Sample records for one-sigma total propagated

  1. TOTAL M F Total M F Total M F Total M F Total M F Total M F Total M F Total M F Total M F Total M F Total M F Total M F Total Spring 2010

    E-Print Network [OSTI]

    Hayes, Jane E.

    202 51 *total new freshmen 684: 636 Lexington campus, 48 Paducah campus MS Total 216 12 5 17 2 0 2 40 248 247 648 45 210 14 *total new freshmen 647: 595 Lexington campus, 52 Paducah campus MS Total 192 14

  2. Dike Propagation Near Drifts

    SciTech Connect (OSTI)

    NA

    2002-03-04T23:59:59.000Z

    The purpose of this Analysis and Model Report (AMR) supporting the Site Recommendation/License Application (SR/LA) for the Yucca Mountain Project is the development of elementary analyses of the interactions of a hypothetical dike with a repository drift (i.e., tunnel) and with the drift contents at the potential Yucca Mountain repository. This effort is intended to support the analysis of disruptive events for Total System Performance Assessment (TSPA). This AMR supports the Process Model Report (PMR) on disruptive events (CRWMS M&O 2000a). This purpose is documented in the development plan (DP) ''Coordinate Modeling of Dike Propagation Near Drifts Consequences for TSPA-SR/LA'' (CRWMS M&O 2000b). Evaluation of that Development Plan and the work to be conducted to prepare Interim Change Notice (ICN) 1 of this report, which now includes the design option of ''Open'' drifts, indicated that no revision to that DP was needed. These analyses are intended to provide reasonable bounds for a number of expected effects: (1) Temperature changes to the waste package from exposure to magma; (2) The gas flow available to degrade waste containers during the intrusion; (3) Movement of the waste package as it is displaced by the gas, pyroclasts and magma from the intruding dike (the number of packages damaged); (4) Movement of the backfill (Backfill is treated here as a design option); (5) The nature of the mechanics of the dike/drift interaction. These analyses serve two objectives: to provide preliminary analyses needed to support evaluation of the consequences of an intrusive event and to provide a basis for addressing some of the concerns of the Nuclear Regulatory Commission (NRC) expressed in the Igneous Activity Issue Resolution Status Report.

  3. Propagation of Ornamental Plants.

    E-Print Network [OSTI]

    DeWerth, A. F.

    1955-01-01T23:59:59.000Z

    Propagation of Ornamental Plants I A. I?. DEWERTH, Head Department of Floriculture and Landscape Architecture Texas A. & M. College System THE MULTIPLICATION of ornamental plants is After sterilizing, firm the soil to within 1; receiving more...

  4. Job Matching and Propagation

    E-Print Network [OSTI]

    Ramey, Garey; Fujita, Shigeru

    2006-01-01T23:59:59.000Z

    the labor force who want a job. Monthly Labor Review Cogley,G. , Watson, J. , June 2000. Job destruction and propagationJ. , June 2004. Gross job ?ows over the past two business

  5. Propagation of seismic waves through liquefied soils

    E-Print Network [OSTI]

    Taiebat, Mahdi; Jeremic, Boris; Dafalias, Yannis; Kaynia, Amir; Cheng, Zhao

    2010-01-01T23:59:59.000Z

    the mechanisms of wave propagation and ARTICLE IN PRESS M.Numerical analysis Wave propagation Earthquake Liquefactionenergy during any wave propagation. This paper summarizes

  6. Gas Explosion Characterization, Wave Propagation

    E-Print Network [OSTI]

    s & Dt^boooo^j Risø-R-525 Gas Explosion Characterization, Wave Propagation (Small-Scale Experiments EXPLOSION CHARACTERIZATION, WAVE PROPAGATION (Small-Scale Experiments) G.C. Larsen Abstract. A number characteristics 14 3.5. Characteristics of the primary pressure wave 21 3.6. Pressure propagation over a hard

  7. Pecan Propagation in Texas.

    E-Print Network [OSTI]

    Swallow, A. P.

    1924-01-01T23:59:59.000Z

    PECAN PROPAGATION IN TEXAS I SOIL AND CLIMATIC REQ:UIREMENTS The ideal condition for pecan production is to have the roots of the tree in perpetual, moderate moisture and the top in constant sunshine. Good pecan land should be fertile, deep, loose... it should be much deeper. Shallow soils cannot be relied upon to pro­ duce regular crops. Tight land prevents the growth of an extended root system, and is too uneven in its moisture content. The wood growing period of a pecan tree extends froInt the opening...

  8. Total Cross Sections for Neutron Scattering

    E-Print Network [OSTI]

    C. R. Chinn; Ch. Elster; R. M. Thaler; S. P. Weppner

    1994-10-19T23:59:59.000Z

    Measurements of neutron total cross-sections are both extensive and extremely accurate. Although they place a strong constraint on theoretically constructed models, there are relatively few comparisons of predictions with experiment. The total cross-sections for neutron scattering from $^{16}$O and $^{40}$Ca are calculated as a function of energy from $50-700$~MeV laboratory energy with a microscopic first order optical potential derived within the framework of the Watson expansion. Although these results are already in qualitative agreement with the data, the inclusion of medium corrections to the propagator is essential to correctly predict the energy dependence given by the experiment.

  9. Image Compression by Back Propagation

    E-Print Network [OSTI]

    Cottrell, Garrison W.

    CHAPTER 9 Image Compression by Back Propagation: An Example of Extensional Programming* GARRISON W the case with the computatiolls associated with basic cognitive pro- cesses such as vision and audition techniques. The technique we employ is known as back propagation. developed by l1umelhart, Hinton

  10. Total Light Management

    Broader source: Energy.gov [DOE]

    Presentation covers total light management, and is given at the Spring 2010 Federal Utility Partnership Working Group (FUPWG) meeting in Providence, Rhode Island.

  11. Total Space Heat-

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    Commercial Buildings Energy Consumption Survey: Energy End-Use Consumption Tables Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration...

  12. Total Space Heat-

    Gasoline and Diesel Fuel Update (EIA)

    Revised: December, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings...

  13. Sound propagation around underwater seamounts

    E-Print Network [OSTI]

    Sikora, Joseph J., III

    2009-01-01T23:59:59.000Z

    In the ocean, low frequency acoustic waves propagate with low attenuation and cylindrical spreading loss over long-ranges, making them an effective tool for underwater source localization, tomography, and communications. ...

  14. Reconstruction of nonlinear wave propagation

    DOE Patents [OSTI]

    Fleischer, Jason W; Barsi, Christopher; Wan, Wenjie

    2013-04-23T23:59:59.000Z

    Disclosed are systems and methods for characterizing a nonlinear propagation environment by numerically propagating a measured output waveform resulting from a known input waveform. The numerical propagation reconstructs the input waveform, and in the process, the nonlinear environment is characterized. In certain embodiments, knowledge of the characterized nonlinear environment facilitates determination of an unknown input based on a measured output. Similarly, knowledge of the characterized nonlinear environment also facilitates formation of a desired output based on a configurable input. In both situations, the input thus characterized and the output thus obtained include features that would normally be lost in linear propagations. Such features can include evanescent waves and peripheral waves, such that an image thus obtained are inherently wide-angle, farfield form of microscopy.

  15. Photon propagator for axion electrodynamics

    SciTech Connect (OSTI)

    Itin, Yakov [Institute of Mathematics, Hebrew University of Jerusalem, Givat Ram, Jerusalem, 91904 (Israel) and Jerusalem College of Technology, P.O.B. 16031, Jerusalem, 91160 (Israel)

    2007-10-15T23:59:59.000Z

    The axion modified electrodynamics is usually used as a model for description of possible violation of Lorentz invariance in field theory. The low-energy manifestation of Lorentz violation can hopefully be observed in experiments with electromagnetic waves. It justifies the importance of studying how a small axion addition can modify the wave propagation. Although a constant axion does not contribute to the dispersion relation at all, even a slowly varying axion field destroys the light cone structure. In this paper, we study the wave propagation in the axion modified electrodynamics in the framework of the premetric approach. In addition to the modified dispersion relation, we derive the axion generalization of the photon propagator in Feynman and Landau gauge. Our consideration is free of the usual restriction to the constant gradient axion field. It is remarkable that the axion modified propagator is Hermitian. Consequently, the dissipation effects are absent even in the phenomenological model considered here.

  16. Total Synthesis of (?)-Himandrine

    E-Print Network [OSTI]

    Movassaghi, Mohammad

    We describe the first total synthesis of (?)-himandrine, a member of the class II galbulimima alkaloids. Noteworthy features of this chemistry include a diastereoselective Diels?Alder reaction in the rapid synthesis of the ...

  17. Phase-dependent propagation in a two-level system with intermediate states

    SciTech Connect (OSTI)

    Sharypov, A. V.; Eilam, A.; Wilson-Gordon, A. D.; Friedmann, H. [Department of Chemistry, Bar-Ilan University, Ramat Gan IL-52900 (Israel)

    2010-01-15T23:59:59.000Z

    We study the phase-dependent propagation of a strong, resonant pump and two weak symmetrically detuned fields in a two-level system with population decay through a cascade of intermediate levels. As this system forms a closed loop, the propagation is phase-dependent. For an initial total phase PHI=0, there is constructive interference between the two weak fields, leading to parametric amplification on propagation. When PHI=pi, destructive interference occurs, leading to absorption of the weak fields on propagation. When the weak fields are initially equal in intensity, and PHI=0,pi, PHI remains constant on propagation. For other initial phases, PHI changes on propagation. Dramatic phase changes from pi to 0 can occur when the weak fields are initially unequal in intensity and PHI=pi.

  18. Total Energy Monitor

    SciTech Connect (OSTI)

    Friedrich, S

    2008-08-11T23:59:59.000Z

    The total energy monitor (TE) is a thermal sensor that determines the total energy of each FEL pulse based on the temperature rise induced in a silicon wafer upon absorption of the FEL. The TE provides a destructive measurement of the FEL pulse energy in real-time on a pulse-by-pulse basis. As a thermal detector, the TE is expected to suffer least from ultra-fast non-linear effects and to be easy to calibrate. It will therefore primarily be used to cross-calibrate other detectors such as the Gas Detector or the Direct Imager during LCLS commissioning. This document describes the design of the TE and summarizes the considerations and calculations that have led to it. This document summarizes the physics behind the operation of the Total Energy Monitor at LCLS and derives associated engineering specifications.

  19. Total Precipitable Water

    SciTech Connect (OSTI)

    None

    2012-01-01T23:59:59.000Z

    The simulation was performed on 64K cores of Intrepid, running at 0.25 simulated-years-per-day and taking 25 million core-hours. This is the first simulation using both the CAM5 physics and the highly scalable spectral element dynamical core. The animation of Total Precipitable Water clearly shows hurricanes developing in the Atlantic and Pacific.

  20. Propagators for Noncommutative Field Theories

    E-Print Network [OSTI]

    R. Gurau; V. Rivasseau; F. Vignes-Tourneret

    2006-02-06T23:59:59.000Z

    In this paper we provide exact expressions for propagators of noncommutative Bosonic or Fermionic field theories after adding terms of the Grosse-Wulkenhaar type in order to ensure Langmann-Szabo covariance. We emphasize the new Fermionic case and we give in particular all necessary bounds for the multiscale analysis and renormalization of the noncommutative Gross-Neveu model.

  1. TotalView Training

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening a solidSynthesisAppliances » Top InnovativeTopoisomeraseTotalView

  2. Nonlinear Saturation of Vertically Propagating Rossby Waves

    E-Print Network [OSTI]

    Giannitsis, Constantine

    The interaction between vertical Rossby wave propagation and wave breaking is studied in the idealized context of a beta-plane channel model. Considering the problem of propagation through a uniform zonal flow in an ...

  3. Propagation Plane waves -High order Modes

    E-Print Network [OSTI]

    Berlin,Technische Universität

    1 Propagation · Plane waves - High order Modes y x a ky = n a One wave: p(x,y,t)=p0 cos(k y)e-jk x e j t vy(y,t)= 0 ; y=0,a xy } Propagation · Plane waves - High order Modes x n a p(x,y,t)=pn cos( y;4 Propagation · Circular duct ­ Helical waves (spiralling waves) kc=m/a kz kH Projection: Propagation #12

  4. Wave Propagation in Fractured Poroelastic Media

    E-Print Network [OSTI]

    Seismic wave propagation through fractures and cracks is an important subject in exploration and production geophysics, earthquake seismology and mining.

  5. Coupled Parabolic Equations for Wave Propagation

    E-Print Network [OSTI]

    Zhao, Hongkai

    Coupled Parabolic Equations for Wave Propagation Kai Huang, Knut Solna and Hongkai Zhao #3; April simulation of wave propagation over long distances. The coupled parabolic equations are derived from a two algorithms are important in order to understand wave propagation in complex media. Resolving the wavelength

  6. Solitary waves propagating over variable Roger Grimshaw

    E-Print Network [OSTI]

    Solitary waves propagating over variable topography Roger Grimshaw Loughborough University waves that can propagate steadily over long distances. They were first observed by Russell in 1837 in a now famous report [26] on his observations of a solitary wave propagating along a Scottish canal

  7. Wave propagation in axion electrodynamics

    E-Print Network [OSTI]

    Yakov Itin

    2007-06-20T23:59:59.000Z

    In this paper, the axion contribution to the electromagnetic wave propagation is studied. First we show how the axion electrodynamics model can be embedded into a premetric formalism of Maxwell electrodynamics. In this formalism, the axion field is not an arbitrary added Chern-Simon term of the Lagrangian, but emerges in a natural way as an irreducible part of a general constitutive tensor.We show that in order to represent the axion contribution to the wave propagation it is necessary to go beyond the geometric approximation, which is usually used in the premetric formalism. We derive a covariant dispersion relation for the axion modified electrodynamics. The wave propagation in this model is studied for an axion field with timelike, spacelike and null derivative covectors. The birefringence effect emerges in all these classes as a signal of Lorentz violation. This effect is however completely different from the ordinary birefringence appearing in classical optics and in premetric electrodynamics. The axion field does not simple double the ordinary light cone structure. In fact, it modifies the global topological structure of light cones surfaces. In CFJ-electrodynamics, such a modification results in violation of causality. In addition, the optical metrics in axion electrodynamics are not pseudo-Riemannian. In fact, for all types of the axion field, they are even non-Finslerian.

  8. Wave Propagation in Lipid Monolayers

    E-Print Network [OSTI]

    J. Griesbauer; A. Wixforth; M. F. Schneider

    2010-05-26T23:59:59.000Z

    Sound waves are excited on lipid monolayers using a set of planar electrodes aligned in parallel with the excitable medium. By measuring the frequency dependent change in the lateral pressure we are able to extract the sound velocity for the entire monolayer phase diagram. We demonstrate that this velocity can also be directly derived from the lipid monolayer compressibility and consequently displays a minimum in the phase transition regime. This minimum decreases from v0=170m/s for one component lipid monolayers down to vm=50m/s for lipid mixtures. No significant attenuation can be detected confirming an adiabatic phenomenon. Finally our data propose a relative lateral density oscillation of \\Delta\\rho/\\rho ~ 2% implying a change in all area dependent physical properties. Order of magnitude estimates from static couplings therefore predict propagating changes in surface potential of 1-50mV, 1 unit in pH (electrochemical potential) and 0.01{\\deg}K in temperature and fall within the same order of magnitude as physical changes measured during nerve pulse propagation. These results therefore strongly support the idea of propagating adiabatic sound waves along nerves as first thoroughly described by Kaufmann in 1989 and recently by Heimburg and Jackson, but claimed by Wilke already in 1912.

  9. Parallelisation of Wave Propagation Algorithms for Odour Propagation in Multi-Agent Systems

    E-Print Network [OSTI]

    Vialle, Stéphane

    Parallelisation of Wave Propagation Algorithms for Odour Propagation in Multi-Agent Systems Eugen-agent systems is based on the wave propagation model. This article discusses some sequential (recursive is introduced. Keywords: parallel algorithms, wave propagation model, multi-agent systems. 1 Introduction

  10. BUDVYTIS et al.: LABEL PROPAGATION 1 Label propagation in complex video

    E-Print Network [OSTI]

    Kim, Tae-Kyun

    Propagation (PGP) Proposed Hybrid Model (PHM) Occlusion-aware labelling (Classifier injection off ) ProlongedBUDVYTIS et al.: LABEL PROPAGATION 1 Label propagation in complex video sequences using semi graphical model for label propagation in lengthy and complex video sequences. Given hand-labelled start

  11. Excited States in Staggered Meson Propagators

    E-Print Network [OSTI]

    MILC Collaboration; C. Bernard; T. Burch; C. DeTar; Steven Gottlieb; E. B. Gregory; U. M. Heller; J. Osborn; R. Sugar; D. Toussaint

    2003-09-16T23:59:59.000Z

    We report on preliminary results from multi-particle fits to meson propagators with three flavors of light dynamical quarks. We are able to measure excited states in propagators with pion quantum numbers, which we interpret as the pion 2S state, and is evidence of locality of the action. In the a_0 (0^{++}) propagators we find evidence for excited states which are probably the expected decay channels, pi+eta and K+Kbar.

  12. Propagation Plane waves -High order Modes

    E-Print Network [OSTI]

    Berlin,Technische Universität

    1 Propagation · Plane waves - High order Modes y x a One wave: p(x,y,t)=p0 cos(k y)e-jk x e j t vy(y,t)= 0 ; y=0,a xy } ky = n a Propagation · Plane waves - High order Modes x n a p(x,y,t)=pn cos( y + - +- + + - +- + - + + +- - - (m,n) #12;4 Propagation · Circular duct ­ Helical waves (spiralling waves) kc=m/a kz k

  13. MUJERES TOTAL BIOLOGIA 16 27

    E-Print Network [OSTI]

    Autonoma de Madrid, Universidad

    , PLASTICA Y VISUAL 2 2 EDUCACION FISICA, DEPORTE Y MOTRICIDAD HUMANA 1 1 6 11 TOTAL CIENCIAS Nº DE TESIS

  14. MUJERES ( * ) TOTAL BIOLOGA 16 22

    E-Print Network [OSTI]

    Autonoma de Madrid, Universidad

    , DEPORTE Y MOTRICIDAD HUMANA 0 4 TOTAL FORMACIÓN DE PROFESORADO Y EDUCACIÓN 0 6 ANATOMÍA PATOLÓGICA 2 5

  15. The Total RNA Story Introduction

    E-Print Network [OSTI]

    Goldman, Steven A.

    The Total RNA Story Introduction Assessing RNA sample quality as a routine part of the gene about RNA sample quality. Data from a high quality total RNA preparation Although a wide variety RNA data interpretation and identify features from total RNA electropherograms that reveal information

  16. Shock propagation and neutrino oscillation in supernova

    E-Print Network [OSTI]

    K. Takahashi; K. Sato; H. E. Dalhed; J. R. Wilson

    2003-02-26T23:59:59.000Z

    The effect of the shock propagation on neutrino oscillation in supernova is studied paying attention to evolution of average energy of $\

  17. Wave Propagation in Fractured Poroelastic Media

    E-Print Network [OSTI]

    2014-06-22T23:59:59.000Z

    Wave Propagation in Fractured. Poroelastic Media. WCCM, Barcelona, Spain, July 2014. Juan E. Santos,. 1. 1. Instituto del Gas y del Petr´oleo (IGPUBA), UBA,

  18. Light propagation and Imaging in Indefinite Metamaterials

    E-Print Network [OSTI]

    Yao, Jie

    2010-01-01T23:59:59.000Z

    photolithography by polarized light,” Applied PhysicsZhang, “Imaging visible light using anisotropic metamaterialcross-sectional review of the light propagation of TE mode (

  19. Wireless@Virginia Tech Antennas and Propagation

    E-Print Network [OSTI]

    Beex, A. A. "Louis"

    cutting- edge research at the intersection of engineering, science, and medicine. Please visit www and form factor requirements. The statistical nature of electromagnetic wave propagation combined

  20. Beam Propagation Method Using a [(p -1)/p] Pade Approximant of the Propagator

    E-Print Network [OSTI]

    Lu, Ya Yan

    propagation method (BPM) is developed based on a direct approximation to the propagator using the [(p - 1)/p of the BPM. 1 Introduction The beam propagation method (BPM)1­4 is widely used in numerical simulation, the governing equation is a scalar Helmholtz equation. The BPM relies on approximating the Helmholtz equation

  1. Removing Propagation Redundant Constraints in Redundant Modeling

    E-Print Network [OSTI]

    Stuckey, Peter J.

    propagation redundant constraints in redundant modeling can speed up search by several order of magnitudes but not least, the choice of variables and the associated domains should lead to a smaller search space than search with various degrees of constraint propagation for pruning the search space. One common technique

  2. Propagation testing multi-cell batteries.

    SciTech Connect (OSTI)

    Orendorff, Christopher J.; Lamb, Joshua; Steele, Leigh Anna Marie; Spangler, Scott Wilmer

    2014-10-01T23:59:59.000Z

    Propagation of single point or single cell failures in multi-cell batteries is a significant concern as batteries increase in scale for a variety of civilian and military applications. This report describes the procedure for testing failure propagation along with some representative test results to highlight the potential outcomes for different battery types and designs.

  3. Total..........................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Q 0.4 3 or More Units... 5.4 0.3 Q Q Central Air-Conditioning Usage Air-Conditioned Floorspace (Square Feet)...

  4. Total..........................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... 1.9 1.1 Q Q 0.3 Q Do Not Use Central Air-Conditioning... 45.2 24.6 3.6 5.0 8.8 3.2 Use a Programmable...

  5. Total..........................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Q 0.6 3 or More Units... 5.4 3.8 2.9 0.4 Q N 0.2 Central Air-Conditioning Usage Air-Conditioned Floorspace (Square Feet)...

  6. Total..........................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1.3 Q 3 or More Units... 5.4 1.6 0.8 Q 0.3 0.3 Q Central Air-Conditioning Usage Air-Conditioned Floorspace (Square Feet)...

  7. Total..........................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 or More Units... 5.4 2.4 1.4 0.7 0.9 Central Air-Conditioning Usage Air-Conditioned Floorspace (Square Feet)...

  8. Total..........................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 or More Units... 5.4 2.3 1.7 0.6 Central Air-Conditioning Usage Air-Conditioned Floorspace (Square Feet)...

  9. Total..........................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8.6 Have Equipment But Do Not Use it... 1.9 Q Q Q Q 0.6 0.4 0.3 Q Type of Air-Conditioning Equipment 1, 2 Central System......

  10. Total..........................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 or More Units... 5.4 2.1 0.9 0.2 1.0 Central Air-Conditioning Usage Air-Conditioned Floorspace (Square Feet)...

  11. Total..........................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    30.3 Have Equipment But Do Not Use it... 1.9 0.5 0.6 0.4 Q Q 0.5 0.8 Type of Air-Conditioning Equipment 1, 2 Central System......

  12. Total..........................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0.3 3 or More Units... 5.4 0.7 0.5 Q Central Air-Conditioning Usage Air-Conditioned Floorspace (Square Feet)...

  13. Total..........................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 or More Units... 5.4 2.3 0.7 2.1 0.3 Central Air-Conditioning Usage Air-Conditioned Floorspace (Square Feet)...

  14. Total..........................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    111.1 47.1 19.0 22.7 22.3 Personal Computers Do Not Use a Personal Computer... 35.5 16.9 6.5 4.6 7.6 Use a Personal Computer......

  15. Total..........................................................

    Gasoline and Diesel Fuel Update (EIA)

    26.7 28.8 20.6 13.1 22.0 16.6 38.6 Personal Computers Do Not Use a Personal Computer... 35.5 17.1 10.8 4.2 1.8 1.6 10.3 20.6 Use a Personal Computer......

  16. Total..........................................................

    Gasoline and Diesel Fuel Update (EIA)

    Personal Computers Do Not Use a Personal Computer... 35.5 14.2 7.2 2.8 4.2 Use a Personal Computer... 75.6...

  17. Total..........................................................

    Gasoline and Diesel Fuel Update (EIA)

    5.6 17.7 7.9 Personal Computers Do Not Use a Personal Computer... 35.5 8.1 5.6 2.5 Use a Personal Computer......

  18. Total..........................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    4.2 7.6 16.6 Personal Computers Do Not Use a Personal Computer... 35.5 6.4 2.2 4.2 Use a Personal Computer......

  19. Total..........................................................

    Gasoline and Diesel Fuel Update (EIA)

    ..... 111.1 7.1 7.0 8.0 12.1 Personal Computers Do Not Use a Personal Computer... 35.5 3.0 2.0 2.7 3.1 Use a Personal Computer......

  20. Total..........................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    25.6 40.7 24.2 Personal Computers Do Not Use a Personal Computer... 35.5 6.9 8.1 14.2 6.4 Use a Personal Computer......

  1. Total..........................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    1.3 0.8 0.5 Once a Day... 19.2 4.6 3.0 1.6 Between Once a Day and Once a Week... 32.0 8.9 6.3 2.6 Once a...

  2. Total..........................................................

    Gasoline and Diesel Fuel Update (EIA)

    AppliancesTools.... 56.2 11.6 3.3 8.2 Other Appliances Used Auto BlockEngineBattery Heater... 0.8 0.2 Q 0.1 Hot Tub or Spa......

  3. Total..........................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    Tools... 56.2 20.5 10.8 3.6 6.1 Other Appliances Used Auto BlockEngineBattery Heater... 0.8 N N N N Hot Tub or Spa......

  4. Total..........................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    Tools... 56.2 27.2 10.6 9.3 9.2 Other Appliances Used Auto BlockEngineBattery Heater... 0.8 Q Q Q 0.4 Hot Tub or Spa......

  5. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    AppliancesTools.... 56.2 12.2 9.4 2.8 Other Appliances Used Auto BlockEngineBattery Heater... 0.8 Q Q Q Hot Tub or Spa......

  6. Total..........................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    1.3 3.8 Table HC7.10 Home Appliances Usage Indicators by Household Income, 2005 Below Poverty Line Eligible for Federal Assistance 1 40,000 to 59,999 60,000 to 79,999 80,000...

  7. Total..............................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline. 111.1 86.6 2,720

  8. Total................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline. 111.1 86.6 2,720..

  9. Total........................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline. 111.1 86.6 2,720..

  10. Total..........................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline. 111.1 86.6

  11. Total...........................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline. 111.1 86.6Q Table

  12. Total...........................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline. 111.1 86.6Q TableQ

  13. Total...........................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline. 111.1 86.6Q

  14. Total...........................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline. 111.1 86.6Q26.7

  15. Total............................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline. 111.1

  16. Total............................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline. 111.1

  17. Total.............................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline. 111.126.7 28.8 20.6

  18. Total..............................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline. 111.126.7 28.8

  19. Total..............................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline. 111.126.7 28.8,171

  20. Total...............................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline. 111.126.7

  1. Total...............................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline. 111.126.70.7 21.7

  2. Total...............................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline. 111.126.70.7

  3. Total...............................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline. 111.126.70.747.1

  4. Total...............................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline. 111.126.70.747.1Do

  5. Total................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline. 111.126.70.747.1Do

  6. Total.................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline.

  7. Total.................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline.14.7 7.4 12.5 12.5

  8. Total.................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline.14.7 7.4 12.5

  9. Total..................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline.14.7 7.4 12.578.1

  10. Total..................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline.14.7 7.4

  11. Total..................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline.14.7 7.4. 111.1 14.7

  12. Total...................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline.14.7 7.4. 111.1

  13. Total...................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline.14.7 7.4. 111.115.2

  14. Total...................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline.14.7 7.4.

  15. Total...................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline.14.7

  16. Total...................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline.14.72,033 1,618

  17. Total....................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline.14.72,033 1,61814.7

  18. Total.......................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline.14.72,033

  19. Total.......................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline.14.72,0335.6 17.7

  20. Total.......................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline.14.72,0335.6 17.74.2

  1. Total........................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline.14.72,0335.6

  2. Total........................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline.14.72,0335.615.1 5.5

  3. Total........................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline.14.72,0335.615.1

  4. Total........................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline.14.72,0335.615.10.7

  5. Total........................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:

  6. Total........................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:7.1 7.0 8.0 12.1 Do Not Have

  7. Total........................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:7.1 7.0 8.0 12.1 Do Not Have7.1

  8. Total.........................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:7.1 7.0 8.0 12.1 Do Not

  9. Total..........................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:7.1 7.0 8.0 12.1 Do Not25.6 40.7

  10. Total..........................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:7.1 7.0 8.0 12.1 Do Not25.6

  11. Total..........................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:7.1 7.0 8.0 12.1 Do Not25.65.6

  12. Total..........................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:7.1 7.0 8.0 12.1 Do

  13. Total..........................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:7.1 7.0 8.0 12.1 Do4.2 7.6 16.6

  14. Total..........................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:7.1 7.0 8.0 12.1 Do4.2 7.6

  15. Total..........................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:7.1 7.0 8.0 12.1 Do4.2 7.67.1

  16. Total...........................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:7.1 7.0 8.0 12.1 Do4.2 7.67.10.6

  17. Total...........................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:7.1 7.0 8.0 12.1 Do4.2

  18. Total...........................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:7.1 7.0 8.0 12.1 Do4.24.2 7.6

  19. Total.............................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:7.1 7.0 8.0 12.1 Do4.24.2

  20. Total.............................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:7.1 7.0 8.0 12.1 Do4.24.2Cooking

  1. Total.............................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:7.1 7.0 8.0 12.1

  2. Total.............................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:7.1 7.0 8.0 12.1Do Not Have

  3. Total.............................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:7.1 7.0 8.0 12.1Do Not HaveDo

  4. Total.............................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:7.1 7.0 8.0 12.1Do Not HaveDoDo

  5. Total.............................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:7.1 7.0 8.0 12.1Do Not

  6. Total.............................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:7.1 7.0 8.0 12.1Do NotDo Not

  7. Total..............................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:7.1 7.0 8.0 12.1Do NotDo Not

  8. Total..............................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:7.1 7.0 8.0 12.1Do NotDo Not20.6

  9. Total..............................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:7.1 7.0 8.0 12.1Do NotDo

  10. Total..............................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:7.1 7.0 8.0 12.1Do NotDo7.1 19.0

  11. Total.................................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:7.1 7.0 8.0 12.1Do NotDo7.1

  12. Total.................................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:7.1 7.0 8.0 12.1Do NotDo7.1...

  13. Total....................................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:7.1 7.0 8.0 12.1Do

  14. Total....................................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:7.1 7.0 8.0 12.1DoCooking

  15. Total....................................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:7.1 7.0 8.0 12.1DoCooking25.6

  16. Total....................................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:7.1 7.0 8.0 12.1DoCooking25.65.6

  17. Total....................................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:7.1 7.0 8.0

  18. Total....................................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:7.1 7.0 8.04.2 7.6 16.6 Personal

  19. Total....................................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:7.1 7.0 8.04.2 7.6 16.6 Personal

  20. Total.........................................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:7.1 7.0 8.04.2 7.6 16.6

  1. Total

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear JanYear Jan Feb Mar Apr May(MillionFeet)July 23,

  2. Total

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear JanYear Jan Feb Mar Apr May(MillionFeet)July 23,Product:

  3. Total..............................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,770 111.1 86.6 2,720 1,970

  4. Total................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,770 111.1 86.6 2,720

  5. Total........................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,770 111.1 86.6 2,720 111.1

  6. Total..........................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,770 111.1 86.6 2,720

  7. Total...........................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,770 111.1 86.6 2,720Q Table

  8. Total...........................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,770 111.1 86.6 2,720Q

  9. Total...........................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,770 111.1 86.6 2,720Q14.7

  10. Total...........................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,770 111.1 86.6

  11. Total............................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,770 111.1

  12. Total............................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,770 111.1

  13. Total.............................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,770 111.126.7 28.8 20.6

  14. Total..............................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,770 111.126.7 28.8 20.6,171

  15. Total..............................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,770 111.126.7 28.8

  16. Total...............................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,770 111.126.7 28.820.6 25.6

  17. Total...............................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,770 111.126.7 28.820.6

  18. Total...............................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,770 111.126.7 28.820.626.7

  19. Total...............................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,770 111.126.7

  20. Total...............................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,770 111.126.747.1 19.0 22.7

  1. Total................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,770 111.126.747.1 19.0 22.7

  2. Total.................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,770 111.126.747.1 19.0

  3. Total.................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,770 111.126.747.1 19.014.7

  4. Total.................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,770 111.126.747.1

  5. Total..................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,770 111.126.747.178.1 64.1

  6. Total..................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,770 111.126.747.178.1

  7. Total..................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,770 111.126.747.178.1.

  8. Total...................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,770

  9. Total...................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,77015.2 7.8 1.0 1.2 3.3 1.9

  10. Total...................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,77015.2 7.8 1.0 1.2 3.3

  11. Total...................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,77015.2 7.8 1.0 1.2 3.3Type

  12. Total...................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,77015.2 7.8 1.0 1.2

  13. Total....................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,77015.2 7.8 1.0 1.214.7 7.4

  14. Total.......................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,77015.2 7.8 1.0 1.214.7

  15. Total.......................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,77015.2 7.8 1.0 1.214.75.6

  16. Total.......................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,77015.2 7.8 1.0

  17. Total........................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,77015.2 7.8 1.025.6 40.7

  18. Total........................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,77015.2 7.8 1.025.6

  19. Total........................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,77015.2 7.8 1.025.65.6 17.7

  20. Total........................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,77015.2 7.8 1.025.65.6

  1. Total........................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,77015.2 7.8 1.025.65.64.2

  2. Total........................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,77015.2 7.8

  3. Total........................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,77015.2 7.87.1 19.0 22.7

  4. Total.........................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,77015.2 7.87.1 19.0

  5. Total..........................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,77015.2 7.87.1 19.025.6

  6. Total..........................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,77015.2 7.87.1 19.025.6.

  7. Total..........................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,77015.2 7.87.1 19.025.6.5.6

  8. Total..........................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,77015.2 7.87.1

  9. Total..........................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,77015.2 7.87.14.2 7.6 16.6

  10. Total..........................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,77015.2 7.87.14.2 7.6

  11. Total..........................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,77015.2 7.87.14.2 7.67.1

  12. Total...........................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,77015.2 7.87.14.2 7.67.10.6

  13. Total...........................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,77015.2 7.87.14.2

  14. Total...........................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,77015.2 7.87.14.24.2 7.6

  15. Total.............................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,77015.2 7.87.14.24.2 7.6Do

  16. Total.............................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,77015.2 7.87.14.24.2

  17. Total.............................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,77015.2 7.87.14.24.2Cooking

  18. Total.............................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,77015.2

  19. Total.............................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,77015.2Do Not Have Cooling

  20. Total.............................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,77015.2Do Not Have

  1. Total.............................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,77015.2Do Not HaveDo Not

  2. Total.............................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,77015.2Do Not HaveDo NotDo

  3. Total..............................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,77015.2Do Not HaveDo

  4. Total..............................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,77015.2Do Not HaveDo0.7

  5. Total..............................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,77015.2Do Not HaveDo0.7

  6. Total..............................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,77015.2Do Not HaveDo0.77.1

  7. Total.................................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,77015.2Do Not

  8. Total.................................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,77015.2Do Not7.1 7.0 8.0

  9. Total....................................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,77015.2Do Not7.1 7.0

  10. Total....................................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,77015.2Do Not7.1 7.05.6

  11. Total....................................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,77015.2Do Not7.1

  12. Total....................................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,77015.2Do Not7.1Personal

  13. Total....................................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,77015.2Do Not7.1Personal4.2

  14. Total....................................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,77015.2Do

  15. Total....................................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,77015.2Do 111.1 47.1 19.0

  16. Total.........................................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,77015.2Do 111.1 47.1

  17. Topological Aspects of Wave Propagation

    E-Print Network [OSTI]

    Carlos Valero

    2014-06-13T23:59:59.000Z

    In the context of wave propagation on a manifold X, the characteristic functions are real valued functions on cotangent bundle of X that specify the allowable phase velocities of the waves. For certain classes of differential operators (e.g Maxwell's Equations) the associated characteristic functions have singularities. These singularities account for phenomena like conical refraction and the transformation of longitudinal waves into transversal ones (or viceversa). For a specific class of differential operators on surface, we prove that the singularities of the characteristic functions can be accounted from purely topological considerations. We also prove that there is a natural way to desingularsize the characteristic functions, and observe that this fact and Morse Theory establishes a specific connection between singularities and critical points of these functions. The relation between characteristic functions and differential operators is obtained through what is known as the symbol of the operator. We establish a connection between these symbols and holomorphic vector fields, which will provide us with symbols whose characteristic functions have interesting singularity sets.

  18. anisotropic ultrasound propagation: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    that were performed on wave propagation in a randomly generated anisotropic used for the propagation of waves in geophysical media are not compatible with the surface recordings...

  19. action potential propagation: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for action potential propagation in excitable cells CERN Preprints Summary: Speed of propagation of small-amplitude pressure waves through the cytoplasmic interior of...

  20. anomalous ultrasound propagation: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The equations of fluid dynamics developed in paper I are applied to the study of the propagation of ultrasound waves. There is good agreement between the predicted propagation...

  1. anisotropic propagation model: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    that were performed on wave propagation in a randomly generated anisotropic used for the propagation of waves in geophysical media are not compatible with the surface recordings...

  2. Mass inequality for the quark propagator

    E-Print Network [OSTI]

    Dean Lee; Richard Thomson

    2005-06-09T23:59:59.000Z

    We show that for any gauge-fixing scheme with positive semi-definite functional integral measure, the inverse correlation length of the quark propagator is bounded below by one-half the pion mass.

  3. Shock wave propagation in vibrofluidized granular materials

    E-Print Network [OSTI]

    Kai Huang; Guoqing Miao; Peng Zhang; Yi Yun; Rongjue Wei

    2005-11-29T23:59:59.000Z

    Shock wave formation and propagation in two-dimensional granular materials under vertical vibration are studied by digital high speed photography. The steepen density and temperature wave fronts form near the plate as granular layer collides with vibrating plate and propagate upward through the layer. The temperature front is always in the transition region between the upward and downward granular flows. The effects of driving parameters and particle number on the shock are also explored.

  4. Aquatic manoeuvering with counter-propagating waves: a novel

    E-Print Network [OSTI]

    Lauder, George V.

    Aquatic manoeuvering with counter-propagating waves: a novel locomotive strategy Oscar M. Curet1 of these inward counter-propagating waves. In addition, we compare the flow structure and upward force generated by inward counter-propagating waves to standing waves, unidirectional waves, and outward counter-propagating

  5. Wave-Based Sound Propagation for VR Applications Ravish Mehra

    E-Print Network [OSTI]

    North Carolina at Chapel Hill, University of

    Wave-Based Sound Propagation for VR Applications Ravish Mehra University of North Carolina to state-of-the-art wave solvers, enabling real-time, wave-based sound propagation in scenes spanning propagation accurately, it is important to develop interactive wave-based propagation techniques. We present

  6. Advances in total scattering analysis

    SciTech Connect (OSTI)

    Proffen, Thomas E [Los Alamos National Laboratory; Kim, Hyunjeong [Los Alamos National Laboratory

    2008-01-01T23:59:59.000Z

    In recent years the analysis of the total scattering pattern has become an invaluable tool to study disordered crystalline and nanocrystalline materials. Traditional crystallographic structure determination is based on Bragg intensities and yields the long range average atomic structure. By including diffuse scattering into the analysis, the local and medium range atomic structure can be unravelled. Here we give an overview of recent experimental advances, using X-rays as well as neutron scattering as well as current trends in modelling of total scattering data.

  7. Total Imports of Residual Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API GravityDakota" "Fuel, quality", 2013,Iowa"Dakota"YearProductionShaleInput Product: TotalCountry:

  8. Markov transitions and the propagation of chaos

    SciTech Connect (OSTI)

    Gottlieb, A.

    1998-12-01T23:59:59.000Z

    The propagation of chaos is a central concept of kinetic theory that serves to relate the equations of Boltzmann and Vlasov to the dynamics of many-particle systems. Propagation of chaos means that molecular chaos, i.e., the stochastic independence of two random particles in a many-particle system, persists in time, as the number of particles tends to infinity. We establish a necessary and sufficient condition for a family of general n-particle Markov processes to propagate chaos. This condition is expressed in terms of the Markov transition functions associated to the n-particle processes, and it amounts to saying that chaos of random initial states propagates if it propagates for pure initial states. Our proof of this result relies on the weak convergence approach to the study of chaos due to Sztitman and Tanaka. We assume that the space in which the particles live is homomorphic to a complete and separable metric space so that we may invoke Prohorov's theorem in our proof. We also s how that, if the particles can be in only finitely many states, then molecular chaos implies that the specific entropies in the n-particle distributions converge to the entropy of the limiting single-particle distribution.

  9. Page (Total 3) Philadelphia University

    E-Print Network [OSTI]

    Page (Total 3) Philadelphia University Faculty of Science Department of Biotechnology and Genetic be used in animals or plants. It can be also used in environmental monitoring, food processing ...etc are developed and marketed in kit format by biotechnology companies. The main source of information is web sites

  10. Double porosity modeling in elastic wave propagation for reservoir characterization

    SciTech Connect (OSTI)

    Berryman, J. G., LLNL

    1998-06-01T23:59:59.000Z

    Phenomenological equations for the poroelastic behavior of a double porosity medium have been formulated and the coefficients in these linear equations identified. The generalization from a single porosity model increases the number of independent coefficients from three to six for an isotropic applied stress. In a quasistatic analysis, the physical interpretations are based upon considerations of extremes in both spatial and temporal scales. The limit of very short times is the one most relevant for wave propagation, and in this case both matrix porosity and fractures behave in an undrained fashion. For the very long times more relevant for reservoir drawdown,the double porosity medium behaves as an equivalent single porosity medium At the macroscopic spatial level, the pertinent parameters (such as the total compressibility) may be determined by appropriate field tests. At the mesoscopic scale pertinent parameters of the rock matrix can be determined directly through laboratory measurements on core, and the compressibility can be measured for a single fracture. We show explicitly how to generalize the quasistatic results to incorporate wave propagation effects and how effects that are usually attributed to squirt flow under partially saturated conditions can be explained alternatively in terms of the double-porosity model. The result is therefore a theory that generalizes, but is completely consistent with, Biot`s theory of poroelasticity and is valid for analysis of elastic wave data from highly fractured reservoirs.

  11. The various manifestations of collisionless dissipation in wave propagation

    SciTech Connect (OSTI)

    Benisti, Didier; Morice, Olivier; Gremillet, Laurent [CEA, DAM, DIF, F-91297 Arpajon (France)

    2012-06-15T23:59:59.000Z

    The propagation of an electrostatic wave packet inside a collisionless and initially Maxwellian plasma is always dissipative because of the irreversible acceleration of the electrons by the wave. Then, in the linear regime, the wave packet is Landau damped, so that in the reference frame moving at the group velocity, the wave amplitude decays exponentially with time. In the nonlinear regime, once phase mixing has occurred and when the electron motion is nearly adiabatic, the damping rate is strongly reduced compared to the Landau one, so that the wave amplitude remains nearly constant along the characteristics. Yet, we show here that the electrons are still globally accelerated by the wave packet, and in one dimension, this leads to a non local amplitude dependence of the group velocity. As a result, a freely propagating wave packet would shrink, and therefore, so would its total energy. In more than one dimension, not only does the magnitude of the group velocity nonlinearly vary, but also its direction. In the weakly nonlinear regime, when the collisionless damping rate is still significant compared to its linear value, the group velocity is directed towards the outside of the wave packet and tends to increase its transverse extent, while the opposite is true once the wave is essentially undamped. The impact of the nonlinear variation of the group velocity on the transverse size of the wave packet is quantified, and compared to that induced by the self-focussing due to wave front bowing.

  12. Propagation of sound waves through a spatially homogeneous but smoothly time-dependent medium

    SciTech Connect (OSTI)

    Hayrapetyan, A.G., E-mail: armen@physi.uni-heidelberg.de [Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, D-69120 Heidelberg (Germany); Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg (Germany); Grigoryan, K.K.; Petrosyan, R.G. [Yerevan State University, 1 Alex Manoogian Str., 0025 Yerevan (Armenia)] [Yerevan State University, 1 Alex Manoogian Str., 0025 Yerevan (Armenia); Fritzsche, S. [Helmholtz-Institut Jena, Fröbelstieg 3, D-07743 Jena (Germany) [Helmholtz-Institut Jena, Fröbelstieg 3, D-07743 Jena (Germany); Theoretisch-Physikalisches Institut, Friedrich-Schiller-Universität Jena, Max-Wien-Platz 1, D-07743 Jena (Germany)

    2013-06-15T23:59:59.000Z

    The propagation of sound through a spatially homogeneous but non-stationary medium is investigated within the framework of fluid dynamics. For a non-vortical fluid, especially, a generalized wave equation is derived for the (scalar) potential of the fluid velocity distribution in dependence of the equilibrium mass density of the fluid and the sound wave velocity. A solution of this equation for a finite transition period ? is determined in terms of the hypergeometric function for a phenomenologically realistic, sigmoidal change of the mass density and sound wave velocity. Using this solution, it is shown that the energy flux of the sound wave is not conserved but increases always for the propagation through a non-stationary medium, independent of whether the equilibrium mass density is increased or decreased. It is found, moreover, that this amplification of the transmitted wave arises from an energy exchange with the medium and that its flux is equal to the (total) flux of the incident and the reflected wave. An interpretation of the reflected wave as a propagation of sound backward in time is given in close analogy to Feynman and Stueckelberg for the propagation of anti-particles. The reflection and transmission coefficients of sound propagating through a non-stationary medium is analyzed in more detail for hypersonic waves with transition periods ? between 15 and 200 ps as well as the transformation of infrasound waves in non-stationary oceans. -- Highlights: •Analytically exact study of sound propagation through a non-stationary medium. •Energy exchange between the non-stationary medium and the sound wave. •Transformation of hypersonic and ultrasound frequencies in non-stationary media. •Propagation of sound backward in time in close analogy to anti-particles. •Prediction of tsunamis both in spatially and temporally inhomogeneous oceans.

  13. The propagation of kinetic energy across scales in turbulent flows

    E-Print Network [OSTI]

    Cardesa, José I; Dong, Siwei; Jiménez, Javier

    2015-01-01T23:59:59.000Z

    A temporal study of energy transfer across length scales is performed in 3D numerical simulations of homogeneous shear flow and isotropic turbulence, at Reynolds numbers in the range $Re_{\\lambda}=107-384$. The average time taken by perturbations in the energy flux to travel between scales is measured and shown to be additive, as inferred from the agreement between the total travel time from a given scale to the smallest dissipative motions, and the time estimated from successive jumps through intermediate scales. Our data suggests that the propagation of disturbances in the energy flux is independent of the forcing and that it defines a `velocity' that determines the energy flux itself. These results support that the cascade is, on average, a scale-local process where energy is continuously transmitted from one scale to the next in order of decreasing size.

  14. Resonant Propagation of Entangled Rhodium Mossbauer Gammas

    E-Print Network [OSTI]

    Yao Cheng; Zhongming Wang

    2006-10-19T23:59:59.000Z

    We report the resonant propagation of the long-lived Mossbauer gamma in the time-resolved Mossbauer spectroscopy. Recently, three entangled gammas emitted from the E3 rhodium Mossbauer transition has been proposed to interpret the extraordinary observations in the previous report. Further observation reported here is the dynamic beat of these entangled gammas at room temperature and 77K. Apparent beat anisotropy reveals their long-distance resonant propagation, which leads to suppressed Doppler shift of entangled photon transport in the Borrmann channel.

  15. Resonant Propagation of Entangled Rhodium Mossbauer Gammas

    E-Print Network [OSTI]

    Cheng, Y; Cheng, Yao; Wang, Zhongming

    2006-01-01T23:59:59.000Z

    We report the resonant propagation of the long-lived Mossbauer gamma in the time-resolved Mossbauer spectroscopy. Recently, three entangled gammas emitted from the E3 rhodium Mossbauer transition has been proposed to interpret the extraordinary observations in the previous report. Further observation reported here is the dynamic beat of these entangled gammas at room temperature and 77K. Apparent beat anisotropy reveals their long-distance resonant propagation, which leads to suppressed Doppler shift of entangled photon transport in the Borrmann channel.

  16. Propagation of polymer slugs through porous media

    SciTech Connect (OSTI)

    Lecourtier, J.; Chauveteau, G.

    1984-09-01T23:59:59.000Z

    This paper describes an experimental and theoretical study of the mechanisms governing polymer slug propagation through porous media. An analytical model taking into account the macromolecule exclusion from pore walls is proposed to predict rodlike polymer velocity in porous media and thus the spreading out of polydispersed polymer slugs. Under conditions where this wall exclusion is maximum, i.e. at low shear rates and polymer concentrations, the experiments show that xanthan propagation is effectively predicted by this model. At higher flow rates and polymer concentrations, the effects of hydrodynamic dispersion and viscous fingering are analyzed. A new fractionation method for determining molecular weight distribution of polymers used in EOR is proposed.

  17. Information Propagation in the Bitcoin Network

    E-Print Network [OSTI]

    Information Propagation in the Bitcoin Network Christian Decker ETH Zurich ­ Distributed Computing Group ­ www.disco.ethz.ch #12;What is Bitcoin? #12;What is Bitcoin? + #12;What is Bitcoin? + = #12;What 250 300 Price[USD] USD / Bitcoin exchange price 150$/BTC #12;What's it worth? Oct 2010 Feb 2011 Jun

  18. Distributed Kalman Filter via Gaussian Belief Propagation

    E-Print Network [OSTI]

    Dolev, Danny

    Distributed Kalman Filter via Gaussian Belief Propagation Danny Bickson IBM Haifa Research Lab interpretations. First, we show equivalence to computing one iteration of the Kalman filter. Second, we show that the Kalman filter is a special case of the Gaussian information bottleneck algorithm, when the weight

  19. Wave propagation in the magnetic sun

    E-Print Network [OSTI]

    T. Hartlep; M. S. Miesch; N. N. Mansour

    2008-05-03T23:59:59.000Z

    This paper reports on efforts to simulate wave propagation in the solar interior. Presented is work on extending a numerical code for constant entropy acoustic waves in the absence of magnetic fields to the case where magnetic fields are present. A set of linearized magnetohydrodynamic (MHD) perturbation equations has been derived and implemented.

  20. Wave propagation Remco Hartkamp (University of Twente)

    E-Print Network [OSTI]

    Entekhabi, Dara

    ) waves Sound: 20 Hz ­ 20 kHz Gas: P Liquid: P Plasma: P Solid: P & S #12;Stretched string example 1D wave Dispersion: Waves with different wavelengths propagate at different speeds 6 k c k k Shallow water: c gh mJ K material parameter (related to the strain saturation of the material) det FJ bulk modulus

  1. Detonation propagation in a high loss configuration

    SciTech Connect (OSTI)

    Jackson, Scott I [Los Alamos National Laboratory; Shepherd, Joseph E [CALTECH

    2009-01-01T23:59:59.000Z

    This work presents an experimental study of detonation wave propagation in tubes with inner diameters (ID) comparable to the mixture cell size. Propane-oxygen mixtures were used in two test section tubes with inner diameters of 1.27 mm and 6.35 mm. For both test sections, the initial pressure of stoichiometric mixtures was varied to determine the effect on detonation propagation. For the 6.35 mm tube, the equivalence ratio {phi} (where the mixture was {phi} C{sub 3}H{sub 8} + 50{sub 2}) was also varied. Detonations were found to propagate in mixtures with cell sizes as large as five times the diameter of the tube. However, under these conditions, significant losses were observed, resulting in wave propagation velocities as slow as 40% of the CJ velocity U{sub CJ}. A review of relevant literature is presented, followed by experimental details and data. Observed velocity deficits are predicted using models that account for boundary layer growth inside detonation waves.

  2. On the Vacuum Propagation of Gravitational Waves

    E-Print Network [OSTI]

    Xiao Liu

    2007-06-05T23:59:59.000Z

    We show that, for any local, causal quantum field theory which couples covariantly to gravity, and which admits Minkowski spacetime vacuum(a) invariant under the inhomogeneous proper orthochronous Lorentz group, plane gravitational waves propagating in such Minkowski vacuum(a) do not dissipate energy or momentum via quantum field theoretic effects.

  3. Total Adjusted Sales of Kerosene

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear JanYear Jan Feb Mar Apr May(MillionFeet)JulyEnd Use: Total

  4. U.S. Total Exports

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API GravityDakota" "Fuel, quality",Area: U.S. East Coast (PADD 1) New120,814 136,9322009 2010(Billion

  5. U.S. Total Exports

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API GravityDakota" "Fuel, quality",Area: U.S. East Coast (PADD 1) New120,814 136,9322009 2010(Billion120,814 136,932

  6. U.S. Total Imports

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API GravityDakota" "Fuel, quality",Area: U.S. East Coast (PADD 1) New120,814 136,9322009 2010(Billion120,814

  7. U.S. Total Imports

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API GravityDakota" "Fuel, quality",Area: U.S. East Coast (PADD 1) New120,814 136,9322009 2010(Billion120,814Pipeline

  8. U.S. Total Stocks

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API GravityDakota" "Fuel, quality",Area: U.S. East Coast (PADD 1) New120,814 136,9322009Feet)

  9. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update (EIA)

    Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ... 1,602 1,397...

  10. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update (EIA)

    Energy Consumption Survey: Energy End-Use Consumption Tables Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All...

  11. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update (EIA)

    Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ... 1,870 1,276...

  12. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update (EIA)

    Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings ... 2,037...

  13. Wave Propagation in Fractured Poroelastic Media - Department of ...

    E-Print Network [OSTI]

    robiel

    and sizes is essential since these factors control hydrocarbon production. ... saturation and fractal porosity (fractal frame properties). Wave Propagation in ...

  14. Propagation of nonlinear waves in waveguides and application to nondestructive stress measurement

    E-Print Network [OSTI]

    Nucera, Claudio

    2012-01-01T23:59:59.000Z

    of  ultrasonic  wave  propagation  to  identify defects in investigation of elastic wave  propagation in a cylinder.  Modeling  guided  wave  propagation with application to the 

  15. Low-frequency dilatational wave propagation through unsaturated porous media containing two immiscible fluids

    E-Print Network [OSTI]

    Lo, W.-C.

    2009-01-01T23:59:59.000Z

    1988, Bulk elastic wave propagation in partially saturated1986, Compressional wave propagation in liquid and/or gassaturation and seismic-wave propagation, Annu. Rev. Earth

  16. Propagation of gravitational waves in multimetric gravity

    E-Print Network [OSTI]

    Manuel Hohmann

    2012-04-22T23:59:59.000Z

    We discuss the propagation of gravitational waves in a recently discussed class of theories containing N >= 2 metric tensors and a corresponding number of standard model copies. Using the formalism of gauge-invariant linear perturbation theory we show that all gravitational waves propagate at the speed of light. We then employ the Newman-Penrose formalism to show that two to six polarizations of gravitational waves may exist, depending on the parameters entering the equations of motion. This corresponds to E(2) representations N_2, N_3, III_5 and II_6. We finally apply our general discussion to a recently presented concrete multimetric gravity model and show that it is of class N_2, i.e., it allows only two tensor polarizations, as it is the case for general relativity. Our results provide the theoretical background for tests of multimetric gravity theories using the upcoming gravitational wave experiments.

  17. Method and apparatus for charged particle propagation

    DOE Patents [OSTI]

    Hershcovitch, A.

    1996-11-26T23:59:59.000Z

    A method and apparatus are provided for propagating charged particles from a vacuum to a higher pressure region. A generator includes an evacuated chamber having a gun for discharging a beam of charged particles such as an electron beam or ion beam. The beam is discharged through a beam exit in the chamber into a higher pressure region. A plasma interface is disposed at the beam exit and includes a plasma channel for bounding a plasma maintainable between a cathode and an anode disposed at opposite ends thereof. The plasma channel is coaxially aligned with the beam exit for propagating the beam from the chamber, through the plasma, and into the higher pressure region. The plasma is effective for pumping down the beam exit for preventing pressure increase in the chamber and provides magnetic focusing of the beam discharged into the higher pressure region 24. 7 figs.

  18. Exact identity for nonlinear wave propagation Duncan Ralph,1

    E-Print Network [OSTI]

    California at Santa Cruz, University of

    Exact identity for nonlinear wave propagation Duncan Ralph,1 Onuttom Narayan,1 and Richard The propagation of waves in nonlinear media is of great importance in a variety of fields, from seismology. Despite their im- portance, exact results for nonlinear wave propagation are rare. Although the existence

  19. Propagation Analysis of Electromagnetic Waves: Application to Auroral Kilometric Radiation

    E-Print Network [OSTI]

    Santolik, Ondrej

    12 Propagation Analysis of Electromagnetic Waves: Application to Auroral Kilometric Radiation, containing waves which simultaneously propagate in different directions and/or wave modes the concept emission is found to propagate predominantly in the R-X mode with wave energy distributed in relatively

  20. Propagation of nonlinearly generated harmonic spin waves in microscopic stripes

    E-Print Network [OSTI]

    Otani, Yoshichika

    Propagation of nonlinearly generated harmonic spin waves in microscopic stripes O. Rousseau,1 M on the experimental study of the propagation of nonlinearly generated harmonic spin waves in microscopic CoFeB stripes wave propagation. VC 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4864480] In recent years

  1. Matching of asymptotic expansions for the wave propagation in media

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Matching of asymptotic expansions for the wave propagation in media with thin slot S-SAM Matching of asymptotic expansions for the wave propagation in media with thin slot ­ p.1/38 inria-00528070 of asymptotic expansions for the wave propagation in media with thin slot ­ p.2/38 inria-00528070,version1-21Oct

  2. Sound wave propagation in weakly polydisperse granular materials

    E-Print Network [OSTI]

    Luding, Stefan

    Sound wave propagation in weakly polydisperse granular materials O. Mouraille, S. Luding NSM/DCT/TUDelft, Julianalaan 136, 2628 BL Delft, Netherlands Abstract Dynamic simulations of wave propagation are performed. A small perturbation is created on one side of a static packing and its propagation, for both P- and S-waves

  3. Gravity waves excited by jets: Propagation versus generation R. Plougonven

    E-Print Network [OSTI]

    Plougonven, Riwal

    Gravity waves excited by jets: Propagation versus generation R. Plougonven School of Mathematics imposed by the generation mechanism. In proceeding so, effects due to the propagation of the waves through simulations demonstrate that the propagation of inertia-gravity waves through horizontal deformation

  4. Propagation of elastic waves through a lattice of cylindrical cavities

    E-Print Network [OSTI]

    Propagation of elastic waves through a lattice of cylindrical cavities By S. Guo & P. Mc asymptotic homogenization to obtain low-frequency approximations to elastic wave propagation through periodic follows that of McIver (2007) who investigates acoustic-wave propagation through a lattice of rigid

  5. FINITE VOLUME SCHEMES FOR DISPERSIVE WAVE PROPAGATION AND RUNUP

    E-Print Network [OSTI]

    Boyer, Edmond

    FINITE VOLUME SCHEMES FOR DISPERSIVE WAVE PROPAGATION AND RUNUP DENYS DUTYKH , THEODOROS KATSAOUNIS to bidirectional nonlinear, dispersive wave propagation in one space dimension. Special emphasis is given require the computation of the wave generation [DD07, KDD07], propagation [TG97], interaction with solid

  6. Wave propagation in highly inhomogeneous thin films: exactly solvable models

    E-Print Network [OSTI]

    Boyer, Edmond

    Wave propagation in highly inhomogeneous thin films: exactly solvable models Guillaume Petite(1 of wave propagation in some inhomogeneous thin films with highly space- dependent dielectric constant will show that depending on the type of space dependence, an incident wave can either propagate or tunnel

  7. Shock wave propagation in composites and active Vinamra Agrawal

    E-Print Network [OSTI]

    Shyamasundar, R.K.

    Shock wave propagation in composites and active Vinamra Agrawal California Institute of Technology travel through a material. These waves are characterized as a discontinuity propagating through shock waves propagate in heterogeneous materials. Shock waves are also being used to o pulsed currents

  8. Matching of asymptotic expansions for the wave propagation in media

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Matching of asymptotic expansions for the wave propagation in media with thin slot S-SAM Matching of asymptotic expansions for the wave propagation in media with thin slot ­ p.1/29 inria-00528072 The wavelength The width of the slot ¡ Matching of asymptotic expansions for the wave propagation in media

  9. Love wave propagation in layered magneto-electro-elastic structures

    E-Print Network [OSTI]

    Wang, Ji

    Love wave propagation in layered magneto-electro-elastic structures with initial stress J. Du, X that the initial stress has an important effect on the Love wave propagation in layered piezomagnetic at their interface. He concluded that shear surface waves propagate in the layer and attenuate along the thickness

  10. Singular value decomposition methods for wave propagation analysis

    E-Print Network [OSTI]

    Santolik, Ondrej

    Singular value decomposition methods for wave propagation analysis O. Santoli´k,1 M. Parrot, and F planarity. Simulations of Z-mode waves, which simultaneously propagate with different wave vectors, indicate the waves simultaneously propagate with wave vectors in two opposite hemispheres. Finally, we show

  11. Propagating waves mediate information transfer in the motor cortex

    E-Print Network [OSTI]

    Hatsopoulos, Nicholas

    Propagating waves mediate information transfer in the motor cortex Doug Rubino1, Kay A Robbins2-delay reaching task, we found that these oscillations propagated as waves across the surface of the motor cortex oscillations propagated as waves across the primary motor (MI) and premotor (PMd) cortices as monkeys planned

  12. Feedback stabilization of unstable propagating waves Eugene Mihaliuk,1

    E-Print Network [OSTI]

    Showalter, Kenneth

    Feedback stabilization of unstable propagating waves Eugene Mihaliuk,1 Tatsunari Sakurai,1 Florin Received 29 July 2001; revised manuscript received 10 March 2002; published 26 June 2002 Propagating wave s : 82.40.Ck, 47.54. r Propagating waves in active media arise from the cou- pling of a positive feedback

  13. TIME-PERIODIC SOUND WAVE PROPAGATION COMPRESSIBLE EULER EQUATIONS

    E-Print Network [OSTI]

    A PARADIGM FOR TIME-PERIODIC SOUND WAVE PROPAGATION IN THE COMPRESSIBLE EULER EQUATIONS BLAKE consistent with time-periodic sound wave propagation in the 3 Ã? 3 nonlinear compressible Euler equations description of shock-free waves that propagate through an oscillating entropy field without breaking or dis

  14. Efficient Numerical Simulation for Long Range Wave Propagation 1

    E-Print Network [OSTI]

    Solna, Knut

    Efficient Numerical Simulation for Long Range Wave Propagation 1 Kai Huang 2 George Papanicolaou 3 for simulating wave propagation over long dis- tances with both weak and strong scatterers. In domains with weak heterogeneities the wave field is decomposed into forward propagating and back scattered modes using two coupled

  15. Electromagnetic Waves Propagation in 3D Plasma Configurations

    E-Print Network [OSTI]

    Electromagnetic Waves Propagation in 3D Plasma Configurations Pavel Popovich, W. Anthony Cooper in a plasma strongly depends on the frequency, therefore the tools used for wave propagation studies are very that will allow for the calculation of the fields and energy deposition of a low-frequency wave propagating

  16. Detection of Cardiac Occlusions Using Viscoelastic Wave Propagation

    E-Print Network [OSTI]

    Detection of Cardiac Occlusions Using Viscoelastic Wave Propagation H.T. Banks and J. R. Samuels driven viscoelastic (VE) waves propagated through biotissue to body surface sensors. We in- vestigate: Inverse problems, viscoelastic models, wave propagation in biotissue, statistical models. AMS Subject

  17. Handwritten Digit Recognition with a Back-Propagation Network

    E-Print Network [OSTI]

    Parker, Gary B.

    Handwritten Digit Recognition with a Back-Propagation Network Y. Le Cun, B. Boser, J. S. Denker, D We present an application of back-propagation networks to hand- written digit recognition. Minimal. 1 INTRODUCTION The main point of this paper is to show that large back-propagation (BP) net- works

  18. Handwritten Digit Recognition with a BackPropagation Network

    E-Print Network [OSTI]

    LeCun, Yann

    Handwritten Digit Recognition with a Back­Propagation Network Y. Le Cun, B. Boser, J. S. Denker, D We present an application of back­propagation networks to hand­ written digit recognition. Minimal. 1 INTRODUCTION The main point of this paper is to show that large back­propagation (BP) net­ works

  19. A Kinematic Model of Wave Propagation John W. Cain1

    E-Print Network [OSTI]

    Cain, John Wesley

    A Kinematic Model of Wave Propagation John W. Cain1 1 Dept. of Mathematics, Virginia Commonwealth Abstract We present a purely kinematic model of wave propagation in an ex- citable medium, namely cardiac- putationally efficient kinematic model [7] of wave propagation, starting from a standard reaction

  20. Electromagnetically Induced Guiding of Counter-Propagating Lasers in Plasmas

    E-Print Network [OSTI]

    - propagating laser pulses and (ii) guiding of an ultra-short tightly focused laser pulse by a counterElectromagnetically Induced Guiding of Counter-Propagating Lasers in Plasmas G. Shvets Princeton for Quantenoptik, D-85748 Garching, Germany Abstract The interaction of counter-propagating laser pulses

  1. Wave Propagation in Jointed Geologic Media

    SciTech Connect (OSTI)

    Antoun, T

    2009-12-17T23:59:59.000Z

    Predictive modeling capabilities for wave propagation in a jointed geologic media remain a modern day scientific frontier. In part this is due to a lack of comprehensive understanding of the complex physical processes associated with the transient response of geologic material, and in part it is due to numerical challenges that prohibit accurate representation of the heterogeneities that influence the material response. Constitutive models whose properties are determined from laboratory experiments on intact samples have been shown to over-predict the free field environment in large scale field experiments. Current methodologies for deriving in situ properties from laboratory measured properties are based on empirical equations derived for static geomechanical applications involving loads of lower intensity and much longer durations than those encountered in applications of interest involving wave propagation. These methodologies are not validated for dynamic applications, and they do not account for anisotropic behavior stemming from direcitonal effects associated with the orientation of joint sets in realistic geologies. Recent advances in modeling capabilities coupled with modern high performance computing platforms enable physics-based simulations of jointed geologic media with unprecedented details, offering a prospect for significant advances in the state of the art. This report provides a brief overview of these modern computational approaches, discusses their advantages and limitations, and attempts to formulate an integrated framework leading to the development of predictive modeling capabilities for wave propagation in jointed and fractured geologic materials.

  2. Nonlinear propagation of light in Dirac matter

    SciTech Connect (OSTI)

    Eliasson, Bengt [Institut fuer Theoretische Physik, Fakultaet fuer Physik und Astronomie, Ruhr-Universitaet Bochum, D-44780 Bochum (Germany); Shukla, P. K. [RUB International Chair, International Centre for Advanced Studies in Physical Sciences, Fakultaet fuer Physik und Astronomie, Ruhr-Universitaet Bochum, D-44780 Bochum (Germany)

    2011-03-15T23:59:59.000Z

    The nonlinear interaction between intense laser light and a quantum plasma is modeled by a collective Dirac equation coupled with the Maxwell equations. The model is used to study the nonlinear propagation of relativistically intense laser light in a quantum plasma including the electron spin-1/2 effect. The relativistic effects due to the high-intensity laser light lead, in general, to a downshift of the laser frequency, similar to a classical plasma where the relativistic mass increase leads to self-induced transparency of laser light and other associated effects. The electron spin-1/2 effects lead to a frequency upshift or downshift of the electromagnetic (EM) wave, depending on the spin state of the plasma and the polarization of the EM wave. For laboratory solid density plasmas, the spin-1/2 effects on the propagation of light are small, but they may be significant in superdense plasma in the core of white dwarf stars. We also discuss extensions of the model to include kinetic effects of a distribution of the electrons on the nonlinear propagation of EM waves in a quantum plasma.

  3. Seismic Wave Propagation in Alluvial Basins and Influence of Site-City Interaction Seismic Wave Propagation in Alluvial Basins

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Seismic Wave Propagation in Alluvial Basins and Influence of Site-City Interaction 1 Seismic Wave of alluvial deposits have a major influence on seismic wave propagation and amplification. However influence seismic wave propagation near the free surface. In this paper, the influence of surface structures

  4. Total termination of term rewriting is undecidable

    E-Print Network [OSTI]

    Utrecht, Universiteit

    Total termination of term rewriting is undecidable Hans Zantema Utrecht University, Department Usually termination of term rewriting systems (TRS's) is proved by means of a monotonic well­founded order. If this order is total on ground terms, the TRS is called totally terminating. In this paper we prove that total

  5. Total Petroleum Systems and Assessment Units (AU)

    E-Print Network [OSTI]

    Torgersen, Christian

    Total Petroleum Systems (TPS) and Assessment Units (AU) Field type Surface water Groundwater X X X X X X X X AU 00000003 Oil/ Gas X X X X X X X X Total X X X X X X X Total Petroleum Systems (TPS) and Assessment Units (AU) Field type Total undiscovered petroleum (MMBO or BCFG) Water per oil

  6. 3-D Wave Propagation Simulation in Complex Indoor Structures Farshid Aryanfar' and Kamal Sarabandi

    E-Print Network [OSTI]

    Sarabandi, Kamal

    3-D Wave Propagation Simulation in Complex Indoor Structures Farshid Aryanfar' and Kamal Sarabandi in different environments is important for specifying system parameters. Recently, wave propagation prediction electromagnetic wave propagation models have been developed. Examination of reported wave propagation algorithms

  7. Anisotropic wave propagation in nematic liquid crystals

    E-Print Network [OSTI]

    Paolo Biscari; Antonio DiCarlo; Stefano S. Turzi

    2014-05-10T23:59:59.000Z

    Despite the fact that quantitative experimental data have been available for more than forty years now, nematoacoustics still poses intriguing theoretical and experimental problems. In this paper, we prove that the main observed features of acoustic wave propagation through a nematic liquid crystal cell -- namely, the anisotropy of sound velocity and its frequency dependence -- may be plausibly explained by a first-gradient continuum theory characterized by a hyperelastic anisotropic response from an evolving relaxed configuration. We compare and contrast our proposal with a competing theory where the liquid crystal is modeled as an isotropically compressible, anisotropic second-gradient fluid.

  8. Propagating torsion in the Einstein frame

    SciTech Connect (OSTI)

    Poplawski, Nikodem J. [Department of Physics, Indiana University, 727 East Third Street, Bloomington, Indiana 47405 (United States)

    2006-11-15T23:59:59.000Z

    The Einstein-Cartan-Saa theory of torsion modifies the spacetime volume element so that it is compatible with the connection. The condition of connection compatibility gives constraints on torsion, which are also necessary for the consistence of torsion, minimal coupling, and electromagnetic gauge invariance. To solve the problem of positivity of energy associated with the torsionic scalar, we reformulate this theory in the Einstein conformal frame. In the presence of the electromagnetic field, we obtain the Hojman-Rosenbaum-Ryan-Shepley theory of propagating torsion with a different factor in the torsionic kinetic term.

  9. Wave Packets Propagation in Quantum Gravity

    E-Print Network [OSTI]

    Kourosh Nozari; S. H. Mehdipour

    2005-07-03T23:59:59.000Z

    Wave packet broadening in usual quantum mechanics is a consequence of dispersion behavior of the medium which the wave propagates in it. In this paper, we consider the problem of wave packet broadening in the framework of Generalized Uncertainty Principle(GUP) of quantum gravity. New dispersion relations are derived in the context of GUP and it has been shown that there exists a gravitational induced dispersion which leads to more broadening of the wave packets. As a result of these dispersion relations, a generalized Klein-Gordon equation is obtained and its interpretation is given.

  10. Harmonic propagation on an electric distribution system: Field measurements compared with computer simulation

    SciTech Connect (OSTI)

    Williams, S.M. (Naval Postgraduate School, Monterey, CA (United States)); Brownfield, G.T. (Union Electric Co., St. Louis, MO (United States)); Duffus, J.W. (Univ. of Missouri, Columbia, MO (United States). Power Electronics Research Center)

    1993-04-01T23:59:59.000Z

    Power electronic loads are occupying an increasing fraction of the total load on distribution feeders. Coincidentally, there is a greater use of power factor correction capacitors on the distribution system. These two factors can present poor operating conditions in the form of high harmonic levels propagating through a distribution system. Electric utility engineers are facing an ever increasing number of situations which require the analysis of the propagation of harmonics on a distribution system. HARMFLO was developed by EPRI for use in the analysis of harmonics on a power system. However, for a typical analysis of a distribution system, data for some of the parameters required by HARMFLO are not available. Furthermore, exact load information is usually not available. Harmonic levels determined from field tests on a distribution system are compared to results of HARMFLO simulations to determine if this analysis tool can be expected to provide useful results despite the lack of exact information for load modeling and other system parameters.

  11. A low order flow/acoustics interaction method for the prediction of sound propagation using 3D adaptive hybrid grids

    SciTech Connect (OSTI)

    Kallinderis, Yannis, E-mail: kallind@otenet.gr [Dept. of Mechanical and Aeronautical Engineering, University of Patras, Rio Patras 26504 (Greece)] [Dept. of Mechanical and Aeronautical Engineering, University of Patras, Rio Patras 26504 (Greece); Vitsas, Panagiotis A.; Menounou, Penelope [Dept. of Mechanical and Aeronautical Engineering, University of Patras, Rio Patras 26504 (Greece)] [Dept. of Mechanical and Aeronautical Engineering, University of Patras, Rio Patras 26504 (Greece)

    2012-07-15T23:59:59.000Z

    A low-order flow/acoustics interaction method for the prediction of sound propagation and diffraction in unsteady subsonic compressible flow using adaptive 3-D hybrid grids is investigated. The total field is decomposed into the flow field described by the Euler equations, and the acoustics part described by the Nonlinear Perturbation Equations. The method is shown capable of predicting monopole sound propagation, while employment of acoustics-guided adapted grid refinement improves the accuracy of capturing the acoustic field. Interaction of sound with solid boundaries is also examined in terms of reflection, and diffraction. Sound propagation through an unsteady flow field is examined using static and dynamic flow/acoustics coupling demonstrating the importance of the latter.

  12. Method and apparatus for charged particle propagation

    DOE Patents [OSTI]

    Hershcovitch, Ady (Mount Sinai, NY)

    1996-11-26T23:59:59.000Z

    A method and apparatus are provided for propagating charged particles from a vacuum to a higher pressure region. A generator 14,14b includes an evacuated chamber 16a,b having a gun 18,18b for discharging a beam of charged particles such as an electron beam 12 or ion beam 12b. The beam 12,12b is discharged through a beam exit 22 in the chamber 16a,b into a higher pressure region 24. A plasma interface 34 is disposed at the beam exit 22 and includes a plasma channel 38 for bounding a plasma 40 maintainable between a cathode 42 and an anode 44 disposed at opposite ends thereof. The plasma channel 38 is coaxially aligned with the beam exit 22 for propagating the beam 12,12b from the chamber 16a,b, through the plasma 40, and into the higher pressure region 24. The plasma 40 is effective for pumping down the beam exit 22 for preventing pressure increase in the chamber 16a,b, and provides magnetic focusing of the beam 12,12b discharged into the higher pressure region 24.

  13. Pattern formation and propagation during microwave breakdown

    SciTech Connect (OSTI)

    Chaudhury, Bhaskar [Laboratoire Plasma et Conversion d'Energie (LAPLACE), INPT, UPS, Universite de Toulouse, 118 route de Narbonne, F-31062 Toulouse Cedex 9 (France); Boeuf, Jean-Pierre [Laboratoire Plasma et Conversion d'Energie (LAPLACE), INPT, UPS, Universite de Toulouse, 118 route de Narbonne, F-31062 Toulouse Cedex 9 (France); LAPLACE, CNRS, F-31062 Toulouse (France); Zhu, Guo Qiang [Laboratoire Plasma et Conversion d'Energie (LAPLACE), INPT, UPS, Universite de Toulouse, 118 route de Narbonne, F-31062 Toulouse Cedex 9 (France); Northwestern Polytechnique University, Xi'an 710072 (China)

    2010-12-15T23:59:59.000Z

    During microwave breakdown at atmospheric pressure, a sharp plasma front forms and propagates toward the microwave source at high velocities. Experiments show that the plasma front may exhibit a complex dynamical structure or pattern composed of plasma filaments aligned with the wave electric field and apparently moving toward the source. In this paper, we present a model of the pattern formation and propagation under conditions close to recent experiments. Maxwell's equations are solved together with plasma fluid equations in two dimensions to describe the space and time evolution of the wave field and plasma density. The simulation results are in excellent agreement with the experimental observations. The model provides a physical interpretation of the pattern formation and dynamics in terms of ionization-diffusion and absorption-reflection mechanisms. The simulations allow a good qualitative and quantitative understanding of different features such as plasma front velocity, spacing between filaments, maximum plasma density in the filaments, and influence of the discharge parameters on the development of well-defined filamentary plasma arrays or more diffuse plasma fronts.

  14. 8 Damping, dissipation and the loss factor concept In the previous analysis essentially undamped wave propagation has been treated. By

    E-Print Network [OSTI]

    Berlin,Technische Universität

    wave propagation has been treated. By observing nature, however, an undamped wave propagation is rather

  15. Total System Performance Assessment Peer Review Panel

    Broader source: Energy.gov [DOE]

    Total System Performance Assessment (TSPA) Peer Review Panel for predicting the performance of a repository at Yucca Mountain.

  16. 8, 31433162, 2008 Total ozone over

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    ACPD 8, 3143­3162, 2008 Total ozone over oceanic regions M. C. R. Kalapureddy et al. Title Page Chemistry and Physics Discussions Total column ozone variations over oceanic region around Indian sub­3162, 2008 Total ozone over oceanic regions M. C. R. Kalapureddy et al. Title Page Abstract Introduction

  17. 5, 1133111375, 2005 NH total ozone

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    ACPD 5, 11331­11375, 2005 NH total ozone increase S. Dhomse et al. Title Page Abstract Introduction On the possible causes of recent increases in NH total ozone from a statistical analysis of satellite data from License. 11331 #12;ACPD 5, 11331­11375, 2005 NH total ozone increase S. Dhomse et al. Title Page Abstract

  18. 6, 39133943, 2006 Svalbard total ozone

    E-Print Network [OSTI]

    Boyer, Edmond

    ACPD 6, 3913­3943, 2006 Svalbard total ozone C. Vogler et al. Title Page Abstract Introduction Discussions Re-evaluation of the 1950­1962 total ozone record from Longyearbyen, Svalbard C. Vogler 1 , S. Br total ozone C. Vogler et al. Title Page Abstract Introduction Conclusions References Tables Figures Back

  19. ENERGY CONTENT AND PROPAGATION IN TRANSVERSE SOLAR ATMOSPHERIC WAVES

    SciTech Connect (OSTI)

    Goossens, M.; Van Doorsselaere, T. [Centre for mathematical Plasma Astrophysics, Mathematics Department, Celestijnenlaan 200B bus 2400, B-3001 Heverlee (Belgium); Soler, R. [Solar Physics Group, Departament de Fisica, Universitat de les Illes Balears, E-07122 Palma de Mallorca (Spain); Verth, G., E-mail: tom.vandoorsselaere@wis.kuleuven.be [Solar Physics and Space Plasma Research Centre (SP2RC), School of Mathematics and Statistics, University of Sheffield, Hounsfield Road, Hicks Building, Sheffield S3 7RH (United Kingdom)

    2013-05-10T23:59:59.000Z

    Recently, a significant amount of transverse wave energy has been estimated propagating along solar atmospheric magnetic fields. However, these estimates have been made with the classic bulk Alfven wave model which assumes a homogeneous plasma. In this paper, the kinetic, magnetic, and total energy densities and the flux of energy are computed for transverse MHD waves in one-dimensional cylindrical flux tube models with a piecewise constant or continuous radial density profile. There are fundamental deviations from the properties for classic bulk Alfven waves. (1) There is no local equipartition between kinetic and magnetic energy. (2) The flux of energy and the velocity of energy transfer have, in addition to a component parallel to the magnetic field, components in the planes normal to the magnetic field. (3) The energy densities and the flux of energy vary spatially, contrary to the case of classic bulk Alfven waves. This last property has the important consequence that the energy flux computed with the well known expression for bulk Alfven waves could overestimate the real flux by a factor in the range 10-50, depending on the flux tube equilibrium properties.

  20. Polarization dependence of radiowave propagation through Antarctic ice

    E-Print Network [OSTI]

    Dave Z. Besson

    2008-03-30T23:59:59.000Z

    Using a bistatic radar system on the ice surface, we have studied radiofrequency reflections off internal layers in Antarctic ice at the South Pole. In our measurement, the total propagation time of ~ns-duration, vertically broadcast radio signals, as a function of polarization axis in the horizontal plane, provides a direct probe of the geometry-dependence of the ice permittivity to depths of 1--2 km. Previous studies in East Antarctica have interpreted the measured azimuthal dependence of reflected signals as evidence for birefringent-induced interference effects, which are proposed to result from preferred alignment of the crystal orientation fabric (COF) axis. To the extent that COF alignment results from the bulk flow of ice across the Antarctic continent, we would expect a measurable birefringent asymmetry at South Pole, as well. Although we also observe clear dependence of reflected amplitude on polarization angle in our measurements, we do not observe direct evidence for birefringent-induced time-delay effects at the level of 0.1 parts per mille.

  1. About Total Lubricants USA, Inc. Headquartered in Linden, New Jersey, Total Lubricants USA provides

    E-Print Network [OSTI]

    Fisher, Kathleen

    New Jersey, Total Lubricants USA provides advanced quality industrial lubrication productsAbout Total Lubricants USA, Inc. Headquartered in Linden, New Jersey, Total Lubricants USA provides. A subsidiary of Total, S.A., the world's fourth largest oil company, Total Lubricants USA still fosters its

  2. Orthogonal-Phase-Velocity Propagation of Electromagnetic Plane Waves

    E-Print Network [OSTI]

    Tom G. Mackay; Akhlesh Lakhtakia

    2005-11-30T23:59:59.000Z

    In an isotropic, homogeneous, nondissipative, dielectric-magnetic medium that is simply moving with respect to an inertial reference frame, planewave solutions of the Maxwell curl postulates can be such that the phase velocity and the time-averaged Poynting vector are mutually orthogonal. Orthogonal-phase-velocity propagation thus adds to the conventional positive-phase-velocity propagation and the recently discovered negative-phase-velocity propagation that is associated with the phenomenon of negative refraction.

  3. Mixing of fermions and spectral representation of propagator

    E-Print Network [OSTI]

    Kaloshin, A E

    2015-01-01T23:59:59.000Z

    We develop the spectral representation of propagator for $n$ mixing fermion fields in case of $\\mathsf{P}$-parity violation. Solving of the eigenstate problem for inverse matrix propagator allows to build the system of orthogonal projectors and to represent the matrix propagator as a sum of poles with positive and negative energy. The procedure of multiplicative renormalization is investigated, the renormalization matrices are obtained in a closed form without using of perturbation theory.

  4. The Propagation of Photons in the Dilute Ionized Gas

    E-Print Network [OSTI]

    Yijia Zheng

    2013-05-02T23:59:59.000Z

    The dilute ionized gas is very popular in the Universe. Usually only the Compton interactions, the "Sunyaev-Zel'dovich" effect, were considered while photons propagated in this medium. In this paper the "soft-photon process" is considered. Due to the soft photons emitted during the propagation of a photon in the dilute ionized gas, the main photon (propagating in the original direction) will be redshifted. The formula to calculate this redshift is derived.

  5. anomalous wave propagation: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of wave vector and energy flow are also significantly different. It is found that waves exhibit different propagation behaviors in anisotropic media with different sign...

  6. assuming nonparallel propagation: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bruce R. Sutherland Department of Mathematical and Statistical Sciences theories of the propagation of internal waves in continuously stratified fluid is reviewed and new...

  7. aerodynamic noise propagation: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    not known in full detail in experiments. For weak propagating microwaves, the detection process requires linear amplifiers which obscure the signal with random noise. Here, we...

  8. Generation of multi-photon entanglement by propagation and detection

    E-Print Network [OSTI]

    H. Hossein-Nejad; R. Stock; D. F. V. James

    2009-03-02T23:59:59.000Z

    We investigate the change of entanglement of photons due to propagation. We find that post-selected entanglement in general varies by propagation and, as a consequence, states with maximum bi- and tri-partite entanglement can be generated from propagation of unentangled photons. We generalize the results to n photons and show that entangled states with permutation symmetry can be generated from propagation of unentangled states. Generation of n-photon GHZ states is discussed as an example of a class of states with the desired symmetry.

  9. Identifying crack initiation and propagation thresholds in brittle rock

    E-Print Network [OSTI]

    propagation. Résumé : Des travaux récents au «Underground Research Laboratory» de l'AECL à Pinawa, Manitoba

  10. Modeling broadband poroelastic propagation using an asymptotic approach

    E-Print Network [OSTI]

    Vasco, Donald W.

    2010-01-01T23:59:59.000Z

    propagation, the frequency dependence of a disturbance in alower frequencies the scale length of the disturbance willthe frequency dependence of an elas- tic disturbance (109)

  11. Epidemic Propagation In Overlaid Wireless Networks

    SciTech Connect (OSTI)

    Yanmaz, Evsen [Los Alamos National Laboratory

    2008-01-01T23:59:59.000Z

    Witb tbe emergence of computer worms tbat can spread over air interfaces, wireless ad boc and sensor networks can be vulnerable to node compromises even if the deployed network is not connected to the backbone. Depending on the physical topology of the wireless network, even a single infected node can compromise the whole network. In this work, epidemic (e.g., worm) propagation in a static wireless network is studied, where a number of inCected mobile nodes are injected over the existing network. It is shown that the epidemic spread threshold and size depend on the physical topology of the underlying static wireless network as well as the mobility model employed by the infected mobile nodes. More specifically, results show that in a Cully-connected static wirelessnctwork targeted attacks are more effective, wbereas Cor a random topology random attacks can be sufficient to compromise the whole network.

  12. Propagating and stationary superfluid turbulent fronts

    SciTech Connect (OSTI)

    Castiglione, J.; Murphy, P.J.; Tough, J.T.; Hayot, F. [Ohio State Univ., Columbus, OH (United States)] [and others

    1995-09-01T23:59:59.000Z

    The authors have observed that the critical heat current for the transition to superfluid turbulence in weakly nonuniform circular channels depends strongly on the flow direction. This observation is particularly surprising since no other property of the turbulence appears to have such a dependence. In a nonuniform channel the critical heat current is associated with a stationary front between the laminar and turbulent flow. The authors propose a new model for super-fluid turbulent fronts which explains the asymmetry of the critical heat currents in a simple way. The model is based on the subcritical nature of the transition, and the generic description of such a bifurcation by the Ginzburg-Landau equation. As a bonus, the model also explains a long-standing problem in superfluid physics-the nature of propagating fronts in uniform channels. The results of this analysis of both the uniform and nonuniform channel data also provide new information about the vortex line drift velocity.

  13. Digital reverse propagation in focusing Kerr media

    SciTech Connect (OSTI)

    Goy, Alexandre; Psaltis, Demetri [Laboratoire d'Optique, School of Engineering, Ecole Polytechnique Federale de Lausanne (Switzerland)

    2011-03-15T23:59:59.000Z

    Lenses allow the formation of clear images in homogeneous linear media. Holography is an alternative imaging method, but its use is limited to cases in which it provides an advantage, such as three-dimensional imaging. In nonlinear media, lenses no longer work. The light produces intensity-dependent aberrations. The reverse propagation method used in digital holography to form images from recorded holograms works even in Kerr media [M. Tsang, D. Psaltis, and F. G. Omenetto, Opt. Lett. 28, 1873 (2003).]. The principle has been experimentally demonstrated recently in defocusing media [C. Barsi, W.Wan, and J.W. Fleischer, Nat. Photonics 3, 211 (2009).]. Here, we report experimental results in focusing media.

  14. Optimization Online - Total variation superiorization schemes in ...

    E-Print Network [OSTI]

    S.N. Penfold

    2010-10-08T23:59:59.000Z

    Oct 8, 2010 ... Total variation superiorization schemes in proton computed tomography ... check improved the image quality, in particular image noise, in the ...

  15. ,"New Mexico Natural Gas Total Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Natural Gas Total Consumption (MMcf)",1,"Annual",2013 ,"Release Date:","331...

  16. ,"New York Natural Gas Total Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New York Natural Gas Total Consumption (MMcf)",1,"Annual",2013 ,"Release Date:","2272015"...

  17. Numerical Construction of Likelihood Distributions and the Propagation of Errors

    E-Print Network [OSTI]

    J. Swain; L. Taylor

    1997-12-12T23:59:59.000Z

    The standard method for the propagation of errors, based on a Taylor series expansion, is approximate and frequently inadequate for realistic problems. A simple and generic technique is described in which the likelihood is constructed numerically, thereby greatly facilitating the propagation of errors.

  18. Some Techniques for Computing Wave Propagation in Optical Waveguides

    E-Print Network [OSTI]

    Lu, Ya Yan

    Some Techniques for Computing Wave Propagation in Optical Waveguides Ya Yan Lu Department and be separated again. For a general z-varying wave-guiding structure, the frequency domain propagation problem of Mathematics, City University of Hong Kong Kowloon, Hong Kong Abstract Optical wave-guiding structures

  19. Propagation and reflection of internal waves B. R. Sutherlanda)

    E-Print Network [OSTI]

    Sutherland, Bruce

    Propagation and reflection of internal waves B. R. Sutherlanda) Department of Mathematical Sciences 01205-2 I. INTRODUCTION An internal wave is a disturbance propagating under the effects of buoyancy gravity waves incident upon a level where the Doppler-shifted frequency of the waves is comparable

  20. On the uniqueness of loopy belief propagation fixed points

    E-Print Network [OSTI]

    Heskes, Tom

    those for convexity of the Bethe free energy. We compare them with (a strength­ ened version of algorithms as well as for other approximate free energies. 1 Introduction Loopy belief propagation is Pearl belief propagation correspond to extrema of the so­called Bethe free energy (Yedidia, 1 #12; Freeman

  1. Wave Propagation Theory 2.1 The Wave Equation

    E-Print Network [OSTI]

    2 Wave Propagation Theory 2.1 The Wave Equation The wave equation in an ideal fluid can be derived #12;66 2. Wave Propagation Theory quantities of the quiescent (time independent) medium are identified perturbations is much smaller than the speed of sound. 2.1.1 The Nonlinear Wave Equation Retaining higher

  2. Acoustic wave propagation in two-phase heterogeneous porous media

    E-Print Network [OSTI]

    J. I. Osypik; N. I. Pushkina; Ya. M. Zhileikin

    2015-03-19T23:59:59.000Z

    The propagation of an acoustic wave through two-phase porous media with spatial variation in porosity is studied. The evolutionary wave equation is derived, and the propagation of an acoustic wave is numerically analyzed in application to marine sediments with various physical parameters.

  3. A STUDY OF ULTRASONIC WAVE PROPAGATION IN BONES

    E-Print Network [OSTI]

    zyserman

    tion mechanisms; different models for the latter are introduced ... The aim of this report is to analyse the propagation of ultrasonic ... propagation depends on the values of different model ...... Santos J.E., Corberó J.M., Ravazzoli C.L., and Hens

  4. Propagation Beam Consideration for 3D THz Computed Tomography

    E-Print Network [OSTI]

    Boyer, Edmond

    Propagation Beam Consideration for 3D THz Computed Tomography B. Recur, 1, J.P. Guillet, 2 I. Manek, "Refraction losses in terahertz computed tomography," Opt. Commun. 283, 2050­2055 (2010). 8. S. Nadar, H of the beam propagation is developed according to the physical properties of THz waves used in THz computed

  5. Propagation of Nonclassical Radiation through a Semiconductor Slab

    E-Print Network [OSTI]

    D. Yu. Vasylyev; W. Vogel; T. Schmielau; K. Henneberger; D. -G. Welsch

    2008-02-20T23:59:59.000Z

    Based on a microscopic derivation of the emission spectra of a bulk semiconductor we arrive at a clear physical interpretation of the noise current operators in macroscopic quantum electrodynamics. This opens the possibility to study medium effects on nonclassical radiation propagating through an absorbing or amplifying semiconductor. As an example, the propagation of an incident squeezed vacuum is analyzed.

  6. Causal propagation of geometrical fields in relativistic cosmology

    E-Print Network [OSTI]

    Van Elst, H; Elst, Henk van; Ellis, George F R

    1999-01-01T23:59:59.000Z

    We employ the extended 1+3 orthonormal frame formalism for fluid spacetime geometries $({\\cal M}, {\\bf g}, {\\bf u})$, which contains the Bianchi field equations for the Weyl curvature, to derive a 44-D evolution system of first-order symmetric hyperbolic form for a set of geometrically defined dynamical field variables. Describing the matter source fields phenomenologically in terms of a barotropic perfect fluid, the propagation velocities $v$ (with respect to matter-comoving observers that Fermi-propagate their spatial reference frames) of disturbances in the matter and the gravitational field, represented as wavefronts by the characteristic 3-surfaces of the system, are obtained. In particular, the Weyl curvature is found to account for two (non-Lorentz-invariant) Coulomb-like characteristic eigenfields propagating with $v = 0$ and four transverse characteristic eigenfields propagating with $|v| = 1$, which are well known, and four (non-Lorentz-invariant) longitudinal characteristic eigenfields propagating ...

  7. TOTAL REFLUX OPERATION OF MULTIVESSEL BATCH DISTILLATION

    E-Print Network [OSTI]

    Skogestad, Sigurd

    TOTAL REFLUX OPERATION OF MULTIVESSEL BATCH DISTILLATION BERND WITTGENS, RAJAB LITTO, EVA S RENSEN a generalization of previously proposed batch distillation schemes. A simple feedback control strategy for total re verify the simulations. INTRODUCTION Although batch distillation generally is less energy e cient than

  8. Total correlations as fully additive entanglement monotones

    E-Print Network [OSTI]

    Gerardo A. Paz-Silva; John H. Reina

    2007-04-05T23:59:59.000Z

    We generalize the strategy presented in Refs. [1, 2], and propose general conditions for a measure of total correlations to be an entanglement monotone using its pure (and mixed) convex-roof extension. In so doing, we derive crucial theorems and propose a concrete candidate for a total correlations measure which is a fully additive entanglement monotone.

  9. Open Systems Dynamics for Propagating Quantum Fields

    E-Print Network [OSTI]

    Ben Q. Baragiola

    2014-08-18T23:59:59.000Z

    In this dissertation, I explore interactions between matter and propagating light. The electromagnetic field is modeled as a reservoir of quantum harmonic oscillators successively streaming past a quantum system. Each weak and fleeting interaction entangles the light and the system, and the light continues its course. Within the framework of open quantum systems, the light is eventually traced out, leaving the reduced quantum state of the system as the primary mathematical subject. Two major results are presented. The first is a master equation approach for a quantum system interacting with a traveling wave packet prepared with a definite number of photons. In contrast to quasi-classical states, such as coherent or thermal fields, these N-photon states possess temporal mode entanglement, and local interactions in time have nonlocal consequences. The second is a model for a three-dimensional light-matter interface for an atomic ensemble interacting with a paraxial laser beam and its application to the generation of QND spin squeezing. Both coherent and incoherent dynamics due to spatially inhomogeneous atom-light coupling across the ensemble are accounted for. Measurement of paraxially scattered light can generate squeezing of an atomic spin wave, while diffusely scattered photons lead to spatially local decoherence.

  10. Propagator mixing renormalization for Majorana fermions

    E-Print Network [OSTI]

    Bernd A. Kniehl

    2014-06-17T23:59:59.000Z

    We consider a mixed system of unstable Majorana fermions in a general parity-nonconserving theory and renormalize its propagator matrix to all orders in the pole scheme, in which the squares of the renormalized masses are identified with the complex pole positions and the wave-function renormalization (WFR) matrices are adjusted in compliance with the Lehmann-Symanzik-Zimmermann reduction formalism. In contrast to the case of unstable Dirac fermions, the WFR matrices of the in and out states are uniquely fixed, while they again bifurcate in the sense that they are no longer related by pseudo-Hermitian conjugation. We present closed analytic expressions for the renormalization constants in terms of the scalar, pseudoscalar, vector, and pseudovector parts of the unrenormalized self-energy matrix, which is computable from the one-particle-irreducible Feynman diagrams of the flavor transitions, as well as their expansions through two loops. In the case of stable Majorana fermions, the well-known one-loop results are recovered.

  11. Cosmic axion background propagation in galaxies

    E-Print Network [OSTI]

    Day, Francesca V

    2015-01-01T23:59:59.000Z

    Many extensions of the Standard Model include axions or axion-like particles (ALPs). Here we study ALP to photon conversion in the magnetic field of the Milky Way and starburst galaxies. By modelling the effects of the coherent and random magnetic fields, the warm ionized medium and the warm neutral medium on the conversion process, we simulate maps of the conversion probability across the sky for a range of ALP energies. In particular, we consider a diffuse cosmic ALP background (CAB) analogous to the CMB, whose existence is suggested by string models of inflation. ALP-photon conversion of a CAB in the magnetic fields of galaxy clusters has been proposed as an explanation of the cluster soft X-ray excess. We therefore study the phenomenology and expected photon signal of CAB propagation in the Milky Way. We find that, for the CAB parameters required to explain the cluster soft X-ray excess, the photon flux from ALP-photon conversion in the Milky Way would be unobservably small. The ALP-photon conversion prob...

  12. Relativistic particle: Dirac observables and Feynman propagator

    SciTech Connect (OSTI)

    Freidel, Laurent; Girelli, Florian; Livine, Etera R. [Perimeter Institute, 31 Caroline St North, Waterloo, ON, N2L 2Y5 (Canada); SISSA, Via Beirut 2-4, 34014 Trieste (Italy); INFN, Sezione di Trieste (Italy); Laboratoire de Physique, ENS Lyon, CNRS UMR 5672, 46 Allee d'Italie, 69364 Lyon Cedex 07 (France)

    2007-05-15T23:59:59.000Z

    We analyze the algebra of Dirac observables of the relativistic particle in four space-time dimensions. We show that the position observables become noncommutative and the commutation relations lead to a structure very similar to the noncommutative geometry of deformed special relativity (DSR). In this framework, it appears natural to consider the 4D relativistic particle as a five-dimensional massless particle. We study its quantization in terms of wave functions on the 5D light cone. We introduce the corresponding five-dimensional action principle and analyze how it reproduces the physics of the 4D relativistic particle. The formalism is naturally subject to divergences (due to the 5D representation), and we show that DSR arises as a natural regularization: the 5D light cone is regularized as the de Sitter space. We interpret the fifth coordinate as the particle's proper time while the fifth moment can be understood as the mass. Finally, we show how to formulate the Feynman propagator and the Feynman amplitudes of quantum field theory in this context in terms of Dirac observables. This provides new insights for the construction of observables and scattering amplitudes in DSR.

  13. Use of Exact Solutions of Wave Propagation Problems to Guide Implementation of Nonlinear Seismic Ground Response Analysis Procedures

    E-Print Network [OSTI]

    2007-01-01T23:59:59.000Z

    Zhou, G. S. ?1980?. “Wave propagation method of site seismicUse of Exact Solutions of Wave Propagation Problems to Guidesolutions for body wave propagation through an elastic

  14. Causal propagation of geometrical fields in relativistic cosmology

    E-Print Network [OSTI]

    Henk van Elst; George F R Ellis

    1998-10-18T23:59:59.000Z

    We employ the extended 1+3 orthonormal frame formalism for fluid spacetime geometries $({\\cal M}, {\\bf g}, {\\bf u})$, which contains the Bianchi field equations for the Weyl curvature, to derive a 44-D evolution system of first-order symmetric hyperbolic form for a set of geometrically defined dynamical field variables. Describing the matter source fields phenomenologically in terms of a barotropic perfect fluid, the propagation velocities $v$ (with respect to matter-comoving observers that Fermi-propagate their spatial reference frames) of disturbances in the matter and the gravitational field, represented as wavefronts by the characteristic 3-surfaces of the system, are obtained. In particular, the Weyl curvature is found to account for two (non-Lorentz-invariant) Coulomb-like characteristic eigenfields propagating with $v = 0$ and four transverse characteristic eigenfields propagating with $|v| = 1$, which are well known, and four (non-Lorentz-invariant) longitudinal characteristic eigenfields propagating with $|v| = \\sfrac{1}{2}$. The implications of this result are discussed in some detail and a parallel is drawn to the propagation of irregularities in the matter distribution. In a worked example, we specialise the equations to cosmological models in locally rotationally symmetric class II and include the constraints into the set of causally propagating dynamical variables.

  15. Photoelastic study of acoustic wave propagation in grain Xavier Noblin, Guillaume Huillard and Jean Rajchenbach

    E-Print Network [OSTI]

    Boyer, Edmond

    Photoelastic study of acoustic wave propagation in grain packings Xavier Noblin, Guillaume Huillard. By means of photoelasticity, we success in visualizing in real time the propagation of acoustic waves case. Keywords: Granular material, mechanical wave propagation, photoelasticity, nonlinear behavior

  16. Propagating Waves Recorded in the Steel, Moment-Frame Factor Building During Earthquakes

    E-Print Network [OSTI]

    Kohler, Monica; Heaton, Thomas H.; Samuel C. Bradford

    2007-01-01T23:59:59.000Z

    M. D. Trifunac (2001b). Wave propagation in a seven-storySafak, E. (1999). Wave-propagation formulation of seismicC. Bradford Abstract Wave-propagation effects can be useful

  17. Wave propagation and instabilities in monolithic and periodically structured elastomeric materials undergoing large deformations

    E-Print Network [OSTI]

    Wave propagation and instabilities in monolithic and periodically structured elastomeric materials; revised manuscript received 3 October 2008; published 14 November 2008 Wave propagation in elastomeric states can influence wave propagation and hence interpretation of data. In the case of periodically

  18. Initiation propagation and termination of elastodynamic ruptures associated with segmentation of faults and shaking

    E-Print Network [OSTI]

    Shaw, Bruce E.

    Initiation propagation and termination of elastodynamic ruptures associated with segmentation the initiation, propagation, and termination of ruptures and their relationship to fault geometry and shaking of terminations near fault ends; and persistent propagation directivity effects. Taking advantage of long

  19. Total to withdraw from Qatar methanol - MTBE?

    SciTech Connect (OSTI)

    NONE

    1996-05-01T23:59:59.000Z

    Total is rumored to be withdrawing from the $700-million methanol and methyl tert-butyl ether (MTBE) Qatar Fuel Additives Co., (Qafac) project. The French company has a 12.5% stake in the project. Similar equity is held by three other foreign investors: Canada`s International Octane, Taiwan`s Chinese Petroleum Corp., and Lee Change Yung Chemical Industrial Corp. Total is said to want Qafac to concentrate on methanol only. The project involves plant unit sizes of 610,000 m.t./year of MTBE and 825,000 m.t./year of methanol. Total declines to comment.

  20. Infrared exponents of gluon and ghost propagators from Lattice QCD

    E-Print Network [OSTI]

    O. Oliveira; P. J. Silva

    2007-10-02T23:59:59.000Z

    The compatibility of the pure power law infrared solution of QCD Dyson-Schwinger equations (DSE) and lattice data for the gluon and ghost propagators in Landau gauge is discussed. For the gluon propagator, the lattice data is compatible with the DSE infrared solution with an exponent $\\kappa\\sim0.53$, measured using a technique that suppresses finite volume effects and allows to model these corrections to the lattice data. For the ghost propagator, the lattice data does not seem to follow the infrared DSE power law solution.

  1. Optical waves in crystal propagation and control of laser radiation

    SciTech Connect (OSTI)

    Yariv, A.; Yeh, P.

    1983-01-01T23:59:59.000Z

    As a text for a course in electro-optics for electrical engineering and applied physics students, it presents the propagation of laser radiation in various optical media and instructs in the analysis and design of electro-optical devices. The content of the book presupposes an introduction to Maxwell's equations in an intermediate course in electricity and magnetism as well as some mathematical background in Fourier integrals, matrix algebra, and differential equations. Contents, abridged: Electromagnetic fields. Propagation of laser beams. Jones calculus and its application to birefringent optical systems. Electromagnetic propagation in periodic media. Electro-optic devices. Acousto-optics. Indexes.

  2. Photon propagation in noncommutative QED with constant external field

    E-Print Network [OSTI]

    R. Fresneda; D. M. Gitman; A. E. Shabad

    2015-01-20T23:59:59.000Z

    We find dispersion laws for the photon propagating in the presence of mutually orthogonal constant external electric and magnetic fields in the context of the $\\theta $-expanded noncommutative QED. We show that there is no birefringence to the first order in the noncommutativity parameter $% \\theta .$ By analyzing the group velocities of the photon eigenmodes we show that there occurs superluminal propagation for any direction. This phenomenon depends on the mutual orientation of the external electromagnetic fields and the noncommutativity vector. We argue that the propagation of signals with superluminal group velocity violates causality in spite of the fact that the noncommutative theory is not Lorentz-invariant and speculate about possible workarounds.

  3. Photon propagation in noncommutative QED with constant external field

    E-Print Network [OSTI]

    Fresneda, R; Shabad, A E

    2015-01-01T23:59:59.000Z

    We find dispersion laws for the photon propagating in the presence of mutually orthogonal constant external electric and magnetic fields in the context of the $\\theta $-expanded noncommutative QED. We show that there is no birefringence to the first order in the noncommutativity parameter $% \\theta .$ By analyzing the group velocities of the photon eigenmodes we show that there occurs superluminal propagation for any direction. This phenomenon depends on the mutual orientation of the external electromagnetic fields and the noncommutativity vector. We argue that the propagation of signals with superluminal group velocity violates causality in spite of the fact that the noncommutative theory is not Lorentz-invariant and speculate about possible workarounds.

  4. TOTAL REFLUX OPERATION OF MULTIVESSEL BATCH DISTILLATION

    E-Print Network [OSTI]

    Skogestad, Sigurd

    TOTAL REFLUX OPERATION OF MULTIVESSEL BATCH DISTILLATION BERND WITTGENS, RAJAB LITTO, EVA SØRENSEN in this paper provides a generalization of previously proposed batch distillation schemes. A simple feedback been built and the experiments verify the simulations. INTRODUCTION Although batch distillation

  5. Total Energy Management in General Motors

    E-Print Network [OSTI]

    DeKoker, N.

    1979-01-01T23:59:59.000Z

    This paper presents an overview of General Motors' energy management program with special emphasis on energy conservation. Included is a description of the total program organization, plant guidelines, communication and motivation techniques...

  6. Total synthesis and study of myrmicarin alkaloids

    E-Print Network [OSTI]

    Ondrus, Alison Evelynn, 1981-

    2009-01-01T23:59:59.000Z

    I. Enantioselective Total Synthesis of Tricyclic Myrmicarin Alkaloids An enantioselective gram-scale synthesis of a key dihydroindolizine intermediate for the preparation of myrmicarin alkaloids is described. Key transformations ...

  7. Enantioselective Total Synthesis of (?)-Acylfulvene and (?)- Irofulven

    E-Print Network [OSTI]

    Movassaghi, Mohammad

    We report our full account of the enantioselective total synthesis of (?)-acylfulvene (1) and (?)-irofulven (2), which features metathesis reactions for the rapid assembly of the molecular framework of these antitumor ...

  8. Total synthesis of cyclotryptamine and diketopiperazine alkaloids

    E-Print Network [OSTI]

    Kim, Justin, Ph. D. Massachusetts Institute of Technology

    2013-01-01T23:59:59.000Z

    I. Total Synthesis of the (+)-12,12'-Dideoxyverticillin A The fungal metabolite (+)-12,12'-dideoxyverticillin A, a cytotoxic alkaloid isolated from a marine Penicillium sp., belongs to a fascinating family of densely ...

  9. Total Ore Processing Integration and Management

    SciTech Connect (OSTI)

    Leslie Gertsch; Richard Gertsch

    2003-12-31T23:59:59.000Z

    This report outlines the technical progress achieved for project DE-FC26-03NT41785 (Total Ore Processing Integration and Management) during the period 01 October through 31 December of 2003.

  10. Total Building Air Management: When Dehumidification Counts

    E-Print Network [OSTI]

    Chilton, R. L.; White, C. L.

    1996-01-01T23:59:59.000Z

    , total air management of sensible and latent heat, filtration and zone pressure was brought about through the implementation of non-integrated, composite systems. Composite systems typically are built up of multi-vendor equipment each of which perform...

  11. Simulation of anisotropic wave propagation in Vertical Seismic Profiles

    E-Print Network [OSTI]

    Durussel, Vincent Bernard

    2004-09-30T23:59:59.000Z

    they are powerful tools to simulate seismic wave propagation in three-dimensional anisotropic subsurface models. The code is currently under development using a C++ object oriented programming approach because it provides high flexibility in the design of new...

  12. Contributions to the direct time integration in wave propagation analyses

    E-Print Network [OSTI]

    Noh, Gunwoo

    2013-01-01T23:59:59.000Z

    This thesis intends to contribute to the computational methods for wave propagations. We review an implicit time integration method, the Bathe method, that remains stable without the use of adjustable parameters when the ...

  13. antisymmetric ghost propagator: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Page Last Page Topic Index 1 Roles of the color antisymmetric ghost propagator in the infrared QCD HEP - Lattice (arXiv) Summary: The results of Coulomb gauge and Landau gauge...

  14. Infrared behavior of gluon and ghost propagators from asymmetric lattices

    E-Print Network [OSTI]

    Attilio Cucchieri; Tereza Mendes

    2006-04-18T23:59:59.000Z

    We present a numerical study of the lattice Landau gluon and ghost propagators in three-dimensional pure SU(2) gauge theory. Data have been obtained using asymmetric lattices (V = 20^2 X 40, 20^2 X 60, 8^2 X 64, 8^2 X 140, 12^2 X 140 and 16^2 X 140) for the lattice coupling beta = 3.4, in the scaling region. We find that the gluon (respectively ghost) propagator is suppressed (respec. enhanced) at small momenta in the limit of large lattice volume V. By comparing these results with data obtained using symmetric lattices (V = 60^3 and 140^3), we find that both propagators suffer from systematic effects in the infrared region (p \\lesssim 650 MeV). In particular, the gluon (respec. ghost) propagator is less IR-suppressed (respec. enhanced) than in the symmetric case. We discuss possible implications of the use of asymmetric lattices.

  15. Role of Plasma in Femtosecond Laser Pulse Propagation

    E-Print Network [OSTI]

    Grauer, Rainer

    and pulse compression 42.65.Sf Dynamics of nonlinear optical systems; optical instabilities, optical chaos transitions and create domains with a modified refractive index. Nonlinear propagation of femtosec- ond

  16. Modelling the Propagation of Forward and Opposed Smouldering Combustion 

    E-Print Network [OSTI]

    Rein, Guillermo; Torero, Jose L; Fernandez-Pello, Carlos

    A computational study has been carried out to investigate smouldering ignition and propagation in polyurethane foam. The one-dimensional, transient, governing equations for smouldering combustion in a porous fuel are ...

  17. Inter-sensor propagation delay estimation using sources of opportunity

    E-Print Network [OSTI]

    Vincent, Rémy; Michel, Olivier; Lacoume, Jean-Louis

    2015-01-01T23:59:59.000Z

    Propagation delays are intensively used for Structural Health Monitoring or Sensor Network Localization. In this paper, we study the performances of acoustic propagation delay estimation between two sensors, using sources of opportunity only. Such sources are defined as being uncontrolled by the user (activation time, location, spectral content in time and space), thus preventing the direct estimation with classical active approaches, such as TDOA, RSSI and AOA. Observation models are extended from the literature to account for the spectral characteristics of the sources in this passive context and we show how time-filtered sources of opportunity impact the retrieval of the propagation delay between two sensors. A geometrical analogy is then proposed that leads to a lower bound on the variance of the propagation delay estimation that accounts for both the temporal and the spatial properties of the sources field.

  18. acoustic waves propagating: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Unidirectional propagation of designer surface acoustic waves CERN Preprints Summary: We propose an...

  19. The Influence of Basalt Layers on Seismic Wave Propagation 

    E-Print Network [OSTI]

    Hanssen, Peter

    are to examine the effects of basalts on seismic wave propagation and the concequent implications for imaging sedimentary structures beneath them. From studies of basalt propertiesand borehole data in connection with foreward modelling and real data, I show...

  20. adapting covariance propagation: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the excitation H(cal D,cal H) and the field strength F(E,B). We study the propagation of electromagnetic waves in such a spacetime by Hadamard's method and arrive,...

  1. Torsional waves propagation in an initially stressed dissipative cylinder

    E-Print Network [OSTI]

    M. M. Selim

    2009-03-28T23:59:59.000Z

    The present paper has been framed to show the effect of damping on the propagation of torsional waves in an initially stressed, dissipative, incompressible cylinder of infinite length. A governing equation has been formulated on Biot's incremental deformation theory. The velocities of torsional waves are obtained as complex ones, in which real part gives the phase velocity of propagation and corresponding imaginary part gives the damping. The study reveals that the damping of the medium has strong effect in the propagation of torsional wave. Since every medium has damping so it is more realistic to use the damped wave equation instead of the undamped wave equation. The study also shows that the velocity of propagation of such waves depend on the presence of initial stress. The influences of damping and initial stresses are shown separately.

  2. Wave propagation in periodic lattices with defects of smaller dimension

    E-Print Network [OSTI]

    A. A. Kutsenko

    2013-05-20T23:59:59.000Z

    The procedure of evaluating of the spectrum for discrete periodic operators perturbed by operators of smaller dimensions is obtained. This result allows to obtain propagative, guided, localised spectra for different kind of physical operators on graphs with defects.

  3. Intense ion beam propagation in a reactor sized chamber

    E-Print Network [OSTI]

    Vay, J.L.; Deutsch, C.

    2000-01-01T23:59:59.000Z

    beams in a heavy ion fusion reactor chamber filled with lowIon Fusion, Intense Ion Beams, Reaction Chamber. P.A.C.S.heavy ion beam propagation in the reaction chamber, Fus.

  4. Simulation and design optimization of wave propagation in heterogeneous materials

    E-Print Network [OSTI]

    Saà-Seoane, Joel

    2014-01-01T23:59:59.000Z

    Propagation of waves through heterogeneous structured materials has been the focus of considerable research in recent years. These materials consist of quasi periodic geometries combining two or more piecewise homogeneous ...

  5. Journal of Computational Acoustics, FREQUENCY DOMAIN WAVE PROPAGATION MODELLING

    E-Print Network [OSTI]

    Sheen, Dongwoo

    #11;ect de gas, brine or oil and gas-brine or gas-oil pore uids on seismic velocities. NumericalJournal of Computational Acoustics, f c IMACS FREQUENCY DOMAIN WAVE PROPAGATION MODELLING

  6. Stability of Propagating Fronts in Damped Hyperbolic Equations

    E-Print Network [OSTI]

    Stability of Propagating Fronts in Damped Hyperbolic Equations Th. Gallay, G. Raugel Analyse Num'erique et EDP CNRS et Universit'e de Paris­Sud F­91405 Orsay Cedex, France Thierry.Gallay

  7. Modeling of crack initiation, propagation and coalescence in rocks

    E-Print Network [OSTI]

    Gonçalves da Silva, Bruno Miguel

    2009-01-01T23:59:59.000Z

    Natural or artificial fracturing of rock plays a very important role in geologic processes and for engineered structures in and on rock. Fracturing is associated with crack initiation, propagation and coalescence, which ...

  8. Femto-photography: capturing and visualizing the propagation of light

    E-Print Network [OSTI]

    Velten, Andreas

    We present femto-photography, a novel imaging technique to capture and visualize the propagation of light. With an effective exposure time of 1.85 picoseconds (ps) per frame, we reconstruct movies of ultrafast events at ...

  9. Ultrasonic wave propagation in random and periodic particulate composites

    E-Print Network [OSTI]

    Henderson, Benjamin Kyle

    1996-01-01T23:59:59.000Z

    ULTRASONIC WAVE PROPAGATION IN RANDOM AND PERIODIC PARTICULATE COMPOSITES A Thesis by BENJAMIN KYLE HENDERSON Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfilltnent of the requirements for the degree... of MASTER OF SCIENCE May 1996 Major Subject: Aerospace Engineering ULTRASONIC WAVE PROPAGATION IN RANDOM AND PERIODIC PARTICULATE COMPOSITES A Thesis by BENJAMIN KYLE HENDERSON Submitted to Texas ASM University in partial fulfillment...

  10. Electrically heated particulate filter propagation support methods and systems

    DOE Patents [OSTI]

    Gonze, Eugene V [Pinckney, MI; Ament, Frank [Troy, MI

    2011-06-07T23:59:59.000Z

    A control system that controls regeneration of a particulate filter is provided. The system generally includes a regeneration module that controls current to the particulate filter to initiate combustion of particulate matter in the particulate filter. A propagation module estimates a propagation status of the combustion of the particulate matter based on a combustion temperature. A temperature adjustment module controls the combustion temperature by selectively increasing a temperature of exhaust that passes through the particulate filter.

  11. Circular polarization of obliquely propagating whistler wave magnetic field

    SciTech Connect (OSTI)

    Bellan, P. M. [Applied Physics, Caltech, Pasadena California 91125 (United States)] [Applied Physics, Caltech, Pasadena California 91125 (United States)

    2013-08-15T23:59:59.000Z

    The circular polarization of the magnetic field of obliquely propagating whistler waves is derived using a basis set associated with the wave partial differential equation. The wave energy is mainly magnetic and the wave propagation consists of this magnetic energy sloshing back and forth between two orthogonal components of magnetic field in quadrature. The wave electric field energy is small compared to the magnetic field energy.

  12. Captive propagation and brood behavior of greater prairie chickens

    E-Print Network [OSTI]

    Drake, David

    1994-01-01T23:59:59.000Z

    CAPTIVE PROPAGATION AND BROOD BEHAVIOR OF GREATER PRAIRIE CHICKENS A Thesis by DAVID DRAKE Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE... May 1994 Major Subject: Wildlife and Fisheries Sciences CAPTIVE PROPAGATION AND BROOD BEHAVIOR OF GREATER PRAIRIE CHICKENS A Thesis by DAVID DRAKE Submitted to Texas A&M University in partial fulfillment of the requirements for the degree...

  13. Nondestructive testing using stress waves: wave propagation in layered media

    E-Print Network [OSTI]

    Ortega, Jose Alberto

    2013-02-22T23:59:59.000Z

    NONDESTRUCTIVE TESTING USING STRESS WAVES: WAVE PROPAGATION IN LAYERED MEDIA A Senior Honors Thesis by JOSE ALBERTO ORTEGA Submitted to the Office of Honors Program & Academic Scholarships Texas A&M University in partial fulfillment... of the requirement of the UNIVERSITY UNDERGRADUATE RESEARCH FELLOWS April 2002 Group: Engineering NONDESTRUCTIVE TESTING USI WAVE PROPAGATION IN LA A Senior Honors The ~pe -C JOSE ALBERTO ORTI /CI Submitted to the Office of Honors Program k. Academic...

  14. National Fuel Cell and Hydrogen Energy Overview: Total Energy...

    Office of Environmental Management (EM)

    and Hydrogen Energy Overview: Total Energy USA 2012 National Fuel Cell and Hydrogen Energy Overview: Total Energy USA 2012 Presentation by Sunita Satyapal at the Total Energy USA...

  15. Asymptomatic Chronic Dislocation of a Cemented Total Hip Prosthesis

    E-Print Network [OSTI]

    Salvi, Andrea Emilio; Florschutz, Anthony Vatroslav; Grappiolo, Guido

    2014-01-01T23:59:59.000Z

    Dislocation of Hip Prosthesis dislocation after total hipa Cemented Total Hip Prosthesis * Mellino Mellini HospitalDislocation of a total hip prosthesis is a painful and

  16. Total Blender Net Input of Petroleum Products

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API GravityDakota" "Fuel, quality", 2013,Iowa"Dakota"YearProductionShaleInput Product: Total Input Natural

  17. Determination of Properties of Composite Materials from the Lamb Wave Propagation

    E-Print Network [OSTI]

    Kreinovich, Vladik

    Determination of Properties of Composite Materials from the Lamb Wave Propagation: Probabilistic the Lamb waves propagate. Their propagation is de- termined by the dynamic elastic constants £¥¤¦¨§ , so we the ultrasound waves propagate in this composite material, and to reconstruct the values £ ¤¦§ from the results

  18. Time reversed wave propagation experiments in chaotic micro-structured cavities

    E-Print Network [OSTI]

    Sprik, Rudolf

    Time reversed wave propagation experiments in chaotic micro-structured cavities Rudolf Sprik a Chimie Industrielles, Paris, France Abstract The elastic wave propagation in strongly scattering solid; Elastic wave propagation The propagation of waves through systems with strong scatterers is ubiquitous

  19. Thompson/Ocean 420/Winter 2004 2D waves 1 Two-dimensional wave propagation

    E-Print Network [OSTI]

    Thompson, LuAnne

    Thompson/Ocean 420/Winter 2004 2D waves 1 Two-dimensional wave propagation So far we have talked about wave propagation in one-dimension. For two or three spatial dimensions, we vectorize our ideas propagation. For surface waves, there is no vertical propagation, and we are only concerned with the two

  20. An Empirical Study of Learning Speed in BackPropagation Networks

    E-Print Network [OSTI]

    Fahlman, Scott E.

    the basic ideas of connectionism or back­propagation learning. See [3] for a brief overview of this areaAn Empirical Study of Learning Speed in Back­Propagation Networks Scott E. Fahlman September 1988 of the back­propagation algorithm. However, back­propagation learning is too slow for many applications

  1. Fourier Analysis of Sawtooth Heat Pulse Propagation and Comparison with Other Methods Using JET Data

    E-Print Network [OSTI]

    Fourier Analysis of Sawtooth Heat Pulse Propagation and Comparison with Other Methods Using JET Data

  2. ON DEVELOPMENT OF TOTALLY IMPLANTABLE VESTIBULAR PROSTHESIS

    E-Print Network [OSTI]

    Tang, William C

    ON DEVELOPMENT OF TOTALLY IMPLANTABLE VESTIBULAR PROSTHESIS Andrei M. Shkel 1 Department vestibular prosthesis. The sensing element of the prosthesis is a custom designed one-axis MEMS gyroscope of the prosthesis on a rate table indicate that the device's output matches the average firing rate of vestibular

  3. Total Building Air Management: When Dehumidification Counts 

    E-Print Network [OSTI]

    Chilton, R. L.; White, C. L.

    1996-01-01T23:59:59.000Z

    to heat rejection to contain the size of the ground loop. In areas where seasonal heating is required, but cooling remains the dominant load, a hybrid heat rejection system can be specified. A hybrid system consists of a ground loop sized for total...

  4. Steady-state propagation of a Mode III crack in couple stress elastic materials

    E-Print Network [OSTI]

    G. Mishuris; A. Piccolroaz; E. Radi

    2012-07-14T23:59:59.000Z

    This paper is concerned with the problem of a semi-infinite crack steadily propagating in an elastic solid with microstructures subject to antiplane loading applied on the crack surfaces. The loading is moving with the same constant velocity as that of the crack tip. We assume subsonic regime, that is the crack velocity is smaller than the shear wave velocity. The material behaviour is described by the indeterminate theory of couple stress elasticity developed by Koiter. This constitutive model includes the characteristic lengths in bending and torsion and thus it is able to account for the underlying microstructure of the material as well as for the strong size effects arising at small scales and observed when the representative scale of the deformation field becomes comparable with the length scale of the microstructure, such as the grain size in a polycrystalline or granular aggregate. The present analysis confirms and extends earlier results on the static case by including the effects of crack velocity and rotational inertia. By adopting the criterion of maximum total shear stress, we discuss the effects of microstructural parameters on the stability of crack propagation.

  5. Improved stochastic estimation of quark propagation with Laplacian Heaviside smearing in lattice QCD

    SciTech Connect (OSTI)

    Morningstar, C.; Lenkner, D.; Wong, C. H. [Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213 (United States); Bulava, J. [NIC, DESY, Platanenallee 6, D-15738, Zeuthen (Germany); Foley, J. [Department of Physics and Astronomy, University of Utah, Salt Lake City, Utah 84112 (United States); Juge, K. J. [Department of Physics, University of the Pacific, Stockton, California 95211 (United States); Peardon, M. [School of Mathematics, Trinity College, Dublin 2 (Ireland)

    2011-06-01T23:59:59.000Z

    A new method of stochastically estimating the low-lying effects of quark propagation is proposed which allows accurate determinations of temporal correlations of single-hadron and multihadron operators in lattice QCD. The method is well suited for calculations in large volumes. Contributions involving quark propagation connecting hadron sink operators at the same final time can be handled in a straightforward manner, even for a large number of final time slices. The method exploits Laplacian Heaviside (LapH) smearing. Z{sub N} noise is introduced in a novel way, and variance reduction is achieved using judiciously-chosen noise-dilution projectors. The method is tested using isoscalar mesons in the scalar, pseudoscalar, and vector channels, and using the two-pion system of total isospin I=0, 1, 2 on large anisotropic 24{sup 3}x128 lattices with spatial spacing a{sub s}{approx}0.12 fm and temporal spacing a{sub t}{approx}0.034 fm for pion masses m{sub {pi}}{approx_equal}390 and 240 MeV.

  6. Propagation of High Frequency Waves in the Quiet Solar Atmosphere

    E-Print Network [OSTI]

    Aleksandra Andi?

    2008-10-13T23:59:59.000Z

    High-frequency waves (5 mHz to 20mHz) have previously been suggested as a source of energy accounting partial heating of the quiet solar atmosphere. The dynamics of previously detected high-frequency waves is analysed here. Image sequences are taken using the German Vacuum Tower Telescope (VTT), Observatorio del Teide, Izana, Tenerife, with a Fabry-Perot spectrometer. The data were speckle reduced and analyzed with wavelets. Wavelet phase-difference analysis is performed to determine whether the waves propagate. We observe the propagation of waves in the frequency range 10mHz to 13mHz. We also observe propagation of low-frequency waves in the ranges where they are thought to be evanescent in regions where magnetic structures are present.

  7. How much laser power can propagate through fusion plasma?

    E-Print Network [OSTI]

    Pavel M. Lushnikov; Harvey A. Rose

    2006-03-28T23:59:59.000Z

    Propagation of intense laser beams is crucial for inertial confinement fusion, which requires precise beam control to achieve the compression and heating necessary to ignite the fusion reaction. The National Ignition Facility (NIF), where fusion will be attempted, is now under construction. Control of intense beam propagation may be ruined by laser beam self-focusing. We have identified the maximum laser beam power that can propagate through fusion plasma without significant self-focusing and have found excellent agreement with recent experimental data, and suggest a way to increase that maximum by appropriate choice of plasma composition with implication for NIF designs. Our theory also leads to the prediction of anti-correlation between beam spray and backscatter and suggests the indirect control of backscatter through manipulation of plasma ionization state or acoustic damping.

  8. OGJ300; Smaller list, bigger financial totals

    SciTech Connect (OSTI)

    Beck, R.J.; Biggs, J.B.

    1991-09-30T23:59:59.000Z

    This paper reports on Oil and Gas Journal's list of the largest, publicly traded oil and gas producing companies in the U.S. which is both smaller and larger this year than it was in 1990. It's smaller because it covers fewer companies. Industry consolidation has slashed the number of public companies. As a result, the former OGJ400 has become the OGJ300, which includes the 30 largest limited partnerships. But the assets-ranked list is larger because important financial totals - representing 1990 results - are significantly higher than those of a year ago, despite the lower number of companies. Consolidation of the U.S. producing industry gained momentum throughout the 1980s. Unable to sustain profitability in a period of sluggish energy prices and, for many, rising costs, companies sought relief through mergers or liquidation of producing properties. As this year's list shows, however, surviving companies have managed to grow. Assets for the OGJ300 group totaled $499.3 billion in 1990 - up 6.3% from the 1989 total of last year's OGJ400. Stockholders' equity moved up 5.3% to $170.7 billion. Stockholders' equity was as high as $233.8 billion in 1983.

  9. Propagation velocities of gas rings in collisional ring galaxies

    E-Print Network [OSTI]

    E. I. Vorobyov; D. Bizyaev

    2003-01-27T23:59:59.000Z

    The propagation velocity of the first gas ring in collisional ring galaxies, i.e. the velocity at which the maximum in the radial gas density profile propagates radially in the galactic disk, is usually inferred from the radial expansion velocity of gas in the first ring. Our numerical hydrodynamics modeling of ring galaxy formation however shows that the maximum radial expansion velocity of gas in the first ring ($v_{gas}$) is invariably below the propagation velocity of the first gas ring itself ($v_{ring}$). Modeling of the Cartwheel galaxy indicates that the outer ring is currently propagating at $v_{ring} \\approx$ 100 km/s, while the maximum radial expansion velocity of gas in the outer ring is currently $v_{gas} \\approx$ 65 km/s. Modeling of the radial B-V/V-K color gradients of the Cartwheel ring galaxy also indicates that the outer ring is propagating at $v_{ring} \\ge $ 90 km/s. We show that a combined effect of inclination, finite thickness, and warping of the Cartwheel's disk might be responsible for the lack of angular difference in the peak positions found for the azimuthally averaged $H\\alpha$, K and B surface brightness profiles of the Cartwheel's outer ring. Indeed, the radial $H\\alpha$ surface brightness profiles obtained along the Cartwheel's major axis, where effects of inclination and finite thickness are minimized, do peak exterior to those at K- and B-bands. The angular difference in peak positions implies $v_{ring}$ = 110 km/s, which is in agreement with the model predictions. We briefly discuss the utility of radio continuum emission and spectral line equivalent widths for determining the propagation velocity of gas rings in collisional ring galaxies.

  10. The fundamental solution of the unidirectional pulse propagation equation

    SciTech Connect (OSTI)

    Babushkin, I. [Institute of Mathematics, Humboldt University, Rudower Chaussee 25, 12489 Berlin (Germany)] [Institute of Mathematics, Humboldt University, Rudower Chaussee 25, 12489 Berlin (Germany); Bergé, L. [CEA, DAM, DIF, F-91297 Arpajon (France)] [CEA, DAM, DIF, F-91297 Arpajon (France)

    2014-03-15T23:59:59.000Z

    The fundamental solution of a variant of the three-dimensional wave equation known as “unidirectional pulse propagation equation” (UPPE) and its paraxial approximation is obtained. It is shown that the fundamental solution can be presented as a projection of a fundamental solution of the wave equation to some functional subspace. We discuss the degree of equivalence of the UPPE and the wave equation in this respect. In particular, we show that the UPPE, in contrast to the common belief, describes wave propagation in both longitudinal and temporal directions, and, thereby, its fundamental solution possesses a non-causal character.

  11. Heat pulse propagation in chaotic three-dimensional magnetic fields

    SciTech Connect (OSTI)

    Del-Castillo-Negrete, Diego [Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States); Blazevski, Daniel [Institute for Mechanical Systems, ETH, Zurich (Switzerland)

    2014-06-01T23:59:59.000Z

    Heat pulse propagation in three-dimensional chaotic magnetic fields is studied by numerically solving the parallel heat transport equation using a Lagrangian Green's function (LG) method. The main two problems addressed are: the dependence of the radial transport of heat pulses on the level of magnetic field stochasticity (controlled by the amplitude of the magnetic field perturbation, ?), and the role of reversed shear magnetic field configurations on heat pulse propagation. The role of separatrix reconnection of resonant modes in the shear reversal region, and the role of shearless Cantori in the observed phenomena are also discussed.

  12. Spherical Wave Propagation in a Nonlinear Elastic Medium

    SciTech Connect (OSTI)

    Korneev, Valeri A.

    2009-07-01T23:59:59.000Z

    Nonlinear propagation of spherical waves generated by a point-pressure source is considered for the cases of monochromatic and impulse primary waveforms. The nonlinear five-constant elastic theory advanced by Murnaghan is used where general equations of motion are put in the form of vector operators, which are independent of the coordinate system choice. The ratio of the nonlinear field component to the primary wave in the far field is proportional to ln(r) where r is a propagation distance. Near-field components of the primary field do not contribute to the far field of nonlinear component.

  13. Light propagation in generally covariant electrodynamics and the Fresnel equation

    E-Print Network [OSTI]

    Friedrich W. Hehl; Yuri N. Obukhov; Guillermo F. Rubilar

    2002-03-28T23:59:59.000Z

    Within the framework of generally covariant (pre-metric) electrodynamics, we specify a local vacuum spacetime relation between the excitation $H=({\\cal D},{\\cal H})$ and the field strength $F=(E,B)$. We study the propagation of electromagnetic waves in such a spacetime by Hadamard's method and arrive, with the constitutive tensor density $\\kappa\\sim\\partial H/\\partial F$, at a Fresnel equation which is algebraic of 4th order in the wave covector. We determine how the different pieces of $\\kappa$, in particular the axion and the skewon pieces, affect the propagation of light.

  14. Graviton propagators in supergravity and noncommutative gauge theory

    SciTech Connect (OSTI)

    Kitazawa, Yoshihisa [High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801 (Japan); Department of Particle and Nuclear Physics, Graduate University for Advanced Studies, Tsukuba, Ibaraki 305-0801 (Japan); Nagaoka, Satoshi [High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801 (Japan)

    2007-02-15T23:59:59.000Z

    We investigate the graviton propagator in the type IIB supergravity background which is dual to 4 dimensional noncommutative gauge theory. We assume that the boundary is located not at the infinity but at the noncommutative scale where the string frame metric exhibits the maximum. We argue that the Neumann boundary condition is the appropriate boundary condition to be adopted at the boundary. We find that the graviton propagator behaves just as that of the 4 dimensional massless graviton. On the other hand, the nonanalytic behaviors of the other Kaluza-Klein modes are not significantly affected by the Neumann boundary condition.

  15. TotalView | Argonne Leadership Computing Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:7.1 7.0 8.04.2 7.6 16.6TotalView

  16. 2013 Retail Power Marketers Sales- Total

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptember 25,9,1996 N Y M E2003CommercialTotal (Data

  17. 2013 Utility Bundled Retail Sales- Total

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices4 Oil demand8)Commercial (DataTotal (Data

  18. EQUUS Total Return Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOE FacilityDimondale,South, NewDyerTier2 Submit SoftwareEPB JumpEQUUS Total

  19. 2013 Total Electric Industry- Sales (Megawatthours

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi" ,"Plant","Primary1. TotalRevenue for

  20. Coupling schemes for modeling hydraulic fracture propagation using the XFEM

    E-Print Network [OSTI]

    Peirce, Anthony

    Coupling schemes for modeling hydraulic fracture propagation using the XFEM Elizaveta Gordeliy of hydraulic fractures in an elastic medium. With appropriate enrichment, the XFEM resolves the Neumann(h) accuracy. For hydraulic fracture problems with a lag separating the uid front from the fracture front, we

  1. Lifted First-Order Belief Propagation Parag Singla Pedro Domingos

    E-Print Network [OSTI]

    Prasad, Sanjiva

    applied to very small artificial problems. In this paper we propose the first lifted version of a scalable). (Limited lifted aspects are present in some earlier systems, like Pfeffer et al.'s (1999) SPOOK.) PooleLifted First-Order Belief Propagation Parag Singla Pedro Domingos Department of Computer Science

  2. Propagation of a shockrelated disturbance in the Earth's magnetosphere

    E-Print Network [OSTI]

    Santolik, Ondrej

    and intensification of the current is recorded at the Earth's surface as a sudden increase in the geomagnetic field the propagation processes that is not directly obtainable from point measurements made by (even several and earthward motion of the magnetopause. At the same time, the magnetopause current is intensified. The motion

  3. On the propagation of acceleration waves in thermoelastic micropolar

    E-Print Network [OSTI]

    Boyer, Edmond

    On the propagation of acceleration waves in thermoelastic micropolar medias Sobre la propagaci´on of accelerating waves in a general nonlinear thermoelastic micropolar media are established. Deformation of mi(t) at each point. We call a surface S(t) an accele- rating wave (or a singular surface for a solution

  4. On the Ergodic Theorem for non-linear wave propagation

    E-Print Network [OSTI]

    Luiz C. L. Botelho

    2012-07-02T23:59:59.000Z

    We present a complete study of the ergodic theorem for the difficult problem of non-linear wave propagations through cylindrical measures /path integrals and the famous Ruelle-Amrein-Geogerscu-Enss (R.A.G.E.) theorem on the caracterization of continuous spectrum of self-adjoint operators.

  5. Diffusive propagation of wave packets in a fluctuating periodic potential

    E-Print Network [OSTI]

    Eman Hamza; Yang Kang; Jeffrey Schenker

    2010-10-05T23:59:59.000Z

    We consider the evolution of a tight binding wave packet propagating in a fluctuating periodic potential. If the fluctuations stem from a stationary Markov process satisfying certain technical criteria, we show that the square amplitude of the wave packet after diffusive rescaling converges to a superposition of solutions of a heat equation.

  6. Wave propagation and shock formation in different magnetic structures

    E-Print Network [OSTI]

    Rebecca Centeno; Manuel Collados; Javier Trujillo Bueno

    2008-10-20T23:59:59.000Z

    Velocity oscillations "measured" simultaneously at the photosphere and the chromosphere -from time series of spectropolarimetric data in the 10830 A region- of different solar magnetic features allow us to study the properties of wave propagation as a function of the magnetic flux of the structure (i.e. two different-sized sunspots, a tiny pore and a facular region). While photospheric oscillations have similar characteristics everywhere, oscillations measured at chromospheric heights show different amplitudes, frequencies and stages of shock development depending on the observed magnetic feature. The analysis of the power and the phase spectra, together with simple theoretical modeling, lead to a series of results concerning wave propagation within the range of heights of this study. We find that, while the atmospheric cut-off frequency and the propagation properties of the different oscillating modes depend on the magnetic feature, in all the cases the power that reaches the high chromosphere above the atmospheric cut-off comes directly from the photosphere by means of linear vertical wave propagation rather than from non-linear interaction of modes.

  7. New Formulation of Causal Dissipative Hydrodynamics: Shock wave propagation

    E-Print Network [OSTI]

    Ph. Mota; G. S. Denicol; T. Koide; T. Kodama

    2007-01-19T23:59:59.000Z

    The first 3D calculation of shock wave propagation in a homogeneous QGP has been performed within the new formulation of relativistic dissipative hydrodynamics which preserves the causality. We found that the relaxation time plays an important role and also affects the angle of Mach cone.

  8. Peierls-Nabarro Barrier and Protein Loop Propagation

    E-Print Network [OSTI]

    Adam K. Sieradzan; Antti Niemi; Xubiao Peng

    2014-10-28T23:59:59.000Z

    When a self-localized quasiparticle excitation propagates along a discrete one dimensional lattice, it becomes subject to a dissipation that converts the kinetic energy into lattice vibrations. Eventually the kinetic energy does no longer enable the excitation to cross over the minimum energy barrier between neighboring sites, and the excitation becomes localized within a lattice cell. In the case of a protein, the lattice structure consists of the C-alpha backbone. The self-localized quasiparticle excitation is the elemental building block of loops. It can be modeled by a kink which solves a variant of the discrete non-linear Schroedinger equation (DNLS). We study the propagation of such a kink in the case of protein G related albumin-binding domain, using the UNRES coarse-grained molecular dynamics force field. We estimate the height of the energy barriers the kink needs to cross over, in order to propagate along the backbone lattice. We analyse how these barriers gives rise to both stresses and reliefs which control the kink movement. For this, we deform a natively folded protein structure by parallel translating the kink along the backbone away from its native position. We release the transposed kink, and we follow how it propagates along the backbone towards the native location. We observe that the dissipative forces which are exerted on the kink by the various energy barriers, have a pivotal role in determining how a protein folds towards its native state.

  9. WAVE PROPAGATION AND JET FORMATION IN THE CHROMOSPHERE

    SciTech Connect (OSTI)

    Heggland, L.; Hansteen, V. H.; Carlsson, M. [Institute of Theoretical Astrophysics, University of Oslo, P.O. Box 1029, Blindern, N-0315 Oslo (Norway); De Pontieu, B., E-mail: lars.heggland@astro.uio.no [Lockheed Martin Solar and Astrophysics Laboratory, 3251 Hanover Street, Organization ADBS, Building 252, Palo Alto, CA 94304 (United States)

    2011-12-20T23:59:59.000Z

    We present the results of numerical simulations of wave propagation and jet formation in solar atmosphere models with different magnetic field configurations. The presence in the chromosphere of waves with periods longer than the acoustic cutoff period has been ascribed to either strong inclined magnetic fields, or changes in the radiative relaxation time. Our simulations include a sophisticated treatment of radiative losses, as well as fields with different strengths and inclinations. Using Fourier and wavelet analysis techniques, we investigate the periodicity of the waves that travel through the chromosphere. We find that the velocity signal is dominated by waves with periods around 5 minutes in regions of strong, inclined field, including at the edges of strong flux tubes where the field expands, whereas 3 minute waves dominate in regions of weak or vertically oriented fields. Our results show that the field inclination is very important for long-period wave propagation, whereas variations in the radiative relaxation time have little effect. Furthermore, we find that atmospheric conditions can vary significantly on timescales of a few minutes, meaning that a Fourier analysis of wave propagation can be misleading. Wavelet techniques take variations with time into account and are more suitable analysis tools. Finally, we investigate the properties of jets formed by the propagating waves once they reach the transition region, and find systematic differences between the jets in inclined-field regions and those in vertical field regions, in agreement with observations of dynamic fibrils.

  10. STABILITY PROPERTIES OF LIGHT PROPAGATING IN FIBER OPTICS

    E-Print Network [OSTI]

    Kasman, Alex

    STABILITY PROPERTIES OF LIGHT PROPAGATING IN FIBER OPTICS ST´EPHANE LAFORTUNE Summary The study is crucial in applications such as lasers and optical fibers. In this proposal I will focus on a model of fiber optics: the Manakov system. This system consists of two differential equations, that is two

  11. Remote multi-color excitation using femtosecond propagating surface

    E-Print Network [OSTI]

    Potma, Eric Olaf

    Remote multi-color excitation using femtosecond propagating surface plasmon polaritons in gold away from a micrometer sized focused laser spot. We attribute the observed remote nonlinear signal of unwanted heating effects at the target site and represents an attractive approach for surface

  12. Full wave simulations of lower hybrid wave propagation in tokamaks

    E-Print Network [OSTI]

    Wright, John C.

    Full wave simulations of lower hybrid wave propagation in tokamaks J. C. Wright , P. T. Bonoli , C hybrid (LH) waves have the attractive property of damping strongly via electron Landau resonance. Consequently these waves are well-suited to driving current in the plasma periphery where the electron

  13. Axisymmmetric empty space: light propagation, orbits and dark matter

    E-Print Network [OSTI]

    Sergio Giardino

    2014-09-18T23:59:59.000Z

    This study presents a axisymmetric solution of the Einstein equations for empty space. The geometry is studied by determining its Petrov classification and Killing vectors. Light propagation, orbital motion and asymptotic and Newtonian limits are also studied. Additionally, cosmological applications of the geometry as an alternative model for the inflationary universe and as a substitute for dark matter and quintessence are also outlined.

  14. Robust Airline Schedule Planning: Minimizing Propagated Delay in ...

    E-Print Network [OSTI]

    2011-10-06T23:59:59.000Z

    highly brittle, performing poorly in practice as delays propagate rapidly throughout the network. The. Bureau of .... In contrast to airline recovery, where the objective is to achieve the best ..... weather conditions, air traffic flow management, passenger delays, equipment failure, and so on. ...... Airport Handling Manual. 2010.

  15. ESTIMATION OF DELAY PROPAGATION IN AVIATION SYSTEM USING BAYESIAN NETWORK

    E-Print Network [OSTI]

    delays is a major long-term objective of the Federal Aviation Administration (FAA). As demand1 ESTIMATION OF DELAY PROPAGATION IN AVIATION SYSTEM USING BAYESIAN NETWORK Ning Xu, George Donohue problems in the current aviation system. Methods are needed to analyze the manner in which micro

  16. ROOF CHARACTERISATION RELATED TO FIRE PROPAGATION RISK BY A NUMERICAL

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    ROOF CHARACTERISATION RELATED TO FIRE PROPAGATION RISK BY A NUMERICAL APPROACH L. Fournier1 , A by thé roof: - one is thé use of intumescent strips on thé roof, - thé other consists of extending thé fire walls (typically 70 cm or 1 m) above thé roof levé1 in order to prevent thé flame from being blown

  17. High-power, high-intensity laser propagation and interactions

    SciTech Connect (OSTI)

    Sprangle, Phillip [Plasma Physics Division, Naval Research Laboratory, Washington, DC 20375 (United States); Electrical and Computer Engineering and Physics, University of Maryland, College Park, Maryland 20740 (United States); Hafizi, Bahman [Plasma Physics Division, Naval Research Laboratory, Washington, DC 20375 (United States)

    2014-05-15T23:59:59.000Z

    This paper presents overviews of a number of processes and applications associated with high-power, high-intensity lasers, and their interactions. These processes and applications include: free electron lasers, backward Raman amplification, atmospheric propagation of laser pulses, laser driven acceleration, atmospheric lasing, and remote detection of radioactivity. The interrelated physical mechanisms in the various processes are discussed.

  18. Dam-Breach Flood Wave Propagation Using Dimensionless Parameters

    E-Print Network [OSTI]

    Ponce, V. Miguel

    Dam-Breach Flood Wave Propagation Using Dimensionless Parameters Victor M. Ponce, M.ASCE1 ; Ahmad to study the sensitivity of dam-breach flood waves to breach-outflow hydrograph volume, peak discharge the channel. A dam-breach Froude number is defined to enable analysis through a wide range of site and flow

  19. DNA ARRAY DECODING FROM NONLINEAR MEASUREMENTS BY BELIEF PROPAGATION

    E-Print Network [OSTI]

    DNA ARRAY DECODING FROM NONLINEAR MEASUREMENTS BY BELIEF PROPAGATION Mona A. Sheikh, Shriram Compressed Sensing (CS) and demonstrate its utility in DNA array decoding. In a CS DNA microarray, the array spots identify DNA sequences that are shared between multiple organisms, thereby reduc- ing the number

  20. Geometrical Properties and Propagation for the Proca Field Theory

    E-Print Network [OSTI]

    Luca Fabbri

    2009-08-28T23:59:59.000Z

    We consider the Proca field with dynamical term given by the exterior derivative with respect to the most general connection; the most general Proca field equations are given, and a discussion about the propagation and the geometrical properties are presented: it is shown that this generalization is inconsistent. So the standard theory is already the most general Proca Theory possible.

  1. Back Propagation is Sensitive to Initial Conditions John F. Kolen

    E-Print Network [OSTI]

    Pollack, Jordan B.

    Back Propagation is Sensitive to Initial Conditions John F. Kolen Jordan B. Pollack Laboratory Columbus, Ohio 43210, USA kolen­j@cis.ohio­state.edu, pollack@cis.ohio­state.edu TR 90­JK­BPSIC ABSTRACT. Kolen Jordan B. Pollack Laboratory for Artificial Intelligence Research Computer and Information Science

  2. Back Propagation is Sensitive to Initial Conditions John F. Kolen

    E-Print Network [OSTI]

    Pollack, Jordan B.

    Back Propagation is Sensitive to Initial Conditions John F. Kolen Jordan B. Pollack Laboratory Columbus, Ohio 43210, USA kolen-j@cis.ohio-state.edu, pollack@cis.ohio-state.edu TR 90-JK-BPSIC ABSTRACT. Kolen Jordan B. Pollack Laboratory for Artificial Intelligence Research Computer and Information Science

  3. Propagation and Re ection of Internal Waves B. R. Sutherland

    E-Print Network [OSTI]

    Sutherland, Bruce

    the frequency spectrum of the waves. I INTRODUCTION An internal wave is a disturbance propagating under the e a level where the Doppler-shifted frequency of the waves is comparable with the background buoyancy frequency. Although linear theory predicts that the waves should re ect if the Doppler-shifted frequency

  4. Radio Wave Propagation in Potato Fields John Thelen

    E-Print Network [OSTI]

    Kuzmanov, Georgi

    Radio Wave Propagation in Potato Fields John Thelen Wageningen University Email: John nodes. This paper reports on an extensive set of measurements taken in a potato field, where the foliage of the potato crop is significant. We observed a reduction of 15 dB in signal strength at 15 m between nodes

  5. Numerical modelling of VLF radio wave propagation through earth-ionosphere waveguide and its application to sudden ionospheric disturbances

    E-Print Network [OSTI]

    Pal, Sujay

    2015-01-01T23:59:59.000Z

    In this thesis, we theoretically predict the normal characteristics of Very Low Frequency (3~30 kHz) radio wave propagation through Earth-ionosphere waveguide corresponding to normal behavior of the D-region ionosphere. We took the VLF narrow band data from the receivers of Indian Centre for Space Physics (ICSP) to validate our models. Detection of sudden ionospheric disturbances (SIDs) are common to all the measurements. We apply our theoretical models to infer the D-region characteristics and to reproduce the observed VLF signal behavior corresponding to such SIDs. We develop a code based on ray theory to simulate the diurnal behavior of VLF signals over short propagation paths (2000~3000 km). The diurnal variation from this code are comparable to the variation obtained from a more general Long Wave Propagation Capability (LWPC) code which is based on mode theory approach. We simulate the observational results obtained during the Total Solar Eclipse of July 22, 2009 in India. We also report and simulate a h...

  6. Positron interactions with water–total elastic, total inelastic, and elastic differential cross section measurements

    SciTech Connect (OSTI)

    Tattersall, Wade [Centre for Antimatter-Matter Studies, Research School of Physics and Engineering, The Australian National University, Canberra, ACT 0200 (Australia) [Centre for Antimatter-Matter Studies, Research School of Physics and Engineering, The Australian National University, Canberra, ACT 0200 (Australia); Centre for Antimatter-Matter Studies, School of Engineering and Physical Sciences, James Cook University, Townsville, 4810 Queensland (Australia); Chiari, Luca [Centre for Antimatter-Matter Studies, School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide 5001, South Australia (Australia)] [Centre for Antimatter-Matter Studies, School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide 5001, South Australia (Australia); Machacek, J. R.; Anderson, Emma; Sullivan, James P. [Centre for Antimatter-Matter Studies, Research School of Physics and Engineering, The Australian National University, Canberra, ACT 0200 (Australia)] [Centre for Antimatter-Matter Studies, Research School of Physics and Engineering, The Australian National University, Canberra, ACT 0200 (Australia); White, Ron D. [Centre for Antimatter-Matter Studies, School of Engineering and Physical Sciences, James Cook University, Townsville, 4810 Queensland (Australia)] [Centre for Antimatter-Matter Studies, School of Engineering and Physical Sciences, James Cook University, Townsville, 4810 Queensland (Australia); Brunger, M. J. [Centre for Antimatter-Matter Studies, School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide 5001, South Australia (Australia) [Centre for Antimatter-Matter Studies, School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide 5001, South Australia (Australia); Institute of Mathematical Sciences, University of Malaya, 50603 Kuala Lumpur (Malaysia); Buckman, Stephen J. [Centre for Antimatter-Matter Studies, Research School of Physics and Engineering, The Australian National University, Canberra, ACT 0200 (Australia) [Centre for Antimatter-Matter Studies, Research School of Physics and Engineering, The Australian National University, Canberra, ACT 0200 (Australia); Institute of Mathematical Sciences, University of Malaya, 50603 Kuala Lumpur (Malaysia); Garcia, Gustavo [Instituto de F?sica Fundamental, Consejo Superior de Investigationes Cient?ficas (CSIC), Serrano 113-bis, E-28006 Madrid (Spain)] [Instituto de F?sica Fundamental, Consejo Superior de Investigationes Cient?ficas (CSIC), Serrano 113-bis, E-28006 Madrid (Spain); Blanco, Francisco [Departamento de F?sica Atomica, Molecular y Nuclear, Universidad Complutense de Madrid, E-28040 Madrid (Spain)] [Departamento de F?sica Atomica, Molecular y Nuclear, Universidad Complutense de Madrid, E-28040 Madrid (Spain)

    2014-01-28T23:59:59.000Z

    Utilising a high-resolution, trap-based positron beam, we have measured both elastic and inelastic scattering of positrons from water vapour. The measurements comprise differential elastic, total elastic, and total inelastic (not including positronium formation) absolute cross sections. The energy range investigated is from 1 eV to 60 eV. Comparison with theory is made with both R-Matrix and distorted wave calculations, and with our own application of the Independent Atom Model for positron interactions.

  7. Solar Total Energy Project final test report

    SciTech Connect (OSTI)

    Nelson, R.F.; Abney, L.O.; Towner, M.L. (Georgia Power Co., Shenandoah, GA (USA))

    1990-09-01T23:59:59.000Z

    The Solar Total Energy Project (STEP), a cooperative effort between the United States Department of Energy (DOE) and Georgia Power Company (GPC) located at Shenandoah, Georgia, has undergone several design modifications based on experience from previous operations and test programs. The experiences encountered were discussed in detail in the Solar Total Energy Project Summary Report'' completed in 1987 for DOE. Most of the proposed changes discussed in this report were installed and tested in 1987 as part of two 15-day test programs (SNL Contract No. 06-3049). However, several of the suggested changes were not completed before 1988. These plant modifications include a new distributed control system for the balance of plant (BOP), a fiber a optical communications ring for the field control system, and new control configuration reflecting the new operational procedures caused by the plant modifications. These modifications were tested during a non-consecutive day test, and a 60-day field test conducted during the autumn of 1989. These test were partially funded by SNL under Contract No. 42-4859, dated June 22, 1989. Results of these tests and preliminary analysis are presented in this test summary report. 9 refs., 19 figs., 7 tabs.

  8. Infrared Gluon and Ghost Propagators from Lattice QCD. Results from large asymmetric lattices

    E-Print Network [OSTI]

    O. Oliveira; P. J. Silva

    2006-11-15T23:59:59.000Z

    We report on the infrared limit of the quenched lattice Landau gauge gluon and ghost propagators as well as the strong coupling constant computed from large asymmetric lattices. The infrared lattice propagators are compared with the pure power law solutions from Dyson-Schwinger equations (DSE). For the gluon propagator, the lattice data is compatible with the DSE solution. The preferred measured gluon exponent being $\\sim 0.52$, favouring a null zero momentum propagator. The lattice ghost propagator shows finite volume effects and, for the volumes considered, the propagator does not follow a pure power law. Furthermore, the strong coupling constant is computed and its infrared behaviour investigated.

  9. Measurements and large eddy simulation of propagating premixed flames

    SciTech Connect (OSTI)

    Masri, A.R.; Cadwallader, B.J. [School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, Sydney, NSW 2006 (Australia); Ibrahim, S.S. [Department of Aeronautical and Automotive Engineering, Loughborough University, Loughborough LE11 3TU (United Kingdom)

    2006-07-15T23:59:59.000Z

    This paper presents an experimental and numerical study of unsteady turbulent premixed flames igniting in an initially stagnant mixture and propagating past solid obstacles. The objective here is to study the outstanding issue of flow-flame interactions in transient premixed combustion environments. Particular emphasis is placed on the burning rate and the structure of the flame front. The experimental configuration consists of a chamber with a square cross-section filled with a combustible mixture of propane-air ignited from rest. An array of baffle plates as well as geometrical obstructions of varying shapes and blockage ratios, are placed in the path of the flame as it propagates from the ignition source to the vented end of the enclosure. A range of flame propagation conditions are studied experimentally. Measurements are presented for pressure-time traces, high-speed images of the flame front, mean velocities obtained from particle imaging velocimetry and laser induced fluorescence images of the hydroxyl radical OH. Three-dimensional large eddy simulations (LES) are also made for a case where a square obstacle and an array of baffle plates are placed in the chamber. The dynamic Germano model and a simple flamelet combustion model are used at the sub-grid scale. The effects of grid size and sub-grid filter width are also discussed. Calculations and measurements are found to be in good agreement with respect to flame structure and peak overpressure. Turbulence levels increase significantly at the leading edge of the flame as it propagates past the array of baffle plates and the obstacle. With reference to the regime diagrams for turbulent premixed combustion, it is noted that the flame continues to lie in the zones of thin reactions or corrugated flamelets regardless of the stage of propagation along the chamber. (author)

  10. UPRE method for total variation parameter selection

    SciTech Connect (OSTI)

    Wohlberg, Brendt [Los Alamos National Laboratory; Lin, Youzuo [Los Alamos National Laboratory

    2008-01-01T23:59:59.000Z

    Total Variation (TV) Regularization is an important method for solving a wide variety of inverse problems in image processing. In order to optimize the reconstructed image, it is important to choose the optimal regularization parameter. The Unbiased Predictive Risk Estimator (UPRE) has been shown to give a very good estimate of this parameter for Tikhonov Regularization. In this paper we propose an approach to extend UPRE method to the TV problem. However, applying the extended UPRE is impractical in the case of inverse problems such as de blurring, due to the large scale of the associated linear problem. We also propose an approach to reducing the large scale problem to a small problem, significantly reducing computational requirements while providing a good approximation to the original problem.

  11. Project Profile: Transformational Approach to Reducing the Total...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transformational Approach to Reducing the Total System Costs of Building-Integrated Photovoltaics Project Profile: Transformational Approach to Reducing the Total System Costs of...

  12. Enantioselective total syntheses of acylfulvene, irofulven, and the agelastatins

    E-Print Network [OSTI]

    Siegel, Dustin S. (Dustin Scott), 1980-

    2010-01-01T23:59:59.000Z

    I. Enantioselective Total Synthesis of (-)-Acylfulvene, and (-)-Irofulven We report the enantioselective total synthesis of (-)-acylfulvene and (-)-irofulven, which features metathesis reactions for the rapid assembly of ...

  13. Total synthesis of Class II and Class III Galbulimima Alkaloids

    E-Print Network [OSTI]

    Tjandra, Meiliana

    2010-01-01T23:59:59.000Z

    I. Total Synthesis of All Class III Galbulimima Alkaloids We describe the total synthesis of (+)- and (-)-galbulimima alkaloid 13, (-)-himgaline anad (-)-himbadine. The absolute stereochemistry of natural (-)-galbulimima ...

  14. In vivo tibial force measurement after total knee arthroplasty

    E-Print Network [OSTI]

    D'Lima, Darryl David

    2007-01-01T23:59:59.000Z

    and Colwell, C. W. , Jr. : The press-fit condylar total kneeColwell, C. W. , Jr. : Press-fit condylar design total knee

  15. NREL: Building America Total Quality Management - 2015 Peer Review...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Building America Total Quality Management - 2015 Peer Review NREL: Building America Total Quality Management - 2015 Peer Review Presenter: Stacey Rothgeb, NREL View the...

  16. Guided Wave Propagation in Tubular Section with Multi-Layered Viscoelastic Coating 

    E-Print Network [OSTI]

    Kuo, Chi-Wei 1982-

    2012-11-16T23:59:59.000Z

    Three kinds of propagating waves physically admissible in a tubular section are derived to establish their dispersion characteristics in response to the presence of multi-layered viscoelastic coatings. One is the longitudinal wave that propagates...

  17. Influence of Induced natural convection on laser propagation : analysis and interferometric visualization

    E-Print Network [OSTI]

    Bhakta, Aditya (Aditya S.)

    2010-01-01T23:59:59.000Z

    This thesis analyzes the influence of a self-induced natural convection flow on the propagation of a high energy laser beam. The two configurations considered are of a vertical laser beam (propagation direction opposite ...

  18. Electric field control of domain wall propagation in Pt/Co/GdOx films

    E-Print Network [OSTI]

    Bauer, Uwe

    The influence of a gate voltage on domain wall (DW) propagation is investigated in ultrathin Pt/Co/gadolinium oxide (GdOx) films with perpendicular magnetic anisotropy. The DW propagation field can be enhanced or retarded ...

  19. Self-consistent solution of the Schwinger-Dyson equations for the nucleon and meson propagators

    SciTech Connect (OSTI)

    Bracco, M.E.; Eiras, A.; Krein, G. [Instituto de Fisica Teorica-Universidade Estadual Paulista, Rua Pamplona, 145-01405-900 Sao Paulo, Sao Paulo (Brazil)] [Instituto de Fisica Teorica-Universidade Estadual Paulista, Rua Pamplona, 145-01405-900 Sao Paulo, Sao Paulo (Brazil); Wilets, L. [Department of Physics, FM-15, University of Washington, Seattle, Washington 98195 (United States)] [Department of Physics, FM-15, University of Washington, Seattle, Washington 98195 (United States)

    1994-03-01T23:59:59.000Z

    The Schwinger-Dyson equations for the nucleon and meson propagators are solved self-consistently in an approximation that goes beyond the Hartree-Fock approximation. The traditional approach consists in solving the nucleon Schwinger-Dyson equation with bare meson propagators and bare meson-nucleon vertices; the corrections to the meson propagators are calculated using the bare nucleon propagator and bare nucleon-meson vertices. It is known that such an approximation scheme produces the appearance of ghost poles in the propagators. In this paper the coupled system of Schwinger-Dyson equations for the nucleon and the meson propagators are solved self-consistently including vertex corrections. The interplay of self-consistency and vertex corrections on the ghosts problem is investigated. It is found that the self-consistency does not affect significantly the spectral properties of the propagators. In particular, it does not affect the appearance of the ghost poles in the propagators.

  20. A holographic bound on the total number of computations in the visible Universe

    E-Print Network [OSTI]

    Maurice H. P. M. van Putten

    2014-08-12T23:59:59.000Z

    Information and encoding are central to holographic imaging of matter and fields within a two-surface. We consider the probability of detection of particles inside star-like holographic screens defined by their propagators. Imaging a point particle of mass m hereby requires I = 2 pi mr in log2 bits on a spherical screen or radius r. Encoding the three hairs of mass, charge, angular momentum and radiation requires a minimum of four bits. This formulation leads directly to Reissner-Nordstrom black holes and extremal Kerr black holes for minimal screens, that envelope event horizons. Applied to the cosmological event horizon, the total number of computations in the visible Universe is found to be bounded by 10e121.

  1. Propagating spectroscopy of backward volume spin waves in a metallic FeNi film

    SciTech Connect (OSTI)

    Sato, N.; Ishida, N.; Kawakami, T. [Department of Physics, Keio University, Hiyoshi 3-14-1, Yokohama 223-8522 (Japan); Sekiguchi, K., E-mail: koji-s@phys.keio.ac.jp [Department of Physics, Keio University, Hiyoshi 3-14-1, Yokohama 223-8522 (Japan); JST-PRESTO, Gobancho 7, Chiyoda-ku, Tokyo 102-0076 (Japan)

    2014-01-20T23:59:59.000Z

    We report a propagating spin wave spectroscopy for a magnetostatic backward volume spin wave in a metallic Fe{sub 19}Ni{sub 81} film. We show that the mutual-inductance between two independent antennas detects a small but clear propagation signal of backward volume spin waves. All experimental data are consistent with the time-domain propagating spin-wave spectroscopy. The control of propagating backward spin wave enables to realize the miniaturize spin-wave circuit.

  2. Electrochemical Waves on Patterned Surfaces: Propagation through Narrow Gaps and Konstantin Agladze, Stephanie Thouvenel-Romans, and Oliver Steinbock*

    E-Print Network [OSTI]

    Steinbock, Oliver

    Electrochemical Waves on Patterned Surfaces: Propagation through Narrow Gaps and Channels propagation through narrow gaps and long channels. In channels, the wave velocity decreases with decreasing dynamically similar phenomena such as propagating fronts, target patterns, and rotating spiral waves. Pattern

  3. Propagation of gravitational waves in the nonperturbative spinor vacuum

    E-Print Network [OSTI]

    Vladimir Dzhunushaliev; Vladimir Folomeev

    2014-09-02T23:59:59.000Z

    The propagation of gravitational waves on the background of a nonperturbative vacuum of a spinor field is considered. It is shown that there are several distinctive features in comparison with the propagation of plane gravitational waves through empty space: there exists the fixed phase difference between the $h_{yy,zz}$ and $h_{yz}$ components of the wave; the phase and group velocities of gravitational waves are not equal to the velocity of light; the group velocity is always less than the velocity of light; under some conditions the gravitational waves are either damped or absent; for given frequency, there exist two waves with different wave vectors. We also discuss the possibility of experimental verification of the obtained effects as a tool to investigate nonperurbative quantum field theories.

  4. Time propagation of constrained coupled Gaussian wave packets

    E-Print Network [OSTI]

    T. Fabcic; J. Main; G. Wunner

    2007-11-14T23:59:59.000Z

    The dynamics of quantum systems can be approximated by the time propagation of Gaussian wave packets. Applying a time dependent variational principle, the time evolution of the parameters of the coupled Gaussian wave packets can be calculated from a set of ordinary differential equations. Unfortunately, the set of equations is ill-behaved in most practical applications, depending on the number of propagated Gaussian wave packets, and methods for regularization are needed. We present a general method for regularization based on applying adequate nonholonomic inequality constraints to the evolution of the parameters, keeping the equations of motion well-behaved. The power of the method is demonstrated for a non-integrable system with two degrees of freedom.

  5. Propagation of ultra-short solitons in stochastic Maxwell's equations

    SciTech Connect (OSTI)

    Kurt, Levent, E-mail: LKurt@gc.cuny.edu [Department of Science, Borough of Manhattan Community College, City University of New York, New York, New York 10007 (United States)] [Department of Science, Borough of Manhattan Community College, City University of New York, New York, New York 10007 (United States); Schäfer, Tobias [Department of Mathematics, College of Staten Island, City University of New York, Staten Island, New York 10314 (United States)] [Department of Mathematics, College of Staten Island, City University of New York, Staten Island, New York 10314 (United States)

    2014-01-15T23:59:59.000Z

    We study the propagation of ultra-short short solitons in a cubic nonlinear medium modeled by nonlinear Maxwell's equations with stochastic variations of media. We consider three cases: variations of (a) the dispersion, (b) the phase velocity, (c) the nonlinear coefficient. Using a modified multi-scale expansion for stochastic systems, we derive new stochastic generalizations of the short pulse equation that approximate the solutions of stochastic nonlinear Maxwell's equations. Numerical simulations show that soliton solutions of the short pulse equation propagate stably in stochastic nonlinear Maxwell's equations and that the generalized stochastic short pulse equations approximate the solutions to the stochastic Maxwell's equations over the distances under consideration. This holds for both a pathwise comparison of the stochastic equations as well as for a comparison of the resulting probability densities.

  6. Fresnel analysis of the wave propagation in nonlinear electrodynamics

    E-Print Network [OSTI]

    Yuri N. Obukhov; Guillermo F. Rubilar

    2002-04-05T23:59:59.000Z

    We study the wave propagation in nonlinear electrodynamical models. Particular attention is paid to the derivation and the analysis of the Fresnel equation for the wave covectors. For the class of general nonlinear Lagrangian models, we demonstrate how the originally quartic Fresnel equation factorizes, yielding the generic birefringence effect. We show that the closure of the effective constitutive (or jump) tensor is necessary and sufficient for the absence of birefringence, i.e., for the existence of a unique light cone structure. As another application of the Fresnel approach, we analyze the light propagation in a moving isotropic nonlinear medium. The corresponding effective constitutive tensor contains non-trivial skewon and axion pieces. For nonmagnetic matter, we find that birefringence is induced by the nonlinearity, and derive the corresponding optical metrics.

  7. Longitudinally propagating arc wave in the pre-onset optical aurora V. M. Uritsky,1

    E-Print Network [OSTI]

    California at Berkeley, University of

    Longitudinally propagating arc wave in the pre-onset optical aurora V. M. Uritsky,1 J. Liang,1 E aurora ­ the longitudinally propagating arc wave (LPAW) ­ associated with flapping oscillations, and K. H. Glassmeier (2009), Longitudinally propagating arc wave in the pre-onset optical aurora

  8. Online Submission ID: 0594 Sound Propagation in Large Complex Environments Using Wave-Ray Coupling

    E-Print Network [OSTI]

    North Carolina at Chapel Hill, University of

    Online Submission ID: 0594 Sound Propagation in Large Complex Environments Using Wave-Ray Coupling-3 cal acoustic techniques for sound propagation that computes how4 sound waves travel in space reducing the overall computation.19 1 Introduction20 Sound propagation techniques determine how sound waves

  9. Online Submission ID: 0301 Wave-Ray Coupling for Interactive Sound Propagation in Large Complex Scenes

    E-Print Network [OSTI]

    North Carolina at Chapel Hill, University of

    Online Submission ID: 0301 Wave-Ray Coupling for Interactive Sound Propagation in Large Complex numerical techniques.18 1 Introduction19 Sound propagation techniques are used to model how sound waves20 applications use geometric sound propagation40 techniques, which assume that sound waves travels like rays

  10. Active Sensor Wave Propagation Health Monitoring of Beam and Plate Structures

    E-Print Network [OSTI]

    Giurgiutiu, Victor

    1 Active Sensor Wave Propagation Health Monitoring of Beam and Plate Structures Victor Giurgiutiu, Jingjing Bao, Wei Zhao University of South Carolina ABSTRACT Active sensor wave propagation technique is a relatively new method for in-situ nondestructive evaluation (NDE). Elastic waves propagating in material

  11. Inferring Propagation Direction of Nonlinear Internal Waves in a Vertically Sheared Background Flow

    E-Print Network [OSTI]

    Kelley, Dan

    Inferring Propagation Direction of Nonlinear Internal Waves in a Vertically Sheared Background Flow are resistant to heaving. The beamwise method provides accurate predictions of wave propagation angle for cases 2005). Determining the wave propagation di- rection, so that one may in turn identify potential lo

  12. Propagation of guided Lamb waves in bonded specimens using piezoelectric wafer active sensors

    E-Print Network [OSTI]

    Giurgiutiu, Victor

    Propagation of guided Lamb waves in bonded specimens using piezoelectric wafer active sensors and principles used for generation and propagation of ultrasonic guided waves (Lamb waves) using piezoelectric wafer active sensors (PWAS). Keywords: Ultrasonic, Lamb waves, Damage detection, NDE, Wave propagation

  13. Water-wave propagation through an infinite array of floating structures

    E-Print Network [OSTI]

    Water-wave propagation through an infinite array of floating structures Benjamin G. Carter and P Kingdom May 30, 2012 Abstract The frequency-domain problem of water-wave propagation through affect wave forces. The study of wave propagation through lattices has a long history in many research

  14. Wave-Based Sound Propagation in Large Open Scenes using an Equivalent Source Formulation

    E-Print Network [OSTI]

    North Carolina at Chapel Hill, University of

    Wave-Based Sound Propagation in Large Open Scenes using an Equivalent Source Formulation RAVISH We present a novel approach for wave-based sound propagation suitable for large, open spaces spanning or simulation systems, present a significant chal- lenge for interactive, wave-based sound propagation

  15. SH Wave Propagation in Semiconductor/Piezoelectric Structures Jianke Du, Xiaoying Jin, Ji Wang

    E-Print Network [OSTI]

    Wang, Ji

    SH Wave Propagation in Semiconductor/Piezoelectric Structures Jianke Du, Xiaoying Jin, Ji Wang Acoustic wave propagating in a piezoelectric crystal is usually accompanied by an electric field. When of the initial stress on the propagation of SH surface wave has remarkable importance for design of devices

  16. The Effect of Surface Wave Propagation on Neural Responses to Vibration in Primate Glabrous Skin

    E-Print Network [OSTI]

    Elias, Damian Octavio

    The Effect of Surface Wave Propagation on Neural Responses to Vibration in Primate Glabrous Skin preserved as it travels across the skin. Our results suggest, then, that the propagation of surface waves of Surface Wave Propagation on Neural Responses to Vibration in Primate Glabrous Skin. PLoS ONE 7(2): e31203

  17. Approximations to wave propagation through doubly-periodic arrays of scatterers

    E-Print Network [OSTI]

    Approximations to wave propagation through doubly-periodic arrays of scatterers P. Mc Abstract The propagation of waves through a doubly-periodic array of identical rigid scatterers of matched asymptotic expansions is used to obtain the dispersion relation corresponding to wave propagation

  18. The Propagation of Rayleigh Waves in Layered Piezoelectric Structures with Viscosity

    E-Print Network [OSTI]

    Wang, Ji

    The Propagation of Rayleigh Waves in Layered Piezoelectric Structures with Viscosity Jinxiang Shen frequency and wave propagation. With the known major properties such as the quality factor, we can obtain, filters, and delay lines made by surface acoustic waves propagating along the surface of piezoelectric

  19. Waves and propagation failure in discrete space models with nonlinear coupling and

    E-Print Network [OSTI]

    Waves and propagation failure in discrete space models with nonlinear coupling and feedback Markus by the linearisation ahead of the wave front. Wave propagation (and failure) is studied when the homogeneous dynamics are bistable. Simulations show that waves may propagate in either direction, or may be pinned. A Lyapunov

  20. Propagation of a solitary fission wave A. G. Osborne, G. D. Recktenwald, and M. R. Deinerta)

    E-Print Network [OSTI]

    Deinert, Mark

    Propagation of a solitary fission wave A. G. Osborne, G. D. Recktenwald, and M. R. Deinerta waves can arise that will propagate at constant velocity. Numerical studies have shown that fission the conditions required for a solitary fission wave to propagate at constant velocity. The results place strict

  1. Wave propagation in a seven-story reinforced concrete building I. Theoretical modelsq

    E-Print Network [OSTI]

    Southern California, University of

    Wave propagation in a seven-story reinforced concrete building I. Theoretical modelsq M natural to use wave propagation methods. In this paper (Part I), we review several two-dimensional wave/s and bx/bz 1 for EW vibrations. The velocity of shear waves propagating through the slabs is estimated

  2. Wave propagation across acoustic / Biot's media: a finite-difference method

    E-Print Network [OSTI]

    Boyer, Edmond

    Wave propagation across acoustic / Biot's media: a finite-difference method Guillaume Chiavassa1 Marseille, France. Abstract. Numerical methods are developed to simulate the wave propagation in het- erogeneous 2D fluid / poroelastic media. Wave propagation is described by the usual acoustics equations (in

  3. PROPAGATION OF A-WAVE IN A PLANE PLATE EXPERIMENTAL STUDY

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    PROPAGATION OF A-WAVE IN A PLANE PLATE EXPERIMENTAL STUDY Loïc MARTINEZ Jean DUCLOS Alain TINEL ABSTRACT The propagation of the A-wave is investigated theoretically on a plane brass plate completly a wide development over these ten last years. These studies show that an incident plane wave propagating

  4. Supplementary Information for Generation and reversal of surface flows by propagating waves

    E-Print Network [OSTI]

    Loss, Daniel

    Supplementary Information for Generation and reversal of surface flows by propagating waves-4) and Supplementary Figures 1-8. Generation and reversal of surface flows by propagating waves localized time-periodic perturbations of water surface generate waves propagating away from the plungers

  5. Discontinuously propagating waves in the bathoferroin-catalyzed BelousovZhabotinsky reaction incorporated into a microemulsion

    E-Print Network [OSTI]

    Epstein, Irving R.

    Discontinuously propagating waves in the bathoferroin-catalyzed Belousov­Zhabotinsky reaction new types of discontinuously propagating waves are reported in the bathoferroin-catalyzed Belousov at higher temperatures 40 °C . All these waves propagate discontinuously in a saltatory fashion. Other

  6. On the effective plate thickness of monolayer graphene from flexural wave propagation

    E-Print Network [OSTI]

    Lin, Xi

    On the effective plate thickness of monolayer graphene from flexural wave propagation Sung Youb Kim utilize classical molecular dynamics to study flexural, or transverse wave propagation in monolayer) mode of wave propagation in a thin plate with plate thickness of h ¼ 0:104 nm. Finally, we find

  7. EFFECT OF CONTACT VISCOSITY AND ROUGHNESS ON INTERFACE STIFFNESS AND WAVE PROPAGATION

    E-Print Network [OSTI]

    Boyer, Edmond

    EFFECT OF CONTACT VISCOSITY AND ROUGHNESS ON INTERFACE STIFFNESS AND WAVE PROPAGATION Anil Misra1 and asperity properties compete in determining the stiffness behavior, and consequently, the wave propagation widely used to investigate plane wave propagation through contacts between two rough solids [see

  8. Review Article Propagating waves in thalamus, cortex and the thalamocortical system

    E-Print Network [OSTI]

    Destexhe, Alain

    Review Article Propagating waves in thalamus, cortex and the thalamocortical system: Experiments-sensitive dye Multi-electrode array Population dynamics Propagating waves Oscillations Sensory cortices Spiking neural networks a b s t r a c t Propagating waves of activity have been recorded in many species

  9. Experimental Measurements of the Propagation of Large Amplitude Shear Alfv n Waves

    E-Print Network [OSTI]

    California at Los Angles, University of

    1 Experimental Measurements of the Propagation of Large Amplitude Shear Alfv n Waves Walter perturbation when Bwave/B0 exceeds 10-3 even when the wave propagates below the cyclotron frequency ions. We present data of the wave propagation in which the temporal history of the vector magnetic

  10. Numerical modeling of wave propagation in random anisotropic heterogeneous elastic media

    E-Print Network [OSTI]

    Boyer, Edmond

    Numerical modeling of wave propagation in random anisotropic heterogeneous elastic media Q.-A. Ta numerical experiments that were performed on wave propagation in a randomly generated anisotropic used for the propagation of waves in geophysical media are not compatible with the surface recordings

  11. Water-wave propagation through an infinite array of cylindrical structures

    E-Print Network [OSTI]

    Water-wave propagation through an infinite array of cylindrical structures P. McIver Department is made into water-wave propagation through a doubly-periodic array of vertical cylinders extending for which wave propagation without change of amplitude is possible (`passing bands'), and for which

  12. PARAMETRIC STUDIES OF WAVE PROPAGATION THROUGH IMPERFECT INTERFACES USING MICROMECHANICS BASED

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    PARAMETRIC STUDIES OF WAVE PROPAGATION THROUGH IMPERFECT INTERFACES USING MICROMECHANICS BASED, University of Missouri-Kansas City, Kansas City, MO 64110 ABSTRACT. Plane wave propagation through contact to investigate the plane wave propagation through contact between two rough solids [see for example 1

  13. NOTES AND CORRESPONDENCE Dissipative Losses in Nonlinear Internal Waves Propagating across the

    E-Print Network [OSTI]

    Smyth, William David

    NOTES AND CORRESPONDENCE Dissipative Losses in Nonlinear Internal Waves Propagating across, however, dissipative ef- fects are negligible and the wave may be considered freely propagating. We of an individual wave propagating onto the con- tinental shelf (Fig. 1). In particular, we follow the lead- ing

  14. Analytical study of the propagation of acoustic waves in a 1D weakly disordered lattice

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Analytical study of the propagation of acoustic waves in a 1D weakly disordered lattice O. Richoux of the propagation of an acoustic wave through a normally distributed disordered lattice made up of Helmholtz propagation in random media, waveguide, scattering of acoustic waves. PACS 11.80.La ; 42.25.Dd ; 43.20.Mv ; 43

  15. THz Sommerfeld wave propagation on a single metal wire Tae-In Jeon,a

    E-Print Network [OSTI]

    THz Sommerfeld wave propagation on a single metal wire Tae-In Jeon,a Jiangquan Zhang, and D an experimental and theoretical study of THz Sommerfeld wave propagation on a single copper wire. THz pulses increasing interest on the guided wave propagation of THz pulses, and much effort and progress on THz

  16. Backward wave propagation in left-handed media with isotropic and anisotropic

    E-Print Network [OSTI]

    Mojahedi, Mohammad

    Backward wave propagation in left-handed media with isotropic and anisotropic permittivity tensors medium is investigated from a purely wave propagation point of view. The functional form for the index-velocity vectors are antiparallel. It is shown that, in the case considered, the backward-wave propagation can

  17. EE-335 -EM Wave Propagation 4 Lecture pp: 287-295 7-1:2

    E-Print Network [OSTI]

    Kaiser, Todd J.

    4-1 EE-335 - EM Wave Propagation 4 Lecture pp: 287-295 7-1:2 This is a typical wireless complex and the propagation constant gets replaced with the wave number k (lossless) µ =-= kk 22 #12 communication scheme: Generator Transmission Line Transmitting Antenna Radiation Pattern Free Space Propagation

  18. Topology drives calcium wave propagation in 3D astrocyte networks Jules Lallouette, Hugues Berry

    E-Print Network [OSTI]

    Boyer, Edmond

    Topology drives calcium wave propagation in 3D astrocyte networks Jules Lallouette, Hugues Berry themselves inter-connected as networks and communicate via chemical wave propagation. How astrocyte wave work, we investigate the influence of the character- istics of the network topology on wave propagation

  19. RELATION OF THE WAVE{PROPAGATION METRIC TENSOR TO THE CURVATURES

    E-Print Network [OSTI]

    Cerveny, Vlastislav

    RELATION OF THE WAVE{PROPAGATION METRIC TENSOR TO THE CURVATURES OF THE SLOWNESS AND RAY The contravariant components of the wave{propagation metric tensor equal half the second{order partial derivatives. The relations of the wave{ propagation metric tensor to the curvature matrix and Gaussian curvature

  20. Convectively Coupled Waves Propagating along an Equatorial ITCZ JULIANA DIAS AND OLIVIER PAULUIS

    E-Print Network [OSTI]

    Pauluis, Olivier M.

    Convectively Coupled Waves Propagating along an Equatorial ITCZ JULIANA DIAS AND OLIVIER PAULUIS waves propagate at the moist gravity wave speed (about 15 m s21 ), whereas for a narrow ITCZ, the propagation speed is comparable to the dry gravity wave (about 50 m s21 ). It is also shown that a Kelvin wave

  1. http://rcc.its.psu.edu/hpc Influence of Temperature on Guided Wave Propagation

    E-Print Network [OSTI]

    Bjørnstad, Ottar Nordal

    http://rcc.its.psu.edu/hpc Influence of Temperature on Guided Wave Propagation Manton J. Guers Ph-established technique for studying ultrasonic wave propagation in both conventional and guided wave applications in the mechanical properties influences the guided wave propagation. In order to analysis the transient results

  2. Trigger-Wave Propagation in Arbitrary Metrics in Asynchronous Cellular Logic Arrays

    E-Print Network [OSTI]

    Dudek, Piotr

    Trigger-Wave Propagation in Arbitrary Metrics in Asynchronous Cellular Logic Arrays Przemyslaw image processing tasks using trigger-wave propagation in a medium with a hardware-controlled metric. The principles of wave propagation in cellular four-connected logic arrays emulating different distance measure

  3. PROPAGATION OF ALFVN WAVES AT THE PLASMA SHEET BOUNDARY Robert L. Lysak and Yan Song

    E-Print Network [OSTI]

    Lysak, Bob

    PROPAGATION OF ALFVÃ?N WAVES AT THE PLASMA SHEET BOUNDARY LAYER Robert L. Lysak and Yan Song School conversion or by localized plasma flows in the tail. The generation and propagation of these waves is studied nonlinear MHD simulations of wave propagation at the boundary layer. INTRODUCTION Recent observations from

  4. High amplitude wave propagation in collapsible tubes. II. Forerunners and high amplitude waves

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    773 High amplitude wave propagation in collapsible tubes. II. Forerunners and high amplitude waves that, under certain circumstances, a pressure wave of large amplitude which propagates in a fluid feature of such a shock wave propagation inside an initially collapsed tube is the presence ofwavelets

  5. The role of heterogeneities and intercellular coupling in wave propagation in cardiac tissue

    E-Print Network [OSTI]

    Glass, Leon

    The role of heterogeneities and intercellular coupling in wave propagation in cardiac tissue propagation without breakup, plane wave breakup into spiral waves and plane wave block. In the theoretical with the propagation of an electrical wave through the cardiac tissue in a coordinated manner. The wave of activity

  6. Journal of Mining Science, Vol. 45, No. 5, 2009 MODELING THE ELASTIC WAVE PROPAGATION

    E-Print Network [OSTI]

    Alexandrov, Victor

    427 Journal of Mining Science, Vol. 45, No. 5, 2009 MODELING THE ELASTIC WAVE PROPAGATION UDC 622.7 + 622 The wave propagation analysis revealed that the low-frequency pendulum wave propagating in a 2D block medium with periodic structure due to the action of local impulse has a two-wave

  7. Propagation of Intercellular Calcium Waves in Retinal Astrocytes and Mu ller Cells

    E-Print Network [OSTI]

    Newman, Eric A.

    Propagation of Intercellular Calcium Waves in Retinal Astrocytes and Mu¨ ller Cells Eric A. Newman. Experiments were conducted to determine the mechanism of Ca2 wave propagation between glial cells in an intact fluo-4. Mechanical stimulation of astrocyte somata evoked Ca2 waves that propagated through both

  8. Continued Fraction Absorbing Boundary Conditions for Transient Elastic Wave Propagation Modeling

    E-Print Network [OSTI]

    Guddati, Murthy N.

    Continued Fraction Absorbing Boundary Conditions for Transient Elastic Wave Propagation Modeling Md of the truncated exterior. Development of an accurate ABC for transient elastic wave propagation problems are obtained by factoring the wave equation into outward and inward propagating operators and permitting only

  9. Industrial scale in vitro propagation by Somatic Embryogenesis Applied research project

    E-Print Network [OSTI]

    Uppsala Universitet

    , packaging, hygiene, textile and other fiber related industries. SweTree Technologies has 32 employees1 Industrial scale in vitro propagation by Somatic Embryogenesis Applied research project Swe up the industrial scale in vitro propagation system for Norway spruce. The propagation process

  10. Burning Velocities in Catalytically Assisted Self-Propagating High-Temperature Combustion Synthesis Systems

    E-Print Network [OSTI]

    Wooldridge, Margaret S.

    Burning Velocities in Catalytically Assisted Self-Propagating High-Temperature Combustion Synthesis of catalytically assisted self-propagating high-temperature synthesis (SHS) of the tantalum/carbon material system. © 2001 by The Combustion Institute INTRODUCTION Self-propagating high-temperature combustion synthesis

  11. Soil Test P vs. Total P in Wisconsin Soils

    E-Print Network [OSTI]

    Balser, Teri C.

    Soil Test P vs. Total P in Wisconsin Soils Larry G. Bundy & Laura W. Good Department of Soil Science University of Wisconsin-Madison #12;Introduction · Soil test P is often measured · Little information is available on total P content of soils · Why do we care about total P now? ­ Soil total P

  12. Total Operators and Inhomogeneous Proper Values Equations

    E-Print Network [OSTI]

    Jose G. Vargas

    2015-03-27T23:59:59.000Z

    Kaehler's two-sided angular momentum operator, K + 1, is neither vector-valued nor bivector-valued. It is total in the sense that it involves terms for all three dimensions. Constant idempotents that are "proper functions" of K+1's components are not proper functions of K+1. They rather satisfy "inhomogeneous proper-value equations", i.e. of the form (K + 1)U = {\\mu}U + {\\pi}, where {\\pi} is a scalar. We consider an equation of that type with K+1 replaced with operators T that comprise K + 1 as a factor, but also containing factors for both space and spacetime translations. We study the action of those T's on linear combinations of constant idempotents, so that only the algebraic (spin) part of K +1 has to be considered. {\\pi} is now, in general, a non-scalar member of a Kaehler algebra. We develop the system of equations to be satisfied by the combinations of those idempotents for which {\\pi} becomes a scalar. We solve for its solutions with {\\mu} = 0, which actually also makes {\\pi} = 0: The solutions with {\\mu} = {\\pi} = 0 all have three constituent parts, 36 of them being different in the ensemble of all such solutions. That set of different constituents is structured in such a way that we might as well be speaking of an algebraic representation of quarks. In this paper, however, we refrain from pursuing this identification in order to emphasize the purely mathematical nature of the argument.

  13. Totally Corrective Boosting with Cardinality Penalization

    E-Print Network [OSTI]

    Vasil S. Denchev; Nan Ding; Shin Matsushima; S. V. N. Vishwanathan; Hartmut Neven

    2015-04-07T23:59:59.000Z

    We propose a totally corrective boosting algorithm with explicit cardinality regularization. The resulting combinatorial optimization problems are not known to be efficiently solvable with existing classical methods, but emerging quantum optimization technology gives hope for achieving sparser models in practice. In order to demonstrate the utility of our algorithm, we use a distributed classical heuristic optimizer as a stand-in for quantum hardware. Even though this evaluation methodology incurs large time and resource costs on classical computing machinery, it allows us to gauge the potential gains in generalization performance and sparsity of the resulting boosted ensembles. Our experimental results on public data sets commonly used for benchmarking of boosting algorithms decidedly demonstrate the existence of such advantages. If actual quantum optimization were to be used with this algorithm in the future, we would expect equivalent or superior results at much smaller time and energy costs during training. Moreover, studying cardinality-penalized boosting also sheds light on why unregularized boosting algorithms with early stopping often yield better results than their counterparts with explicit convex regularization: Early stopping performs suboptimal cardinality regularization. The results that we present here indicate it is beneficial to explicitly solve the combinatorial problem still left open at early termination.

  14. Propagation of uncertainties in the nuclear DFT models

    E-Print Network [OSTI]

    Markus Kortelainen

    2014-09-04T23:59:59.000Z

    Parameters of the nuclear density functional theory (DFT) models are usually adjusted to experimental data. As a result they carry certain theoretical error, which, as a consequence, carries out to the predicted quantities. In this work we address the propagation of theoretical error, within the nuclear DFT models, from the model parameters to the predicted observables. In particularly, the focus is set on the Skyrme energy density functional models.

  15. Wave propagation in periodic networks of thin fibers

    E-Print Network [OSTI]

    S. Molchanov; B. Vainberg

    2009-08-02T23:59:59.000Z

    We will discuss a one-dimensional approximation for the problem of wave propagation in networks of thin fibers. The main objective here is to describe the boundary (gluing) conditions at branching points of the limiting one-dimensional graph. The results will be applied to Mach-Zehnder interferometers on chips and to periodic chains of the interferometers. The latter allows us to find parameters which guarantee the transparency and slowing down of wave packets.

  16. Gain-assisted superluminal light propagation via incoherent pump field

    E-Print Network [OSTI]

    M. Mahmoudi; S. Worya Rabiei; L. Safari; M. Sahrai

    2008-08-03T23:59:59.000Z

    We investigate the dispersion and the absorption properties of a weak probe field in a three-level Lambda-type atomic system. We use just an incoherent field for controlling the group velocity of light. It is shown that the slope of dispersion changes from positive to negative just with changing the intensity of the indirect incoherent pumping field. Gain-assisted superluminal light propagation appears in this system. No laser field is used in the pumping processes.

  17. Estimating propagation velocity through a surface acoustic wave sensor

    SciTech Connect (OSTI)

    Xu, Wenyuan (Oakdale, MN); Huizinga, John S. (Dellwood, MN)

    2010-03-16T23:59:59.000Z

    Techniques are described for estimating the propagation velocity through a surface acoustic wave sensor. In particular, techniques which measure and exploit a proper segment of phase frequency response of the surface acoustic wave sensor are described for use as a basis of bacterial detection by the sensor. As described, use of velocity estimation based on a proper segment of phase frequency response has advantages over conventional techniques that use phase shift as the basis for detection.

  18. Ultraslow Propagation of Squeezed Vacuum Pulses with Electromagnetically Induced Transparency

    E-Print Network [OSTI]

    Daisuke Akamatsu; Yoshihiko Yokoi; Manabu Arikawa; Satoshi Nagatsuka; Takahito Tanimura; Akira Furusawa; Mikio Kozuma

    2008-01-27T23:59:59.000Z

    We have succeeded in observing ultraslow propagation of squeezed vacuum pulses with electromagnetically induced transparency. Squeezed vacuum pulses (probe lights) were incident on a laser cooled 87Rb gas together with an intense coherent light (control light). A homodyne method sensitive to the vacuum state was employed for detecting the probe pulse passing through the gas. A delay of 3.1us was observed for the probe pulse having a temporal width of 10 us.

  19. QCD plasma parameters and the gauge-dependent gluon propagator

    SciTech Connect (OSTI)

    Kobes, R.; Kunstatter, G.; Rebhan, A. (Department of Physics, University of Winnipeg, 515 Portage Avenue, Winnipeg, Manitoba (Canada) Institut fuer Theoretische Physik, Technische Universitaet Wien, Wiedner Haupstrasse 8-10, A-1040 Vienna (Austria))

    1990-06-18T23:59:59.000Z

    We derive the Ward identities that determine the gauge dependence of the QCD dispersion relations obtained from the ordinary gluon propagator in a certain class of gauges. These identities hold for complex structure functions at both zero and finite temperature. A direct consequence of our analysis is that the gauge dependence of the gluon-plasma damping constant obtained in recent one-loop calculations is due to an inconsistent approximation scheme.

  20. Perpendicular propagating modes for weakly magnetized relativistic degenerate plasma

    SciTech Connect (OSTI)

    Abbas, Gohar; Bashir, M. F. [Salam Chair in Physics, G. C. University Lahore, Punjab 54000 (Pakistan); Department of Physics, G. C. University Lahore, Punjab 54000 (Pakistan); Murtaza, G. [Salam Chair in Physics, G. C. University Lahore, Punjab 54000 (Pakistan)

    2012-07-15T23:59:59.000Z

    Using the Vlasov-Maxwell system of equations, the dispersion relations for the perpendicular propagating modes (i.e., X-mode, O-mode, and upper hybrid mode) are derived for a weakly magnetized relativistic degenerate electron plasma. By using the density (n{sub 0}=p{sub F}{sup 3}/3{pi}{sup 2} Planck-Constant-Over-Two-Pi {sup 3}) and the magnetic field values for different relativistic degenerate environments, the propagation characteristics (i.e., cutoff points, resonances, dispersions, and band widths in k-space) of these modes are examined. It is observed that the relativistic effects suppress the effect of ambient magnetic field and therefore the cutoff and resonance points shift towards the lower frequency regime resulting in enhancement of the propagation domain. The dispersion relations of these modes for the non-relativistic limit (p{sub F}{sup 2} Much-Less-Than m{sub 0}{sup 2}c{sup 2}) and the ultra-relativistic limit (p{sub F}{sup 2} Much-Greater-Than m{sub 0}{sup 2}c{sup 2}) are also presented.