Sample records for onshore alaska offshore

  1. Update on onshore disposal of offshore drilling wastes

    SciTech Connect (OSTI)

    Veil, J. A.

    1999-11-29T23:59:59.000Z

    The US Environmental Protection Agency (EPA) is developing effluent limitations guidelines to govern discharges of cuttings from wells drilled using synthetic-based muds. To support this rulemaking, Argonne National Laboratory was asked by EPA and the US Department of Energy (DOE) to collect current information about those onshore commercial disposal facilities that are permitted to receive offshore drilling wastes. Argonne contacted state officials in Louisiana, Texas, California and Alaska to obtain this information. The findings, collected during October and November 1999, are presented by state.

  2. Aeroelastic Instabilities of Large Offshore and Onshore Wind Turbines: Preprint

    SciTech Connect (OSTI)

    Bir, G.; Jonkman, J.

    2007-08-01T23:59:59.000Z

    This paper examines the aeroelastic stability of a 5-MW conceptual wind turbine mounted on a floating barge and presents results for onshore and offshore configurations for various conditions.

  3. Onshore and offshore basins of northeast Libya: Their origin and hydrocarbon potential

    SciTech Connect (OSTI)

    Shegewi, O.M.

    1992-01-01T23:59:59.000Z

    A comprehensive data base of more than 3000 km of seismic lines, gravity and magnetic data, more than 30 subsurface well logs, and surface geology data were utilized to examine and interpret the sedimentary and tectonic history of the onshore and offshore parts of Northeast Libya and their hydrocarbon potential. The Dernah-Tobruk and Benghazi offshore basins form the northern parts of the study area. The Cyrenaica Stable Platform represents the southern parts. The Sirual Trough stretches E-W and opens into the Antelat Trough in the west. Between these elements is the uplifted areas of the Al Jabal Al Akhdar. Six principal tectonic phases were responsible for the formation and development of these structural elements: the pre-Mesozoic phase, the Triassic-Jurassic rifting phase, the Neocomian and the Aptian-Albian renewed rifting phases, the Late Cretaceous-Paleocene uplifting phase; and the Eocene-Middle Oligocene rifting phase. Oceanic crust of probable Aptian-Albian age is evident on the seismic lines north of the master fault marking the southern boundary of the rift separating the north African plate and Apulia. The western boundary of the Dernah High displayed clearly NE-SW strike-slip movement of these trajectories. Oceanic crust is also present west of the Dernah High. Positive gravity and magnetic anomalies traverse parallel to the boundary of this oceanic plate Mesogea. The prerequisites for commercial hydrocarbon production are present in abundance. Reservoirs ranging in age from Paleozoic clastics in the Cyrenaica Stable Platform to Mesozoic and Tertiary carbonates throughout the rest of the region. Several deep sites for the generation of hydrocarbons were also present, including the rifted northern parts of the Dernah-Tobruk basin, the Antelat Trough and the Cyrenaica Passive Margin. The Cretaceous and Tertiary section in the study area contain several potential seal rocks. Several potential trap types are also present.

  4. Small to large-scale diagenetic variation in Norphlet sandstone, onshore and offshore Mississippi, Alabama, and Florida

    SciTech Connect (OSTI)

    Kugler, R.L.

    1989-03-01T23:59:59.000Z

    The detrital composition of Norphlet sandstone is relatively uniform on a regional scale, consisting of quartz, potassium feldspar, albite, and rock fragments comprised of these minerals. However, the diagenetic character of the sandstones is variable on a scale ranging from the individual laminations to single hydrocarbon-producing fields to regions encompassing several fields or offshore blocks. Small-scale variation results primarily from textural differences related to depositional processes in eolian and shallow marine systems. Degree of feldspar alteration and types of authigenic clay and carbonate minerals vary on a regional scale. Illite, dolomite, ferroan dolomite, and ferroan magnesite (breunnerite) are common in onshore wells in Alabama, whereas magnesium-rich chlorite and calcite are present in offshore Alabama and Florida. However, diagenetic character is more variable on a fieldwide scale than previously recognized. In Hatter's Pond field, Mobile County, Alabama, breunnerite, which has not been described previously in these sandstones, is the dominant cement in some wells but is absent others. Although illite is the most common authigenic clay throughout the field, chlorite is the most abundant clay in some wells. Because of uniformity of detrital composition, diagenetic variations cannot be related to differences in provenance, particularly on the scale of a single field. Factors that must account for variations in diagenesis include (1) differences in burial history relative to thermal sulfate reduction; (2) variation in fluid flow relative to subbasins, structural highs, fault systems, depositional texture, and early diagenetic character of the sandstones; and (3) variation in composition of underlying Louann evaporites.

  5. Depositional texture-dependent and independent diagenetic control of petrophysical properties, Norphlet sandstone, onshore and offshore Alabama

    SciTech Connect (OSTI)

    Kugler, R.I. (Geological Survey of Alabama, Tuscaloosa, AL (United States))

    1993-09-01T23:59:59.000Z

    Diagenetic factors influencing reservoir heterogeneity vary significantly throughout the region of Norphlet hydrocarbon production. Distribution of some diagenetic components in these eolian reservoirs is controlled by depositional texture. The distribution of these diagenetic components, which create local of widespread barriers and baffles to fluid flow, can be determined by depositional modeling. However, the distribution of other diagenetic components in Norphlet reservoirs, including quartz, clay minerals and pyrobitumen, is independent of depositional texture and cannot be determined by similar modeling. Factors controlling the distribution of texture-independent diagenetic components include the availability of chemical constituents from external sources, past and present positions of hydrocarbon-water contacts, and the time available for diagenetic reactions to proceed. In onshore fields, such as Hatter's Pond field, the position of fluid contacts influences reservoir quality. Permeability is highest above the hydrocarbon-water contact where authigenic illite is less abundant. The opposite relationship occurs in offshore fields in Alabama coastal waters and Federal outer continental shelf areas where sandstone below paleo-hydrocarbon-water contacts or present hydrocarbon-water contacts has the highest reservoir quality. Up to four diagenetic zones may occur stratigraphically. In descending order they are (1) the dominantly quartz-cemented tight zone at the top of the Norphlet; (2) an interval above palo-fluid contacts or present fluid contacts in which pyrobitumen grain coast reduce pore volume and constrict pore throats; (3) an interval between paleo-fluid contacts or present fluid contacts that lacks pyrobitumen and has the highest reservoir quality; and (4) an interval similar to interval 3 that lies below the present gas-water contact. Delineation of controls on the distribution of these intervals is critical to evaluating gas reserves in offshore areas.

  6. Evaluation and comparison of occupational noise exposure among workers on offshore and onshore oil well drilling rigs

    E-Print Network [OSTI]

    Suarez Garcia, Humberto

    1984-01-01T23:59:59.000Z

    Engineering Department, for the loan of equipment used for th is research. A special gratitude goes to Ing. Jav ier Mendieta, Safety Manager of Petroleos Mexicanos, for his help for the use of PEMEX facilities in my data collection. I would also like... are in Villahermosa, Tabasco, and the seven offshore rigs are in the Gulf of Campeche. These 15 drilling rigs belong to Petroleos Mexicanos (The Mexican Oil Company). The rig specifica- tions, rig numbers and name of the wells are included in Appendix A...

  7. ,"Alaska Natural Gas Gross Withdrawals Total Offshore (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments; Unit:1996..........RegionTotalPriceShareCrudeTotal Offshore

  8. Alaska

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices4 OilU.S. Offshore U.S.

  9. Alaska

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices4 OilU.S. Offshore U.S.: Shale natural

  10. Planning Amid Abundance: Alaska’s FY 2013 Budget Process

    E-Print Network [OSTI]

    McBeath, Jerry

    2013-01-01T23:59:59.000Z

    extreme dependence on depleting oil reserves and on federaldependence on depleting oil reserves and federal governmentReserve-Alaska (NPR-A), regarded as the most likely on-shore oil

  11. OFFSHORE WIND FARM LAYOUT OPTIMIZATION (OWFLO) PROJECT: AN INTRODUCTION

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    OFFSHORE WIND FARM LAYOUT OPTIMIZATION (OWFLO) PROJECT: AN INTRODUCTION C. N. Elkinton* , J. F focused on land-based wind farms, rather than on offshore farms. The conventional method used to lay out that distinguish offshore wind farms from their onshore counterparts, the Offshore Wind Farm Layout Optimization

  12. Operational Impacts of Large Deployments of Offshore Wind (Poster)

    SciTech Connect (OSTI)

    Ibanez, E.; Heaney, M.

    2014-10-01T23:59:59.000Z

    The potential operational impact of deploying 54 GW of offshore wind in the United States was examined. The capacity was not evenly distributed; instead, it was concentrated in regions with better wind quality and close to load centers (Table 1). A statistical analysis of offshore wind power time series was used to assess the effect on the power system. The behavior of offshore wind resembled that of onshore wind, despite the former presenting higher capacity factors, more consistent power output across seasons, and higher variability levels. Thus, methods developed to manage onshore wind variability can be extended and applied to offshore wind.

  13. A Predictive Maintenance Policy Based on the Blade of Offshore Wind Wenjin Zhu, Troyes University of Technology

    E-Print Network [OSTI]

    McCalley, James D.

    A Predictive Maintenance Policy Based on the Blade of Offshore Wind Turbine Wenjin Zhu, Troyes onshore to offshore locations [1]. As offshore wind turbines are located at remote sites withlimited]. Operation and maintenance (O&M) costs of off-shore wind turbines contribute about 25-30% to the total energy

  14. RELIABILITY COMPARISON MODELS FOR OFFSHORE WIND TURBINES (OWT)

    E-Print Network [OSTI]

    Bernstein, Joseph B.

    RELIABILITY COMPARISON MODELS FOR OFFSHORE WIND TURBINES (OWT) Yizhou Lu, T. M. Delorm, A. Christou of survivor functions R(t) of drive-trains, after 1 year of operation, between Offshore Wind Turbine (OWT) vs of the reliability of these 5 Types Surrogate failure rate data Onshore wind turbines (OT) 1-1.5MW CONCLUSIONS

  15. National Offshore Wind Energy Grid Interconnection Study

    SciTech Connect (OSTI)

    Daniel, John P. [ABB Inc; Liu, Shu [ABB Inc; Ibanez, Eduardo [National Renewable Energy Laboratory; Pennock, Ken [AWS Truepower; Reed, Greg [University of Pittsburgh; Hanes, Spencer [Duke Energy

    2014-07-30T23:59:59.000Z

    The National Offshore Wind Energy Grid Interconnection Study (NOWEGIS) considers the availability and potential impacts of interconnecting large amounts of offshore wind energy into the transmission system of the lower 48 contiguous United States. A total of 54GW of offshore wind was assumed to be the target for the analyses conducted. A variety of issues are considered including: the anticipated staging of offshore wind; the offshore wind resource availability; offshore wind energy power production profiles; offshore wind variability; present and potential technologies for collection and delivery of offshore wind energy to the onshore grid; potential impacts to existing utility systems most likely to receive large amounts of offshore wind; and regulatory influences on offshore wind development. The technologies considered the reliability of various high-voltage ac (HVAC) and high-voltage dc (HVDC) technology options and configurations. The utility system impacts of GW-scale integration of offshore wind are considered from an operational steady-state perspective and from a regional and national production cost perspective.

  16. A review of the economics of offshore wind farms Rebecca J. Barthelmie1 and Sara Pryor2,1

    E-Print Network [OSTI]

    Pryor, Sara C.

    A review of the economics of offshore wind farms Rebecca J. Barthelmie1 and Sara Pryor2,1 1 prototype offshore wind farms, developed and installed during the 1990's, to the commercial wind farms offshore wind farms compete with moderate onshore locations. We summarise the transition to increasing

  17. EA-1970: Fishermen’s Energy LLC Offshore Wind Demonstration Project, offshore Atlantic City, New Jersey

    Broader source: Energy.gov [DOE]

    DOE is proposing to provide funding to Fishermen’s Atlantic City Windfarm, LLC to construct and operate up to six wind turbine generators, for an offshore wind demonstration project, approximately 2.8 nautical miles off the coast of Atlantic City, NJ. The proposed action includes a cable crossing from the turbines to an on-shore existing substation.

  18. Scheduling Workover Rigs for Onshore Oil Production

    E-Print Network [OSTI]

    2003-06-23T23:59:59.000Z

    Scheduling Workover Rigs for Onshore Oil. Production. Dario J. Aloise, Daniel Aloise, Caroline T.M. Rocha. Universidade Federal do Rio Grande do Norte,.

  19. Alaska Onshore Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS8) Distribution Category UC-950 Cost and Quality of Fuels forA 6 J 9 U B uYearDecadeYear Jan,027,696

  20. Alaska--Onshore Natural Gas Dry Production (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion CubicPotentialNov-14 Dec-14 Jan-1538,469 39,194 39,008Dry

  1. Alaska--Onshore Natural Gas Plant Liquids Production, Gaseous Equivalent

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion CubicPotentialNov-14 Dec-14 Jan-1538,469 39,194

  2. Alaska--onshore Natural Gas Gross Withdrawals (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecade Year-0 Year-1 Year-2Cubic Feet) GasGross

  3. Alaska--onshore Natural Gas Marketed Production (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecade Year-0 Year-1 Year-2Cubic Feet)

  4. WEDNESDAY: Chu, Salazar, Vilsack to Participate in Onshore Renewable...

    Office of Environmental Management (EM)

    WEDNESDAY: Chu, Salazar, Vilsack to Participate in Onshore Renewable Energy Workshop WEDNESDAY: Chu, Salazar, Vilsack to Participate in Onshore Renewable Energy Workshop February...

  5. Presented on the European Wind Energy Conference & Exhibition, Brussels, Belgium, March, 31 Network of offshore wind farms connected by gas insulated

    E-Print Network [OSTI]

    Heinemann, Detlev

    ­April, 3 rd 2008. Network of offshore wind farms connected by gas insulated transmission lines? Anja Summary The offshore wind power industry faces two major challenges: the connection of wind farms to the high voltage grid onshore and a smart grid integration of this offshore generated wind power. In terms

  6. Offshore Wind Power USA

    Broader source: Energy.gov [DOE]

    The Offshore Wind Power USA conference provides the latest offshore wind market updates and forecasts.

  7. Policy brief The case for and against onshore

    E-Print Network [OSTI]

    Policy brief June 2012 The case for and against onshore wind energy in the UK Samuela Bassi, Alex and Policy can be found at: http://www.cccep.ac.uk #12;| 1The case for and against onshore wind energy contribute to the UK's energy mix? 7 3. What is the impact of onshore wind intermittency on the electricity

  8. The Outlier State: Alaska’s FY 2012 Budget

    E-Print Network [OSTI]

    McBeath, Jerry; Corbin, Tanya Buhler

    2012-01-01T23:59:59.000Z

    rankings of Alaska’s oil investment favorability. Source:it would increase oil company investment in Alaska, neededGovernment Support Oil & Gas Investment Tax Credits Other

  9. Tidal Energy System for On-Shore Power Generation

    SciTech Connect (OSTI)

    Bruce, Allan J

    2012-06-26T23:59:59.000Z

    Addressing the urgent need to develop LCOE competitive renewable energy solutions for US energy security and to replace fossil-fuel generation with the associated benefits to environment impacts including a reduction in CO2 emissions, this Project focused on the advantages of using hydraulic energy transfer (HET) in large-scale Marine Hydrokinetic (MHK) systems for harvesting off-shore tidal energy in US waters. A recent DOE resource assessment, identifies water power resources have a potential to meet 15% of the US electric supply by 2030, with MHK technologies being a major component. The work covered a TRL-4 laboratory proof-in-concept demonstration plus modeling of a 15MW full scale system based on an approach patented by NASA-JPL, in which submerged high-ratio gearboxes and electrical generators in conventional MHK turbine systems are replaced by a submerged hydraulic radial pump coupled to on-shore hydraulic motors driving a generator. The advantages are; first, the mean-time-between-failure (MTBF), or maintenance, can be extended from approximately 1 to 5 years and second, the range of tidal flow speeds which can be efficiently harvested can be extended beyond that of a conventional submerged generator. The approach uses scalable, commercial-off-the-shelf (COTS) components, facilitating scale-up and commercialization. All the objectives of the Project have been successfully met (1) A TRL4 system was designed, constructed and tested. It simulates a tidal energy turbine, with a 2-m diameter blade in up to a 2.9 m/sec flow. The system consists of a drive motor assembly providing appropriate torque and RPM, attached to a radial piston pump. The pump circulates pressurized, environmentally-friendly, HEES hydraulic fluid in a closed loop to an axial piston motor which drives an electrical generator, with a resistive load. The performance of the components, subsystems and system were evaluated during simulated tidal cycles. The pump is contained in a tank for immersion testing. The COTS pump and motor were selected to scale to MW size and were oversized for the TRL-4 demonstration, operating at only 1-6% of rated values. Nevertheless, in for 2-18 kW drive power, in agreement with manufacturer performance data, we measured efficiencies of 85-90% and 75-80% for the pump and motor, respectively. These efficiencies being 95-96% at higher operating powers. (2) Two follow-on paths were identified. In both cases conventional turbine systems can be modified, replacing existing gear box and generator with a hydraulic pump and on-shore components. On a conventional path, a TRL5/6 15kW turbine system can be engineered and tested on a barge at an existing site in Maine. Alternatively, on an accelerated path, a TRL-8 100kW system can be engineered and tested by modifying a team member's existing MHK turbines, with barge and grid-connected test sites in-place. On both paths the work can be expedited and cost effective by reusing TRL-4 components, modifying existing turbines and using established test sites. (3) Sizing, performance modeling and costing of a scaled 15MW system, suitable for operation in Maine's Western Passage, was performed. COTS components are identified and the performance projections are favorable. The estimated LCOE is comparable to wind generation with peak production at high demand times. (4) We determined that a similar HET approach can be extended to on-shore and off-shore wind turbine systems. These are very large energy resources which can be addressed in parallel for even great National benefit. (5) Preliminary results on this project were presented at two International Conferences on renewable energy in 2012, providing a timely dissemination of information. We have thus demonstrated a proof-in-concept of a novel, tidal HET system that eliminates all submerged gears and electronics to improve reliability. Hydraulic pump efficiencies of 90% have been confirmed in simulated tidal flows between 1 and 3 m/s, and at only 1-6% of rated power. Total system efficiencies have also been modeled, up to MW-scale, for ti

  10. The Outlier State: Alaska’s FY 2012 Budget

    E-Print Network [OSTI]

    McBeath, Jerry; Corbin, Tanya Buhler

    2012-01-01T23:59:59.000Z

    State: Alaska’s FY 2012 Budget themselves Alaskans United toJ. (2011) “What Recession? Alaska’s 2011 Budget,” in AnnualWestern States Budget Review, and California Journal of

  11. Planning Amid Abundance: Alaska’s FY 2013 Budget Process

    E-Print Network [OSTI]

    McBeath, Jerry

    2013-01-01T23:59:59.000Z

    2011) “The Outlier State: Alaska’s FY 2012 Budget,” AnnualWestern States Budget Review. New York Times, selectedAbundance: Alaska’s FY 2013 Budget Process Abstract: This

  12. Lake Michigan Offshore Wind Feasibility Assessment

    SciTech Connect (OSTI)

    Boezaart, Arnold [GVSU; Edmonson, James [GVSU; Standridge, Charles [GVSU; Pervez, Nahid [GVSU; Desai, Neel [University of Michigan; Williams, Bruce [University of Delaware; Clark, Aaron [GVSU; Zeitler, David [GVSU; Kendall, Scott [GVSU; Biddanda, Bopi [GVSU; Steinman, Alan [GVSU; Klatt, Brian [Michigan State University; Gehring, J. L. [Michigan State University; Walter, K. [Michigan State University; Nordman, Erik E. [GVSU

    2014-06-30T23:59:59.000Z

    The purpose of this project was to conduct the first comprehensive offshore wind assessment over Lake Michigan and to advance the body of knowledge needed to support future commercial wind energy development on the Great Lakes. The project involved evaluation and selection of emerging wind measurement technology and the permitting, installation and operation of the first mid-lake wind assessment meteorological (MET) facilities in Michigan’s Great Lakes. In addition, the project provided the first opportunity to deploy and field test floating LIDAR and Laser Wind Sensor (LWS) technology, and important research related equipment key to the sitting and permitting of future offshore wind energy development in accordance with public participation guidelines established by the Michigan Great Lakes Wind Council (GLOW). The project created opportunities for public dialogue and community education about offshore wind resource management and continued the dialogue to foster Great Lake wind resource utilization consistent with the focus of the GLOW Council. The technology proved to be effective, affordable, mobile, and the methods of data measurement accurate. The public benefited from a substantial increase in knowledge of the wind resources over Lake Michigan and gained insights about the potential environmental impacts of offshore wind turbine placements in the future. The unique first ever hub height wind resource assessment using LWS technology over water and development of related research data along with the permitting, sitting, and deployment of the WindSentinel MET buoy has captured public attention and has helped to increase awareness of the potential of future offshore wind energy development on the Great Lakes. Specifically, this project supported the acquisition and operation of a WindSentinel (WS) MET wind assessment buoy, and associated research for 549 days over multiple years at three locations on Lake Michigan. Four research objectives were defined for the project including to: 1) test and validate floating LIDAR technology; 2) collect and access offshore wind data; 3) detect and measure bird and bat activity over Lake Michigan; 4) conduct an over water sound propagation study; 5) prepare and offer a college course on offshore energy, and; 6) collect other environmental, bathometric, and atmospheric data. Desk-top research was performed to select anchorage sites and to secure permits to deploy the buoy. The project also collected and analyzed data essential to wind industry investment decision-making including: deploying highly mobile floating equipment to gather offshore wind data; correlating offshore wind data with conventional on-shore MET tower data; and performing studies that can contribute to the advancement and deployment of offshore wind technologies. Related activities included: • Siting, permitting, and deploying an offshore floating MET facility; • Validating the accuracy of floating LWS using near shoreline cup anemometer MET instruments; • Assessment of laser pulse technology (LIDAR) capability to establish hub height measurement of wind conditions at multiple locations on Lake Michigan; • Utilizing an extended-season (9-10 month) strategy to collect hub height wind data and weather conditions on Lake Michigan; • Investigation of technology best suited for wireless data transmission from distant offshore structures; • Conducting field-validated sound propagation study for a hypothetical offshore wind farm from shoreline locations; • Identifying the presence or absence of bird and bat species near wind assessment facilities; • Identifying the presence or absence of benthic and pelagic species near wind assessment facilities; All proposed project activities were completed with the following major findings: • Floating Laser Wind Sensors are capable of high quality measurement and recordings of wind resources. The WindSentinel presented no significant operational or statistical limitations in recording wind data technology at a at a high confidence level as compared to traditional an

  13. Doubly Fed Induction Generator in an Offshore Wind Power Plant Operated at Rated V/Hz: Preprint

    SciTech Connect (OSTI)

    Muljadi, E.; Singh, M.; Gevorgian, V.

    2012-06-01T23:59:59.000Z

    This paper introduces the concept of constant Volt/Hz operation of offshore wind power plants. The deployment of offshore WPPs requires power transmission from the plant to the load center inland. Since this power transmission requires submarine cables, there is a need to use High-Voltage Direct Current transmission, which is economical for transmission distances longer than 50 kilometers. In the concept presented here, the onshore substation is operated at 60 Hz synced with the grid, and the offshore substation is operated at variable frequency and voltage, thus allowing the WPP to be operated at constant Volt/Hz.

  14. Sandia Energy - Offshore Wind RD&D: Large Offshore Rotor Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Offshore Rotor Development Home Stationary Power Energy Conversion Efficiency Wind Energy Offshore Wind Offshore Wind RD&D: Large Offshore Rotor Development Offshore Wind RD&D:...

  15. Sandia Energy - Offshore Wind RD&D: Large Offshore Rotor Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Offshore Wind RD&D: Large Offshore Rotor Development Home Stationary Power Energy Conversion Efficiency Wind Energy Offshore Wind Offshore Wind RD&D: Large Offshore Rotor...

  16. Factors affect offshore production loss control

    SciTech Connect (OSTI)

    Ash, C.S.

    1986-05-12T23:59:59.000Z

    Many aspects of petroleum measurement on an offshore production platform are the same as at an onshore facility, but there are some unique differences. Before going into them it should be noted that even in today's climate of low or declining oil prices that stock loss control is still important. Improving measurement of the quantity of oil transfers can help reduce the amount of stock that is ''unaccounted for'' or lost. As stock loss is reduced, the salable quantity increases, the gross revenue increases, and the net revenue increases. Even in cases where transfers are between two departments of the same company, accurate measurement and proper accountability are required because they often are the basis for determining costs and can thus affect the price that is charged on a later custody transfer. Inefficiencies in intracompany transfers can often hide real losses which may occur during intercompany transfers.

  17. European Wind Atlas: Onshore | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489 No revision|LLCInsulationInformation)CommissionOffshore

  18. Alaska Rural Energy Conference

    Broader source: Energy.gov [DOE]

    The Alaska Rural Energy Conference is a three-day event offering a large variety of technical sessions covering new and ongoing energy projects in Alaska, as well as new technologies and needs for...

  19. Offshore Wind Geoff Sharples

    E-Print Network [OSTI]

    Kammen, Daniel M.

    Offshore Wind Geoff Sharples geoff@clearpathenergyllc.com #12;Frequently Unanswered Ques?ons · Why don't "they" build more offshore wind? · Why not make States Cape Wind PPA at 18 c/kWh #12;The cycle of non-innova?on Offshore

  20. CONGRESSIONAL BRIEFING Offshore Wind

    E-Print Network [OSTI]

    Firestone, Jeremy

    CONGRESSIONAL BRIEFING Offshore Wind Lessons Learned from Europe: Reducing Costs and Creating Jobs Thursday, June 12, 2014 Capitol Visitors Center, Room SVC 215 Enough offshore wind capacity to power six the past decade. What has Europe learned that is applicable to a U.S. effort to deploy offshore wind off

  1. Review of technology for Arctic offshore oil and gas recovery. Appendices

    SciTech Connect (OSTI)

    Sackinger, W. M.

    1980-06-06T23:59:59.000Z

    This volume contains appendices of the following: US Geological Survey Arctic operating orders, 1979; Det Noske Vertas', rules for the design, construction and inspection of offshore technology, 1977; Alaska Oil and Gas Association, industry research projects, March 1980; Arctic Petroleum Operator's Association, industry research projects, January 1980; selected additional Arctic offshore bibliography on sea ice, icebreakers, Arctic seafloor conditions, ice-structures, frost heave and structure icing.

  2. Alaska Natural Gas Gross Withdrawals and Production

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices4 OilU.S. Offshore U.S.: ShaleAlaska

  3. Alaska - Rankings - U.S. Energy Information Administration (EIA)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1 U.S. Department ofU.S. Offshore U.S. State Offshore FederalJuneAlaska

  4. Sensitivity Analysis of Offshore Wind Cost of Energy (Poster)

    SciTech Connect (OSTI)

    Dykes, K.; Ning, A.; Graf, P.; Scott, G.; Damiami, R.; Hand, M.; Meadows, R.; Musial, W.; Moriarty, P.; Veers, P.

    2012-10-01T23:59:59.000Z

    No matter the source, offshore wind energy plant cost estimates are significantly higher than for land-based projects. For instance, a National Renewable Energy Laboratory (NREL) review on the 2010 cost of wind energy found baseline cost estimates for onshore wind energy systems to be 71 dollars per megawatt-hour ($/MWh), versus 225 $/MWh for offshore systems. There are many ways that innovation can be used to reduce the high costs of offshore wind energy. However, the use of such innovation impacts the cost of energy because of the highly coupled nature of the system. For example, the deployment of multimegawatt turbines can reduce the number of turbines, thereby reducing the operation and maintenance (O&M) costs associated with vessel acquisition and use. On the other hand, larger turbines may require more specialized vessels and infrastructure to perform the same operations, which could result in higher costs. To better understand the full impact of a design decision on offshore wind energy system performance and cost, a system analysis approach is needed. In 2011-2012, NREL began development of a wind energy systems engineering software tool to support offshore wind energy system analysis. The tool combines engineering and cost models to represent an entire offshore wind energy plant and to perform system cost sensitivity analysis and optimization. Initial results were collected by applying the tool to conduct a sensitivity analysis on a baseline offshore wind energy system using 5-MW and 6-MW NREL reference turbines. Results included information on rotor diameter, hub height, power rating, and maximum allowable tip speeds.

  5. Accelerating Offshore Wind Development

    Broader source: Energy.gov [DOE]

    Today the Energy Department announced investments in seven offshore wind demonstration projects. Check out our map to see where these projects will be located.

  6. Comparison of geology of Jurassic Norphlet Mary Ann field, Mobile Bay, Alabama, to onshore regional Norphlet trends

    SciTech Connect (OSTI)

    Marzono, M.; Pense, G.; Andronaco, P.

    1988-09-01T23:59:59.000Z

    The geology of the Mary Ann field is better understood in light of regional studies, which help to establish a depositional model in terms of both facies and thickness variations. These studies also illustrate major differences between onshore and offshore Norphlet deposits concerning topics such as diagenesis, hydrocarbon trapping, and migration. The Jurassic Norphlet sandstone was deposited in an arid basin extending from east Texas to Florida by a fluvial-eolian depositional system, prior to the transgression of the Smackover Formation. Until discovery of the Mary Ann field in 1979, Norphlet production was restricted to onshore areas, mostly along the Pickens-Pollard fault system in Mississippi, Alabama, and Florida. The Mary Ann field is a Norphlet dry-gas accumulation, and was the first offshore field in the Gulf of Mexico to establish economic reserves in the Jurassic. The field is located in Mobile Bay, approximately 25 mi (40 km) south of Mobile, Alabama. Formed by a deep-seated (more than 20,000 ft or 6096 m) faulted salt pillow, Mary Ann field produces from a series of stacked eolian dune sands situated near the Norphlet paleocoastline. Five lithofacies have been recognized in cores from the Mobil 76 No. 2 well. Each lithofacies has a distinct reservoir quality. Optimum reservoir faces are the dune and sheet sands. Nonreservoir facies are interdune (wet and dry), marine reworked, and evaporitic sands. Following deposition, these sediments have undergone varying amounts of diagenesis. Early cementation of well-sorted sands supported the pore system during compaction. However, late cementation by chlorite, silica, and alteration of liquid hydrocarbons to an asphaltic residue have completely occluded the pore system in parts of the reservoir.

  7. Alaska Forum on the Environment

    Broader source: Energy.gov [DOE]

    The Alaska Forum on the Environment is Alaska's largest statewide gathering of environmental professionals from government agencies, non-profit and for-profit businesses, community leaders, Alaskan...

  8. Alaska Forum on the Environment

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Alaska Forum on the Environment (AFE) is Alaska's largest statewide gathering of environmental professionals from government agencies, non-profit and for-profit businesses, community leaders,...

  9. Onshore wind energy in the UK, the unexploited resource 

    E-Print Network [OSTI]

    Stokes, Peter

    2014-08-06T23:59:59.000Z

    major switch of large scale energy generation is required to reduce these emissions; from the burning of fossil fuels to generation by renewable sources. Onshore wind energy is one of the most viable of the UK’s renewable energy sources, but its uptake...

  10. Holocene sea-ice variations in Greenland: onshore evidence

    E-Print Network [OSTI]

    Ingólfsson, Ólafur

    Holocene sea-ice variations in Greenland: onshore evidence Ole Bennike* (Geological Survey of Denmark and Greenland, Øster Voldgade 10, DK-1350 Copenhagen K, Denmark) Received 12 August 2002; revised manuscript accepted 2 April 2003 Abstract: The oldest dated driftwood log from northern Greenland is c. 9300

  11. Alaska's renewable energy potential.

    SciTech Connect (OSTI)

    Not Available

    2009-02-01T23:59:59.000Z

    This paper delivers a brief survey of renewable energy technologies applicable to Alaska's climate, latitude, geography, and geology. We first identify Alaska's natural renewable energy resources and which renewable energy technologies would be most productive. e survey the current state of renewable energy technologies and research efforts within the U.S. and, where appropriate, internationally. We also present information on the current state of Alaska's renewable energy assets, incentives, and commercial enterprises. Finally, we escribe places where research efforts at Sandia National Laboratories could assist the state of Alaska with its renewable energy technology investment efforts.

  12. Development of an Autonomous Underwater Vehicle for Sub-Ice Environmental Monitoring in Prudhoe Bay, Alaska

    E-Print Network [OSTI]

    Wood, Stephen L.

    Alaska's northern coast. Of particular interest are the impacts of construction of offshore gravel. The overall design concept, modeling, and simulation for the AUV is discussed along with the design of the AUV drilling and exploration efforts are underway and expanding. Currently, the Mineral Management Service (MMS

  13. Crossing Active Faults on the Sakhalin II Onshore Pipeline Route: Pipeline Design and Risk Analysis

    SciTech Connect (OSTI)

    Mattiozzi, Pierpaolo [Snamprogetti-Saipem, Via Toniolo, 1, 61032 Fano (Italy); Strom, Alexander [Institute of Geospheres Dynamics, Leninskiy Avenue, 38, Building 1, 119334, Moscow (Russian Federation)

    2008-07-08T23:59:59.000Z

    Twin oil (20 and 24 inch) and gas (20 and 48 inch) pipeline systems stretching 800 km are being constructed to connect offshore hydrocarbon deposits from the Sakhalin II concession in the North to an LNG plant and oil export terminal in the South of Sakhalin island. The onshore pipeline route follows a regional fault zone and crosses individual active faults at 19 locations. Sakhalin Energy, Design and Construction companies took significant care to ensure the integrity of the pipelines, should large seismic induced ground movements occur during the Operational life of the facilities. Complex investigations including the identification of the active faults, their precise location, their particular displacement values and assessment of the fault kinematics were carried out to provide input data for unique design solutions. Lateral and reverse offset displacements of 5.5 and 4.5 m respectively were determined as the single-event values for the design level earthquake (DLE) - the 1000-year return period event. Within the constraints of a pipeline route largely fixed, the underground pipeline fault crossing design was developed to define the optimum routing which would minimize stresses and strain using linepipe materials which had been ordered prior to the completion of detailed design, and to specify requirements for pipe trenching shape, materials, drainage system, etc. Detailed Design was performed with due regard to actual topography and to avoid the possibility of the trenches freezing in winter, the implementation of specific drainage solutions and thermal protection measures.

  14. Crossing Active Faults on the Sakhalin II Onshore Pipeline Route: Analysis Methodology and Basic Design

    SciTech Connect (OSTI)

    Vitali, Luigino [Snamprogetti-Saipem, Via Toniolo, 1, 61032 Fano, Luigino (Italy); Mattiozzi, Pierpaolo [Snamprogetti-Saipem, Via Toniolo, 1, 61032 Fano (Italy)

    2008-07-08T23:59:59.000Z

    Twin oil (20 and 24 inch) and gas (20 and 48 inch) pipeline systems stretching 800 km are being constructed to connect offshore hydrocarbon deposits from the Sakhalin II concession in the North to an LNG plant and oil export terminal in the South of Sakhalin island. The onshore pipeline route follows a regional fault zone and crosses individual active faults at 19 locations. Sakhalin Energy, Design and Construction companies took significant care to ensure the integrity of the pipelines, should large seismic induced ground movements occur during the Operational life of the facilities. Complex investigations including the identification of the active faults, their precise location, their particular displacement values and assessment of the fault kinematics were carried out to provide input data for unique design solutions. Lateral and reverse offset displacements of 5.5 and 4.5 m respectively were determined as the single-event values for the design level earthquake (DLE)--the 1000-year return period event. Within the constraints of a pipeline route largely fixed, the underground pipeline fault crossing design was developed to define the optimum routing which would minimize stresses and strain using linepipe materials which had been ordered prior to the completion of detailed design, and to specify requirements for pipe trenching shape, materials, drainage system, etc. This Paper describes the steps followed to formulate the concept of the special trenches and the analytical characteristics of the Model.

  15. Alaska geothermal bibliography

    SciTech Connect (OSTI)

    Liss, S.A.; Motyka, R.J.; Nye, C.J. (comps.)

    1987-05-01T23:59:59.000Z

    The Alaska geothermal bibliography lists all publications, through 1986, that discuss any facet of geothermal energy in Alaska. In addition, selected publications about geology, geophysics, hydrology, volcanology, etc., which discuss areas where geothermal resources are located are included, though the geothermal resource itself may not be mentioned. The bibliography contains 748 entries.

  16. Renewable Energy in Alaska

    SciTech Connect (OSTI)

    Not Available

    2013-03-01T23:59:59.000Z

    This report examines the opportunities, challenges, and costs associated with renewable energy implementation in Alaska and provides strategies that position Alaska's accumulating knowledge in renewable energy development for export to the rapidly growing energy/electric markets of the developing world.

  17. Mendenhall Glacier Juneau, Alaska

    E-Print Network [OSTI]

    Raina, Ramesh

    · · · · · · #12;V1 Mendenhall Glacier Juneau, Alaska 404 Alaskan Frontiers & Glaciers V1 PRSRTSTD U blend of nature and modern culture. Marvel at the spectacular Hubbard Glacier, the longest tidewater glacier in Alaska and visit Icy Strait Point, a seaport nestled in the lush, seemingly endless northern

  18. What Recession? Alaska's FY 2011 Budget

    E-Print Network [OSTI]

    McBeath, Jerry

    2011-01-01T23:59:59.000Z

    Recession? Alaska’s FY 2011 Budget Jerry McBeath Universityexplaining Alaska’s FY 2011 budget process and out- comes.It introduces the governor’s budget requests, legislative

  19. Alaska Offshore Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS8) Distribution Category UC-950 Cost and Quality of Fuels forA 6 J 9 U B uYearDecadeYear Jan

  20. Alaska State Offshore Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS8) Distribution Category UC-950 Cost and Quality of Fuels forA 6 J 9 U B uYearDecadeYearThousand From Gas

  1. Alaska--State Offshore Natural Gas Plant Liquids Production, Gaseous

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion CubicPotentialNov-14 Dec-14 Jan-1538,469 39,194Dry

  2. Alaska (with Total Offshore) Coalbed Methane Production (Billion Cubic

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptemberProcessed in AlabamaGrossDecadeFeet)

  3. Alaska (with Total Offshore) Coalbed Methane Proved Reserves (Billion Cubic

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptemberProcessed in

  4. Alaska (with Total Offshore) Crude Oil Reserves in Nonproducing Reservoirs

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptemberProcessed in(Million Barrels) Crude Oil

  5. Alaska (with Total Offshore) Natural Gas Liquids Lease Condensate, Proved

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptemberProcessed in(Million Barrels) Crude

  6. Alaska (with Total Offshore) Natural Gas Liquids Lease Condensate, Reserves

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptemberProcessed in(Million Barrels)

  7. Alaska (with Total Offshore) Natural Gas Plant Liquids, Expected Future

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptemberProcessed in(Million Barrels)Production

  8. Alaska (with Total Offshore) Natural Gas Plant Liquids, Reserves Based

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptemberProcessed in(Million

  9. Alaska (with Total Offshore) Shale Production (Billion Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptemberProcessed in(MillionProduction (Billion

  10. Alaska (with Total Offshore) Shale Proved Reserves (Billion Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptemberProcessed in(MillionProduction

  11. Alaska Natural Gas Gross Withdrawals Total Offshore (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptemberProcessedDecade Year-0SurveyingGross

  12. Pilgrim Hot Springs, Alaska

    Broader source: Energy.gov [DOE]

    Residents in rural Alaska may someday have the option of replacing diesel generators with clean renewable geothermal energy. Alaskans face some of the harshest weather conditions in America, and in...

  13. Alaska Renewable Energy Fair

    Office of Energy Efficiency and Renewable Energy (EERE)

    The 10th annual Alaska Renewable Energy Fair on the downtown parkstrip in Anchorage is fun for the whole family! Come down and enjoy the live music, crafts, great local food, informational booths,...

  14. ALASKA STATE LEGISLATURE

    Energy Savers [EERE]

    FE-50 Forrestal Building 1000 Independence Avenue, SW Washington, DC 20585 RE: Alaska LNG Project LLC, Docket No. l4-96-LNG Support of Application for Long-Term Authorization to...

  15. Interconnection Guidelines (Alaska)

    Broader source: Energy.gov [DOE]

    In October 2009, the Regulatory Commission of Alaska (RCA) approved net metering regulations. These rules were finalized and approved by the lieutenant governor in January 2010 and became effective...

  16. america project alaska: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Medicine Websites Summary: Alaska Tour Company Alaska Center for Energy and Power Norton Sound Health Corp Alaska Earth Sciences & Haugeberg LLC CPA's State of Alaska...

  17. Alaska: Alaska's Clean Energy Resources and Economy (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2013-03-01T23:59:59.000Z

    This document highlights the Office of Energy Efficiency and Renewable Energy's investments and impacts in the state of Alaska.

  18. State Sea Grant Program Federal Funding Match Funding Project Titles AK Alaska Sea Grant $255,010 $40,543

    E-Print Network [OSTI]

    Social Dimensions of Offshore Wind Power Development off the Delmarva Peninsula Extending modelsState Sea Grant Program Federal Funding Match Funding Project Titles AK Alaska Sea Grant $255 to Integrate Sea-Level Rise Adaptation into Existing Land Use Plans Marine Extension and Education Graduate

  19. Energy from Offshore Wind: Preprint

    SciTech Connect (OSTI)

    Musial, W.; Butterfield, S.; Ram, B.

    2006-02-01T23:59:59.000Z

    This paper provides an overview of the nascent offshore wind energy industry including a status of the commercial offshore industry and the technologies that will be needed for full market development.

  20. Geological history of the west Libyan offshore and adjoining regions

    SciTech Connect (OSTI)

    Benniran, M.M.; Taleb, T.M.; McCrossan, R.G.

    1988-08-01T23:59:59.000Z

    The continental margin of the African plate north of Libya is separated from the Saharan platform to the south by a major Variscan fault system running along the coastline. The structural evolution of three sedimentary basins within the margin is discussed. The Jeffara basin, onshore western Libya-southern Tunisia, formed as a right-lateral pull-part late in the Variscan event. When the strike-slip motion ceased in the Late Permian, the basin continued to subside thermally. The Sabratah (Tripolitanian) basin, offshore western Libya-southern Tunisia, and the Benghazi basin in the Sirte rise were both formed as left-lateral pull-aparts in the Late Triassic-Early Jurassic. From the Middle Jurassic to the present they have subsided thermally. Onshore the lower Mesozoic is characterized by continental and nearshore clastics, separated by an evaporite sequence of Late Triassic-Early Jurassic age. Offshore this sequence is thought to grade northward into open marine carbonates. Uplift along the edge of the Saharan platform during the Early Cretaceous sourced coarse clastics, which grade northward into a thick sequence of shallow-water carbonates. Throughout the Late Cretaceous and early Tertiary, high-energy carbonates were deposited around the flanks of the Sabratah basin, grading into deeper-water, fine-grained clastics and carbonates toward the center of the basin. The late Tertiary succession is dominated by clastics derived from the growing Tellian Atlas to the northwest. During the Mesozoic and Tertiary a thick sequence of carbonates was deposited on the Pelagian platform to the north of the Sabratah basin. Periodically the platform was exposed subaerially.

  1. Dynamic analysis of a 5 megawatt offshore floating wind turbine

    E-Print Network [OSTI]

    Harriger, Evan Michael

    2011-01-01T23:59:59.000Z

    Why offshore wind energy? Offshore wind turbines have theturbine will also uncover potential problems that exist with offshore wind energy.

  2. Offshore Renewable Energy Solutions

    E-Print Network [OSTI]

    and sustainable energy supply. The UK is uniquely placed to harness its natural resources ­ wind, wave and tidal power ­ to meet its target of achieving 15% of energy consumption from renewable sources by 2020. CefasOffshore Renewable Energy Solutions #12;Cefas: meeting complex requirements The Centre

  3. Development of Fully Coupled Aeroelastic and Hydrodynamic Models for Offshore Wind Turbines: Preprint

    SciTech Connect (OSTI)

    Jonkman, J. M.; Sclavounos, P. D.

    2006-01-01T23:59:59.000Z

    Aeroelastic simulation tools are routinely used to design and analyze onshore wind turbines, in order to obtain cost effective machines that achieve favorable performance while maintaining structural integrity. These tools employ sophisticated models of wind-inflow; aerodynamic, gravitational, and inertial loading of the rotor, nacelle, and tower; elastic effects within and between components; and mechanical actuation and electrical responses of the generator and of control and protection systems. For offshore wind turbines, additional models of the hydrodynamic loading in regular and irregular seas, the dynamic coupling between the support platform motions and wind turbine motions, and the dynamic characterization of mooring systems for compliant floating platforms are also important. Hydrodynamic loading includes contributions from hydrostatics, wave radiation, and wave scattering, including free surface memory effects. The integration of all of these models into comprehensive simulation tools, capable of modeling the fully coupled aeroelastic and hydrodynamic responses of floating offshore wind turbines, is presented.

  4. Experiences from the offshore installation of a composite materials firewater system

    SciTech Connect (OSTI)

    Ciaraldi, S.W. [Amoco Norway Oil Co., Stavanger (Norway). Production Dept.

    1993-12-31T23:59:59.000Z

    A prototype 300 m composite dry deluge firewater system was installed in December 1991 at the Valhall Field in the southern North Sea Norwegian offshore sector. This installation followed successful safety verification of the explosion and fire resistant design concept consisting of glass-fiber reinforced epoxy (GRE) piping components protected with a reinforced intumescent epoxy fire insulation. The installation was based primarily on the use of prefabricated GRE piping spools and fire insulation cast onto the piping or applied in the form of cast half shells. Significant experiences gained from the project are described. These experiences involve pre-engineering activities, detailed engineering, onshore fabrication, shipping, offshore hook-up, quality assurance, safety and economics. Although the overall installation was successful and the system is functioning as intended, areas of possible optimization and cost reduction for future composite firewater systems were identified. These findings are also briefly reviewed.

  5. Grid Simulator for Testing a Wind Turbine on Offshore Floating Platform

    SciTech Connect (OSTI)

    Gevorgian, V.

    2012-02-01T23:59:59.000Z

    An important aspect of such offshore testing of a wind turbine floating platform is electrical loading of the wind turbine generator. An option of interconnecting the floating wind turbine with the onshore grid via submarine power cable is limited by many factors such as costs and associated environmental aspects (i.e., an expensive and lengthy sea floor study is needed for cable routing, burial, etc). It appears to be a more cost effective solution to implement a standalone grid simulator on a floating platform itself for electrical loading of the test wind turbine. Such a grid simulator must create a stable fault-resilient voltage and frequency bus (a micro grid) for continuous operation of the test wind turbine. In this report, several electrical topologies for an offshore grid simulator were analyzed and modeled.

  6. Alaska Native Village CEO Association 2015 Conference

    Broader source: Energy.gov [DOE]

    The Alaska Native Village Corporation Association is hosting its 7th Annual 2015 Conference in Anchorage, Alaska. The two-day conference includes a State of Alaska update, board election best practices, Alaska's economic future, Alaska Native subsistence co-management, and more.

  7. ANALYSIS OF THE CALIFORNIA ENERGY INDUSTRY

    E-Print Network [OSTI]

    Authors, Various

    2010-01-01T23:59:59.000Z

    gasoline refiner Onshore oil import Onshore gas production Offshore gas production LNG import terminal

  8. 34-in. onshore gasline: Integrity assessment and rehabilitation costs

    SciTech Connect (OSTI)

    Amorelli, A.; Fassina, P. [AGIP SpA, Milan (Italy); Abougfeefa, M. [AGIP Oil, Tripoli (Libyan Arab Jamahiriya)

    1996-12-01T23:59:59.000Z

    This paper summarizes all the activities carried out to evaluate the integrity of a 34-in. onshore gasline, in order to establish the best strategies to manage the gasline for the next 20 years, taking into account the future operating conditions. Three different alternatives have been considered: the first one was a new pipeline laying, the second the replacement of all damaged stroke line, more or less half of the line, and the last one was a refurbishment of the line by the removal of just the most significant defects. A cost analysis has been performed for all these alternatives. The third one has been selected on the basis of technical and economical evaluations.

  9. The Future of Offshore Wind Energy

    E-Print Network [OSTI]

    Firestone, Jeremy

    1 The Future of Offshore Wind Energy #12;2 #12;3 Offshore Wind Works · Offshore wind parks: 28 in 10 countries · Operational since 1991 · Current installed capacity: 1,250 MW · Offshore wind parks in the waters around Europe #12;4 US Offshore Wind Projects Proposed Atlantic Ocean Gulf of Mexico Cape Wind

  10. A National Offshore Wind Strategy: Creating an Offshore Wind...

    Broader source: Energy.gov (indexed) [DOE]

    Strategic plan for accelerating the responsible deployment of offshore wind energy in the United States. nationaloffshorewindstrategy.pdf More Documents & Publications Southeast...

  11. Alaska Native Village Energy Development Workshop Agenda

    Broader source: Energy.gov [DOE]

    Download a draft agenda for the Alaska Native Village Energy Development Workshop scheduled for October 21-23, 2013, in Fairbanks, Alaska.

  12. Cost of Offshore Wind Energy Charlene Nalubega

    E-Print Network [OSTI]

    Mountziaris, T. J.

    water as well as on land based wind farms. The specific offshore wind energy case under consideration, most of the offshore wind farms are in Europe, which started being developed in the early 1990's Cost of Offshore Wind Energy

  13. Recovery Act State Memos Alaska

    Energy Savers [EERE]

    generation plant, district heating system, and interconnection which will help provide energy to eight communities in the Northern Bristol Bay area. The University of Alaska...

  14. Optimizing Installation, Operation, and Maintenance at Offshore...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Optimizing Installation, Operation, and Maintenance at Offshore Wind Projects in the United States Optimizing Installation, Operation, and Maintenance at Offshore Wind Projects in...

  15. American Wind Energy Association Offshore WINDPOWER Conference...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    American Wind Energy Association Offshore WINDPOWER Conference & Exhibition American Wind Energy Association Offshore WINDPOWER Conference & Exhibition October 7, 2014 9:00AM EDT...

  16. Three Offshore Wind Advanced Technology Demonstration Projects...

    Office of Environmental Management (EM)

    Offshore Wind Advanced Technology Demonstration Projects Receive Phase 2 Funding Three Offshore Wind Advanced Technology Demonstration Projects Receive Phase 2 Funding September...

  17. Kentish Flats Offshore Wind Farm

    E-Print Network [OSTI]

    Firestone, Jeremy

    Kentish Flats Offshore Wind Farm #12;By August 2005 the offshore wind farm at Kentish Flats plateau just outside the main Thames shipping lanes. The Kentish Flats wind farm will comprise 30 of the wind farm could be up to 90 MW. For the benefit of the environment The British Government has set

  18. Offshore Wind Potential Tables

    Wind Powering America (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin: EnergyWyandanch,EagaAbout PrintableEducationOffshore wind

  19. Property:PotentialOnshoreWindArea | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGeneration Jump to:PotentialOffshoreWindCapacity Jump to:

  20. Property:PotentialOnshoreWindCapacity | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGeneration Jump to:PotentialOffshoreWindCapacity Jump

  1. Property:PotentialOnshoreWindGeneration | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGeneration Jump to:PotentialOffshoreWindCapacity

  2. alaska forest service: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Airlines NANA Management Services Biology and Medicine Websites Summary: Alaska Tour Company Alaska Center for Energy and Power Norton Sound Health Corp Alaska Earth Sciences...

  3. anchorage alaska installation: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    FORUM UNIVERSITY of ALASKA ANCHORAGE Physics Websites Summary: ALASKA JUSTICE FORUM UNIVERSITY of ALASKA ANCHORAGE A PUBLICATION OF THE JUSTICE CENTER Andr B Justice...

  4. alaska science center: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Health Corp Alaska Earth Sciences & Haugeberg LLC CPA's State of Alaska Legislative Audit Cook Inlet Aquaculture Association Student Ickert-Bond, Steffi 11 University of Alaska...

  5. CO2 escapes in the Laacher See region, East Eifel, Germany: application of natural analogue onshore and offshore geochemical monitoring

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    performing CO2 sequestration in depleted oil/gas reservoirs or deep saline aquifers (Gale, 2004; Gapillou et

  6. Evaluation and comparison of occupational noise exposure among workers on offshore and onshore oil well drilling rigs 

    E-Print Network [OSTI]

    Suarez Garcia, Humberto

    1984-01-01T23:59:59.000Z

    Engineering Department, for the loan of equipment used for th is research. A special gratitude goes to Ing. Jav ier Mendieta, Safety Manager of Petroleos Mexicanos, for his help for the use of PEMEX facilities in my data collection. I would also like... to thank Ing. Ignacio Torres of PEMEX Safety Engineering Division for assisting in the data collection. DEDICATION This thesis is dedicated to my parents, Estela and Humberto, and also to my little sister Kary. CONTENTS I. INTRODUCTION The Problem...

  7. Offshore Wind Turbines: Some Technical Challenges

    E-Print Network [OSTI]

    Houlsby, Guy T.

    1 Offshore Wind Turbines: Some Technical Challenges Prof. Guy Houlsby FREng Oxford University House engineers concerned with installation of offshore wind turbines. The author is Professor of Civil University Civil Engineering Offshore wind power · Scale of offshore wind power developments · Engineering

  8. ARM - Kiosks - Barrow, Alaska

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadap Documentation TDMADAP : XDC documentationBarrow, Alaska Outreach Home Room News Publications

  9. Evaluation of Global Onshore Wind Energy Potential and Generation Costs

    SciTech Connect (OSTI)

    Zhou, Yuyu; Luckow, Patrick; Smith, Steven J.; Clarke, Leon E.

    2012-06-20T23:59:59.000Z

    In this study, we develop an updated global estimate of onshore wind energy potential using reanalysis wind speed data, along with updated wind turbine technology performance and cost assumptions as well as explicit consideration of transmission distance in the calculation of transmission costs. We find that wind has the potential to supply a significant portion of world energy needs, although this potential varies substantially by region as well as with assumptions such as on what types of land can be used to site wind farms. Total global wind potential under central assumptions is estimated to be approximately 89 petawatt hours per year at less than 9 cents/kWh with substantial regional variations. One limitation of global wind analyses is that the resolution of current global wind speed reanalysis data can result in an underestimate of high wind areas. A sensitivity analysis of eight key parameters is presented. Wind potential is sensitive to a number of input parameters, particularly those related to land suitability and turbine density as well as cost and financing assumptions which have important policy implications. Transmission cost has a relatively small impact on total wind costs, changing the potential at a given cost by 20-30%. As a result of sensitivities studied here we suggest that further research intended to inform wind supply curve development focus not purely on physical science, such as better resolved wind maps, but also on these less well-defined factors, such as land-suitability, that will also have an impact on the long-term role of wind power.

  10. Horns RevHorns Rev Offshore Wind FarmOffshore Wind Farm

    E-Print Network [OSTI]

    Horns RevHorns Rev Offshore Wind FarmOffshore Wind Farm #12;Prepared for: ELSAM A/S, Overgade 45 prior to the construction of an offshore wind farm at Horns Rev, situated approximately 15 km off

  11. Sandia Energy - Offshore Wind RD&D: Sediment Transport

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transport Home Stationary Power Energy Conversion Efficiency Wind Energy Offshore Wind Offshore Wind RD&D: Sediment Transport Offshore Wind RD&D: Sediment TransportTara...

  12. U.S. Offshore Wind Advanced Technology Demonstration Projects...

    Energy Savers [EERE]

    U.S. Offshore Wind Advanced Technology Demonstration Projects Public Meeting Transcript for Offshore Wind Demonstrations U.S. Offshore Wind Advanced Technology Demonstration...

  13. Sandia Energy - Innovative Offshore Vertical-Axis Wind Turbine...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovative Offshore Vertical-Axis Wind Turbine Rotors Home Stationary Power Energy Conversion Efficiency Wind Energy Offshore Wind Innovative Offshore Vertical-Axis Wind Turbine...

  14. Alaska Renewable Energy Fund Grants for Renewable Energy Projects

    Broader source: Energy.gov [DOE]

    The Alaska Energy Authority is offering grants for renewable energy projects funded by the Alaska State Legislature.

  15. Offshoring and Directed Technical Change

    E-Print Network [OSTI]

    Acemoglu, Daron

    2012-11-24T23:59:59.000Z

    To study the short-run and long-run implications on wage inequality, we introduce directed technical change into a Ricardian model of offshoring. A unique final good is produced by combining a skilled and an unskilled ...

  16. Planning Amid Abundance: Alaska’s FY 2013 Budget Process

    E-Print Network [OSTI]

    McBeath, Jerry

    2013-01-01T23:59:59.000Z

    on liquefied natural gas (LNG). He met with the Alaska CEOsof the companies’ position on LNG exports with the state’s (unclear whether a large LNG project would be feasible and

  17. The Outlier State: Alaska’s FY 2012 Budget

    E-Print Network [OSTI]

    McBeath, Jerry; Corbin, Tanya Buhler

    2012-01-01T23:59:59.000Z

    has three pivots: the oil and gas industry, the AlaskaThen, in March, the Spanish oil and gas company Repsol, anaffiliate of Armstrong Oil and Gas, announced it would spend

  18. Structural health and prognostics management for offshore wind turbines : an initial roadmap.

    SciTech Connect (OSTI)

    Griffith, Daniel Todd; Resor, Brian Ray; White, Jonathan Randall; Paquette, Joshua A.; Yoder, Nathanael C. [ATA Engineering, San Diego, CA

    2012-12-01T23:59:59.000Z

    Operations and maintenance costs for offshore wind plants are expected to be significantly higher than the current costs for onshore plants. One way in which these costs may be able to be reduced is through the use of a structural health and prognostic management system as part of a condition based maintenance paradigm with smart load management. To facilitate the creation of such a system a multiscale modeling approach has been developed to identify how the underlying physics of the system are affected by the presence of damage and how these changes manifest themselves in the operational response of a full turbine. The developed methodology was used to investigate the effects of a candidate blade damage feature, a trailing edge disbond, on a 5-MW offshore wind turbine and the measurements that demonstrated the highest sensitivity to the damage were the local pitching moments around the disbond. The multiscale method demonstrated that these changes were caused by a local decrease in the blade's torsional stiffness due to the disbond, which also resulted in changes in the blade's local strain field. Full turbine simulations were also used to demonstrate that derating the turbine power by as little as 5% could extend the fatigue life of a blade by as much as a factor of 3. The integration of the health monitoring information, conceptual repair cost versus damage size information, and this load management methodology provides an initial roadmap for reducing operations and maintenance costs for offshore wind farms while increasing turbine availability and overall profit.

  19. Alaska Energy Pioneer Summer 2015

    Energy Savers [EERE]

    Welcome to the U.S. Department of Energy (DOE) Office of Indian Energy's quarterly newsletter for Alaska Native villages and others who are partnering with us to explore and pursue...

  20. Offshore Wind Energy Market Overview (Presentation)

    SciTech Connect (OSTI)

    Baring-Gould, I.

    2013-07-01T23:59:59.000Z

    This presentation describes the current international market conditions regarding offshore wind, including the breakdown of installation costs, how to reduce costs, and the physical siting considerations considered when planning offshore wind construction. The presentation offers several examples of international existing and planned offshore wind farm sites and compares existing international offshore resources with U.S. resources. The presentation covers future offshore wind trends and cites some challenges that the United States must overcome before it will be able to fully develop offshore wind sites.

  1. Reassessment of offshore platforms

    SciTech Connect (OSTI)

    Nair, V.V.D.; Kuhn, J.M. (Mobil Research and Development Corporation, Dallas, TX (United States))

    1993-05-01T23:59:59.000Z

    Data from Hurricane Andrew demonstrated that the systems and procedures in place for evacuating offshore workers and minimizing oil spills and environmental damage functioned as planned. While the vast majority of the platforms survived the storm with no damage, a few of the older platforms (installed prior to 1972) either collapsed or suffered severe damage. The collapsed platforms were designed with insufficient deck height to clear the storm waves. In recent years, the API RP 2A has introduced guidance for minimum air gap, minimum structures, platform inspection and platform reuse. These provisions, coupled with natural attribution of the older platforms, will significantly improve the performance of platforms in the future. The reliability of NDT techniques to detect major structural defects should be improved through continued research. While flooded member detection is used by several operators as a screening tool to detect major defects underwater, its reliability is not always good and further research is needed in this area. Another area of high priority research is related to the use of Remotely Operated Vehicles (ROV) to perform underwater inspection of structures. 51 refs., 7 figs.

  2. New Report Characterizes Existing Offshore Wind Grid Interconnection...

    Office of Environmental Management (EM)

    New Report Characterizes Existing Offshore Wind Grid Interconnection Capabilities New Report Characterizes Existing Offshore Wind Grid Interconnection Capabilities September 3,...

  3. Graduate Programs University of AlaskaFairbanks

    E-Print Network [OSTI]

    Geology Graduate Programs University of AlaskaFairbanks Fairbanks, Alaska 997755780 Program Program: Geology http://www.auburn.edu/academic/science_math/geology/docs/graddrg.htm Brigham Young University Provo, Utah 846024606 Program: Geology http://geologyindy.byu.edu/programs

  4. Alaska Solar Energy Workshop | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Ave. Anchorage, AK 99501 Organized by the Alaska Center for Energy and Power, the Alaska Solar Energy Workshop is a forum to exchange ideas and information about best practices,...

  5. Horns RevHorns Rev Offshore Wind FarmOffshore Wind Farm

    E-Print Network [OSTI]

    Horns RevHorns Rev Offshore Wind FarmOffshore Wind Farm #12;Prepared for: ELSAM A/S, Overgade 45 to establish an offshore wind farm with an output of 150 MW in the waters of Horns Rev, approximately 15 km off to some environmental guidelines for offshore wind farms prepared by the Dani

  6. Offshore Coastal Wind Speed Gradients: issues for the design and development of large offshore windfarms

    E-Print Network [OSTI]

    Pryor, Sara C.

    -situ and remote sensing data from offshore wind farms in Denmark, are used to examine both horizontal and vertical the area of the wind farm appear to be small and negligible. 1. INTRODUCTION As large offshore wind farmsOffshore Coastal Wind Speed Gradients: issues for the design and development of large offshore

  7. Infauna Monitoring Horns Rev Offshore Wind Farm

    E-Print Network [OSTI]

    Infauna Monitoring Horns Rev Offshore Wind Farm Annual Status Report 2003 #12;Infauna Monitoring Horns Rev Offshore Wind Farm Annual Status Report 2003 Published: 13 May 2004 Prepared: Michael Bech

  8. AL ASK A SALMON alaska Salmon

    E-Print Network [OSTI]

    of residents and visitors to Alaska. Alaska native peoples and their heritage have a long, colorful bond with salmon as an economic, cultural, and subsistence necessity. This heritage incorporated some of the most of a major down- turn in productivity of Alaska salmon. Historical commercial landings show a distinct cyclic

  9. Mesozoic sediments and structures onshore Norway and in the coastal zone

    E-Print Network [OSTI]

    Fossen, Haakon

    15 Mesozoic sediments and structures onshore Norway and in the coastal zone Reidulv Bøe1 , Håkon Fossen2 , Morten Smelror1 1 Geological Survey of Norway (NGU), P.O. Box 6315 Sluppen, 7491 Trondheim, Norway. 2 University of Bergen, Department of Earth Science, P.O. Box 7800, 5020 Bergen, Norway. reidulv

  10. Preliminary assessment of climate change impacts on the UK onshore wind energy resource

    E-Print Network [OSTI]

    Harrison, Gareth

    while summer decreases. Keywords: climate change, United Kingdom, wind energy, wind climate. 1, the potential for changes in climate to affect the significant onshore wind resource in the United Kingdom (UK contributor to future long term renewable energy targets. This is particularly true in the United Kingdom (UK

  11. Offshore Wind Power Farm Environmental Impact Assessment

    E-Print Network [OSTI]

    Horns Rev Offshore Wind Power Farm Environmental Impact Assessment on Water Quality #12;Prepared with a planned 150 MW offshore wind farm at Horns Rev, an assessment was made of the effects the wind farm would for the preparation of EIA studies for offshore wind farms." Horns Rev is situated off Blåvands Huk, which is Denmark

  12. OFFSHORE WIND FARMS Guidance note for Environmental

    E-Print Network [OSTI]

    OFFSHORE WIND FARMS Guidance note for Environmental Impact Assessment In respect of FEPA and CPA requirements Version 2 - June 2004 #12;Offshore Wind Farms: Guidance Note for Environmental Impact Assessment 2004 #12;Offshore Wind Farms: Guidance Note for Environmental Impact Assessment in Respect of FEPA

  13. CONMOW: Condition Monitoring for Offshore Wind Farms

    E-Print Network [OSTI]

    1 CONMOW: Condition Monitoring for Offshore Wind Farms Edwin Wiggelinkhuizen, Theo Verbruggen, Henk in practice the European project CONMOW (Condition Monitoring for Offshore Wind Farms) was started in November for Offshore Wind Farms) was started in November 2002. This paper briefly describes the CONMOW project approach

  14. Offshore wind resource assessment through satellite images

    E-Print Network [OSTI]

    1 Slide no. 4 Offshore wind resource assessment through satellite images Charlotte Bay Hasager images for offshore wind ressource assessment in lieu of in-situ mast observations #12;4 Slide no Hasager, Dellwik, Nielsen and Furevik, 2004, Validation of ERS-2 SAR offshore wind-speed maps in the North

  15. Alaska START | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube platform is alwaysISOSource Heat Pump Basics Air-SourceAlaska START Alaska START

  16. A Heart Health Alaska Natives

    E-Print Network [OSTI]

    Bandettini, Peter A.

    Honoring the Gift of Heart Health A Heart Health Educator's Manual for Alaska Natives U . S . D E Health Service Office of Prevention, Education, and Control #12;Honoring the Gift of Heart Health A Heart National Heart, Lung, and Blood Institute and Indian Health Service NIH Publication No. 06-5218 Revised

  17. Incorporation of Multi-Member Substructure Capabilities in FAST for Analysis of Offshore Wind Turbines: Preprint

    SciTech Connect (OSTI)

    Song, H.; Robertson, A.; Jonkman, J.; Sewell, D.

    2012-05-01T23:59:59.000Z

    FAST, developed by the National Renewable Energy Laboratory (NREL), is an aero-hydro-servo-elastic tool widely used for analyzing onshore and offshore wind turbines. This paper discusses recent modifications made to FAST to enable the examination of offshore wind turbines with fixed-bottom, multi-member support structures (which are commonly used in transitional-depth waters).; This paper addresses the methods used for incorporating the hydrostatic and hydrodynamic loading on multi-member structures in FAST through its hydronamic loading module, HydroDyn. Modeling of the hydrodynamic loads was accomplished through the incorporation of Morison and buoyancy loads on the support structures. Issues addressed include how to model loads at the joints of intersecting members and on tapered and tilted members of the support structure. Three example structures are modeled to test and verify the solutions generated by the modifications to HydroDyn, including a monopile, tripod, and jacket structure. Verification is achieved through comparison of the results to a computational fluid dynamics (CFD)-derived solution using the commercial software tool STAR-CCM+.

  18. Alaska Gateway School District Adopts Combined Heat and Power...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Alaska Gateway School District Adopts Combined Heat and Power Alaska Gateway School District Adopts Combined Heat and Power May 7, 2013 - 12:00am Addthis In Tok, Alaska, the...

  19. Alaska Native Village Renewable Energy Project Development Workshop...

    Energy Savers [EERE]

    Bethel Alaska Native Village Renewable Energy Project Development Workshop in Bethel March 23, 2015 8:00AM AKDT to March 25, 2015 5:00PM AKDT Bethel, Alaska University of Alaska...

  20. OFFICE OF FOSSIL ENERGY, DEPARTMENT OF ENERGY Alaska LNG Project...

    Energy Savers [EERE]

    OFFICE OF FOSSIL ENERGY, DEPARTMENT OF ENERGY Alaska LNG Project LLC ) Docket No. 14-96-LNG JOINT MOTION TO INTERVENE AND COMMENTS OF THE STATE OF ALASKA AND THE ALASKA GASLINE...

  1. DOE Alaska Native Village Renewable Energy Project Development...

    Energy Savers [EERE]

    Alaska Native Village Renewable Energy Project Development Workshop DOE Alaska Native Village Renewable Energy Project Development Workshop March 30, 2015 9:00AM AKDT to April 1,...

  2. Alaska Native Village Renewable Energy Project Development Workshop...

    Office of Environmental Management (EM)

    Alaska Native Village Renewable Energy Project Development Workshop in Juneau Alaska Native Village Renewable Energy Project Development Workshop in Juneau March 30, 2015 8:00AM...

  3. Alaska Native Village Renewable Energy Project Development Workshop...

    Office of Environmental Management (EM)

    Alaska Native Village Renewable Energy Project Development Workshop in Dillingham Alaska Native Village Renewable Energy Project Development Workshop in Dillingham March 26, 2015...

  4. aleutian islands alaska: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    OF ALASKA ANCHORAGE Vol. 15, No. 2 Physics Websites Summary: agencies, urban police departments and several federal agen- cies in Alaska reveal that the employment of...

  5. Alaska Recovery Act State Memo | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Memo Alaska Recovery Act State Memo Alaska has substantial natural resources, including oil, gas, coal, solar, wind, geothermal, and hydroelectric power. The American Recovery &...

  6. Alaska Facility- and Community-Scale Project Development Regional...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Alaska. Photo by Sherry Stout, NREL. Alaska Energy Workshop Tour Creates Rich Opportunities for Knowledge Sharing Community-Scale Project Development and Finance Workshop: Oklahoma...

  7. Federal Agencies Collaborate to Expedite Construction of Alaska...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Collaborate to Expedite Construction of Alaska Natural Gas Pipeline Federal Agencies Collaborate to Expedite Construction of Alaska Natural Gas Pipeline June 29, 2006 - 2:44pm...

  8. Climate, Conservation, and Community in Alaska and Northwest Canada

    Broader source: Energy.gov [DOE]

    Climate, Conservation, and Community in Alaska and Northwest Canada is a joint Landscape Conservation Cooperative (LCC) and Alaska Climate Science Center (AK CSC) conference scheduled for November...

  9. ASSESSMENT OF METHODS USED TO INVESTIGATE THE IMPACT OF OFFSHORE

    E-Print Network [OSTI]

    Aberdeen, University of

    ASSESSMENT OF METHODS USED TO INVESTIGATE THE IMPACT OF OFFSHORE WIND FARMS ON SEABIRDS Kate Louise....................................................................................2 Environmental impact assessments for offshore wind developments..................7 Study aims Chapter three: Offshore marine surveillance radar installation and methods for ensuring data quality

  10. Sandia National Laboratories: Offshore Wind Energy Simulation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Offshore Wind Energy Simulation Toolkit Sandia Vertical-Axis Wind-Turbine Research Presented at Science of Making Torque from Wind Conference On July 8, 2014, in Computational...

  11. Virginia Offshore Wind Development Authority (Virginia)

    Broader source: Energy.gov [DOE]

    The Virginia Offshore Wind Development Authority is a public body, established for the purposes of facilitating, coordinating, and supporting the development, either by the Authority or by other...

  12. Developing Integrated National Design Standards for Offshore...

    Broader source: Energy.gov (indexed) [DOE]

    Certifications Signal Maturing Industry Letter from the Wind Program Director, Third Quarter 2013 edition New DOE Modeling Tool Estimates Economic Benefits of Offshore Wind Plants...

  13. Infauna Monitoring Horns Rev Offshore Wind Farm

    E-Print Network [OSTI]

    #12;Infauna Monitoring Horns Rev Offshore Wind Farm Annual Status Report 2004 Published: 21 April-2004................................................. 48 Wind farm area (Turbine), Reference area (Ref

  14. Offshore Wind in NY State (New York)

    Broader source: Energy.gov [DOE]

    NYSERDA has expressed support for the development of offshore wind and committed funding to several publicly-available assessments that measure the potential energy benefits and environmental...

  15. Developing Integrated National Design Standards for Offshore...

    Energy Savers [EERE]

    report that summarizes the regulations, standards, and guidelines for the design and operation of offshore wind projects in the United States. In 2012, the American Wind Energy...

  16. Energy Department Announces Offshore Wind Demonstration Awardees...

    Broader source: Energy.gov (indexed) [DOE]

    demonstration partnerships with broad consortia that are developing breakthrough offshore wind energy generation projects. The primary goals of these projects are to...

  17. Oregon Department of Energy Webinar: Offshore Wind

    Broader source: Energy.gov [DOE]

    The intended audience for this webinar on offshore wind basics is decision-makers, energy industry practitioners, utilities, and those knowledgeable about renewable energy. The webinar will feature...

  18. Geothermal Exploration In Akutan, Alaska, Using Multitemporal...

    Open Energy Info (EERE)

    Akutan, Alaska, Using Multitemporal Thermal Infrared Images Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Proceedings: Geothermal Exploration In...

  19. Alaska: a guide to geothermal energy development

    SciTech Connect (OSTI)

    Basescu, N.; Bloomquist, R.G.; Higbee, C.; Justus, D.; Simpson, S.

    1980-06-01T23:59:59.000Z

    Alaska's geothermal potential, exploration, drilling, utilization, and legal and institutional setting are covered. Economic factors of direct use projects are discussed. (MHR)

  20. Applications for Alaska Strategic Technical Assistance Response...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Native communities to Image of a building under construction. advance their clean energy technology and infrastructure projects. One example is Minto, a small Alaska Native...

  1. Geothermal Technology Breakthrough in Alaska: Harvesting Heat...

    Broader source: Energy.gov (indexed) [DOE]

    Alaska Center for Energy and Power (ACEP). The Energy Department is supporting geothermal exploration at lower temperatures, thanks to a technology breakthrough that allows...

  2. Strengthening America's Energy Security with Offshore Wind (Fact Sheet) (Revised)

    SciTech Connect (OSTI)

    Not Available

    2012-04-01T23:59:59.000Z

    This fact sheet provides a brief description of offshore wind energy development in the U.S. and DOE's Wind Program offshore wind R&D activities.

  3. Offshore Wind Jobs and Economic Development Impacts in the United...

    Energy Savers [EERE]

    the offshore wind Jobs and Economic Development Impacts (JEDI) model and provides four case studies of potential offshore wind deployment scenarios in different regions of the...

  4. Sandia Energy - Innovative Offshore Vertical-Axis Wind Turbine...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vertical-Axis Wind Turbine Rotors Home Stationary Power Energy Conversion Efficiency Wind Energy Offshore Wind Innovative Offshore Vertical-Axis Wind Turbine Rotors Innovative...

  5. arabian gulf offshore: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    an easyEnvironmental impact for offshore wind farms: Geolocalized Life Cycle Assessment (LCA) approach and floating offshore wind farms. This work was undertaken within the EU-...

  6. SciTech Connect: Offshore Wind Jobs and Economic Development...

    Office of Scientific and Technical Information (OSTI)

    Technologies Office Country of Publication: United States Language: English Subject: 17 WIND ENERGY; 29 ENERGY PLANNING, POLICY AND ECONOMY OFFSHORE WIND JOBS; OFFSHORE WIND...

  7. Advanced Offshore Wind Tech: Accelerating New Opportunities for...

    Broader source: Energy.gov (indexed) [DOE]

    Advanced Offshore Wind Tech: Accelerating New Opportunities for Clean Energy Advanced Offshore Wind Tech: Accelerating New Opportunities for Clean Energy May 7, 2014 - 12:11pm...

  8. WINDExchange Webinar: Economic Impacts of Offshore Wind: Market...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    will moderate, and the following speakers will discuss recent developments in the economics of offshore wind: Bruce Hamilton, Navigant: Offshore Wind Market Report. This...

  9. New Research Facility to Remove Hurdles to Offshore Wind and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research Facility to Remove Hurdles to Offshore Wind and Water Power Development New Research Facility to Remove Hurdles to Offshore Wind and Water Power Development January 10,...

  10. DOE Announces Webinars on Economic Impacts of Offshore Wind,...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Economic Impacts of Offshore Wind, Clean Energy Financing Programs, and More DOE Announces Webinars on Economic Impacts of Offshore Wind, Clean Energy Financing Programs, and More...

  11. DOE Announces Webinars on an Offshore Wind Economic Impacts Model...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    an Offshore Wind Economic Impacts Model, Resources for Tribal Energy Efficiency Projects, and More DOE Announces Webinars on an Offshore Wind Economic Impacts Model, Resources for...

  12. Assessment of Offshore Wind System Design, Safety, and Operation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Offshore Wind System Design, Safety, and Operation Standards Assessment of Offshore Wind System Design, Safety, and Operation Standards The U.S. Department of Energy's (DOE)...

  13. American Wind Energy Association Offshore WINDPOWER Conference & Exhibition

    Broader source: Energy.gov [DOE]

    AWEA Offshore WINDPOWER 2014 Conference & Exhibition is the largest offshore wind energy event in North America. The conference and exhibition will be held at the Atlantic City Convention...

  14. Assessment of Offshore Wind Energy Resources for the United States...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Offshore Wind Energy Resources for the United States This report summarizes the offshore wind resource potential for the contiguous United States and Hawaii as of May 2009. The...

  15. Dynamic analysis of a 5 megawatt offshore floating wind turbine

    E-Print Network [OSTI]

    Harriger, Evan Michael

    2011-01-01T23:59:59.000Z

    Offshore wind turbines have the potential to generateuncover potential problems that exist with offshore windwind turbines in operation, this technology has the potential

  16. Jefferson Offshore | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano, Hawaii | Wind FarmJefferson City, Missouri:Offshore

  17. CT Offshore | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDIT REPORT Americium/CuriumAguaBBBWind-BrizaHKC WindCT Offshore Place:

  18. Alaska Chapter of ASA 2006 Meeting

    E-Print Network [OSTI]

    Speaker | Current Agenda | Registration | Short Course Outline | Accommodations Guest Speaker and Short1 of 1 Alaska Chapter of ASA 2006 Meeting Juneau, Alaska July 2006 Short Course | 2006 Guest. This cost covers both the short course and the sessions. You do not have to be a member to attend

  19. Outer Continental Shelf oil and gas activities in the South Atlantic (US) and their onshore impacts: a summary report, July 1980

    SciTech Connect (OSTI)

    Jackson, J.B.

    1980-01-01T23:59:59.000Z

    Activity in the search for oil and gas on the Outer Continental Shelf (OCS) in the South Atlantic Region began in 1960 when geophysical surveys of the area were initiated. In 1977, a Continental Offshore Stratigraphic Test (COST) well was drilled in the Southeast Georgia Embayment. In March 1978, the first lease sale, Sale 43, was held, resulting in the lease of 43 tracts. Approximately a year later, in May 1979, the first exploratory vessel began drilling, and by February 1980, six exploratory wells had been drilled by four companies. However, hydrocarbons were not found in any of these wells. As of mid-February 1980, exploratory drilling activity had ceased, and none was planned for the near future. The next lease sale, Sale 56, is scheduled for August 1981. The most recent risked estimates (January 1980) by the US Geological Survey of undiscovered, economically recoverable oil and gas resources for the 43 tracts currently under lease in the South Atlantic Region are 7.9 million barrels of oil and 48 billion cubic feet of natural gas. On the basis of geologic information from wells completed to date, current prices of oil and gas, and the expense of constructing a pipeline to bring the hydrocarbons ashore, these resource estimates for currently leased tracts in the Region appear to be short of commercially producible amounts. Onshore impacts resulting from OCS exploration have been minimal. Tenneco, using existing facilities, has established a support base in Savannah, Georgia; Getty, Transco, and Exxon have used a support base established for them by the City of Brunswick, Georgia. All the companies have used a helicopter service operating from St. Simon's Island, Georgia.

  20. Loads Analysis of Several Offshore Floating Wind Turbine Concepts

    SciTech Connect (OSTI)

    Robertson, A. N.; Jonkman, J. M.

    2011-10-01T23:59:59.000Z

    This paper presents a comprehensive dynamic-response analysis of six offshore floating wind turbine concepts.

  1. Offshore Series Wind Turbine Variable Hub heights & rotor diameters

    E-Print Network [OSTI]

    Firestone, Jeremy

    3.6MW Offshore Series Wind Turbine GE Energy #12;Feature Variable Hub heights & rotor diameters-savings feature, considering the rigors of offshore power generation. The 3.6 MW offshore wind turbine also, for both on and offshore use. Special features include... As the world's first commercially available wind

  2. ORIGINAL PAPER Review of Methodologies for Offshore Wind Resource

    E-Print Network [OSTI]

    Pryor, Sara C.

    ORIGINAL PAPER Review of Methodologies for Offshore Wind Resource Assessment in European Seas A. M installation, operation and maintenance costs associated with offshore wind parks. Successful offshore wind. Keywords Wind energy Á Offshore Á Resources assessment Á European seas Á Wind mapping Á Wind climatology Á

  3. Quantifying the hurricane risk to offshore wind turbines

    E-Print Network [OSTI]

    Jaramillo, Paulina

    Quantifying the hurricane risk to offshore wind turbines Stephen Rosea , Paulina Jaramilloa,1. Turbine tower buckling has been observed in typhoons, but no offshore wind turbines have yet been built be destroyed by hurricanes in an offshore wind farm. We apply this model to estimate the risk to offshore wind

  4. Offshore wind profile measurements from remote sensing instruments

    E-Print Network [OSTI]

    Offshore wind profile measurements from remote sensing instruments Ioannis Antoniou (1) , Hans E) have been mounted on top of a transformer platform situated offshore close to the Nysted wind farm offshore wind energy potential depends greatly on the ability to make offshore windfarms economically

  5. Amchitka, Alaska, Site Fact Sheet

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling7111 ~IIIIIIIIIIIIIIIIIHIIIIIJ~~Amchitka, Alaska,

  6. Alaska START | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you0 ARRA Newsletters 20103-03Energy AdvancedJudge |AlamoofAlaska STARTSTART

  7. EA-1992: Funding for Principle Power, Inc., for the WindFloat Pacific Offshore Wind Demonstration Project, offshore of Coos Bay, Oregon

    Broader source: Energy.gov [DOE]

    Funding for Principle Power, Inc., for the WindFloat Pacific Offshore Wind Demonstration Project, offshore of Coos Bay, Oregon

  8. DOE-DOI Strategy Seeks to Harness U.S. Offshore Wind Energy Potential...

    Broader source: Energy.gov (indexed) [DOE]

    offshore wind power in U.S. waters, a major step in harnessing the nation's offshore wind potential. Generating electricity from offshore wind yields multiple benefits for the...

  9. Offshore Wind Turbines Estimated Noise from Offshore Wind Turbine, Monhegan Island, Maine Addendum 2

    SciTech Connect (OSTI)

    Aker, Pamela M.; Jones, Anthony M.; Copping, Andrea E.

    2011-03-01T23:59:59.000Z

    Additional modeling for offshore wind turbines, for proposed floating wind platforms to be deployed by University of Maine/DeepCwind.

  10. System architecture of offshore oil production systems

    E-Print Network [OSTI]

    Keller, James (James Thomas)

    2008-01-01T23:59:59.000Z

    This thesis presents an approach to applying Systems Architecture methods to the development of large, complex, commercial systems, particularly offshore oil and gas productions systems. The aim of this research was to ...

  11. Engineering Challenges for Floating Offshore Wind Turbines

    SciTech Connect (OSTI)

    Butterfield, S.; Musial, W.; Jonkman, J.; Sclavounos, P.

    2007-09-01T23:59:59.000Z

    The major objective of this paper is to survey the technical challenges that must be overcome to develop deepwater offshore wind energy technologies and to provide a framework from which the first-order economics can be assessed.

  12. Outsourcing, offshoring and the US office market

    E-Print Network [OSTI]

    Topolewski, Tanya M., 1969-

    2004-01-01T23:59:59.000Z

    There is intense debate among industry analysts and scholars over potential job losses caused by offshoring. The real estate industry has been grappling to understanding the implications of these numbers, as some have ...

  13. Future characteristics of Offshore Support Vessels

    E-Print Network [OSTI]

    Rose, Robin Sebastian Koske

    2011-01-01T23:59:59.000Z

    The objective of this thesis is to examine trends in Offshore Support Vessel (OSV) design and determine the future characteristics of OSVs based on industry insight and supply chain models. Specifically, this thesis focuses ...

  14. Visualization of vibration experienced in offshore platforms

    E-Print Network [OSTI]

    Patrikalakis, Alexander Marinos Charles

    2010-01-01T23:59:59.000Z

    In this thesis, I design and evaluate methods to optimize the visualization of vortex-induced vibration (VIV) in marine risers. VIV is vibration experienced by marine risers in offshore drilling platforms due to ocean ...

  15. Alaska--State Offshore Natural Gas Dry Production (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion CubicPotentialNov-14 Dec-14 Jan-1538,469 39,194Dry Production

  16. Alaska--State Offshore Natural Gas Gross Withdrawals (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecade Year-0 Year-1 Year-2 Year-3ReservesYearGross

  17. Alaska--State Offshore Natural Gas Marketed Production (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecade Year-0 Year-1 Year-2

  18. Alaska--State Offshore Natural Gas Withdrawals from Gas Wells (Million

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecade Year-0 Year-1 Year-2Cubic Feet) Gas Wells

  19. Alaska--State Offshore Natural Gas Withdrawals from Oil Wells (Million

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecade Year-0 Year-1 Year-2Cubic Feet) Gas

  20. ,"Alaska (with Total Offshore) Coalbed Methane Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments; Unit:1996..........RegionTotalPriceShare of TotalCoalbed

  1. ,"Alaska (with Total Offshore) Shale Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments; Unit:1996..........RegionTotalPriceShare ofPlant

  2. ,"Alaska--State Offshore Natural Gas Gross Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;Net Withdrawals (MMcf)" ,"Click worksheetGas,Gross

  3. ,"Alaska--State Offshore Natural Gas Marketed Production (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;Net Withdrawals (MMcf)" ,"Click

  4. Alternative Fuels Data Center: Alaska Information

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    production facilities in Alaska, use the TransAtlas interactive mapping tool or use BioFuels Atlas to show the use and potential production of biofuels throughout the U.S. and...

  5. 2013 Alaska Federation of Natives Convention

    Broader source: Energy.gov [DOE]

    The Alaska Federation of Natives (AFN) Convention is the largest representative annual gathering in the United States of any Native peoples. Delegates are elected on a population formula of one...

  6. What Recession? Alaska's FY 2011 Budget

    E-Print Network [OSTI]

    McBeath, Jerry

    2011-01-01T23:59:59.000Z

    development of oil and gas resources in the Alaska OCS isthe state for non-oil/gas resource development was mining.resources (ABR, March 4, 2010, 2). Others questioned whether oil and

  7. Advancing Efforts to Energize Native Alaska (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2013-04-01T23:59:59.000Z

    This brochure describes key programs and initiatives of the DOE Office of Indian Energy Policy and Programs to advance energy efficiency, renewable energy, and energy infrastructure projects in Alaska Native villages.

  8. Alaska Village Initiatives Rural Business Conference

    Broader source: Energy.gov [DOE]

    Hosted by the Alaska Village Initiative, the 24th Annual Rural Small Business Conference brings together rural businesses and leaders to provide them with networking opportunities, training, and technical information.

  9. Simplified life cycle approach: GHG variability assessment for onshore wind electricity based on Monte-Carlo simulations

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    in the literature. In the special case of greenhouses gases (GHG) from wind power electricity, the LCA resultsSimplified life cycle approach: GHG variability assessment for onshore wind electricity based performed by the IPCC [1]. Such result might lead policy makers to consider LCA as an inconclusive method [2

  10. A low-frequency passive seismic array experiment over an onshore oil field in Abu Dhabi, United Arab Emirates

    E-Print Network [OSTI]

    Ali, Mohammed

    oil field in the emirate of Abu Dhabi in the United Arab Emirates. The aim of the experiment Arab Emirates Mohammed Y. Ali1 , Braham Barkat1 , Karl A. Berteussen1 , and James Small1 ABSTRACT A lowA low-frequency passive seismic array experiment over an onshore oil field in Abu Dhabi, United

  11. About Hercules Offshore Headquartered in Houston, Texas, Hercules Offshore serves the oil and

    E-Print Network [OSTI]

    Fisher, Kathleen

    About Hercules Offshore Headquartered in Houston, Texas, Hercules Offshore serves the oil and gas largest in the world. The company's jackup rigs, liftboats and inland barges are used for oil and gas provides shallow-water drilling and support services to the oil and gas industry. The company serves

  12. Recoverable Resource Estimate of Identified Onshore Geopressured Geothermal Energy in Texas and Louisiana (Presentation)

    SciTech Connect (OSTI)

    Esposito, A.; Augustine, C.

    2012-04-01T23:59:59.000Z

    Geopressured geothermal reservoirs are characterized by high temperatures and high pressures with correspondingly large quantities of dissolved methane. Due to these characteristics, the reservoirs provide two sources of energy: chemical energy from the recovered methane, and thermal energy from the recovered fluid at temperatures high enough to operate a binary power plant for electricity production. Formations with the greatest potential for recoverable energy are located in the gulf coastal region of Texas and Louisiana where significantly overpressured and hot formations are abundant. This study estimates the total recoverable onshore geopressured geothermal resource for identified sites in Texas and Louisiana. In this study a geopressured geothermal resource is defined as a brine reservoir with fluid temperature greater than 212 degrees F and a pressure gradient greater than 0.7 psi/ft.

  13. Systems Performance Analyses of Alaska Wind-Diesel Projects; Kotzebue, Alaska (Fact Sheet)

    SciTech Connect (OSTI)

    Baring-Gould, I.

    2009-04-01T23:59:59.000Z

    This fact sheet summarizes a systems performance analysis of the wind-diesel project in Kotzebue, Alaska. Data provided for this project include wind turbine output, average wind speed, average net capacity factor, and optimal net capacity factor based on Alaska Energy Authority wind data, estimated fuel savings, and wind system availability.

  14. Systems Performance Analyses of Alaska Wind-Diesel Projects; Toksook Bay, Alaska (Fact Sheet)

    SciTech Connect (OSTI)

    Baring-Gould, I.

    2009-04-01T23:59:59.000Z

    This fact sheet summarizes a systems performance analysis of the wind-diesel project in Toksook Bay, Alaska. Data provided for this project include community load data, average wind turbine output, average diesel plant output, thermal load data, average net capacity factor, optimal net capacity factor based on Alaska Energy Authority wind data, average net wind penetration, estimated fuel savings, and wind system availability.

  15. Federal Offshore Statistics, 1993. Leasing, exploration, production, and revenue as of December 31, 1993

    SciTech Connect (OSTI)

    Francois, D.K.

    1994-12-31T23:59:59.000Z

    This document contains statistical data on the following: federal offshore lands; offshore leasing activity and status; offshore development activity; offshore production of crude oil and natural gas; federal offshore oil and natural gas sales volume and royalties; revenue from federal offshore leases; disbursement of federal offshore revenue; reserves and resource estimates of offshore oil and natural gas; oil pollution in US and international waters; and international activities and marine minerals. A glossary is included.

  16. 2014 Alaska Native Village Energy Development Workshop | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Resources for Alaska Native Villages April 29-30, 2014 Anchorage, Alaska Dena'ina Convention Center The Office of Indian Energy and Office of Energy Efficiency and Renewable Energy...

  17. Energy Department Authorizes Alaska LNG Project, LLC to Export...

    Energy Savers [EERE]

    Authorizes Alaska LNG Project, LLC to Export Liquefied Natural Gas Energy Department Authorizes Alaska LNG Project, LLC to Export Liquefied Natural Gas May 28, 2015 - 1:55pm...

  18. Chemical Hygiene Planh UNIVERSITY OF AlASKA

    E-Print Network [OSTI]

    Hartman, Chris

    Chemical Hygiene Planh · UNIVERSITY OF AlASKA · · FAIRBANKS INTRODUCTION.....................................................................................................3 C Chemical Hygiene Officer (CHO ................................................................................................................... 5 B Personal Hygiene

  19. International Microgrid Assessment: Governance,INcentives, and Experience (IMAGINE)

    E-Print Network [OSTI]

    Romankiewicz, John

    2014-01-01T23:59:59.000Z

    environmental review (such as offshore wind or large desertrenewables (onshore and offshore wind, solar PV and thermal,

  20. Part of the Climate Change Problem . . . and the Solution? Chinese-Made Wind Power Technology and Opportunities for Dissemination

    E-Print Network [OSTI]

    Lewis, Joanna I.

    2005-01-01T23:59:59.000Z

    plans for onshore and offshore wind energy development in early problems with offshore wind turbines. 20 Figure 3.  

  1. COMPARING ALASKA'S OIL PRODUCTION TAXES: INCENTIVES AND ASSUMPTIONS1

    E-Print Network [OSTI]

    Pantaleone, Jim

    context of Alaska oil production taxes, comparing MAPA and ACES to the original petroleum profits tax (PPT1 COMPARING ALASKA'S OIL PRODUCTION TAXES: INCENTIVES AND ASSUMPTIONS1 Matthew Berman In a recent analysis comparing the current oil production tax, More Alaska Production Act (MAPA, also known as SB 21

  2. Advanced Offshore Wind Tech: Accelerating New Opportunities for Clean Energy

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Energy Department today announced the selection of three projects that aim to advance the offshore wind industry and lower the cost of offshore wind technologies. Learn more about these technological innovations.

  3. Strengthening America's Energy Security with Offshore Wind (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-02-01T23:59:59.000Z

    This fact sheet describes the current state of the offshore wind industry in the United States and the offshore wind research and development activities conducted the U.S. Department of Energy Wind and Water Power Program.

  4. Improving Design Methods for Fixed-Foundation Offshore Wind Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Improving Design Methods for Fixed-Foundation Offshore Wind Energy Systems Improving Design Methods for Fixed-Foundation Offshore Wind Energy Systems October 1, 2013 - 3:10pm...

  5. Hard Bottom Substrate Monitoring Horns Rev Offshore Wind Farm

    E-Print Network [OSTI]

    Hard Bottom Substrate Monitoring Horns Rev Offshore Wind Farm Annual Status Report 2003 #12;Hard Bottom Substrate Monitoring Horns Rev Offshore Wind Farm Annual Status Report 2003 Published: 14 May 2004

  6. Offshore Natural Gas Royalty Regime (Newfoundland and Labrador, Canada)

    Broader source: Energy.gov [DOE]

    The province’s offshore contains large natural gas deposits. The Provincial Government has developed an Offshore Natural Gas Royalty Regime that will ensure these resources are developed in the...

  7. New Model Demonstrates Offshore Wind Industry's Job Growth Potential...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Model Demonstrates Offshore Wind Industry's Job Growth Potential New Model Demonstrates Offshore Wind Industry's Job Growth Potential May 18, 2015 - 3:11pm Addthis The U.S....

  8. Energy Department Releases New Land-Based/Offshore Wind Resource...

    Broader source: Energy.gov (indexed) [DOE]

    up to 50 nautical miles from shore. It allows users to easily compare land-based with offshore wind resources. For example, it shows that the offshore wind resource of the...

  9. Study Finds 54 Gigawatts of Offshore Wind Capacity Technically...

    Broader source: Energy.gov (indexed) [DOE]

    According to a new study funded by DOE, the United States has sufficient offshore wind energy resources to legitimize the installation of at least 54 gigawatts (GW) of offshore...

  10. Energy and Interior Departments Host Offshore Energy Knowledge...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Related Articles DOE to Host a Booth at Offshore WINDPOWER Wind Program Newsletter: Second Quarter 2012 DOE-DOI Strategy Seeks to Harness U.S. Offshore Wind Energy Potential...

  11. Offshore Renewable Energy R&D (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-04-01T23:59:59.000Z

    This fact sheet describes the offshore renewable energy R and D efforts at the National Renewable Energy Laboratory.

  12. NREL Assesses National Design Standards for Offshore Wind (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-06-01T23:59:59.000Z

    Report summarizes regulations, standards, and guidelines for the design and operation of offshore wind projects in the United States.

  13. E2I EPRI Assessment Offshore Wave Energy Conversion Devices

    E-Print Network [OSTI]

    E2I EPRI Assessment Offshore Wave Energy Conversion Devices Report: E2I EPRI WP ­ 004 ­ US ­ Rev 1 #12;E2I EPRI Assessment - Offshore Wave Energy Conversion Devices Table of Contents Introduction Assessment - Offshore Wave Energy Conversion Devices Introduction E2I EPRI is leading a U.S. nationwide

  14. Quantifying Offshore Wind Resources from Satellite Wind Maps

    E-Print Network [OSTI]

    Pryor, Sara C.

    the spatial extent of the wake behind large offshore wind farms. Copyright © 2006 John Wiley & Sons, LtdQuantifying Offshore Wind Resources from Satellite Wind Maps: Study Area the North Sea C. B National Laboratory, Roskilde, Denmark Offshore wind resources are quantified from satellite synthetic

  15. Hydroacoustic Monitoring of Fish Communities in Offshore Wind Farms

    E-Print Network [OSTI]

    #12;Hydroacoustic Monitoring of Fish Communities in Offshore Wind Farms Annual Report 2004 Horns Rev Offshore Wind Farm Published: May 2005 Prepared by: Christian B. Hvidt Lars Brünner Frank Reier farms Horns Rev Offshore Wind Farm 2004 2519-03-003-rev3.doc TABLE OF CONTENTS PAGE 1. Introduction

  16. Ris-R-1298(EN) Validation of Satellite SAR Offshore

    E-Print Network [OSTI]

    resources, e.g. in future planning of offshore wind farms. The report describes the validation analysisRisø-R-1298(EN) Validation of Satellite SAR Offshore Wind Speed Maps to In-Situ Data, Microscale project goal is to develop a method for utilizing the satellite wind speed maps for offshore wind

  17. REVIEW Open Access Assessing environmental impacts of offshore wind

    E-Print Network [OSTI]

    Aberdeen, University of

    REVIEW Open Access Assessing environmental impacts of offshore wind farms: lessons learned offshore wind farm, Horns Rev 1 (160 MW with 80 turbines of 2 MW), became operational in 2002. The aver- age capacity of turbines and size of offshore wind farms have been increasing since then

  18. Offshore Wind Farm Layout Optimization (OWFLO) Project: Preliminary Results

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    Offshore Wind Farm Layout Optimization (OWFLO) Project: Preliminary Results Christopher N. Elkinton the layout of an offshore wind farm presents a significant engineering challenge. Most of the optimization literature to date has focused on land-based wind farms, rather than on offshore farms. Typically, energy

  19. Using satellite data for mapping offshore wind resources and wakes

    E-Print Network [OSTI]

    (no wind) Horns Rev Offshore Wind Farm Blaavandshuk Met. mast N #12;Wind Horns Rev Wind speed map from · Wake near large offshore wind farms is quantified in space and time · Software for usersUsing satellite data for mapping offshore wind resources and wakes Charlotte Bay Hasager, Merete

  20. Ris-R-1407(EN) Efficient Development of Offshore

    E-Print Network [OSTI]

    leading to improved prediction of wind speed and turbu- lence profiles within large offshore wind farms. Use of new databases from existing offshore wind farms and detailed wake profiles collected using to optimise power output from offshore wind farms through minimised wake effects and optimal grid connections

  1. Challenges in Predicting Power Output from Offshore Wind Farms

    E-Print Network [OSTI]

    Pryor, Sara C.

    Challenges in Predicting Power Output from Offshore Wind Farms R. J. Barthelmie1 and S. C. Pryor2 Abstract: Offshore wind energy is developing rapidly in Europe and the trend is towards large wind farms an offshore wind farm, accurate assessment of the wind resource/power output from the wind farm is a necessity

  2. Review report 2004 The Danish Offshore Wind Farm

    E-Print Network [OSTI]

    - 1 - Review report 2004 The Danish Offshore Wind Farm Demonstration Project: Horns Rev and Nysted Offshore Wind Farms Environmental impact assessment and monitoring Prepared for The Environmental Group By Elsam Engineering and ENERGI E2 October 2005 #12;- 2 - Review Report 2004 The Danish Offshore Wind Farm

  3. Offshore Wind Power Experiences, Potential and Key Issues for

    E-Print Network [OSTI]

    offshore wind farms are installed in British, Swedish and Danish waters, and present-day costs in 2015, 2030 and 2050 14 3.1 Offshore wind farms under construction and in planning stage 14 3Offshore Wind Power Experiences, Potential and Key Issues for Deployment Jørgen Lemming, Poul Erik

  4. Scour around an offshore wind turbine W.F. Louwersheimer

    E-Print Network [OSTI]

    Langendoen, Koen

    Scour around an offshore wind turbine MSc Thesis W.F. Louwersheimer January, 2007 Delft University #12;Scour around an offshore wind turbine Delft University of Technology Ballast Nedam - Egmond iii Scour around an offshore wind turbine W.F. Louwersheimer Student number 1067419 January, 2007

  5. Assessing Novel Foundation Options for Offshore Wind Turbines

    E-Print Network [OSTI]

    Byrne, Byron

    Assessing Novel Foundation Options for Offshore Wind Turbines B.W. Byrne, BE(Hons), BCom, MA, DPhil G.T. Houlsby, MA, DSc, FREng, FICE Oxford University, UK SYNOPSIS Offshore wind farms, and of these wind power is the only one to be exploited on a commercial scale at present. Three major offshore

  6. ForPeerReview PUBLIC ACCEPTANCE OF OFFSHORE WIND POWER

    E-Print Network [OSTI]

    Firestone, Jeremy

    ForPeerReview PUBLIC ACCEPTANCE OF OFFSHORE WIND POWER PROJECTS IN THE UNITED STATES Journal: Wind, Andrew; Minerals Management Service Keywords: offshore wind power, public opinion, social acceptancePeerReview 1 PUBLIC ACCEPTANCE OF OFFSHORE WIND POWER PROJECTS IN THE UNITED STATES Jeremy Firestone*, Willett

  7. FEED-IN TARIFFS AND OFFSHORE WIND POWER DEVELOPMENT

    E-Print Network [OSTI]

    Firestone, Jeremy

    FEED-IN TARIFFS AND OFFSHORE WIND POWER DEVELOPMENT Prepared by Jon Lilley, Blaise Sheridan, Dawn.......................................................................................................................... 25 FERC Clarification as Applied to Offshore Wind........................................................................................................................ 28 #12; 3 Feed-in Tariffs and Offshore Wind Power Development Prepared Pursuant to DOE Grant Em

  8. Wave Models for Offshore Wind Turbines Puneet Agarwal

    E-Print Network [OSTI]

    Manuel, Lance

    Wave Models for Offshore Wind Turbines Puneet Agarwal§ and Lance Manuely Department of Civil. These wave modeling assumptions do not adequately represent waves in shallow waters where most offshore wind for estimating loads on the support structure (monopile) of an offshore wind turbine. We use a 5MW utility

  9. Extreme Loads for an Offshore Wind Turbine using Statistical

    E-Print Network [OSTI]

    Manuel, Lance

    Extreme Loads for an Offshore Wind Turbine using Statistical Extrapolation from Limited Field Data,itiscommontoeithercarry out extensive simulation studies or undertake a field measurement campaign. At the Blyth offshore wind here is to estimate extreme loads for an offshore wind turbine for which the environmental and load

  10. Floating Offshore Wind Technology Generating Resources Advisory Committee

    E-Print Network [OSTI]

    Floating Offshore Wind Technology Jeff King Generating Resources Advisory Committee May 28, 2014 1 to site) Potential interconnection to future offshore PNWCA intertie 4 #12;5 Ave wind speed >= 10 m. (2010) Large-scale Offshore Wind Power in the United States National Renewable Energy Laboratory. (2012

  11. Electric power from offshore wind via synoptic-scale interconnection

    E-Print Network [OSTI]

    Firestone, Jeremy

    Electric power from offshore wind via synoptic-scale interconnection Willett Kemptona,1 , Felipe M regional estimate, Kempton et al. (2) calculated that two-thirds of the offshore wind power off the U in the U.S. Atlantic region is already underway. Fig. 1 shows as black squares offshore wind developments

  12. Ris National Laboratory Satellite SAR applied in offshore wind

    E-Print Network [OSTI]

    Risø National Laboratory Satellite SAR applied in offshore wind ressource mapping: possibilities is to quantify the regional offshore wind climate for wind energy application based on satellite SAR ·Study of 85SAR(m/s) Hasager, Dellwik, Nielsen and Furevik, 2004, Validation of ERS-2 SAR offshore wind-speed maps

  13. OFFSHORE BOUNDARY-LAYER MODELLING H. Bergstrm1

    E-Print Network [OSTI]

    currently be incorporated into a wind farm design tool. The offshore thermal stratification climate is also investigated. 1 INTRODUCTION Mapping the offshore wind climate, it is important to take into account both land contribute to a complex wind field, and affect the wind also at large offshore distances. Spatial variations

  14. Rules and Regulations Governing Leasing for Production or Extraction of Oil, Gas and Other Minerals From Onshore State-Owned Lands (Mississippi)

    Broader source: Energy.gov [DOE]

    The Rules and Regulations Governing Leasing for Production or Extraction of Oil, Gas and Other Minerals From Onshore State-Owned Lands is applicable to the natural gas sector. This law delegates...

  15. Chariot, Alaska Site Fact Sheet

    SciTech Connect (OSTI)

    None

    2013-01-16T23:59:59.000Z

    The Chariot site is located in the Ogotoruk Valley in the Cape Thompson region of northwest Alaska. This region is about 125 miles north of (inside) the Arctic Circle and is bounded on the southwest by the Chukchi Sea. The closest populated areas are the Inupiat villages of Point Hope, 32 miles northwest of the site, and Kivalina,41 miles to the southeast. The site is accessible from Point Hope by ATV in the summer and by snowmobile in the winter. Project Chariot was part of the Plowshare Program, created in 1957 by the U.S. Atomic Energy Commission (AEC), a predecessor agency of the U.S. Department of Energy (DOE), to study peaceful uses for atomic energy. Project Chariot began in 1958 when a scientific field team chose Cape Thompson as a potential site to excavate a harbor using a series of nuclear explosions. AEC, with assistance from other agencies, conducted more than40 pretest bioenvironmental studies of the Cape Thompson area between 1959 and 1962; however, the Plowshare Program work at the Project Chariot site was cancelled because of strong public opposition. No nuclear explosions were conducted at the site.

  16. Amchitka, Alaska Site Fact Sheet

    SciTech Connect (OSTI)

    None

    2011-12-15T23:59:59.000Z

    Amchitka Island is near the western end of the Aleutian Island chain and is the largest island in the Rat Island Group that is located about 1,340 miles west-southwest of Anchorage, Alaska, and 870 miles east of the Kamchatka Peninsula in eastern Russia. The island is 42 miles long and 1 to 4 miles wide, with an area of approximately 74,240 acres. Elevations range from sea level to more than 1,100 feet above sea level. The coastline is rugged; sea cliffs and grassy slopes surround nearly the entire island. Vegetation on the island is low-growing, meadow-like tundra grasses at lower elevations. No trees grow on Amchitka. The lowest elevations are on the eastern third of the island and are characterized by numerous shallow lakes and heavily vegetated drainages. The central portion of the island has higher elevations and fewer lakes. The westernmost 3 miles of the island contains a windswept rocky plateau with sparse vegetation.

  17. Alaska Energy Authority | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapersWindeySanta2004)AirwaysourceAlaska DepartmentAlaska Division

  18. Alaska Geothermal Region | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapersWindeySanta2004)AirwaysourceAlaska DepartmentAlaska Division2)

  19. Alaska Meeting #1 | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapersWindeySanta2004)AirwaysourceAlaska DepartmentAlaska

  20. Alatna, Alaska: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapersWindeySanta2004)AirwaysourceAlaskaAlaska/Wind

  1. Alaska Solar Energy Workshop | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube platform is alwaysISOSource Heat Pump Basics Air-SourceAlaska START Alaska

  2. Thursday, December 27, 2012 Federal Fisheries Permit 1 of 69 NOAA Fisheries Service -Alaska Region

    E-Print Network [OSTI]

    =Pollock Trawl AHL=Atka Mackerel Hook & Line APT=Atka Mackerel Pot ATW=Atka Mackerel Trawl Permit Vessel Name CG BRENNAN, KELLY C CAT,GOA,HAL 2046 ALASKA BEAUTY 544967 22011 98 125 ALASKA BEAUTY LLC ATW ALASKA DAWN 1051463 69765 90 55 ALASKA DAWN LLC ATW,BSA,CAT,CNE,CPP,CTW,GOA,POT,PTW,TRW 6202 ALASKA

  3. EA-1183: Coal-fired Diesel Generator University of Alaska, Fairbanks, Alaska

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts for the proposal to provide funds to support the construction and operation of a coal-fired diesel generator at the University of Alaska, Fairbanks.

  4. Powering the World: Offshore Oil & Gas Production

    E-Print Network [OSTI]

    Patzek, Tadeusz W.

    Gulf of Mexico's oil and gas production Conclusions ­ p.5/59 #12;Summary of Conclusions. . . The globalPowering the World: Offshore Oil & Gas Production Macondo post-blowout operations Tad Patzek that it may be on call for a further ordering." Technology is a "standing-reserve" of energy for humans

  5. Unique wellhead solves offshore cementing problems

    SciTech Connect (OSTI)

    Not Available

    1985-02-01T23:59:59.000Z

    A special subsea wellhead assembly that allows 2stage cementing (from both top and bottom) in weak, unconsolidated seabed sediments has been used successfully from a semi-submersible rig offshore Malta. Presented here is a description of the system and a discussion of operational considerations used to set and cement 20 and 16-in. surface casing strings.

  6. UNIVERSITY OF ALASKA FAIRBANKS ENGINEERING FACILITY

    E-Print Network [OSTI]

    Wagner, Diane

    UNIVERSITY OF ALASKA FAIRBANKS ENGINEERING FACILITY PROGRAMMING AND SITE SELECTION REPORT FINAL 09 SUMMARY 2. PROGRAMMING PARTICIPANTS & DESIGN TEAM 3. CODES & REGULATIONS 4. PROGRAM 5. SITE 6. PLAN ORGANIZATIONAL DIAGRAMS 7. CIVIL ENGINEERING 8. STRUCTURAL SYSTEMS 9. MECHANICAL SYSTEMS 10. PLUMBING SYSTEMS 11

  7. Indicators of recent environmental change in Alaska

    SciTech Connect (OSTI)

    Jacoby, G.C.; D`Arrigo, R.D.; Juday, G.

    1997-12-31T23:59:59.000Z

    Climate models predict that global warming due to the effects of increasing trace gases will be amplified in northern high latitude regions, including Alaska. Several environmental indicators, including tree-ring based temperature reconstructions, borcal forest growth measurements and observations of glacial retreat all indicate that the general warming of the past century has been significant relative to prior centuries to millenia. The tree-ring records for central and northern Alaska indicate that annual temperature increased over the past century, peaked in the 1940s, and are still near the highest level for the past three centuries (Jacoby and D`Arrigo 1995). The tree-ring analyses also suggest that drought stress may now be a factor limiting growth at many northern sites. The recent warming combined with drier years may be altering the response of tree growth to climate and raising the likelihood of forest changes in Alaska and other boreal forests. Other tree-ring and forest data from southern and interior Alaska provide indices of the response of vegetation to extreme events (e.g., insect outbreaks, snow events) in Alaska (Juday and marler 1996). Historical maps, field measurements and satellite imagery indicate that Alaskan glaciers have receded over the past century (e.g., Hall and Benson 1996). Severe outbreaks of bark beetles may be on the increase due to warming, which can shorten their reproductive cycle. Such data and understanding of causes are useful for policy makers and others interested in evaluation of possible impacts of trace-gas induced warming and environmental change in the United States.

  8. The wind speed profile at offshore wind farm sites Bernhard Lange(1)

    E-Print Network [OSTI]

    Heinemann, Detlev

    The wind speed profile at offshore wind farm sites Bernhard Lange(1) , Søren E. Larsen(2) , Jørgen in Europe will come from offshore sites. The first large offshore wind farms are #12;currently being built feasibility of offshore wind power utilisation depends on the favourable wind conditions offshore compared

  9. Alaska Regional High School Science Bowl | U.S. DOE Office of...

    Office of Science (SC) Website

    Alaska Regions Alaska Regional High School Science Bowl National Science Bowl (NSB) NSB Home About High School High School Students High School Coaches High School Regionals...

  10. Effects and impacts of vessel activity on the Kittlitz's Murrelet (Brachyramphus brevirostris) in Glacier Bay, Alaska

    E-Print Network [OSTI]

    Washington at Seattle, University of

    ) in Glacier Bay, Alaska Alison M. Agness A thesis submitted in partial fulfillment of the requirements (Brachyramphus brevirostris) in Glacier Bay, Alaska.....35 Summary

  11. The geotechnical centrifuge in offshore engineering

    SciTech Connect (OSTI)

    Murff, J.D.

    1996-12-31T23:59:59.000Z

    One of the greatest needs in offshore geotechnical engineering is for large scale test measurements on which to calibrate design procedures. The geotechnical centrifuge offers at least a partial remedy. Because it allows one to properly simulate stresses, it is a legitimate, relatively inexpensive option to full scale field testing. As such it is a valuable technique and can be an excellent complement to laboratory tests, 1-g model tests and numerical analyses. However, it has not been widely used by industry even though the capability has existed for almost thirty years. This paper argues that this technology should gain acceptance beyond the research community. The paper presents an overview of centrifuge principles, philosophies of use, and limitations of the technique. For illustration, several actual applications of centrifuge testing for complex offshore problems are described. Results are shown to provide important insights into prototype behavior and to agree well with full scale measurements where these are available.

  12. Articles about Offshore Wind | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataEnergyDepartment ofATVMAgriculturalAn1(BENEFIT)GridOffshore Wind

  13. International Microgrid Assessment: Governance, INcentives, and Experience (IMAGINE)

    E-Print Network [OSTI]

    Marnay, Chris

    2014-01-01T23:59:59.000Z

    environmental review (such as offshore wind or large desertenvironmental review (such as offshore wind or large desertrenewables (onshore and offshore wind, solar PV and thermal,

  14. 2015 Alaska Project Development and Finance Workshop Agenda and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Project Development and Finance Workshop Agenda and Presentations 2015 Alaska Project Development and Finance Workshop Agenda and Presentations The DOE Office of Indian Energy...

  15. 2015 Alaska Regional Energy Workshops | Department of Energy

    Energy Savers [EERE]

    of Indian Energy hosted three back-to-back Renewable Energy Project Development and Finance Workshops in Alaska. Download the agenda and the presentations. Addthis Related...

  16. Alaska Administrative Code - Title 17, Chapter 10, Section 11...

    Open Energy Info (EERE)

    1 - Types of Encroachments Authorized Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: Alaska Administrative Code - Title...

  17. anwr northeastern alaska: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    24 25 Next Page Last Page Topic Index 1 Late Pleistocene and Holocene glaciation of the Fish Lake valley, northeastern Alaska Range, Geosciences Websites Summary: in the...

  18. Title 11 Alaska Administrative Code 87 Geothermal Drilling and...

    Open Energy Info (EERE)

    Geothermal Drilling and Conservation Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: Title 11 Alaska Administrative Code 87...

  19. alaska fairbanks fairbanks: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    goals? Disability Information In your own Ickert-Bond, Steffi 12 Organic Chemistry II Syllabus University of Alaska Fairbanks Environmental Sciences and Ecology Websites Summary: 1...

  20. Alaska Administrative Code - Title 17, Chapter 10, Section 12...

    Open Energy Info (EERE)

    RegulationRegulation: Alaska Administrative Code - Title 17, Chapter 10, Section 12 - Approval Requirements for EncroachmentsLegal Abstract This section describes the...

  1. State of Alaska Department of Transportation and Public Facilities...

    Open Energy Info (EERE)

    Alaska Department of Transportation and Public Facilities - ApplicationRenewal for Encroachment Permit Jump to: navigation, search OpenEI Reference LibraryAdd to library Form:...

  2. Comments, Protests and Interventions for Alaska LNG Project LLC...

    Broader source: Energy.gov (indexed) [DOE]

    Begich and Congressman Don Young, Alaska Congressional Delegation Letter in Support of LNG Export Application 2. 102414 Pentair Vavles & Controls, Randy Akers, Technical Sales...

  3. Energy Department Moves Forward on Alaska Natural Gas Pipeline...

    Broader source: Energy.gov (indexed) [DOE]

    guarantee program to encourage the construction of a pipeline that will bring Alaskan natural gas to the continental United States. The pipeline will provide access to Alaska's...

  4. alaska seafood processing: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sammler - NOAANational Weather Service ten Brink, Uri S. 131 Large-Scale Climate Controls of Interior Alaska River Ice Breakup PETER A. BIENIEK AND UMA S. BHATT...

  5. alaska exxon valdez: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    growth to climate variability in interior Alaska Andrea is to determine the climatic controls over the growth of white spruce (Picea glauca (Moench) Voss) at the warmest...

  6. Modeling of Energy Production Decisions: An Alaska Oil Case Study

    E-Print Network [OSTI]

    Leighty, Wayne

    2008-01-01T23:59:59.000Z

    like oil production requires some knowledge or assumptionlike oil production requires some knowledge or assumptionAlaska Oil Production We use the standard assumption that

  7. Horns Rev Offshore Wind Farm Environmental Impact Assessment

    E-Print Network [OSTI]

    Horns Rev Offshore Wind Farm Environmental Impact Assessment of Sea Bottom and Marine Biology #12 Design ApS 01.03.2000 #12;Bio/consult A/S Horns Rev. Offshore Wind Farm Doc. No. 1680-1-02-03-003 rev. 1........................................................................................................................................................... 36 #12;Bio/consult A/S ELSAM Horns Rev. Offshore Wind Farm Doc. No. 1680-1-02-03-003 rev. 1 Page 4

  8. Support for Offshore Oil and Gas Drilling among the California Public

    E-Print Network [OSTI]

    Smith, Eric R.A.N.

    2003-01-01T23:59:59.000Z

    005 "Support for Offshore Oil and Gas Drilling Among theSupport for Offshore Oil and Gas Drilling among theSupport for Offshore Oil and Gas Drilling among the

  9. UNDERLYING MOTIVATIONS FOR DELAWARE PUBLIC PARTICIPATION IN SUPPORT OF OFFSHORE WIND

    E-Print Network [OSTI]

    Firestone, Jeremy

    UNDERLYING MOTIVATIONS FOR DELAWARE PUBLIC PARTICIPATION IN SUPPORT OF OFFSHORE WIND: IMPLICATIONS PARTICIPATION IN SUPPORT OF OFFSHORE WIND: IMPLICATIONS FOR STATE ENERGY POLICY by Jacqueline D Piero Approved ................................................................................................. 3 Offshore wind: a new option in the United States.............................................. 4

  10. Mooring Line Modelling and Design Optimization of Floating Offshore Wind Turbines

    E-Print Network [OSTI]

    Victoria, University of

    Mooring Line Modelling and Design Optimization of Floating Offshore Wind Turbines by Matthew Thomas Mooring Line Modelling and Design Optimization of Floating Offshore Wind Turbines by Matthew Thomas Jair. Curran Crawford, Supervisor (Department of Mechanical Engineering) ABSTRACT Floating offshore wind

  11. Microalgae Cultivation using Offshore Membrane Enclosures for Growing Algae (OMEGA)

    E-Print Network [OSTI]

    Wiley, Patrick Edward

    2013-01-01T23:59:59.000Z

    and J. Trent (2013). Microalgae cultivation using offshoreJ. Trent, Harvesting Microalgae by Forward Osmosis. The Open5, 1943 (2012). E. W. Becker, Microalgae: Biotechnology and

  12. Offshore Resource Assessment and Design Conditions Public Meeting...

    Broader source: Energy.gov (indexed) [DOE]

    Resource Assessment and Design Conditions Public Meeting Summary Report Offshore Resource Assessment and Design Conditions Public Meeting Summary Report Report from DOE's June 2011...

  13. annual offshore technology: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Utilization Websites Summary: Renewable Energy Center California Off-shore Wind Technology Assessment 12;California Renewable EnergyRESEARCH RESULTS FORUM FOR RENEWABLE...

  14. Sandia Energy - Quantifying Offshore Wind Scour with Sandia's...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia's Environmental Fluid Dynamics Code (SNL---EFDC) Home Renewable Energy Energy News Wind Energy News & Events Computational Modeling & Simulation Quantifying Offshore Wind...

  15. EA-1970: Fishermen's Energy LLC Offshore Wind Demonstration Project...

    Office of Environmental Management (EM)

    to Fishermen's Atlantic City Windfarm, LLC to construct and operate up to six wind turbine generators, for an offshore wind demonstration project, approximately 2.8 nautical...

  16. Ecological Issues Related to Decommissioning of California's Offshore Production Platforms

    E-Print Network [OSTI]

    Carr, Mark H.

    Ecological Issues Related to Decommissioning of California's Offshore Production Platforms Report................................................................................................................ 8 II.A. Review of California platforms............................................................................. 8 II.A.i Geography of California platforms

  17. EA-1792: University of Maine's Deepwater Offshore Floating Wind...

    Broader source: Energy.gov (indexed) [DOE]

    This EA evaluates the environmental impacts of a proposal to support research on floating offshore wind turbine platforms. This project would support the mission, vision, and goals...

  18. New Model Demonstrates Offshore Wind Industry's Job Growth Potential...

    Broader source: Energy.gov (indexed) [DOE]

    has developed a tool to estimate jobs and other economic impacts associated with offshore wind development in the United States. The modeling tool, which illustrates the potential...

  19. University of Michigan Gets Offshore Wind Ready for Winter on...

    Energy Savers [EERE]

    Receive Energy Department Funding United States Launches First Grid-Connected Offshore Wind Turbine Mitigating Potential Environmental Impacts of Energy Development Project...

  20. New Report Highlights Trends in Offshore Wind with 14 Projects...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the advanced stages of development- together representing nearly 4,900 megawatts (MW) of potential offshore wind energy capacity for the United States. Further, this year's report...

  1. Obama Administration Hosts Great Lakes Offshore Wind Workshop...

    Office of Environmental Management (EM)

    wind development in the Great Lakes closer to fruition." "The country's vast offshore wind resources have the potential to dramatically reduce America's dependence on fossil...

  2. New DOE Modeling Tool Estimates Economic Benefits of Offshore...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    renewable power plants. The updated version allows users to better understand the potential regional economic impacts of offshore wind development. DOE is using the new...

  3. DOE Announces Webinars on Economic Impacts of Offshore Wind,...

    Energy Savers [EERE]

    systems cost. Suzanne Tegen, National Renewable Energy Laboratory (NREL): Offshore Wind Jobs and Economic Development Impact: Four Regional Scenarios. This presentation...

  4. PNNL Reviews Wildlife-Interaction Monitoring for Offshore Wind...

    Energy Savers [EERE]

    monitoring birds, bats, and aquatic animals such as marine mammals, sea turtles, and fish in the offshore wind farm environment. Informed by monitoring results and research...

  5. Ben Ticha M. B., Ranchin T., Wald L., Using several data sources for offshore wind resource assessment, 2005, Copenhagen Offshore Wind conference 2005

    E-Print Network [OSTI]

    Boyer, Edmond

    financial risks associated to the installation of offshore wind farms. Usually, for evaluating the resourceBen Ticha M. B., Ranchin T., Wald L., Using several data sources for offshore wind resource assessment, 2005, Copenhagen Offshore Wind conference 2005 1 Using several data sources for offshore wind

  6. Structural health and prognostics management for offshore wind turbines : case studies of rotor fault and blade damage with initial O&M cost modeling.

    SciTech Connect (OSTI)

    Myrent, Noah J. [Purdue Center for Systems Integrity, Lafayette, IN; Kusnick, Joshua F. [Purdue Center for Systems Integrity, Lafayette, IN; Barrett, Natalie C. [Purdue Center for Systems Integrity, Lafayette, IN; Adams, Douglas E. [Purdue Center for Systems Integrity, Lafayette, IN; Griffith, Daniel Todd

    2013-04-01T23:59:59.000Z

    Operations and maintenance costs for offshore wind plants are significantly higher than the current costs for land-based (onshore) wind plants. One way to reduce these costs would be to implement a structural health and prognostic management (SHPM) system as part of a condition based maintenance paradigm with smart load management and utilize a state-based cost model to assess the economics associated with use of the SHPM system. To facilitate the development of such a system a multi-scale modeling approach developed in prior work is used to identify how the underlying physics of the system are affected by the presence of damage and faults, and how these changes manifest themselves in the operational response of a full turbine. This methodology was used to investigate two case studies: (1) the effects of rotor imbalance due to pitch error (aerodynamic imbalance) and mass imbalance and (2) disbond of the shear web; both on a 5-MW offshore wind turbine in the present report. Based on simulations of damage in the turbine model, the operational measurements that demonstrated the highest sensitivity to the damage/faults were the blade tip accelerations and local pitching moments for both imbalance and shear web disbond. The initial cost model provided a great deal of insight into the estimated savings in operations and maintenance costs due to the implementation of an effective SHPM system. The integration of the health monitoring information and O&M cost versus damage/fault severity information provides the initial steps to identify processes to reduce operations and maintenance costs for an offshore wind farm while increasing turbine availability, revenue, and overall profit.

  7. Offshore Code Comparison Collaboration (OC3) for IEA Wind Task 23 Offshore Wind Technology and Deployment

    SciTech Connect (OSTI)

    Jonkman, J.; Musial, W.

    2010-12-01T23:59:59.000Z

    This final report for IEA Wind Task 23, Offshore Wind Energy Technology and Deployment, is made up of two separate reports, Subtask 1: Experience with Critical Deployment Issues and Subtask 2: Offshore Code Comparison Collaborative (OC3). Subtask 1 discusses ecological issues and regulation, electrical system integration, external conditions, and key conclusions for Subtask 1. Subtask 2 included here, is the larger of the two volumes and contains five chapters that cover background information and objectives of Subtask 2 and results from each of the four phases of the project.

  8. Preserving Alaska's early Cold War legacy.

    SciTech Connect (OSTI)

    Hoffecker, J.; Whorton, M.

    1999-03-08T23:59:59.000Z

    The US Air Force owns and operates numerous facilities that were constructed during the Cold War era. The end of the Cold War prompted many changes in the operation of these properties: missions changed, facilities were modified, and entire bases were closed or realigned. The widespread downsizing of the US military stimulated concern over the potential loss of properties that had acquired historical value in the context of the Cold War. In response, the US Department of Defense in 1991 initiated a broad effort to inventory properties of this era. US Air Force installations in Alaska were in the forefront of these evaluations because of the role of the Cold War in the state's development and history and the high interest on the part of the Alaska State Historic Preservation Officer (SHPO) in these properties. The 611th Air Support Group (611 ASG) owns many of Alaska's early Cold War properties, most were associated with strategic air defense. The 611 ASG determined that three systems it operates, which were all part of the integrated defense against Soviet nuclear strategic bomber threat, were eligible for the National Register of Historic Places (NRHP) and would require treatment as historic properties. These systems include the Aircraft Control and Warning (AC&W) System, the Distant Early Warning (DEW) Line, and Forward Operating Bases (FOBs). As part of a massive cleanup operation, Clean Sweep, the 611 ASG plans to demolish many of the properties associated with these systems. To mitigate the effects of demolition, the 611 ASG negotiated agreements on the system level (e.g., the DEW Line) with the Alaska SHPO to document the history and architectural/engineering features associated with these properties. This system approach allowed the US Air Force to mitigate effects on many individual properties in a more cost-effective and efficient manner.

  9. FOUR ESSAYS ON OFFSHORE WIND POWER POTENTIAL, DEVELOPMENT, REGULATORY FRAMEWORK, AND INTEGRATION

    E-Print Network [OSTI]

    Firestone, Jeremy

    FOUR ESSAYS ON OFFSHORE WIND POWER POTENTIAL, DEVELOPMENT, REGULATORY FRAMEWORK, AND INTEGRATION 2010 Amardeep Dhanju All Rights Reserved #12;FOUR ESSAYS ON OFFSHORE WIND POWER POTENTIAL, DEVELOPMENT

  10. NREL GIS Data: U.S. Atlantic Coast Offshore Windspeed 90m Height...

    Open Energy Info (EERE)

    offshore regions of the United States. To learn more, please see the Assessment of Offshore Wind Energy Resources for the United States. These data were produced in...

  11. Onshore permitting systems analysis for coal, oil, gas, geothermal and oil shale leases. Final report

    SciTech Connect (OSTI)

    Not Available

    1982-09-01T23:59:59.000Z

    The magnitude and complexity of permit processes raises a question as to their impact on the rate and scope of industrial development activity. One particular area where this issue is of concern is in new energy extraction and development activities. The initiation of new energy projects has been a national priority for several years. But, energy projects, because of their potential for creating land disturbances, are subject to many environmental and other regulations. Because of this, the permitting required of energy resource developers is extensive. Within the energy field, a major portion of development activities occurs on federal lands. This is particularly true in the Rocky Mountain states and Alaska where the principal landholder is the federal government. The permitting requirements for federal lands' development differ from those for private lands. This report assesses the impact of permitting processes for energy resource development on federal lands. The permitting processes covered include all of the major environmental, land-use, and safety permits required by agencies of federal and state governments. The lands covered include all federal lands, with emphasis on eight states with major development activities.

  12. Offshore Wind Turbines - Estimated Noise from Offshore Wind Turbine, Monhegan Island, Maine: Environmental Effects of Offshore Wind Energy Development

    SciTech Connect (OSTI)

    Aker, Pamela M.; Jones, Anthony M.; Copping, Andrea E.

    2010-11-23T23:59:59.000Z

    Deep C Wind, a consortium headed by the University of Maine will test the first U.S. offshore wind platforms in 2012. In advance of final siting and permitting of the test turbines off Monhegan Island, residents of the island off Maine require reassurance that the noise levels from the test turbines will not disturb them. Pacific Northwest National Laboratory, at the request of the University of Maine, and with the support of the U.S. Department of Energy Wind Program, modeled the acoustic output of the planned test turbines.

  13. alaska native people: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    alaska native people First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Alaska Native People Shaping...

  14. Alaska Justice Forum Page 1 INSIDE THIS ISSUE

    E-Print Network [OSTI]

    Pantaleone, Jim

    describes use of the death penalty in the United States (page 2). An international perspective on capital Unit ALASKA JUSTICE FORUM Homicide in Alaska While the rate of homicide in the nation as a whole has murders were reported in the state. This figure results in a rate of 10.8 per 100,000. The 8 additional

  15. Alaska oil and gas: Energy wealth or vanishing opportunity

    SciTech Connect (OSTI)

    Thomas, C.P.; Doughty, T.C.; Faulder, D.D.; Harrison, W.E.; Irving, J.S.; Jamison, H.C.; White, G.J.

    1991-01-01T23:59:59.000Z

    The purpose of the study was to systematically identify and review (a) the known and undiscovered reserves and resources of arctic Alaska, (b) the economic factors controlling development, (c) the risks and environmental considerations involved in development, and (d) the impacts of a temporary shutdown of the Alaska North Slope Oil Delivery System (ANSODS). 119 refs., 45 figs., 41 tabs.

  16. alaska natural gas: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    alaska natural gas First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Alaska Natural Gas Development...

  17. Control Strategies for Late Blight in the Alaska Potato Crop

    E-Print Network [OSTI]

    Wagner, Diane

    Control Strategies for Late Blight in the Alaska Potato Crop PMC-00339 Late blight is a devastating disease of both tomatoes and potatoes that is occasionally found in Alaska. There is no "cure" for the disease and there are very few re- sistant varieties of potatoes, so disease management strategies

  18. Comments, Protests and Interventions for Alaska LNG Project LLC- 14-96-LNG

    Broader source: Energy.gov [DOE]

    Alaska Region-Granite Construction Company,  Michael D. Miller, Business Development Manager/Estimator 

  19. ABR, Inc KPMG LLP Alaska Air National Guard Mikunda, Cottrell & Co

    E-Print Network [OSTI]

    Wagner, Diane

    Administration Cook & Haugeberg LLC CPA's Solar Turbines Inc Cook Inlet Aquaculture Association State of Alaska

  20. Optimizing safety by inherent offshore platform design

    SciTech Connect (OSTI)

    Mansfield, D.P. [AEA Technology, Risley (United Kingdom); Kletz, T.A. [Kletz (T.A.), Cheadle (United Kingdom); Al-Hassan, T. [HSE Offshore Safety Div., Bootle (United Kingdom)

    1996-12-31T23:59:59.000Z

    Following the Cullen Report into the Piper Alpha Disaster, UK Operators and the Health and Safety Executive Offshore Safety Division (OSD) have been working together to bring in a new safety regime, progressively replacing prescriptive requirements with goal setting regulations to enable a more integrated approach to hazard management. This is allowing the industry to be more flexible and specific about the way it manages hazards throughout the life of the installation. In particular it is encouraging a hazards based focus to design which is changing the way installations are designed and which would promote the use of inherently safer design. Conventional installation design often relies on standard specification engineered safety systems such as shutdown systems and water deluge to control hazards, with less attention paid to minimizing the hazards at source. These add-on safety systems can be expensive to install and maintain, and may only be effective in some circumstances. This paper reports on a pilot study sponsored by OSD, involving offshore operators and design contractors, to assess the status of inherent safety in offshore installation design in the UK and to encourage its further use spreading best practice and examples of the benefits of the approach. The paper outlines the key considerations for implementation of inherently safer design, and describes some of the benefits these can bring to the industry. It also highlights the role regulations, industry initiatives and guidance can play in promoting inherently safer design both now and in the future. The study`s findings suggest that awareness of the inherent safety principles is limited to some safety specialists and designers, but that the industry is beginning to recognize the role and benefits of inherent safety. As a result its principles are starting to appear in some design procedures and hazard management guides.

  1. Multistage Stochastic Programming Approach for Offshore Oilfield Infrastructure Planning

    E-Print Network [OSTI]

    Grossmann, Ignacio E.

    Multistage Stochastic Programming Approach for Offshore Oilfield Infrastructure Planning under is implemented in the GAMS grid computing environment. Computational results on a variety of oilfield development cycle of a typical offshore oilfield project consists of the following five steps: (1) Exploration

  2. Offshore Oilfield Development Planning under Uncertainty and Fiscal Considerations

    E-Print Network [OSTI]

    Grossmann, Ignacio E.

    1 Offshore Oilfield Development Planning under Uncertainty and Fiscal Considerations Vijay Gupta1 of oilfields in remote locations that are often hundreds of miles offshore. Surprisingly, there has been a net by the terms of the contract between oil companies and governments. Figure 1: A unified framework for Oilfield

  3. Numerical Simulation of Wave Loads on Static Offshore Structures

    E-Print Network [OSTI]

    of Wave Loads on Static Offshore Structures ­ p. #12;VOF Free Surface Flow Model Modelling of Free Surface-cell resolution of prescribed wave forms in relaxation zones · Support for dynamic mesh with 6-DOF solver meshNumerical Simulation of Wave Loads on Static Offshore Structures Hrvoje Jasak, Inno Gatin, Vuko

  4. Riser and wellhead monitoring for improved offshore drilling operations

    E-Print Network [OSTI]

    Nørvåg, Kjetil

    Riser and wellhead monitoring for improved offshore drilling operations Gullik A. Jensen, Ph ­ Offshore drilling with riser ­ On the riser and the riser joints ­ On damage and consequences · Operational Page 2 #12;The KONGSBERG Riser Management Systems (RMS) Integrity of drilling riser based on monitoring

  5. Ab Frhjahr 2009 startet hier der Bau von sechs Offshore-

    E-Print Network [OSTI]

    Vollmer, Heribert

    Ent- wicklung der Offshore-Wind- energie besondere Bedeutung zu. Derzeit laufen in der AusAb Frühjahr 2009 startet hier der Bau von sechs Offshore- Windenergieanlagen (OWEA) vom Typ Wind- parks sind etwa die Erweite- rung des Pilotprojektes alpha ventus, der Park Borkum West (45

  6. Visual Simulation of Offshore Liquefied Natural Gas (LNG) Terminals

    E-Print Network [OSTI]

    Standiford, Richard B.

    Visual Simulation of Offshore Liquefied Natural Gas (LNG) Terminals in a Decision-Making Context1 potential offshore Liquified Natural Gas (LNG) sites and the types of terminals that might occupy those sites. The study had to evaluate the engineering feasibility of siting an LNG receiving terminal

  7. Integrated Multidisciplinary Constrained Optimization of Offshore Support Structures

    E-Print Network [OSTI]

    Papalambros, Panos

    and convergence rate. This integrated methodology is used to redesign an existing SWT-3.6-107 wind turbine support.haghi@siemens.com Abstract. In the current offshore wind turbine support structure design method, the tower and foundation of the structure. To show the usefulness of the method, an existing SWT-3.6-107 offshore wind turbine where its

  8. DISTRIBUTED OPTIMIZATION AND CONTROL OF OFFSHORE OIL PRODUCTION: THE INTELLIGENT

    E-Print Network [OSTI]

    Foss, Bjarne A.

    DISTRIBUTED OPTIMIZATION AND CONTROL OF OFFSHORE OIL PRODUCTION: THE INTELLIGENT PLATFORM Michael R to distributed optimization and control of offshore oil production systems. The model incorporates a complex pipeline network. Oil and gas production systems are represented as a network of connected hierarchical

  9. Taming Hurricanes With Arrays of Offshore Wind Turbines

    E-Print Network [OSTI]

    Firestone, Jeremy

    Taming Hurricanes With Arrays of Offshore Wind Turbines Mark Z. Jacobson Cristina Archer, Willet) or 50 m/s (destruction) speed. Can Walls of Offshore Wind Turbines Dissipate Hurricanes? #12;Katrina Kempton Wind Energy Symposium University of Delaware February 27, 2013 145 mph; Jeff Schmaltz, NASA GSFC

  10. Improvement of Offshore Wind Resource Modeling in the Mid-

    E-Print Network [OSTI]

    Firestone, Jeremy

    Improvement of Offshore Wind Resource Modeling in the Mid- Atlantic Bight Wind Energy Symposium Sienkiewicz , Chris Hughes 26 February 2013 #12;Improving Atmospheric Models for Offshore Wind Resource Interaction Tower ­ 23 m NOAA Buzzard's Bay Tower ­ 25 m Cape Wind Tower (60 m from 2003-2011; just platform

  11. Cathodic protection retrofit of an offshore pipeline

    SciTech Connect (OSTI)

    Winters, R.H.; Holk, A.C. [Tenneco Energy, Houston, TX (United States)

    1997-09-01T23:59:59.000Z

    The cathodic protection anodes and corrosion coating on two 8-inch (203.2 mm) outside diameter (O.D.) offshore pipelines were damaged during deep water ({minus}380 feet, {minus}116 m) installation. In-situ methods for deep water inspection and repair of the pipelines` cathodic protection and coating systems were developed and performed. Methods are described in which underwater anode retrofits were performed and friction welding technology was used to re-attach anode leads. Standard procedures for underwater pipeline coating repair and remediation of damaged line pipe are provided.

  12. Cathodic protection retrofit of an offshore pipeline

    SciTech Connect (OSTI)

    Winters, R.H.; Holk, A.C. [Tenneco Energy, Houston, TX (United States)

    1997-09-01T23:59:59.000Z

    Cathodic protection (CP) anodes and corrosion coating on two offshore pipelines were damaged during deep water installation. In-situ methods for deep-water inspection and repair of the pipelines` CP and coating systems were developed and used. High-pressure natural gas Pipeline. A design was 5.6 miles of 8.625 in. OD by 0.406 in. W.T. API SL, Grade X-42, seamless line pipe. Pipeline B design was 0.3 miles of similar specification pipe. Both pipelines were mill-coated with 14 mil of fusion-bonded epoxy (FBE) corrosion coating. Girth welds were field-coated with FBE.

  13. Offshore Wind Projects | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2:Introduction toManagementOPAM PolicyOf EnvironmentalGuide, JulyIssueOffshore Wind Projects

  14. Scira Offshore Energy | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDITCalifornia Sector: WindRiegotec InternacionalhasASScira Offshore

  15. Offshore Lubricants Market | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRoseConcerns JumpsourceOffshore Lubricants Market Size Home

  16. Capital Energy Offshore | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDIT REPORTEnergy Offshore Place: Spain Sector: Wind energy Product: JV

  17. Norfolk Offshore Wind NOW | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLuOpen EnergyNelsoniXInformationNongqishiNorfolk Offshore Wind

  18. Offshore Wind Energy | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLuOpenNorth AmericaNorthwestOakdaleOdersun AG JumpOffshore Wind

  19. Offshore Wind Power | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLuOpenNorth AmericaNorthwestOakdaleOdersun AG JumpOffshore

  20. Tillamook Offshore Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f <MaintainedInformationThePty Ltd Jump to:Offshore Wind Farm Jump

  1. European Wind Atlas: Offshore | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489 No revision|LLCInsulationInformation)CommissionOffshore Jump

  2. Systems Performance Analyses of Alaska Wind-Diesel Projects; St. Paul, Alaska (Fact Sheet)

    SciTech Connect (OSTI)

    Baring-Gould, I.

    2009-04-01T23:59:59.000Z

    This fact sheet summarizes a systems performance analysis of the wind-diesel project in St. Paul, Alaska. Data provided for this project include load data, average wind turbine output, average diesel plant output, dump (controlling) load, average net capacity factor, average net wind penetration, estimated fuel savings, and wind system availability.

  3. Modeling of Energy Production Decisions: An Alaska Oil Case Study

    E-Print Network [OSTI]

    Leighty, Wayne

    2008-01-01T23:59:59.000Z

    timing game in petroleum production: An econometric model,”game in offshore petroleum production,” working paper,UCD-ITS-RR-07-04. Petroleum Production Tax, website (2007)

  4. Copyright 1999, Offshore Technology Conference This paper was prepared for presentation at the 1999 Offshore Technology Conference held in

    E-Print Network [OSTI]

    Byrne, Byron

    to explore plasticity related concepts. The tests are on dry sand to ensure drained behaviour. Eight testsCopyright 1999, Offshore Technology Conference This paper was prepared for presentation at the 1999 Offshore Technology Conference held in Houston, Texas, 3­6 May 1999. This paper was selected

  5. Oxford University Civil Engineering Novel Foundations for Offshore Wind FarmsNovel Foundations for Offshore Wind Farms

    E-Print Network [OSTI]

    Houlsby, Guy T.

    Oxford University Civil Engineering Novel Foundations for Offshore Wind FarmsNovel Foundations for Offshore Wind Farms Prof. Guy Houlsby, Dr Byron Byrne, Dr Chris Martin Oxford University #12;Oxford each turbine does not generate all the time, say 3000) #12;Oxford University Civil Engineering Wind

  6. EA-1985: Virginia Offshore Wind Technology Advancement Project (VOWTAP), 24 nautical miles offshore of Virginia Beach, Virginia

    Broader source: Energy.gov [DOE]

    DOE is proposing to fund Virginia Electric and Power Company's Virginia Offshore Wind Technology Advancement Project (VOWTAP). The proposed VOWTAP project consists of design, construction and operation of a 12 megawatt offshore wind facility located approximately 24 nautical miles off the coast of Virginia Beach, VA on the Outer Continental Shelf.

  7. Wind Energy Alaska | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown ofNationwideWTEDBird,Wilsonville, Oregon: EnergyWind Energy Alaska Place:

  8. START Program: Alaska | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin ofEnergy atLLC - FE DKT. 10-160-LNG - ORDER 2913||Sys.pdfEarlyProgram: Alaska START

  9. Alaska START Application | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you0 ARRA Newsletters 20103-03Energy AdvancedJudge |AlamoofAlaska START

  10. ARM - Lesson Plans: North Slope of Alaska

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadap Documentation TDMADAP : XDC documentationBarrow, Alaska OutreachMaking CloudsMoving Water

  11. Alaska/Wind Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1AMEEAisin Seikiand Telephone CoStatutes: Title 38Alaska/Wind

  12. Kasilof, Alaska: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtelInteriasIowa: EnergyKanabec County,Kaolin AD JumpKasilof, Alaska:

  13. Hope, Alaska: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel Jump to:Pennsylvania: Energy ResourcesAlaska: Energy Resources Jump

  14. START Program 2013: Alaska | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014, anEnergyDepartmentDepartment of Energy A view ofSSL28,Alaska

  15. Ninilchik, Alaska: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall,Missouri: Energy Resources Jump to:Nigeria: EnergyNinilchik, Alaska: Energy

  16. BLM Alaska State Office | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: EnergyAvignon, France: Energy Resources JumpPáginasLeasingBLM Alaska

  17. Alaska START Application | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of1Albuquerque, NM - Buildinginaugural U.S. DepartmentFebruaryAlaska

  18. Fox, Alaska: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to:ar-80m.pdfFillmoreGabbsSalonga, NewCornersFox River, Alaska:

  19. New Facility to Shed Light on Offshore Wind Resource (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-05-01T23:59:59.000Z

    Chesapeake Light Tower facility will gather key data for unlocking the nation's vast offshore wind resource.

  20. ENDOW: EfficieNt Development of Offshore Windfarms Rebecca Barthelmie1

    E-Print Network [OSTI]

    Heinemann, Detlev

    offshore wind farms. Use of new databases from existing offshore wind farms and detailed wake profiles manufacturers to optimise power output from offshore wind farms through minimised wake effects and optimal grid from two offshore wind farms at which both meteorological observations and power output were available

  1. EVALUATION OF MODELS FOR THE VERTICAL EXTRAPOLATION OF WIND SPEED MEASUREMENTS AT OFFSHORE SITES

    E-Print Network [OSTI]

    Heinemann, Detlev

    will come from offshore sites. The first large offshore wind farms are currently being built in severalEVALUATION OF MODELS FOR THE VERTICAL EXTRAPOLATION OF WIND SPEED MEASUREMENTS AT OFFSHORE SITES important for offshore wind energy utilisation are discussed and tested: Four models for the surface

  2. Method for computing efficient electrical indicators for offshore wind turbine monitoring

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    by offshore deployment of wind farms. The offshore turbines have much lower accessibility(1) so maintenanceMethod for computing efficient electrical indicators for offshore wind turbine monitoring Georgia.cablea, pierre.granjon, christophe.berenguer} @gipsa-lab.grenoble-inp.fr Abstract Offshore wind turbines

  3. MODELLING THE VERTICAL WIND SPEED AND TURBULENCE INTENSITY PROFILES AT PROSPECTIVE OFFSHORE WIND FARM SITES

    E-Print Network [OSTI]

    Heinemann, Detlev

    in Europe will come from offshore sites. The first large offshore wind farms are currently being builtMODELLING THE VERTICAL WIND SPEED AND TURBULENCE INTENSITY PROFILES AT PROSPECTIVE OFFSHORE WIND for conditions important for offshore wind energy utilisation are compared and tested: Four models

  4. Where is the ideal location for a US East Coast offshore grid? Michael J. Dvorak,1

    E-Print Network [OSTI]

    weather model data from 2006­2010 were used to approximate wind farm output. The offshore grid was located%, and the combined capacity factor was 48% (gross). By interconnecting offshore wind energy farms 450 km apart of no and full-power events. Offshore grids to connect offshore wind energy (OWE) farms have been proposed

  5. Fluctuations of offshore wind generation -Statistical modelling , L.E.A. Christensen, H. Madsen

    E-Print Network [OSTI]

    of power fluctuations at large offshore wind farms has a significant impact on the control and management of their parameters. Simulation results are given for the case of the Horns Rev and Nysted offshore wind farms. An overview of offshore wind energy in Europe is given in [1]. Such large offshore wind farms concentrate

  6. Offshore Wind Power: Science, engineering, and policy MAST 628-010, Fall 2008

    E-Print Network [OSTI]

    Firestone, Jeremy

    Offshore Wind Power: Science, engineering, and policy MAST 628-010, Fall 2008 Revised 10 October@udel.edu Class web site with lecture notes: www.udel.edu/sakai UD offshore wind research: http, plan, regulate, and develop offshore wind resources for large-scale power production. Offshore wind

  7. Time-domain Fatigue Response and Reliability Analysis of Offshore Wind Turbines with

    E-Print Network [OSTI]

    Nørvåg, Kjetil

    Time-domain Fatigue Response and Reliability Analysis of Offshore Wind Turbines with Emphasis of offshore wind turbines Defense: 09.12.2012 2012 - : Structural Engineer in Det Norske Veritas (DNV) 2007 and higher wind speed, and less visual disturbance and noise for offshore wind energy. Offshore wind

  8. Financing Opportunities for Renewable Energy Development in Alaska

    SciTech Connect (OSTI)

    Ardani, K.; Hillman, D.; Busche, S.

    2013-04-01T23:59:59.000Z

    This technical report provides an overview of existing and potential financing structures for renewable energy project development in Alaska with a focus on four primary sources of project funding: government financed or supported (the most commonly used structure in Alaska today), developer equity capital, commercial debt, and third-party tax-equity investment. While privately funded options currently have limited application in Alaska, their implementation is theoretically possible based on successful execution in similar circumstances elsewhere. This report concludes that while tax status is a key consideration in determining appropriate financing structure, there are opportunities for both taxable and tax-exempt entities to participate in renewable energy project development.

  9. Assessment of Offshore Wind System Design, Safety, and Operation Standards

    SciTech Connect (OSTI)

    Sirnivas, S.; Musial, W.; Bailey, B.; Filippelli, M.

    2014-01-01T23:59:59.000Z

    This report is a deliverable for a project sponsored by the U.S. Department of Energy (DOE) entitled National Offshore Wind Energy Resource and Design Data Campaign -- Analysis and Collaboration (contract number DE-EE0005372; prime contractor -- AWS Truepower). The project objective is to supplement, facilitate, and enhance ongoing multiagency efforts to develop an integrated national offshore wind energy data network. The results of this initiative are intended to 1) produce a comprehensive definition of relevant met-ocean resource assets and needs and design standards, and 2) provide a basis for recommendations for meeting offshore wind energy industry data and design certification requirements.

  10. Mid-year report. [Review of offshore petroleum industry activity

    SciTech Connect (OSTI)

    Not Available

    1983-05-01T23:59:59.000Z

    A mid-year review and forecast for the offshore energy focuses on the impact of energy prices, worldwide drilling, the market for marine transportation, the mobile rig market, the diving industry, construction prospects, and seismic activity. The price of oil is seen as the most influential factor affecting offshore programs being considered for the next 10 yr. The analysis of drilling data indicates the trend for offshore activity will continue to rise, notwithstanding the current rig activity statistics. The growing importance of remotely operated vehicles in the diving industry is noted.

  11. NREL Software Aids Offshore Wind Turbine Designs (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-10-01T23:59:59.000Z

    NREL researchers are supporting offshore wind power development with computer models that allow detailed analyses of both fixed and floating offshore wind turbines. While existing computer-aided engineering (CAE) models can simulate the conditions and stresses that a land-based wind turbine experiences over its lifetime, offshore turbines require the additional considerations of variations in water depth, soil type, and wind and wave severity, which also necessitate the use of a variety of support-structure types. NREL's core wind CAE tool, FAST, models the additional effects of incident waves, sea currents, and the foundation dynamics of the support structures.

  12. Meren field water injection project offshore Nigeria

    SciTech Connect (OSTI)

    Adetoba, L.A.

    1984-04-01T23:59:59.000Z

    The Meren Water Injection Project, which is one of the largest in West Africa in terms of injection volume, secondary reserves to be recovered and cost, is located in the Meren field offshore Nigeria. This study presents an updated comprehensive plan to deplete 7 reservoir units in sands that have been producing under solution gas drive and gravity segregation with minimal water influx. The reservoir units contain ca 80% of the original oil-in-place in Meren field. Detailed studies have been undertaken to evaluate the performances of the 7 reservoirs with a view to developing a secondary recovery plan which has been brought into reality. Injection was to start in mid-1982 but was delayed until mid-1983. The effect of the delay and the changing of injector locations on recovery and cost is discussed.

  13. Alaska Natural Gas Gross Withdrawals and Production

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices4 OilU.S. Offshore U.S.: Shale

  14. Routing Subsea Cables for Scottish Offshore Renewable Search Areas 

    E-Print Network [OSTI]

    Iredale, Ingrid

    2014-01-01T23:59:59.000Z

    The UK has been the leading nation in offshore renewable energy generation since 2010 (Kern et. al., 2014), due to its substantial resources, technical expertise and strong economic and political support (Jay, 2011). Many of the resources remain...

  15. alaskan offshore silts: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Caledonia Louis Geli Paris-Sud XI, Universit de 363 OFF-SHORE WIND AND GRID-CONNECTED PV: HIGH PENETRATION PEAK SHAVING FOR NEW YORK CITY Renewable Energy Websites Summary:...

  16. adjacent offshore area: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    20 21 22 23 24 25 Next Page Last Page Topic Index 441 OFF-SHORE WIND AND GRID-CONNECTED PV: HIGH PENETRATION PEAK SHAVING FOR NEW YORK CITY Renewable Energy Websites Summary:...

  17. atividades offshore da: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Caledonia Louis Geli Paris-Sud XI, Universit de 388 OFF-SHORE WIND AND GRID-CONNECTED PV: HIGH PENETRATION PEAK SHAVING FOR NEW YORK CITY Renewable Energy Websites Summary:...

  18. Attitudes toward offshore oil development: A summary of current evidence

    E-Print Network [OSTI]

    Gramling, R; Freudenburg, Wm R

    2006-01-01T23:59:59.000Z

    History of oil well drilling. Houston: Gulf Publishing Co;1955. World’s deepest well. Drilling December:52. [8] Logandrilling efforts continued to expand, however, the offshore industry found itself in waters that were literally as well

  19. New Report Shows Trend Toward Larger Offshore Wind Systems, with...

    Broader source: Energy.gov (indexed) [DOE]

    Energy Department today released a new report showing progress for the U.S. offshore wind energy market in 2012, including the completion of two commercial lease auctions for...

  20. Rhode Island to Build First Offshore Wind Farm

    Broader source: Energy.gov [DOE]

    Block Island, a small town with only 1,000 full-time, residents, is the site for a big project, when it will become home to Rhode Island’s first offshore wind farm.

  1. Multi-hazard Reliability Assessment of Offshore Wind Turbines

    E-Print Network [OSTI]

    Mardfekri Rastehkenari, Maryam 1981-

    2012-12-04T23:59:59.000Z

    A probabilistic framework is developed to assess the structural reliability of offshore wind turbines. Probabilistic models are developed to predict the deformation, shear force and bending moment demands on the support structure of wind turbines...

  2. Coupled Dynamic Analysis of Multiple Unit Floating Offshore Wind Turbine

    E-Print Network [OSTI]

    Bae, Yoon Hyeok

    2013-04-23T23:59:59.000Z

    In the present study, a numerical simulation tool has been developed for the rotor-floater-tether coupled dynamic analysis of Multiple Unit Floating Offshore Wind Turbine (MUFOWT) in the time domain including aero-blade-tower dynamics and control...

  3. "Design of Offshore Wind Turbines for Hurricane Resilience" Graduate Seminar

    E-Print Network [OSTI]

    Connor, Ed

    "Design of Offshore Wind Turbines for Hurricane Resilience" Graduate Seminar Thursday, December 5, 2013, 12pm ­ 1pm Andrew Myers, Ph.D. Northeastern University. "Computational Methods for Evolving

  4. Development of a composite repair system for reinforcing offshore risers

    E-Print Network [OSTI]

    Alexander, Christopher Richard

    2009-05-15T23:59:59.000Z

    A research program was conducted to investigate the application of composite materials in repairing corroded offshore risers, leading to the development of an optimized repair using a hybrid carbon/E-glass system. The objective of this research...

  5. Dynamic analysis of a 5 megawatt offshore floating wind turbine

    E-Print Network [OSTI]

    Harriger, Evan Michael

    2011-01-01T23:59:59.000Z

    1985. 23. Hau, E. Wind Turbines: Fundamentals, Technologies,for Floating Offshore Wind Turbines. Tech. no. NREL/CP-500-Full-scale Floating Wind Turbine." Statoil, 14 Oct. 2009.

  6. Multi-hazard Reliability Assessment of Offshore Wind Turbines 

    E-Print Network [OSTI]

    Mardfekri Rastehkenari, Maryam 1981-

    2012-12-04T23:59:59.000Z

    A probabilistic framework is developed to assess the structural reliability of offshore wind turbines. Probabilistic models are developed to predict the deformation, shear force and bending moment demands on the support structure of wind turbines...

  7. DOE Offers Conditional Commitment to Cape Wind Offshore Wind...

    Broader source: Energy.gov (indexed) [DOE]

    step toward issuing a 150 million loan guarantee to support the construction of the Cape Wind offshore wind project with a conditional commitment to Cape Wind Associates, LLC. The...

  8. Coupled Dynamic Analysis of Multiple Unit Floating Offshore Wind Turbine 

    E-Print Network [OSTI]

    Bae, Yoon Hyeok

    2013-04-23T23:59:59.000Z

    In the present study, a numerical simulation tool has been developed for the rotor-floater-tether coupled dynamic analysis of Multiple Unit Floating Offshore Wind Turbine (MUFOWT) in the time domain including aero-blade-tower dynamics and control...

  9. Offshore Wind Energy Market Installed Capacity is Anticipated...

    Open Energy Info (EERE)

    Offshore Wind Energy Market Installed Capacity is Anticipated to Reach 52,120.9 MW by 2022 Home > Groups > Renewable Energy RFPs Wayne31jan's picture Submitted by Wayne31jan(150)...

  10. Offshore Wind Market Acceleration Projects | Department of Energy

    Energy Savers [EERE]

    to connect this offshore wind energy to the grid. The University of Delaware is examining potential effects of wind penetration on the Mid-Atlantic electric grid and facilitating...

  11. NREL: Wind Research - New Report Characterizes Existing Offshore...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a three-year collaborative investigation with positive outlooks for U.S.-based offshore wind potential by 2030. September 4, 2014 The Energy Department has released the first...

  12. Offshore Code Comparison Collaboration Continuation (OC4), Phase I - Results of Coupled Simulations of an Offshore Wind Turbine with Jacket Support Structure: Preprint

    SciTech Connect (OSTI)

    Popko, W.; Vorpahl, F.; Zuga, A.; Kohlmeier, M.; Jonkman, J.; Robertson, A.; Larsen, T. J.; Yde, A.; Saetertro, K.; Okstad, K. M.; Nichols, J.; Nygaard, T. A.; Gao, Z.; Manolas, D.; Kim, K.; Yu, Q.; Shi, W.; Park, H.; Vasquez-Rojas, A.

    2012-03-01T23:59:59.000Z

    This paper presents the results of the IEA Wind Task 30, Offshore Code Comparison Collaboration Continuation Project - Phase 1.

  13. alaska linking wildlife: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Alaska Cooperative Fish and Wildlife Research Unit Annual Research Report--2011 Environmental Sciences and...

  14. Climate Change Adaptation for an At Risk Community – Shaktoolik Alaska

    Broader source: Energy.gov [DOE]

    The Norton Sound village of Shaktoolik faces serious threats of erosion and flooding resulting from climate change.  University of Alaska Sea Grant agent Terry Johnson and consultant Glenn Gray...

  15. Energy Ambassadors to Provide Front Line Support for Alaska Native...

    Office of Environmental Management (EM)

    in an the initial facilitation workshop for Alaska Energy Ambassadors held at the U.S. Fish & Wildlife Service Regional Office in Anchorage in September. Photo by Jared Temanson,...

  16. DOE to Host Three Alaska Native Village Renewable Energy Project...

    Office of Environmental Management (EM)

    in an the initial facilitation workshop for Alaska Energy Ambassadors held at the U.S. Fish & Wildlife Service Regional Office in Anchorage in September. Photo by Jared Temanson,...

  17. Title 5 Alaska Administrative Code Chapter 95 Protection of Fish...

    Open Energy Info (EERE)

    Chapter 95 Protection of Fish and Game Habitat Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: Title 5 Alaska...

  18. Alaska LNG Project LLC- 14-96-LNG

    Broader source: Energy.gov [DOE]

    The Office of Fossil Energy gives notice of receipt of an application filed on July 18, 2014, by, Alaska LNG Project LLC submits this application requesting long-term authorization to export 20...

  19. Mesoscale Eddies in the Gulf of Alaska: Observations and Implications

    E-Print Network [OSTI]

    Rovegno, Peter

    2012-01-01T23:59:59.000Z

    M. T. , Lohan, M. C. , & Bruland, K. W. 2011. Reactive ironChair Professor Kenneth W. Bruland Professor Raphael Kudelaof Alaska as a whole. The Bruland Lab, drawing on data taken

  20. State of Alaska Department of Transportation and Public Facilities...

    Open Energy Info (EERE)

    search OpenEI Reference LibraryAdd to library Form: State of Alaska Department of Transportation and Public Facilities - Utility Permit Abstract This document is an example of a...

  1. Microsoft Word - Alaska LNG Export License Letter November 14...

    Broader source: Energy.gov (indexed) [DOE]

    Washington, DC 20026-4375 Sent via email to: fergas@hq.doe.gov Re: FE Docket No: 14-96-LNG To Whom It May Concern: Please accept the following comments from the Alaska State...

  2. QER- Comment of Alaska Department of Natural Resources

    Broader source: Energy.gov [DOE]

    To Whom It May Concern: Attached please find the State of Alaska Department of Natural Resources’ official comments on the Quadrennial Energy Review being conducted by the Department of Energy pursuant to Presidential Memorandum of January 9, 2014.

  3. Alaska Energy in Action: Akiak Reaps Benefits of PCE Technical...

    Energy Savers [EERE]

    in Action: Akiak Reaps Benefits of PCE Technical Assistance Alaska Energy in Action: Akiak Reaps Benefits of PCE Technical Assistance March 11, 2015 - 1:16pm Addthis Ruth Gilila...

  4. Mesoscale Eddies in the Gulf of Alaska: Observations and Implications

    E-Print Network [OSTI]

    Rovegno, Peter

    2012-01-01T23:59:59.000Z

    Chao, Y. 2012. Modeling the mesoscale eddy field in the GulfShriver, J. F. 2001. Mesoscale variability in the boundaryof the Gulf of Alaska mesoscale circulation. Progress in

  5. alaska initiative fact: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 121 Large-Scale Climate Controls of Interior Alaska River Ice Breakup PETER A. BIENIEK AND UMA S. BHATT...

  6. Alaska Prudhoe Bay Crude Oil Shut-in Report

    Reports and Publications (EIA)

    2006-01-01T23:59:59.000Z

    Background and facts on Alaska's crude oil reserves, production, and transportation with the Energy Information Administration's analysis of potential shut-in impacts on U.S. oil markets.

  7. ,"Alaska (with Total Offshore) Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments; Unit:1996..........RegionTotalPriceShare of

  8. ,"Alaska (with Total Offshore) Natural Gas Plant Liquids, Expected Future Production (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments; Unit:1996..........RegionTotalPriceShare ofPlant Liquids,

  9. The submerged offshore breakwater and its effects on seafloor topography

    E-Print Network [OSTI]

    Tallent, James Russell

    1986-01-01T23:59:59.000Z

    THE SUBMERGED OFFSHORE BREAKWATER AND ITS EFFECTS ON SEAFLOOR TOPOGRAPHY A Thesis by JAMES RUSSELL TALLENT Submitted to the Graduate College of Texas AGM University in partial fulfillment of the requirements for the degree of MASTER... OF SCIENCE December 19BG Major Subject: Civil Engineering THE SUBMERGEO OFFSHORE BREAKWATER AND ITS EFFECTS ON SEAFLOOR TOPOGRAPHY A Thesis by JAMES RUSSELL TALLENT Approved as to style and content by: John B. Herbich (Chairman) Lauriston R. King...

  10. Understanding Energy Code Acceptance within the Alaska Building Community

    SciTech Connect (OSTI)

    Mapes, Terry S.

    2012-02-14T23:59:59.000Z

    This document presents the technical assistance provided to the Alaska Home Financing Corporation on behalf of PNNL regarding the assessment of attitudes toward energy codes within the building community in Alaska. It includes a summary of the existing situation and specific assistance requested by AHFC, the results of a questionnaire designed for builders surveyed in a suburban area of Anchorage, interviews with a lender, a building official, and a research specialist, and recommendations for future action by AHFC.

  11. Provenance and diagenesis of the Ivishak Sandstone, northern Alaska 

    E-Print Network [OSTI]

    Burch, Gary Kenneth

    1984-01-01T23:59:59.000Z

    PROVENANCE AND DIAGENESIS OF THE IVISHAK SANDSTONE, NORTHERN ALASKA A Thesis by GARY KENNETH BURCH Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirement for tbe degree of MASTER OF SCIENCE... August 1984 Major Subject: Geology PROVENANCE AND DIAGENESIS OF THE IVISHAK SANDSTONE, NORTHERN ALASKA A Thesis by GARY KENNETH BURGH Approved as to style and content by: Jam . Mazzullo (Chairman of Committee) Robert R. Berg (Member) Robert C...

  12. Conceptual Model of Offshore Wind Environmental Risk Evaluation System

    SciTech Connect (OSTI)

    Anderson, Richard M.; Copping, Andrea E.; Van Cleve, Frances B.; Unwin, Stephen D.; Hamilton, Erin L.

    2010-06-01T23:59:59.000Z

    In this report we describe the development of the Environmental Risk Evaluation System (ERES), a risk-informed analytical process for estimating the environmental risks associated with the construction and operation of offshore wind energy generation projects. The development of ERES for offshore wind is closely allied to a concurrent process undertaken to examine environmental effects of marine and hydrokinetic (MHK) energy generation, although specific risk-relevant attributes will differ between the MHK and offshore wind domains. During FY10, a conceptual design of ERES for offshore wind will be developed. The offshore wind ERES mockup described in this report will provide a preview of the functionality of a fully developed risk evaluation system that will use risk assessment techniques to determine priority stressors on aquatic organisms and environments from specific technology aspects, identify key uncertainties underlying high-risk issues, compile a wide-range of data types in an innovative and flexible data organizing scheme, and inform planning and decision processes with a transparent and technically robust decision-support tool. A fully functional version of ERES for offshore wind will be developed in a subsequent phase of the project.

  13. How to reduce sigma in offshore pipe fabrications

    SciTech Connect (OSTI)

    Still, J.

    1999-11-01T23:59:59.000Z

    The use of stainless steel for offshore oil and gas applications has increased dramatically over the last 20 years. Stainless steels fall into a number of categories depending on the composition and microstructure formed after heat treatment. Selection of pipe materials for offshore applications is dependent on the product to be carried. Austenitic and ferritic/austenitic (duplex) stainless steels are commonly used for process and utility piping systems offshore, whereas martensitic and ferritic are restricted to specific applications. Reference to sigma in offshore welding specifications has been mixed. Previously, the identification of sigma was wither not quoted or stated as being not permitted. However, achieving zero sigma content in duplex stainless steel welds and HAZs is questionable, particularly in steels and weld metals having a high chromium and molybdenum content. In the real world, how does one ensure that production welds performed offshore are free of sigma--or have a limited volume fraction of it--without having to constantly monitor welder performance? This review examines the difficulties and controls required to limit the presence of sigma in austenitic and duplex weld metals and HAZs associated with offshore piping and pipeline systems. Materials described here are those manufactured using contemporary steel making processes.

  14. Alaska Sea Grant Marine Advisory Program Webinar: Climate Change Adaptation for an at-Risk Community in Shaktoolik, Alaska

    Broader source: Energy.gov [DOE]

    Hosted by the Alaska Sea Grant Marine Advisory Program, this webinar will cover the Norton Sound Village of Shaktoolik, which faced serious threats of erosion and flooding resulting from climate change.

  15. U.S. Offshore Wind Manufacturing and Supply Chain Development

    SciTech Connect (OSTI)

    Hamilton, Bruce Duncan [Navigant Consulting, Inc.

    2013-02-22T23:59:59.000Z

    The objective of the report is to provide an assessment of the domestic supply chain and manufacturing infrastructure supporting the U.S. offshore wind market. The report provides baseline information and develops a strategy for future development of the supply chain required to support projected offshore wind deployment levels. A brief description of each of the key chapters includes: » Chapter 1: Offshore Wind Plant Costs and Anticipated Technology Advancements. Determines the cost breakdown of offshore wind plants and identifies technical trends and anticipated advancements in offshore wind manufacturing and construction. » Chapter 2: Potential Supply Chain Requirements and Opportunities. Provides an organized, analytical approach to identifying and bounding the uncertainties associated with a future U.S. offshore wind market. It projects potential component-level supply chain needs under three demand scenarios and identifies key supply chain challenges and opportunities facing the future U.S. market as well as current suppliers of the nation’s land-based wind market. » Chapter 3: Strategy for Future Development. Evaluates the gap or competitive advantage of adding manufacturing capacity in the U.S. vs. overseas, and evaluates examples of policies that have been successful . » Chapter 4: Pathways for Market Entry. Identifies technical and business pathways for market entry by potential suppliers of large-scale offshore turbine components and technical services. The report is intended for use by the following industry stakeholder groups: (a) Industry participants who seek baseline cost and supplier information for key component segments and the overall U.S. offshore wind market (Chapters 1 and 2). The component-level requirements and opportunities presented in Section 2.3 will be particularly useful in identifying market sizes, competition, and risks for the various component segments. (b) Federal, state, and local policymakers and economic development agencies, to assist in identifying policies with low effort and high impact (Chapter 3). Section 3.3 provides specific policy examples that have been demonstrated to be effective in removing barriers to development. (c) Current and potential domestic suppliers in the offshore wind market, in evaluating areas of opportunity and understanding requirements for participation (Chapter 4). Section 4.4 provides a step-by-step description of the qualification process that suppliers looking to sell components into a future U.S. offshore wind market will need to follow.

  16. Coupled Dynamic Analysis of Large-Scale Mono-Column Offshore Wind Turbine with a Single Tether Hinged in Seabed

    E-Print Network [OSTI]

    Chen, Jieyan

    2012-10-19T23:59:59.000Z

    The increased interest in the offshore wind resource in both industry and academic and the extension of the wind field where offshore wind turbine can be deployed has stimulated quite a number of offshore wind turbines concepts. This thesis presents...

  17. Coupled Dynamic Analysis of Large-Scale Mono-Column Offshore Wind Turbine with a Single Tether Hinged in Seabed 

    E-Print Network [OSTI]

    Chen, Jieyan

    2012-10-19T23:59:59.000Z

    The increased interest in the offshore wind resource in both industry and academic and the extension of the wind field where offshore wind turbine can be deployed has stimulated quite a number of offshore wind turbines concepts. This thesis presents...

  18. igure 1. Map of N. Alaska and NW Canada Showing the Locations...

    U.S. Energy Information Administration (EIA) Indexed Site

    1. Map of Northern Alaska and Northwestern Canada Showing the Locations of the National Petroleum Reserve-Alaska (NPR-A), Arctic National Wildlife Refuge (ANWR), 1002 Area, Current...

  19. SEMI-ANNUAL REPORTS FOR ALASKA LNG PROJECT, LLC - FE DKT NO....

    Office of Environmental Management (EM)

    ALASKA LNG PROJECT, LLC - FE DKT NO. 14-96-LNG - ORDER 3643 (NFTA) SEMI-ANNUAL REPORTS FOR ALASKA LNG PROJECT, LLC - FE DKT NO. 14-96-LNG - ORDER 3643 (NFTA) No reports submitted....

  20. Synergistic Effects of Turbine Wakes and Atmospheric Stability on Power Production at an Onshore Wind Farm

    SciTech Connect (OSTI)

    Wharton, S; Lundquist, J K; Marjanovic, N

    2012-01-25T23:59:59.000Z

    This report examines the complex interactions between atmospheric stability and turbine-induced wakes on downwind turbine wind speed and power production at a West Coast North American multi-MW wind farm. Wakes are generated when the upwind flow field is distorted by the mechanical movement of the wind turbine blades. This has two consequences for downwind turbines: (1) the downwind turbine encounters wind flows with reduced velocity and (2) the downwind turbine encounters increased turbulence across multiple length scales via mechanical turbulence production by the upwind turbine. This increase in turbulence on top of ambient levels may increase aerodynamic fatigue loads on the blades and reduce the lifetime of turbine component parts. Furthermore, ambient atmospheric conditions, including atmospheric stability, i.e., thermal stratification in the lower boundary layer, play an important role in wake dissipation. Higher levels of ambient turbulence (i.e., a convective or unstable boundary layer) lead to higher turbulent mixing in the wake and a faster recovery in the velocity flow field downwind of a turbine. Lower levels of ambient turbulence, as in a stable boundary layer, will lead to more persistent wakes. The wake of a wind turbine can be divided into two regions: the near wake and far wake, as illustrated in Figure 1. The near wake is formed when the turbine structure alters the shape of the flow field and usually persists one rotor diameter (D) downstream. The difference between the air inside and outside of the near wake results in a shear layer. This shear layer thickens as it moves downstream and forms turbulent eddies of multiple length scales. As the wake travels downstream, it expands depending on the level of ambient turbulence and meanders (i.e., travels in non-uniform path). Schepers estimates that the wake is fully expanded at a distance of 2.25 D and the far wake region begins at 2-5 D downstream. The actual distance traveled before the wake recovers to its inflow velocity is dependent on the amount ambient turbulence, the amount of wind shear, and topographical and structural effects. The maximum velocity deficit is estimated to occur at 1-2 D but can be longer under low levels of ambient turbulence. Our understanding of turbine wakes comes from wind tunnel experiments, field experiments, numerical simulations, and from studies utilizing both experimental and modeling methods. It is well documented that downwind turbines in multi-Megawatt wind farms often produce less power than upwind turbine rows. These wake-induced power losses have been estimated from 5% to up to 40% depending on the turbine operating settings (e.g., thrust coefficient), number of turbine rows, turbine size (e.g., rotor diameter and hub-height), wind farm terrain, and atmospheric flow conditions (e.g., ambient wind speed, turbulence, and atmospheric stability). Early work by Elliott and Cadogan suggested that power data for different turbulent conditions be segregated to distinguish the effects of turbulence on wind farm power production. This may be especially important for downwind turbines within wind farms, as chaotic and turbulent wake flows increase stress on downstream turbines. Impacts of stability on turbine wakes and power production have been examined for a flat terrain, moderate size (43 turbines) wind farm in Minnesota and for an offshore, 80 turbine wind farm off the coast of Denmark. Conzemius found it difficult to distinguish wakes (i.e., downwind velocity deficits) when the atmosphere was convective as large amounts of scatter were present in the turbine nacelle wind speed data. This suggested that high levels of turbulence broke-up the wake via large buoyancy effects, which are generally on the order of 1 km in size. On the other hand, they found pronounced wake effects when the atmosphere was very stable and turbulence was either suppressed or the length scale was reduced as turbulence in this case was mechanically produced (i.e., friction forces). This led to larger reductions at downwind turbines and maximum ve

  1. Resource Assessment of the In-Place and Potentially Recoverable Deep Natural Gas Resource of the Onshore Interior Salt Basins, North Central and Northeastern Gulf of Mexico

    SciTech Connect (OSTI)

    Ernest A. Mancini; Paul Aharon; Donald A. Goddard; Roger Barnaby

    2005-10-28T23:59:59.000Z

    The principal research effort for Year 2 of the project has been petroleum system characterization and modeling. Understanding the burial, thermal maturation, and hydrocarbon expulsion histories of the strata in the onshore interior salt basins of the North Central and Northeastern Gulf of Mexico areas is important in hydrocarbon resource assessment. The underburden and overburden rocks in these basins and subbasins are a product of their rift-related geohistory. Petroleum source rock analysis and initial thermal maturation and hydrocarbon expulsion modeling indicated that an effective regional petroleum source rock in the onshore interior salt basins and subbasins, the North Louisiana Salt Basin, Mississippi Interior Salt Basin, Manila Subbasin and Conecuh Subbasin, was Upper Jurassic Smackover lime mudstone. The initial modeling also indicated that hydrocarbon generation and expulsion were initiated in the Early Cretaceous and continued into the Tertiary in the North Louisiana Salt Basin and the Mississippi Interior Salt Basin and that hydrocarbon generation and expulsion were initiated in the Late Cretaceous and continued into the Tertiary in the Manila Subbasin and Conecuh Subbasin. Refined thermal maturation and hydrocarbon expulsion modeling and additional petroleum source rock analysis have confirmed that the major source rock in the onshore interior salt basins and subbasins is Upper Jurassic Smackover lime mudstone. Hydrocarbon generation and expulsion were initiated in the Early to Late Cretaceous and continued into the Tertiary.

  2. Modeling of Energy Production Decisions: An Alaska Oil Case Study

    E-Print Network [OSTI]

    Leighty, Wayne

    2008-01-01T23:59:59.000Z

    of papers on the Gulf of Mexico oil industry is perhaps theof offshore oil and gas activities in the Gulf of Mexico:oil and gas activities by water depth in the Gulf of Mexico

  3. Some Effects of DDT on the Ecology of Salmon Streams in Southeastern Alaska

    E-Print Network [OSTI]

    542 Some Effects of DDT on the Ecology of Salmon Streams in Southeastern Alaska By Roger J. ReedKernan, Director Some Effects of DDT on the Ecology of Salmon Streams in Southeastern Alaska By ROGER J. REED Literature cited 14 #12;#12;Some Effects of DDT on the Ecology of Salmon Streams in Southeastern Alaska

  4. Development of Offshore Wind Recommended Practice for U.S. Waters: Preprint

    SciTech Connect (OSTI)

    Musial, W. D.; Sheppard, R. E.; Dolan, D.; Naughton, B.

    2013-04-01T23:59:59.000Z

    This paper discusses how the American Petroleum Institute oil and gas standards were interfaced with International Electrotechnical Commission and other wind turbine and offshore industry standards to provide guidance for reliable engineering design practices for offshore wind energy systems.

  5. Final Report DE-EE0005380 - Assessment of Offshore Wind Farm...

    Office of Environmental Management (EM)

    DE-EE0005380 - Assessment of Offshore Wind Farm Effects on Sea Surface, Subsurface and Airborne Electronic Systems Final Report DE-EE0005380 - Assessment of Offshore Wind Farm...

  6. Floating offshore wind farms : demand planning & logistical challenges of electricity generation

    E-Print Network [OSTI]

    Nnadili, Christopher Dozie, 1978-

    2009-01-01T23:59:59.000Z

    Floating offshore wind farms are likely to become the next paradigm in electricity generation from wind energy mainly because of the near constant high wind speeds in an offshore environment as opposed to the erratic wind ...

  7. Large-Scale Offshore Wind Power in the United States: Executive Summary

    SciTech Connect (OSTI)

    Musial, W.; Ram, B.

    2010-09-01T23:59:59.000Z

    This document provides a summary of a 236-page NREL report that provides a broad understanding of today's offshore wind industry, the offshore wind resource, and the associated technology challenges, economics, permitting procedures, and potential risks and benefits.

  8. Federal offshore statistics: 1992. Leasing, exploration, production, and revenues as of December 31, 1992

    SciTech Connect (OSTI)

    Francois, D.K.

    1993-12-31T23:59:59.000Z

    The Outer Continental Shelf Lands Act, enacted in 1953 and amended several times, charges the Secretary of the Interior with the responsibility for administering and managing mineral exploration and development of the outer continental shelf, as well as for conserving its natural resources. This report documents the following: Federal offshore lands; offshore leasing activity and status; offshore development activity; offshore production of crude oil and natural gas; Federal offshore oil and natural gas sales volume and royalties; revenue from Federal offshore leases; disbursement of Federal offshore revenue; reserves and resource estimates of offshore oil and natural gas; oil pollution in US and international waters; and international activities and marine minerals. 11 figs., 83 tabs.

  9. DOE Launches High-Tech Research Buoys to Advance U.S. Offshore...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Launches High-Tech Research Buoys to Advance U.S. Offshore Wind Development DOE Launches High-Tech Research Buoys to Advance U.S. Offshore Wind Development May 18, 2015 - 3:18pm...

  10. First U.S. Grid-Connected Offshore Wind Turbine Installed Off...

    Office of Environmental Management (EM)

    First U.S. Grid-Connected Offshore Wind Turbine Installed Off the Coast of Maine First U.S. Grid-Connected Offshore Wind Turbine Installed Off the Coast of Maine October 1, 2013 -...

  11. U.S. Department of Energy and SWAY Collaborate on Offshore Wind...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    U.S. Department of Energy and SWAY Collaborate on Offshore Wind Demonstration Project U.S. Department of Energy and SWAY Collaborate on Offshore Wind Demonstration Project October...

  12. United States- Land Based and Offshore Annual Average Wind Speed at 100 Meters

    Broader source: Energy.gov [DOE]

    Full-size, high resolution version of the 100-meter land-based and offshore wind speed resource map.

  13. Lower cost offshore field development utilizing autonomous vehicles

    SciTech Connect (OSTI)

    Frisbie, F.R.; Vie, K.J.; Welch, D.W.

    1996-12-31T23:59:59.000Z

    The offshore oil and gas industry has the requirement to inspect offshore oil and gas pipelines for scour, corrosion and damage as well as inspect and intervene on satellite production facilities. This task is currently performed with Remotely Operated Vehicles (ROV) operated from dynamically positioned (DP) offshore supply or diving support boats. Currently, these tasks are expensive due to the high day rates for DP ships and the slow, umbilical impeded, 1 knot inspection rates of the tethered ROVs, Emerging Autonomous Undersea Vehicle (AUV) technologies offer opportunities to perform these same inspection tasks for 50--75% lower cost, with comparable or improved quality. The new generation LAPV (Linked Autonomous Power Vehicles) will operate from fixed facilities such as TLPs or FPFs and cover an operating field 10 kms in diameter.

  14. Offshore Renewable Energy R&D (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01T23:59:59.000Z

    This fact sheet describes the offshore renewable energy R&D efforts at NREL's NWTC. As the United States increases its efforts to tap the domestic energy sources needed to diversify its energy portfolio and secure its energy supply, more attention is being focused on the rich renewable resources located offshore. Offshore renewable energy sources include offshore wind, waves, tidal currents, ocean and river currents, and ocean thermal gradients. According to a report published by the National Renewable Energy Laboratory (NREL) in 2010,1 U.S. offshore wind resources have a gross potential generating capacity four times greater than the nation's present electric capacity, and the Electric Power Research Institute estimates that the nation's ocean energy resources could ultimately supply at least 10% of its electric supply. For more than 30 years, NREL has advanced the science of renewable energy while building the capabilities to guide rapid deployment of commercial applications. Since 1993, NREL's National Wind Technology Center (NWTC) has been the nation's premier wind energy research facility, specializing in the advancement of wind technologies that range in size from a kilowatt to several megawatts. For more than 8 years, the NWTC has been an international leader in the field of offshore floating wind system analysis. Today, researchers at the NWTC are taking their decades of experience and extensive capabilities and applying them to help industry develop cost-effective hydrokinetic systems that convert the kinetic energy in water to provide power for our nation's heavily populated coastal regions. The center's capabilities and experience cover a wide spectrum of wind and water energy engineering disciplines, including atmospheric and ocean fluid mechanics, aerodynamics; aeroacoustics, hydrodynamics, structural dynamics, control systems, electrical systems, and testing.

  15. Review of technology for Arctic offshore oil and gas recovery

    SciTech Connect (OSTI)

    Sackinger, W. M.

    1980-08-01T23:59:59.000Z

    The technical background briefing report is the first step in the preparation of a plan for engineering research oriented toward Arctic offshore oil and gas recovery. A five-year leasing schedule for the ice-prone waters of the Arctic offshore is presented, which also shows the projected dates of the lease sale for each area. The estimated peak production rates for these areas are given. There is considerable uncertainty for all these production estimates, since no exploratory drilling has yet taken place. A flow chart is presented which relates the special Arctic factors, such as ice and permafrost, to the normal petroleum production sequence. Some highlights from the chart and from the technical review are: (1) in many Arctic offshore locations the movement of sea ice causes major lateral forces on offshore structures, which are much greater than wave forces; (2) spray ice buildup on structures, ships and aircraft will be considerable, and must be prevented or accommodated with special designs; (3) the time available for summer exploratory drilling, and for deployment of permanent production structures, is limited by the return of the pack ice. This time may be extended by ice-breaking vessels in some cases; (4) during production, icebreaking workboats will service the offshore platforms in most areas throughout the year; (5) transportation of petroleum by icebreaking tankers from offshore tanker loading points is a highly probable situation, except in the Alaskan Beaufort; and (6) Arctic pipelines must contend with permafrost, making instrumentation necessary to detect subtle changes of the pipe before rupture occurs.

  16. Exploring Flexible Strategies in Engineering Systems Using Screening Models Applications to Offshore Petroleum Projects

    E-Print Network [OSTI]

    de Weck, Olivier L.

    , such as offshore petroleum exploration and production systems, generally require a significant amount of capital to Offshore Petroleum Projects by Jijun Lin B.E., Mechanical Engineering, Beijing University of Aeronautics Flexible Strategies in Engineering Systems Using Screening Models Applications to Offshore Petroleum

  17. Offshore Wind Jobs and Economic Development Impact: Four Regional Scenarios (Presentation)

    SciTech Connect (OSTI)

    Tegen, S.

    2014-11-01T23:59:59.000Z

    NREL's Jobs and Economic Development Impact (JEDI) Model for Offshore Wind, is a computer tool for studying the economic impacts of fixed-bottom offshore wind projects in the United States. This presentation provides the results of an analysis of four offshore wind development scenarios in the Southeast Atlantic, Great Lakes, Mid-Atlantic, and Gulf of Mexico regions.

  18. 1 1 1 1 1 1 2 2 Network of offshore wind farms connected by

    E-Print Network [OSTI]

    Heinemann, Detlev

    2 33 3 3 1 1 1 1 1 1 2 2 Network of offshore wind farms connected by gas insulated transmission of connecting these offshore wind farms by gas in- sulated transmission lines (GIL) is investigated. Aim, Germany Corresponding author: anja.drews@forwind.de Offshore wind parks in different stages.Green- in op

  19. Mesoscale modelling for an offshore wind farm Jake Badger*, Rebecca Barthelmie, Sten Frandsen, Merete Bruun Christiansen

    E-Print Network [OSTI]

    Mesoscale modelling for an offshore wind farm Jake Badger*, Rebecca Barthelmie, Sten Frandsen for an offshore wind farm in a coastal location. Spatial gradients and vertical profiles between 25 m and 70 m offshore wind farms tend to be placed within the coastal zone, the region within around 50km from

  20. A REAL OPTIONS OPTIMIZATION MODEL TO MEET AVAILABILITY REQUIREMENTS FOR OFFSHORE WIND TURBINES

    E-Print Network [OSTI]

    Sandborn, Peter

    wind farm with prognostic capabilities. Alternative energy sources such as offshore wind turbines-based maintenance. This is especially important for offshore wind farms that require non- traditional resources for a Typical Baseline Offshore Wind Project [2] Wind farms are capital intensive projects, and the economics

  1. TRANSMISSION OPTIONS FOR OFFSHORE WIND FARMS IN THE UNITED STATES Sally D. Wright, PE

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    TRANSMISSION OPTIONS FOR OFFSHORE WIND FARMS IN THE UNITED STATES Sally D. Wright, PE Anthony L@ecs.umass.edu, rerl@ecs.umass.edu Abstract While offshore wind farms have been installed in Europe for over a decade an introduction to transmission issues for offshore wind farms in North America, aimed towards non

  2. California offshore wind energy potential Michael J. Dvorak a,*, Cristina L. Archer b

    E-Print Network [OSTI]

    California (CA). The siting of an offshore wind farm is limited by water depth, with shallow water being generally preferable economically. Acceptable depths for offshore wind farms are divided into three based wind farms which peak at night, the offshore winds near Cape Mendocino are consistently fast

  3. Modelling of offshore wind turbine wakes with the wind farm program FLaP

    E-Print Network [OSTI]

    Heinemann, Detlev

    Modelling of offshore wind turbine wakes with the wind farm program FLaP Bernhard Lange(1) , Hans from the Danish offshore wind farm Vindeby. Vertical wake profiles and mean turbulence intensities are not modelled satisfactorily. Keywords: Offshore, wind farm, wake model, Vindeby, turbulence intensity

  4. EVALUATION OF MODELS FOR THE VERTICAL EXTRAPOLATION OF WIND SPEED MEASUREMENTS AT OFFSHORE SITES

    E-Print Network [OSTI]

    Heinemann, Detlev

    sites. The first large offshore wind farms are currently being built in several countries in Europe. For the planning of offshore wind farms the vertical wind speed profile is needed for two main reasons: WindEVALUATION OF MODELS FOR THE VERTICAL EXTRAPOLATION OF WIND SPEED MEASUREMENTS AT OFFSHORE SITES

  5. ENERGY FOR SUSTAINABILITY: HIGHLY COMPLIANT FLOATING OFFSHORE WIND TURBINES: FEASIBILITY ASSESSMENT THROUGH THEORY, SIMULATION AND DESIGN

    E-Print Network [OSTI]

    Sweetman, Bert

    revolution that enables economic development of wind farms in very challenging deepwater offshore locationsA-1 ENERGY FOR SUSTAINABILITY: HIGHLY COMPLIANT FLOATING OFFSHORE WIND TURBINES: FEASIBILITY surrounding Europe, and plans are in place for offshore developments in the US. Locating these wind turbines

  6. RWT TOOL: OFFSHORE WIND ENERGY MAPPING FROM SAR C. B. Hasager, M. Nielsen, M. B. Christiansen

    E-Print Network [OSTI]

    much interest during the last decade. The adventure started in 1991 when the first offshore wind farm. New development plans near Horns Rev and Nysted are ongoing. Offshore wind farms are in development the highest spatial detail (~500 m by 500 m grid cells) and are observed within the offshore `wind-farming

  7. Novel Foundations for Offshore Wind Farms Research Proposal to EPSRC (August 2001)

    E-Print Network [OSTI]

    Byrne, Byron

    1 Novel Foundations for Offshore Wind Farms Research Proposal to EPSRC (August 2001) Prof G offshore foundations, in situ testing, tunnelling and reinforced soil). Only projects on shallow foundation grant GR/M55657 ( 17k) was for instrumentation of a field trial of an offshore caisson. Some preliminary

  8. Risk Analysis DOI: 10.1111/risa.12085 Quantifying the Hurricane Catastrophe Risk to Offshore

    E-Print Network [OSTI]

    Jaramillo, Paulina

    to generate 20% of its electricity from wind. Developers are actively planning offshore wind farms along the URisk Analysis DOI: 10.1111/risa.12085 Quantifying the Hurricane Catastrophe Risk to Offshore Wind of Energy has estimated that over 50 GW of offshore wind power will be required for the United States

  9. Influence of Nonlinear Irregular Waves on the Fatigue Loads of an Offshore Wind Turbine

    E-Print Network [OSTI]

    Papalambros, Panos

    it acts as a bottleneck to the realization of offshore wind farms that can compete with traditional energy sources [3]. Currently, offshore wind farms are typically sited in coastal areas with water depths aroundInfluence of Nonlinear Irregular Waves on the Fatigue Loads of an Offshore Wind Turbine Michiel B

  10. Importance of thermal effects and sea surface roughness for offshore wind resource assessment

    E-Print Network [OSTI]

    Heinemann, Detlev

    sites. The first large offshore wind farms are currently being built in several countries in EuropeImportance of thermal effects and sea surface roughness for offshore wind resource assessment National Laboratory, Roskilde, Denmark Abstract The economic feasibility of offshore wind power utilisation

  11. Environmental impact for offshore wind farms: Geolocalized Life Cycle Assessment (LCA) approach

    E-Print Network [OSTI]

    Boyer, Edmond

    Environmental impact for offshore wind farms: Geolocalized Life Cycle Assessment (LCA) approach and floating offshore wind farms. This work was undertaken within the EU- sponsored EnerGEO project, aiming, and its use for the evaluation of environmental impacts of wind energy. The effects of offshore wind farms

  12. LiDAR observations of offshore winds at future wind turbine operating heights

    E-Print Network [OSTI]

    at the Horns Rev offshore wind farm. The influence of atmospheric stability on the surface layer wind shear of offshore wind farms in the coming years. In contrast with the situation over land, the knowledge turbine manufacturers and wind farm developers, although the offshore environment represents other

  13. Offshore Wind Turbine Design: Addressing Uncertainty Drivers Sten Frandsen Niels Jacob Tarp-Johansen

    E-Print Network [OSTI]

    the next generation of offshore wind farms are designed. The aim of this paper is to discuss existingOffshore Wind Turbine Design: Addressing Uncertainty Drivers Sten Frandsen Niels Jacob Tarp@civil.auc.dk leje@elsam-eng.com Abstract: Current offshore wind turbine design methods have matured to a 1st

  14. Optimal Selection of AC Cables for Large Scale Offshore Wind Farms

    E-Print Network [OSTI]

    Hu, Weihao

    Optimal Selection of AC Cables for Large Scale Offshore Wind Farms Peng Hou, Weihao Hu, Zhe Chen@et.aau.dk, whu@iet.aau.dk, zch@iet.aau.dk Abstract--The investment of large scale offshore wind farms is high the operational requirements of the offshore wind farms and the connected power systems. In this paper, a new cost

  15. RECYCLING AND REMOVAL OF OFFSHORE WIND TURBINES AN INTERACTIVE METHOD FOR REDUCTION OF NEGATIVE ENVIRONMENTAL EFFECTS

    E-Print Network [OSTI]

    phases of new wind turbines. There are plans about offshore wind farms in many countries e.g. in northernRECYCLING AND REMOVAL OF OFFSHORE WIND TURBINES ­ AN INTERACTIVE METHOD FOR REDUCTION OF NEGATIVE and an analysis of future removal and recycling processes of offshore wind turbines. The method is process

  16. MODELLING THE VERTICAL WIND SPEED AND TURBULENCE INTENSITY PROFILES AT PROSPECTIVE OFFSHORE WIND FARM SITES

    E-Print Network [OSTI]

    Heinemann, Detlev

    MODELLING THE VERTICAL WIND SPEED AND TURBULENCE INTENSITY PROFILES AT PROSPECTIVE OFFSHORE WIND important for offshore wind energy utilisation are discussed and tested: Four models for the surface tested with data from the offshore field measurement Rødsand by extrapolating the measured 10 m wind

  17. Short-term Forecasting of Offshore Wind Farm Production Developments of the Anemos Project

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Short-term Forecasting of Offshore Wind Farm Production ­ Developments of the Anemos Project J to the large dimensions of offshore wind farms, their electricity production must be known well in advance networks) models were calibrated on power data from two offshore wind farms: Tunoe and Middelgrunden

  18. Comparison of Wake Model Simulations with Offshore Wind Turbine Wake Profiles Measured by Sodar

    E-Print Network [OSTI]

    Pryor, Sara C.

    a ship-mounted sodar at a small offshore wind farm. The experiments were conducted at varying distances Offshore wind farms have increased in size from the first phase of installation with up to 20 turbinesComparison of Wake Model Simulations with Offshore Wind Turbine Wake Profiles Measured by Sodar R

  19. Wind resources and wind farm wake effects offshore observed from satellite

    E-Print Network [OSTI]

    Wind resources and wind farm wake effects offshore observed from satellite Charlotte Bay Hasager to quantify the wake effect at two large offshore wind farms in Denmark. It is found that the wake velocity further. There is fast progress on planning and installation of offshore wind farms in the European waters

  20. A FETCH DEPENDENT MODEL OF SEA SURFACE ROUGHNESS FOR OFFSHORE WIND POWER UTILISATION

    E-Print Network [OSTI]

    Heinemann, Detlev

    , Resources, Roughness, Coastal Sea Areas, Waves, Rødsand 1 INTRODUCTION Large offshore wind farms are beingA FETCH DEPENDENT MODEL OF SEA SURFACE ROUGHNESS FOR OFFSHORE WIND POWER UTILISATION Bernhard Lange wind conditions of offshore sites, since the higher energy yield has to compensate the additional

  1. Analytical Modelling of Wind Speed Deficit in Large Offshore Wind Farms

    E-Print Network [OSTI]

    Pryor, Sara C.

    Analytical Modelling of Wind Speed Deficit in Large Offshore Wind Farms Sten Frandsen*, Rebecca areas.As is often the need for offshore wind farms, the model handles a regular array geometry for offshore wind farms, the model handles a priori a regular array geometry with straight rows of wind

  2. Feasibility of Underwater Sensor Networks for Lifetime Assessment of Offshore Civil Structures

    E-Print Network [OSTI]

    Zhou, Shengli

    farms, the Middelgrunden and Horn Revs offshore wind farms in Denmark, are considered based on numerical, Middelgrunden and Horns Rev offshore wind farms, are simulated as case studies using numerical simulation. In this paper, the network communication topology and in-network processing algorithm for two offshore wind

  3. GEOL 467/667/MAST 667 -GEOLOGICAL ASPECTS OF OFFSHORE WIND PROJECTS **TENTATIVE** COURSE SYLLABUS

    E-Print Network [OSTI]

    Firestone, Jeremy

    GEOL 467/667/MAST 667 - GEOLOGICAL ASPECTS OF OFFSHORE WIND PROJECTS **TENTATIVE** COURSE SYLLABUS Description: Investigation of the geological and geotechnical aspects of offshore wind projects. Emphasis will be designed around geological and geotechnical topics that are relevant to the development of offshore wind

  4. PREDICTION OF WAVES, WAKES AND OFFSHORE WIND THE RESULTS OF THE POW'WOW PROJECT

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    PREDICTION OF WAVES, WAKES AND OFFSHORE WIND ­ THE RESULTS OF THE POW'WOW PROJECT Gregor Giebel: The POWWOW project (Prediction of Waves, Wakes and Offshore Wind, a EU Coordination Action) aimed to develop. Keywords: Wind resource, wave resource, offshore, short-term prediction, wakes 1 Introduction The nearly

  5. From the SelectedWorks of George R. Parsons Valuing the Visual Disamenity of Offshore Wind

    E-Print Network [OSTI]

    Delaware, University of

    From the SelectedWorks of George R. Parsons May 2011 Valuing the Visual Disamenity of Offshore Wind of Offshore Wind Power Projects at Varying Distances from the Shore: An Application on the Delaware Shoreline Andrew D. Krueger, George R. Parsons, and Jeremy Firestone ABSTRACT. Several offshore wind power projects

  6. From%laggard%to%leader:%% Explaining%offshore%wind%developments%in%

    E-Print Network [OSTI]

    Sussex, University of

    From%laggard%to%leader:%% Explaining%offshore%wind%developments%in% the%UK% Florian!laggard!to!leader:!Explaining! offshore!wind!developments!in!the!UK! Florian Kern1* , Adrian Smith1 , Chris Shaw1 , Rob Raven2 and Bram for publication in Energy Policy, 19 Feb 2014 Abstract Offshore wind technology has recently undergone rapid

  7. GEOL 663 -GEOLOGICAL ASPECTS OF OFFSHORE WIND COURSE SYLLABUS 2014 Fall Semester

    E-Print Network [OSTI]

    Delaware, University of

    GEOL 663 - GEOLOGICAL ASPECTS OF OFFSHORE WIND COURSE SYLLABUS ­ 2014 Fall Semester Course Meets will be designed around geological and geotechnical topics that are relevant to the development of offshore wind wind turbine foundations; 2) A review of existing, or under construction, offshore wind projects; and 3

  8. | | | | |Monday, July 16, 2012 Three Northeast Ohio offshore wind power projects

    E-Print Network [OSTI]

    Rollins, Andrew M.

    | | | | |Monday, July 16, 2012 Home Three Northeast Ohio offshore wind power projects secure federal money By SCOTT SUTTELL 1:52 pm, September 9, 2011 Three Northeast Ohio offshore wind power to "speed technical innovations, lower costs, and shorten the timeline for deploying offshore wind energy

  9. Energy Policy 35 (2007) 15841598 Public opinion about large offshore wind power: Underlying factors

    E-Print Network [OSTI]

    Firestone, Jeremy

    2007-01-01T23:59:59.000Z

    Energy Policy 35 (2007) 1584­1598 Public opinion about large offshore wind power: Underlying opinion regarding offshore wind power based on a survey of residents near a proposed development off Cape, the first offshore wind proposal in North America, in Nantucket Sound (MA, USA) has generated a strong

  10. Offshore wind resources from satellite SAR Charlotte Bay Hasager, Merete Bruun Christiansen, Morten Nielsen,

    E-Print Network [OSTI]

    Offshore wind resources from satellite SAR Charlotte Bay Hasager, Merete Bruun Christiansen, Morten ocean wind maps were described. For offshore wind resource estimation based on satellite observations and the near-coastal zone (up to 40 km offshore) is not mapped. In contrast, Envisat ASAR wind maps can

  11. Evaluation of Offshore Wind Simulations with MM5 in the Japanese and Danish Coastal Waters

    E-Print Network [OSTI]

    Heinemann, Detlev

    Evaluation of Offshore Wind Simulations with MM5 in the Japanese and Danish Coastal Waters Teruo to evaluate the accuracy of offshore wind simulation with the mesoscale model MM5, long-term simulations to simulate offshore wind conditions in the Japanese coastal waters even using a mesoscale model, compared

  12. Investigations of migratory birds during operation of Horns rev offshore wind

    E-Print Network [OSTI]

    Investigations of migratory birds during operation of Horns rev offshore wind farm: Preliminary analyses of bird studies conducted during spring 2004 in relation to the offshore wind farm at Horns Rev of the Horns Rev offshore wind farm - preliminary note on the issue of potential habitat loss. Christensen, T

  13. Effects on birds of an offshore wind park at Horns Rev: Environmental

    E-Print Network [OSTI]

    Effects on birds of an offshore wind park at Horns Rev: Environmental impact assessment NERI Report Environmental Research Institute Effects on birds of an offshore wind park at Horns Rev: Environmental impact of an offshore wind park at Horns Rev: Environmental impact assessment Authors: Henning Noer, Thomas Kjær

  14. VALUING PUBLIC PREFERENCES FOR OFFSHORE WIND POWER: A CHOICE EXPERIMENT APPROACH

    E-Print Network [OSTI]

    Firestone, Jeremy

    VALUING PUBLIC PREFERENCES FOR OFFSHORE WIND POWER: A CHOICE EXPERIMENT APPROACH by Andrew D. Krueger All Rights Reserved #12;ii VALUING PUBLIC PREFERENCES FOR OFFSHORE WIND POWER: A CHOICE EXPERIMENT thank you for your perspective on offshore renewable energy regulation. As committee members, your

  15. www.cesos.ntnu.no Author Centre for Ships and Ocean Structures Offshore Wind Turbine Operation

    E-Print Network [OSTI]

    Nørvåg, Kjetil

    1 www.cesos.ntnu.no Author ­ Centre for Ships and Ocean Structures Offshore Wind Turbine Operation Structures Deep Water Offshore Wind Economic Production Cost WT Life Time : 20 Years Introduction Vast icing for offshore Wind Turbines ? · Wherever there is sea icing ! · Temperature bellow zero degree

  16. SUBSPACE-BASED DETECTION OF FATIGUE DAMAGE ON JACKET SUPPORT STRUCTURES OF OFFSHORE WIND TURBINES

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    SUBSPACE-BASED DETECTION OF FATIGUE DAMAGE ON JACKET SUPPORT STRUCTURES OF OFFSHORE WIND TURBINES-based Damage Detec- tion (SSDD) method on model structures for an utilization of this approach on offshore wind damage in real size structural components of offshore wind turbines. KEYWORDS : Damage detection

  17. Simulation of electricity supply of an Atlantic island by offshore wind turbines and wave

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Simulation of electricity supply of an Atlantic island by offshore wind turbines and wave energy an electricity storage for a 5000 inhabitants island supplied by both marine renewables (offshore wind and waves community. Key words: Wave energy, offshore wind turbines, marine energy 1 Introduction Marine renewables

  18. Influences of offshore environmental conditions on wind shear profile parameters in Nantucket Sound

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    Influences of offshore environmental conditions on wind shear profile parameters in Nantucket Sound@ecs.umass.edu ABSTRACT Simultaneous wind resource and oceanographic data are available from an offshore monitoring tower how oceanographic data can be used to aid offshore wind resource assessment evaluations. This study

  19. CONTINUOUS FATIGUE ASSESSMENT OF AN OFFSHORE WIND TURBINE USING A LIMITED NUMBER OF VIBRATION SENSORS

    E-Print Network [OSTI]

    Boyer, Edmond

    CONTINUOUS FATIGUE ASSESSMENT OF AN OFFSHORE WIND TURBINE USING A LIMITED NUMBER OF VIBRATION, Modal decomposition and expansion, Finite Element Model INTRODUCTION Offshore wind turbines are exposed locations along the structure. This is not the case though in monopile offshore wind turbines, where fatigue

  20. THE INFLUENCE OF WAVES ON THE OFFSHORE WIND Bernhard Lange, Jrgen Hjstrup*

    E-Print Network [OSTI]

    Heinemann, Detlev

    THE INFLUENCE OF WAVES ON THE OFFSHORE WIND RESOURCE Bernhard Lange, Jørgen Højstrup* Risø National and waves and thus in air-sea interaction in general. For predicting the offshore wind climate'8&7,21 The favourable wind resource at offshore compared to land sites is caused by the very low surface roughness

  1. MAST628 Syllabus-8/12/2014 p. 1 Offshore Wind Power: Science, engineering, and policy

    E-Print Network [OSTI]

    Delaware, University of

    MAST628 Syllabus- 8/12/2014 p. 1 Offshore Wind Power: Science, engineering, and policy MAST 628-4842, dveron@udel.edu, Robinson 114B Class web site with lecture notes: www.udel.edu/sakai UD offshore wind the multiple disciplines required to understand, plan, regulate, and develop offshore wind resources for large

  2. MODULAR MULTI-LEVEL CONVERTER BASED HVDC SYSTEM FOR GRID CONNECTION OF OFFSHORE WIND

    E-Print Network [OSTI]

    Chaudhary, Sanjay

    MODULAR MULTI-LEVEL CONVERTER BASED HVDC SYSTEM FOR GRID CONNECTION OF OFFSHORE WIND POWER PLANT U off-shore wind power plants. The MMC consists of a large number of simple voltage sourced converter offshore wind power plants (WPP) because they offer higher energy yield due to a superior wind profile

  3. A FRESH LOOK AT OFFSHORE WIND OPPORTUNITIES IN MASSACHUSETTS Anthony L. Rogers, Ph.D.

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    A FRESH LOOK AT OFFSHORE WIND OPPORTUNITIES IN MASSACHUSETTS Anthony L. Rogers, Ph.D. James F at Amherst Amherst, MA 01003 The utilization of offshore winds for generating electricity was first proposed that offshore wind development anywhere would be unlikely. More recently, a number of European countries have

  4. LEEDCo awarded $4 million to launch offshore wind development on Lake Erie

    E-Print Network [OSTI]

    Rollins, Andrew M.

    LEEDCo awarded $4 million to launch offshore wind development on Lake Erie By Teresa Dixon Murray in the United States, the Lake Erie Energy Development Corp. of Cleveland will launch an offshore wind, Democrat of Ohio, who has pushed for such alternative energy projects for years, said offshore wind could

  5. Incorporating Irregular Nonlinear Waves in Coupled Simulation of Offshore Wind Turbines

    E-Print Network [OSTI]

    Manuel, Lance

    Incorporating Irregular Nonlinear Waves in Coupled Simulation of Offshore Wind Turbines Puneet, and Environmental Engineering The University of Texas, Austin, TX 78712 Design of an offshore wind turbine requires on the support structure (monopile) of an offshore wind turbine. We present the theory for the irregular

  6. AN EVALUATION OF THE WILDLIFE IMPACTS OF OFFSHORE WIND DEVELOPMENT RELATIVE TO FOSSIL FUEL

    E-Print Network [OSTI]

    Firestone, Jeremy

    AN EVALUATION OF THE WILDLIFE IMPACTS OF OFFSHORE WIND DEVELOPMENT RELATIVE TO FOSSIL FUEL POWER. Jarvis All Rights Reserved #12;AN EVALUATION OF THE WILDLIFE IMPACTS OF OFFSHORE WIND DEVELOPMENT in offshore wind energy. I would also like to thank my committee members, Dr. Jeremy Firestone

  7. American Institute of Aeronautics and Astronautics Foundation Models for Offshore Wind Turbines

    E-Print Network [OSTI]

    Manuel, Lance

    American Institute of Aeronautics and Astronautics 1 Foundation Models for Offshore Wind Turbines of alternative models for monopile pile foundations for shallow-water offshore wind turbines has on extreme loads) is the most common type of foundation used today for offshore wind turbines; the support structure connects

  8. 1 Copyright 2007 by ASME SIMULATION OF OFFSHORE WIND TURBINE RESPONSE FOR

    E-Print Network [OSTI]

    Manuel, Lance

    1 Copyright © 2007 by ASME SIMULATION OF OFFSHORE WIND TURBINE RESPONSE FOR EXTREME LIMIT STATES P loads for an offshore wind turbine using simulation, statistical extrapolation is the method of choice in the design of offshore wind turbines against ultimate limit states, and a recent draft [1] of design

  9. DATA NORMALIZATION FOR FOUNDATION SHM OF AN OFFSHORE WIND TURBINE : A REAL-LIFE CASE STUDY

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    DATA NORMALIZATION FOR FOUNDATION SHM OF AN OFFSHORE WIND TURBINE : A REAL-LIFE CASE STUDY Wout the first results in the development of a SHM approach for the foun- dations of an offshore wind turbine the performance of the presented approach. KEYWORDS : Foundation Monitoring, Offshore Wind Turbine, Operational

  10. St h ti d i l i fStochastic dynamic analysis of offshore wind turbines

    E-Print Network [OSTI]

    Nørvåg, Kjetil

    1 St h ti d i l i fStochastic dynamic analysis of offshore wind turbines ­ with emphasis on fatigue Co te ts · Overview of offshore wind technology · Modelling of environmental conditions · Dynamic analysis of offshore bottom-fixed wind turbines · Modelling and dynamic analysis of floating wind turbines

  11. The dynamics of the Mississippi River plume: Impact of topography, wind and offshore forcing

    E-Print Network [OSTI]

    Miami, University of

    The dynamics of the Mississippi River plume: Impact of topography, wind and offshore forcing), The dynamics of the Mississippi River plume: Impact of topography, wind and offshore forcing on the fate of topography, winddriven and eddydriven circulation on the offshore removal of plume waters. A realistically

  12. A MODULAR SHM-SCHEME FOR ENGINEERING STRUCTURES UNDER CHANGING CONDITIONS: APPLICATION TO AN OFFSHORE WIND

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    TO AN OFFSHORE WIND TURBINE Moritz W. H¨ackell1, Raimund Rolfes1 1 Institute of Structural Analysis, Leibniz in common. A shift from fossil to renewable energy source is the logical con- sequence. (Offshore) wind : Offshore Wind Turbine, Machine Learning, Condition Parameter, Control Charts, Affinity Propagation

  13. Estimation of methane flux offshore SW Taiwan and the influence of tectonics on gas hydrate accumulation

    E-Print Network [OSTI]

    Lin, Andrew Tien-Shun

    Estimation of methane flux offshore SW Taiwan and the influence of tectonics on gas hydrate simulating reflectors (BSRs) imply the potential existence of gas hydrates offshore southwestern Taiwan settings in offshore SW Taiwan might strongly control the stability of gas hydrates, and thus affect

  14. A Compilation and Review of Alaska Energy Projects

    SciTech Connect (OSTI)

    Arlon Tussing; Steve Colt

    2008-12-31T23:59:59.000Z

    There have been many energy projects proposed in Alaska over the past several decades, from large scale hydro projects that have never been built to small scale village power projects to use local alternative energy sources, many of which have also not been built. This project was initially intended to review these rejected projects to evaluate the economic feasibility of these ideas in the light of current economics. This review included contacting the agencies responsible for reviewing and funding these projects in Alaska, including the Alaska Energy Authority, the Denali Commission, and the Arctic Energy Technology Development Laboratory, obtaining available information about these projects, and analyzing the economic data. Unfortunately, the most apparent result of this effort was that the data associated with these projects was not collected in a systematic way that allowed this information to be analyzed.

  15. Wind energy resource atlas. Volume 10. Alaska region

    SciTech Connect (OSTI)

    Wise, J.L.; Wentink, T. Jr.; Becker, R. Jr.; Comiskey, A.L.; Elliott, D.L.; Barchet, W.R.; George, R.L.

    1980-12-01T23:59:59.000Z

    This atlas of the wind energy resource is composed of introductory and background information, a regional summary of the wind resource, and assessments of the wind resource in each subregion of Alaska. Background is presented on how the wind resource is assessed and on how the results of the assessment should be interpreted. A description of the wind resource on a state scale is given. The results of the wind energy assessments for each subregion are assembled into an overview and summary of the various features of the Alaska wind energy resource. An outline to the descriptions of the wind resource given for each subregion is included. Assessments for individual subregions are presented as separate chapters. The subregion wind energy resources are described in greater detail than is the Alaska wind energy resource, and features of selected stations are discussed. This preface outlines the use and interpretation of the information found in the subregion chapters.

  16. A study of cyclic pressuremeter testing for offshore applications

    E-Print Network [OSTI]

    Riner, Kenneth Byard

    1984-01-01T23:59:59.000Z

    volume corresponding to the bottom of the Nth cycle. For the curve shown in Figure 1, the secant' shear modulus and the cyclic shear modulus for the Nth cycle are calculated as follows: ~Z(M) P (r +r ) T(N) 4 (r r) R T(N) B(N) ~C(N) T(N) B(N) (2... of cycles. Discussion of C clic Loads Offshore structures are subjected to a complicated and varying wave loading history. The number of wave loading cycles to which an offshore platform may be subjected throughout its life is around 10 cycles...

  17. Offshore Wind Technologie GmbH OWT | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLuOpenNorth AmericaNorthwestOakdaleOdersun AG JumpOffshoreOffshore

  18. Alaska Division of Oil and Gas | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapersWindeySanta2004)AirwaysourceAlaska DepartmentAlaska Division of

  19. Alaska Village Cooperative Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapersWindeySanta2004)AirwaysourceAlaska DepartmentAlaskaVillage

  20. Alaska/Wind Resources/Full Version | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapersWindeySanta2004)AirwaysourceAlaskaAlaska/Wind Resources/Full