National Library of Energy BETA

Sample records for ongoing engineering change

  1. ARM - Engineering Change Request & Engineering Change Order Guidelines

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Change Request & Engineering Change Order Guidelines Page Contents: Guideline for Starting a Request for a New ARM Product, Capability, or Functionality Engineering Task Tracking Tool Tracking Capabilities Getting Closure, the Baseline Change Request Glossary Engineering Change Request & Engineering Change Order Guidelines Requesting Engineered Products and Services in ARM Guideline for Starting a Request for a New ARM Product, Capability, or Functionality The purpose of this guideline

  2. Engineering for Change | Open Energy Information

    Open Energy Info (EERE)

    (American Society of Mechanical Engineers), E4C is a global alliance which now includes IEEE and Engineers Without Borders-USA (EWB-USA). The E4C alliance represents over 500,000...

  3. Shirley Coates Brostmeyer: Changing the (Engineering) Game

    Office of Energy Efficiency and Renewable Energy (EERE)

    In honor of Women’s History Month, we’ve brought you the stories of several women in the energy and science industries -- past, present and future. This week we spoke with Shirley Coates Brostmeyer, co-founder, CEO and owner of Florida Turbine Technologies, to find out what it takes to run a large engineering company.

  4. Engineering Quality while Embracing Change: Lessons Learned

    SciTech Connect (OSTI)

    Marinovici, Maria C.; Kirkham, Harold; Glass, Kevin A.; Carlsen, Leif C.

    2013-01-09

    In an increasingly complex technical environ-ment, failure is accepted as a way of maximizing potential, a way of growing up. Experience can be utilized to improve designs, advance product maturity, and at the same time, can increase teams training and education. It is not enough to understand the development tools to ensure a projects success. Understanding how to plan, measure, communicate, interact, and work in teams is mandatory to make a project successful. A manager cannot enforce a process of good communication between team members. Project teams have to work together in supporting each other and establish a constant communication environment. This paper presents lessons learned during the development process of operations research software. The team members have matured and learned during the process to plan successfully, adapt to changes, use Agile methodologies, and embrace a new attitude towards failures and communication.

  5. THE IMPACT OF THERMAL ENGINEERING RESEARCH ON GLOBAL CLIMATE CHANGE

    SciTech Connect (OSTI)

    Phelan, Patrick; Abdelaziz, Omar; Otanicar, Todd; Phelan, Bernadette; Prasher, Ravi; Taylor, Robert; Tyagi, Himanshu

    2014-01-01

    Global climate change is recognized by many people around the world as being one of the most pressing issues facing our society today. The thermal engineering research community clearly plays an important role in addressing this critical issue, but what kind of thermal engineering research is, or will be, most impactful? In other words, in what directions should thermal engineering research be targeted in order to derive the greatest benefit with respect to global climate change? To answer this question we consider the potential reduction in greenhouse gas (GHG) emissions, coupled with potential economic impacts, resulting from thermal engineering research. Here a new model framework is introduced that allows a technological, sector-by-sector analysis of GHG emissions avoidance. For each sector, we consider the maximum reduction in CO2 emissions due to such research, and the cost effectiveness of the new efficient technologies. The results are normalized on a country-by-country basis, where we consider the USA, the European Union, China, India, and Australia as representative countries or regions. Among energy supply-side technologies, improvements in coal-burning power generation are seen as having the most beneficial CO2 and economic impacts. The one demand-side technology considered, residential space cooling, offers positive but limited impacts. The proposed framework can be extended to include additional technologies and impacts, such as water consumption.

  6. Change to Procurement Evaluation & Re-Engineering Team (PERT...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Procurement Evaluation & Re-Engineering Team (PERT) and Establishment of a 5-year Cycle with Corresponding Schedule POLICY FLASH 2015-40 2015 Procurement Evaluation and ...

  7. Change to Procurement Evaluation & Re-Engineering Team (PERT) Review Cycle

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Change to Procurement Evaluation & Re-Engineering Team (PERT) Review Cycle Change to Procurement Evaluation & Re-Engineering Team (PERT) Review Cycle The Senior Procurement Executive has issued guidance that revises the PERT Review Cycle requirement from every three years to every five years. PF2013-21 Change to Procurement Evaluation & Re-Engineering Team (PERT) Review Cycle (15.32 KB) PF2013-21a.pdf (635.74 KB) More Documents & Publications

  8. Y-12's and ongoing environmental biomonitoring

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and ongoing environmental biomonitoring Mick Wiest, of the Y-12 Environment, Safety and Health organization's Water Compliance Department, continues to discuss the environmental...

  9. Engineering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Includes Engineering Standards Manual, Master Specifications Index, Drafting Manual, Design Guides, and more. IHS Standards Expert login information Collections include ANSI,...

  10. Engineering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Engineering Engineering National security depends on science and technology. The United States relies on Los Alamos National Laboratory for the best of both. No place on Earth pursues a broader array of world-class scientific endeavors. Engineering New type of laser to help defeat threats to U.S. Navy. Los Alamos National Laboratory successfully tested a new high-current electron injector, a device that can be scaled up to produce the electrons needed to build a higher-power free-electron laser

  11. engineering

    National Nuclear Security Administration (NNSA)

    an award last month for his 3D printing innovation. It could revolutionize additive manufacturing.

    Lawrence Livermore Lab engineer Bryan Moran wasn't necessarily...

  12. Home Improvement Catalyst: Strategies for Ongoing Customer Engagement...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Home Improvement Catalyst: Strategies for Ongoing Customer Engagement (201) Home Improvement Catalyst: Strategies for Ongoing Customer Engagement (201) June 23, 2016 1:00PM to ...

  13. Renewable Energy and Energy Efficiency Partnership Ongoing Project...

    Open Energy Info (EERE)

    Ongoing Project Website Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Renewable Energy and Energy Efficiency Partnership Ongoing Project Website Focus Area: Wind...

  14. ENGINEERING

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ENGINEERING the Future of ENERGY Regional University Alliance National Energy Technology Laboratory Office of Research and Development The Future of Energy The time to redraw America's energy blueprint is now. The challenges we face today are the most critical in decades-from the impact of energy use on global ecosystems to the difficulties of efficiently harnessing our natural resources. Because energy is fundamental to human welfare, we must develop sustainable systems that make clean,

  15. Building Removal Ongoing at DOE's Paducah Site | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Building Removal Ongoing at DOE's Paducah Site August 23, 2012 - 12:00pm Addthis Media Contact Buz Smith Robert.Smith@lex.doe.gov 270-441-6821 PADUCAH, KY - Work is ongoing at the ...

  16. Thermoelectric generators incorporating phase-change materials for waste heat recovery from engine exhaust

    DOE Patents [OSTI]

    Meisner, Gregory P; Yang, Jihui

    2014-02-11

    Thermoelectric devices, intended for placement in the exhaust of a hydrocarbon fuelled combustion device and particularly suited for use in the exhaust gas stream of an internal combustion engine propelling a vehicle, are described. Exhaust gas passing through the device is in thermal communication with one side of a thermoelectric module while the other side of the thermoelectric module is in thermal communication with a lower temperature environment. The heat extracted from the exhaust gasses is converted to electrical energy by the thermoelectric module. The performance of the generator is enhanced by thermally coupling the hot and cold junctions of the thermoelectric modules to phase-change materials which transform at a temperature compatible with the preferred operating temperatures of the thermoelectric modules. In a second embodiment, a plurality of thermoelectric modules, each with a preferred operating temperature and each with a uniquely-matched phase-change material may be used to compensate for the progressive lowering of the exhaust gas temperature as it traverses the length of the exhaust pipe.

  17. Enterprise SRS: Leveraging Ongoing Operations to Advance National Programs - 13108

    SciTech Connect (OSTI)

    Marra, J.E.; Murray, A.M.; McGuire, P.W.; Wheeler, V.B.

    2013-07-01

    The SRS is re-purposing its vast array of assets to solve future national issues regarding environmental stewardship, national security, and clean energy. The vehicle for this transformation is Enterprise SRS which presents a new, strategic view of SRS as a united endeavor for 'all things nuclear' as opposed to a group of distinct and separate entities with individual missions and organizations. Key among the Enterprise SRS strategic initiatives is the integration of research into facilities in conjunction with ongoing missions to provide researchers from other national laboratories, academic institutions, and commercial entities the opportunity to demonstrate their technologies in a relevant environment and scale prior to deployment. To manage that integration of research demonstrations into site facilities, The DOE Savannah River Operations Office, Savannah River Nuclear Solutions, and the Savannah River National Laboratory (SRNL) have established the Center for Applied Nuclear Materials Processing and Engineering Research (CANMPER). The key objective of this initiative is to bridge the gap between promising transformational nuclear materials management advancements and large-scale deployment of the technology by leveraging SRS assets (e.g. facilities, staff, and property) for those critical engineering-scale demonstrations necessary to assure the successful deployment of new technologies. CANMPER will coordinate the demonstration of R and D technologies and serve as the interface between the engineering-scale demonstration and the R and D programs, essentially providing cradle-to-grave support to the R and D team during the demonstration. While the initial focus of CANMPER will be on the effective use of SRS assets for these demonstrations, CANMPER also will work with research teams to identify opportunities to perform R and D demonstrations at other facilities. Unique to this approach is the fact that these SRS assets will continue to accomplish DOE's critical

  18. Database Applications to Integrate Beam Line Optics Changes with the Engineering Databases

    SciTech Connect (OSTI)

    Chan, A.; Bellomo, P.; Crane, G.R.; Emma, P.; Grunhaus, E.; Luchini, K.; MacGregor, I.A.; Marsh, D.S.; Pope, R.; Prickett, P.; Rago, C.; Ratcliffe, K.; Shab, T.; /SLAC

    2007-07-06

    The LCLS project databases provide key nomenclature information while integrating many engineering and physics processes in the building of an accelerator. Starting with the elements existing in the beam line optics files, the engineers add non-beam-line elements, and controls engineers assign ''Formal Device Names'' to these elements. Inventory, power supplies, racks, crates and cable plants are databases that are being integrated into the project database. This approach replaces individual spreadsheets and/or integrates standalone existing institutional databases.

  19. Chromium Interim Measures Project and Ongoing Plume Investigation...

    Broader source: Energy.gov (indexed) [DOE]

    Topic: Danny Katzman LANL, Provided Information on the Ongoing Characterization of the Chromium Plume in Mortandad Canyon and the Pump and Treat Pilot Test. Chromium Update - March...

  20. Home Improvement Catalyst: Strategies for Ongoing Customer Engagement (201)

    Broader source: Energy.gov [DOE]

    Better Buildings Residential Network Peer Exchange Call Series: Home Improvement Catalyst: Strategies for Ongoing Customer Engagement (201), call slides and discussion summary.

  1. 2012 Annual Planning Summary for EM Energy Technology Engineering Center

    Broader source: Energy.gov [DOE]

    The ongoing and projected Environmental Assessments and Environmental Impact Statements for 2012 and 2013 within EM Energy Technology Engineering Center.

  2. 2013 Annual Planning Summary for the Energy Technology Engineering Center

    Broader source: Energy.gov [DOE]

    The ongoing and projected Environmental Assessments and Environmental Impact Statements for 2013 and 2014 within the Energy Technology Engineering Center.

  3. 2012 Annual Planning Summary for EM Energy Technology Engineering...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EM Energy Technology Engineering Center 2012 Annual Planning Summary for EM Energy Technology Engineering Center The ongoing and projected Environmental Assessments and ...

  4. Chromium Interim Measures Project and Ongoing Plume Investigation

    Broader source: Energy.gov [DOE]

    At the March 12, 2015 Committee meeting Danny Katzman LANL, Provided Information on the Ongoing Characterization of the Chromium Plume in Mortandad Canyon and the Pump and Treat Pilot Test.

  5. Structural and dynamic changes associated with beneficial engineered single-amino-acid deletion mutations in enhanced green fluorescent protein

    SciTech Connect (OSTI)

    Arpino, James A. J. [Cardiff University, Park Place, Cardiff CF10 3AT Wales (United Kingdom); Rizkallah, Pierre J., E-mail: rizkallahp@cardiff.ac.uk [Cardiff University, Heath Park, Cardiff CF14 4XN Wales (United Kingdom); Jones, D. Dafydd, E-mail: rizkallahp@cardiff.ac.uk [Cardiff University, Park Place, Cardiff CF10 3AT Wales (United Kingdom)

    2014-08-01

    The beneficial engineered single-amino-acid deletion variants EGFP{sup D190?} and EGFP{sup A227?} have been studied. Single-amino-acid deletions are a common part of the natural evolutionary landscape but are rarely sampled during protein engineering owing to limited and prejudiced molecular understanding of mutations that shorten the protein backbone. Single-amino-acid deletion variants of enhanced green fluorescent protein (EGFP) have been identified by directed evolution with the beneficial effect of imparting increased cellular fluorescence. Biophysical characterization revealed that increased functional protein production and not changes to the fluorescence parameters was the mechanism that was likely to be responsible. The structure EGFP{sup D190?} containing a deletion within a loop revealed propagated changes only after the deleted residue. The structure of EGFP{sup A227?} revealed that a flipping mechanism was used to adjust for residue deletion at the end of a ?-strand, with amino acids C-terminal to the deletion site repositioning to take the place of the deleted amino acid. In both variants new networks of short-range and long-range interactions are generated while maintaining the integrity of the hydrophobic core. Both deletion variants also displayed significant local and long-range changes in dynamics, as evident by changes in B factors compared with EGFP. Rather than being detrimental, deletion mutations can introduce beneficial structural effects through altering core protein properties, folding and dynamics, as well as function.

  6. Lessons Learned: An Ongoing Dialogue About Smart Grid | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Lessons Learned: An Ongoing Dialogue About Smart Grid Lessons Learned: An Ongoing Dialogue About Smart Grid November 21, 2011 - 11:31am Addthis EPB’s $226 million Smart Grid Investment Grant project, part of the Energy Department's Recovery Act funding has allowed upgrades on its distribution system and the installation of “smart” switches and sensor equipment for 164 distribution circuits as well as the deployment of approximately 1500 smart switches system-wide.

  7. Innovative Application of Maintenance-Free Phase-Change Thermal Energy Storage for Dish-Engine Solar Power Generation

    SciTech Connect (OSTI)

    Qui, Songgang; Galbraith, Ross

    2013-01-23

    This final report summarizes the final results of the Phase II Innovative Application of Maintenance-Free Phase-Change Thermal Energy Storage for Dish-Engine Solar Power Generation project being performed by Infinia Corporation for the U.S. Department of Energy under contract DE-FC36-08GO18157 during the project period of September 1, 2009 - August 30, 2012. The primary objective of this project is to demonstrate the practicality of integrating thermal energy storage (TES) modules, using a suitable thermal salt phase-change material (PCM) as its medium, with a dish/Stirling engine; enabling the system to operate during cloud transients and to provide dispatchable power for 4 to 6 hours after sunset. A laboratory prototype designed to provide 3 kW-h of net electrical output was constructed and tested at Infinia's Ogden Headquarters. In the course of the testing, it was determined that the system's heat pipe network - used to transfer incoming heat from the solar receiver to both the Stirling generator heater head and to the phase change salt - did not perform to expectations. The heat pipes had limited capacity to deliver sufficient heat energy to the generator and salt mass while in a charging mode, which was highly dependent on the orientation of the device (vertical versus horizontal). In addition, the TES system was only able to extract about 30 to 40% of the expected amount of energy from the phase change salt once it was fully molten. However, the use of heat pipes to transfer heat energy to and from a thermal energy storage medium is a key technical innovation, and the project team feels that the limitations of the current device could be greatly improved with further development. A detailed study of manufacturing costs using the prototype TES module as a basis indicates that meeting DOE LCOE goals with this hardware requires significant efforts. Improvement can be made by implementing aggressive cost-down initiatives in design and materials, improving system

  8. Engineering Technician

    Broader source: Energy.gov [DOE]

    Alternate Title(s):Civil Engineering Technician; Electrical Engineering Technician; Mechanical Engineering Technician; Environmental Engineering Technician

  9. Enterprise SRS: leveraging ongoing operations to advance nuclear fuel cycles research and development programs

    SciTech Connect (OSTI)

    Murray, A.M.; Marra, J.E.; Wilmarth, W.R.; McGuire, P.W.; Wheeler, V.B.

    2013-07-01

    The Savannah River Site (SRS) is re-purposing its vast array of assets (including H Canyon - a nuclear chemical separation plant) to solve issues regarding advanced nuclear fuel cycle technologies, nuclear materials processing, packaging, storage and disposition. The vehicle for this transformation is Enterprise SRS which presents a new, radical view of SRS as a united endeavor for 'all things nuclear' as opposed to a group of distinct and separate entities with individual missions and organizations. Key among the Enterprise SRS strategic initiatives is the integration of research into SRS facilities but also in other facilities in conjunction with on-going missions to provide researchers from other national laboratories, academic institutions, and commercial entities the opportunity to demonstrate their technologies in a relevant environment and scale prior to deployment. To manage that integration of research demonstrations into site facilities, a center for applied nuclear materials processing and engineering research has been established in SRS.

  10. Ongoing Space Nuclear Systems Development in the United States

    SciTech Connect (OSTI)

    S. Bragg-Sitton; J. Werner; S. Johnson; Michael G. Houts; Donald T. Palac; Lee S. Mason; David I. Poston; A. Lou Qualls

    2011-10-01

    Reliable, long-life power systems are required for ambitious space exploration missions. Nuclear power and propulsion options can enable a bold, new set of missions and introduce propulsion capabilities to achieve access to science destinations that are not possible with more conventional systems. Space nuclear power options can be divided into three main categories: radioisotope power for heating or low power applications; fission power systems for non-terrestrial surface application or for spacecraft power; and fission power systems for electric propulsion or direct thermal propulsion. Each of these areas has been investigated in the United States since the 1950s, achieving various stages of development. While some nuclear systems have achieved flight deployment, others continue to be researched today. This paper will provide a brief overview of historical space nuclear programs in the U.S. and will provide a summary of the ongoing space nuclear systems research, development, and deployment in the United States.

  11. Experimental observation of signature changes in bulk soil electrical conductivity in response to engineered surface CO2 leakage

    SciTech Connect (OSTI)

    Zhou X.; Wielopolski L.; Lakkaraju, V. R.; Apple, M.; Dobeck, L. M.; Gullickson, K.; Shaw, J. A.; Cunningham, A. B.; Spangler, L. H.

    2012-03-01

    Experimental observations of signature changes of bulk soil electrical conductivity (EC) due to CO{sub 2} leakage were carried out at a field site at Bozeman, Montana, to investigate the change of soil geophysical properties in response to possible leakage of geologically sequestered CO{sub 2}. The dynamic evolution of bulk soil EC was measured during an engineered surface leakage of CO{sub 2} through in situ continuous monitoring of bulk soil EC, soil moisture, soil temperature, rainfall rate, and soil CO{sub 2} concentration to investigate the response of soil bulk EC signature to CO{sub 2} leakage. Observations show that: (1) high soil CO{sub 2} concentration due to CO{sub 2} leakage enhances the dependence of bulk soil EC on soil moisture. The bulk soil EC is a linear multivariate function of soil moisture and soil temperature, the coefficient for soil moisture increased from 2.111 dS for the non-leaking phase to 4.589 dS for the CO{sub 2} leaking phase; and the coefficient for temperature increased from 0.003 dS/C for the non-leaking phase to 0.008 dS/C for the CO{sub 2} leaking phase. The dependence of bulk soil EC on soil temperature is generally weak, but leaked CO{sub 2} enhances the dependence, (2) after the CO{sub 2} release, the relationship between soil bulk EC and soil CO{sub 2} concentration observes three distinct CO{sub 2} decay modes. Rainfall events result in sudden changes of soil moisture and are believed to be the driving forcing for these decay modes, and (3) within each mode, increasing soil CO{sub 2} concentration results in higher bulk soil EC. Comparing the first 2 decay modes, it is found that the dependence of soil EC on soil CO{sub 2} concentration is weaker for the first decay mode than the second decay mode.

  12. An engine with means for changing the phase angle between displacer and working pistons: Its thermo dynamic cycle compared to the ideal Stirling cycle

    SciTech Connect (OSTI)

    Ayala V., E.

    1984-08-01

    This paper describes a heat engine comprising a displacer piston actuated by the pressure changes accomplished by the working piston combined with the force exerted by the pressure of a spring against the piston which can be changed to modify the phase angle between the displacer and working pistons. A gas cooler is arranged in an independent closed loop circuit that is put into operation between the end of the expansion stroke and the beginning of the compression stroke. The working cylinder is connected to the cold end of the displacer cylinder through an auxiliary cooler and to the end of the displacer cylinder through the heat regenerator and the heater.

  13. Validation of a blowby model using experimental results in motoring condition with the change of compression ratio and engine speed

    SciTech Connect (OSTI)

    Aghdam, E. Abdi; Kabir, M.M.

    2010-02-15

    Blowby and gas flow through the cylinder-piston-ring crevices are phenomena that affect the engine performance and exhaust emissions. Also these phenomena influence the cylinder pressure and temperature and the charge amount during a cycle. The study and validation of a sub-model for these phenomena in the absence of engine combustion deducts all effects arisen from the combustion event. During the current study, blowby sub-model and gas flow through crevices under motoring conditions has been noticed using a volume-orifice theory and the experimental results measured from a research engine. Blowby geometric parameters, consisting of a few critical cross-section areas (orifice areas) and volumes (top land and inter-ring crevice volumes), were measured in ambient temperature and corrected for hot running conditions. The cylinder pressure during cycle was measured by a piezoelectric pressure transducer and the low pressure parts of the cycle were measured using a piezoresistive pressure transducer for referencing purposes. The obtained results show a very good agreement between experimentally measured pressure data and model output for three compression ratios of 7.6, 10.2, 12.4 and three engine speeds of 750, 1500 and 2000 rpm, so that the maximum deviation was almost 5%. The model predicted that the maximum mass loss increased with increase of compression ratio and decreased with increase of engine speed. Also the peak mass loss position happened within the range of 3-9 CA after top dead center. After occurrence of the maximum loss, a reverse flow from the top land crevice into the cylinder was predicted in the model. (author)

  14. Harold Cofer and the COLEX process, part 2 „ Ongoing changes...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... So, even with all the redundancy electrical power outages still occur at Y-12 periodically. Harold's experiences in both Building 9201-5 and Building 9201-4 COLEX processes will ...

  15. Hydrate Evolution in Response to Ongoing Environmental Shifts

    SciTech Connect (OSTI)

    Rempel, Alan

    2015-12-31

    Natural gas hydrates have the potential to become a vital domestic clean-burning energy source. However, past changes in environmental conditions have caused hydrates to become unstable and trigger both massive submarine landslides and the development of crater-like pockmarks, thereby releasing methane into the overlying seawater and atmosphere, where it acts as a powerful greenhouse gas. This project was designed to fill critical gaps in our understanding of domestic hydrate resources and improve forecasts for their response to environmental shifts. Project work can be separated into three interrelated components, each involving the development of predictive mathematical models. The first project component concerns the role of sediment properties on the development and dissociation of concentrated hydrate anomalies. To this end, we developed numerical models to predict equilibrium solubility of methane in twophase equilibrium with hydrate as a function of measureable porous medium characteristics. The second project component concerned the evolution of hydrate distribution in heterogeneous reservoirs. To this end, we developed numerical models to predict the growth and decay of anomalies in representative physical environments. The third project component concerned the stability of hydrate-bearing slopes under changing environmental conditions. To this end, we developed numerical treatments of pore pressure evolution and consolidation, then used "infinite-slope" analysis to approximate the landslide potential in representative physical environments, and developed a "rate-and-state" frictional formulation to assess the stability of finite slip patches that are hypothesized to develop in response to the dissociation of hydrate anomalies. The increased predictive capabilities that result from this work provide a framework for interpreting field observations of hydrate anomalies in terms of the history of environmental forcing that led to their development. Moreover

  16. Kyoto and liberalization ongoing transformation of the energy market

    SciTech Connect (OSTI)

    Minett, S.

    1998-07-01

    COGEN Europe believes that the single most important influence on the electricity sector in the future will be the policy response to climate change and that cogeneration offers one of the very best, prospects for cutting emissions in the power sector. In the EU, cogeneration was put at the head of the list of Policies and Measures laid down before Kyoto as the means of achieving its then progressive target of a 15% reduction in emissions by 2010 over 1990. COGEN Europe has estimated that EU-15 as a whole could reach a 30% cogeneration share of total electricity production by 2010. Indeed, three of the 15 countries have already reached 30% (Denmark, The Netherlands and Finland). On a conservative basis this would save 221 Mt of CO{sub 2}/yr by 2010, or 46% of the EU 15% negotiating target agreed in 1997. This also represents 30% of the 'gap' between the achievement of the 15% target and the 8% increase in emissions anticipated for 2010 in the absence of abatement measures. Most, if not all, of these savings would be based on zero or negative cost investments. COGEN Europe supports the trend towards liberalization and the European Commission's efforts to introduce competition into electricity and gas markets for the simple reason that they provide the best means to remove market and monopoly barriers to the development of high efficiency cogeneration. This paper presents a COGEN Europe vision for meeting and overcoming the challenges of global climate change - and some suggestions for governments which can help them achieve that elusive double dividend: environmental improvement and economic competitiveness. Governments should: where possible use the market to achieve your environmental objectives; avoid detailed regulation; avoid subsidizing pollution; set clear and ambitious CO{sub 2} objectives; redouble political pressure to achieve international consensus on internalization of environmental costs.

  17. ENTERPRISE SRS: LEVERAGING ONGOING OPERATIONS TO ADVANCE RADIOACTIVE WASTE MANAGEMENT TECHNOLOGIES

    SciTech Connect (OSTI)

    Murray, A.; Wilmarth, W.; Marra, J.; Mcguire, P.; Wheeler, V.

    2013-05-16

    The Savannah River Site (SRS) is repurposing its vast array of assets to solve future national issues regarding environmental stewardship, national security, and clean energy. The vehicle for this transformation is Enterprise SRS which presents a new, strategic view of SRS as a united endeavor for “all things nuclear” as opposed to a group of distinct and separate entities with individual missions and organizations. Key among the Enterprise SRS strategic initiatives is the integration of research into facilities in conjunction with ongoing missions to provide researchers from other national laboratories, academic institutions, and commercial entities the opportunity to demonstrate their technologies in a relevant environment and scale prior to deployment. To manage that integration of research demonstrations into site facilities, The DOE Savannah River Operations Office, Savannah River Nuclear Solutions, and the Savannah River National Laboratory (SRNL) have established a center for applied nuclear materials processing and engineering research (hereafter referred to as the Center). The key objective of this initiative is to bridge the gap between promising transformational nuclear materials management advancements and large-scale deployment of the technology by using SRS assets (e.g. facilities, staff, and property) for those critical engineering-scale demonstrations necessary to assure the successful deployment of new technologies. The Center will coordinate the demonstration of R&D technologies and serve as the interface between the engineering-scale demonstration and the R&D programs, essentially providing cradle-to-grave support to the R&D team during the demonstration. While the initial focus of the Center will be on the effective use of SRS assets for these demonstrations, the Center also will work with research teams to identify opportunities to perform R&D demonstrations at other facilities. Unique to this approach is the fact that these SRS assets will

  18. 2014 Annual Planning Summary for the Environmental Management Energy Technology Engineering Center

    Broader source: Energy.gov [DOE]

    The ongoing and projected Environmental Assessments and Environmental Impact Statements for 2014 and 2015 within the Environmental Management Energy Technology Engineering Center.

  19. Enterprise SRS: Leveraging Ongoing Operations to Advance Nuclear Fuel Cycle Programs - 12579

    SciTech Connect (OSTI)

    Marra, J.E.; Griffin, J.C.; Murray, A.M.; Wilmarth, W.R.

    2012-07-01

    on an individual sponsoring office. Given that reality, success for the current and future nuclear separations missions is dependent on a concerted effort to develop new, creative, approaches that leverage existing facilities in a manner that supports both near- and long-term needs of national programs. As a result of this situation, the Savannah River National Laboratory (SRNL) organized the 'Nuclear Separations User Facility Strategy Session' in Washington, D.C. on July 29, 2011. This workshop brought together key stakeholders from DOE and the private sector to develop a strategy for using engineering-scale nuclear materials processing facilities to advance our nation's nuclear separations research needs. In particular, the meeting focused on recommending how these engineering-scale demonstration facilities, like the Savannah River Site H-Canyon, can be connected with smaller 'bench-scale' research activities to form a seamless approach that integrates across the continuum of RD and D of advanced separations technologies. Coming out of this workshop, a new vision has been developed for a collaborative research facility model that centers on H-Canyon. Unique to this approach is the fact that H-Canyon will continue to accomplish DOE's critical nuclear material processing missions, while simultaneously serving as an RD and D resource for the scientific and technical portions of the nuclear separations community. This paper describes the planned operations for H-Canyon in FY2012 and beyond and discusses how these operations fit within the context of a collaborative research facility model and support the ongoing fuel cycle research and development programs of the DOE. (authors)

  20. Investigation of exposure to Extremely Low Frequency (ELF) magnetic and electric fields: Ongoing animal studies

    SciTech Connect (OSTI)

    Anderson, L.E.

    1994-03-01

    There is now convincing evidence from a large number of laboratories, that exposure to extremely low frequency (ELF) magnetic and electric fields produces biological responses in animals. Many of the observed effects appear to be directly or indirectly associated with the neural or neuroendocrine systems. Such effects include increased neuronal excitability, chemical and hormonal changes in the nervous system, altered behavioral responses, some of which are related to sensing the presence of the field, and changes in endogenous biological rhythms. Additional indices of general physiological status appear relatively unaffected by exposure, although effects have occasionally been described in bone growth and fracture repair, reproduction and development, and immune system function. A major current emphasis in laboratory research is to determine whether or not the reported epidemiological studies that suggest an association between EMF exposure and risk of cancer are supported in studies using animal models. Three major challenges exist for ongoing research: (1) knowledge about the mechanisms underlying observed bioeffects is incomplete, (2) researchers do not as yet understand what physical aspects of exposure produce biological responses, and (3) health consequences resulting from ELF exposure are unknown. Although no animal studies clearly demonstrate deleterious effects of ELF fields, several are suggestive of potential health impacts. From the perspective of laboratory animal studies, this paper will discuss biological responses to ELF magnetic and/or electric field exposures.

  1. Enterprise SRS: Leveraging Ongoing Operations To Advance Nuclear Fuel Cycles Research And Development Programs

    SciTech Connect (OSTI)

    Murray, Alice M.; Marra, John E.; Wilmarth, William R.; Mcguire, Patrick W.; Wheeler, Vickie B.

    2013-07-03

    The Savannah River Site (SRS) is repurposing its vast array of assets to solve future national issues regarding environmental stewardship, national security, and clean energy. The vehicle for this transformation is Enterprise SRS which presents a new, radical view of SRS as a united endeavor for ''all things nuclear'' as opposed to a group of distinct and separate entities with individual missions and organizations. Key among the Enterprise SRS strategic initiatives is the integration of research into facilities in conjunction with on-going missions to provide researchers from other national laboratories, academic institutions, and commercial entities the opportunity to demonstrate their technologies in a relevant environment and scale prior to deployment. To manage that integration of research demonstrations into site facilities, The Department of Energy, Savannah River Operations Office, Savannah River Nuclear Solutions, the Savannah River National Laboratory (SRNL) have established a center for applied nuclear materials processing and engineering research (hereafter referred to as the Center). The key proposition of this initiative is to bridge the gap between promising transformational nuclear fuel cycle processing discoveries and large commercial-scale-technology deployment by leveraging SRS assets as facilities for those critical engineering-scale demonstrations necessary to assure the successful deployment of new technologies. The Center will coordinate the demonstration of R&D technologies and serve as the interface between the engineering-scale demonstration and the R&D programs, essentially providing cradle-to-grave support to the research team during the demonstration. While the initial focus of the Center will be on the effective use of SRS assets for these demonstrations, the Center also will work with research teams to identify opportunities to perform research demonstrations at other facilities. Unique to this approach is the fact that these SRS

  2. Klotz visits Y-12 to see progress on new projects and ongoing...

    National Nuclear Security Administration (NNSA)

    Klotz visits Y-12 to see progress on new projects and ongoing work on NNSA's national security missions Tuesday, June 7, 2016 - 11:48am Last week, NNSA Administrator Lt. Gen. Frank ...

  3. NNSA Meets with Japanese Scientists to Discuss On-Going Fukushima Work |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Meets with Japanese Scientists to Discuss On-Going Fukushima Work NNSA Meets with Japanese Scientists to Discuss On-Going Fukushima Work August 3, 2012 - 1:30pm Addthis Scientists from the Japanese Atomic Energy Agency (JAEA) and National Nuclear Security Administration (NNSA). | Photo from the Office of Public Affairs, NNSA Scientists from the Japanese Atomic Energy Agency (JAEA) and National Nuclear Security Administration (NNSA). | Photo from the Office of Public

  4. Klotz visits Y-12 to see progress on new projects and ongoing work on

    National Nuclear Security Administration (NNSA)

    NNSA's national security missions | National Nuclear Security Administration | (NNSA) Klotz visits Y-12 to see progress on new projects and ongoing work on NNSA's national security missions Tuesday, June 7, 2016 - 11:48am Last week, NNSA Administrator Lt. Gen. Frank Klotz (Ret.) visited the Y-12 National Security Complex to check on the status of ongoing projects like the Uranium Processing Facility as well as the site's continuing uranium operations. He also met with the Region 2 volunteers

  5. Statement from the White House Press Secretary on the Ongoing U.S. Response

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to the Earthquakes and Tsunami in Japan | Department of Energy the White House Press Secretary on the Ongoing U.S. Response to the Earthquakes and Tsunami in Japan Statement from the White House Press Secretary on the Ongoing U.S. Response to the Earthquakes and Tsunami in Japan March 14, 2011 - 12:00am Addthis THE WHITE HOUSE Office of the Press Secretary Our thoughts and our prayers remain with the people of Japan. The President has been kept fully briefed on developments and the response

  6. Engineering change in global climate

    SciTech Connect (OSTI)

    Schneider, S.H.

    1996-12-31

    {open_quotes}With increased public focus on global warming and in the wake of the intense heat waves, drought, fires, and super-hurricanes that occurred in 1988 and 1989, interest in geoengineering has surged,{close_quotes} says Stephen H. Schneider, professor of biological science at Stanford University in Stanford, California. One scheme set forth in a National Research Council report proposes using 16-inch naval guns to fire aerosol shells into the stratosphere in hopes of offsetting {open_quotes}the radiative effects of increasing carbon dioxide,{close_quotes} Schneider says. Schneider, however, would prefer that we {open_quotes}seek measures that can cure our global {open_quote}addiction{close_quote} to polluting practices.{close_quotes} Rather than playing God, he says we should {open_quotes}stick to being human and pursue problem - solving methods currently within our grasp.{close_quotes} Such strategies include efforts to promote energy efficiency and reduce our reliance on automobiles.

  7. Reliability Engineering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LA-UR 15-27450 This document is approved for public release; further dissemination unlimited Reliability Engineering Reliability Engineering Current practice in reliability is ...

  8. Chemical Engineering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ARPA-E Basic Energy Sciences Materials Sciences and Engineering Chemical Sciences ... SunShot Grand Challenge: Regional Test Centers Chemical Engineering HomeTag:Chemical ...

  9. Defining engine efficiency limits

    Broader source: Energy.gov [DOE]

    Investigates the potential to reduce engine efficiency losses and how this impacts the entire system in terms of a direct increase in work output or a change in the loss mechanism.

  10. Engineering Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Education Opportunities » Engineering Institute Engineering Institute Engineering dynamics that include flight, vibration isolation for precision manufacturing, earthquake engineering, blast loading, signal processing, and experimental model analysis. Contact Leader, Los Alamos Charles Farrar Email Leader, UCSD Michael Todd Email Los Alamos Program Administrator Jutta Kayser (505) 663-5649 Email Administrative Assistant Stacy Baker (505) 663-5233 Email Collaboration for conducting

  11. Stirling engines

    SciTech Connect (OSTI)

    Reader, G.T.; Hooper

    1983-01-01

    The Stirling engine was invented by a Scottish clergyman in 1816, but fell into disuse with the coming of the diesel engine. Advances in materials science and the energy crisis have made a hot air engine economically attractive. Explanations are full and understandable. Includes coverage of the underlying thermodynamics and an interesting historical section. Topics include: Introduction to Stirling engine technology, Theoretical concepts--practical realities, Analysis, simulation and design, Practical aspects, Some alternative energy sources, Present research and development, Stirling engine literature.

  12. Environmental impact of ongoing sources of metal contamination on remediated sediments

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Knox, Anna Sophia; Paller, Michael H.; Milliken, Charles E.; Redder, Todd M.; Wolfe, John R.; Seaman, John

    2016-04-29

    One challenge to all remedial approaches for contaminated sediments is the continued influx of contaminants from uncontrolled sources following remediation. We investigated the effects of ongoing contamination in mesocosms employing sediments remediated by different types of active and passive caps and in-situ treatment. Our hypothesis was that the sequestering agents used in active caps and in situ treatment will bind elements (arsenic, chromium, cadmium, cobalt, copper, nickel, lead, selenium, and zinc) from ongoing sources thereby reducing their bioavailability and protecting underlying remediated sediments from recontamination. Most element concentrations in surface water remained significantly lower in mesocosms with apatite and mixedmore » amendment caps than in mesocosms with passive caps (sand), uncapped sediment, and spike solution throughout the 2520 hour experiment. Element concentrations were significantly higher in Lumbriculus variegatus from untreated sediment than in Lumbriculus from most active caps. Moreover, Pearson correlations between element concentrations in Lumbriculus and metal concentrations in the top 2.5 cm of sediment or cap measured by diffusive gradient in thin films (DGT) sediment probes were generally strong (as high as 0.98) and significant (p<0.05) for almost all tested elements. Metal concentrations in both Lumbriculus and sediment/cap were lowest in apatite, mixed amendment, and activated carbon treatments. Finally, these findings show that some active caps can protect remediated sediments by reducing the bioavailable pool of metals/metalloids in ongoing sources of contamination.« less

  13. Value Engineering

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2002-12-30

    To establish Department of Energy (DOE) value engineering policy that establishs and maintains cost-effective value procedures and processes.

  14. Free-piston Stirling engine

    SciTech Connect (OSTI)

    Berggren, R.W.; Moynihan, T.M.

    1982-09-01

    A free-piston Stirling engine/linear alternator system (FPSE-010-3), developed under previous Department of Energy (DOE) funding, has been used as a test bed for evaluating selected Stirling engine loss mechanisms. The engine is particularly suited to test-bed operation because engine performance can be evaluated over a wide range of operating conditions; system instrumentation is capable of measuring the effects of system component changes; and modular engine design facilitates the evaluation of alternate component configurations. Extensive testing was performed to establish the operating characteristics of a base-line engine configuration and to characterize specific losses within a Stirling engine. Significant variations in engine performance were observed as the displacer seal clearance was varied. This paper presents selected results from the base-line and displacer seal clearance tests.

  15. PIA - Human Resources - Personal Information Change Request ...

    Energy Savers [EERE]

    Human Resources - Personal Information Change Request - Idaho National Engineering Laboratory PIA - Human Resources - Personal Information Change Request - Idaho National...

  16. Shockwave Engine: Wave Disk Engine

    SciTech Connect (OSTI)

    2010-01-14

    Broad Funding Opportunity Announcement Project: MSU is developing a new engine for use in hybrid automobiles that could significantly reduce fuel waste and improve engine efficiency. In a traditional internal combustion engine, air and fuel are ignited, creating high-temperature and high-pressure gases which expand rapidly. This expansion of gases forces the engine’s pistons to pump and powers the car. MSU’s engine has no pistons. It uses the combustion of air and fuel to build up pressure within the engine, generating a shockwave that blasts hot gas exhaust into the blades of the engine’s rotors causing them to turn, which generates electricity. MSU’s redesigned engine would be the size of a cooking pot and contain fewer moving parts—reducing the weight of the engine by 30%. It would also enable a vehicle that could use 60% of its fuel for propulsion.

  17. Rotary engine

    SciTech Connect (OSTI)

    Smith, T.A.

    1992-01-28

    This patent describes an improved rotary engine. It comprises an annular master cylinder composed of a cylindrical housing, a continuous hollow outer concentric shaft, an outward end housing and an inward end housing; means to form a dynamically balanced disc piston assembly extending from the the outward end housing to the the inward end housing thereby dividing the the annular master cylinder into at least three separate gas tight cylinders formed by rotating discs, each cylinder having at least two pistons independently rotatable therein; means to isolate the unexpanded gases from any exit path into the housing of the piston controlling means; and wherein one of the pistons in each cylinder is connected directly to the the continuous outer concentric shaft to form a first piston assembly, the other of the pistons in each cylinder is connected to the discs which are connected to the end of an inner concentric shaft to form a second piston assembly, means for controlling the piston action by a common eccentric shaft such that as the pistons rotate they expand and reduce the distance between them thereby changing the volume between the pistons within each of the cylinders.

  18. Procurement Evaluation & Re-Engineering Team (PERT) and Establishment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Change to Procurement Evaluation & Re-Engineering Team (PERT) Review Cycle 2015 Procurement Evaluation and Re-engineering Team (PERT) Schedule POLICY ...

  19. Engineered Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7 Engineered Materials Materials design, fabrication, assembly, and characterization for national security needs. Contact Us Group Leader (Acting) Kimberly Obrey Email Deputy Group Leader Dominic Peterson Email Group Office (505)-667-6887 We perform polymer science and engineering, including ultra-precision target design, fabrication, assembly, characterization, and field support. We perform polymer science and engineering, including ultra-precision target design, fabrication, assembly,

  20. Engineering Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Institute Engineering Institute Multidisciplinary engineering research that integrates advanced modeling and simulations, novel sensing systems and new developments in information technology. May 14, 2013 Los Alamos Research Park Los Alamos Research Park, the home of Engineering Institute Contact Institute Director Charles Farrar (505) 665-0860 Email UCSD EI Director Michael Todd (858) 534-5951 Executive Administrator Ellie Vigil (505) 667-2818 Email Administrative Assistant Rebecca Duran (505)

  1. General Engineers

    U.S. Energy Information Administration (EIA) Indexed Site

    General Engineers The U.S. Energy Information Administration (EIA) within the Department of Energy has forged a world-class information program that stresses quality, teamwork, and employee growth. In support of our program, we offer a variety of profes- sional positions, including the General Engineer, whose work is associated with analytical studies and evaluation projects pertaining to the operations of the energy industry. Responsibilities: General Engineers perform or participate in one or

  2. Rotary engine

    SciTech Connect (OSTI)

    Leas, A. M.; Leas, L. E.

    1985-02-12

    Disclosed are an engine system suitable for use with methyl alcohol and hydrogen and a rotary engine particularly suited for use in the engine system. The rotary engine comprises a stator housing having a plurality of radially directed chamber dividers, a principal rotor, a plurality of subordinate rotors each having an involute gear in its periphery mounted on the principal rotor, and means for rotating the subordinate rotors so that their involute gears accept the radially directed dividers as the subordinate rotors move past them.

  3. Electrical Engineer

    Broader source: Energy.gov [DOE]

    (See Frequently Asked Questions for more information). Where would I be working? Western Area Power Administration Rocky Mountain Region Power System Operation Operations Engineering, (J4200) 5555...

  4. Mechanical Engineer

    Broader source: Energy.gov [DOE]

    This position is located in the Engineering Services (PEJD) organization of Program Implementation Energy Efficiency, Power Services, Bonneville Power Administration (BPA). As part of the Power...

  5. Electronics Engineer

    Broader source: Energy.gov [DOE]

    This position is located in the Communications Test and Energization (TETD) organization of Commissioning and Testing (TET), Engineering and Technical Services (TE), Transmission Services (T),...

  6. Environmental Engineer

    Broader source: Energy.gov [DOE]

    A successful candidate in this position will be an environmental technical expert and advisor to integrate science and engineering principles to improve the natural environment and direct and...

  7. Biodiesel Outlook- An Engine Manufacturer's Perspective

    Office of Energy Efficiency and Renewable Energy (EERE)

    The engine's fuel systems and the fuels they deliver are increasingly critical to the overall performance as engines change to reduce levels of both regulated and non-regulated emissions.

  8. PIA - Human Resources - Personal Information Change Request - Idaho

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    National Engineering Laboratory | Department of Energy - Personal Information Change Request - Idaho National Engineering Laboratory PIA - Human Resources - Personal Information Change Request - Idaho National Engineering Laboratory PIA - Human Resources - Personal Information Change Request - Idaho National Engineering Laboratory PIA - Human Resources - Personal Information Change Request - Idaho National Engineering Laboratory (278.62 KB) More Documents & Publications PIA - INL

  9. Thermoacoustic engines

    SciTech Connect (OSTI)

    Swift, G.W.

    1988-10-01

    Thermoacoustic engines, or acoustic heat engines, are energy-conversion devices that achieve simplicity and concomitant reliability by use of acoustic technology. Their efficiency can be a substantial fraction of Carnot's efficiency. In thermoacoustic prime movers, heat flow from a high-temperature source to a low-temperature sink generates acoustic power (which may be converted to electric power using a transducer). In thermoacoustic heat pumps and refrigerators, acoustic power is used to pump heat from a low-temperature source to a high-temperature sink. This review teaches the fundamentals of thermoacoustic engines, by analysis, intuition, and example.

  10. TWRS Systems Engineering Working Plan

    SciTech Connect (OSTI)

    Eiholzer, C.R.

    1994-09-16

    The purpose of this Systems Engineering (SE) Working Plan (SEWP) is to describe how the Westinghouse Hanford Company (WHC) Tank Waste Remediation System (TWRS) will implement the SE polity and guidance provided in the Tank Waste Remediation System (TWRS) Systems Engineering Management Plan (SEMP). Sections 2.0 through 4.0 cover how the SE process and management will be performed to develop a technical baseline within TWRS. Section 5.0 covers the plans and schedules to implement the SE process and management within TWRS. Detailed information contained in the TWRS Program SEMP is not repeated in this document. This SEWP and the SE discipline defined within apply to the TWRS Program and new and ongoing TWRS projects or activities, including new facilities and safety. The SE process will be applied to the existing Tank Farm operations where the Richland TWRS Program Office management determines the process appropriate and where value will be added to existing Tank Farm system and operations.

  11. Annex III-evaluation of past and ongoing enhanced oil recovery projects

    SciTech Connect (OSTI)

    Not Available

    1995-02-01

    The Infill Drilling Predictive Model (IDPM) was developed by Scientific Software-Intercomp (SSI) for the Bartlesville Project Office (BPO) of the United States Department of Energy (DOE). The model and certain adaptations thereof were used in conjunction with other models to support the Interstate Oil and Gas Compact Commission`s (IOGCC) 1993 state-by-state assessment of the potential domestic reserves achievable through the application of Advanced Secondary Recovery (ASR) and Enhanced Oil Recovery (EOR) techniques. Funding for this study was provided by the DOE/BPO, which additionally provided technical support. The IDPM is a three-dimensional (stratified, five-spot), two-phase (oil and water) model which uses a minimal amount of reservoir and geologic data to generate production and recovery forecasts for ongoing waterflood and infill drilling projects. The model computes water-oil displacement and oil recovery using finite difference solutions within streamtubes. It calculates the streamtube geometries and uses a two-dimensional reservoir simulation to track fluid movement in each streamtube slice. Thus the model represents a hybrid of streamtube and numerical simulators.

  12. Civil Engineer

    Broader source: Energy.gov [DOE]

    (See Frequently Asked Questions for more information). Where would I be working? Western Area Power Administration Desert Southwest Region Engineering and Construction (G5600) 615 S. 43rd Avenue...

  13. Harmonic engine

    DOE Patents [OSTI]

    Bennett, Charles L.

    2009-10-20

    A high efficiency harmonic engine based on a resonantly reciprocating piston expander that extracts work from heat and pressurizes working fluid in a reciprocating piston compressor. The engine preferably includes harmonic oscillator valves capable of oscillating at a resonant frequency for controlling the flow of working fluid into and out of the expander, and also preferably includes a shunt line connecting an expansion chamber of the expander to a buffer chamber of the expander for minimizing pressure variations in the fluidic circuit of the engine. The engine is especially designed to operate with very high temperature input to the expander and very low temperature input to the compressor, to produce very high thermal conversion efficiency.

  14. Engineering Technician

    Broader source: Energy.gov [DOE]

    (See Frequently Asked Questions for more information). Where would I be working? Western Area Power Administration Desert Southwest Region Engineering and Construction (G5600) 615 S. 43rd Avenue...

  15. Combustion Engine

    Broader source: Energy.gov [DOE]

    Pictured here is an animation showing the basic mechanics of how an internal combustion engine works. With support from the Energy Department, General Motors researchers developed a new technology ...

  16. General Engineer

    Broader source: Energy.gov [DOE]

    This position is located in Office of Standard Contract Management, within the Office of the General Counsel (GC). The purpose of the position is to conduct technical and engineering reviews of the...

  17. Engine Combustion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Engine Combustion - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear

  18. structured engineering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    engineering - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear Energy

  19. Reliability Engineering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LA-UR 15-27450 This document is approved for public release; further dissemination unlimited Reliability Engineering Reliability Engineering Current practice in reliability is often fragmented, does not cover the full system lifecycle * Reliability needs to be addressed in design, development, and operational life * Reliability analysis should integrate information from components and systems Integrate proven reliability methods with world-class statistical science * Use methods and tools

  20. Quality engineering as a profession.

    SciTech Connect (OSTI)

    Kolb, Rachel R.; Hoover, Marcey L.

    2012-12-01

    Over the course of time, the profession of quality engineering has witnessed significant change, from its original emphasis on quality control and inspection to a more contemporary focus on upholding quality processes throughout the organization and its product realization activities. This paper describes the profession of quality engineering, exploring how today's quality engineers and quality professionals are certified individuals committed to upholding quality processes and principles while working with different dimensions of product development. It also discusses the future of the quality engineering profession and the future of the quality movement as a whole.

  1. Climate Engineering with Stratospheric Aerosols and Associated Engineering Parameters

    SciTech Connect (OSTI)

    Kravitz, Benjamin S.

    2013-02-12

    Climate engineering with stratospheric aerosols, an idea inspired by large volcaniceruptions, could cool the Earth’s surface and thus alleviate some of the predicted dangerous impacts of anthropogenic climate change. However, the effectiveness of climate engineering to achieve a particular climate goal, and any associated side effects, depend on certain aerosol parameters and how the aerosols are deployed in the stratosphere. Through the examples of sulfate and black carbon aerosols, this paper examines "engineering" parameters-aerosol composition, aerosol size, and spatial and temporal variations in deployment-for stratospheric climate engineering. The effects of climate engineering are sensitive to these parameters, suggesting that a particle could be found ordesigned to achieve specific desired climate outcomes. This prospect opens the possibility for discussion of societal goals for climate engineering.

  2. Engineering Annual Summary 1996

    SciTech Connect (OSTI)

    Dimolitsas, S.

    1997-04-30

    Fiscal year 1996 has been a year of significant change for the Lawrence Livermore National Laboratory (LLNL) in general and for Engineering in particular. Among these changes, the Laboratory`s national security mission was better defined, the stockpile stewardship program objectives became crisper, LLNL`s investment in high-performance computing was re-emphasized with the procurement of a $100 million supercomputer for the Laboratory`s Accelerated Strategic Computing Initiative (ASCI) program, two major Laser programs (the National Ignition Facility and Atomic Vapor Laser Isotope Separation) expanded significantly, and DOE`s human genome efforts moved to the next phase of development. In the area of business operations, LLNL`s Cost Cutting Initiative Program (CCIP) was completed and the Laboratory restructured its workforce using a Voluntary Separation Incentive Program (VSIP). Engineering similarly also saw many technical and programmatic successes, as well as changes, starting with completion of its strategic plan, significant consolidation of its facilities, restructuring of its workforce, reduction of its overhead costs, substantial transfers of staff between programs, and finally my personal arrival at Livermore. This report is the first opportunity to capture some of Engineering`s FY96 activities and accomplishments in a succinct fashion, and to relate these to our strategic plan.

  3. Overview of Engine Combustion Research at Sandia National Laboratories

    SciTech Connect (OSTI)

    Robert W. Carling; Gurpreet Singh

    1999-04-26

    The objectives of this paper are to describe the ongoing projects in diesel engine combustion research at Sandia National Laboratories' Combustion Research Facility and to detail recent experimental results. The approach we are employing is to assemble experimental hardware that mimic realistic engine geometries while enabling optical access. For example, we are using multi-cylinder engine heads or one-cylinder versions of production heads mated to one-cylinder engine blocks. Optical access is then obtained through a periscope in an exhaust valve, quartz windows in the piston crown, windows in spacer plates just below the head, or quartz cylinder liners. We have three diesel engine experiments supported by the Department of Energy, Office of Heavy Vehicle Technologies: a one-cylinder version of a Cummins heavy-duty engine, a diesel simulation facility, and a one-cylinder Caterpillar engine to evaluate combustion of alternative diesel fuels.

  4. Rotary engine

    SciTech Connect (OSTI)

    Meyman, U.

    1987-02-03

    A rotary engine is described comprising: two covers spaced from one another; rotors located between the covers and rotating and planetating in different phases; the rotors interengaging to form working chambers therebetween; means to supply fluid to the working chambers and means to exhaust fluid from the working chambers during the operating cycle of the engine; gearing for synchronizing rotation and planetation of the rotors and each including first and second gears arranged so that one of the gears is connected with the rotors while the other of the gears is connected with an immovable part of the engine and the gears engage with one another; carriers interconnecting the rotors and planetating in the same phase with the planetation of the rotors for synchronizing the rotation and planetation of the rotors; shafts arranged to support the carriers during their planetations; and elements for connecting the covers with one another.

  5. Impact of operating parameters changing on energy, environment and economic efficiencies of a lean burn gas engine used in a cogeneration plant

    SciTech Connect (OSTI)

    Lemoult, B.; Tazerout, M.; Rousseau, S.

    1998-07-01

    The facts that national electrical company Electricite de France (EDF) has a monopoly on electrical power production in France and an extensive installed base of nuclear power plants, explain the difficulty encountered in developing cogeneration technology in France. Cogeneration only really first appeared in this country in the early 1990's, with the liberalization of energy markets and the government's encouragement. Since then, the number of cogeneration plants has continuously increased and electrical generating capacity is now approximately 1,200 MWe. Turbine and reciprocating engines (most of which are natural gas fired) account respectively for about 55% and 45% of the installed power. Unlike other countries, such as Germany--which has about two thousand 500 kWe and smaller units--the future of low-power cogeneration in France is far from assured, and there are currently less than 10 such plants. To help develop this efficient technology for producing electrical power and hot water, the Ecole des Mines de Nantes purchased a 210 kWe cogeneration generator set in 1996. This facility provides all or part of the school's electrical and heat requirements during five months between November and March. This cogeneration facility is also used during the rest of the year to perform research experiments in the field of lean-burn natural gas combustion. Lastly, it is also used to provide training for industry in cogeneration technology. Within this context, work was undertaken to study the set's energy and emissions performance, in relation to such parameters as spark advance and air factor, and at various loads.

  6. Value Engineering

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2004-01-07

    To establish Department of Energy (DOE) value engineering policy that meets the requirements of Public Law 104-106, Section 4306 as codified by 41 United States Code 432. Canceled by DOE N 251.94. Does not cancel other directives.

  7. Harmonic engine

    DOE Patents [OSTI]

    Bennett, Charles L.; Sewall, Noel; Boroa, Carl

    2014-08-19

    An engine based on a reciprocating piston engine that extracts work from pressurized working fluid. The engine includes a harmonic oscillator inlet valve capable of oscillating at a resonant frequency for controlling the flow of working fluid into of the engine. In particular, the inlet valve includes an inlet valve head and a spring arranged together as a harmonic oscillator so that the inlet valve head is moveable from an unbiased equilibrium position to a biased closed position occluding an inlet. Upon releasing the inlet valve the inlet valve head undergoes a single oscillation past the equilibrium positio to a maximum open position and returns to a biased return position close to the closed position to choke the flow and produce a pressure drop across the inlet valve causing the inlet valve to close. Protrusions carried either by the inlet valve head or piston head are used to bump open the inlet valve from the closed position and initiate the single oscillation of the inlet valve head, and protrusions carried either by the outlet valve head or piston head are used to close the outlet valve ahead of the bump opening of the inlet valve.

  8. Rotary engine

    SciTech Connect (OSTI)

    Larson, T. G.

    1985-10-22

    The rotary engine has a circumferential main chamber and at least one smaller combustion chamber spaced from the main chamber. The rotor includes a plurality of radially-projecting sealing members in spaced relationship thereabout for maintaining a fluid-sealed condition along a single fixed transverse strip area on the interior surface of the main chamber. A single radially-oriented axially-parallel piston vane is also carried by the rotor and moves through the fixed strip area of the main chamber at each revolution of the rotor. Plural passages for intake, compression, expansion, and exhaust are ported into the main chamber at locations proximate to the fixed strip area. Valve means in the passages selectively open and close the same for a cycle of engine operation involving intake, compression, burning, and exhaust.

  9. Rotary engine

    SciTech Connect (OSTI)

    Fawcett, S.L.

    1987-03-03

    In an internal combustion engine, external heat engine, heat pump, gaseous expander, pump or gas compressor, the combustion is described including means forming a cylindrical working chamber having intake and exhaust port means for gases, and two pistons having an arcuate length within the range of 90/sup 0/ to 120/sup 0/ of the cylindrical portion of the working chamber to move toward and away from each other for compression and expansion of gases by rotation on separate concentrically-arranged shafts. A seal means is carried by the walls of the cylindrical working chamber at each of spaced apart locations to continuously form a gas sealing relation with both of the pistons while the pistons rotate toward and away from each other in the cylindrical working chamber.

  10. Advanced Reciprocating Engine Systems

    Broader source: Energy.gov [DOE]

    The Advanced Reciprocating Engine Systems (ARES) program is designed to promote separate but parallel engine development between the major stationary, gaseous fueled engine manufacturers in the...

  11. Systems Engineering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear Energy Nuclear Energy

  12. Rotary engine

    SciTech Connect (OSTI)

    Fawcett, S.L.

    1988-02-09

    In an internal combustion engine, external heat engine, heat pump, gaseous expander, pump or gas compressor, the combination is described including means forming a cylindrical working chamber communicating with intake and exhaust port means for gases, two pistons having an arcuate length within the range of 90/sup 0/ to 120/sup 0/ of the cylindrical surface of the working chamber. The pistons are movable toward and away from each other for compression and expansion of gases in the working chamber while separately rotating concentrically-arranged shafts, a drive shaft, three sets of gearing for connecting the pistons to the drive shaft, a first set of the gearing drivingly coupled to a first of the separate concentric shafts, a second set of the gearing drivingly coupled to a second of the concentric shaft, and a third set of the gearing comprising non-circular gears. The drive shaft is secured to one gear of each of the first, second and third gear sets of gearing for rotating the drive shaft with a substantially constant velocity and torque output throughout the several phases of the working cycle of the engine, compressor or pump.

  13. Project Engineer (Nuclear/Mechanical Engineer) | Princeton Plasma...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Project Engineer (NuclearMechanical Engineer) Department: Engineering Supervisor(s): ... Its Mechanical Engineering Division (MED) is seeking to hire a NuclearMechanical Engineer ...

  14. HCCI in a Variable Compression Ratio Engine: Effects of Engine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in a Variable Compression Ratio Engine: Effects of Engine Variables HCCI in a Variable Compression Ratio Engine: Effects of Engine Variables 2004 Diesel Engine Emissions Reduction ...

  15. Thermoacoustic engines and refrigerators

    SciTech Connect (OSTI)

    Swift, G.W.

    1995-07-01

    We ordinarily think of a sound wave in a gas as consisting of coupled pressure and displacement oscillations. However, temperature oscillations always accompany the pressure changes. The combination of all these oscillations, and their interaction with solid boundaries, produces a rich variety of `thermoacoustic` effects. Although these effects as they occur in every-day life are too small to be noticed, one can harness extremely loud sound waves in acoustically sealed chambers to produce powerful heat engines, heat pumps and refrigerators. Whereas typical engines and refrigerators have crankshaft-coupled pistons or rotating turbines, thermoacoustic engines and refrigerators have at most a single flexing moving part (as in a loudspeaker) with no sliding seals. Thermoacoustic devices may be of practical use where simplicity, reliability or low cost is more important than the highest efficiency (although one cannot say much more about their cost-competitiveness at this early stage). This paper discusses the fundamentals of thermoacoustic engines and refrigerators, research in this field, and their commercial development. 16 refs., 5 figs.

  16. Stirling engine

    SciTech Connect (OSTI)

    Bolger, S.R.

    1992-03-17

    This patent describes an engine. It comprises at least two variable volume compartments joined by a porous medium regenerator; heat exchangers in heat exchange relationships with the variable volume compartments; a fixed quantity of gas in the compartments; a piston in each of the compartments; means to control the pistons to vary the volumes of the gas transferring between the compartments in the form of overlapping quadrilateral waveforms to compress the gas in both compartments through the same cycle pressure ratio during a cycle compression step, to shift the gas between compartments and to expand the gas in both compartments through the same cycle pressure ratio during a cycle expansion step.

  17. Renewable Energy and Climate Change

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Renewable Energy and Climate Change Symposium in Honor of 2009 and 2010 ACS Fellows in ... Engineering Chemistry -- Cellulose and Renewable Materials, Chemicals, Fuels, and Energy ...

  18. OECD/NEA Ongoing activities related to the nuclear fuel cycle

    SciTech Connect (OSTI)

    Cornet, S.M.; McCarthy, K.; Chauvin, N.

    2013-07-01

    As part of its role in encouraging international collaboration, the OECD Nuclear Energy Agency is coordinating a series of projects related to the Nuclear Fuel Cycle. The Nuclear Science Committee (NSC) Working Party on Scientific Issues of the Nuclear Fuel Cycle (WPFC) comprises five different expert groups covering all aspects of the fuel cycle from front to back-end. Activities related to fuels, materials, physics, separation chemistry, and fuel cycles scenarios are being undertaken. By publishing state-of-the-art reports and organizing workshops, the groups are able to disseminate recent research advancements to the international community. Current activities mainly focus on advanced nuclear systems, and experts are working on analyzing results and establishing challenges associated to the adoption of new materials and fuels. By comparing different codes, the Expert Group on Advanced Fuel Cycle Scenarios is aiming at gaining further understanding of the scientific issues and specific national needs associated with the implementation of advanced fuel cycles. At the back end of the fuel cycle, separation technologies (aqueous and pyrochemical processing) are being assessed. Current and future activities comprise studies on minor actinides separation and post Fukushima studies. Regular workshops are also organized to discuss recent developments on Partitioning and Transmutation. In addition, the Nuclear Development Committee (NDC) focuses on the analysis of the economics of nuclear power across the fuel cycle in the context of changes of electricity markets, social acceptance and technological advances and assesses the availability of the nuclear fuel and infrastructure required for the deployment of existing and future nuclear power. The Expert Group on the Economics of the Back End of the Nuclear Fuel Cycle (EBENFC), in particular, is looking at assessing economic and financial issues related to the long term management of spent nuclear fuel. (authors)

  19. Rotary engine

    SciTech Connect (OSTI)

    Brownfield, L.A.

    1980-12-02

    The major components of this rotary engine are two equal sized rotary units, the housing containing them along with associated ignition and cooling systems. Each of the rotary units consists of a shaft, gear, two outer compressor wheels, and one center power wheel which has twice the axial thickness as the compressor wheel. All the wheels are cylindrical in shape with a lobe section comprising a 180/sup 0/ arc on the periphery of each wheel which forms an expanding and contracting volumetric chamber by means of leading and trailing lips. The lobes of the first rotary unit are situated 180/sup 0/ opposite the lobes of the second adjacent mating rotary unit, thus lobes can intermesh with its corresponding wheel.

  20. Ongoing characterization of the forced electron beam induced arc discharge ion source for the selective production of exotic species facility

    SciTech Connect (OSTI)

    Manzolaro, M. Andrighetto, A.; Monetti, A.; Scarpa, D.; Rossignoli, M.; Vasquez, J.; Corradetti, S.; Calderolla, M.; Prete, G.; Meneghetti, G.

    2014-02-15

    An intense research and development activity to finalize the design of the target ion source system for the selective production of exotic species (SPES) facility (operating according to the isotope separation on line technique) is at present ongoing at Legnaro National Laboratories. In particular, the characterization of ion sources in terms of ionization efficiency and transversal emittance is currently in progress, and a preliminary set of data is already available. In this work, the off-line ionization efficiency and emittance measurements for the SPES forced electron beam induced arc discharge ion source in the case of a stable Ar beam are presented in detail.

  1. Assuring quality in high-consequence engineering

    SciTech Connect (OSTI)

    Hoover, Marcey L.; Kolb, Rachel R.

    2014-03-01

    In high-consequence engineering organizations, such as Sandia, quality assurance may be heavily dependent on staff competency. Competency-dependent quality assurance models are at risk when the environment changes, as it has with increasing attrition rates, budget and schedule cuts, and competing program priorities. Risks in Sandia's competency-dependent culture can be mitigated through changes to hiring, training, and customer engagement approaches to manage people, partners, and products. Sandia's technical quality engineering organization has been able to mitigate corporate-level risks by driving changes that benefit all departments, and in doing so has assured Sandia's commitment to excellence in high-consequence engineering and national service.

  2. Metabolic Engineering X Conference

    SciTech Connect (OSTI)

    Flach, Evan

    2015-05-07

    The International Metabolic Engineering Society (IMES) and the Society for Biological Engineering (SBE), both technological communities of the American Institute of Chemical Engineers (AIChE), hosted the Metabolic Engineering X Conference (ME-X) on June 15-19, 2014 at the Westin Bayshore in Vancouver, British Columbia. It attracted 395 metabolic engineers from academia, industry and government from around the globe.

  3. Study of Engine Operating Parameter Effects on GDI Engine Particle...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Study of Engine Operating Parameter Effects on GDI Engine Particle-Number Emissions Study of Engine Operating Parameter Effects on GDI Engine Particle-Number Emissions Results show ...

  4. Increased Engine Efficiency via Advancements in Engine Combustion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Engine Efficiency via Advancements in Engine Combustion Systems Increased Engine Efficiency via Advancements in Engine Combustion Systems Presentation given at the 16th Directions...

  5. Sandia Energy - HCCI/SCCI Engine Fundamentals

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    HCCISCCI Engine Fundamentals Home Transportation Energy Predictive Simulation of Engines Engine Combustion Automotive HCCISCCI Engine Fundamentals HCCISCCI Engine...

  6. Sandia Energy - HCCI/SCCI Engine Fundamentals

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    HCCISCCI Engine Fundamentals Home Transportation Energy Predictive Simulation of Engines Engine Combustion Heavy Duty HCCISCCI Engine Fundamentals HCCISCCI Engine...

  7. Taking an engine`s temperature

    SciTech Connect (OSTI)

    Allison, S.W.; Beshears, D.L.; Cates, M.R.; Noel, B.W.; Turley, W.D.

    1997-01-01

    Ceramic and ceramic-coated components will be of increasing importance in the advanced engines now under development. Ceramics enable engines to run at much higher temperatures than the superalloys in more conventional engines can. The two options for noncontact high-temperature measurements of ceramic components are pyrometry and phosphor thermometry. This article describes how when properly applied as a thin coating, thermally sensitive phosphors can monitor the temperature of ceramic surfaces inside an engine.

  8. FY11 annual Report: PHEV Engine Control and Energy Management Strategy

    SciTech Connect (OSTI)

    Chambon, Paul H

    2011-10-01

    Objectives are to: (1) Investigate novel engine control strategies targeted at rapid engine/catalyst warming for the purpose of mitigating tailpipe emissions from plug-in hybrid electric vehicles (PHEV) exposed to multiple engine cold start events; and (2) Validate and optimize hybrid supervisory control techniques developed during previous and on-going research projects by integrating them into the vehicle level control system and complementing them with the modified engine control strategies in order to further reduce emissions during both cold start and engine re-starts. Approach used are: (1) Perform a literature search of engine control strategies used in conventional powertrains to reduce cold start emissions; (2) Develop an open source engine controller providing full access to engine control strategies in order to implement new engine/catalyst warm-up behaviors; (3) Modify engine cold start control algorithms and characterize impact on cold start behavior; and (4) Develop an experimental Engine-In-the-Loop test stand in order to validate control methodologies and verify transient thermal behavior and emissions of the real engine when combined with a virtual hybrid powertrain. Some major accomplishments are: (1) Commissioned a prototype engine controller on a GM Ecotec 2.4l direct injected gasoline engine on an engine test cell at the University of Tennessee. (2) Obtained from Bosch (with GM's approval) an open calibration engine controller for a GM Ecotec LNF 2.0l Gasoline Turbocharged Direct Injection engine. Bosch will support the bypass of cold start strategies if calibration access proves insufficient. The LNF engine and its open controller were commissioned on an engine test cell at ORNL. (3) Completed a literature search to identify key engine cold start control parameters and characterized their impact on the real engine using the Bosch engine controller to calibrate them. (4) Ported virtual hybrid vehicle model from offline simulation environment to

  9. Comment Period Ongoing

    Broader source: Energy.gov [DOE]

    DOE has published a Draft Environmental Impact Statement (EIS) that analyzes and compares the potential environmental impacts of various alternative approaches to the project, including a “no...

  10. Holding Period Ongoing

    Broader source: Energy.gov [DOE]

    DOE has published a Final Environmental Impact Statement (EIS) that considers all timely public comments on the Draft EIS and identifies DOE’s preferred project alternative(s). The U.S....

  11. Engine lubricating system

    SciTech Connect (OSTI)

    Kurio, N.; Yoshimi, H.

    1988-08-23

    This patent describes an engine lubricating system in which a measured amount of lubricating oil is supplied to the combustion chamber of an engine by a metering oil pump so that a larger amount of lubricating oil is supplied to the combustion chamber when the engine load is heavy than when the engine load is light, characterized by having a lubricating oil supply rate correction means which non-linearly increases the amount of the lubricating oil supplied to the combustion chamber with respect to engine r.p.m. so that the amount of oil supplied per unit engine revolution is greater at high engine speed than at low engine speed.

  12. Chemical & Engineering News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ARPA-E Basic Energy Sciences Materials Sciences and Engineering Chemical Sciences ... SunShot Grand Challenge: Regional Test Centers Chemical & Engineering News Home...

  13. Diesel Engine Light Truck Application

    SciTech Connect (OSTI)

    2007-12-31

    The Diesel Engine Light Truck Application (DELTA) program consists of two major contracts with the Department of Energy (DOE). The first one under DE-FC05-97-OR22606, starting from 1997, was completed in 2001, and consequently, a final report was submitted to DOE in 2003. The second part of the contract was under DE-FC05-02OR22909, covering the program progress from 2002 to 2007. This report is the final report of the second part of the program under contract DE-FC05-02OR22909. During the course of this contract, the program work scope and objectives were significantly changed. From 2002 to 2004, the DELTA program continued working on light-duty engine development with the 4.0L V6 DELTA engine, following the accomplishments made from the first part of the program under DE-FC05-97-OR22606. The program work scope in 2005-2007 was changed to the Diesel Particulate Filter (DPF) soot layer characterization and substrate material assessment. This final report will cover two major technical tasks. (1) Continuation of the DELTA engine development to demonstrate production-viable diesel engine technologies and to demonstrate emissions compliance with significant fuel economy advantages, covering progress made from 2002 to 2004. (2) DPF soot layer characterization and substrate material assessment from 2005-2007.

  14. Procedure for matching synfuel users with potential suppliers. Appendix B. Proposed and ongoing synthetic fuel production projects

    SciTech Connect (OSTI)

    1981-08-07

    To assist the Department of Energy, Office of Fuels Conversion (OFC), in implementing the synthetic fuel exemption under the Powerplant and Industrial Fuel Use Act (FUA) of 1978, Resource Consulting Group, Inc. (RCG), has developed a procedure for matching prospective users and producers of synthetic fuel. The matching procedure, which involves a hierarchical screening process, is designed to assist OFC in: locating a supplier for a firm that wishes to obtain a synthetic fuel exemption; determining whether the fuel supplier proposed by a petitioner is technically and economically capable of meeting the petitioner's needs; and assisting the Synthetic Fuels Corporation or a synthetic fuel supplier in evaluating potential markets for synthetic fuel production. A data base is provided in this appendix on proposed and ongoing synthetic fuel production projects to be used in applying the screening procedure. The data base encompasses a total of 212 projects in the seven production technologies.

  15. ONGOING INVESTIGATION OF THE EFFECT THAT DRUGSTORE BEETLES HAVE ON CELOTEX ASSEMBLIES FOUND WITHIN RADIOACTIVE MATERIAL PACKAGINGS

    SciTech Connect (OSTI)

    Loftin, B.

    2009-06-08

    During normal operations at the Department of Energy's Hanford Site in Hanford, WA, drugstore beetles were found within the fiberboard subassemblies of two 9975 Shipping Packages. The Department of Energy's Packaging Certification Program (EM-60) directed a thorough investigation to determine if the drugstore beetles were causing damage that would be detrimental to the safety performance of the Celotex. The Savannah River National Laboratory is continuing to conduct the investigation with entomological expertise being provided by Clemson University. The outcome from the investigation conducted over the previous year was that no discernible damage had been caused by the drugstore beetles. One of the two packages has been essentially untouched over the past year and has only been opened to visually inspect for additional damage. This paper will provide details and results of the ongoing investigation of that package.

  16. SUPPORTING SAFE STORAGE OF PLUTONIUM-BEARING MATERIALS THROUGH SCIENCE, ENGINEERING AND SURVEILLANCE

    SciTech Connect (OSTI)

    Dunn, K.; Chandler, G.; Gardner, C.; Louthan, M.; Mcclard, J.

    2009-11-10

    Reductions in the size of the U. S. nuclear weapons arsenal resulted in the need to store large quantities of plutonium-bearing metals and oxides for prolonged periods of time. To assure that the excess plutonium from the U. S. Department of Energy (DOE) sites was stored in a safe and environmentally friendly manner the plutonium-bearing materials are stabilized and packaged according to well developed criteria published as a DOE Standard. The packaged materials are stored in secure facilities and regular surveillance activities are conducted to assure continuing package integrity. The stabilization, packaging, storage and surveillance requirements were developed through extensive science and engineering activities including those related to: plutonium-environment interactions and container pressurization, corrosion and stress corrosion cracking, plutonium-container material interactions, loss of sealing capability and changes in heat transfer characteristics. This paper summarizes some of those activities and outlines ongoing science and engineering programs that assure continued safe and secure storage of the plutonium-bearing metals and oxides.

  17. Hawaii Department of Land and Natural Resources Engineering Division...

    Open Energy Info (EERE)

    Land Leasing Contact Contacts.png Morriss Atta Chief Engineer Contacts.png Carty Chang http:hawaii.govdlnreng Retrieved from "http:en.openei.orgw...

  18. Double acting stirling engine phase control

    DOE Patents [OSTI]

    Berchowitz, David M.

    1983-01-01

    A mechanical device for effecting a phase change between the expansion and compression volumes of a double-acting Stirling engine uses helical elements which produce opposite rotation of a pair of crankpins when a control rod is moved, so the phase between two pairs of pistons is changed by +.psi. and the phase between the other two pairs of pistons is changed by -.psi.. The phase can change beyond .psi.=90.degree. at which regenerative braking and then reversal of engine rotation occurs.

  19. Conventional engine technology. Volume I. Status of OTTO cycle engine technology

    SciTech Connect (OSTI)

    Dowdy, M.W.

    1981-12-15

    Federally-mandated emissions standards have led to mator changes in automotive technology during the last decade. Efforts to satisfy the new standards have been directed more toward the use of add-on devices, such as catalytic converters, turbochargers, and improved fuel metering, than toward complete engine redesign. The resulting changes are described in this volume, and the improvements brought about by them in fuel economy and emissions levels are fully documented. Four specific categories of gasoline-powered internal combustion engines, i.e., uniform charge engines with and without fuel injection, stratified charge engines, and rotary engines, are covered, including subsystem and total engine development. Also included are the results of fuel economy and exhaust emissions tests performed on representative vehicles from each category.

  20. Jefferson Lab Engineering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Engineering Privacy and Security Notice Skip over navigation search JLab Engineering Please upgrade your browser. This site's design is only visible in a graphical browser that supports web standards, but its content is accessible to any browser. Concerns? Engineering Division Engineering Pressure Systems Seminars/Training print version Mechanical Systems Mechanical Engineering - Document Control Survey Alignment Machine Shop Installation/Vacuum Cryogenics Cryogenics - Cryogenics Department

  1. 2015 Procurement Evaluation and Re-engineering Team (PERT) Schedule |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 15 Procurement Evaluation and Re-engineering Team (PERT) Schedule 2015 Procurement Evaluation and Re-engineering Team (PERT) Schedule PERT Schedule 2015.pdf (102.26 KB) More Documents & Publications Change to Procurement Evaluation & Re-Engineering Team (PERT) Review Cycle Procurement Evaluation & Re-Engineering Team (PERT) and Establishment of a 5-year Cycle with Corresponding Schedule POLICY FLASH 2015-40

  2. Heat engine generator control system

    DOE Patents [OSTI]

    Rajashekara, K.; Gorti, B.V.; McMullen, S.R.; Raibert, R.J.

    1998-05-12

    An electrical power generation system includes a heat engine having an output member operatively coupled to the rotor of a dynamoelectric machine. System output power is controlled by varying an electrical parameter of the dynamoelectric machine. A power request signal is related to an engine speed and the electrical parameter is varied in accordance with a speed control loop. Initially, the sense of change in the electrical parameter in response to a change in the power request signal is opposite that required to effectuate a steady state output power consistent with the power request signal. Thereafter, the electrical parameter is varied to converge the output member speed to the speed known to be associated with the desired electrical output power. 8 figs.

  3. Heat engine generator control system

    DOE Patents [OSTI]

    Rajashekara, Kaushik (Carmel, IN); Gorti, Bhanuprasad Venkata (Towson, MD); McMullen, Steven Robert (Anderson, IN); Raibert, Robert Joseph (Fishers, IN)

    1998-01-01

    An electrical power generation system includes a heat engine having an output member operatively coupled to the rotor of a dynamoelectric machine. System output power is controlled by varying an electrical parameter of the dynamoelectric machine. A power request signal is related to an engine speed and the electrical parameter is varied in accordance with a speed control loop. Initially, the sense of change in the electrical parameter in response to a change in the power request signal is opposite that required to effectuate a steady state output power consistent with the power request signal. Thereafter, the electrical parameter is varied to converge the output member speed to the speed known to be associated with the desired electrical output power.

  4. The Phillips Stirling engine

    SciTech Connect (OSTI)

    Hargreaves, C.M.

    1991-01-01

    This book is about the Stirling engine and its development from the heavy cast-iron machine of the 19th century to that of today. It is a history of a research effort spanning nearly 50 years, together with an outline of principles, and some technical details and descriptions of the more important engines. Contents include: the hot-air engine; the 20th-century revival; the Stirling cycle; rhombic-drive engines; heating and cooling; pistons and seals; electric generators and heat pumps; exotic heat sources; the engine and the environment; swashplate engines; and the past and the future.

  5. Advanced Natural Gas Reciprocating Engine(s)

    SciTech Connect (OSTI)

    Pike, Edward

    2014-03-31

    The objective of the Cummins ARES program, in partnership with the US Department of Energy (DOE), is to develop advanced natural gas engine technologies that increase engine system efficiency at lower emissions levels while attaining lower cost of ownership. The goals of the project are to demonstrate engine system achieving 50% Brake Thermal Efficiency (BTE) in three phases, 44%, 47% and 50% (starting baseline efficiency at 36% BTE) and 0.1 g/bhp-hr NOx system out emissions (starting baseline NOx emissions at 2 – 4 g/bhp-hr NOx). Primary path towards above goals include high Brake Mean Effective Pressure (BMEP), improved closed cycle efficiency, increased air handling efficiency and optimized engine subsystems. Cummins has successfully demonstrated each of the phases of this program. All targets have been achieved through application of a combined set of advanced base engine technologies and Waste Heat Recovery from Charge Air and Exhaust streams, optimized and validated on the demonstration engine and other large engines. The following architectures were selected for each Phase: Phase 1: Lean Burn Spark Ignited (SI) Key Technologies: High Efficiency Turbocharging, Higher Efficiency Combustion System. In production on the 60/91L engines. Over 500MW of ARES Phase 1 technology has been sold. Phase 2: Lean Burn Technology with Exhaust Waste Heat Recovery (WHR) System Key Technologies: Advanced Ignition System, Combustion Improvement, Integrated Waste Heat Recovery System. Base engine technologies intended for production within 2 to 3 years Phase 3: Lean Burn Technology with Exhaust and Charge Air Waste Heat Recovery System Key Technologies: Lower Friction, New Cylinder Head Designs, Improved Integrated Waste Heat Recovery System. Intended for production within 5 to 6 years Cummins is committed to the launch of next generation of large advanced NG engines based on ARES technology to be commercialized worldwide.

  6. Future global environmental changes: Comparison with past and present rates of change

    SciTech Connect (OSTI)

    Cole, K.L. (Univ. of Minnesota, St. Paul (United States))

    1993-06-01

    Quantification of past and present rates of vegetation change provides a yardstick for the evaluation of future rates of change. Holocene and post-settlement rates of vegetation change were measured at Channel Islands and Capitol Reef National Parks, and at Indiana Dunes and Pictured Rocks National Lakeshores, using various paleoecological proxy data. Vegetation changes were quantified using several multivariate ordination techniques. Comparison of past vegetation changes due to climatic shifts, plant succession, and plant migration, with ongoing changes due to grazing, logging, exotic species invasions, and modified fire regimes, demonstrates that plant communities are presently suffering rates of change which are unprecedented in their severity for the Last 5000 years. The climatic warming projected for the next 50 years will exacerbate these ongoing changes, but win only be one of many variables operating in the unplanned experimental redesign our natural ecosystems.

  7. PIA - Human Resources - Personal Information Change Request ...

    Broader source: Energy.gov (indexed) [DOE]

    PIA - Human Resources - Personal Information Change Request - Idaho National Engineering Laboratory (278.62 KB) More Documents & Publications PIA - INL PeopleSoft - Human ...

  8. Polymer Engineering Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Polymer Engineering Center University of Wisconsin-Madison Experimental and Numerical Studies of the Temperature Field in Selective Laser Sintering to Improve Shrinkage and Warpage Prediction Prof. Dr.-Ing. Natalie Rudolph Polymer Engineering Center Department of Mechanical Engineering University of Wisconsin-Madison 1513 University Ave Madison, WI 53706 Advanced Qualification of Additive Manufacturing Materials Workshop, July 20-21, 2015 in Santa Fe, NM Polymer Engineering Center University of

  9. Innovative Application of Maintenance-Free Phase-Change Thermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Application of Maintenance-Free Phase-Change Thermal Energy Storage for Dish Engine Solar Power Generation Innovative Application of Maintenance-Free Phase-Change Thermal Energy ...

  10. Korea's Green Growth Strategy: Mitigating Climate Change and...

    Open Energy Info (EERE)

    Korea's Green Growth Strategy: Mitigating Climate Change and Developing New Growth Engines Jump to: navigation, search Name Korea's Green Growth Strategy: Mitigating Climate Change...

  11. RESEARCH PERSONNEL AND ENGINEERING STAFF

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Scientist (20%) Engineering Staff Walter Chapman, Mech. Engineer - To 93002 Greg Derrig, Senior Mechanical Engineer Lee Norris, Instr. Shop Supervisor - From 10102 ...

  12. Symbiotic Engineering | Open Energy Information

    Open Energy Info (EERE)

    Symbiotic Engineering Jump to: navigation, search Name: Symbiotic Engineering Place: Boulder, CO Website: www.symbioticengineering.com References: Symbiotic Engineering1...

  13. ETA Engineering | Open Energy Information

    Open Energy Info (EERE)

    ETA Engineering Jump to: navigation, search Logo: ETA Engineering Name: ETA Engineering Address: 4049 E. Presidio St., Suite 117 Place: Mesa, Arizona Zip: 85215 Product: renewable...

  14. Black Pine Engineering

    Broader source: Energy.gov [DOE]

    Black Pine Engineering is commercializing a disruptive technology in the turbomachinery industry. Using a patented woven composite construction, Black Pine Engineering can make turbomachines (turbines, compressors) that are cheaper and lighter than competing technologies. Using this technology, Black Pine Engineering will sell turbo-compressors which solve the problem of wasted steam in geothermal power plants.

  15. Adaptive Systems Engineering: A Medical Paradigm for Practicing Systems Engineering

    SciTech Connect (OSTI)

    R. Douglas Hamelin; Ron D. Klingler; Christopher Dieckmann

    2011-06-01

    From its inception in the defense and aerospace industries, SE has applied holistic, interdisciplinary tools and work-process to improve the design and management of 'large, complex engineering projects.' The traditional scope of engineering in general embraces the design, development, production, and operation of physical systems, and SE, as originally conceived, falls within that scope. While this 'traditional' view has expanded over the years to embrace wider, more holistic applications, much of the literature and training currently available is still directed almost entirely at addressing the large, complex, NASA and defense-sized systems wherein the 'ideal' practice of SE provides the cradle-to-grave foundation for system development and deployment. Under such scenarios, systems engineers are viewed as an integral part of the system and project life-cycle from conception to decommissioning. In far less 'ideal' applications, SE principles are equally applicable to a growing number of complex systems and projects that need to be 'rescued' from overwhelming challenges that threaten imminent failure. The medical profession provides a unique analogy for this latter concept and offers a useful paradigm for tailoring our 'practice' of SE to address the unexpected dynamics of applying SE in the real world. In short, we can be much more effective as systems engineers as we change some of the paradigms under which we teach and 'practice' SE.

  16. Solar powered Stirling engine

    SciTech Connect (OSTI)

    Meijer, R.J.

    1987-11-24

    In a solar dish module which comprises a dish which receives incident solar rays and reflects them to a focus at which is located the combination of a receiver and a heat engine organized and arranged so that the heat energy of the reflected solar rays collected at the receiver powers the engine, and wherein the receiver and heat engine are supported from the dish by a framework, the improvement is described which comprises journal means for journaling at least the engine on the framework to maintain certain predetermined spatial orientation for the engine in relation to the direction of gravity irrespective of spatial orientation of the dish.

  17. Multiple volume compressor for hot gas engine

    DOE Patents [OSTI]

    Stotts, Robert E.

    1986-01-01

    A multiple volume compressor for use in a hot gas (Stirling) engine having a plurality of different volume chambers arranged to pump down the engine when decreased power is called for and return the working gas to a storage tank or reservoir. A valve actuated bypass loop is placed over each chamber which can be opened to return gas discharged from the chamber back to the inlet thereto. By selectively actuating the bypass valves, a number of different compressor capacities can be attained without changing compressor speed whereby the capacity of the compressor can be matched to the power available from the engine which is used to drive the compressor.

  18. Micro electromechanical systems (MEMS) for mechanical engineers

    SciTech Connect (OSTI)

    Lee, A. P., LLNL

    1996-11-18

    The ongoing advances in Microelectromechanical Systems (MEMS) are providing man-kind the freedom to travel to dimensional spaces never before conceivable. Advances include new fabrication processes, new materials, tailored modeling tools, new fabrication machines, systems integration, and more detailed studies of physics and surface chemistry as applied to the micro scale. In the ten years since its inauguration, MEMS technology is penetrating industries of automobile, healthcare, biotechnology, sports/entertainment, measurement systems, data storage, photonics/optics, computer, aerospace, precision instruments/robotics, and environment monitoring. It is projected that by the turn of the century, MEMS will impact every individual in the industrial world, totaling sales up to $14 billion (source: System Planning Corp.). MEMS programs in major universities have spawned up all over the United States, preparing the brain-power and expertise for the next wave of MEMS breakthroughs. It should be pointed out that although MEMS has been initiated by electrical engineering researchers through the involvement of IC fabrication techniques, today it has evolved such that it requires a totally multi-disciplinary team to develop useful devices. Mechanical engineers are especially crucial to the success of MEMS development, since 90% of the physical realm involved is mechanical. Mechanical engineers are needed for the design of MEMS, the analysis of the mechanical system, the design of testing apparatus, the implementation of analytical tools, and the packaging process. Every single aspect of mechanical engineering is being utilized in the MEMS field today, however, the impact could be more substantial if more mechanical engineers are involved in the systems level designing. In this paper, an attempt is made to create the pathways for a mechanical engineer to enter in the MEMS field. Examples of application in optics and medical devices will be used to illustrate how mechanical

  19. Engine intake system

    SciTech Connect (OSTI)

    Kanesaka, H.

    1989-02-07

    An intake system is described for an internal combustion engine, the system comprising: an intake passage having an intake port and an inertial supercharging intake pipe leading to the intake port; an intake valve mounted in the intake port and operatively connected to the engine for alternately opening and closing the intake port; a rotary valve operatively connected to the engine and disposed in the intake passage intermediate the inertial supercharging intake pipe and the intake port. The rotary valve is rotatable for opening and closing the intake passage, and timing adjusting means operatively connected to the engine and to the rotary valve for retarding the opening of the rotary valve relative to the opening of the intake valve at low engine speeds, and for advancing the opening of the rotary valve at high engine speeds, whereby the retarding and advancing of the opening of the rotary valve enables inertial supercharging in the intake pipe at both low and high engine speeds.

  20. Mechanical Engineering Department technical review

    SciTech Connect (OSTI)

    Carr, R.B.; Abrahamson, L.; Denney, R.M.; Dubois, B.E

    1982-01-01

    Technical achievements and publication abstracts related to research in the following Divisions of Lawrence Livermore Laboratory are reported in this biannual review: Nuclear Fuel Engineering; Nuclear Explosives Engineering; Weapons Engineering; Energy Systems Engineering; Engineering Sciences; Magnetic Fusion Engineering; and Material Fabrication. (LCL)

  1. Adjusting the specificity of an engine map based on the sensitivity of an engine control parameter relative to a performance variable

    DOE Patents [OSTI]

    Jiang, Li; Lee, Donghoon; Yilmaz, Hakan; Stefanopoulou, Anna

    2014-10-28

    Methods and systems for engine control optimization are provided. A first and a second operating condition of a vehicle engine are detected. An initial value is identified for a first and a second engine control parameter corresponding to a combination of the detected operating conditions according to a first and a second engine map look-up table. The initial values for the engine control parameters are adjusted based on a detected engine performance variable to cause the engine performance variable to approach a target value. A first and a second sensitivity of the engine performance variable are determined in response to changes in the engine control parameters. The first engine map look-up table is adjusted when the first sensitivity is greater than a threshold, and the second engine map look-up table is adjusted when the second sensitivity is greater than a threshold.

  2. Stirling cycle rotary engine

    SciTech Connect (OSTI)

    Chandler, J.A.

    1988-06-28

    A Stirling cycle rotary engine for producing mechanical energy from heat generated by a heat source external to the engine, the engine including: an engine housing having an interior toroidal cavity with a central housing axis for receiving a working gas, the engine housing further having a cool as inlet port, a compressed gas outlet port, a heated compressed gas inlet port, and a hot exhaust gas outlet port at least three rotors each fixedly mounted to a respective rotor shaft and independently rotatable within the toroidal cavity about the central axis; each of the rotors including a pair of rotor blocks spaced radially on diametrically opposing sides of the respective rotor shaft, each rotor block having a radially fixed curva-linear outer surface for sealed rotational engagement with the engine housing.

  3. Staged combustion with piston engine and turbine engine supercharger

    DOE Patents [OSTI]

    Fischer, Larry E.; Anderson, Brian L.; O'Brien, Kevin C.

    2011-11-01

    A combustion engine method and system provides increased fuel efficiency and reduces polluting exhaust emissions by burning fuel in a two-stage combustion system. Fuel is combusted in a piston engine in a first stage producing piston engine exhaust gases. Fuel contained in the piston engine exhaust gases is combusted in a second stage turbine engine. Turbine engine exhaust gases are used to supercharge the piston engine.

  4. Staged combustion with piston engine and turbine engine supercharger

    DOE Patents [OSTI]

    Fischer, Larry E.; Anderson, Brian L.; O'Brien, Kevin C.

    2006-05-09

    A combustion engine method and system provides increased fuel efficiency and reduces polluting exhaust emissions by burning fuel in a two-stage combustion system. Fuel is combusted in a piston engine in a first stage producing piston engine exhaust gases. Fuel contained in the piston engine exhaust gases is combusted in a second stage turbine engine. Turbine engine exhaust gases are used to supercharge the piston engine.

  5. Science & Engineering Capabilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Capabilities Science & Engineering Capabilities These capabilities are our science and engineering at work for the national security interest in areas from global climate to cyber security, from nonproliferation to new materials, from clean energy solutions to supercomputing. Accelerators, Electrodynamics» Energy» Materials Science» Bioscience: Bioenergy, Biosecurity, and Health» Engineering» National Security, Weapons Science» Chemical Science» High-Energy-Density Plasmas, Fluids»

  6. Integrated and Engineered Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Integrated and Engineered Systems Integrated and Engineered Systems National security depends on science and technology. The United States relies on Los Alamos National Laboratory for the best of both. No place on Earth pursues a broader array of world-class scientific endeavors. Contact thumbnail of Business Development Executive Miranda Intrator Business Development Executive Richard P. Feynmnan Center for Innovation (505) 665-8315 Email Engineers at Los Alamos create, design, and build the

  7. Chemical Diagnostics and Engineering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CDE Chemical Diagnostics and Engineering We support stockpile manufacturing, surveillance, applied and basic energy sciences, threat reduction, public health, the environment, and space exploration. Contact Us Group Leader Peter Stark Deputy Group Leader Tom Yoshida Group Office (505) 667-5740 X-Ray Photoelectron Spectroscopy X-Ray Photoelectron Spectroscopy The Chemical Diagnostics and Engineering (C-CDE) Group combines engineering design with routine analytical services and state-of-the-art

  8. Supervisory Electrical Engineer

    Broader source: Energy.gov [DOE]

    (See Frequently Asked Questions for more information). Where would I be working? Western Area Power Administration Rocky Mountain Region Maintenance, (J5640) Engineering and Construciton 5555 E....

  9. ARM - Engineering Processes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Processes Workflow Graphic Engineering Workflow Document Tools for Workflow ECR ECO BCR Ingests Value-Added Products Reprocessing Instruments Data System Elements Field...

  10. Stirling engine heating system

    SciTech Connect (OSTI)

    Johansson, L.N.; Houtman, W.H.; Percival, W.H.

    1988-06-28

    A hot gas engine is described wherein a working gas flows back and forth in a closed path between a relatively cooler compression cylinder side of the engine and a relatively hotter expansion cylinder side of the engine and the path contains means including a heat source and a heat sink acting upon the gas in cooperation with the compression and expansion cylinders to cause the gas to execute a thermodynamic cycle wherein useful mechanical output power is developed by the engine, the improvement in the heat source which comprises a plurality of individual tubes each forming a portion of the closed path for the working gas.

  11. SCADA Engineering Solutions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering ...

  12. Internet strategies for engineers

    SciTech Connect (OSTI)

    Hill, K.; Beruvides, M.G.

    1997-11-01

    This report contains viewgraphs on using internet strategies for engineers. How the internet is being used and what problems are being encountered are being considered.

  13. Electrical Engineer (Project Manager)

    Broader source: Energy.gov [DOE]

    (See Frequently Asked Questions for more information). Where would I be working? Western Area Power Administration Rocky Mountain Region Maintenance, Engineering & Construction Facility...

  14. Recent Graduate- Electrical Engineer

    Broader source: Energy.gov [DOE]

    (See Frequently Asked Questions for more information). Where would I be working? Western Area Power Administration Rocky Mountain Region Power System Operations Operations Engineering (J4200) 5555...

  15. XML Engineering Environment

    Energy Science and Technology Software Center (OSTI)

    2006-07-27

    The XML Engineering Environment is a reconfigurable software system that allows users to translate, enhance and route data from sources to sinks.

  16. Engine and method for operating an engine

    DOE Patents [OSTI]

    Lauper, Jr., John Christian; Willi, Martin Leo; Thirunavukarasu, Balamurugesh; Gong, Weidong

    2008-12-23

    A method of operating an engine is provided. The method may include supplying a combustible combination of reactants to a combustion chamber of the engine, which may include supplying a first hydrocarbon fuel, hydrogen fuel, and a second hydrocarbon fuel to the combustion chamber. Supplying the second hydrocarbon fuel to the combustion chamber may include at least one of supplying at least a portion of the second hydrocarbon fuel from an outlet port that discharges into an intake system of the engine and supplying at least a portion of the second hydrocarbon fuel from an outlet port that discharges into the combustion chamber. Additionally, the method may include combusting the combustible combination of reactants in the combustion chamber.

  17. Advanced Natural Gas Reciprocating Engine(s)

    SciTech Connect (OSTI)

    Kwok, Doris; Boucher, Cheryl

    2009-09-30

    Energy independence and fuel savings are hallmarks of the nations energy strategy. The advancement of natural gas reciprocating engine power generation technology is critical to the nations future. A new engine platform that meets the efficiency, emissions, fuel flexibility, cost and reliability/maintainability targets will enable American manufacturers to have highly competitive products that provide substantial environmental and economic benefits in the US and in international markets. Along with Cummins and Waukesha, Caterpillar participated in a multiyear cooperative agreement with the Department of Energy to create a 50% efficiency natural gas powered reciprocating engine system with a 95% reduction in NOx emissions by the year 2013. This platform developed under this agreement will be a significant contributor to the US energy strategy and will enable gas engine technology to remain a highly competitive choice, meeting customer cost of electricity targets, and regulatory environmental standard. Engine development under the Advanced Reciprocating Engine System (ARES) program was divided into phases, with the ultimate goal being approached in a series of incremental steps. This incremental approach would promote the commercialization of ARES technologies as soon as they emerged from development and would provide a technical and commercial foundation of later-developing technologies. Demonstrations of the Phase I and Phase II technology were completed in 2004 and 2008, respectively. Program tasks in Phase III included component and system development and testing from 2009-2012. Two advanced ignition technology evaluations were investigated under the ARES program: laser ignition and distributed ignition (DIGN). In collaboration with Colorado State University (CSU), a laser ignition system was developed to provide ignition at lean burn and high boost conditions. Much work has been performed in Caterpillars DIGN program under the ARES program. This work has

  18. Performance and emissions characteristics of alternative fuels in spark ignition engines

    SciTech Connect (OSTI)

    Swain, M.R.; Maxwell, R.L.; Swain, M.N.; Bedsworth, K.; Adt, R.R. Jr.; Pappas, J.M.

    1984-01-01

    A formal ongoing program to characterize the performance and exhaust characteristics of automotive-type powerplants fueled by conventional and alternative fuels is reported. This report contains the information obtained during the past three years when four alternative fuels and two baseline fuels were evaluated in three engines. The four alternative fuels were a simulated gasoline made to represent coal derived gasoline, methyl aryl ethers blended at the 10% level in an unleaded gasoline, gasoline made from methanol, and a blend of Indolene plus methanol and higher alcohols. The two baseline fuels were, Indolene and Gulf unleaded regular gasoline. The engines tested were a pre-mixed carbureted SI (spark ignition) engine, a carbureted three-valve stratified-charge SI engine and a pre-mixed carbureted SI engine with a closed-loop three-way catalyst emission control system.

  19. Review of alternate automotive engine fuel economy. Final report January-October 78

    SciTech Connect (OSTI)

    Cole, D.; Bolt, J.A.; Huber, P.; Taylor, T. Jr.

    1980-11-01

    This study assessed the potential of alternate automotive engines to meet the fuel economy goals and emission levels of the 1980-1990 period. As part of NHTSA's continuing research in support of the Department of Transportation fuel economy activities, this study reviewed those developments offering viable substitutes for the current spark ignition engine systems. Categories assessed included stratified charge, diesels, turbo charging, rotary/Wankel engines, and the developmental gas turbine and Stirling cycle engines. Results of past and on-going research through 1978 were reviewed along with the development and production status of various alternate engine technologies proposed for automobiles and light trucks through the 1980s. Assessment was then made of the potential fuel economy improvement as a percentage of 1978 baseline data.

  20. Perturbing engine performance measurements to determine optimal engine control settings

    DOE Patents [OSTI]

    Jiang, Li; Lee, Donghoon; Yilmaz, Hakan; Stefanopoulou, Anna

    2014-12-30

    Methods and systems for optimizing a performance of a vehicle engine are provided. The method includes determining an initial value for a first engine control parameter based on one or more detected operating conditions of the vehicle engine, determining a value of an engine performance variable, and artificially perturbing the determined value of the engine performance variable. The initial value for the first engine control parameter is then adjusted based on the perturbed engine performance variable causing the engine performance variable to approach a target engine performance variable. Operation of the vehicle engine is controlled based on the adjusted initial value for the first engine control parameter. These acts are repeated until the engine performance variable approaches the target engine performance variable.

  1. Career Map: Industrial Engineer | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Industrial Engineer Career Map: Industrial Engineer Two industrial engineers analyze data on a computer. Industrial Engineer Position Title Industrial Engineer Alternate Title(s) Production Engineer, Process Engineer, Manufacturing Engineer, Industrial Production Manager Education & Training Level Advanced, Bachelors required, prefer graduate degree Education & Training Level Description Industrial engineers should have a bachelor's degree in industrial engineering. Employers also value

  2. Career Map: Research Engineer | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Engineer Career Map: Research Engineer Two research engineers wearing safety glasses view results of an experiment. Research Engineer Position Title Research Engineer Alternate Title(s) Government Engineer, Research and Development Engineer, Basic Research Engineer, Component Researcher, Materials Engineer Education & Training Level Bachelor's degree required, prefer graduate degree Education & Training Level Description Research engineers must have a bachelor's degree. Employers value

  3. SCADA Engineering Solutions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Engineering Solutions - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced

  4. Stirling engine piston ring

    DOE Patents [OSTI]

    Howarth, Roy B.

    1983-01-01

    A piston ring design for a Stirling engine wherein the contact pressure between the piston and the cylinder is maintained at a uniform level, independent of engine conditions through a balancing of the pressure exerted upon the ring's surface and thereby allowing the contact pressure on the ring to be predetermined through the use of a preloaded expander ring.

  5. Engineered Natural Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Engineered Natural Systems Onsite researchers at NETL develop processes, techniques, instrumentation, and relationships to collect, interpret, and disseminate data in an effort to characterize and understand the behavior of engineered natural systems. Research includes investigating theoretical and observed phenomena to support program needs and developing new concepts in the areas of analytical biogeochemistry, geology, and monitoring. Specific expertise includes: Analytical- Bio- and Geo-

  6. Engineering Division Superconducting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    & Engineering Division Superconducting Magnet Technology for Fusion and Large Scale Applications Joseph V. Minervini Massachusetts Institute of Technology Plasma Science and Fusion Center Princeton Plasma Physics Laboratory Colloquium Princeton, NJ October 15, 2014 Technology & Engineering Division Contents * Fusion Magnets - Present and Future - Vision - State-of-the-art - New developments in superconductors * Advanced fusion magnet technology * Other large scale applications of

  7. Free piston stirling engines

    SciTech Connect (OSTI)

    Walker, C.

    1985-01-01

    This book presents a basic introduction to free piston Stirling engine technology through a review of specialized background material. It also includes information based on actual construction and operation experience with these machines, as well as theoretical and analytical insights into free piston Stirling engine technology.

  8. Computational Science and Engineering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Computational Science and Engineering NETL's Computational Science and Engineering competency consists of conducting applied scientific research and developing physics-based simulation models, methods, and tools to support the development and deployment of novel process and equipment designs. Research includes advanced computations to generate information beyond the reach of experiments alone by integrating experimental and computational sciences across different length and time scales. Specific

  9. Metabolic Engineering VII Conference

    SciTech Connect (OSTI)

    Kevin Korpics

    2012-12-04

    The aims of this Metabolic Engineering conference are to provide a forum for academic and industrial researchers in the field; to bring together the different scientific disciplines that contribute to the design, analysis and optimization of metabolic pathways; and to explore the role of Metabolic Engineering in the areas of health and sustainability. Presentations, both written and oral, panel discussions, and workshops will focus on both applications and techniques used for pathway engineering. Various applications including bioenergy, industrial chemicals and materials, drug targets, health, agriculture, and nutrition will be discussed. Workshops focused on technology development for mathematical and experimental techniques important for metabolic engineering applications will be held for more in depth discussion. This 2008 meeting will celebrate our conference tradition of high quality and relevance to both industrial and academic participants, with topics ranging from the frontiers of fundamental science to the practical aspects of metabolic engineering.

  10. Thermoacoustic engines and refrigerators

    SciTech Connect (OSTI)

    Swift, G.

    1996-12-31

    This report is a transcript of a practice lecture given in preparation for a review lecture on the operation of thermoacoustic engines and refrigerators. The author begins by a brief review of the thermodynamic principles underlying the operation of thermoacoustic engines and refrigerators. Remember from thermodynamics class that there are two kinds of heat engines, the heat engine or the prime mover which produces work from heat, and the refrigerator or heat pump that uses work to pump heat. The device operates between two thermal reservoirs at temperatures T{sub hot} and T{sub cold}. In the heat engine, heat flows into the device from the reservoir at T{sub hot}, produces work, and delivers waste heat into the reservoir at T{sub cold}. In the refrigerator, work flows into the device, lifting heat Q{sub cold} from reservoir at T{sub cold} and rejecting waste heat into the reservoir at T{sub hot}.

  11. Diesel and Gasoline Engine Emissions: Characterization of Atmosphere

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Composition and Health Responses to Inhaled Emissions | Department of Energy and Gasoline Engine Emissions: Characterization of Atmosphere Composition and Health Responses to Inhaled Emissions Diesel and Gasoline Engine Emissions: Characterization of Atmosphere Composition and Health Responses to Inhaled Emissions 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters 2005_deer_mcdonald.pdf (542.75 KB) More Documents & Publications The Effect of Changes in

  12. Speed And Power Control Of An Engine By Modulation Of The Load Torque

    SciTech Connect (OSTI)

    Ziph, Benjamin; Strodtman, Scott; Rose, Thomas K

    1999-01-26

    A system and method of speed and power control for an engine in which speed and power of the engine is controlled by modulation of the load torque. The load torque is manipulated in order to cause engine speed, and hence power to be changed. To accomplish such control, the load torque undergoes a temporary excursion in the opposite direction of the desired speed and power change. The engine and the driven equipment will accelerate or decelerate accordingly as the load torque is decreased or increased, relative to the essentially fixed or constant engine torque. As the engine accelerates or decelerates, its power increases or decreases in proportion.

  13. Increased Engine Efficiency via Advancements in Engine Combustion Systems |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Engine Efficiency via Advancements in Engine Combustion Systems Increased Engine Efficiency via Advancements in Engine Combustion Systems Presentation given at the 16th Directions in Engine-Efficiency and Emissions Research (DEER) Conference in Detroit, MI, September 27-30, 2010. deer10_sisken.pdf (978.17 KB) More Documents & Publications High-Efficiency Engine Technologies Session Introduction Demonstrating and Validating a Next Generation Model-Based Controller for

  14. E85 Optimized Engine

    SciTech Connect (OSTI)

    Bower, Stanley

    2011-12-31

    A 5.0L V8 twin-turbocharged direct injection engine was designed, built, and tested for the purpose of assessing the fuel economy and performance in the F-Series pickup of the Dual Fuel engine concept and of an E85 optimized FFV engine. Additionally, production 3.5L gasoline turbocharged direct injection (GTDI) EcoBoost engines were converted to Dual Fuel capability and used to evaluate the cold start emissions and fuel system robustness of the Dual Fuel engine concept. Project objectives were: to develop a roadmap to demonstrate a minimized fuel economy penalty for an F-Series FFV truck with a highly boosted, high compression ratio spark ignition engine optimized to run with ethanol fuel blends up to E85; to reduce FTP 75 energy consumption by 15% - 20% compared to an equally powered vehicle with a current production gasoline engine; and to meet ULEV emissions, with a stretch target of ULEV II / Tier II Bin 4. All project objectives were met or exceeded.

  15. Heavy Truck Engine Program

    SciTech Connect (OSTI)

    Nelson, Christopher

    2009-01-08

    The Heavy Duty Truck Engine Program at Cummins embodied three significant development phases. All phases of work strove to demonstrate a high level of diesel engine efficiency in the face of increasingly stringent emission requirements. Concurrently, aftertreatment system development and refinement was pursued in support of these efficiency demonstrations. The program's first phase focused on the demonstration in-vehicle of a high level of heavy duty diesel engine efficiency (45% Brake Thermal Efficiency) at a typical cruise condition while achieving composite emissions results which met the 2004 U.S. EPA legislated standards. With a combination of engine combustion calibration tuning and the development and application of Urea-based SCR and particulate aftertreatment, these demonstrations were successfully performed by Q4 of 2002. The second phase of the program directed efforts towards an in-vehicle demonstration of an engine system capable of meeting 2007 U.S. EPA legislated emissions requirements while achieving 45% Brake Thermal Efficiency at cruise conditions. Through further combustion optimization, the refinement of Cummins Cooled EGR architecture, the application of a high pressure common rail fuel system and the incorporation of optimized engine parasitics, Cummins Inc. successfully demonstrated these deliverables in Q2 of 2004. The program's final phase set a stretch goal of demonstrating 50% Brake Thermal Efficiency from a heavy duty diesel engine system capable of meeting 2010 U.S. EPA legislated emissions requirements. Cummins chose to pursue this goal through further combustion development and refinement of the Cooled EGR system architecture and also applied a Rankine cycle Waste Heat Recovery technique to convert otherwise wasted thermal energy to useful power. The engine and heat recovery system was demonstrated to achieve 50% Brake Thermal Efficiency while operating at a torque peak condition in second quarter, 2006. The 50% efficient engine

  16. Metabolic Pathways and Metabolic Engineering

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    engineering Adam Guss Genetic and Metabolic Engineer Oak Ridge National Laboratory Sept 25, 2013 2 Managed by UT-Battelle for the U.S. Department of Energy Metabolic engineering of ...

  17. VALUE ENGINEERING.PDF

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    6 I N S P E C T I O N R E P O R T U.S. DEPARTMENT OF ENERGY OFFICE OF INSPECTOR GENERAL OFFICE OF INSPECTIONS FOLLOW-ON INSPECTION OF THE DEPARTMENT OF ENERGY'S VALUE ENGINEERING PROGRAM DECEMBER 2001 U.S. DEPARTMENT OF ENERGY Washington, DC 20585 December 20, 2001 MEMORANDUM FOR THE SECRETARY FROM: Gregory H. Friedman /s/ Inspector General SUBJECT: INFORMATION: Report on "Follow-on Inspection of the Department of Energy's Value Engineering Program" BACKGROUND Value Engineering is a

  18. Principles of models based engineering

    SciTech Connect (OSTI)

    Dolin, R.M.; Hefele, J.

    1996-11-01

    This report describes a Models Based Engineering (MBE) philosophy and implementation strategy that has been developed at Los Alamos National Laboratory`s Center for Advanced Engineering Technology. A major theme in this discussion is that models based engineering is an information management technology enabling the development of information driven engineering. Unlike other information management technologies, models based engineering encompasses the breadth of engineering information, from design intent through product definition to consumer application.

  19. Career Map: Electrical Engineer | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electrical Engineer Career Map: Electrical Engineer Two electrical engineers inspect the electrical components to a turbine. Electrical Engineer Position Title Electrical Engineer Alternate Title(s) Electronics Engineer, Project Engineer, Power Systems, Transmission Engineer Education & Training Level Advanced, bachelor's required, prefer graduate degree Education & Training Level Description Electrical engineers must have a bachelor's degree. Employers also value practical experience,

  20. CS Chang

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CS Chang CS Chang FES Requirements Worksheet 1.1. Project Information - Center for Plasma Edge Simulation Document Prepared By CS Chang Project Title Center for Plasma Edge...

  1. BEW Engineering | Open Energy Information

    Open Energy Info (EERE)

    Services Product: BEW Engineering provides engineering consulting services, and performs research and development in electrical power systems for bulk power and distributed energy...

  2. Visual Engineering | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    other engineering products. In addition, Mark Bryden and Doug McCorkle, along with collaborators at NETL and Reaction Engineering International have developed open-source software...

  3. Taitem Engineering | Open Energy Information

    Open Energy Info (EERE)

    Taitem Engineering Jump to: navigation, search Name: Taitem Engineering Place: Ithaca, NY Information About Partnership with NREL Partnership with NREL Yes Partnership Type "CRADA"...

  4. Pract Engineering | Open Energy Information

    Open Energy Info (EERE)

    Pract Engineering Jump to: navigation, search Name: Pract Engineering Address: 1150 55th Street, Suite C Place: Emeryville, California Zip: 94608 Region: Bay Area Sector: Renewable...

  5. ION Engineering | Open Energy Information

    Open Energy Info (EERE)

    ION Engineering Jump to: navigation, search Name: ION Engineering Place: Boulder, Colorado Zip: 80301 Sector: Carbon Product: ION is the first clean-tech company to successfully...

  6. Windward Engineering | Open Energy Information

    Open Energy Info (EERE)

    Windward Engineering Jump to: navigation, search Name: Windward Engineering Place: Spanish Fork, Utah Zip: 84660 Sector: Wind energy Product: Provides simulations, testing and...

  7. Student Trainee (General Engineer)

    Broader source: Energy.gov [DOE]

    This position is located in Power Services (P) of the Bonneville Power Administration (BPA). The position involves periods of pertinent formal education and periods of employment in an engineering...

  8. Energy Technology Engineering Center

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Energy Technology Engineering Center (ETEC) is located within Area IV of the Santa Susana Field Laboratory. The ETEC occupies 90-acres within the 290 acre site. The Santa Susana Field...

  9. Civil Engineer (Structural)

    Broader source: Energy.gov [DOE]

    This position is located in Structural Design (TELD). The primary purpose of this position is to serve as a senior engineer responsible for loading, design, and analysis of all structures on BPA's...

  10. INL '@work' Nuclear Engineer

    ScienceCinema (OSTI)

    McLean, Heather

    2013-05-28

    Heather MacLean talks about her job as a Nuclear Engineer for Idaho National Laboratory. For more information about INL careers, visit http://www.facebook.com/idahonationallaboratory.

  11. Rotary vee engine

    SciTech Connect (OSTI)

    Sullivan, R.W.; Holder, T.J.; Buchanan, M.F.

    1991-05-14

    This patent describes a rotary vee engine. It comprises: a housing; two cylinder blocks; angled support shaft means; an air/fuel system; angled pistons; and sealing means for sealing the combustion chamber.

  12. Rotary internal combustion engine

    SciTech Connect (OSTI)

    Murray, J.L.; Mosca, J.O.

    1992-02-25

    This patent describes a rotary internal combustion engine. It includes a housing; a cam track internally disposed within the housing and adapted to receive a cam follower; an engine block disposed within the housing, the engine block being relatively rotatable within the housing about a central axis; means connectable to an external drive member for translating the relative rotation of the engine block with respect to the housing into useful work; at least one radially arranged cylinder assembly on the block, each cylinder assembly including a cylinder having a longitudinal axis extending generally radially outwardly from the rotational axis of the block, the cylinder including means defining an end wall, a piston member disposed within the cylinder and adapted to reciprocate within the cylinder; the piston, cylinder and cylinder end wall together.

  13. Information Systems Engineering

    Broader source: Energy.gov [DOE]

    The OCIO is dedicated to supporting the development and maintenance of DOE Department wide and site-specific software and IT systems engineering initiatives.  This webpage contains resources,...

  14. General Engineer (Project Manager)

    Broader source: Energy.gov [DOE]

    (See Frequently Asked Questions for more information). Where would I be working? Western Area Power Administration Desert Southwest Region Engineering and Construction (G5600) 615 S. 43rd Avenue...

  15. Displacer for Stirling engine

    SciTech Connect (OSTI)

    Brown, A. T.

    1985-12-24

    In a Stirling engine and the like, a displacer piston having a plurality of internal baffles and insulation so as to prevent undesired heat transfer across the displacer piston.

  16. INL '@work' Nuclear Engineer

    SciTech Connect (OSTI)

    McLean, Heather

    2008-01-01

    Heather MacLean talks about her job as a Nuclear Engineer for Idaho National Laboratory. For more information about INL careers, visit http://www.facebook.com/idahonationallaboratory.

  17. Science, Technology & Engineering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Alan Bishop selected to lead LANL Science, Technology & Engineering directorate August 17, 2012 LOS ALAMOS, NEW MEXICO, August 17, 2012-Los Alamos National Laboratory Director Charles McMillan announced today that after a yearlong, nationwide search, Alan Bishop has been selected to be the Laboratory's next Principal Associate Director for Science, Technology, and Engineering (PADSTE). Bishop has been acting in that role - 2 - since Aug. 29, 2011.Over the course of a distinguished 30-year

  18. Windmills for ramjet engine

    SciTech Connect (OSTI)

    Giles, H.L.

    1983-01-18

    A solid fueled ramjet engine comprising solid fuel within a combustion chamber in the form of a hollow cylinder, and a windmill at the entrance to the hollow cylinder for promoting better distribution of the air, better mixing of the air and combustion gases, and more complete combustion of the solid fuel. The windmill is turned by the incoming airflow and can rotate a generator to provide a source of electrical power for the aircraft on which the engine is used.

  19. Materials Sciences and Engineering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sciences and Engineering - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced

  20. Nuclear Power & Engineering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Power & Engineering - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced

  1. Predictive Simulation of Engines

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Predictive Simulation of Engines - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs

  2. Internal combustion engine

    SciTech Connect (OSTI)

    Bernauer, O.

    1980-10-07

    An internal combustion engine is described that has walls delimiting the working space or spaces of the internal combustion engine, in which a hydrogen-impervious, encapsulated metal hydride storage device is provided which is in heat-conducting contact with these walls; the interior of the encapsulation is adapted to be selectively connected to a source of hydrogen and/or to a separate further hydrogen storage device.

  3. Stirling engine power control

    DOE Patents [OSTI]

    Fraser, James P.

    1983-01-01

    A power control method and apparatus for a Stirling engine including a valved duct connected to the junction of the regenerator and the cooler and running to a bypass chamber connected between the heater and the cylinder. An oscillating zone of demarcation between the hot and cold portions of the working gas is established in the bypass chamber, and the engine pistons and cylinders can run cold.

  4. NGNP Engineering Status

    SciTech Connect (OSTI)

    John Collins

    2010-08-01

    The objectives of Phase 1 Engineering and Design scope are to: 1) complete the initial design activities for a prototype nuclear reactor and plant that is capable of co-generating electricity, hydrogen, and process heat; 2) identify technological aspects of the NGNP that need further advancement by research and development activities; and 3) provide engineering support to the early licensing process, including technical input to white papers and developing the basis for future safety analyses.

  5. Publication in Ocean Engineering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Publication in Ocean Engineering - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs

  6. Liquid metal thermoacoustic engine

    SciTech Connect (OSTI)

    Swift, G.W.; Migliori, A.; Wheatley, J.C.

    1986-01-01

    We are studying a liquid metal thermoacoustic engine both theoretically and experimentally. This type of engine promises to produce large quantities of electrical energy from heat at modest efficiency with no moving parts. A sound wave is usually thought of as consisting of pressure oscillations, but always attendant to the pressure oscillation are temperature oscillations. The combination produces a rich variety of ''thermoacoustic'' effects. These effects are usually so small that they are never noticed in everyday life; nevertheless under the right circumstances they can be harnessed to produce powerful heat engines, heat pumps, and refrigerators. In our liquid metal thermoacoustic engine, heat flow from a high temperature source to a low temperature sink generates a high-amplitude standing acoustic wave in liquid sodium. This acoustic power is converted to electric power by a simple magnetohydrodynamic effect at the acoustic oscillation frequency. We have developed a detailed thermoacoustic theory applicable to this engine, and find that a reasonably designed liquid sodium engine operating between 700/sup 0/C and 100/sup 0/C should generate about 60 W/cm/sup 2/ of acoustic power at about 1/3 of Carnot's efficiency. Construction of a 3000 W-thermal laboratory model engine has just been completed, and we have exciting preliminary experimental results as of the time of preparation of this manuscript showing, basically, that the engine works. We have also designed and built a 1 kHz liquid sodium magnetohydrodynamic generator and have extensive measurements on it. It is now very well characterized both experimentally and theoretically. The first generator of its kind, it already converts acoustic power to electric power with 40% efficiency. 16 refs., 5 figs.

  7. Intrinsically irreversible heat engine

    DOE Patents [OSTI]

    Wheatley, J.C.; Swift, G.W.; Migliori, A.

    1984-01-01

    A class of heat engines based on an intrinsically irreversible heat transfer process is disclosed. In a typical embodiment the engine comprises a compressible fluid that is cyclically compressed and expanded while at the same time being driven in reciprocal motion by a positive displacement drive means. A second thermodynamic medium is maintained in imperfect thermal contact with the fluid and bears a broken thermodynamic symmetry with respect to the fluid. The second thermodynamic medium is a structure adapted to have a low fluid flow impedance with respect to the compressible fluid, and which is further adapted to be in only moderate thermal contact with the fluid. In operation, thermal energy is pumped along the second medium due to a phase lag between the cyclical heating and cooling of the fluid and the resulting heat conduction between the fluid and the medium. In a preferred embodiment the engine comprises an acoustical drive and a housing containing a gas which is driven at a resonant frequency so as to be maintained in a standing wave. Operation of the engine at acoustic frequencies improves the power density and coefficient of performance. The second thermodynamic medium can be coupled to suitable heat exchangers to utilize the engine as a simple refrigeration device having no mechanical moving parts. Alternatively, the engine is reversible in function so as to be utilizable as a prime mover by coupling it to suitable sources and sinks of heat.

  8. Intrinsically irreversible heat engine

    DOE Patents [OSTI]

    Wheatley, John C.; Swift, Gregory W.; Migliori, Albert

    1984-01-01

    A class of heat engines based on an intrinsically irreversible heat transfer process is disclosed. In a typical embodiment the engine comprises a compressible fluid that is cyclically compressed and expanded while at the same time being driven in reciprocal motion by a positive displacement drive means. A second thermodynamic medium is maintained in imperfect thermal contact with the fluid and bears a broken thermodynamic symmetry with respect to the fluid. the second thermodynamic medium is a structure adapted to have a low fluid flow impedance with respect to the compressible fluid, and which is further adapted to be in only moderate thermal contact with the fluid. In operation, thermal energy is pumped along the second medium due to a phase lag between the cyclical heating and cooling of the fluid and the resulting heat conduction between the fluid and the medium. In a preferred embodiment the engine comprises an acoustical drive and a housing containing a gas which is driven at a resonant frequency so as to be maintained in a standing wave. Operation of the engine at acoustic frequencies improves the power density and coefficient of performance. The second thermodynamic medium can be coupled to suitable heat exchangers to utilize the engine as a simple refrigeration device having no mechanical moving parts. Alternatively, the engine is reversible in function so as to be utilizable as a prime mover by coupling it to suitable sources and sinks of heat.

  9. Intrinsically irreversible heat engine

    DOE Patents [OSTI]

    Wheatley, J.C.; Swift, G.W.; Migliori, A.

    1984-12-25

    A class of heat engines based on an intrinsically irreversible heat transfer process is disclosed. In a typical embodiment the engine comprises a compressible fluid that is cyclically compressed and expanded while at the same time being driven in reciprocal motion by a positive displacement drive means. A second thermodynamic medium is maintained in imperfect thermal contact with the fluid and bears a broken thermodynamic symmetry with respect to the fluid. The second thermodynamic medium is a structure adapted to have a low fluid flow impedance with respect to the compressible fluid, and which is further adapted to be in only moderate thermal contact with the fluid. In operation, thermal energy is pumped along the second medium due to a phase lag between the cyclical heating and cooling of the fluid and the resulting heat conduction between the fluid and the medium. In a preferred embodiment the engine comprises an acoustical drive and a housing containing a gas which is driven at a resonant frequency so as to be maintained in a standing wave. Operation of the engine at acoustic frequencies improves the power density and coefficient of performance. The second thermodynamic medium can be coupled to suitable heat exchangers to utilize the engine as a simple refrigeration device having no mechanical moving parts. Alternatively, the engine is reversible in function so as to be utilizable as a prime mover by coupling it to suitable sources and sinks of heat. 11 figs.

  10. Engine systems and methods of operating an engine

    SciTech Connect (OSTI)

    Scotto, Mark Vincent

    2015-08-25

    One embodiment of the present invention is a unique method for operating an engine. Another embodiment is a unique engine system. Other embodiments include apparatuses, systems, devices, hardware, methods, and combinations for engines and engine systems. Further embodiments, forms, features, aspects, benefits, and advantages of the present application will become apparent from the description and figures provided herewith.

  11. Career Map: Mechanical Engineer | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mechanical Engineer Career Map: Mechanical Engineer A mechanical engineer works with a large yellow robotic arm. Mechanical Engineer Position Title Mechanical Engineer Alternate Title(s) Project Engineer, Quality Engineer, Research Engineer, Design Engineer, Sales Engineer Education & Training Level Advanced, Bachelor's degree required, prefer graduate degree Education & Training Level Description Mechanical engineers need a bachelor's degree. A graduate degree is typically needed for

  12. Process Systems Engineering R&D for Advanced Fossil Energy Systems

    SciTech Connect (OSTI)

    Zitney, S.E.

    2007-09-11

    This presentation will examine process systems engineering R&D needs for application to advanced fossil energy (FE) systems and highlight ongoing research activities at the National Energy Technology Laboratory (NETL) under the auspices of a recently launched Collaboratory for Process & Dynamic Systems Research. The three current technology focus areas include: 1) High-fidelity systems with NETL's award-winning Advanced Process Engineering Co-Simulator (APECS) technology for integrating process simulation with computational fluid dynamics (CFD) and virtual engineering concepts, 2) Dynamic systems with R&D on plant-wide IGCC dynamic simulation, control, and real-time training applications, and 3) Systems optimization including large-scale process optimization, stochastic simulation for risk/uncertainty analysis, and cost estimation. Continued R&D aimed at these and other key process systems engineering models, methods, and tools will accelerate the development of advanced gasification-based FE systems and produce increasingly valuable outcomes for DOE and the Nation.

  13. Advanced Reciprocating Engine Systems (ARES)

    Broader source: Energy.gov [DOE]

    Advanced Natural Gas Reciprocating Engines Increase Efficiency and Reduce Emissions for Distributed Power Generation Applications

  14. The Joys of Nuclear Engineering

    ScienceCinema (OSTI)

    Jon Carmack

    2010-01-08

    Nuclear fuels researcher Jon Carmack talks about the satisfactions of a career in nuclear engineering.

  15. International combustion engines; Applied thermosciences

    SciTech Connect (OSTI)

    Ferguson, C.R.

    1985-01-01

    Focusing on thermodynamic analysis - from the requisite first law to more sophisticated applications - and engine design, this book is an introduction to internal combustion engines and their mechanics. It covers the many types of internal combustion engines, including spark ignition, compression ignition, and stratified charge engines, and examines processes, keeping equations of state simple by assuming constant specific heats. Equations are limited to heat engines and later applied to combustion engines. Topics include realistic equations of state, stroichiometry, predictions of chemical equilibrium, engine performance criteria, and friction, which is discussed in terms of the hydrodynamic theory of lubrication and experimental methods such as dimensional analysis.

  16. Liquid-sodium thermoacoustic engine

    SciTech Connect (OSTI)

    Migliori, A.; Swift, G.W.

    1988-08-01

    We have constructed a thermoacoustic engine that uses liquid sodium as its working substance. The engine generates acoustic power using heat flowing from a high-temperature source to a low-temperature sink. The measured performance of this engine disagrees significantly with numerical calculations based on our theory of thermoacoustic engines. The efficiency of the engine is a substantial fraction of Carnot's efficiency, and its power density is comparable to that of the conventional heat engines in widespread use. Thus we expect this type of engine to be of practical, economic importance.

  17. Single rotor turbine engine

    DOE Patents [OSTI]

    Platts, David A.

    2002-01-01

    There has been invented a turbine engine with a single rotor which cools the engine, functions as a radial compressor, pushes air through the engine to the ignition point, and acts as an axial turbine for powering the compressor. The invention engine is designed to use a simple scheme of conventional passage shapes to provide both a radial and axial flow pattern through the single rotor, thereby allowing the radial intake air flow to cool the turbine blades and turbine exhaust gases in an axial flow to be used for energy transfer. In an alternative embodiment, an electric generator is incorporated in the engine to specifically adapt the invention for power generation. Magnets are embedded in the exhaust face of the single rotor proximate to a ring of stationary magnetic cores with windings to provide for the generation of electricity. In this alternative embodiment, the turbine is a radial inflow turbine rather than an axial turbine as used in the first embodiment. Radial inflow passages of conventional design are interleaved with radial compressor passages to allow the intake air to cool the turbine blades.

  18. Software engineering and graphical programming languages

    SciTech Connect (OSTI)

    Jefferson, K.; Porter, T.; West, T.

    1997-11-01

    This report contains viewgraphs on software engineering and adapting engineering processes to a graphical programming languages.

  19. Advanced Engineering Environment FY09/10 pilot project.

    SciTech Connect (OSTI)

    Lamph, Jane Ann; Kiba, Grant W.; Pomplun, Alan R.; Dutra, Edward G.; Sego, Abraham L.

    2010-06-01

    The Advanced Engineering Environment (AEE) project identifies emerging engineering environment tools and assesses their value to Sandia National Laboratories and our partners in the Nuclear Security Enterprise (NSE) by testing them in our design environment. This project accomplished several pilot activities, including: the preliminary definition of an engineering bill of materials (BOM) based product structure in the Windchill PDMLink 9.0 application; an evaluation of Mentor Graphics Data Management System (DMS) application for electrical computer-aided design (ECAD) library administration; and implementation and documentation of a Windchill 9.1 application upgrade. The project also supported the migration of legacy data from existing corporate product lifecycle management systems into new classified and unclassified Windchill PDMLink 9.0 systems. The project included two infrastructure modernization efforts: the replacement of two aging AEE development servers for reliable platforms for ongoing AEE project work; and the replacement of four critical application and license servers that support design and engineering work at the Sandia National Laboratories/California site.

  20. Gas-Fired Reciprocating Engines

    Broader source: Energy.gov [DOE]

    The reciprocating, or piston-driven, engine is a widespread and well-known technology. Also called internal combustion engines, reciprocating engines require fuel, air, compression, and a combustion source to function. Depending on the ignition source, they generally fall into two categories: (1) spark-ignited engines, typically fueled by gasoline or natural gas, and (2) compression-ignited engines, typically fueled by diesel oil fuel.

  1. Ceramic Automotive Stirling Engine Program

    SciTech Connect (OSTI)

    Not Available

    1986-08-01

    The Ceramic Automotive Stirling Engine Program evaluated the application of advanced ceramic materials to an automotive Stirling engine. The objective of the program was to evaluate the technical feasibility of utilizing advanced ceramics to increase peak engine operating temperature, and to evaluate the performance benefits of such an increase. Manufacturing cost estimates were also developed for various ceramic engine components and compared with conventional metallic engine component costs.

  2. Metallic Composites Phase-Change Materials for High-Temperature...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Innovative Application of Maintenance-Free Phase-Change Thermal Energy Storage for Dish Engine Solar Power Generation SunShot Concentrating Solar ...

  3. Needle Federated Search Engine

    Energy Science and Technology Software Center (OSTI)

    2009-12-01

    The Idaho National Laboratory (INL) has combined a number of technologies, tools, and resources to accomplish a new means of federating search results. The resulting product is a search engine called Needle, an open-source-based tool that the INL uses internally for researching across a wide variety of information repositories. Needle has a flexible search interface that allows end users to point at any available data source. A user can select multiple sources such as commercialmore » databases (Web of Science, Engineering Index), external resources (WorldCat, Google Scholar), and internal corporate resources (email, document management system, library collections) in a single interface with one search query. In the future, INL hopes to offer this open-source engine to the public. This session will outline the development processes for making Needle™s search interface and simplifying the federation of internal and external data sources.« less

  4. Free-piston engine

    DOE Patents [OSTI]

    Van Blarigan, Peter

    2001-01-01

    A combustion system which can utilize high compression ratios, short burn durations, and homogeneous fuel/air mixtures in conjunction with low equivalence ratios. In particular, a free-piston, two-stroke autoignition internal combustion engine including an electrical generator having a linear alternator with a double-ended free piston that oscillates inside a closed cylinder is provided. Fuel and air are introduced in a two-stroke cycle fashion on each end, where the cylinder charge is compressed to the point of autoignition without spark plugs. The piston is driven in an oscillating motion as combustion occurs successively on each end. This leads to rapid combustion at almost constant volume for any fuel/air equivalence ratio mixture at very high compression ratios. The engine is characterized by high thermal efficiency and low NO.sub.x emissions. The engine is particularly suited for generating electrical current in a hybrid automobile.

  5. Harmonic uniflow engine

    DOE Patents [OSTI]

    Bennett, Charles L.

    2016-03-22

    A reciprocating-piston uniflow engine includes a harmonic oscillator inlet valve capable of oscillating at a resonant frequency for controlling the flow of working fluid into the engine. In particular, the inlet valve includes an inlet valve head and a spring arranged together as a harmonic oscillator so that the inlet valve head is moveable from an unbiased equilibrium position to a biased closed position occluding an inlet. When released, the inlet valve head undergoes a single oscillation past the equilibrium position to a maximum open position and returns to a biased return position close to the closed position to choke the flow and produce a pressure drop across the inlet valve causing the inlet valve to close. In other embodiments, the harmonic oscillator arrangement of the inlet valve enables the uniflow engine to be reversibly operated as a uniflow compressor.

  6. Externally heated valve engine -- An alternative to the Stirling engine

    SciTech Connect (OSTI)

    Kazimierski, Z.; Brzeski, L.

    1996-12-31

    A new concept of the Externally Heated Valve (EHV) engine is presented. The principle of the engine operation is described in the introduction to the paper. Heat delivered to the working medium (air) in the heater, or several heaters working commutatively, can come from a combustion chamber or other heat generator such as nuclear reactors or solar collectors. The engine construction is original entirely different from the well-known Stirling engine. New results of the EHV engine computer modeling are presented. This is connected with a new kind of the annular heater applied to the EHV engine. A whirl motion inside the heater is caused to ensure the proper condition of the heat exchanger during the whole engine cycle. Three heaters working commutatively have been considered in this model. Comparisons between the power and efficiency of the Stirling engine and EHV engine have been performed for the same engine capacity, rotational frequency, maximum and minimum temperatures of the working gas and for the same mean pressures of both the engine cycles. The power of the EHV engine is in this case over three times higher than the Stirling engine power, while the efficiency of both the engines is almost the same.

  7. Rotary internal combustion engine

    SciTech Connect (OSTI)

    Murray, J.L.

    1993-07-20

    A multi bank power plant is described comprising at least a first and a second rotary internal combustion engine connectable together in series, each of the engines comprising: a housing; a cam track internally disposed within the housing and adapted to receive a cam follower; an engine block disposed within the housing and rotatable about a central axis; an output shaft extending axially from each the engine block, each output shaft being coaxial with the other; means for coupling the output shafts together so that the output shafts rotate together in the same direction at the same speed; at least one radially arranged cylinder assembly on each block, each cylinder assembly including a cylinder having a longitudinal axis extending generally radially outwardly from the rotational axis of the block, the cylinder including means defining an end wall, a piston member disposed within the cylinder and adapted to reciprocate within the cylinder; a combustion chamber, means permitting periodic introduction of air and fuel into the combustion chamber, means for causing combustion of a compressed mixture of air and fuel within the combustion chamber, means permitting periodic exhaust of products of combustion of air and fuel from the combustion chamber, and means for imparting forces and motions of the piston within the cylinder to and from the cam track, the means comprising a cam follower operatively connected to the piston; wherein the cam track includes at least a first segment and at least a second segment thereof, the first segment having a generally positive slope wherein the segment has a generally increasing radial distance from the rotational axis of the engine block whereby as a piston moves outwardly in a cylinder on a power stroke while the cam follower is in radial register with the cam track segment, the reactive force of the respective cam follower against the cam track segment acts in a direction tending to impart rotation to the engine block.

  8. Rakwoo Chang | Center for Gas SeparationsRelevant to Clean Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rakwoo Chang Previous Next List Rakwoo Chang Formerly: Visiting Scholar, Department of Chemical & Biomolecular Engineering University of California, Berkeley Presently: Associate...

  9. Rotary engine research

    SciTech Connect (OSTI)

    Not Available

    1992-06-01

    A development history is presented for NASA's 1983-1991 Rotary Engine Enablement Program, emphasizing the CFD approaches to various problems that were instituted from 1987 to the end of the program. In phase I, a test rig was built to intensively clarify and characterize the stratified-charge rotary engine concept. In phase II, a high pressure, electronically controlled fuel injection system was tested. In phase III, the testing of improved fuel injectors led to the achievement of the stipulated 5 hp/cu inch specific power goal. CFD-aided design of advanced rotor-pocket shapes led to additional performance improvements.

  10. Career Map: Design Engineer | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Design Engineer Career Map: Design Engineer A product designer watches as several engineers work on a wind turbine component. Design Engineer Position Title Design Engineer Alternate Title(s) Materials Engineer, Composite Engineer, Product Designer, Structural Engineer Education & Training Level Bachelor's degree required, graduate degree preferred Education & Training Level Description Design engineers typically hold a bachelor's degree or higher in electrical or mechanical engineering

  11. E-Alerts: Combustion, engines, and propellants (reciprocation and rotating combustion engines). E-mail newsletter

    SciTech Connect (OSTI)

    1999-04-01

    Design, performance, and testing of reciprocating and rotating engines of various configurations for all types of propulsion. Includes internal and external combustion engines; engine exhaust systems; engine air systems components; engine structures; stirling and diesel engines.

  12. Engine throttle valve position detecting system

    SciTech Connect (OSTI)

    Kamai, K.; Kikuchi, T.

    1987-03-31

    This patent describes an engine throttle valve position detecting system including: a throttle switch including a rotary detector member adapted to be rotated in accordance with the rotation of an engine throttle valve and having a guide portion including a section offset radially relative to the direction of rotation of the rotary detector member. A movable contact is movable by the rotation of the rotary detector member and a stationary contact disposed in opposed relationship to the movable contact. The stationary and movable contacts have opened and closed positions which are changed over at two different predetermined rotational positions of the rotary detector member; means for producing a signal related to the operation of the engine; means for comparing a temperature representative of the engine operating condition with a predetermined reference level; and judgment means operative, when the engine operating condition temperature is judged by the comparing means as being higher than predetermined reference level, to judge the position of the throttle valve based on one of the positions of the movable and stationary contacts and on the signal.

  13. Engineered containment and control systems : nurturing nature.

    SciTech Connect (OSTI)

    MacDonell, M.; Clarke, J.; Smith, E.; Dunn, J.; Waugh, J.; Environmental Assessment; Vanderbilt Univ.; ORNL; Kleinfelder; U.S. Department of Energy Grand Junction Office

    2004-06-01

    The development of engineered containment and control systems for contaminated sites must consider the environmental setting of each site. The behaviors of both contaminated materials and engineered systems are affected by environmental conditions that will continue to evolve over time as a result of such natural processes as climate change, ecological succession, pedogenesis, and landform changes. Understanding these processes is crucial to designing, implementing, and maintaining effective systems for sustained health and environmental protection. Traditional engineered systems such as landfill liners and caps are designed to resist natural processes rather than working with them. These systems cannot be expected to provide long-term isolation without continued maintenance. In some cases, full-scale replacement and remediation may be required within 50 years, at an effort and cost much higher than for the original cleanup. Approaches are being developed to define smarter containment and control systems for stewardship sites, considering lessons learned from implementing prescriptive waste disposal regulations enacted since the 1970s. These approaches more effectively involve integrating natural and engineered systems; enhancing sensors and predictive tools for evaluating performance; and incorporating information on failure events, including precursors and consequences, into system design and maintenance. An important feature is using natural analogs to predict environmental conditions and system responses over the long term, to accommodate environmental change in the design process, and, as possible, to engineer containment systems that mimic favorable natural systems. The key emphasis is harmony with the environment, so systems will work with and rely on natural processes rather than resisting them. Implementing these new integrated systems will reduce current requirements for active management, which are resource-intensive and expensive.

  14. Some considerations of the design of displacers for Ringbom Stirling engines

    SciTech Connect (OSTI)

    Fauvel, O.R.; Kentfield, J.A.C.; Walker, G.

    1984-08-01

    The Ringbom Stirling engine is a hybrid of the kinematic Stirling engine having shaft output power and variable speed and of the free piston engine in which the components are driven by changes in working space pressure. Experiments with Ringbom Stirling engines have led to the suspicion that the 'weak link' of the engine is the free displacer. This paper examines some of the factors which must be addressed in the design of displacers for these engines with reference to the thermal, pressure, and dynamical considerations.

  15. Change Number

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plateau 376-7435 Class of Change I - Signatories X II - Executive Manager III - Project Manager Change Title Modify Tri-Party Agreement Milestone Series M-015 in...

  16. Change Number

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plateau 376-7435 Class of Change X I - Signatories II - Executive Manager III - Project Manager Change Title Modify Tri-Party Agreement Milestone Series M-020 in...

  17. Rotary engine cooling system

    SciTech Connect (OSTI)

    Jones, C.

    1988-07-26

    A rotary internal combustion engine is described comprising: a rotor housing forming a trochoidal cavity therein; an insert of refractory material received in the recess, an element of a fuel injection and ignition system extending through the housing and insert bores, and the housing having cooling passages extending therethrough. The cooling passages are comprised of drilled holes.

  18. Internal combustion engine

    SciTech Connect (OSTI)

    Perrin, G.; Bergmann, H.

    1984-06-12

    An externally auto-ignited four-stroke internal combustion engine which includes a combustion chamber disposed in an upper surface of a piston such that, in an upper dead-center position of the piston, the combustion chamber receives almost all of the fuel-air mixture. The combustion chamber includes a planar bottom portion and has a cross-sectional shape of a truncated cone expanding in a direction of the cylinder head. The internal combustion engine also includes a recess or depression provided in the cylinder head and disposed eccentrically with respect to a longitudinal center axis of the cylinder. The depression or recess in the cylinder head has the shape of a truncated cone expanding in a direction of the piston, with a spark plug projecting or penetrating into the recess or depression in the cylinder head. In order to enable the achievement of good combustion, increased overall engine performance, and the minimum amount of harmful components in the exhaust gases from the engine when different types of fuel are used, predetermined constructional parameters are selected with respect to the combustion chamber and recess or depression disposed above the combustion chamber as well as the disposition of the combustion chamber with respect to a longitudinal center axis of the cylinder.

  19. Starting of turbine engines

    SciTech Connect (OSTI)

    Shekleton, J.R.

    1990-05-01

    This patent describes a relatively small turbine engine. It comprises: a rotary turbine wheel; a rotary compressor coupled to the turbine wheel; an annular combustor for receiving air from the compressor and fuel from a fuel source combusting the same and providing gases of combustion to the turbine wheel to drive the same; substantially identical main fuel injectors including fuel injecting nozzles angularly spaced about the compressor; fuel and air from the compressor being introduced into the combustor generally in the tangential direction; a fuel pump; a control schedule valve; and first and second main fuel solenoid valves. The first valve being operable to connect a minority of the injectors to the control schedule valve and the fuel pump for starting the engine, there being an even number of the injectors and the minority of injectors consisting of two diametrically opposite injectors; the first and second valves being operable to connect all of the injectors to the control schedule valve and the pump for causing normal operation of the engine; the engine further being characterized by the absence of start fuel injectors for the combustor.

  20. Rotary internal combustion engine

    SciTech Connect (OSTI)

    Le, L.K.

    1990-11-20

    This patent describes an internal combustion engine comprising; a rotary compressor mechanism; a rotary expander mechanism; and combustion chamber means disposed between the compressor mechanism and the expander mechanism, whereby compressed air is delivered to the combustion chamber through the compressor discharge port, and pressurized gas is delivered from the combustion chamber into the expander mechanism through the pressurized gas intake port.

  1. DOE Systems Engineering Methodology

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Systems Engineering Methodology (SEM) Computer System Retirement Guidelines Version 3 September 2002 U.S. Department of Energy Office of the Chief Information Officer Computer System Retirement Guidelines Date: September 2002 Page 1 Rev Date: Table of Contents Section Page Purpose ............................................................................................................................................ 2 Initiation and Distribution

  2. Aftertreatment Technologies for Off-Highway Heavy-Duty Diesel Engines

    SciTech Connect (OSTI)

    Kass, M.D.

    2008-07-15

    The objective of this program was to explore a combination of advanced injection control and urea-selective catalytic reduction (SCR) to reduce the emissions of oxides of nitrogen (NOx) and particulate matter (PM) from a Tier 2 off-highway diesel engine to Tier 3 emission targets while maintaining fuel efficiency. The engine used in this investigation was a 2004 4.5L John Deere PowerTechTM; this engine was not equipped with exhaust gas recirculation (EGR). Under the original CRADA, the principal objective was to assess whether Tier 3 PM emission targets could be met solely by increasing the rail pressure. Although high rail pressure will lower the total PM emissions, it has a contrary effect to raise NOx emissions. To address this effect, a urea-SCR system was used to determine whether the enhanced NOx levels, associated with high rail pressure, could be reduced to Tier 3 levels. A key attraction for this approach is that it eliminates the need for a Diesel particulate filter (DPF) to remove PM emissions. The original CRADA effort was also performed using No.2 Diesel fuel having a maximum sulfur level of 500 ppm. After a few years, the CRADA scope was expanded to include exploration of advanced injection strategies to improve catalyst regeneration and to explore the influence of urea-SCR on PM formation. During this period the emission targets also shifted to meeting more stringent Tier 4 emissions for NOx and PM, and the fuel type was changed to ultra-low sulfur Diesel (ULSD) having a maximum sulfur concentration of 15 ppm. New discoveries were made regarding PM formation at high rail pressures and the influences of oxidation catalysts and urea-SCR catalysts. These results are expected to provide a pathway for lower PM and NOx emissions for both off- and on-highway applications. Industrial in-kind support was available throughout the project period. Review of the research results were carried out on a regular basis (annual reports and meetings) followed by

  3. Supervisory Interdisciplinary Civil Engineer/Electrical Engineer (0810/0850)

    Broader source: Energy.gov [DOE]

    THIS IS AN INTERDISCIPLINARY POSITION AND MAY BE FILLED WITH ANY OF THE FOLLOWING OCCUPATIONS: Supervisory Civil Engineer, GS-0810-15 Supervisory Electrical Engineer, GS-0850-15 This position is...

  4. Clinton Engineer Works map | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Clinton Engineer Works map Clinton Engineer Works map

  5. Contract to coordinate on-going documentation requirements associated with Title X legislation for DOE active-solar activities. Final project technical report

    SciTech Connect (OSTI)

    Not Available

    1982-06-01

    The objectives of this work were to ensure that Title X Active Solar Program reports complied with all guidance regarding length, format, coverage, tone, tables and schedules; provide necessary Conservation and Renewable Energy Office background and back-up material; follow this activity through to its completion in January 1982; assess information requirements associated with on-going documentation of Federal Buildings Program and its predecessors; establish a method for collecting, maintaining and utilizing appropriate program data specifically related to the preparation of report due in June 1982. Work on this project has generally remained on schedule and within budget. DOE-SAN has been instrumental in keeping us on track, by providing timely guidance as needed. Attached are recommendations and methods for documenting solar heat technologies research and the Title X sunset policy, planning, and evaluation long report for Active Solar Heating and Cooling Program.

  6. On-Going International Research Program on Irradiated Concrete Conducted by DOE, EPRI and Japan Research Institutions. Roadmap, Achievements and Path Forward

    SciTech Connect (OSTI)

    Le Pape, Yann; Rosseel, Thomas M.

    2015-10-01

    The Joint Department of Energy (DOE)-Electric Power Research Institute (EPRI) Program (Light Water Reactor Sustainability (LWRS) Program–Material Pathway–Concrete and Long-Term Operation (LTO) Program) and US Nuclear Regulatory Commission (NRC) research studies aim at understanding the most prominent degradation modes and their effects on the long-term operation of concrete structures to nuclear power generation. Based on the results of the Expanded Materials Degradation Analysis (EMDA), (NUREG/CR-7153, ORNL/TM-2011/545), irradiated concrete and alkali-silica reaction (ASR)-affected concrete structures are the two prioritized topics of on-going research. This report focuses specifically on the topic of irradiated concrete and summarizes the main accomplishments obtained by this joint program, but also provides an overview of current relevant activities domestically and internationally. Possible paths forward are also suggested to help near-future orientation of this program.

  7. Sandia Engineer at Heliostat Field

    Broader source: Energy.gov [DOE]

    This photograph features Clifford Ho, an engineer at Sandia National Laboratories, who stands below Sandia's solar heliostat field. The Chinese Institute of Engineers-USA selected Ho as its Asian...

  8. Understanding Stirling engines. Technical paper

    SciTech Connect (OSTI)

    Beale, W.

    1984-01-01

    The paper describes the basic Stirling engine, as well as some of the most promising modern varieties. The intent is to familiarize people in developing countries with the engine's operation and range of applications.

  9. Argonne National Laboratory's Omnivorous Engine

    SciTech Connect (OSTI)

    Thomas Wallner

    2009-10-16

    Why can't an engine run on any fuel? Argonne is designing an omnivorous engine that can run on any blend of gasoline, ethanol or butanoland calibrate itself to burn that fuel most efficiently.

  10. Argonne National Laboratory's Omnivorous Engine

    ScienceCinema (OSTI)

    Thomas Wallner

    2010-01-08

    Why can't an engine run on any fuel? Argonne is designing an omnivorous engine that can run on any blend of gasoline, ethanol or butanol?and calibrate itself to burn that fuel most efficiently.

  11. Career Map: Aerospace Engineer | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Aerospace Engineer Career Map: Aerospace Engineer An aerospace engineer stands in front of a drivetrain testing machine. Aerospace Engineer Position Title Aerospace Engineer Alternate Title(s) Aeronautical Engineer Education & Training Level Advanced, Bachelor's required, prefer graduate degree Education & Training Level Description Aerospace engineers must have a bachelor's degree in aerospace engineering or another field of engineering or science related to aerospace systems. Brief job

  12. Career Map: Project Engineer | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Project Engineer Career Map: Project Engineer project_engineer.jpg Project Engineer Position Title Project Engineer Alternate Title(s) Construction Engineer, Project Development Engineer Education & Training Level Advanced, Bachelors required Education & Training Level Description Project engineers usually have a bachelor's degree in mechanical, aerospace or electrical engineering. They may also have a degree in other technical disciplines or construction management. Employers also value

  13. Engineering | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Engineering NNSA uses modern tools and capabilities in the engineering sciences field which are needed to ensure the safety, security, reliability and performance of the current and future U.S. nuclear weapons stockpile. It also provides the solid and sustained engineering basis for stockpile certification and assessments that are needed throughout the entire lifecycle of each weapon. NNSA develops capabilities to assess and improve the engineering components of both the non-nuclear and nuclear

  14. Internal combustion engine

    DOE Patents [OSTI]

    Baker, Quentin A.; Mecredy, Henry E.; O'Neal, Glenn B.

    1991-01-01

    An improved engine is provided that more efficiently consumes difficult fuels such as coal slurries or powdered coal. The engine includes a precombustion chamber having a portion thereof formed by an ignition plug. The precombustion chamber is arranged so that when the piston is proximate the head, the precombustion chamber is sealed from the main cylinder or the main combustion chamber and when the piston is remote from the head, the precombustion chamber and main combustion chamber are in communication. The time for burning of fuel in the precombustion chamber can be regulated by the distance required to move the piston from the top dead center position to the position wherein the precombustion chamber and main combustion chamber are in communication.

  15. Advanced engineering analysis

    SciTech Connect (OSTI)

    Freeman, W.R.

    1992-11-01

    The Advanced Engineering Analysis project is being used to improve the breadth of engineering analysis types, the particular phenomena which may be simulated, and also increase the accuracy and usability of the results of both new and current types of simulations and analyses. This is an interim report covering several topics under this project. Information on two new implementations of failure criteria for metal forming, the implementation of coupled fluid flow/heat transfer analysis capabilities, the integration of experimental shock and vibration test data with analyses, a correction to a contact solution problem with a 3-D parabolic brick finite element, and the development and implementation of a file translator to link IDEAS to DYNA3D is provided in this report.

  16. Electrochemical heat engine

    DOE Patents [OSTI]

    Elliott, Guy R. B.; Holley, Charles E.; Houseman, Barton L.; Sibbitt, Jr., Wilmer L.

    1978-01-01

    Electrochemical heat engines produce electrochemical work, and mechanical motion is limited to valve and switching actions as the heat-to-work cycles are performed. The electrochemical cells of said heat engines use molten or solid electrolytes at high temperatures. One or more reactions in the cycle will generate a gas at high temperature which can be condensed at a lower temperature with later return of the condensate to electrochemical cells. Sodium, potassium, and cesium are used as the working gases for high temperature cells (above 600 K) with halogen gases or volatile halides being used at lower temperature. Carbonates and halides are used as molten electrolytes and the solid electrolyte in these melts can also be used as a cell separator.

  17. BGA Engineering LLC | Open Energy Information

    Open Energy Info (EERE)

    search Name: BGA Engineering LLC Place: Glen Rock, New Jersey Zip: 7452 Sector: Solar Product: Engineering firm specialising in substation engineering and design, power plant...

  18. Mechanical Engineer | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Engineer Department: Engineering Supervisor(s): Bill Blanchard Staff: EM 3 Requisition Number: 1500 The Mechanical Design Engineer will develop, design, manufacture, and test ...

  19. Instrumentation & Controls Electrical Engineer | Princeton Plasma...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Instrumentation & Controls Electrical Engineer Department: Engineering Supervisor(s): Tim ... Perform role of COG engineer in PMO system to perform project management jobs. Generates ...

  20. Tasco Engineering Inc | Open Energy Information

    Open Energy Info (EERE)

    Tasco Engineering Inc Jump to: navigation, search Name: Tasco Engineering Inc Place: Lehi, Utah Zip: 84043 Sector: Hydro, Solar, Wind energy Product: Power engineering firm with...

  1. Calypso Engineering Srl | Open Energy Information

    Open Energy Info (EERE)

    Calypso Engineering Srl Jump to: navigation, search Name: Calypso Engineering Srl Place: Albino, Italy Sector: Services, Wind energy Product: Develops and provides engineering...

  2. Atlanta Chemical Engineering LLC | Open Energy Information

    Open Energy Info (EERE)

    Atlanta Chemical Engineering LLC Jump to: navigation, search Logo: Atlanta Chemical Engineering LLC Name: Atlanta Chemical Engineering LLC Place: Marietta, Georgia Country: United...

  3. Vehicle Technologies Office: 2014 Advanced Combustion Engine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2014 Advanced Combustion Engine Annual Progress Report Vehicle Technologies Office: 2014 Advanced Combustion Engine Annual Progress Report The Advanced Combustion Engine research...

  4. Hydrogen Engine Center HEC | Open Energy Information

    Open Energy Info (EERE)

    Engine Center HEC Jump to: navigation, search Name: Hydrogen Engine Center (HEC) Place: Algona, Iowa Zip: IA 50511 Sector: Hydro, Hydrogen Product: The Hydrogen Engine Center (HEC)...

  5. Advanced Natural Gas Reciprocating Engines (ARES) - Presentation...

    Broader source: Energy.gov (indexed) [DOE]

    Advanced Reciprocating Engine System (ARES) Advanced Natural Gas Reciprocating Engines (ARES) - Presentation by Dresser Waukesha, June 2011 Integration of Diesel Engine Technology ...

  6. Multicylinder compound engine

    SciTech Connect (OSTI)

    Paul, M.A.; Paul, A.

    1990-10-23

    This patent describes a compound, rotary-reciprocal engine. It comprises: a two-cycle reciprocator having cylinders, each cylinder having at least one piston arranged for reciprocation in the cylinder in a cycled operation with a timed air input to the cylinder and a timed exhaust from the cylinder; a compressed air intake and combustion gas exit in each cylinder of the reciprocator; fuel injection means for injecting fuel into the cylinders at appropriate times in the cycled operation; and, a rotocharger.

  7. Photonically Engineered Incandescent Emitter

    DOE Patents [OSTI]

    Gee, James M.; Lin, Shawn-Yu; Fleming, James G.; Moreno, James B.

    2005-03-22

    A photonically engineered incandescence is disclosed. The emitter materials and photonic crystal structure can be chosen to modify or suppress thermal radiation above a cutoff wavelength, causing the emitter to selectively emit in the visible and near-infrared portions of the spectrum. An efficient incandescent lamp is enabled thereby. A method for fabricating a three-dimensional photonic crystal of a structural material, suitable for the incandescent emitter, is also disclosed.

  8. Ram jet engine

    SciTech Connect (OSTI)

    Crispin, B.; Pohl, W.D.; Thomaier, D.; Voss, N.

    1983-11-29

    In a ram jet engine, a tubular combustion chamber is divided into a flame chamber followed by a mixing chamber. The ram air is supplied through intake diffusers located on the exterior of the combustion chamber. The intake diffusers supply combustion air directly into the flame chamber and secondary air is conveyed along the exterior of the combustion chambers and then supplied directly into the mixing chamber.

  9. MARS Flight Engineering Status

    SciTech Connect (OSTI)

    Fast, James E.; Dorow, Kevin E.; Morris, Scott J.; Thompson, Robert C.; Willett, Jesse A.

    2010-04-06

    The Multi-sensor Airborne Radiation Survey Flight Engineering project (MARS FE) has designed a high purity germanium (HPGe) crystal array for conducting a wide range of field measurements. In addition to the HPGe detector system, a platform-specific shock and vibration isolation system and environmental housing have been designed to support demonstration activities in a maritime environment on an Unmanned Surface Vehicle (USV). This report describes the status of the equipment as of the end of FY09.

  10. Science, Technology, and Engineering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PADSTE Science, Technology, and Engineering Delivering mission success and innovative solutions to national security problems through the agile, rapid application of our transformational scientific capabilities Bird's eye view of a hot cell where the isotopes are separated and purified The quest for an imaging radioisotope READ MORE Molecular clocks in human cells Molecular clocks control mutation rate in human cells READ MORE Glen Wurden in the stellarator's vacuum vessel during camera

  11. The ESnet Engineering Team

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fasterdata IPv6 Network Network Performance Tools The ESnet Engineering Team Network R&D Software-Defined Networking (SDN) Experimental Network Testbeds Performance (perfSONAR) Software & Tools Development Data for Researchers Partnerships Publications Workshops Science Engagement Move your data Programs & Workshops Science Requirements Reviews Case Studies News & Publications ESnet News Publications and Presentations Galleries ESnet Awards and Honors Blog ESnet Live Home »

  12. Stirling cycle engine

    DOE Patents [OSTI]

    Lundholm, Gunnar

    1983-01-01

    In a Stirling cycle engine having a plurality of working gas charges separated by pistons reciprocating in cylinders, the total gas content is minimized and the mean pressure equalization among the serial cylinders is improved by using two piston rings axially spaced at least as much as the piston stroke and by providing a duct in the cylinder wall opening in the space between the two piston rings and leading to a source of minimum or maximum working gas pressure.

  13. Modular Aneutronic Fusion Engine

    SciTech Connect (OSTI)

    Gary Pajer, Yosef Razin, Michael Paluszek, A.H. Glasser and Samuel Cohen

    2012-05-11

    NASA's JUNO mission will arrive at Jupiter in July 2016, after nearly five years in space. Since operational costs tend to rise with mission time, minimizing such times becomes a top priority. We present the conceptual design for a 10MW aneutronic fusion engine with high exhaust velocities that would reduce transit time for a Jupiter mission to eighteen months and enable more challenging exploration missions in the solar system and beyond. __________________________________________________

  14. Photonically engineered incandescent emitter

    DOE Patents [OSTI]

    Gee, James M.; Lin, Shawn-Yu; Fleming, James G.; Moreno, James B.

    2003-08-26

    A photonically engineered incandescence is disclosed. The emitter materials and photonic crystal structure can be chosen to modify or suppress thermal radiation above a cutoff wavelength, causing the emitter to selectively emit in the visible and near-infrared portions of the spectrum. An efficient incandescent lamp is enabled thereby. A method for fabricating a three-dimensional photonic crystal of a structural material, suitable for the incandescent emitter, is also disclosed.

  15. Tank waste remediation system systems engineering management plan

    SciTech Connect (OSTI)

    Peck, L.G.

    1998-01-08

    This Systems Engineering Management Plan (SEMP) describes the Tank Waste Remediation System (TWRS) implementation of the US Department of Energy (DOE) systems engineering policy provided in 97-IMSD-193. The SEMP defines the products, process, organization, and procedures used by the TWRS Project to implement the policy. The SEMP will be used as the basis for tailoring the systems engineering applications to the development of the physical systems and processes necessary to achieve the desired end states of the program. It is a living document that will be revised as necessary to reflect changes in systems engineering guidance as the program evolves. The US Department of Energy-Headquarters has issued program management guidance, DOE Order 430. 1, Life Cycle Asset Management, and associated Good Practice Guides that include substantial systems engineering guidance.

  16. Cleaner, More Efficient Diesel Engines

    ScienceCinema (OSTI)

    Musculus, Mark

    2014-02-26

    Mark Musculus, an engine combustion scientist at Sandia National Laboratories, led a study that outlines the science base for auto and engine manufacturers to build the next generation of cleaner, more efficient engines using low-temperature combustion. Here, Musculus discusses the work at Sandia's Combustion Research Facility.

  17. Cleaner, More Efficient Diesel Engines

    SciTech Connect (OSTI)

    Musculus, Mark

    2013-08-13

    Mark Musculus, an engine combustion scientist at Sandia National Laboratories, led a study that outlines the science base for auto and engine manufacturers to build the next generation of cleaner, more efficient engines using low-temperature combustion. Here, Musculus discusses the work at Sandia's Combustion Research Facility.

  18. Stirling engine control mechanism and method

    DOE Patents [OSTI]

    Dineen, John J.

    1983-01-01

    A reciprocating-to-rotating motion conversion and power control device for a Stirling engine includes a hub mounted on an offset portion of the output shaft for rotation relative to the shaft and for sliding motion therealong which causes the hub to tilt relative to the axis of rotation of the shaft. This changes the angle of inclination of the hub relative to the shaft axis and changes the axial stroke of a set of arms connected to the hub and nutating therewith. A hydraulic actuating mechanism is connected to the hub for moving its axial position along the shaft. A balancing wheel is linked to the hub and changes its angle of inclination as the angle of inclination of the hub changes to maintain the mechanism in perfect balance throughout its range of motion.

  19. Optimizing the turbo-roto-compound (TRC) engine. Final report

    SciTech Connect (OSTI)

    Abraham, J.

    1994-08-15

    Results of multidimensional computations of sprays in a very high pressure constant volume chamber are presented in two parts. Comparisons of computed and measured penetrations of non-vaporizing and vaporizing sprays are presented. A broad range of density ratios (0.005 to 0.243) is covered. It is shown that, provided sufficient numerical resolution is used, the model can adequately reproduce the measurements. Scaling laws for time and distance derived in a previous publication are found to apply also to the sprays over the broad range of density ratios considered. A combustion sub-model that has been used in spark-ignition engines, stratified-charge engines and Diesel engines is included in the model. The combustion sub-model represents low-temperature autoignition and high temperature heat release. Comparisons of computed and measured penetrations of combusting sprays and computed and measured chamber pressures are being made. In this report, only preliminary indicative comparisons of computed and measured chamber pressures for three cases are presented. Agreement of pressures within 5% is shown. The work is ongoing and a detailed report will be presented later.

  20. Engineering Light: Quantum Cascade Lasers

    ScienceCinema (OSTI)

    Claire Gmachl

    2010-09-01

    Quantum cascade lasers are ideal for environmental sensing and medical diagnostic applications. Gmachl discusses how these lasers work, and their applications, including their use as chemical trace gas sensors. As examples of these applications, she briefly presents results from her field campaign at the Beijing Olympics, and ongoing campaigns in Texas, Maryland, and Ghana.

  1. Gaseous-fuel engine technology

    SciTech Connect (OSTI)

    1995-12-31

    This publication contains three distinct groups of papers covering gaseous-fuel injection and control, gaseous-fuel engine projects, and gaseous-fuel engine/vehicle applications. Contents include: ultra rapid natural gas port injection; a CNG specific fuel injector using latching solenoid technology; development of an electronically-controlled natural gas-fueled John Deere PowerTech 8.1L engine; adapting a Geo Metro to run on natural gas using fuel-injection technology; behavior of a closed loop controlled air valve type mixer on a natural gas fueled engine under transient operation; and a turbocharged lean-burn 4.3 liter natural gas engine.

  2. Environmental, safety, and health engineering

    SciTech Connect (OSTI)

    Woodside, G.; Kocurek, D.

    1997-12-31

    A complete guide to environmental, safety, and health engineering, including an overview of EPA and OSHA regulations; principles of environmental engineering, including pollution prevention, waste and wastewater treatment and disposal, environmental statistics, air emissions and abatement engineering, and hazardous waste storage and containment; principles of safety engineering, including safety management, equipment safety, fire and life safety, process and system safety, confined space safety, and construction safety; and principles of industrial hygiene/occupational health engineering including chemical hazard assessment, personal protective equipment, industrial ventilation, ionizing and nonionizing radiation, noise, and ergonomics.

  3. Change Number

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6-02-01 Federal Facility Agreement and Consent Order Change Control Form Do not use blue ink. Type or print using black ink. Date 2/11/2002 Originator Phone P. M. Knollmeyer, Assistant Manager Central Plateau 376-7435 Class of Change [X] I - Signatories [ ] II - Executive Manager [ ] III - Project Manager Change Title Modification of the M-016 Series Milestones Description/Justification of Change The Hanford Federal Facility Agreement and Consent Order (TPA) contains commitments for the U.S.

  4. Change Number

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    13-02-01 Federal Facility Agreement and Consent Order Change Control Form Do not use blue ink. Type or print using black ink. Date 2/11/2002 Originator Phone P. M. Knollmeyer, Assistant Manager Central Plateau 376-7435 Class of Change [X] I - Signatories [ ] II - Executive Manager [ ] III - Project Manager Change Title Modification of the Central Plateau 200 Area Non-Tank Farm Remedial Action Work Plans (M-013 Series Milestones) Description/Justification of Change The Hanford Federal Facility

  5. CS Chang

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CS Chang CS Chang FES Requirements Worksheet 1.1. Project Information - Center for Plasma Edge Simulation Document Prepared By CS Chang Project Title Center for Plasma Edge Simulation Principal Investigator CS Chang Participating Organizations New York University, ORNL, PPPL, LBNL, MIT, Columbia U., Rutgers U. Lehigh U., Georgia Tech, Auburn U., U. Colorado, U. California at Irvine, Caltech, Hinton Associates Funding Agencies DOE SC DOE NSA NSF NOAA NIH Other: 2. Project Summary & Scientific

  6. Changing the Way Engineers Think |GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ...-power take off to high-altitude reignition, and it must do this with low emissions throughout, requiring intricate internal passages and multiple flow circuits to ensure optimal ...

  7. Honda motor company's CVCC engine

    SciTech Connect (OSTI)

    Abernathy, W.J.; Ronan, L.

    1980-07-01

    Honda Motor Company of Japan in a four-year period from 1968 to 1872 designed, tested, and mass-produced a stratified charge engine, the CVCC, which in comparison to conventional engines of similar output at the time was lower in CO, HC and NO/sub x/ emissions and higher in fuel economy. Honda developed the CVCC engine without government assistance or outside help. Honda's success came at a time when steadily increasing fuel costs and the various provisions of the Clean Air Act had forced US automakers to consider possible alternatives to the conventional gasoline engine. While most major engine manufacturers had investigated some form of stratified charge engine, Honda's CVCC was the only one to find successful market application. This case study examines the circumstances surrounding the development of the CVCC engine and its introduction into the Japanese and American markets.

  8. Earth Systems Science and Engineering

    SciTech Connect (OSTI)

    Rotman, D A

    2006-02-21

    Providing the essential energy and water systems to support human needs while understanding and addressing their environmental consequences is a watershed problem for the 21st century. The LLNL Earth System Science and Engineering Program seeks to provide the scientific understanding and technological expertise to help provide solutions at both global and regional scales. Our work is highly collaborative with universities, laboratories and industrial partners across the world and involves observational data, laboratory experiments, and numerical simulations. The energy systems we have enjoyed for the last 100 years have resulted in the advanced standard of living in the developed world and a major emerging problem with climate change. Now we face a simultaneous realization that our reliance on fossil fuels is a source of conflict and economic disruption as well as causing potentially abrupt, even catastrophic global climate change. The climate and energy problem is perhaps the greatest challenge ever faced by mankind. Fossil fuel remains the least expensive and most available source of energy and the basis of our economy. The use of fossil fuels, especially over the last 100 years has led to a 30% increase in CO{sub 2} in the atmosphere. The problem is growing. The population of the Earth will increase by several billion people in the next 50 years. If economic growth is to continue, the demand for energy is estimated to approximately double in the next 50 years so that we will need approximately 10 TW more energy than the 15 TW we use now. Much of this demand will come from the developing world where most of the population growth will occur and where advanced energy technology is not generally used. The problem affects and is affected by a complex system of systems. The climate and energy problem will affect resources, social structure and the probability of increased conflict. No one person, no one nation, no one technology can solve the problem. There is no

  9. Cost-Effective Reciprocating Engine Emissions Control and Monitoring for E & P Field and Gathering Engines

    SciTech Connect (OSTI)

    Kirby S. Chapman; Sarah R. Nuss-Warren

    2006-09-30

    Continuing work in controlled testing uses a one cylinder Ajax DP-115 (a 13.25 in bore x 16 in stroke, 360 rpm engine) to assess a sequential analysis and evaluation of a series of engine upgrades. As with most of the engines used in the natural gas industry, the Ajax engine is a mature engine with widespread usage throughout the gas gathering industry. The end point is an assessment of these technologies that assigns a cost per unit reduction in NO{sub X} emissions. Technologies including one pre-combustion chamber, in-cylinder sensors, the means to adjust the air-to-fuel ratio, and modification of the air filter housing have been evaluated in previous reports. Current work tests non-production, prototype, mid-pressure fuel valves and begins analysis of these tests. This analysis reveals questions which must be answered before coming to any firm conclusions about the use of the180 psig fuel valve. The research team plans to continue with the remaining pre-combustion chamber tests in the coming quarter. By using the Ajax DP-115 these tests are completed in a low-cost and efficient manner. The various technologies can be quickly exchanged with different hardware, and it is inexpensive to run the engine. Progress in moving toward field testing is discussed, and a change in strategy is suggested. Although field engines are available to test, it is suggested that the final field testing be put on hold due to information from outside publications during this last quarter. Instead, KSU would focus on related field-testing and characterization in an outside project that will close an apparent technology gap. The results of this characterization will give a more solid footing to the field testing that will complete this project.

  10. Optimization of Advanced Diesel Engine Combustion Strategies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Optimization of Advanced Diesel Engine Combustion Strategies Optimization of Advanced Diesel Engine Combustion Strategies Computational Fluid Dynamics ...

  11. Interdisciplinary General Engineer/Physical Scientist (Facility...

    Office of Environmental Management (EM)

    Interdisciplinary General EngineerPhysical Scientist (Facility Representative) Interdisciplinary General EngineerPhysical Scientist (Facility Representative) Submitted by admin ...

  12. Advanced Gasoline Turbocharged Direct Injection (GTDI) Engine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Turbocharged Direct Injection (GTDI) Engine Development Vehicle Technologies Office Merit Review 2014: Advanced Gasoline Turbocharged Direct Injection (GTDI) Engine ...

  13. Integrated Computational Materials Engineering (ICME) for Mg...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Integrated Computational Materials Engineering (ICME) for Mg: International Pilot Project Integrated Computational Materials Engineering (ICME) for ...

  14. China National Machinery Industry Complete Engineering Corporation...

    Open Energy Info (EERE)

    Industry Complete Engineering Corporation CMCEC Jump to: navigation, search Name: China National Machinery Industry Complete Engineering Corporation (CMCEC) Place: Beijing,...

  15. Analysis Activities at Idaho National Engineering & Environmental...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Activities at Idaho National Engineering & Environmental Laboratory Analysis Activities at Idaho National Engineering & Environmental Laboratory Presentation on INEENL's analysis ...

  16. Fire Protection Engineering Functional Area Qualification Standard

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    FIRE PROTECTION ENGINEERING FUNCTIONAL AREA QUALIFICATION STANDARD DOE Defense Nuclear Facilities Technical ... by applied engineering fundamentals, research, fire hazard ...

  17. Thermoacoustic refrigerators and engines comprising cascading...

    Office of Scientific and Technical Information (OSTI)

    Thermoacoustic refrigerators and engines comprising cascading stirling thermodynamic units Title: Thermoacoustic refrigerators and engines comprising cascading stirling ...

  18. Engineering Molecular Transformations for Sustainable Energy...

    Office of Scientific and Technical Information (OSTI)

    Engineering Molecular Transformations for Sustainable Energy Conversion Citation Details In-Document Search Title: Engineering Molecular Transformations for Sustainable Energy ...

  19. Career Map: Civil Engineer | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Civil Engineer Career Map: Civil Engineer A civil engineer wearing a safety vest and hard hat stands in front of a wind turbine. Civil Engineer Position Title Civil Engineer Alternate Title(s) Engineer Education & Training Level Bachelors required, prefer graduate degree Education & Training Level Description Civil engineers need a bachelor's degree. They typically need a graduate degree for promotion to managerial positions. Civil engineers who sell their own services publicly must be

  20. Career Map: Engineering Manager | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Engineering Manager Career Map: Engineering Manager Two engineering managers wearing hard hats inspect a wind component. Engineering Manager Position Title Engineering Manager Alternate Title(s) n/a Education & Training Level Bachelor's degree in relevant engineering discipline required Education & Training Level Description Engineering managers typically have at least a bachelor's degree and significant work experience. Brief job description The engineering manager plans, coordinates,

  1. Career Map: Sales Engineer | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sales Engineer Career Map: Sales Engineer Several sales engineers collaborate on a project using a tablet. Sales Engineer Position Title Sales Engineer Alternate Title(s) Technical Sales Engineer, Senior Sales Executive, Vice President of Sales, Key Account Manager Education & Training Level Bachelors required, prefer graduate degree Education & Training Level Description Sales engineers typically need a bachelor's degree in engineering or a related field. Brief job description Sales

  2. Stratified cross combustion engine

    SciTech Connect (OSTI)

    Rhoads, J.L.

    1981-06-23

    A piston engine is provided in which adjacent cylinder pairs share a common combustion chamber and the pistons are mounted to reciprocate substantially in phase, one of the pistons in each piston pair receiving a rich mixture which is ignited by a sparkplug in that cylinder, with the other cylinder in the cylinder pair being passive in its preferred form, and receiving through a separate intake valve either pure air or a leaner mixture into which the combusted richer mixture pours, insuring that the greatest combustion possible resulting in the greatest percentage of carbon dioxide formation as opposed to carbon monoxide is created.

  3. Acoustical heat pumping engine

    DOE Patents [OSTI]

    Wheatley, J.C.; Swift, G.W.; Migliori, A.

    1983-08-16

    The disclosure is directed to an acoustical heat pumping engine without moving seals. A tubular housing holds a compressible fluid capable of supporting an acoustical standing wave. An acoustical driver is disposed at one end of the housing and the other end is capped. A second thermodynamic medium is disposed in the housing near to but spaced from the capped end. Heat is pumped along the second thermodynamic medium toward the capped end as a consequence both of the pressure oscillation due to the driver and imperfect thermal contact between the fluid and the second thermodynamic medium. 2 figs.

  4. Acoustical heat pumping engine

    DOE Patents [OSTI]

    Wheatley, John C.; Swift, Gregory W.; Migliori, Albert

    1983-08-16

    The disclosure is directed to an acoustical heat pumping engine without moving seals. A tubular housing holds a compressible fluid capable of supporting an acoustical standing wave. An acoustical driver is disposed at one end of the housing and the other end is capped. A second thermodynamic medium is disposed in the housing near to but spaced from the capped end. Heat is pumped along the second thermodynamic medium toward the capped end as a consequence both of the pressure oscillation due to the driver and imperfect thermal contact between the fluid and the second thermodynamic medium.

  5. A loaded thermoacoustic engine

    SciTech Connect (OSTI)

    Olson, J.R.; Swift, G.W.

    1995-11-01

    Measurements and analysis of the performance of a thermoacoustic engine driving a dissipative load are presented. The effect of the load can be explained qualitatively using a simple low-amplitude approximation and quantitatively by invoking a more accurate low-amplitude numerical solution. The heater power {ital @};DQ and hot-end temperature {ital T}{sub {ital H}} are found to be simple functions of the load impedance and the unloaded values of {ital @};DQ and {ital T}{sub {ital H}}. {copyright} {ital 1995} {ital Acoustical} {ital Society} {ital of} {ital America}.

  6. HANFORD ENGINEER WORKS

    Office of Legacy Management (LM)

    HANFORD ENGINEER WORKS IJd *P-t - - ~~~ssiticatiC+n cwcetted rat G.E. NUCLEONICS PROJECT xi I ~@L.%&~--G-ENERAI,@ ELECTRIC z ,m ._.__.-. _ I--..-. By Authority of. COMPANY ._ Atmic Energy Commission Office of Hanford Dire&xl Operations Riohland, Washington Attention; Mr. Carleton Shugg, Manager ./ ALPKA-ROLLED EL'GIL%I jw -879 ' . *_ a. f' Richland, Washington February 6, 1948 , Thla Dclc.Jv-<en! :-; . ' - -*...-- f_ ~~~.s No .__. ._. .s / ~. - J-LccIp%. Fr:*? fi This will con&rm

  7. Knock-free engine control system for turbocharged automotive engine

    SciTech Connect (OSTI)

    Hirabayashi, Y.

    1985-04-09

    In a turbocharged internal combustion engine, in order to optimize engine torque output spark timing control and boost pressure control are coordinated in such a manner that spark advance angle is adjusted only when the measured boost pressure equals a predetermined value and is allowed to vary only within a specified range advanced from a reference value derived from an empirical memory table on the basis of engine speed and boost pressure. When engine operating conditions are such that spark advance angle would fall outside of the specified range, spark advance angle is then held at the empirical value and boost pressure is adjusted in order to optimize engine torque. The coordinated control system can also be designed to respond to exhaust gas temperature on a first-priority basis, i.e., when exhaust temperature is sensed to be dangerously high, boost pressure is reduced regardless of other engine conditions.

  8. The U.S. Forest Service's analysis of cumulative effects to wildlife: A study of legal standards, current practice, and ongoing challenges on a National Forest

    SciTech Connect (OSTI)

    Schultz, Courtney A.

    2012-01-15

    Cumulative effects analysis (CEA) allows natural resource managers to understand the status of resources in historical context, learn from past management actions, and adapt future activities accordingly. U.S. federal agencies are required to complete CEA as part of environmental impact assessment under the National Environmental Policy Act (NEPA). Past research on CEA as part of NEPA has identified significant deficiencies in CEA practice, suggested methodologies for handling difficult aspects of CEA, and analyzed the rise in litigation over CEA in U.S. courts. This article provides a review of the literature and legal standards related to CEA as it is done under NEPA and then examines current practice on a U.S. National Forest, utilizing qualitative methods in order to provide a detailed understanding of current approaches to CEA. Research objectives were to understand current practice, investigate ongoing challenges, and identify impediments to improvement. Methods included a systematic review of a set of NEPA documents and semi-structured interviews with practitioners, scientists, and members of the public. Findings indicate that the primary challenges associated with CEA include: issues of both geographic and temporal scale of analysis, confusion over the purpose of the requirement, the lack of monitoring data, and problems coordinating and disseminating data. Improved monitoring strategies and programmatic analyses could support improved CEA practice.

  9. Rotary engine and method

    SciTech Connect (OSTI)

    Overman, K.

    1991-12-17

    This paper describes a rotary engine. It comprises: an engine block, the block defining an internal rotor cavity, a rotor, the rotor eccentrically positioned within the cavity, the block defining a combustion chamber, the combustion chamber positioned exteriorly of the rotor cavity and in fluid communication therewith, a pair of pistons, the pistons affixed to each other and slidably mounted within the rotor, an air inlet valve, the inlet valve positioned at one side of the combustion chamber, a dual acting outlet valve, the outlet valve comprising a top and a bottom rest, the outlet valve positioned at the other side of the combustion chamber, the combustion chamber defining both an outlet valve ceiling port and an outlet valve floor port, means to ignite fuel, the fuel ignition means located within the combustion chamber between the inlet and outlet valves, the block defining an exhaust port, the exhaust port spaced circumferentially from the combustion chamber and in fluid communication with the rotor cavity, the block defining an inlet port, and the inlet port circumfrentially spaced from the outlet port and in fluid communication with the rotor cavity.

  10. Rotary vee engine

    SciTech Connect (OSTI)

    Sullivan, R.W.; Holder, T.J.; Buchanan, M.F.

    1991-07-09

    This patent describes a rotary vee engine. It comprises a housing having outer ends; two cylinder blocks each having inner and outer ends and mounted in the housing for rotation of one cylinder block about a first rotational axis and rotation of the other cylinder block about a second rotational axis, the axes being angled to intersect adjacent the inner ends of the blocks at an included angle less than one hundred and eighty degrees; each cylinder bloc having cylinders positioned at a selected radial distance from the respective rotational axis and extending parallel to the axis to intersect the inner end of the cylinder block; angled pistons each having a portion disposed in a cylinder of one block and a portion disposed in a cylinder in the other block for orbital motion of the pistons coordinately with the rotation of the cylinder blocks; angled support shaft means for rotatably and axially supporting each of the cylinder blocks in the housing; an improved air/fuel system for directing pressurized charges of air/fuel mixture radially inwardly into each of the cylinders during the operation of the engine comprising; a central cavity formed by the housing between the inner ends of the cylinder blocks for receiving air/fuel mixture.

  11. Rotary reciprical combustion engines

    SciTech Connect (OSTI)

    Blount, D.H.

    1992-10-20

    This patent describes a rotary-reciprocal combustion engine having a cycle which includes the four strokes of intake, compression, expansion and exhaustion, the engine. It comprises: a housing formed with a peripheral wall with side walls, a rotor in the housing, the inner surface of the peripheral inner wall being cylindrical; a shaft; mounted in the center of the housing, passing through the rotor's hub and extending through the side walls of the housing, the hub having means to allow the rotor to reciprocate on the shaft while the shaft is rotating with the rotor; a reciprocal and rotary guide having means to guide the rotary and reciprocal motions of the rotor while keeping the rotor's piston in continuous sealing contact with the cylinder chamber walls and varying the volume of the cylinder chambers enabling a compression of a gaseous mixture to take place after aspirating a gaseous mixture; an ignition system having means for igniting compressed gaseous mixture and expansion of the cylinder chambers due to pressure of the combustion products.

  12. Supervisory Electrical Engineer- Supervisory Power System Real Time Electrical Engineer

    Broader source: Energy.gov [DOE]

    (See Frequently Asked Questions for more information). Where would I be working? Western Area Power Administration Rocky Mountain Region Power System Operations Operations Engineering, (J4200) 5555...

  13. Climate Change

    Broader source: Energy.gov [DOE]

    The Energy Department is fighting climate change with research, clean fossil energy technology, domestic renewable energy development and more energy efficient appliances, homes, businesses and vehicles.

  14. Change Log

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Change Log Change Log NERSC-8 / Trinity Benchmarks Change Log 09/03/2013 Correction applied to MiniDFT web-page (to remove inconsistency with MiniDFT README). Capability Improvement measurements do not require 10,000 MPI ranks per k-point. 08/06/2013 Various pages have changed to remove "draft" status 08/02/2013 Correction added to FLOP Counts for "Small" Single-Node Miniapplication Tests page 07/12/2013 README files updated for IOR benchmark to correct an error in wording

  15. Change Log

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NERSC-8 Trinity Benchmarks Change Log 09032013 Correction applied to MiniDFT web-page ... results spreadsheet (linked on SSP web page); clarification to benchmark run rules ...

  16. Pressurized-fluid-operated engine

    SciTech Connect (OSTI)

    Holleyman, J.E.

    1990-01-30

    This patent describes a pressurized-fluid-operated reciprocating engine for providing output power by use of a pressurized gas that expands within the engine without combustion. It comprises: an engine block having a plurality of cylinders within which respective pistons are reciprocatable to provide a rotary power output; gas inlet means connected with the engine block for introducing a pressurized gas into the respective cylinders in a predetermined, timed relationship to provide a smooth power output from the engine; gas outlet means connected with the engine block for conveying exhaust gas from the respective cylinders after the gas expanded to move the pistons within the cylinders; and recirculation means extending between the inlet means and the outlet means for recirculation a predetermined quantity of exhaust gas. The recirculation means including ejector means for drawing exhaust gas into the recirculation means.

  17. Intrinsically irreversible thermoacoustic heat engine

    SciTech Connect (OSTI)

    Wheatley, J.; Hofler, T.; Swift, G.W.; Migliori, A.

    1983-07-01

    Certain thermoacoustic effects are described which form the basis for a heat engine that is intrinsically irreversible in the sense that it requires thermal lags for its operation. After discussing several acoustical heating and cooling effects, including the behavior of a new structure called a ''thermoacoustic couple,'' we discuss structures that can be placed in acoustically resonant tubes to produce both substantial heat pumping effects and, for restricted heat inputs, large temperature differences. The results are analyzed quantitatively using a second-order thermoacoustic theory based on the work of Rott. The qualities of the acoustic engine are generalized to describe a class of intrinsically irreversible heat engines of which the present acoustic engine is a special case. Finally the results of analysis of several idealized intrinsically irreversible engines are presented. These suggest that the efficiency of such engines may be determined primarily by geometry or configuration rather than by temperature.

  18. Discover E for budding engineers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Discover E for Budding Engineers Community Connections: Your link to news and opportunities from Los Alamos National Laboratory Latest Issue: September 1, 2016 all issues All Issues » submit Discover E for budding engineers As part of the annual Discover E event, the wide variety of careers available in engineering is the focus of activities. February 1, 2013 dummy image Read our archives. Contacts Editor Linda Anderman Email Community Programs Office Kurt Steinhaus Email The event coincides

  19. Mechanical Engineering Department Technical Review

    SciTech Connect (OSTI)

    Carr, R.B.; Denney, R.M.

    1981-07-01

    The Mechanical Engineering Department Technical Review is published to inform readers of various technical activities within the Department, promote exchange of ideas, and give credit to personnel who are achieving the results. The report is presented in two parts: technical achievements and publication abstracts. The first is divided into seven sections, each of which reports on an engineering division and its specific activities related to nuclear tests, nuclear explosives, weapons, energy systems, engineering sciences, magnetic fusion, and materials fabrication.

  20. Engineering Evaluation/Cost Analysis

    Office of Environmental Management (EM)

    THIS PAGE INTENTIONALLY LEFT BLANK Engineered High Energy Crop Programs Final Programmatic Environmental Impact Statement DOE/EIS-0481 JULY 2015 THIS PAGE INTENTIONALLY LEFT BLANK Engineered High Energy Crop Programs Final PEIS Responsible Federal Agency: U.S. Department of Energy, Advanced Research Projects Agency-Energy Cooperating Agencies: U.S. Department of Agriculture, Animal and Plant Health Inspection Service; U.S. Department of Agriculture, Forest Service Title: Engineered High Energy

  1. ARM - Datastreams - aeri01engineer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Datastreamsaeri01engineer Documentation Data Quality Plots Citation DOI: 10.5439/1025140 [ What is this? ] Generate Citation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Datastream : AERI01ENGINEER Atmospheric Emitted Radiance Interferometer (AERI) 01: engineering data Active Dates 1995.07.22 - 2014.03.12 Originating Instrument Atmospheric Emitted Radiance Interferometer (AERI) Measurements Only measurements

  2. Facility Engineering | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Facility Engineering Facility Engineering Facility Engineering (FE) programmatic element efforts within EM encompasses real property asset management across the EM complex as well as the transfers of real property to Community Reuse Organizations and other entities for asset revitalization and/or economic development. In addition, FE coordinates, analyzes, and concurs on EM site submission for infrastructure reporting, such as, in the Integrated Facilities and Infrastructure crosscut and the

  3. Mechanical Engineering | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Capabilities Electronics Design and Fabrication High Performance Computing Mechanical Engineering Monte Carlo Simulations Mechanical Engineering Mechanical Engineering In recent years the Mechanical Support Group has participated in the construction of the ATLAS Tile Calorimeter, as well as detectors for the MINOS and NOvA experiments. For ATLAS, the group was responsible for construction of a large fraction of the extended barrel tile hadron calorimeter. For MINOS, we designed and fabricated

  4. Systems Engineering | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Engineering Systems Engineering Project objectives: to create an interactive, physics based, systems analysis tool for geothermal energy development that will: Identify points of attack to maximize efforts and investment dollars; Identify the parameter space where geothermal energy production is physically and economically viable; Provide a platform for public education and interaction. analysis_lowry_systems_engineering.pdf (473.49 KB) More Documents & Publications track 2: hydrothermal

  5. High temperature turbine engine structure

    DOE Patents [OSTI]

    Carruthers, William D.; Boyd, Gary L.

    1992-01-01

    A high temperature ceramic/metallic turbine engine includes a metallic housing which journals a rotor member of the turbine engine. A ceramic disk-like shroud portion of the engine is supported on the metallic housing portion and maintains a close running clearance with the rotor member. A ceramic spacer assembly maintains the close running clearance of the shroud portion and rotor member despite differential thermal movements between the shroud portion and metallic housing portion.

  6. High temperature turbine engine structure

    DOE Patents [OSTI]

    Carruthers, William D.; Boyd, Gary L.

    1993-01-01

    A high temperature ceramic/metallic turbine engine includes a metallic housing which journals a rotor member of the turbine engine. A ceramic disk-like shroud portion of the engine is supported on the metallic housing portion and maintains a close running clearance with the rotor member. A ceramic spacer assembly maintains the close running clearance of the shroud portion and rotor member despite differential thermal movements between the shroud portion and metallic housing portion.

  7. High temperature turbine engine structure

    DOE Patents [OSTI]

    Carruthers, William D.; Boyd, Gary L.

    1994-01-01

    A high temperature ceramic/metallic turbine engine includes a metallic housing which journals a rotor member of the turbine engine. A ceramic disk-like shroud portion of the engine is supported on the metallic housing portion and maintains a close running clearance with the rotor member. A ceramic spacer assembly maintains the close running clearance of the shroud portion and rotor member despite differential thermal movements between the shroud portion and metallic housing portion.

  8. MANAGING ENGINEERING ACTIVITIES FOR THE PLATEAU REMEDIATION CONTRACT - HANFORD

    SciTech Connect (OSTI)

    KRONVALL CM

    2011-01-14

    In 2008, the primary Hanford clean-up contract transitioned to the CH2MHill Plateau Remediation Company (CHPRC). Prior to transition, Engineering resources assigned to remediation/Decontamination and Decommissioning (D&D) activities were a part of a centralized engineering organization and matrixed to the performing projects. Following transition, these resources were reassigned directly to the performing project, with a loose matrix through a smaller Central Engineering (CE) organization. The smaller (10 FTE) central organization has retained responsibility for the overall technical quality of engineering for the CHPRC, but no longer performs staffing and personnel functions. As the organization has matured, there are lessons learned that can be shared with other organizations going through or contemplating performing a similar change. Benefits that have been seen from the CHPRC CE organization structure include the following: (1) Staff are closely aligned with the 'Project/facility' that they are assigned to support; (2) Engineering priorities are managed to be consistent with the 'Project/facility' priorities; (3) Individual Engineering managers are accountable for identifying staffing needs and the filling of staffing positions; (4) Budget priorities are managed within the local organization structure; (5) Rather than being considered a 'functional' organization, engineering is considered a part of a line, direct funded organization; (6) The central engineering organization is able to provide 'overview' activities and maintain independence from the engineering organizations in the field; and (7) The central engineering organization is able to maintain a stable of specialized experts that are able to provide independent reviews of field projects and day-to-day activities.

  9. engineer | OpenEI Community

    Open Energy Info (EERE)

    ancient building system architect biomimicry building technology cooling cu daylight design problem energy use engineer fred andreas geothermal green building heat transfer...

  10. Data System Sciences & Engineering Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Architectures for National Security Risk Analysis Streaming Realtime Sensor Networks Visual Analytics Opportunities Contact Us Data System Sciences & Engineering Group DSSE goes...

  11. RESEARCH PERSONNEL AND ENGINEERING STAFF

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mechanical Engineer Postdoctoral Research Associates Bijay Agrawal - To 122304 Narayana P. Appathurai - To 93004 Lie-Wen Chen - To 9104 Vicenzo Greco Marian Jandel Seweryn...

  12. Engine Lubricants: Trends and Challenges

    Broader source: Energy.gov [DOE]

    This overview discusses how lubricant developers, lubricant marketers, and OEMs are working with the engine community to overcome performance challenges worldwide.

  13. Regulation for a gas engine

    SciTech Connect (OSTI)

    Esslingen, H.B.; Daudel, H.; Brandner, B.; Klueppel, K.

    1989-06-27

    This patent describes a control system for an internal combustion engine provided with an ignition pulse generator having adjustable ignition angle characteristics comprising: (a) adjustment means for receiving a control signal and for adjusting the ignition angle of the ignition pulse generator in response thereto; (b) means for determining engine rotational speed; (c) means for determining engine load; (d) means for determining a base ignition angle as a function of engine load and engine rotational speed; (e) means for determining an actual lambda-value during operation of the internal combustion engine; (f) means for determining a desired lambda-value as a function of engine rotational speed and engine load; (g) means for determining a lambda-difference value by comparing the magnitude of the actual lambda-value with the magnitude of the desired lambda-value; (h) means for determining a correction of the base ignition angle as a function of the magnitude of the lambda-difference value and the engine load; and (i) means for producing the control signal as a function of the corrected base ignition angle and for supplying the control signal to the adjustment means.

  14. SC e-journals, Engineering

    Office of Scientific and Technical Information (OSTI)

    Engineering Science Chemical Science Chemistry of Materials Chinese Optics Letters ... Robotic Systems Journal of Solid State Chemistry Journal of The American Ceramic Society ...

  15. Sandia Energy - Automotive HCCI Engine

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    because of its potential to rival the high efficiency of diesel engines while keeping NOx and particulate emissions extremely low. However, researchers must overcome several...

  16. Electronics Engineer- OPEN CONTINUOUS ANNOUNCEMENT

    Broader source: Energy.gov [DOE]

    This recruitment is an OPEN CONTINUOUS ANNOUNCEMENT (OCA) being utilized to fill current and future Electrical Engineer vacancies within BPA's Transmission Field Services organization. Positions...

  17. Electrical Engineer- OPEN CONTINUOUS ANNOUNCEMENT

    Broader source: Energy.gov [DOE]

    This recruitment is an OPEN CONTINUOUS ANNOUNCEMENT (OCA) being utilized to fill current and future Electrical Engineer vacancies within BPA's Transmission Field Services organization. Positions...

  18. Nuclear Engineering | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Engineering Nearly every commercial reactor in existence today owes its development to seminal research conducted at Argonne National Laboratory. Building on this heritage, ...

  19. Enabling High Efficiency Ethanol Engines

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Efficiency Ethanol Engines (VSSP 12) Presented by Robert Wagner Oak Ridge National ... advantage of the unique properties of ethanol and ethanol-gasoline blends.. 3 Managed ...

  20. Cyber Engineering Research Laboratory (CERL)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering ...

  1. Systems Engineer | Department of Energy

    Energy Savers [EERE]

    disruptions in oil supplies. Organizational Structure: This position is located in the Office of the Assistant Project Manager for Systems & Projects, Systems Engineering and...

  2. Aztech Engineers | Open Energy Information

    Open Energy Info (EERE)

    Connecticut Zip: 6120 Product: Connecticut-based consulting engineers specializing in HVAC, Plumbing, Fire-Protection, Electrical, and Geo-Thermal Well Systems. Coordinates:...

  3. Nuclear Engineering | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Milestones Publications News Press Releases Features Science Highlights In the ... Divisions Energy Systems Global Security Sciences Nuclear Engineering Nuclear Milestones ...

  4. Resonator coiling in thermoacoustic engines

    SciTech Connect (OSTI)

    Olson, J.R.; Swift, G.W.

    1995-11-01

    Coiling the resonator of a thermoacoustic engine is one way to try to minimize the engine`s size. However, flow in bent pipes is known to alter the fluid flow pattern because of centrifugal forces. Theory and measurements will be presented on the energy dissipation caused by oscillating flow in curved pipes. Measurements have been taken using free oscillations of liquids in U-tubes, and using a thermoacoustic engine with straight and bent resonators. [Work supported by the TTI program of the US Department of Energy, and by the Tektronix Corporation.

  5. Mission | APS Engineering Support Division

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    mission, the APS Engineering Support Division provides: Highly reliable, state-of-the-art computer infrastructure to meet the needs of the APS. Leading-edge information...

  6. engineering | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Livermore Laboratory engineer Bryan Moran won an award last month for his 3D printing innovation. It could revolutionize additive manufacturing. Lawrence Livermore Lab ...

  7. Internal combustion rotary engine

    SciTech Connect (OSTI)

    Chen, S.P.

    1993-08-24

    An internal combustion rotary engine is described comprising: an internal combustion chamber wherein a combustible fuel-air mixture is ignited for producing a driving gas flow; a central rotor having an outer surface in which at least one group of curved channels circumferentially-and-axially extending without radially extending through the central rotor; and at least one annular rotor each enclosing the central rotor having an inner surface in which a corresponding number of curved channels circumferentially-and-axially extending without radially extending through the annular rotor; when the curved channels in the central rotor communicate with the curved channels in the annular rotor, the driving gas flow circumferentially-and-axially passing between the outer surface of the central rotor and the inner surface of the annular rotor for rotating the central rotor and the annular rotor in opposite directions.

  8. Gas turbine engine

    DOE Patents [OSTI]

    Lawlor, Shawn P.; Roberts, II, William Byron

    2016-03-08

    A gas turbine engine with a compressor rotor having compressor impulse blades that delivers gas at supersonic conditions to a stator. The stator includes a one or more aerodynamic ducts that each have a converging portion and a diverging portion for deceleration of the selected gas to subsonic conditions and to deliver a high pressure oxidant containing gas to flameholders. The flameholders may be provided as trapped vortex combustors, for combustion of a fuel to produce hot pressurized combustion gases. The hot pressurized combustion gases are choked before passing out of an aerodynamic duct to a turbine. Work is recovered in a turbine by expanding the combustion gases through impulse blades. By balancing the axial loading on compressor impulse blades and turbine impulse blades, asymmetrical thrust is minimized or avoided.

  9. Quick release engine cylinder

    DOE Patents [OSTI]

    Sunnarborg, Duane A.

    2000-01-01

    A quick release engine cylinder allows optical access to an essentially unaltered combustion chamber, is suitable for use with actual combustion processes, and is amenable to rapid and repeated disassembly and cleaning. A cylinder member, adapted to constrain a piston to a defined path through the cylinder member, sealingly engages a cylinder head to provide a production-like combustion chamber. A support member mounts with the cylinder member. The support-to-cylinder mounting allows two relationships therebetween. In the first mounting relationship, the support engages the cylinder member and restrains the cylinder against the head. In the second mounting relationship, the cylinder member can pass through the support member, moving away from the head and providing access to the piston-top and head.

  10. Engine Cylinder Temperature Control

    DOE Patents [OSTI]

    Kilkenny, Jonathan Patrick; Duffy, Kevin Patrick

    2005-09-27

    A method and apparatus for controlling a temperature in a combustion cylinder in an internal combustion engine. The cylinder is fluidly connected to an intake manifold and an exhaust manifold. The method and apparatus includes increasing a back pressure associated with the exhaust manifold to a level sufficient to maintain a desired quantity of residual exhaust gas in the cylinder, and varying operation of an intake valve located between the intake manifold and the cylinder to an open duration sufficient to maintain a desired quantity of fresh air from the intake manifold to the cylinder, wherein controlling the quantities of residual exhaust gas and fresh air are performed to maintain the temperature in the cylinder at a desired level.

  11. Continuous Change Institutional Change Principle

    Office of Energy Efficiency and Renewable Energy (EERE)

    ecause it takes time to establish institutional change, federal agencies need multiyear plans that continuously work to achieve, reinforce, and improve significant and persistent sustainability goals.

  12. ABB Combustion Engineering`s nuclear experience and technologies

    SciTech Connect (OSTI)

    Matzie, R.A.

    1994-12-31

    ABB Combustion Engineering`s nuclear experience and technologies are outlined. The following topics are discussed: evolutionary approach using proven technology, substantial improvement to plant safety, utility perspective up front in developing design, integrated design, competitive plant cost, operability and maintainability, standardization, and completion of US NRC technical review.

  13. Career Map: Quality Engineer | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Quality Engineer Career Map: Quality Engineer A male quality engineer sits at a desk with several computers showing data. Quality Engineer Position Title Quality Engineer Alternate Title(s) Quality Assurance, Quality Control Education & Training Level Advanced, Bachelors required, prefer graduate degree or equivalent experience Education & Training Level Description Quality engineers need a bachelor's degree in an engineering field, plus experience. Professional certifications may be

  14. Diesel engines vs. spark ignition gasoline engines -- Which is ``greener``?

    SciTech Connect (OSTI)

    Fairbanks, J.W.

    1997-12-31

    Criteria emissions, i.e., NO{sub x}, PM, CO, CO{sub 2}, and H{sub 2}, from recently manufactured automobiles, compared on the basis of what actually comes out of the engines, the diesel engine is greener than spark ignition gasoline engines and this advantage for the diesel engine increases with time. SI gasoline engines tend to get out of tune more than diesel engines and 3-way catalytic converters and oxygen sensors degrade with use. Highway measurements of NO{sub 2}, H{sub 2}, and CO revealed that for each model year, 10% of the vehicles produce 50% of the emissions and older model years emit more than recent model year vehicles. Since 1974, cars with SI gasoline engines have uncontrolled emission until the 3-way catalytic converter reaches operating temperature, which occurs after roughly 7 miles of driving. Honda reports a system to be introduced in 1998 that will alleviate this cold start problem by storing the emissions then sending them through the catalytic converter after it reaches operating temperature. Acceleration enrichment, wherein considerable excess fuel is introduced to keep temperatures down of SI gasoline engine in-cylinder components and catalytic converters so these parts meet warranty, results in 2,500 times more CO and 40 times more H{sub 2} being emitted. One cannot kill oneself, accidentally or otherwise, with CO from a diesel engine vehicle in a confined space. There are 2,850 deaths per year attributable to CO from SI gasoline engine cars. Diesel fuel has advantages compared with gasoline. Refinery emissions are lower as catalytic cracking isn`t necessary. The low volatility of diesel fuel results in a much lower probability of fires. Emissions could be improved by further reducing sulfur and aromatics and/or fuel additives. Reformulated fuel has become the term covering reducing the fuels contribution to emissions. Further PM reduction should be anticipated with reformulated diesel and gasoline fuels.

  15. Change Log

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Change Log Change Log Crossroads/NERSC-9 Benchmarks Change Log 05/25/2016 Updated to latest version 3.0 release of the HPCG distribution. For the APEX benchmark, the -DHPCG_CONTIGUOUS_ARRAYS flag is now used which improves the baseline performance on Edison significantly. Please refer to the updated SSI spreadsheet for the new baseline value. 05/17/2016 Updated source distribution. README.APEX now states to use "Grind Time" as the figure of merit. Failed to do this on the 5/10/2016

  16. An experimental study on a model Stirling engine car

    SciTech Connect (OSTI)

    Sohma, Yutaka; Wu, Chungming; Isshiki, Seita; Ushiyama, Izumi

    1999-07-01

    A Stirling engine is a mechanical device that operates on a closed regenerative thermodynamic cycle, with cyclic compression and expansion of the working fluid at different temperature levels. The flow is controlled by volume changes, and there exists a net conversion of the heat to work. Stirling engines are ideally suited to off-grid electric power generation because of their multi-fuel capability, potentially high efficiency and low noise. The first model Stirling Techno-rally was held in August 1997 for further promotion of the clean and quiet Stirling engine as one of the Centennial Anniversary events of JSME. In the race, more than one hundred cars competed for the time on a course of 13 meters length and 30 centimeters width. In Ashikaga Institute of Technology, a model Stirling engine car Ashikaga Gekkoh was made for this event. In this paper the authors report on this model car that won the championship of the Stirling Techno-rally.

  17. Caterpillar`s advanced reciprocating engine for distributed generation markets

    SciTech Connect (OSTI)

    Gerber, G.; Brandes, D.; Reinhart, M.; Nagel, G.; Wong, E.

    1999-11-01

    Competition in energy markets and federal and state policy advocating clean, advanced technologies as means to achieve environmental and global climate change goals are clear drivers to original equipment manufacturers of prime movers. Underpinning competition are the principle of consumer choice to facilitate retail competition, and the desire to improve system and grid reliability. Caterpillar`s Gas Engine Division is responding to the market`s demand for a more efficient, lower lifecycle cost engine with reduced emissions. Cat`s first generation TARGET engine will be positioned to effectively serve distributed generation and combined heat and power (CHP) applications. TARGET (The Advanced Reciprocating Gas Engine Technology) will embody Cat`s product attributes: durability, reliability, and competitively priced life cycle cost products. Further, Caterpillar`s nationwide, fully established dealer sales and service ensure continued product support subsequent to the sale and installation of the product.

  18. Cost-Effective Reciprocating Engine Emissions Control and Monitoring for E&P Field and Gathering Engines

    SciTech Connect (OSTI)

    Kirby S. Chapman; Sarah R. Nuss-Warren

    2006-07-01

    Continuing work in controlled testing uses a one cylinder Ajax DP-115 (a 13.25 in bore x 16 in stroke, 360 rpm engine) to assess a sequential analysis and evaluation of a series of engine upgrades. As with most of the engines used in the natural gas industry, the Ajax engine is a mature engine with widespread usage throughout the gas gathering industry. The end point is an assessment of these technologies that assigns a cost per unit reduction in NOX emissions. Technologies including one pre-combustion chamber, in-cylinder sensors, the means to adjust the air-to-fuel ratio, and modification of the air filter housing have been evaluated in previous reports. Current work focuses on final preparations for testing pre-combustion chambers with different characteristics and using mid-to-high-pressure fuel valves and initial runs of these tests. By using the Ajax DP-115 these tests are completed in a low-cost and efficient manner. The various technologies can be quickly exchanged with different hardware, and it is inexpensive to run the engine. Progress in moving toward field testing is discussed, and changes to the first planned field test are presented. Although changes have been made to the previous plan, it is expected that several new sites will be selected soon. Field tests will begin in the next quarter.

  19. Low emissions compression ignited engine technology

    DOE Patents [OSTI]

    Coleman, Gerald N.; Kilkenny, Jonathan P.; Fluga, Eric C.; Duffy, Kevin P.

    2007-04-03

    A method and apparatus for operating a compression ignition engine having a cylinder wall, a piston, and a head defining a combustion chamber. The method and apparatus includes delivering fuel substantially uniformly into the combustion chamber, the fuel being dispersed throughout the combustion chamber and spaced from the cylinder wall, delivering an oxidant into the combustion chamber sufficient to support combustion at a first predetermined combustion duration, and delivering a diluent into the combustion chamber sufficient to change the first predetermined combustion duration to a second predetermined combustion duration different from the first predetermined combustion duration.

  20. Low-Engine-Friction Technology for Advanced Natural-Gas Reciprocating Engines

    SciTech Connect (OSTI)

    Victor Wong; Tian Tian; G. Smedley; L. Moughon; Rosalind Takata; J. Jocsak

    2006-11-30

    This program aims at improving the efficiency of advanced natural-gas reciprocating engines (ANGRE) by reducing piston and piston ring assembly friction without major adverse effects on engine performance, such as increased oil consumption and wear. An iterative process of simulation, experimentation and analysis has been followed towards achieving the goal of demonstrating a complete optimized low-friction engine system. In this program, a detailed set of piston and piston-ring dynamic and friction models have been adapted and applied that illustrate the fundamental relationships among mechanical, surface/material and lubricant design parameters and friction losses. Demonstration of low-friction ring-pack designs in the Waukesha VGF 18GL engine confirmed ring-pack friction reduction of 30-40%, which translates to total engine FEMP (friction mean effective pressure) reduction of 7-10% from the baseline configuration without significantly increasing oil consumption or blow-by flow. The study on surface textures, including roughness characteristics, cross hatch patterns, dimples and grooves have shown that even relatively small-scale changes can have a large effect on ring/liner friction, in some cases reducing FMEP by as much as 30% from a smooth surface case. The measured FMEP reductions were in good agreement with the model predictions. The combined analysis of lubricant and surface design indicates that low-viscosity lubricants can be very effective in reducing friction, subject to component wear for extremely thin oils, which can be mitigated with further lubricant formulation and/or engineered surfaces. Hence a combined approach of lubricant design and appropriate wear reduction offers improved potential for minimum engine friction loss. Testing of low-friction lubricants showed that total engine FMEP reduced by up to {approx}16.5% from the commercial reference oil without significantly increasing oil consumption or blow-by flow. Piston friction studies

  1. Tank waste remediation system process engineering instruction manual

    SciTech Connect (OSTI)

    ADAMS, M.R.

    1998-11-04

    The purpose of the Tank Waste Remediation System (TWRS) Process Engineering Instruction Manual is to provide guidance and direction to TWRS Process Engineering staff regarding conduct of business. The objective is to establish a disciplined and consistent approach to business such that the work processes within TWRS Process Engineering are safe, high quality, disciplined, efficient, and consistent with Lockheed Martin Hanford Corporation Policies and Procedures. The sections within this manual are of two types: for compliance and for guidance. For compliance sections are intended to be followed per-the-letter until such time as they are formally changed per Section 2.0 of this manual. For guidance sections are intended to be used by the staff for guidance in the conduct of work where technical judgment and discernment are required. The guidance sections shall also be changed per Section 2.0 of this manual. The required header for each manual section is illustrated in Section 2.0, Manual Change Control procedure. It is intended that this manual be used as a training and indoctrination resource for employees of the TWRS Process Engineering organization. The manual shall be required reading for all TWRS Process Engineering staff, matrixed, and subcontracted employees.

  2. Engineering approaches to ecosystem restoration

    SciTech Connect (OSTI)

    Hayes, D.F.

    1998-07-01

    This proceedings CD ROM contains 127 papers on developing and evaluating engineering approaches to wetlands and river restoration. The latest engineering developments are discussed, providing valuable insights to successful approaches for river restoration, wetlands restoration, watershed management, and constructed wetlands for stormwater and wastewater treatment. Potential solutions to a wide variety of ecosystem concerns in urban, suburban, and coastal environments are presented.

  3. Rotary valve internal combustion engine

    SciTech Connect (OSTI)

    Bunk, P.H.

    1989-03-28

    A rotary valve internal combustion engine is described, comprising: an engine block; at least one cylinder in the engine block; at least one cylinder having a top end; cylinder head means located adjacent the top end of at least one cylinder, the cylinder head means having a cylindrically shaped cavity therein, the cylindrically shaped cavity being oriented in perpendicular relation to at least one cylinder; a piston sealingly mounted in at least one cylinder for reciprocable movement therein, the reciprocable movement including an intake stroke and an exhaust stroke; engine shaft means rotatably mounted to the engine block; means within the engine block for converting the reciprocable movement of the piston into rotary motion of the engine shaft means; a cylinder port located at the top end of at least one cylinder; a rotary valve rotatably mounted in the cylindrically shaped cavity; means connected with the engine shaft means for rotating the rotary valve in a predetermined synchronization with the reciprocable movement of the piston; aspiration means in the rotary valve for selectively aspirating at least one cylinder during the intake an exhaust strokes; and a spark plug removably mounted within the rotary valve and rotatable therewith.

  4. Stirling engine with pressurized crankcase

    DOE Patents [OSTI]

    Corey, John A.

    1988-01-01

    A two piston Stirling engine wherein the pistons are coupled to a common crankshaft via bearing means, the pistons include pad means to minimize friction between the pistons and the cylinders during reciprocation of the pistons, means for pressurizing the engine crankcase, and means for cooling the crankshaft and the bearing means eliminating the need for oil in the crankcase.

  5. Change Number

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Date: M-16-04-04 Federal Facility Agreement and Consent Order Change Control Form Do not use blue ink. Type or print using black ink. May 27, 2004 Originator: K. A. Klein Phone:...

  6. The Many Faces of a Software Engineer in a Research Community

    SciTech Connect (OSTI)

    Marinovici, Maria C.; Kirkham, Harold

    2013-10-14

    The ability to gather, analyze and make decisions based on real world data is changing nearly every field of human endeavor. These changes are particularly challenging for software engineers working in a scientific community, designing and developing large, complex systems. To avoid the creation of a communications gap (almost a language barrier), the software engineers should possess an ‘adaptive’ skill. In the science and engineering research community, the software engineers must be responsible for more than creating mechanisms for storing and analyzing data. They must also develop a fundamental scientific and engineering understanding of the data. This paper looks at the many faces that a software engineer should have: developer, domain expert, business analyst, security expert, project manager, tester, user experience professional, etc. Observations made during work on a power-systems scientific software development are analyzed and extended to describe more generic software development projects.

  7. Stirling Engines and Irrigation Pumping

    SciTech Connect (OSTI)

    West, C.D.

    1987-01-01

    This report was prepared in support of the Renewable Energy Applications and Training Project that is sponsored by the U.S. Agency for International Development for which ORNL provides technical assistance. It briefly outlines the performance that might be achievable from various kinds of Stirling-engine-driven irrigation pumps. Some emphasis is placed on the very simple liquid-piston engines that have been the subject of research in recent years and are suitable for manufacture in less well-developed countries. In addition to the results quoted here (possible limits on M4 and pumping head for different-size engines and various operating conditions), the method of calculation is described in sufficient detail for engineers to apply the techniques to other Stirling engine designs for comparison.

  8. HCCI Engine Optimization and Control

    SciTech Connect (OSTI)

    Rolf D. Reitz

    2005-09-30

    The goal of this project was to develop methods to optimize and control Homogeneous-Charge Compression Ignition (HCCI) engines, with emphasis on diesel-fueled engines. HCCI offers the potential of nearly eliminating IC engine NOx and particulate emissions at reduced cost over Compression Ignition Direct Injection engines (CIDI) by controlling pollutant emissions in-cylinder. The project was initiated in January, 2002, and the present report is the final report for work conducted on the project through December 31, 2004. Periodic progress has also been reported at bi-annual working group meetings held at USCAR, Detroit, MI, and at the Sandia National Laboratories. Copies of these presentation materials are available on CD-ROM, as distributed by the Sandia National Labs. In addition, progress has been documented in DOE Advanced Combustion Engine R&D Annual Progress Reports for FY 2002, 2003 and 2004. These reports are included as the Appendices in this Final report.

  9. Engine combustion and flow diagnostics

    SciTech Connect (OSTI)

    1995-12-31

    This informative publication discusses the application of diagnostic techniques to internal combustion engines. The papers included fall into three broad categories: flow diagnostics, combustion diagnostics, and fuel spray diagnostics. Contents include: controlling combustion in a spark ignition engine by quantitative fuel distribution; a model for converting SI engine flame arrival signals into flame contours; in-cylinder diesel flame imaging compared with numerical computations; ignition and early soot formation in a DI diesel engine using multiple 2-D imaging diagnostics; investigation of diesel sprays using diffraction-based droplet sizing; fuel distribution effects on the combustion of a direct-injection stratified-charge engine; and 2-D measurements of the liquid phase temperature in fuel sprays.

  10. Sandia National Laboratories: Careers: Electrical Engineering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electrical Engineering Electrical Engineering photo Electrical engineers at Sandia design and develop advanced instrumentation systems for in-flight weapons system evaluations and other applications. Sandia creates innovative, science-based, systems-engineering solutions to our nation's most challenging national security problems. Sandia electrical engineers are an integral part of multidisciplinary teams tasked with defining requirements, creating system designs, implementing design

  11. Engineering Cellulases for Biorefinery

    SciTech Connect (OSTI)

    Manoj Kumar, PhD

    2010-06-27

    Lignocellulosic biomass is the most abundant, least expensive renewable natural biological resource for the production of biobased products and bioenergy is important for the sustainable development of human civilization in 21st century. For making the fermentable sugars from lignocellulosic biomass, a reduction in cellulase production cost, an improvement in cellulase performance, and an increase in sugar yields are all vital to reduce the processing costs of biorefineries. Improvements in specific cellulase activities for non-complexed cellulase mixtures can be implemented through cellulase engineering based on rational design or directed evolution for each cellulase component enzyme, as well as on the reconstitution of cellulase components. In this paper, we will provide DSM's efforts in cellulase research and developments and focus on limitations. Cellulase improvement strategies based on directed evolution using screening on relevant substrates, screening for higher thermal tolerance based on activity screening approaches such as continuous culture using insoluble cellulosic substrates as a powerful selection tool for enriching beneficial cellulase mutants from the large library. We will illustrate why and how thermostable cellulases are vital for economic delivery of bioproducts from cellulosic biomass using biochemical conversion approach.

  12. Axial flow rotary engine

    SciTech Connect (OSTI)

    Loran, W.; Robinson, M.A.

    1989-07-18

    This paper describes an internal combustion engine. It comprises: a housing having an intake port at one end thereof and an exhaust port at the other end thereof; a compression chamber in the housing near the one end; compressor means in the compression chamber; a compressor transfer port opening through the downstream outlet wall; an expansion chamber in the housing near the other end thereof to receive combusted gases; work means in the expansion chamber driven by expanding, combusted gases; means rotating the compressor outlet wall at the same rotational drive speed as the expander inlet wall; an expansion chamber inlet port opening extending through the upstream inlet wall; a cylindrical combustion chamber block rotatable in the housing intermediate the compression chamber and the expansion chamber; at least two combustion chambers in the block; means rotating the block at a reduced speed relative to the speed of rotation of the compressor outlet wall and the expander inlet wall; means for igniting the charge of compressed gas during the intermediate portion of each revolution of the combustion chamber block. The combustion chambers being substantially hemispherical; the speed of rotation of the compressor outlet wall is in the same ratio to the speed of rotation of the combustion chamber block as the number of combustion chambers in the block is to the number of combustion chambers less one.

  13. Subterranean stress engineering experiments

    SciTech Connect (OSTI)

    Campbell, J.R.; Colgate, S.A.; Wheat, B.M.

    1980-01-01

    The state of stress in a subterranean rock mass has classically been assumed to be constant at best. In soil with a high clay content, preconsolidation and drainage methods can lead to more stable foundation material, but methods for engineering the stresses in large masses of rock are not well known. This paper shows the results from an experiment designed to alter the in situ rock stress field in an oil shale mine. This was done by hydrofracturing the rock by use of a packed-well injection system and then propping the crack open with a thixotropic gel, which slowly hardened to the consistency of cement. Successive hydrofracture and high-pressure grouting resulted in an overstressed region. Well-head injection pressures, surface tilts, injection rates, and subterranean strains were measured and recorded on floppy disk by a Z-80 microprocessor. The results were then transmitted to the large computer system at the Los Alamos Scientific Laboratory (LASL). To put the data in a more useful form, computer-generated movies of the tilts and strains were made by use of computer graphics developed at LASL. The purpose of this paper is to present results from the Single Large Instrumented Test conducted in the Colony Oil Shale Mine near Rifle, Colorado. 13 figures.

  14. Acoustic cooling engine

    DOE Patents [OSTI]

    Hofler, Thomas J.; Wheatley, John C.; Swift, Gregory W.; Migliori, Albert

    1988-01-01

    An acoustic cooling engine with improved thermal performance and reduced internal losses comprises a compressible fluid contained in a resonant pressure vessel. The fluid has a substantial thermal expansion coefficient and is capable of supporting an acoustic standing wave. A thermodynamic element has first and second ends and is located in the resonant pressure vessel in thermal communication with the fluid. The thermal response of the thermodynamic element to the acoustic standing wave pumps heat from the second end to the first end. The thermodynamic element permits substantial flow of the fluid through the thermodynamic element. An acoustic driver cyclically drives the fluid with an acoustic standing wave. The driver is at a location of maximum acoustic impedance in the resonant pressure vessel and proximate the first end of the thermodynamic element. A hot heat exchanger is adjacent to and in thermal communication with the first end of the thermodynamic element. The hot heat exchanger conducts heat from the first end to portions of the resonant pressure vessel proximate the hot heat exchanger. The hot heat exchanger permits substantial flow of the fluid through the hot heat exchanger. The resonant pressure vessel can include a housing less than one quarter wavelength in length coupled to a reservoir. The housing can include a reduced diameter portion communicating with the reservoir. The frequency of the acoustic driver can be continuously controlled so as to maintain resonance.

  15. BEST: Biochemical Engineering Simulation Technology

    SciTech Connect (OSTI)

    Not Available

    1996-01-01

    The idea of developing a process simulator that can describe biochemical engineering (a relatively new technology area) was formulated at the National Renewable Energy Laboratory (NREL) during the late 1980s. The initial plan was to build a consortium of industrial and U.S. Department of Energy (DOE) partners to enhance a commercial simulator with biochemical unit operations. DOE supported this effort; however, before the consortium was established, the process simulator industry changed considerably. Work on the first phase of implementing various fermentation reactors into the chemical process simulator, ASPEN/SP-BEST, is complete. This report will focus on those developments. Simulation Sciences, Inc. (SimSci) no longer supports ASPEN/SP, and Aspen Technology, Inc. (AspenTech) has developed an add-on to its ASPEN PLUS (also called BioProcess Simulator [BPS]). This report will also explain the similarities and differences between BEST and BPS. ASPEN, developed by the Massachusetts Institute of Technology for DOE in the late 1970s, is still the state-of-the-art chemical process simulator. It was selected as the only simulator with the potential to be easily expanded into the biochemical area. ASPEN/SP, commercially sold by SimSci, was selected for the BEST work. SimSci completed work on batch, fed-batch, and continuous fermentation reactors in 1993, just as it announced it would no longer commercially support the complete ASPEN/SP product. BEST was left without a basic support program. Luckily, during this same time frame, AspenTech was developing a biochemical simulator with its version of ASPEN (ASPEN PLUS), which incorporates most BEST concepts. The future of BEST will involve developing physical property data and models appropriate to biochemical systems that are necessary for good biochemical process design.

  16. Cost-Effective Reciprocating Engine Emissions Control and Monitoring for E&P Field and Gathering Engines

    SciTech Connect (OSTI)

    Greg Beshouri; Kirby S. Chapman; Jim McCarthy; Sarah R. Nuss-Warren; Mike Whelan

    2006-03-01

    This quarterly report re-evaluates current market objectives in the exploration and production industry, discusses continuing progress in testing that evaluates emission control technologies applied to a two-stroke cycle natural gas-fueled engine, and presents a scheme for enacting remote monitoring and control of engines during upcoming field tests. The examination of current market objectives takes into account technological developments and changing expectations for environmental permitting which may have occurred over the last year. This demonstrates that the continuing work in controlled testing and toward field testing is on track Market pressures currently affecting the gas exploration and production industry are shown to include a push for increased production, as well as an increasing cost for environmental compliance. This cost includes the direct cost of adding control technologies to field engines as well as the indirect cost of difficulty obtaining permits. Environmental regulations continue to require lower emissions targets, and some groups of engines which had not previously been regulated will be required to obtain permits in the future. While the focus remains on NOx and CO, some permits require reporting of additional emissions chemicals. Continuing work in controlled testing uses a one cylinder Ajax DP-115 (a 13.25 in bore x 16 in stroke, 360 rpm engine) to assess a sequential analysis and evaluation of a series of engine upgrades. As with most of the engines used in the natural gas industry, the Ajax engine is a mature engine with widespread usage throughout the gas gathering industry. The end point is an assessment of these technologies that assigns a cost per unit reduction in NOx emissions. Technologies including one pre-combustion chamber, in-cylinder sensors, the means to adjust the air-to-fuel ratio, and modification of the air filter housing have been evaluated in previous reports. Current work focuses on final preparations for testing

  17. Wankel engine for hybrid powertrain

    SciTech Connect (OSTI)

    Butti, A.; Site, V.D.

    1995-12-31

    The Wankel engine is suited to be used to drive hybrid propulsion systems. The main disadvantage of hybrid propulsion systems is the complexity that causes a high weight and large dimensions. For these reason hybrid systems are more suitable for large size vehicle (buses, vans) rather than for small passenger cars. A considerable reduction of hybrid systems weight and dimensions can be obtained using a Wankel rotary engine instead of a conventional engine. The Wankel engine is light, compact, simple, and produces low noise and low vibrations. Therefore a Wankel engine powered hybrid system is suited to be used on small cars. In this paper a 1,000 kg parallel hybrid car with continuously variable transmission and a 6,000 kg series hybrid minibus both equipped with Wankel engines are considered. The Wankel engine works at steady state to minimize fuel consumption and exhaust emissions. The simulation of the behavior of these two vehicles during a ECE + EUDC test cycle is presented in order to evaluate the performances of the systems.

  18. Regenerative rotary displacer Stirling engine

    SciTech Connect (OSTI)

    Isshiki, Naotsugu; Watanabe, Hiroichi; Raggi, L.; Isshiki, Seita; Hirata, Koichi

    1996-12-31

    A few rotary displacer Stirling engines in which the displacer has one gas pocket space at one side and rotates in a main enclosed cylinder, which is heated from one side and cooled from opposite side without any regenerator, have been studied for some time by the authors. The authors tried to improve this engine by equipping it with a regenerator, because without a regenerator, pressure oscillation and efficiency are too small. Here, several types of regenerative rotary displacer piston Stirling engines are proposed. One is the contra-rotating tandem two disc type displacer engine using axial heat conduction through side walls or by heat pipes and another is a single disc type with circulating fluid regenerator or heat pipes. Stirling engines of this new rotary displacer type are thought to attain high speed. Here, experimental results of the original rotary displacer Stirling engine without a regenerator, and one contra-rotating tandem displacer engine with side wall regenerator by axial heat conduction are reported accompanied with a discussion of the results.

  19. Enabling High Efficiency Ethanol Engines

    SciTech Connect (OSTI)

    Szybist, J.; Confer, K.

    2011-03-01

    Delphi Automotive Systems and ORNL established this CRADA to explore the potential to improve the energy efficiency of spark-ignited engines operating on ethanol-gasoline blends. By taking advantage of the fuel properties of ethanol, such as high compression ratio and high latent heat of vaporization, it is possible to increase efficiency with ethanol blends. Increasing the efficiency with ethanol-containing blends aims to remove a market barrier of reduced fuel economy with E85 fuel blends, which is currently about 30% lower than with petroleum-derived gasoline. The same or higher engine efficiency is achieved with E85, and the reduction in fuel economy is due to the lower energy density of E85. By making ethanol-blends more efficient, the fuel economy gap between gasoline and E85 can be reduced. In the partnership between Delphi and ORNL, each organization brought a unique and complementary set of skills to the project. Delphi has extensive knowledge and experience in powertrain components and subsystems as well as overcoming real-world implementation barriers. ORNL has extensive knowledge and expertise in non-traditional fuels and improving engine system efficiency for the next generation of internal combustion engines. Partnering to combine these knowledge bases was essential towards making progress to reducing the fuel economy gap between gasoline and E85. ORNL and Delphi maintained strong collaboration throughout the project. Meetings were held regularly, usually on a bi-weekly basis, with additional reports, presentations, and meetings as necessary to maintain progress. Delphi provided substantial hardware support to the project by providing components for the single-cylinder engine experiments, engineering support for hardware modifications, guidance for operational strategies on engine research, and hardware support by providing a flexible multi-cylinder engine to be used for optimizing engine efficiency with ethanol-containing fuels.

  20. Applied engineering fundamentals: The transition from novice to engineering manager

    SciTech Connect (OSTI)

    Murawski, M.N.; Tomchin, E.M. )

    1992-01-01

    This paper describes the development and implementation of Applied Engineering Fundamentals, a course designed for newly graduated engineers and scientists serving as technical interns within the US Department of Energy (DOE). As specialists with varying undergraduate and graduate degrees, interns need further training to prepare them for the multidisciplinary environments they will encounter as they become engineering managers. This course is designed to build on individuals strengths in diverse engineering and scientific disciplines, provide instruction in less familiar disciplines, and develop skills in integrating multiple disciplines to solve real-world problems related to nuclear facilities. The course balances systems thinking with state-of-the-art approaches to curriculum development to provide training in technical content and to foster development of professional skills.

  1. The Rhythm Engineers | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Rhythm Engineers The Rhythm Engineers The Rhythm Engineers entertain in front of a drawing of Jackson Square...

  2. Interdisciplinary Engineer (Electrical/Electronics/Nuclear/Computer)

    Broader source: Energy.gov [DOE]

    THIS IS AN INTERDISCIPLINARY POSITION AND MAY BE FILLED WITH ANY OF THE FOLLOWING OCCUPATIONS: Electrical Engineer, GS-0850-13 Electronics Engineer, GS-0855-13 Nuclear Engineer, GS-0840-13 Computer...

  3. FY2012 Engineering Research & Technology Report

    SciTech Connect (OSTI)

    Lane, Monya

    2014-07-22

    This report documents engineering research, development, and technology advancements performed by LLNL during fiscal year 2012 in the following areas: computational engineering, engineering information systems, micro/nano-devices and structures, and measurement technologies.

  4. Chapter 48 - Value Engineering | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    8 - Value Engineering Chapter 48 - Value Engineering PDF icon 48ValueEngineering0.pdf More Documents & Publications Audit Report: OAS-L-07-08 Emerging Lighting Technology...

  5. Categorical Exclusion Determinations: Energy Technology Engineering Center

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Energy Technology Engineering Center Categorical Exclusion Determinations: Energy Technology Engineering Center Categorical Exclusion Determinations issued by Energy Technology Engineering Center. DOCUMENTS AVAILABLE FOR DOWNLOAD No downloads found for this office.

  6. Interdisciplinary Engineer (Electrical/Electronics/Nuclear/Computer)

    Broader source: Energy.gov [DOE]

    THIS IS AN INTERDISCIPLINARY POSITION AND MAY BE FILLED WITH ANY OF THE FOLLOWING OCCUPATIONS: Electrical Engineer, GS-0850-12 Electronics Engineer, GS-0855-12 Nuclear Engineer, GS-0840-12 Computer...

  7. Influence of diesel engine combustion on the rupture strength of partially stabilized zirconia

    SciTech Connect (OSTI)

    Brinkman, C.R.; VonCook, K.; Foster, B.E.; Graves, R.L.; Kahl, W.K.; Liu, K.C.; Simpson, W.A. )

    1989-08-01

    This article is on a study conducted to determine whether long-term exposure of two types of partially stabilized zirconia (PSZ) to the combustion environment of diesel engines would generate a change in mechanical properties. The author explains why PSZ was chosen for the study and goes on to discuss some reservations about the use of PSZ in diesel engines.

  8. Rotating head and piston engine

    SciTech Connect (OSTI)

    Gomm, T.J.; Messick, N.C.

    1992-07-21

    This patent describes a rotary piston combustion engine. It comprises a housing means, an engine block housing a single toroidal bore, a piston carrier ring spaced outwardly along the entire perimeter of the toroidal bore with at least one finger extending inwardly for piston attachment, a power transfer cylinder, a power output shaft, an auxiliary shaft with driven gearing means meshing with the driving gearing means, a rotating head with windows for piston passage, a trapezoidal porting means in the engine block and in the rotating head, an exhaust port means.

  9. The Science DMZ Eli Dart, Network Engineer ESnet Engineering Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science DMZ Eli Dart, Network Engineer ESnet Engineering Group Winter 2011 Joint Techs Clemson, SC February 1, 2011 Lawrence Berkeley National Laboratory U.S. Department of Energy | Office of Science Overview Science Needs * Data tsunami, new science processes * Current problems * Consequences What is important and how to accomplish it * Important aspects of the network for users * Science DMZ architecture Security Concerns Recap Resources Lawrence Berkeley National Laboratory U.S. Department of

  10. Engine Research Facility | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Engine Research Facility Argonne's Engine Research Facility allows scientists and engineers to study in-cylinder combustion and emissions under realistic operating conditions. The facility's engines range in size from automobile- to locomotive-sized, as well as stationary electric power production engines. The facility is used to discover and evaluate new technologies to determine their technical feasibility and commercial viability. In addition, Argonne researchers use the facility's engines to

  11. Engineer, Sandia National Laboratories | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration | (NNSA) Engineer, Sandia National Laboratories Clifford Ho Clifford Ho February 2010 Asian American Engineer of the Year Clifford Ho, a Sandia engineer, has been selected by the Chinese Institute of Engineers - USA to receive the Asian American Engineer of the Year Award. The honor is presented each year to the nation's most outstanding Asian American engineers and scientists who make significant, lasting and global contributions to the nation. Ho was recognized for his

  12. Materials Engineering Research Facility | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Engineering Research Facility Materials Engineering Research Facility exterior 1 of 11 Materials Engineering Research Facility exterior With the Materials Engineering Research Facility's state-of-the-art labs and equipment, Argonne researchers can safely scale up materials from the research bench for commercial testing. Photo courtesy Argonne National Laboratory. Materials Engineering Research Facility exterior 1 of 11 Materials Engineering Research Facility exterior With the Materials

  13. LANL computer model boosts engine efficiency

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LANL computer model boosts engine efficiency LANL computer model boosts engine efficiency The KIVA model has been instrumental in helping researchers and manufacturers understand combustion processes, accelerate engine development and improve engine design and efficiency. September 25, 2012 KIVA simulation of an experimental engine with DOHC quasi-symmetric pent-roof combustion chamber and 4 valves. KIVA simulation of an experimental engine with DOHC quasi-symmetric pent-roof combustion chamber

  14. Sandia National Laboratories: Careers: Systems Engineering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Systems Engineering Systems engineering robot Systems engineers contribute to every aspect that impacts how a product is conceived, developed, and deployed into the field. Systems engineers at Sandia have the opportunity to contribute technically and programmatically in the development of our many breakthrough products. Systems engineers have responsibilities across the entire product life cycle, giving them a unique, hands-on work experience. Systems engineers work with business development

  15. Co-Optimization of Fuels and Engines

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Co-Optimization of Fuels and Engines John Farrell SAE High Efficiency Internal Combustion Engine Symposium April 11, 2016 2 Goal: better fuels and better vehicles sooner Fuel and Engine Co-Optimization o What fuel properties maximize engine performance? o How do engine parameters affect efficiency? o What fuel and engine combinations are sustainable, affordable, and scalable? 3 30% per vehicle petroleum reduction via efficiency and displacement source: EIA 2014 reference case Fuel selection

  16. High Efficiency Clean Combustion Engine Designs for Gasoline...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Engine Designs for Gasoline and Diesel Engines High Efficiency Clean Combustion Engine Designs for Gasoline and Diesel Engines 2009 DOE Hydrogen Program and Vehicle Technologies ...

  17. Fuel Additive Strategies for Enhancing the Performance of Engines...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Additive Strategies for Enhancing the Performance of Engines and Engine Oils Fuel Additive Strategies for Enhancing the Performance of Engines and Engine Oils 2003 DEER Conference ...

  18. Mechanical Design Engineer (MED) | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Design Engineer (MED) Department: Engineering Supervisor(s): Douglas Loesser Staff: ENG 3 ... Its Mechanical Engineering Division (MED) is seeking to hire a Mechanical Engineer. The ...

  19. Los Alamos engineer selected to participate in NAE's 2012 "Frontiers...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Moody to participate in "Frontiers of Engineering" Los Alamos engineer selected to participate in NAE's 2012 "Frontiers of Engineering" symposium Engineers between 30 to 45 who are ...

  20. Optical-Mechanical Engineer | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Optical-Mechanical Engineer Department: Engineering Supervisor(s): Bill Blanchard Staff: ... We are seeking an Optical-Mechanical Engineer to join the Diagnostics Engineering Team in ...

  1. Sandia Energy - Large Eddy Simulation (LES) of Engines

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Large Eddy Simulation (LES) of Engines Home Transportation Energy Predictive Simulation of Engines Engine Combustion Modeling Large Eddy Simulation (LES) of Engines Large Eddy...

  2. Improved Engine Design Concepts Using the Second Law of Thermodynamics

    SciTech Connect (OSTI)

    2009-09-30

    This project was aimed at developing and using numerical tools which incorporate the second law of thermodynamics to better understand engine operation and particularly the combustion process. A major activity of this project was the continual enhancement and use of an existing engine cycle simulation to investigate a wide range of engine parameters and concepts. The major motivation of these investigations was to improve engine efficiency. These improvements were examined from both the first law and second law perspective. One of the most important aspects of this work was the identification of the combustion irreversibilities as functions of engine design and operating parameters. The combustion irreversibility may be quantified in a number of ways but one especially useful way is by determining the destruction of exergy (availability) during the combustion process. This destruction is the penalty due to converting the fuel exergy to thermal energy for producing work. The engine cycle simulation was used to examine the performance of an automotive (5.7 liter), V-8 spark-ignition engine. A base case was defined for operation at 1400 rpm, stoichiometric, MBT spark timing with a bmep of 325 kPa. For this condition, the destruction of exergy during the combustion process was 21.0%. Variations of many engine parameters (including speed, load, and spark timing) did not alter the level of destruction very much (with these variations, the exergy destruction was within the range of 20.5-21.5%). Also, the use of turbocharging or the use of an over-expanded engine design did not significantly change the exergy destruction. The exergy destruction during combustion was most affected by increased inlet oxygen concentration (which reduced the destruction due to the higher combustion temperatures) and by the use of cooled EGR (which increased the destruction). This work has demonstrated that, in general, the exergy destruction for conventional engines is fairly constant ({approx

  3. Nuclear Engineering Enrollments and Degrees, 2011

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    nuclear engineering or in an option program equivalent to a major. Thirty-two academic programs reported having nuclear engineering programs during 2011, and data was received from ...

  4. PHEV Engine and Aftertreatment Model Development | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PHEV Engine and Aftertreatment Model Development Advanced PHEV Engine Systems and Emissions Control Modeling and Analysis System Simulations of Hybrid Electric Vehicles with Focus ...

  5. Engineering | National Nuclear Security Administration | (NNSA)

    National Nuclear Security Administration (NNSA)

    Engineering The Sandia Field Office's Engineering office performs oversight and contract administration activities for the facilities, projects and environmental programs at Sandia National Laboratories

  6. CMI Course Inventory: Mining Engineering | Critical Materials...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to rare earths and critical materials. Other courses are available in these areas: Geology EngineeringGeochemistry Metallurgical EngineeringMaterials Science Chemistry...

  7. Thermodynamic Advantages of Low Temperature Combustion Engines...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advantages of Low Temperature Combustion Engines Including the Use of Low Heat Rejection Concepts Thermodynamic Advantages of Low Temperature Combustion Engines Including the Use ...

  8. LANL computer model boosts engine efficiency

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LANL computer model boosts engine efficiency LANL computer model boosts engine efficiency The KIVA model has been instrumental in helping researchers and manufacturers understand...

  9. Microfluidic ultrasonic particle separators with engineered node...

    Office of Scientific and Technical Information (OSTI)

    particle separators with engineered node locations and geometries Citation Details In-Document Search Title: Microfluidic ultrasonic particle separators with engineered node ...

  10. Carbon Cycle Engineering | Open Energy Information

    Open Energy Info (EERE)

    Cycle Engineering Jump to: navigation, search Name: Carbon Cycle Engineering Address: 13725 Dutch Creek Road Place: Athens, Ohio Zip: 45701 Sector: Biofuels, Biomass, Efficiency,...

  11. Electromechanical Engineering Consulting Group ECG | Open Energy...

    Open Energy Info (EERE)

    Electromechanical Engineering Consulting Group ECG Jump to: navigation, search Name: Electromechanical Engineering Consulting Group (ECG) Place: San Jose, Costa Rica Zip: 1521-1000...

  12. Optimization of Advanced Diesel Engine Combustion Strategies...

    Broader source: Energy.gov (indexed) [DOE]

    Optimization of Advanced Diesel Engine Combustion Strategies Optimization of Advanced Diesel Engine Combustion Strategies Use of Low Cetane Fuel to Enable Low Temperature ...

  13. Bicon Namibia Consulting Engineers | Open Energy Information

    Open Energy Info (EERE)

    Name: Bicon Namibia Consulting Engineers Place: Windhoek, Namibia Sector: Wind energy Product: Windhoek-based engineering consultancy firm. Provides design and supervision of...

  14. JFE Engineering Inc | Open Energy Information

    Open Energy Info (EERE)

    Inc Jump to: navigation, search Name: JFE Engineering Inc Place: Tokyo, Tokyo, Japan Product: JFE Engineering is a business company responsible for environmentally...

  15. ARM - ARM Engineering and Operations Contacts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Send ARM Engineering and Operations Contacts Technical Coordination Office Person Role Responsible Area PhoneEmail Jim Mather ARM Technical DirectorEngineering Manager...

  16. AVTA: Hydrogen Internal Combustion Engine Vehicle Specifications...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen Internal Combustion Engine Vehicle Specifications and Test Procedures AVTA: Hydrogen Internal Combustion Engine Vehicle Specifications and Test Procedures HICEV Technical ...

  17. Software Engineer (CODAC) | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Software Engineer (CODAC) Department: Information Technology Supervisor(s): Bill Davis ... This Software Engineer position is with the CODAC group, responsible for the development ...

  18. NETL Science & Engineering Ambassadors Guide Next Generation...

    Broader source: Energy.gov (indexed) [DOE]

    NETL Science & Engineering Ambassadors Guide Next Generation of Energy Decision-Makers A ... Through the Science & Engineering Ambassadors program, NETL's Ale Hakala, Steven Bossart, ...

  19. ALS Ceramics Materials Research Advances Engine Performance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ALS Ceramics Materials Research Advances Engine Performance ALS Ceramics Materials Research Advances Engine Performance Print Thursday, 27 September 2012 00:00 ritchie ceramics...

  20. Enfocus Engineering Corporation | Open Energy Information

    Open Energy Info (EERE)

    Enfocus Engineering Corporation Jump to: navigation, search Name: Enfocus Engineering Corporation Place: Sunnyvale, California Zip: 94087 Product: Enfocus is an early stage company...

  1. Beijing Haohua Rivers International Water Engineering Consulting...

    Open Energy Info (EERE)

    Haohua Rivers International Water Engineering Consulting Co Ltd Jump to: navigation, search Name: Beijing Haohua Rivers International Water Engineering Consulting Co.Ltd. Place:...

  2. Fagen Engineering LLC | Open Energy Information

    Open Energy Info (EERE)

    Fagen Engineering LLC Jump to: navigation, search Name: Fagen Engineering LLC Place: Granite Falls, Minnesota Zip: 56241 Product: Designs and builds ethanol production plants and...

  3. Corporate Systems Engineering | Open Energy Information

    Open Energy Info (EERE)

    Systems Engineering Jump to: navigation, search Name: Corporate Systems Engineering Place: Indianapolis, Indiana Product: Indiana-based energy management company. Coordinates:...

  4. Recommendation 164: Recommendation on Engineering and Technology...

    Office of Environmental Management (EM)

    4: Recommendation on Engineering and Technology Development on the Oak Ridge Reservation Recommendation 164: Recommendation on Engineering and Technology Development on the Oak...

  5. Caledonian College of Engineering | Open Energy Information

    Open Energy Info (EERE)

    Caledonian College of Engineering Jump to: navigation, search Name: Caledonian College of Engineering Place: Oman Product: The College has many labs and workshops for various...

  6. Omnion Power Engineering Corporation | Open Energy Information

    Open Energy Info (EERE)

    Omnion Power Engineering Corporation Jump to: navigation, search Name: Omnion Power Engineering Corporation Place: Walworth County, Wisconsin Zip: 53120 Product: Wisconsin-based...

  7. Functional Design Engineering Inc | Open Energy Information

    Open Energy Info (EERE)

    Functional Design Engineering Inc Jump to: navigation, search Name: Functional Design Engineering Inc Region: United States Sector: Marine and Hydrokinetic Website:...

  8. Geothermal Engineering Ltd | Open Energy Information

    Open Energy Info (EERE)

    Engineering Ltd Jump to: navigation, search Name: Geothermal Engineering Ltd. Place: London, United Kingdom Zip: SW1V 3EL Sector: Geothermal energy Product: Cornwall-based company...

  9. Ruby Canyon Engineering Inc | Open Energy Information

    Open Energy Info (EERE)

    Ruby Canyon Engineering Inc Jump to: navigation, search Name: Ruby Canyon Engineering Inc Place: Grand Junction, Colorado Zip: 81506 Sector: Services Product: String representation...

  10. Azita Emami: Department of Electrical Engineering, California...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Engineering, California Institute of Technology Dec 4, 2013 | 4:00 PM - 5:00 PM Azita Emami Professor, Department of Electrical Engineering, California Institute of ...

  11. Software Engineer (Scientific Application) | Princeton Plasma...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Software Engineer (Scientific Application) Department: Information Technology Staff: ENG ... This Scientific Applications Software Engineer position is with the Controls and Data ...

  12. China Nuclear Engineering Construction Corporation CNEC | Open...

    Open Energy Info (EERE)

    Nuclear Engineering Construction Corporation CNEC Jump to: navigation, search Name: China Nuclear Engineering & Construction Corporation (CNEC) Place: Beijing, China Zip: 100840...

  13. Diesel Engines: Environmental Impact and Control | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Environmental Impact and Control Diesel Engines: Environmental Impact and Control 2002 ... More Documents & Publications Cleaning Up Diesel Engines DIesel Emission Control ...

  14. Aluminum alloys for satellite boxes : engineering guidelines...

    Office of Scientific and Technical Information (OSTI)

    Aluminum alloys for satellite boxes : engineering guidelines for obtaining adequate ... Title: Aluminum alloys for satellite boxes : engineering guidelines for obtaining adequate ...

  15. Michigan: General Motors Optimizes Engine Valve Technology |...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Michigan: General Motors Optimizes Engine Valve Technology Michigan: General Motors Optimizes Engine Valve Technology November 8, 2013 - 12:00am Addthis An EERE-supported effort to ...

  16. Power Engineers Inc | Open Energy Information

    Open Energy Info (EERE)

    Power Engineers Inc Jump to: navigation, search Name: Power Engineers Inc. Place: Hailey, Idaho Zip: 83333 Sector: Geothermal energy, Solar Product: Idaho-based EPC contractor...

  17. LANL engineers help New Mexico small businesses

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Engineers help New Mexico small businesses LANL engineers help New Mexico small businesses Charles Lucero and G. Loren Toole received Principal Investigator Excellence (PIE) Awards ...

  18. Performance Engineering Research Center and RECOVERY. Performance...

    Office of Scientific and Technical Information (OSTI)

    Performance Engineering Research Center and RECOVERY. Performance Engineering Research Institution SciDAC-e Augmentation. Performance enhancement Citation Details In-Document ...

  19. Tecno Proget Engineering | Open Energy Information

    Open Energy Info (EERE)

    Name: Tecno Proget Engineering Place: Ragusa, Italy Zip: 97100 Sector: Solar Product: Italian engineering and construction service firm, building a solar plant in Santa Croce...

  20. PMB Engineering Srl | Open Energy Information

    Open Energy Info (EERE)

    navigation, search Name: PMB Engineering Srl Place: Monza, Italy Zip: 20052 Product: Italian construction and engineering contractor acquired by Greentech Energy in August 2007....

  1. HQ Engineering Srl | Open Energy Information

    Open Energy Info (EERE)

    navigation, search Name: HQ Engineering Srl Place: Milano, Italy Zip: 20124 Product: Italian engineering company. Coordinates: 45.468945, 9.18103 Show Map Loading map......

  2. PHEV Engine and Aftertreatment Model Development | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PHEV Engine and Aftertreatment Model Development Advanced PHEV Engine Systems and Emissions Control Modeling and Analysis Measurement and Characterization of Lean NOx Adsorber ...

  3. A Roadmap for Engineering Piezoelectricity in Graphene

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Roadmap for Engineering Piezoelectricity in Graphene A Roadmap for Engineering Piezoelectricity in Graphene Doping this 'Miracle Material' May Lead to New Array of Nanoscale ...

  4. ORISE: Nuclear engineering graduates decrease in 2009

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear engineering degrees decrease, enrollments increase in 2009 ORISE report shows unexpected decline in 2009 in nuclear engineering degrees but largest enrollment since mid ...

  5. advanced combustion engines | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Combustion Engines Improving the efficiency of internal combustion engines is one of the most promising and cost-effective near- to mid-term approaches to increasing...

  6. Reactor Engineering Design | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reactor Engineering Design The Reactor Engineering Design Key Technology will focus on control of chemical reactions with unprecedented precision in increasingly modular and ...

  7. Laser Light Engines | Open Energy Information

    Open Energy Info (EERE)

    Laser Light Engines Jump to: navigation, search Name: Laser Light Engines Place: Salem, New Hampshire Zip: NH 03079 Sector: Efficiency Product: Salem-based, designs, develops and...

  8. Shafir Civil Marine Engineering | Open Energy Information

    Open Energy Info (EERE)

    Engineering Jump to: navigation, search Name: Shafir Civil & Marine Engineering Place: Israel Sector: Services Product: Services include infrastructure works, contracting, bridge...

  9. Synchrophasor Engineering Education Program Project Summaries...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Synchrophasor Engineering Education Program Project Summaries Available Synchrophasor Engineering Education Program Project Summaries Available July 9, 2014 - 10:48am Addthis On...

  10. Systems Engineering; 2010 Geothermal Technology Program Peer...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Engineering; 2010 Geothermal Technology Program Peer Review Report Systems Engineering; 2010 Geothermal Technology Program Peer Review Report DOE 2010 Geothermal Technologies ...

  11. Voluntary Protection Program Onsite Review, Facility Engineering...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Facility Engineering Services KCP, LLC - September 2012 Voluntary Protection Program Onsite Review, Facility Engineering Services KCP, LLC - September 2012 September 2012 ...

  12. Young Women's Conference in Science, Technology, Engineering...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Young Women's Conference in Science, Technology, Engineering & Mathematics The 16th annual ... The Young Women's Conference in Science, Technology, Engineering, and Mathematics ...

  13. Sustainable Development and Energy Geotechnology Potential Roles for Geotechnical Engineering

    SciTech Connect (OSTI)

    FragaszyProgram Dire, Dr. R. J.; Santamarina, Carlos; Espinoza, N.; Jang, J.W.; Jung, J.W.; Tsouris, Costas

    2011-01-01

    The world is facing unprecedented challenges related to energy resources, global climate change, material use, and waste generation. Failure to address these challenges will inhibit the growth of the developing world and will negatively impact the standard of living and security of future generations in all nations. The solutions to these challenges will require multidisciplinary research across the social and physical sciences and engineering. Although perhaps not always recognized, geotechnical engineering expertise is critical to the solution of many energy and sustainability-related problems. Hence, geotechnical engineers and academicians have opportunity and responsibility to contribute to the solution of these worldwide problems. Research will need to be extended to non-standard issues such as thermal properties of soils; sediment and rock response to extreme conditions and at very long time scales; coupled hydro-chemo-thermo-bio-mechanical processes; positive feedback systems; the development of discontinuities; biological modification of soil properties; spatial variability; and emergent phenomena. Clearly, the challenges facing geotechnical engineering in the future will require a much broader knowledge base than our traditional educational programs provide. The geotechnical engineering curricula, from undergraduate education through continuing professional education, must address the changing needs of a profession that will increasingly be engaged in alternative/renewable energy production; energy efficiency; sustainable design, enhanced and more efficient use of natural resources, waste management, and underground utilization.

  14. Experimental studies on atmospheric Stirling engine NAS-2

    SciTech Connect (OSTI)

    Watanabe, Hiroichi; Isshiki, Naotsugu; Ohtomo, Michihiro

    1996-12-31

    Atmospheric hot air Stirling engine NAS-1 and 2 have a simple flat rubber sheet diaphragm as their power piston, and they have been experimentally studied at Nihon University for several years continuously, with the target of to get more than 100 watts shaft power by atmospheric air with simple construction and cheap material. The first NAS-1 was intended to be a solar heated engine using television glass and wood for cheap cost, but it failed by thermal break of glass, so the improved NAS-2 is changed to be heated by gas burner, using metallic materials in all parts except rubber power piston. Other than this rubber sheet diaphragm, NAS-2 has many features as using James Watt crank mechanism, high finny copper tube for conventional commercial heat exchanger, and two kinds of hot gas heaters, etc. About the rubber sheet for the power piston, the thickness of the sheet was changed from 2 mm to 6 mm gradually to known what thickness is best, and it is found that about 5 mm is best for this engine. After trying many improvements on this engine, NAS-2 has produced about 130 watt shaft power with indicated power of 350 watt at 1994. In this paper detail of many features, history, results and experiments of these NAS engines are reported.

  15. Dynamic control of a homogeneous charge compression ignition engine

    DOE Patents [OSTI]

    Duffy, Kevin P.; Mehresh, Parag; Schuh, David; Kieser, Andrew J.; Hergart, Carl-Anders; Hardy, William L.; Rodman, Anthony; Liechty, Michael P.

    2008-06-03

    A homogenous charge compression ignition engine is operated by compressing a charge mixture of air, exhaust and fuel in a combustion chamber to an autoignition condition of the fuel. The engine may facilitate a transition from a first combination of speed and load to a second combination of speed and load by changing the charge mixture and compression ratio. This may be accomplished in a consecutive engine cycle by adjusting both a fuel injector control signal and a variable valve control signal away from a nominal variable valve control signal. Thereafter in one or more subsequent engine cycles, more sluggish adjustments are made to at least one of a geometric compression ratio control signal and an exhaust gas recirculation control signal to allow the variable valve control signal to be readjusted back toward its nominal variable valve control signal setting. By readjusting the variable valve control signal back toward its nominal setting, the engine will be ready for another transition to a new combination of engine speed and load.

  16. Design of a new type of rotary Stirling engine

    SciTech Connect (OSTI)

    Abenavoli, R.I.; Dong, W.; Fedele, L.; Sciaboni, A.

    1996-12-31

    The Stirling machine has had wide diffusion only in cold or cryogenic applications (Philips) while the engine, despite big efforts of large Companies (Philips, Westinghouse, General Motors, etc.), never definitively reached the market; today new interest is raised correlated with environmental and energy related considerations. Thus, researchers efforts are addressed towards the design of innovative and more competitive Stirling engine configurations, like the one here proposed. This paper describes the configuration of a new, rotary Stirling engine. In the cold part of the engine, the working fluid is compressed by a rotating element, then it passes through the regenerator from the cold to the hot end, where it absorbs the heat and expands in the high pressure and temperature area. The high pressure working fluid pushes on the rotating element (the so called rotator) and the engine outputs power. In the design, compression and expansion volumes change with the rotation. Two rotators are connected with a set of gears: therefore, the engine transmission system is simplified and dimensions are reduced.

  17. Clean and Efficient Diesel Engine

    SciTech Connect (OSTI)

    2010-12-31

    Task 1 was to design study for fuel-efficient system configuration. The objective of task 1 was to perform a system design study of locomotive engine configurations leading to a 5% improvement in fuel efficiency. Modeling studies were conducted in GT-Power to perform this task. GT-Power is an engine simulation tool that facilitates modeling of engine components and their system level interactions. It provides the capability to evaluate a variety of engine technologies such as exhaust gas circulation (EGR), variable valve timing, and advanced turbo charging. The setup of GT-Power includes a flexible format that allows the effects of variations in available technologies (i.e., varying EGR fractions or fuel injection timing) to be systematically evaluated. Therefore, development can be driven by the simultaneous evaluation of several technology configurations.

  18. Rotary-reciprocal combustion engines

    SciTech Connect (OSTI)

    Blount, D.H.

    1992-10-06

    This patent describes an internal combustion engine of the rotary-reciprocal type. It comprises a housing formed with a peripheral wall; a rotor; and a shaft for the rotor.

  19. Next Generation Diesel Engine Control

    Broader source: Energy.gov [DOE]

    Presentation given at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

  20. Human Factors Engineering Analysis Tool

    Energy Science and Technology Software Center (OSTI)

    2002-03-04

    HFE-AT is a human factors engineering (HFE) software analysis tool (AT) for human-system interface design of process control systems, and is based primarily on NUREG-0700 guidance.

  1. General Engineer | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Engineer General Engineer Submitted by admin on Mon, 2016-08-08 00:15 Job Summary Organization Name Department Of Energy Agency SubElement Department of Energy Locations Golden, Colorado Announcement Number SE-16-EE-00730-DE Job Summary The Office of Energy Efficiency and Renewable Energys (EEREs) mission is to create and sustain American leadership in the global transition to a clean energy economy through high-impact research, development, and demonstration and by breaking down barriers to

  2. Vortex Characterization for Engineering Applications

    SciTech Connect (OSTI)

    Jankun-Kelly, M; Thompson, D S; Jiang, M; Shannahan, B; Machiraju, R

    2008-01-30

    Realistic engineering simulation data often have features that are not optimally resolved due to practical limitations on mesh resolution. To be useful to application engineers, vortex characterization techniques must be sufficiently robust to handle realistic data with complex vortex topologies. In this paper, we present enhancements to the vortex topology identification component of an existing vortex characterization algorithm. The modified techniques are demonstrated by application to three realistic data sets that illustrate the strengths and weaknesses of our approach.

  3. Encryption Engine - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Materials Advanced Materials Find More Like This Return to Search Encryption Engine Sandia National Laboratories Contact SNL About This Technology Publications: PDF Document Publication Market Sheet (885 KB) Technology Marketing SummaryIn the past, traditional encryption engines utilized a mode of encryption that was vulnerable to certain attacks and not capable of running at full capacity. Sandia has created an invention that provides a solution to the problem of keeping an encryption

  4. ABB Combustion Engineering nuclear technology

    SciTech Connect (OSTI)

    Matzie, R.A.

    1994-12-31

    The activities of ABB Combustion Engineering in the design and construction of nuclear systems and components are briefly reviewed. ABB Construction Engineering continues to improve the design and design process for nuclear generating stations. Potential improvements are evaluated to meet new requirements both of the public and the regulator, so that the designs meet the highest standards worldwide. Advancements necessary to meet market needs and to ensure the highest level of performance in the future will be made.

  5. (Nuclear power engineering in space)

    SciTech Connect (OSTI)

    Cooper, R.H. Jr.

    1990-06-18

    The principal purpose of this trip was to participate in the Anniversary Specialist Conference on Nuclear Power Engineering in Space hosted by the USSR Ministry of Atomic Power Engineering and Industry. The conference was held in Obninsk, USSR. A secondary purpose of the trip was to meet with the French Commissariat A L'Energie Atomique in Paris regarding the status of their space power program.

  6. Computational Sciences and Engineering Division

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    If you have questions or comments regarding any of our research and development activities, how to work with ORNL and the Computational Sciences and Engineering (CSE) Division, or the content of this website please contact one of the following people: If you have questions regarding CSE technologies and capabilities, job opportunities, working with ORNL and the CSE Division, intellectual property, etc., contact, Shaun S. Gleason, Ph.D. Division Director, Computational Sciences and Engineering

  7. Civil Engineer | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Civil Engineer Civil Engineer Submitted by admin on Mon, 2016-08-08 00:15 Job Summary Organization Name Department Of Energy Agency SubElement Western Area Power Administration Locations Folsom, California Announcement Number WAPA-16-DE-240 Job Summary (See Frequently Asked Questions for more information). Where would I be working? Western Area Power Administration Sierra Nevada Region 114 Parkshore Drive Folsom, CA 95630 Find out more about living conditions at this duty station . Apply on

  8. Simulation of High Efficiency Clean Combustion Engines and Detailed...

    Broader source: Energy.gov (indexed) [DOE]

    ongoing work exploring fuel chemistry, analysis of and improving simulation methodologies for high efficiency clean combustion regimes, and computational performance ...

  9. Protein design for pathway engineering

    SciTech Connect (OSTI)

    Eriksen, DT; Lian, JZ; Zhao, HM

    2014-02-01

    Design and construction of biochemical pathways has increased the complexity of biosynthetically-produced compounds when compared to single enzyme biocatalysis. However, the coordination of multiple enzymes can introduce a complicated set of obstacles to overcome in order to achieve a high titer and yield of the desired compound. Metabolic engineering has made great strides in developing tools to optimize the flux through a target pathway, but the inherent characteristics of a particular enzyme within the pathway can still limit the productivity. Thus, judicious protein design is critical for metabolic and pathway engineering. This review will describe various strategies and examples of applying protein design to pathway engineering to optimize the flux through the pathway. The proteins can be engineered for altered substrate specificity/selectivity, increased catalytic activity, reduced mass transfer limitations through specific protein localization, and reduced substrate/product inhibition. Protein engineering can also be expanded to design biosensors to enable high through-put screening and to customize cell signaling networks. These strategies have successfully engineered pathways for significantly increased productivity of the desired product or in the production of novel compounds. (C) 2013 Elsevier Inc. All rights reserved.

  10. Bellcrank mechanisms for Stirling engines

    SciTech Connect (OSTI)

    Senft, J.R.; Senft, V.J.

    1996-12-31

    This paper describes a family of linkage drive systems for Stirling engines containing several new members. These mechanisms are adaptable to all three configurations of Stirling engine, impose minimal side loads on pistons and displacer rods, and include compact forms suitable for pressurized high performance engines. This group of drive systems is generated by a simple common scheme. Near sinusoidal motion is taken from a crankshaft carrying a single crankpin by two connecting rods each driving a bellcrank. The stationary pivots of the bellcranks are located so that their oscillatory motion has the phase angle separation required between the piston and displacer. The bellcranks are further configured to bring the third pin motion to a location suitable for coupling with the piston or displacer of the engine in a way which minimizes side loading. The paper presents a number of new linkage drives from the dual bellcrank family and indicates how they are embodied in beta and alpha type Stirling engines. The paper includes a design for a small multipurpose engine incorporating one of the subject mechanisms.

  11. Computer simulation of the rotary engine apex seal system

    SciTech Connect (OSTI)

    Orlandea, N.V.; Weinert, M.S.; Keleher, D.B.

    1987-01-01

    Many factors influence the performance and life of the apex seal system in a rotary engine. These considerations include basic configuration, material and dimensions of sealing elements, lubrication conditions, seal and surface temperatures, and seal loading. These parameters and particularly their interactions are not well understood. The objective of this investigation was to create mathematical models capable of explaining the dynamic behavior of the apex seal system. These models enable us to: 1. Understand present apex sealing system loads and how they are influenced by design and material parameters. 2. Allow product engineers to assess the influence of proposed design changes on apex seal performance.

  12. Development of a locomotive engine condition monitoring system

    SciTech Connect (OSTI)

    Broughton, C.; Holloway, R.; Webster, G.

    1997-12-31

    Outlines test procedures and results of a study of the application of the instantaneous crankshaft angular velocity (ICAV) engine condition monitoring system applied to three freight locomotives. The study involved the assessment of a prototype repair-shop diagnostic tool, based on prior experimental programs and the ICAV technology. Engine testing was carried out at four-month intervals for three separate trials on the locomotives. Experimental data obtained included power output, fuel consumption, cylinder firing pressure waveforms, and the ICAV waveforms. The performance of the ICAV system was judged on its ability to accurately predict the change in indicated mean effective pressure of each cylinder from one test to the next.

  13. The Hidden Job Requirements for a Software Engineer

    SciTech Connect (OSTI)

    Marinovici, Maria C.; Kirkham, Harold; Glass, Kevin A.

    2014-01-09

    In a world increasingly operated by computers, where innovation depends on software, the software engineer’s role is changing continuously and gaining new dimensions. In commercial software development as well as scientific research environments, the way software developers are perceived is changing, because they are more important to the business than ever before. Nowadays, their job requires skills extending beyond the regular job description posted by HR, and more is expected. To advance and thrive in their new roles, the software engineers must embrace change, and practice the themes of the new era (integration, collaboration and optimization). The challenges may be somehow intimidating for freshly graduated software engineers. Through this paper the authors hope to set them on a path for success, by helping them relinquish their fear of the unknown.

  14. Planning for evaluation of the US Department of Energy`s Energy Partnerships/Climate Change Programs

    SciTech Connect (OSTI)

    Jordan, G.B.; Beschen, D.A.

    1995-06-01

    This paper describes the planning of evaluation for one large-scale national energy program with-scale, national energy program with international reporting requirements, US. Climate Change Action Plant. Referred to as Energy Partnerships for a Strong Economy, this program includes 19 DOE Office of Energy Efficiency and Renewable Energy (EE) initiatives and three other DOE projects. The evaluation strategy is to have a six year effort with ongoing performance measurement, market studies and process evaluations when deviations from targeted outcomes occur, and a final evaluation report that combines these results with other impact evaluations deemed necessary. The evaluation planning and implementation will use a collaborative approach involving program managers and stakeholders, including program partners and customers, to ensure that evaluation results are useful and utilized. Performance mapping will be used to describe the programs to be evaluated and determine data collection needs and key evaluation questions. The evaluation plan uses multiple evaluation methods, including model and engineering estimates, self-reporting by partners, case studies, surveys, and modified peer/expert review in order to accommodate the scope and diversity of programs and the need to measure progress as well as impact.

  15. Design and development of Stirling engines for stationary power generation applications in the 500 to 3000 horsepower range. Volume 2. Program plan

    SciTech Connect (OSTI)

    Not Available,

    1980-09-15

    A plan for implementing the proposed state-of-the-art design described in Volume I has been developed. The main objective of the project is to demonstrate a large coal-fired Stirling engine and thus shorten the lead time to commercialization. The demonstration engine will be based on the concepts developed in the first phase of this program, as detailed in Volume I of this report. Thus the proposed program plan is based on the U-4 engine concept fired by a fluidized bed combustor with a two-stage gravity-assisted heat pipe. The plan is divided into five phases and an ongoing supporting technology program. Phase I, Conceptual Design, has been completed. The remaining phases are: Preliminary Design; Final Design; Fabrication; and Testing and Demonstration. The primary target is to begin testing the large coal-fired engine by the fifth year (1985) after the start of Preliminary Design.

  16. Free-piston Stirling engine experimental program: Part 1. Baseline test summary

    SciTech Connect (OSTI)

    Berggren, R.; Moynihan, T.

    1983-06-01

    Free-Piston Stirling Engine experimental data are presented from a series of tests that establish the operating characteristics of the engine and determine performance repeatability. The operating envelope of the engine was to determine maximum parameter range and repeatability. Tests were then carried out in which individual operating parameters were varied while others were maintained constant. These data establish the baseline operation of the engine as a preliminary to a series of tests in which several suspected sources of energy loss are investigated by changing the engine geometry to isolate and magnify each suspected loss mechanism. Performance with the geometry change is compared against baseline operation to quantify the magnitude of the loss mechanism under investigation. The results of the loss mechanism investigation are presented in Part 2 of this report.

  17. Cleaning Up Diesel Engines | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Diesel Engines Cleaning Up Diesel Engines 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters 2005_deer_witherspoon.pdf (333.11 KB) More Documents & Publications ADEC II Universal SCR Retrofit System for On-road and Off-road Diesel Engines DIesel Emission Control Technology Developments The Need to Reduce Mobile Source Emissions in the South Coast Air Basin

  18. V160 Stirling engine program update

    SciTech Connect (OSTI)

    Johansson, L.; Torstensson, B.; Williams, T. Y.; Houtman, W.H.; Monahan, R.

    1988-01-01

    Development efforts being made toward the preproduction stage of the V160 Stirling engine are examined. The history of continued reliability encompassing all engine models is reviewed, and efforts towards engine manufacturing and cost reduction are addressed. A preview is given of the initial product line based on the V160 engine and substantiated through testing of the offered configurations.

  19. Sandia National Laboratories: Careers: Mechanical Engineering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mechanical Engineering Engineering photo Sandia mechanical engineers design and develop advanced components and systems for national-defense programs, homeland security, and other applications. Mechanical engineers at Sandia work on design, analysis, manufacturing, and test activities in many areas, including nuclear weapons and power, renewable energy, intelligent machines, robotics, pulsed power, missile defense, remote sensing, advanced manufacturing, and micro- and nanosystems. Sandia

  20. High Efficiency Engine Technologies | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technologies High Efficiency Engine Technologies The energy wasted in combustion process is a huge untapped resource and the recovery or conversion of this energy into useful power is a huge opportunity. deer09_nelson_2.pdf (285.08 KB) More Documents & Publications Innovative Approaches to Improving Engine Efficiency Overview of High-Efficiency Engine Technologies High Engine Efficiency at 2010 Emissions

  1. The effect of diesel injection timing on a turbocharged diesel engine fumigated with ethanol

    SciTech Connect (OSTI)

    Schroeder, A.R.; Savage, L.D.; White, R.A.; Sorenson, S.C.

    1988-01-01

    A study has been done to determine the effect of changes in diesel injection timing on engine performance using a multicylinder, turbocharged diesel engine fumigated with ethanol. Tests at half load with engine speeds of 2000 and 2400 rpm indicated that a 4% increase in thermal efficiency could be obtained by advancing the diesel injection timing from 18 to 29/sup 0/BTDC. The effect of changes in diesel timing was much more pronounced at 2400 rpm. Advancing the diesel timing decreased CO and unburned HC levels significantly. The increase in NO levels due to advances in diesel timing was offset by the decrease in NO due to ethanol addition.

  2. PL2ESIDCNI The District Engineer, U. S. Engineer Office,

    Office of Legacy Management (LM)

    w. -1. C1P.RSHAW PL2ESIDCNI The District Engineer, U. S. Engineer Office, Kanhattan liistrict, l-J. 0. Box 42, Station New York, N. Y. fi s Attention: Lt. L. C. Burman. Dear Sir: Agreeable to your verbal request, we offer you the following which are all the Uranium Compounds and Cermic Colors containing Uranium in our possession at, our various stock points. ,I ---L-z-- BIACY'C:fln;" URAXW (Approximately 9$ U33,) QOC3 lb. amer lb., f.o.b. East Liverpool, Ohio. ~500 lb. at $2.15 Fer lb.,

  3. Light-duty diesel engine development status and engine needs

    SciTech Connect (OSTI)

    Not Available

    1980-08-01

    This report reviews, assesses, and summarizes the research and development status of diesel engine technology applicable to light-duty vehicles. In addition, it identifies specific basic and applied research and development needs in light-duty diesel technology and related health areas where initial or increased participation by the US Government would be desirable. The material presented in this report updates information provided in the first diesel engine status report prepared by the Aerospace Corporation for the Department of Energy in September, 1978.

  4. Hydrologic impacts of engineering projects on the Tigris-Euphrates System and its marshlands.

    SciTech Connect (OSTI)

    Jones, C.; Sultan, M.; Yan, E.; Milewski, A.; Hussein, M.; Al-Dousari, A.; Al-Kaisy, S.; Becker, R.; Environmental Science Division; Western Michigan Univ.; Iraq Reconstruction Management Office, U.S. Embassy, Baghdad, Iraq; Kuwait Institute for Scientific Research, Kuwait City, Kuwait; University of Tikrit

    2008-05-30

    Rising demands for fresh water supplies are leading to water management practices that are altering natural flow systems world-wide. One of the most devastated of these natural systems is the Tigris-Euphrates watershed that over the past three decades has witnessed the construction of over 60 engineering projects that eliminated seasonal flooding, reduced natural flow and dramatically reduced the areal extent (1966: 8000 km{sup 2}; 2002: 750 km{sup 2}) of the Mesopotamian Marshes downstream. We constructed a catchment-based continuous (1964-1998) rainfall runoff model for the watershed (area: 10{sup 6} km{sup 2}) using the Soil Water Assessment Tool (SWAT) model to understand the dynamics of the natural flow system, and to investigate the impacts of reduced overall flow and the related land cover and land use change downstream in the marshes. The model was calibrated (1964-1970) and validated (1971-1998) against stream flow gauge data. Using the calibrated model we calculated the temporal variations in the average monthly flow rate (AMFR), the average monthly peak flow rate (AMPFR), and annual flow volume (AFV) of the Tigris and Euphrates into the marshes at a location near Al-Basrah city (31{sup o}N, 47.5{sup o}E) throughout the modeled period. Model results indicate that the AMPFR (6301 m{sup 3}/s) and average annual flow volume (AAFV: 80 x 10{sup 9} m{sup 3}/yr) for period A (10/1/1965-09/30/1973), preceding the construction of the major dams is progressively diminished in periods B1 (10/1/1973-09/30/1989; AMPFR: 3073 m{sup 3}/s; AAFV: 55 x 10{sup 9} m{sup 3}/yr) and B2 (10/1/1989-09/30/1998; AMPFR, 2319 m{sup 3}/s; AAFV: 50 x 10{sup 9} m{sup 3}/yr) that witnessed the construction of the major dams (B1: Keban, Tabqa, Hamrin, Haditha, Mosul, Karakaya; B2: Ataturk) due to the combined effects of filling artificial lakes, evaporation and infiltration of impounded water and its utilization for irrigation purposes. To investigate the impacts of reduced flow on the

  5. Advanced engineering environment collaboration project.

    SciTech Connect (OSTI)

    Lamph, Jane Ann; Pomplun, Alan R.; Kiba, Grant W.; Dutra, Edward G.; Dankiewicz, Robert J.; Marburger, Scot J.

    2008-12-01

    The Advanced Engineering Environment (AEE) is a model for an engineering design and communications system that will enhance project collaboration throughout the nuclear weapons complex (NWC). Sandia National Laboratories and Parametric Technology Corporation (PTC) worked together on a prototype project to evaluate the suitability of a portion of PTC's Windchill 9.0 suite of data management, design and collaboration tools as the basis for an AEE. The AEE project team implemented Windchill 9.0 development servers in both classified and unclassified domains and used them to test and evaluate the Windchill tool suite relative to the needs of the NWC using weapons project use cases. A primary deliverable was the development of a new real time collaborative desktop design and engineering process using PDMLink (data management tool), Pro/Engineer (mechanical computer aided design tool) and ProductView Lite (visualization tool). Additional project activities included evaluations of PTC's electrical computer aided design, visualization, and engineering calculations applications. This report documents the AEE project work to share information and lessons learned with other NWC sites. It also provides PTC with recommendations for improving their products for NWC applications.

  6. Futuristic concepts in engines and components

    SciTech Connect (OSTI)

    1995-12-31

    This publication includes papers on two-stroke engines and components, Brayton Stirling and Otto Cycles, alternative cycles, advanced combustion, and other related topics. Contents include: Paving the way to controlled combustion engines (CCE); A new class of stratified-charge internal combustion engine; Internal combustion (IC) engine with minimum number of moving parts; New type of heat engine -- externally heated air engine; A porous media burner for reforming methanol for fuel cell powered electric vehicles; Using a Stirling engine simulation program as a regenerator design aid; In-cylinder regenerated engines; High speed electronic fuel injection for direct injected rotary engine; and The characteristics of fuel consumption and exhaust emissions of the side exhaust port rotary engine.

  7. Fuel quantity modulation in pilot ignited engines

    DOE Patents [OSTI]

    May, Andrew

    2006-05-16

    An engine system includes a first fuel regulator adapted to control an amount of a first fuel supplied to the engine, a second fuel regulator adapted to control an amount of a second fuel supplied to the engine concurrently with the first fuel being supplied to the engine, and a controller coupled to at least the second fuel regulator. The controller is adapted to determine the amount of the second fuel supplied to the engine in a relationship to the amount of the first fuel supplied to the engine to operate in igniting the first fuel at a specified time in steady state engine operation and adapted to determine the amount of the second fuel supplied to the engine in a manner different from the relationship at steady state engine operation in transient engine operation.

  8. Engine improvement and efficiency gained by teamwork

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Engine improvement and efficiency gained by teamwork Engine improvement and efficiency gained by teamwork Together, Cummins and LANL have reduced costs and increased efficiency in diesel engines. April 3, 2012 Engine for R&D Research and development (R&D) efforts focus on improving engine efficiency while meeting future federal and state emissions regulations through a combination of: combustion technologies that minimize in-cylinder formation of emissions ...the company realized a more

  9. Improving Aircraft Engine Combustor Simulations | Argonne Leadership

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Computing Facility Jet engine combustor design Pratt & Whitney is exploring leading-edge jet engine combustor design methods using the ALCF's Blue Gene/P. Improving Aircraft Engine Combustor Simulations PI Name: Peter Bradley PI Email: peter.c.bradley@pw.utc.com Institution: Pratt & Whitney Allocation Program: INCITE Allocation Hours at ALCF: 1.3 Million Year: 2008 Research Domain: Engineering A jet engine combustor combines air flowing faster than a hurricane with swirling fuel to

  10. Safety device for turbocharged engine

    SciTech Connect (OSTI)

    Kido, Y.

    1986-08-05

    A safety device is described for a turbocharged engine which is provided with a turbocharger comprising a turbine disposed in the exhaust passage and a blower disposed in the intake passage and connected with the turbine by way of a rotary shaft and in which the throttle valve is disposed in the intake passage downstream of the blower. The safety device consists of an engine protective means for controlling the maximum supercharging pressure in the intake passage, at least one pressure sensor for detecting the supercharging pressure downstream of the blower, and a control circuit which actuates the engine protective means when the supercharging pressure detected by the pressure sensor continues to be higher than a preset supercharging pressure for a predetermined time interval. The control circuit includes means for generating the predetermined time interval, the means for generating the predetermined time interval shortening the time interval as the difference between the detected supercharging pressure and the preset supercharging pressure increases.

  11. Self-pressurizing Stirling engine

    DOE Patents [OSTI]

    Bennett, Charles L.

    2010-10-12

    A solar thermal powered aircraft powered by heat energy from the sun. A heat engine, such as a Stirling engine, is carried by the aircraft body for producing power for a propulsion mechanism, such as a propeller. The heat engine has a thermal battery in thermal contact with it so that heat is supplied from the thermal battery. A solar concentrator, such as reflective parabolic trough, is movably connected to an optically transparent section of the aircraft body for receiving and concentrating solar energy from within the aircraft. Concentrated solar energy is collected by a heat collection and transport conduit, and heat transported to the thermal battery. A solar tracker includes a heliostat for determining optimal alignment with the sun, and a drive motor actuating the solar concentrator into optimal alignment with the sun based on a determination by the heliostat.

  12. Steam boosted internal combustion engine

    SciTech Connect (OSTI)

    Green, M.A.

    1987-01-20

    A device is described to supplement the power produced by burning fuel in an internal combustion engine with steam, the device comprising: a means for producing a constant flow of water past a boiler means; a means for allowing the water to flow in the direction of the boiler; a boiler means external to the internal combustion engine to convert the water into superheated steam; a means for controlling the pressure of the water such that the water pressure is greater than the pressure of the steam produced by the boiler; and a means for injection of the superheated steam directly into a cylinder of the internal combustion engine, a means for producing a constant flow of water at a pressure greater than the pressure of the superheated steam, wherein the constant flow means at greater pressure comprises a chamber with a gaseous component, with the gaseous component being of constant volume and exerting constant pressure upon water within the chamber.

  13. Advanced System for Process Engineering

    Energy Science and Technology Software Center (OSTI)

    1992-02-01

    ASPEN (Advanced System for Process Engineering) is a state of the art process simulator and economic evaluation package which was designed for use in engineering fossil energy conversion processes. ASPEN can represent multiphase streams including solids, and handle complex substances such as coal. The system can perform steady state material and energy balances, determine equipment size and cost, and carry out preliminary economic evaluations. It is supported by a comprehensive physical property system for computationmore » of major properties such as enthalpy, entropy, free energy, molar volume, equilibrium ratio, fugacity coefficient, viscosity, thermal conductivity, and diffusion coefficient for specified phase conditions; vapor, liquid, or solid. The properties may be computed for pure components, mixtures, or components in a mixture, as appropriate. The ASPEN Input Language is oriented towards process engineers.« less

  14. Hydrogen-fueled internal combustion engines.

    SciTech Connect (OSTI)

    Verhelst, S.; Wallner, T.; Energy Systems; Ghent Univ.

    2009-12-01

    The threat posed by climate change and the striving for security of energy supply are issues high on the political agenda these days. Governments are putting strategic plans in motion to decrease primary energy use, take carbon out of fuels and facilitate modal shifts. Taking a prominent place in these strategic plans is hydrogen as a future energy carrier. A number of manufacturers are now leasing demonstration vehicles to consumers using hydrogen-fueled internal combustion engines (H{sub 2}ICEs) as well as fuel cell vehicles. Developing countries in particular are pushing for H{sub 2}ICEs (powering two- and three-wheelers as well as passenger cars and buses) to decrease local pollution at an affordable cost. This article offers a comprehensive overview of H{sub 2}ICEs. Topics that are discussed include fundamentals of the combustion of hydrogen, details on the different mixture formation strategies and their emissions characteristics, measures to convert existing vehicles, dedicated hydrogen engine features, a state of the art on increasing power output and efficiency while controlling emissions and modeling.

  15. Engineering microbial consortia for controllable outputs

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lindemann, Stephen R.; Bernstein, Hans C.; Song, Hyun -Seob; Fredrickson, Jim K.; Fields, Matthew W.; Shou, Wenying; Johnson, David R.; Beliaev, Alexander S.

    2016-03-11

    In this study, much research has been invested into engineering microorganisms to perform desired biotransformations; nonetheless, these efforts frequently fall short of expected results due to the unforeseen effects of biofeedback regulation and functional incompatibility. In nature, metabolic function is compartmentalized into diverse organisms assembled into robust consortia, in which the division of labor is thought to lead to increased community efficiency and productivity. Here we consider whether and how consortia can be designed to perform bioprocesses of interest beyond the metabolic flexibility limitations of a single organism. Advances in post-genomic analysis of microbial consortia and application of high-resolution globalmore » measurements now offer the promise of systems-level understanding of how microbial consortia adapt to changes in environmental variables and inputs of carbon and energy. We argue that, when combined with appropriate modeling frameworks, systems-level knowledge can markedly improve our ability to predict the fate and functioning of consortia. Here we articulate our collective perspective on the current and future state of microbial community engineering and control while placing specific emphasis on ecological principles that promote control over community function and emergent properties.« less

  16. Detection of phenols using engineered bacteria

    DOE Patents [OSTI]

    Wise, Arlene A.; Kuske, Cheryl R.; Terwilliger, Thomas C.

    2004-08-10

    Detection of phenols using engineered bacteria. A biosensor can be created by placing a reporter gene under control of an inducible promoter. The reporter gene produces a signal when a cognate transcriptional activator senses the inducing chemical. Creation of bacterial biosensors is currently restricted by limited knowledge of the genetic systems of bacteria that catabolize xenobiotics. By using mutagenic PCR to change the chemical specificity of the Pseudomonas species CF600 DmpR protein, the potential for engineering novel biosensors for detection of phenols has been demonstrated. DmpR, a well-characterized transcriptional activator of the P. CF600's dmp operon mediates growth on simple phenols. Transcription from Po, the promoter heading the dmp operon, is activated when the sensor domain of DmpR interacts with phenol and mono-substituted phenols. By altering the sensor domain of the DmpR, a group of DmpR derivatives that activate transcription of a Po-lacZ fusion in response to eight of the EPA's eleven priority pollutant phenols has been created. The assays and the sensor domain mutations that alter the chemical specificity of DmpR is described.

  17. Detection of phenols using engineered bacteria

    DOE Patents [OSTI]

    Wise, Arlene A.; Kuske, Cheryl R.; Terwilliger, Thomas C.

    2007-12-04

    Detection of phenols using engineered bacteria. A biosensor can be created by placing a reporter gene under control of an inducible promoter. The reporter gene produces a signal when a cognate transcriptional activator senses the inducing chemical. Creation of bacterial biosensors is currently restricted by limited knowledge of the genetic systems of bacteria that catabolize xenobiotics. By using mutagenic PCR to change the chemical specificity of the Pseudomonas species CF600 DmpR protein, the potential for engineering novel biosensors for detection of phenols has been demonstrated. DmpR, a well-characterized transcriptional activator of the P. CF600's dmp operon mediates growth on simple phenols. Transcription from Po, the promoter heading the dmp operon, is activated when the sensor domain of DmpR interacts with phenol and mono-substituted phenols. By altering the sensor domain of the DmpR, a group of DmpR derivatives that activate transcription of a Po-lacZ fusion in response to eight of the EPA's eleven priority pollutant phenols has been created. The assays and the sensor domain mutations that alter the chemical specificity of DmpR is described.

  18. Hydrogen hybrid vehicle engine development: Experimental program

    SciTech Connect (OSTI)

    Van Blarigan, P.

    1995-09-01

    A hydrogen fueled engine is being developed specifically for the auxiliary power unit (APU) in a series type hybrid vehicle. Hydrogen is different from other internal combustion (IC) engine fuels, and hybrid vehicle IC engine requirements are different from those of other IC vehicle engines. Together these differences will allow a new engine design based on first principles that will maximize thermal efficiency while minimizing principal emissions. The experimental program is proceeding in four steps: (1) Demonstration of the emissions and the indicated thermal efficiency capability of a standard CLR research engine modified for higher compression ratios and hydrogen fueled operation. (2) Design and test a new combustion chamber geometry for an existing single cylinder research engine, in an attempt to improve on the baseline indicated thermal efficiency of the CLR engine. (3) Design and build, in conjunction with an industrial collaborator, a new full scale research engine designed to maximize brake thermal efficiency. Include a full complement of combustion diagnostics. (4) Incorporate all of the knowledge thus obtained in the design and fabrication, by an industrial collaborator, of the hydrogen fueled engine for the hybrid vehicle power train illustrator. Results of the CLR baseline engine testing are presented, as well as preliminary data from the new combustion chamber engine. The CLR data confirm the low NOx produced by lean operation. The preliminary indicated thermal efficiency data from the new combustion chamber design engine show an improvement relative to the CLR engine. Comparison with previous high compression engine results shows reasonable agreement.

  19. Rotary reciprocating internal combustion engine

    SciTech Connect (OSTI)

    Ogren, W.

    1992-06-23

    This patent describes a rotary reciprocating internal combustion engine. It comprises a housing which comprises a cylindrical head with two end and frame plates mounted on both ends of the head enclose the head, the head including a pair of fuel into ports and a pair of exhaust ports, a pair of ring gears; a rotor axially aligned in the cylindrical head and comprising a set of four radially extending cylinders and pistons reciprocable in the cylinders; a power take off shaft fixed to the crank support plates and axially aligned with the rotor; oiling means for oiling the rotary engine; and a set of eight crank gears.

  20. Power control for heat engines

    DOE Patents [OSTI]

    Dineen, John J.

    1984-01-01

    A power control arrangement for a Stirling engine includes a sleeve mounted in each cylinder for axial movement and a port in the sleeve leading to a dead space. The port is covered by the piston at a position that is determined by the piston position and the axial adjustment of the sleeve. The compression phase of the Stirling cycle for that piston begins when the port is covered, so the position of the sleeve is used to set the Stirling engine power level.