company Lockwood Water & Light Company Jump to: navigation, search Name Lockwood Water & Light Company Place Missouri Utility Id 11121 Utility Location Yes Ownership M NERC Location SPP NERC SPP Yes Activity Retail Marketing Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Commercial Demand Industrial Industrial Residential Residential Average Rates Residential: $0.1060/kWh Commercial: $0.1110/kWh Industrial: $0.0926/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Lockwood_Water_%26_Light_Company&oldid=410998

151

Wonewoc Electric & Water Util | Open Energy Information  

Open Energy Info (EERE)

Wonewoc Electric & Water Util Wonewoc Electric & Water Util Jump to: navigation, search Name Wonewoc Electric & Water Util Place Wisconsin Utility Id 20924 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes ISO MISO Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png General Service- Single-Phase Commercial General Service- Three-Phase Commercial Large Power Commercial Off Peak Water Heating Residential Residential Single Phase Residential Residential Three Phase Residential Street Lighting- 100W HPS Lighting Street Lighting- 144W F Lighting Street Lighting- 150W HPS Lighting

152

Ionic Liquids as Novel Lubricants and /or Lubricant Additives  

SciTech Connect

This ORNL-GM CRADA developed ionic liquids (ILs) as novel lubricants or oil additives for engine lubrication. A new group of oil-miscible ILs have been designed and synthesized with high thermal stability, non-corrosiveness, excellent wettability, and most importantly effective anti-scuffing/anti-wear and friction reduction characteristics. Mechanistic analysis attributes the superior lubricating performance of IL additives to their physical and chemical interactions with metallic surfaces. Working with a leading lubricant formulation company, the team has successfully developed a prototype low-viscosity engine oil using a phosphonium-phosphate IL as an anti-wear additive. Tribological bench tests of the IL-additized formulated oil showed 20-33% lower friction in mixed and elastohydrodynamic lubrication and 38-92% lower wear in boundary lubrication when compared with commercial Mobil 1 and Mobil Clean 5W-30 engine oils. High-temperature, high load (HTHL) full-size engine tests confirmed the excellent anti-wear performance for the IL-additized engine oil. Sequence VID engine dynamometer tests demonstrated an improved fuel economy by >2% for this IL-additized engine oil benchmarked against the Mobil 1 5W-30 oil. In addition, accelerated catalyst aging tests suggest that the IL additive may potentially have less adverse impact on three-way catalysts compared to the conventional ZDDP. Follow-on research is needed for further development and optimization of IL chemistry and oil formulation to fully meet ILSAC GF-5 specifications and further enhance the automotive engine efficiency and durability.

Qu, J. [ORNL] [ORNL; Viola, M. B. [General Motors Company] [General Motors Company

2013-10-31T23:59:59.000Z

153

Cedarburg Light & Water Comm | Open Energy Information  

Open Energy Info (EERE)

Cedarburg Light & Water Comm Cedarburg Light & Water Comm Jump to: navigation, search Name Cedarburg Light & Water Comm Place Wisconsin Utility Id 3208 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes ISO MISO Yes Activity Distribution Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png General Service - Regular Rate - Single Phase Commercial General Service - Regular rate - Three Phase Commercial General Service Optional Time-of-Day Rate - Single Phase 7am-7pm Commercial General Service Optional Time-of-Day Rate - Single Phase 8am-8pm Commercial

154

Parkland Light & Water Company | Open Energy Information  

Open Energy Info (EERE)

Parkland Light & Water Company Parkland Light & Water Company Jump to: navigation, search Name Parkland Light & Water Company Place Washington Utility Id 14505 Utility Location Yes Ownership C NERC Location WECC NERC WECC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Large Commercial (Over 50kVA) Commercial Residential Rate Residential Security Lights-100 WATT HP SODIUM Lighting Security Lights-200 WATT HP SODIUM Lighting Security Lights-250 WATT HP SODIUM Lighting Security Lights-400 WATT HP SODIUM Lighting Small Commercial (Under 50kVA) Commercial Average Rates

155

Buckeye Water C&D District | Open Energy Information  

Open Energy Info (EERE)

Water C&D District Water C&D District Place Arizona Utility Id 2469 Utility Location Yes Ownership P NERC Location WECC NERC WECC Yes Activity Buying Transmission Yes Activity Buying Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates Residential: $0.1010/kWh Commercial: $0.0784/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Buckeye_Water_C%26D_District&oldid=412227" Categories: EIA Utility Companies and Aliases Utility Companies

156

Brodhead Water & Lighting Comm | Open Energy Information  

Open Energy Info (EERE)

Brodhead Water & Lighting Comm Brodhead Water & Lighting Comm Jump to: navigation, search Name Brodhead Water & Lighting Comm Place Wisconsin Utility Id 2273 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes ISO MISO Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png General Service - GS-1 - Single Phase Commercial General Service - GS-1 Three Phase Commercial General-OTD 1-Three Phase Commercial General-OTD- Single Phase Commercial Industrial Power Time of day CP-3 above 1,000kW Demand Primary Metering and Transformer Discount Industrial Industrial Power Time of day CP-3 above 1,000kW Demand Industrial

157

Two Rivers Water & Light | Open Energy Information  

Open Energy Info (EERE)

Water & Light Water & Light Jump to: navigation, search Name Two Rivers Water & Light Place Wisconsin Utility Id 19324 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes ISO MISO Yes Activity Distribution Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Business District Lighting- 150W HPS Lighting Business District Lighting- 200W HPS Lighting General Service- Single-Phase Commercial General Service- Single-Phase- Time-of-Day- 7am-7pm Commercial General Service- Single-Phase- Time-of-Day- 8am-8pm Commercial

158

Paragould Light & Water Comm | Open Energy Information  

Open Energy Info (EERE)

Paragould Light & Water Comm Paragould Light & Water Comm Jump to: navigation, search Name Paragould Light & Water Comm Place Arkansas Utility Id 14446 Utility Location Yes Ownership M NERC Location SPP NERC SPP Yes Operates Generating Plant Yes Activity Generation Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Wholesale Marketing Yes Activity Bundled Services Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png General Single Phase Commercial General Three Phase Commercial Industrial Industrial Residential Residential Security Lighting 100 W HPS Lighting

159

California Department of Water Resources | Open Energy Information  

Open Energy Info (EERE)

Water Resources Water Resources Place California Utility Id 3255 Utility Location Yes Ownership S NERC Location WECC NERC WECC Yes Operates Generating Plant Yes Activity Generation Yes Activity Buying Transmission Yes Activity Bundled Services Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates No Rates Available References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=California_Department_of_Water_Resources&oldid=409152" Categories: EIA Utility Companies and Aliases

160

Bloomer Electric & Water Co | Open Energy Information  

Open Energy Info (EERE)

Bloomer Electric & Water Co Bloomer Electric & Water Co Jump to: navigation, search Name Bloomer Electric & Water Co Place Wisconsin Utility Id 1866 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Cp-1 Small Power Service Commercial Cp-1 Small Power Service Primary Metering Discount with Parallel Generation(20kW or less) Commercial Cp-1 Small Power Service Primary Metering Discount Commercial Cp-1 Small Power Service with Parallel Generation(20kW or less) Commercial Cp-2 Large Power Time-of-Day Service Industrial

Note: This page contains sample records for the topic "open water lubricated" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Lake Mills Light & Water | Open Energy Information  

Open Energy Info (EERE)

Water Water Jump to: navigation, search Name Lake Mills Light & Water Place Wisconsin Utility Id 10605 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes ISO MISO Yes Activity Distribution Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Cp-1 Small Power Service between 50kW and 200kW Demand Primary Metering and Transformer Ownership Discount with Parallel Generation(20kW or less) Industrial Cp-1 Small Power Service between 50kW and 200kW Demand Primary Metering and Transformer Ownership Discount Industrial

162

Recent content in Water Power Forum | OpenEI Community  

Open Energy Info (EERE)

Recent content in Water Power Forum Recent content in Water Power Forum Home Name Post date sort icon Type OpenEI launches new Water Power Gateway and Community Forum Graham7781 28 Mar 2013 - 15:16 Blog entry Global Marine Renewable Energy Conference (GMREC) Kch 3 Apr 2013 - 14:26 Event MHK Cost Breakdown Structure Draft Kch 9 Apr 2013 - 13:30 Document MHK LCOE Reporting Guidance Draft Ocop 18 Apr 2013 - 13:41 Document Comments on MHK Cost Reduction Pathway White Papers Alison.labonte 26 Nov 2013 - 11:43 Question 2013 projects and funding Vanessa.gregory 13 Dec 2013 - 09:12 Question Hi Vanessa-I connected wit... NickL 13 Dec 2013 - 14:38 Answer Groups Menu You must login in order to post into this group. Recent content Hi Vanessa-I connected wit... 2013 projects and funding

163

Moose Lake Water & Light Comm | Open Energy Information  

Open Energy Info (EERE)

Lake Water & Light Comm Lake Water & Light Comm Jump to: navigation, search Name Moose Lake Water & Light Comm Place Minnesota Utility Id 12897 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes ISO MISO Yes Operates Generating Plant Yes Activity Generation Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png 2-250HPS-FRO Lighting 250 HPS ELEOLY Lighting 3-250 HPS Lighting 4-250 HPS Lighting 400 HPS Rent Lighting BEST OIL CO Commercial BIKE TRAIL Commercial CIP Commercial Commercial Demand Commercial Commercial Electricity Commercial Demand 1 Phase Industrial

164

Waterloo Light & Water Comm | Open Energy Information  

Open Energy Info (EERE)

Waterloo Light & Water Comm Waterloo Light & Water Comm Jump to: navigation, search Name Waterloo Light & Water Comm Place Wisconsin Utility Id 20182 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes ISO MISO Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png General Service Three Phase Commercial General Service Single Phase Commercial General Service TOU Single Phase Commercial General Service TOU Three Phase Commercial Industrial TOU Industrial Large Power TOU Industrial Renewable Energy Rider 1 Commercial Renewable Energy Rider 2 Industrial

165

Albany Water Gas & Light Comm | Open Energy Information  

Open Energy Info (EERE)

Water Gas & Light Comm Water Gas & Light Comm Jump to: navigation, search Name Albany Water Gas & Light Comm Place Georgia Utility Id 230 Utility Location Yes Ownership M NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Demand Commercial Commercial Non-Demand Commercial Large Commercial Demand Commercial Residential Residential Security Lights 1000 Watt Metal Halide Metal Pole Lighting Security Lights 1000 Watt Metal Halide Wooden Pole Lighting Security Lights 150 HPSV Fixtures Metal Pole Lighting Security Lights 150 HPSV Fixtures Wooden Pole Lighting

166

Bath Electric Gas & Water Sys | Open Energy Information  

Open Energy Info (EERE)

Electric Gas & Water Sys Electric Gas & Water Sys Jump to: navigation, search Name Bath Electric Gas & Water Sys Place New York Utility Id 1343 Utility Location Yes Ownership M NERC Location NPCC NERC NPCC Yes ISO NY Yes Activity Buying Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial (20 KW to 75 KW demand) Commercial Industrial (Over 75 KW demand) Industrial Outdoor Lighting (175W MV-150W HPS) Lighting Outdoor Lighting (250W HPS) Lighting Outdoor Lighting (400W MV/HPS) Lighting Residential Residential Small Commercial ( Under 20 KW demand) Commercial

167

Clarksville Light & Water Co | Open Energy Information  

Open Energy Info (EERE)

Clarksville Light & Water Co Clarksville Light & Water Co Jump to: navigation, search Name Clarksville Light & Water Co Place Arkansas Utility Id 3705 Utility Location Yes Ownership M NERC Location SPP NERC SPP Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Large Commercial (Rate schedule p) Commercial Large Industrial (Rate schedule p) Industrial Residential (R1) Residential Residential Rate Schedule R-2 Residential Security Light Service (Rate schedule L)HPS 100 W Commercial Security Light Service 1000 W MH Commercial Security light service 150 W HPS Commercial

168

Sun Prairie Water & Light Comm | Open Energy Information  

Open Energy Info (EERE)

Sun Prairie Water & Light Comm Sun Prairie Water & Light Comm Jump to: navigation, search Name Sun Prairie Water & Light Comm Place Wisconsin Utility Id 18312 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes ISO MISO Yes Activity Distribution Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Area Lighting 1000w Halide existing poles Lighting Area Lighting 1000w Halide provided poles Lighting Area Lighting 100w HPS existing poles Lighting Area Lighting 100w HPS provided poles Lighting Area Lighting 150w HPS existing poles Lighting

169

Guidelines for Maintaining Steam Turbine Lubrication Systems  

Science Conference Proceedings (OSTI)

Failures of steam turbine bearings and rotors cost the utility industry an estimated $150 million a year. A third of these failures involve contaminated lubricants or malfunctioning lubricant supply system components. This report, outlining a comprehensive surveillance program, presents guidelines for maintaining major elements in the turbine lubrication system.

1986-07-01T23:59:59.000Z

170

Multifunctional lubricant additives and compositions thereof  

Science Conference Proceedings (OSTI)

This paper discusses an antioxidant/ antiwear/extreme pressure/load carrying lubricant composition. It comprises a major proportion of an oil of lubricating viscosity or grease or other solid lubricant prepared therefrom and a minor amount of an ashless multifunctional antioxidant/antiwear/extreme pressure/load carrying additive product comprising a thiophosphate derived from a dihydrocarbyl dithiocarbamate.

Farng, L.O.; Horodysky, A.G.

1991-03-26T23:59:59.000Z

171

Lectures on geochemical interpretation of hydrothermal waters | Open Energy  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » Lectures on geochemical interpretation of hydrothermal waters Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Lectures on geochemical interpretation of hydrothermal waters Abstract The alkali carbonates, Na, K, and Li, are relatively soluble at all temperatures and generally precipitate only where there is extreme evapora- tion. In contrast, the alkaline earth carbonates. Ca. Ht, Sr, and Ba, are moderately to sparingly soluble and commonly precipitate in bydrothecmal systems. Calcite is by far the most abundant and important carbonate found

172

North Branch Water & Light Comm | Open Energy Information  

Open Energy Info (EERE)

North Branch Water & Light Comm North Branch Water & Light Comm Place Minnesota Utility Id 13681 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes Operates Generating Plant Yes Activity Generation Yes Activity Distribution Yes Activity Bundled Services Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Commercial Large General Service Industrial Residential Residential Residential- Seasonal Residential Average Rates Residential: $0.1250/kWh Commercial: $0.1140/kWh Industrial: $0.0750/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a"

173

Oconto Falls Water & Light Comm | Open Energy Information  

Open Energy Info (EERE)

Oconto Falls Water & Light Comm Oconto Falls Water & Light Comm Place Wisconsin Utility Id 13965 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes ISO MISO Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Cp-1 Small Power Service Industrial Cp-1 Small Power Service Primary Metering Discount with Parallel Generation(20kW or less) Industrial Cp-1 Small Power Service Primary Metering Discount Industrial Cp-1 Small Power Service with Parallel Generation(20kW or less) Industrial Cp-1 TOD Small Power Optional Time-of-Day Service Primary Metering Discount

174

Newberry Water & Light Board | Open Energy Information  

Open Energy Info (EERE)

Board Board Jump to: navigation, search Name Newberry Water & Light Board Place Michigan Utility Id 13525 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes ISO MISO Yes Operates Generating Plant Yes Activity Generation Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Electric Commercial Residential Electric Residential Average Rates Residential: $0.1100/kWh Commercial: $0.1030/kWh Industrial: $0.1390/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Newberry_Water_%26_Light_Board&oldid=411182

175

Buckeye Water C&D District | Open Energy Information  

Open Energy Info (EERE)

Irrigation District) Irrigation District) Jump to: navigation, search Name Buckeye Water C&D District Place Arizona Utility Id 2469 Utility Location Yes Ownership P NERC Location WECC NERC WECC Yes Activity Buying Transmission Yes Activity Buying Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates Residential: $0.1010/kWh Commercial: $0.0784/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Buckeye_Water_C%26D_District&oldid=412227"

176

Superior Water, Light and Power Co | Open Energy Information  

Open Energy Info (EERE)

Water, Light and Power Co Water, Light and Power Co Jump to: navigation, search Name Superior Water, Light and Power Co Place Wisconsin Utility Id 18336 Utility Location Yes Ownership I NERC Location MRO NERC MRO Yes Activity Bundled Services Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates Residential: $0.1050/kWh Commercial: $0.0835/kWh Industrial: $0.0674/kWh The following table contains monthly sales and revenue data for Superior Water, Light and Power Co (Wisconsin). Month RES REV (THOUSAND $) RES SALES (MWH) RES CONS COM REV (THOUSAND $) COM SALES (MWH) COM CONS IND_REV (THOUSAND $) IND SALES (MWH) IND CONS OTH REV (THOUSAND $) OTH SALES (MWH) OTH CONS TOT REV (THOUSAND $) TOT SALES (MWH) TOT CONS

177

Power Circuit Breaker Lubrication: Laboratory Assessments and Lubrication Selection  

Science Conference Proceedings (OSTI)

The life cycle performance of a high voltage circuit breaker is, to a large degree, determined by the performance of the materials and components that make up the complete breaker. The rates of deterioration of components such as compressors, pumps, seals, linkages and their lubrication and interrupter elements drive the requirements for circuit breaker maintenance and refurbishment. EPRI has conducted a series of investigation to enhance knowledge of aging processes and to identify those materials ...

2012-12-13T23:59:59.000Z

178

USDOE Top-of-Rail Lubricant Project  

DOE Green Energy (OSTI)

Lubrication of wheel/rail systems has been recognized for the last two decades as a very important issue for railroads. Energy savings and less friction and wear can be realized if a lubricant can be used at the wheel/rail interface. On the other hand, adverse influences are seen in operating and wear conditions if improper or excessive lubrication is used. Also, inefficiencies in lubrication need to be avoided for economic and environmental reasons. The top-of-rail (TOR) lubricant concept was developed by Texaco Corporation to lubricate wheels and rails effectively and efficiently. Tranergy Corporation has been developing its SENTRAEN 2000{trademark} lubrication system for the last ten years, and this revolutionary new high-tech on-board rail lubrication system promises to dramatically improve the energy efficiency, performance, safety, and track environment of railroads. The system is fully computer-controlled and ensures that all of the lubricant is consumed as the end of the train passes. Lubricant quantity dispensed is a function of grade, speed, curve, and axle load. Tranergy also has its LA4000{trademark} wheel and rail simulator, a lubrication and traction testing apparatus. The primary task of this project was collecting and analyzing the volatile and semivolatile compounds produced as the lubricant was used. The volatile organic compounds were collected by Carbotrap cartridges and analyzed by adsorption and gas chromatography/mass spectrometry (GC/MS). The semivolatile fraction was obtained by collecting liquid that dripped from the test wheel. The collected material was also analyzed by GC/MS. Both of these analyses were qualitative. The results indicated that in the volatile fraction, the only compounds on the Environmental Protection Agency's (EPA) Superfund List of Analytes detected were contaminants either in the room air or from other potential contamination sources in the laboratory. Similarly, in the semivolatile fraction none of the detected compounds are on the EPA's Superfund List of Analytes. The major compound in the semivolatile fraction is 1,2-propanediol, which was also found as the major component of the TOR lubricant before testing. Other compounds found in trace quantities either were present in the TOR lubricant or were small fragments from the polymeric component of the TOR lubricant. The second task for Argonne in this project was to investigate the effects of axle load, angle of attack, and quantity of lubricant on lateral friction forces, as well as the consumption time of the TOR lubricant. The second task was to collect and qualitatively identify any volatile and semivolatile compounds produced upon use of the TOR lubricant.

Mohumad F. Alzoubi; George R. Fenske; Robert A. Erck; Amrit S. Boparai

2002-02-01T23:59:59.000Z

179

Density-driven exchange flow between open water and an aquatic canopy  

E-Print Network (OSTI)

Differences in water density can drive an exchange flow between the vegetated and open regions of surface water systems. A laboratory experiment has been conducted to investigate this exchange flow, using a random array ...

Zhang, Xueyan

180

Los Angeles Department of Water & Power | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search Jump to: navigation, search Name Los Angeles Department of Water & Power Place California Utility Id 11208 Utility Location Yes Ownership M NERC Location WECC NERC WECC Yes ISO CA Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Wholesale Marketing Yes Activity Bundled Services Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png A-1 Rate A Commercial A-1 Rate B (TOU) Commercial

Note: This page contains sample records for the topic "open water lubricated" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

City of Water Valley, Mississippi (Utility Company) | Open Energy  

Open Energy Info (EERE)

Mississippi (Utility Company) Mississippi (Utility Company) Jump to: navigation, search Name City of Water Valley Place Mississippi Utility Id 20176 Utility Location Yes Ownership M NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png General Power 1 Commercial General Power 2 Commercial General Power 3 Commercial Lighting Service- 100W HPS Lighting Lighting Service- 175W Mercury Vapor Lighting Lighting Service- 250W HPS Lighting Lighting Service- 400W HPS Lighting Lighting Service- 400W Mercury Vapor Lighting Lighting Service- 400W Metal Halide Lighting

182

New London Electric&Water Util | Open Energy Information  

Open Energy Info (EERE)

Util Util Jump to: navigation, search Name New London Electric&Water Util Place Wisconsin Utility Id 13467 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes ISO MISO Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Cp-1 Small Power Service Industrial Cp-1 Small Power Service Primary Metering Discount with Parallel Generation(20kW or less) Industrial Cp-1 Small Power Service Primary Metering and Transformer Ownership Discount Industrial Cp-1 Small Power Service Primary Metering and Transformer Ownership Discount with Parallel Generation(20kW or less) Industrial

183

City Water and Light Plant | Open Energy Information  

Open Energy Info (EERE)

and Light Plant and Light Plant Jump to: navigation, search Name City Water and Light Plant Place Arkansas Utility Id 9879 Utility Location Yes Ownership M NERC Location SPP NERC SPP Yes RTO SPP Yes Operates Generating Plant Yes Activity Generation Yes Activity Buying Transmission Yes Activity Distribution Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png General Service- Large Industrial General Service- Large(Primary Metering) Industrial General Service- Small Electric Rate Commercial General service (Residential Electric Rate) Residential

184

Board of Water Electric & Communications | Open Energy Information  

Open Energy Info (EERE)

Electric & Communications Electric & Communications Jump to: navigation, search Name Board of Water Electric & Communications Place Iowa Utility Id 13143 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes ISO MISO Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Wholesale Marketing Yes Activity Retail Marketing Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial I Electric Commercial Commercial II Electric Commercial

185

Los Angeles Department of Water & Power | Open Energy Information  

Open Energy Info (EERE)

(Redirected from LADWP) (Redirected from LADWP) Jump to: navigation, search Name Los Angeles Department of Water & Power Place California Utility Id 11208 Utility Location Yes Ownership M NERC Location WECC NERC WECC Yes ISO CA Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Wholesale Marketing Yes Activity Bundled Services Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png A-1 Rate A Commercial

186

Biofluid lubrication for artificial joints  

E-Print Network (OSTI)

This research investigated biofluid lubrication related to artificial joints using tribological and rheological approaches. Biofluids studied here represent two categories of fluids, base fluids and nanostructured biofluids. Base fluids were studied through comparison of synthetic fluids (simulated body fluid and hyaluronic acid) as well as natural biofluids (from dogs, horses, and humans) in terms of viscosity and fluid shear stress. The nano-structured biofluids were formed using molecules having well-defined shapes. Understanding nano-structured biofluids leads to new ways of design and synthesis of biofluids that are beneficial for artificial joint performance. Experimental approaches were utilized in the present research. This includes basic analysis of biofluids property, such as viscosity, fluid shear stress, and shear rate using rheological experiments. Tribological investigation and surface characterization were conducted in order to understand effects of molecular and nanostructures on fluid lubrication. Workpiece surface structure and wear mechanisms were investigated using a scanning electron microscope and a transmission electron microscope. The surface topography was examined using a profilometer. The results demonstrated that with the adding of solid additives, such as crown ether or fullerene acted as rough as the other solids in the 3-body wear systems. In addition, the fullerene supplied low friction and low wear, which designates the lubrication purpose of this particular particle system. This dissertation is constructed of six chapters. The first chapter is an introduction to body fluids, as mentioned earlier. After Chapter II, it examines the motivation and approach of the present research, Chapter III discusses the experimental approaches, including materials, experimental setup, and conditions. In Chapter IV, lubrication properties of various fluids are discussed. The tribological properties and performance nanostructured biofluids are discussed in Chapter V, followed by summary and conclusions in Chapter VI.

Pendelton, Alice Mae

2008-12-01T23:59:59.000Z

187

The Fuels and Lubricants Research Division of Southwest Research includes extensive engines, fuels and lubricants research,  

E-Print Network (OSTI)

Caterpillar 1K Lubricant Test This test evaluates the piston deposits, liner wear, and oil consumption and oil consumption. The test is proposed for inclusion in the PC-10 category. Mack T8/T8A/T8E Lubricant of Mack engine oil specification EON+ 03, CI-4+ and will be included in PC-10. Mack T12 Lubricant Test

Chapman, Clark R.

188

Lubrication from mixture of boric acid with oils and greases  

DOE Patents (OSTI)

Lubricating compositions including crystalline boric acid and a base lubricant selected from oils, greases and the like. The lubricity of conventional oils and greases can also be improved by adding concentrates of boric acid.

Erdemir, Ali (Naperville, IL)

1995-01-01T23:59:59.000Z

189

Few-Layer Graphene as a Dry Lubricant  

The oil-based lubricants need to be consistently reapplied, producing additional waste. The cost of applying solid lubricating coatings is rather high and, ...

190

City of Glendale Water Power | Open Energy Information  

Open Energy Info (EERE)

Glendale Water Power Jump to: navigation, search Name City of Glendale Water & Power Place Glendale, California Zip 91206 Product California-based water and electrical utility. The...

191

Category:Solar Water Heating Incentives | Open Energy Information  

Open Energy Info (EERE)

Solar Water Heating Incentives Jump to: navigation, search Category for Solar Water Heating Incentives. Pages in category "Solar Water Heating Incentives" The following 200 pages...

192

Glass molding process with mold lubrication  

DOE Patents (OSTI)

Improvements are provided in glass forming processes of the type wherein hot metal blank molds are employed by using the complementary action of a solid film lubricant layer, of graphite dispersed in a cured thermoset organopolysiloxane, along with an overspray of a lubricating oil.

Davey, Richard G. (Toledo, OH)

1978-06-27T23:59:59.000Z

193

Water Sampling (Lewicki & Oldenburg, 2004) | Open Energy Information  

Open Energy Info (EERE)

Water Sampling (Lewicki & Oldenburg, 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling (Lewicki & Oldenburg, 2004) Exploration...

194

Lubricants  

Science Conference Proceedings (OSTI)

...jelly Mineral oil plus 10 to 20% fatty oil Tallow plus 50% paraffin Tallow plus 70% paraffin Mineral oil plus 10 to 15% sulfurized fatty oil and 10% fatty

195

Aging model for solid lubricants used in weapon stronglinks: tribological performance and hardware review  

Science Conference Proceedings (OSTI)

The solid lubricant used most extensively in strong links throughout the enduring stockpile contains MoS{sub 2}, which is known to react with oxygen and water vapor resulting in a change in the material`s friction and wear behavior. The authors have examined the frictional behavior of this lubricant as a function of oxidation, in support of efforts to quantify the impact of changes in the material on the dynamic behavior of the MC2969 strong link. Their results show that the friction response of oxidized lubricant is strongly influenced by the amount of burnishing performed on the lubricant after deposition. Low levels of burnish leave a thick film, of which only the near surface degrades during oxidation. Rapid wear of the oxidized material leaves a surface whose properties are the same as non-oxidized material. Higher levels of burnish leave a thinner film of lubricant such that the entire film may be oxidized. The friction coefficient on this surface reaches a steady state value greater than that of non oxidized material. In addition to these fundamental differences in steady state behavior, they have shown that the initial friction coefficient on oxidized surfaces is related to the amount of sulfide converted to sulfate, regardless of the oxidation conditions used. Measurements on parts returned from the stockpile show that the friction behavior of aged hardware is consistent with the behavior observed on controlled substrates containing thin lubricant films.

Dugger, M.T.; Peebles, D.E.; Sorroche, E.H.; Varga, K.S. [Sandia National Labs., Albuquerque, NM (United States); Bryan, R.M. [Allied Signal, Kansas City, MO (United States). Federal Manufacturing and Technology

1997-09-01T23:59:59.000Z

196

Water-Gas Samples At Maui Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

Low Emission Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind Page Actions View source History View New Pages Recent Changes All Special Pages...

197

Dynamics of particle clouds in ambient currents with application to open-water sediment disposal  

E-Print Network (OSTI)

Open-water sediment disposal is used in many applications around the world, including land reclamation, dredging, and contaminated sediment isolation. Timely examples include the land reclamation campaign currently underway ...

Gensheimer, Robert James, III

2010-01-01T23:59:59.000Z

198

Double angle seal forming lubricant film  

DOE Patents (OSTI)

A lubricated piston rod seal which inhibits gas leaking from a high pressure chamber on one side of the seal to a low pressure chamber on the other side of the seal. A liquid is supplied to the surface of the piston rod on the low pressure side of the seal. This liquid acts as lubricant for the seal and provides cooling for the rod. The seal, which can be a plastic, elastomer or other material with low elastic modulus, is designed to positively pump lubricant through the piston rod/seal interface in both directions when the piston rod is reciprocating. The capacity of the seal to pump lubricant from the low pressure side to the high pressure side is less than its capacity to pump lubricant from the high pressure side to the low pressure side which ensures that there is zero net flow of lubricant to the high pressure side of the seal. The film of lubricant between the seal and the rod minimizes any sliding contact and prevents the leakage of gas. Under static conditions gas leakage is prevented by direct contact between the seal and the rod.

Ernst, William D. (Troy, NY)

1984-01-01T23:59:59.000Z

199

MHK Technologies/Water Wings | Open Energy Information  

Open Energy Info (EERE)

Water Wings < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Water Wings.jpg Technology Profile Primary Organization Langlee Wave Power AS...

200

Designated Ground Water Basin Map | Open Energy Information  

Open Energy Info (EERE)

Designated Ground Water Basin Map Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Reference Material: Designated Ground Water Basin Map Details Activities (0) Areas...

Note: This page contains sample records for the topic "open water lubricated" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Safe Harbor Water Power Corp | Open Energy Information  

Open Energy Info (EERE)

Harbor Water Power Corp Jump to: navigation, search Name Safe Harbor Water Power Corp Place Pennsylvania Utility Id 16537 Utility Location Yes Ownership I NERC Location RFC NERC...

202

water + monitoring + Nevada + permitting | OpenEI Community  

Open Energy Info (EERE)

water + monitoring + Nevada + permitting Home Kyoung's picture Submitted by Kyoung(155) Contributor 2 August, 2012 - 18:43 Nevada Meeting 2 - Regulatory Issues water + monitoring...

203

Amendment of Water Rights Permit | Open Energy Information  

Open Energy Info (EERE)

Amendment of Water Rights Permit Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Reference Material: Amendment of Water Rights Permit Details Activities (0) Areas (0)...

204

Property:Water Column Location | Open Energy Information  

Open Energy Info (EERE)

Column Location Jump to: navigation, search Property Name Water Column Location Property Type Text Pages using the property "Water Column Location" Showing 1 page using this...

205

Water Sampling At Lualualei Valley Area (Thomas, 1986) | Open...  

Open Energy Info (EERE)

Water Sampling At Lualualei Valley Area (Thomas, 1986) Exploration Activity Details Location Lualualei Valley Area Exploration Technique Water Sampling Activity Date Usefulness not...

206

Colorado Water Quality Control Act | Open Energy Information  

Open Energy Info (EERE)

Water Quality Control Act Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Reference Material: Colorado Water Quality Control Act edit Details Activities (0) Areas...

207

FEMP Solar Hot Water Calculator | Open Energy Information  

Open Energy Info (EERE)

Solar Hot Water Calculator Jump to: navigation, search Name FEMP Solar Hot Water Calculator Abstract Online tool to help Federal agencies meet Energy Independence and Security Act...

208

Observations of Steep Wave Statistics in Open Ocean Waters  

Science Conference Proceedings (OSTI)

A new wavelet analysis methodology is proposed to estimate the statistics of steep waves. The method is applied to open ocean wave height data from the Southern Ocean Waves Experiment (1992) and from a field experiment conducted at Duck, North ...

Nicholas Scott; Tetsu Hara; Edward J. Walsh; Paul A. Hwang

2005-03-01T23:59:59.000Z

209

Droplet mobility on lubricant-impregnated surfaces  

E-Print Network (OSTI)

Non-wetting surfaces containing micro/nanotextures impregnated with lubricating liquids have recently been shown to exhibit superior non-wetting performance compared to superhydrophobic surfaces that rely on stable airliquid ...

Dhiman, Rajeev

210

An experimental investigation into oil mist lubrication  

E-Print Network (OSTI)

Oil mist lubrication offers many advantages over sump lubrication. Unfortunately, mist lubrication generates sub-micrometer sized aerosol particles (fines) that escape from the oil mist lubrication system. These particles are an environmental hazard. There can be a two-pronged approach to the present problem. The first method is to develop a suitable blend that reduces the number of 'fine' particles. Experiments are designed to identify the effect of the additives and the temperature of the lube oil in the generator. The best performing lube oil formulations are identified based on performance at different bearing speeds and the temperature of the lube oil in the generator. The second approach is based on the design of a better bearing casing to maximize collection efficiency. An attempt is made to study collection efficiency using dimensional analysis. The non-dimensional numbers are identified and their validity is analyzed. Alternatively, a boundary value problem based on continuum mechanics is partially formulated for future study.

Kannan, Krishna

2000-01-01T23:59:59.000Z

211

Compatibility of refrigerants and lubricants with elastomers  

SciTech Connect

Information contained in this reporters designed to assist the air-conditioning and refrigeration industry in the selection of suitable elastomeric gasket and seal materials that will prove useful in various refrigerant and refrigeration lubricant environments. Swell measurements have been made on approximately 50% of the proposed elastomers (94 total)in both the lubricant (7 total) and refrigerant (10 total) materials. Swell behavior in the these fluids have been determined using weight and in situ diameter measurements for the refrigerants and weight, diameter and thickness measurements for the lubricants. Weight and diameter measurements are repeated after 2 hours and 24 hours for samples removed from the refrigerant test fluids and 24 hours after removal from the lubricants.

Hamed, G.R.; Seiple, R.H.

1992-07-01T23:59:59.000Z

212

Water Power Forum - Q & A | OpenEI Community  

Open Energy Info (EERE)

Water Power Forum - Q & A Home > Water Power Forum Content Group Activity By term Q & A Feeds No questions have been added to this group yet. Groups Menu You must login in order to...

213

Morenci Water and Electric Co | Open Energy Information  

Open Energy Info (EERE)

Morenci Water and Electric Co Jump to: navigation, search Name Morenci Water and Electric Co Place Arizona Utility Id 12919 Utility Location Yes Ownership I NERC Location WECC NERC...

214

World Wind and Water Energy LLC | Open Energy Information  

Open Energy Info (EERE)

World Wind and Water Energy LLC Jump to: navigation, search Name World Wind and Water Energy LLC Place Delaware Sector Wind energy Product Delaware-based company focused on...

215

Metropolitan Water District of S CA | Open Energy Information  

Open Energy Info (EERE)

Water District of S CA Jump to: navigation, search Name Metropolitan Water District of S CA Place California Utility Id 12397 Utility Location Yes Ownership S NERC Location WECC...

216

Tribological Characterization of Carbon Based Solid Lubricants  

E-Print Network (OSTI)

High performance machines such as gas turbine engines demand efficient solid lubricants at high temperature and in vacuum. The current conventional solid lubricants need to be further improved. This research evaluates carbon based solid lubricants using a high vacuum, high temperature pin-on-disc tribometer. The objectives of this research were to develop an understanding of the tribological properties of solid lubricant coatings under extreme operating conditions, and to determine whether using a carbon based solid lubricant would be acceptable for use in those conditions. Experimentally, two solid lubricant coatings on tungsten carbide substrate were tested against two different materials. The coatings were carbon based and molybdenum disulfide based. The other materials were 440C stainless steel and tungsten carbide. The temperature, pressure, and relative humidity are independent variables. The results showed that the carbon based coating increases friction and wears out quickly due to high temperature, high vacuum, and low humidity. Abrasive wear is the dominating mechanism. At elevated temperatures and in dry environment, the carbon based coating underwent significant oxidation and phase transformation. This research is beneficial for future design and development of solid lubricants for aerospace applications, as well as other industries requiring lubricants that must operate in extreme conditions. This thesis includes five chapters. Chapter I is an introduction to tribology and to the materials being used in this research. Chapter II describes the motivation and objectives behind this research. Chapter III discusses the experimental procedure and further explains the materials used. Chapter IV presents and discusses the results obtained. Chapter V discusses the major conclusions obtained from the results and offers some future work that may be conducted concerning this research.

Sanchez, Carlos Joel

2011-08-01T23:59:59.000Z

217

Advanced lubrication systems and materials. Final report  

DOE Green Energy (OSTI)

This report described the work conducted at the National Institute of Standards and Technology under an interagency agreement signed in September 1992 between DOE and NIST for 5 years. The interagency agreement envisions continual funding from DOE to support the development of fuel efficient, low emission engine technologies in terms of lubrication, friction, and wear control encountered in the development of advanced transportation technologies. However, in 1994, the DOE office of transportation technologies was reorganized and the tribology program was dissolved. The work at NIST therefore continued at a low level without further funding from DOE. The work continued to support transportation technologies in the development of fuel efficient, low emission engine development. Under this program, significant progress has been made in advancing the state of the art of lubrication technology for advanced engine research and development. Some of the highlights are: (1) developed an advanced high temperature liquid lubricant capable of sustaining high temperatures in a prototype heat engine; (2) developed a novel liquid lubricant which potentially could lower the emission of heavy duty diesel engines; (3) developed lubricant chemistries for ceramics used in the heat engines; (4) developed application maps for ceramic lubricant chemistry combinations for design purpose; and (5) developed novel test methods to screen lubricant chemistries for automotive air-conditioning compressors lubricated by R-134a (Freon substitute). Most of these findings have been reported to the DOE program office through Argonne National Laboratory who manages the overall program. A list of those reports and a copy of the report submitted to the Argonne National Laboratory is attached in Appendix A. Additional reports have also been submitted separately to DOE program managers. These are attached in Appendix B.

Hsu, S.

1998-05-07T23:59:59.000Z

218

Anti-friction additives for lubricating oils  

SciTech Connect

A lubricating oil composition is described comprising (i) a major portion of lubricant oil; and (ii) from about 0.05 to about 10.0 wt.% of, as an additive, a product prepared by reacting a natural oil selected from the group consisting of coconut, babassu, palm, palm kernel, olive, castor, peanut, beef tallow and lard, with a (C/sub 2/-C/sub 10/) hydroxy acid and a polyamine.

Karol, T.J.; Magaha, H.S.; Schlicht, R.C.

1987-03-03T23:59:59.000Z

219

Water-Gas Samples (Klein, 2007) | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water-Gas Samples (Klein, 2007) Exploration Activity Details Location Unspecified...

220

Water Energy Load Profiling (WELP) Tool | Open Energy Information  

Open Energy Info (EERE)

Water Energy Load Profiling (WELP) Tool Water Energy Load Profiling (WELP) Tool Jump to: navigation, search Tool Summary Name: Water Energy Load Profiling (WELP) Tool Agency/Company /Organization: California Public Utilities Commission (CPUC) Sector: Energy, Water Focus Area: Energy Efficiency, - Embodied Energy, Water Conservation Phase: Determine Baseline, "Evaluate Effectiveness and Revise" is not in the list of possible values (Bring the Right People Together, Create a Vision, Determine Baseline, Evaluate Options, Develop Goals, Prepare a Plan, Get Feedback, Develop Finance and Implement Projects, Create Early Successes, Evaluate Effectiveness and Revise as Needed) for this property. Topics: GHG inventory, Policies/deployment programs, Resource assessment, Background analysis

Note: This page contains sample records for the topic "open water lubricated" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

List of Solar Water Heat Incentives | Open Energy Information  

Open Energy Info (EERE)

Solar Water Heat Incentives Solar Water Heat Incentives Jump to: navigation, search The following contains the list of 920 Solar Water Heat Incentives. CSV (rows 1-500) CSV (rows 501-920) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active 30% Business Tax Credit for Solar (Vermont) Corporate Tax Credit Vermont Commercial Industrial Photovoltaics Solar Space Heat Solar Thermal Electric Solar Thermal Process Heat Solar Water Heat No APS - GEOSmart Financing Program (Arizona) Utility Loan Program Arizona Residential Solar Water Heat Photovoltaics No APS - Renewable Energy Incentive Program (Arizona) Utility Rebate Program Arizona Commercial Residential Anaerobic Digestion Biomass Daylighting Geothermal Electric Ground Source Heat Pumps Landfill Gas

222

Residential Energy Consumption for Water Heating (2005) | OpenEI  

Open Energy Info (EERE)

for Water Heating (2005) for Water Heating (2005) Dataset Summary Description Provides total and average annual residential energy consumption for water heating in U.S. households in 2005, measured in both physical units and Btus. The data is presented for numerous categories including: Census Region and Climate Zone; Housing Unit Characteristics (type, year of construction, size, income, race, age); and Water Heater and Water-using Appliance Characteristics (size, age, frequency of use, EnergyStar rating). Source EIA Date Released September 01st, 2008 (6 years ago) Date Updated January 01st, 2009 (5 years ago) Keywords Energy Consumption Residential Water Heating Data application/vnd.ms-excel icon 2005_Consumption.for_.Water_.Heating.Phys_.Units_EIA.Sep_.2008.xls (xls, 67.6 KiB)

223

GRR/Section 14 - Water Resource Assessment | Open Energy Information  

Open Energy Info (EERE)

- Water Resource Assessment - Water Resource Assessment < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 14 - Water Resource Assessment 14 - WaterResourceAssessment.pdf Click to View Fullscreen Contact Agencies United States Environmental Protection Agency Bureau of Land Management US Army Corps of Engineers Federal Emergency Management Agency Regulations & Policies Clean Water Act Coastal Zone Management Act Coastal Barrier Resources Act Safe Drinking Water Act Sole Source Aquifer Demonstration Program Flood Disaster Protection Act of 1973 NPDES Rules National Flood Insurance Act Flood Disaster Protection Act of 1973 Triggers None specified Click "Edit With Form" above to add content 14 - WaterResourceAssessment.pdf

224

An area-dependent wind function for estimating open water evaporation using land-based meteorological data  

Science Conference Proceedings (OSTI)

We propose a generally applicable formula for estimating evaporation rate from open water bodies which utilizes readily available land-based meteorological data. We follow the well-known aerodynamic approach in which evaporation rate is modelled as the ... Keywords: Evaporation, Lake, Open water, Pond, Uncertainty, Water body, Wind function, Wind speed

D. L. McJannet; I. T. Webster; F. J. Cook

2012-05-01T23:59:59.000Z

225

MHK Technologies/Deep water capable hydrokinetic turbine | Open Energy  

Open Energy Info (EERE)

water capable hydrokinetic turbine water capable hydrokinetic turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage 275px Technology Profile Primary Organization Hills Inc Technology Resource Click here Current Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 4 Proof of Concept Technology Description It is an axial flow shrouded turbine direct connected to a water pump that delivers water to an on shore genetator Being completely water proof and submersible the device can operate at any water depth Mooring Configuration An array of turbines are teathered to a cable that is anchored via a dead weight Optimum Marine/Riverline Conditions This system is designed for use in Florida s Gulf Stream however any constant ocean current is suitable

226

Water Sampling At Mokapu Penninsula Area (Thomas, 1986) | Open Energy  

Open Energy Info (EERE)

Water Sampling At Mokapu Penninsula Area (Thomas, Water Sampling At Mokapu Penninsula Area (Thomas, 1986) Exploration Activity Details Location Mokapu Penninsula Area Exploration Technique Water Sampling Activity Date Usefulness could be useful with more improvements DOE-funding Unknown Notes Chemical analysis of groundwater from Mokapu was severely restricted by the absence of drilled wells; the only groundwater sources present were five shallow, brackish ponds, Chemical data indicated that all of the ponds consisted of seawater diluted by varying amounts of fresh surface water; no thermal alteration was revealed by the water chemistry (Table 2). Available temperature and water chemistry data on the Koolau caldera area were also assessed as part of the Mokapu study. The results of this analysis (Table

227

Compatibility of lubricant additives with HFC refrigerants and synthetic lubricants. Final report, Part 1  

Science Conference Proceedings (OSTI)

Part one of this research provides manufacturers of components of air-conditioning and refrigeration equipment with a useful list of lubricant additives, sources, functional properties and chemical species. The list in part one is comprised of domestic lubricant additive suppliers and the results of a literature search that was specifically targeted for additives reported to be useful in polyolester chemistry.

Cavestri, R.C. [Imagination Resources, Inc., Dublin, OH (United States)

1997-07-01T23:59:59.000Z

228

Water Sampling At Little Valley Area (Wood, 2002) | Open Energy...  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Little Valley Area (Wood, 2002) Exploration Activity Details Location...

229

Water Quality Surface and Ground | Open Energy Information  

Open Energy Info (EERE)

Quality Surface and Ground Jump to: navigation, search Retrieved from "http:en.openei.orgwindex.php?titleWaterQualitySurfaceandGround&oldid612197...

230

Water Rights Permit Package Application | Open Energy Information  

Open Energy Info (EERE)

Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon Water Rights Permit Package Application Jump to: navigation, search GEOTHERMAL...

231

Carderock 3-ft Variable Pressure Cavitation Water Tunnel | Open Energy  

Open Energy Info (EERE)

Variable Pressure Cavitation Water Tunnel Variable Pressure Cavitation Water Tunnel Jump to: navigation, search Basic Specifications Facility Name Carderock 3-ft Variable Pressure Cavitation Water Tunnel Overseeing Organization United States Naval Surface Warfare Center Hydrodynamic Testing Facility Type Tunnel Beam(m) 0.7 Depth(m) 0.7 Water Type Freshwater Cost(per day) Contact POC Special Physical Features The 3-ft Variable Pressure Cavitation Water Tunnel is a vertical plane, closed recirculating with resorber, variable-speed, variable-pressure, two interchangeable circular test sections. Towing Capabilities Towing Capabilities None Wavemaking Capabilities Wavemaking Capabilities None Channel/Tunnel/Flume Channel/Tunnel/Flume Yes Velocity(m/s) 25.8 Recirculating Yes Wind Capabilities Wind Capabilities None

232

Eugene Water and Electric Board | Open Energy Information  

Open Energy Info (EERE)

Eugene Water and Electric Board Eugene Water and Electric Board Jump to: navigation, search Logo: Eugene Water and Electric Board Name Eugene Water and Electric Board Address 500 East 4th Avenue Place Eugene, Oregon Zip 97440 Region Pacific Northwest Area Product Electricity and Water Website http://www.eweb.org Coordinates 44.055379°, -123.085241° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.055379,"lon":-123.085241,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

233

MHK Technologies/Wave Water Pump WWP | Open Energy Information  

Open Energy Info (EERE)

Pump WWP Pump WWP < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Wave Water Pump WWP.gif Technology Profile Primary Organization Renewable Energy Wave Pumps Technology Resource Click here Wave Technology Description The Water Wave Pump WWP is a point absorber that uses a submerged water pump to lift a small quantity of water to a higher head collect it in a piping network and feed it to a hydro turbine to produce power Mooring Configuration Gravity base installed at the sea bed Optimum Marine/Riverline Conditions The REWP can pump water to a hgih head fro waves ranging between 1 2 meters to waves in excess of 4 meters high It self adjusts to varyilng sea levels and wave hights It resists storms safe to navigation as red floats are clearly seen during the day and red flashing lights during the night It does not disturb marine life or shore line scenic view

234

MHK Technologies/Zero Impact Water Current Turbine | Open Energy  

Open Energy Info (EERE)

Zero Impact Water Current Turbine Zero Impact Water Current Turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Technology Profile Primary Organization Green Wave Energy Corp GWEC Project(s) where this technology is utilized *MHK Projects/Green Wave Mendocino *MHK Projects/Green Wave San Luis Obispo Technology Resource Click here Current/Tidal Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 4: Proof of Concept Technology Description The Green Wave Zero Impact Water Current Turbine is a water current turbine that will revolutionize power generation as we know it Technology Dimensions Device Testing Date Submitted 10/8/2010 << Return to the MHK database homepage Retrieved from "http://en.openei.org/w/index.php?title=MHK_Technologies/Zero_Impact_Water_Current_Turbine&oldid=681718

235

Residential Energy Expenditures for Water Heating (2005) | OpenEI  

Open Energy Info (EERE)

Expenditures for Water Heating (2005) Expenditures for Water Heating (2005) Dataset Summary Description Provides total and average household expenditures on energy for water heating in the United States in 2005. The data was collected as part of the Residential Energy Consumption Survey (RECS). RECS is a national survey that collects residential energy-related data. The survey collected data from 4,381 households in housing units statistically selected to represent the 111.1 million housing units in the United States. Data were obtained from residential energy suppliers for each unit in the sample to produce the data. Source EIA Date Released September 01st, 2008 (6 years ago) Date Updated January 01st, 2009 (6 years ago) Keywords Energy Expenditures Residential Water Heating Data application/vnd.ms-excel icon 2005_Total.Expenditures.for_.Water_.Heating_EIA.Sep_.2008.xls (xls, 70.1 KiB)

236

GRR/Section 19-OR-a - Water Access & Water Rights Issues | Open Energy  

Open Energy Info (EERE)

19-OR-a - Water Access & Water Rights Issues 19-OR-a - Water Access & Water Rights Issues < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 19-OR-a - Water Access & Water Rights Issues 19ORAWaterAccessWaterRightsIssues.pdf Click to View Fullscreen Contact Agencies Oregon Water Resources Department Regulations & Policies ORS Chapter 537: Appropriation of Water Generally Triggers None specified Click "Edit With Form" above to add content 19ORAWaterAccessWaterRightsIssues.pdf 19ORAWaterAccessWaterRightsIssues.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative All water is publicly owned under Oregon law. All users must obtain a permit or water right from the Oregon Water Resources Department (WRD) to

237

MHK Technologies/Water Wall Turbine | Open Energy Information  

Open Energy Info (EERE)

Turbine Turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Water Wall Turbine.png Technology Profile Primary Organization Water Wall Turbine Technology Resource Click here Current Technology Type Click here Cross Flow Turbine Technology Readiness Level Click here TRL 5 6 System Integration and Technology Laboratory Demonstration Technology Description WWTurbine has developed and introduced a new commercially viable system for the extraction of Potential and Kinetic Energy from large fast moving water currents for conversion into Electric Energy Mooring Configuration Monopile Optimum Marine/Riverline Conditions min current velocity of 2 m s Technology Dimensions Technology Nameplate Capacity (MW) 0 5 3 0 MW Device Testing

238

Clean and cost-effective dry boundary lubricants for aluminum forming.  

DOE Green Energy (OSTI)

Preliminary research in our laboratory has demonstrated that boric acid is an effective lubricant with an unusual capacity to reduce sliding fiction (providing friction coefficients as low as 0.02) and wear of metallic and ceramic materials. More recent studies have revealed that water or methanol solutions of boric acid can be used to prepare strongly bonded layers of boric acid on aluminum surfaces. It appears that boric acid molecules have a strong tendency to bond chemically to the naturally oxidized surfaces of aluminum and its alloys and to make these surfaces very slippery. Recent metal formability tests indicated that the boric acid films formed on aluminum surfaces by spraying or dipping worked quite well; improving draw scale performance by 58 to 75%. These findings have increased the prospect that boric acid can be formulated and optimized as an effective boundary lubricant and used to solve the friction, galling, and severe wear problems currently encountered in cold-forming of aluminum products. Accordingly, the major goal of this paper is to demonstrate the usefulness and lubrication capacity of thin boric acid films formed on aluminum surfaces by simple dipping or spraying processes and to describe the lubrication mechanisms under typical metal forming conditions. We will also examine the nature of chemical bonding between boric acid and aluminum surfaces and develop new ways to optimize its performance as an effective boundary lubricant.

Erdemir, A.; Fenske, G. R.

1997-12-05T23:59:59.000Z

239

Stockton Regional Water Control Facility Biomass Facility | Open Energy  

Open Energy Info (EERE)

Stockton Regional Water Control Facility Biomass Facility Stockton Regional Water Control Facility Biomass Facility Jump to: navigation, search Name Stockton Regional Water Control Facility Biomass Facility Facility Stockton Regional Water Control Facility Sector Biomass Facility Type Non-Fossil Waste Location San Joaquin County, California Coordinates 37.9175935°, -121.1710389° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.9175935,"lon":-121.1710389,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

240

File:06IDCDrinkingWaterPermit.pdf | Open Energy Information  

Open Energy Info (EERE)

IDCDrinkingWaterPermit.pdf IDCDrinkingWaterPermit.pdf Jump to: navigation, search File File history File usage File:06IDCDrinkingWaterPermit.pdf Size of this preview: 463 × 599 pixels. Other resolution: 464 × 600 pixels. Full resolution ‎(1,275 × 1,650 pixels, file size: 24 KB, MIME type: application/pdf) File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 08:14, 29 October 2012 Thumbnail for version as of 08:14, 29 October 2012 1,275 × 1,650 (24 KB) Dklein2012 (Talk | contribs) You cannot overwrite this file. Edit this file using an external application (See the setup instructions for more information) File usage The following page links to this file: GRR/Section 6-ID-c - Drinking Water Permit Retrieved from

Note: This page contains sample records for the topic "open water lubricated" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Property:Project Nearest Body of Water | Open Energy Information  

Open Energy Info (EERE)

Nearest Body of Water Nearest Body of Water Jump to: navigation, search Property Name Project Nearest Body of Water Property Type String Pages using the property "Project Nearest Body of Water" Showing 25 pages using this property. (previous 25) (next 25) M MHK Projects/40MW Lewis project + North Atlantic Ocean + MHK Projects/ADM 3 + Galway Bay site close to Spiddal + MHK Projects/ADM 5 + government Pilot Zone + MHK Projects/Algiers Light Project + Mississippi River + MHK Projects/Anconia Point Project + Mississippi River + MHK Projects/Ashley Point Project + Mississippi River + MHK Projects/Astoria Tidal Energy + East River + MHK Projects/Avalon Tidal + Ingram Thorofare + MHK Projects/Avondale Bend Project + Mississippi River + MHK Projects/BW2 Tidal + Maurice River +

242

Nevada Division of Water Resources | Open Energy Information  

Open Energy Info (EERE)

Division of Water Resources Division of Water Resources Name Nevada Division of Water Resources Address 901 S. Stewart St., Suite 2002 Place Carson city, Nevada Zip 89701 Phone number 775-684-2800 Website http://water.nv.gov/ Coordinates 39.1580849°, -119.7644949° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.1580849,"lon":-119.7644949,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

243

File:06MTCDrinkingWaterPermit.pdf | Open Energy Information  

Open Energy Info (EERE)

MTCDrinkingWaterPermit.pdf MTCDrinkingWaterPermit.pdf Jump to: navigation, search File File history File usage File:06MTCDrinkingWaterPermit.pdf Size of this preview: 463 × 599 pixels. Other resolution: 464 × 600 pixels. Full resolution ‎(1,275 × 1,650 pixels, file size: 11 KB, MIME type: application/pdf) File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 11:11, 1 October 2012 Thumbnail for version as of 11:11, 1 October 2012 1,275 × 1,650 (11 KB) Dklein2012 (Talk | contribs) You cannot overwrite this file. Edit this file using an external application (See the setup instructions for more information) File usage The following page links to this file: GRR/Section 6-MT-c - Drinking Water Permit Retrieved from

244

File:06NVCDrinkingWaterPermit.pdf | Open Energy Information  

Open Energy Info (EERE)

6NVCDrinkingWaterPermit.pdf 6NVCDrinkingWaterPermit.pdf Jump to: navigation, search File File history File usage File:06NVCDrinkingWaterPermit.pdf Size of this preview: 463 × 599 pixels. Other resolution: 464 × 600 pixels. Full resolution ‎(1,275 × 1,650 pixels, file size: 45 KB, MIME type: application/pdf) File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 15:59, 15 October 2012 Thumbnail for version as of 15:59, 15 October 2012 1,275 × 1,650 (45 KB) Dklein2012 (Talk | contribs) You cannot overwrite this file. Edit this file using an external application (See the setup instructions for more information) File usage The following page links to this file: GRR/Section 6-NV-c - Drinking Water Permit Retrieved from

245

File:06ORCDrinkingWaterPermit.pdf | Open Energy Information  

Open Energy Info (EERE)

6ORCDrinkingWaterPermit.pdf 6ORCDrinkingWaterPermit.pdf Jump to: navigation, search File File history File usage File:06ORCDrinkingWaterPermit.pdf Size of this preview: 463 × 599 pixels. Other resolution: 464 × 600 pixels. Full resolution ‎(1,275 × 1,650 pixels, file size: 11 KB, MIME type: application/pdf) File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 12:09, 28 September 2012 Thumbnail for version as of 12:09, 28 September 2012 1,275 × 1,650 (11 KB) Dklein2012 (Talk | contribs) You cannot overwrite this file. Edit this file using an external application (See the setup instructions for more information) File usage The following page links to this file: GRR/Section 6-OR-c - Drinking Water Permit Retrieved from

246

Colorado Division of Water Resources | Open Energy Information  

Open Energy Info (EERE)

Division of Water Resources Division of Water Resources Jump to: navigation, search Logo: Colorado Division of Water Resources Name Colorado Division of Water Resources Address 1313 Sherman St., Suite 818 Place Denver, Colorado Zip 80203 Coordinates 39.7370973°, -104.9851154° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.7370973,"lon":-104.9851154,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

247

Burbank Water and Power Smart Grid Project | Open Energy Information  

Open Energy Info (EERE)

Burbank Water and Power Smart Grid Project Burbank Water and Power Smart Grid Project Jump to: navigation, search Project Lead Burbank Water and Power Country United States Headquarters Location Burbank, California Recovery Act Funding $20,000,000.00 Total Project Value $62,650,755.00 Coverage Area Coverage Map: Burbank Water and Power Smart Grid Project Coordinates 34.1808392°, -118.3089661° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

248

Utah Division of Water Quality | Open Energy Information  

Open Energy Info (EERE)

Water Quality Water Quality Jump to: navigation, search Logo: Utah Division of Water Quality Name Utah Division of Water Quality Address 195 North 1950 West Place Salt Lake City, Utah Phone number 801.536.4400 Website http://www.waterquality.utah.g Coordinates 40.7733661°, -111.9472798° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.7733661,"lon":-111.9472798,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

249

GRR/Section 19 - Water Access & Water Rights Overview | Open Energy  

Open Energy Info (EERE)

- Water Access & Water Rights Overview - Water Access & Water Rights Overview < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 19 - Water Access & Water Rights Overview 19WaterAccessWaterRightsOverview.pdf Click to View Fullscreen Triggers None specified Click "Edit With Form" above to add content 19WaterAccessWaterRightsOverview.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative A developer may require water for such uses as dust suppression for roads, construction activities, drilling operations, extraction of geothermal resources, plant cooling operations, etc. Water access and water rights are predominantly handled by state law.

250

GRR/Section 19-NV-a - Water Access and Water Rights Issues | Open Energy  

Open Energy Info (EERE)

GRR/Section 19-NV-a - Water Access and Water Rights Issues GRR/Section 19-NV-a - Water Access and Water Rights Issues < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 19-NV-a - Water Access and Water Rights Issues 19NVAWaterAccessAndWaterRightsIssues.pdf Click to View Fullscreen Contact Agencies Nevada Division of Water Resources Nevada Division of Environmental Protection Regulations & Policies Nevada Revised Statutes (NRS) NRS, Chapter 445A - water controls NRS, Chapter 533 - adjudication of vested water rights and appropriation of public waters NRS, Chapter 534 - outlines underground water and well NRS, Chapter 534A - geothermal resources Nevada Administrative Code (NAC) NAC, Chapter 445A - water controls Triggers None specified Click "Edit With Form" above to add content

251

GRR/Section 19-TX-a - Water Access and Water Issues Overview | Open Energy  

Open Energy Info (EERE)

9-TX-a - Water Access and Water Issues Overview 9-TX-a - Water Access and Water Issues Overview < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 19-TX-a - Water Access and Water Issues Overview 19TXAWaterAccessAndWaterRightsIssuesOverview.pdf Click to View Fullscreen Contact Agencies Texas Commission on Environmental Quality Regulations & Policies Tex. Water Code § 11 Triggers None specified Click "Edit With Form" above to add content 19TXAWaterAccessAndWaterRightsIssuesOverview.pdf 19TXAWaterAccessAndWaterRightsIssuesOverview.pdf 19TXAWaterAccessAndWaterRightsIssuesOverview.pdf 19TXAWaterAccessAndWaterRightsIssuesOverview.pdf Flowchart Narrative In the late 1960's Texas transitioned its water law system, switching

252

MHK Technologies/Deep Water Pipelines | Open Energy Information  

Open Energy Info (EERE)

Water Pipelines Water Pipelines < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Deep Water Pipelines.jpg Technology Profile Primary Organization Makai Ocean Engineering Inc Project(s) where this technology is utilized *MHK Projects/Modeling the Physical and Biochemical Influence of Ocean Thermal Energy Conversion Plant Discharges into their Adjacent Waters Technology Resource Click here Ocean Thermal Energy Conversion (OTEC) Technology Type Click here Closed-cycle Technology Readiness Level Click here TRL 5/6: System Integration and Technology Laboratory Demonstration Technology Description Examples include 24 pipe for Mini OTEC four 12 55 pipelines at Hawaii Natural Energy Laboratory with intakes from 2200 to 3000 deep used for OTEC research Significant work on 8 ft DoE pipeline in 1980s India OTEC pipe concept design in 1999 Developed gripper for novel OTEC Cold water pipe concept developed by Lockheed Martin Related technology of SeaWater Air Conditioning has resulted in five other subsea pipelines for Cornell University a resort in Bora Bora and Toronto saving 80 MW of air conditioning power

253

GRR/Section 19-CA-a - Water Access and Water Rights Issues | Open Energy  

Open Energy Info (EERE)

GRR/Section 19-CA-a - Water Access and Water Rights Issues GRR/Section 19-CA-a - Water Access and Water Rights Issues < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 19-CA-a - Water Access and Water Rights Issues 19CAAWaterAccessWaterRightsIssues.pdf Click to View Fullscreen Contact Agencies California State Water Resources Control Board California Division of Water Rights Regulations & Policies California Water Code Triggers None specified Click "Edit With Form" above to add content 19CAAWaterAccessWaterRightsIssues.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative California's water acquisition process is governed by state law and common

254

GRR/Section 19-ID-a - Water Access and Water Rights | Open Energy  

Open Energy Info (EERE)

19-ID-a - Water Access and Water Rights 19-ID-a - Water Access and Water Rights < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 19-ID-a - Water Access and Water Rights 19IDAWaterAccessAndWaterRightsIssues.pdf Click to View Fullscreen Contact Agencies Idaho Department of Water Resources Regulations & Policies Idaho Code Title 42 Triggers None specified Click "Edit With Form" above to add content 19IDAWaterAccessAndWaterRightsIssues.pdf 19IDAWaterAccessAndWaterRightsIssues.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative The Idaho Department of Water Resources (IDWR) has the exclusive authority for regulation of appropriation of the public surface and ground waters of

255

File:06UTBStormWaterPermit.pdf | Open Energy Information  

Open Energy Info (EERE)

UTBStormWaterPermit.pdf UTBStormWaterPermit.pdf Jump to: navigation, search File File history File usage File:06UTBStormWaterPermit.pdf Size of this preview: 463 × 599 pixels. Other resolution: 464 × 600 pixels. Full resolution ‎(1,275 × 1,650 pixels, file size: 41 KB, MIME type: application/pdf) File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 12:16, 30 August 2012 Thumbnail for version as of 12:16, 30 August 2012 1,275 × 1,650 (41 KB) Jnorris (Talk | contribs) You cannot overwrite this file. Edit this file using an external application (See the setup instructions for more information) File usage The following page links to this file: GRR/Section 6-UT-b - Storm Water Permit Retrieved from "http://en.openei.org/w/index.php?title=File:06UTBStormWaterPermit.pdf&oldid=509118

256

Vehicle Technologies Office: Fuels and Lubricants Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuels and Lubricants Research Fuels and Lubricants Research As transportation accounts for two-thirds of the nearly $1 billion the U.S. spends daily on foreign oil, it is vital to increase our use of alternative fuels. Increasing the fuels available to drivers reduces price volatility, supports domestic industries, and increases environmental sustainability. The DOE's Alternative Fuels Data Center provides basic information on alternative fuels, including Biodiesel, Ethanol, Natural Gas, Propane, and Hydrogen. The Vehicle Technologies Office (VTO) supports research to improve how vehicles use these many of these fuels in the future, as well as activities to increase their availability today. It also researches how new petroleum-based fuels affect advanced combustion systems and how lubricants can improve the efficiency of vehicles currently on the road.

257

Compatibility of refrigerants and lubricants with elastomers  

Science Conference Proceedings (OSTI)

The information contained in this report is designed to assist the air-conditioning and refrigeration industry in the selection of suitable elastomeric gasket and seal materials that will prove useful in various refrigerant and refrigeration lubricant environments. 97% of the swell measurements have been made to date. The other 3% of the measurements are contingent on availability of additional R-32. Swell behavior in the fluids have been determined using weight and in situ diameter measurements for the refrigerants and weight, diameter and thickness measurements for the lubricants. Weight and diameter measurements are repeated after 2 and 24 hours for samples removed from the refrigerant test fluids and 24 hours after removal from the lubricants.

Hamed, G.R.; Seiple, R.H.

1993-01-01T23:59:59.000Z

258

Compatibility of refrigerants and lubricants with elastomers  

Science Conference Proceedings (OSTI)

Information contained in this report is designed to assist the air-conditioning and refrigeration industry in the selection of suitable elastomeric gasket and seal materials that will prove useful in various refrigerant and refrigeration lubricant environments. 97% of the swell measurements have been made to date. The other 3% of the measurements are contingent on the availability of additional quantities of R-32. Swell behavior in the fluids have been determined using weight and in situ diameter measurements for the refrigerants and weight, diameter and thickness measurements for the lubricants. Weight and diameter measurements are repeated after 2 hours and 24 hours for samples removed from the refrigerant test fluids and 24 hours after removal from the lubricants.

Hamed, G.R.; Seiple, R.H.

1992-10-01T23:59:59.000Z

259

Alaska Division of Mining Land and Water | Open Energy Information  

Open Energy Info (EERE)

Land and Water Land and Water Jump to: navigation, search Name Alaska Division of Mining Land and Water Address 550 W. 7th Ave., Suite 1260 Place Anchorage, Alaska Zip 99501-3557 Phone number 907-269-8400 Website http://dnr.alaska.gov/mlw/ Coordinates 61.2154607°, -149.8928599° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":61.2154607,"lon":-149.8928599,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

260

Idaho Department of Water Resources | Open Energy Information  

Open Energy Info (EERE)

Idaho Department of Water Resources Idaho Department of Water Resources Name Idaho Department of Water Resources Address 322 East Front Street, PO Box 83720 Place Boise, Idaho Zip 83720 Phone number 208-287-4800 Website http://www.idwr.idaho.gov/ Coordinates 43.608919°, -116.193931° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.608919,"lon":-116.193931,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "open water lubricated" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

MHK Technologies/Water Air Pump WAP | Open Energy Information  

Open Energy Info (EERE)

Pump WAP Pump WAP < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Water Air Pump WAP.jpg Technology Profile Primary Organization Shamil Ayntrazi Technology Resource Click here Wave Technology Type Click here Point Absorber - Submerged Technology Readiness Level Click here TRL 5 6 System Integration and Technology Laboratory Demonstration Technology Description The Water Air Pump WAP uses a partially submerged funnel shaped air pump to compress air collect it in a piping network and feed it to an air turbine Mooring Configuration Gravity base installed at the sea bed Technology Dimensions Device Testing Date Submitted 11:50.0 << Return to the MHK database homepage Retrieved from "http://en.openei.org/w/index.php?title=MHK_Technologies/Water_Air_Pump_WAP&oldid=681697"

262

Direct Power and Water Corporation | Open Energy Information  

Open Energy Info (EERE)

Power and Water Corporation Power and Water Corporation Jump to: navigation, search Name Direct Power and Water Corporation Place Albuquerque, New Mexico Zip 87107 Product DP&W is specialised in engineering, designing and installing turnkey photovoltaic systems. Coordinates 35.08418°, -106.648639° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.08418,"lon":-106.648639,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

263

Western Water and Power Production WWPP | Open Energy Information  

Open Energy Info (EERE)

Water and Power Production WWPP Water and Power Production WWPP Jump to: navigation, search Name Western Water and Power Production (WWPP) Place Albuquerque, New Mexico Zip 88340 Sector Biomass Product Developer and Builder of Biomass Energy Plants. Coordinates 35.08418°, -106.648639° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.08418,"lon":-106.648639,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

264

Hawaii Department of Health Clean Water Branch | Open Energy Information  

Open Energy Info (EERE)

Hawaii Department of Health Clean Water Branch Hawaii Department of Health Clean Water Branch Jump to: navigation, search Name Hawaii Department of Health Clean Water Branch Address P.O. Box 3378 Place Honolulu, Hawaii Zip 96801 Website http://hawaii.gov/health/envir Coordinates 21.31°, -157.86° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":21.31,"lon":-157.86,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

265

California State Water Resources Control Board | Open Energy Information  

Open Energy Info (EERE)

California State Water Resources Control Board California State Water Resources Control Board Name California State Water Resources Control Board Address 1001 I Street Place Sacramento, California Zip 95814 Phone number 916-341-5455 Website http://www.swrcb.ca.gov/ Coordinates 38.58181°, -121.492159° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.58181,"lon":-121.492159,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

266

Water Sampling At Kauai Area (Thomas, 1986) | Open Energy Information  

Open Energy Info (EERE)

Kauai Area (Thomas, 1986) Kauai Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Kauai Area (Thomas, 1986) Exploration Activity Details Location Kauai Area Exploration Technique Water Sampling Activity Date Usefulness not indicated DOE-funding Unknown Notes Groundwater geochemical data compiled for Kauai during the preliminary assessment identified a few very weak water chemistry anomalies, and although these anomalies could be interpreted to be the result of residual heat associated with Kauai's late-stage volcanism, the great age of this activity as well as the absence of any other detectable thermal effects suggests that this is very unlikely. References Donald M. Thomas (1 January 1986) Geothermal Resources Assessment In

267

California Division of Water Rights | Open Energy Information  

Open Energy Info (EERE)

Division of Water Rights Division of Water Rights Name California Division of Water Rights Place Sacramento, California Phone number (916) 341-5632 Website http://www.waterboards.ca.gov/ Coordinates 38.5815719°, -121.4943996° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.5815719,"lon":-121.4943996,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

268

Guangdong Global Power and Water Industries Ltd | Open Energy Information  

Open Energy Info (EERE)

Global Power and Water Industries Ltd Global Power and Water Industries Ltd Jump to: navigation, search Name Guangdong Global Power and Water Industries Ltd Place Meizhou, Guangdong Province, China Sector Solar Product China-based JV researcher and developer of solar PV and power projects Coordinates 24.321199°, 116.118919° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":24.321199,"lon":116.118919,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

269

Nuclear Maintenance Applications Center: Oil Lubrication Guide for Rotating Equipment  

Science Conference Proceedings (OSTI)

At a nuclear station, several types of safety-related and non-safety-related equipment rely on lubricating oil systems to provide lubrication to rotating components. These lubricating systems consist of gears, pumps, valves, heat exchangers, and other parts. In the event of a lubrication system failure, the supported equipment can be shut down, which in turn can lead to unanticipated entries into limiting conditions of operation, system degradation, or a unit trip. An understanding of how oil is affected...

2009-12-09T23:59:59.000Z

270

GRR/Section 19-AK-a - Water Access and Water Rights Issues | Open Energy  

Open Energy Info (EERE)

GRR/Section 19-AK-a - Water Access and Water Rights Issues GRR/Section 19-AK-a - Water Access and Water Rights Issues < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 19-AK-a - Water Access and Water Rights Issues 19AKAWaterAccessWaterRights.pdf Click to View Fullscreen Contact Agencies Alaska Department of Natural Resources Alaska Division of Mining Land and Water Regulations & Policies Alaska Water Use Act Alaska Statutes Alaska Administrative Code Triggers None specified Click "Edit With Form" above to add content 19AKAWaterAccessWaterRights.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative In Alaska, water is declared a public resource belonging to the people of

271

GRR/Section 19-WA-a - Water Access and Water Rights Overview | Open Energy  

Open Energy Info (EERE)

9-WA-a - Water Access and Water Rights Overview 9-WA-a - Water Access and Water Rights Overview < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 19-WA-a - Water Access and Water Rights Overview 19-WA-a - Water Access and Water Rights Overview.pdf Click to View Fullscreen Contact Agencies Washington State Department of Ecology Regulations & Policies Revised Code of Washington Chapter 90.03 Revised Code of Washington Chapter 90.44 RCW 90.44.050 Triggers None specified Similar to many western states, only a small amount of water is available for appropriation in Washington. As a result, Washington has developed a comprehensive regulatory scheme for the distribution of water rights and use of water in the state. Washington employs a prior appropriation or

272

Entech Solar Inc formerly WorldWater Solar Technologies | Open Energy  

Open Energy Info (EERE)

WorldWater Solar Technologies WorldWater Solar Technologies Jump to: navigation, search Name Entech Solar Inc. (formerly WorldWater & Solar Technologies) Place Fort Worth, Texas Zip 76177 Sector Solar Product Texas-based solar energy systems manufacturer. References Entech Solar Inc. (formerly WorldWater & Solar Technologies)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Entech Solar Inc. (formerly WorldWater & Solar Technologies) is a company located in Fort Worth, Texas . References ↑ "Entech Solar Inc. (formerly WorldWater & Solar Technologies)" Retrieved from "http://en.openei.org/w/index.php?title=Entech_Solar_Inc_formerly_WorldWater_Solar_Technologies&oldid=344989

273

Friction and lubrication in metal rolling  

E-Print Network (OSTI)

on the ellipticity 'IjJ (appendix E). (= a/ c in chapter 3) , real area of contact ratio. length of arc of contact in rolling (chapters 4 and 5). semi-axis of Hertz contact ellipse in transverse direction (appendix E). half indenter spacing (chapter 3). half... the friction and lubrication conditions are especially critical. This is confirm~d by Cheng [15], who discusses the practical requirements of an aluminium foil rolling lubricant and is demonstrated in a theoretical analysis of foil rolling by Fleck and J...

Sutcliffe, Michael Patrick Forbes

1989-11-14T23:59:59.000Z

274

OIL IN THE OPEN WATER microscopic plants and animals that form the  

E-Print Network (OSTI)

OIL IN THE OPEN WATER microscopic plants and animals that form the basis of the oceanic food web the surface, corals and other deepwater OIL AND HUMAN USE Wellhead CORALS · Coral surveys · Tissue collections · Transect surveys to detect submerged oil · Oil plume modeling · Sediment sampling AQUATIC VEGETATION

275

Water Vapor Cross-Sensitivity of Open Path H2O/CO2 Sensors  

Science Conference Proceedings (OSTI)

When measuring the flux of CO2 with an open-path infrared absorption sensor, cross-sensitivity by water vapor is a source of concern. This is particularly true if the flux is small, such as over the sea. In this paper some possible mechanisms for ...

W. Kohsiek

2000-03-01T23:59:59.000Z

276

Southside Water Reclamation Plant Biomass Facility | Open Energy  

Open Energy Info (EERE)

Reclamation Plant Biomass Facility Reclamation Plant Biomass Facility Jump to: navigation, search Name Southside Water Reclamation Plant Biomass Facility Facility Southside Water Reclamation Plant Sector Biomass Facility Type Non-Fossil Waste Location Bernalillo County, New Mexico Coordinates 35.0177854°, -106.6291304° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.0177854,"lon":-106.6291304,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

277

List of Water Heaters Incentives | Open Energy Information  

Open Energy Info (EERE)

Heaters Incentives Heaters Incentives Jump to: navigation, search The following contains the list of 973 Water Heaters Incentives. CSV (rows 1-500) CSV (rows 501-973) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active AEP Ohio - Commercial New Construction Energy Efficiency Rebate Program (Ohio) Utility Rebate Program Ohio Commercial Industrial Local Government Municipal Utility Nonprofit Schools State Government Central Air conditioners Chillers Comprehensive Measures/Whole Building Custom/Others pending approval Energy Mgmt. Systems/Building Controls Heat pumps Lighting Lighting Controls/Sensors Motor VFDs Motors Water Heaters Commercial Cooking Equipment Commercial Refrigeration Equipment Room Air Conditioners Yes AEP Public Service Company of Oklahoma - Residential Efficiency Rebate Program (Oklahoma) Utility Rebate Program Oklahoma Residential Building Insulation

278

Water Quality Program, Volume 2 (Alabama) | Open Energy Information  

Open Energy Info (EERE)

Program, Volume 2 (Alabama) Program, Volume 2 (Alabama) No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Last modified on February 13, 2013. EZFeed Policy Place Alabama Applies to States or Provinces Alabama Name Water Quality Program, Volume 2 (Alabama) Policy Category Other Policy Policy Type Environmental Regulations Affected Technologies Biomass/Biogas, Coal with CCS, Energy Storage, Geothermal Electric, Hydroelectric, Hydroelectric (Small), Natural Gas, Nuclear, Tidal Energy Active Policy Yes Implementing Sector State/Province Program Administrator Alabama Department of Environmental Management Primary Website http://www.adem.state.al.us/alEnviroRegLaws/files/Division6Vol2.pdf Summary This volume of the water quality program mainly deals with Technical

279

Water Sampling At Heber Area (Wood, 2002) | Open Energy Information  

Open Energy Info (EERE)

Heber Area (Wood, 2002) Heber Area (Wood, 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Heber Area (Wood, 2002) Exploration Activity Details Location Heber Area Exploration Technique Water Sampling Activity Date Usefulness could be useful with more improvements DOE-funding Unknown Notes Geothermal fluids from hot springs and wells have been sampled from a number of locations, including: 1) the North Island of New Zealand (three sets of samples from three different years) and the South Island of New Zealand (1 set of samples); 2) the Cascades of Oregon; 3) the Harney, Alvord Desert and Owyhee geothermal areas of Oregon; 4) the Dixie Valley and Beowawe fields in Nevada; 5) Palinpiiion, the Philippines; 6) the Salton Sea and Heber geothermal fields of southern California; and 7) the

280

Los Angeles Department of Water & Power | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Los Angeles Department of Water & Power (Redirected from City of Los Angeles, California (Utility Company)) Jump to: navigation, search Name Los Angeles Department of Water & Power Place California Utility Id 11208 Utility Location Yes Ownership M NERC Location WECC NERC WECC Yes ISO CA Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Wholesale Marketing Yes Activity Bundled Services Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile.

Note: This page contains sample records for the topic "open water lubricated" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

File:06UTCDrinkingWaterPermit.pdf | Open Energy Information  

Open Energy Info (EERE)

UTCDrinkingWaterPermit.pdf UTCDrinkingWaterPermit.pdf Jump to: navigation, search File File history File usage Metadata File:06UTCDrinkingWaterPermit.pdf Size of this preview: 463 × 599 pixels. Other resolution: 464 × 600 pixels. Full resolution ‎(1,275 × 1,650 pixels, file size: 45 KB, MIME type: application/pdf) File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 15:52, 2 April 2013 Thumbnail for version as of 15:52, 2 April 2013 1,275 × 1,650 (45 KB) Dfitzger (Talk | contribs) 12:17, 30 August 2012 Thumbnail for version as of 12:17, 30 August 2012 1,275 × 1,650 (32 KB) Jnorris (Talk | contribs) You cannot overwrite this file. Edit this file using an external application (See the setup instructions for more information)

282

Affordable Solar Hot Water and Power LLC | Open Energy Information  

Open Energy Info (EERE)

Water and Power LLC Water and Power LLC Jump to: navigation, search Name Affordable Solar Hot Water and Power LLC Place Dothan, Alabama Zip 36305 Sector Solar Product Solar and Energy Efficiency for buildings and homes Year founded 2006 Number of employees 1-10 Phone number 334-828-1024 Website http://www.asolarpro.com Coordinates 31.2070554°, -85.4994192° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":31.2070554,"lon":-85.4994192,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

283

File:06AKCDrinkingWaterPermit.pdf | Open Energy Information  

Open Energy Info (EERE)

AKCDrinkingWaterPermit.pdf AKCDrinkingWaterPermit.pdf Jump to: navigation, search File File history File usage File:06AKCDrinkingWaterPermit.pdf Size of this preview: 463 × 599 pixels. Other resolution: 464 × 600 pixels. Full resolution ‎(1,275 × 1,650 pixels, file size: 40 KB, MIME type: application/pdf) File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 11:58, 30 October 2012 Thumbnail for version as of 11:58, 30 October 2012 1,275 × 1,650 (40 KB) Dklein2012 (Talk | contribs) 11:31, 18 October 2012 Thumbnail for version as of 11:31, 18 October 2012 1,275 × 1,650 (11 KB) Jnorris (Talk | contribs) You cannot overwrite this file. Edit this file using an external application (See the setup instructions for more information)

284

GRR/Section 19-CO-a - Water Access and Water Rights Issues Overview | Open  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » GRR/Section 19-CO-a - Water Access and Water Rights Issues Overview < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 19-CO-a - Water Access and Water Rights Issues Overview 19COAWaterAccessAndWaterRightsIssuesOverview.pdf Click to View Fullscreen Contact Agencies Colorado Division of Water Resources Colorado Ground Water Commission Triggers None specified Click "Edit With Form" above to add content 19COAWaterAccessAndWaterRightsIssuesOverview.pdf 19COAWaterAccessAndWaterRightsIssuesOverview.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative

285

Lubricants or lubricant additives composed of ionic liquids containing ammonium cations  

Science Conference Proceedings (OSTI)

A lubricant or lubricant additive is an ionic liquid alkylammonium salt. The alkylammonium salt has the structure R.sub.xNH.sub.(4-x).sup.+,[F.sub.3C(CF.sub.2).sub.yS(O).sub.2].sub.2N.sup- .- where x is 1 to 3, R is independently C.sub.1 to C.sub.12 straight chain alkyl, branched chain alkyl, cycloalkyl, alkyl substituted cycloalkyl, cycloalkyl substituted alkyl, or, optionally, when x is greater than 1, two R groups comprise a cyclic structure including the nitrogen atom and 4 to 12 carbon atoms, and y is independently 0 to 11. The lubricant is effective for the lubrication of many surfaces including aluminum and ceramics surfaces.

Qu, Jun (Knoxville, TN); Truhan, Jr.,; John J. (Cookeville, TN); Dai, Sheng (Knoxville, TN); Luo, Huimin (Knoxville, TN); Blau, Peter J. (Knoxville, TN)

2010-07-13T23:59:59.000Z

286

A computationally efficient open-source water resource system simulator - Application to London and the Thames Basin  

Science Conference Proceedings (OSTI)

Interactive River-Aquifer Simulation-2010 (IRAS-2010) is a generalized water resource system simulation model. IRAS-2010 is a new release of IRAS previously released by Cornell University in 1995. Given hydrological inflows, evaporation rates, water ... Keywords: Conjunctive use water resource systems, Decision support systems (DSS), Open-source, Simulation models, Water management models

Evgenii S. Matrosov; Julien J. Harou; Daniel P. Loucks

2011-12-01T23:59:59.000Z

287

MHK Technologies/Water Current Generator Motor | Open Energy Information  

Open Energy Info (EERE)

Generator Motor Generator Motor < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Technology Profile Primary Organization Global Energies Inc Technology Type Click here Cross Flow Turbine Technology Readiness Level Click here TRL 5 6 System Integration and Technology Laboratory Demonstration Technology Description Simple Vertical Axis fully submerged open design flow through unit operating an onboard Pump unit that drives an on shore power generation system Slow turning swim through for Marine life Anchoring depends on topography and composition of resource bed Removable Scalable Please note that the Website is very old and needs updating In 2007 we hired Independent Engineering firm in Seattle to conduct extensive fluid dynamic testing or our design concepts and overall system Tests were completed much more extensively than we envisioned and were very positive for our needs and build out of a full size model We have been stuck and broke as it s all out of pocket in this position ever since as those Engineering costs were much more than anticipated

288

Exploring Low Emission Lubricants for Diesel Engines  

DOE Green Energy (OSTI)

A workshop to explore the technological issues involved with the removal of sulfur from lubricants and the development of low emission diesel engine oils was held in Scottsdale, Arizona, January 30 through February 1, 2000. It presented an overview of the current technology by means of panel discussions and technical presentations from industry, government, and academia.

Perez, J. M.

2000-07-06T23:59:59.000Z

289

Lubricant formulation for lower unburnt hydrocarbon emissions  

Science Conference Proceedings (OSTI)

Engine-out emissions of unburnt hydrocabons from spark ignition engines are attributable to a number of mechanisms, occurring during the engine cycle, by which fuel escapes combustion. These include absorption of fuel components into the bore lubricating oil film during compression, and subsequent desorption into hot combustion gases throughout expansion. A proportion of the hydrocarbons desorbed will then be emitted, either as unburnt or partially oxidised fuel. This mechanism has been studied by a number of workers, and estimates of its importance vary from 10 to 30% of total hydrocarbons being related to the absorption/desorption process. A novel lubricant additive has been formulated for the purpose of reducing the quantity of fuel which is absorbed into the bore lubricant film, and hence the quantity of fuel subsequently desorbed. This paper describes a programme to evaluate the effect that this lubricant additive can have on engine-out emissions from a single cylinder research engine, together with results from current technology, low-emitting US and European vehicles, tested over FTP and ECE drive cycles. 11 refs., 9 figs., 3 tabs.

Beckwith, P.; Cooper, J.H.

1994-10-01T23:59:59.000Z

290

GRR/Section 19-UT-a - Water Access and Water Rights Issues | Open Energy  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » GRR/Section 19-UT-a - Water Access and Water Rights Issues < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 19-UT-a - Water Access and Water Rights Issues 19UTAWaterAccessWaterRightsIssues (8).pdf Click to View Fullscreen Contact Agencies Utah Division of Water Rights Regulations & Policies Utah Geothermal Resource Conservation Act Utah Code Title 73, Chapter 3 Appropriation Triggers None specified Click "Edit With Form" above to add content 19UTAWaterAccessWaterRightsIssues (8).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range.

291

OpenEI Community - water + monitoring + Nevada + permitting  

Open Energy Info (EERE)

Meeting #2 - Meeting #2 - Regulatory Issues http://en.openei.org/community/blog/nevada-meeting-2-regulatory-issues The second Nevada permitting meeting was held Tuesday, July 24th in Reno, and was attended by approximately 15 people from industry and agencies.  Participants reviewed the Nevada Geothermal Regulatory roadmaps that had been reviewed and revised in the first Nevada meeting.  During this meeting, identified potential issues they've encountered in permitting in Nevada. read more http://en.openei.org/community/blog/nevada-meeting-2-regulatory-issues#comments water + monitoring + Nevada + permitting Geothermal Regulatory Roadmap Fri,

292

Hawaii Department of Health Safe Drinking Water Branch | Open Energy  

Open Energy Info (EERE)

Branch Branch Jump to: navigation, search Name Hawaii Department of Health Safe Drinking Water Branch Address 919 Ala Moana Blvd Room 308 Place Honolulu, Hawaii Zip 96814 Coordinates 21.294755°, -157.858979° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":21.294755,"lon":-157.858979,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

293

Utah Division of Water Rights | Open Energy Information  

Open Energy Info (EERE)

Rights Rights Name Utah Division of Water Rights Address 1594 West North Temple, Suite 220 Place Salt Lake City, Utah Zip 84114-6300 Phone number 801.538.7240 Website http://www.waterrights.utah.go Coordinates 40.7713859°, -111.9367973° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.7713859,"lon":-111.9367973,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

294

GRR/Section 19-MT-a - Water Access & Water Rights Issues | Open Energy  

Open Energy Info (EERE)

GRR/Section 19-MT-a - Water Access & Water Rights Issues GRR/Section 19-MT-a - Water Access & Water Rights Issues < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 19-MT-a - Water Access & Water Rights Issues 19MTAWaterAccessWaterRightsIssues (2).pdf Click to View Fullscreen Contact Agencies Montana Department of Natural Resources & Conservation Regulations & Policies MCA Title 85 Water Use MCA 77-4-108 Water Rights in Connection with Geothermal Development MCA 85-2-307 MCA 85-2-308 MCA 85-2-309 MCA 85-2-310 MCA 85-2-311 MCA 85-2-313 MCA 85-2-315 Triggers None specified Click "Edit With Form" above to add content 19MTAWaterAccessWaterRightsIssues (2).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range.

295

Full Life Wind Turbine Gearbox Lubricating Fluids  

DOE Green Energy (OSTI)

Industrial gear box lubricants typically are hydrocarbon based mineral oils with considerable amounts of additives to overcome the lack of base fluid properties like wear protection, oxidation stability, load carrying capacity, low temperature solidification and drop of viscosity at higher temperatures. For today's wind turbine gearboxes, the requirements are more severe and synthetic hydrocarbon oils are used to improve on this, but all such hydrocarbon based lubricants require significant amounts of Extreme Pressure (EP) additives to meet performance requirements. Perfluoropolyether (PFPE) fluids provide load carrying capacity as an inherent property. During the course of the project with the main tasks of 'Establish a Benchmark', 'Lubricant Evaluation', 'Full Scale Gearbox Trial' and 'Economic Evaluation', the PAO Reference oil exhibited significant changes after laboratory gear testing, in service operation in the field and full scale gearbox trial. Four hydrocarbon base oils were selected for comparison in the benchmarking exercise and showed variation with respect to meeting the requirements for the laboratory micro-pitting tests, while the PFPE fluid exceeded the requirements even with the material taken after the full scale gear box trial. This is remarkable for a lubricant without EP additives. Laboratory bearing tests performed on the PFPE fluids before and after the full scale gear box trial showed the results met requirements for the industry standard. The PFPE fluid successfully completed the full scale gear box test program which included baseline and progressive staged load testing. The evaluation of gears showed no micro-pitting or objectionable wear. By the final stage, lubricant film thickness had been reduced to just 21% of its original value, this was by design and resulted in a lambda ratio of well below 1. This test design scenario of a low lambda ratio is a very undesirable lubrication condition for real world but creates the ability to test the lubricating fluids performance under the most extreme conditions. The PAO Reference oil also passed its testing without any noticeable deterioration of the gear surface. However the PAO Reference oil was replaced midway through the progressive loading, as the lubricant was burned in an attempt to raise the sump temperature to the same levels as for the PFPE. Both materials experienced a decrease of viscosity during their respective run times. The viscosity index decreased for the PAO there while there was a slight increase for the PFPE. FZG laboratory gear tests and measurements of the drive motor's current during the full scale gear box trial were made to characterize the relative efficiency between the PFPE fluid and the PAO Reference oil. In the FZG laboratory efficiency test, the PFPE fluids show much higher churning losses due to their higher viscosity and density. The analysis seems to show that the efficiency correlates better to dynamic viscosity than any other of the measured metrics such as film thickness. In load stages where the load, speed and temperature are similar, the PFPE fluid has a greater film thickness and theoretical gear protection, but requires a larger current for the drive motor than the PAO. However in load stages where the film thickness is the same, the PFPE fluid's reduced dynamic viscosity gives it a slight efficiency advantage relative to the PAO reference oil. Ultimately, many factors such as temperature, rotational speed, and fluid viscosity combine in a complex fashion to influence the results. However, the PFPE's much lower change of viscosity with respect to temperature, allows variations in designing an optimum viscosity to balance efficiency versus gear protection. Economic analysis was done using Cost of Energy calculations. The results vary from 5.3% for a 'Likely Case' to 16.8% for a 'Best Case' scenario as potential cost improvement by using PFPE as the gearbox lubricating fluid. It is important to note the largest portion of savings comes in Levelized Replacement Cost, which is dictated by the assumption on gearb

Lutz, Glenn A.; Jungk, Manfred; Bryant, Jonathan J.; Lauer, Rebecca S.; Chobot, Anthony; Mayer, Tyler; Palmer, Shane; Kauffman, Robert E.

2012-02-28T23:59:59.000Z

296

McMullen Valley Water C&D Dist | Open Energy Information  

Open Energy Info (EERE)

Water C&D Dist Water C&D Dist Jump to: navigation, search Name McMullen Valley Water C&D Dist Place Arizona Utility Id 12191 Utility Location Yes Ownership P NERC Location WECC NERC WECC Yes Activity Buying Transmission Yes Activity Buying Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Rate 1,Irrigation Commercial Rate 2,Irrigation Commercial Rate 3,Irrigation Commercial Rate 4,Commercial AG Commercial Average Rates Industrial: $0.0568/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=McMullen_Valley_Water_C%26D_Dist&oldid=41105

297

Ionic Liquids as Lubricants or Additives - Energy Innovation ...  

New ionic liquids invented at ORNL show great promise as lubricants for aluminum and steel in combustion engines, bearings, and microelectromechanical systems (MEMS).

298

A flow modeling of lubricating greases under shear deformation by cellular automata  

Science Conference Proceedings (OSTI)

A Cellular Automata modeling of the lubricating grease flow under the shear deformation is proposed Lubricating greases are composed of thickening agent, liquid lubricant and various kinds of additives The thickening agent forms fibrous microstructures ...

Shunsuke Miyamoto; Hideyuki Sakai; Toshihiko Shiraishi; Shin Morishita

2006-09-01T23:59:59.000Z

299

Properties of carbon overcoats and perfluoro-polyether lubricants in hard disk drives  

E-Print Network (OSTI)

3 discusses different lubricants and additives used in hardand A. Wakabayashi, "Disk lubricant additives, A20H and C2:lower corner. Both lubricant additives can be mixed with

Brunner, Ralf

2009-01-01T23:59:59.000Z

300

The effect of alternative fuels on the stability and lubricity of crankcase lubricants. Final report, September 1992--September 1993  

DOE Green Energy (OSTI)

The purpose of this research is to study the effect of alternative fuels on the functioning of crankcase lubricants with these three main goals: Develop simple, rapid test protocols to evaluate the influence of alternative fuels on the stability and lubricity of lubricants under conditions simulating engine operation. The objective is to have these test protocols serve industry as a precursor evaluation procedure before expensive engine tests are conducted. The reliability of these test procedures to predict the influence of additives on lubricant performance under actual operating conditions will be determined by comparison of these test results with available engine and fleet tests. Use the developed test procedures to evaluate commercially available lubricants for applications with alternative fuels and determine the influence of various bearing materials, including conventional steel as well as advanced ceramic materials. Use the test procedures to evaluate classes of lubricants and lubricant additives as well as fuel additives, and develop lubricants and additives for comparability with specific alternative fuels. Test procedures have been developed to produce lubricant fractions which can be caused by contact with alternative fuels in the crankcase and the area of the fuel injector. Associated test procedures have also been developed so that the oxidative stability and the wear characteristics of the lubricant fractions from the extraction protocol can be evaluated. Although these test procedures have been used to evaluate some lubricants, the significant impact of these tests on the development and evaluation of lubricants for alternatively fueled engines has only been initiated, and these tests should be the basis for extensive future studies.

Klaus, E.E.; Duda, J.L.; Shah, R.J.

1994-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "open water lubricated" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Evaluation of high temperature lubricants for downhole motors in geothermal applications  

DOE Green Energy (OSTI)

A Bearing-Seal Package is being developed for use with downhole motors and turbines for drilling geothermal wells. The lubricant will be sealed in the bearing section which will allow the bearings to operate directly in the lubricant. The development of the Bearing-Seal Package involves the improvement of high temperature seals and lubricants. Candidate high temperature lubricants were tested in the High Temperature Lubricant Tester under elevated temperatures and pressures. A list of candidate high temperature lubricants, a description of the lubricant test program, and the lubricant test results are presented.

DeLafosse, P.H.; Tibbitts, G.A.; Green, S.J.

1979-01-01T23:59:59.000Z

302

Water-hydroxyl phases on an open metal surface: breaking the ice rules Matthew Forster,a  

E-Print Network (OSTI)

Water-hydroxyl phases on an open metal surface: breaking the ice rules Matthew Forster,a Rasmita hexagonal c(2 ? 2) 2H2O:1OH network. None of these phases obey the conventional `ice rules', instead catalyzed redox reactions, yet establishing the phase diagram for water/hydroxyl adsorption on metal

Alavi, Ali

303

Unburned lubricant produces 60%90% of organic carbon emissions.  

E-Print Network (OSTI)

as the most polluting of conventional petroleum-based fuels, emissions from gasoline engines can more, lubricants, and engine operating conditions. NREL's Collaborative Lubricating Oil Study on Emissions (CLOSE vehicles without aftertreatment emission control systems exhibited OC emissions approxi- mately one order

304

Seal/lubricant systems for geothermal drilling equipment  

DOE Green Energy (OSTI)

The development and testing of seals and lubricants for journal-type roller-cone rock bits for drilling into geothermal reservoirs at temperatures over 260/sup 0/C (500/sup 0/F) are described. The conditions experienced by seals and lubricants subjected to geothermal drilling are reviewed along with the basic design requirements for roller-cone bit seals and journal bearing lubricants. Two unique test facilities are described: a seal test machine which simulates pressures, temperatures, and mechanical eccentricities, and a lubricant tester capable of evaluating load-bearing ability at temperature and pressure. Three candidate elastomeric compounds demonstrated 288/sup 0/C (550/sup 0/F) capability and several others demonstrated 260/sup 0/C (500/sup 0/F) or greater capability. Successful elastomeric seal candidates were proprietary compounds based on EPDM, Kalrez, and/or Viton polymers. Three mechanical seals for reservoir temperatures over 288/sup 0/C (550/sup 0/F) are presented. Lubricant screening tests on more than 50 products are summarized, and several newly developed lubricants which meet both the compatibility and lubrication requirements are described. Several seal/lubricant systems are recommended for laboratory or field geothermal drilling tests in roller-cone drill bits. The future availability of drill bits for geothermal use is discussed, as well as the potential spinoffs of the program findings for nongeothermal roller-cone bits.

Hendrickson, R.R.; Winzenried, R.W.

1980-07-01T23:59:59.000Z

305

Nephelometric determination of the chemical oxygen demand in filtrates after the ultrafiltration purification of used lubricants  

Science Conference Proceedings (OSTI)

Regions with developed industry are characterized by a large amount of lubricants in wastewater, and controlling the amount of mineral oil in the water in these regions is of prime importance. One of the methods of purifying used lubricants is ultrafiltration. In most cases, ultrafiltration purification is performed in BTU-0.5/2 tubular units with F-1 Teflon membranes. It is known that, in the case of the ultrafiltration purification of dispersed systems, the part of the dispersed phase with a particle size smaller than the diameter of membrane pores usually penetrates to the filtrate. The formation of the dispersed phase with a smaller size of particles is also possible because oil particles of a larger size are pressed through the membrane due to the wetting of the membrane material with the dispersed phase, which is the case of Teflon membranes. As a result, water produced by the ultrafiltration purification of lubricant-containing wastes contains oil particles 10-100 nm in size, which is comparable to the membrane pores. The amount of these particles can be small, which makes their determination difficult. Moreover, the method of controlling the amount of oil in the filtrate should be rapid, sensitive, and simple enough to allow its application in industrial conditions.

Bykadorov, N.U.; Radchenko, S.S. [Volgograd State Technical Univ. (Russian Federation)

1995-11-01T23:59:59.000Z

306

The experimental evaluation and application of high temperature solid lubricants  

Science Conference Proceedings (OSTI)

A research program meant to develop an understanding of high temperature solid lubrication and experimental techniques through the development of a composite lubricant coating system was described. The knowledge gained through this research was then applied to a specific engineering challenge, the tribology of a sliding seal for hypersonic flight vehicles. The solid lubricant coating is a chromium carbide based composite combined with silver, which acts as a low temperature lubricant, and barium fluoride/calcium fluoride eutectic, which acts as a high temperature lubricant. This composite coating provides good wear resistance and low friction for sliding contacts from room temperature to over 900 C in reducing or oxidative environments. The specific research on this coating included a composition screening using a foil gas bearing test rig and the use of thin silver films to reduce initial wear using a pin-on-disk test rig. The chemical stability of the materials used was also addressed. This research indicated that soft metallic films and materials which become soft at elevated temperatures are potentially good lubricants. The general results from the experiments with the model solid libricant coating were then applied to a sliding seal design concept. This seal design requires that a braided ceramic fabric slide against a variety of metal counterface materials at temperatures from 25 to 850 C in an oxidative environment. A pin-on-disk tribometer was used to evaluate the tribological properties of these materials and to develop lubrication techniques. The results indicate that these materials must be lubricated to prevent wear and reduce friction. Thin films of silver, gold and calcium fluoride provided lubrication to the sliding materials. The data obtained and the lubrication techniques developed provide important information to designers of sliding seals.

Dellacorte, C.

1989-01-01T23:59:59.000Z

307

FY 2012 Progress Report for Fuel & Lubricant Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

911 911 Fuels & Lubricant Technologies VEHICLE TECHNOLOGIES OFFICE 2012 annual progress report U.S. Department of Energy 1000 Independence Avenue, S.W. Washington, D.C. 20585-0121 FY 2012 PROGRESS REPORT FOR FUEL & LUBRICANT TECHNOLOGIES Energy Efficiency and Renewable Energy Vehicle Technologies Office Approved by Kevin Stork Team Leader, Fuel & Lubricant Technologies Vehicle Technologies Office June 2013 DOE/EE-0911 Acknowledgement We would like to express our sincere appreciation to Alliance Technical Services, Inc. and Oak Ridge National Laboratory for their technical and artistic contributions in preparing and publishing this report.

308

Notes 01. The fundamental assumptions and equations of lubrication theory  

E-Print Network (OSTI)

The fundamental assumption in Lubrication Theory. Derivation of thin film flow equations from Navier-Stokes equations. Importance of fluid inertia effects in thin film flows. Some fluid physical properties

San Andres, Luis

2009-01-01T23:59:59.000Z

309

Effects of Lubrication on Density Gradient of Titanium Powder ...  

Science Conference Proceedings (OSTI)

It was found that 0.3wt% of lubricant significantly improves the density variation, but ... of Ti-6Al-4V Components Made by Electron Beam Additive Manufacturing.

310

Peeling, healing and bursting in a lubricated elastic sheet  

E-Print Network (OSTI)

We consider the dynamics of an elastic sheet lubricated by the flow of a thin layer of fluid that separates it from a rigid wall. By considering long wavelength deformations of the sheet, we derive an evolution equation ...

Hosoi, A.E.

2004-01-01T23:59:59.000Z

311

TransForum v31n1 - Rail Lubricant  

NLE Websites -- All DOE Office Websites (Extended Search)

RAIL LUBRICANT TECHNOLOGY GOES HIGH TECH "I ... have invented a new and useful improvement on locomotive-engines used on railroads and common roads by which inclined planes and...

312

Circuit Breaker Lubrication: Compatibility and SelectionLaboratory Assessment  

Science Conference Proceedings (OSTI)

The performance of a circuit breaker over its lifetime is largely determined by the performance of the materials and components that make up the complete breaker. The rates of deterioration of lubricants and other components drive the requirements for circuit breaker maintenance and refurbishment. The Electric Power Research Institute (EPRI) has undertaken a comprehensive research effort to develop the knowledge base required by utilities for the correct selection and application of lubricants for ...

2013-12-19T23:59:59.000Z

313

An economical route to high quality lubricants  

Science Conference Proceedings (OSTI)

The current rends in the automotive and industrial markets toward more efficient engines, longer drain intervals, and lower emissions all contribute to placing increasingly stringent performance requirements on lubricants. The demand for higher quality synthetic and non-conventional basestocks is expected to grow at a much faster rate than that of conventional lube basestocks to meet these higher performance standards. Yukong Limited has developed a novel technology (the Yukong UCO Lube Process) for the economic production of high quality, high-viscosity-index lube basestocks from a fuels hydrocracker unconverted oil stream. A pilot plant based on this process has been producing oils for testing purposes since May 1994. A commercial facility designed to produce 3,500 BPD of VHVI lube basestocks cane on-stream at Yukong`s Ulsan refinery in October 1995. The Badger Technology Center of Raytheon Engineers and Constructors assisted Yukong during the development of the technology and prepared the basic process design package for the commercial facility. This paper presents process aspects of the technology and comparative data on investment and operating costs. Yukong lube basestock product properties and performance data are compared to basestocks produced by conventional means and by lube hydrocracking.

Andre, J.P. [Raytheon Engineers and Constructors, Inc., Cambridge, MA (United States); Hahn, S.K.; Kwon, S.H.; Min, W.

1996-12-01T23:59:59.000Z

314

Method of removing an immiscible lubricant from a refrigeration system and apparatus for same  

DOE Patents (OSTI)

A method of separating an immiscible lubricant from a liquid refrigerant in a refrigerating system including a compressor, a condenser, an expansion device and an evaporator, wherein the expansion device is connected to the condenser by a liquid refrigerant flow line for liquid refrigerant and immiscible lubricant. The method comprising slowing the rate of flow of the liquid refrigerant and immiscible lubricant between the condenser and the expansion device such that the liquid refrigerant and the immiscible lubricant separate based upon differences in density. The method also comprises collecting the separated immiscible lubricant in a collection chamber in fluid communication with the separated immiscible lubricant. Apparatus for performing the method is also disclosed.

Spauschus, Hans O. (Stockbridge, GA); Starr, Thomas L. (Roswell, GA)

1999-01-01T23:59:59.000Z

315

CRC handbook of lubrication. Theory and practice of tribology: Volume II: Theory and design  

Science Conference Proceedings (OSTI)

This handbook covers the general area of lubrication and tribology in all its facets: friction, wear lubricants (liquid, solid, and gas), greases, lubrication principles, applications to various mechanisms, design principles of devices incorporating lubrication, maintenance, lubrication scheduling, and standardized tests; as well as environmental problems and conservation. The information contained in these two volumes will aid in achieving effective lubrication for control of friction and wear, and is another step to improve understanding of the complex factors involved in tribology. Both metric and English units are provided throughout both volumes.

Booser, E.R.

1984-01-01T23:59:59.000Z

316

Rotary seal with enhanced lubrication and contaminant flushing  

DOE Patents (OSTI)

A resilient, ring shaped interference-type hydrodynamic rotary seal having waves on the lubricant side which provide increased film thickness and flushing action by creating contact pressure induced angulated restrictions formed by abrupt restrictive diverters. The angulated restrictions are defined by projecting ridges, corners at the trailing edge of the waves, or simply by use of a converging shape at the trailing edge of the waves which is more abrupt than the gently converging hydrodynamic inlet shape at the leading edge of the waves. The abrupt restrictive diverter performs two functions; a restricting function and a diverting function. The angulated restrictions cause a local film thickness restriction which produces a damming effect preventing a portion of the lubricant from leaking out of the dynamic sealing interface at the trailing edge of the wave, and results in a much thicker lubricant film thickness under the waves. This contributes to more film thickness in the remainder of the dynamic sealing interface toward the environment because film thickness tends to decay gradually rather than abruptly due to the relative stiffness of the seal material. Because of the angle of the abrupt restrictive diverter relative to the relative rotation direction, in conjunction with the restriction or damming effect, a strong diverting action is produced which pumps lubricant across the dynamic sealing interface toward the environment. The lubricant diversion is caused by the component of the rotational velocity tangent to the abrupt restrictive diverter. The component of rotational velocity normal to the abrupt restrictive diverter causes a portion of the lubricant film to be pumped past the abrupt restrictive diverter, thereby assuring adequate lubrication thereof.

Dietle, Lannie L. (Sugar Land, TX)

2000-01-01T23:59:59.000Z

317

Nuclear Maintenance Applications Center: Reactor Coolant Pump/Reactor Recirculation Pump Motor Lubrication Oil Systems Maintenance G uide  

Science Conference Proceedings (OSTI)

RCP and RRP Motor Lubrication system issues have ranked high on NMAC maintenance Issues Surveys in recent years. Problems reported have included oil leakage at power, the need for additional reservoirs to accommodate leakage, oil degradation (foaming, particulate) as well as sludge problems due to the design of the motor and some as a result of new oil formulations and other changes made by the oil suppliers. Reactor Coolant Pumps (RCP) used in Pressurized Water Reactors and Reactor Recirculation Pumps ...

2006-12-22T23:59:59.000Z

318

Growth and opportunities in the lubricants business in Asia  

Science Conference Proceedings (OSTI)

The demand for lubricants is increasing faster in Asia than any other part of the world. This development is being propelled largely by the expansion of the transportation and manufacturing sectors. By the year 2000, lubricant consumption in Asia will exceed that of Western Europe, Africa and the Middle East combined. Aside from this growth, most of the region is shifting from very low quality to higher quality value-added products. In view of these factors, there has been an explosion of activity over the past few years as lubricant blenders and additive suppliers attempt to position themselves within the market. Over the past year, Chem Systems has undertaken an extensive study of the lubricants business in East Asia, focusing on the evolution of this complex market structure and the identification of attractive opportunities. The overview presented in this paper is a product of these efforts. Whether you are a multinational oil company, independent blender, national oil company or multinational additive suppler, the questions are the same when developing a strategy for the region: regional overview of lubricant business structure; outlook for Asian demand; profile of lube/additives businesses; and successful competition--what is required?

Burke, B.F. [Chem Systems, Inc., Tarrytown, NY (United States)

1995-09-01T23:59:59.000Z

319

Fuel efficient lubricants and the effect of special base oils  

Science Conference Proceedings (OSTI)

The demand for improved fuel economy is placing increasing pressure upon engine manufacturers world-wide. Lubricants that can provide additional fuel efficiency benefits are being vigorously sought. Such lubricants must achieve the current performance specifications that are also increasing in severity. To meet all of these requirements, passenger car lubricant formulations will need special base oils. This paper presents data on comparable 5W-30 formulations based on either hydrogenated mineral oil, or hydrocracked or poly alpha olefin basestocks. These blends clearly demonstrate the effect of improved volatility on oil consumption and oxidation stability in a range of bench engine tests. Equivalent engine test performance is observed for the hydrocracked and polyalphaolefin blends. Both exhibit performance superior to that attained by the hydrogenated mineral oil-based blend. Predicted Sequence VI fuel savings for these blends show additional fuel efficiency benefits for hydrocracked vs. hydrogenated mineral oil-based blends. 18 refs., 7 figs., 4 tabs.

Kiovsky, T.E. [BP Oil Company, Cleveland, OH (United States); Yates, N.C.; Bales, J.R. [BP Oil International Limited, Middlesex (United Kingdom)

1994-04-01T23:59:59.000Z

320

Numerical Simulation of an Open Channel Ultraviolet Waste-water Disinfection Reactor.  

E-Print Network (OSTI)

??The disinfection characteristics of an open channel ultra-violet (UV) wastewater disinfection reactor are investigated using a computational fluid dynamics (CFD) model. The model is based (more)

Saha, Rajib Kumar

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "open water lubricated" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Lubricity of deeply hydrogenated diesel fuels. The Swedish experience  

Science Conference Proceedings (OSTI)

Environmentally adapted diesel fuels defined by the Swedish Government contain extremely low levels of sulphur and have limited aromatics contents. Road trials and pump durability tests of these fuels revealed unacceptable wear in injection pumps due to low lubricity. Additive solutions were identified using bench tests and then proven in field trials. Market experience has substantiated the findings that fuels using the chosen additive give fully satisfactory performance. This paper illustrates how practical solutions to lubricity questions can be found, and is applicable wherever specifications demand fuels requiring a high degree of hydroprocessing. 19 refs., 10 figs., 3 tabs.

Tucker, R.F.; Stradling, R.J.; Wolveridge, P.E.; Rivers, K.J.; Ubbens, A.

1994-10-01T23:59:59.000Z

322

Molybdenum-containing compositions and lubricants and fuels containing them  

Science Conference Proceedings (OSTI)

Molybdenum-containing compositions are prepared by the reaction of an acid of molybdenum or salt thereof, phenol or aldehyde condensation product therewith, and a primary or secondary amine. The preferred amines are diamines such as tallow-substituted trimethylene diamine and their formaldehyde condensation products. An optional but preferred ingredient in the reaction mixture is at least one oil-soluble dispersant. The molybdenumcontaining compositions are useful as additives in lubricants and fuels, and are especially useful in lubricants when combined with compounds containing active sulfur.

Karn, J.L.

1981-05-12T23:59:59.000Z

323

Turbine Generator Auxiliary Systems Volume 1: Turbine Generator Lubrication System Maintenance Guide -- 2012 Update  

Science Conference Proceedings (OSTI)

This report provides nuclear and fossil plant personnel with current maintenance information on lubrication system components and specifications, treatment, and analysis of the lubricating oil.BackgroundInput from member utilities indicated that maintenance guides were needed for the turbine-generator auxiliary systems. The first auxiliary system selected was the turbine-generator lubrication system used in nuclear and ...

2012-12-12T23:59:59.000Z

324

Property:CoolingTowerWaterUseWinterConsumed | Open Energy Information  

Open Energy Info (EERE)

search Property Name CoolingTowerWaterUseWinterConsumed Property Type Number Description Cooling Tower Water use (winter average) (afday) Consumed. Retrieved from "http:...

325

Property:CoolingTowerWaterUseSummerConsumed | Open Energy Information  

Open Energy Info (EERE)

Name CoolingTowerWaterUseSummerConsumed Property Type Number Description Cooling Tower Water use (summer average) (afday) Consumed. Retrieved from "http:en.openei.orgw...

326

Property:CoolingTowerWaterUseAnnlAvgConsumed | Open Energy Information  

Open Energy Info (EERE)

Name CoolingTowerWaterUseAnnlAvgConsumed Property Type Number Description Cooling Tower Water use (annual average) (afday) Consumed. Retrieved from "http:en.openei.orgw...

327

Property:CoolingTowerWaterUseSummerGross | Open Energy Information  

Open Energy Info (EERE)

Property Name CoolingTowerWaterUseSummerGross Property Type Number Description Cooling Tower Water use (summer average) (afday) Gross. Retrieved from "http:en.openei.orgw...

328

Water Sampling At Reese River Area (Henkle, Et Al., 2005) | Open...  

Open Energy Info (EERE)

Water Sampling At Reese River Area (Henkle, Et Al., 2005) Exploration Activity Details Location Reese River Area Exploration Technique Water Sampling Activity Date Usefulness...

329

Water Sampling At Silver Peak Area (Henkle, Et Al., 2005) | Open...  

Open Energy Info (EERE)

Water Sampling At Silver Peak Area (Henkle, Et Al., 2005) Exploration Activity Details Location Silver Peak Area Exploration Technique Water Sampling Activity Date Usefulness...

330

Water Sampling At Jemez Springs Area (Goff, Et Al., 1981) | Open...  

Open Energy Info (EERE)

Water Sampling At Jemez Springs Area (Goff, Et Al., 1981) Exploration Activity Details Location Jemez Springs Area Exploration Technique Water Sampling Activity Date Usefulness not...

331

Water Sampling At Jemez Springs Area (Rao, Et Al., 1996) | Open...  

Open Energy Info (EERE)

Water Sampling At Jemez Springs Area (Rao, Et Al., 1996) Exploration Activity Details Location Jemez Springs Area Exploration Technique Water Sampling Activity Date Usefulness not...

332

GRR/Section 6-UT-b - Storm Water Permit | Open Energy Information  

Open Energy Info (EERE)

6-UT-b - Storm Water Permit 6-UT-b - Storm Water Permit < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 6-UT-b - Storm Water Permit 06UTBStormWaterPermit.pdf Click to View Fullscreen Contact Agencies Utah Division of Water Quality Regulations & Policies Utah Water Quality Act Clean Water Act Triggers None specified Click "Edit With Form" above to add content 06UTBStormWaterPermit.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative The construction storm water permit process is required to prevent storm water pollution. The permits are administered by the Utah Division of Water

333

Symbiotic Simulation Control in Supply Chain of Lubricant Additive Industry  

Science Conference Proceedings (OSTI)

With the increasing growth of manufacture networks as well as the global competition in the lubricant industry, efficient management of a supply chain is vital for large vertically-integrated petroleum companies. Operational decision-making should consider ... Keywords: Symbiotic Simulation

Zeng Fanchao; Stephen John Turner; Heiko Aydt

2009-10-01T23:59:59.000Z

334

Diesel engine lubrication with poor quality residual fuel  

Science Conference Proceedings (OSTI)

The quality of marine residual fuel is declining. This is being caused by a gradual trend towards production of heavier crudes and increased residuum conversion processes in refineries to meet light product demand while holding down crude runs. Additionally, more stringent inland fuel sulfur regulations have caused the higher sulfur residues to be used for marine residual fuel blending. Engine manufacturers are making major efforts in design so that their engines can burn these fuels at high efficiency with minimum adverse effects. The oil industry is developing improved lubricants to reduce as much as possible the increased wear and deposit formation caused by these poor quality fuels. To guide the development of improved lubricants, knowledge is required about the impact of the main fuel characteristics on lubrication. This paper summarizes work conducted to assess the impact of fuel sulfur, Conradson carbon and asphaltenes on wear and deposit formation in engines representative of full scale crosshead diesel engines and medium speed trunk piston engines. Results obtained with improved lubricants in these engines are reviewed.

Van der Horst, G.W.; Hold, G.E.

1983-01-01T23:59:59.000Z

335

Lubricant base oil and wax processing. [Glossary included  

SciTech Connect

This book provides state-of-the-art information on all processes currently used to manufacture lubricant base oils and waxes. It furnishes helpful lists of conversion factors, construction cost data, and process licensors, as well as a glossary of essential petroleum processing terms.

Sequeira, A. Jr.

1994-01-01T23:59:59.000Z

336

GRR/Section 6-UT-c - Drinking Water Permit | Open Energy Information  

Open Energy Info (EERE)

6-UT-c - Drinking Water Permit 6-UT-c - Drinking Water Permit < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 6-UT-c - Drinking Water Permit 06UTCDrinkingWaterPermit.pdf Click to View Fullscreen Contact Agencies Utah Department of Environmental Quality Regulations & Policies R309-100 Administration: Drinking Water Program Utah Water Well Rules R655-4 Safe Drinking Water Act Triggers None specified Click "Edit With Form" above to add content 06UTCDrinkingWaterPermit.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative Public water systems are responsible for drinking water infastructure,

337

GRR/Section 19-TX-c - Surface Water Permit | Open Energy Information  

Open Energy Info (EERE)

19-TX-c - Surface Water Permit 19-TX-c - Surface Water Permit < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 19-TX-c - Surface Water Permit 19TXCSurfaceWaterPermit.pdf Click to View Fullscreen Contact Agencies Texas Commission on Environmental Quality Regulations & Policies Tex. Water Code § 11 30 TAC 295 30 TAC 297 Triggers None specified Click "Edit With Form" above to add content 19TXCSurfaceWaterPermit.pdf 19TXCSurfaceWaterPermit.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative In Texas, the Texas Commission on Environmental Quality (TCEQ) issues surface water permits. Under, Tex. Water Code § 11, surface water permits

338

GRR/Section 19-CO-g - Colorado Water Right Adjudication Process | Open  

Open Energy Info (EERE)

GRR/Section 19-CO-g - Colorado Water Right Adjudication Process GRR/Section 19-CO-g - Colorado Water Right Adjudication Process < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 19-CO-g - Colorado Water Right Adjudication Process 19COGColoradoWaterRightAdjudicationProcess (1).pdf Click to View Fullscreen Contact Agencies Colorado Division of Water Resources Regulations & Policies Colorado Constitution Article XVI Section 6 37-82-101 et seq. Appropriation and Use of Water 37-92-301 et seq. Determination and Administration of Water Rights Triggers None specified Click "Edit With Form" above to add content 19COGColoradoWaterRightAdjudicationProcess (1).pdf 19COGColoradoWaterRightAdjudicationProcess (1).pdf 19COGColoradoWaterRightAdjudicationProcess (1).pdf

339

GRR/Section 14-UT-d - Section 401 Water Quality Certification | Open Energy  

Open Energy Info (EERE)

GRR/Section 14-UT-d - Section 401 Water Quality Certification GRR/Section 14-UT-d - Section 401 Water Quality Certification < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 14-UT-d - Section 401 Water Quality Certification 14-UT-d - Section 401 Water Quality Certification.pdf Click to View Fullscreen Triggers None specified Section 401 of the Clean Water Act (CWA) requires a Water Quality Certification for any federal license or permit that is issued to construct or operate a facility, which may result in any fill or discharge into the navigable waters of the United States. The Utah Division of Water Quality oversees the 401 Water Quality Certification process in the state of Utah. The director of the Utah Division of Water Quality ("director") handles

340

Directionality and Crest Length Statistics of Steep Waves in Open Ocean Waters  

Science Conference Proceedings (OSTI)

A new wavelet analysis methodology is applied to open ocean wave height data from the Southern Ocean Waves Experiment (1992) and from a field experiment conducted at Duck, North Carolina, in 1997 with the aim of estimating the directionality and ...

Nicholas Scott; Tetsu Hara; Paul A. Hwang; Edward J. Walsh

2005-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "open water lubricated" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Use of Textured Surfaces to Mitigate Sliding Friction and Wear of Lubricated and Non-Lubricated Contacts  

Science Conference Proceedings (OSTI)

If properly employed, the placement of three-dimensional feature patterns, also referred to as textures, on relatively-moving, load-bearing surfaces can be beneficial to their friction and wear characteristics. For example, geometric patterns can function as lubricant supply channels or depressions in which to trap debris. They can also alter lubricant flow in a manner that produces thicker load-bearing films locally. Considering the area occupied by solid areas and spaces, textures also change the load distribution on surfaces. At least ten different attributes of textures can be specified, and their combinations offer wide latitude in surface engineering. By employing directional machining and grinding procedures, texturing has been used on bearings and seals for well over a half century, and the size scales of texturing vary widely. This report summarizes past work on the texturing of load-bearing surfaces, including past research on laser surface dimpling of ceramics done at ORNL. Textured surfaces generally show most pronounced effects when they are used in conformal or nearly conformal contacts, like that in face seals. Combining textures with other forms of surface modification and lubrication methods can offer additional benefits in surface engineering for tribology. As the literature and past work at ORNL shows, texturing does not always provide benefits. Rather, the selected pattern and arrangement of features must be matched to characteristics of the proposed application, bearing materials, and lubricants.

Blau, Peter Julian [ORNL

2012-03-01T23:59:59.000Z

342

GRR/Section 19-TX-d - Transfer of Surface Water Right | Open Energy  

Open Energy Info (EERE)

19-TX-d - Transfer of Surface Water Right 19-TX-d - Transfer of Surface Water Right < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 19-TX-d - Transfer of Surface Water Right 19TXDTransferOfWaterRight.pdf Click to View Fullscreen Contact Agencies Texas Commission on Environmental Quality Regulations & Policies Tex. Water Code § 11 30 TAC 297.81 30 TAC 297.82 30 TAC 297.83 Triggers None specified Click "Edit With Form" above to add content 19TXDTransferOfWaterRight.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative Texas water law allows surface water rights to be transferred from one party to another. (Tex. Water Code § 11)

343

GRR/Section 19-WA-b - New Water Right Permit Process | Open Energy  

Open Energy Info (EERE)

GRR/Section 19-WA-b - New Water Right Permit Process GRR/Section 19-WA-b - New Water Right Permit Process < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 19-WA-b - New Water Right Permit Process 19-WA-b - New Water Right Permit Process.pdf Click to View Fullscreen Contact Agencies Washington State Department of Ecology Regulations & Policies Revised Code of Washington Chapter 90.03 Revised Code of Washington Chapter 90.44 Triggers None specified Washington uses a prior appropriation system for the distribution of both surface water and ground water rights in which water users receive the right to use water on a "first in time, first in right" basis. Under Washington law, the waters of Washington belong collectively to the public

344

GRR/Section 19-WA-c - Transfer or Change of Water Right | Open Energy  

Open Energy Info (EERE)

9-WA-c - Transfer or Change of Water Right 9-WA-c - Transfer or Change of Water Right < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 19-WA-c - Transfer or Change of Water Right 19-WA-c - Transfer or Change of Water Right.pdf Click to View Fullscreen Contact Agencies Washington State Department of Ecology Regulations & Policies Revised Code of Washington 90.03.380 Revised Code of Washington 90.44.100 Revised Code of Washington Chapter 90.80 Triggers None specified Much of Washington's public waters have been accounted for through water right claims, permits, or certificates. As a result, many individuals seeking water rights try to acquire existing water rights already in use or change the use of a current water right they already hold. Certain elements

345

GRR/Section 14-CO-e - Ground Water Discharge Permit | Open Energy  

Open Energy Info (EERE)

CO-e - Ground Water Discharge Permit CO-e - Ground Water Discharge Permit < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 14-CO-e - Ground Water Discharge Permit 14COEGroundWaterDischargePermit.pdf Click to View Fullscreen Contact Agencies Colorado Department of Public Health and Environment Regulations & Policies Colorado Water Quality Control Act 5 CCR 1002-61 Colorado Discharge Permit System 5 CCR 1002-41 Basic Standards for Ground Water 5 CCR 1002-42 Site Specific Water Quality Standards for Ground Water Triggers None specified Click "Edit With Form" above to add content 14COEGroundWaterDischargePermit.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range.

346

GRR/Section 6-NV-c - Drinking Water Permit | Open Energy Information  

Open Energy Info (EERE)

GRR/Section 6-NV-c - Drinking Water Permit GRR/Section 6-NV-c - Drinking Water Permit < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 6-NV-c - Drinking Water Permit 06NVCDrinkingWaterPermit.pdf Click to View Fullscreen Contact Agencies Nevada Division of Water Resources Nevada Division of Environmental Protection Public Utilities Commission of Nevada Regulations & Policies NRS 445A Water Controls NAC 445A Water Controls (Regulations) Triggers None specified Click "Edit With Form" above to add content 06NVCDrinkingWaterPermit.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative According to NRS 445A, the Nevada Division of Water Resources is charged

347

GRR/Section 4-NV-b - Temporary Use of Ground Water for Exploration | Open  

Open Energy Info (EERE)

b - Temporary Use of Ground Water for Exploration b - Temporary Use of Ground Water for Exploration < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 4-NV-b - Temporary Use of Ground Water for Exploration 04NVBTemporaryUseOfGroundWaterForExploration.pdf Click to View Fullscreen Contact Agencies Nevada Division of Water Resources Regulations & Policies NAC 534.444 Waiver to use water to explore for oil, gas or geothermal resources Triggers None specified Click "Edit With Form" above to add content 04NVBTemporaryUseOfGroundWaterForExploration.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative The Nevada Division of Water Resources (NDWR) may grant a waiver of the

348

GRR/Section 6-CA-b - Construction Storm Water Program | Open Energy  

Open Energy Info (EERE)

6-CA-b - Construction Storm Water Program 6-CA-b - Construction Storm Water Program < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 6-CA-b - Construction Storm Water Program 06CABConstructionStormWaterProgram.pdf Click to View Fullscreen Contact Agencies California State Water Resources Control Board Regulations & Policies 40 CFR 122.2: Definitions Triggers None specified Click "Edit With Form" above to add content 06CABConstructionStormWaterProgram.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative Construction activities requiring a Construction Storm Water General Permit must submit a Storm Water Pollution Prevention Plan and a Construction

349

GRR/Section 14-CA-d - Section 401 Water Quality Certification | Open Energy  

Open Energy Info (EERE)

GRR/Section 14-CA-d - Section 401 Water Quality Certification GRR/Section 14-CA-d - Section 401 Water Quality Certification < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 14-CA-d - Section 401 Water Quality Certification 14CADSection401WaterQualityCertification (1).pdf Click to View Fullscreen Contact Agencies California State Water Resources Control Board Regulations & Policies Section 401 Clean Water Act (33 U.S.C. 1251 et seq.) Porter-Cologne Water Quality Control Act Code of Regulations Title 23, Section 3855 et. seq. Triggers None specified Click "Edit With Form" above to add content 14CADSection401WaterQualityCertification (1).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range.

350

GRR/Section 14-CO-d - Section 401 Water Quality Certification | Open Energy  

Open Energy Info (EERE)

4-CO-d - Section 401 Water Quality Certification 4-CO-d - Section 401 Water Quality Certification < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 14-CO-d - Section 401 Water Quality Certification 14CODSection401WaterQualityCertification.pdf Click to View Fullscreen Contact Agencies Colorado Department of Public Health and Environment Regulations & Policies 5 CCR 1002-82 Colorado Water Quality Control Act Triggers None specified Click "Edit With Form" above to add content 14CODSection401WaterQualityCertification.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative Section 401 of the Clean Water Act (CWA) requires a Water Quality

351

GRR/Section 14-TX-d - Section 401 Water Quality Certification | Open Energy  

Open Energy Info (EERE)

4-TX-d - Section 401 Water Quality Certification 4-TX-d - Section 401 Water Quality Certification < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 14-TX-d - Section 401 Water Quality Certification 14TXDSection401WaterQualityCertification (2).pdf Click to View Fullscreen Contact Agencies Railroad Commission of Texas Regulations & Policies 16 TAC 3.93 - RRC Water Quality Certification 16 TAC 3.30 - MOU between the RRC and the TCEQ Triggers None specified Click "Edit With Form" above to add content 14TXDSection401WaterQualityCertification (2).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative Section 401 of the Clean Water Act (CWA) requires a Water Quality

352

Property:CoolingTowerWaterUseAnnlAvgGross | Open Energy Information  

Open Energy Info (EERE)

Property Name CoolingTowerWaterUseAnnlAvgGross Property Type Number Description Cooling Tower Water use (annual average) (afday) Gross. Retrieved from "http:en.openei.orgw...

353

File:04NVBTemporaryUseOfGroundWaterForExploration.pdf | Open...  

Open Energy Info (EERE)

ryUseOfGroundWaterForExploration.pdf Jump to: navigation, search File File history File usage File:04NVBTemporaryUseOfGroundWaterForExploration.pdf Size of this preview: 463 599...

354

GRR/Section 6-CO-b - Construction Storm Water Permit | Open Energy  

Open Energy Info (EERE)

6-CO-b - Construction Storm Water Permit 6-CO-b - Construction Storm Water Permit < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 6-CO-b - Construction Storm Water Permit 06COBConstructionStormWaterPermit.pdf Click to View Fullscreen Contact Agencies Colorado Department of Public Health and Environment Regulations & Policies Colorado Water Quality Control Act 5 CCR 1002-61 Triggers None specified Click "Edit With Form" above to add content 06COBConstructionStormWaterPermit.pdf 06COBConstructionStormWaterPermit.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative Projects in Colorado with storm water discharges from construction activities that disturb one or more acres of land may require a Colorado

355

An Empirical Na-K-Ca Geothermometer For Natural Waters | Open Energy  

Open Energy Info (EERE)

Empirical Na-K-Ca Geothermometer For Natural Waters Empirical Na-K-Ca Geothermometer For Natural Waters Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: An Empirical Na-K-Ca Geothermometer For Natural Waters Details Activities (0) Areas (0) Regions (0) Abstract: An empirical method of estimating the last temperature of water-rock interaction has been devised. It is based upon molar Na, K and Ca concentrations in natural waters from temperature environments ranging from 4 to 340°C. The data for most geothermal waters cluster near a straight line when plotted as the function vs reciprocal of absolute temperature, where Β is either or depending upon whether the water equilibrated above or below 100°C. For most waters tested, the method gives better results than the methods suggested by other workers. The ratio

356

GRR/Section 19-CO-f - Substitute Water Supply Plan | Open Energy  

Open Energy Info (EERE)

CO-f - Substitute Water Supply Plan CO-f - Substitute Water Supply Plan < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 19-CO-f - Substitute Water Supply Plan 19COFSubstituteWaterSupplyPlan.pdf Click to View Fullscreen Contact Agencies Colorado Division of Water Resources Regulations & Policies CRS 37-92-208 Policy 2003-2 Implementation of CRS 37-92-308 Regarding Substitute Water Supply Plans Triggers None specified Click "Edit With Form" above to add content 19COFSubstituteWaterSupplyPlan.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative The state engineer in the Colorado Division of Water Resources oversees the

357

GRR/Section 19-AK-b - Temporary Use of Water Permit | Open Energy  

Open Energy Info (EERE)

9-AK-b - Temporary Use of Water Permit 9-AK-b - Temporary Use of Water Permit < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 19-AK-b - Temporary Use of Water Permit 19AKBTemporaryUseOfWaterPermit.pdf Click to View Fullscreen Contact Agencies Alaska Department of Natural Resources Alaska Division of Mining Land and Water Regulations & Policies Alaska Water Use Act Alaska Statutes Alaska Administrative Code Triggers None specified Click "Edit With Form" above to add content 19AKBTemporaryUseOfWaterPermit.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative In Alaska, water is declared a public resource belonging to the people of

358

GRR/Section 6-HI-b - Hawaii Construction Storm Water Permit | Open Energy  

Open Energy Info (EERE)

b - Hawaii Construction Storm Water Permit b - Hawaii Construction Storm Water Permit < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 6-HI-b - Hawaii Construction Storm Water Permit 06HIBHawaiiConstructionStormWaterPermit.pdf Click to View Fullscreen Contact Agencies Hawaii Department of Health Clean Water Branch Regulations & Policies Section 402 of the Clean Water Act (33 U.S.C. 1251 et seq.) Hawaii Administrative Rules 11-55 Triggers None specified Click "Edit With Form" above to add content 06HIBHawaiiConstructionStormWaterPermit.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative A developer must prepare and submit a Notice of Intent and associated

359

GRR/Section 14-AK-d - Section 401 Water Quality Certification | Open Energy  

Open Energy Info (EERE)

GRR/Section 14-AK-d - Section 401 Water Quality Certification GRR/Section 14-AK-d - Section 401 Water Quality Certification < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 14-AK-d - Section 401 Water Quality Certification 14AKDSection401WaterQualityCertification.pdf Click to View Fullscreen Contact Agencies Alaska Department of Environmental Conservation United States Environmental Protection Agency U S Army Corps of Engineers Regulations & Policies Alaska Water Quality Standards Alaska Statutes Alaska Administrative Code Triggers None specified Click "Edit With Form" above to add content 14AKDSection401WaterQualityCertification.pdf 14AKDSection401WaterQualityCertification.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range.

360

GRR/Section 6-OR-b - Construction Storm Water Permit | Open Energy  

Open Energy Info (EERE)

b - Construction Storm Water Permit b - Construction Storm Water Permit < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 6-OR-b - Construction Storm Water Permit 06ORBConstructionStormWaterPermit.pdf Click to View Fullscreen Contact Agencies Oregon Department of Environmental Quality Triggers None specified Click "Edit With Form" above to add content 06ORBConstructionStormWaterPermit.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative A project may be eligible for "automatic coverage" under NPDES general permit 1200-CN if storm water does not discharge to a water body with a

Note: This page contains sample records for the topic "open water lubricated" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

GRR/Section 14-NV-d - Section 401 Water Quality Certification | Open Energy  

Open Energy Info (EERE)

GRR/Section 14-NV-d - Section 401 Water Quality Certification GRR/Section 14-NV-d - Section 401 Water Quality Certification < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 14-NV-d - Section 401 Water Quality Certification 14NVDSection401WaterQualityCertification.pdf Click to View Fullscreen Contact Agencies Nevada Division of Environmental Protection Regulations & Policies Section 401 of the Clean Water Act (33 U.S.C. 1341) Triggers None specified Click "Edit With Form" above to add content 14NVDSection401WaterQualityCertification.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative Section 401 of the Clean Water Act (33 U.S.C. 1341) requires activities in

362

GRR/Section 14-NV-d - 401 Water Quality Certification | Open Energy  

Open Energy Info (EERE)

GRR/Section 14-NV-d - 401 Water Quality Certification GRR/Section 14-NV-d - 401 Water Quality Certification < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 14-NV-d - 401 Water Quality Certification 14NVDSection401WaterQualityCertification.pdf Click to View Fullscreen Contact Agencies Nevada Division of Environmental Protection Regulations & Policies Section 401 of the Clean Water Act (33 U.S.C. 1341) Triggers None specified Click "Edit With Form" above to add content 14NVDSection401WaterQualityCertification.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative Section 401 of the Clean Water Act (33 U.S.C. 1341) requires activities in

363

GRR/Section 6-AK-c - Drinking Water Permit | Open Energy Information  

Open Energy Info (EERE)

6-AK-c - Drinking Water Permit 6-AK-c - Drinking Water Permit < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 6-AK-c - Drinking Water Permit 06AKCDrinkingWaterPermit.pdf Click to View Fullscreen Contact Agencies Alaska Department of Environmental Conservation Regulations & Policies 18 AAC 80 Drinking Water 40 CFR 141 40 CFR 142 40 CFR 143 Triggers None specified Click "Edit With Form" above to add content 06AKCDrinkingWaterPermit.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative Alaska's drinking water program is monitored under the Alaska Department of Environmental Conservation. The type of permit required depends on the

364

GRR/Section 6-TX-b - Construction Storm Water Permitting Process | Open  

Open Energy Info (EERE)

6-TX-b - Construction Storm Water Permitting Process 6-TX-b - Construction Storm Water Permitting Process < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 6-TX-b - Construction Storm Water Permitting Process 06TXBConstructionStormWaterPermit.pdf Click to View Fullscreen Contact Agencies Texas Commission on Environmental Quality EPA Regulations & Policies TPDES Construction General Permit (TXR150000) 30 Texas Administrative Code 205 General Permits for Waste Discharges Texas Water Code 26.040 General Permits Clean Water Act Triggers None specified Click "Edit With Form" above to add content 06TXBConstructionStormWaterPermit.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range.

365

GRR/Section 14-HI-d - Section 401 Water Quality Certification | Open Energy  

Open Energy Info (EERE)

HI-d - Section 401 Water Quality Certification HI-d - Section 401 Water Quality Certification < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 14-HI-d - Section 401 Water Quality Certification 14HID - Section401WaterQualityCertification (1).pdf Click to View Fullscreen Contact Agencies Hawaii Department of Health Clean Water Branch United States Environmental Protection Agency Regulations & Policies Clean Water Act (33 U.S.C. 1251) Section 401 Hawaii Administrative Rules Title 11, Chapter 54 Triggers None specified Click "Edit With Form" above to add content 14HID - Section401WaterQualityCertification (1).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range.

366

Materials - Coatings & Lubricants - Illinois Center for Advanced Tribology  

NLE Websites -- All DOE Office Websites (Extended Search)

Illinois Center for Advanced Tribology Illinois Center for Advanced Tribology ICAT brochure cover TRI - BOL*O*GY (N) -- the science and technology of friction, wear, and lubrication of interacting surfaces in relative motion. The Illinois Center for Advanced Tribology (ICAT) is a virtual center that brings together the skills and talents of multiple investigators and unique facilities from Argonne National Laboratory and three partnering universities to resolve critical friction, wear, and lubrication issues in biomedical implants, alternative energy technologies, and extreme environments. The Center's tribology experts work closely with industry, and with state and federal agencies through jointly funded research projects, to perform leading-edge research on the impact of materials, coatings, and fluids on

367

Water Sampling At Coso Geothermal Area (1977-1978) | Open Energy  

Open Energy Info (EERE)

Water Sampling At Coso Geothermal Area (1977-1978) Water Sampling At Coso Geothermal Area (1977-1978) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Coso Geothermal Area (1977-1978) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Water Sampling Activity Date 1977 - 1978 Usefulness not indicated DOE-funding Unknown Notes Hydrogeologic investigation of Coso hot springs was conducted by field examination of geologic rock units and springs and other features of hydrologic significance and sampling of waters for chemical analysis; determination of the local Coso Hot Springs and regional groundwater hydrology, including consideration of recharge, discharge, movement, and water quality; determination of the possible impact of large-scale

368

GRR/Section 14-OR-d - Section 401 Water Quality Certification | Open Energy  

Open Energy Info (EERE)

GRR/Section 14-OR-d - Section 401 Water Quality Certification GRR/Section 14-OR-d - Section 401 Water Quality Certification < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 14-OR-d - Section 401 Water Quality Certification 14ORDSection410WaterQualityCertification.pdf Click to View Fullscreen Contact Agencies Oregon Department of Environmental Quality U S Army Corps of Engineers Regulations & Policies OAR 340-048: Certification of Compliance with Water Quality Requirements Triggers None specified Click "Edit With Form" above to add content 14ORDSection410WaterQualityCertification.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range.

369

GRR/Section 14-ID-d - Section 401 Water Quality Certification | Open Energy  

Open Energy Info (EERE)

GRR/Section 14-ID-d - Section 401 Water Quality Certification GRR/Section 14-ID-d - Section 401 Water Quality Certification < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 14-ID-d - Section 401 Water Quality Certification 14IDDSection401WaterQualityCertificationProcess.pdf Click to View Fullscreen Contact Agencies Idaho Department of Environmental Quality United States Environmental Protection Agency U S Army Corps of Engineers Regulations & Policies Idaho Environmental Protection and Health Act Idaho Administrative Procedure Act Triggers None specified Click "Edit With Form" above to add content 14IDDSection401WaterQualityCertificationProcess.pdf 14IDDSection401WaterQualityCertificationProcess.pdf Error creating thumbnail: Page number not in range.

370

GRR/Section 13-FD-c - Navigable Water Evaluation Process | Open Energy  

Open Energy Info (EERE)

c - Navigable Water Evaluation Process c - Navigable Water Evaluation Process < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 13-FD-c - Navigable Water Evaluation Process 13FDCNavigableWatersEvaluationProcess (2).pdf Click to View Fullscreen Contact Agencies Federal Emergency Management Agency US Army Corps of Engineers United States Environmental Protection Agency Regulations & Policies Bridges over Navigable Waters Act 33 CFR 115.50 Application for bridge permits Marine Protection Research and Sanctuaries Act Rivers and Harbors Act of 1899 Triggers None specified Click "Edit With Form" above to add content 13FDCNavigableWatersEvaluationProcess (2).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range.

371

GRR/Section 19-TX-e - Temporary Surface Water Permit | Open Energy  

Open Energy Info (EERE)

-TX-e - Temporary Surface Water Permit -TX-e - Temporary Surface Water Permit < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 19-TX-e - Temporary Surface Water Permit 19-TX-e Temporary Surface Water Permit.pdf Click to View Fullscreen Contact Agencies Texas Commission on Environmental Quality Regulations & Policies Tex. Water Code § 11.138 Triggers None specified Click "Edit With Form" above to add content 19-TX-e Temporary Surface Water Permit.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative In Texas, the Texas Commission on Environmental Quality (TCEQ), or in certain instances regional TCEQ offices or local Watermasters, issue

372

GRR/Section 19-WA-e - Water Well Notice of Intent for New Well | Open  

Open Energy Info (EERE)

GRR/Section 19-WA-e - Water Well Notice of Intent for New Well GRR/Section 19-WA-e - Water Well Notice of Intent for New Well < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 19-WA-e - Water Well Notice of Intent for New Well 19-WA-e - Water Well Notice of Intent for New Well.pdf Click to View Fullscreen Contact Agencies Washington State Department of Ecology Regulations & Policies Revised Code of Washington 18.104.048 Washington Administrative Code 173-160-151 Triggers None specified A developer seeking to use ground water for an activity may need to drill a new well to access the ground water. When a developer needs to drill a new well, the developer must complete the Notice of Intent (NOI) to Drill a Well form and submit the form to the Washington State Department of Ecology

373

GRR/Section 6-MT-b - Construction Storm Water Permit | Open Energy  

Open Energy Info (EERE)

MT-b - Construction Storm Water Permit MT-b - Construction Storm Water Permit < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 6-MT-b - Construction Storm Water Permit 06MTBConstructionStormWaterPermit (7).pdf Click to View Fullscreen Contact Agencies Montana Department of Environmental Quality Regulations & Policies Montana Code Annotated 75-5 [ARM 17.30.1101] Triggers None specified Click "Edit With Form" above to add content 06MTBConstructionStormWaterPermit (7).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative Montana regulates water quality under Montana Code Annotated 75-5. The

374

GRR/Section 19-HI-a - Surface Water Use Permit | Open Energy Information  

Open Energy Info (EERE)

GRR/Section 19-HI-a - Surface Water Use Permit GRR/Section 19-HI-a - Surface Water Use Permit < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 19-HI-a - Surface Water Use Permit 19HIASurfaceWaterUsePermit.pdf Click to View Fullscreen Contact Agencies Hawaii Department of Land and Natural Resources Commission on Water Resource Management Regulations & Policies Hawaii Revised Statutes 174C Hawaii Administrative Rules Title 13, Chapter 171 Triggers None specified Click "Edit With Form" above to add content 19HIASurfaceWaterUsePermit.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative Under Hawaii Revised Statutes 174C and Hawaii Administrative Rules Title

375

GRR/Section 19-CO-d - Water Well Permit | Open Energy Information  

Open Energy Info (EERE)

GRR/Section 19-CO-d - Water Well Permit GRR/Section 19-CO-d - Water Well Permit < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 19-CO-d - Water Well Permit 19CODWaterWellPermit.pdf Click to View Fullscreen Contact Agencies Colorado Division of Water Resources Regulations & Policies 2 CCR 402-7 Non-tributary Ground Water Rules Colorado Revised Stautes 37-90-137 Underground Water Triggers None specified Click "Edit With Form" above to add content 19CODWaterWellPermit.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative In Colorado, by law every new well, not otherwise exempt, that diverts

376

GRR/Section 6-AK-b - Construction Storm Water Permitting | Open Energy  

Open Energy Info (EERE)

GRR/Section 6-AK-b - Construction Storm Water Permitting GRR/Section 6-AK-b - Construction Storm Water Permitting < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 6-AK-b - Construction Storm Water Permitting 06AKBConstructionStormWaterPermitting (1).pdf Click to View Fullscreen Contact Agencies Alaska Department of Environmental Conservation Regulations & Policies 18 AAC 72: Wastewater Treatment and Disposal Triggers None specified Click "Edit With Form" above to add content 06AKBConstructionStormWaterPermitting (1).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative From DEC Website: The goal of the Storm Water Program is to reduce or eliminate pollutants in

377

GRR/Section 14-MT-d - Section 401 Water Quality Certification | Open Energy  

Open Energy Info (EERE)

GRR/Section 14-MT-d - Section 401 Water Quality Certification GRR/Section 14-MT-d - Section 401 Water Quality Certification < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 14-MT-d - Section 401 Water Quality Certification 14MTD401WaterQualityCertification (2).pdf Click to View Fullscreen Contact Agencies Montana Department of Environmental Quality Regulations & Policies Federal Clean Water Act (33 USC § 1251 et seq.) Montana Codes Annotated 75-5-401 Aministrative Rules of Montana Chapter 30 Administrative Rules of Montana 17.30.101 through 109 Triggers None specified Click "Edit With Form" above to add content 14MTD401WaterQualityCertification (2).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range.

378

GRR/Section 14-TX-e - Ground Water Discharge Permit | Open Energy  

Open Energy Info (EERE)

GRR/Section 14-TX-e - Ground Water Discharge Permit GRR/Section 14-TX-e - Ground Water Discharge Permit < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 14-TX-e - Ground Water Discharge Permit 14TXEGroundWaterDischargePermit (1).pdf Click to View Fullscreen Contact Agencies Railroad Commission of Texas United States Environmental Protection Agency Regulations & Policies 16 TAC 3.8 (Rule 8) Triggers None specified Click "Edit With Form" above to add content 14TXEGroundWaterDischargePermit (1).pdf 14TXEGroundWaterDischargePermit (1).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative Pits are used in drilling operations to contain drilling related fluids and

379

Water Sampling At Twenty-Nine Palms Area (Page, Et Al., 2010) | Open Energy  

Open Energy Info (EERE)

Water Sampling At Twenty-Nine Palms Area (Page, Et Al., 2010) Water Sampling At Twenty-Nine Palms Area (Page, Et Al., 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Twenty-Nine Palms Geothermal Area (Page, Et Al., 2010) Exploration Activity Details Location Twenty-Nine Palms Geothermal Area Exploration Technique Water Sampling Activity Date Usefulness not useful DOE-funding Unknown Notes A full comparison of these analyses with those of other groundwater from the Twenty-Nine Palms/Joshua/Johnson Valley/Yucca Valley areas may indicate an enhanced mixing component, or it may show that these waters are simply consistent with most other groundwater in the region. Given the apparent gross immaturity of the waters sampled here, it is difficult to even estimate an order of magnitude of a geothermal component to these fluids,

380

Water-Gas Samples At Black Warrior Area (DOE GTP) | Open Energy...  

Open Energy Info (EERE)

GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water-Gas Samples At Black Warrior Area (DOE GTP) Exploration Activity Details Location...

Note: This page contains sample records for the topic "open water lubricated" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Water-Gas Samples At Colrado Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water-Gas Samples At Colrado Area (DOE GTP) Exploration Activity Details Location Colado...

382

Water-Gas Samples At Wister Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon Water-Gas Samples At Wister Area (DOE GTP) Jump to: navigation, search GEOTHERMAL...

383

Water-Gas Samples At Gabbs Valley Area (DOE GTP) | Open Energy...  

Open Energy Info (EERE)

GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water-Gas Samples At Gabbs Valley Area (DOE GTP) Exploration Activity Details Location Gabbs...

384

Water-Gas Samples At Glass Buttes Area (DOE GTP) | Open Energy...  

Open Energy Info (EERE)

GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water-Gas Samples At Glass Buttes Area (DOE GTP) Exploration Activity Details Location Glass...

385

Circuit Breaker Lubrication - Assessment of Field-Aged Bearings  

Science Conference Proceedings (OSTI)

The life cycle performance of a high-voltage circuit breaker is, to a large degree, determined by the performance of the materials and components that make up the complete breaker. The rates of deterioration of components such as compressors, pumps, seals, linkages and their lubrication, and interrupter elements drive the requirements for circuit breaker maintenance and refurbishment. EPRI conducted a series of investigations to enhance knowledge of aging processes and to identify those ...

2012-12-14T23:59:59.000Z

386

Hydrodynamically Lubricated Rotary Shaft Having Twist Resistant Geometry  

SciTech Connect

A hydrodynamically lubricated squeeze packing type rotary shaft with a cross-sectional geometry suitable for pressurized lubricant retention is provided which, in the preferred embodiment, incorporates a protuberant static sealing interface that, compared to prior art, dramatically improves the exclusionary action of the dynamic sealing interface in low pressure and unpressurized applications by achieving symmetrical deformation of the seal at the static and dynamic sealing interfaces. In abrasive environments, the improved exclusionary action results in a dramatic reduction of seal and shaft wear, compared to prior art, and provides a significant increase in seal life. The invention also increases seal life by making higher levels of initial compression possible, compared to prior art, without compromising hydrodynamic lubrication; this added compression makes the seal more tolerant of compression set, abrasive wear, mechanical misalignment, dynamic runout, and manufacturing tolerances, and also makes hydrodynamic seals with smaller cross-sections more practical. In alternate embodiments, the benefits enumerated above are achieved by cooperative configurations of the seal and the gland which achieve symmetrical deformation of the seal at the static and dynamic sealing interfaces. The seal may also be configured such that predetermined radial compression deforms it to a desired operative configuration, even through symmetrical deformation is lacking.

Dietle, Lannie (Houston, TX); Gobeli, Jeffrey D. (Houston, TX)

1993-07-27T23:59:59.000Z

387

Lubricating bacteria model for branching growth of bacterial colonies, Phys  

E-Print Network (OSTI)

Various bacterial strains (e.g. strains belonging to the genera Bacillus, Paenibacillus, Serratia and Salmonella) exhibit colonial branching patterns during growth on poor semi-solid substrates. These patterns reflect the bacterial cooperative self-organization. Central part of the cooperation is the collective formation of lubricant on top of the agar which enables the bacteria to swim. Hence it provides the colony means to advance towards the food. One method of modeling the colonial development is via coupled reaction-diffusion equations which describe the time evolution of the bacterial density and the concentrations of the relevant chemical fields. This idea has been pursued by a number of groups. Here we present an additional model which specifically includes an evolution equation for the lubricant excreted by the bacteria. We show that when the diffusion of the fluid is governed by nonlinear diffusion coefficient branching patterns evolves. We study the effect of the rates of emission and decomposition of the lubricant fluid on the observed patterns. The results are compared with experimental observations. We also include fields of chemotactic agents and food chemotaxis and conclude that these features are needed in order to explain the observations. 1 I.

Yonathan Kozlovsky; Inon Cohen; Ido Golding; Eshel Ben-jacob

1999-01-01T23:59:59.000Z

388

Method of removing an immiscible lubricant from a refrigeration system and apparatus for same  

DOE Patents (OSTI)

A method is described for separating an immiscible lubricant from a liquid refrigerant in a refrigerating system including a compressor, a condenser, an expansion device and an evaporator, wherein the expansion device is connected to the condenser by a liquid refrigerant flow line for liquid refrigerant and immiscible lubricant. The method comprising slowing the rate of flow of the liquid refrigerant and immiscible lubricant between the condenser and the expansion device such that the liquid refrigerant and the immiscible lubricant separate based upon differences in density. The method also comprises collecting the separated immiscible lubricant in a collection chamber in fluid communication with the separated immiscible lubricant. Apparatus for performing the method is also disclosed. 3 figs.

Spauschus, H.O.; Starr, T.L.

1999-03-30T23:59:59.000Z

389

POSTER PRESENTATION Open Access QTL analyses of drought tolerance in Eucalyptus under two contrasting water regimes  

E-Print Network (OSTI)

Drought stress is one of the most important abiotic factors in Eucalyptus sp. plantations which influences the growth and limits productivity in cultivated areas, mainly in central, northern and northeastern areas in Brazil, where large parts of these areas have limitations on water supply. The breeders are now looking for tolerant genotypes to overcome this challenge and the QTL mapping approach will help to understand the genetic control of drought tolerance. The objective of this study was to identify genetic loci controlling the phenotypic variation in drought tolerance in a Eucalytpus segregant progeny grown under drought and irrigation conditions. Material and methods Theprogenyusedinthisstudywasgeneratedbythe breeding program of Fibria Celulose and is composed of 184 F 1 genotypes from a cross between a tolerant and a susceptible clone to water stress, both E. grandis x E. urophylla hybrid tree. In a greenhouse condition, the progeny (seedlings with 70 days) was evaluated under two irrigation conditions (1- control: assigned to a well-watered regime with watering equal to transpiration loss and 2: submitted to water deficit until the onset of initial drought symptoms) in 4 different experiments. Growth (the relative increase in height and stem diameter; leaf number; leaf area; leaf, steam and root dry weight; root-shoot ratio) and physiological traits (net assimilation rate, stomatal conductance, transpiration, instantaneous and intrinsic water-use efficiency, relative water content in leaves, chlorophyll content index, photochemical efficiency and leaf water potential) were

Juliana Teixeira; Re Missiaggia; Donizete Dias; Edimar Scarpinati; Juliana Viana; Nadia Paula; Rinaldo Paula; Csar Bonine

2011-01-01T23:59:59.000Z

390

MHK Technologies/Open Centre Turbine | Open Energy Information  

Open Energy Info (EERE)

Turbine Turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Open Centre Turbine.jpg Technology Profile Primary Organization OpenHydro Group Limited Project(s) where this technology is utilized *MHK Projects/OpenHydro Alderney Channel Islands UK *MHK Projects/OpenHydro Bay of Fundy Nova Scotia CA Technology Resource Click here Current/Tidal Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 1-3: Discovery / Concept Definition / Early Stage Development & Design & Engineering Technology Description The Open-Centre Turbine is designed to be deployed directly on the seabed. The Open-Centre Turbine is a horizontal axis turbine with a direct-drive, permanent magnetic generator that has a slow-moving rotor and lubricant-free operation, which decreases maintenance and minimizes risk to marine life.

391

GRR/Section 14-UT-e - Ground Water Quality Protection Permit | Open Energy  

Open Energy Info (EERE)

GRR/Section 14-UT-e - Ground Water Quality Protection Permit GRR/Section 14-UT-e - Ground Water Quality Protection Permit < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 14-UT-e - Ground Water Quality Protection Permit 14UTEGroundWaterQualityProtectionPermit.pdf Click to View Fullscreen Contact Agencies Utah Department of Environmental Quality Regulations & Policies UAC R317-6 Triggers None specified Click "Edit With Form" above to add content 14UTEGroundWaterQualityProtectionPermit.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative The Utah Department of Environmental Quality (DEQ) regulates discharges

392

City of Burbank Water and Power, California (Utility Company) | Open Energy  

Open Energy Info (EERE)

Burbank Water and Power, California (Utility Company) Burbank Water and Power, California (Utility Company) (Redirected from Burbank Water and Power) Jump to: navigation, search Name City of Burbank Water and Power Place Burbank, California Utility Id 2507 Utility Location Yes Ownership M NERC Location WECC NERC WECC Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Wholesale Marketing Yes Activity Retail Marketing Yes Activity Bundled Services Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] SGIC[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! Burbank Water and Power Smart Grid Project was awarded $20,000,000 Recovery

393

GRR/Section 14-WA-d - Section 401 Water Quality Certification | Open Energy  

Open Energy Info (EERE)

GRR/Section 14-WA-d - Section 401 Water Quality Certification GRR/Section 14-WA-d - Section 401 Water Quality Certification < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 14-WA-d - Section 401 Water Quality Certification 14-WA-d - 401 Water Quality Certification.pdf Click to View Fullscreen Contact Agencies U S Army Corps of Engineers Washington State Department of Ecology Regulations & Policies Revised Statute of Washington Chapter 90.48 Washington Administrative Code Chapter 173-201A Washington Administrative Code 173-225-030 Triggers None specified Developers requiring a Section 404 Dredge and Fill Permit from the U S Army Corps of Engineers (Corps) are required to obtain a Section 401 Water Quality Certification from the state of Washington. The Washington State

394

Mexico-GTZ Support for the Programme to Promote Solar Water Heating | Open  

Open Energy Info (EERE)

for the Programme to Promote Solar Water Heating for the Programme to Promote Solar Water Heating Jump to: navigation, search Logo: Mexico-GTZ Support for the Programme to Promote Solar Water Heating Name Mexico-GTZ Support for the Programme to Promote Solar Water Heating Agency/Company /Organization Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH Partner German Federal Ministry for Economic Cooperation and Development (BMZ), Centro Mexicano de Promoción del Cobre A.C. (PROCOBRE) Sector Energy Focus Area Solar Topics Background analysis Website http://www.gtz.de/en/themen/27 Program Start 2007 Program End 2009 Country Mexico Central America References Support for the Programme to Promote Solar Water Heating in Mexico (PPP)[1] GTZ is working with Mexico on this project with the following objective:

395

Energy Use and Water Consumption at University of Texas at Austin | OpenEI  

Open Energy Info (EERE)

Use and Water Consumption at University of Texas at Austin Use and Water Consumption at University of Texas at Austin Dataset Summary Description Provides annual energy usage for years 1989 through 2010 for UT at Austin; specifically, electricity usage (kWh), natural gas usage (Mcf), associated costs. Also provides water consumption for 2005 through 2010. Source University of Texas (UT) at Austin, Utilities & Energy Management Date Released Unknown Date Updated Unknown Keywords Electricity Consumption Natural Gas Texas Unit Cost Electricity Unit Cost Natural Gas University Water Data application/vnd.ms-excel icon Energy and Water Use Data for UT-Austin (xls, 32.8 KiB) Quality Metrics Level of Review Some Review Comment Assume data was reviewed by someone at UT-Austin prior to adding to website. Temporal and Spatial Coverage

396

Water Sampling At Salt Wells Area (Coolbaugh, Et Al., 2006) | Open Energy  

Open Energy Info (EERE)

Water Sampling At Salt Wells Area (Coolbaugh, Et Al., Water Sampling At Salt Wells Area (Coolbaugh, Et Al., 2006) Exploration Activity Details Location Salt Wells Geothermal Area Exploration Technique Water Sampling Activity Date 2005 - 2005 Usefulness useful DOE-funding Unknown Exploration Basis Geochemical water sampling, mineral distribution mapping, and shallow (30 cm) temperature probe measurements were conducted to expand on a previous field mapping study of surface geothermal features at Salt Wells, in order to evaluate the relationship between these features and structures that control geothermal fluid flow. Notes Water from six hot springs/seeps (out of some 20 seasonal discharges identified, with hot spring temperatures ranging from 39.1-81.6°C and cold seep temperatures between 5-7°C) and playa groundwaters were sampled and

397

Surface Water Sampling At Raft River Geothermal Area (1973) | Open Energy  

Open Energy Info (EERE)

Surface Water Sampling At Raft River Geothermal Area (1973) Surface Water Sampling At Raft River Geothermal Area (1973) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Surface Water Sampling At Raft River Geothermal Area (1973) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Surface Water Sampling Activity Date 1973 Usefulness not indicated DOE-funding Unknown Exploration Basis At least 380 hot springs and wells are known to occur throughout the central and southern parts of Idaho. Notes One hundred twenty-four of 380 hot springs and wells in the central and southern parts of Idaho were inventoried as a part of the study reported on herein. At the spring vents and wells visited, the thermal waters flow from rocks ranging in age from Precambrian to Holocene and from a wide range of

398

Evolution Of Hydrothermal Waters At Mount St Helens, Washington, Usa | Open  

Open Energy Info (EERE)

Evolution Of Hydrothermal Waters At Mount St Helens, Washington, Usa Evolution Of Hydrothermal Waters At Mount St Helens, Washington, Usa Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Evolution Of Hydrothermal Waters At Mount St Helens, Washington, Usa Details Activities (4) Areas (1) Regions (0) Abstract: Hydrothermal water samples at Mount St. Helens collected between 1985 and 1989 and in 1994 are used to identify water types and describe their evolution through time. Two types of low temperature hydrothermal systems are associated with the 1980 eruptions and were initiated soon after emplacement of shallow magma and pyroclastic flows. The Loowit hot spring system is located in the breach zone and is associated with the magma conduit and nearby avalanche deposits, whereas the Pumice Plain (PP)

399

AECL Qualification of Greases for Motor-Operated Valve Stem/Stem Nut Lubrication  

Science Conference Proceedings (OSTI)

The frictional characteristics of lubricants used in the actuators of motor-operated valves are critical to ensuring adequate actuator output capability. As part of the EPRI Motor-Operated Valve (MOV) Performance Prediction Program, testing was conducted at ambient temperature conditions on over 20 stem-stem nut lubricants in use in United States nuclear plants as documented in EPRI report TR-103235. Additional research has been conducted on several MOV lubricants after thermal and radiation aging under ...

1998-11-24T23:59:59.000Z

400

Effect of water contamination on aging of hydraulic oil  

Science Conference Proceedings (OSTI)

A. Rozenberg, Influence of Lubricating Oils on Reliability and Life of ... Oil samples were contaminated with water by mixing with 0.I, 0.5 ... The reserve of antioxi-.

Note: This page contains sample records for the topic "open water lubricated" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Impact of Lubricant Formulation on the Performance of NOx Adsorber Catalysts (Presentation)  

DOE Green Energy (OSTI)

Discusses the impact of lubricant formulation on the performance of oxides of nitrogen (NOx) Adsorber Catalysts, including background/motivation for study, experimental design, and results.

Whitacre, S. D.

2005-08-25T23:59:59.000Z

402

The feasibility of using electrostatic charge condition monitoring for lubricant additive screening.  

E-Print Network (OSTI)

??International standards require lubricant formulators to develop additive packages that increase fuel economy, reduce environmental impact and minimise wear over ever increasing service intervals. However, (more)

Booth, James Edward

2008-01-01T23:59:59.000Z

403

GRR/Section 6-ID-b - Construction Storm Water Permit | Open Energy  

Open Energy Info (EERE)

6-ID-b - Construction Storm Water Permit 6-ID-b - Construction Storm Water Permit < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 6-ID-b - Construction Storm Water Permit 06IDBConstructionStormwaterPermit.pdf Click to View Fullscreen Contact Agencies United States Environmental Protection Agency Triggers None specified Click "Edit With Form" above to add content 06IDBConstructionStormwaterPermit.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative 6-ID-b.1 - EPA Construction General Permit Idaho does not have authority from the United States Environmental Protection Agency to issue a construction storm water permit. See Flowchart

404

Water Sampling At Northern Basin & Range Region (Laney, 2005) | Open Energy  

Open Energy Info (EERE)

Water Sampling At Northern Basin & Range Region Water Sampling At Northern Basin & Range Region (Laney, 2005) Exploration Activity Details Location Northern Basin and Range Geothermal Region Exploration Technique Water Sampling Activity Date Usefulness not indicated DOE-funding Unknown Notes Geochemical Sampling of Thermal and Non-thermal Waters in Nevada, Shevenell and Garside. The objective of this project is to obtain geochemical data from springs (and some wells) for which data are not publicly available, or for which the analyses are incomplete, poor, or nonexistent. With these data, geothermometers are being calculated and a preliminary assessment of the geothermal potential and ranking of the sampled areas is being conducted using the new geochemical data. Objectives changed slightly in 2004. Samples are now being collected at sites identified by other

405

Water Sampling At Long Valley Caldera Area (Evans, Et Al., 2002) | Open  

Open Energy Info (EERE)

Water Sampling At Long Valley Caldera Area (Evans, Et Al., 2002) Water Sampling At Long Valley Caldera Area (Evans, Et Al., 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Long Valley Caldera Area (Evans, Et Al., 2002) Exploration Activity Details Location Long Valley Caldera Area Exploration Technique Water Sampling Activity Date Usefulness useful DOE-funding Unknown Notes Detailed chemical and isotopic studies not only help quantify the discharge, but also may provide additional insight to subsurface conditions. For example, CO2-rich groundwaters that are cold and dilute may be a general indicator that a volcano contains a pressurized gas cap. Shallow depths. References William C. Evans, Michael L. Sorey, Andrea C. Cook, B. Mack Kennedy, David L. Shuster, Elizabeth M. Colvard, Lloyd D. White, Mark A. Huebner

406

File:06HIBHawaiiConstructionStormWaterPermit.pdf | Open Energy Information  

Open Energy Info (EERE)

HIBHawaiiConstructionStormWaterPermit.pdf HIBHawaiiConstructionStormWaterPermit.pdf Jump to: navigation, search File File history File usage File:06HIBHawaiiConstructionStormWaterPermit.pdf Size of this preview: 463 × 599 pixels. Other resolution: 464 × 600 pixels. Full resolution ‎(1,275 × 1,650 pixels, file size: 40 KB, MIME type: application/pdf) File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 11:59, 23 October 2012 Thumbnail for version as of 11:59, 23 October 2012 1,275 × 1,650 (40 KB) Dklein2012 (Talk | contribs) You cannot overwrite this file. Edit this file using an external application (See the setup instructions for more information) File usage The following page links to this file: GRR/Section 6-HI-b - Hawaii Construction Storm Water Permit

407

Water Sampling At Teels Marsh Area (Coolbaugh, Et Al., 2006) | Open Energy  

Open Energy Info (EERE)

Teels Marsh Area (Coolbaugh, Et Al., 2006) Teels Marsh Area (Coolbaugh, Et Al., 2006) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Teels Marsh Area (Coolbaugh, Et Al., 2006) Exploration Activity Details Location Teels Marsh Area Exploration Technique Water Sampling Activity Date Usefulness useful DOE-funding Unknown Notes Follow up (to ASTER satellite imaging) analysis of spring and well waters yielded geothermometer reservoir estimates up to 192°C References Mark F. Coolbaugh, Chris Kraft, Chris Sladek, Richard E. Zehner, Lisa Shevenell (2006) Quaternary Borate Deposits As A Geothermal Exploration Tool In The Great Basin Retrieved from "http://en.openei.org/w/index.php?title=Water_Sampling_At_Teels_Marsh_Area_(Coolbaugh,_Et_Al.,_2006)&oldid=388168

408

GRR/Section 14-OR-e - Water Pollution Control Facility Permit | Open Energy  

Open Energy Info (EERE)

GRR/Section 14-OR-e - Water Pollution Control Facility Permit GRR/Section 14-OR-e - Water Pollution Control Facility Permit < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 14-OR-e - Water Pollution Control Facility Permit 14OREWaterPollutionControlFacilityPermit.pdf Click to View Fullscreen Contact Agencies Oregon Department of Environmental Quality Regulations & Policies OAR Division 45 Regulations Pertaining to NPDES and WPCF Permits Triggers None specified Click "Edit With Form" above to add content 14OREWaterPollutionControlFacilityPermit.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative The Oregon Department of Environmental Quality (ODEQ) issues Water

409

City of Glendale Water and Power Smart Grid Project | Open Energy  

Open Energy Info (EERE)

Water and Power Smart Grid Project Water and Power Smart Grid Project Jump to: navigation, search Project Lead City of Glendale Water and Power Country United States Headquarters Location Glendale, California Recovery Act Funding $20,000,000.00 Total Project Value $51,302,425.00 Coverage Area Coverage Map: City of Glendale Water and Power Smart Grid Project Coordinates 34.1425078°, -118.255075° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

410

MHK Technologies/Deep Ocean Water Application Facility DOWAF | Open Energy  

Open Energy Info (EERE)

Water Application Facility DOWAF Water Application Facility DOWAF < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Deep Ocean Water Application Facility DOWAF.jpg Technology Profile Primary Organization Marc M Siah Associates Inc Technology Resource Click here OTEC Technology Type Click here OTEC - Hybrid Cycle Technology Description MOTEC systems utilize the temperature differential between the warm surface and the cold deep seawater The OTEC heat engine converts the thermal energy into usable mechanical energy which in turn is converted to electrical energy There are different types of OTEC system Technology Dimensions Device Testing Date Submitted 24:54.0 << Return to the MHK database homepage Retrieved from "http://en.openei.org/w/index.php?title=MHK_Technologies/Deep_Ocean_Water_Application_Facility_DOWAF&oldid=681561

411

Water Sampling At Rhodes Marsh Area (Coolbaugh, Et Al., 2006) | Open Energy  

Open Energy Info (EERE)

Rhodes Marsh Area (Coolbaugh, Et Al., 2006) Rhodes Marsh Area (Coolbaugh, Et Al., 2006) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Rhodes Marsh Area (Coolbaugh, Et Al., 2006) Exploration Activity Details Location Rhodes Marsh Area Exploration Technique Water Sampling Activity Date Usefulness useful DOE-funding Unknown Notes Follow up (to ASTER satellite imaging) analysis of spring and well waters yielded geothermometer reservoir estimates up to 162°C References Mark F. Coolbaugh, Chris Kraft, Chris Sladek, Richard E. Zehner, Lisa Shevenell (2006) Quaternary Borate Deposits As A Geothermal Exploration Tool In The Great Basin Retrieved from "http://en.openei.org/w/index.php?title=Water_Sampling_At_Rhodes_Marsh_Area_(Coolbaugh,_Et_Al.,_2006)&oldid=387552"

412

Water Sampling At Mt St Helens Area (Shevenell & Goff, 1995) | Open Energy  

Open Energy Info (EERE)

Helens Area (Shevenell & Goff, 1995) Helens Area (Shevenell & Goff, 1995) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Mt St Helens Area (Shevenell & Goff, 1995) Exploration Activity Details Location Mt St Helens Area Exploration Technique Water Sampling Activity Date Usefulness not indicated DOE-funding Unknown References Lisa Shevenell, Fraser Goff (1995) Evolution Of Hydrothermal Waters At Mount St Helens, Washington, Usa Retrieved from "http://en.openei.org/w/index.php?title=Water_Sampling_At_Mt_St_Helens_Area_(Shevenell_%26_Goff,_1995)&oldid=389549" Category: Exploration Activities What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load)

413

Water Sampling At Mt Ranier Area (Frank, 1995) | Open Energy Information  

Open Energy Info (EERE)

Water Sampling At Mt Rainier Area (Frank, 1995) Water Sampling At Mt Rainier Area (Frank, 1995) Exploration Activity Details Location Mt Rainier Area Exploration Technique Water Sampling Activity Date Usefulness not indicated DOE-funding Unknown Notes This paper relies primarily on minerals, gases, and water found in surficial deposits to construct a conceptual model for Mount Rainier that considers the following factors: - Locations of hydrothermal leakage at the surface; - Structures that provide permeable paths of fluid egress to the surface; - Amount of excess heat discharge; - Composition of surficial thermal fluids; - Composition, guided by mineralogy, of subsurface thermal fluids. Analytical data used as a basis for the model are from samples collected during field investigations in 1982-1985 (Frank, 1985), whereas

414

Water Sampling At Kilauea East Rift Area (Thomas, 1986) | Open Energy  

Open Energy Info (EERE)

Water Sampling At Kilauea East Rift Area (Thomas, Water Sampling At Kilauea East Rift Area (Thomas, 1986) Exploration Activity Details Location Kilauea East Rift Area Exploration Technique Water Sampling Activity Date Usefulness useful DOE-funding Unknown Notes Studies of groundwater and coastal spring- sources that have identified thermal fluids on the lower East Rift Zone date back to the early part of this century (Guppy, 1906). More recent investigations of temperature and groundwater chemistry were performed for the HGP geoscience program (Macdonald, 1977; McMurtry et al., 1977; Epp and Halunen, 1979). Epp and Halunen (1979) identified several warm water wells, one having a temperature in excess of 90degrees C, and coastal springs in lower Puna; temperature profiles obtained by this study indicated that in some

415

Water Sampling At Walker-Lane Transitional Zone Region (Laney, 2005) | Open  

Open Energy Info (EERE)

Water Sampling At Walker-Lane Transitional Zone Water Sampling At Walker-Lane Transitional Zone Region (Laney, 2005) Exploration Activity Details Location Walker-Lane Transition Zone Geothermal Region Exploration Technique Water Sampling Activity Date Usefulness not indicated DOE-funding Unknown Notes Geochemical Sampling of Thermal and Non-thermal Waters in Nevada, Shevenell and Garside. The objective of this project is to obtain geochemical data from springs (and some wells) for which data are not publicly available, or for which the analyses are incomplete, poor, or nonexistent. With these data, geothermometers are being calculated and a preliminary assessment of the geothermal potential and ranking of the sampled areas is being conducted using the new geochemical data. Objectives changed slightly in

416

Memphis Light, Gas and Water Division Smart Grid Project | Open Energy  

Open Energy Info (EERE)

Light, Gas and Water Division Smart Grid Project Light, Gas and Water Division Smart Grid Project Jump to: navigation, search Project Lead Memphis Light, Gas and Water Division Country United States Headquarters Location Memphis, Tennessee Recovery Act Funding $5,063,469.00 Total Project Value $13112363 Coverage Area Coverage Map: Memphis Light, Gas and Water Division Smart Grid Project Coordinates 35.1495343°, -90.0489801° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

417

Water Sampling At Buffalo Valley Hot Springs Area (Laney, 2005) | Open  

Open Energy Info (EERE)

Water Sampling At Buffalo Valley Hot Springs Area Water Sampling At Buffalo Valley Hot Springs Area (Laney, 2005) Exploration Activity Details Location Buffalo Valley Hot Springs Area Exploration Technique Water Sampling Activity Date Usefulness not indicated DOE-funding Unknown Notes Geochemical Sampling of Thermal and Non-thermal Waters in Nevada, Shevenell and Garside. The objective of this project is to obtain geochemical data from springs (and some wells) for which data are not publicly available, or for which the analyses are incomplete, poor, or nonexistent. With these data, geothermometers are being calculated and a preliminary assessment of the geothermal potential and ranking of the sampled areas is being conducted using the new geochemical data. Objectives changed slightly in 2004. Samples are now being collected at sites identified by other

418

Water Sampling At Nw Basin & Range Region (Laney, 2005) | Open Energy  

Open Energy Info (EERE)

Water Sampling At Nw Basin & Range Region (Laney, Water Sampling At Nw Basin & Range Region (Laney, 2005) Exploration Activity Details Location Northwest Basin and Range Geothermal Region Exploration Technique Water Sampling Activity Date Usefulness not indicated DOE-funding Unknown Notes Geochemical Sampling of Thermal and Non-thermal Waters in Nevada, Shevenell and Garside. The objective of this project is to obtain geochemical data from springs (and some wells) for which data are not publicly available, or for which the analyses are incomplete, poor, or nonexistent. With these data, geothermometers are being calculated and a preliminary assessment of the geothermal potential and ranking of the sampled areas is being conducted using the new geochemical data. Objectives changed slightly in 2004. Samples are now being collected at sites identified by other

419

GRR/Section 14-MT-d - 401 Water Quality Certification | Open...  

Open Energy Info (EERE)

Page Edit with form History Facebook icon Twitter icon GRRSection 14-MT-d - 401 Water Quality Certification < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY...

420

Did an Open Panama Isthmus Correspond to an Invasion of Pacific Water into the Atlantic?  

Science Conference Proceedings (OSTI)

Recent general circulation simulations suggest that, prior to the closure of the Panama Isthmus (the narrow strip of land connecting North and South America), low-salinity Pacific Ocean water invaded the Atlantic Ocean via the gap between North ...

Doron Nof; Stephen Van Gorder

2003-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "open water lubricated" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Water-saving Measures: Energy and Cost Savings Calculator | Open Energy  

Open Energy Info (EERE)

Water-saving Measures: Energy and Cost Savings Calculator Water-saving Measures: Energy and Cost Savings Calculator Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Water-saving Measures: Energy and Cost Savings Calculator Agency/Company /Organization: California Public Utilities Commission (CPUC) Sector: Water Focus Area: Energy Efficiency, Water Conservation Resource Type: Software/modeling tools User Interface: Spreadsheet Website: www.doe2.com/download/Water-Energy/ Country: United States Locality: California Cost: Free Northern America Coordinates: 37.09024°, -95.712891° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.09024,"lon":-95.712891,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

422

Water  

NLE Websites -- All DOE Office Websites (Extended Search)

Laws Envirosearch Institutional Controls NEPA Activities RCRA RQ*Calculator Water HSS Logo Water Laws Overview of water-related legislation affecting DOE sites Clean...

423

Direct-contact condensers for open-cycle OTEC applications: Model validation with fresh water experiments for structured packings  

DOE Green Energy (OSTI)

The objective of the reported work was to develop analytical methods for evaluating the design and performance of advanced high-performance heat exchangers for use in open-cycle thermal energy conversion (OC-OTEC) systems. This report describes the progress made on validating a one-dimensional, steady-state analytical computer of fresh water experiments. The condenser model represents the state of the art in direct-contact heat exchange for condensation for OC-OTEC applications. This is expected to provide a basis for optimizing OC-OTEC plant configurations. Using the model, we examined two condenser geometries, a cocurrent and a countercurrent configuration. This report provides detailed validation results for important condenser parameters for cocurrent and countercurrent flows. Based on the comparisons and uncertainty overlap between the experimental data and predictions, the model is shown to predict critical condenser performance parameters with an uncertainty acceptable for general engineering design and performance evaluations. 33 refs., 69 figs., 38 tabs.

Bharathan, D.; Parsons, B.K.; Althof, J.A.

1988-10-01T23:59:59.000Z

424

File:06COBConstructionStormWaterPermit.pdf | Open Energy Information  

Open Energy Info (EERE)

COBConstructionStormWaterPermit.pdf COBConstructionStormWaterPermit.pdf Jump to: navigation, search File File history File usage File:06COBConstructionStormWaterPermit.pdf Size of this preview: 463 × 599 pixels. Other resolution: 464 × 600 pixels. Go to page 1 2 Go! next page → next page → Full resolution ‎(1,275 × 1,650 pixels, file size: 61 KB, MIME type: application/pdf, 2 pages) File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 13:56, 4 February 2013 Thumbnail for version as of 13:56, 4 February 2013 1,275 × 1,650, 2 pages (61 KB) Alevine (Talk | contribs) You cannot overwrite this file. Edit this file using an external application (See the setup instructions for more information) File usage The following page links to this file:

425

Water Sampling At Alvord Hot Springs Area (Wood, 2002) | Open Energy  

Open Energy Info (EERE)

Water Sampling At Alvord Hot Springs Area (Wood, Water Sampling At Alvord Hot Springs Area (Wood, 2002) Exploration Activity Details Location Alvord Hot Springs Area Exploration Technique Water Sampling Activity Date Usefulness could be useful with more improvements DOE-funding Unknown Notes Geothermal fluids from hot springs and wells have been sampled from a number of locations, including: 1) the North Island of New Zealand (three sets of samples from three different years) and the South Island of New Zealand (1 set of samples); 2) the Cascades of Oregon; 3) the Harney, Alvord Desert and Owyhee geothermal areas of Oregon; 4) the Dixie Valley and Beowawe fields in Nevada; 5) Palinpiiion, the Philippines; 6) the Salton Sea and Heber geothermal fields of southern California; and 7) the Dieng field in Central Java, Indonesia. We have analyzed the samples from

426

Water Sampling At Beowawe Hot Springs Area (Wood, 2002) | Open Energy  

Open Energy Info (EERE)

Water Sampling At Beowawe Hot Springs Area (Wood, Water Sampling At Beowawe Hot Springs Area (Wood, 2002) Exploration Activity Details Location Beowawe Hot Springs Area Exploration Technique Water Sampling Activity Date Usefulness could be useful with more improvements DOE-funding Unknown Notes Geothermal fluids from hot springs and wells have been sampled from a number of locations, including: 1) the North Island of New Zealand (three sets of samples from three different years) and the South Island of New Zealand (1 set of samples); 2) the Cascades of Oregon; 3) the Harney, Alvord Desert and Owyhee geothermal areas of Oregon; 4) the Dixie Valley and Beowawe fields in Nevada; 5) Palinpiiion, the Philippines; 6) the Salton Sea and Heber geothermal fields of southern California; and 7) the Dieng field in Central Java, Indonesia. We have analyzed the samples from

427

Water-Gas Samples At Lightning Dock Area (Norman, Et Al., 2002) | Open  

Open Energy Info (EERE)

2002) 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water-Gas Samples At Lightning Dock Area (Norman, Et Al., 2002) Exploration Activity Details Location Lightning Dock Area Exploration Technique Water-Gas Samples Activity Date Usefulness not indicated DOE-funding Unknown Notes The Lightning Dock, Animas Valley, New Mexico geothermal area was discovered when a rancher found boiling water while drilling a shallow stock tank welt (Elston, Deal, et. al, 1983). There are no surface manifestations of present or past geothermal activity in the Animas Valley. Norman and Bernhart (1982) analyzed the gases in the discovery well and 15 stock tank wells nearby (Figure 1). References David Norman, Nigel Blarney, Lynne Kurilovitch (2002) New

428

Water Sampling At Yellowstone Region (Hurwitz, Et Al., 2007) | Open Energy  

Open Energy Info (EERE)

Hurwitz, Et Al., 2007) Hurwitz, Et Al., 2007) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Yellowstone Region (Hurwitz, Et Al., 2007) Exploration Activity Details Location Yellowstone Caldera Geothermal Region Exploration Technique Water Sampling Activity Date Usefulness not indicated DOE-funding Unknown Notes In this paper, we present and evaluate a chemical dataset that includes the concentrations and fluxes of HCO3_, SO42_, Cl_, and F_ in rivers draining YNP for the 2002-2004 water years (1 October 2001 - 30 September 2004). These solutes were chosen because they are likely derived in part, from the magmatic volatiles CO2, SO2, H2S, HCl, HF (Symonds et al., 2001). Weekly to monthly sampling enables the examination of spatial and temporal patterns

429

GRR/Section 6-FD-a - Storm Water Construction General Permit | Open Energy  

Open Energy Info (EERE)

GRR/Section 6-FD-a - Storm Water Construction General Permit GRR/Section 6-FD-a - Storm Water Construction General Permit < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 6-FD-a - Storm Water Construction General Permit 06FDAEPAConstructionGeneralPermitConstructionStormwater.pdf Click to View Fullscreen Contact Agencies United States Environmental Protection Agency Regulations & Policies 40 CFR 122.26 Triggers None specified Click "Edit With Form" above to add content 06FDAEPAConstructionGeneralPermitConstructionStormwater.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative The United States Environmental Protection Agency (EPA) issues a National

430

GRR/Section 14-ID-f - 401 NPDES Water Quality Certification | Open Energy  

Open Energy Info (EERE)

ID-f - 401 NPDES Water Quality Certification ID-f - 401 NPDES Water Quality Certification < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 14-ID-f - 401 NPDES Water Quality Certification 14IDFSection401NPDESWaterQualityCertification.pdf Click to View Fullscreen Contact Agencies Idaho Department of Environmental Quality United States Environmental Protection Agency U S Army Corps of Engineers Regulations & Policies Idaho Environmental Protection and Health Act Idaho Administrative Procedure Act Triggers None specified Click "Edit With Form" above to add content 14IDFSection401NPDESWaterQualityCertification.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range.

431

Water Sampling At Dixie Valley Geothermal Field Area (Wood, 2002) | Open  

Open Energy Info (EERE)

Water Sampling At Dixie Valley Geothermal Field Area Water Sampling At Dixie Valley Geothermal Field Area (Wood, 2002) Exploration Activity Details Location Dixie Valley Geothermal Field Area Exploration Technique Water Sampling Activity Date Usefulness could be useful with more improvements DOE-funding Unknown Notes Geothermal fluids from hot springs and wells have been sampled from a number of locations, including: 1) the North Island of New Zealand (three sets of samples from three different years) and the South Island of New Zealand (1 set of samples); 2) the Cascades of Oregon; 3) the Harney, Alvord Desert and Owyhee geothermal areas of Oregon; 4) the Dixie Valley and Beowawe fields in Nevada; 5) Palinpiiion, the Philippines; 6) the Salton Sea and Heber geothermal fields of southern California; and 7) the

432

File:06TXBConstructionStormWaterPermit.pdf | Open Energy Information  

Open Energy Info (EERE)

TXBConstructionStormWaterPermit.pdf TXBConstructionStormWaterPermit.pdf Jump to: navigation, search File File history File usage Metadata File:06TXBConstructionStormWaterPermit.pdf Size of this preview: 463 × 599 pixels. Other resolution: 464 × 600 pixels. Full resolution ‎(1,275 × 1,650 pixels, file size: 30 KB, MIME type: application/pdf) File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 15:05, 10 June 2013 Thumbnail for version as of 15:05, 10 June 2013 1,275 × 1,650 (30 KB) Abergfel (Talk | contribs) 16:14, 10 April 2013 Thumbnail for version as of 16:14, 10 April 2013 1,275 × 1,650 (30 KB) Alevine (Talk | contribs) You cannot overwrite this file. Edit this file using an external application (See the setup

433

Water Sampling At Salt Wells Area (Shevenell & Garside, 2003) | Open Energy  

Open Energy Info (EERE)

Shevenell & Garside, 2003) Shevenell & Garside, 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Salt Wells Area (Shevenell & Garside, 2003) Exploration Activity Details Location Salt Wells Geothermal Area Exploration Technique Water Sampling Activity Date 2002 - 2002 Usefulness not useful DOE-funding Unknown Exploration Basis The objective of the study was to expand knowledge of Nevada's geothermal resource potential by providing new geochemical data from springs in less studied geothermal areas and to refine geochemical data from springs for which only incomplete data were available. This work fills in gaps in publicly available geochemical data, thereby enabling comprehensive evaluation of Nevada's geothermal resource potential.

434

Near-Surface Measurements of Quasi-Lagrangian Velocities in Open Water  

Science Conference Proceedings (OSTI)

Near-surface water velocities have been measured in the coastal zone of Lake Huron and Cape Cod Bay by tracking drifters and drogues using acoustic travel time and compass sighting techniques. The near-surface current, defined as the velocity of ...

J. H. Churchill; G. T. Csanady

1983-09-01T23:59:59.000Z

435

Lubricant oil consumption effects on diesel exhaust ash emissions using a sulfur dioxide trace technique and thermogravimetry  

E-Print Network (OSTI)

A detailed experimental study was conducted targeting lubricant consumption effects on ,diesel exhaust ash levels using a model year 2002 5.9L diesel engine, high and low Sulfur commercial lubricants, and clean diesel ...

Plumley, Michael J

2005-01-01T23:59:59.000Z

436

Modeling of lubricant performance in Kurt Orbahn tests for viscosity modifiers based on star polymers  

Science Conference Proceedings (OSTI)

The kinetics of stress-induced degradation of a star polymer additive dissolved in a mineral oil lubricant is modeled. The polymer degradation is modeled on the basis of a new system of kinetic integro-differential equations for the distribution densities ... Keywords: Existence and uniqueness, Lubricant degradation, Modeling, Star polymer molecules

Ilya I. Kudish

2007-09-01T23:59:59.000Z

437

Finite element analysis of elastohydrodynamic circular journal bearing with micropolar lubricants  

Science Conference Proceedings (OSTI)

In this paper the effect of deformation of the bearing liner on the static characteristics of a circular journal bearing operating with micropolar fluid is analysed. Lubricating oil containing additives and contaminants is modeled as micropolar fluid. ... Keywords: deformation coefficient, elastohydrodynamic, micropolar lubricant

V. P. Sukumaran Nair; K. Prabhakaran Nair

2004-10-01T23:59:59.000Z

438

A view of lubricant demand and quality into the '90's  

Science Conference Proceedings (OSTI)

Lubricant demand and quality are forecast in this paper using the same techniques as in our 1978 and 1982 papers, but with updated factors based on four more years of history, the present economic outlook and the status of lubricant technology.

Boston, E.D.; Ballard, H.D. Jr.

1986-01-01T23:59:59.000Z

439

An efficient preconditioned iterative solution of fully-coupled elastohydrodynamic lubrication problems  

Science Conference Proceedings (OSTI)

This paper presents the fast preconditioned iterative solution to large sparse linear systems arising from the application of Newton and quasi-Newton methods to fully coupled elastohydrodynamic lubrication line and point contact problems. The new blockwise ... Keywords: Elastohydrodynamic lubrication, Finite element method, Fully coupled approach, Linear elasticity, Multigrid, Preconditioned GMRES

Sarfraz Ahmed; Christopher E. Goodyer; Peter K. Jimack

2012-05-01T23:59:59.000Z

440

Water Sampling At Hot Lake Area (Wood, 2002) | Open Energy Information  

Open Energy Info (EERE)

Hot Lake Area (Wood, 2002) Hot Lake Area (Wood, 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Hot Lake Area (Wood, 2002) Exploration Activity Details Location Hot Lake Area Exploration Technique Water Sampling Activity Date Usefulness could be useful with more improvements DOE-funding Unknown Notes Geothermal fluids from hot springs and wells have been sampled from a number of locations, including: 1) the North Island of New Zealand (three sets of samples from three different years) and the South Island of New Zealand (1 set of samples); 2) the Cascades of Oregon; 3) the Harney, Alvord Desert and Owyhee geothermal areas of Oregon; 4) the Dixie Valley and Beowawe fields in Nevada; 5) Palinpiiion, the Philippines; 6) the Salton Sea and Heber geothermal fields of southern California; and 7) the

Note: This page contains sample records for the topic "open water lubricated" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Water Sampling At Crane Hot Springs Area (Wood, 2002) | Open Energy  

Open Energy Info (EERE)

Hot Springs Area (Wood, 2002) Hot Springs Area (Wood, 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Crane Hot Springs Area (Wood, 2002) Exploration Activity Details Location Crane Hot Springs Area Exploration Technique Water Sampling Activity Date Usefulness could be useful with more improvements DOE-funding Unknown Notes Geothermal fluids from hot springs and wells have been sampled from a number of locations, including: 1) the North Island of New Zealand (three sets of samples from three different years) and the South Island of New Zealand (1 set of samples); 2) the Cascades of Oregon; 3) the Harney, Alvord Desert and Owyhee geothermal areas of Oregon; 4) the Dixie Valley and Beowawe fields in Nevada; 5) Palinpiiion, the Philippines; 6) the

442

Fire Water Lodge Pool & Spa Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Pool & Spa Low Temperature Geothermal Facility Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Fire Water Lodge Pool & Spa Low Temperature Geothermal Facility Facility Fire Water Lodge Sector Geothermal energy Type Pool and Spa Location Truth or Consequences, New Mexico Coordinates 33.1284047°, -107.2528069° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

443

City of Burbank Water and Power, California (Utility Company) | Open Energy  

Open Energy Info (EERE)

Power, California (Utility Company) Power, California (Utility Company) Jump to: navigation, search Name City of Burbank Water and Power Place Burbank, California Utility Id 2507 Utility Location Yes Ownership M NERC Location WECC NERC WECC Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Wholesale Marketing Yes Activity Retail Marketing Yes Activity Bundled Services Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] SGIC[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! Burbank Water and Power Smart Grid Project was awarded $20,000,000 Recovery Act Funding with a total project value of $62,650,755.

444

Water Sampling At Mccredie Hot Springs Area (Wood, 2002) | Open Energy  

Open Energy Info (EERE)

Mccredie Hot Springs Area (Wood, 2002) Mccredie Hot Springs Area (Wood, 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Mccredie Hot Springs Area (Wood, 2002) Exploration Activity Details Location Mccredie Hot Springs Area Exploration Technique Water Sampling Activity Date Usefulness could be useful with more improvements DOE-funding Unknown Notes Geothermal fluids from hot springs and wells have been sampled from a number of locations, including: 1) the North Island of New Zealand (three sets of samples from three different years) and the South Island of New Zealand (1 set of samples); 2) the Cascades of Oregon; 3) the Harney, Alvord Desert and Owyhee geothermal areas of Oregon; 4) the Dixie Valley and Beowawe fields in Nevada; 5) Palinpiiion, the Philippines; 6) the

445

Water Sampling At Central Nevada Seismic Zone Region (Laney, 2005) | Open  

Open Energy Info (EERE)

Central Nevada Seismic Zone Region Central Nevada Seismic Zone Region (Laney, 2005) Exploration Activity Details Location Central Nevada Seismic Zone Geothermal Region Exploration Technique Water Sampling Activity Date Usefulness not indicated DOE-funding Unknown Notes Geochemical Sampling of Thermal and Non-thermal Waters in Nevada, Shevenell and Garside. The objective of this project is to obtain geochemical data from springs (and some wells) for which data are not publicly available, or for which the analyses are incomplete, poor, or nonexistent. With these data, geothermometers are being calculated and a preliminary assessment of the geothermal potential and ranking of the sampled areas is being conducted using the new geochemical data. Objectives changed slightly in 2004. Samples are now being collected at sites identified by other

446

File:06ORBConstructionStormWaterPermit.pdf | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search File Edit History Facebook icon Twitter icon » File:06ORBConstructionStormWaterPermit.pdf Jump to: navigation, search File File history File usage File:06ORBConstructionStormWaterPermit.pdf Size of this preview: 463 × 599 pixels. Other resolution: 464 × 600 pixels. Full resolution ‎(1,275 × 1,650 pixels, file size: 38 KB, MIME type: application/pdf) File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 12:08, 28 September 2012 Thumbnail for version as of 12:08, 28 September 2012 1,275 × 1,650 (38 KB) Dklein2012 (Talk | contribs) You cannot overwrite this file.

447

Water Sampling At Zim's Hot Springs Geothermal Area (Wood, 2002) | Open  

Open Energy Info (EERE)

2002) 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Zim's Hot Springs Geothermal Area (Wood, 2002) Exploration Activity Details Location Zim's Hot Springs Geothermal Area Exploration Technique Water Sampling Activity Date Usefulness could be useful with more improvements DOE-funding Unknown Notes Geothermal fluids from hot springs and wells have been sampled from a number of locations, including: 1) the North Island of New Zealand (three sets of samples from three different years) and the South Island of New Zealand (1 set of samples); 2) the Cascades of Oregon; 3) the Harney, Alvord Desert and Owyhee geothermal areas of Oregon; 4) the Dixie Valley and Beowawe fields in Nevada; 5) Palinpiiion, the Philippines; 6) the

448

Water Sampling At Salt Wells Area (Henkle, Et Al., 2005) | Open Energy  

Open Energy Info (EERE)

Henkle, Et Al., 2005) Henkle, Et Al., 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Salt Wells Area (Henkle, Et Al., 2005) Exploration Activity Details Location Salt Wells Area Exploration Technique Water Sampling Activity Date - 2005 Usefulness useful DOE-funding Unknown Exploration Basis Adsorbed mercury soil geochemical surveys and radiometric geophysical surveys were carried out in conjunction with geologic mapping to test the application of these ground-based techniques to geothermal exploration at three prospects in Nevada by Henkle Jr. et al. in 2005. Mercury soil vapor surveys were not widely used in geothermal exploration in the western US at the time, although the association of mercury vapors with geothermal

449

Water Sampling At Breitenbush Hot Springs Area (Wood, 2002) | Open Energy  

Open Energy Info (EERE)

Wood, 2002) Wood, 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Breitenbush Hot Springs Area (Wood, 2002) Exploration Activity Details Location Breitenbush Hot Springs Area Exploration Technique Water Sampling Activity Date Usefulness could be useful with more improvements DOE-funding Unknown Notes Geothermal fluids from hot springs and wells have been sampled from a number of locations, including: 1) the North Island of New Zealand (three sets of samples from three different years) and the South Island of New Zealand (1 set of samples); 2) the Cascades of Oregon; 3) the Harney, Alvord Desert and Owyhee geothermal areas of Oregon; 4) the Dixie Valley and Beowawe fields in Nevada; 5) Palinpiiion, the Philippines; 6) the

450

Water Sampling At Hawthorne Area (Lazaro, Et Al., 2010) | Open Energy  

Open Energy Info (EERE)

Hawthorne Area (Lazaro, Et Al., Hawthorne Area (Lazaro, Et Al., 2010) Exploration Activity Details Location Hawthorne Area Exploration Technique Water Sampling Activity Date Usefulness not indicated DOE-funding Unknown Notes The Navy GPO has contracted the University of Nevada Reno Great Basin for Center for Geothermal Research to conduct additional field exploration at HAD. The tasks required by the Navy range from field mapping and water sampling; detailed mapping, to low angle sun photo interpretations, trenching, to 3-D seismic interpretations and modeling. References Michael Lazaro, Chris Page, Andy Tiedeman, Andrew Sabin, Steve Bjornstad, Steve Alm, David Meade, Jeff Shoffner, Kevin Mitchell, Bob Crowder, Greg Halsey (2010) United States Department Of The Navy Geothermal Exploration Leading To Shallow And Intermediate-Deep Drilling At Hawthorne

451

File:Supplemental NewWaterSystem.pdf | Open Energy Information  

Open Energy Info (EERE)

NewWaterSystem.pdf NewWaterSystem.pdf Jump to: navigation, search File File history File usage File:Supplemental NewWaterSystem.pdf Size of this preview: 463 × 599 pixels. Other resolution: 464 × 600 pixels. Go to page 1 2 3 4 5 6 7 8 9 10 Go! next page → next page → Full resolution ‎(1,275 × 1,650 pixels, file size: 383 KB, MIME type: application/pdf, 10 pages) File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 13:25, 13 November 2012 Thumbnail for version as of 13:25, 13 November 2012 1,275 × 1,650, 10 pages (383 KB) Dklein2012 (Talk | contribs) You cannot overwrite this file. Edit this file using an external application (See the setup instructions for more information) File usage There are no pages that link to this file.

452

File:06MTBConstructionStormWaterPermit (7).pdf | Open Energy Information  

Open Energy Info (EERE)

MTBConstructionStormWaterPermit (7).pdf MTBConstructionStormWaterPermit (7).pdf Jump to: navigation, search File File history File usage Metadata File:06MTBConstructionStormWaterPermit (7).pdf Size of this preview: 463 × 599 pixels. Other resolution: 464 × 600 pixels. Full resolution ‎(1,275 × 1,650 pixels, file size: 38 KB, MIME type: application/pdf) File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 14:56, 2 April 2013 Thumbnail for version as of 14:56, 2 April 2013 1,275 × 1,650 (38 KB) Dfitzger (Talk | contribs) 12:10, 1 October 2012 Thumbnail for version as of 12:10, 1 October 2012 1,275 × 1,650 (26 KB) Dklein2012 (Talk | contribs) You cannot overwrite this file. Edit this file using an external application (See the setup

453

File:GWS-45 - Water Well Application.pdf | Open Energy Information  

Open Energy Info (EERE)

45 - Water Well Application.pdf 45 - Water Well Application.pdf Jump to: navigation, search File File history File usage Metadata File:GWS-45 - Water Well Application.pdf Size of this preview: 463 × 599 pixels. Other resolution: 464 × 600 pixels. Go to page 1 2 Go! next page → next page → Full resolution ‎(1,275 × 1,650 pixels, file size: 118 KB, MIME type: application/pdf, 2 pages) File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 12:35, 20 March 2013 Thumbnail for version as of 12:35, 20 March 2013 1,275 × 1,650, 2 pages (118 KB) Alevine (Talk | contribs) You cannot overwrite this file. Edit this file using an external application (See the setup instructions for more information) File usage There are no pages that link to this file.

454

File:Colorado Water Quality Control Act.pdf | Open Energy Information  

Open Energy Info (EERE)

Water Quality Control Act.pdf Water Quality Control Act.pdf Jump to: navigation, search File File history File usage Metadata File:Colorado Water Quality Control Act.pdf Size of this preview: 463 × 599 pixels. Other resolution: 464 × 600 pixels. Go to page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 Go! next page → next page → Full resolution ‎(1,275 × 1,650 pixels, file size: 413 KB, MIME type: application/pdf, 69 pages) File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 14:23, 14 March 2013 Thumbnail for version as of 14:23, 14 March 2013 1,275 × 1,650, 69 pages (413 KB) Alevine (Talk | contribs)

455

File:06AKBConstructionStormWaterPermitting (1).pdf | Open Energy  

Open Energy Info (EERE)

AKBConstructionStormWaterPermitting (1).pdf AKBConstructionStormWaterPermitting (1).pdf Jump to: navigation, search File File history File usage File:06AKBConstructionStormWaterPermitting (1).pdf Size of this preview: 463 × 599 pixels. Other resolution: 464 × 600 pixels. Full resolution ‎(1,275 × 1,650 pixels, file size: 69 KB, MIME type: application/pdf) File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 11:28, 18 October 2012 Thumbnail for version as of 11:28, 18 October 2012 1,275 × 1,650 (69 KB) Jnorris (Talk | contribs) 11:26, 18 October 2012 Thumbnail for version as of 11:26, 18 October 2012 1,275 × 1,650 (69 KB) Jnorris (Talk | contribs) 09:45, 7 August 2012 Thumbnail for version as of 09:45, 7 August 2012 1,275 × 1,650 (50 KB) Dfitzger (Talk | contribs)

456

File:06CABConstructionStormWaterProgram.pdf | Open Energy Information  

Open Energy Info (EERE)

CABConstructionStormWaterProgram.pdf CABConstructionStormWaterProgram.pdf Jump to: navigation, search File File history File usage File:06CABConstructionStormWaterProgram.pdf Size of this preview: 463 × 599 pixels. Other resolution: 464 × 600 pixels. Full resolution ‎(1,275 × 1,650 pixels, file size: 48 KB, MIME type: application/pdf) File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 14:49, 21 January 2013 Thumbnail for version as of 14:49, 21 January 2013 1,275 × 1,650 (48 KB) Alevine (Talk | contribs) 15:52, 26 June 2012 Thumbnail for version as of 15:52, 26 June 2012 1,275 × 1,650 (65 KB) Jnorris (Talk | contribs) June 26th version 11:11, 19 June 2012 Thumbnail for version as of 11:11, 19 June 2012 1,275 × 1,650 (44 KB) Dfitzger (Talk | contribs)

457

Waste lubricating oil: an annotated review. 1982 revision  

Science Conference Proceedings (OSTI)

Because of renewed interest in waste oil, both in terms of energy conservation and as a threat to the environment, there appears to be a need for a systemic compilation of information on the subject. This is a revision of the 1979 manuscript (BETC/IC-79/4) reflecting publications of the last three years as well as incorporation of papers that were overlooked. The number of citations has jumped from 486 to 1203, with all previous citations also listed here. The bibliography is divided into broad subject areas. The Introduction gives the history and development of the used oil reclamation industry. The General section includes the comprehensive papers that address several subjects and thus, give a capsulated overview of the used oil situation. Sources of Information and Statistical Treatments of Data tell how to obtain additional and future information and data relating to waste oil and could aid those persons interested in keeping their knowledge current. The Other Lubricating Oils section covers many of the lubricants that have the potential for recycling. The Other Oils section is divided into four sub-sections to aid the reader to find the subject of interest. The section on Related Subjects includes those sideline areas that could apply to used oil reclamation.

Cotton, F.O.

1982-10-01T23:59:59.000Z

458

File:Rights to Surface Water in Texas.pdf | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search File Edit History Facebook icon Twitter icon » File:Rights to Surface Water in Texas.pdf Jump to: navigation, search File File history File usage Metadata File:Rights to Surface Water in Texas.pdf Size of this preview: 388 × 600 pixels. Go to page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Go! next page → next page → Full resolution ‎(825 × 1,275 pixels, file size: 910 KB, MIME type: application/pdf, 24 pages) File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 12:14, 1 July 2013 Thumbnail for version as of 12:14, 1 July 2013 825 × 1,275, 24 pages (910 KB) Abergfel (Talk | contribs)

459

File:06-WA-b - Washington Construction Storm Water Permit.pdf | Open Energy  

Open Energy Info (EERE)

File File Edit History Facebook icon Twitter icon » File:06-WA-b - Washington Construction Storm Water Permit.pdf Jump to: navigation, search File File history File usage Metadata File:06-WA-b - Washington Construction Storm Water Permit.pdf Size of this preview: 463 × 599 pixels. Other resolution: 464 × 600 pixels. Go to page 1 2 Go! next page → next page → Full resolution ‎(1,275 × 1,650 pixels, file size: 60 KB, MIME type: application/pdf, 2 pages) File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 15:28, 6 December 2013 Thumbnail for version as of 15:28, 6 December 2013 1,275 × 1,650, 2 pages (60 KB) Alevine (Talk | contribs) 15:25, 6 December 2013 Thumbnail for version as of 15:25, 6 December 2013 1,275 × 1,650, 2 pages (60 KB) Alevine (Talk | contribs)

460

Water Sampling At Mickey Hot Springs Area (Wood, 2002) | Open Energy  

Open Energy Info (EERE)

Mickey Hot Springs Area (Wood, Mickey Hot Springs Area (Wood, 2002) Exploration Activity Details Location Mickey Hot Springs Area Exploration Technique Water Sampling Activity Date Usefulness could be useful with more improvements DOE-funding Unknown Notes Geothermal fluids from hot springs and wells have been sampled from a number of locations, including: 1) the North Island of New Zealand (three sets of samples from three different years) and the South Island of New Zealand (1 set of samples); 2) the Cascades of Oregon; 3) the Harney, Alvord Desert and Owyhee geothermal areas of Oregon; 4) the Dixie Valley and Beowawe fields in Nevada; 5) Palinpiiion, the Philippines; 6) the Salton Sea and Heber geothermal fields of southern California; and 7) the Dieng field in Central Java, Indonesia. We have analyzed the samples from

Note: This page contains sample records for the topic "open water lubricated" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Water Sampling At Salton Sea Area (Wood, 2002) | Open Energy Information  

Open Energy Info (EERE)

Salton Sea Area (Wood, 2002) Salton Sea Area (Wood, 2002) Exploration Activity Details Location Salton Sea Area Exploration Technique Water Sampling Activity Date Usefulness not useful DOE-funding Unknown Notes Geothermal fluids from hot springs and wells have been sampled from a number of locations, including: 1) the North Island of New Zealand (three sets of samples from three different years) and the South Island of New Zealand (1 set of samples); 2) the Cascades of Oregon; 3) the Harney, Alvord Desert and Owyhee geothermal areas of Oregon; 4) the Dixie Valley and Beowawe fields in Nevada; 5) Palinpiiion, the Philippines; 6) the Salton Sea and Heber geothermal fields of southern California; and 7) the Dieng field in Central Java, Indonesia. We have analyzed the samples from all fields for REE except the last two. Our results indicate that

462

Water Sampling At Umpqua Hot Springs Area (Wood, 2002) | Open Energy  

Open Energy Info (EERE)

Umpqua Hot Springs Area (Wood, Umpqua Hot Springs Area (Wood, 2002) Exploration Activity Details Location Umpqua Hot Springs Area Exploration Technique Water Sampling Activity Date Usefulness could be useful with more improvements DOE-funding Unknown Notes Geothermal fluids from hot springs and wells have been sampled from a number of locations, including: 1) the North Island of New Zealand (three sets of samples from three different years) and the South Island of New Zealand (1 set of samples); 2) the Cascades of Oregon; 3) the Harney, Alvord Desert and Owyhee geothermal areas of Oregon; 4) the Dixie Valley and Beowawe fields in Nevada; 5) Palinpiiion, the Philippines; 6) the Salton Sea and Heber geothermal fields of southern California; and 7) the Dieng field in Central Java, Indonesia. We have analyzed the samples from

463

Opening remarks  

Science Conference Proceedings (OSTI)

Included in this paper are the opening remarks of S.G. Hildebrand, from Environmental Science Division, ORNL, to a conference on water resources and water resource issues. Wetlands are the focus of this talk, with an emphasis on conservation and land use to conserve wetland functions and values.

Hildebrand, S.G.

1994-09-01T23:59:59.000Z

464

Renewable Fuels and Lubricants (ReFUEL) Laboratory (Fact Sheet)  

DOE Green Energy (OSTI)

This fact sheet describes the Renewable Fuels and Lubricants (ReFUEL) Laboratory at the U.S. Department of Energy National Renewable Energy Laboratory (NREL) is a state-of-the-art research and testing facility for advanced fuels and vehicles. Research and development aims to improve vehicle efficiency and overcome barriers to the increased use of renewable diesel and other nonpetroleum-based fuels, such as biodiesel and synthetic diesel derived from biomass. The ReFUEL Laboratory features a chassis dynamometer for vehicle performance and emissions research, two engine dynamometer test cells for advanced fuels research, and precise emissions analysis equipment. As a complement to these capabilities, detailed studies of fuel properties, with a focus on ignition quality, are performed at NREL's Fuel Chemistry Laboratory.

Not Available

2012-03-01T23:59:59.000Z

465

High temperature solid lubricant materials for heavy duty and advanced heat engines  

DOE Green Energy (OSTI)

Advanced engine designs incorporate higher mechanical and thermal loading to achieve efficiency improvements. This approach often leads to higher operating temperatures of critical sliding elements (e.g. piston ring/cylinder wall contacts and valve guides) which compromise the use of conventional and even advanced synthetic liquid lubricants. For these applications solid lubricants must be considered. Several novel solid lubricant composites and coatings designated PS/PM200 have been employed to dry and marginally oil lubricated contacts in advanced heat engines. These applications include cylinder kits of heavy duty diesels, and high temperature sterling engines, sidewall seals of rotary engines and various exhaust valve and exhaust component applications. The following paper describes the tribological and thermophysical properties of these tribomaterials and reviews the results of applying them to engine applications. Other potential tribological materials and applications are also discussed with particular emphasis to heavy duty and advanced heat engines.

DellaCorte, C.; Wood, J.C.

1994-10-01T23:59:59.000Z

466

The Feasibility study of using Palm oil as the lubricant of Automative Engine.  

E-Print Network (OSTI)

??In general,the lubricants were composed by basestock and additive,and the basestock is usual use mineral oil. This paper examines the viscosity,viscosity index and antiwear properties (more)

tzeng, jason

2001-01-01T23:59:59.000Z

467

Modeling the lubrication of the piston ring pack in internal combustion engines using the deterministic method  

E-Print Network (OSTI)

Piston ring packs are used in internal combustion engines to seal both the high pressure gas in the combustion chamber and the lubricant oil in the crank case. The interaction between the piston ring pack and the cylinder ...

Chen, Haijie

2011-01-01T23:59:59.000Z

468

Effects of lubricant viscosity and surface texturing on ring-pack performance in internal combustion engines  

E-Print Network (OSTI)

The piston ring-pack contributes approximately 25% of the mechanical losses in an internal combustion engine. Both lubricant viscosity and surface texturing were investigated in an effort to reduce this ring-pack friction ...

Takata, Rosalind (Rosalind Kazuko), 1978-

2006-01-01T23:59:59.000Z

469

Lubricant and fuel compositions containing reaction products of polyalkenyl succinimides, aldehydes, and triazoles  

Science Conference Proceedings (OSTI)

This patent describes an additive for liquid hydrocarbon fuel composition, particularly diesel fuels. The additive composition is the reaction product of polyalkenyl-substituted succinimides, aldehydes, and triazoles. It also finds use in lubricant compositions.

Blain, D.A.; Cardis, A.B.; McGonigle, S.S.

1990-10-16T23:59:59.000Z

470

Lubricant and fuel compositions containing reaction products of polyalkenyl succinimides, aldehydes, and triazoles  

Science Conference Proceedings (OSTI)

Disclosed in an additive for liquid hydrocarbon fuel composition, particularly diesel fuels. The additive composition is the reaction product of polyalkenyl-substituted succinimides, aldehydes, and triazoles. It also finds use in lubricant compositions.

Blain, D.A.; Cardis, A.B.; McGonigle, S.S.

1990-01-30T23:59:59.000Z

471

A tribological study of the interaction between surface micro texturing and viscoelastic lubricants  

E-Print Network (OSTI)

An experimental study is performed on micro textured surfaces using both elastic and Newtonian fluids in order to understand the effect of surface texturing and fluid rheology on sliding friction under lubricated conditions. ...

Hupp, Sara J. (Sara Jean), 1979-

2004-01-01T23:59:59.000Z

472

Compatibility of refrigerants and lubricants with elastomers. Quarterly report, 1 April 1992--30 June 1992  

Science Conference Proceedings (OSTI)

Information contained in this reporters designed to assist the air-conditioning and refrigeration industry in the selection of suitable elastomeric gasket and seal materials that will prove useful in various refrigerant and refrigeration lubricant environments. Swell measurements have been made on approximately 50% of the proposed elastomers (94 total)in both the lubricant (7 total) and refrigerant (10 total) materials. Swell behavior in the these fluids have been determined using weight and in situ diameter measurements for the refrigerants and weight, diameter and thickness measurements for the lubricants. Weight and diameter measurements are repeated after 2 hours and 24 hours for samples removed from the refrigerant test fluids and 24 hours after removal from the lubricants.

Hamed, G.R.; Seiple, R.H.

1992-07-01T23:59:59.000Z

473

How to reduce torque and drag with a plastic sphere lubricant  

SciTech Connect

A new mud lubricant, Lubra-Beads has been used to reduce torque and drag in deviated holes, improve wire line operations, improve casing running times and, in some cases, improve rates of penetrations. Treatments have varied from batch treatments to treating the entire system. The type of treatment used depends on the problem encountered. The case histories presented described ways in which Lubra-Beads mud lubricant has been used to reduce torque and drag and increase penentration rates.

Vieaux, G.J.

1980-10-01T23:59:59.000Z

474

Friction and wear performance of low-friction carbon coatings under oil lubrication.  

DOE Green Energy (OSTI)

Amorphous carbon coatings with very low friction properties were recently developed at Argonne National Laboratory. These coatings have shown good promise in mitigating excessive wear and scuffing problems associated with low-lubricity diesel fuels. To reduce the negative effect of sulfur and other lubricant additives in poisoning the after-treatment catalyst, a lubricant formulation with a low level of sulfur may be needed. Exclusion of proven sulfur-containing extreme pressure (EP) and antiwear additives from oils will require other measures to ensure durability of critical lubricated components. The low-friction carbon coating has the potential for such applications. In the present study, we evaluated the friction and wear attributes of three variations of the coating under a boundary lubrication regime. Tests were conducted with both synthetic and mineral oil lubricants using a ball-on-flat contact configuration in reciprocating sliding. Although the three variations of the coating provided modest reductions in friction coefficient, they all reduced wear substantially compared to an uncoated surface. The degradation mode of oxidative wear on the uncoated surface was replaced by a polishing wear mode on the coated surfaces.

Kovalchenko, A.; Ajayi, O. O.; Erdemir, A.; Fenske, G. R.

2001-12-11T23:59:59.000Z

475

Browse wiki | Open Energy Information  

Open Energy Info (EERE)

a vertica ... The Circulating Water Channel is a vertical plane, open to the atmosphere test section with a free surface in a closed recirculating water circuit, variable speed,...

476

OpenEI Community - gateway  

Open Energy Info (EERE)

http:en.openei.orgcommunitytaxonomyterm2300 en OpenEI launches new Water Power Gateway and Community Forum http:en.openei.orgcommunityblogopenei-launches-new-water-powe...

477

Advanced Petroleum-Based Fuels--Diesel Emissions Control Project (APBF-DEC): Lubricants Project, Phase 1 Summary, July 2004  

DOE Green Energy (OSTI)

The Advanced Petroleum Based Fuels-Diesel Emission Control project is a government/industry collaborative project to identify the optimal combinations of low-sulfur diesel fuels, lubricants, diesel engines, and emission control systems to meet projected emission standards for the 2004-2010 time period. This summary describes the results of the first phase of the lubricants study investigating the impact on lubricant formulation on engine-out emissions.

Not Available

2004-07-01T23:59:59.000Z

478

Potentially useful polyolester lubricant additives an overview of antioxidants, antiwear and antiseize compounds  

Science Conference Proceedings (OSTI)

Reliable service lubrication of compressors with polyolesters that do not contain additives is the optimal goal for hermetic compressor use. Chlorine derived from CFC and HCFC refrigerants is reported to have effective antiwear properties and negates the widespread use of additives in mineral oil lubricated systems. The use of antioxidants for mineral oil and polyolesters have been reported; antioxidant additive activity seems essential for polyolesters.- Antiwear and antiseize additives seem to be a short term goal for use with polyolesters. High silicone aluminum to steel wear seems to be a primary target for additive use. The interaction of specific heteroatom organic compounds with highly polar surface active synthetic polyolester lubricants is complex. Results of an extensive literature search describe results from a service base determined at ambient conditions. Known lubricant additives used in the hermetic compressor industry, the. mode of action of several types of additives and some lubricant additive chemistry that demonstrates selective thermal stability in conjunction with the chemical structure are examined.

Cavestri, R.C. [Imagination Resources, Inc., Dublin, OH (United States)

1996-11-01T23:59:59.000Z

479

Tribopolymerization: An advanced lubrication concept for automotive engines and systems of the future  

DOE Green Energy (OSTI)

Advanced lubrication technologies based on the concept of tribopolymerization as a mechanism of boundary lubrication are described. Advantages of this approach as well as potential applications which could have an impact on the design, manufacture, and performance of existing and future automotive engines are presented and discussed. Tribopolymerization, a novel concept of molecular design developed by Furey and Kajdas, involves the continuous formation of thin polymeric films on rubbing surfaces; the protective films formed are self-replenishing. The antiwear compounds developed from this technology are effective with metals as well as ceramics and in the liquid as well as vapor phases. Furthermore, they are ashless and contain no harmful phosphorus or sulfur; and many are biodegradable. Thus, potential applications of this technology are diverse and include a variety of cost/performance/energy/environmental advantages. Examples include the following: (a) machining and cutting applications using thin films to reduce friction and ceramic tool wear; (b) the lubrication of ceramic engines (e.g., low heat rejection diesel engines) or ceramic components; (c) the development of ashless lubricants for existing and future automotive engines to reduce exhaust catalyst poisoning and environmental emissions; (d) ashless antiwear or ``lubricity`` additives for fuels, including gasoline, diesel and jet fuel; (e) vapor phase applications of this technology to high temperature gaseous systems or to fuel injector wear problems associated with the use of natural gas engines; and (f) the use of the concept of tribopolymerization as an enabling technology in the development of new engines and new automotive propulsion systems.

Furey, M.J. [Virginia Polytechnic Inst. and State Univ., Blacksburg, VA (United States); Kajdas, C. [Warsaw Univ. of Technology, Plock (Poland); Kaltenbach, K.W. [Triad Investors Corp., Baltimore, MD (United States)

1997-12-31T23:59:59.000Z

480

MIL-L-87177 and CLT:X-10 Lubricants Improve Electrical Connector Fretting Corrosion Behavior  

SciTech Connect

We have conducted a fretting research project using MIL-L-87177 and CLT: X-10 lubricants on Nano-miniature connectors. When they were fretted without lubricant, individual connectors first exceeded our 0.5 ohm failure criteria from 2,341 to 45,238 fretting cycles. With additional fretting, their contact resistance increased to more than 100,000 ohms. Unmodified MIL-L-87177 lubricant delayed the onset of first failure to between 430,000 and over 20,000,000 fretting cycles. MIL-L-87177 modified by addition of Teflon powder delayed first failure to beyond 5 million fretting cycles. Best results were obtained when Teflon was used and also when both the straight and modified lubricants were poured into and then out of the connector. CLT: X-10 lubricant delayed the onset of first failure to beyond 55 million cycles in one test where a failure was actually observed and to beyond 20 million cycles in another that was terminated without failure. CLT: X-10 recovered an unlubricated connector driven deeply into failure, with six failed pins recovering immediately and four more recovering during an additional 420 thousand fretting cycles. MIL-L-87177 was not able to recover a connector under similar conditions.

AUKLAND,NEIL R.; HANLON,JAMES T.

1999-10-12T23:59:59.000Z

Note: This page contains sample records for the topic "open water lubricated" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

The lubrication of engine valve trains equipped with ceramicized followers  

Science Conference Proceedings (OSTI)

The valve train wear characteristics of motored 2.2l and 2.3l engines were examined using ceramic and conventional metal cam followers. Under regular wear conditions with fully formulated motor oils, minimal wear was observed on the metal cam lobes running with either the ceramicized or metal followers. Running under chemically accelerated wear conditions with low quality oil, however, cam lobe wear with ceramicized followers was observed to be significantly less than that with metal followers. The difference in wear was diminished when testing high quality oils under chemically accelerated conditions. Typical testing revealed that the metal follower pads quickly developed considerable wear in a characteristic pattern, while the ceramic followers pads quickly developed considerable were in a characteristic pattern, while the ceramic followers exhibited only slight polishing. Scanning electron photographs revealed details of the used ceramic surfaces, and that wear took place by polishing and by intergranular fracture with subsequent material removal. Engine wear is a major factor that limits the life of today's passenger cars. Particularly for the newer models that have smaller but higher speed and output engines incorporating current designs such as overhead camshafts, 4-valves per cylinder and turbochargers, the valve train represents one of the highest wear components within an engine. In light of the trend towards extended drivetrain warranties, there is a strong demand for lubricant suppliers to develop engine oils with improved antiwear performance. In a parallel effort, automotive engine and component manufacturers are enhancing valve train durability with technologies that include roller followers and the use of advanced ceramic materials.

Blahey, A.G.; Habeeb, J.J.; Rogers, W.N.< 110> The lubrication of engine valve trains equipped with ceramicized followers.

1990-01-01T23:59:59.000Z

482

Identification of tribological research and development needs for lubrication of advanced heat engines  

DOE Green Energy (OSTI)

The continuous evolution of higher power density propulsion systems has always fueled the search for materials and lubricants with improved thermal and/or durability characteristics. Tribology of the upper cylinder region is the major technology roadblock in the path of the adiabatic diesel engine which has an energy reduction potential that exceeds that of all other engine development types. This tribology assessment resulted in the following major conclusions: a low friction and a low wear seal between the ring belt and cylinder bore are the most critical tribology functions in the diesel combustion chamber; development of solid lubrication systems will not satisfy the simultaneous low friction and low wear requirements in the upper cylinder area; development of separate upper cylinder liquid lubrication systems offers the most attractive design alternative for meeting the operational goals of future ''minimum cooled'' diesel engines.

Fehrenbacher, L.L.; Levinson, T.M.

1985-09-01T23:59:59.000Z

483

Multifractal analysis of stress time series during ultrathin lubricant film melting  

E-Print Network (OSTI)

Melting of an ultrathin lubricant film confined between two atomically flat surfaces is we studied using the rheological model for viscoelastic matter approximation. Phase diagram with domains, corresponding to sliding, dry, and two types of $stick-slip$ friction regimes has been built taking into account additive noises of stress, strain, and temperature of the lubricant. The stress time series have been obtained for all regimes of friction using the Stratonovich interpretation. It has been shown that self-similar regime of lubricant melting is observed when intensity of temperature noise is much larger than intensities of strain and stress noises. This regime is defined by homogenous distribution, at which characteristic stress scale is absent. We study stress time series obtained for all friction regimes using multifractal detrended fluctuation analysis. It has been shown that multifractality of these series is caused by different correlations that are present in the system and also by a power-law distribu...

Khomenko, A V; Borisyuk, V N; 10.1142/S0219477510000046

2010-01-01T23:59:59.000Z

484

Accurate lubrication corrections for spherical and non-spherical particles in discretized fluid simulations  

E-Print Network (OSTI)

Discretized fluid solvers coupled to a Newtonian dynamics method are a popular tool to study suspension flow. As any simulation technique with finite resolution, the lattice Boltzmann method, when coupled to discrete particles using the momentum exchange method, resolves the diverging lubrication interactions between surfaces near contact only insufficiently. For spheres, it is common practice to account for surface-normal lubrication forces by means of an explicit correction term. A method that additionally covers all further singular interactions for spheres is present in the literature as well as a link-based approach that allows for more general shapes but does not capture non-normal interactions correctly. In this paper, lattice-independent lubrication corrections for aspherical particles are outlined, taking into account all leading divergent interaction terms. An efficient implementation for arbitrary spheroids is presented and compared to purely normal and link-based models. Good consistency with Stok...

Janoschek, Florian; Toschi, Federico

2013-01-01T23:59:59.000Z

485

Compatibility of refrigerants and lubricants with elastomers. Quarterly report, 1 July 1992--30 September 1992  

SciTech Connect

Information contained in this report is designed to assist the air-conditioning and refrigeration industry in the selection of suitable elastomeric gasket and seal materials that will prove useful in various refrigerant and refrigeration lubricant environments. 97% of the swell measurements have been made to date. The other 3% of the measurements are contingent on the availability of additional quantities of R-32. Swell behavior in the fluids have been determined using weight and in situ diameter measurements for the refrigerants and weight, diameter and thickness measurements for the lubricants. Weight and diameter measurements are repeated after 2 hours and 24 hours for samples removed from the refrigerant test fluids and 24 hours after removal from the lubricants.

Hamed, G.R.; Seiple, R.H.

1992-10-01T23:59:59.000Z

486

Compatibility of refrigerants and lubricants with elastomers. Quarterly report, 1 October 1992--30 December 1992  

Science Conference Proceedings (OSTI)

The information contained in this report is designed to assist the air-conditioning and refrigeration industry in the selection of suitable elastomeric gasket and seal materials that will prove useful in various refrigerant and refrigeration lubricant environments. 97% of the swell measurements have been made to date. The other 3% of the measurements are contingent on availability of additional R-32. Swell behavior in the fluids have been determined using weight and in situ diameter measurements for the refrigerants and weight, diameter and thickness measurements for the lubricants. Weight and diameter measurements are repeated after 2 and 24 hours for samples removed from the refrigerant test fluids and 24 hours after removal from the lubricants.

Hamed, G.R.; Seiple, R.H.

1993-01-01T23:59:59.000Z