Powered by Deep Web Technologies
Note: This page contains sample records for the topic "on-site evaluation process" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

GRR/Section 10 - On-Site Evaluation Process | Open Energy Information  

Open Energy Info (EERE)

GRR/Section 10 - On-Site Evaluation Process GRR/Section 10 - On-Site Evaluation Process < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 10 - On-Site Evaluation Process 10SiteEvaluation.pdf Click to View Fullscreen Contact Agencies Bureau of Land Management U S Army Corps of Engineers United States Environmental Protection Agency Fish and Wildlife Service United States Department of Defense Regulations & Policies Endangered Species Act Clean Water Act Clean Air Act Triggers None specified Click "Edit With Form" above to add content 10SiteEvaluation.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative

2

RESIDENTIAL ON SITE SOLAR HEATING SYSTEMS: A PROJECT EVALUATION USING THE CAPITAL ASSET PRICING MODEL  

E-Print Network (OSTI)

representation of an On Site Solar Heating System. CML w c6782 Residential On"Site Solar Heating Systems: A ·p-r~jectof an On Site Solar Heating System. Representation of

Schutz, Stephen Richard

2011-01-01T23:59:59.000Z

3

Residential on site solar heating systems: a project evaluation using the capital asset pricing model  

SciTech Connect

An energy source ready for immediate use on a commercial scale is solar energy in the form of On Site Solar Heating (OSSH) systems. These systems collect solar energy with rooftop panels, store excess energy in water storage tanks and can, in certain circumstances, provide 100% of the space heating and hot water required by the occupants of the residential or commercial structure on which the system is located. Such systems would take advantage of a free and inexhaustible energy source--sunlight. The principal drawback of such systems is the high initial capital cost. The solution would normally be a carefully worked out corporate financing plan. However, at the moment it is individual homeowners and not corporations who are attempting to finance these systems. As a result, the terms of finance are excessively stringent and constitute the main obstacle to the large scale market penetration of OSSH. This study analyzes the feasibility of OSSH as a private utility investment. Such systems would be installed and owned by private utilities and would displace other investment projects, principally electric generating plants. The return on OSSH is calculated on the basis of the cost to the consumer of the equivalent amount of electrical energy that is displaced by the OSSH system. The hurdle rate for investment in OSSH is calculated using the Sharpe--Lintner Capital Asset Pricing Model. The results of this study indicate that OSSH is a low risk investment having an appropriate hurdle rate of 7.9%. At this rate, OSSH investment appears marginally acceptable in northern California and unambiguously acceptable in southern California. The results also suggest that utility investment in OSSH should lead to a higher degree of financial leverage for utility companies without a concurrent deterioration in the risk class of utility equity.

Schutz, S.R.

1978-12-01T23:59:59.000Z

4

Process Evaluations | Superconducting Magnet Division  

NLE Websites -- All DOE Office Websites (Extended Search)

Process Evaluations Process Assessment Form Operational Control Form Environmental Mgmt. Program Training Module Process Description AM-522-EAO (pdf) OCF (pdf) EMP (pdf) AM-ENV-FS1...

5

ORISE: Process and Program Evaluation  

NLE Websites -- All DOE Office Websites (Extended Search)

Process and Program Evaluation Process and Program Evaluation As an integral part of producing effective health and safety programs, the Oak Ridge Institute for Science and Education (ORISE) conducts scientific-based process and program evaluation to provide government agencies and organizations with the tools to improve the health of workers and the general public. Whether the goal is to change awareness, attitudes, beliefs, behaviors, policies or systems, ORISE helps determine the right evaluation methods based on specific needs and resources, including: Formative evaluations to assess the problem, target audience needs and guide successful process implementation Assessments to identify unmet needs in programs, organizations or communities Audience evaluations to learn about targeted populations

6

ORISE: Process and Program Evaluation  

NLE Websites -- All DOE Office Websites (Extended Search)

Process and Program Evaluation As an integral part of producing effective health and safety programs, the Oak Ridge Institute for Science and Education (ORISE) conducts...

7

Preliminary Process and Market Evaluation  

NLE Websites -- All DOE Office Websites (Extended Search)

- February 13, 2013 - February 13, 2013 BBNP Preliminary Process & Market Study ? LBNL Project Manager: Ed Vine DOE Project Manager: Jeff Dowd Project Team: Research Into Action, Inc., NMR Group, Evergreen Economic Consulting, and Nexant, Inc. Page 2 - February 13, 2013 BBNP Preliminary Process & Market Study ? Who we are We are a team of evaluators... independent of the BBNP program with whom DOE has contracted to assess the performance of BBNP and identify lessons learned We are: Research Into Action, NMR Group, Nexant, and Evergreen Economics Page 3 - February 13, 2013 BBNP Preliminary Process & Market Study ? What we are doing, what we hope to learn We are assessing the national BBNP program, not individual grantees or their programs

8

Evaluating verbose query processing techniques  

E-Print Network (OSTI)

Verbose or long queries are a small but significant part of the query stream in web search, and are common in other applications such as collaborative question answering (CQA). Current search engines perform well with keyword queries but are not, in general, effective for verbose queries. In this paper, we examine query processing techniques which can be applied to verbose queries prior to submission to a search engine in order to improve the search engine’s results. We focus on verbose queries that have sentence-like structure, but are not simple “wh- ” questions, and assume the search engine is a “black box. ” We evaluated the output of two search engines using queries from a CQA service and our results show that, among a broad range of techniques, the most effective approach is to simply reduce the length of the query. This can be achieved effectively by removing “stop structure ” instead of only stop words. We show that the process of learning and removing stop structure from a query can be effectively automated.

Samuel Huston; W. Bruce Croft

2010-01-01T23:59:59.000Z

9

Issues evaluation process at Rocky Flats Plant  

SciTech Connect

This report describes the issues evaluation process for Rocky Flats Plant as established in July 1990. The issues evaluation process was initiated February 27, 1990 with a Charter and Process Overview for short-term implementation. The purpose of the process was to determine the projects required for completion before the Phased Resumption of Plutonium Operations. To determine which projects were required, the issues evaluation process and emphasized risk mitigation, based on a ranking system. The purpose of this report is to document the early design of the issues evaluation process to record the methodologies used that continue as the basis for the ongoing Issues Management Program at Rocky Flats Plant.

Smith, L.C.

1992-04-16T23:59:59.000Z

10

Commercial Building Technology Evaluation Process  

NLE Websites -- All DOE Office Websites (Extended Search)

Flow 4 Proposed Program Elements Building Technologies Program 2 2 commercialbuildings.energy.gov ver ew Program Overview * Program Objective: - Evaluate emerging and underutilized...

11

Preliminary Process and Market Evaluation  

NLE Websites -- All DOE Office Websites (Extended Search)

13, 2013 BBNP Preliminary Process & Market Study ? LBNL Project Manager: Ed Vine DOE Project Manager: Jeff Dowd Project Team: Research Into Action, Inc., NMR Group,...

12

Preliminary evaluation of alternative waste form solidification processes. Volume II. Evaluation of the processes  

Science Conference Proceedings (OSTI)

This Volume II presents engineering feasibility evaluations of the eleven processes for solidification of nuclear high-level liquid wastes (HHLW) described in Volume I of this report. Each evaluation was based in a systematic assessment of the process in respect to six principal evaluation criteria: complexity of process; state of development; safety; process requirements; development work required; and facility requirements. The principal criteria were further subdivided into a total of 22 subcriteria, each of which was assigned a weight. Each process was then assigned a figure of merit, on a scale of 1 to 10, for each of the subcriteria. A total rating was obtained for each process by summing the products of the subcriteria ratings and the subcriteria weights. The evaluations were based on the process descriptions presented in Volume I of this report, supplemented by information obtained from the literature, including publications by the originators of the various processes. Waste form properties were, in general, not evaluated. This document describes the approach which was taken, the developent and application of the rating criteria and subcriteria, and the evaluation results. A series of appendices set forth summary descriptions of the processes and the ratings, together with the complete numerical ratings assigned; two appendices present further technical details on the rating process.

Not Available

1980-08-01T23:59:59.000Z

13

Super Efficient Refrigerator Program (SERP) evaluation. Volume 1: Process evaluation  

Science Conference Proceedings (OSTI)

The Pacific Northwest National Laboratory (PNNL) conducted this study for the US Department of Energy (DOE) as part of the Super Efficient Refrigerator Program (SERP) Evaluation. This report documents the SERP formation and implementation process, and identifies preliminary program administration and implementation issues. The findings are based primarily on interviews with those familiar with the program, such as utilities, appliance manufacturers, and SERP administrators. These interviews occurred primarily between March and April 1995, when SERP was in the early stages of program implementation. A forthcoming report will estimate the preliminary impacts of SERP within the industry and marketplace. Both studies were funded by DOE at the request of SERP Inc., which sought a third-party evaluation of its program.

Sandahl, L.J.; Ledbetter, M.R.; Chin, R.I.; Lewis, K.S.; Norling, J.M.

1996-01-01T23:59:59.000Z

14

Coal liquefaction process streams characterization and evaluation  

Science Conference Proceedings (OSTI)

Under contract from the DOE , and in association with CONSOL Inc., Battelle, Pacific Northwest Laboratory (PNL) evaluated four principal and several complementary techniques for the analysis of non-distillable direct coal liquefaction materials in support of process development. Field desorption mass spectrometry (FDMS) and nuclear magnetic resonance (NMR) spectroscopic methods were examined for potential usefulness as techniques to elucidate the chemical structure of residual (nondistillable) direct coal liquefaction derived materials. Supercritical fluid extraction (SFE) and supercritical fluid chromatography/mass spectrometry (SFC/MS) were evaluated for effectiveness in compound-class separation and identification of residual materials. Liquid chromatography (including microcolumn) separation techniques, gas chromatography/mass spectrometry (GC/MS), mass spectrometry/mass spectrometry (MS/MS), and GC/Fourier transform infrared (FTIR) spectroscopy methods were applied to supercritical fluid extracts. The full report authored by the PNL researchers is presented here. The following assessment briefly highlights the major findings of the project, and evaluates the potential of the methods for application to coal liquefaction materials. These results will be incorporated by CONSOL into a general overview of the application of novel analytical techniques to coal-derived materials at the conclusion of CONSOL's contract.

Campbell, J.A.; Linehan, J.C.; Robins, W.H. (Battelle Pacific Northwest Lab., Richland, WA (United States))

1992-07-01T23:59:59.000Z

15

Application Content and Evaluation Criteria/Process  

NLE Websites -- All DOE Office Websites (Extended Search)

Evaluation Criteria/Process Jill Gruber Golden Field Office Department of Energy May 18, 2007 The information presented here is an outline of how the Funding Opportunity Announcement (FOA) may be structured. The final application requirements will be shown in the FOA when it is posted on Grants.gov. The schedule and awards are dependent on future appropriations and may change if future appropriations are lower than expected or in the event of a continuing resolution. DOE Points of Contact DOE Golden Field Office: Jill Gruber, Project Officer Bob Kingsley, Contract Specialist Stephanie Carabajal, Contracting Officer DOE HQ: Pete Devlin, Technology Development Manager Preliminary Application Content * Separate applications for each topic * Title should identify the topic area

16

Atmospheric process evaluation of mobile source emissions  

DOE Green Energy (OSTI)

During the past two decades there has been a considerable effort in the US to develop and introduce an alternative to the use of gasoline and conventional diesel fuel for transportation. The primary motives for this effort have been twofold: energy security and improvement in air quality, most notably ozone, or smog. The anticipated improvement in air quality is associated with a decrease in the atmospheric reactivity, and sometimes a decrease in the mass emission rate, of the organic gas and NO{sub x} emissions from alternative fuels when compared to conventional transportation fuels. Quantification of these air quality impacts is a prerequisite to decisions on adopting alternative fuels. The purpose of this report is to present a critical review of the procedures and data base used to assess the impact on ambient air quality of mobile source emissions from alternative and conventional transportation fuels and to make recommendations as to how this process can be improved. Alternative transportation fuels are defined as methanol, ethanol, CNG, LPG, and reformulated gasoline. Most of the discussion centers on light-duty AFVs operating on these fuels. Other advanced transportation technologies and fuels such as hydrogen, electric vehicles, and fuel cells, will not be discussed. However, the issues raised herein can also be applied to these technologies and other classes of vehicles, such as heavy-duty diesels (HDDs). An evaluation of the overall impact of AFVs on society requires consideration of a number of complex issues. It involves the development of new vehicle technology associated with engines, fuel systems, and emission control technology; the implementation of the necessary fuel infrastructure; and an appropriate understanding of the economic, health, safety, and environmental impacts associated with the use of these fuels. This report addresses the steps necessary to properly evaluate the impact of AFVs on ozone air quality.

NONE

1995-07-01T23:59:59.000Z

17

Cyber Security Evaluations Appraisal Process Guide - April 2008 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cyber Security Evaluations Appraisal Process Guide - April 2008 Cyber Security Evaluations Appraisal Process Guide - April 2008 Cyber Security Evaluations Appraisal Process Guide - April 2008 April 2008 Cyber Security Evaluations Appraisal Process Guide was developed for the purpose of documenting the appraisal approach and techniques specific to evaluations of classified and unclassified cyber security programs throughout DOE. Office of Cyber Security Evaluations Appraisal Process Guide provides additional insight into the Office of Cyber Security Evaluations (HS-62) evaluation approach and processes associated with assessing classified and unclassified cyber security programs. The objective of this document is to establish a standard approach and methodology for conducting cyber security reviews that is well understood by all inspection participants.

18

Sample Documents for On-Site Renewable Power Purchase Agreements |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Funding » On-Site Renewable Power Purchase Agreements » Funding » On-Site Renewable Power Purchase Agreements » Sample Documents for On-Site Renewable Power Purchase Agreements Sample Documents for On-Site Renewable Power Purchase Agreements October 7, 2013 - 3:37pm Addthis The Federal Energy Management Program (FEMP) works with Federal agencies and partners to assemble sample documents from past on-site renewable power purchase agreement (PPA) projects to help streamline the PPA process. Requests for Proposal and Contracts Sample documents are available for the following requests for proposal: Photovoltaics at the Department of Energy's (DOE) Princeton Plasma Physics Laboratory: PPA request for proposal issued by DLA Energy on behalf of Princeton Plasma Physics Laboratory. National Renewable Energy Laboratory (NREL) Photovoltaics Opportunity

19

Improved sulfur removal processes evaluated for IGCC  

SciTech Connect

An inherent advantage of Integrated Coal Gasification Combined Cycle (IGCC) electric power generation is the ability to easily remove and recover sulfur. During the last several years, a number of new, improved sulfur removal and recovery processes have been commercialized. An assessment is given of alternative sulfur removal processes for IGCC based on the Texaco coal gasifier. The Selexol acid gas removal system, Claus sulfur recovery, and SCOT tail gas treating are currently used in Texaco-based IGCC. Other processes considered are: Purisol, Sulfinol-M, Selefning, 50% MDEA, Sulften, and LO-CAT. 2 tables.

1986-12-01T23:59:59.000Z

20

Evaluation of process systems operating envelopes  

E-Print Network (OSTI)

This thesis addresses the problem of worst-case steady-state design of process systems under uncertainty, also known as robust design. Designing for the worst case is of great importance when considering systems for ...

Stuber, Matthew David

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "on-site evaluation process" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Interim On-Site Storage of Low Level Waste: Volume 1: Licensing and Regulatory Issues  

Science Conference Proceedings (OSTI)

This report is an all-inclusive resource guide for evaluating a utility's on-site storage licensing requirements. Specifically, the report offers an extensive review of licensing and regulatory documents related to on-site storage of low level waste as well as a methodology for evaluating on-site storage licensing issues.

1992-06-01T23:59:59.000Z

22

Coal liquefaction process streams characterization and evaluation  

DOE Green Energy (OSTI)

This study clearly demonstrated the usefulness of liquid- and solid-state {sup 13}C- and {sup 1}H-NMR for the examination of process-derived materials from direct coal liquefaction. The techniques can provide data not directly obtainable by other methods to examine the saturation of aromatic rings and to determine the modes of hydrogen utilization during coal liquefaction. In addition, these methods can be used to infer the extent of condensation and retrograde reactions occurring in the direct coal liquefaction process. Five NMR techniques were employed. Solid-state {sup 13}C-NMR measurements were made using the Cross Polarization Magic Angle Spinning (CP/MAS) and Single Pulse (SP) techniques. Solid-state {sup 1}H-NMR measurements were made using the technique of Combined Rotation and Multiple-Pulse spectroscopy (CRAMPS). Conventional liquid-state {sup 12}C- and {sup 1}H-NMR techniques were employed as appropriate. Interpretation of the NMR data, once obtained, is relatively straightforward. Combined with other information, such as elemental analyses and process conversion data, the NMR data prove to be a powerful tool for the examination of direct coal liquefaction process-derived material. Further development and more wide-spread application of this analytical method as a process development tool is justified on the basis of these results.

Miknis, F.P. (Western Research Inst., Laramie, WY (United States))

1991-11-01T23:59:59.000Z

23

EVALUATION OF ALTERNATIVE STRONIUM AND TRANSURANIC SEPARATION PROCESSES  

SciTech Connect

In order to meet contract requirements on the concentrations of strontium-90 and transuranic isotopes in the immobilized low-activity waste, strontium-90 and transuranics must be removed from the supernate of tanks 241-AN-102 and 241-AN-107. The process currently proposed for this application is an in-tank precipitation process using strontium nitrate and sodium permanganate. Development work on the process has not proceeded since 2005. The purpose of the evaluation is to identify whether any promising alternative processes have been developed since this issue was last examined, evaluate the alternatives and the baseline process, and recommend which process should be carried forward.

SMALLEY CS

2011-04-25T23:59:59.000Z

24

Security Evaluations Appraisal Process Guide - April 2008 | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Evaluations Appraisal Process Guide - April 2008 Evaluations Appraisal Process Guide - April 2008 Security Evaluations Appraisal Process Guide - April 2008 April 2008 The Safeguards and Security Appraisal Process Guide provides additional planning techniques and a detailed set of tables that describe the necessary steps to successfully conduct each phase of a safeguards and security appraisal activity. Office of Security Evaluations (HS-61) has prepared the Safeguards and Security Appraisal Process Guide, as part of a continuing effort to enhance the quality and consistency of safeguards and security appraisals. This guide should be used along with the Office of Independent Oversight (HS-60) Appraisal Process Protocols that describes the overall philosophy, scope, and general procedures applicable to all Independent Oversight appraisal

25

Evaluation of machining dispersions for turning process  

E-Print Network (OSTI)

In this article we propose to extend the model of simulation of dispersions in turning based on the geometrical specifications. Our study is articulated around two trends of development: the first trend relates to the geometrical model. The geometrical model suggested must allow a follow-up of the geometry of the part during the simulation of machining. It is thus a question of carrying out a systematic treatment of the whole dimensioning and tolerancing process while being based on the principles of the \\DeltaL method. We also planned to integrate this type of specification in the model of simulation of machining suggested. It is more generally a question of extending the traditional model for better taking into account the multi axis specification of coaxiality and perpendicularity on the turned workpieces. The second trend of our study relates to the widening of the field of application of the model. We propose to extend the field of application of the model by taking into account the modifications of several parameters of the manufacturing process plans, likely to involve variations of dispersions.

Arnaud Lefebvre; Valery Wolff

2008-03-03T23:59:59.000Z

26

Coal liquefaction process streams characterization and evaluation  

DOE Green Energy (OSTI)

This study demonstrated the feasibility of using temperature-programmed electron spin resonance (ESR) and thermogravimetric analysis (TGA) for the examination of tetrahydrofuran (THF)-soluble distillation resid materials derived from direct coal liquefaction. TGA is used to quantitate volatile losses in a temperature-programmed experiment. The TGA data are used to correct the free radical densities obtained by ESR as volatile material is evolved from the samples in the temperature-programmed ESR experiment. The techniques, when employed in tandem, can be used to determine the content and nature of the free radicals in the samples at temperatures approximating those used in the liquefaction process. TGA and ESR experiments were performed in flowing nitrogen and hydrogen, at ambient pressure. No significant difference was observed in the ESR spectra in the different atmospheres, except in the case of low-rank coal-derived resids. The TGA results, however, were systematically different; mass loss in an H[sub 2] atmosphere is consistently higher than that observed in an N[sub 2] atmosphere. It was shown that temperature-programmed ESR, which can pinpoint conditions at which the free radical content is the highest, has potential to be a guide for the appropriate choice of conditions for optimum resid upgrading. Further development of these combined analytical methods as process development tools appears justified based on these results.

Ibrahim, M.M.; Seehra, M.S. (West Virginia Univ., Morgantown, WV (United States). Dept. of Physics)

1992-10-01T23:59:59.000Z

27

Field Artillery Ammunition Processing System (FAAPS) concept evaluation study  

SciTech Connect

The Field Artillery Ammunition Processing System (FAAPS) is an initiative to introduce a palletized load system (PLS) that is transportable with an automated ammunition processing and storage system for use on the battlefield. System proponents have targeted a 20% increase in the ammunition processing rate over the current operation while simultaneously reducing the total number of assigned field artillery battalion personnel by 30. The overall objective of the FAAPS Project is the development and demonstration of an improved process to accomplish these goals. The initial phase of the FAAPS Project and the subject of this study is the FAAPS concept evaluation. The concept evaluation consists of (1) identifying assumptions and requirements, (2) documenting the process flow, (3) identifying and evaluating technologies available to accomplish the necessary ammunition processing and storage operations, and (4) presenting alternative concepts with associated costs, processing rates, and manpower requirements for accomplishing the operation. This study provides insight into the achievability of the desired objectives.

Kring, C.T.; Babcock, S.M.; Watkin, D.C.; Oliver, R.P.

1992-06-01T23:59:59.000Z

28

Coal liquefaction process streams characterization and evaluation  

Science Conference Proceedings (OSTI)

This is the eleventh Quarterly Technical Progress Report under DOE Contract DE-AC22-89PC89883. Major topics reported are: (1) The results of a study designed to determine the effects of the conditions employed at the Wilsonville slurry preheater vessel on coal conversion is described. (2) Stable carbon isotope ratios were determined and used to source the carbon of three product samples from Period 49 of UOP bench-scale coprocessing Run 37. The results from this coprocessing run agree with the general trends observed in other coprocessing runs that we have studied. (3) Microautoclave tests and chemical analyses were performed to calibrate'' the reactivity of the standard coal used for determining donor solvent quality of process oils in this contract. (4) Several aspects of Wilsonville Close-Coupled Integrated Two-Stage Liquefaction (CC-ITSL) resid conversion kinetics were investigated; results are presented. Error limits associated with calculations of deactivation rate constants previously reported for Runs 258 and 261 are revised and discussed. A new procedure is described that relates the conversions of 850[degrees]F[sup +] , 1050[degrees]F[sup +], and 850 [times] 1050[degrees]F material. Resid conversions and kinetic constants previously reported for Run 260 were incorrect; corrected data and discussion are found in Appendix I of this report.

Brandes, S.D.; Lancet, M.S.; Robbins, G.A.; Winschel, R.A.; Burke, F.P.

1992-11-01T23:59:59.000Z

29

Office of Cyber Security Evaluations Appraisal Process Guide, April 2008  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CYBER SECURITY EVALUATIONS CYBER SECURITY EVALUATIONS APPRAISAL PROCESS GUIDE April 2008 Office of Health, Safety and Security U.S. Department of Energy Office of Cyber Security Evaluations Appraisal Process Guide Preface April 2008 i Preface Department of Energy (DOE) Order 470.2B, Independent Oversight and Performance Assurance Program, and Office of Health, Safety and Security (HSS) Standard Operating Procedure, SOP-10-01, Independent Oversight Appraisal Process Protocols, February 2008, provide direction for the Office of Independent Oversight (HS-60) to establish the requirements, responsibilities, and processes for the development and maintenance of Appraisal Process Protocols that describe the activities for evaluating the effectiveness of DOE safeguards and security; cyber security; emergency management; and

30

Office of Security Evaluations Appraisal Process Guide, April 2008  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SECURITY EVALUATIONS SECURITY EVALUATIONS APPRAISAL PROCESS GUIDE April 2008 Office of Health, Safety and Security U.S. Department of Energy Office of Security Evaluations Appraisal Process Guide Preface April 2008 i Preface The Office of Security Evaluations (HS-61) has prepared the Safeguards and Security Appraisal Process Guide, as part of a continuing effort to enhance the quality and consistency of safeguards and security appraisals. This guide should be used along with the Office of Independent Oversight (HS-60) Appraisal Process Protocols that describes the overall philosophy, scope, and general procedures applicable to all Independent Oversight appraisal activities, as dictated in DOE Orders 470.2B, Independent Oversight and Performance Assurance Program, and 226.1, Implementation of Department of Energy Oversight Policy. In

31

Office of Environment, Safety and Health Evaluations Appraisal Process  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Environment, Safety and Health Evaluations Appraisal Environment, Safety and Health Evaluations Appraisal Process Guide, July 29, 2009 Office of Environment, Safety and Health Evaluations Appraisal Process Guide, July 29, 2009 This guide is a subordinate document to the Independent Oversight Appraisal Process Protocols. While the protocols provide general guidance common to all appraisal activities, this document provides additional detail and guidance regarding procedures and methods specific to ES&H appraisals conducted by Independent Oversight. DOE Order 470.2B is an important reference document that defines program requirements and, in particular, defines processes for sites to respond to identified vulnerabilities and to develop corrective action plans. The processes described in this guide are used for all ES&H appraisals, including periodic inspections, special

32

ECONOMICS OF ON-SITE WASTE GASIFICATION ALFRED C. W. EGGEN  

E-Print Network (OSTI)

procedure for estimating costs for industrial, on-site, waste gasification processes. However, gen eralizingECONOMICS OF ON-SITE WASTE GASIFICATION ALFRED C. W. EGGEN K. T. Lear Associates. Inc. Manchester, Charles R Velzy Associates, Inc., Elmsford, N.Y. On-site waste gasification may well be an at tractive

Columbia University

33

Modeling On-Site Utility Systems Using "APLUS"  

E-Print Network (OSTI)

Most energy saving schemes on industrial sites lead to reductions in the steam and/or power demands on an on-site utility system. Accurate knowledge of the marginal and incremental costs of the available levels of steam and shaft power from such systems is, therefore, essential for the correct economic evaluation of proposed retrofit schemes. Knowledge of marginal costs is also essential for continuous optimal operation of on-site utility systems. "APLUS" is an IBM-PC based software package developed for evaluation of marginal and incremental costs of on-site utilities. "APLUS" allows the user to configure steam/power systems using sets of predefined icons. Once a flowsheet has been configured, the program can be used to solve the heat and mass balance and to generate accurate marginal costs. An overview of the package and examples illustrating its applications are presented in this paper.

Ranade, S. M.; Jones, D. H.; Shrec, S. C.

1988-09-01T23:59:59.000Z

34

Fuzzy Analytical Hierarchy Process Applied to Port Logistics Efficiency Evaluation  

Science Conference Proceedings (OSTI)

This paper aims to construct analysis model of port logistics arrangement using Delphi and AHP, furthermore, establishment of fuzzy theory and analytical hierarchy process model and factor set. And calculate every index weight with the weighting method—G1 ... Keywords: Mathematical model, Fuzzy Analytical Hierarchy Process, Port Logistics, Efficiency Evaluation

Xuelian Liu

2010-05-01T23:59:59.000Z

35

Survey and evaluation of current and potential coal beneficiation processes  

SciTech Connect

Coal beneficiation is a generic term used for processes that prepare run-of-mine coal for specific end uses. It is also referred to as coal preparation or coal cleaning and is a means of reducing the sulfur and the ash contents of coal. Information is presented regarding current and potential coal beneficiation processes. Several of the processes reviewed, though not yet commercial, are at various stages of experimental development. Process descriptions are provided for these processes commensurate with the extent of information and time available to perform the evaluation of these processes. Conceptual process designs, preliminary cost estimates, and economic evaluations are provided for the more advanced (from a process development hierarchy viewpoint) processes based on production levels of 1500 and 15,000 tons/day (maf) of cleaned product coal. Economic evaluations of the coal preparation plants are conducted for several project financing schemes and at 12 and 15% annual after-tax rates of return on equity capital. A 9% annual interest rate is used on the debt fraction of the plant capital. Cleaned product coal prices are determined using the discounted cash flow procedure. The study is intended to provide information on publicly known coal beneficiation processes and to indicate the relative costs of various coal beneficiation processes. Because of severe timeconstraints, several potential coal beneficiation processes are not evaluated in great detail. It is recommended that an additional study be conducted to complement this study and to more fully appreciate the potentially significant role of coal beneficiation in the clean burning of coal.

Singh, S. P.N.; Peterson, G. R.

1979-03-01T23:59:59.000Z

36

Microgrids: distributed on-site generation  

E-Print Network (OSTI)

Microgrids: distributed on-site generation Suleiman Abu-Sharkh, Rachel Li, Tom Markvart, Neil Ross for Climate Change Research Technical Report 22 #12;1 Microgrids: distributed on-site generation Tyndall production by small scale generators in close proximity to the energy users, integrated into microgrids

Watson, Andrew

37

Evaluation of coal pretreatment prior to co-processing  

SciTech Connect

The Western Research Institute is currently developing a mild gasification process for the recovery of a stabilized char product for use as a fuel. A liquid product of limited value is produced during the mild gasification process that may be suited as a co-processing vehicle for coal-oil co-processing. Research was conducted to evaluate co-processing of this mild gasification liquid with coal. The two major areas of research discussed in this report are: (1) coal pretreatment with a coal-derived liquid to induce coal swelling and promote catalyst dispersion and (2) co-processing coal that has been thermally pretreated in the presence of the mild gasification liquid. The results of the investigation to evaluate co-processing of coal that has been thermally pretreated in the presence of the mild gasification liquid indicate that the thermal pretreatment adversely affected the coal-oil co-processing under hydrogen pressure. Thermally pretreated coals co-processed under a hydrogen atmosphere and without benefit of catalyst exhibited about 86 wt % conversion as compared to 96 wt % for coal that was only thermally dried. The addition of the iron pentacarbonyl catalyst precursor to the thermally pretreated coals did improve the conversion to near that of the dried coal. Results from analysis of the product obtained from co-processing the Illinois No. 6 coal showed it was upgraded in terms of oxygen content and hydrogen to carbon atomic ratio when compared to the mild gasification liquid.

Guffey, F.D.; Barbour, F.A.; Blake, R.F.

1991-12-01T23:59:59.000Z

38

On-site Housing | Staff Services  

NLE Websites -- All DOE Office Websites (Extended Search)

On-site Housing On-site Housing Note: All guests wishing to stay on-site must be registered and approved in the BNL Guest Information System (GIS). Welcome to Brookhaven National Laboratory. BNL attracts more than 4,500 visiting scientists from all over the world each year to perform scientific research and work with our staff. To support our guests, there are 333 on-site housing units. These units are comprised of 66 family-style apartments, 39 efficiency apartments, 213 dormitory rooms, 13 Guest House rooms, and 2 year round private houses. Location: Hours of Operation: Research Support Building (400A), 20 Brookhaven Avenue Monday - Friday: 8:00 am to Midnight Reservations: (631) 344-2541 or 344-2551 Saturday: Closed* Fax: (631) 344-3098 Sunday: 4:00 pm to Midnight

39

Performance Evaluation of Advanced LLW Liquid Processing Technology: Boiling Water Reactor Liquid Processing  

Science Conference Proceedings (OSTI)

This report provides condensed information on boiling water reactor (BWR) membrane based liquid radwaste processing systems. The report presents specific details of the technology, including design, configuration, and performance. This information provides nuclear plant personnel with data useful in evaluating the merits of applying advanced processes at their plant.

2001-11-26T23:59:59.000Z

40

Evaluation of Generic EBS Design Concepts and Process Models Implications  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Generic EBS Design Concepts and Process Models Generic EBS Design Concepts and Process Models Implications to EBS Design Optimization Evaluation of Generic EBS Design Concepts and Process Models Implications to EBS Design Optimization The assessment of generic Engineered Barrier System (EBS) concepts and design optimization to harbor various disposal configurations and waste types needs advanced approaches and methods to analyze barrier performance. The report addresses: 1) Overview of the importance of Thermal-Hydrological-Mechanical-Chemical (THMC) processes to barrier performance, and international collaborations; 2) THMC processes in clay barriers; 3) experimental studies of clay stability and clay-metal interactions at high temperatures and pressures; 4) thermodynamic modeling and database development; 5) Molecular Dynamics (MD) study of clay

Note: This page contains sample records for the topic "on-site evaluation process" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Safety-oriented Resilience Evaluation in Chemical Processes  

E-Print Network (OSTI)

In the area of process safety, many efforts have focused on studying methods to prevent the transition of the state of the system from a normal state to an upset and/or catastrophic state, but many unexpected changes are unavoidable, and even under good risk management incidents still occur. The aim of this work is to propose the principles and factors that contribute to the resilience of the chemical process, and to develop a systematic approach to evaluate the resilience of chemical processes in design aspects. Based on the analysis of transition of the system states, the top-level factors that contribute to Resilience were developed, including Design, Detection Potential, Emergency Response Planning, Human, and Safety Management. The evaluation framework to identify the Resilience Design Index is developed by means of the multifactor model approach. The research was then focused on developing complete subfactors of the top-level Design factor. The sub-factors include Inherent Safety, Flexibility, and Controllability. The proposed framework to calculate the Inherent Safety index takes into account all the aspects of process safety design via many sub-indices. Indices of Flexibility and Controllability sub-factors were developed from implementations of well-known methodologies in process design and process control, respectively. Then, the top-level Design index was evaluated by combining the indices of the sub-factors with weight factors, which were derived from Analytical Hierarchical Process approach. A case study to compare the resilience levels of two ethylene production designs demonstrated the proposed approaches and gave insights on process resilience of the designs.

Dinh, Linh Thi Thuy

2011-12-01T23:59:59.000Z

42

Nuclear criticality safety evaluation -- DWPF Late Wash Facility, Salt Process Cell and Chemical Process Cell  

SciTech Connect

The Savannah River Site (SRS) High Level Nuclear Waste will be vitrified in the Defense Waste Processing Facility (DWPF) for long term storage and disposal. This is a nuclear criticality safety evaluation for the Late Wash Facility (LWF), the Salt Processing Cell (SPC) and the Chemical Processing Cell (CPC). of the DWPF. Waste salt solution is processed in the Tank Farm In-Tank Precipitation (ITP) process and is then further washed in the DWPF Late Wash Facility (LWF) before it is fed to the DWPF Salt Processing Cell. In the Salt Processing Cell the precipitate slurry is processed in the Precipitate Reactor (PR) and the resultant Precipitate Hydrolysis Aqueous (PHA) produce is combined with the sludge feed and frit in the DWPF Chemical Process Cell to produce a melter feed. The waste is finally immobilized in the Melt Cell. Material in the Tank Farm and the ITP and Extended Sludge processes have been shown to be safe against a nuclear criticality by others. The precipitate slurry feed from ITP and the first six batches of sludge feed are safe against a nuclear criticality and this evaluation demonstrates that the processes in the LWF, the SPC and the CPC do not alter the characteristics of the materials to compromise safety.

Williamson, T.G.

1994-10-17T23:59:59.000Z

43

Idaho Chemical Processing Plant safety document ICPP hazardous chemical evaluation  

Science Conference Proceedings (OSTI)

This report presents the results of a hazardous chemical evaluation performed for the Idaho Chemical Processing Plant (ICPP). ICPP tracks chemicals on a computerized database, Haz Track, that contains roughly 2000 individual chemicals. The database contains information about each chemical, such as its form (solid, liquid, or gas); quantity, either in weight or volume; and its location. The Haz Track database was used as the primary starting point for the chemical evaluation presented in this report. The chemical data and results presented here are not intended to provide limits, but to provide a starting point for nonradiological hazards analysis.

Harwood, B.J.

1993-01-01T23:59:59.000Z

44

The Pantex Process model: Formulations of the evaluation planning module  

SciTech Connect

This paper describes formulations of the Evaluation Planning Module that have been developed since its inception. This module is one of the core algorithms in the Pantex Process Model, a computerized model to support production planning in a complex manufacturing system at the Pantex Plant, a US Department of Energy facility. Pantex is responsible for three major DOE programs -- nuclear weapons disposal, stockpile evaluation, and stockpile maintenance -- using shared facilities, technicians, and equipment. The model reflects the interactions of scheduling constraints, material flow constraints, and the availability of required technicians and facilities.

JONES,DEAN A.; LAWTON,CRAIG R.; LIST,GEORGE FISHER; TURNQUIST,MARK ALAN

1999-12-01T23:59:59.000Z

45

Evaluation of the Distortion of a Hydro Turbine Blade during Heat ...  

Science Conference Proceedings (OSTI)

Presentation Title, Evaluation of the Distortion of a Hydro Turbine Blade during Heat Treatment Process. Author(s), Jinwu Kang. On-Site Speaker (Planned) ...

46

On Site Energy | Open Energy Information  

Open Energy Info (EERE)

On Site Energy On Site Energy Jump to: navigation, search Name On-Site Energy Place Alexandria, Virginia Zip 22307 Sector Geothermal energy Product Virginia-based small geothermal system design and installation firm. Coordinates 31.19224°, 29.88987° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":31.19224,"lon":29.88987,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

47

Comparison and Evaluation of Various Tritium Decontamination Techniques and Processes  

SciTech Connect

In support of fusion energy development, various techniques and processes have been developed over the past two decades for the removal and decontamination of tritium from a variety of items, surfaces, and components. Tritium decontamination, by chemical, physical, mechanical, or a combination of these methods, is driven by two underlying motivational forces. The first of these motivational forces is safety. Safety is paramount to the established culture associated with fusion energy. The second of these motivational forces is cost. In all aspects, less tritium contamination equals lower operational and disposal costs. This paper will discuss and evaluate the various processes employed for tritium removal and decontamination.

C.A. Gentile; S.W. Langish; C.H. Skinner; L.P. Ciebiera

2004-09-10T23:59:59.000Z

48

Economic evaluation of the MIT process for manufacture of ethanol  

DOE Green Energy (OSTI)

This report summarizes the results of an economic evaluation of the MIT process for the manufacture of ethanol from cellulosic residues. Conceptual process designs were developed for two cases, Case A which is based on the experimental data obtained to date, and Case B which hypothesizes the suppression of acid byproducts. Manufacturing costs, including profit, were estimated at $12.20/million Btu for Case A and $9.40/million Btu for Case B. These are equivalent to about $1.05 and $0.80/gal ethanol respectively. These economic estimates may be slightly on the low side since they do not consider feedstock storage nor working capital requirements. Nevertheless, the manufacturing costs for Case A appear to be comparable to those of the manufacture of ethanol from corn. The plant size used for this analysis was 1500 ton/day corn stover. This is considered to be a realistic size. The conceptual plants make about 27 million gal/yr ethanol in Case A and 41 million gal/yr in Case B. The MIT process appears to be one of the more promising programs being developed under contract for DOE. It is recommended that the process research be continued. Three areas of concern were identified which must be investigated before the process can be commercialized. First, a satisfactory means of storage of corn stover and other agricultural residues must be developed. Second, a method to sterilize corn stover must be developed or it must be demonstrated that the MIT process can run continuously for extended periods with stover that has been sterilized. Third, research must be done to demonstrate the recycle and reuse of process water.

Jenkins, D.M.; Reddy, T.S.

1979-06-28T23:59:59.000Z

49

Evaluation of feeds for melt and dilute process using an analytical hierarchy process  

Science Conference Proceedings (OSTI)

Westinghouse Savannah River Company was requested to evaluate whether nuclear materials other than aluminum-clad spent nuclear fuel should be considered for treatment to prepare them for disposal in the melt and dilute facility as part of the Treatment and Storage Facility currently projected for construction in the L-Reactor process area. The decision analysis process used to develop this analysis considered many variables and uncertainties, including repository requirements that are not yet finalized. The Analytical Hierarchy Process using a ratings methodology was used to rank potential feed candidates for disposition through the Melt and Dilute facility proposed for disposition of Savannah River Site aluminum-clad spent nuclear fuel. Because of the scoping nature of this analysis, the expert team convened for this purpose concentrated on technical feasibility and potential cost impacts associated with using melt and dilute versus the current disposition option. This report documents results of the decision analysis.

Krupa, J.F.

2000-03-22T23:59:59.000Z

50

Evaluation of Risk Informed Safety Margin Characterization for Applicability to Significance Determination Process Evaluations  

Science Conference Proceedings (OSTI)

This report describes an industry application of the risk-informed safety margin characterization (RISMC) framework to the analysis of a plant event previously subjected to a significance determination process (SDP) evaluation. Within the nuclear regulatory system in the United States, the SDP uses risk insights, where appropriate, to help inspectors and regulatory staff determine the safety or security significance of inspection findings identified within the seven cornerstones of safety at ...

2013-12-16T23:59:59.000Z

51

Integrated Numerical Modeling Process for Evaluating Automobile Climate Control Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

FCC-70 FCC-70 Integrated Numerical Modeling Process for Evaluating Automobile Climate Control Systems John Rugh National Renewable Energy Laboratory Copyright © 2002 Society of Automotive Engineers, Inc. ABSTRACT The air-conditioning (A/C) system compressor load can significantly impact the fuel economy and tailpipe emissions of conventional and hybrid electric automobiles. With the increasing emphasis on fuel economy, it is clear that the A/C compressor load needs to be reduced. In order to accomplish this goal, more efficient climate control delivery systems and reduced peak soak temperatures will be necessary to reduce the impact of vehicle A/C systems on fuel economy and tailpipe emissions. Good analytical techniques are important in identifying promising concepts. The goal at

52

Process evaluation of the Regional Biomass Energy Program  

DOE Green Energy (OSTI)

The U.S. Department of Energy (DOE) established the Regional Biomass Energy Program (RBEP) in 1983 to increase the production and use of biomass energy resources. Through the creation of five regional program (the Great Lakes, Northeast, Pacific Northwest, Southeast, and West), the RBEP focuses on regionally specific needs and opportunities. In 1992, Oak Ridge National (ORNL) conducted a process evaluation of the RBEP Program designed to document and explain the development of the goals and strategies of the five regional programs; describe the economic and market context surrounding commercialization of bioenergy systems; assess the criteria used to select projects; describe experiences with cost sharing; identify program accomplishments in the transfer of information and technology; and offer recommendations for program improvement.

Wilson, C.R.; Brown, M.A.; Perlack, R.D.

1994-03-01T23:59:59.000Z

53

Efficiency evaluation of oxygen enrichment in energy conversion processes  

SciTech Connect

The extent to which energy conversion efficiencies can be increased by using oxygen or oxygen-enriched air for combustion was studied. Combustion of most fuels with oxygen instead of air was found to have five advantages: increases combustion temperature and efficiency, improves heat transfer at high temperatures, reduces nitrous oxide emissions, permits a high ration of exhaust gas recirculation and allows combustion of certain materials not combustible in air. The same advantages, although to a lesser degree, are apparent with oxygen-enriched air. The cost-effectiveness of the process must necessarily be improved by about 10% when using oxygen instead of air before such use could become justifiable on purely economic terms. Although such a modest increase appears to be attainable in real situations, this study ascertained that it is not possible to generally assess the economic gains. Rather, each case requires its own evaluation. For certain processes industry has already proven that the use of oxygen leads to more efficient plant operation. Several ideas for essentially new applications are described. Specifically, when oxygen is used with exhaust gas recirculation in external or internal combustion engines. It appears also that the advantages of pulse combustion can be amplified further if oxygen is used. When burning wet fuels with oxygen, direct steam generation becomes possible. Oxygen combustion could also improve processes for in situ gasification of coals, oil shales, peats, and other wet fuels. Enhanced oil recovery by fire flooding methods might also become more effective if oxygen is used. The cold energy contained in liquid oxygen can be substantially recovered in the low end of certain thermodynamic cycles. Further efforts to develop certain schemes for using oxygen for combustion appear to be justified from both the technical and economic viewpoints.

Bomelburg, H.J.

1983-12-01T23:59:59.000Z

54

Federal Energy Management Program: On-Site Renewable Power Purchase  

NLE Websites -- All DOE Office Websites (Extended Search)

On-Site Renewable On-Site Renewable Power Purchase Agreements to someone by E-mail Share Federal Energy Management Program: On-Site Renewable Power Purchase Agreements on Facebook Tweet about Federal Energy Management Program: On-Site Renewable Power Purchase Agreements on Twitter Bookmark Federal Energy Management Program: On-Site Renewable Power Purchase Agreements on Google Bookmark Federal Energy Management Program: On-Site Renewable Power Purchase Agreements on Delicious Rank Federal Energy Management Program: On-Site Renewable Power Purchase Agreements on Digg Find More places to share Federal Energy Management Program: On-Site Renewable Power Purchase Agreements on AddThis.com... Energy Savings Performance Contracts ENABLE Utility Energy Service Contracts On-Site Renewable Power Purchase Agreements

55

Evaluating More Product Less Process: A Methodological Approach  

E-Print Network (OSTI)

Archival Processing. ” A Glossary of Archival and Recordswww.archivists.org/glossary/term_details.asp? DefinitionKey=Archival Processing,” A Glossary of Archival and Records

Marino, Christina Marie

2012-01-01T23:59:59.000Z

56

NETL: Mercury Emissions Control Technologies - On-Site Production of  

NLE Websites -- All DOE Office Websites (Extended Search)

On-Site Production of Mercury Sorbent with Low Concrete Impact On-Site Production of Mercury Sorbent with Low Concrete Impact The detrimental health effects of mercury are well documented. Furthermore, it has been reported that U.S. coal-fired plants emit approximately 48 tons of mercury a year. To remedy this, the U.S. Environmental Protection Agency (EPA) released the Clean Air Mercury Rule (CAMR) on March 15, 2005. A promising method to achieve the mandated mercury reductions is activated carbon injection (ACI). While promising, the current cost of ACI for mercury capture is expensive, and ACI adversely impacts the use of the by-product fly-ash for concrete. Published prices for activated carbon are generally 0.5-1 $/lb and capital costs estimates are 2-55 $/KW. Because of the high costs of ACI, Praxair started feasibility studies on an alternative process to reduce the cost of mercury capture. The proposed process is composed of three steps. First, a hot oxidant mixture is created by using a proprietary Praxair burner. Next, the hot oxidant is allowed to react with pulverized coal and additives. The resulting sorbent product is separated from the resulting syngas. In a commercial installation, the resulting sorbent product would be injected between the air-preheater and the particulate control device.

57

February 13, 2013 Webinar: Preliminary Process and Market Evaluation...  

NLE Websites -- All DOE Office Websites (Extended Search)

conduct survey evaluations of participating contractors, nonparticipating contractors and suppliers and distributors of energy efficiency equipment. We found preliminary evidence...

58

On-Site Disposal Facility Inspection Report  

Office of Legacy Management (LM)

8947.1 8947.1 09/13 On-Site Disposal Facility Inspection Report September 2013 6319-D6242 8947.2 09/13 East Face Cell 1 West Face Cell 1 6319D-6208 6319D-6231 8947.3 09/13 North Face Cell 1 North Drainage (looking west) 6319D-6206 6319D-6205 8947.4 09/13 East Face Cell 2 West Face Cell 2 6319D-6230 6319D-6209 8947.5 09/13 East Face Cell 3 West Face Cell 3 6319D-6229 6319D-6210 8947.6 09/13 East Face Cell 4 West Face Cell 4 6319D-6227 6319D-62111 8947.7 09/13 East Face Cell 5 West Face Cell 5 6319D-6226 6319D-6213 8947.8 09/13 East Face Cell 6 6319D-6214 6319D-6225 West Face Cell 6 8947.9 09/13 East Face Cell 7 6319D-6215 6319D-6223 West Face Cell 7 8947.10 09/13 East Face Cell 8 6319D-6217 6319D-6220 West Face Cell 8 8947.11 09/13 South Face Cell 8 6319D-6219 6319D-6218 South Drainage (looking west) 8947.12 09/13

59

On-site cogeneration for office buildings  

SciTech Connect

The purpose of this project was to investigate the feasibility of alternative means of enhancing the economic attractiveness of cogeneration for use in office buildings. One course of action designed to achieve this end involves directing the exhaust heat of a cogeneration unit through an absorption chiller to produce cooling energy. Thus, the units could be operated more continuously, particularly if thermal storage is incorporated. A second course of action for improving the economics of cogeneration in office buildings involves the sale of the excess cogenerated waste heat. A potential market for this waste heat is a district heating grid, prevalent in the downtown sections of most urban areas in the US. This project defines a realistic means to guide the integration of cogeneration and district heating. The approach adopted to achieve this end involved researching the issues surrounding the integration of on-site cogeneration in downtown commercial office buildings, and performing an energy and economic feasibility analysis for a representative building. The technical, economic and legal issues involved in this type of application were identified and addressed. The research was also intended as a first step toward implementing a pilot project to demonstrate the feasibility of office building cogeneration in San Francisco. 13 refs., 7 figs., 4 tabs.

Not Available

1985-04-01T23:59:59.000Z

60

An Evaluation of High-Performance Embedded Processing on MPPAs  

Science Conference Proceedings (OSTI)

Embedded signal processing is facing the challenges of increased performance as well as to achieve energy efficiency. Massively parallel processor arrays (MPPAs) consisting of tens or hundreds of processing cores offer the possibility of meeting the ...

Zain-ul-Abdin, Bertil Svensson

2013-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "on-site evaluation process" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Evaluation of Authorization Basis Management Systems and Processes...  

NLE Websites -- All DOE Office Websites (Extended Search)

related to authorization basis was identified in the 1996 Office of Oversight safety management evaluation of the Pantex Plant. The Defense Nuclear Facilities Safety Board (DNFSB)...

62

Office of Security Evaluations Appraisal Process Guide, April...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

set of guidance and tools that better enable HS-61 inspectors to evaluate safeguards and security program effectiveness across the Department of Energy (DOE) complex. Although the...

63

An Evaluation of the Forgeability of Delta Processed Udimet Alloy ...  

Science Conference Proceedings (OSTI)

process sequence and an inventory buffer. REFERENCES. 1. S. Shingo,. A Study of the Toyota Production. Svstem From an. Industrial. Ensineerinq. Viewpoint,.

64

Preliminary evaluation of alternative waste form solidification processes. Volume I. Identification of the processes.  

SciTech Connect

This document contains preconceptual design data on 11 processes for the solidification and isolation of nuclear high-level liquid wastes (HLLW). The processes are: in-can glass melting (ICGM) process, joule-heated glass melting (JHGM) process, glass-ceramic (GC) process, marbles-in-lead (MIL) matrix process, supercalcine pellets-in-metal (SCPIM) matrix process, pyrolytic-carbon coated pellets-in-metal (PCCPIM) matrix process, supercalcine hot-isostatic-pressing (SCHIP) process, SYNROC hot-isostatic-pressing (SYNROC HIP) process, titanate process, concrete process, and cermet process. For the purposes of this study, it was assumed that each of the solidification processes is capable of handling similar amounts of HLLW generated in a production-sized fuel reprocessing plant. It was also assumed that each of the processes would be enclosed in a shielded canyon or cells within a waste facility located at the fuel reprocessing plant. Finally, it was assumed that all of the processes would be subject to the same set of regulations, codes and standards. Each of the solidification processes converts waste into forms that may be acceptable for geological disposal. Each process begins with the receipt of HLLW from the fuel reprocessing plant. In this study, it was assumed that the original composition of the HLLW would be the same for each process. The process ends when the different waste forms are enclosed in canisters or containers that are acceptable for interim storage. Overviews of each of the 11 processes and the bases used for their identification are presented in the first part of this report. Each process, including its equipment and its requirements, is covered in more detail in Appendices A through K. Pertinent information on the current state of the art and the research and development required for the implementation of each process are also noted in the appendices.

Treat, R.L.; Nesbitt, J.F.; Blair, H.T.; Carter, J.G.; Gorton, P.S.; Partain, W.L.; Timmerman, C.L.

1980-04-01T23:59:59.000Z

65

A study on process evaluation and selection model for business process management  

Science Conference Proceedings (OSTI)

Currently, BPM is considered as the suitable framework for today's process-centric trends and BPM may result in considerable rewards for companies adopting it. For successful BPM initiative, the selection of suitable processes for BPM is very important. ... Keywords: Balanced scorecard, Business process management, Fuzzy AHP, Process selection criteria

Chiwoon Cho; Seungsin Lee

2011-05-01T23:59:59.000Z

66

Design and development of a supplier evaluation process  

E-Print Network (OSTI)

Low-cost sourcing is a strategy many companies, including Pratt & Whitney, use to reduce part costs. As they increase their efforts to resource products to low-cost regions, Pratt & Whitney needs a robust process to ...

Corum, Andrew (Andrew R.)

2009-01-01T23:59:59.000Z

67

Analysis and Development of a Project Evaluation Process.  

DOE Green Energy (OSTI)

The Bonneville Power Administration has responsibility, assigned by the Pacific Northwest Electric Power Planning and Conservation Act of 1980 (Public Law 96-501; 16 USC 839), for implementing the Columbia River Basin Fish and Wildlife Program of the Northwest Power Planning Council. One aspect of this responsibility is evaluation of project proposals and ongoing and completed projects. This report recommends formalized procedures for conducting this work in an accurate, professional, and widely respected manner. Recommendations and justifications are based largely on interviews with federal and state agencies and Indian tribes in the Northwest and nationally. Organizations were selected that have evaluation systems of their own, interact with the Fish and Wildlife Program, or have similar objectives or obligations. Perspective on aspects to be considered were obtained from the social science of evaluation planning. Examples of procedures and quantitative criteria are proposed. 1 figure, 2 tables.

Coutant, Charles C.; Cada Glenn F.

1985-01-01T23:59:59.000Z

68

An evaluation of neutralization for processing sodium-bearing liquid waste  

SciTech Connect

This report addresses an alternative concept for potentially managing the sodium-bearing liquid waste generated at the Idaho Chemical Processing Plant from the current method of calcining a blend of sodium waste and high-level liquid waste. The concept is based on removing the radioactive components from sodium-bearing waste by neutralization and grouting the resulting low-level waste for on-site near-surface disposal. Solidifying the sodium waste as a remote-handled transuranic waste is not considered to be practical because of excessive costs and inability to dispose of the waste in a timely fashion. Although neutralization can remove most radioactive components to provide feed for a solidified low-level waste, and can reduce liquid inventories four to nine years more rapidly than the current practice of blending sodium-bearing liquid waste with first-cycle raffinite, the alternative will require major new facilities and will generate large volumes of low-level waste. Additional facility and operating costs are estimated to be at least $500 million above the current practice of blending and calcining. On-site, low-level waste disposal may be technically difficult and conflict which national and state policies. Therefore, it is recommended that the current practice of calcining a blend of sodium-bearing liquid waste and high-level liquid waste be continued to minimize overall cost and process complexities. 17 refs., 4 figs., 16 tabs.

Chipman, N.A.; Engelgau, G.O.; Berreth, J.R.

1989-01-01T23:59:59.000Z

69

Federal Energy Management Program: On-Site Renewable Power Purchase  

NLE Websites -- All DOE Office Websites (Extended Search)

On-Site Renewable Power Purchase Agreements On-Site Renewable Power Purchase Agreements Graphic of the eTraining logo Training Available Federal On-Site Renewable Power Purchase Agreements: Learn how to develop an on-site renewable Power Purchase Agreement (PPA) by taking this FEMP eTraining course. At a Glance Power purchase agreements feature a variety of benefits and considerations for Federal agencies, including: Benefits: No up-front capital costs Ability to monetize tax incentives Typically a known, long-term energy price No operations and maintenance responsibilities Minimal risk to the agency Considerations: Federal sector experience with PPAs is still growing Contract term limitations Inherent transaction costs Challenges with site access contracts and concerns On-site renewable power purchase agreements (PPAs) allow Federal agencies to fund on-site renewable energy projects with no up-front capital costs incurred.

70

INADVERTENT INTRUDER ANALYSIS FOR THE PORTSMOUTH ON-SITE WASTE DISPOSAL FACILITY  

SciTech Connect

An On-Site Alternative is being evaluated as part of the Remedial Investigation and Feasibility Study (RI/FS) process for evaluation of alternatives for the disposal of waste generated from decontamination and decommissioning (D&D) at Portsmouth. The On-Site Alternative involves construction of an On-Site Waste Disposal Facility (OSWDF). An inadvertent intruder analysis must be conducted for the OSWDF. The inadvertent intruder analysis considers the radiological impacts to hypothetical persons who are assumed to inadvertently intrude on the Portsmouth OSWDF site after institutional control ceases 100 years after site closure. The focus in development of exposure scenarios for inadvertent intruders was on selecting reasonable events that may occur, giving consideration to regional customs and construction practices. An important assumption in all scenarios is that an intruder has no prior knowledge of the existence of a waste disposal facility at the site. Therefore, after active institutional control ceases, certain exposure scenarios are assumed to be precluded only by the physical state of the disposal facility, i.e., the integrity of the engineered barriers used in facility construction or the thickness of clean material above the waste. Passive institutional controls, such as permanent marker systems at the disposal site and public records of prior land use, also could prevent inadvertent intrusion after active institutional control ceases, but the efficacy of passive institutional controls is not assumed in this analysis. Results of the analysis show that a hypothetical inadvertent intruder at the OSWDF who, in the worst case scenario, resides on the site and consumes vegetables from a garden established on the site using contaminated soil (chronic agriculture scenario) would receive a maximum chronic dose of approximately 7.0 mrem/yr during the 1000 year period of assessment. This dose falls well below the DOE chronic dose limit of 100 mrem/yr. Results of the analysis also showed that a hypothetical inadvertent intruder at the OSWDF who, in the worst case scenario, excavates a basement in the soil that reaches the waste (acute basement construction scenario) would receive a maximum acute dose of approximately 0.25 mrem/yr during the 1000 year period of assessment. This dose falls well below the DOE acute dose limit of 500 mrem/yr.

Smith, F.; Phifer, M.

2013-09-30T23:59:59.000Z

71

Feasibility evaluation for solar industrial process heat applications  

DOE Green Energy (OSTI)

An analytical method for assessing the feasibility of Solar Industrial Process Heat applications has been developed and implemented in a flexible, fast-calculating computer code - PROSYS/ECONMAT. The performance model PROSYS predicts long-term annual energy output for several collector types, including flat-plate, nontracking concentrator, one-axis tracking concentrator, and two-axis tracking concentrator. Solar equipment cost estimates, annual energy capacity cost, and optional net present worth analysis are provided by ECONMAT. User input consists of detailed industrial process information and optional economic parameters. Internal program data includes meteorological information for 248 US sites, characteristics of more than 20 commercially available collectors representing several generic collector types, and defaults for economic parameters. Because a fullscale conventional back-up fuel system is assumed, storage is not essential and is not included in the model.

Stadjuhar, S. A.

1980-01-01T23:59:59.000Z

72

GRR/Section 13-FD-d - Airport Evaluation Process | Open Energy Information  

Open Energy Info (EERE)

3-FD-d - Airport Evaluation Process 3-FD-d - Airport Evaluation Process < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 13-FD-d - Airport Evaluation Process 13FDDAirportEvaluationProcess.pdf Click to View Fullscreen Contact Agencies Federal Aviation Administration United States Department of Defense Regulations & Policies 49 USC 44718: Structures Interfering with Air Commerce 49 USC 40103: Sovereignty & Use of Airspace Pub. L. 111-383 - the "Ike Skelton National Defense Authorization Act for Fiscal Year 2011 14 CFR 77 - Safe, Efficient Use, and Preservation of the Navigable Airspace Triggers None specified Click "Edit With Form" above to add content 13FDDAirportEvaluationProcess.pdf Error creating thumbnail: Page number not in range.

73

GRR/Section 13-FD-c - Navigable Water Evaluation Process | Open Energy  

Open Energy Info (EERE)

c - Navigable Water Evaluation Process c - Navigable Water Evaluation Process < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 13-FD-c - Navigable Water Evaluation Process 13FDCNavigableWatersEvaluationProcess (2).pdf Click to View Fullscreen Contact Agencies Federal Emergency Management Agency US Army Corps of Engineers United States Environmental Protection Agency Regulations & Policies Bridges over Navigable Waters Act 33 CFR 115.50 Application for bridge permits Marine Protection Research and Sanctuaries Act Rivers and Harbors Act of 1899 Triggers None specified Click "Edit With Form" above to add content 13FDCNavigableWatersEvaluationProcess (2).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range.

74

GRR/Section 13-FD-a - Farmland Evaluation Process | Open Energy Information  

Open Energy Info (EERE)

3-FD-a - Farmland Evaluation Process 3-FD-a - Farmland Evaluation Process < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 13-FD-a - Farmland Evaluation Process 13-FD-a - FarmlandEvaluationProcess.pdf Click to View Fullscreen Contact Agencies United States Department of Agriculture Bureau of Land Management Regulations & Policies Farmland Protection Policy Act DOA FPPA Regulations 7 CFR 658 Statutory definition of "farmland" - 7 USC 4201 Triggers None specified Click "Edit With Form" above to add content 13-FD-a - FarmlandEvaluationProcess.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative

75

A CHARACTERIZATION AND EVALUATION OF COAL LIQUEFACTION PROCESS STREAMS  

SciTech Connect

This is the first Annual Technical Report of activities under DOE Contract No. DE-AC22-94PC93054. Activities from the first three quarters of the fiscal 1998 year were reported previously as Quarterly Technical Progress Reports (DOE/PC93054-57, DOE/PC93054-61, and DOE/PC93054-66). Activities for the period July 1 through September 30, 1998, are reported here. This report describes CONSOL's characterization of process-derived samples obtained from HTI Run PB-08. These samples were derived from operations with Black Thunder Mine Wyoming subbituminous coal, simulated mixed waste plastics, and pyrolysis oils derived from waste plastics and waste tires. Comparison of characteristics among the PB-08 samples was made to ascertain the effects of feed composition changes. A comparison also was made to samples from a previous test (Run PB-06) made in the same processing unit, with Black Thunder Mine coal, and in one run condition with co-fed mixed plastics.

G.A. Robbins; R.A. Winschel; S.D. Brandes

1999-05-01T23:59:59.000Z

76

Evaluation of the NeuStream-S™ Flue Gas Desulfurization Process  

Science Conference Proceedings (OSTI)

Harris Group Inc. (HGI) of Denver, Colorado, was contracted by the Electric Power Research Institute (EPRI) to monitor, evaluate, and prepare this report on a dual-alkali flue gas desulfurization (FGD) process developed by Neumann Systems Group, Inc. (NSG). The process is being demonstrated in a nominal 20-MW demonstration plant, treating a slip stream of flue gas from the Colorado Springs Utilities 142-MW Drake Unit 7. HGI evaluated performance, operability, and readiness for scale-up of the process. Co...

2011-05-31T23:59:59.000Z

77

Industrial process heat data analysis and evaluation. Volume 1  

DOE Green Energy (OSTI)

The Solar Energy Research Institute (SERI) has modeled seven of the Department of Energy (DOE) sponsored solar Industrial Process Heat (IPH) field experiments and has generated thermal performance predictions for each project. Additionally, these performance predictions have been compared with actual performance measurements taken at the projects. Predictions were generated using SOLIPH, an hour-by-hour computer code with the capability for modeling many types of solar IPH components and system configurations. Comparisons of reported and predicted performance resulted in good agreement when the field test reliability and availability was high. Volume I contains the main body of the work: objective, model description, site configurations, model results, data comparisons, and summary. Volume II contains complete performance prediction results (tabular and graphic output) and computer program listings.

Lewandowski, A; Gee, R; May, K

1984-07-01T23:59:59.000Z

78

Field Artillery Ammunition Processing System (FAAPS) concept evaluation study. Ammunition Logistics Program  

SciTech Connect

The Field Artillery Ammunition Processing System (FAAPS) is an initiative to introduce a palletized load system (PLS) that is transportable with an automated ammunition processing and storage system for use on the battlefield. System proponents have targeted a 20% increase in the ammunition processing rate over the current operation while simultaneously reducing the total number of assigned field artillery battalion personnel by 30. The overall objective of the FAAPS Project is the development and demonstration of an improved process to accomplish these goals. The initial phase of the FAAPS Project and the subject of this study is the FAAPS concept evaluation. The concept evaluation consists of (1) identifying assumptions and requirements, (2) documenting the process flow, (3) identifying and evaluating technologies available to accomplish the necessary ammunition processing and storage operations, and (4) presenting alternative concepts with associated costs, processing rates, and manpower requirements for accomplishing the operation. This study provides insight into the achievability of the desired objectives.

Kring, C.T.; Babcock, S.M.; Watkin, D.C.; Oliver, R.P.

1992-06-01T23:59:59.000Z

79

On-Site Renewable Power Purchase Agreements | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Project Funding » On-Site Renewable Power Purchase Agreements Project Funding » On-Site Renewable Power Purchase Agreements On-Site Renewable Power Purchase Agreements October 7, 2013 - 3:35pm Addthis On-site renewable power purchase agreements (PPAs) allow Federal agencies to fund on-site renewable energy projects with no up-front capital costs incurred. With a PPA, a developer installs a renewable energy system on agency property under an agreement that the agency will purchase the power generated by the system. The agency pays for the system through these power payments over the life of the contract. After installation, the developer owns, operates, and maintains the system for the life of the contract. For more information, read the Federal Energy Mangement Program's (FEMP) introductory guide to PPAs and sample documents.

80

On-Site Renewable Power Purchase Agreements | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

On-Site Renewable Power Purchase Agreements On-Site Renewable Power Purchase Agreements On-Site Renewable Power Purchase Agreements October 16, 2013 - 5:09pm Addthis An on-site renewable power purchase agreement (PPA) enables Federal agencies to fund a renewable energy project by contracting to purchase the power generated by the system. The renewable energy equipment is installed and owned by a developer but located on-site at the agency facility. As noted in the renewable energy project funding overview, PPAs provide a range of attractive benefits to Federal agencies trying to access renewable energy. These include no up-front capital costs; the ability to monetize tax incentives; typically a known, long-term energy price; no operations and maintenance (O&M) responsibilities; and minimal risk to the agency.

Note: This page contains sample records for the topic "on-site evaluation process" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

A CHARACTERIZATION AND EVALUATION OF COAL LIQUEFACTION PROCESS STREAMS  

DOE Green Energy (OSTI)

This is the Technical Progress Report for the fifteenth quarter of activities under DOE Contract No. DE-AC22-94PC93054. It covers the period January 1 through March 31, 1998. Described in this report are the following activities: (1) CONSOL characterized 41 process stream samples obtained from HTI Run PB-01 (227-90), in which Black Thunder Mine coal, Hondo VTB resid, municipal solid waste (MSW) plastics, and virgin plastics were co-liquefaction feedstocks with all-dispersed Fe and Mo catalysts. (2) A request was made for samples from the Nippon Coal Oil NEDOL pilot plant in Kashima, Japan. (3) Phenols were extracted from two samples of separator overhead oil from HTI Run PB-03 Periods 10A and 10B. The phenols were converted to ethylphenyl ethers, and the ethers were distilled to produce a sample within the diesel fuel boiling range. The ethers were mixed with diesel fuel to make 1%, 5%, 10%, and 20% solutions. The four mixtures and a control sample (0% ether) were tested for diesel fuel properties by Intertek Testing Services, Caleb Brett. (4) Computational studies related to the University of Delaware's resid conversion model were continued on the Hewlett Packard Apollo HP-735 RISC workstation at CONSOL R and D. The Structure Optimization Program and the Structure Once-Through Program were used to generate physicochemical properties and structure models for the 15 coal resid samples which have been under study.

G.A. Robbins; S.D. Brandes; D.J. Pazuchanics; D.G. Nichols; R.A. Winschel

1998-12-01T23:59:59.000Z

82

The Energy Resource Center: On-Site Technical Assistance and Training Programs for Texas School Districts  

E-Print Network (OSTI)

Created by the 68th Session of the Texas Legislature, the Energy Resource Center for Texas Schools (ERC) is the primary source of facility management services for Texas School districts. The purpose of the ERC is to assist school districts in controlling a major operational expense -- the cost of energy -- through tailoring and implementing services to meet "real world" needs. On-site services available from the ERC range from basic training in analyzing utility bills, tracking energy consumption and costs, and evaluating school energy performance to providing professional technical assistance in identifying and implementing lower cost energy investments. A design assistance program now available from the Center provides energy evaluations at crucial steps in the design process of new facilities to insure that energy-conscious strategies are considered by the architectural firm under contract. Audiences targeted for ERC services include board members, superintendents, directors of maintenance, plant operators, business managers, and energy managers. Assistance provided through workshop settings includes instruction in setting up board-directed energy programs and the sponsoring of network meetings for school energy managers in several areas of the state. Communication is maintained with school energy contacts through the ERC's bimonthly newsletter, Texas School Energy Notes, which is sent to all school districts in the state.

Roberts, M.; Sanders, M.

1988-01-01T23:59:59.000Z

83

SCR Catalyst Disposal, Recycle, and On-site Washing Options and Experience  

Science Conference Proceedings (OSTI)

As Selective Catalytic Reduction (SCR) technology becomes more widespread and the catalyst fleet ages, cost-effective and environmentally friendly approaches are need to handle the increasing volumes of spent catalyst or extend its life through simple on-site processing. This report addresses various issues related to catalyst rejuvenation, cleaning, recycling, and disposal.

2008-12-03T23:59:59.000Z

84

Summary - Proposed On-Site Disposal Facility (OSDF) at the Paducah Gaseous Diffusion Plant  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Paducah, KY Paducah, KY EM Project: On-Site Disposal Facility ETR Report Date: August 2008 ETR-16 United States Department of Energy Office of Environmental Management (DOE-EM) External Technical Review of the Proposed On-Site Disposal Facility(OSDF) at the Paducah Gaseous Diffusion Plant Why DOE-EM Did This Review The Paducah Gaseous Diffusion Plant (PGDP) is an active uranium enrichment facility that was placed on the National Priorities List. DOE is required to remediate the PGDP in accordance with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). DOE is evaluating alternatives to dispose of waste generated from the remedial activities at the PGDP. One option is to construct an on-site disposal facility (OSDF) meeting the CERCLA requirements.

85

February 13, 2013 Webinar: Preliminary Process and Market Evaluation Â… Better Buildings Neighborhood Program Webcast  

NLE Websites -- All DOE Office Websites (Extended Search)

Preliminary Process and Market Evaluation - Better Buildings Neighborhood Program Webcast Preliminary Process and Market Evaluation - Better Buildings Neighborhood Program Webcast February 13, 2013 Ed Vine: Hello everyone and good afternoon. My name is Ed Vine and I am a staff scientist at Lawrence Berkeley National Laboratory, otherwise known as LBNL, and I'm the LBNL project manager for the evaluation of the Better Buildings Neighborhood Program. You may hear the term BBNP-it's a short- handed version for that. So thank you for joining us and welcome to today's webinar on the preliminary process and market evaluation of the BBNP. This evaluation addresses the national program with a goal of identifying what elements of grantee programs are most successful at bringing about market changes that will result in sustainable energy savings. The study provides a preliminary assessment focused on

86

A Method of Performance Evaluation by Using the Analytic Network Process and Balanced Score Car  

Science Conference Proceedings (OSTI)

Performance evaluation is an important part of the enterprises' strategic management. The analytic hierarchy process (AHP) can provide an analytical means to determine the importance of the identified factors. The AHP method assumes that the factors ...

Ming-Chang Lee Ming-Cheng Wu; Hsiao-Wen Wang; Hsiu-Yuan Wang

2007-11-01T23:59:59.000Z

87

A performance evaluation of a new bitmap-based XML processing approach over RDBMS  

Science Conference Proceedings (OSTI)

This paper presents a comprehensive performance analysis of PACD; a novel bitmap-based XML processing approach introduced earlier to resolve several performance issues identified in existing XML database technology. The study evaluated three performance ...

Mohammed Al-Badawi; Haider Ali Ramadhan; Siobhan North; Barry Eaglestorne

2012-05-01T23:59:59.000Z

88

The Process and Methods Used to Evaluate Prototype Operational Hydrometeorological Workstations  

Science Conference Proceedings (OSTI)

In support of the National Weather Service (NWS) modernization, the Forecast Systems Laboratory (FSL) has been developing prototype hydrometeorological workstations for many years. The FSL Evaluation Team (E-Team) has developed a process of ...

Cynthia Lusk; Patrice Kucera; William Roberts; Lynn Johnson

1999-01-01T23:59:59.000Z

89

Evaluation of an Ecohydrologic-Process Model Approach to Estimating Annual Mountain-Block Recharge.  

E-Print Network (OSTI)

??Magruder, Ian, M.S., December 2006 Geology Evaluation of an Ecohydrologic-Process Model Approach to Estimating Annual Mountain-Block Recharge Chairperson: Dr. William Woessner Regional subsurface mountain-block recharge… (more)

Magruder, Ian Auguste

2007-01-01T23:59:59.000Z

90

Coal liquefaction process streams characterization and evaluation. Volume 1, Base program activities  

Science Conference Proceedings (OSTI)

This 4.5-year project consisted of routine analytical support to DOE`s direct liquefaction process development effort (the Base Program), and an extensive effort to develop, demonstrate, and apply new analytical methods for the characterization of liquefaction process streams (the Participants Program). The objective of the Base Program was to support the on-going DOE direct coal liquefaction process development program. Feed, process, and product samples were used to assess process operations, product quality, and the effects of process variables, and to direct future testing. The primary objective of the Participants Program was to identify and demonstrate analytical methods for use in support of liquefaction process development, and in so doing, provide a bridge between process design, and development, and operation and analytical chemistry. To achieve this objective, novel analytical methods were evaluated for application to direct coal liquefaction-derived materials. CONSOL teamed with 24 research groups in the program. Well-defined and characterized samples of coal liquefaction process-derived materials were provided to each group. CONSOL made an evaluation of each analytical technique. During the performance of this project, we obtained analyses on samples from numerous process development and research programs and we evaluated a variety of analytical techniques for their usefulness in supporting liquefaction process development. Because of the diverse nature of this program, we provide here an annotated bibliography of the technical reports, publications, and formal presentations that resulted from this program to serve as a comprehensive summary of contract activities.

Robbins, G.A.; Brandes, S.D.; Winschel, R.A.; Burke, F.P.

1994-05-01T23:59:59.000Z

91

Residential Energy Management system for optimization of on-site...  

NLE Websites -- All DOE Office Websites (Extended Search)

Residential Energy Management system for optimization of on-site generation with HVAC Speaker(s): Ram Narayanamurthy Date: October 29, 2009 - 12:00pm Location: 90-3122 As the...

92

Cardinal , nominal or ordinal similarity measures in comparative evaluation of information retrieval process  

E-Print Network (OSTI)

documents they have. They are usually employed in quantitative information retrieval evaluations, some evaluation of a system's information retrieval process is often based upon the comparison of answers information retrieval systems produce lists of documents without any particular order. Answer sets

Paris-Sud XI, Université de

93

Federal Energy Management Program: Sample Documents for On-Site Renewable  

NLE Websites -- All DOE Office Websites (Extended Search)

Sample Documents for On-Site Renewable Power Purchase Agreements Sample Documents for On-Site Renewable Power Purchase Agreements The Federal Energy Management Program (FEMP) works with Federal agencies and partners to assemble sample documents from past on-site renewable power purchase agreement (PPA) projects to help streamline the PPA process. Requests for Proposal and Contracts Sample documents are available for the following requests for proposal: Photovoltaics at the Department of Energy's (DOE) Princeton Plasma Physics Laboratory: PPA request for proposal issued by DLA Energy on behalf of Princeton Plasma Physics Laboratory. National Renewable Energy Laboratory (NREL) Photovoltaics Opportunity Announcement: Opportunity announcement issued for the NREL Mesa Top photovoltaics (PV) power purchase agreement.

94

Title Evaluation of Inventions- Reducing Time in a DEAR Process Authors  

E-Print Network (OSTI)

Legislative changes in the U.S. and more recently Germany, require universities and research institutes to act as entrepreneurs, something that is not necessarily in their nature. Therefore, a number of Technology Transfer Organizations or Evaluation Agencies have been established to handle the evaluation, patenting and commercialization of inventions. The process of evaluating inventions, in this thesis termed DEAR, poses two major challenges for evaluation agencies: (1) the process must be aimed at keeping the inventions that will generate revenues and filtering out those that will not; and (2) the time spent on evaluation should be kept to a minimum, but must never be reduced below the point where potential commercial successes will be lost. The purpose of this thesis is to benchmark the practices of evaluation agencies in order to establish whether time can be reduced in any part of the DEAR process and if so where. We find that there are aspects in almost every stage of the DEAR process that could be made more effective. For instance, it may be worthwhile for the German agencies to reflect on the fact that their U.S. counterparts generally seem to rely on the scientific information given in the disclosure. Also, even though valuation of inventions often becomes a case of “Garbage In – Garbage Out”, such valuation may be worthwhile for younger agencies since it may signal that the DEAR process is conducted in a thorough and accurate manner.

Stefan Kristoffersson; Mathias Jonsson Division; Stefan Kristoffersson; Mathias Jonsson

2003-01-01T23:59:59.000Z

95

International Symposium on Site Characterization for CO2Geological Storage  

SciTech Connect

Several technological options have been proposed to stabilize atmospheric concentrations of CO{sub 2}. One proposed remedy is to separate and capture CO{sub 2} from fossil-fuel power plants and other stationary industrial sources and to inject the CO{sub 2} into deep subsurface formations for long-term storage and sequestration. Characterization of geologic formations for sequestration of large quantities of CO{sub 2} needs to be carefully considered to ensure that sites are suitable for long-term storage and that there will be no adverse impacts to human health or the environment. The Intergovernmental Panel on Climate Change (IPCC) Special Report on Carbon Dioxide Capture and Storage (Final Draft, October 2005) states that ''Site characterization, selection and performance prediction are crucial for successful geological storage. Before selecting a site, the geological setting must be characterized to determine if the overlying cap rock will provide an effective seal, if there is a sufficiently voluminous and permeable storage formation, and whether any abandoned or active wells will compromise the integrity of the seal. Moreover, the availability of good site characterization data is critical for the reliability of models''. This International Symposium on Site Characterization for CO{sub 2} Geological Storage (CO2SC) addresses the particular issue of site characterization and site selection related to the geologic storage of carbon dioxide. Presentations and discussions cover the various aspects associated with characterization and selection of potential CO{sub 2} storage sites, with emphasis on advances in process understanding, development of measurement methods, identification of key site features and parameters, site characterization strategies, and case studies.

Tsang, Chin-Fu

2006-02-23T23:59:59.000Z

96

CRITICALITY SAFETY LIMIT EVALUATION PROGRAM (CSLEP) & QUICK SCREENS, ANSWERS TO EXPEDITED PROCESSING LEGACY CRITICALITY SAFETY LIMITS & EVALUATIONS  

SciTech Connect

Since the end of the cold war, the need for operating weapons production facilities has faded. Criticality Safety Limits and controls supporting production modes in these facilities became outdated and furthermore lacked the procedure based rigor dictated by present day requirements. In the past, in many instances, the formalism of present day criticality safety evaluations was not applied. Some of the safety evaluations amounted to a paragraph in a notebook with no safety basis and questionable arguments with respect to double contingency criteria. When material stabilization, clean out, and deactivation activities commenced, large numbers of these older criticality safety evaluations were uncovered with limits and controls backed up by tenuous arguments. A dilemma developed: on the one hand, cleanup activities were placed on very aggressive schedules; on the other hand, a highly structured approach to limits development was required and applied to the cleanup operations. Some creative approaches were needed to cope with the limits development process.

TOFFER, H.

2006-02-21T23:59:59.000Z

97

On-Site Small Wind Incentive Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

On-Site Small Wind Incentive Program On-Site Small Wind Incentive Program On-Site Small Wind Incentive Program < Back Eligibility Agricultural Commercial Fed. Government Industrial Institutional Local Government Nonprofit Residential Schools State Government Savings Category Wind Buying & Making Electricity Maximum Rebate Lesser of $400,000 per site/customer or 50% of installed cost of system Program Info Funding Source RPS surcharge Start Date 01/01/2012 Expiration Date 12/31/2015 State New York Program Type State Rebate Program Rebate Amount First 10,000 kWh of expected annual energy production: $3.50/annual kWh Next 115,000 kWh of expected annual energy production: $1.00/annual kWh Energy production greater than 125,000 kWh: $0.30/annual kWh Provider New York State Energy Research and Development Authority

98

Green Power Network: On-site Renewable Energy Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

On-site Renewable Energy Systems On-site Renewable Energy Systems For consumers or organizations wishing to install on-site renewable energy systems, there are a variety of options available, including electricity generating systems and thermal systems that can displace electricity or fossil fuel use. Solar photovoltaics convert sunlight directly into electricity. Solar hot water systems use the sun's energy to heat water. Wind turbines convert the kinetic energy in wind into mechanical power that runs a generator to produce electricity. Geothermal heat pumps use the constant temperature of the upper 10 feet of the Earth to heat and cool buildings. Fuel cells produce electricity from hydrogen and oxygen and can be powered by a number of sources, including renewables. Biomass power systems use biomass feedstocks such as wood waste or methane from animal waste or other sources to generate electricity. Biomass resources can also be used in direct heat and combined heat and power applications.

99

Office of Environment, Safety and Health Evaluations Appraisal Process Guide, July 2009  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ENVIRONMENT, SAFETY ENVIRONMENT, SAFETY AND HEALTH EVALUATIONS APPRAISAL PROCESS GUIDE July 2009 Office of Health, Safety and Security U.S. Department of Energy Office of Environment, Safety and Health Evaluations Appraisal Process Guide Preface July 2009 i Preface The U.S. Department of Energy (DOE) Office of Independent Oversight, within the Office of Health, Safety and Security (HSS), published its Appraisal Process Protocols to describe the philosophy, scope, and general procedures applicable to all Independent Oversight appraisal activities. The Office of Environment, Safety and Health (ES&H) Evaluations (HS-64) initially prepared this companion guide as part of a continuing effort to enhance the quality and consistency of ES&H oversight appraisals. The

100

An AHP approach for evaluating geothermal district energy systems[Analytical Hierarchy Process  

SciTech Connect

In the rating and design of the geothermal district energy (DE) systems the technology, cost, benefits, and environmental effects of the alternatives need to be carefully compared. This study deals with the evaluation of several alternatives of district energy systems for the city of Denizli. These alternatives vary from the existing geothermal plant to the hybrid cycle, totally integrated geothermal energy system. In the comparative evaluation of the alternative projects, Analytical Hierarchy Process (AHP) was utilized.

Eltez, A.; Kilkis, I.B.; Eltez, M.

1999-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "on-site evaluation process" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Evaluation of Secondary-System Layup and Cleanup Practices and Processes  

Science Conference Proceedings (OSTI)

A study of PWR secondary-system layup and cleanup practices was undertaken to evaluate current and proposed methods of corrosion-product control associated with extended plant outages. The report describes a field survey of 14 representative PWR plants, an extensive literature search, and an evaluation of corrosion-product transport data. Recommendations for layup and cleanup processes are presented, along with system design information.

1983-04-01T23:59:59.000Z

102

REPORT OF ON-SITE INSPECTION WORKSHOP-16  

SciTech Connect

The central issue addressed by this workshop was the task of making the on-site inspection (OSI) part of the Comprehensive Nuclear-Test-Ban Treaty verification system operationally ready at entry into force of the Treaty. It is recognized, and this was emphasized by the 2008 OSI Integrated Field Exercise (IFE), that it is not possible to develop every part of the OSI regime simultaneously. Therefore, it is necessary to prioritize the approach to OSI readiness. The reviews of the IFE have pointed to many elements of OSI readiness that still need development. The objective of this workshop was to provide priorities for the path forward for Working Group B to consider. Several critical areas have been identified that are related to the development of OSI readiness: (1) Technology development: Priorities are radionuclide and noble gas sampling and analysis, visual observation, multispectral/infrared imaging methods, active seismic methods and the recognition of the importance of signatures. (2) Organizational development: Priorities are health and safety, the Operations Support Centre, the Equipment Storage and Maintenance Facility, information technology data flow and communications. (3) Resources: The expertise to develop key parts of the OSI regime is not available within the current OSI Division staff. To develop these aspects of the regime will require more staff or supplements to the staff with cost-free experts or other means. Aspects of the system that could benefit from more staff include radionuclide and noble gas detection methods, data flow and communications, visual observation, multispectral/infrared methods and health and safety. As the path forward, participants of this workshop recognized a need to optimize the development of OSI priorities. The outcome of this workshop is to suggest for consideration an operational approach to OSI readiness that utilizes results of an evaluation of the relative effectiveness of OSI elements versus their relative maturity. By integrating such an assessment with considerations of integrated operational capabilities and the anticipated level of inspection team self-sufficiency and measurable milestone criteria, a set of priorities for OSI development can be developed. Once these priorities have been established, the Policy Making Organs can decide upon the milestones, strategic plan and action plan to serve as guidance for implementation by the Provisional Technical Secretariat. The suggested operational approach is as follows: (1) Assess the relative effectiveness (importance) of OSI elements versus their relative maturity; (2) Determine the anticipated level of self-sufficiency; (3) Define measurable milestone criteria; and (4) Result: Milestones for OSI readiness.

Sweeney, J J

2009-07-07T23:59:59.000Z

103

Evaluation of Authorization Basis Management Systems and Processes at the Pantex Plant  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

0 0 Evaluation of Authorization Basis Management Systems and Processes at the OVERSIGHT Table of Contents EXECUTIVE SUMMARY ................................................................... 1 1.0 INTRODUCTION ........................................................................... 4 2.0 RESULTS ......................................................................................... 6 Line Management Responsibility for Safety ................................ 6 Clear Roles, Responsibilities, and Authorities ........................... 10 Competence Commensurate with Responsibility ...................... 15 Balanced Priorities ........................................................................ 18 Identification and Flowdown of Requirements.......................... 22 Hazard Analysis and Controls

104

Engineering evaluation of neutralization and precipitation processes applicable to sludge treatment project  

SciTech Connect

Engineering evaluations have been performed to determine likely unit operations and methods required to support the removal, storage, treatment and disposal of solids/sludges present in the K Basins at the Hanford Site. This evaluation was initiated to select a neutralization process for dissolver product solution resulting from nitric acid treatment of about 50 m{sup 3} of Hanford Site K Basins sludge. Neutralization is required to meet Tank Waste Remediation Waste System acceptance criteria for storage of the waste in the double shell tanks after neutralization, the supernate and precipitate will be transferred to the high level waste storage tanks in 200E Area. Non transuranic (TRU) solids residue will be transferred to the Environmental Restoration Disposal Facility (ERDF). This report presents an overview of neutralization and precipitation methods previously used and tested. This report also recommends a neutralization process to be used as part of the K Basins Sludge Treatment Project and identifies additional operations requiring further evaluation.

Klem, M.J.

1998-08-25T23:59:59.000Z

105

Evaluation of secondary-system layup and cleanup practices and processes. Final report. [PWR  

Science Conference Proceedings (OSTI)

The study of PWR secondary system layup and cleanup practices was undertaken to evaluate current and proposed methods of corrosion product control associated with extended plant outages. The overall goal was to evaluate means for significantly minimizing the steam generator sludge burden. The study included a field survey of 14 representative PWR plants, an extensive literature search and an evaluation of corrosion product transport data. Recommendations for layup and cleanup system processes were derived from these practices and related information. Estimates of the potential benefits to be expected in the control of corrosion products by controlled layup environments during extended outages and by cleanup following such outages are provided. Cleanup during all, or most, phases of operation is indicated as being most beneficial. Layup and cleanup system process design information is also provided.

Cleary, W.F.

1983-04-01T23:59:59.000Z

106

Evaluation Methodology for Advance Heat Exchanger Concepts Using Analytical Hierarchy Process  

Science Conference Proceedings (OSTI)

The primary purpose of this study is to aid in the development and selection of the secondary/process heat exchanger (SHX) for power production and process heat application for a Next Generation Nuclear Reactors (NGNR). The potential options for use as an SHX are explored such as shell and tube, printed circuit heat exchanger. A shell and tube (helical coiled) heat exchanger is a recommended for a demonstration reactor because of its reliability while the reactor design is being further developed. The basic setup for the selection of the SHX has been established with evaluation goals, alternatives, and criteria. This study describes how these criteria and the alternatives are evaluated using the analytical hierarchy process (AHP).

Piyush Sabharwall; Eung Soo Kim

2012-07-01T23:59:59.000Z

107

Coal liquefaction process streams characterization and evaluation: The preliminary evaluation of the kinetics of coal liquefaction distillation resid conversion  

SciTech Connect

This study evaluated the use of a novel laboratory-scale batch reactor, designed by the University of Delaware, to study the kinetics of coal liquefaction resid reactivity. The short time batch reactor (STBR) is capable of conducting reactions at temperatures up to 450{degrees}C and pressures up to 2500 psi at well-defined reaction times from a few seconds to 30 min or longer. Sixty experiments were conducted with the STBR in this project. The products of the resid/tetralin/hydrogen reaction were separated by solubility, and several analytical procedures were used to evaluate the reaction products, including thermogravimetric analysis (TGA), gas chromatography (GC) and gas chromatography/mass spectrometry (GC/MS). Changes were monitored in the boiling ranges of the products, as a function of process conditions (time, temperature, and tetralin donor solvent-to-resid ratio), with and without catalysts. Two distillation resid samples were studied; Sample 1 is the resid of the second stage product stream from Wilsonville Run 259 which used Pittsburgh seam coal (Ireland mine) bituminous coal, and Sample 2 is the resid of the same streak from Wilsonville Run 260 which used Wyodak and Anderson (Black Thunder Mine) subbituminous coal. It was determined that the resid reactivity was different for the two samples studied. The results demonstrate that further development of this experimental method is warranted to empirically assess resid reactivity and to provide data for use in the construction of an empirical model of coal conversion in the direct liquefaction process.

Klein, M.T.; Calkins, W.H.; Huang, He [Delaware Univ., Newark, DE (United States). Center for Catalytic Science and Technology

1994-02-01T23:59:59.000Z

108

Federal On-Site Renewable Power Purchasing Issues  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

On-Site Renewable On-Site Renewable Power Purchasing Issues Tracy Logan, FEMP (202) 586-9973 tracy.logan@ee.doe.gov Chandra Shah, NREL (303) 384-7557 chandra.shah@nrel.gov Overview * OMB Memo Summary * Issue Paper Development * Termination * ESPC PPA Update CEQ/OMB Memo Summary * 8/16/11: Supporting Energy and Sustainability Goal Achievement Through Efficiency and Deployment of Clean Energy Technology * Encourages Agencies to use ESPCs and UESCs and requests Agencies report ESPCs and UESCs to FEMP * Requests review of all types of PPAs Issue Paper Development * FEMP is drafting papers on deployment issues * Purpose: to provide a central point of information * Proposed papers: interconnection, rebates & incentives, termination, others? * Please email suggested topics to Tracy & Chandra

109

On-site Housing Unit Types | Staff Services  

NLE Websites -- All DOE Office Websites (Extended Search)

On-site Housing Unit Types On-site Housing Unit Types Registration is required for all computers, wireless notebooks or other network devices used on the BNL Network. Devices that are not registered will be disconnected from the network. Apartments Apartments are available in 1, 2, 3 and 4 bedrooms. They are fully furnished and supplied with linens, kitchen utensils and cookware. Utilities are included in the rental price. *Note: These units do NOT have air conditioning. Each unit is equipped with DSL connection, satellite television and a microwave. Cisco Wireless Access Points (WAPs) connections are also available in Buildings 2-10. More Photos (PDF) Cavendish House The Cavendish house is a male dormitory consisting of 83 private single occupancy rooms equipped with air conditioning, Ethernet connection and

110

Green Power Network: On-site Renewable Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

News News TVA Seeks 126 MW of Renewables in 2014 December 2013 More News More News Subscribe to E-Mail Update Subscribe to e-mail update Events EPA Webinar - The Power of Aggregated Purchasing: How to Green Your Electricity Supply & Save Money January 15, 2014 1:00-2:00 p.m. ET Previous Webinars More News Features Green Power Market Status Report (2011 Data) Featured Green Power Reports On-site Renewable Energy Third-Party Solar Financing For consumers or organizations wishing to install on-site renewable energy systems, there are a variety of options available, including electricity generating systems and thermal systems that can displace electricity or fossil fuel use. Solar photovoltaics convert sunlight directly into electricity. Solar hot water systems use the sun's energy to heat water.

111

UTILITY INVESTMENT IN ON-SITE SOLAR: RISK AND RETURN ANALYSIS FOR CAPITALIZATION AND FINANCING  

E-Print Network (OSTI)

of S for On-Site Solar Heating -iv- List of Figures Fig. 1.penetration of on-site solar heating and cooling systems.investment in on-site solar heating cannot easily quantify

Kahn, E.

2011-01-01T23:59:59.000Z

112

The Aerosol Modeling Testbed: A community tool to objectively evaluate aerosol process modules  

SciTech Connect

This study describes a new modeling paradigm that significantly advances how the third activity is conducted while also fully exploiting data and findings from the first two activities. The Aerosol Modeling Testbed (AMT) is a computational framework for the atmospheric sciences community that streamlines the process of testing and evaluating aerosol process modules over a wide range of spatial and temporal scales. The AMT consists of a fully-coupled meteorology-chemistry-aerosol model, and a suite of tools to evaluate the performance of aerosol process modules via comparison with a wide range of field measurements. The philosophy of the AMT is to systematically and objectively evaluate aerosol process modules over local to regional spatial scales that are compatible with most field campaigns measurement strategies. The performance of new treatments can then be quantified and compared to existing treatments before they are incorporated into regional and global climate models. Since the AMT is a community tool, it also provides a means of enhancing collaboration and coordination among aerosol modelers.

Fast, Jerome D.; Gustafson, William I.; Chapman, Elaine G.; Easter, Richard C.; Rishel, Jeremy P.; Zaveri, Rahul A.; Grell, Georg; Barth, Mary

2011-03-02T23:59:59.000Z

113

The W-Process for Software Product Evaluation: A Method for Goal-Oriented Implementation of the ISO 14598 Standard  

Science Conference Proceedings (OSTI)

The importance of software product evaluations will grow with the awareness of the need for better software quality. The process to conduct such evaluations is crucial to get evaluation results that can be applied and meet customers' expectations. This ... Keywords: Goal–Question–Metric paradigm, ISO 14598, ISO 25000, ISO 9126, software product evaluation, software quality

Teade Punter; Rob Kusters; Jos Trienekens; Theo Bemelmans; Aarnout Brombacher

2004-06-01T23:59:59.000Z

114

Black Hills Energy - On-Site Solar PV Rebate Program | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

- On-Site Solar PV Rebate Program Black Hills Energy - On-Site Solar PV Rebate Program Eligibility Commercial Fed. Government General PublicConsumer Industrial Local Government...

115

Field evaluation of the availability for corn and soybean of phosphorus recovered as struvite from corn fiber processing for bioenergy.  

E-Print Network (OSTI)

??FIELD EVALUATION OF THE AVAILABILITY FOR CORN AND SOYBEAN OF PHOSPHORUS RECOVERED AS STRUVITE FROM CORN FIBER PROCESSING FOR BIOENERGY A paper to be submitted… (more)

Thompson, Louis Bernard

2013-01-01T23:59:59.000Z

116

Evaluation of Co-precipitation Processes for the Synthesis of Mixed-Oxide Fuel Feedstock Materials  

SciTech Connect

The focus of this report is the evaluation of various co-precipitation processes for use in the synthesis of mixed oxide feedstock powders for the Ceramic Fuels Technology Area within the Fuels Cycle R&D (FCR&D) Program's Advanced Fuels Campaign. The evaluation will include a comparison with standard mechanical mixing of dry powders and as well as other co-conversion methods. The end result will be the down selection of a preferred sequence of co-precipitation process for the preparation of nuclear fuel feedstock materials to be used for comparison with other feedstock preparation methods. A review of the literature was done to identify potential nitrate-to-oxide co-conversion processes which have been applied to mixtures of uranium and plutonium to achieve recycle fuel homogeneity. Recent studies have begun to study the options for co-converting all of the plutonium and neptunium recovered from used nuclear fuels, together with appropriate portions of recovered uranium to produce the desired mixed oxide recycle fuel. The addition of recycled uranium will help reduce the safeguard attractiveness level and improve proliferation resistance of the recycled fuel. The inclusion of neptunium is primarily driven by its chemical similarity to plutonium, thus enabling a simple quick path to recycle. For recycle fuel to thermal-spectrum light water reactors (LWRs), the uranium concentration can be {approx}90% (wt.), and for fast spectrum reactors, the uranium concentration can typically exceed 70% (wt.). However, some of the co-conversion/recycle fuel fabrication processes being developed utilize a two-step process to reach the desired uranium concentration. In these processes, a 50-50 'master-mix' MOX powder is produced by the co-conversion process, and the uranium concentration is adjusted to the desired level for MOX fuel recycle by powder blending (milling) the 'master-mix' with depleted uranium oxide. In general, parameters that must be controlled for co-precipitation processes include (1) feed solution concentration adjustment, (2) precipitant concentration and addition methods, (3) pH, temperature, mixing method and time, (4) valence adjustment, (5) solid precipitate separation from the filtrate 'mother liquor,' generally by means of centrifugation or filtration, and (6) temperatures and times for drying, calcination, and reduction of the MOX product powder. Also a recovery step is necessary because of low, but finite solubility of the U/TRU metals in the mother liquor. The recovery step usually involves destruction of the residual precipitant and disposal of by-product wastes. Direct denitrations of U/TRU require fewer steps, but must utilize various methods to enable production of MOX with product characteristics that are acceptable for recycle fuel fabrication. The three co-precipitation processes considered for evaluation are (1) the ammonia co-precipitation process being developed in Russia, (2) the oxalate co-precipitation process, being developed in France, and (3) the ammonium-uranyl-plutonyl-carbonate (AUPuC) process being developed in Germany. Two direct denitration processes are presented for comparison: (1) the 'Microwave Heating (MH)' automated multi-batch process developed in Japan and (2) the 'Modified Direct Denitration (MDD)' continuous process being developed in the USA. Brief comparative descriptions of the U/TRU co-conversion processes are described. More complete details are provided in the references.

Collins, Emory D [ORNL; Voit, Stewart L [ORNL; Vedder, Raymond James [ORNL

2011-06-01T23:59:59.000Z

117

Production test IP-665-A, evaluation of hot-die-sized end bonding processes  

SciTech Connect

Investigations of possible operational limitations of the ALSi bonded e elements and the need for a replacement or alternate fuel fabrication process have been lender way for several years. Recently, one fuel manufacturing process, hot-die-sized diffusion bonding, has been intensely examined and irradiation testing of this new fuel type began in 1963. This production test is one additional step in evaluating the new fuel fabrication process. The objective of this test is to evaluate the effect end-bonding techniques on the irradiation behavior of hot-die-sized diffusion bonded fuel elements. Three types of fuel elements will be used in this test: (1) hot-die-sized diffusion bonded elements which have been end bonded by the resistance heating method; (2) hot-die-sized diffusion bonded elements which have been end bonded by the induction heating method; and (3) standard production AlSi bonded fuel elements. Twelve columns of fuel containing the three element types alternated throughout the columns will be irradiated in the test. Twelve smooth-bore Zircaloy-2 process tubes in the C Reactor will be utilized for this test; consequently, all fuel elements of this test are self-support models. These fuel columns will be irradiated to average exposures of 800 Mwd/t. Examination and measurement of the elements of this test will take place in the 105=C Metal Examination Facility.

Hladek, K.L.

1964-03-30T23:59:59.000Z

118

TATB (triaminotrinitrobenzene) purification and particle size modification: An evaluation of processing options  

SciTech Connect

Triaminotrinitrobenzene (TATB) is an insensitive high explosive with desirable safety characteristics. Mound is currently interested in developing a high purity, high surface area form of this compound to increase its potential applications. This paper describes recent development efforts. After setting purification and surface area goals, a number of processing procedures were tested to determine their practicality and effectiveness. The purification procedures included sulfuric acid recrystallization, dimethylsulfoxide/NaOH recrystallization, Soxhlet extraction, thermal gradient sublimation, and high-temperature recrystallization. Techniques identified for increasing surface area included crash precipitation of TATB and processing TATB in a fluid energy mill. An evaluation of the data suggested that a two- or three-step process will be necessary to produce the desired results. A sulfuric acid recrystallization used in conjunction with a high-temperature recrystallization is recommended to achieve the necessary purity. This should be followed by a crash precipitation or milling step to meet surface area requirements. 5 refs., 5 figs., 1 tab.

Firsich, D.W.; Thorpe, R.; Cox, L.A.

1990-03-15T23:59:59.000Z

119

EVALUATION OF AUTOMATIC DATA PROCESSING IN THE FLUORIDE VOLATILITY PILOT PLANT  

SciTech Connect

Automatic data logging and digital-computer techniques were evaluated in the ORNL Fluoride Volatiltty Pilot Plant, The data reduction sequence consisted of encoding plant signals from conventional instrumentation, digitizing the encoded signals with an on-line automatic data logger, and processing the logged data off-line with a digital computer. Data reduction and computational codes were useful in disseminating process data, with photographic curve plots being the most efficient means. Considerable difficulty was experienced with logger output errors, which complicated the data processing and frequently resulted in erroneous results. After continuous operation of the data-processing sequence for 12 months it was concluded that output from a data logger is of limited use without recourse to a computer, loading of raw logger data to the computer and subsequent conversion to a useful form (engineering units) can account for up to 70% of total computer charges, and some backup to automatic data logging, either as continuous or manual recording, may be desirable because logger downtime may be as much as 5%. The use of the data reduction sequence will be continued in the pilot plant. Expanding the sequence to include on-line computation and process control features is not justified because of process limitations. (auth)

Moncrief, E. C.; Hill, M. C.

1963-01-01T23:59:59.000Z

120

On-site worker-risk calculations using MACCS  

Science Conference Proceedings (OSTI)

We have revised the latest version of MACCS for use with the calculation of doses and health risks to on-site workers for postulated accidents at the Rocky Flats Plant (RFP) in Colorado. The modifications fall into two areas: (1) an improved estimate of shielding offered by buildings to workers that remain indoors; and, (2) an improved treatment of building-wake effects, which affects both indoor and outdoor workers. Because the postulated accident can be anywhere on plant site, user-friendly software has been developed to create those portions of the (revised) MACCS input data files that are specific to the accident site.

Peterson, V.L.

1993-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "on-site evaluation process" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

On-site generated nitrogen cuts cost of underbalanced drilling  

Science Conference Proceedings (OSTI)

The use of on-site generated nitrogen, instead of liquid nitrogen, has reduced the cost of drilling underbalanced horizontal wells in Canada and the western US. Because nitrogen is inert and inflammable, it is the preferred gas for underbalanced drilling. Nitrogen can be supplied for oil field use by three different methods: cryogenic liquid separation, pressure swing adsorption, and hollow fiber membranes. The selection of nitrogen supply from one of these methods depends on the cost of delivered nitrogen, the required flow rates and pressure, the required nitrogen purity, and the availability and reliability of the equipment for nitrogen generation. These three methods are described, as well as the required equipment.

Downey, R.A. [Energy Ingenuity Co., Englewood, CO (United States)

1997-02-24T23:59:59.000Z

122

Evaluation of alternative chemical additives for high-level waste vitrification feed preparation processing  

SciTech Connect

During the development of the feed processing flowsheet for the Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS), research had shown that use of formic acid (HCOOH) could accomplish several processing objectives with one chemical addition. These objectives included the decomposition of tetraphenylborate, chemical reduction of mercury, production of acceptable rheological properties in the feed slurry, and controlling the oxidation state of the glass melt pool. However, the DEPF research had not shown that some vitrification slurry feeds had a tendency to evolve hydrogen (H{sub 2}) and ammonia (NH{sub 3}) as the result of catalytic decomposition of CHOOH with noble metals (rhodium, ruthenium, palladium) in the feed. Testing conducted at Pacific Northwest Laboratory and later at the Savannah River Technical Center showed that the H{sub 2} and NH{sub 3} could evolve at appreciable rates and quantities. The explosive nature of H{sub 2} and NH{sub 3} (as ammonium nitrate) warranted significant mitigation control and redesign of both facilities. At the time the explosive gas evolution was discovered, the DWPF was already under construction and an immediate hardware fix in tandem with flowsheet changes was necessary. However, the Hanford Waste Vitrification Plant (HWVP) was in the design phase and could afford to take time to investigate flowsheet manipulations that could solve the problem, rather than a hardware fix. Thus, the HWVP began to investigate alternatives to using HCOOH in the vitrification process. This document describes the selection, evaluation criteria, and strategy used to evaluate the performance of the alternative chemical additives to CHOOH. The status of the evaluation is also discussed.

Seymour, R.G.

1995-06-07T23:59:59.000Z

123

Development and process evaluation of improved Fischer-Tropsch slurry catalysts. Final report  

DOE Green Energy (OSTI)

This report describes results of a study aimed at developing and evaluating improved catalysts for a slurry Fischer-Tropsch (FT) process for converting synthesis gas to high quality transportation fuels (gasoline and distillate). The improvements in catalyst performance were sought by studying effects of pretreatment conditions, promoters and binders/supports. A total of 20 different, iron based, catalysts were evaluated in 58 fixed bed reactor tests and 10 slurry reactor tests. The major accomplishments and conclusions are summarized below. The pretreatment conditions (temperature, duration and the nature of reducing gas) have significant effect on catalyst performance (activity, selectivity and stability) during Fischer-Tropsch synthesis. One of precipitated unsupported catalysts had hydrocarbon selectivity similar to Mobil`s I-B catalyst in high wax mode operation, and had not experienced any loss in activity during 460 hours of testing under variable process conditions in a slurry reactor. The effect of promoters (copper and potassium) on catalyst performance during FT synthesis has been studied in a systematic way. It was found that potassium promotion increases activities of the FT and water-gas-shift (WGS) reactions, the average molecular weight of hydrocarbon products, and suppresses the olefin hydrogenation and isomerization reactions. The addition of binders/supports (silica or alumina) to precipitated Fe/Cu/K catalysts, decreased their activity but improved their stability and hydrocarbon selectivity. The performance of catalysts of this type was very promising and additional studies are recommended to evaluate their potential for use in commercial slurry reactors.

Bukur, D.B.; Mukesh, D.; Patel, S.A.; Zimmerman, W.H.; Rosynek, M.P. [Texas A& M Univ., College Station, TX (United States); Kellogg, L.J. [Air Products and Chemicals, Inc., Allentown, PA (United States)

1990-04-01T23:59:59.000Z

124

Evaluation of the U.S. Environmental Protection Agency's Public Outreach Program during the Certification Process at  

E-Print Network (OSTI)

of the Waste Isolation Pilot Plant (WIPP) in Carlsbad, New Mexico. The evaluation was charged with identifying for the WIPP recertification process. The evaluation consisted of 54 interviews of stakeholders from, the EPA WIPP web site, EPA WIPP public dockets, and toured the WIPP facility. Findings The evaluation team

125

Summary of the planning, management, and evaluation process for the Geothermal Program Review VI conference  

DOE Green Energy (OSTI)

The purpose of this document is to present an overview of the planning, facilitation, and evaluation process used to conduct the Geothermal Program Review VI (PR VI) conference. This document was also prepared to highlight lessons learned from PR VI and, by utilizing the evaluation summaries and recommendations, be used as a planning tool for PR VII. The conference, entitled Beyond Goals and Objectives,'' was sponsored by the US Department of Energy's (DOE) Geothermal Technology Division (GTD), PR VI was held in San Francisco, California on April 19--21, 1988 and was attended by 127 participants. PR VI was held in conjunction with the National Geothermal Association's (NGA) Industry Round Table. This document presents a brief summary of the activities, responsibilities, and resources for implementing the PR VI meeting and provides recommendations, checklists, and a proposed schedule for assisting in planning PR VII.

Not Available

1988-10-01T23:59:59.000Z

126

HRP-CP: AN EVALUATION OF THE DESIGN FEATURES OF BLANKET PROCESSING LOOP P- 1  

DOE Green Energy (OSTI)

The design features and the performance of UO/sub 2/SO/sub 4/ blanket processing Loop P-1 are evaluated from an engineering viewpoint. This unique experiment development loop was operated with pump heating to study the behavior of plutonium in 1.4 M UO/sub 2/SO/sub 4/at 250 deg C and was designed for mixed O/ sub 2/-H/sub 2/ gas pressurization The canned loop and the feed and sampling systems in glove boxes completely contained the plutonium throughout the experimental program. (auth)

Snider, J.W.; Clinton, S.D.

1958-10-22T23:59:59.000Z

127

Assessment of very high-temperature reactors in process applications. Appendix III. Engineering evaluation of process heat applications for very-high temperature reactors  

SciTech Connect

An engineering and economic evaluation is made of coal conversion processes that can be coupled to a very high-temperature nuclear reactor heat source. The basic system developed by General Atomic/Stone and Webster (GA/S and W) is similar to the H-coal process developed by Hydrocarbon Research, Inc., but is modified to accommodate a nuclear heat source and to produce synthetic natural gas (SNG), synthesis gas, and hydrogen in addition to synthetic crude liquids. The synthetic crude liquid production is analyzed by using the GA/S and W process coupled to either a nuclear- or fossil-heat source. Four other processes are included for comparison: (1) the Lurgi process for production of SNG, (2) the Koppers-Totzek process for production of either hydrogen or synthesis gas, (3) the Hygas process for production of SNG, and (4) the Westinghouse thermal-chemical water splitting process for production of hydrogen. The production of methanol and iron ore reduction are evaluated as two potential applications of synthesis gas from either the GA/S and W or Koppers-Totzek processes. The results indicate that the product costs for each of the gasification and liquefaction processes did not differ significantly, with the exception that the unproven Hygas process was cheaper and the Westinghouse process considerably more expensive than the others.

Wiggins, D.S.; Williams, J.J.

1977-04-01T23:59:59.000Z

128

Evaluation of gasification and novel thermal processes for the treatment of municipal solid waste  

DOE Green Energy (OSTI)

This report identifies seven developers whose gasification technologies can be used to treat the organic constituents of municipal solid waste: Energy Products of Idaho; TPS Termiska Processor AB; Proler International Corporation; Thermoselect Inc.; Battelle; Pedco Incorporated; and ThermoChem, Incorporated. Their processes recover heat directly, produce a fuel product, or produce a feedstock for chemical processes. The technologies are on the brink of commercial availability. This report evaluates, for each technology, several kinds of issues. Technical considerations were material balance, energy balance, plant thermal efficiency, and effect of feedstock contaminants. Environmental considerations were the regulatory context, and such things as composition, mass rate, and treatability of pollutants. Business issues were related to likelihood of commercialization. Finally, cost and economic issues such as capital and operating costs, and the refuse-derived fuel preparation and energy conversion costs, were considered. The final section of the report reviews and summarizes the information gathered during the study.

Niessen, W.R.; Marks, C.H.; Sommerlad, R.E. [Camp Dresser and McKee, Inc., Cambridge, MA (United States)] [Camp Dresser and McKee, Inc., Cambridge, MA (United States)

1996-08-01T23:59:59.000Z

129

Commissioning & Optimization of On-Site Renewable Energy Systems  

E-Print Network (OSTI)

Today, many electrical contractors and photovoltaic (PV) integrators engineer and install custom systems on a variety of existing and new construction. These systems are designed specifically to the building configurations and to required utility interconnection. Each system therefore becomes a unique challenge to design, install and commission. This paper will present a detailed review of pre-commissioning activities, followed by the formal commissioning and startup of PV systems. A step by step list of activities, including a review of compliance to the National Electrical Code®, will be presented with examples from actual completed installations. Proper understanding and installation of these systems will ensure the safety of all personnel during the commissioning and subsequent operation by the end user. One of the often overlooked benefits of the commissioning is to include the client in the overall review of the system and provide an explanation of the rational for the design, installation and operation of the system. This is not a substitute for the final hand over of the system, but rather a way for the client to become knowledgeable with the completed project. Finally, the commissioning procedure provides a view into the operation and maintenance (O&M) of the completed project. The commissioning process therefore presents a safe and thorough procedure for the final testing and evaluation of the system prior to hand over to the client.

Gardner, J.C.

2011-01-01T23:59:59.000Z

130

An Evaluation of Low-BTU Gas from Coal as an Alternate Fuel for Process Heaters  

E-Print Network (OSTI)

As the price gap between oil and natural gas and coal continues to widen, Monsanto has carefully searched out and examined opportunities to convert fuel use to coal. Preliminary studies indicate that the low-btu gas produced by fixed-bed, air blown gasifiers could potentially replace the natural gas now used in process heaters. The technology is well established and requires less capital than the higher-btu process heaters. Low-btu gas has sufficient heating value and flame temperature to be acceptable fuel for most process heaters. Economics for gas production appear promising, but somewhat uncertain. Rough evaluations indicate rates of return of as much as 30-40%. However, the economics are very dependent on a number of site- specific considerations including: coal vs. natural gas prices, economic life of the gas-consuming facility, quantity of gas required, need for desulfurization, location of gasifiers in relation to gas users, existence of coal unloading and storage facilities, etc. Two of these factors, the difference between coal and natural gas prices and the project life are difficult to predict. The resulting uncertainty has caused Monsanto to pursue coal gasification for process heaters with cautious optimism, on a site by site basis.

Nebeker, C. J.

1982-01-01T23:59:59.000Z

131

Optimal evaluation of infectious medical waste disposal companies using the fuzzy analytic hierarchy process  

SciTech Connect

Ever since Taiwan's National Health Insurance implemented the diagnosis-related groups payment system in January 2010, hospital income has declined. Therefore, to meet their medical waste disposal needs, hospitals seek suppliers that provide high-quality services at a low cost. The enactment of the Waste Disposal Act in 1974 had facilitated some improvement in the management of waste disposal. However, since the implementation of the National Health Insurance program, the amount of medical waste from disposable medical products has been increasing. Further, of all the hazardous waste types, the amount of infectious medical waste has increased at the fastest rate. This is because of the increase in the number of items considered as infectious waste by the Environmental Protection Administration. The present study used two important findings from previous studies to determine the critical evaluation criteria for selecting infectious medical waste disposal firms. It employed the fuzzy analytic hierarchy process to set the objective weights of the evaluation criteria and select the optimal infectious medical waste disposal firm through calculation and sorting. The aim was to propose a method of evaluation with which medical and health care institutions could objectively and systematically choose appropriate infectious medical waste disposal firms.

Ho, Chao Chung, E-mail: ho919@pchome.com.tw [Department of Industrial Management, National Taiwan University of Science and Technology, Taipei, Taiwan (China)

2011-07-15T23:59:59.000Z

132

ECONOMIC EVALUATION OF CO2 SEQUESTRATION TECHNOLOGIES TASK 4, BIOMASS GASIFICATION-BASED PROCESSING  

DOE Green Energy (OSTI)

Biomass derived energy currently accounts for about 3 quads of total primary energy use in the United States. Of this amount, about 0.8 quads are used for power generation. Several biomass energy production technologies exist today which contribute to this energy mix. Biomass combustion technologies have been the dominant source of biomass energy production, both historically and during the past two decades of expansion of modern biomass energy in the U. S. and Europe. As a research and development activity, biomass gasification has usually been the major emphasis as a method of more efficiently utilizing the energy potential of biomass, particularly wood. Numerous biomass gasification technologies exist today in various stages of development. Some are simple systems, while others employ a high degree of integration for maximum energy utilization. The purpose of this study is to conduct a technical and economic comparison of up to three biomass gasification technologies, including the carbon dioxide emissions reduction potential of each. To accomplish this, a literature search was first conducted to determine which technologies were most promising based on a specific set of criteria. The technical and economic performances of the selected processes were evaluated using computer models and available literature. Using these results, the carbon sequestration potential of the three technologies was then evaluated. The results of these evaluations are given in this final report.

Martha L. Rollins; Les Reardon; David Nichols; Patrick Lee; Millicent Moore; Mike Crim; Robert Luttrell; Evan Hughes

2002-06-01T23:59:59.000Z

133

Evaluation of a Mobile Hot Cell Technology for Processing Idaho National Laboratory Remote-Handled Wastes  

SciTech Connect

The Idaho National Laboratory (INL) currently does not have the necessary capabilities to process all remote-handled wastes resulting from the Laboratory’s nuclear-related missions. Over the years, various U.S. Department of Energy (DOE)-sponsored programs undertaken at the INL have produced radioactive wastes and other materials that are categorized as remote-handled (contact radiological dose rate > 200 mR/hr). These materials include Spent Nuclear Fuel (SNF), transuranic (TRU) waste, waste requiring geological disposal, low-level waste (LLW), mixed waste (both radioactive and hazardous per the Resource Conservation and Recovery Act [RCRA]), and activated and/or radioactively-contaminated reactor components. The waste consists primarily of uranium, plutonium, other TRU isotopes, and shorter-lived isotopes such as cesium and cobalt with radiological dose rates up to 20,000 R/hr. The hazardous constituents in the waste consist primarily of reactive metals (i.e., sodium and sodium-potassium alloy [NaK]), which are reactive and ignitable per RCRA, making the waste difficult to handle and treat. A smaller portion of the waste is contaminated with other hazardous components (i.e., RCRA toxicity characteristic metals). Several analyses of alternatives to provide the required remote-handling and treatment capability to manage INL’s remote-handled waste have been conducted over the years and have included various options ranging from modification of existing hot cells to construction of new hot cells. Previous analyses have identified a mobile processing unit as an alternative for providing the required remote-handled waste processing capability; however, it was summarily dismissed as being a potentially viable alternative based on limitations of a specific design considered. In 2008 INL solicited expressions of interest from Vendors who could provide existing, demonstrated technology that could be applied to the retrieval, sorting, treatment (as required), and repackaging of INL remote-handled wastes. Based on review of the responses and the potential viability of a mobile hot cell technology, INL subsequently conducted a technology evaluation, including proof-of-process validation, to assess the feasibility of utilizing such a technology for processing INL’s remote-handled wastes to meet established regulatory milestones. The technology evaluation focused on specific application of a mobile hot cell technology to the conditions to be encountered at the INL and addressed details of previous technology deployment, required modifications to accommodate INL’s remote-handled waste, ability to meet DOE safety requirements, requirements for fabrication/construction/decontamination and dismantling, and risks and uncertainties associated with application of the technology to INL’s remote-handled waste. The large capital costs associated with establishing a fixed asset to process INL’s remote-handled waste, the relatively small total volume of waste to be processed when compared to other waste streams through the complex, and competing mission-related needs has made it extremely difficult to secure the necessary support to advance the project. Because of this constraint, alternative contract structures were also explored as part of the technology evaluation wherein the impact of a large capital investment could be lessened.

B.J. Orchard; L.A. Harvego; R.P. Miklos; F. Yapuncich; L. Care

2009-03-01T23:59:59.000Z

134

Development and application of a probabilistic evaluation method for advanced process technologies  

SciTech Connect

The objective of this work is to develop and apply a method for research planning for advanced process technologies. To satisfy requirements for research planning, it is necessary to: (1) identify robust solutions to process design questions in the face of uncertainty to eliminate inferior design options; (2) identify key problem areas in a technology that should be the focus of further research to reduce the risk of technology failure; (3) compare competing technologies on a consistent basis to determine the risks associated with adopting a new technology; and (4) evaluate the effects that additional research might have on comparisons with conventional technology. An important class of process technologies are electric power plants. In particular, advanced clean coal technologies are expected to play a key role in the energy and environmental future of the US, as well as in other countries. Research planning for advanced clean coal technology development is an important part of energy and environmental policy. Thus, the research planning method developed here is applied to case studies focusing on a specific clean coal technology. The purpose of the case studies is both to demonstrate the research planning method and to obtain technology-specific conclusions regarding research strategies.

Frey, H.C.; Rubin, E.S.

1991-04-01T23:59:59.000Z

135

Evaluation of a Conjunctive Surface–Subsurface Process Model (CSSP) over the Contiguous United States at Regional–Local Scales  

Science Conference Proceedings (OSTI)

This study presents a comprehensive evaluation on a Conjunctive Surface–Subsurface Process Model (CSSP) in predicting soil temperature–moisture distributions, terrestrial hydrology variations, and land–atmosphere exchanges against various in situ ...

Xing Yuan; Xin-Zhong Liang

2011-08-01T23:59:59.000Z

136

Nuclear Explosives Safety Evaluation Process (DOE-STD-3015-2004)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SENSITIVE DOE-STD-3015-2004 November 2004 Superseding DOE-STD-3015-2001 DOE STANDARD NUCLEAR EXPLOSIVE SAFETY EVALUATION PROCESS U.S. Department of Energy AREA SAFT Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Available on the Department of Energy Technical Standards Program Web site at http://tis.eh.doe.gov/techstds/. DOE-STD-3015-2004 iii FOREWORD This Department of Energy (DOE) Technical Standard is approved for use by the Assistant Deputy Administrator for Military Application and Stockpile Operations, National Nuclear Security Administration (NNSA), and is available for use with DOE O 452.1, NUCLEAR EXPLOSIVE AND WEAPON SURETY PROGRAM, and DOE O 452.2, SAFETY OF

137

Method for evaluating the potential of geothermal energy in industrial process heat applications  

DOE Green Energy (OSTI)

A method is presented for evaluating the technical and economic potential of geothermal energy for industrial process heat applications. The core of the method is a computer program which can be operated either as a design analysis tool to match energy supplies and demands, or as an economic analysis tool if a particular design for the facility has already been selected. Two examples are given to illustrate the functioning of the model and to demonstrate that results reached by use of the model closely parallel those that have been determined by more traditional techniques. Other features of interest in the model include: (1) use of decision analysis techniques as well as classical methods to deal with questions relating optimization; (2) a tax analysis of current regulations governing percentage depletion for geothermal deposits; and (3) development of simplified correlations for the thermodynamic properties of salt solutions in water.

Packer, M.B.; Mikic, B.B.; Meal, H.C., Guillamon-Duch, H.

1980-05-01T23:59:59.000Z

138

Evaluation of the graphite electrode arc melter for processing heterogeneous waste  

SciTech Connect

The U.S. Bureau of Mines (USBM) conducted a series of 4 demonstration melting tests in a 3-phase AC graphite electrode arc furnace at its Albany Research Center (ALRC) thermal treatment facility in Albany, Oregon (now part of the U.S. Department of Energy, DOE). The scope of these tests provides a unique opportunity to evaluate a single melting technology regarding its applicability to the treatment of several different heterogeneous mixed wastes. The current system can continuously process combustible-bearing wastes at feedrates to 682 kg/h (1,500 lb/h), continuously tap slag or glass, and intermittently tap metal products, and includes a close-coupled thermal oxidizer and air pollution control system (APCS). The 4 demonstration melting tests were conducted in cooperation with the American Society of Mechanical Engineers (ASME), the Idaho National Engineering Laboratory (INEL), and the Westinghouse Hanford Company (WHC).

O' Connor, William K.; Turner, Paul C.; Soelberg, N.R. (Idaho National Engineering Laboratory); Anderson, G.L. (Idaho National Engineering Laboratory)

1996-01-01T23:59:59.000Z

139

Property:On-Site fabrication capability/equipment | Open Energy Information  

Open Energy Info (EERE)

On-Site fabrication capability/equipment On-Site fabrication capability/equipment Jump to: navigation, search Property Name On-Site fabrication capability/equipment Property Type Text Pages using the property "On-Site fabrication capability/equipment" Showing 25 pages using this property. (previous 25) (next 25) A Alden Large Flume + Full on-site carpentry, machine, and instrumentation shops Alden Small Flume + Full on-site carpentry, machine, and instrumentation shops Alden Tow Tank + Full on-site carpentry, machine, and instrumentation shops Alden Wave Basin + Full on-site carpentry, machine, and instrumentation shops C Chase Tow Tank + There is a machine shop in the Laboratory Conte Large Flume + Full carpentry shop with welding and machining capabilities Conte Small Flume + Full carpentry shop with welding and machining capabilities

140

ECONOMIC EVALUATION OF CO2 SEQUESTRATION TECHNOLOGIES TASK 4, BIOMASS GASIFICATION-BASED PROCESSING  

DOE Green Energy (OSTI)

Biomass derived energy currently accounts for about 3 quads of total primary energy use in the United States. Of this amount, about 0.8 quads are used for power generation. Several biomass energy production technologies exist today which contribute to this energy mix. Biomass combustion technologies have been the dominant source of biomass energy production, both historically and during the past two decades of expansion of modern biomass energy in the U. S. and Europe. As a research and development activity, biomass gasification has usually been the major emphasis as a method of more efficiently utilizing the energy potential of biomass, particularly wood. Numerous biomass gasification technologies exist today in various stages of development. Some are simple systems, while others employ a high degree of integration for maximum energy utilization. The purpose of this study is to conduct a technical and economic comparison of up to three biomass gasification technologies, including the carbon dioxide emissions reduction potential of each. To accomplish this, a literature search was first conducted to determine which technologies were most promising based on a specific set of criteria. During this reporting period, the technical and economic performances of the selected processes were evaluated using computer models and available literature. The results of these evaluations are summarized in this report.

Martha L. Rollins; Les Reardon; David Nichols; Patrick Lee; Millicent Moore; Mike Crim; Robert Luttrell; Evan Hughes

2002-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "on-site evaluation process" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Evaluation of Foaming and Antifoam Effectiveness During the WTP Oxidative Leaching Process  

Science Conference Proceedings (OSTI)

The River Protection Project-Waste Treatment Plant (RPP-WTP) requested Savannah River National Laboratory (SRNL) to conduct small-scale foaming and antifoam testing using a Hanford waste simulant subjected to air sparging during oxidative leaching. The foaminess of Hanford tank waste solutions was previously demonstrated by SRNL during WTP evaporator foaming studies and in small scale air sparger studies. The commercial antifoam, Dow Corning Q2-3183A was recommended to mitigate the foam in the evaporators and in vessel equipped with pulse jet mixers and air spargers. Currently, WTP is planning to use air spargers in the HLW Lag Storage Vessels (HLP-VSL-00027A/B), the Ultrafiltration Vessels (UFP-VSL-00002A&B), and the HLW Feed Blend Vessel (HLPVSL-00028) to assist the performance of the Pulse Jet Mixers (PJM). The previous air sparger antifoam studies conducted by SRNL researchers did not evaluate the hydrogen generation rate expected from antifoam additions or the effectiveness of the antifoam during caustic leaching or oxidative leaching. The fate of the various antifoam components and breakdown products in the WTP process under prototypic process conditions (temperature & radiation) was also not investigated. The effectiveness of the antifoam during caustic leaching, expected hydrogen generation rate associated with antifoam addition, and the fate of various antifoam components are being conducted under separate SRNL research tasks.

Burket, P. R.; Jones, T. M.; White, T. L.; Crawford, C. L.; Calloway, T. B

2005-10-11T23:59:59.000Z

142

Evaluation of positron emission tomography as a method to visualize subsurface microbial processes  

Science Conference Proceedings (OSTI)

Positron emission tomography (PET) provides spatiotemporal monitoring in a nondestructive manner and has higher sensitivity and resolution relative to other tomographic methods. Therefore, this technology was evaluated for its application to monitor in situ subsurface bacterial activity. To date, however, it has not been used to monitor or image soil microbial processes. In this study, PET imaging was applied as a 'proof-of-principle' method to assess the feasibility of visualizing a radiotracer labeled subsurface bacterial strain (Rahnella sp. Y9602), previously isolated from uranium contaminated soils and shown to promote uranium phosphate precipitation. Soil columns packed with acid-purified simulated mineral soils were seeded with 2-deoxy-2-[{sup 18}F]fluoro-d-glucose ({sup 18}FDG) labeled Rahnella sp. Y9602. The applicability of [{sup 18}F]fluoride ion as a tracer for measuring hydraulic conductivity and {sup 18}FDG as a tracer to identify subsurface metabolically active bacteria was successful in our soil column studies. Our findings indicate that positron-emitting isotopes can be utilized for studies aimed at elucidating subsurface microbiology and geochemical processes important in contaminant remediation.

Kinsella K.; Schlyer D.; Kinsella, K.; Schlyer, D.J.; Fowler, J.S.; Martinez, R.J.; Sobecky, P.A.

2012-01-18T23:59:59.000Z

143

Evaluation of the Rockwell International flash-hydroliquefaction process. Final summary report  

DOE Green Energy (OSTI)

At the request of the Department of Energy, UOP/SDC has evaluated the Rockwell Hydroliquefaction Process to determine the adequacy of the existing PDU data base and to assess the practicability and operability of the process. UOP/SDC conducted nine studies. Their findings follow: (1) A complete designed set of experiments must be run on the present PDU to make possible satisfactory analysis of the effects of variables especially the effect of diluents in the H/sub 2/ feed and the possibility of carbon deposition problems. (2) Basic improvements in the equipment and operation of the PDU should first be made (Ten specific recommendations are made). (3) A reactor design concept must be developed that looks feasible for design, fabrication, and operation. (4) A conceptual commercial design and economics should be prepared based on a realistic set of design bases and criteria. (5) If the above are accomplished successfully with attractive results, then and only then: (a) A study should be made of the refining requirements of the product, which are expected to be expensive based on the H/C ratio. (b) The PDU should be modified for continuous runs of up to one month to: Confirm the data correlations, estimate the reliability of the reactor and process, adhere to the requirements stated above, test cryogenic gas separation, study fouling and erosion, study lockhopper feeding, establish initial reliability of the coal injector and precombustion assembly head, collect scale-up and design data, and conduct a materials study and confirm materials choices. (c) Determine particle size of the char and of the solids in the oil product, the degree to which they may be separated, and how the ash should be removed from the product oil.

Sirohi, V.P.

1980-09-01T23:59:59.000Z

144

Fire risks in the field of architecture and urban planning design process of the civil constructions, management, evaluation and control  

Science Conference Proceedings (OSTI)

Based on the text study of the Firefighting Law, a series of conclusions are risen, that are, in the same time, tasks of fire risks management, evaluation and control within architecture and urban planning design process of constructions. Fire risks ... Keywords: architecture and urban planning design process, educational model, fire risk

Gheorghe Breazu; Cristian Dumitrescu

2010-07-01T23:59:59.000Z

145

Evaluation of a Combined Cyclone & Gas Filtration System for Particulate Removal in the Gasification Process  

Science Conference Proceedings (OSTI)

The Wabash gasification facility, owned and operated by sgSolutions LLC, is one of the largest single train solid fuel gasification facilities in the world capable of transforming 2,000 tons per day of petroleum coke or 2,600 tons per day of bituminous coal into synthetic gas for electrical power generation. The Wabash plant utilizes Phillips66 proprietary E-Gas™ Gasification Process to convert solid fuels such as petroleum coke or coal into synthetic gas that is fed to a combined cycle combustion turbine power generation facility. During plant startup in 1995, reliability issues were realized in the gas filtration portion of the gasification process. To address these issues, a slipstream test unit was constructed at the Wabash facility to test various filter designs, materials and process conditions for potential reliability improvement. The char filtration slipstream unit provided a way of testing new materials, maintenance procedures, and process changes without the risk of stopping commercial production in the facility. It also greatly reduced maintenance expenditures associated with full scale testing in the commercial plant. This char filtration slipstream unit was installed with assistance from the United States Department of Energy (built under DOE Contract No. DE-FC26-97FT34158) and began initial testing in November of 1997. It has proven to be extremely beneficial in the advancement of the E-Gas™ char removal technology by accurately predicting filter behavior and potential failure mechanisms that would occur in the commercial process. After completing four (4) years of testing various filter types and configurations on numerous gasification feed stocks, a decision was made to investigate the economic and reliability effects of using a particulate removal gas cyclone upstream of the current gas filtration unit. A paper study had indicated that there was a real potential to lower both installed capital and operating costs by implementing a char cyclonefiltration hybrid unit in the E-Gas™ gasification process. These reductions would help to keep the E-Gas™ technology competitive among other coal-fired power generation technologies. The Wabash combined cyclone and gas filtration slipstream test program was developed to provide design information, equipment specification and process control parameters of a hybrid cyclone and candle filter particulate removal system in the E-Gas™ gasification process that would provide the optimum performance and reliability for future commercial use. The test program objectives were as follows: 1. Evaluate the use of various cyclone materials of construction. 2. Establish the optimal cyclone efficiency that provides stable long term gas filter operation. 3. Determine the particle size distribution of the char separated by both the cyclone and candle filters. This will provide insight into cyclone efficiency and potential future plant design. 4. Determine the optimum filter media size requirements for the cyclone-filtration hybrid unit. 5. Determine the appropriate char transfer rates for both the cyclone and filtration portions of the hybrid unit. 6. Develop operating procedures for the cyclone-filtration hybrid unit. 7. Compare the installed capital cost of a scaled-up commercial cyclone-filtration hybrid unit to the current gas filtration design without a cyclone unit, such as currently exists at the Wabash facility.

Rizzo, Jeffrey

2010-04-30T23:59:59.000Z

146

EVALUATION OF A TURBIDITY METER FOR USE AT THE DEFENSE WASTE PROCESSING FACILITY  

SciTech Connect

Savannah River Remediation’s (SRR’s) Defense Waste Processing Facility (DWPF) Laboratory currently tests for sludge carry-over into the Recycle Collection Tank (RCT) by evaluating the iron concentration in the Slurry Mix Evaporator Condensate Tank (SMECT) and relating this iron concentration to the amount of sludge solids present. A new method was proposed for detecting the amount of sludge in the SMECT that involves the use of an Optek turbidity sensor. Waste Services Laboratory (WSL) personnel conducted testing on two of these units following a test plan developed by Waste Solidification Engineering (WSE). Both Optek units (SN64217 and SN65164) use sensor model AF16-N and signal converter model series C4000. The sensor body of each unit was modified to hold a standard DWPF 12 cc sample vial, also known as a “peanut” vial. The purpose of this testing was to evaluate the use of this model of turbidity sensor, or meter, to provide a measurement of the sludge solids present in the SMECT based upon samples from that tank. During discussions of the results from this study by WSE, WSL, and Savannah River National Laboratory (SRNL) personnel, an upper limit on the acceptable level of solids in SMECT samples was set at 0.14 weight percent (wt%). A “go/no-go” decision criterion was to be developed for the critical turbidity response, which is expressed in concentration units (CUs), for each Optek unit based upon the 0.14 wt% solids value. An acceptable or a “go” decision for the SMECT should reflect the situation that there is an identified risk (e.g. 5%) for a CU response from the Optek unit to be less than the critical CU value when the solids content of the SMECT is actually 0.14 wt% or greater, while a “no-go” determination (i.e., an Optek CU response above the critical CU value, a conservative decision relative to risk) would lead to additional evaluations of the SMECT to better quantify the possible solids content of the tank. Subsequent to the issuance of the initial version of this report but under the scope of the original request for technical assistance, WSE asked for this report to be revised to include the “go/no-go” CU value corresponding to 0.28 wt% solids. It was this request that led to the preparation of Revision 1 of the report. The results for the 0.28 wt% solids value were developed following the same approach as that utilized for the 0.14 wt% solids value. A sludge simulant was used to develop standards for testing both Optek units and to determine the viability of a “go/no-go” CU response for each of the units. Statistical methods were used by SRNL to develop the critical CU value for the “go/no-go” decision for these standards for each Optek unit. Since only one sludge simulant was available for this testing, the sensitivity of these results to other simulants and to actual sludge material is not known. However, limited testing with samples from the actual DWPF process (both SRAT product samples and SMECT samples) demonstrated that the use of the “go/no-go” criteria developed from the sludge simulant testing was conservative for these samples taken from the sludge batch, Sludge Batch 7b, being processed at the time of this testing. While both of the Optek units performed very reliably during this testing, there were statistically significant differences (although small on a practical scale) between the two units. Thus, testing should be conducted on any new unit of this Optek model to qualify it before it is used to support the DWPF operation.

Mahannah, R.; Edwards, T.

2013-06-04T23:59:59.000Z

147

Utility investment in on-site solar: risk and return analysis for capitalization and financing  

DOE Green Energy (OSTI)

A set of financial strategies designed to accelerate the penetration of on-site solar heating and cooling systems are studied. The approach of portfolio theory or the capital asset pricing model (CAPM) is used. The major features of the CAPM is summarized including a survey of those applications which are most relevant to the analysis. These include utility return on equity calculations and project evaluation techniques. How to apply empirical results is discussed based on CAPM methods. In particular, applications to the capitalization variant of the utility investment strategy and the financing variant are distinguished. Subsidization rationales are also discussed. Empirical results to date are summarized, including estimation problems for the various risk measures. The general problem of financial risk assessment for energy technologies is reviewed. (MHR)

Kahn, E.; Schutz, S.

1978-09-01T23:59:59.000Z

148

Federal Energy Management Program: Sample Documents for On-Site Renewable  

NLE Websites -- All DOE Office Websites (Extended Search)

Sample Documents Sample Documents for On-Site Renewable Power Purchase Agreements to someone by E-mail Share Federal Energy Management Program: Sample Documents for On-Site Renewable Power Purchase Agreements on Facebook Tweet about Federal Energy Management Program: Sample Documents for On-Site Renewable Power Purchase Agreements on Twitter Bookmark Federal Energy Management Program: Sample Documents for On-Site Renewable Power Purchase Agreements on Google Bookmark Federal Energy Management Program: Sample Documents for On-Site Renewable Power Purchase Agreements on Delicious Rank Federal Energy Management Program: Sample Documents for On-Site Renewable Power Purchase Agreements on Digg Find More places to share Federal Energy Management Program: Sample Documents for On-Site Renewable Power Purchase Agreements on AddThis.com...

149

Procession  

E-Print Network (OSTI)

UEE 2008 Ziermann, Martin 2004 Macht und Architektur: ZweiP ROCESSION Martin Stadler EDITORS W ILLEKE W ENDRICHFull Citation: Stadler, Martin, 2008, Procession. In Jacco

Stadler, Martin

2008-01-01T23:59:59.000Z

150

Processing  

Science Conference Proceedings (OSTI)

...are processed to complex final shapes by investment casting. Iron-nickel-base superalloys are not customarily investment cast. Investment casting permits intricate internal cooling

151

Standard Test Method for Mechanical Hydrogen Embrittlement Evaluation of Plating/Coating Processes and Service Environments  

E-Print Network (OSTI)

1.1 This test method describes mechanical test methods and defines acceptance criteria for coating and plating processes that can cause hydrogen embrittlement in steels. Subsequent exposure to chemicals encountered in service environments, such as fluids, cleaning treatments or maintenance chemicals that come in contact with the plated/coated or bare surface of the steel, can also be evaluated. 1.2 This test method is not intended to measure the relative susceptibility of different steels. The relative susceptibility of different materials to hydrogen embrittlement may be determined in accordance with Test Method F1459 and Test Method F1624. 1.3 This test method specifies the use of air melted AISI E4340 steel per SAE AMS-S-5000 (formerly MIL-S-5000) heat treated to 260 – 280 ksi (pounds per square inch x 1000) as the baseline. This combination of alloy and heat treat level has been used for many years and a large database has been accumulated in the aerospace industry on its specific response to exposure...

American Society for Testing and Materials. Philadelphia

2010-01-01T23:59:59.000Z

152

Development and Application of Advanced Models for Steam Hydrogasification: Process Design and Economic Evaluation  

E-Print Network (OSTI)

feasibility analysis of RTI Warm Gas Cleanup (WGCU)Triangle Institute (RTI) warm gas cleanup technology isand process simulation. The RTI process is in the leading

Lu, Xiaoming

2012-01-01T23:59:59.000Z

153

PORTSMOUTH ON-SITE DISPOSAL CELL HIGH DENSITY POLYETHYLENE GEOMEMBRANE LONGEVITY  

Science Conference Proceedings (OSTI)

It is anticipated that high density polyethylene (HDPE) geomembranes will be utilized within the liner and closure cap of the proposed On-Site Disposal Cell (OSDC) at the Portsmouth Gaseous Diffusion Plant. The likely longevity (i.e. service life) of HDPE geomembranes in OSDC service is evaluated within the following sections of this report: (1) Section 2.0 provides an overview of HDPE geomembranes, (2) Section 3.0 outlines potential HDPE geomembranes degradation mechanisms, (3) Section 4.0 evaluates the applicability of HDPE geomembrane degradation mechanisms to the Portsmouth OSDC, (4) Section 5.0 provides a discussion of the current state of knowledge relative to the longevity (service life) of HDPE geomembranes, including the relation of this knowledge to the Portsmouth OSDC, and (5) Section 6.0 provides summary and conclusions relative to the anticipated service life of HDPE geomembranes in OSDC service. Based upon this evaluation it is anticipated that the service life of HDPE geomembranes in OSDC service would be significantly greater than the 200 year service life assumed for the OSDC closure cap and liner HDPE geomembranes. That is, a 200 year OSDC HDPE geomembrane service life is considered a conservative assumption.

Phifer, M.

2012-01-31T23:59:59.000Z

154

Modelling business processes with workflow systems: an evaluation of alternative approaches  

Science Conference Proceedings (OSTI)

Effective business process management necessitates a consistent information flow between the participants in the process, the smooth integration of the flow of work, the timely sharing of data and information during the planning and implementation phases ... Keywords: Business process management, Process modelling, Project management, Workflow management

Gregory Mentzas; Christos Halaris; Stylianos Kavadias

2001-04-01T23:59:59.000Z

155

Evaluating and improving the effectiveness and efficiency of design process communication  

Science Conference Proceedings (OSTI)

Project information management research enables the efficient exchange of information, but does not effectively communicate process. Design process management research effectively communicates processes, but with methods too inefficient to be adopted ... Keywords: Collaboration, Communication, Design process, Information management, Knowledge management, Validation method

Reid R. Senescu, John R. Haymaker

2013-04-01T23:59:59.000Z

156

Evaluation of Features, Events, and Processes (FEP) for the Biosphere Model  

Science Conference Proceedings (OSTI)

The purpose of this revision of ''Evaluation of the Applicability of Biosphere-Related Features, Events, and Processes (FEPs)'' (BSC 2001) is to document the screening analysis of biosphere-related primary FEPs, as identified in ''The Development of Information Catalogued in REV00 of the YMP FEP Database'' (Freeze et al. 2001), in accordance with the requirements of the final U.S. Nuclear Regulatory Commission (NRC) regulations at 10 CFR Part 63. This database is referred to as the Yucca Mountain Project (YMP) FEP Database throughout this document. Those biosphere-related primary FEPs that are screened as applicable will be used to develop the conceptual model portion of the biosphere model, which will in turn be used to develop the mathematical model portion of the biosphere model. As part of this revision, any reference to the screening guidance or criteria provided either by Dyer (1999) or by the proposed NRC regulations at 64 FR 8640 has been removed. The title of this revision has been changed to more accurately reflect the purpose of the analyses. In addition, this revision will address Item Numbers 19, 20, 21, 25, and 26 from Attachment 2 of ''U.S. Nuclear Regulatory Commission/U.S. Department of Energy Technical Exchange and Management Meeting on Total System Performance Assessment and Integration (August 6 through 10, 2001)'' (Reamer 2001). This Scientific Analysis Report (SAR) does not support the current revision to the YMP FEP Database (Freeze et al. 2001). Subsequent to the release of the YMP FEP Database (Freeze et al. 2001), a series of reviews was conducted on both the FEP processes used to support Total System Performance Assessment for Site Recommendation and to develop the YMP FEP Database. In response to observations and comments from these reviews, particularly the NRC/DOE TSPA Technical Exchange in August 2001 (Reamer 2001), several Key Technical Issue (KTI) Agreements were developed. ''The Enhanced Plan for Features, Events and Processes (FEPs) at Yucca Mountain'' (BSC 2002a), herein referred to as the Enhanced FEP Plan, was developed to directly address KTI Agreement TSPAI 2.05, and to generally address other KTI Agreements and issues (BSC 2002a, pp. 16 to 18). The Enhanced FEP Plan addresses the regulatory requirements of 10 CFR Part 63, identifies and implements specific enhancements, and supports the License Application (BSC 2002a, p. 2). This SAR is not intended to implement any of the enhancements identified in the Enhanced FEP Plan, although it does consider the intent of the Enhanced FEP Plan to simplify the screening analysis. This SAR is one of nine technical reports containing the documentation for the biosphere model being developed, its input parameters, and the application of the model to develop biosphere dose conversion factors (BDCFs). Figure 1 shows the anticipated interrelationship between these nine technical reports and the Environmental Radiation Model for Yucca Mountain, Nevada (ERMYN), commonly referred to as the biosphere model. The biosphere model belongs to the series of process models supporting the Total System Performance Assessment for the License Application. Specifically, the biosphere model provides the performance assessment with the capability to perform dose assessment.

J. J. Tappen

2003-02-16T23:59:59.000Z

157

Evaluation Of FWENC Process For Treatment Of MVST Sludges, Supernates, And Surrogates  

Science Conference Proceedings (OSTI)

In 1998, the Foster Wheeler Environmental Corporation (FWENC) was awarded an 11-year contract to treat transuranic waste at the Oak Ridge National Laboratory, including Melton Valley Storage Tank (MVST) waste. Their baseline tank waste process consists of: (1) Separating the supernate from the sludge, (2) Washing the sludge with water and adding this wash water to the supernate, (3) Stabilizing the supernate/wash water or the washed sludge with additives if either are projected to fail Resource Conservation Recovery Act (RCRA) Toxic Characteristics Leaching Protocol (TCLP) criteria, and (4) Stabilizing both the washed sludge and supernate/wash water by vacuum evaporation. An ''Optimum'' treatment procedure consisted of adding a specified quantity of two stabilizers--ThioRed{reg_sign} and ET Soil Polymer{reg_sign}--and an ''Alternate'' treatment simply increased the amount of ThioRed{reg_sign} added. This report presents the results of a study funded by the Tanks Focus Area (TFA) to provide Oak Ridge Operations (ORO) with independent laboratory data on the performance of the baseline process for treating the sludges, including washing the sludge and treating the wash water (although supernates were not included in the wash water tests). Two surrogate and seven actual tank wastes were used in this evaluation. Surrogate work, as well as the initial work with actual tank sludge, was based on an existing sludge sample from Bethel Valley Evaporator Storage Tank (BVEST) W23. One surrogate was required to be based on a surrogate previously developed to mimic the weighted average chemical composition of the MVST-BVEST using a simple mix of reagent grade chemicals and water, called the ''Quick and Dirty'' surrogate (QnD). The composition of this surrogate was adjusted toward the measured composition of W23 samples. The other surrogate was prepared to be more representative of the W23 sludge sample by precipitation of a nitrate solution at high pH, separating the solution from the solids, measuring the composition of the wet solids, and adding reagent grade chemicals to closely mimic the measured composition of the W23 sample.

Barton, JW

2003-01-30T23:59:59.000Z

158

Evaluation of System Level Modeling and Simulation Tools in Support of Savannah River Site Liquid Waste Process  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Savannah River Site Liquid Waste Process Savannah River Site Liquid Waste Process June 2009 Monica C. Regalbuto Office of Waste Processing DOE/EM Kevin G. Brown Vanderbilt University and CRESP David W. DePaoli Oak Ridge National Laboratory Candido Pereira Argonne National Laboratory John R. Shultz Office of Waste Processing DOE/EM Sahid C. Smith Office of Waste Processing DOE/EM External Technical Review for Evaluation of System Level Modeling and Simulation Tools in Support of Savannah River Site Liquid Waste Process June 2009 ACKNOWLEDGEMENTS The Review Team thanks Ms. Sonitza Blanco, Team Lead Planning and Coordination Waste Disposition Project U.S. Department of Energy Savannah River Operations Office and Mr. Pete Hill, Liquid Waste Planning Manager for Washington Savannah River Company, for their

159

Evaluation of a sulfur oxide chemical heat storage process for a steam solar electric plant  

DOE Green Energy (OSTI)

The purpose of this study was to develop and evaluate technically feasible process configurations for the use of the sulfur oxide system, 2 SO/sub 3/ reversible 2 SO/sub 2/ + O/sub 2/, in energy storage. The storage system is coupled with a conventional steam-cycle power plant. Heat for both the power plant and the storage system is supplied during sunlit hours by a field of heliostats focussed on a central solar receiver. When sunlight is not available, the storage system supplies the heat to operate the power plant. A technically feasible, relatively efficient configuration is proposed for incorporating this type of energy storage system into a solar power plant. Complete material and energy balances are presented for a base case that represents a middle range of expected operating conditions. Equipment sizes and costs were estimated for the base case to obtain an approximate value for the cost of the electricity that would be produced from such an installation. In addition, the sensitivity of the efficiency of the system to variations in design and operating conditions was determined for the most important parameters and design details. In the base case the solar tower receives heat at a net rate of 230 MW(t) for a period of eight hours. Daytime electricity is about 30 MW(e). Nighttime generation is at a rate of about 15 MW(e) for a period of sixteen hours. The overall efficiency of converting heat into electricity is about 26%. The total capital cost for the base case is estimated at about $68 million, of which about 67% is for the tower and heliostats, 11% is for the daytime power plant, and 22% is for the storage system. The average cost of the electricity produced for the base case is estimated to be about 11 cents/kW(e)-hr.

Dayan, J.; Lynn, S.; Foss, A.

1979-07-01T23:59:59.000Z

160

Initial Evaluation of Processing Methods for an Epsilon Metal Waste Form  

Science Conference Proceedings (OSTI)

During irradiation of nuclear fuel in a reactor, the five metals, Mo, Pd, Rh, Ru, and Tc, migrate to the fuel grain boundaries and form small metal particles of an alloy known as epsilon metal ({var_epsilon}-metal). When the fuel is dissolved in a reprocessing plant, these metal particles remain behind with a residue - the undissolved solids (UDS). Some of these same metals that comprise this alloy that have not formed the alloy are dissolved into the aqueous stream. These metals limit the waste loading for a borosilicate glass that is being developed for the reprocessing wastes. Epsilon metal is being developed as a waste form for the noble metals from a number of waste streams in the aqueous reprocessing of used nuclear fuel (UNF) - (1) the {var_epsilon}-metal from the UDS, (2) soluble Tc (ion-exchanged), and (3) soluble noble metals (TRUEX raffinate). Separate immobilization of these metals has benefits other than allowing an increase in the glass waste loading. These materials are quite resistant to dissolution (corrosion) as evidenced by the fact that they survive the chemically aggressive conditions in the fuel dissolver. Remnants of {var_epsilon}-metal particles have survived in the geologically natural reactors found in Gabon, Africa, indicating that they have sufficient durability to survive for {approx} 2.5 billion years in a reducing geologic environment. Additionally, the {var_epsilon}-metal can be made without additives and incorporate sufficient foreign material (oxides) that are also present in the UDS. Although {var_epsilon}-metal is found in fuel and Gabon as small particles ({approx}10 {micro}m in diameter) and has survived intact, an ideal waste form is one in which the surface area is minimized. Therefore, the main effort in developing {var_epsilon}-metal as a waste form is to develop a process to consolidate the particles into a monolith. Individually, these metals have high melting points (2617 C for Mo to 1552 C for Pd) and the alloy is expected to have a high melting point as well, perhaps exceeding 1500 C. The purpose of the work reported here is to find a potential commercial process with which {var_epsilon}-metal plus other components of UDS can be consolidated into a solid with minimum surface area and high strength Here, we report the results from the preliminary evaluation of spark-plasma sintering (SPS), hot-isostatic pressing (HIP), and microwave sintering (MS). Since bulk {var_epsilon}-metal is not available and companies could not handle radioactive materials, we prepared mixtures of the five individual metal powders (Mo, Ru, Rh, Pd, and Re) and baddeleyite (ZrO{sub 2}) to send the vendors of SPS, HIP, and MS. The processed samples were then evaluated at the Pacific Northwest National Laboratory (PNNL) for bulk density and phase assemblage with X-ray diffraction (XRD) and phase composition with scanning electron microscopy (SEM). Physical strength was evaluated qualitatively. Results of these scoping tests showed that fully dense cermet (ceramic-metal composite) materials with up to 35 mass% of ZrO{sub 2} were produced with SPS and HIP. Bulk density of the SPS samples ranged from 87 to 98% of theoretical density, while HIP samples ranged from 96 to 100% of theoretical density. Microwave sintered samples containing ZrO{sub 2} had low densities of 55 to 60% of theoretical density. Structurally, the cermet samples showed that the individual metals alloyed in to {var_epsilon}-phase - hexagonal-close-packed (HCP) alloy (4-95 mass %), the {alpha}-phase - face-centered-cubic (FCC) alloy structure (3-86 mass %), while ZrO{sub 2} remained in the monoclinic structure of baddeleyite. Elementally, the samples appeared to have nearly uniform composition, but with some areas rich in Mo and Re, the two components with the highest melting points. The homogeneity in distribution of the elements in the alloy is significantly improved in the presence of ZrO{sub 2}. However, ZrO{sub 2} does not appear to react with the alloy, nor was Zr found in the alloy.

Crum, Jarrod V.; Strachan, Denis M.; Zumhoff, Mac R.

2012-06-11T23:59:59.000Z

Note: This page contains sample records for the topic "on-site evaluation process" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Low Level Waste On Site Storage Operating Guidelines -- Supplemental Information Manual  

Science Conference Proceedings (OSTI)

This Supplemental Information Manual captures essential information related to the implementation of an on-site low level waste (LLW) storage program. It summarizes the guidance and experience provided in the Interim On-Site Storage series of reports and should be used in concert with EPRI report 1018644, "Guidelines for Operating an Interim On Site Low Level Radioactive Waste Storage FacilityRevision 1," 2009.

2009-02-26T23:59:59.000Z

162

Feasibility of using biological degradation for the on-site treatment of mixed wastes  

E-Print Network (OSTI)

2002. EPA’s Radiation Protection Program: Mixed Waste.http://www.epa.gov/radiation/mixed-waste/.ON-SITE TREATMENT OF MIXED WASTES William T. Stringfellow (

Stringfellow, William T.; Komada, Tatsuyuki; Chang, Li-Yang

2004-01-01T23:59:59.000Z

163

Distributed Energy Resources On-Site Optimization for Commercial Buildings with Electric and Thermal Storage Technologies  

E-Print Network (OSTI)

Gas-Fired Distributed Energy Resource Characterizations”,and J.L. Edwards, “Distributed Energy Resources CustomerN ATIONAL L ABORATORY Distributed Energy Resources On-Site

Stadler, Michael

2008-01-01T23:59:59.000Z

164

Optimal selection of on-site generation with combined heat and power applications  

E-Print Network (OSTI)

the burning of natural gas for on-site power generation andnatural gas absorption chiller GenL i , m , t , h , u Generated power by distributed generation

Siddiqui, Afzal S.; Marnay, Chris; Bailey, Owen; Hamachi LaCommare, Kristina

2004-01-01T23:59:59.000Z

165

Guide to Purchasing Green Power: Renewable Electricity, Renewable Energy Certificates, and On-Site Renewable Generation  

Energy.gov (U.S. Department of Energy (DOE))

Guide describes the details of purchasing green power. Discussion covers topics like renewable electricity, renewable energy certificates, and on-site renewable generation.

166

Proposed On-Site Waste Disposal Facility (OSWDF) at the Portsmouth...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2008 ETR-12 United States Department of Energy Office of Environmental Management (DOE-EM) External Technical Review of the Proposed On-Site Waste Disposal Facility (OSWDF)...

167

Evaluation of UHT milk processed by direct steam injection and steam infusion technology.  

E-Print Network (OSTI)

??UHT direct steam injection and steam infusion are widely used; however there is no comparison of their impact on milk components. This study evaluates the… (more)

Malmgren, Bozena

2007-01-01T23:59:59.000Z

168

DOE M 452.2-2 Admin Chg 1, Nuclear Explosive Safety Evaluation Processes  

Directives, Delegations, and Requirements

This Manual provides supplemental details to support the nuclear explosive safety (NES) evaluation requirement of Department of Energy (DOE) Order (O) 452.2D, ...

2009-04-14T23:59:59.000Z

169

Composition of simulants used in the evaluation of electrochemical processes for the treatment of high-level wastes  

SciTech Connect

Four simulants are being used in the evaluation of electrochemical processes for the treatment of high-level wastes (HLW). These simulants represent waste presently stored at the Hanford, Idaho Falls, Oak Ridge, and Savannah River sites. Three of the simulants are highly alkaline salt solutions (Hanford, Oak Ridge, and Savannah River), and one is highly acidic (Idaho Falls).

Hobbs, D.T.

1994-06-27T23:59:59.000Z

170

Evaluation of fracturing results in deviated wellbores through on-site measurements  

SciTech Connect

Four adjacent oil wells in the Kuparuk River oil field, with deviated angles of 6{sup 0}5', 24{sup 0}6', 27{sup 0} and 36{sup 0}7' from the vertical at the perforations, were analyzed with prefracturing tests. The total fluid volume for these tests varied from 645 to 840 bbl(103 to 134 m/sup 3/) of either clean lease oil or water-based fracturing fluid at low to intermediate rates (up to 15bbl/min(2.4m/sup 3/)). These wells were subsequently fractured with proppant-laden fluid. A series of instantaneous shut-in pressures (ISIO's) was obtained for each well. ISIP's and fracturing pressures decreased with time in two of the four wells with a relatively high friction pressure at the end of the pumping. A radially propagating fracture from a point source of pressure explains this decreasing pressure with time. The elasticity theory predicts that a fracture in a deviated, cased wellbore should intersect the wellbore at one location. Only when the deviated wellbore azimuth is near that of the fracture orientation does the fracture sweep the entire perforated zone. This observation of the fracture orientation relative to the wellbore azimuth based on the pressure analysis is enhanced further by postfracture temperature surveys. It appears that only a relatively small volume of proppant could be displaced in a deviated wellbore. The degree of deviation, however, did not appear to be a major concern in the treatment of size.

Kim, C.M. (Halliburton Services, Duncan, OK (USA)); Champion, J.H. (Arco Alaska Inc. (US)); Cooper, G.D. (Guydon Software Services (US))

1989-08-01T23:59:59.000Z

171

RESIDENTIAL ON SITE SOLAR HEATING SYSTEMS: A PROJECT EVALUATION USING THE CAPITAL ASSET PRICING MODEL  

E-Print Network (OSTI)

include the allowed utility rate structure for OSSH-derivedstates the utility uncollectable rate has been consistentlycorrect" hurdle rate appropriate to utility OSSH investment

Schutz, Stephen Richard

2011-01-01T23:59:59.000Z

172

RESIDENTIAL ON SITE SOLAR HEATING SYSTEMS: A PROJECT EVALUATION USING THE CAPITAL ASSET PRICING MODEL  

E-Print Network (OSTI)

natural gas system requires the construction of pipeline networks; electrical heating systems require power generation

Schutz, Stephen Richard

2011-01-01T23:59:59.000Z

173

Evaluating the performance of natural ventilation in buildings through simulation and on-site monitoring  

E-Print Network (OSTI)

Natural ventilation in buildings is capable of reducing energy consumption while maintaining a comfortable indoor at the same time. It is important that natural ventilation is taken into consideration in the early design ...

Cheng, Haofan

2013-01-01T23:59:59.000Z

174

Evaluation of available MHD seed-regeneration processes on the basis of energy considerations  

DOE Green Energy (OSTI)

Of the several processes described in the literature that are capable of separating sulfur from alkali-metal sulfates, seven processes were selected as candidates for regenerating seed material for reuse in open-cycle MHD. After a brief assessment of each process, two were selected for a detailed analysis, namely, a process developed by the Pittsburgh Energy Research Center (PERC) and a modified version of the Tampella process. The processes were compared on the bases of energy requirements and the amount of research work needed to develop a seed-regeneration process for MHD systems. The energy requirements given should be considered as rough values, because factors such as heat losses and component efficiency were not included in the analysis. On the basis of energy consumption, the PERC process has a slight advantage over the Tampella process; on the basis of the present state of development of various components, the Tampella process has a clear advantage. Accordingly, it was recommended that developmental programs be carried out for both the PERC and Tampella processes.

Sheth, A.C.; Johnson, T.R.

1978-09-01T23:59:59.000Z

175

Equations for gas releasing process from pressurized vessels in ODH evaluation  

Science Conference Proceedings (OSTI)

The evaluation of Oxygen Deficiency Hazard (ODH) is a critical part in the design of any cryogenic system. The high-pressure gas tank or low-temperature liquid container that contain asphyxiated fluid could be the sources to bring about the oxygen deficiency hazard. In the evaluation of ODH

L. X. Jia; L. Wang

2002-01-01T23:59:59.000Z

176

External Technical Review for Evaluation of System Level Modeling and Simulation Tools in Support of Hanford Site Liquid Waste Process  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hanford Site Liquid Waste Process Hanford Site Liquid Waste Process September 2009 Monica C. Regalbuto Office of Waste Processing DOE/EM Kevin G. Brown Vanderbilt University and CRESP David W. DePaoli Oak Ridge National Laboratory Candido Pereira Argonne National Laboratory John R. Shultz Office of Waste Processing DOE/EM External Technical Review for Evaluation of System Level Modeling and Simulation Tools in Support of Hanford Site Liquid Waste Process September 2009 Acknowledgements The Review Team thanks Mr. Glyn Trenchard, Team Lead for Planning and Coordination Waste Disposition Project, U.S. Department of Energy--Office of River Protection, Mr. Paul Rutland, RPP System Planning Manager for Washington River Protection Solutions, and Mr. Ernie Lee,

177

Evaluation of Aqueous and Powder Processing Techniques for Production of Pu-238-Fueled General Purpose Heat Sources  

DOE Green Energy (OSTI)

This report evaluates alternative processes that could be used to produce Pu-238 fueled General Purpose Heat Sources (GPHS) for radioisotope thermoelectric generators (RTG). Fabricating GPHSs with the current process has remained essentially unchanged since its development in the 1970s. Meanwhile, 30 years of technological advancements have been made in the fields of chemistry, manufacturing, ceramics, and control systems. At the Department of Energy’s request, alternate manufacturing methods were compared to current methods to determine if alternative fabrication processes could reduce the hazards, especially the production of respirable fines, while producing an equivalent GPHS product. An expert committee performed the evaluation with input from four national laboratories experienced in Pu-238 handling.

Not Available

2008-06-01T23:59:59.000Z

178

Conceptual evaluation of the potential role of fractures in unsaturated processes at Yucca Mountain  

E-Print Network (OSTI)

of Process Models, Yucca Mountain, Nevada. U.S. GeologicalUnsaturated Zone Model of Yucca Mountain, Nevada. J. Contam.Studies Facility, Yucca Mountain Project. Yucca Mountain,

Hinds, Jennifer J.; Bodvarsson, Gudmundur S.; Nieder-Westermann, Gerald H.

2002-01-01T23:59:59.000Z

179

Development and Application of Advanced Models for Steam Hydrogasification: Process Design and Economic Evaluation.  

E-Print Network (OSTI)

??This thesis is aimed at the process development, design, modeling and optimization of synthetic fuels, power and Substitute Natural Gas (SNG) production from coal and… (more)

Lu, Xiaoming

2012-01-01T23:59:59.000Z

180

Advanced On-Site Wastewater Treatment and Management Market Study: Volume 2: State Reports  

Science Conference Proceedings (OSTI)

This report is comprised of summaries of the status of on-site and small community wastewater systems in each state in the United States. The summaries provide an excellent general reference for further research into the status of each state's on-site wastewater systems.

2000-09-27T23:59:59.000Z

Note: This page contains sample records for the topic "on-site evaluation process" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Using More Realistic Data Models to Evaluate Sensor Network Data Processing Algorithms  

E-Print Network (OSTI)

to be acceptable for certain data set, but unacceptablefor another input data set. We evaluate a uniform sampling10] (Section 3.1) against 4 data sets: data generated from

Yu, Yan; Estrin, D; Govindan, Ramesh; Rahimi, Mohammed

2004-01-01T23:59:59.000Z

182

Use more realistic data models to evaluate sensor network data processing algorithms  

E-Print Network (OSTI)

to be acceptable for certain data set, but unacceptablefor another input data set. We evaluate a uniform sampling10] (Section 3.1) against 4 data sets: data generated from

Yan Yu; Deborah Estrin; Ramesh Govindan; Mohammad Rahimi

2004-01-01T23:59:59.000Z

183

Evaluation of a dry process for conversion of U-AVLIS product to UF{sub 6}. Milestone U361  

Science Conference Proceedings (OSTI)

A technical and engineering evaluation has been completed for a dry UF{sub 6} production system to convert the product of an initial two-line U-AVLIS plant. The objective of the study has been to develop a better understanding of process design requirements, capital and operating costs, and demonstration requirements for this alternate process. This report summarizes the results of the study and presents various comparisons between the baseline and alternate processes, building on the information contained in UF{sub 6} Product Alternatives Review Committee -- Final Report. It also provides additional information on flowsheet variations for the dry route which may warrant further consideration. The information developed by this study and conceptual design information for the baseline process will be combined with information to be developed by the U-AVLIS program and by industrial participants over the next twelve months to permit a further comparison of the baseline and alternate processes in terms of cost, risk, and compatibility with U-AVLIS deployment schedules and strategies. This comparative information will be used to make a final process flowsheet selection for the initial U-AVLIS plant by March 1993. The process studied is the alternate UF{sub 6} production flowsheet. Process steps are (1) electron-beam distillation to reduce enriched product iron content from about 10 wt % or less, (2) hydrofluorination of the metal to UF{sub 4}, (3) fluorination of UF{sub 4} to UF{sub 6}, (4) cold trap collection of the UF{sub 6} product, (5) UF{sub 6} purification by distillation, and (6) final blending and packaging of the purified UF{sub 6} in cylinders. A preliminary system design has been prepared for the dry UF{sub 6} production process based on currently available technical information. For some process steps, such information is quite limited. Comparisons have been made between this alternate process and the baseline plant process for UF{sub 6} production.

NONE

1992-05-01T23:59:59.000Z

184

Preliminary evaluation of a concept using microwave energy to improve an adsorption-based, natural gas clean-up process  

SciTech Connect

This report describes the results of a preliminary evaluation performed to: (1) determine if microwave energy could be used to regenerate a zeolite adsorbent and (2) to evaluate the feasibility of using microwave energy to improve the desorption phase of a pressure swing adsorption process applied to upgrading natural gas (methane) contaminated with nitrogen. Microwave regeneration was evaluated by comparing the adsorption characteristics of a zeolite preconditioned by heating under vacuum to the characteristics of the same zeolite after various lengths of exposure to microwave energy. The applicability of microwave regeneration to natural gas cleanup was evaluated by measuring the rise in adsorbent temperature resulting from the microwave exposure. Microwave energy consumed by heating the adsorbent is not productive and must therefore be minimal for a process to be economically viable. Exposure of the methane-saturated chabazite for 2 minutes to microwave energy effectively regenerated the adsorbent, but resulted in a 75{degrees}F (42{degrees}C) rise in adsorbent temperature. This temperature rise indicates that the concept is unacceptable for natural gas processing due to excessive energy consumption.

Grimes, R.W.

1992-12-01T23:59:59.000Z

185

Empirical evaluation of selected best practices in implementation of software process improvement  

Science Conference Proceedings (OSTI)

To be successfully applied in practice, software process improvement (SPI) needs not only identifying what needs to be improved, and which factors will influence its success, but also guidelines on how to implement those improvements and meet the factors. ... Keywords: Empirical study, SPI implementation strategy, Software process improvement

Tihana Galinac

2009-09-01T23:59:59.000Z

186

Brief Performance evaluation of methods for identifying continuous-time autoregressive processes  

Science Conference Proceedings (OSTI)

Identification of continuous-time autoregressive processes from discrete-time data by replacing the differentiation operator by an approximation is considered. A linear regression model can then be formulated. The least-squares method and the instrumental ... Keywords: Continuous-time AR process, Discrete-time data, Identification

T. SöDerströM; M. Mossberg

2000-01-01T23:59:59.000Z

187

Evaluation Of Four Welding Arc Processes Applied To 6061 Aluminium Alloy  

Science Conference Proceedings (OSTI)

At a time when greenhouse gas emissions must be reduced, the use of the aluminium alloys is expanding, in particular in the transportation industry. In order to extend the possibilities of aluminium assembly design, new Metal Inert Gas (MIG) welding processes have been conceived. They work at lower temperatures than usual arc processes (classic MIG or Tungsten Inert Gas). This study compares four arc welding processes, applied to the 6061 aluminium alloy. These four weld processes have been studied through the metallurgical analysis of the weld beads. Metallography, micro-hardness testings, X Ray radiography have been carried out on the produced weld beads. The processes are classified according to the quality of the beads like geometry of beads, size of the heat affected zone and presence of defects.

Benoit, A. [Univ Paris-Sud, Laboratoire de Physico-Chimie de l'Etat Solide, UMR 8182, 91405 Orsay, F-91405 (France); Laboratoire de Genie des Materiaux et Procedes Associes (LGMPA), Ecole Polytechnique de l'Universite de Nantes, Nantes Atlantique Universites, rue Christian Pauc, BP 50609, 44306 Nantes Cedex 3 (France); Paillard, P. [Laboratoire de Genie des Materiaux et Procedes Associes (LGMPA), Ecole Polytechnique de l'Universite de Nantes, Nantes Atlantique Universites, rue Christian Pauc, BP 50609, 44306 Nantes Cedex 3 (France); Baudin, T. [Univ Paris-Sud, Laboratoire de Physico-Chimie de l'Etat Solide, UMR 8182, 91405 Orsay, F-91405 (France); CNRS, Orsay, F-91405 (France); Jobez, S.; Castagne, J.-F. [SNECMA-Usine d'Evry-Corbeil Snecma Evry-Corbeil-Route Henri Auguste Desbrueres-91000 Evry (France)

2011-01-17T23:59:59.000Z

188

Evaluation of the pollution abatement technologies available for treatment of wastewater from oil shale processing  

SciTech Connect

A review covers the conventional and in-situ oil shale processing technologies and their status of development; the sources and characteristics of the wastewaters from oil shale retorting operation, from leaching of spent shale, from cooling tower and boiler blowdowns, from oil refining operations, from saline aquifer, and from minor sources, such as from air pollution control equipment, runoff from dust control, and sanitary wastewaters; and wastewater treatment methods applicable for treating wastewater from oil shale processes including physical, chemical, biological, and tertiary treatment methods and specific processes for removing specific pollutants (e.g., phenols, cyanides, heavy metals) from wastewaters. 31 references.

Sung, R.D.; Prien, C.H.

1977-01-01T23:59:59.000Z

189

STATISTICAL EVALUATION OF PROCESSING DATA FROM THE RH RU HG MATRIX STUDY  

DOE Green Energy (OSTI)

An evaluation of the statistical significance of Rh, Ru, and Hg on DWPF Sludge Receipt and Adjustment Tank (SRAT) cycle catalytic hydrogen generation and process chemistry was conducted by the Savannah River National Laboratory (SRNL) using a full-factorial experimental design. This test design can identify significant interactions between these three species in addition to individual effects. Statistical modeling of data from the Rh-Ru-Hg matrix study has been completed. Preliminary data and conclusions were given in an earlier report. This final report concludes the work on the Rh-Ru-Hg matrix study. Modeling results are summarized below. Rhodium was found to: Promote increased total hydrogen mass; Promote an increase in the maximum hydrogen generation rate; Promote an increase in the hydrogen generation rate shortly after acid addition; Shorten the elapsed time between acid addition and the maximum hydrogen generation rate; Increase formate loss; Inhibit NO{sub 2} and total NO{sub x} off-gas species formation; and Reduce nitrite-to-nitrate conversion. Ruthenium was found to: Promote increased total hydrogen mass; Promote an increase in the maximum hydrogen generation rate; Promote an increase in the hydrogen generation rate in the second half of the SRAT cycle; Promote an increase in total CO{sub 2} generated; Increase formate loss; Promote NO{sub 2} and total NO{sub x} off-gas species formation; and Reduce nitrite-to-nitrate conversion. Mercury was found to: Inhibit total hydrogen mass produced; Promote an increase in total CO{sub 2} generated; Promote NO{sub 2} off-gas species formation; and Inhibit total NO{sub x} off-gas species formation. Results confirmed qualitative observations that Rh was activating before Ru for hydrogen generation. An interaction between Rh and Ru was present in the model for the total hydrogen generated during the SRAT, perhaps because the total combined contributions from two separate episodes of hydrogen generation. The first episode was dominated by Rh and the second by Ru. Consequently, the linear statistical model was asked to explain more than one phenomenon and included more terms. Mercury did not significantly impact hydrogen generated by either Rh or Ru in models in this study (all tests had Hg {ge} 0.5 wt% in total solids), whereas tests in Sludge Batches 3 and 4 (SB3 and SB4) with and without Hg showed a very significant negative impact from adding Hg. The conclusion is that once a small quantity of Hg is present, the primary inhibiting effect of Hg is in place, and hydrogen generation is relatively insensitive to further increases in total Hg. Any secondary Hg effects were difficult to quantify and model. Mercury was found to be statistically significant, however, as an inhibiting factor for hydrogen generation when modeling was based on the logarithm of the hydrogen generation rate. Only limited statistical evidence was found for non-linearity and quadratic dependence of other SRAT process measures, such as formate loss or total NO{sub x} generation, on the three matrix variables. The interaction term for Ru with Hg, however, appeared in models for total CO{sub 2}, total NO{sub 2}, and total moles of nitrogen-derived off-gas species. A single interaction between Ru and Hg during nitrite destruction could explain all three of these effects in the observed responses. Catalytic decomposition of nitrite ion by formic acid produces CO{sub 2} plus either NO or N{sub 2}O. The vast majority of the NO produced is converted to NO{sub 2}, and NO{sub 2} is the major fraction of the total moles of nitrogen in the off-gas species. Future experimental work related to catalytic hydrogen generation control is expected with regard to minimizing formic acid use through alternative reductants as well as in pursuing mesoporous media for sequestering the catalytically active noble metals to inhibit catalytic hydrogen generation. Two alternative stoichiometric acid equations are also under development. A summary document is in draft form that provides an overview of progress made in understanding ca

Koopman, D

2009-04-17T23:59:59.000Z

190

A characterization and evaluation of coal liquefaction process streams. Quarterly technical progress report, October 1--December 31, 1995  

DOE Green Energy (OSTI)

The objectives of this project are to support the DOE direct coal liquefaction process development program and to improve the useful application of analytical chemistry to direct coal liquefaction process development. Independent analyses by well-established methods will be obtained of samples produced in direct coal liquefaction processes under evaluation by DOE. Additionally, analytical instruments and techniques which are currently underutilized for the purpose of examining coal-derived samples will be evaluated. The data obtained from this study will be used to help guide current process development and to develop an improved data base on coal and coal liquids properties. During this reporting period, CONSOL completed analyses of 81 feed and process stream samples from HTI bench Run CMSL-9. HTI liquefaction bench unit Run CMSL-9 (227-87) was operated with all-dispersed catalyst and Black Thunder Mine (Wyodak and Anderson seam) coal, with and without mixed plastics or high density polyethylene (HDPE) as coprocessing feedstocks. The dispersed catalysts used were Molyvan A and HTI`s iron catalyst, a sulfated iron hydroxide. Results are discussed in this report.

Robbins, G.A.; Brandes, S.D.; Winschel, R.A.; Burke, F.P.

1996-05-01T23:59:59.000Z

191

A characterization and evaluation of coal liquefaction process streams. Quarterly technical progress report, April 1--June 30, 1995  

Science Conference Proceedings (OSTI)

The objectives of this project are to support the DOE direct coal liquefaction process development program and to improve the useful application of analytical chemistry to direct coal liquefaction process development. Independent analyses by well-established methods will be obtained of samples produced in direct coal liquefaction processes under evaluation by DOE. Additionally, analytical instruments and techniques which are currently underutilized for the purpose of examining coal-derived samples will be evaluated. The data obtained from this study will be used to help guide current process development and to develop an improved data base on coal and coal liquids properties. A sample bank will be established and maintained for use in this project and will be available for use by other researchers. The reactivity of the non-distillable resids toward hydrocracking at liquefaction conditions (i.e., resid reactivity) will be examined. From the literature and data experimentally obtained, a mathematical kinetic model of resid conversion will be constructed. It is anticipated that such a model will provide insights useful for improving process performance and thus the economics of direct coal liquefaction. The paper describes activities carried out this quarter. 11 refs., 21 figs., 17 tabs.

Robbins, G.A.; Brandes, S.D.; Winschel, R.A.; Burke, F.P.

1995-09-01T23:59:59.000Z

192

Methodology for technology evaluation under uncertainty and its application in advanced coal gasification processes  

E-Print Network (OSTI)

Integrated gasification combined cycle (IGCC) technology has attracted interest as a cleaner alternative to conventional coal-fired power generation processes. While a number of pilot projects have been launched to ...

Gong, Bo, Ph. D. Massachusetts Institute of Technology

2011-01-01T23:59:59.000Z

193

How Well Do We Understand and Evaluate Climate Change Feedback Processes?  

Science Conference Proceedings (OSTI)

Processes in the climate system that can either amplify or dampen the climate response to an external perturbation are referred to as climate feedbacks. Climate sensitivity estimates depend critically on radiative feedbacks associated with water ...

Sandrine Bony; Robert Colman; Vladimir M. Kattsov; Richard P. Allan; Christopher S. Bretherton; Jean-Louis Dufresne; Alex Hall; Stephane Hallegatte; Marika M. Holland; William Ingram; David A. Randall; Brian J. Soden; George Tselioudis; Mark J. Webb

2006-08-01T23:59:59.000Z

194

The Aerosol Modeling Testbed: A Community Tool to Objectively Evaluate Aerosol Process Modules  

Science Conference Proceedings (OSTI)

The current paradigm of developing and testing new aerosol process modules is haphazard and slow. Aerosol modules are often tested for short simulation periods using limited data so that their overall performance over a wide range of ...

Jerome D. Fast; William I. Gustafson Jr.; Elaine G. Chapman; Richard C. Easter; Jeremy P. Rishel; Rahul A. Zaveri; Georg A. Grell; Mary C. Barth

2011-03-01T23:59:59.000Z

195

Criticality Safety Evaluation Report for the Cold Vacuum Drying (CVD) Facilities Process Water Handling System  

SciTech Connect

This report addresses the criticality concerns associated with process water handling in the Cold Vacuum Drying Facility. The controls and limitations on equipment design and operations to control potential criticality occurrences are identified.

KESSLER, S.F.

2000-08-10T23:59:59.000Z

196

Waste Receiving and Processing (WRAP) Facility Weight Scale Analysis Fairbanks Weight Scale Evaluation Results  

SciTech Connect

Fairbanks Weight Scales are used at the Waste Receiving and Processing (WRAP) facility to determine the weight of waste drums as they are received, processed, and shipped. Due to recent problems, discovered during calibration, the WRAP Engineering Department has completed this document which outlines both the investigation of the infeed conveyor scale failure in September of 1999 and recommendations for calibration procedure modifications designed to correct deficiencies in the current procedures.

JOHNSON, M.D.

2000-03-13T23:59:59.000Z

197

Technical evaluation of the waste-to-oil process development facility at Albany, Oregon  

DOE Green Energy (OSTI)

The broad objective of ERDA's solar energy program at Albany, Oregon, is to develop biomass-to-synfuel technology in the Albany process development facility, which is now nearing completion. In the study reported here, the process development plant design was reevaluated, and a number of modifications and additions are recommended to facilitate and accelerate development of biomass conversion processes. Sketches of the recommended modifications and estimates of costs and installation time schedules have been provided. It has been found expedient to implement some of these modifications before construction is completed. Biomass-to-synfuel processes under development or under consideration elsewhere have been reviewed, and some have been identified that are appropriate for further development at Albany. Potential environmental impacts associated with the operation of the Albany, Oregon, facility were reviewed to identify the magnitude of the impacts and the effects of any resultant operational constraints. Two discrete environmental impact categories have been identified with respect to process development operation. These are (1) production, storage, and disposal of product oil and residual solid, liquid, and gaseous waste; and (2) disturbances to the local community. An assessment has been made of unit process waste discharges and mitigation procedures, environmental setting and community considerations, possible operational constraints, and monitoring programs.

Houle, E.H.; Ciriello, S.F.; Ergun, S.; Basuino, D.J.

1976-10-01T23:59:59.000Z

198

Third-Party Evaluation of Petro Tex Hydrocarbons, LLC, ReGen Lubricating Oil Re-refining Process  

DOE Green Energy (OSTI)

This report presents an assessment of market, energy impact, and utility of the PetroTex Hydrocarbons, LLC., ReGen process for re-refining used lubricating oil to produce Group I, II, and III base oils, diesel fuel, and asphalt. PetroTex Hydrocarbons, LLC., has performed extensive pilot scale evaluations, computer simulations, and market studies of this process and is presently evaluating construction of a 23 million gallon per year industrial-scale plant. PetroTex has obtained a 30 acre site in the Texas Industries RailPark in Midlothian Texas. The environmental and civil engineering assessments of the site are completed, and the company has been granted a special use permit from the City of Midlothian and air emissions permits for the Texas Commission on Environmental Quality.

Compere, A L [ORNL; Griffith, William {Bill} L [ORNL

2009-04-01T23:59:59.000Z

199

A C. elegans-based foam for rapid on-site detection of residual live virus.  

Science Conference Proceedings (OSTI)

In the response to and recovery from a critical homeland security event involving deliberate or accidental release of biological agents, initial decontamination efforts are necessarily followed by tests for the presence of residual live virus or bacteria. Such 'clearance sampling' should be rapid and accurate, to inform decision makers as they take appropriate action to ensure the safety of the public and of operational personnel. However, the current protocol for clearance sampling is extremely time-intensive and costly, and requires significant amounts of laboratory space and capacity. Detection of residual live virus is particularly problematic and time-consuming, as it requires evaluation of replication potential within a eukaryotic host such as chicken embryos. The intention of this project was to develop a new method for clearance sampling, by leveraging Sandia's expertise in the biological and material sciences in order to create a C. elegans-based foam that could be applied directly to the entire contaminated area for quick and accurate detection of any and all residual live virus by means of a fluorescent signal. Such a novel technology for rapid, on-site detection of live virus would greatly interest the DHS, DoD, and EPA, and hold broad commercial potential, especially with regard to the transportation industry.

Negrete, Oscar A.; Branda, Catherine; Hardesty, Jasper O. E. (Sandia National Laboratories, Albuquerque, NM); Tucker, Mark David (Sandia National Laboratories, Albuquerque, NM); Kaiser, Julia N. (Global Product Management, Hilden, Germany); Kozina, Carol L.; Chirica, Gabriela S.

2012-02-01T23:59:59.000Z

200

Intelligent e-learning systems for evaluation of user's knowledge and skills with efficient information processing  

Science Conference Proceedings (OSTI)

This paper presents a new concept of an e-learning system with intelligent two-way speech communication between the system and its users. Computational intelligence methods allow for analysis, evaluation and assessment of user's knowledge and skills ... Keywords: artificial intelligence, cybernetics, e-learning system, mobile technology, speech interface, user-computer interaction

Wojciech Kacalak; Maciej Majewski; Jacek M. Zurada

2010-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "on-site evaluation process" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Coal liquefaction process streams characterization and evaluation. Solid-state NMR characterization of coal liquefaction products  

DOE Green Energy (OSTI)

This study clearly demonstrated the usefulness of liquid- and solid-state {sup 13}C- and {sup 1}H-NMR for the examination of process-derived materials from direct coal liquefaction. The techniques can provide data not directly obtainable by other methods to examine the saturation of aromatic rings and to determine the modes of hydrogen utilization during coal liquefaction. In addition, these methods can be used to infer the extent of condensation and retrograde reactions occurring in the direct coal liquefaction process. Five NMR techniques were employed. Solid-state {sup 13}C-NMR measurements were made using the Cross Polarization Magic Angle Spinning (CP/MAS) and Single Pulse (SP) techniques. Solid-state {sup 1}H-NMR measurements were made using the technique of Combined Rotation and Multiple-Pulse spectroscopy (CRAMPS). Conventional liquid-state {sup 12}C- and {sup 1}H-NMR techniques were employed as appropriate. Interpretation of the NMR data, once obtained, is relatively straightforward. Combined with other information, such as elemental analyses and process conversion data, the NMR data prove to be a powerful tool for the examination of direct coal liquefaction process-derived material. Further development and more wide-spread application of this analytical method as a process development tool is justified on the basis of these results.

Miknis, F.P. [Western Research Inst., Laramie, WY (United States)

1991-11-01T23:59:59.000Z

202

Raw materials evaluation and process development studies for conversion of biomass to sugars and ethanol  

DOE Green Energy (OSTI)

A range of cellulosic raw materials in the form of agricultural crop residue was analyzed for chemical composition and assessed for potential yields of sugars through chemical pretreatment and enzymatic hydrolysis of these materials. Corn stover was used as a representative raw material for a preliminary process design and economic assessment of the production of sugars and ethanol. With the process as presently developed, 23 gallons of ethanol can be obtained per ton of corn stover at a processing cost of about $1.80 per gallon exclusive of by-product credits. The analysis shows the cost of ethanol to be highly dependent upon (1) the cost of the biomass, (2) the extent of conversion to glucose, (3) enzyme recovery and production cost and (4) potential utilization of xylose. Significant cost reduction appears possible through further research in these directions.

Wilke, C.R.; Yang, R.D.; Sciamanna, A.S.; Freitas, R.P.

1978-06-01T23:59:59.000Z

203

Evaluation of the DWPF chemical process cell sample condenser in the integrated DWPF melter system  

DOE Green Energy (OSTI)

An on-line Analysis system for hydrogen is being added to the Chemical Processing Cell (CPC) in DWPF to ensure that the process does not operate above the lower flammable limit (LFL). The method chosen to measure hydrogen during cold runs is gas chromatography (GC). In order for the GCs to analyze the offgas exiting the SRAT and SME condensers, an additional condenser is required to reduce the dew point of tho sample to below the lowest ambient temperature expected so that no liquid water will enter the GCs. This temperature was chosen to be 10[degrees]C.

Zamecnik, J.R.

1992-05-15T23:59:59.000Z

204

The Laboratory Performance Appraisal Process and Performance Evaluation and Measurement Plan Preparation Guidance  

NLE Websites -- All DOE Office Websites (Extended Search)

0136 0136 Contract No. DE-AC02-09CH11466 Section J - Appendix B J-B-1 ATTACHMENT J.2 APPENDIX B PERFORMANCE EVALUATION AND MEASUREMENT PLAN FISCAL YEAR 2014 Applicable to the Operation of the Princeton Plasma Physics Laboratory A Department of Energy National Laboratory Contract No. DE-AC02-09CH11466 Modification No.0136 Contract No. DE-AC02-09CH11466 Section J - Appendix B J-B-2 TABLE OF CONTENTS Section Page No. INTRODUCTION J-B-5 I. DETERMINING THE CONTRACTOR'S PERFORMANCE RATING AND PERFORMANCE-BASED FEE AND AWARD TERM ELIGIBILITY (as applicable) J-B-5 Performance Evaluation Methodology J-B-6 Calculating Individual Goal Scores and Letter Grade J-B-8 Determining the Amount of Performance-Based Fee Earned J-B-8

205

Evaluation of mobile services and substantial adoption factors with Analytic Hierarchy Process (AHP)  

Science Conference Proceedings (OSTI)

Emergence of new technological innovations in networks, platforms, and applications has enabled service providers to gain back their massive investment in their infrastructures. However, due to lagging adoption, many service innovations have failed to ... Keywords: Adoption factors, Analytic Hierarchy Process, Mobile service categories, Mobile services, Service adoption

Shahrokh Nikou, József Mezei

2013-11-01T23:59:59.000Z

206

Development and Application of Advanced Models for Steam Hydrogasification: Process Design and Economic Evaluation  

E-Print Network (OSTI)

on investment Total SNG PC ($/KSCF) SNG Biomass green wastegreen waste-to-liquid scenario due to less O&M cost and capital investmentinvestment in the 650 $MM BTL plant to process 1,800 metric tons of biomass green

Lu, Xiaoming

2012-01-01T23:59:59.000Z

207

National Waste Processing Conference Proceedings ASME 1994 EVALUATION OF RDF WASTE  

E-Print Network (OSTI)

to coal. These objectives led the two groups to join in a collaborative investigation of technol ogy to co-fire and fly ash samples showed no change in carbon content or fusion when co-firing. Despite the problems complete burnout of co-fired RDF with ac ceptable processing costs required the installation of a burnout

Columbia University

208

Development and Evaluation of a Novel Integrated Vacuum Carbonate Absorption Process  

Science Conference Proceedings (OSTI)

This project was aimed at obtaining process engineering and scale-up data at a laboratory scale to investigate the technical and economic feasibility of a patented post-combustion carbon dioxide (CO{sub 2}) capture process?the Integrated Vacuum Carbonate Absorption Process (IVCAP). Unique features of the IVCAP include its ability to be fully-integrated with the power plant’s steam cycle and potential for combined sulfur dioxide (SO{sub 2}) removal and CO{sub 2} capture. Theoretical and experimental studies of this project were aimed at answering three major technical questions: 1) What additives can effectively reduce the water vapor saturation pressure and energy requirement for water vaporization in the vacuum stripper of the IVCAP? 2) What catalysts can promote CO{sub 2} absorption into the potassium carbonate (PC) solution to achieve an overall absorption rate comparable to monoethanolamine (MEA) and are the catalysts stable at the IVCAP conditions and in the flue gas environment? 3) Are any process modifications needed to combine SO{sub 2} and CO{sub 2} removal in the IVCAP? Lab-scale experiments and thermodynamic and process simulation studies performed to obtain detailed information pertinent to the above three technical questions produced the following results: 1) Two additives were identified that lower the saturation pressure of water vapor over the PC solution by about 20%. 2) The carbonic anhydrase (CA) enzyme was identified as the most effective catalyst for promoting CO{sub 2} absorption. The absorption rate into the CO{sub 2}-lean PC solution promoted with 300 mg/L CA was several times slower than the corresponding 5 M MEA solution, but absorption into the CO{sub 2}-rich PC solution was comparable to the CO{sub 2}-rich MEA solution. The tested CA enzymes demonstrated excellent resistance to major flue gas impurities. A technical-grade CA enzyme was stable at 40{degrees}C (104{degrees}F) over a six-month test period, while its half-life was about two months at 50{degrees}C (122{degrees}F). Enzyme immobilization improved the CA enzyme’s thermal stability by up to three times compared to its free counterpart. 3) Two process modifications were proposed to improve the technical performance of the IVCAP for combined SO{sub 2} removal and CO{sub 2} capture. The results from a techno-economic study of a 528 MWe (gross) pulverized coal-fired, subcritical steam power plant revealed that the cost of CO{sub 2} avoidance with the IVCAP was about 30% lower than conventional MEA-based processes. The levelized cost of electricity (LCOE) of the IVCAP ranged from $40 to 46/MWh, an increase of 60 to 70% compared to a reference power plant without CO{sub 2} capture. The overall conclusion of this study is that the IVCAP is a technically feasible and economically more attractive process than available MEA-based processes. A scale-up study using the slipstream of an actual coal-derived flue gas and development of a more stable CA enzyme are recommended for future studies.

Lu, Yongqi; Rostam-Abadi, Massoud; Ye, Xinhuai; Zhang, Shihan; Ruhter, David; Khodayari, Arezoo; Rood, Mark

2012-04-30T23:59:59.000Z

209

Advances in field-portable mass spectrometers for on-site analytics  

Science Conference Proceedings (OSTI)

Learn how the combination of ambient ionization with portable mass spectroscopy can speed chemical analysis by streamlining sample preparation and throughput requirements. Advances in field-portable mass spectrometers for on-site analytics inform M

210

Distributed Energy Resources On-Site Optimization for Commercial Buildings with Electric and Thermal Storage Technologies  

E-Print Network (OSTI)

by heat activated absorption cooling, direct-fired naturalsince electric cooling loads can be offset by the absorptioncooling loads: utility purchases of electricity, on-site generation of electricity, absorption

Stadler, Michael

2008-01-01T23:59:59.000Z

211

Detailed Chemical Kinetic Model Evaluation of the Selective Non-Catalytic Reduction (SNCR) Process  

Science Conference Proceedings (OSTI)

As federal and state regulations on nitrogen oxide (NOx) emissions from fossil-fueled power plants become stricter, post-combustion techniques such as selective non-catalytic reduction (SNCR) become viable options to achieve compliance. In the SNCR process, urea or ammonia is injected into the combustion products and reacts selectively with NOx to form nitrogen and water. Operating scenarios often arise that justify application of a low-capital cost technology that can provide incremental NOx reductions ...

2003-08-21T23:59:59.000Z

212

Evaluating electronic banking systems in developing nations through Analytic Hierarchy Process model: a case study  

Science Conference Proceedings (OSTI)

Since the beginning of the late 1970s an impressive number of innovative electronic banking systems have been developed and tested commercially. One of the most important issues with respect to these innovations is the choosing best electronic banking ... Keywords: AHP, ATM banking, Iran, analytical hierarchy process, bank remark factors, developing countries, e-banking, electronic banking, internet banking, m-banking SMS banking, mobile banking, online banking, phone banking, security factors, socioeconomic factors, technological factors, telephone banking

Ehsan Rasolinezhad

2009-10-01T23:59:59.000Z

213

Guide for Operating an Interim On-Site Low Level Radioactive Waste Storage Facility  

Science Conference Proceedings (OSTI)

As a result of increasing low-level waste (LLW) disposal site uncertainty, the industry expects that utilities will have to rely on their own on-site storage LLW storage programs in the near future. This report captures essential information related to the operation of an on-site LLW storage program. The report is a comprehensive reference to which utilities can routinely refer throughout the development and implementation of the storage program and operation of the storage facility.

2004-11-16T23:59:59.000Z

214

Guidelines for Operating an Interim On Site Low Level Radioactive Waste Storage Facility - Revision 1  

Science Conference Proceedings (OSTI)

The majority of commercial USA nuclear stations have constructed on-site LLW storage facilities, and most of these same utilities are experiencing or have experienced at least one period of interim on-site storage. These Guidelines focus on operational considerations and incorporate many of the lessons learned while operating various types of LLW storage facilities. This document was reviewed by the USNRC. Subsequently, the USNRC issued RIS 2008-32, Interim LLRW Storage at NPPs, which recognizes the meth...

2009-02-23T23:59:59.000Z

215

A characterization and evaluation of coal liquefaction process streams. Quarterly technical progress report, July 1--September 30, 1995  

Science Conference Proceedings (OSTI)

The objectives of this project are to support the DOE direct coal liquefaction process development program and to improve the useful application of analytical chemistry to direct coal liquefaction process development. Independent analyses by well-established methods will be obtained of samples produced in direct coal liquefaction processes under evaluation by DOE. Additionally, analytical instruments and techniques which are currently underutilized for the purpose of examining coal-derived samples will be evaluated. The data obtained from this study will be used to help guide current process development and to develop an improved data base on coal and coal liquids properties. A sample bank will be established and maintained for use in this project and will be available for use by other researchers. The reactivity of the non-distillable resids toward hydrocracking at liquefaction conditions (i.e., resid reactivity) will be examined. From the literature and data experimentally obtained, a mathematical kinetic model of resid conversion will be constructed. It is anticipated that such a model will provide insights useful for improving process performance and thus the economics of direct coal liquefaction. Some of the contract activities for this quarter are: We completed many of the analyses on the 81 samples received from HTI bench-scale run CMSL-9, in which coal, coal/mixed plastics, and coal/high density polyethylene were fed; Liquid chromatographic separations of the 15 samples in the University of Delaware sample set were completed; and WRI completed CP/MAS {sup 13}C-NMR analyses on the Delaware sample set.

Robbins, G.A.; Brandes, S.D.; Winschel, R.A.; Burke, F.P.

1995-12-01T23:59:59.000Z

216

Test rig and particulate deposit and cleaning evaluation processes using the same  

DOE Patents (OSTI)

A rig and test program for determining the amount, if any, of contamination that will collect in the passages of a fluid flow system, such as a power plant fluid delivery system to equipment assemblies or sub-assemblies, and for establishing methods and processes for removing contamination therefrom. In the presently proposed embodiment, the rig and test programs are adapted in particular to utilize a high-pressure, high-volume water flush to remove contamination from substantially the entire fluid delivery system, both the quantity of contamination and as disposed or deposited within the system.

Schroder, Mark Stewart (Hendersonville, NC); Woodmansee, Donald Ernest (Schenectady, NY); Beadie, Douglas Frank (Greer, SC)

2002-01-01T23:59:59.000Z

217

Statistical evaluation of process parameters affecting properties of ICPP ceramic waste forms  

SciTech Connect

A primary option to immobilize calcined ICPP High Level Waste (HLW) is to form a glass-ceramic by hot isostatic pressing (HIPing) of a calcine-additive mixture. Laboratory-scale testing indicates that the resulting glass-ceramic product containing as much as 70 wt% calcined waste is durable and well densified. Compounds present in the waste, such as zirconia and calcium fluoride are used to form crystalline phases which host most of the radionuclides. Materials such as titania are added to immobilize species including cadmium and chromium, and silica is added to form an amorphous phase which hosts alkali metals and boron in the waste as well as radionuclides not immobilized in the crystalline phases. However, the formation of these desirable properties in the product also depends on HIPing conditions which are determined by the control of process parameters. Thus the twelve-run Plackett-Burman screening design was applied in this laboratory-scale study to determine process parameters having statistically significant effects on product properties.

Staples, B.A.

1989-03-07T23:59:59.000Z

218

Development of miscella refining process for cottonseed oil-isopropyl alcohol system: laboratory-scale evaluations  

E-Print Network (OSTI)

A technologically feasible cottonseed oil-isopropyl alcohol (IPA) miscella refining process was developed to produce high quality cottonseed oil. Individual steps necessary to refine cottonseed oil-IPA miscella were determined and improved. These were: 1) homogenization of the cottonseed oil-IPA miscella with caustic solution; 2) centrifugation; 3) separation of miscella layers; 4) desolventization, 5) water washing and drying; and 6) bleaching. In neutralization, the miscella was mixed with 20 Be' caustic solution (50% excess) by using a Sonolator for 15 times. The refined oils from both the bottom and top layers were water washed using 12.5% and 20% (w/w) hot water, respectively. The water washing efficiently recovered the oil from the top layer miscella and reduced the soap and phosphorus content. The water washed and dried oils from the bottom and top layers were treated with 0.5% and 4% (w/w) acid activated bleaching clay, respectively. Good quality refined and bleached oil was obtained. However, the quality of the bleached oil produced from bottom layer was better than that from the top layer. Comparative experiments with both IPA and hexane systems showed that the new refining process developed in this study could produce a higher quality refined oil from the cottonseed oil-IPA miscella than from the cottonseed oil-hexane miscella.

Chau, Chi-Fai

1994-01-01T23:59:59.000Z

219

EXAMINE AND EVALUATE A PROCESS TO USE SALT CAVERNS TO RECEIVE SHIP BORNE LIQUEFIED NATURAL GAS  

SciTech Connect

The goal of the U.S. Department of Energy cooperative research project is to define, describe, and validate, a process to utilize salt caverns to receive and store the cargoes of LNG ships. The project defines the process as receiving LNG from a ship, pumping the LNG up to cavern injection pressures, warming it to cavern compatible temperatures, injecting the warmed vapor directly into salt caverns for storage, and distribution to the pipeline network. The performance of work under this agreement is based on U.S. Patent 5,511,905, and other U.S. and Foreign pending patent applications. The cost sharing participants in the research are The National Energy Technology Laboratory (U.S. Department of Energy), BP America Production Company, Bluewater Offshore Production Systems (U.S.A.), Inc., and HNG Storage, L.P. Initial results indicate that a salt cavern based receiving terminal could be built at about half the capital cost, less than half the operating costs and would have significantly higher delivery capacity, shorter construction time, and be much more secure than a conventional liquid tank based terminal. There is a significant body of knowledge and practice concerning natural gas storage in salt caverns, and there is a considerable body of knowledge and practice in handling LNG, but there has never been any attempt to develop a process whereby the two technologies can be combined. Salt cavern storage is infinitely more secure than surface storage tanks, far less susceptible to accidents or terrorist acts, and much more acceptable to the community. The project team developed conceptual designs of two salt cavern based LNG terminals, one with caverns located in Calcasieu Parish Louisiana, and the second in Vermilion block 179 about 50 miles offshore Louisiana. These conceptual designs were compared to conventional tank based LNG terminals and demonstrate superior security, economy and capacity. The potential for the development of LNG receiving terminals, utilizing salt caverns for storage and the existing comprehensive pipeline system has profound implications for the next generation of LNG terminals. LNG imports are expected to become an increasingly more important part of the U.S. energy supply and the capacities to receive LNG securely, safely, and economically must be expanded. Salt cavern LNG receiving terminals both in onshore and offshore locations can be quickly built and provide additional import capacity into the U.S. exceeding 6-10 Bcf/day in the aggregate.

Michael M. McCall; William M. Bishop; D. Braxton Scherz

2003-04-24T23:59:59.000Z

220

EDS Coal Liquefaction Process Development. Phase V. Laboratory evaluation of the characteristics of EDS Illinois bottoms  

Science Conference Proceedings (OSTI)

This interim report documents work carried out by Combustion Engineering, Inc. under a contract to Exxon Research and Engineering Company to develop a conceptual Hybrid Boiler design fueled by the vacuum distillation residue (vacuum bottoms) derived from Illinois No. 6 coal in the EDS Coal Liquefaction Process. This report was prepared by Combustion Engineering, Inc., and is the first of two reports on the predevelopment phase of the Hybrid Boiler program. This report covers the results of a laboratory investigation to assess the fuel and ash properties of EDS vacuum bottoms. The results of the laboratory testing reported here were used in conjunction with Combustion Engineering's design experience to predict fuel performance and to develop appropriate boiler design parameters. These boiler design parameters were used to prepare the engineering design study reported in EDS Interim Report FE-2893-113, the second of the two reports on the predevelopment phase of the Hybrid Boiler Program. 46 figures, 29 tables.

Lao, T C; Levasseur, A A

1984-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "on-site evaluation process" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Influence of woody dominated rangelands on site hydrology and herbaceous production, Edwards Plateau, Texas  

E-Print Network (OSTI)

Interception of precipitation by blueberry (Juniperus ashei Buchh.) and redberry juniper (Juniperus pinchotii Sudw.) canopies was analyzed using gross precipitation, throughfall, and stemflow data collected at the Texas A&M University Research Station at Sonora, Texas. The objective was to characterize interception by juniper canopy and litter, and to determine the redistributive effects of throughfall and stemflow on site hydrology. Based on a 10-year distribution pattern of rainfall, 66.2% of the precipitation underneath the canopies of J. pinchotii was in the form of throughfall, and 7.9% was in the form of stemflow. Beneath the canopies of J. ashei, 58.2% was in the form of throughfall, while 5. 1 % was in the form of stemflow. 41.6% of the precipitation that fell below the canopies was intercepted by the litter layer of both trees. I The effects that the canopies of both juniper species, and live oak (Quercus virginiana Mill.) have on herbaceous vegetation at various distances from the trunk and the response in herbaceous production following canopy removal were also evaluated. The canopies of all three species reduced herbaceous production. Total standing biomass was greatest at the dripline of all three species. Three years after canopy removal, herbaceous vegetation was bolstered at all sample locations. Hence, the tree species were not only inhibiting herbaceous production beneath the canopies, but also in the tree/shrub interspace as well. Following canopy removal, infiltration rates and sediment production were determined to assess how oak, juniper, bunchgrass, and shortgrass vegetation types and prescribed burning influence rangeland hydrology over time. Woody dominated areas had significantly greater infiltration rates and less sediment production than did grass dominated areas. In addition, following removal, the former oak and juniper mottes retained the hydrological characteristics of woody dominated areas indefinitely. Furthermore, although prescribed burning is an effective, inexpensive means of removing woody vegetation, a cost in the form of accelerated erosion rates was incurred for a brief period after the burn.

Hester, Justin Wayne

1996-01-01T23:59:59.000Z

222

Regional comparisons of on-site solar potential in the residential and industrial sectors  

SciTech Connect

Regional and sub-regional differences in the potential development of decentralized solar technologies are studied. Two sectors of the economy were selected for intensive analysis: the residential and industrial sectors. In both investigations, the sequence of analysis follows the same general steps: (1) selection of appropriate prototypes within each land-use sector disaggregated by census region; (2) characterization of the end-use energy demand of each prototype in order to match an appropriate decentralized solar technology to the energy demand; (3) assessment of the energy conservation potential within each prototype limited by land use patterns, technology efficiency, and variation in solar insolation; and (4) evaluation of the regional and sub-regional differences in the land use implications of decentralized energy supply technologies that result from the combination of energy demand, energy supply potential, and the subsequent addition of increasingly more restrictive policies to increase the percent contribution of on-site solar energy. Results are presented and discussed. It is concluded that determining regional variations in solar energy contribution for both the residential and industrial sectors appears to be more dependent upon a characterization of existing demand and conservation potential than regional variations in solar insolation. Local governmental decisions influencing developing land use patterns can significantly promote solar energy use and reduce reliance on non-renewable energy sources. These decisions include such measures as solar access protection through controls on vegetation and on building height and density in the residential sector, and district heating systems and industrial co-location in the manufacturing sector. (WHK)

Gatzke, A.E.; Skewes-Cox, A.O.

1980-10-01T23:59:59.000Z

223

Complete calculation of evaluated Maxwellian-averaged cross sections and their uncertainties for s-process nucleosynthesis  

Science Conference Proceedings (OSTI)

Present contribution represents a significant improvement of our previous calculation of Maxwellian-averaged cross sections and astrophysical reaction rates. Addition of newly-evaluated neutron reaction libraries, such as ROSFOND and Low-Fidelity Covariance Project, and improvements in data processing techniques allowed us to extend it for entire range of sprocess nuclei, calculate Maxwellian-averaged cross section uncertainties for the first time, and provide additional insights on all currently available neutron-induced reaction data. Nuclear reaction calculations using ENDF libraries and current Java technologies will be discussed and new results will be presented.

Pritychenko, B.

2010-07-19T23:59:59.000Z

224

General-purpose heat source: Research and development program. Process evaluation, fuel pellet GF-47  

DOE Green Energy (OSTI)

The general-purpose heat source (GPHS) provides power for space missions by transmitting the heat of {sup 238}Pu decay to an array of thermoelectric elements. Because the potential for a launch abort or return from orbit exists for any space mission, the heat source must be designed and constructed to survive credible accident environments. Previous testing conducted in support of the Galileo and Ulysses missions has documented the response of the GPHS heat source to a variety of fragment-impact, aging, atmospheric reentry, and Earth-impact conditions. Although heat sources for previous missions were fabricated by the Westinghouse Savannah River Company (WSRC), GPHS fueled-clads required for the Cassini mission to Saturn will be fabricated by Los Alamos National Laboratory (LANL). This evaluation is part of an ongoing program to determine the similarity of GPHS fueled clads and fuel pellets fabricated at LANL to those fabricated at WSRC. Pellet GF-47, which was fabricated at LANL in late 1994, was submitted for chemical and ceramographic analysis. The results indicated that the pellet had a chemical makeup and microstructure within the range of material fabricated at WSRC in the early 1980s.

Reimus, M.A.H.; George, T.G.

1995-12-01T23:59:59.000Z

225

Evaluation of a precipitation-ion exchange process for treatment of laundry waste  

SciTech Connect

Bench-scale pilot plant studies were conducted to evaluate chemical coagulation and ion exchange for decontamination of 2724-W laundry wastewater. Chemical coagulation is accomplished at pH 11 to avoid complexant problems and assure good transuranic radionuclide removals. Clinoptilolite is used to remove cesium and strontium. Results of the pilot plant studies are summarized as follows: Decontamination factors of 70 (strontium) and more than 100 (cesium) were achieved by chemical coagulation and ion exchange. Decontamination factors exceeding 90 were measured for europium by coagulation with a combination of ferric chloride, magnesium chloride, and calcium chloride added to the wastewater at pH 11. Coagulation with these three agents in the wastewater at pH 11 was more effective for turbidity removal than coagulation with lime. Addition of up to 1.7 lb of clinoptilolite fines per 1000 gallons of wastewater during coagulation did not substantially increase strontium and cesium removal. Filtration without chemical coagulation reduced suspended solids by only 25%. About 70% of the suspended solids remaining in the filtered wastewater were removed in the zeolite column causing plugging which could not be easily dislodged by backwashing. Plugging of the ion exchange columns by previously clarified wastewater required short periods of limited backwashing to relieve the plug. The plugging is due to CaCO/sub 3/ and is not expected to be a severe problem in a full-scale plant with brief detention times between filtration and ion exchange. A high pressure surface wash should be included in the columns to break up crust or plugs at the surface of the zeolite. Centrifugation of iron sludges for 2 min at 2000 g reduced the sludge volume to about 1% of the total wastewater volume. Wet iron sludges from the sludge storage tank were readily dewatered by vacuum filtration. 14 tables, 9 figures.

Mercer, B.W.; Ames, L.L.

1977-03-15T23:59:59.000Z

226

Coal liquefaction process streams characterization and evaluation. Quarterly technical progress report, April 1--June 30, 1992  

Science Conference Proceedings (OSTI)

This is the eleventh Quarterly Technical Progress Report under DOE Contract DE-AC22-89PC89883. Major topics reported are: (1) The results of a study designed to determine the effects of the conditions employed at the Wilsonville slurry preheater vessel on coal conversion is described. (2) Stable carbon isotope ratios were determined and used to source the carbon of three product samples from Period 49 of UOP bench-scale coprocessing Run 37. The results from this coprocessing run agree with the general trends observed in other coprocessing runs that we have studied. (3) Microautoclave tests and chemical analyses were performed to ``calibrate`` the reactivity of the standard coal used for determining donor solvent quality of process oils in this contract. (4) Several aspects of Wilsonville Close-Coupled Integrated Two-Stage Liquefaction (CC-ITSL) resid conversion kinetics were investigated; results are presented. Error limits associated with calculations of deactivation rate constants previously reported for Runs 258 and 261 are revised and discussed. A new procedure is described that relates the conversions of 850{degrees}F{sup +} , 1050{degrees}F{sup +}, and 850 {times} 1050{degrees}F material. Resid conversions and kinetic constants previously reported for Run 260 were incorrect; corrected data and discussion are found in Appendix I of this report.

Brandes, S.D.; Lancet, M.S.; Robbins, G.A.; Winschel, R.A.; Burke, F.P.

1992-11-01T23:59:59.000Z

227

Pretreatment status report on the identification and evaluation of alternative processes. Milestone Report No. C064  

SciTech Connect

The purpose of this report is to support the development and demonstration of a pretreatment system that will (1) destroy organic materials and ferrocyanide in tank wastes so that the wastes can be stored safely, (2) separate the high-activity and low-activity fractions, (3) remove radionuclides and remove or destroy hazardous chemicals in LLW as necessary to meet waste form feed requirements, (4) support development and demonstration of vitrification technology by providing representative feeds to the bench-scale glass melter, (5) support full-scale HLW vitrification operations, including near-term operation, by providing feed that meets specifications, and (6) design and develop pretreatment processes that accomplish the above objectives and ensure compliance with environmental regulations. This report is a presentation of candidate technologies for pretreatment of Hanford Site tank waste. Included are descriptions of studies by the Pacific Northwest Laboratory of Battelle Memorial Institute; Science Applications International Corporation, an independent consultant; BNFL, Inc. representing British technologies; Numatec, representing French technologies; and brief accounts of other relevant activities.

Sutherland, D.G. [Westinghouse Hanford Co., Richland, WA (United States); Brothers, A.J. [Pacific Northwest Lab., Richland, WA (United States); Beary, M.M.; Nicholson, G.A. [Science Applications International Corp., San Diego, CA (United States)

1993-09-01T23:59:59.000Z

228

Process engineering and economic evaluations of diaphragm and membrane chlorine cell technologies. Final report  

DOE Green Energy (OSTI)

The chlor-alkali manufacturing technologies of (1), diaphragm cells (2), current technology membrane cells (3), catalytic cathode membrane cells (4), oxygen-cathode membrane cells and to a lesser extent several other related emerging processes are studied. Comparisons have been made on the two bases of (1) conventional industrial economics, and (2) energy consumption. The current diaphragm cell may have a small economic advantage over the other technologies at the plant size of 544 metric T/D (600 T/D). The three membrane cells all consume less energy, with the oxygen-cathode cell being the lowest. The oxygen-cathode cell appears promising as a low energy chlor-alkali cell where there is no chemical market for hydrogen. Federal funding of the oxygen-cathode cell has been beneficial to the development of the technology, to electrochemical cell research, and may help maintain the US's position in the international chlor-alkali technology marketplace. Tax law changes inducing the installation of additional cells in existing plants would produce the quickest reduction in power consumption by the chlor-alkali industry. Alternative technologies such as the solid polymer electrolyte cell, the coupling of diaphragm cells with fuel cells and the dynamic gel diaphragm have a strong potential for reducing chloralkali industry power consumption. Adding up all the recent and expected improvements that have become cost-effective, the electrical energy required to produce a unit of chlorine by 1990 should be only 50% to 60% of that used in 1970. In the United States the majority of the market does not demand salt-free caustic. About 75% of the electrolytic caustic is produced in diaphragm cells and only a small part of that is purified. This study indicates that unless membrane cell costs are greatly reduced or a stronger demand develops for salt-free caustic, the diaphragm cells will remain competitive. (WHK)

Not Available

1980-12-01T23:59:59.000Z

229

Assessment of On-Site Power Opportunities in the Industrial Sector  

Science Conference Proceedings (OSTI)

The purpose of this report is to identify the potential for on-site power generation in the U.S. industrial sector with emphasis on nine industrial groups called the ''Industries of the Future'' (IOFs) by the U.S. Department of Energy (DOE). Through its Office of Industrial Technologies (OIT), the DOE has teamed with the IOFs to develop collaborative strategies for improving productivity, global competitiveness, energy usage and environmental performance. Total purchases for electricity and steam for the IOFs are in excess of $27 billion annually. Energy-related costs are very significant for these industries. The nine industrial groups are (1) Agriculture (SIC 1); (2) Forest products; (3) Lumber and wood products (SIC 24); (4) Paper and allied products (SIC 26); (5) Mining (SIC 11, 12, 14); (6) Glass (SIC 32); (7) Petroleum (SIC 29); (8) Chemicals (SIC 28); and (9) Metals (SIC 33): Steel, Aluminum, and Metal casting. Although not currently part of the IOF program, the food industry is included in this report because of its close relationship to the agricultural industry and its success with on-site power generation. On-site generation provides an alternative means to reduce energy costs, comply with environmental regulations, and ensure a reliable power supply. On-site generation can ease congestion in the local utility's electric grid. Electric market restructuring is exacerbating the price premium for peak electricity use and for reliability, creating considerable market interest in on-site generation.

Bryson, T.

2001-10-08T23:59:59.000Z

230

Initial evaluation of dry storage issues for spent nuclear fuels in wet storage at the Idaho Chemical Processing Plant  

SciTech Connect

The Pacific Northwest Laboratory has evaluated the basis for moving selected spent nuclear fuels in the CPP-603 and CPP-666 storage pools at the Idaho Chemical Processing Plant from wet to dry interim storage. This work is being conducted for the Lockheed Idaho Technologies Company as part of the effort to determine appropriate conditioning and dry storage requirements for these fuels. These spent fuels are from 22 test reactors and include elements clad with aluminum or stainless steel and a wide variety of fuel materials: UAl{sub x}, UAl{sub x}-Al and U{sub 3}O{sub 8}-Al cermets, U-5% fissium, UMo, UZrH{sub x}, UErZrH, UO{sub 2}-stainless steel cermet, and U{sub 3}O{sub 8}-stainless steel cermet. The study also included declad uranium-zirconium hydride spent fuel stored in the CPP-603 storage pools. The current condition and potential failure mechanisms for these spent fuels were evaluated to determine the impact on conditioning and dry storage requirements. Initial recommendations for conditioning and dry storage requirements are made based on the potential degradation mechanisms and their impacts on moving the spent fuel from wet to dry storage. Areas needing further evaluation are identified.

Guenther, R.J.; Johnson, A.B. Jr.; Lund, A.L.; Gilbert, E.R. [and others

1994-11-01T23:59:59.000Z

231

DOE Best Practices Manual Focuses on Site Selection for CO2 Storage |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Best Practices Manual Focuses on Site Selection for CO2 Storage Best Practices Manual Focuses on Site Selection for CO2 Storage DOE Best Practices Manual Focuses on Site Selection for CO2 Storage January 5, 2011 - 12:00pm Addthis Washington, DC - The most promising methods for assessing potential carbon dioxide (CO2) geologic storage sites - a crucial component of Carbon Capture and Storage (CCS) technology - is the focus of the latest in a series of U.S. Department of Energy (DOE) CCS "best practices" manuals. Developed by the Office of Fossil Energy's (FE) National Energy Technology Laboratory (NETL), the manual - Site Screening, Site Selection and Initial Characterization for Storage of CO2 in Deep Geologic Formations - is a resource for future project developers and CO2 producers and transporters. It can also be used to apprise government agencies of the

232

Proposed On-Site Waste Disposal Facility (OSWDF) at the Portsmouth Gaseous Diffusion Plant  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

OH OH EM Project: On-Site Disposal Facility ETR Report Date: February 2008 ETR-12 United States Department of Energy Office of Environmental Management (DOE-EM) External Technical Review of the Proposed On-Site Waste Disposal Facility (OSWDF) at the Portsmouth Gaseous Diffusion Plant Why DOE-EM Did This Review The On-Site Waste Disposal Facility (OSWDF) is proposed for long-term containment of contaminated materials from the planned Decontamination and Decommissioning (D&D) activities at the Portsmouth Gaseous Diffusion Plant. Acceptable performance of the proposed OSWDF will depend on interactions between engineered landfill features and operations methods that recognize the unique characteristics of the waste stream and site-

233

Department of Energy Announces Two Year Pay Freeze on Site and Facility  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Two Year Pay Freeze on Site and Two Year Pay Freeze on Site and Facility Management Contractor Employees Department of Energy Announces Two Year Pay Freeze on Site and Facility Management Contractor Employees December 17, 2010 - 12:00am Addthis Washington DC - Following President Obama's recent proposal for a two-year pay freeze for all civilian federal workers, U.S. Energy Secretary Steven Chu today announced a decision to stop salary and bonus pool increases for site and facility management contractor employees, who manage day-to-day operations at certain Department of Energy sites and facilities, including national laboratories. "As our nation continues to recover from these challenging economic times, households and small businesses across the country are making sacrifices,"

234

DOE Best Practices Manual Focuses on Site Selection for CO2 Storage |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Best Practices Manual Focuses on Site Selection for CO2 Storage Best Practices Manual Focuses on Site Selection for CO2 Storage DOE Best Practices Manual Focuses on Site Selection for CO2 Storage January 5, 2011 - 12:00pm Addthis Washington, DC - The most promising methods for assessing potential carbon dioxide (CO2) geologic storage sites - a crucial component of Carbon Capture and Storage (CCS) technology - is the focus of the latest in a series of U.S. Department of Energy (DOE) CCS "best practices" manuals. Developed by the Office of Fossil Energy's (FE) National Energy Technology Laboratory (NETL), the manual - Site Screening, Site Selection and Initial Characterization for Storage of CO2 in Deep Geologic Formations - is a resource for future project developers and CO2 producers and transporters. It can also be used to apprise government agencies of the

235

Demonstration and evaluation of the CORPEX{trademark} Nuclear Decontamination Process, Technical task plan No. SR152005. Final Report  

SciTech Connect

In June, 1995, the Decontamination and Decommissioning Focus Area funded a demonstration of the CORPEX Nuclear Decontamination Process in an Old Metallography Laboratory glovebox at the Savannah River Site. The objective of the demonstration was to prove the effectiveness of a new and innovative technology that would reduce the risks associated with future cleanups of plutonium-238 contaminated equipment in the DOE complex. After facility and vendor preparations in support of the demonstration, Westinghouse Savannah River Company (WSRC) was informed by the vendor that the chemistry proposed for use in the decontamination process was not effective on sintered plutonium, which was the form of plutonium in the selected glovebox. After further technical evaluation, the demonstration was canceled. This report describes the work performed in support of the demonstration and the present status of the project. The CORPEX chemical process is a nondestructive cleaning method that removes only the contaminant and the matrix that fixed the contaminant to the surface. It does not damage the substrate. The cleaning agent is destroyed by the addition of proprietary oxidizers, leaving water, carbon dioxide and nitrogen gases, and a sludge as waste.

May, C.G.

1997-04-30T23:59:59.000Z

236

Cost Effectiveness of On-Site Chlorine Generation for Chlorine Truck Attack Prevention  

Science Conference Proceedings (OSTI)

A chlorine tank truck attack could cause thousands of fatalities. As a means of preventing chlorine truck attacks, I consider the on-site generation of chlorine or hypochlorite at all U.S. facilities currently receiving chlorine by truck. I develop and ... Keywords: applications, cost-effectiveness, public policy, risk analysis, terrorism, uncertainty

Anthony M. Barrett

2010-12-01T23:59:59.000Z

237

Guidance for characterizing explosives contaminated soils: Sampling and selecting on-site analytical methods  

SciTech Connect

A large number of defense-related sites are contaminated with elevated levels of secondary explosives. Levels of contamination range from barely detectable to levels above 10% that need special handling due to the detonation potential. Characterization of explosives-contaminated sites is particularly difficult due to the very heterogeneous distribution of contamination in the environment and within samples. To improve site characterization, several options exist including collecting more samples, providing on-site analytical data to help direct the investigation, compositing samples, improving homogenization of samples, and extracting larger samples. On-site analytical methods are essential to more economical and improved characterization. On-site methods might suffer in terms of precision and accuracy, but this is more than offset by the increased number of samples that can be run. While verification using a standard analytical procedure should be part of any quality assurance program, reducing the number of samples analyzed by the more expensive methods can result in significantly reduced costs. Often 70 to 90% of the soil samples analyzed during an explosives site investigation do not contain detectable levels of contamination. Two basic types of on-site analytical methods are in wide use for explosives in soil, calorimetric and immunoassay. Calorimetric methods generally detect broad classes of compounds such as nitroaromatics or nitramines, while immunoassay methods are more compound specific. Since TNT or RDX is usually present in explosive-contaminated soils, the use of procedures designed to detect only these or similar compounds can be very effective.

Crockett, A.B. [Idaho National Engineering Lab., Idaho Falls, ID (United States); Craig, H.D. [Environmental Protection Agency, Portland, OR (United States). Oregon Operations Office; Jenkins, T.F. [Army Cold Regions Research and Engineering Lab., Hanover, NH (United States); Sisk, W.E. [Army Environmental Center, Aberdeen Proving Grounds, MD (United States)

1996-09-01T23:59:59.000Z

238

Dynamic provisioning in next-generation data centers with on-site power production  

Science Conference Proceedings (OSTI)

The critical need for clean and economical sources of energy is transforming data centers that are primarily energy consumers to also energy producers. We focus on minimizing the operating costs of next-generation data centers that can jointly optimize ... Keywords: data centers, dynamic provisioning, on-site power production, online algorithm

Jinlong Tu, Lian Lu, Minghua Chen, Ramesh K. Sitaraman

2013-01-01T23:59:59.000Z

239

DISTANT EDUCATION OF MEDICAL DOCTORS FOR DEALING WITH ON-SITE EMERGENCY SITUATIONS.  

E-Print Network (OSTI)

1 DISTANT EDUCATION OF MEDICAL DOCTORS FOR DEALING WITH ON-SITE EMERGENCY SITUATIONS. V. Andersen that might be unusual compared to the daily routine. In major emergencies, the medical team is moved to the site of the emergency instead of waiting for the casualties at the casualty ward. Ensuring fast

240

A comparative evaluation of conceptual models for the Snake River Plain aquifer at the Idaho Chemical Processing Plant, INEL  

SciTech Connect

Geologic and hydrologic data collected by the United States Geological Survey (USGS) are used to evaluate the existing ground water monitoring well network completed in the upper portion of the Snake River Plain aquifer (SRPA) beneath the Idaho Chemical Processing Plant (ICPP). The USGS data analyzed and compared in this study include: (a) lithologic, geophysical, and stratigraphic information, including the conceptual geologic models intrawell, ground water flow measurement (Tracejector tests) and (c) dedicated, submersible, sampling group elevations. Qualitative evaluation of these data indicate that the upper portion of the SRPA is both heterogeneous and anisotropic at the scale of the ICPP monitoring well network. Tracejector test results indicate that the hydraulic interconnection and spatial configuration of water-producing zones is extremely complex within the upper portion of the SRPA. The majority of ICPP monitoring wells currently are equipped to sample ground water only the upper lithostratigraphic intervals of the SRPA, primarily basalt flow groups E, EF, and F. Depth-specific hydrogeochemical sampling and analysis are necessary to determine if ground water quality varies significantly between the various lithostratigraphic units adjacent to individual sampling pumps.

Prahl, C.J.

1992-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "on-site evaluation process" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

On-Site Diesel Generation- How You Can Reduce Your Energy Costs  

E-Print Network (OSTI)

Interruptible power rates, Utility special rate negotiations, and the emergence of a spot electrical power market all can lead to lower industrial energy costs. The installation of low cost on-site diesel powered generation, or the proposed intention to install, provides the means for obtaining lower purchased power costs. The functionality of a standby power system and its inherent value in the coming free market purchase of electrical energy are added benefits. Project feasibility, conceptual design, on-site generation facility requirements, interconnection requirements, and operation and maintenance costs will be examined. Installation costs in the range of $350 to $400 per KW and operating costs of approximately $0.06 to $0.07 per kWhr compared to purchased power rates determine the feasibility of an on-site generation system. In some cases avoided demand charges offer an opportunity for savings such that special rates are not needed for a feasible project. Depending on the manufacturer, low capital cost diesel generators are available in 1000 to 2000 KW blocks. Capacity requirements determine the number of engines required. Large capacity installations are somewhat restricted by voltage and current ratings. Some variants for multiple engine generator installations will yield greater reliability or lower costs depending on objectives. Specific requirements for basic building blocks of an on-site generation system will be examined as well as an example of a 5,500 KW installation. IEA provides an alternative to installing and operating an on-site generation system. IEA owns and operates diesel standby generation systems for customers, with responsibility for all maintenance and operation as well as associated costs. This allows customers to focus on core business, not the generation of electrical energy.

Charles, D.

1996-04-01T23:59:59.000Z

242

Process Simulation and Evaluation of Alternative Solvents for Jatropha Curcas L. Seed Oil Extraction in Biodiesel Production  

E-Print Network (OSTI)

Jatropha curcas L. is a drought-resistant plant which can be grown in poor soil and marginal lands. The use of Jatropha seed oil to produce biodiesel has been widely studied in recent years. Results showed that it is one of the most promising alternatives for conventional petro-diesel. Currently, hexane is still the most commonly used solvent for commercial oil extraction. However, the increasing price and flammability properties of hexane are motivating industry to seek alternative solvents. The objectives of this study are to design and analyze the Jatropha seed oil extraction for use in biodiesel production, and to provide a systematic safety-economic analysis of alternative solvents that can be used in Jatropha seed oil extraction. First, a base-case flowsheet is synthesized for oil extraction. Then, the base-case extraction process and each solvent Fire and Explosion Index (F & EI) and the Solvent Safety Index (SSI). Eight solvents, including n-heptane, toluene, xylene, dichloromethane, chloroform, 1,2-dichloroethane, methanol and ethanol are selected for candidates by comparing these results to those for hexane. Two cases are developed to evaluate the economic potential of these candidates. Furthermore, heat integration is applied to the process to minimize energy usage. Finally, a comprehensive solvent comparison is developed based on F & EI, SSI, solvent makeup cost, utilities cost, and capital investment. The results show that chloroform is the optimal solvent, while dichloromethane is the next best.

Chiou, Ming-Hao

2011-08-01T23:59:59.000Z

243

Development of an advanced, continuous mild gasification process for the production of co-products technical evaluation. Final report  

SciTech Connect

The University of North Dakota Energy and Environmental Research Center (EERC) and the AMAX Research and Development Center are cooperating in the development of a Mild Gasification process that will rapidly devolatilize coals of all ranks at relatively low temperatures between 930{degree} and 1470{degree}F (500{degree}and 800{degree}C) and near atmospheric pressure to produce primary products that include a reactive char, a hydrocarbon condensate, and a low-Btu gas. These will be upgraded in a ``coal refinery`` system having the flexibility to optimize products based on market demand. Task 2 of the four-task development sequence primarily covered bench-scale testing on a 10-gram thermogravimetric analyzer (TGA) and a 1 to 4-lb/hr continuous fluidized-bed reactor (CFBR). Tests were performed to determine product yields and qualities for the two major test coals-one a high-sulfur bituminous coal from the Illinois Basin (Indiana No. 3) and the other a low-sulfur subbituminous coal from the Powder River Basin (Wyodak). Results from Task 3, on product upgrading tests performed by AMAX Research and Development (R&D), are also reported. Task 4 included the construction, operation of a Process Research Unit (PRU), and the upgrading of the products. An economic evaluation of a commercial facility was made, based on the data produced in the PRU, CFBR, and the physical cleaning steps.

Ness, R.O. Jr.; Runge, B.; Sharp, L.

1992-11-01T23:59:59.000Z

244

Development of an advanced, continuous mild gasification process for the production of co-products technical evaluation  

Science Conference Proceedings (OSTI)

The University of North Dakota Energy and Environmental Research Center (EERC) and the AMAX Research and Development Center are cooperating in the development of a Mild Gasification process that will rapidly devolatilize coals of all ranks at relatively low temperatures between 930[degree] and 1470[degree]F (500[degree]and 800[degree]C) and near atmospheric pressure to produce primary products that include a reactive char, a hydrocarbon condensate, and a low-Btu gas. These will be upgraded in a coal refinery'' system having the flexibility to optimize products based on market demand. Task 2 of the four-task development sequence primarily covered bench-scale testing on a 10-gram thermogravimetric analyzer (TGA) and a 1 to 4-lb/hr continuous fluidized-bed reactor (CFBR). Tests were performed to determine product yields and qualities for the two major test coals-one a high-sulfur bituminous coal from the Illinois Basin (Indiana No. 3) and the other a low-sulfur subbituminous coal from the Powder River Basin (Wyodak). Results from Task 3, on product upgrading tests performed by AMAX Research and Development (R D), are also reported. Task 4 included the construction, operation of a Process Research Unit (PRU), and the upgrading of the products. An economic evaluation of a commercial facility was made, based on the data produced in the PRU, CFBR, and the physical cleaning steps.

Ness, R.O. Jr.; Runge, B.; Sharp, L.

1992-11-01T23:59:59.000Z

245

Evaluation of operating characteristics for a chabazite zeolite system for treatment of process wastewater at Oak Ridge National Laboratory  

Science Conference Proceedings (OSTI)

Laboratory and pilot-scale testing were performed for development and design of a chabazite zeolite ion-exchange system to replace existing treatment systems at the Process Waste Treatment Plant (PWTP) at Oak Ridge National Laboratory (ORNL). The process wastewater treatment systems at ORNL need upgrading to improve efficiency, reduce waste generation, and remove greater quantities of contaminants from the wastewater. Previous study indicated that replacement of the existing PWTP systems with an ion-exchange system using chabazite zeolite will satisfy these upgrade objectives. Pilot-scale testing of the zeolite system was performed using a commercially available ion-exchange system to evaluate physical operating characteristics and to validate smaller-scale column test results. Results of this test program indicate that (1) spent zeolite can be sluiced easily and completely from a commercially designed vessel, (2) clarification followed by granular anthracite prefilters is adequate pretreatment for the zeolite system, and (3) the length of the mass transfer zone was comparable with that obtained in smaller-scale column tests. Laboratory studies were performed to determine the loading capacity of the zeolite for selected heavy metals. These test results indicated fairly effective removal of silver, cadmium, copper, mercury, nickel, lead, and zinc from simple water solutions. Heavy-metals data collected during pilot-scale testing of actual wastewater indicated marginal removal of iron, copper, and zinc. Reduced effectiveness for other heavy metals during pilot testing can be attributed to the presence of interfering cations and the relatively short zeolite/wastewater contact time. Flocculating agents (polyelectrolytes) were tested for pretreatment of wastewater prior to the zeolite flow-through column system. Several commercially available polyelectrolytes were effective in flocculation and settling of suspended solids in process wastewater.

Kent, T.E.; Perona, J.J.; Jennings, H.L.; Lucero, A.J.; Taylor, P.A.

1998-02-01T23:59:59.000Z

246

Process Deviation  

NLE Websites -- All DOE Office Websites (Extended Search)

4 Course Evaluation and Close-out Process 10_0630 Page 1 of 5 4 Course Evaluation and Close-out Process 10_0630 Page 1 of 5 EOTA - Business Process Document Title: Course Evaluation and Close-out Process Document Number: ISDP-014 Rev. 10_0630 Document Owner: Vickie Pleau Backup Owner: Melissa Otero Approver(s): Melissa Otero Parent Document: ISDP-002, Training Production Process Notify of Changes: ISD, ITT, MGT Referenced Document(s): ISDF-011, ISD History File Acceptance, ISDF-012, ISD History File Checklist ISDP-014 Course Evaluation and Close-out Process 10_0630 Page 2 of 5 Revision History: Rev. Description of Change 10_0630 Initial Release ISDP-014 Course Evaluation and Close-out Process 10_0630 Page 3 of 5 I. Purpose To effectively plan and control the process for evaluating and finalizing EOTA ILT, EX and WBT training products, assuring

247

Technical Conference on the Criteria for Designation of NIETCs: On-Site Final Attendee List  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ON-SITE FINAL ATTENDEE LIST ON-SITE FINAL ATTENDEE LIST Poonum Agrawal U.S. Department of Energy Email: poonum.agrawal@hq.doe.gov Parveen Baig Iowa Utilities Board Email: parveen.baig@iub.state.ia.us Derek Bandera Reliant Energy, Inc. Email: dbandera@reliant.com Diane Barney New York Dept. of Public Service Email: diane_barney@dps.state.ny.us Joel Bearden Cargill Power Markets, LLC Email: joel_bearden@cargill.com Michael Bednarz US Department of Energy - Midwest Regional Office Email: michael.bednarz@ee.doe.gov Mark Bennett Electric Power Supply Association Email: mbennett@epsa.org Bradley Bentley Sempra Energy Utility Email: bbentley@semprautilities.com Heather Bergman The Keystone Center Email: hbergman@keystone.org Ricky Bittle Arkansas Electric Cooperative

248

Residential Energy Management system for optimization of on-site generation  

NLE Websites -- All DOE Office Websites (Extended Search)

Residential Energy Management system for optimization of on-site generation Residential Energy Management system for optimization of on-site generation with HVAC Speaker(s): Ram Narayanamurthy Date: October 29, 2009 - 12:00pm Location: 90-3122 As the individual movements towards Net Zero Energy Homes (NZEH) and the SmartGrid converge on residential buildings, three major challenges need to be addressed: Flatten the highly peaked electric load profile of low energy homes Provide easy integration of energy efficiency into existing homes Provide builders and consumers with visibility into building operation, and ease of management. A Home Energy Management System (HEMS) owned by the consumer, capable of two way communications with Utility DR/SmartGrid/AMI is required to resolve these challenges. The HEMS will need to increase energy efficiency of building operations, provide consumers feedback and

249

Model Based Structural Evaluation & Design of Overpack Container for Bag-Buster Processing of TRU Waste Drums  

Science Conference Proceedings (OSTI)

This paper describes a materials and computational model based analysis utilized to design an engineered “overpack” container capable of maintaining structural integrity for confinement of transuranic wastes undergoing the cryo-vacuum stress based “Bag-Buster” process and satisfying DOT 7A waste package requirements. The engineered overpack is a key component of the “Ultra-BagBuster” process/system being commercially developed by UltraTech International for potential DOE applications to non-intrusively breach inner confinement layers (poly bags/packaging) within transuranic (TRU) waste drums. This system provides a lower cost/risk approach to mitigate hydrogen gas concentration buildup limitations on transport of high alpha activity organic transuranic wastes. Four evolving overpack design configurations and two materials (low carbon steel and 300 series stainless) were considered and evaluated using non-linear finite element model analyses of structural response. Properties comparisons show that 300-series stainless is required to provide assurance of ductility and structural integrity at both room and cryogenic temperatures. The overpack designs were analyzed for five accidental drop impact orientations onto an unyielding surface (dropped flat on bottom, bottom corner, side, top corner, and top). The first three design configurations failed the bottom and top corner drop orientations (flat bottom, top, and side plates breached or underwent material failure). The fourth design utilized a protruding rim-ring (skirt) below the overpack’s bottom plate and above the overpack’s lid plate to absorb much of the impact energy and maintained structural integrity under all accidental drop loads at both room and cryogenic temperature conditions. Selected drop testing of the final design will be required to confirm design performance.

D. T. Clark; A. S. Siahpush; G. L. Anderson

2004-07-01T23:59:59.000Z

250

Optimal selection of on-site generation with combined heat andpower applications  

SciTech Connect

While demand for electricity continues to grow, expansion of the traditional electricity supply system, or macrogrid, is constrained and is unlikely to keep pace with the growing thirst western economies have for electricity. Furthermore, no compelling case has been made that perpetual improvement in the overall power quality and reliability (PQR)delivered is technically possible or economically desirable. An alternative path to providing high PQR for sensitive loads would generate close to them in microgrids, such as the Consortium for Electricity Reliability Technology Solutions (CERTS) Microgrid. Distributed generation would alleviate the pressure for endless improvement in macrogrid PQR and might allow the establishment of a sounder economically based level of universal grid service. Energy conversion from available fuels to electricity close to loads can also provide combined heat and power (CHP) opportunities that can significantly improve the economics of small-scale on-site power generation, especially in hot climates when the waste heat serves absorption cycle cooling equipment that displaces expensive on-peak electricity. An optimization model, the Distributed Energy Resources Customer Adoption Model (DER-CAM), developed at Berkeley Lab identifies the energy bill minimizing combination of on-site generation and heat recovery equipment for sites, given their electricity and heat requirements, the tariffs they face, and a menu of available equipment. DER-CAM is used to conduct a systemic energy analysis of a southern California naval base building and demonstrates atypical current economic on-site power opportunity. Results achieve cost reductions of about 15 percent with DER, depending on the tariff.Furthermore, almost all of the energy is provided on-site, indicating that modest cost savings can be achieved when the microgrid is free to select distributed generation and heat recovery equipment in order to minimize its over all costs.

Siddiqui, Afzal S.; Marnay, Chris; Bailey, Owen; HamachiLaCommare, Kristina

2004-11-30T23:59:59.000Z

251

Evaluation of BOC'S Lotox Process for the Oxidation of Elemental Mercury in Flue Gas from a Coal-Fired Boiler  

SciTech Connect

Linde's Low Temperature Oxidation (LoTOx{trademark}) process has been demonstrated successfully to remove more than 90% of the NOx emitted from coal-fired boilers. Preliminary findings have shown that the LoTOx{trademark} process can be as effective for mercury emissions control as well. In the LoTOx{trademark} system, ozone is injected into a reaction duct, where NO and NO{sub 2} in the flue gas are selectively oxidized at relatively low temperatures and converted to higher nitrogen oxides, which are highly water soluble. Elemental mercury in the flue gas also reacts with ozone to form oxidized mercury, which unlike elemental mercury is water-soluble. Nitrogen oxides and oxidized mercury in the reaction duct and residual ozone, if any, are effectively removed in a wet scrubber. Thus, LoTOx{trademark} appears to be a viable technology for multi-pollutant emission control. To prove the feasibility of mercury oxidation with ozone in support of marketing LoTOx{trademark} for multi-pollutant emission control, Linde has performed a series of bench-scale tests with simulated flue gas streams. However, in order to enable Linde to evaluate the performance of the process with a flue gas stream that is more representative of a coal-fired boiler; one of Linde's bench-scale LoTOx{trademark} units was installed at WRI's combustion test facility (CTF), where a slipstream of flue gas from the CTF was treated. The degree of mercury and NOx oxidation taking place in the LoTOx{trademark} unit was quantified as a function of ozone injection rates, reactor temperatures, residence time, and ranks of coals. The overall conclusions from these tests are: (1) over 80% reduction in elemental mercury and over 90% reduction of NOx can be achieved with an O{sub 3}/NO{sub X} molar ratio of less than two, (2) in most of the cases, a lower reactor temperature is preferred over a higher temperature due to ozone dissociation, however, the combination of both low residence time and high temperature proved to be effective in the oxidation of both NOx and elemental mercury, and (3) higher residence time, lower temperature, and higher molar ratio of O{sub 3}/NOx contributed to the highest elemental mercury and NOx reductions.

Khalid Omar

2008-04-30T23:59:59.000Z

252

The Implications of Carbon Taxation on Microgrid Adoption of Small-Scale On-Site Power Generation Using  

E-Print Network (OSTI)

LBNL-49309 The Implications of Carbon Taxation on Microgrid Adoption of Small-Scale On-Site Power .................................................................................................................1 1.1 Microgrid Concept

253

Evaluating the efficiency of municipalities in collecting and processing municipal solid waste: A shared input DEA-model  

SciTech Connect

Highlights: Black-Right-Pointing-Pointer Complexity in local waste management calls for more in depth efficiency analysis. Black-Right-Pointing-Pointer Shared-input Data Envelopment Analysis can provide solution. Black-Right-Pointing-Pointer Considerable room for the Flemish municipalities to improve their cost efficiency. - Abstract: This paper proposed an adjusted 'shared-input' version of the popular efficiency measurement technique Data Envelopment Analysis (DEA) that enables evaluating municipality waste collection and processing performances in settings in which one input (waste costs) is shared among treatment efforts of multiple municipal solid waste fractions. The main advantage of this version of DEA is that it not only provides an estimate of the municipalities overall cost efficiency but also estimates of the municipalities' cost efficiency in the treatment of the different fractions of municipal solid waste (MSW). To illustrate the practical usefulness of the shared input DEA-model, we apply the model to data on 293 municipalities in Flanders, Belgium, for the year 2008.

Rogge, Nicky, E-mail: Nicky.Rogge@hubrussel.be [Hogeschool-Universiteit Brussel (HUBrussel), Center for Business Management Research (CBMR), Warmoesberg 26, 1000 Brussels (Belgium); Katholieke Universiteit Leuven (KULeuven), Faculty of Business and Economics, Naamsestraat 69, 3000 Leuven (Belgium); De Jaeger, Simon [Katholieke Universiteit Leuven (KULeuven), Faculty of Business and Economics, Naamsestraat 69, 3000 Leuven (Belgium); Hogeschool-Universiteit Brussel (HUBrussel), Center for Economics and Corporate Sustainability (CEDON), Warmoesberg 26, 1000 Brussels (Belgium)

2012-10-15T23:59:59.000Z

254

Microchannel Reactor System Design & Demonstration For On-Site H2O2 Production by Controlled H2/O2 Reaction  

Science Conference Proceedings (OSTI)

We successfully demonstrated an innovative hydrogen peroxide (H2O2) production concept which involved the development of flame- and explosion-resistant microchannel reactor system for energy efficient, cost-saving, on-site H2O2 production. We designed, fabricated, evaluated, and optimized a laboratory-scale microchannel reactor system for controlled direct combination of H2 and O2 in all proportions including explosive regime, at a low pressure and a low temperature to produce about 1.5 wt% H2O2 as proposed. In the second phase of the program, as a prelude to full-scale commercialization, we demonstrated our H2O2 production approach by ‘numbering up’ the channels in a multi-channel microreactor-based pilot plant to produce 1 kg/h of H2O2 at 1.5 wt% as demanded by end-users of the developed technology. To our knowledge, we are the first group to accomplish this significant milestone. We identified the reaction pathways that comprise the process, and implemented rigorous mechanistic kinetic studies to obtain the kinetics of the three main dominant reactions. We are not aware of any such comprehensive kinetic studies for the direct combination process, either in a microreactor or any other reactor system. We showed that the mass transfer parameter in our microreactor system is several orders of magnitude higher than what obtains in the macroreactor, attesting to the superior performance of microreactor. A one-dimensional reactor model incorporating the kinetics information enabled us to clarify certain important aspects of the chemistry of the direct combination process as detailed in section 5 of this report. Also, through mathematical modeling and simulation using sophisticated and robust commercial software packages, we were able to elucidate the hydrodynamics of the complex multiphase flows that take place in the microchannel. In conjunction with the kinetics information, we were able to validate the experimental data. If fully implemented across the whole industry as a result of our technology demonstration, our production concept is expected to save >5 trillion Btu/year of steam usage and >3 trillion Btu/year in electric power consumption. Our analysis also indicates >50 % reduction in waste disposal cost and ~10% reduction in feedstock energy. These savings translate to ~30% reduction in overall production and transportation costs for the $1B annual H2O2 market.

Adeniyi Lawal

2008-12-09T23:59:59.000Z

255

An evaluation of hydrologic, geotechnical, and chemical behavior of processed oil shale solid waste 2; The use of time domain reflectometry (TDR) for monitoring in-situ volumetric water content in processed oil shale  

Science Conference Proceedings (OSTI)

This paper describes the use of time domain reflectometry (TDR) for monitoring volumetric water contents in processed oil shale solid waste. TDR measures soil water content via a correlation between the dielectric constant (K) of the 3 phase (soil-water-air) system and the volumetric water content ({theta}{sub v}). An extensive bench top research program has been conducted to evaluate and verify the use of this technique in processed oil shale solid waste. This study utilizes columns of processed oil shale packed to known densities and varying water contents and compares the columetric water content measured via TDR and the volumetric water content measured through gravimetric determination.

Reeves, T.L.; Elgezawi, S.M. (Wyoming Univ., Laramie, WY (USA). Dept. of Civil Engineering); Kaser, T.G. (GIGO Computer and Electronic, Laramie, WY (US))

1989-01-01T23:59:59.000Z

256

Analysis and evaluation in the production process and equipment area of the low-cost solar array project  

DOE Green Energy (OSTI)

The energy consumed in manufacturing silicon solar cell modules was calculated for the current process, as well as for 1982 and 1986 projected processes. In addition, energy payback times for the above three sequences are shown. The module manufacturing energy was partitioned two ways. In one way, the silicon reduction, silicon purification, sheet formation, cell fabrication, and encapsulation energies were found. In addition, the facility, equipment, processing matrial, and direct material lost-in-process energies were appropriated in junction formation processes and full module manufacturing sequences. A brief methodology accounting for the energy of silicon wafers lost-in-processing during cell manufacturing is described.

Goldman, H.; Wolf, M.

1979-08-01T23:59:59.000Z

257

A business case for on-site generation: The BD biosciences pharmingen project  

SciTech Connect

Deregulation is haltingly changing the United States electricity markets. The resulting uncertainty and/or rising energy costs can be hedged by generating electricity on-site and other benefits, such as use of otherwise wasted heat, can be captured. The Public Utility Regulatory Policy Act (PURPA) of 1978 first invited relatively small-scale generators ({ge} 1 MW) into the electricity market. The advent of efficient and reliable small scale and renewable equipment has spurred an industry that has, in recent years, made even smaller (business scale) electricity generation an economically viable option for some consumers. On-site energy capture and/or conversion, known as distributed energy resources (DER), offers consumers many benefits, such as economic savings and price predictability, improved reliability, control over power quality, and emissions reductions. Despite these benefits, DER adoption can be a daunting move to a customer accustomed to simply paying a monthly utility bill. San Diego is in many ways an attractive location for DER development: It has high electricity prices typical of California and a moderate climate i.e. energy loads are consistent throughout the year. Additionally, the price shock to San Diego Gas and Electric (SDG&E) customers during the summer of 2000 has interested many in alternatives to electricity price vulnerability. This report examines the business case for DER at the San Diego biotechnology supply company, BD Biosciences Pharmingen, which considered DER for a building with 200-300 kW base-load, much of which accommodates the refrigerators required to maintain chemicals. Because of the Mediterranean climate of the San Diego area and the high rate of air changes required due to on-site use of chemicals, modest space heating is required throughout the year. Employees work in the building during normal weekday business hours, and daily peak loads are typically about 500 kW.

Firestone, Ryan; Creighton, Charles; Bailey, Owen; Marnay, Chris; Stadler, Michael

2003-09-01T23:59:59.000Z

258

Guide to Purchasing Green Power: Renewable Electricity, Renewable Energy Certificates, and On-Site Renewable Generation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Purchasing Green Power Renewable Electricity, Renewable Energy Certificates, and On-Site Renewable Generation DOE/EE-0307 This guide can be downloaded from: www1.eere.energy.gov/femp/technologies/renewable_purchasingpower.html www.epa.gov/greenpower/ www.wri.org/publications www.resource-solutions.org/publications.php Office of Air (6202J) EPA430-K-04-015 www.epa.gov/greenpower March 2010 ISBN: 1-56973-577-8 Guide to Purchasing Green Power i Table of Contents Summary ........................................................................................................................................................1 Chapter 1: Introduction ....................................................................................................................................2

259

On-site demonstration procedure for solid-state fluorescent ballast  

SciTech Connect

The report was presented to plant engineers and managers who were involved in an on-site demonstration of EETech solid-state ballasts for two 40-watt T12 fluorescent lamps. The report includes a brief review of the operating principles of solid-state fluorescent ballasts and the status of development achieved during the LBL program. The remainder of the test describes the techniques of managing and instrumenting a test area for assessing the performance of solid-state fluorescent ballasts at an occupied site.

Verderber, R.; Morse, O.

1980-09-01T23:59:59.000Z

260

Evaluation of the Natick enzymatic hydrolysis process for use in the production of ethanol from municipal solid waste or from wood. Final report  

DOE Green Energy (OSTI)

Economic evaluation of a conceptual, large-scale, commercial ethanol production facility using the enzymatic hydrolysis technology are presented. Designs and cost estimates for the mechanical processing and the ethanol fermentation and recovery are included. Production of ethanol from both wood and solid wastes is covered. (MHR)

Jones, J. L.; Fong, W. S.; Chatterjee, A. K.

1979-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "on-site evaluation process" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Lifetime Evaluation of Elastomeric Polymers for Storage of Nuclear ...  

Science Conference Proceedings (OSTI)

Presentation Title, Lifetime Evaluation of Elastomeric Polymers for Storage of Nuclear Materials. Author(s), Elizabeth Hoffman, Eric Skidmore. On-Site Speaker  ...

262

Processing and Mechanical Properties of Ti foams - Programmaster ...  

Science Conference Proceedings (OSTI)

Presentation Title, Processing and Mechanical Properties of Ti foams. Author(s), Faming Zhang, Eileen Otterstein, Eberhard Burkel. On-Site Speaker (Planned) ...

263

Customer adoption of small-scale on-site power generation  

Science Conference Proceedings (OSTI)

The electricity supply system is undergoing major regulatory and technological change with significant implications for the way in which the sector will operate (including its patterns of carbon emissions) and for the policies required to ensure socially and environmentally desirable outcomes. One such change stems from the rapid emergence of viable small-scale (i.e., smaller than 500 kW) generators that are potentially competitive with grid delivered electricity, especially in combined heat and power configurations. Such distributed energy resources (DER) may be grouped together with loads in microgrids. These clusters could operate semi-autonomously from the established power system, or macrogrid, matching power quality and reliability more closely to local end-use requirements. In order to establish a capability for analyzing the effect that microgrids may have on typical commercial customers, such as office buildings, restaurants, shopping malls, and grocery stores, an economic mod el of DER adoption is being developed at Berkeley Lab. This model endeavors to indicate the optimal quantity and type of small on-site generation technologies that customers could employ given their electricity requirements. For various regulatory schemes and general economic conditions, this analysis produces a simple operating schedule for any installed generators. Early results suggest that many commercial customers can benefit economically from on-site generation, even without considering potential combined heat and power and reliability benefits, even though they are unlikely to disconnect from the established power system.

Siddiqui, Afzal S.; Marnay, Chris; Hamachi, Kristina S.; Rubio, F. Javier

2001-04-01T23:59:59.000Z

264

Evaluation of selected chemical processes for production of low-cost silicon. Second quarterly progress report, December 15, 1975--March 31, 1976  

SciTech Connect

Plant construction costs and manufacturing costs have been estimated for the production of solar-grade silicon by the reduction of silicon tetrachloride in a fluidized bed of seed particles, and several modifications of the iodide process using either thermal decomposition on heated filaments (rods) or hydrogen reduction in a fluidized bed of seed particles. The objective was to evaluate the economics of the zinc reduction process and to determine whether any of the potential economies in the modifications of the iodide process would make it competitive in spite of the high relative cost of recycled iodine in the process intermediate. The estimated cost of the zinc reduction process, $9.12 kg/sup -1/ silicon is within the target of $10.00 kg/sup -1/; however, none of the modifications of the iodide processes yielded costs below $20 kg/sup -1/ Si. Although optimization of one of the iodide process modifications should bring the cost to below $20 kg/sup -1/ Si, it would not be possible to reduce the cost to below that of the zinc reduction product. Energy consumption data for the zinc reduction process and each of the iodide process options are given and all appear to be acceptable from the standpoint of energy pay back. Information is presented on the experimental zinc reduction of SiCl/sub 4/ and electrolytic recovery of zinc from ZnCl/sub 2/. All of the experimental work performed thus far has supported the initial assumption as to technical feasibility of producing semiconductor silicon by the zinc reduction or iodide processes proposed. The results of a more thorough thermodynamic evaluation of the iodination of silicon oxide/carbon mixtures are presented which explain apparent inconsistencies in an earlier cursory examination of the system.

Blocher, J.M.; Jr.; Browning, M.F.; Wilson, W.J.; Carmichael, D.C.

1976-04-08T23:59:59.000Z

265

Program Evaluation  

NLE Websites -- All DOE Office Websites (Extended Search)

Evaluation: Background and Methods Evaluation: Background and Methods Definition of evaluation: the process of determining the worth or merit of something; if "something" is a program, then it's "program evaluation." Other types of evaluation include: product evaluation (most widely practiced, e.g., Consumer Reports); personnel evaluation; research evaluation; policy studies; art, movie, play, and book reviews. Program evaluation is NOT the same as research although they share many characteristics--Both: Start with questions Use similar methods Provide similar information Program evaluation focuses on decisions. Research focuses on answering questions about phenomena to discover new knowledge and test theories/hypotheses. Research is aimed at truth. Evaluation is aimed at

266

Feasibility study to evaluate plasma quench process for natural gas conversion applications. [Quarterly report], July 1, 1993--September 30, 1993  

SciTech Connect

The objective of this work was to conduct a feasibility study on a new process, called the plasma quench process, for the conversion of methane to acetylene. FY-1993 efforts were focused on determining the economic viability of this process using bench scale experimental data which was previously generated. This report presents the economic analysis and conclusions of the analysis. Future research directions are briefly described.

Thomas, C.P.; Kong, P.C.; Detering, B.A.

1993-12-31T23:59:59.000Z

267

Corrective Actions Process  

NLE Websites -- All DOE Office Websites (Extended Search)

Stewardship Environmental Cleanup Corrective Actions Corrective Actions Process The general process for evaluating and remediating potential release sites is called...

268

Recommended Changes to Guidelines for Operating an Interim On-Site Low Level Radioactive Waste Storage Facility - For NRC Review  

Science Conference Proceedings (OSTI)

The majority of commercial U.S. nuclear stations have constructed on-site low-level waste (LLW) storage facilities, and most of these same utilities are experiencing or have experienced at least one period of interim on-site storage. EPRI has issued two revisions of Guidelines for Operating an Interim On-Site Low Level Radioactive Waste Storage Facility. Revision 1 of these Guidelines focused on operational considerations and incorporated many of the lessons learned while operating various types of LLW s...

2011-12-19T23:59:59.000Z

269

Evaluation of selected chemical processes for production of low-cost silicon. First quarterly progress report, October 9--December 15, 1975  

DOE Green Energy (OSTI)

The objective of this program is to evaluate, in the light of the latest available information and modern technology, the prospect for low cost solar silicon production by two processes which have yielded semiconductor-grade silicon commercially in the past, but whose development was curtailed by unfavorable market conditions in the early semiconductor industry. These processes are (1) zinc reduction of silicon tetrachloride and (2) thermal dissociation (or hydrogen reduction) of silicon tetraiodide. This report includes analyses of available thermodynamic data on both processes and predictions of equilibrium product yields over accessible ranges of process conditions. A parallel program of experimental work has been carried out to test the thermodynamic predictions and to evaluate process operability at several critical points. Preliminary results indicate that acceptable process yields and product structure can be obtained by zinc reduction of silicon tetrachloride in a fluidized-bed of seed particles when the zinc is fed to the bed as a vapor. Preliminary experimental results on the iodination of silicon dioxide/carbon mixtures confirm the thermodynamic predictions that temperatures in excess of 1400 C will produce potentially acceptable yields of silicon tetraiodide. (auth)

Blocher, J.M. Jr.; Browning, M.F.; Wilson, W.J.; Carmichael, D.C.

1976-01-08T23:59:59.000Z

270

Incorporating livability benefits into the Federal Transit Administration New Starts project evaluation process through accessibility-based modeling  

E-Print Network (OSTI)

The Department of Transportation's announcement of the "Livability initiative" for major transit projects in January 2010 has prompted the Federal Transit Administration (FTA) to reassess the criteria used in the evaluation ...

Ducas, Caroline R. (Caroline Rose)

2011-01-01T23:59:59.000Z

271

SM CMM Model to Evaluate and Improve the Quality of Software Maintenance Process: Overview of the model  

E-Print Network (OSTI)

technology transfer to the industry at large. The inadequate share of management attention that The software maintenance function suffers from a scarcity of management models that would facilitate its evaluation, management and continuous improvement. This paper presents a revised version of a maintenance-specific evaluation model: Software Maintenance Capability Maturity Model (SM CMM). This model adopts a similar structure and should be used as a complement to the CMMi © 1 (Capability

Alain April; Alain Abran; Reiner R. Dumke; Carnegie Mellon

2004-01-01T23:59:59.000Z

272

Feasibility studies on the use of TRUPACT-1 for on-site transportation of DOE LLW  

SciTech Connect

In this paper the authors propose using TRUPACT-I, with modifications to its storage system, to facilitate on-site transportation of US Department of Energy (DOE) low-level waste (LLW). TRUPACT-I was designed as a type-B contact-handled transuranic (CH-TRU) waste transportation system for use in Waste Isolation Pilot Plant-related operations and was subjected to the required type-B container accident tests, which it successfully passed. Thus, from a safety standpoint, TRUPACT-1 is provided with double containment, impact limitation, and fire-retardant capabilities. Furthermore, because TRUPACT-1 was developed to transport CH-TRU waste, which is characterized by a higher total activity, larger decay heat, and higher dose rate than LLW, it would be overqualified for the requirements of LLW transportation.

Hills, C.R.; Banjac, V.; Heger, A.S. (Univ. of New Mexico, Albuquerque (United States))

1993-01-01T23:59:59.000Z

273

Fractional domain walls from on-site softening in dipolar bosons  

E-Print Network (OSTI)

We study dipolar bosons in a 1D optical lattice and identify a region in parameter space---strong coupling but relatively weak on-site repulsion---hosting a series of stable charge-density-wave (CDW) states whose low-energy excitations, built from "fractional domain walls," have remarkable similarities to those of non-Abelian fractional quantum Hall states. Here, a conventional domain wall between translated CDW's may be split by inserting strings of degenerate, but inequivalent, CDW states. Outside these insulating regions, we find numerous supersolids as well as a superfluid regime. The mentioned phases should be accessible experimentally and, in particular, the fractional domain walls can be created in the ground state using single-site addressing, i.e., by locally changing the chemical potential.

Emma Wikberg; Jonas Larson; Emil J. Bergholtz; Anders Karlhede

2011-09-15T23:59:59.000Z

274

Evaluation of high-efficiency gas-liquid contactors for natural gas processing. Second semiannual technical progress report, April 1, 1993--September 30, 1993  

SciTech Connect

The objective of this proposed program is to evaluate the potential of rotating gas-liquid contactors for natural gas processing by expanding the currently available database. This expansion will focus on application of this technology to environments representative of those typically encountered in natural gas processing plants. Operational and reliability concerns will be addressed while generating pertinent engineering data relating to the mass-transfer process. Work to be performed this reporting period are: complete all negotiations and processing of agreements; complete assembly, modifications, shakedown, and conduct fluid dynamic studies using the plastic rotary contactor unit; confirmation of project test matrix; and locate, and transport an amine plant and dehydration plant. Accomplishment for this period are presented.

Not Available

1993-12-01T23:59:59.000Z

275

Evaluation of an alkaline-side solvent extraction process for cesium removal from SRS tank waste using laboratory-scale centrifugal contactors  

Science Conference Proceedings (OSTI)

An alkaline-side solvent extraction process for cesium removal from Savannah River Site (SRS) tank waste was evaluated experimentally using a laboratory-scale centrifugal contactor. Single-stage and multistage tests were conducted with this contactor to determine hydraulic performance, stage efficiency, and general operability of the process flowsheet. The results and conclusions of these tests are reported along with those from various supporting tests. Also discussed is the ability to scale-up from laboratory- to plant-scale operation when centrifugal contractors are used to carry out the solvent extraction process. While some problems were encountered, a promising solution for each problem has been identified. Overall, this alkaline-side cesium extraction process appears to be an excellent candidate for removing cesium from SRS tank waste.

Leonard, R. A.; Conner, C.; Liberatore, M. W.; Sedlet, J.; Aase, S. B.; Vandegrift, G. F.

1999-11-29T23:59:59.000Z

276

An Integrated Approach to Evaluating the Technical and Commercial Options for Cogeneration Facilities in the Process Industry  

E-Print Network (OSTI)

Cogeneration under the PURPA law is providing opportunity to the Process Industry not only to conserve fuel and electric costs associated with commercial process production, but effectively to share in the revenue from the sale of consumer power. The law permits release of fuel energy significantly in excess of that required for the process, expressly for the production of export electric power, with only a small required fraction contributing to sequential production of useful heat. The low required thermal energy fraction ostensibly allows systems which are hardly integrated at all with the processes involved, subject to evolving agency/legal interpretations. However, greater degrees of process/power system integration can produce increased conservation, not only of energy but of financial resources. This paper describes an integrated approach wherein technical and economic criteria are applied to size and select candidate cogeneration systems. The approach is integrated with regard to technical, economic and financial considerations, as well as to the determination of the appropriate degree of thermal integration of the power and process subsystems. An overview of steam and gas turbine cycle options for process/power integration typical of the refinery, olefins, and other industry complexes is presented. The cycles described include hot gas and steam heat recovery, going beyond the currently popular gas-turbine/ heat-recovery-steam-generator combination.

Cooke, D. H.; McCue, R. H.

1985-05-01T23:59:59.000Z

277

Soils Project Risk-Based Corrective Action Evaluation Process with ROTC 1 and ROTC 2, Revision 0  

SciTech Connect

This document formally defines and clarifies the NDEP-approved process the NNSA/NSO Soils Activity uses to fulfill the requirements of the FFACO and state regulations. This process is used to establish FALs in accordance with the risk-based corrective action (RBCA) process stipulated in Chapter 445 of the Nevada Administrative Code (NAC) as described in the ASTM International (ASTM) Method E1739-95 (NAC, 2008; ASTM, 1995). It is designed to provide a set of consistent standards for chemical and radiological corrective actions.

Matthews, Patrick; Sloop, Christina

2012-04-01T23:59:59.000Z

278

EA-1292: On-site Treatment of Low Level Mixed Waste, Golden, Colorado  

Energy.gov (U.S. Department of Energy (DOE))

This EA evaluates the environmental impacts for the proposal to evaluate the proposed treatment of low level mixed waste at the U.S. Department of Energy's Rocky Flats Environmental Technology Site.

279

Criticality safety evaluation report for the cold vacuum drying facility's process water handling system  

SciTech Connect

This report addresses the criticality concerns associated with process water handling in the Cold Vacuum Drying Facility. The controls and limitations on equipment design and operations to control potential criticality occurrences are identified.

NELSON, J.V.

1999-05-12T23:59:59.000Z

280

Development of an advanced continuous mild gasification process for the production of coproducts: Task 4. 6, Technical and economic evaluation  

DOE Green Energy (OSTI)

Morgantown Energy Technology Center (METC) of DOE has sponsored, and continues to sponsor, programs for the development of technology and market strategies which will lead to the commercialization of processes for the production of coproducts from mild gasification of coal. It has been recognized by DOE and industry that mild gasification is a promising technology with potential to economically convert coal into marketable products, thereby increasing domestic coal utilization. In this process, coal is devolatilized under non- oxidizing conditions at mild temperature (900--1100{degrees}F) and pressure (1--15psig). Condensation of the vapor will yield a liquid product that can be upgraded to a petroleum substitute, and the remaining gas can provide the fuel for the process. The residual char can be burned in a power plant. Thus, in a long-term national scenario, implementation of this process will result in significant decrease of imported oil and increase in coal utilization.

Hogsett, R.F.; Jha, M.C.

1991-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "on-site evaluation process" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Evaluation of the freeze-thaw/evaporation process for the treatment of produced waters. Quarterly technical progress report, July 1--September 30, 1995  

Science Conference Proceedings (OSTI)

The use of freeze-crystallization is being increasingly acknowledged as a low-cost, energy-efficient method for purifying contaminated water. The natural freezing process can be coupled with natural evaporative processes to treat oil and gas produced waters year round in regions where sub-freezing temperatures seasonally occur. The objectives of this research are related to development of a commercially-economic natural freeze-thaw/evaporation (FTE) process for the treatment and purification of water produced in conjunction with oil and gas. Research efforts this quarter were: to complete the required annual reports; to continue work to finalize the draft of the Task 1 and Task 2 Report; and to obtain site information and design a 200 bbl/day FTE demonstration plant to operate in the San Juan Basin of New Mexico. Specific objectives of the whole project are to: develop an economic model for determining the commercial viability, economically significant parameters, and research issues of the FTE process; conduct laboratory-scale process simulations to optimize the design of the FTE process; and to evaluate on-location treatment of water from a producing well to demonstrate the technical and economic viability of the FTE process.

Boysen, J.; Morotti, J.

1995-10-01T23:59:59.000Z

282

Development of improved processing and evaluation methods for high reliability structural ceramics for advanced heat engine applications Phase II. Final report  

SciTech Connect

The research program had as goals the development and demonstration of significant improvements in processing methods, process controls, and nondestructive evaluation (NDE) which can be commercially implemented to produce high reliability silicon nitride components for advanced heat engine applications at temperatures to 1370{degrees}C. In Phase I of the program a process was developed that resulted in a silicon nitride - 4 w% yttria HIP`ed material (NCX 5102) that displayed unprecedented strength and reliability. An average tensile strength of 1 GPa and a strength distribution following a 3-parameter Weibull distribution were demonstrated by testing several hundred buttonhead tensile specimens. The Phase II program focused on the development of methodology for colloidal consolidation producing green microstructure which minimizes downstream process problems such as drying, shrinkage, cracking, and part distortion during densification. Furthermore, the program focused on the extension of the process to gas pressure sinterable (GPS) compositions. Excellent results were obtained for the HIP composition processed for minimal density gradients, both with respect to room-temperature strength and high-temperature creep resistance. Complex component fabricability of this material was demonstrated by producing engine-vane prototypes. Strength data for the GPS material (NCX-5400) suggest that it ranks very high relative to other silicon nitride materials in terms of tensile/flexure strength ratio, a measure of volume quality. This high quality was derived from the closed-loop colloidal process employed in the program.

Pujari, V.J.; Tracey, D.M.; Foley, M.R. [and others

1996-02-01T23:59:59.000Z

283

Development of improved processing and evaluation methods for high reliability structural ceramics for advanced heat engine applications, Phase 1. Final report  

DOE Green Energy (OSTI)

The program goals were to develop and demonstrate significant improvements in processing methods, process controls and non-destructive evaluation (NDE) which can be commercially implemented to produce high reliability silicon nitride components for advanced heat engine applications at temperatures to 1,370{degrees}C. The program focused on a Si{sub 3}N{sub 4}-4% Y{sub 2}O{sub 3} high temperature ceramic composition and hot-isostatic-pressing as the method of densification. Stage I had as major objectives: (1) comparing injection molding and colloidal consolidation process routes, and selecting one route for subsequent optimization, (2) comparing the performance of water milled and alcohol milled powder and selecting one on the basis of performance data, and (3) adapting several NDE methods to the needs of ceramic processing. The NDE methods considered were microfocus X-ray radiography, computed tomography, ultrasonics, NMR imaging, NMR spectroscopy, fluorescent liquid dye penetrant and X-ray diffraction residual stress analysis. The colloidal consolidation process route was selected and approved as the forming technique for the remainder of the program. The material produced by the final Stage II optimized process has been given the designation NCX 5102 silicon nitride. According to plan, a large number of specimens were produced and tested during Stage III to establish a statistically robust room temperature tensile strength database for this material. Highlights of the Stage III process demonstration and resultant database are included in the main text of the report, along with a synopsis of the NCX-5102 aqueous based colloidal process. The R and D accomplishments for Stage I are discussed in Appendices 1--4, while the tensile strength-fractography database for the Stage III NCX-5102 process demonstration is provided in Appendix 5. 4 refs., 108 figs., 23 tabs.

Pujari, V.K.; Tracey, D.M.; Foley, M.R.; Paille, N.I.; Pelletier, P.J.; Sales, L.C.; Wilkens, C.A.; Yeckley, R.L. [Norton Co., Northboro, MA (United States)

1993-08-01T23:59:59.000Z

284

A multicase study for the evaluation of a pattern-based visual design process for collaborative learning  

Science Conference Proceedings (OSTI)

Collage is a pattern-based visual design authoring tool for the creation of collaborative learning scripts computationally modelled with IMS Learning Design (LD). The pattern-based visual approach aims to provide teachers with design ideas that are based ... Keywords: Authoring tool, Case study, Computer-supported collaborative learning Visual design process, Learning design, Patterns

Davinia Hernández-Leo; Ivan M. Jorrín-Abellán; Eloy D. Villasclaras-Fernández; Juan I. Asensio-Pérez; Yannis Dimitriadis

2010-12-01T23:59:59.000Z

285

Evaluation of the Low-Energy Design Process and Energy Performance of the Zion National Park Visitor Center: Preprint  

SciTech Connect

Paper discusses NREL's role in the participation of the design process of the Zion National Park Visitor Center Complex and the results documented from monitoring the energy performance of the building for several years. Paper includes PV system and Trombe wall description and lessons learned in the design, construction, and commissioning of the building.

Long, N.; Torcellini, P.; Pless, S.; Judkoff, R.

2005-10-01T23:59:59.000Z

286

H-Coal pilot plant. Topical report: evaluation of a commercial laundry process for cleaning work clothing from a synthetic-fuels facility, E and H-12  

SciTech Connect

A scientific study was undertaken by Ashland Synthetic Fuels, Inc., to evaluate the cleaning efficiency of work clothing from the H-Coal Pilot Plant by a commercial laundry facility. Laundry process conditions for cleaning clothes were determined, and procedures were developed for laboratory analysis to detect coal liquefaction heavy distillate in work clothing and laundry wastewater. Laboratory testing and longwave ultraviolet light were used to monitor for skin contamination from recycled work clothing. Laboratory studies with spiked, unwashed cloth swatches showed a heavy distillate recovery efficiency of 86%. The laundry process was found to remove 98% of heavy distillate from spiked, washed cloth swatches. Low levels of heavy distillate and three polynuclear aromatic hydrocarbons were found in laundry wastewater, recycled work shirts and uncleaned T-shirts worn in process areas. Hydrocarbon material content in wastewater can be satisfactorily treated by process wastewater treatment units at synfuels facilities. There were data to suggest that process material accumulates in recycled work shirts (outer clothing) to about three times the level in new control shirts, but this accumulation was not noted in T-shirts (underclothing). Although residual process material was found in work shirts and gloves after cleaning, skin fluorescence monitoring with ultraviolet light indicates that skin contamination from contact with recycled gloves and work shirts is not occurring.

Hill, R.H.; Tussey, L.B.

1983-01-01T23:59:59.000Z

287

Distributed Energy Resources On-Site Optimization for Commercial Buildings with Electric and Thermal Storage Technologies  

SciTech Connect

The addition of storage technologies such as flow batteries, conventional batteries, and heat storage can improve the economic as well as environmental attractiveness of on-site generation (e.g., PV, fuel cells, reciprocating engines or microturbines operating with or without CHP) and contribute to enhanced demand response. In order to examine the impact of storage technologies on demand response and carbon emissions, a microgrid's distributed energy resources (DER) adoption problem is formulated as a mixed-integer linear program that has the minimization of annual energy costs as its objective function. By implementing this approach in the General Algebraic Modeling System (GAMS), the problem is solved for a given test year at representative customer sites, such as schools and nursing homes, to obtain not only the level of technology investment, but also the optimal hourly operating schedules. This paper focuses on analysis of storage technologies in DER optimization on a building level, with example applications for commercial buildings. Preliminary analysis indicates that storage technologies respond effectively to time-varying electricity prices, i.e., by charging batteries during periods of low electricity prices and discharging them during peak hours. The results also indicate that storage technologies significantly alter the residual load profile, which can contribute to lower carbon emissions depending on the test site, its load profile, and its adopted DER technologies.

Lacommare, Kristina S H; Stadler, Michael; Aki, Hirohisa; Firestone, Ryan; Lai, Judy; Marnay, Chris; Siddiqui, Afzal

2008-05-15T23:59:59.000Z

288

Distributed Energy Resources On-Site Optimization for Commercial Buildings with Electric and Thermal Storage Technologies  

SciTech Connect

The addition of storage technologies such as flow batteries, conventional batteries, and heat storage can improve the economic as well as environmental attractiveness of on-site generation (e.g., PV, fuel cells, reciprocating engines or microturbines operating with or without CHP) and contribute to enhanced demand response. In order to examine the impact of storage technologies on demand response and carbon emissions, a microgrid's distributed energy resources (DER) adoption problem is formulated as a mixed-integer linear program that has the minimization of annual energy costs as its objective function. By implementing this approach in the General Algebraic Modeling System (GAMS), the problem is solved for a given test year at representative customer sites, such as schools and nursing homes, to obtain not only the level of technology investment, but also the optimal hourly operating schedules. This paper focuses on analysis of storage technologies in DER optimization on a building level, with example applications for commercial buildings. Preliminary analysis indicates that storage technologies respond effectively to time-varying electricity prices, i.e., by charging batteries during periods of low electricity prices and discharging them during peak hours. The results also indicate that storage technologies significantly alter the residual load profile, which can contribute to lower carbon emissions depending on the test site, its load profile, and its adopted DER technologies.

Lacommare, Kristina S H; Stadler, Michael; Aki, Hirohisa; Firestone, Ryan; Lai, Judy; Marnay, Chris; Siddiqui, Afzal

2008-05-15T23:59:59.000Z

289

Conceptual engineering design and economic evaluation of the burn-acid- leach aqueous process and of the burn-fluoride-volatility process for recovering spent Rover fuel at the Idaho Chemical Processing Plant  

SciTech Connect

Declassified 24 Sep 1973. Two detailed, conceptual process, equipment, and plant designs were prepared for facilities for recovering spent Rover fuel (highly enriched uranium-graphite) at the Idaho Chemical Processing Plart. The results of the study indicate that the fluoridevolatility process is preferred on both economic and technical grounds. Both processes employ a comnion fuel shipping, storage, and charging system and use continuous, fluidized-bed oxidation of the fuel as the first step of the head-end operation. Subsequent operations in the aqueous process include batch leaching the ash with 5 M HF--10 M HNO/sub 3/ in two parallel lines of Teflon-lined leaching and feed-preparation equipment, followed by solvent extraction to decontaminate and recover the uranium as uranyl nitrate. Post-burning operations in the fluoride-volatiiity process include the continuous fluidized-bed and moving-bed fluorination of the ash followed by partial condensation to remove niobium pentafluoride and passage of the UF/sub 6/ through heated sodium fluoride pellets to completely decontaminate the uranium. The uranium is recovered as uranium hexafluoride. (auth)

Nicholson, E.L.

1965-06-01T23:59:59.000Z

290

An Expert Elicitation Process in Support of Groundwater Model Evaluation for Frenchman Flat, Nevada National Security Site  

SciTech Connect

The U.S. Department of Energy is implementing corrective actions at facilities where nuclear-related operations were conducted in Nevada. Among the most significant sites being addressed are the locations of underground nuclear tests on the Nevada National Security Site (NNSS). The process for implementing corrective actions for the Underground Test Area (UGTA) locations is defined in Appendix VI of a Federal Facility Agreement and Consent Order (1996, as amended). In broad terms, Appendix VI describes a Corrective Action Investigation followed by a Corrective Action Decision, and implementation of a Corrective Action Plan prior to closure. The Frenchman Flat Corrective Action Unit (CAU) is farthest along in the UGTA corrective action process. It includes ten underground tests within the Frenchman Flat topographic basin, in the southeastern portion of the NNSS. Data have been collected from drilling exploration, hydrologic testing, and field and laboratory studies. Modeling has been completed at a variety of scales and focusing on a variety of flow and transport aspects ranging from regional boundary conditions to process dynamics within a single nuclear cavity. The culmination of the investigations is a transport model for the Frenchman Flat CAU (Stoller Navarro Joint Venture, 2009) that has undergone rigorous peer review and been accepted by the State of Nevada, setting the stage for the Corrective Action Decision and progression from the investigation phase to the corrective action phase of the project.

Chapman Jenny,Pohlmann Karl

2011-02-01T23:59:59.000Z

291

Coal liquefaction process streams characterization and evaluation: FT-IR methods for characterization of coal liquefaction products  

DOE Green Energy (OSTI)

This study was designed to demonstrate the use of two FTIR techniques for the analysis of direct coal liquefaction process-derived materials. The two methods were quantitative FTIR analysis and themogravimetric (TG) analysis with FTIR analysis of evolved products (TG-FTIR). The quantitative FTIR analyses of both whole resids and THF-soluble resids provided quantitation of total hydrogen, aliphatic and aromatic hydrogen, total carbon, total oxygen, hydroxyl and etheric oxygen, and ash contents. The FTIR results were usually in agreement with values derived by other, more conventional methods. However, the accuracies of specific measurements, in comparisons with results from conventional methods, ranged from good to poor. The TG-FTIR method provided approximate analyses of coals and resids. The data provided included the time dependent evolution profiles of the volatile species and the elemental composition of the char. Reproducible data of gaseous species and pyrolysis tar yields for whole resid samples larger than 10 mg were obtainable. The yields and evolution profiles of certain volatiles (tar, CO, and methane) provided structural information on the samples. There were some experimental and interpretational difficulties associated with both techniques. Optimization of the curve-resolving routine for coal-liquefaction samples would improve the quantitative FTIR accuracy. Aerosol formation limited the full application of the TG-FTIR technique with the THF-soluble resid samples. At this time, further development of these analytical methods as process development tools will be required before their use for that purpose can be recommended. The use of FTIR as an on-line analytical technique for coal liquefaction process streams requires demonstration before it can be recommended; however, such a demonstration may be warranted.

Serio, M.A.; Teng, H.; Bassilakis, R.; Solomon, P.R. [Advanced Fuel Research, Inc., East Hartford, CT (United States)

1992-04-01T23:59:59.000Z

292

ENERGY STAR Using On-site Renewable Energy as the Next Step to Improving Energy Performance and Reducing Emissions  

NLE Websites -- All DOE Office Websites (Extended Search)

ON-SITE RENEWABLE ENERGY AS THE NEXT STEP ON-SITE RENEWABLE ENERGY AS THE NEXT STEP TO IMPROVING ENERGY PERFORMANCE AND REDUCING EMISSIONS jcpenney has a corporate energy management strategy that includes using energy efficient technologies in its stores and encouraging energy conservation. As part of this strategy, the company also investigated generating electricity through on-site renewable energy. jcpenney is a partner in the U.S. Environmental Protection Agency (EPA) ENERGY STAR Commercial Buildings Program, and has been tracking building energy use since 2006 using EPA's free benchmarking tool, Portfolio Manager. Portfolio Manager provides a 1-100 energy performance score similar to a "miles-per-gallon" metric for vehicle fuel efficiency. Those buildings that achieve an ENERGY STAR score

293

Bench-scale testing and evaluation of the direct sulfur recovery process. Final report, February 1990--March 1994  

SciTech Connect

The Direct Sulfur Recovery Process (DSRP) is a two-stage catalytic reduction process for efficiently recovering up to 99% or higher amounts of elemental sulfur from SO{sub 2}-containing regeneration tail-gas produced in advanced integrated gasification combined cycle (IGCC) power systems by reacting the tail-gas with a small slipstream of coal gas. In this project, the DSRP was demonstrated with simulated gases at bench-scale with 3-in. diameter, 1-L size catalytic reactors. Fundamental kinetic and modeling studies were conducted to explain the significantly higher than thermodynamically expected sulfur recoveries in DSRP and to enable prediction of sulfur recovery in larger reactors. Technology transfer activities to promote the DSRP consisted of publications and discussions with architectural engineering firms and industrial parties especially IGCC system developers. Toward the end of the project, an agreement was signed with an IGCC system developer to scale up the DSRP and test it with actual gases in their 10-MW (thermal) coal gasification pilot-plant under a cooperative R&D agreement with the US Department of Energy.

Gangwal, S.K.; Chen, D.H.

1994-05-01T23:59:59.000Z

294

Coal liquefaction process streams characterization and evaluation. Characterization of coal liquefaction resids employing thermogravimetric analysis and electron spin resonance spectroscopy  

DOE Green Energy (OSTI)

This study demonstrated the feasibility of using temperature-programmed electron spin resonance (ESR) and thermogravimetric analysis (TGA) for the examination of tetrahydrofuran (THF)-soluble distillation resid materials derived from direct coal liquefaction. TGA is used to quantitate volatile losses in a temperature-programmed experiment. The TGA data are used to correct the free radical densities obtained by ESR as volatile material is evolved from the samples in the temperature-programmed ESR experiment. The techniques, when employed in tandem, can be used to determine the content and nature of the free radicals in the samples at temperatures approximating those used in the liquefaction process. TGA and ESR experiments were performed in flowing nitrogen and hydrogen, at ambient pressure. No significant difference was observed in the ESR spectra in the different atmospheres, except in the case of low-rank coal-derived resids. The TGA results, however, were systematically different; mass loss in an H{sub 2} atmosphere is consistently higher than that observed in an N{sub 2} atmosphere. It was shown that temperature-programmed ESR, which can pinpoint conditions at which the free radical content is the highest, has potential to be a guide for the appropriate choice of conditions for optimum resid upgrading. Further development of these combined analytical methods as process development tools appears justified based on these results.

Ibrahim, M.M.; Seehra, M.S. [West Virginia Univ., Morgantown, WV (United States). Dept. of Physics

1992-10-01T23:59:59.000Z

295

Low cost performance evaluation of passive solar buildings  

DOE Green Energy (OSTI)

An approach to low-cost instrumentation and performance evaluation of passive solar heated buildings is presented. Beginning with a statement of the need for a low-cost approach, a minimum list of measured quantities necessary to compute a set of recommended performance factors is developed. Conflicts and confusion surrounding the definition of various performance factors are discussed and suggestions are made for dealing with this situation. Available instrumentation and data processing equipment is presented. The recommended system would monitor approximately ten variables and compute numerous performance factors on site at a projected system cost of less than $3,000 per installation.

Palmiter, L.S.; Hamilton, L.B.; Holtz, M.J.

1979-10-01T23:59:59.000Z

296

Final Report on Evaluating the Representation and Impact of Convective Processes in the NCAR Community Climate System Model  

SciTech Connect

Convection and clouds affect atmospheric temperature, moisture and wind fields through the heat of condensation and evaporation and through redistributions of heat, moisture and momentum. Individual clouds have a spatial scale of less than 10 km, much smaller than the grid size of several hundred kilometers used in climate models. Therefore the effects of clouds must be approximated in terms of variables that the model can resolve. Deriving such formulations for convection and clouds has been a major challenge for the climate modeling community due to the lack of observations of cloud and microphysical properties. The objective of our DOE CCPP project is to evaluate and improve the representation of convection schemes developed by PIs in the NCAR (National Center for Atmospheric Research) Community Climate System Model (CCSM) and study its impact on global climate simulations. • The project resulted in nine peer-reviewed publications and numerous scientific presentations that directly address the CCPP’s scientific objective of improving climate models. • We developed a package of improved convection parameterization that includes improved closure, trigger condition for convection, and comprehensive treatment of convective momentum transport. • We implemented the new convection parameterization package into several versions of the NCAR models (both coupled and uncoupled). This has led to 1) Improved simulation of seasonal migration of ITCZ; 2) Improved shortwave cloud radiative forcing response to El Nińo in CAM3; 3) Improved MJO simulation in both uncoupled and coupled model; and 4) Improved simulation of ENSO in coupled model. • Using the dynamic core of CCM3, we isolated the dynamic effects of convective momentum transport. • We implemented mosaic treatment of subgrid-scale cloud-radiation interaction in CCM3.

X. Wu, G. J. Zhang

2008-04-23T23:59:59.000Z

297

Outline of an on-site inspection regime for conventional arms control in Europe  

SciTech Connect

The complexity of the negotiations on Conventional Forces in Europe (CFE) was emphasized recently by General John R. Galvin, SACEUR, when he stated, {open_quotes}The difficulties of comparing the relative strengths of strategic or intermediate-range nuclear arsenals pale in comparison with the problems of assessing the relative capabilities of opposing conventional forces.{open_quotes} Throughout this process, intensive and rigorous verification measures must be developed and enforced to ensure an acceptable degree of reliability. The eventual agreement will require a complex verification monitoring process covering a vast geographical area. The long-term success of the agreement to a large extent will depend on the level of confidence achieved by the verification process and the effective deployment of technological means will be essential to that process.

Not Available

1994-10-01T23:59:59.000Z

298

Primer on Use of Multi-Spectral and Infra Red Imaging for On-Site Inspections  

Science Conference Proceedings (OSTI)

The purpose of an On-Site Inspection (OSI) is to determine whether a nuclear explosion has occurred in violation of the Comprehensive Nuclear Test Ban Treaty (CTBT), and to gather information which might assist in identifying the violator (CTBT, Article IV, Paragraph 35) Multi-Spectral and Infra Red Imaging (MSIR) is allowed by the treaty to detect observables which might help reduce the search area and thus expedite an OSI and make it more effective. MSIR is permitted from airborne measurements, and at and below the surface to search for anomalies and artifacts (CTBT, Protocol, Part II, Paragraph 69b). The three broad types of anomalies and artifacts MSIR is expected to be capable of observing are surface disturbances (disturbed earth, plant stress or anomalous surface materials), human artifacts (man-made roads, buildings and features), and thermal anomalies. The purpose of this Primer is to provide technical information on MSIR relevant to its use for OSI. It is expected that this information may be used for general background information, to inform decisions about the selection and testing of MSIR equipment, to develop operational guidance for MSIR use during an OSI, and to support the development of a training program for OSI Inspectors. References are provided so readers can pursue a topic in more detail than the summary information provided here. The following chapters will provide more information on how MSIR can support an OSI (Section 2), a short summary what Multi-Spectral Imaging and Infra Red Imaging is (Section 3), guidance from the CTBT regarding the use of MSIR (Section 4), and a description of several nuclear explosion scenarios (Section 5) and consequent observables (Section 6). The remaining sections focus on practical aspects of using MSIR for an OSI, such as specification and selection of MSIR equipment, operational considerations for deployment of MISR equipment from an aircraft, and the conduct of field exercises to mature MSIR for an OSI. Finally, an appendix provides detail describing the magnitude and spatial extent of the surface shock expected from an underground nuclear explosion. If there is a seismic event or other data to suggest there has been a nuclear explosion in violation of the CTBT, an OSI may be conducted to determine whether a nuclear explosion has occurred and to gather information which may be useful in identifying the party responsible for conducting the explosion. The OSI must be conducted in the area where the event that triggered the inspection request occurred, and the inspected area must not exceed 1,000 square kilometers, or be more than 50 km on aside (CTBT Protocol, Part II, Paragraphs 2 and 3). One of the guiding principles for an inspection is that it be effective, minimally intrusive, timely, and cost-effective [Hawkins, Feb 1998]. In that context, MSIR is one of several technologies that can be used during an aircraft overflight to identify ground regions of high interest in a timely and cost-effective manner. This allows for an optimized inspection on the ground. The primary purpose for MSIR is to identify artifacts and anomalies that might be associated with a nuclear explosion, and to use the location of those artifacts and anomalies to reduce the search area that must be inspected from the ground. The MSIR measurements can have additional utility. The multi-spectral measurements of the ground can be used for terrain classification, which can aid in geological characterization of the Inspected Area. In conditions of where light smoke or haze is present, long-wave infrared imaging can provide better imaging of the ground than is possible with standard visible imagery.

Henderson, J R

2010-10-26T23:59:59.000Z

299

Optimal Selection of On-Site Generation with Combined Heat and  

E-Print Network (OSTI)

Contract No. DE-AC03-76SF00098 and by the California Energy Commission, Public Interest Energy Research, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily: distributed generation; combined heat and power; decentralised optimisation; microgrid; power quality ABSTRACT

300

Direct chlorination process for geothermal power plant off-gas - hydrogen sulfide abatement  

DOE Green Energy (OSTI)

The Direct Chlorination Process removes hydrogen sulfide from geothermal off-gases by reacting hydrogen sulfide with chlorine in the gas phase. Hydrogen chloride and elemental sulfur are formed by this reaction. The Direct Chlorination Process has been successfully demonstrated by an on-site operation of a pilot plant at the 3 M We HPG-A geothermal power plant in the Puna District on the island of Hawaii. Over 99.5 percent hydrogen sulfide removal was achieved in a single reaction state. Chlorine gas did not escape the pilot plant, even when 90 percent excess chlorine gas was used. A preliminary economic evaluation of the Direct Chlorination Process indicates that it is very competitive with the Stretford Process. Compared to the Stretford Process, the Direct Chlorination Process requires about one-third the initial capital investment and about one-fourth the net daily expenditure.

Sims, A.V.

1983-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "on-site evaluation process" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

ECONOMICS OF ON-SITE WASTE GASIFICATION ALFRED C. W. EGGEN  

E-Print Network (OSTI)

Luxembourg 0.29 673a 21 US 226 730 56 Japan 52.4 412 7 a Estimate Table 2 shows the increase in the amount 11.48 Luxembourg 591 673a 13.87 US 736 730 -1.0 Japan 407 412 1.0 a Estimated for the year based received' MSW followed by a range of waste manipulation processes gasification and pyrolysis ­ flexible

Columbia University

302

Nuclear Maintenance Applications Center: Guide for the Performance of OnSite and Vendor Shop Inspections of Electric Motors  

Science Conference Proceedings (OSTI)

The power industry is experiencing a loss of expertise as its workforce ages. Compounding the problem is that many plants find that there is limited time to train new workers. Periodically, station and corporate motor specialists are asked to perform inspections of on-site motors to maintain a level of equipment reliability or to perform inspections for customers at vendor motor shops. This report should prove valuable during visual inspections of electric motors.

2008-12-19T23:59:59.000Z

303

AN EVALUATION OF PYROLYSIS OIL PROPERTIES AND CHEMISTRY AS RELATED TO PROCESS AND UPGRADE CONDITIONS WITH SPECIAL CONSIDERATION TO PIPELINE SHIPMENT  

DOE Green Energy (OSTI)

One factor limiting the development of commercial biomass pyrolysis is challenges related to the transportation of the produced pyrolysis oil. The oil has different chemical and physical properties than crude oil, including more water and oxygen and has lower H/C ratio, higher specific gravity and density, higher acidity, and lower energy content. These differences could limit its ability to be transported by existing petroleum pipelines. Pyrolysis oil can also be treated, normally by catalytic hydrodeoxygenation, and approaches crude oil and petroleum condensates at higher severity levels. This improvement also results in lower liquid yield and high hydrogen consumption. Biomass resources for pyrolysis are expected to become plentiful and widely distributed in the future, mainly through the use of crop residuals and growing of energy crops such as perennial grasses, annual grasses, and woody crops. Crude oil pipelines are less well distributed and, when evaluated on a county level, could access about 18% of the total biomass supply. States with high potential include Texas, Oklahoma, California, and Louisiana. In this study, published data on pyrolysis oil was compiled into a data set along with bio-source source material, pyrolysis reactor conditions, and upgrading conditions for comparison to typical crude oils. Data of this type is expected to be useful in understanding the properties and chemistry and shipment of pyrolysis oil to refineries, where it can be further processed to fuel or used as a source of process heat.

Bunting, Bruce G [ORNL; Boyd, Alison C [ORNL

2012-01-01T23:59:59.000Z

304

West Village Community: Quality Management Processes and Preliminary Heat Pump Water Heater Performance  

Science Conference Proceedings (OSTI)

West Village, a multi-use project underway at the University of California Davis, represents a ground-breaking sustainable community incorporating energy efficiency measures and on-site renewable generation to achieve community-level Zero Net Energy (ZNE) goals. The project when complete will provide housing for students, faculty, and staff with a vision to minimize the community's impact on energy use by reducing building energy use, providing on-site generation, and encouraging alternative forms of transportation. This focus of this research is on the 192 student apartments that were completed in 2011 under Phase I of the West Village multi-year project. The numerous aggressive energy efficiency measures implemented result in estimated source energy savings of 37% over the B10 Benchmark. There are two primary objectives of this research. The first is to evaluate performance and efficiency of the central heat pump water heaters as a strategy to provide efficient electric water heating for net-zero all-electric buildings and where natural gas is not available on site. In addition, effectiveness of the quality assurance and quality control processes implemented to ensure proper system commissioning and to meet program participation requirements is evaluated. Recommendations for improvements that could improve successful implementation for large-scale, high performance communities are identified.

Dakin, B.; Backman, C.; Hoeschele, M.; German, A.

2012-11-01T23:59:59.000Z

305

Preclosure seismic hazards and their impact on site suitability of Yucca Mountain, Nevada  

SciTech Connect

This paper presents an overview of the preclosure seismic hazards and the influence of these hazards on determining the suitability of Yucca Mountain as a national high-level nuclear-waste repository. Geologic data, engineering analyses, and regulatory guidelines must be examined collectively to assess this suitability. An environmental assessment for Yucca Mountain, written in 1986, compiled and evaluated the existing tectonic data and presented arguments to satisfy, in part, the regulatory requirements that must be met if the Yucca Mountain site is to become a national waste repository. Analyses have been performed in the past five years that better quantify the local seismic hazards and the possibility that these hazards could lead to release of radionuclides to the environment. The results from these analyses increase the confidence in the ability of Yucca Mountain and the facilities that may be built there to function satisfactorily in their role as a waste repository. Uncertainties remain, however, primarily in the input parameters and boundary conditions for the models that were used to complete the analyses. These models must be validated and uncertainties reduced before Yucca Mountain can qualify as a viable high-level nuclear waste repository.

Gibson, J.D.

1992-01-07T23:59:59.000Z

306

Bioremediation demonstration on Kwajalein Island: Site characterization and on-site biotreatability studies  

SciTech Connect

An environmental study was conducted during February 1991 on Kwajalein Island, a US Army Kwajalein Atoll (USAKA) Base in the Republic of the Marshall Islands (RMI). This study was undertaken for the US Department of Energy (DOE) Hazardous Waste Remedial Actions Program (HAZWRAP) acting in behalf of USAKA. The purpose of the study was to determine if selected locations for new construction on Kwajalein Island were contaminated by petroleum hydrocarbons as suspected and, if so, whether bioremediation appeared to be a feasible technology for environmental restoration. Two different sites were evaluated: (1) the site planned freshwater production facility and (2) a site adjacent to an aboveground diesel fuel storage tank. Within the proposed construction zone for the freshwater production facility (a.k.a desalination plant), total petroleum hydrocarbons (TPH) where either absent or at low levels. Characterization data for another potential construction site adjacent to an aboveground diesel fuel storage tank southeast of the old diesel power plant revealed high concentrations of diesel fuel in the soil and groundwater beneath the site. Results of this investigation indicate that there are petroleum-contaminated soils on Kwajalein Island and bioremediation appears to be a viable environmental restoration technique. Further experimentation and field demonstration are required to determine the design and operating conditions that provide for optimum biodegradation and restoration of the petroleum-contaminated soils. 17 refs., 7 figs., 26 figs.

Siegrist, R.L.; Korte, N.E.; Pickering, D.A. (Oak Ridge National Lab., TN (United States)); Phelps, T.J. (Tennessee Univ., Knoxville, TN (United States))

1991-09-01T23:59:59.000Z

307

Nondestructive evaluation  

SciTech Connect

Research reported in the thrust area of nondestructive evaluation includes: advanced 3-D imaging technologies; new techniques in laser ultrasonic testing; infrared computed tomography for thermal NDE of materials, structures, sources, and processes; automated defect detection for large laser optics; multistatic micropower impulse radar imaging for nondestructive evaluation; and multi-modal NDE for AVLIS pod shielding components.

Martz, H.E.

1997-02-01T23:59:59.000Z

308

An assessment and evaluation for recycle/reuse of contaminated process and metallurgical equipment at the DOE Rocky Flats Plant Site -- Building 865. Final report  

SciTech Connect

An economic analysis of the potential advantages of alternatives for recycling and reusing equipment now stored in Building 865 at the Rocky Flats Plant (RFP) in Colorado has been conducted. The inventory considered in this analysis consists primarily of metallurgical and process equipment used before January 1992, during development and production of nuclear weapons components at the site. The economic analysis consists of a thorough building inventory and cost comparisons for four equipment dispositions alternatives. The first is a baseline option of disposal at a Low Level Waste (LLW) landfill. The three alternatives investigated are metal recycling, reuse with the government sector, and release for unrestricted use. This report provides item-by-item estimates of value, disposal cost, and decontamination cost. The economic evaluation methods documented here, the simple cost comparisons presented, and the data provided as a supplement, should provide a foundation for D&D decisions for Building 865, as well as for similar D&D tasks at RFP and at other sites.

Not Available

1993-08-01T23:59:59.000Z

309

Evaluation of selected chemical processes for production of low-cost silicon. Third quarterly progress report, April 1, 1976--June 30, 1976  

DOE Green Energy (OSTI)

Based on the decision to concentrate on the fluidized-bed reduction of silicon tetrachloride as a candidate process for production of low-cost solar-grade silicon, work during the current quarter was directed toward: (1) evaluation of the economic effects of operating at Zn/SiCl/sub 4/ feed ratios other than the stoichiometric 2/1; (2) design, construction, and exploratory operation of the ''miniplant'' designed to ultimately yield over 200 g hr/sup -1/ silicon for runs of 4 to 6 hr duration. It was concluded that no significant economic advantages exist in operating at Zn/SiCl/sub 4/ ratios on either side of the stoichiometric 2/1. Further, if advantages in reaction kinetics, or in product form or quality can be obtained by off-stoichiometry operation, these advantages might be obtained at only a modest increase in product cost. During the current quarter, design criteria for the miniplant were established, equipment was designed and constructed, and a number of shakedown runs were made which led to equipment modifications for improved operability.

Blocher, J.M. Jr.; Browning, M.F.; Wilson, W.J.; Carmichael, D.C.

1976-07-06T23:59:59.000Z

310

Security and Cyber Evaluations - Guidance Documents  

NLE Websites -- All DOE Office Websites (Extended Search)

Guidance Documents Security and Cyber Evaluations Security Evaluations Appraisal Process Guide, April 2008 Cyber Security Evaluations Appraisal Process Guide, April 2008 Security...

311

EVALUATION OF THE IMPACT OF THE DEFENSE WASTE PROCESSING FACILITY (DWPF) LABORATORY GERMANIUM OXIDE USE ON RECYCLE TRANSFERS TO THE H-TANK FARM  

SciTech Connect

When processing High Level Waste (HLW) glass, the Defense Waste Processing Facility (DWPF) cannot wait until the melt or waste glass has been made to assess its acceptability, since by then no further changes to the glass composition and acceptability are possible. Therefore, the acceptability decision is made on the upstream feed stream, rather than on the downstream melt or glass product. This strategy is known as 'feed forward statistical process control.' The DWPF depends on chemical analysis of the feed streams from the Sludge Receipt and Adjustment Tank (SRAT) and the Slurry Mix Evaporator (SME) where the frit plus adjusted sludge from the SRAT are mixed. The SME is the last vessel in which any chemical adjustments or frit additions can be made. Once the analyses of the SME product are deemed acceptable, the SME product is transferred to the Melter Feed Tank (MFT) and onto the melter. The SRAT and SME analyses have been analyzed by the DWPF laboratory using a 'Cold Chemical' method but this dissolution did not adequately dissolve all the elemental components. A new dissolution method which fuses the SRAT or SME product with cesium nitrate (CsNO{sub 3}), germanium (IV) oxide (GeO{sub 2}) and cesium carbonate (Cs{sub 2}CO{sub 3}) into a cesium germanate glass at 1050 C in platinum crucibles has been developed. Once the germanium glass is formed in that fusion, it is readily dissolved by concentrated nitric acid (about 1M) to solubilize all the elements in the SRAT and/or SME product for elemental analysis. When the chemical analyses are completed the acidic cesium-germanate solution is transferred from the DWPF analytic laboratory to the Recycle Collection Tank (RCT) where the pH is increased to {approx}12 M to be released back to the tank farm and the 2H evaporator. Therefore, about 2.5 kg/yr of GeO{sub 2}/year will be diluted into 1.4 million gallons of recycle. This 2.5 kg/yr of GeO{sub 2} may increase to 4 kg/yr when improvements are implemented to attain an annual canister production goal of 400 canisters. Since no Waste Acceptance Criteria (WAC) exists for germanium in the Tank Farm, the Effluent Treatment Project, or the Saltstone Production Facility, DWPF has requested an evaluation of the fate of the germanium in the caustic environment of the RCT, the 2H evaporator, and the tank farm. This report evaluates the effect of the addition of germanium to the tank farm based on: (1) the large dilution of Ge in the RCT and tank farm; (2) the solubility of germanium in caustic solutions (pH 12-13); (3) the potential of germanium to precipitate as germanium sodalites in the 2H Evaporator; and (4) the potential of germanium compounds to precipitate in the evaporator feed tank. This study concludes that the impacts of transferring up to 4 kg/yr germanium to the RCT (and subsequently the 2H evaporator feed tank and the 2H evaporator) results in <2 ppm per year (1.834 mg/L) which is the maximum instantaneous concentration expected from DWPF. This concentration is insignificant as most sodium germanates are soluble at the high pH of the feed tank and evaporator solutions. Even if sodium aluminosilicates form in the 2H evaporator, the Ge will likely substitute for some small amount of the Si in these structures and will be insignificant. It is recommended that the DWPF continue with their strategy to add germanium as a laboratory chemical to Attachment 8.2 of the DWPF Waste Compliance Plan (WCP).

Jantzen, C.; Laurinat, J.

2011-08-15T23:59:59.000Z

312

Evaluation of the Super Efficient Refrigerator Program (SERP) in the Bonneville Power Administration service territory  

Science Conference Proceedings (OSTI)

The Super Efficient Refrigerator Program (SERP) is a collaborative utility program intended to transform the market for energy-efficient and environmentally friendly refrigerators. it is one of the first examples of large-scale {open_quotes}market transformation{close_quotes} energy efficiency program. This report documents the evaluation of SERP ({open_quotes}the Program{close_quotes}) in the Bonneville Power Administration`s (Bonneville`s) service territory. Pacific Northwest National Laboratory (PNNL) conducted this evaluation for Bonneville. This study includes the process evaluation, preliminary impact evaluation, and market transformation assessment. It is based on site visits and interviews with refrigerator dealers and manufacturers, industry data, and Bonneville information. Results from this study are compared with those from a parallel study that examines the Program across the 24 participating utilities.

Lee, A.D.; Conger, R.L.

1996-06-01T23:59:59.000Z

313

Final Project Report - Coupled Biogeochemical Process Evaluation for Conceptualizing Trichloriethylene Co-Metabolism: Co-Metabolic Enzyme Activity Probes and Modeling Co-Metabolism and Attenuation  

Science Conference Proceedings (OSTI)

Trichloroethene (TCE) (also known as trichloroethylene) is a common contaminant in groundwater. TCE is regulated in drinking water at a concentration of 5 µg/L, and a small mass of TCE has the potential to contaminant large volumes of water. The physical and chemical characteristics of TCE allow it to migrate quickly in most subsurface environments, and thus large plumes of contaminated groundwater can form from a single release. The migration and persistence of TCE in groundwater can be limited by biodegradation. TCE can be biodegraded via different processes under either anaerobic or aerobic conditions. Anaerobic biodegradation is widely recognized, but aerobic degradation is less well recognized. Under aerobic conditions, TCE can be oxidized to non hazardous conditions via cometabolic pathways. This study applied enzyme activity probes to demonstrate that cometabolic degradation of TCE occurs in aerobic groundwater at several locations, used laboratory microcosm studies to determine aerobic degradation rates, and extrapolated lab-measured rates to in situ rates based on concentrations of microorganisms with active enzymes involved in cometabolic TCE degradation. Microcosms were constructed using basalt chips that were inoculated with microorganisms to groundwater at the Idaho National Laboratory Test Area North TCE plume by filling a set of Flow-Through In Situ Reactors (FTISRs) with chips and placing the FTISRs into the open interval of a well for several months. A parametric study was performed to evaluate predicted degradation rates and concentration trends using a competitive inhibition kinetic model, which accounts for competition for enzyme active sites by both a growth substrate and a cometabolic substrate. The competitive inhibition kinetic expression was programmed for use in the RT3D reactive transport package. Simulations of TCE plume evolution using both competitive inhibition kinetics and first order decay were performed.

Starr, Robert C; Orr, Brennon R; Lee, M Hope; Delwiche, Mark

2010-02-26T23:59:59.000Z

314

On-Site Services  

Science Conference Proceedings (OSTI)

... the Boulder Laboratories Employees Association ... a variety of health services including emergency ... emergency ambulance service; administration of ...

2010-12-21T23:59:59.000Z

315

Project RU LlSON COPY ON-SITE RADIOLOGICAL PROGRAMS DURING REENTRY DISILLING THROUGH PRODUCTION TESTING  

Office of Legacy Management (LM)

RU LlSON RU LlSON COPY ON-SITE RADIOLOGICAL PROGRAMS DURING REENTRY DISILLING THROUGH PRODUCTION TESTING FINAL REPOAT EBERLlNE INSTRUMENT CORPORATION Santa Fe, New Mexico Date Published - December 1973 PREPARED FOR THE U. S. ATOMIC ENERGY COMMISSION N E V A D A OPERATIONS OFFICE UNDER CONTRACT NO. AT(26-11-294 DISCLAIMER Portions of this document may be illegible in electronic image products. Images are produced from the best available original document. Project RULISON ON-S1l'E RADIOLOGICAL PROGRAMS D U R I N G R E E N T R Y D R I L L I N G THROUGH PRODUCTION TESTING \ F I N A L REPORT EBERLINE INSTRUMENT CORPORATION . Santa Fe, New Mexico 1 Date Published - December 1973 NEVADA OPERATIONS OFFICE . UNDER CONTRACT NO. AT(26-11-294 NOTICE ~~~~ This report was prepared as an account of work sponsored by the United

316

A Discussion of Procedures and Equipment for the Comprehensive Test Ban Treaty On-Site Inspection Environmental Sampling and Analysis  

SciTech Connect

This paper is intended to serve as a scientific basis to start discussions of the available environmental sampling techniques and equipment that have been used in the past that could be considered for use within the context of the Comprehensive Nuclear-Test-Ban Treaty (CTBT) on-site inspections (OSI). This work contains information on the techniques, equipment, costs, and some operational procedures associated with environmental sampling that have actually been used in the past by the United States for the detection of nuclear explosions. This paper also includes a discussion of issues, recommendations, and questions needing further study within the context of the sampling and analysis of aquatic materials, atmospheric gases, atmospheric particulates, vegetation, sediments and soils, fauna, and drill-back materials.

Wogman, Ned A.; Milbrath, Brian D.; Payne, Rosara F.; Seifert, Carolyn E.; Friese, Judah I.; Miley, Harry S.; Bowyer, Ted W.; Hanlen, Richard C.; Onishi, Yasuo; Hayes, James C.; Wigmosta, Mark S.

2011-02-01T23:59:59.000Z

317

Measurement of 37Ar to support technology for On-site Inspection under the Comprehensive Nuclear-Test-Ban Treaty  

E-Print Network (OSTI)

On-Site Inspection (OSI) is a key component of the verification regime for the Comprehensive Nuclear-Test-Ban Treaty (CTBT). Measurements of radionuclide isotopes created by an underground nuclear explosion are a valuable signature of a Treaty violation. Argon-37 is produced from neutron interaction with calcium in soil, 40Ca(n,{\\alpha})37Ar. For OSI, the 35-day half-life of 37Ar provides both high specific activity and sufficient time for completion of an inspection before decay limits sensitivity. This paper presents a low-background internal-source gas proportional counter with an 37Ar measurement sensitivity level equivalent to 45.1 mBq/SCM in whole air.

C. E. Aalseth; A. R. Day; D. A. Haas; E. W. Hoppe; B. J. Hyronimus; M. E. Keillor; E. K. Mace; J. L. Orrell; A. Seifert; V. T. Woods

2010-08-04T23:59:59.000Z

318

Advanced On-Site Wastewater Treatment and Management Market Study: Volume 1: Assessment of Short-Term Opportunities and Long-Run Pot ential  

Science Conference Proceedings (OSTI)

On-site septic systems have traditionally been considered a temporary solution on the way to sewering. However, the elimination of federal grants for sewers and wastewater treatment plants has brought a new awareness of the high costs and the sometimes adverse environmental consequences of centralized point discharges. At the same time, advances in on-site technologies, including such systems as low-flow water conservation, watertight septic tanks with screens, sand filtration, disinfection, remote monit...

2000-09-27T23:59:59.000Z

319

Solar production of industrial process hot water: operation and evaluation of the Campbell Soup hot water solar facility. Final report, September 1, 1979-December 10, 1980  

DOE Green Energy (OSTI)

The operation and evaluation of a solar hot water facility designed by Acurex Corporation and installed (November 1977) at the Campbell Soup Company Sacramento, California canning plant is summarized. The period of evaluation was for 12 months from October 1979 through September 1980. The objective of the work was to obtain additional, long term data on the operation and performance of the facility. Minor modifications to the facility were completed. The system was operated for 15 months, and 12 months of detailed data were evaluated. The facility was available for operation 99% of the time during the last 8 months of evaluation. A detailed description of the solar facility and of the operating experience is given, and a summary of system performance for the 12 month operation/evaluation period is presented. Recommendations for large-scale solar facilities based on this project's experience are given, and an environmental impact assessment for the Campbell Soup solar facility is provided. (WHK)

Kull, J. I.; Niemeyer, W. N.; Youngblood, S. B.

1980-12-01T23:59:59.000Z

320

Process / CI Process  

NLE Websites -- All DOE Office Websites (Extended Search)

2 Process/Continual Improvement Rev. 11_0406 Page 1 of 6 2 Process/Continual Improvement Rev. 11_0406 Page 1 of 6 EOTA - Business Process Document Title: Process/Continual Improvement Document Number: P-012 Rev 11_0406 Document Owner: Elizabeth Sousa Backup Owner: David Rocha Approver(s): Melissa Otero Parent Document: Q-001 Quality Manual Notify of Changes: EOTA Staff Referenced Document(s): F-016 Process/Continual Improvement Form, P-001 Document Control Process, P-008 Corrective Action and Preventive Action, P-004 Business System Management Review P-012 Process/Continual Improvement Rev. 11_0406 Page 2 of 6 Revision History:

Note: This page contains sample records for the topic "on-site evaluation process" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Distributed XML Query Processing.  

E-Print Network (OSTI)

??While centralized query processing over collections of XML data stored at a single site is a well understood problem, centralized query evaluation techniques are inherently… (more)

Kling, Patrick

2012-01-01T23:59:59.000Z

322

Electrochemical and Integrated Process Opportunities for On-Site/On-Demand Generation of Chlorine Dioxide - Final Report - 08/02/1996 - 08/01/1999  

DOE Green Energy (OSTI)

Due to continued evidence of environmental harm from elemental chlorine bleaching, the nation's paper industry continues to search for cost effective alternative bleaching. A practical and cost effective bleaching alternative is chlorine dioxide manufactured entirely from sodium chlorate. Sodium chlorate is produced by the electrolysis of brine in an undivided cell with steel plate cathodes and dimensionally stable anodes. Although the overpotential at the anode is only 50 mV, the cathodic overpotential is 940 mV. Thus, nearly one volt of electricity is wasted in driving hydrogen evolution at the cathode. Auburn University's Center for Microfibrous Materials Manufacturing has demonstrated that high performance, three dimensional, microfibrous electrodes can improve the performance of capacitors, batteries, hybrid power cells, and electrolysis electrodes in a variety of applications. The goal of this research was to apply this technology to a chlorate cell's cathode and reduce the overpotential between 200 and 400 mV. An economic analysis of the industry has shown that for every 100 mV reduction in overpotential, $100 per square meter of electrode can be saved annually. Due to their enhanced surface area over plates, corrosion of microfibrous electrodes is a major issue in this research. Samples based on chromium protection (i.e. stainless steel) have proved unfeasible for chlorate application. However, samples based on stainless steel and nickel show dramatic performance improvements over industry status quo in chlor-alkali application. Building microfibrous electrodes on a titanium base protected with a silver coating alleviates the corrosion problem and provides 100 mV or more of overpotential reduction. Further reduction is realized by impregnating silver-titanium microfibrous mesh with a PVDF binder and dispersed platinum on activated carbon. The resulting electrodes are mechanically sound, active towards hydrogen evolution, and hold promise for practical industry use.

Tatarchuk, Bruce J.; Krishnagopalan, G.; Nickell, Ryan A.

2000-01-30T23:59:59.000Z

323

Low Wind Speed Technology Phase II: Design and Demonstration of On-Site Fabrication of Fluted-Steel Towers Using LITS-Form(TM) Process  

DOE Green Energy (OSTI)

This fact sheet describes NREL's subcontract with Native American Technologies to develop a new method of metal plate forming to produce wind turbine towers.

Not Available

2006-06-01T23:59:59.000Z

324

SWEAP, Solid Waste Environmental Assessment Plan: Component 3, technology evaluation: Discussion paper No. 3. 5 A,B,C, addendum to documents: Extension of process to identify candidate sites (step 2) and the development of comparative evaluation process for step 3 of the site selection process for a materials recovery facility, compost facility and energy from waste facility  

Science Conference Proceedings (OSTI)

The facility design assumptions for a materials recovery facility, a compost facility and an energy from waste facility were intended to result in a facility with minimal impact on the natural environment. The criteria described in discussion paper 3.5A were based on this assumption. This addendum describes the additional criteria identified for use in Step 2 of the site selection process, the revised criteria to be used in Step 3 and the method that will be used to apply the revised Step 3 criterial. Step 2 addresses the type of technology used to minimize adverse effects on the natural environment. Step 3 addresses the selection of short-listed sites from a longer list and the methods used.

Not Available

1991-01-01T23:59:59.000Z

325

Analysis and evaluation of processes and equipment in Tasks II and IV of the Low-Cost Solar Array Project. Quarterly report, April-July 1978  

DOE Green Energy (OSTI)

The significant economic data for the current production multiblade wafering and inner diameter slicing processes were tabulated and compared to data on the experimental and projected Varian multiblade slurry, STC ID diamond coated blade, Yasunaga multiwire slurry and Crystal Systems fixed abrasive multiwire slicing methods. Cost calculations were performed for current production processes and for 1982 and 1986 projected wafering techniques.

Goldman, H.; Wolf, M.

1978-11-01T23:59:59.000Z

326

Standard Guide for On-Site Inspection and Verification of Operation of Solar Domestic Hot Water Systems  

E-Print Network (OSTI)

1.1 This guide covers procedures and test methods for conducting an on-site inspection and acceptance test of an installed domestic hot water system (DHW) using flat plate, concentrating-type collectors or tank absorber systems. 1.2 It is intended as a simple and economical acceptance test to be performed by the system installer or an independent tester to verify that critical components of the system are functioning and to acquire baseline data reflecting overall short term system heat output. 1.3 This guide is not intended to generate accurate measurements of system performance (see ASHRAE standard 95-1981 for a laboratory test) or thermal efficiency. 1.4 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only. 1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine th...

American Society for Testing and Materials. Philadelphia

1987-01-01T23:59:59.000Z

327

Visual Sample Plan (VSP) Statistical Software as Related to the CTBTO’s On-Site Inspection Procedure  

SciTech Connect

In the event of a potential nuclear weapons test the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO) is commissioned to conduct an on-site investigation (OSI) of the suspected test site in an effort to find confirmatory evidence of the nuclear test. The OSI activities include collecting air, surface soil, and underground samples to search for indications of a nuclear weapons test - these indicators include radionuclides and radioactive isotopes Ar and Xe. This report investigates the capability of the Visual Sample Plan (VSP) software to contribute to the sampling activities of the CTBTO during an OSI. VSP is a statistical sampling design software, constructed under data quality objectives, which has been adapted for environmental remediation and contamination detection problems for the EPA, US Army, DoD and DHS among others. This report provides discussion of a number of VSP sample designs, which may be pertinent to the work undertaken during an OSI. Examples and descriptions of such designs include hot spot sampling, combined random and judgment sampling, multiple increment sampling, radiological transect surveying, and a brief description of other potentially applicable sampling methods. Further, this work highlights a potential need for the use of statistically based sample designs in OSI activities. The use of such designs may enable canvassing a sample area without full sampling, provide a measure of confidence that radionuclides are not present, and allow investigators to refocus resources in other areas of concern.

Pulsipher, Trenton C.; Walsh, Stephen J.; Pulsipher, Brent A.; Milbrath, Brian D.

2010-09-01T23:59:59.000Z

328

Development of an advanced continuous mild gasification process for the production of coproducts: Task 4.6, Technical and economic evaluation  

DOE Green Energy (OSTI)

Morgantown Energy Technology Center (METC) of DOE has sponsored, and continues to sponsor, programs for the development of technology and market strategies which will lead to the commercialization of processes for the production of coproducts from mild gasification of coal. It has been recognized by DOE and industry that mild gasification is a promising technology with potential to economically convert coal into marketable products, thereby increasing domestic coal utilization. In this process, coal is devolatilized under non- oxidizing conditions at mild temperature (900--1100{degrees}F) and pressure (1--15psig). Condensation of the vapor will yield a liquid product that can be upgraded to a petroleum substitute, and the remaining gas can provide the fuel for the process. The residual char can be burned in a power plant. Thus, in a long-term national scenario, implementation of this process will result in significant decrease of imported oil and increase in coal utilization.

Hogsett, R.F.; Jha, M.C.

1991-12-01T23:59:59.000Z

329

Evaluating the Moisture Conditions in the Fractured Rock at Yucca Mountain: The Impact of Natural Convection Processes in Heated Emplacement Drifts  

E-Print Network (OSTI)

multiphase flow and heat-transfer processes. Pore-waterprocesses, and various empirical correlations have been developed for heat and mass transferprocess, with effective dispersion coefficients estimated from supporting CFD analyses. Mass and heat transfer

Birkholzer, J.T.; Webb, S.W.; Halecky, N.; Peterson, P.F.; Bodvarsson, G.S.

2005-01-01T23:59:59.000Z

330

Evaluation of the freeze-thaw/evaporation process for the treatment of produced waters. Quarterly technical progress report, April 1, 1994--June 30, 1994  

Science Conference Proceedings (OSTI)

The use of freeze-crystallization is being increasingly acknowledged as a low-cost, energy-efficient method for purifying contaminated water. Freeze-crystallization has been shown to be effective in removing a wide variety of contaminants from water. Water purification by using natural conditions to promote freezing appears to be an extremely attractive process for the treatment of contaminated water in many areas where natural climatic conditions will seasonally promote freezing. The natural freezing process can be coupled with natural evaporative processes to treat oil and gas produced waters year-round in regions where subfreezing temperatures seasonally occur. The objectives of this research are related to development of a commercially-economic natural freeze-thaw/evaporation (FTE) process for the treatment and purification of water produced in conjunction with oil and gas.

Boysen, J.; Morotti, J.

1994-07-01T23:59:59.000Z

331

Evaluation of selected chemical processes for production of low-cost silicon. Fourth quarterly progress report, July 1, 1976--September 30, 1976  

DOE Green Energy (OSTI)

The effort this quarter has been devoted to the operation of a ''miniplant'' for the preparation of silicon by the zinc reduction of silicon tetrachloride. This is in accordance with a previous decision to concentrate all development work on this process because it was concluded to have an economic advantage over other candidate processes explored earlier. Of the 22 runs made in the newly designed equipment this quarter, 12 were carried out under conditions which yielded meaningful data. (WDM)

Blocher, J.M. Jr.; Browning, M.F.; Wilson, W.J.; Carmichael, D.C.

1976-10-21T23:59:59.000Z

332

The non-proliferation experiment and gas sampling as an on-site inspection activity: A progress report  

SciTech Connect

The Non-proliferation Experiment (NPE) is contributing to the development of gas sampling methods and models that may be incorporated into future on-site inspection (OSI) activities. Surface gas sampling and analysis, motivated by nuclear test containment studies, have already demonstrated the tendency for the gaseous products of an underground nuclear test to flow hundreds of meters to the surface over periods ranging from days to months. Even in the presence of a uniform sinusoidal pressure variation, there will be a net flow of cavity gas toward the surface. To test this barometric pumping effect at Rainier Mesa, gas bottles containing sulfur hexaflouride and {sup 3}He were added to the pre-detonation cavity for the 1 kt chemical explosives test. Pre-detonation measurements of the background levels of both gases were obtained at selected sites on top of the mesa. The background levels of both tracers were found to be at or below mass spectrographic/gas chromatographic sensitivity thresholds in the parts-per-trillion range. Post-detonation, gas chromatographic analyses of samples taken during barometric pressure lows from the sampling sites on the mesa indicate the presence of significant levels (300--600 ppt) of sulfur hexaflouride. However, mass spectrographic analyses of gas samples taken to date do not show the presence of {sup 3}He. To explain these observations, several possibilities are being explored through additional sampling/analysis and numerical modeling. For the NPE, the detonation point was approximately 400 m beneath the surface of Rainier Mesa and the event did not produce significant fracturing or subsidence on the surface of the mesa. Thus, the NPE may ultimately represent an extreme, but useful example for the application and tuning of cavity gas detection techniques.

Carrigan, C.R.

1994-03-01T23:59:59.000Z

333

How technology influences the therapeutic process: a comparative field evaluation of augmented reality and in vivo exposure therapy for phobia of small animals  

Science Conference Proceedings (OSTI)

In Vivo Exposure Therapy (IVET) has been a recommended protocol for the treatment of specific phobias. More recently, several studies have suggested that Augmented Reality Exposure Therapy (ARET) is a potentially effective technology in this field. The ... Keywords: augmented reality, field evaluation, mental health

Maja Wrzesien; Jean-Marie Burkhardt; Mariano Alcańiz; Cristina Botella

2011-09-01T23:59:59.000Z

334

Office of Enforcement and Oversight's Office of Safety and Emergency Management Evaluations Activity Report for Observation of Waste Treatment and Immobilization Plant LAW Melter and Melter Off-gas Process System Hazards Analysis _Oct 21-31  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

HSS Independent Activity Report - HSS Independent Activity Report - Rev. 0 Report Number: HIAR-WTP-2013-10-21 Site: Hanford Site Subject: Office of Enforcement and Oversight's Office of Safety and Emergency Management Evaluations Activity Report for Observation of Waste Treatment and Immobilization Plant Low Activity Waste Melter and Melter Off-gas Process System Hazards Analysis Activities Dates of Activity : 10/21/13 - 10/31/13 Report Preparer: James O. Low Activity Description/Purpose: The Office of Health, Safety and Security (HSS), Office of Safety and Emergency Management Evaluations (Independent Oversight) reviewed the Insight software hazard evaluation (HE) tables for hazard analysis (HA) generated to date for the Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) Melter and Off-gas systems, observed a

335

Analysis and evaluation of processes and equipment in Tasks II and IV of the Low-Cost Solar Array Project. Quarterly report, October 1977-January 1978  

DOE Green Energy (OSTI)

Several experimental and projected Czochralski crystal growing process methods were studied and compared to available operations and cost-data of recent production Cz-pulling, in order to elucidate the role of the dominant cost contributing factors. From this analysis, it becomes apparent that substantial cost reductions can be realized from technical advancements which fall into four categories: an increase in furnace productivity; the reduction of crucible costs through use of the crucible for the equivalent of multiple state-of-the-art crystals; the combined effect of several smaller technical improvements; and a carry-over effect of the expected availability of semiconductor grade polysilicon at greatly reduced prices. Consequently, the specific add-on costs of the Cz-process can be expected to be reduced by about a factor of three by 1982, and about a factor of five by 1986. A format to guide in the accumulation of the data needed for thorough techno-economic analysis of solar cell production processes has been developed, called the University of Pennsylvania Process Characterization (UPPC) format, and has first been applied, as well as refined, in the Cz crystal pulling analysis. The accumulated Cz process data are presented in this format in the Appendix. The application of this UPPC format with the SAMICS cost and price determination methodology, at least in its Interim Price Estimating Guidelines (IPEG) form, has been established and is detailed.

Goldman, H.; Wolf, M.

1978-08-01T23:59:59.000Z

336

Coal liquefaction process streams characterization and evaluation: Analysis of coal-derived synthetic crude from HRI CTSL Run CC-15 and HRI Run CMSL-2  

SciTech Connect

Under subcontract from CONSOL Inc. (US DOE Contract No. DE-AC22-89PC89883), IIT Research Institute, National Institute for Petroleum and Energy Research applied a suite of petroleum inspection tests to two direct coal liquefactions net product oils produced in two direct coal liquefaction processing runs. Two technical reports, authored by NIPER, are presented here. The following assessment briefly describes the two coal liquefaction runs and highlights the major findings of the project. It generally is concluded that the methods used in these studies can help define the value of liquefaction products and the requirements for further processing. The application of these methods adds substantially to our understanding of the coal liquefaction process and the chemistry of coal-derived materials. These results will be incorporated by CONSOL into a general overview of the application of novel analytical techniques to coal-derived materials at the conclusion of this contract.

Sturm, G.P. Jr.; Kim, J.; Shay, J. [National Inst. for Petroleum and Energy Research, Bartlesville, OK (United States)

1994-01-01T23:59:59.000Z

337

Analysis and evaluation in the production process and equipment area of the low-cost solar-array project. Quarterly report, July-October, 1980  

DOE Green Energy (OSTI)

The attributes of the various metallization processes have been investigated which express themselves in economic results. It has been shown that several metallization process sequences will lead to adequate metallization for large area, high performance solar cells at a metallization add-on price in the range of $6.- to 12.-/m/sup 2/, or 4 to 8 cents/W(peak), assuming 15% efficiency. Conduction layer formation by thick film silver or by tin or tin/lead solder leads to metallization add-on prices significantly above the $6.- to 12.-/m/sup 2/ range. The wet chemical processes of electroless and electrolytic plating for strike/barrier layer and conduction layer formation, respectively, seem to be most cost-effective. Vacuum deposition of the strike/barrier layer can be competitive with electroless plating.

Wolf, M.; Goldman, H.

1981-01-01T23:59:59.000Z

338

Criticality Safety Evaluation Report CSER-96-019 for Spent Nuclear Fuel (SNF) Processing and Storage Facilities Multi Canister Overpack (MCO)  

Science Conference Proceedings (OSTI)

This criticality evaluation is for Spent N Reactor fuel unloaded from the existing canisters in both KE and KW Basins, and loaded into multiple canister overpack (MCO) containers with specially built baskets containing a maximum of either 54 Mark IV or 48 Mark IA fuel assemblies. The criticality evaluations include loading baskets into the cask-MCO, operation at the Cold Vacuum Drying Facility,a nd storage in the Canister Storage Building. Many conservatisms have been built into this analysis, the primary one being the selection of the K{sub eff} = 0.95 criticality safety limit. This revision incorporates the analyses for the sampling/weld station in the Canister Storage Building and additional analysis of the MCO during the draining at CVDF. Additional discussion of the scrap basket model was added to show why the addition of copper divider plates was not included in the models.

KESSLER, S.F.

1999-10-20T23:59:59.000Z

339

Evaluation of a Process-Based Agro-Ecosystem Model (Agro-IBIS) across the U.S. Corn Belt: Simulations of the Interannual Variability in Maize Yield  

Science Conference Proceedings (OSTI)

A process-based terrestrial ecosystem model, Agro-IBIS, was used to simulate maize yield in a 13-state region of the U.S. Corn Belt from 1958 to 1994 across a 0.5° terrestrial grid. For validation, county-level census [U.S. Department of ...

Christopher J. Kucharik

2003-12-01T23:59:59.000Z

340

Evaluation of selected chemical processes for production of low-cost silicon. Phase III. Eighteenth quarterly progress report, January 1-March 31, 1980  

DOE Green Energy (OSTI)

Progress during this report period was marked by the initial operation of the Process Development Unit at about 50% of design capacity with indications that many aspects of the facility operated satisfactorily. However, a downstream constriction, the cause of which is being isolated, led to termination of the run after one-half hour of operation. In the light of observations made during earlier start-up efforts, several modifications of equipment and technique were made for improved operation. Vacuum outgassing experiments (850 to 1100/sup 0/C, 1 to 256 h) were carried out on miniplant-produced granules containing 360 and 3900 ppMw of zinc in the deposited silicon. Treatment of the data so that it can be extrapolated to the expected product of the Experimental Process System Development Unit awaits development of an appropriate model.

Blocher, J.M. Jr.; Browning, M.F.

1980-05-15T23:59:59.000Z

Note: This page contains sample records for the topic "on-site evaluation process" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Analysis of hypochlorite process for removal of hydrogen sulfide from geothermal gases  

SciTech Connect

Sodium hypochlorite reacts readily with hydrogen sulfide to convert the sulfide ion into free sulfur in a neutral or acid solution and to the sulfate ion in an alkaline solution. Sodium hypochlorite can be generated on site by processing geothermal brine in electrolytic cells. An investigation to determine if this reaction could be economically used to remove hydrogen sulfide from geothermal noncondensible gases is reported. Two processes, the LO-CAT Process and the Stretford Process, were selected for comparison with the hypochlorite process. Three geothermal reservoirs were considered for evaluation: Niland KGRA, Baca KGRA, and The Geysers KGRA. Because of the wide variation in the amount of hydrogen sulfide present at The Geysers, two different gas analyses were considered for treatment. Plants were designed to process the effluent noncondensible gases from a 10 MW/sub e/ geothermal power plant. The effluent gas from each plant was to contain a maximum hydrogen sulfide concentration of 35 ppb. Capital costs were estimated for each of the processes at each of the four sites selected. Operating costs were also calculated for each of the processes at each of the sites. The results of these studies are shown.

1980-04-01T23:59:59.000Z

342

Solar production of industrial process steam. Phase III. Operation and evaluation of the Johnson and Johnson solar facility. Final report, January 1, 1980-March 31, 1981  

DOE Green Energy (OSTI)

A solar facility that generates 177/sup 0/C (350/sup 0/F) process steam has been designed and constructed by Acurex Corporation and has operated for 1 yr supplying steam to the Johnson and Johnson manufacturing plant in Sherman, Texas. The facility consists of 1068 m/sup 2/ (11,520 ft/sup 2/) of parabolic trough concentrating collectors, a 18,900 1 (5000 gal) flash boiler, and an 18.6 kW (25 hp) circulating pump. In the first year of operation the system was available 97 percent of the days, and with sufficient solar radiation available it operated 70 percent of the days during this period. The measured data showed that the collector field operated at an efficiency of 25.4 percent for the year, and that at least 75 percent of the energy reaching the flash boiler was delivered to the plant as steam. A total of 309,510 kg (682,400 lb) of steam was produced by the solar facility for the first year. An analysis of the data showed that the delivered energy was within 90 to 100 percent of the predicted value. The successful completion of the first year of operation has demonstrated the technical feasibility of generating industrial process steam with solar energy.

Brink, D.F.; Kendall, J.M.; Youngblood, S.B.

1981-03-01T23:59:59.000Z

343

EVALUATION OF AN ENGINEERING DEMONSTRATION OF THE MODIFIED ZIRFLEX AND NEUFLEX PROCESSES FOR THE PREPARATION OF SOLVENT EXTRACTION FEEDS FROM UNIRRADIATED ZIRCONIUM-BASE REACTOR FUELS  

DOE Green Energy (OSTI)

In order to recover uranium from zirconium-base reactor fuels by solvent extraction, the metailic fuel and cladding must first be dissolved and a suitable feed solution prepared. Such preparations of solvent extraction feeds were successfully accomplished batchwise using both the Modified Zirflex and Neuflex processes employing an NH/sub 4/F -- oxidant mixture to dissolve the fuel elements, and the feed. (The d Zirflex feed, and H/sub 2/O for the Neuflex feed.) In the Modified Zirflex process, a dissolvent about 6 M in NH/sub 4/F with an excess of H/sub 2/O/sub 2/ to oxidize uranium to the more-soluble U(VI) valence state. The off-gas, after NH/sub 3/ removal, is an H/sub 2/-O/sub 2/ mixture of small volume, which is diluted with air to a safe concentration. Then nitric acid-aluminum nitrate is added to the dissolution product, yielding a solvent extraction feed from which uranium is recovered by using TBP-Amsco as the extractant. In the Neuflex process, the dissolvent is NH/sub 4/F--H/sub 2/O/sub 2/, with less than a stoichiometric amount of NH/sub 4/NO/sub 3/. Without NH/sub 4/NO/sub 3/, the scrubbed off-gas is principally hydrogen, on the hydrogen-rich side of the flammable range of H/sub 2/-O/sub 2/ mixtures, Only water is added to this dissolution product, yielding a neutral fluoride feed from which uranium is extractable by use of Dapex reagents. ln both processes the F: Zr charge ratio, initial surface condition, and maximum section thickness of the fuel element were the principa1 determinants of total dissolution time. The zirconium loading as determined by the free fluoride - zirconium solubility relationship limited the capacity of fuels containing less than 2% U, while the free-fluoride-to-uranium ratio of about 100 required for solution stability was the limiting factor with alloys containing higher percentages of uranium, Hydrogen peroxide concentration was not an important factor in solution stability; the role of ammonla or NH/sub 4/OH was not studied. The feasibility of both processes was demonstrated by a series of batch dissolutions of kilogram quartities of various fuels containing 1 to 8% uranium. Continuous dissolution was demonstrated as was application to TRIGA fuel alloy (8% U-- ZrH). Stainless steel type 347 and a low-carbon nickel alloy were suitable materials of construction for the dissolution and the solvent extraction equipment. Since there were some discrepancies betweeq small-scale and engineering-scale work, especially in the prevention of precipitate formation near the end of the dissolution cycle, it is advised that some further investigation be made prior to attempted scaleup to plant operation. (auth)

Kitts, F.G.

1964-03-01T23:59:59.000Z

344

Process / CI Process  

NLE Websites -- All DOE Office Websites (Extended Search)

7 Post Travel Summary 11_0221 Page 1 of 3 7 Post Travel Summary 11_0221 Page 1 of 3 EOTA - Business Process Document Title: Post Travel Summary Document Number: ADMF-017 Post Travel Summary 11_0221 Document Owner: Elizabeth Sousa Backup Owner: Melissa Otero Approver(s): Melissa Otero Parent Document: ADMP-004, Contractor Travel Process Notify of Changes: EOTA Staff Referenced Document(s): ADMF-007 EOTA Pre-Travel Authorization Form ADMF-017 Post Travel Summary 11_0221 Page 2 of 3 Revision History: Rev. Description of Change 11_0221 Initial Release ADMF-017 Post Travel Summary 11_0221 Page 3 of 3

345

An evaluation of membrane materials for the treatment of highly concentrated suspended salt solutions in reverse osmosis and nanofiltration processes for desalination  

E-Print Network (OSTI)

This thesis presents a study to enhance and improve a zero liquid discharge (ZLD) reverse osmosis process that uses seed crystals to promote crystallization of the dissolved salts in the residual brine while it is being treated by identifying those membrane materials that are most suitable for the process. In the study, a one plate SEPA Cell module by GE Osmonics was used to determine which membranes were most susceptible to fouling and/or membrane hydrolysis. A cellulose acetate (CA), polyamide (PA) low MWCO, and PA high MWCO membrane were tested under reverse osmosis conditions. The CA and thin film (TF) membranes were also tested for nanofiltration. The cell was operated under conditions that were determined to be optimum for each membrane by the manufacturer, GE Osmonics. A high pressure, low flow, positive displacement diaphragm pump circulated the saturated calcium sulfate solution with 2 % suspended solids through the cell while the reject and permeate were recycled back to the feed, thereby preserving a saturated solution to promote crystal growth and simulate the seeded reverse osmosis process. The temperature was maintained constant by adding an ice pack to the feed vessel when necessary. The transmembrane pressure differential was maintained constant by adjusting a back pressure valve on the concentrate outlet. The results illustrate that if potable drinking water is the intended use, then the nanofiltration cellulose acetate membrane should be used. If irrigation is the desired use, then the nanofiltration thin film membrane should be used. Overall, the reverse osmosis cellulose acetate membrane was observed to outperform all membranes when all performance parameters were normalized. However, this membrane was observed to be prone to degradation in a seeded slurry and therefore its lifetime should be analyzed further. The polyamide membrane initially had a high water transport coefficient, but fouling led to its rapid decline which was attributed to the membrane’s rough and protrusive surface. A lifetime test on the thin film and cellulose acetate revealed that when operated at their maximum pressure specified by GE Osmonics for a duration of 8 hours that no decrease in rejection occurred.

Hughes, Trenton Whiting

2006-12-01T23:59:59.000Z

346

Development of an advanced, continuous mild gasification process for the production of co-products. Task 4.6, Economic evaluation  

SciTech Connect

The principal finding of this study was the high capital cost and poor financial performance predicted for the size and configuration of the plant design presented. The XBi financial assessment gave a disappointingly low base-case discounted cash flow rate of return (DCFRR) of only 8.1% based on a unit capital cost of $900 per ton year (tpy) for their 129,000 tpy design. This plant cost is in reasonable agreement with the preliminary estimates developed by J.E. Sinor Associates for a 117,000 tpy plant based on the FMC process with similar auxiliaries (Sinor, 1989), for which a unit capital costs of $938 tpy was predicted for a design that included char beneficiation and coal liquids upgrading--or about $779 tpy without the liquid upgrading facilities. The XBi assessment points out that a unit plant cost of $900 tpy is about three times the cost for a conventional coke oven, and therefore, outside the competitive range for commercialization. Modifications to improve process economics could involve increasing plant size, expanding the product slate that XBi has restricted to form coke and electricity, and simplifying the plant flow sheet by eliminating marginally effective cleaning steps and changing other key design parameters. Improving the financial performance of the proposed formed coke design to the level of a 20% DCFRR based on increased plant size alone would require a twenty-fold increase to a coal input of 20,000 tpd and a coke production of about 2.6 minion tpy--a scaling exponent of 0.70 to correct plant cost in relation to plant size.

Cohen, L.R. [Xytel-Bechtel, Inc. (United States); Hogsett, R.F. [AMAX Research and Development Center, Golden, CO (United States); Sinor, J.E. [Sinor (J.E.) Consultants, Inc., Niwot, CO (United States); Ness, R.O. Jr.; Runge, B.D. [North Dakota Univ., Grand Forks, ND (United States). Energy and Environmental Research Center

1992-10-01T23:59:59.000Z

347

Direct Chlorination Process for geothermal power plant off-gas - hydrogen sulfide abatement  

DOE Green Energy (OSTI)

The Direct Chlorination Process removes hydrogen sulfide from geothermal off-gases by reacting hydrogen sulfide with chlorine in the gas phase. Hydrogen chloride and elemental sulfur are formed by this reaction. The Direct Chlorination Process has been successfully demonstrated by an on-site operation of a pilot plant at the 3 M We HPG-A geothermal power plant in the Puna District on the island of Hawaii. Over 99.5% hydrogen sulfide removal was achieved in a single reaction stage. Chlorine gas did not escape the pilot plant, even when 90% excess chlorine gas was used. A preliminary economic evaluation of the Direct Chlorination Process indicates that it is very competitive with the Stretford Process Compared to the Stretford Process, the Direct Chlorination process requires about one-third the initial capital investment and about one-fourth the net daily expenditure. Because of the higher cost of chemicals and the restricted markets in Hawaii, the economic viability of this process in Hawaii is questionable.

Sims, A.V.

1983-06-01T23:59:59.000Z

348

Milestone Plan Process Improvement  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

to our community's concern over the milestone plan (MP) process within the system, the STRIPES Project Office initiated an in-depth evaluation of the required steps and issues...

349

Evaluation of 2.25Cr-1Mo Alloy for Containment of LiCl/KCl Eutectic during the Pyrometallurgical Processing of Used Nuclear Fuel  

SciTech Connect

Recovery of uranium from the Mk-IV and Mk-V electrorefiner vessels containing a LiCl/KCl eutectic salt has been on-going for 14 and 12 years, respectively, during the pyrometallurgical processing of used nuclear fuel. Although austenitic stainless steels are typically utilized for LiCl/KCl salt systems, the presence of cadmium in the Mk-IV electrorefiner dictates an alternate material. A 2.25Cr-1Mo alloy (ASME SA-387) was chosen due to the absence of nickel in the alloy which has a considerable solubility in cadmium. Using the transition metal impurities (iron, chromium, nickel, molybdenum, and manganese) in the electrorefined uranium products, an algorithm was developed to derive values for the contribution of the transition metals from the various input sources. Weight loss and corrosion rate data for the Mk-V electrorefiner vessel were then generated based on the transition metal impurities in the uranium products. To date, the corrosion rate of the 2.25Cr-1Mo alloy in LiCl/KCl eutectic is outstanding assuming uniform (i.e. non-localized) conditions.

B.R. Westphal; S.X. Li; G.L. Fredrickson; D. Vaden; T.A. Johnson; J.C. Wass

2011-03-01T23:59:59.000Z

350

Interim On-Site Storage of Low-Level Waste: Volume 4, Part 3: Waste Container Closures, Seals, and Gas Vents  

Science Conference Proceedings (OSTI)

This volume of the Interim On-Site Storage report series supplements Volume 4, Part 1, which includes an extensive methodology and detailed information on the types and availability of low-level waste (LLW) containers and container coatings for extended storage. Part 2, soon to be published, addresses monitoring and inspection requirements for stored LLW containers. Part 3 continues the series by providing detailed guidance on container closures, seals, and gas vents, including performance goals and key ...

1993-11-11T23:59:59.000Z

351

Interim On-Site Storage of Low-Level Waste: Volume 3, Part 2: User's Manual and Lotus Spreadsheet for Estimating LLW Volumes and Act ivities  

Science Conference Proceedings (OSTI)

This volume of the "Interim On-Site Storage" report series supplements Volume 3, Part 1, "Waste Volume Projections and Data Management." Because that volume includes an extensive methodology and a number of worksheets requiring many calculations, users requested a computer program for easily storing, managing, and manipulating applicable data. Volume 3, Part 2 consists of a user's manual and a Lotus spreadsheet macro to meet this utility need.

1993-11-01T23:59:59.000Z

352

Evaluation of the fire and explosion hazards of oil-shale mining and processing. Volume 1. Analytical studies and accident scenarios. Open file report, 16 June 1977-15 July 1983  

SciTech Connect

The objectives of this research were to identify and evaluate potential fire and explosion hazards in oil-shale mining and processing by laboratory testing to provide recommendations for mitigation safety monitoring and to establish a basis for regulation. A series of scenarios were developed describing hypothetical fire and explosion incidents that might occur in oil-shale mining. The objectives were achieved through the following accomplishments: (1) It was found that fire and explosion properties of oil shale increase with oil shale richness and decreasing particle size. (2) Data from dust loading study in several mines showed that the total potential yield of combustibles was about one-tenth the amount required to fuel a propagating explosion. (3) Aging of oil shale dusts over a period of several years reduces the content of volatile combustibles and the corresponding fire and explosion properties. (4) Data and information from the completed program indicate that the hazard of dust explosions is less severe than the hazard of fire in mine muck piles. Laboratory data were used to relate fire and explosivity properties of oil shales to those of coals and other carbonaceous materials and to assist in the identification and evaluation of potential hazardous situations that may be encountered in oil shale mining and processing.

Crookston, R.B.; Atwood, M.T.; Williams, R.E.; McGuire, M.E.

1983-07-15T23:59:59.000Z

353

Process Deviation  

NLE Websites -- All DOE Office Websites (Extended Search)

8 WBT Course Development Process 110512 Page 1 of 7 EOTA - Business Process Document Title: WBT Course Development Process Document Number: ISDP- 018 Rev. 110512 Document Owner:...

354

Process Deviation  

NLE Websites -- All DOE Office Websites (Extended Search)

6 WBT Programming Process 110426 Page 1 of 5 EOTA - Business Process Document Title: WBT Programming Process Document Number: ITTP-016 Rev. 110426 Document Owner: Doug Bond...

355

Process Deviation  

NLE Websites -- All DOE Office Websites (Extended Search)

6 ILT Course Development Process 110512 Page 1 of 7 EOTA - Business Process Document Title: ILT Course Development Process Document Number: ISDP-016 Rev. 110512 Document Owner:...

356

Process Deviation  

NLE Websites -- All DOE Office Websites (Extended Search)

4 NetworkTechnical Support Process 110406 Page 1 of 5 EOTA - Business Process Document Title: NetworkTechnical Support Process Document Number: ITTP-014 Rev. 110406 Document...

357

Process Deviation  

NLE Websites -- All DOE Office Websites (Extended Search)

2 Training Production Process Overview 110620 1 of 6 EOTA - Business Process Document Title: Training Production Process Document Number: ISDP-002 Rev. 110620 Document Owner:...

358

Towards support processes for web projects  

Science Conference Proceedings (OSTI)

Measurement, evaluation and analysis are support processes to main engineering processes. In this work we present an integrated strategy whose rationale is supported by a well-defined measurement and evaluation process, a conceptual framework that relies ... Keywords: C-INCAMI, evaluation, measurement, process, quality, webQEM

Pablo Becker; Luis Olsina

2010-07-01T23:59:59.000Z

359

Coal liquefaction process streams characterization and evaluation. Characterization of coal-derived materials by field desorption mass spectrometry, two-dimensional nuclear magnetic resonance, supercritical fluid extraction, and supercritical fluid chromatography/mass spectrometry  

SciTech Connect

Under contract from the DOE , and in association with CONSOL Inc., Battelle, Pacific Northwest Laboratory (PNL) evaluated four principal and several complementary techniques for the analysis of non-distillable direct coal liquefaction materials in support of process development. Field desorption mass spectrometry (FDMS) and nuclear magnetic resonance (NMR) spectroscopic methods were examined for potential usefulness as techniques to elucidate the chemical structure of residual (nondistillable) direct coal liquefaction derived materials. Supercritical fluid extraction (SFE) and supercritical fluid chromatography/mass spectrometry (SFC/MS) were evaluated for effectiveness in compound-class separation and identification of residual materials. Liquid chromatography (including microcolumn) separation techniques, gas chromatography/mass spectrometry (GC/MS), mass spectrometry/mass spectrometry (MS/MS), and GC/Fourier transform infrared (FTIR) spectroscopy methods were applied to supercritical fluid extracts. The full report authored by the PNL researchers is presented here. The following assessment briefly highlights the major findings of the project, and evaluates the potential of the methods for application to coal liquefaction materials. These results will be incorporated by CONSOL into a general overview of the application of novel analytical techniques to coal-derived materials at the conclusion of CONSOL`s contract.

Campbell, J.A.; Linehan, J.C.; Robins, W.H. [Battelle Pacific Northwest Lab., Richland, WA (United States)

1992-07-01T23:59:59.000Z

360

Oil recovery process  

Science Conference Proceedings (OSTI)

An on-site, in-line process and system is claimed for recovering oil from oil-bearing subterranean formations which involves the production, modification, dilution and injection of a polymer solution, preferably consisting essentially of an aqueous solution of a partially hydrolyzed polyacrylamide, having injectivity and mobility properties capable of meeting the specific permeability requirements of substantially any subterranean formation to be achieved. The polymer solutions prepared by the process and system can be used as drive fluids for displacing oil (secondary polymer flood) in an oil-bearing formation, as mobility buffers to follow micellar dispersion floods in the conjoint presence of chemical reagents in other chemical floods (e.g., surfactant, caustic, etc.), or they can follow a water flood. The solutions can also be used to promote pipelining of high viscosity crude oil. Irrespective of the use to which the solutions are put, the process and system enable the polymer solutions to be customized, or tailor-made, so to speak, to meet the performance demands of the environment in which they are to be used, whether it be an oil-bearing formation or a pipeline.

Argabright, P.A.; Rhudy, J.S.

1984-02-28T23:59:59.000Z

Note: This page contains sample records for the topic "on-site evaluation process" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Review of project definition studies of possible on-site uses of superconducting super collider assets and facilities. Final report  

Science Conference Proceedings (OSTI)

This document reports on the results of a peer review and evaluation of studies made of potential uses of assets from the terminated Superconducting Super Collider (SSC) project. These project definition studies focused on nine areas of use of major assets and facilities at the SSC site near Waxahachie, Texas. The studies were undertaken as part of the effort to maximize the value of the investment made in the SSC and were supported by two sets of grants, one to the Texas National Research Laboratory Commission (TNRLC) and the second to various universities and other institutions for studies of ideas raised by a public call for expressions of interest. The Settlement Agreement, recently signed by the Department of Energy (DOE) and TNRLC, provides for a division of SSC property. As part of the goal of maximizing the value of the SSC investment, the findings contained in this report are thus addressed to officials in both the Department and TNRLC. In addition, this review had several other goals: to provide constructive feedback to those doing the studies; to judge the benefits and feasibility (including funding prospects) of the projects studied; and to help worthy projects become reality by matching projects with possible funding sources.

NONE

1994-12-01T23:59:59.000Z

362

Review of project definition studies of possible on-site uses of superconducting super collider assets and facilities  

SciTech Connect

This document reports on the results of a peer review and evaluation of studies made of potential uses of assets from the terminated Superconducting Super Collider (SSC) project. These project definition studies focused on nine areas of use of major assets and facilities at the SSC site near Waxahachie, Texas. The studies were undertaken as part of the effort to maximize the value of the investment made in the SSC and were supported by two sets of grants, one to the Texas National Research Laboratory Commission (TNRLC) and the second to various universities and other institutions for studies of ideas raised by a public call for expressions of interest. The Settlement Agreement, recently signed by the Department of Energy (DOE) and TNRLC, provides for a division of SSC property. As part of the goal of maximizing the value of the SSC investment, the findings contained in this report are thus addressed to officials in both the Department and TNRLC. In addition, this review had several other goals: to provide constructive feedback to those doing the studies; to judge the benefits and feasibility (including funding prospects) of the projects studied; and to help worthy projects become reality by matching projects with possible funding sources.

1994-12-01T23:59:59.000Z

363

Integrated Emissions Control -- Process Review Update  

Science Conference Proceedings (OSTI)

This report provides an update of multi-pollutant control processes previously evaluated in EPRI report 1006876, "Integrated Emissions Control -- Process Review."

2002-10-01T23:59:59.000Z

364

Milestone Plan Process Improvement  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Milestone Plan Process Improvement Milestone Plan Process Improvement Milestone Plan Process Improvement Background In response to our community's concern over the milestone plan (MP) process within the system, the STRIPES Project Office initiated an in-depth evaluation of the required steps and issues surrounding this process. We concluded that the MP process could be improved for most users by tuning the system configuration. With the approval of both the STRIPES Executive Steering Committee and the STRIPES Project Office, we launched the MP Process Improvement Initiative. After many meetings with members of the STRIPES Team and Working Group, we are ready to "go-live" with this initiative. On October 1 st , 2012 the new MP process will be implemented for use by most field offices.

365

Application Content and Evaluation Criteria/Process  

E-Print Network (OSTI)

Concept ­ 50% ­ Work Plan/Statement of Project Objectives (SOPO) ­ 30% ­ Qualifications and Facilities likelihood of overall technical success. #12;Criterion 2: Work Plan/SOPO (30%) · The adequacy, clarity, and completeness of the work plan and Statement of Project Objectives (SOPO). · The soundness and likelihood

366

Advanced Materials, Processes and Evaluation Methods for ...  

Science Conference Proceedings (OSTI)

... Effect Of Machine Induced Notch And Foreign Object Damage Induced Notch And Its Influence On The Tensile Property Of A Gas Turbine Engine Fan Blade ...

367

Caregiver Training Initiative Process and Implementation Evaluation  

E-Print Network (OSTI)

training programs. The importance of intensive case management,management, needs-based payment, childcare, and transportation. Programs include trainingmanagement, needs- based payment, childcare, transportation Programs: CHHA, CNA, LVN, LPT, EMT, RN Employers/Clinical Training

Matthias, Ruth; Morrison, Ellen; Chapman, Susan; Benjamin, A.E. Ted

2002-01-01T23:59:59.000Z

368

Process Deviation  

NLE Websites -- All DOE Office Websites (Extended Search)

0 Process Deviation 11_0304 Page 1 of 6 0 Process Deviation 11_0304 Page 1 of 6 EOTA - Business Process Document Title: Process Deviation Document Number: P-010 Rev 11-0304 Document Owner: Elizabeth Sousa Backup Owner: Melissa Otero Approver(s): Melissa Otero Parent Document: Q-001, Quality Manual Notify of Changes: EOTA Employees Referenced Document(s): F-013 Process Deviation Form, P-008 Corrective/Preventive Action, F-014 Process Deviation Log, ADMP-001 Procurement Process P-010 Process Deviation 11_0304 Page 2 of 6 Revision History: Rev. Description of Change A Initial Release 08_0822 Process assigned to new owner. Process and flowchart modified to require completion of all items on F-013. 09_0122 Process and flowchart modified to reflect process modifications.

369

Processing Division  

Science Conference Proceedings (OSTI)

Advances the processing knowledge and managerial skills by providing a forum of technical information and networking opportunities. Processing Division Divisions achievement agricultural analytical application award awards biotechnology detergents

370

EIS Process  

NLE Websites -- All DOE Office Websites (Extended Search)

Process The EIS Process The two Conversion Facility EISs have been prepared pursuant to the National Environmental Policy Act (NEPA) of 1969, Council on Environmental Quality NEPA...

371

Proposal Process  

NLE Websites -- All DOE Office Websites (Extended Search)

Proposal Process R&D Overview 100G Testbed Testbed Description Testbed Results Current Testbed Research Proposal Process Terms and Conditions Virtual Circuits (OSCARS) Performance...

372

Supplier Selection Management Process  

NLE Websites -- All DOE Office Websites (Extended Search)

ADMP-002 Vendor Selection and Management Process 11_0203 1 of 9 ADMP-002 Vendor Selection and Management Process 11_0203 1 of 9 EOTA - Business Process Document Title: Vendor Selection and Management Process Document Number: ADMP-002 Rev. 11_0203 Document Owner: Elizabeth Sousa Backup Owner: Melissa Otero Approver(s): Melissa Otero Parent Document: Q-001, Quality Manual Notify of Changes: EOTA Employees Referenced Document(s): ADMF-009 Vendor Audit Plan, ADMF-010 Vendor Audit Checklist, ADMF-011 Vendor Audit Report, ADMF-015 Vendor Evaluation Record, ADMP-001 Procurement Process, ADMF-016 EOTA Vendor List, REG-003 Record Register ADMP-002 Vendor Selection and Management Process 11_0203 2 of 9 Revision History: Rev. Description of Change A Initial Release 08_1110 Added verbiage and reference for ADMF-016, EOTA Vendor List to process.

373

Nondestructive evaluations  

SciTech Connect

This report discusses Nondestructive Evaluation (NDE) thrust area which supports initiatives that advance inspection science and technology. The goal of the NDE thrust area is to provide cutting-edge technologies that have promise of inspection tools three to five years in the future. In selecting projects, the thrust area anticipates the needs of existing and future Lawrence Livermore National Laboratory (LLNL) programs. NDE provides materials characterization inspections, finished parts, and complex objects to find flaws and fabrication defects and to determine their physical and chemical characteristics. NDE also encompasses process monitoring and control sensors and the monitoring of in-service damage. For concurrent engineering, NDE becomes a frontline technology and strongly impacts issues of certification and of life prediction and extension. In FY-92, in addition to supporting LLNL programs and the activities of nuclear weapons contractors, NDE has initiated several projects with government agencies and private industries to study aging infrastructures and to advance manufacturing processes. Examples of these projects are (1) the Aging Airplanes Inspection Program for the Federal Aviation Administration, (2) Signal Processing of Acoustic Signatures of Heart Valves for Shiley, Inc.; and (3) Turbine Blade Inspection for the Air Force, jointly with Southwest Research Institute and Garrett. In FY-92, the primary contributions of the NDE thrust area, described in this report were in fieldable chemical sensor systems, computed tomography, and laser generation and detection of ultrasonic energy.

Kulkarni, S.

1993-03-01T23:59:59.000Z

374

Hydrocarbon Processing`s refining processes `96  

Science Conference Proceedings (OSTI)

The paper compiles information on the following refining processes: alkylation, benzene reduction, benzene saturation, catalytic cracking, catalytic reforming, coking, crude distillation, deasphalting, deep catalytic cracking, electrical desalting, ethers, fluid catalytic cracking, hydrocracking, hydrogenation, hydrotreating, isomerization, resid catalytic cracking, treating, and visbreaking. The application, products, a description of the process, yield, economics, installation, and licensor are given for each entry.

NONE

1996-11-01T23:59:59.000Z

375

On-Site Assessment Checklists  

Science Conference Proceedings (OSTI)

... Reader software from Adobe Systems Inc ... HB 150-1 Checklist*, Energy Efficient Lighting ... Identity and Privilege Credential Management Testing, 2012 ...

2013-07-17T23:59:59.000Z

376

Evaluation of selected chemical processes for production of low-cost silocon. (Phases I and II. ) Final report, October 9, 1975--July 9, 1978. Silicon Material Task, Low-Cost Solar Array Project  

SciTech Connect

The zinc reduction of silicon tetrachloride in a fluidized bed of seed particles to yield a granular product was studied along with several modifications of the thermal decomposition or hydrogen reduction of silicon tetraiodide. Although all contenders were believed to be capable of meeting the quality requirements of the LSA Project, it was concluded that only the zinc reduction of the chloride could be made economically feasible at a cost below $10/kg silicon (1975 dollars). Accordingly, subsequent effort was limited to evaluating that process. A miniplant, consisting of a 5-cm-diameter fluidized-bed reactor and associated equipment was used to study the deposition parameters, temperature, reactant composition, seed particle size, bed depth, reactant throughput, and methods of reactant introduction. It was confirmed that the permissible range of fluidized-bed temperature was limited at the lower end by zinc condensation (918 C) and at higher temperatures by rapidly decreasing conversion efficiency (by 0.1 percent per degree C from 72 percent (thermodynamic) at 927 for a stoichiometric mixture). Use of a graded bed temperature was shown to increase the conversion efficiency over that obtained in an isothermal bed. Other aspects of the process such as the condensation and fused-salt electrolysis of the ZnCl/sub 2/ by-product for recycle of zinc and chlorine were studied to provide information required for design of a 50 MT/year experimental facility, visualized as the next stage in the development. Projected silicon costs of $7.35 and $8.71 per kg (1975 dollars) for a 1000 MT/year facilitywere obtained, depending upon the number and size of the fluidized-bed reactors and ZnCl/sub 2/ electrolytic cells used. An energy payback time of 5.9 months was calculated for the product silicon.

Blocher, J.M. Jr.; Browning, M.F.

1978-07-09T23:59:59.000Z

377

Preliminary analysis of the state of the art of robotics and precision engineering and evaluation of potential for improved energy utilization in the pulp, paper, and related energy-consuming processes. Final report  

Science Conference Proceedings (OSTI)

This study was undertaken to conduct a preliminary analysis of the state of the art of two technologies, robotics and precision engineering, and to evaluate their potential for improved energy utilization in the pulp, paper, and related energy consuming processes. Activity in the robotics field is growing rapidly, most activity being related to the development of smart robots rather than to systems. There is a broad base of support, both in industry and the universities, for upgrading robot machine capabilities. A large part of that support is associated with visualization and tactile sensors which facilitate assembly, placement, inspection, and tracking. Progress in this area is relatively rapid and development times are short for specifically engineered applications. The critical path in the development of robotic systems lies in the generation of reliable sensor signals. Robotic systems require a broad spectrum of sensors from which hierarchical logic systems can draw decision making information. This requirement resulted in the establishment of a program at the National Bureau of Standards which is attempting to develop a spectrum of sensor capabilities. Such sensors are applicable to robotic system automatic process control in a variety of energy-intensive industries. Precision engineering is defined as the generation or manufacture of components wherein geometry, dimension, and surface finish are controlled to within several hundred Angstroms in single point turning operations. Investigation into the state of the art of precision engineering in the United States finds that this capability exists in several national laboratories and is intended to be used exclusively for the development of weapons. There is an attempt at the present time by Lawrence Livermore Laboratory to expand its capability into industry. Several corporations are now beginning to develop equipment to support the precision engineering field.

None

1982-01-01T23:59:59.000Z

378

Process Deviation  

NLE Websites -- All DOE Office Websites (Extended Search)

10 Course/Analysis Initiation Process 11_0512 Page 1 of 6 10 Course/Analysis Initiation Process 11_0512 Page 1 of 6 EOTA - Business Process Document Title: Course/Analysis Initiation Process Document Number: ISDP- 010 Rev 11_0512 Document Owner: Elizabeth Sousa Backup Owner: Vickie Pleau Approver(s): Melissa Otero Parent Document: ISDP-002, Training Production Process Notify of Changes: ISD, ITT, MGT Referenced Document(s): ISDF-001 Technical Direction, ISDF-035 Analysis Feasibility Assessment, ISDP-010, Course Analysis Initiation Process, ISDP-015, WBT/ILT/Ex Design Process ISDP-010 Course/Analysis Initiation Process 11_0512 Page 2 of 6 Revision History: Rev. Description of Change 10_0630 Initial Release 11_0512 Modified verbiage for clarification and updated referenced documents.

379

Selection Process  

Science Conference Proceedings (OSTI)

... review and evaluation is based upon extensive information including the success of the Phase I effort as contained in a final report from the ...

2012-08-15T23:59:59.000Z

380

Process Deviation  

NLE Websites -- All DOE Office Websites (Extended Search)

5 WBT/ILT/EX Course Design Process 10_0630 Page 1 of 6 5 WBT/ILT/EX Course Design Process 10_0630 Page 1 of 6 EOTA - Business Process Document Title: WBT/ILT/EX Course Design Process Document Number: ISDP-015 Rev. 10_0630 Document Owner: Elizabeth Sousa Backup Owner: Melissa Otero Approver(s): Melissa Otero Parent Document: ISDP-002, Training Production Process Notify of Changes: ISD, ITT, MGT Referenced Document(s): ISDF-046 Training Design/Development Summary, ISDF-004 Design Document, ISDF-006A WBT Script Template, ISDF- 007 Lesson Plan Template, ISDF-012, ISD History File Checklist ISDP-015 WBT/ILT/EX Course Design Process 10_0630 Page 2 of 6 Revision History: Rev. Description of Change 10_0630 Initial Release ISDP-015 WBT/ILT/EX Course Design Process 10_0630 Page 3 of 6

Note: This page contains sample records for the topic "on-site evaluation process" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Process Deviation  

NLE Websites -- All DOE Office Websites (Extended Search)

7 Exercise Development Process 11_0414 Page 1 of 8 7 Exercise Development Process 11_0414 Page 1 of 8 EOTA - Business Process Document Title: Exercise Development Process Document Number: ISDP-017 Revision 11_0414 Document Owner: Elizabeth Sousa Backup Owner: Melissa Otero Approver(s): Melissa Otero Parent Document: ISDP-002, Training Product Process Notify of Changes: ISD, ITT, MGT Referenced Document(s): ISDF-001 Technical Direction, ISDF-004 Design Document, ISDF-006 WBT Script Template, ISDF-007 Lesson Plan Template, ITTP-016 WBT Programming ISDP-017 Exercise Development Process 11_0414 Page 2 of 8 Revision History: Rev. Description of Change 10_0630 Initial Release 11_0223 Made changes to accurately reflect TPP. 11_0414 Added Derivative Classifier to step 12.0 ISDP-017 Exercise Development Process 11_0414 Page 3 of 8

382

Process Deviation  

NLE Websites -- All DOE Office Websites (Extended Search)

5 Website Development-Maintenance Process 11_0419Page 1 of 6 5 Website Development-Maintenance Process 11_0419Page 1 of 6 EOTA - Business Process Document Title: Website Development-Maintenance Process Document Number: ITTP-015 Rev. 11_0419 Document Owner: Benjamin Aragon Backup Owner: Melissa Otero Approver(s): Melissa Otero Parent Document: Q-001, Quality Manual Notify of Changes: ITT Referenced Document(s): ITTF-016 Website Development/Maintenance Log, ISDP-002 Training Production Process ITTP-015 Website Development-Maintenance Process 11_0419Page 2 of 6 Revision History: Rev. Description of Change A Initial Release 11_0419 Deleted decision point 2.1 and 2.2, incorporated Notifying Requester into step 2.0, modified verbiage for clarification. ITTP-015 Website Development-Maintenance Process 11_0419Page 3 of 6

383

Habitat Evaluation Procedures (HEP) Report; Carey Creek, Technical Report 2005.  

DOE Green Energy (OSTI)

In August 2002, the Habitat Evaluation Procedure (HEP) was used to determine baseline habitat suitability on the Carey Creek property, an acquisition completed by the Kalispel Tribe of Indians in December 2001. Evaluation species and appropriate models include bald eagle, black-capped chickadee, Canada goose, mallard, yellow warbler, and white-tailed deer. Habitat Suitability Index (HSI) values were visually estimated and agreed upon by all HEP team members. The Carey Creek Project provides a total of 172.95 Habitat Units (HUs) for the species evaluated. Conifer forest habitat provides 4.91 HUs for bald eagle, black-capped chickadee, and white-tailed deer. Forested wetlands provide 52.68 HUs for bald eagle, black-capped chickadee, mallard, and white-tailed deer. Scrub-shrub wetlands provide 2.82 HUs for mallard, yellow warbler and white-tailed deer. Wet meadow and grassland meadow provide 98.13 HUs for mallard and Canada goose. Emergent wetlands provide 11.53 HUs for mallard, muskrat, and Canada goose. Open water provides 2.88 HUs for Canada goose, mallard, and muskrat. The objective of using HEP at the Carey Creek Project and other protected properties is to document the quality and quantity of available habitat for selected wildlife species. In this way, HEP provides information on the relative value of the same area at future points in time so that the effect of management activities on wildlife habitat can be quantified. When combined with other tools, the baseline HEP will be used to determine the most effective on-site management, restoration, and enhancement actions to increase habitat suitability for targeted species. The same process will be replicated every five years to quantitatively evaluate the effectiveness of management strategies in improving and maintaining habitat conditions while providing additional crediting to BPA for enhanced habitat values.

Entz, Ray

2005-05-01T23:59:59.000Z

384

Habitat Evaluation Procedures (HEP) Report; Beaver Lake, Technical Report 2005.  

DOE Green Energy (OSTI)

On August 14, 2003, the Habitat Evaluation Procedure (HEP) was used to determine baseline habitat suitability on the Beaver Lake property, an acquisition completed by the Kalispel Tribe of Indians in November 2002. Evaluation species and appropriate models include bald eagle, black-capped chickadee, Canada goose, mallard, muskrat, yellow warbler, and white-tailed deer. Habitat Suitability Index (HSI) values were visually estimated and agreed upon by all HEP team members. The Beaver Lake Project provides a total of 232.26 Habitat Units (HUs) for the species evaluated. Conifer forest habitat provides 136.58 HUs for bald eagle, black-capped chickadee, mallard, and white-tailed deer. Forested wetland habitat provides 20.02 HUs for bald eagle, black-caped chickadee, mallard, and white-tailed deer. Scrub-shrub wetland habitat provides 7.67 HUs for mallard, yellow warbler, and white-tailed deer. Grassland meadow provides 22.69 HUs for Canada goose and mallard. Emergent wetlands provide 35.04 HUs for Canada goose, mallard, and muskrat. Open water provided 10.26 HUs for Canada goose, mallard, and muskrat. The objective of using HEP at the Beaver Lake Project and other protected properties is to document the quality and quantity of available habitat for selected wildlife species. In this way, HEP provides information on the relative value of the same area at future points in time so that the effect of management activities on wildlife habitat can be quantified. When combined with other tools, the baseline HEP will be used to determine the most effective on-site management, restoration, and enhancement actions to increase habitat suitability for targeted species. The same process will be replicated every five years to quantitatively evaluate the effectiveness of management strategies in improving and maintaining habitat conditions while providing additional crediting to BPA for enhanced habitat values.

Entz, Ray

2005-05-01T23:59:59.000Z

385

Habitat Evaluation Procedures (HEP) Report; Gamblin Lake, Technical Report 2005.  

DOE Green Energy (OSTI)

On August 12, 2003, the Habitat Evaluation Procedure (HEP) was used to determine baseline habitat suitability on the Gamblin Lake property, an acquisition completed by the Kalispel Tribe of Indians in December 2002. Evaluation species and appropriate models include bald eagle, black-capped chickadee, mallard, muskrat, and white-tailed deer. Habitat Suitability Index (HSI) values were visually estimated and agreed upon by all HEP team members. The Gamblin Lake Project provides a total of 273.28 Habitat Units (HUs) for the species evaluated. Conifer forest habitat provides 127.92 HUs for bald eagle, black-capped chickadee, mallard, and white-tailed deer. Forested wetland habitat provides 21.06 HUs for bald eagle, black-caped chickadee, mallard, and white-tailed deer. Wet meadow provides 78.05 HUs for Canada goose and mallard. Emergent wetland habitat provides 46.25 HUs for mallard, muskrat, and Canada goose. The objective of using HEP at the Gamblin Lake Project and other protected properties is to document the quality and quantity of available habitat for selected wildlife species. In this way, HEP provides information on the relative value of the same area at future points in time so that the effect of management activities on wildlife habitat can be quantified. When combined with other tools, the baseline HEP will be used to determine the most effective on-site management, restoration, and enhancement actions to increase habitat suitability for targeted species. The same process will be replicated every five years to quantitatively evaluate the effectiveness of management strategies in improving and maintaining habitat conditions while providing additional crediting to BPA for enhanced habitat values.

Entz, Ray

2005-05-01T23:59:59.000Z

386

Habitat Evaluation Procedures (HEP) Report : West Beaver Lake, 2004-2005 Technical Report.  

DOE Green Energy (OSTI)

On September 7, 2004, the Habitat Evaluation Procedure (HEP) was used to determine baseline habitat suitability on the West Beaver Lake property, an acquisition completed by the Kalispel Tribe of Indians in September 2004. Evaluation species and appropriate models include bald eagle, black-capped chickadee, mallard, muskrat, and white-tailed deer. Habitat Suitability Index (HSI) values were visually estimated and agreed upon by all HEP team members. The West Beaver Lake Project provides a total of 103.08 Habitat Units (HUs) for the species evaluated. Emergent wetland habitat provides 7.17 HUs for mallard and muskrat. Conifer forest habitat provides 95.91 HUs for bald eagle, black-capped chickadee, mallard, and white-tailed deer. The objective of using HEP at the West Beaver Lake Project and other protected properties is to document the quality and quantity of available habitat for selected wildlife species. In this way, HEP provides information on the relative value of the same area at future points in time so that the effect of management activities on wildlife habitat can be quantified. When combined with other tools, the baseline HEP will be used to determine the most effective on-site management, restoration, and enhancement actions to increase habitat suitability for targeted species. The same process will be replicated every five years to quantitatively evaluate the effectiveness of management strategies in improving and maintaining habitat conditions while providing additional crediting to BPA for enhanced habitat values.

Entz, Ray

2005-02-01T23:59:59.000Z

387

Habitat Evaluation Procedures (HEP) Report; Calispell Creek Project, Technical Report 2004-2005.  

DOE Green Energy (OSTI)

On July 13, 2004, the Habitat Evaluation Procedure (HEP) was used to determine baseline habitat suitability on the Calispell Creek property, an acquisition completed by the Kalispel Tribe of Indians in February 2004. Evaluation species and appropriate models include Canada goose, mallard, muskrat, yellow warbler, and white-tailed deer. Habitat Suitability Index (HSI) values were visually estimated and agreed upon by all HEP team members. The Calispell Creek Project provides a total of 138.17 Habitat Units (HUs) for the species evaluated. Emergent wetland habitat provides 5.16 HUs for mallard and muskrat. Grassland provides 132.02 HUs for mallard and Canada goose. Scrub-shrub vegetation provides 0.99 HUs for yellow warbler and white-tailed deer. The objective of using HEP at the Calispell Creek Project and other protected properties is to document the quality and quantity of available habitat for selected wildlife species. In this way, HEP provides information on the relative value of the same area at future points in time so that the effect of management activities on wildlife habitat can be quantified. When combined with other tools, the baseline HEP will be used to determine the most effective on-site management, restoration, and enhancement actions to increase habitat suitability for targeted species. The same process will be replicated every five years to quantitatively evaluate the effectiveness of management strategies in improving and maintaining habitat conditions while providing additional crediting to BPA for enhanced habitat values.

Entz, Ray

2005-02-01T23:59:59.000Z

388

Screening study for waste biomass to ethanol production facility using the Amoco process in New York State. Final report  

DOE Green Energy (OSTI)

This report evaluates the economic feasibility of locating biomass-to-ethanol waste conversion facilities in New York State. Part 1 of the study evaluates 74 potential sites in New York City and identifies two preferred sites on Staten, the Proctor Gamble and the Arthur Kill sites, for further consideration. Part 2 evaluates upstate New York and determines that four regions surrounding the urban centers of Albany, Buffalo, Rochester, and Syracuse provide suitable areas from which to select specific sites for further consideration. A separate Appendix provides supplemental material supporting the evaluations. A conceptual design and economic viability evaluation were developed for a minimum-size facility capable of processing 500 tons per day (tpd) of biomass consisting of wood or paper, or a combination of the two for upstate regions. The facility would use Amoco`s biomass conversion technology and produce 49,000 gallons per day of ethanol and approximately 300 tpd of lignin solid by-product. For New York City, a 1,000-tpd processing facility was also evaluated to examine effects of economies of scale. The reports evaluate the feasibility of building a biomass conversion facility in terms of city and state economic, environmental, and community factors. Given the data obtained to date, including changing costs for feedstock and ethanol, the project is marginally attractive. A facility should be as large as possible and located in a New York State Economic Development Zone to take advantage of economic incentives. The facility should have on-site oxidation capabilities, which will make it more financially viable given the high cost of energy. 26 figs., 121 tabs.

NONE

1995-08-01T23:59:59.000Z

389

Process Deviation  

NLE Websites -- All DOE Office Websites (Extended Search)

5 Functional/Job/Task Analysis Process 11_0718 Page 1 of 8 5 Functional/Job/Task Analysis Process 11_0718 Page 1 of 8 EOTA - Business Process Document Title: Functional/Job/Task Analysis Process Document Number: ISDP-005 Rev 11_0718 Document Owner: Elizabeth Sousa Backup Owner: Melissa Otero Approver(s): Melissa Otero Parent Document: Q-001, Quality Manual Notify of Changes: PM2 Referenced Document(s): ISDF-XXX Vision User Guide (currently being developed ) ISDP-005 Functional/Job/Task Analysis Process 11_0718 Page 2 of 8 Revision History: Rev. Description of Change 08_0410 Initial Release 10_0630 Process modified to match steps within the TPP 11_0718 Minor editorial changes; changed step 8.0 from Task-to-Training Matrix to "Analysis"-to-Training Matrix.

390

UFVA SUBCONTRACTOR PROCESS  

NLE Websites -- All DOE Office Websites (Extended Search)

SUBCONTRACTOR SITE SUBCONTRACTOR SITE ACCESS GUIDELINES: On-site Construction Lawrence Berkeley National Laboratory U.S. Department of Energy August 20, 2008 Subcontractor Site Access Guidelines: OnSite Construction Prepared for Site Construction Management August 20,2008 Version 1 Environment, Health & Safety Division .l=laz Jerry O' Faciliti Steve Black, Small Projects Facilities Deputy Director 6s/"s Date Date SUBCONTRACTOR: CONSTRUCTION Table of Contents Table of Contents ................................................................................................................................3 1. Introduction .....................................................................................................................................4 2. Procurement: Subcontractor Clause.............................................................................................4

391

aluminum processing  

Science Conference Proceedings (OSTI)

Refining of Potroom Metal Using the Hydro Ram Crucible Fluxing Process [pp. .... Approachgeneration of Aluminum Wrought Alloy Scrap of Old Cars [pp.

392

materials processing  

Science Conference Proceedings (OSTI)

... of the Stainless Steel Elaborated by the Duplex Procedure (Electric Furnace- VOD Installation) [pp. ... Materials Processing on a Solar Furnace Satellite [pp.

393

Process Developments  

Science Conference Proceedings (OSTI)

...Although melt loss had become the major cost factor in ingot production, it was the soaring cost of energy during the 1973 energy crisis that triggered the search for more-efficient remelt processes. This effort also sought to develop process that were less labor intensive and more...

394

Normalization of Process Safety Metrics  

E-Print Network (OSTI)

This study is aimed at exploring new process safety metrics for measuring the process safety performance in processing industries. Following a series of catastrophic incidents such as the Bhopal chemical tragedy (1984) and Phillips 66 explosion (1989), process safety became a more important subject than ever. These incidents triggered the development and promulgation of the Process Safety Management (PSM) standard in 1992. While PSM enables management to optimize their process safety programs and organizational risks, there is an emerging need to evaluate the process safety implementation across an organization through measurements. Thus, the process safety metric is applied as a powerful tool that measures safety activities, status, and performance within PSM. In this study, process safety lagging metrics were introduced to describe the contribution of process related parameters in determining the safety performance of an organization. Lagging metrics take process safety incidents as the numerator and divide it by different process-related denominators. Currently a process lagging metric (uses work hours as denominator) introduced by the Center for Chemical Process Safety (CCPS) has been used to evaluate the safety performance in processing industries. However, this lagging metric doesn't include enough process safety information. Therefore, modified denominators are proposed in this study and compared with the existing time-based denominator to validate the effectiveness and applicability of the new metrics. Each proposed metric was validated using available industry data. Statistical unitization method has converted incident rates of different ranges for the convenience of comparison. Trend line analysis was the key indication for determining the appropriateness of new metrics. Results showed that some proposed process-related metrics have the potential as alternatives, along with the time-based metric, to evaluate process safety performance within organizations.

Wang, Mengtian

2012-08-01T23:59:59.000Z

395

HYDROLOGICAL PROCESSES Hydrol. Process. (2007)  

E-Print Network (OSTI)

ACCURACY AND CHOICE OF MODELS 5.1 Accuracy of Models Pilgrim (1975) has indicated that four levels. 30. Pilgrim, D.H., "Model Evaluation, Testing and Parameter Estimation in Hydrology", edited by T

Laio, Francesco

396

Casting Processes  

Science Conference Proceedings (OSTI)

Table 1   General characteristics of casting processes...casting processes Characteristic Casting process Green sand Resin-bonded sand Plaster Lost foam Investment Permanent mold Die Part Material (casting) All All Zn to Cu Al to cast iron All Zn to cast iron Zn to Cu Porosity and voids (a) C-E D-E D-E C-E E B-C A-C Shape (b) All All All All All Not T3, 5,...

397

Contaminated nickel scrap processing  

Science Conference Proceedings (OSTI)

The DOE will soon choose between treating contaminated nickel scrap as a legacy waste and developing high-volume nickel decontamination processes. In addition to reducing the volume of legacy wastes, a decontamination process could make 200,000 tons of this strategic metal available for domestic use. Contaminants in DOE nickel scrap include {sup 234}Th, {sup 234}Pa, {sup 137}Cs, {sup 239}Pu (trace), {sup 60}Co, U, {sup 99}Tc, and {sup 237}Np (trace). This report reviews several industrial-scale processes -- electrorefining, electrowinning, vapormetallurgy, and leaching -- used for the purification of nickel. Conventional nickel electrolysis processes are particularly attractive because they use side-stream purification of process solutions to improve the purity of nickel metal. Additionally, nickel purification by electrolysis is effective in a variety of electrolyte systems, including sulfate, chloride, and nitrate. Conventional electrorefining processes typically use a mixed electrolyte which includes sulfate, chloride, and borate. The use of an electrorefining or electrowinning system for scrap nickel recovery could be combined effectively with a variety of processes, including cementation, solvent extraction, ion exchange, complex-formation, and surface sorption, developed for uranium and transuranic purification. Selected processes were reviewed and evaluated for use in nickel side-stream purification. 80 refs.

Compere, A.L.; Griffith, W.L.; Hayden, H.W.; Johnson, J.S. Jr.; Wilson, D.F.

1994-12-01T23:59:59.000Z

398

Federal Energy Management Program: ESPC ENABLE Procurement Process  

NLE Websites -- All DOE Office Websites (Extended Search)

Procurement Process to someone by E-mail Procurement Process to someone by E-mail Share Federal Energy Management Program: ESPC ENABLE Procurement Process on Facebook Tweet about Federal Energy Management Program: ESPC ENABLE Procurement Process on Twitter Bookmark Federal Energy Management Program: ESPC ENABLE Procurement Process on Google Bookmark Federal Energy Management Program: ESPC ENABLE Procurement Process on Delicious Rank Federal Energy Management Program: ESPC ENABLE Procurement Process on Digg Find More places to share Federal Energy Management Program: ESPC ENABLE Procurement Process on AddThis.com... Energy Savings Performance Contracts ENABLE Procurement Process Energy Service Company Options Project Assistance & Training Utility Energy Service Contracts On-Site Renewable Power Purchase Agreements

399

Process Deviation  

NLE Websites -- All DOE Office Websites (Extended Search)

2 ILT Course Implementation 11_0512 Page 1 of 8 2 ILT Course Implementation 11_0512 Page 1 of 8 EOTA - Business Process Document Title: ILT Course Implementation Document Number: ISDP-012 Rev. 11_0512 Document Owner: Elizabeth Sousa Backup Owner: Melissa Otero Approver(s): Melissa Otero Parent Document: ISDP-002, Training Production Process Notify of Changes: ISD, ITT, MGT Referenced Document(s): ISDF-007 Lesson Plan Template, ISDF-014 Course Announcement, ISDF-010, After Action Report, ISDF-008 ILT Student Feedback Survey, ISDF-009, Design/Development Review Checklist, ITTF-014 Publication Review and Approval, ISDF-048, After Action Report Calculation Template, ISDP-011, Exercise Course Implementation Process, ITTP-015 Website Development/Maintenance Process, ISDF-015, ILT/EX Course Support Checklist

400

Process Applications  

Science Conference Proceedings (OSTI)

...flash-welding applications include: Chain links Transmission bands Automotive flywheel ring gears Strips that are joined for continuous processing lines Wire and bar drawing operations for continuous stamping press

Note: This page contains sample records for the topic "on-site evaluation process" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Process Heating  

Science Conference Proceedings (OSTI)

This technical update uses real world examples to discuss applications of electrotechnology in industrial process heating and to highlight some of the emerging technologies in this field. These emerging technologies, when implemented in a plant, will provide significant energy savings as well as increase productivity. The report presents three case studies of successful implementation of two different electric process-heating technologies in three different industries. The case studies show that in some ...

2011-12-07T23:59:59.000Z

402

Solar industrial process heat  

DOE Green Energy (OSTI)

The aim of the assessment reported is to candidly examine the contribution that solar industrial process heat (SIPH) is realistically able to make in the near and long-term energy futures of the United States. The performance history of government and privately funded SIPH demonstration programs, 15 of which are briefly summarized, and the present status of SIPH technology are discussed. The technical and performance characteristics of solar industrial process heat plants and equipment are reviewed, as well as evaluating how the operating experience of over a dozen SIPH demonstration projects is influencing institutional acceptance and economoc projections. Implications for domestic energy policy and international implications are briefly discussed. (LEW)

Lumsdaine, E.

1981-04-01T23:59:59.000Z

403

Oil recovery process and system  

Science Conference Proceedings (OSTI)

An on-site, in-line process and system for recovering oil from oil-bearing subterranean formations which involves the production, modification, dilution and injection of a polymer solution, preferably consisting essentially of an aqueous solution of a partially hydrolyzed polyacrylamide, having injectivity and mobility properties capable of meeting the specific permeability requirements of substantially any subterranean formation to be achieved. The polymer solutions prepared by the process and system can be used as drive fluids for displacing oil (secondary polymer flood) in an oil-bearing formation, as mobility buffers to follow micellar dispersion floods in the conjoint presence of chemical reagents in other chemical floods (e.g., surfactant, caustic, etc.), or they can follow a water flood. The solutions can also be used to promote pipelining of high viscosity crude oil. Irrespective of the use to which the solutions are put, the process and system enable the polymer solutions to be customized, or tailor-made, so to speak, to meet the performance demands of the environment in which they are to be used, whether it be an oil-bearing formation or a pipeline.

Argabright, P. A.; Rhudy, J. S.

1985-03-12T23:59:59.000Z

404

Deposition Process  

NLE Websites -- All DOE Office Websites (Extended Search)

Pulsed Plasma Processing Pulsed Plasma Processing NEW: Downloadable: Invited Talk "Pulsed Metal Plasmas," presented at the 2006 AVS Meeting, San Francisco, California, November 15, 2006. (PDF, file size 8 MB). Plasma Sources for Window Coatings Deposition processes for low-emittance and solar control coatings can be improved through the use of advanced plasma technology developed at LBNL. A new type of constricted glow-discharge plasma source was selected for the 1997 R&D 100 Award. Invented by LBNL researchers Andre Anders, Mike Rubin, and Mike Dickinson, the source was designed to be compatible with industrial vacuum deposition equipment and practice. Construction is simple, rugged and inexpensive. It can operate indefinitely over a wide range of chamber pressure without any consumable parts such as filaments or grids. Several different gases including Argon, Oxygen and Nitrogen have been tested successfully.

405

Process Deviation  

NLE Websites -- All DOE Office Websites (Extended Search)

3 WBT Course Implementation 11_0512 Page 1 of 7 3 WBT Course Implementation 11_0512 Page 1 of 7 EOTA - Business Process Document Title: WBT Course Implementation Document Number: ISDP-013 Rev. 11_0512 Document Owner: Elizabeth Sousa Backup Owner: Vickie Pleau Approver(s): Melissa Otero Parent Document: ISDP-002, Training Product Process Notify of Changes: ISD, ITT, MGT Referenced Document(s): ISDF-014, Course Announcement Template, ITTF-014, Publication Review and Approval, ISDF-010 After Action Report, ISDF-042 Validation & Acceptance, ISDF-048, After Action Report Calculation Template, ITTP-015, Website Development Maintenance ISDP-013 WBT Course Implementation 11_0512 Page 2 of 7 Revision History: Rev. Description of Change 10_0630 Initial Release 11_0405 Added ISDF-048, After Action Report Calculation Template to process.

406

FLUORINATION PROCESS  

DOE Patents (OSTI)

A process for the fluorination of uranium metal is described. It is known that uranium will react with liquid chlorine trifluoride but the reaction proceeds at a slow rate. However, a mixture of a halogen trifluoride together with hydrogen fluoride reacts with uranium at a significantly faster rate than does a halogen trifluoride alone. Bromine trifluoride is suitable for use in the process, but chlorine trifluoride is preferred. Particularly suitable is a mixture of ClF/sub 3/ and HF having a mole ratio (moles

McMillan, T.S.

1957-10-29T23:59:59.000Z

407

Chemical Sciences & Engineering - Nuclear & Environmental Processes...  

NLE Websites -- All DOE Office Websites (Extended Search)

processing of these fuels. In addition to evaluating degradation and radionuclide release from used nuclear fuels, group researchers are developing metal alloy waste...

408

Great Plains Gasification Project process stream design data. [Lurgi Process  

Science Conference Proceedings (OSTI)

The Great Plains Coal Gasification Plant (GPGP) is the first commercial coal-to-synthetic natural gas plant constructed and operated in the United States. This process stream design data report provides non-proprietary information to the public on the major GPGP process streams. The report includes a simplified plant process block flow diagram, process input/output diagrams, and stream design data sheets for 161 major GPGP process and effluent streams. This stream design data provides an important base for evaluation of plant and process performance and for verification of the Department of Energy's ASPEN (Advanced System for Process Engineering) computer simulation models of the GPGP processes. 8 refs., 22 figs., 2 tabs.

Honea, F.I.

1985-09-01T23:59:59.000Z

409

Biosphere Process Model Report  

Science Conference Proceedings (OSTI)

To evaluate the postclosure performance of a potential monitored geologic repository at Yucca Mountain, a Total System Performance Assessment (TSPA) will be conducted. Nine Process Model Reports (PMRs), including this document, are being developed to summarize the technical basis for each of the process models supporting the TSPA model. These reports cover the following areas: (1) Integrated Site Model; (2) Unsaturated Zone Flow and Transport; (3) Near Field Environment; (4) Engineered Barrier System Degradation, Flow, and Transport; (5) Waste Package Degradation; (6) Waste Form Degradation; (7) Saturated Zone Flow and Transport; (8) Biosphere; and (9) Disruptive Events. Analysis/Model Reports (AMRs) contain the more detailed technical information used to support TSPA and the PMRs. The AMRs consists of data, analyses, models, software, and supporting documentation that will be used to defend the applicability of each process model for evaluating the postclosure performance of the potential Yucca Mountain repository system. This documentation will ensure the traceability of information from its source through its ultimate use in the TSPA-Site Recommendation (SR) and in the National Environmental Policy Act (NEPA) analysis processes. The objective of the Biosphere PMR is to summarize (1) the development of the biosphere model, and (2) the Biosphere Dose Conversion Factors (BDCFs) developed for use in TSPA. The Biosphere PMR does not present or summarize estimates of potential radiation doses to human receptors. Dose calculations are performed as part of TSPA and will be presented in the TSPA documentation. The biosphere model is a component of the process to evaluate postclosure repository performance and regulatory compliance for a potential monitored geologic repository at Yucca Mountain, Nevada. The biosphere model describes those exposure pathways in the biosphere by which radionuclides released from a potential repository could reach a human receptor. Collectively, the potential human receptor and exposure pathways form the biosphere model. More detailed technical information and data about potential human receptor groups and the characteristics of exposure pathways have been developed in a series of AMRs and Calculation Reports.

J. Schmitt

2000-05-25T23:59:59.000Z

410

Process Maps  

Science Conference Proceedings (OSTI)

...to the chief measure of the power-dissipation capacity of the material, the dimensionless parameter called the efficiency of power dissipation, η: (Eq 57) Deformation processing should be focused on the regions of maximum efficiency of power dissipation unless structural instabilities, for example,...

411

Work Control Process, 3/9/95 | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Work Control Process, 3995 Work Control Process, 3995 The objective of this surveillance guide is to provide lines of inquiry for evaluating the effectiveness of the...

412

A lube hydrodearomatization process  

Science Conference Proceedings (OSTI)

The current worldwide demand of lubricating oils has increased the research for new technologies to obtain products with better quality, using processes less complicated than the current ones and at the same time decrease the process costs. The most familiar general process to obtain lubricating oils is by means of aromatic extraction with solvent. However, this stage represents elevated cost by raw materials consumptions; for that reason, it has increased the study of new catalytic technologies to substitute this step. In this work we are showing the last advances obtained by IMP developments about the application of the catalytic hydrogenation of aromatic compounds in lubricating oils, using a catalyst containing molybdenum as active metal and nickel and/or phosporous as promoters, - supported on gamma alumina with different concentration of metals. These catalysts have been evaluated in a pilot plant unit using several feeds of lubricating oils at different operating conditions, obtaining products with better quality than those produced by solvent extraction.

Ramos, R.Z. (Instituto Mexicano del Petroleo, San Bartolo Atepehuacan (Mexico))

1988-06-01T23:59:59.000Z

413

Process Deviation  

NLE Websites -- All DOE Office Websites (Extended Search)

1 Exercise Course Implementation 10_0630 Page 1 of 8 1 Exercise Course Implementation 10_0630 Page 1 of 8 EOTA - Business Process Document Title: Exercise Course Implementation Document Number: ISDP-011 Rev. 10_0630 Document Owner: Elizabeth Sousa Backup Owner: Melissa Otero Approver(s): Melissa Otero Parent Document: ISDP-002, Training Production Process Notify of Changes: ISD, ITT, MGT Referenced Document(s): ISDF-004 Design Document, ISDF-006 WBT Script Template, ISDF-007 Lesson Plan Template, ISDP-012, ILT Course Implementation, ISDF-008 ILT Student Feedback Survey, ISDF-010 After Action Report ISDP-011 Exercise Course Implementation 10_0630 Page 2 of 8 Revision History: Rev. Description of Change 10_0630 Initial Release ISDP-011 Exercise Course Implementation 10_0630 Page 3 of 8

414

Screening study for waste biomass to ethanol production facility using the Amoco process in New York State. Appendices to the final report  

DOE Green Energy (OSTI)

The final report evaluates the economic feasibility of locating biomass-to-ethanol waste conversion facilities in New York State. Part 1 of the study evaluates 74 potential sites in New York City and identifies two preferred sites on Staten Island, the Proctor and Gamble and the Arthur Kill sites for further consideration. Part 2 evaluates upstate New York and determines that four regions surrounding the urban centers of Albany, Buffalo, Rochester, and Syracuse provide suitable areas from which to select specific sites for further consideration. A conceptual design and economic viability evaluation were developed for a minimum-size facility capable of processing 500 tons per day (tpd) of biomass consisting of wood or paper, or a combination of the two for upstate regions. The facility would use Amoco`s biomass conversion technology and produce 49,000 gallons per day of ethanol and approximately 300 tpd of lignin solid by-product. For New York City, a 1,000-tpd processing facility was also evaluated to examine effects of economies of scale. The reports evaluate the feasibility of building a biomass conversion facility in terms of city and state economic, environmental, and community factors. Given the data obtained to date, including changing costs for feedstock and ethanol, the project is marginally attractive. A facility should be as large as possible and located in a New York State Economic Development Zone to take advantage of economic incentives. The facility should have on-site oxidation capabilities, which will make it more financially viable given the high cost of energy. This appendix to the final report provides supplemental material supporting the evaluations.

NONE

1995-08-01T23:59:59.000Z

415

Hydropyrolysis process  

DOE Patents (OSTI)

An improved process for producing a methane-enriched gas wherein a hydrogen-deficient carbonaceous material is treated with a hydrogen-containing pyrolysis gas at an elevated temperature and pressure to produce a product gas mixture including methane, carbon monoxide and hydrogen. The improvement comprises passing the product gas mixture sequentially through a water-gas shift reaction zone and a gas separation zone to provide separate gas streams of methane and of a recycle gas comprising hydrogen, carbon monoxide and methane for recycle to the process. A controlled amount of steam also is provided which when combined with the recycle gas provides a pyrolysis gas for treatment of additional hydrogen-deficient carbonaceous material. The amount of steam used and the conditions within the water-gas shift reaction zone and gas separation zone are controlled to obtain a steady-state composition of pyrolysis gas which will comprise hydrogen as the principal constituent and a minor amount of carbon monoxide, steam and methane so that no external source of hydrogen is needed to supply the hydrogen requirements of the process. In accordance with a particularly preferred embodiment, conditions are controlled such that there also is produced a significant quantity of benzene as a valuable coproduct.

Ullman, Alan Z. (Northridge, CA); Silverman, Jacob (Woodland Hills, CA); Friedman, Joseph (Huntington Beach, CA)

1986-01-01T23:59:59.000Z

416

Coproduction of peaking fuels in IGCC power plants: a process-screening study. Final report  

SciTech Connect

This study evaluated and compared various options for processing a portion of the medium BTU gas (MBG) produced in a coal gasification combined cycle (GCC) power plant to produce a fuel which might be suitable for peaking or intermediate load use. Two alternate objectives were investigated in separate phases of the study. The first phase examined options for processing and storing a fuel which could be withdrawn and used in absorbing daily load swings in power generation demand. The second phase investigated options for meeting the seasonal peaks in gas demand of a joint gas/electric utility by converting a portion of the MBG to substitute natural gas (SNG) during the months of peak gas demand. For each phase, process designs and cost estimates were completed for several cases, based on both Texaco and BGC-Lurgi Slagging Gasification Technology. For the purposes of this screening study, it was assumed that the peaking fuel production facilities are incremental to the base GCC plant. The costs to produce and store the peaking fuel, excluding the cost of the MBG feed, were calculated by the revenue requirement method. Various sensitivities were evaluated on case assumptions, including a sensitivity to MBG feed value. For daily peaking use, the co-production of methanol and electricity by the ''once-through'' scheme (as studied in EPRI Report AP-2212) proved the most attractive option. Other options which produced gaseous fuels (hydrogen or SNG) for on-site storage were at least 30% more costly. Storage of SNG in an existing natural gas pipeline system was at least 10% higher, excluding pipeline charges. For seasonal SNG production there was little difference between the options studied, within the accuracy of the estimates. 13 refs., 72 tabs.

Shenoy, T.A.; Solomon, J.; O'Brien, V.J.

1986-07-01T23:59:59.000Z

417

ASI Supplier Evaluation Results  

NLE Websites -- All DOE Office Websites (Extended Search)

5 Vendor Evaluation Record 11_0203 1 of 4 5 Vendor Evaluation Record 11_0203 1 of 4 EOTA - Business Form Document Title: Vendor Evaluation Record Document Number: ADMF-015 Rev. 11_0203 Document Owner: Elizabeth Sousa Backup Owner: Melissa Otero Approver(s): Melissa Otero Parent Document: ADMP-002, Vendor Selection and Management Process Notify of Changes: EOTA Employees Referenced Document(s): N/A ADMF-015 Vendor Evaluation Record 11_0203 2 of 4 Revision History: Rev. Description of Change A Initial Release 08_1016 Added section for vendors that will not be used due to non-conformance of material delivered. 08_1110 Removed section for vendors that will not be used due to non-conformance of material delivered. Do Not Use section will be placed on ADMF-016, Vendor List.

418

An Evaluation of Solar Valuation Methods Used in Utility Planning...  

NLE Websites -- All DOE Office Websites (Extended Search)

An Evaluation of Solar Valuation Methods Used in Utility Planning and Procurement Processes Title An Evaluation of Solar Valuation Methods Used in Utility Planning and Procurement...

419

Process development studies of the bioconversion of cellulose and production of ethanol. Semi annual report  

Science Conference Proceedings (OSTI)

Progress in the following process development studio is reported: economic evaluation of hydrolysis and ethanol fermentation schemes, economic evaluation of alternative fermentation processes, raw materials evaluation, and evaluation of pretreatment process. Microbiological and enzymatic studies reported are: production of cellulase enzyme from high yielding mutants, hydrolysis reactor development, xylose fermentation, and xylanese production. Fermentation and separation processes include: process development studies on vacuum fermentation and distillation, evaluation of low energy separations processes, large scale hollow fiber reactor development. (MHR)

Wilke, C.R.; Blanch, H.W.

1981-04-01T23:59:59.000Z

420

WELDING PROCESS  

DOE Patents (OSTI)

A method of joining metal parts for the preparation of relatively long, thin fuel element cores of uranium or alloys thereof for nuclear reactors is described. The process includes the steps of cleaning the surfaces to be jointed, placing the sunfaces together, and providing between and in contact with them, a layer of a compound in finely divided form that is decomposable to metal by heat. The fuel element members are then heated at the contact zone and maintained under pressure during the heating to decompose the compound to metal and sinter the members and reduced metal together producing a weld. The preferred class of decomposable compounds are the metal hydrides such as uranium hydride, which release hydrogen thus providing a reducing atmosphere in the vicinity of the welding operation.

Zambrow, J.; Hausner, H.

1957-09-24T23:59:59.000Z

Note: This page contains sample records for the topic "on-site evaluation process" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Crystallization process  

DOE Patents (OSTI)

An improved crystallization process is disclosed