Powered by Deep Web Technologies
Note: This page contains sample records for the topic "on-board type conductive" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

An automated tool for three types of saturated hydraulic conductivity...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

automated tool for three types of saturated hydraulic conductivity laboratory measurements. An automated tool for three types of saturated hydraulic conductivity laboratory...

2

On-board Diagnostics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratorySpeeding access1 TechnicalOil inventories inOmbudsOmniOn-board

3

Structure of the Type IVa Major Pilin from the Electrically Conductive...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the Type IVa Major Pilin from the Electrically Conductive Bacterial Nanowires of Geobacter sulfurreducens. Structure of the Type IVa Major Pilin from the Electrically Conductive...

4

Hydrogen Storage Materials Requirements to Meet the 2017 On Board...  

Energy Savers [EERE]

Materials Requirements to Meet the 2017 On Board Hydrogen Storage Technical Targets Hydrogen Storage Materials Requirements to Meet the 2017 On Board Hydrogen Storage Technical...

5

Feasibility of OnBoard Thermoelectric Generation for Improved...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

OnBoard Thermoelectric Generation for Improved Vehicle Fuel Economy Feasibility of OnBoard Thermoelectric Generation for Improved Vehicle Fuel Economy Poster presentation at the...

6

BioDiesel Content On-board monitoring  

Broader source: Energy.gov (indexed) [DOE]

2008 - all rights reserved 1 (tm) BioDiesel Content On-board monitoring BioDiesel Content On-board monitoring August 6th, 2008 Copyright SP3H 2007 -- all rights reserved 2 Biofuel...

7

Analyses of Hydrogen Storage Materials and On-Board Systems  

Broader source: Energy.gov (indexed) [DOE]

estimate weight, volume, and bottom- up factory cost for the on- board storage system * Compressed H 2 (update) * Liquid HC* Evaluate or develop designs and cost inputs to...

8

On-Board Ammonia Generation Using Delphi Diesel Fuel Reformer  

Broader source: Energy.gov (indexed) [DOE]

On-Board Ammonia Generation Using Delphi Diesel Fuel Reformer Mark Hemingway, Dr. Joachim Kupe, Joseph Bonadies, Mike Seino, Dr. John Kirwan, - Delphi Powertrain DEER, August...

9

Method for producing high carrier concentration p-Type transparent conducting oxides  

DOE Patents [OSTI]

A method for producing transparent p-type conducting oxide films without co-doping plasma enhancement or high temperature comprising: a) introducing a dialkyl metal at ambient temperature and a saturated pressure in a carrier gas into a low pressure deposition chamber, and b) introducing NO alone or with an oxidizer into the chamber under an environment sufficient to produce a metal-rich condition to enable NO decomposition and atomic nitrogen incorporation into the formed transparent metal conducting oxide.

Li, Xiaonan (Evergreen, CO); Yan, Yanfa (Littleton, CO); Coutts, Timothy J. (Golden, CO); Gessert, Timothy A. (Conifer, CO); Dehart, Clay M. (Westminster, CO)

2009-04-14T23:59:59.000Z

10

On Energy and Entropy Influxes in the Green-Naghdi Type III Theory of Heat Conduction  

E-Print Network [OSTI]

The energy-influx/entropy-influx relation in the Green-Naghdi Type III theory of heat conduction is examined within a thermodynamical framework \\`a la Mueller-Liu, where that relation is not specified a priori irrespectively of the constitutive class under attention. It is shown that the classical assumption, i.e., that the entropy influx and the energy influx are proportional via the absolute temperature, holds true if heat conduction is, in a sense that is made precise, isotropic. In addition, it is proven that the standard assumption does not hold in case of transversely isotropic conduction.

Swantje Bargmann; Antonino Favata; Paolo Podio-Guidugli

2012-09-13T23:59:59.000Z

11

The Effects of Initial Condition of Fracture Surfaces, Acid Spending, and Type on Conductivity of Acid Fracture  

E-Print Network [OSTI]

. Another area of interest is the variation of conductivity along the fracture due to acid spending. We also investigated the contact time, acid system type, and treatment temperature effects on conductivity using San Andres dolomite cores. The results...

Almomen, Ali Mansour

2013-07-24T23:59:59.000Z

12

On-Board Engine Exhaust Particulate Matter Sensor for HCCI and...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

On-Board Engine Exhaust Particulate Matter Sensor for HCCI and Conventional Diesel Engines On-Board Engine Exhaust Particulate Matter Sensor for HCCI and Conventional Diesel...

13

Structure of the Type IVa Major Pilin from the Electrically Conductive Bacterial Nanowires of Geobacter sulfurreducens  

SciTech Connect (OSTI)

Several species of bacteria are capable of reducing insoluble metal oxides as well as other extracellular electron acceptors. These bacteria play a critical role in the cycling of minerals in subsurface environments, sediments, and groundwater. In some species of bacteria, such as Geobacter sulfurreducens, the transport of electrons is facilitated by filamentous fibers that are referred to as bacterial nanowires. These nanowires belong to the type IVa family of pilin proteins and are mainly comprised of one subunit protein, PilA. Here, we report the high resolution solution nuclear magnetic resonance (NMR) structure of the PilA protein from G. sulfurreducens determined in detergent micelles. The protein is over 85% ?-helical and exhibits similar architecture to the N-terminal regions of other non-conductive type IVa pilins. The detergent micelle interacts with the first 21 amino acids of the protein, indicating that this region likely associates with the bacterial inner membrane prior to fiber formation. A model of the G. sulfurreducens pilus fiber is proposed based on docking of this structure into the fiber model of the type IVa pilin from Neisseria gonorrhoeae. This model provides insight into the organization of aromatic amino acids that are important for electrical conduction.

Reardon, Patrick N.; Mueller, Karl T.

2013-10-11T23:59:59.000Z

14

Technical and management considerations in conducting type B shipping container tests  

SciTech Connect (OSTI)

The Code of Federal Regulations (CFR) mandate that type B shipping containers are capable of surviving specific drop tests. One approach for demonstrating compliance to the CFRs is to drop test a shipping container. This paper will discuss the technical and management considerations in conducting such drop tests on the 9975 family of shipping containers. For both technical and management considerations this paper will comment on loading the shipping container, dropping the shopping container, and examination of the shipping container after the drop tests.

Whitney, M.A.; Leader, D.R.; Phipps, D.P.

1994-04-01T23:59:59.000Z

15

On Board, In-use Sensitivity Study of an Electrical Aerosol Detector...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

On Board, In-use Sensitivity Study of an Electrical Aerosol Detector (EAD) and Condensation Particle Counter (CPC) for Second by Second Diesel PM Measurements On Board, In-use...

16

On-Board Storage Systems Analysis | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F SSales LLCDiesel Engines | Department of Energy 2009On-Board

17

Two proton-conductive hybrids based on 2-(3-pyridyl)benzimidazole molecules and Keggin-type heteropolyacids  

SciTech Connect (OSTI)

Two proton-conductive organic/inorganic complexes were constructed by Keggin-type heteropolyacids and 2-(3-pyridyl)benzimidazole molecules. Single-crystal X-ray diffraction analyses revealed that two complexes crystallized in the monoclinic space group P2{sub 1}/c, exhibited different unit cell parameters, and presented different hydrogen-bonded networks constructed by 2-(3-pyridyl)benzimidazole molecules, [PMo{sub 12}O{sub 40}]{sup 3?} anions and solvent molecules. The results of thermogravimetric analyses suggest that two supramolecular complexes have different thermal stability based on the different hydrogen-bonded networks. Two complexes at 100 °C under 35–98% relative humidity showed a good proton conductivity of about 10{sup ?3} S cm{sup ?1}. The proton conductivities of two complexes under 98% relative humidity both increase on a logarithmic scale with temperature range from 25 to 100 °C. At 100 °C, both complexes showed poor proton conductivities of 10{sup ?8}–10{sup ?9} S cm{sup ?1} under acetonitrile or methanol vapor. - Graphical abstract: Two molecular hybrids constructed by Keggin-type heteropolyacids and 2-(3-pyridyl)benzimidazole molecules showed good proton conductivities of 10{sup ?3} S cm{sup ?1} at 100 °C under 35–98% relative humidity. Display Omitted - Highlights: • 2-(3-Pyridyl)benzimidazole could form hydrogen bonds via the N–H groups. • Heteropolyacids have suitable characteristics to be used excellent proton conductors. • Two proton-conductive hybrids based on Keggin HPAs and 3-PyBim were constructed. • The structures were determined by using single-crystal X-ray diffraction data. • They showed good proton conductivities of 10{sup ?3} S cm{sup ?1} at 100 °C under 35–98% RH.

Wei, Mei-Lin, E-mail: weimeilinhd@163.com; Wang, Yu-Xia; Wang, Xin-Jun

2014-01-15T23:59:59.000Z

18

Controlled oxygen vacancy induced p-type conductivity in HfO{sub 2-x} thin films  

SciTech Connect (OSTI)

We have synthesized highly oxygen deficient HfO{sub 2-x} thin films by controlled oxygen engineering using reactive molecular beam epitaxy. Above a threshold value of oxygen vacancies, p-type conductivity sets in with up to 6 times 10{sup 21} charge carriers per cm{sup 3}. At the same time, the band-gap is reduced continuously by more than 1 eV. We suggest an oxygen vacancy induced p-type defect band as origin of the observed behavior.

Hildebrandt, Erwin; Kurian, Jose; Mueller, Mathis M.; Kleebe, Hans-Joachim; Alff, Lambert [Institute of Materials Science, Technische Universitaet Darmstadt, 64287 Darmstadt (Germany); Schroeder, Thomas [IHP, 15236 Frankfurt/Oder (Germany)

2011-09-12T23:59:59.000Z

19

Proton Exchange Membrane Fuel Cells for Electrical Power Generation On-Board Commercial Airplanes  

Broader source: Energy.gov [DOE]

This report is an initial investigation of the use of proton exchange membrane (PEM) fuel cells on-board commercial aircraft.

20

On-Board Fuel Processing Go No-Go Decision, August 2004  

Fuel Cell Technologies Publication and Product Library (EERE)

DOE Decision Report on Go/No-go decision on on-board fuel processing task for fuel cell vehicles. Revised report published August 2004.

Note: This page contains sample records for the topic "on-board type conductive" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

On-board Measurement of NO and NO2 using Non-dispersive Ultraviolet...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

On-Board Measurement of Ammonia and Nitrous Oxide Using Feedback Absorption Laser Spectroscopy Combined with Amplified Resonance and Low Pressure Sampling Study of...

22

DOE Hydrogen and Fuel Cells Program Record 9017: On-Board Hydrogen...  

Broader source: Energy.gov (indexed) [DOE]

Hydrogen Storage Systems - Projected Performance and Cost Parameters DOE Hydrogen and Fuel Cells Program Record 9017: On-Board Hydrogen Storage Systems - Projected Performance...

23

The ALTCRISS project on board the International Space Station  

E-Print Network [OSTI]

The Altcriss project aims to perform a long term survey of the radiation environment on board the International Space Station. Measurements are being performed with active and passive devices in different locations and orientations of the Russian segment of the station. The goal is to perform a detailed evaluation of the differences in particle fluence and nuclear composition due to different shielding material and attitude of the station. The Sileye-3/Alteino detector is used to identify nuclei up to Iron in the energy range above 60 MeV/n. Several passive dosimeters (TLDs, CR39) are also placed in the same location of Sileye-3 detector. Polyethylene shielding is periodically interposed in front of the detectors to evaluate the effectiveness of shielding on the nuclear component of the cosmic radiation. The project was submitted to ESA in reply to the AO in the Life and Physical Science of 2004 and data taking began in December 2005. Dosimeters and data cards are rotated every six months: up to now three launches of dosimeters and data cards have been performed and have been returned with the end of expedition 12 and 13.

M. Casolino; F. Altamura; M. Minori; P. Picozza; C. Fuglesang; A. Galper; A. Popov; V. Benghin; V. M. Petrov; A. Nagamatsu; T. Berger; G. Reitz; M. Durante; M. Pugliese; V. Roca; L. Sihver F. Cucinotta; E. Semones; M. Shavers; V. Guarnieri; C. Lobascio; D. Castagnolo; R. Fortezza

2007-08-20T23:59:59.000Z

24

Production of core–shell type conducting FTO/TiO{sub 2} photoanode for dye sensitized solar cells  

SciTech Connect (OSTI)

Core–shell type photoanode composed of electrically conducting fluorine doped tin dioxide (FTO) matrix and TiO{sub 2} shell layer was prepared and applied in dye sensitized solar cells. Effects of fluorine doping on tin dioxide based cells and precursor material on shell layer were investigated. Fluorine doped tin dioxide nanoparticles were synthesized under hydrothermal conditions and resistivity value down to 17 ? cm was achieved. Cells constructed from FTO nanoparticles show enhanced performance compared to intrinsic SnO{sub 2}. Deposition of thin blocking TiO{sub 2} layers was conducted using ammonium hexafluorotitanate and titanium tetrachloride aqueous solutions for different dipping durations which yielded significant deviations in the layer morphology and affected cell parameters. Best results were obtained with titanium tetrachloride treated cells giving 11.51 mA/cm{sup 2} photocurrent density and they were comparable with that of pure TiO{sub 2} based cells prepared under identical conditions. - Graphical abstract: Core shell type FTO matrix was formed as TiO{sub 2} is the shell material to create a blocking layer between FTO core and the electrolyte for suppressed recombination and efficiency enhancement. Display Omitted - Highlights: • Core–shell type photoanode using conducting FTO matrix and TiO{sub 2} shell was prepared. • FTO nanoparticles having resistivity value down to 17 ? cm was achieved. • Best cell parameters were obtained with TiCl{sub 4} treated cells. • FTO nanoparticle based cells show enhanced performance compared to intrinsic SnO{sub 2}. • Photocurrent in TiCl{sub 4} treated cells is found as comparable to pure TiO{sub 2} cell.

Icli, Kerem Cagatay [Micro and Nanotechnology Graduate Program, Middle East Technical University, Dumlupinar Bulvari, 06800 Ankara (Turkey); Center for Solar Energy Research and Applications (GUNAM), Middle East Technical University, Dumlupinar Bulvari, 06800 Ankara (Turkey); Yavuz, Halil Ibrahim [Center for Solar Energy Research and Applications (GUNAM), Middle East Technical University, Dumlupinar Bulvari, 06800 Ankara (Turkey); Department of Metallurgical and Materials Engineering, Middle East Technical University, Dumlupinar Bulvari, 06800 Ankara (Turkey); Ozenbas, Macit, E-mail: ozenbas@metu.edu.tr [Center for Solar Energy Research and Applications (GUNAM), Middle East Technical University, Dumlupinar Bulvari, 06800 Ankara (Turkey); Department of Metallurgical and Materials Engineering, Middle East Technical University, Dumlupinar Bulvari, 06800 Ankara (Turkey)

2014-02-15T23:59:59.000Z

25

PHYSICAL REVIEW B 84, 035212 (2011) Intrinsic stoichiometry and oxygen-induced p-type conductivity of pyrite FeS2  

E-Print Network [OSTI]

PHYSICAL REVIEW B 84, 035212 (2011) Intrinsic stoichiometry and oxygen-induced p-type conductivity Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA 2 Center and induces p-type conductivity. At the experimental oxygen impurity concentration, the hole concentration

Ceder, Gerbrand

26

On-Board Engine Exhaust Particulate Matter Sensor for HCCI and Conventional Diesel Engines  

SciTech Connect (OSTI)

The goal of the research was to refine and complete development of an on-board particulate matter (PM) sensor for diesel, DISI, and HCCI engines, bringing it to a point where it could be commercialized and marketed.

Hall, Matt; Matthews, Ron

2011-09-30T23:59:59.000Z

27

Robust Nitrogen Oxide/Ammonia Sensors for Vehicle On-board Emissions...  

Broader source: Energy.gov (indexed) [DOE]

ace079mukundan2012o.pdf More Documents & Publications Robust Nitrogen OxideAmmonia Sensors for Vehicle On-board Emissions Control Vehicle Technologies Office Merit Review 2014:...

28

Robust Nitrogen Oxide/Ammonia Sensors for Vehicle On-board Emissions...  

Broader source: Energy.gov (indexed) [DOE]

2014: Robust Nitrogen oxideAmmonia Sensors for Vehicle on-board Emissions Control CumminsORNL-FEERC CRADA: NOx Control & Measurement Technology for Heavy-Duty Diesel Engines...

29

Autonomous navigation and tracking of dynamic surface targets on-board a computationally impoverished aerial vehicle  

E-Print Network [OSTI]

This thesis describes the development of an independent, on-board visual servoing system which allows a computationally impoverished aerial vehicle to autonomously identify and track a dynamic surface target. Image ...

Selby, William Clayton

2011-01-01T23:59:59.000Z

30

Development of On-Board Fluid Analysis for the Mining Industry - Final report  

SciTech Connect (OSTI)

Pacific Northwest National Laboratory (PNNL: Operated by Battelle Memorial Institute for the Department of Energy) is working with the Department of Energy (DOE) to develop technology for the US mining industry. PNNL was awarded a three-year program to develop automated on-board/in-line or on-site oil analysis for the mining industry.

Pardini, Allan F.

2005-08-16T23:59:59.000Z

31

Hydrogen Internal Combustion Engine Two Wheeler with on-board Metal Hydride Storage  

E-Print Network [OSTI]

be obtained from sources such as electrolysis using low cost electricity, hydrogen as a by of cost- effective hydrogen in India (which we chose as a test case) is not a barrier. Thus, in the nearHydrogen Internal Combustion Engine Two Wheeler with on-board Metal Hydride Storage K. Sapru*, S

32

Magnetospheric line radiation event observed simultaneously on board Cluster 1, Cluster 2 and DEMETER spacecraft  

E-Print Network [OSTI]

be related to power line harmonic radiation (PLHR, an electromagnetic radiation from electric power systemsMagnetospheric line radiation event observed simultaneously on board Cluster 1, Cluster 2., O. Santolík, M. Parrot, and J. S. Pickett (2012), Magnetospheric line radiation event observed

Santolik, Ondrej

33

Energy Consumption in Data Analysis for On-board and Distributed Applications  

E-Print Network [OSTI]

Energy Consumption in Data Analysis for On-board and Distributed Applications Ruchita Bhargava Energy consumption is an important issue in the growing number of data mining and machine learning of the energy consumption characteristics of dif- ferent data analysis techniques. The paper com- pares

Kargupta, Hilol

34

c 2013 IEEE On-Board Dual-Stereo-Vision for Autonomous Quadrotor Navigation  

E-Print Network [OSTI]

and Andreas Zell Abstract-- We present a quadrotor Micro Aerial Vehicle (MAV) capable of autonomous indoorc 2013 IEEE On-Board Dual-Stereo-Vision for Autonomous Quadrotor Navigation Konstantin Schauwecker Aerial Vehicles (MAVs) are becoming increasingly popular in the robotics research community

Zell, Andreas

35

On-Board Diesel & Hybrid Diesel-Electric Transit Bus PM  

E-Print Network [OSTI]

& particles · Originally Dynamometer On-road study · Particle Mass & Number Emissions ­ On-board emissions Particulate Mass -- filter #12;Motivation · Ultrafine (UF) particle health effects · Diesel vehicle exhaust AC DC BATTERY Pure electrical torque -- accel fr. stop Pure mechanical torque -- maintain highway

Holmén, Britt A.

36

Experimental Measurement of the Interface Heat Conductance Between Nonconforming Beryllium and Type 316 Stainless Steel Surfaces Subjected to Nonuniform Thermal Deformations  

SciTech Connect (OSTI)

In fusion blanket designs that employ beryllium as a neutron multiplier, the interface conductance h plays a key role in evaluating the blanket's thermal profile. Therefore, an extensive experimental program was conducted to measure the magnitude of h between nonconforming beryllium and Type 316 stainless steel surfaces subjected to nonuniform thermal deformations. The magnitude of h was measured as a function of relevant environmental, surface, and geometric parameters, including surface roughness, contact pressure, gas pressure, gas type, and magnitude and direction of heat flow. The results indicate the following: (a) Decreasing the interfacial surface roughness from 6.28 to 0.28 {mu}m, in 760 Torr of helium, increased the magnitude of h by up to 100%; however, increasing the surface roughness reduced the dependence of h on the magnitude of the contact pressure. (b) The interface conductance was significantly higher for measurements made in helium gas as opposed to air. Additionally, the sensitivity of h to the gas pressure was significantly greater for runs conducted in helium and/or with smoother surfaces. This sensitivity was reduced in air and/or with roughened surfaces, and it was essentially nonexistent for the 6.25-{mu}m specimen for air pressures exceeding 76 Torr. (c) For runs conducted in vacuum, the interface conductance was more sensitive to heat flux than when runs were conducted in 760 Torr of helium. (d) The interface conductance was found to be dependent on the direction of heat flux. When the specimens were arranged so that heat flowed from the steel to the beryllium disk, the magnitude of h was generally greater than in the opposite direction.

Abelson, Robert Dean; Abdou, Mohamed A. [University of California, Los Angeles (United States)

2001-03-15T23:59:59.000Z

37

Synthesis of rock-salt type lithium borohydride and its peculiar Li{sup +} ion conduction properties  

SciTech Connect (OSTI)

The high energy density and excellent cycle performance of lithium ion batteries makes them superior to all other secondary batteries and explains why they are widely used in portable devices. However, because organic liquid electrolytes have a higher operating voltage than aqueous solution, they are used in lithium ion batteries. This comes with the risk of fire due to their flammability. Solid electrolytes are being investigated to find an alternative to organic liquid. However, the nature of the solid-solid point contact at the interface between the electrolyte and electrode or between the electrolyte grains is such that high power density has proven difficult to attain. We develop a new method for the fabrication of a solid electrolyte using LiBH{sub 4,} known for its super Li{sup +} ion conduction without any grain boundary contribution. The modifications to the conduction pathway achieved by stabilizing the high pressure form of this material provided a new structure with some LiBH{sub 4}, more suitable to the high rate condition. We synthesized the H.P. form of LiBH{sub 4} under ambient pressure by doping LiBH{sub 4} with the KI lattice by sintering. The formation of a KI - LiBH{sub 4} solid solution was confirmed both macroscopically and microscopically. The obtained sample was shown to be a pure Li{sup +} conductor despite its small Li{sup +} content. This conduction mechanism, where the light doping cation played a major role in ion conduction, was termed the “Parasitic Conduction Mechanism.” This mechanism made it possible to synthesize a new ion conductor and is expected to have enormous potential in the search for new battery materials.

Miyazaki, R.; Maekawa, H.; Takamura, H., E-mail: takamura@material.tohoku.ac.jp [Department of Materials Science, Graduate School of Engineering, Tohoku University Aramaki Aoba 6-6-11-301-2-2, Sendai, Miyagi 980-8579 (Japan)

2014-05-01T23:59:59.000Z

38

Summary of On-Board Storage Models and Analyses | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of Energy Strain Rate4 RecoveryJuly 1, 2013On-Board Storage Models and

39

Application of advanced composites for efficient on-board storage of fuel in natural gas vehicles  

SciTech Connect (OSTI)

The following outlines the performance requirements for high pressure containers for on-board storage of fuel in Natural Gas Vehicles. The construction of state-of-the-art carbon-fiber reinforced all-composite cylinders is described and the validation testing and key advantages are discussed. Carbon-fiber reinforced advanced composite technology offers a number of key advantages to the NGV industry, by providing: improved range, including up to 30% more fuel storage for a given storage envelope and up to 300% more fuel storage for a given weight allowance; life-cycle cost advantages, including savings in non-recurring costs (installation), savings in recurring costs (fuel and maintenance), and increased revenues from more passengers/payload; and uncompromising safety, namely, superior resistance to degradation from fatigue or stress rupture and inherent resistance to corrosion; proven toughness/impact resistance.

Sirosh, S.N. [EDO Canada Ltd., Calgary, Alberta (Canada)

1995-11-01T23:59:59.000Z

40

Proton exchange membrane fuel cells for electrical power generation on-board commercial airplanes.  

SciTech Connect (OSTI)

Deployed on a commercial airplane, proton exchange membrane fuel cells may offer emissions reductions, thermal efficiency gains, and enable locating the power near the point of use. This work seeks to understand whether on-board fuel cell systems are technically feasible, and, if so, if they offer a performance advantage for the airplane as a whole. Through hardware analysis and thermodynamic and electrical simulation, we found that while adding a fuel cell system using today's technology for the PEM fuel cell and hydrogen storage is technically feasible, it will not likely give the airplane a performance benefit. However, when we re-did the analysis using DOE-target technology for the PEM fuel cell and hydrogen storage, we found that the fuel cell system would provide a performance benefit to the airplane (i.e., it can save the airplane some fuel), depending on the way it is configured.

Curgus, Dita Brigitte; Munoz-Ramos, Karina (Sandia National Laboratories, Albuquerque, NM); Pratt, Joseph William; Akhil, Abbas Ali (Sandia National Laboratories, Albuquerque, NM); Klebanoff, Leonard E.; Schenkman, Benjamin L. (Sandia National Laboratories, Albuquerque, NM)

2011-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "on-board type conductive" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

On-board ammonia generation and exhaust after treatment system using same  

DOE Patents [OSTI]

Often NOx selective catalysts that use ammonia to reduce NOx within exhaust to a harmless gas require on-board storage of ammonia which can be hazardous and inconvenient. In order to generate ammonia in exhaust, the present disclosure increases a NOx concentration in exhaust from at least one combustion chamber, at least in part, by injecting fuel in a predetermined increased NOx generation sequence that includes a first injection during non-auto ignition conditions and a second injection during auto ignition conditions. At least a portion of the NOx is converted to ammonia by passing at least a portion of the exhaust with the increased NOx concentration over an ammonia-producing catalyst.

Driscoll, Josh (Dunlap, IL); Robel, Wade J. (Peoria, IL); Brown, Cory A. (Pekin, IL); Urven, Jr., Roger L. (Colona, IL)

2010-03-30T23:59:59.000Z

42

On-board Velocity Estimation and Closed-loop Control of a Quadrotor UAV based on Optical Flow  

E-Print Network [OSTI]

On-board Velocity Estimation and Closed-loop Control of a Quadrotor UAV based on Optical Flow an efficient fall back routine for any kind of UAV (Unmanned Aerial Vehicles) since we rely solely. The results show that our approach is able to recover the ego-motion of a flying UAV in realistic conditions

43

On-board state of health monitoring of lithium-ion batteries using incremental capacity analysis with support vector regressionq  

E-Print Network [OSTI]

On-board state of health monitoring of lithium-ion batteries using incremental capacity analysis-board battery state-of-health (SOH) monitoring framework is proposed. 2013 Accepted 5 February 2013 Available online 11 February 2013 Keywords: Electric vehicles Lithium

Peng, Huei

44

On-Board Vehicle, Cost Effective Hydrogen Enhancement Technology for Transportation PEM Fuel Cells  

SciTech Connect (OSTI)

Final Report of On-Board Vehicle, Cost Effective Hydrogen Enhancement Technology for Transportation PEM Fuel Cells. The objective of this effort was to technologically enable a compact, fast start-up integrated Water Gas Shift-Pd membrane reactor for integration into an On Board Fuel Processing System (FPS) for an automotive 50 kWe PEM Fuel Cell (PEM FC). Our approach was to: (1) use physics based reactor and system level models to optimize the design through trade studies of the various system design and operating parameters; and (2) synthesize, characterize and assess the performance of advanced high flux, high selectivity, Pd alloy membranes on porous stainless steel tubes for mechanical strength and robustness. In parallel and not part of this program we were simultaneously developing air tolerant, high volumetric activity, thermally stable Water Gas Shift catalysts for the WGS/membrane reactor. We identified through our models the optimum WGS/membrane reactor configuration, and best Pd membrane/FPS and PEM FC integration scheme. Such a PEM FC power plant was shown through the models to offer 6% higher efficiency than a system without the integrated membrane reactor. The estimated FPS response time was < 1 minute to 50% power on start-up, 5 sec transient response time, 1140 W/L power density and 1100 W/kg specific power with an estimated production cost of $35/kW. Such an FPS system would have a Catalytic Partial Oxidation System (CPO) rather than the slower starting Auto-Thermal Reformer (ATR). We found that at optimum WGS reactor configuration that H{sub 2} recovery efficiencies of 95% could be achieved at 6 atm WGS pressure. However optimum overall fuel to net electrical efficiency ({approx}31%) is highest at lower fuel processor efficiency (67%) with 85% H{sub 2} recovery because less parasitic power is needed. The H{sub 2} permeance of {approx}45 m{sup 3}/m{sup 2}-hr-atm{sup 0.5} at 350 C was assumed in these simulations. In the laboratory we achieved a H{sub 2} permeance of 50 m{sup 3}/(m{sup 2}-hr-atm{sup 0.5}) with a H{sub 2}/N{sub 2} selectivity of 110 at 350 C with pure Pd. We also demonstrated that we could produce Pd-Ag membranes. Such alloy membranes are necessary because they aren't prone to the Pd-hydride {alpha}-{beta} phase transition that is known to cause membrane failure in cyclic operation. When funding was terminated we were on track to demonstrated Pd-Ag alloy deposition on a nano-porous ({approx}80 nm) oxide layer supported on porous stainless steel tubing using a process designed for scale-up.

Thomas H. Vanderspurt; Zissis Dardas; Ying She; Mallika Gummalla; Benoit Olsommer

2005-12-30T23:59:59.000Z

45

Combined on-board hydride slurry storage and reactor system and process for hydrogen-powered vehicles and devices  

DOE Patents [OSTI]

An on-board hydride storage system and process are described. The system includes a slurry storage system that includes a slurry reactor and a variable concentration slurry. In one preferred configuration, the storage system stores a slurry containing a hydride storage material in a carrier fluid at a first concentration of hydride solids. The slurry reactor receives the slurry containing a second concentration of the hydride storage material and releases hydrogen as a fuel to hydrogen-power devices and vehicles.

Brooks, Kriston P; Holladay, Jamelyn D; Simmons, Kevin L; Herling, Darrell R

2014-11-18T23:59:59.000Z

46

Low thermal conductivity skutterudites  

SciTech Connect (OSTI)

Recent experimental results on semiconductors with the skutterudite crystal structure show that these materials possess attractive transport properties and have a good potential for achieving ZT values substantially larger than for state-of-the-art thermoelectric materials. Both n-type and p-type conductivity samples have been obtained, using several preparation techniques. Associated with a low hole effective mass, very high carrier mobilities, low electrical resistivities and moderate Seebeck coefficients are obtained in p-type skutterudites. For a comparable doping level, the carrier mobilities of n-type samples are about an order of magnitude lower than the values achieved on p-type samples. However, the much larger electron effective masses and Seebeck coefficients on p-type samples. However, the much larger electron effective masses and Seebeck coefficients make n-type skutterudite promising candidates as well. Unfortunately, the thermal conductivities of the binary skutterudites compounds are too large, particularly at low temperatures, to be useful for thermoelectric applications. Several approaches to the reduction of the lattice thermal conductivity in skutterudites are being pursued: heavy doping, formation of solid solutions and alloys, study of novel ternary and filled skutterudite compounds. All those approaches have already resulted in skutterudite compositions with substantially lower thermal conductivity values in these materials. Recently, superior thermoelectric properties in the moderate to high temperature range were achieved for compositions combining alloying and filling of the skutterudite structure. Experimental results and mechanisms responsible for low thermal conductivity in skutterudites are discussed.

Fleurial, J.P.; Caillat, T.; Borshchevsky, A.

1997-07-01T23:59:59.000Z

47

LARGE-SCALE CORONAL PROPAGATING FRONTS IN SOLAR ERUPTIONS AS OBSERVED BY THE ATMOSPHERIC IMAGING ASSEMBLY ON BOARD THE SOLAR DYNAMICS OBSERVATORY—AN ENSEMBLE STUDY  

SciTech Connect (OSTI)

This paper presents a study of a large sample of global disturbances in the solar corona with characteristic propagating fronts as intensity enhancement, similar to the phenomena that have often been referred to as Extreme Ultraviolet Imaging Telescope (EIT) waves or extreme-ultraviolet (EUV) waves. Now EUV images obtained by the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory provide a significantly improved view of these large-scale coronal propagating fronts (LCPFs). Between 2010 April and 2013 January, a total of 171 LCPFs have been identified through visual inspection of AIA images in the 193 Å channel. Here we focus on the 138 LCPFs that are seen to propagate across the solar disk, first studying how they are associated with flares, coronal mass ejections (CMEs), and type II radio bursts. We measure the speed of the LCPF in various directions until it is clearly altered by active regions or coronal holes. The highest speed is extracted for each LCPF. It is often considerably higher than EIT waves. We do not find a pattern where faster LCPFs decelerate and slow LCPFs accelerate. Furthermore, the speeds are not strongly correlated with the flare intensity or CME magnitude, nor do they show an association with type II bursts. We do not find a good correlation either between the speeds of LCPFs and CMEs in a subset of 86 LCPFs observed by one or both of the Solar and Terrestrial Relations Observatory spacecraft as limb events.

Nitta, Nariaki V.; Schrijver, Carolus J.; Title, Alan M.; Liu, Wei [Lockheed Martin Advanced Technology Center, Dept/A021S, B/252, 3251 Hanover Street, Palo Alto, CA 94304 (United States)

2013-10-10T23:59:59.000Z

48

Isotopic Composition of Solar Wind Calcium: First in Situ Measurement by CELIAS/MTOF on Board SOHO  

E-Print Network [OSTI]

We present first results on the Ca isotopic abundances derived from the high resolution Mass Time-of-Flight (MTOF) spectrometer of the charge, element, and isotope analysis system (CELIAS) experiment on board the Solar and Heliospheric Observatory (SOHO). We obtain isotopic ratios 40Ca/42Ca = (128+-47) and 40Ca/44Ca = (50+-8), consistent with terrestrial values. This is the first in situ determination of the solar wind calcium isotopic composition and is important for studies of stellar modeling and solar system formation since the present-day solar Ca isotopic abundances are unchanged from their original isotopic composition in the solar nebula.

R. Kallenbach; F. M. Ipavich; P. Bochsler; S. Hefti; P. Wurz; M. R. Aellig; A. B. Galvin; J. Geiss; F. Gliem; G. Gloeckler; H. Grunwaldt; M. Hilchenbach; D. Hovestadt; B. Klecker

1998-02-07T23:59:59.000Z

49

Mean carrier transport properties and charge collection dynamics of single-crystal, natural type IIa diamonds from ion-induced conductivity measurements  

SciTech Connect (OSTI)

Ion-induced conductivity has been used to investigate the detector characteristics of diamond detectors. Both integrated-charge, and time-resolved current measurements were performed to examine the mean carrier transport properties of diamond and the dynamics of charge collection under highly-localized and high-density excitation conditions. The integrated-charge measurements were conducted with a standard pulse-counting system with {sup 241}Am radioactivity as the excitation source for the detectors. The time-resolved current measurements were performed using a 70 GHz random sampling oscilloscope with the detectors incorporated into high-speed microstrip transmission lines and the excitation source for these measurements was an ion beam of either 5-MeV He{sup +} or 10-MeV Si{sup 3+}. The detectors used in both experiments can be described as metal-semiconductor-metal (MSM) devices where a volume of the detector material is sandwiched between two metal plates. A charge collection model was developed to interpret the integrated-charge measurements which enabled estimation of the energy required to produce an electron-hole pair ({epsilon}{sub di}) and the mean carrier transport properties in diamond, such as carrier mobility and lifetime, and the behavior of the electrical contacts to diamond.

Han, S.S.

1993-09-01T23:59:59.000Z

50

Diesel Reformers for On-board Hydrogen Applications | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat Pump Models |Conduct, Parent

51

Conductive Polymers  

SciTech Connect (OSTI)

Electroluminescent devices such as light-emitting diodes (LED) and high-energy density batteries. These new polymers offer cost savings, weight reduction, ease of processing, and inherent rugged design compared to conventional semiconductor materials. The photovoltaic industry has grown more than 30% during the past three years. Lightweight, flexible solar modules are being used by the U.S. Army and Marine Corps for field power units. LEDs historically used for indicator lights are now being investigated for general lighting to replace fluorescent and incandescent lights. These so-called solid-state lights are becoming more prevalent across the country since they produce efficient lighting with little heat generation. Conductive polymers are being sought for battery development as well. Considerable weight savings over conventional cathode materials used in secondary storage batteries make portable devices easier to carry and electric cars more efficient and nimble. Secondary battery sales represent an $8 billion industry annually. The purpose of the project was to synthesize and characterize conductive polymers. TRACE Photonics Inc. has researched critical issues which affect conductivity. Much of their work has focused on production of substituted poly(phenylenevinylene) compounds. These compounds exhibit greater solubility over the parent polyphenylenevinylene, making them easier to process. Alkoxy substituted groups evaluated during this study included: methoxy, propoxy, and heptyloxy. Synthesis routes for production of alkoxy-substituted poly phenylenevinylene were developed. Considerable emphasis was placed on final product yield and purity.

Bohnert, G.W.

2002-11-22T23:59:59.000Z

52

Misfit layered Ca{sub 3}Co{sub 4}O{sub 9} as a high figure of merit p-type transparent conducting oxide film through solution processing  

SciTech Connect (OSTI)

Ca{sub 3}Co{sub 4}O{sub 9} thin films synthesized through solution processing are shown to be high-performing, p-type transparent conducting oxides (TCOs). The synthesis method is a cost-effective and scalable process that consists of sol-gel chemistry, spin coating, and heat treatments. The process parameters can be varied to produce TCO thin films with sheet resistance as low as 5.7?k?/sq (????57 m? cm) or with average visible range transparency as high as 67%. The most conductive Ca{sub 3}Co{sub 4}O{sub 9} TCO thin film has near infrared region optical transmission as high as 85%. The figure of merit (FOM) for the top-performing Ca{sub 3}Co{sub 4}O{sub 9} thin film (151 M?{sup ?1}) is higher than FOM values reported in the literature for all other solution processed, p-type TCO thin films and higher than most others prepared by physical vapor deposition and chemical vapor deposition. Transparent conductivity in misfit layered oxides presents new opportunities for TCO compositions.

Aksit, M.; Kolli, S. K.; Slauch, I. M.; Robinson, R. D., E-mail: rdr82@cornell.edu [Materials Science and Engineering, Cornell University, Ithaca, New York 14853 (United States)

2014-04-21T23:59:59.000Z

53

J. Air & Waste Manage. Assoc., vol 58, 2008, p. 45-54 On-board emission measurement of high loaded light duty vehicles in Algeria  

E-Print Network [OSTI]

; Nejjari et al., 2003, Atek et al., 2004). As a result, many stations of air pollution measurement and Boukadoum, 2005). Vehicle pollutant emissions constitute not only a problem of air quality in big citiesJ. Air & Waste Manage. Assoc., vol 58, 2008, p. 45-54 On-board emission measurement of high loaded

Boyer, Edmond

54

2/7/12 9:54 AMStatement on Board Responsibility for Institutional Governance Page 1 of 10http://agb.org/print/520  

E-Print Network [OSTI]

governance structures and functions. Although the culture and process of governance varies widely among by governors (and less frequently elected), in the case of public institutions, and are generally self-perpetuating (selected by current board members), in the case of private institutions. The "AGB Statement on Board

Tennessee, University of

55

CLOUD AND HAZE IN THE WINTER POLAR REGION OF TITAN OBSERVED WITH VISUAL AND INFRARED MAPPING SPECTROMETER ON BOARD CASSINI  

SciTech Connect (OSTI)

A large cloud in the north polar region of Titan was first observed by the Visual and Infrared Mapping Spectrometer (VIMS) in 2005 and then in 2006. This cloud, confined beyond the latitude 62 Degree-Sign N, is surrounded by a mixture of aerosol and mist probably lying in the low stratosphere and troposphere. Subsequent images of this region of Titan show a gradual vanishing of this cloud which was reported previously. In this paper, we characterize the physical properties of this cloud, haze, and mist as well as their time evolutions. We note several details on the images such as a secondary cloud above the main cloud and latitudes beyond 70 Degree-Sign N. We also show that the cloud disappearance leaves the polar region poorly loaded in aerosols, yielding an annular zone of aerosols between 50 Degree-Sign N and 65 Degree-Sign N. Our analysis suggests that this structure observed by VIMS in the near-IR is an annular structure observed by ISS on board Voyager one Titan year ago in 1980.

Rannou, P. [GSMA, UMR CNRS 7331, Universite de Reims Champagne-Ardenne (France); Le Mouelic, S. [LPGN, UMR CNRS 6112, Universite de Nantes (France); Sotin, C. [JPL, California Institute of Technology, PA (United States); Brown, R. H., E-mail: pascal.rannou@univ-reims.fr [LPL, University of Arizona, Tucson, AZ (United States)

2012-03-20T23:59:59.000Z

56

On-Boarding Program  

Broader source: Energy.gov [DOE]

Onboarding, also known as organizational socialization, refers to the mechanism through which new employees acquire the necessary knowledge, skills, and behaviors to become effective organizational...

57

Industrial Energy Audit Guidebook: Guidelines for Conducting...  

Open Energy Info (EERE)

Industry Resource Type: Guidemanual Website: china.lbl.govsiteschina.lbl.govfilesLBNL-3991E.Industrial%20Energy Industrial Energy Audit Guidebook: Guidelines for Conducting...

58

Plasma conductivity at finite coupling  

E-Print Network [OSTI]

By taking into account the full order(\\alpha'^3) type IIB string theory corrections to the supergravity action, we compute the leading finite 't Hooft coupling order(\\lambda^{-3/2}) corrections to the conductivity of strongly-coupled SU(N) {\\cal {N}}=4 supersymmetric Yang-Mills plasma in the large N limit. We find that the conductivity is enhanced by the corrections, in agreement with the trend expected from previous perturbative weak-coupling computations.

Babiker Hassanain; Martin Schvellinger

2011-08-31T23:59:59.000Z

59

Lateral conduction infrared photodetector  

DOE Patents [OSTI]

A photodetector for detecting infrared light in a wavelength range of 3-25 .mu.m is disclosed. The photodetector has a mesa structure formed from semiconductor layers which include a type-II superlattice formed of alternating layers of InAs and In.sub.xGa.sub.1-xSb with 0.ltoreq.x.ltoreq.0.5. Impurity doped regions are formed on sidewalls of the mesa structure to provide for a lateral conduction of photo-generated carriers which can provide an increased carrier mobility and a reduced surface recombination. An optional bias electrode can be used in the photodetector to control and vary a cut-off wavelength or a depletion width therein. The photodetector can be formed as a single-color or multi-color device, and can also be used to form a focal plane array which is compatible with conventional read-out integrated circuits.

Kim, Jin K. (Albuquerque, NM); Carroll, Malcolm S. (Albuquerque, NM)

2011-09-20T23:59:59.000Z

60

Student Affairs STUDENT CONDUCT  

E-Print Network [OSTI]

Student Affairs CODE OF STUDENT CONDUCT 2014-15 #12;Contents Letter from the Dean of Students ....................................................................ii Binghamton University's Code of Student Conduct Preamble...................... 1 Section I: Rules of Student Conduct.............................................................. 1 Section II: Definitions

Suzuki, Masatsugu

Note: This page contains sample records for the topic "on-board type conductive" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

CONDUCT OF OPERATIONS (CO)  

Broader source: Energy.gov (indexed) [DOE]

CONDUCT OF OPERATIONS (CO) OBJECTIVE TA-55 SST Facility NNSA ORR Implementation Plan 1 1 CO.1 The formality and discipline of operations is adequate to conduct work safely and...

62

Cermet fuel thermal conductivity  

E-Print Network [OSTI]

CERMET FUEL THERMAL CONDUCTIVITY A Thesis by JOHN MARK ALVIS, JR. Submitted to the Graduate College of Texas A&. M University in partial fulfilment of the requirements for the degree of MASTER OF SCIENCE August 1988 Major Subject: Nuclear... particles of low conductivity dispersed in a metal matrix of high conductivity. A computer code was developed in order to compute the conductivity of cermet fuels as predicted by existing models and an additional model derived in this work...

Alvis, John Mark

1988-01-01T23:59:59.000Z

63

Optical conductivity of curved graphene  

E-Print Network [OSTI]

We compute the optical conductivity for an out-of-plane deformation in graphene using an approach based on solutions of the Dirac equation in curved space. Different examples of periodic deformations along one direction translates into an enhancement of the optical conductivity peaks in the region of the far and mid infrared frequencies for periodicities $\\sim100\\,$nm. The width and position of the peaks can be changed by dialling the parameters of the deformation profiles. The enhancement of the optical conductivity is due to intraband transitions and the translational invariance breaking in the geometrically deformed background. Furthemore, we derive an analytical solution of the Dirac equation in a curved space for a general deformation along one spatial direction. For this class of geometries, it is shown that curvature induces an extra phase in the electron wave function, which can also be explored to produce interference devices of the Aharonov-Bohm type.

A. J. Chaves; T. Frederico; O. Oliveira; W. de Paula; M. C. Santos

2014-05-01T23:59:59.000Z

64

Protons in the near-lunar wake observed by the Sub-keV Atom Reflection Analyzer on board Chandrayaan-1  

E-Print Network [OSTI]

Significant proton fluxes were detected in the near wake region of the Moon by an ion mass spectrometer on board Chandrayaan-1. The energy of these nightside protons is slightly higher than the energy of the solar wind protons. The protons are detected close to the lunar equatorial plane at a $140^{\\circ}$ solar zenith angle, i.e., ~50$^{\\circ}$ behind the terminator at a height of 100 km. The protons come from just above the local horizon, and move along the magnetic field in the solar wind reference frame. We compared the observed proton flux with the predictions from analytical models of an electrostatic plasma expansion into a vacuum. The observed velocity was higher than the velocity predicted by analytical models by a factor of 2 to 3. The simple analytical models cannot explain the observed ion dynamics along the magnetic field in the vicinity of the Moon.

Futaana, Yoshifumi; Wieser, Martin; Holmström, M; Bhardwaj, Anil; Dhanya, M B; Sridharan, R; Wurz, Peter; Schaufelberger, Audrey; Asamura, Kazushi; 10.1029/2010JA015264

2010-01-01T23:59:59.000Z

65

Electrically conductive composite material  

DOE Patents [OSTI]

An electrically conductive composite material is disclosed which comprises a conductive open-celled, low density, microcellular carbon foam filled with a non-conductive polymer or resin. The composite material is prepared in a two-step process consisting of first preparing the microcellular carbon foam from a carbonizable polymer or copolymer using a phase separation process, then filling the carbon foam with the desired non-conductive polymer or resin. The electrically conductive composites of the present invention has a uniform and consistent pattern of filler distribution, and as a result is superior over prior art materials when used in battery components, electrodes, and the like. 2 figs.

Clough, R.L.; Sylwester, A.P.

1989-05-23T23:59:59.000Z

66

Electrically conductive composite material  

DOE Patents [OSTI]

An electrically conductive composite material is disclosed which comprises a conductive open-celled, low density, microcellular carbon foam filled with a non-conductive polymer or resin. The composite material is prepared in a two-step process consisting of first preparing the microcellular carbon foam from a carbonizable polymer or copolymer using a phase separation process, then filling the carbon foam with the desired non-conductive polymer or resin. The electrically conductive composites of the present invention has a uniform and consistent pattern of filler distribution, and as a result is superior over prior art materials when used in battery components, electrodes, and the like. 2 figs.

Clough, R.L.; Sylwester, A.P.

1988-06-20T23:59:59.000Z

67

Electrically conductive composite material  

DOE Patents [OSTI]

An electrically conductive composite material is disclosed which comprises a conductive open-celled, low density, microcellular carbon foam filled with a non-conductive polymer or resin. The composite material is prepared in a two-step process consisting of first preparing the microcellular carbon foam from a carbonizable polymer or copolymer using a phase separation process, then filling the carbon foam with the desired non-conductive polymer or resin. The electrically conductive composites of the present invention has a uniform and consistant pattern of filler distribution, and as a result is superior over prior art materials when used in battery components, electrodes, and the like.

Clough, Roger L. (Albuquerque, NM); Sylwester, Alan P. (Albuquerque, NM)

1989-01-01T23:59:59.000Z

68

High conductance surge cable  

DOE Patents [OSTI]

An electrical cable for connecting transient voltage surge suppressors to electrical power panels. A strip of electrically conductive foil defines a longitudinal axis, with a length of an electrical conductor electrically attached to the metallic foil along the longitudinal axis. The strip of electrically conductive foil and the length of an electrical conductor are covered by an insulating material. For impedance matching purposes, triangular sections can be removed from the ends of the electrically conductive foil at the time of installation. 6 figs.

Murray, M.M.; Wilfong, D.H.; Lomax, R.E.

1998-12-08T23:59:59.000Z

69

High conductance surge cable  

DOE Patents [OSTI]

An electrical cable for connecting transient voltage surge suppressers to ectrical power panels. A strip of electrically conductive foil defines a longitudinal axis, with a length of an electrical conductor electrically attached to the metallic foil along the longitudinal axis. The strip of electrically conductive foil and the length of an electrical conductor are covered by an insulating material. For impedance matching purposes, triangular sections can be removed from the ends of the electrically conductive foil at the time of installation.

Murray, Matthew M. (Espanola, NM); Wilfong, Dennis H. (Brooksville, FL); Lomax, Ralph E. (Santa Fe, NM)

1998-01-01T23:59:59.000Z

70

Electrically conductive cellulose composite  

DOE Patents [OSTI]

An electrically conductive cellulose composite includes a cellulose matrix and an electrically conductive carbonaceous material incorporated into the cellulose matrix. The electrical conductivity of the cellulose composite is at least 10 .mu.S/cm at 25.degree. C. The composite can be made by incorporating the electrically conductive carbonaceous material into a culture medium with a cellulose-producing organism, such as Gluconoacetobacter hansenii. The composites can be used to form electrodes, such as for use in membrane electrode assemblies for fuel cells.

Evans, Barbara R.; O'Neill, Hugh M.; Woodward, Jonathan

2010-05-04T23:59:59.000Z

71

High Temperature, Low Relative Humidity, Polymer-type Membranes Based on Disulfonated Poly(arylene ether) Block and Random Copolymers Optionally Incorporating Protonic Conducting Layered Water insoluble Zirconium Fillers  

SciTech Connect (OSTI)

Our research group has been engaged in the past few years in the synthesis of biphenol based partially disulfonated poly(arylene ether sulfone) random copolymers as potential PEMs. This series of polymers are named as BPSH-xx, where BP stands for biphenol, S stands for sulfonated, H stands for acidified and xx represents the degree of disulfonation. All of these sulfonated copolymers phase separate to form nano scale hydrophilic and hydrophobic morphological domains. The hydrophilic phase containing the sulfonic acid moieties causes the copolymer to absorb water. Water confined in hydrophilic pores in concert with the sulfonic acid groups serve the critical function of proton (ion) conduction and water transport in these systems. Both Nafion and BPSH show high proton conductivity at fully hydrated conditions. However proton transport is especially limited at low hydration level for the BPSH random copolymer. It has been observed that the diffusion coefficients of both water and protons change with the water content of the pore. This change in proton and water transport mechanisms with hydration level has been attributed to the solvation of the acid groups and the amount of bound and bulk-like water within a pore. At low hydration levels most of the water is tightly associated with sulfonic groups and has a low diffusion coefficient. This tends to encourage isolated domain morphology. Thus, although there may be significant concentrations of protons, the transport is limited by the discontinuous morphological structure. Hence the challenge lies in how to modify the chemistry of the polymers to obtain significant protonic conductivity at low hydration levels. This may be possible if one can alter the chemical structure to synthesize nanophase separated ion containing block copolymers. Unlike the BPSH copolymers, where the sulfonic acid groups are randomly distributed along the chain, the multiblock copolymers will feature an ordered sequence of hydrophilic and hydrophobic segments. If, like in Nafion, connectivity is established between the hydrophilic domains in these multiblock copolymers, they will not need as much water, and hence will show much better protonic conductivity than the random copolymers (with similar degree of sulfonation, or IEC) at partially hydrated conditions. The goal of this research is to develop a material suitable for use as a polymer electrolyte membrane which by the year 2010 will meet all the performance requirements associated with fuel cell operation at high temperatures and low relative humidity, and will out-perform the present standard Nafion{reg_sign}. In particular, it is our objective to extend our previous research based on the use of thermally, oxidatively, and hydrolytically, ductile, high Tg ion containing polymers based on poly(arylene ethers) to the production of polymer electrolyte membranes which will meet all the performance requirements in addition to having an areal resistance of < 0.05 ohm-cm{sup 2} at a temperature of up to 120 C, relative humidity of 25 to 50%, and up to 2.5 atm total pressure. In many instances, our materials already out performs Nafion{reg_sign}, and it is expected that with some modification by either combining with conductive inorganic fillers and/or synthesizing as a block copolymer it will meet the performance criteria at high temperatures and low relative humidity. A key component in improving the performance of the membranes (and in particular proton conductivity) and meeting the cost requirements of $40/m{sup 2} is our development of a film casting process, which shows promise for generation of void free thin films of uniform thickness with controlled polymer alignment and configuration.

McGrath, James E.; Baird, Donald G.

2010-06-03T23:59:59.000Z

72

Conduct of Operations  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This Order defines the requirements for establishing and implementing Conduct of Operations Programs at Department of Energy (DOE), including National Nuclear Security Administration (NNSA), facilities and projects. Cancels DOE O 5480.19. Admin Chg 1, 6-25-13

2010-06-29T23:59:59.000Z

73

Electrically conductive material  

DOE Patents [OSTI]

An electrically conductive material for use in solid oxide fuel cells, electrochemical sensors for combustion exhaust, and various other applications possesses increased fracture toughness over available materials, while affording the same electrical conductivity. One embodiment of the sintered electrically conductive material consists essentially of cubic ZrO.sub.2 as a matrix and 6-19 wt. % monoclinic ZrO.sub.2 formed from particles having an average size equal to or greater than about 0.23 microns. Another embodiment of the electrically conductive material consists essentially at cubic ZrO.sub.2 as a matrix and 10-30 wt. % partially stabilized zirconia (PSZ) formed from particles having an average size of approximately 3 microns.

Singh, Jitendra P. (Bollingbrook, IL); Bosak, Andrea L. (Burnam, IL); McPheeters, Charles C. (Woodridge, IL); Dees, Dennis W. (Woodridge, IL)

1993-01-01T23:59:59.000Z

74

Electrically conductive material  

DOE Patents [OSTI]

An electrically conductive material is described for use in solid oxide fuel cells, electrochemical sensors for combustion exhaust, and various other applications possesses increased fracture toughness over available materials, while affording the same electrical conductivity. One embodiment of the sintered electrically conductive material consists essentially of cubic ZrO[sub 2] as a matrix and 6-19 wt. % monoclinic ZrO[sub 2] formed from particles having an average size equal to or greater than about 0.23 microns. Another embodiment of the electrically conductive material consists essentially at cubic ZrO[sub 2] as a matrix and 10-30 wt. % partially stabilized zirconia (PSZ) formed from particles having an average size of approximately 3 microns. 8 figures.

Singh, J.P.; Bosak, A.L.; McPheeters, C.C.; Dees, D.W.

1993-09-07T23:59:59.000Z

75

Hydraulic conductivity of shaly sands  

SciTech Connect (OSTI)

The effects of clays on the hydraulic conductivity of a sandstone are analyzed by considering a simple clay coating structure for the sand grains. In the model, silicate insulating nuclei are uniformly surrounded by charged clay particles. The total charge on the clays is compensated by a counterion density Q{sub v}. Assuming a capillary flow regime inside this granular model a Kozeny-Carman type equation has been derived, expressing its intrinsic permeability k in terms of a porosity-tortuosity factor {phi}{sup (m{minus}0.5)} and of the parameter Q{sub v}. The power-law derived expression shows that k decreases with the amount of clay, not only because a high Q{sub v} implies a narrowing of the pore channels, but also because it modifies the hydraulic tortuosity of the medium. This new equation has been statistically tested with extensive petrophysical laboratory data for different types of shaly sandstones.

Lima, O.A.L. de [PPPG/Federal Univ. of Bahia, Salvador Bahia (Brazil)

1994-12-31T23:59:59.000Z

76

Detecting gamma-ray bursts from M31 with the wide field X-ray cameras on board BeppoSAX  

E-Print Network [OSTI]

Gamma-ray bursters emit a small fraction of their flux in X rays, and because X-ray detectors are often very sensitive they may probe the gamma-ray burst universe more deeply than the current best gamma-ray instruments. On the reasonable assumptions that spectra of bursts observed by BATSE may be used to predict the X-ray fluxes of gamma-ray bursts, and that any corona of bursts around M31 is similar to the one around the Milky Way, we predict the rate at which the wide field cameras on board BeppoSAX should detect bursts from the Milky Way and M31. These rates are such that a one-month observation of M31 would have to either detect bursts from M31 or exclude most galactic models of gamma-ray bursts. (It is shown how the remainder can be dealt with.) Therefore such an observation would settle the long-standing dispute over their location.

Mateusz Ruszkowski; Ralph A. M. J. Wijers

1997-01-22T23:59:59.000Z

77

The Development and Optimization of Techniques for Monitoring Water Quality on-Board Spacecraft Using Colorimetric Solid-Phase Extraction (C-SPE)  

SciTech Connect (OSTI)

The main focus of this dissertation is the design, development, and ground and microgravity validation of methods for monitoring drinking water quality on-board NASA spacecraft using clorimetric-solid phase extraction (C-SPE). The Introduction will overview the need for in-flight water quality analysis and will detail some of the challenges associated with operations in the absence of gravity. The ability of C-SPE methods to meet these challenges will then be discussed, followed by a literature review on existing applications of C-SPE and similar techniques. Finally, a brief discussion of diffuse reflectance spectroscopy theory, which provides a means for analyte identification and quantification in C-SPE analyses, is presented. Following the Introduction, four research chapters are presented as separate manuscripts. Chapter 1 reports the results from microgravity testing of existing C-SPE methods and procedures aboard NASA's C-9 microgravity simulator. Chapter 2 discusses the development of a C-SPE method for determining the total concentration of biocidal silver (i.e., in both dissolved and colloidal forms) in water samples. Chapter 3 presents the first application of the C-SPE technique to the determination of an organic analyte (i.e., formaldehyde). Chapter 4, which is a departure from the main focus of the thesis, details the results of an investigation into the effect of substrate rotation on the kinetics involved in the antigen and labeling steps in sandwich immunoassays. These research chapters are followed by general conclusions and a prospectus section.

April Hill

2007-12-01T23:59:59.000Z

78

On Board Fuel Quality Sensor  

Broader source: Energy.gov (indexed) [DOE]

el ty ype and content pe and content Distillation curv Distillation curve e EGR EGR TURBO TURBO Auto i Auto ig gniti nition delay on delay Bio f Bio fu uel co el content ntent...

79

Comments on: Board of Directors  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to User Group and UserofProtein structureAnalysis of Parton

80

Colonel Nichols comes on board  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationClean Communities ofCellulosic(SNfactory) | DOEatColonel Nichols comes

Note: This page contains sample records for the topic "on-board type conductive" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

High quality transparent conducting oxide thin films  

DOE Patents [OSTI]

A transparent conducting oxide (TCO) film comprising: a TCO layer, and dopants selected from the elements consisting of Vanadium, Molybdenum, Tantalum, Niobium, Antimony, Titanium, Zirconium, and Hafnium, wherein the elements are n-type dopants; and wherein the transparent conducting oxide is characterized by an improved electron mobility of about 42 cm.sup.2/V-sec while simultaneously maintaining a high carrier density of .about.4.4e.times.10.sup.20 cm.sup.-3.

Gessert, Timothy A. (Conifer, CO); Duenow, Joel N. (Golden, CO); Barnes, Teresa (Evergreen, CO); Coutts, Timothy J. (Golden, CO)

2012-08-28T23:59:59.000Z

82

Conduct of Operations  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This Order defines the requirements for establishing and implementing Conduct of Operations Programs at Department of Energy (DOE), including National Nuclear Security Administration (NNSA), facilities and projects. Cancels DOE O 5480.19. Admin Chg 1, dated 6-25-13, cancels DOE O 422.1. Certified 12-3-14.

2010-06-29T23:59:59.000Z

83

Lithium ion conducting electrolytes  

DOE Patents [OSTI]

A liquid, predominantly lithium-conducting, ionic electrolyte is described having exceptionally high conductivity at temperatures of 100 C or lower, including room temperature, and comprising the lithium salts selected from the group consisting of the thiocyanate, iodide, bromide, chloride, perchlorate, acetate, tetrafluoroborate, perfluoromethane sulfonate, perfluoromethane sulfonamide, tetrahaloaluminate, and heptahaloaluminate salts of lithium, with or without a magnesium-salt selected from the group consisting of the perchlorate and acetate salts of magnesium. Certain of the latter embodiments may also contain molecular additives from the group of acetonitrile (CH{sub 3}CN), succinnonitrile (CH{sub 2}CN){sub 2}, and tetraglyme (CH{sub 3}--O--CH{sub 2}--CH{sub 2}--O--){sub 2} (or like solvents) solvated to a Mg{sup +2} cation to lower the freezing point of the electrolyte below room temperature. Other particularly useful embodiments contain up to about 40, but preferably not more than about 25, mol percent of a long chain polyether polymer dissolved in the lithium salts to provide an elastic or rubbery solid electrolyte of high ambient temperature conductivity and exceptional 100 C conductivity. Another embodiment contains up to about but not more than 10 mol percent of a molecular solvent such as acetone. 2 figs.

Angell, C.A.; Liu, C.

1996-04-09T23:59:59.000Z

84

Lithium ion conducting electrolytes  

DOE Patents [OSTI]

The present invention relates generally to highly conductive alkali-metal ion non-crystalline electrolyte systems, and more particularly to novel and unique molten (liquid), rubbery, and solid electrolyte systems which are especially well suited for use with high current density electrolytic cells such as primary and secondary batteries.

Angell, Charles Austen (Mesa, AZ); Liu, Changle (Midland, MI); Xu, Kang (Montgomery Village, MD); Skotheim, Terje A. (Tucson, AZ)

1999-01-01T23:59:59.000Z

85

Lithium ion conducting electrolytes  

DOE Patents [OSTI]

A liquid, predominantly lithium-conducting, ionic electrolyte having exceptionally high conductivity at temperatures of 100.degree. C. or lower, including room temperature, and comprising the lithium salts selected from the group consisting of the thiocyanate, iodide, bromide, chloride, perchlorate, acetate, tetrafluoroborate, perfluoromethane sulfonate, perfluoromethane sulfonamide, tetrahaloaluminate, and heptahaloaluminate salts of lithium, with or without a magnesium-salt selected from the group consisting of the perchlorate and acetate salts of magnesium. Certain of the latter embodiments may also contain molecular additives from the group of acetonitrile (CH.sub.3 CN) succinnonitrile (CH.sub.2 CN).sub.2, and tetraglyme (CH.sub.3 --O--CH.sub.2 --CH.sub.2 --O--).sub.2 (or like solvents) solvated to a Mg.sup.+2 cation to lower the freezing point of the electrolyte below room temperature. Other particularly useful embodiments contain up to about 40, but preferably not more than about 25, mol percent of a long chain polyether polymer dissolved in the lithium salts to provide an elastic or rubbery solid electrolyte of high ambient temperature conductivity and exceptional 100.degree. C. conductivity. Another embodiment contains up to about but not more than 10 mol percent of a molecular solvent such as acetone.

Angell, C. Austen (Tempe, AZ); Liu, Changle (Tempe, AZ)

1996-01-01T23:59:59.000Z

86

Temperature effects on the electronic conductivity of single-walled carbon nanotubes  

E-Print Network [OSTI]

The room-temperature electronic conductivity and temperature dependence of conductivity were measured for samples of carbon nanotubes of three types: pristine; functionalized with a nitrobenzene covalent functionalization, ...

Mascaro, Mark Daniel

2007-01-01T23:59:59.000Z

87

TRANSPORT INVOLVING CONDUCTING FIBERS IN A NON-CONDUCTING MATRIX  

E-Print Network [OSTI]

result is a material with high electrical conductivity and low thermal conductivity. Transport Models,2 , J. Rozen3 Introduction Thermal and electrical transport through a low-conductivity matrix containing conversion devices high electrical conductivity and low thermal conductivity are preferred for superior

Walker, D. Greg

88

Electrically conductive alternating copolymers  

DOE Patents [OSTI]

Polymers which are soluble in common organic solvents and are electrically conductive, but which also may be synthesized in such a manner that they become nonconductive. Negative ions from the electrolyte used in the electrochemical synthesis of a polymer are incorporated into the polymer during the synthesis and serve as a dopant. A further electrochemical step may be utilized to cause the polymer to be conductive. The monomer repeat unit is comprised of two rings, a pyrrole molecule joined to a thienyl group, or a furyl group, or a phenyl group. The individual groups of the polymers are arranged in an alternating manner. For example, the backbone arrangement of poly(furylpyrrole) is -furan-pyrrole-furan-pyrrole- furan-pyrrole. An alkyl group or phenyl group may be substituted for either or both of the hydrogen atoms of the pyrrole ring.

Aldissi, M.; Jorgensen, B.S.

1987-08-31T23:59:59.000Z

89

Oxygen ion conducting materials  

DOE Patents [OSTI]

An oxygen ion conducting ceramic oxide that has applications in industry including fuel cells, oxygen pumps, oxygen sensors, and separation membranes. The material is based on the idea that substituting a dopant into the host perovskite lattice of (La,Sr)MnO.sub.3 that prefers a coordination number lower than 6 will induce oxygen ion vacancies to form in the lattice. Because the oxygen ion conductivity of (La,Sr)MnO.sub.3 is low over a very large temperature range, the material exhibits a high overpotential when used. The inclusion of oxygen vacancies into the lattice by doping the material has been found to maintain the desirable properties of (La,Sr)MnO.sub.3, while significantly decreasing the experimentally observed overpotential.

Vaughey, John; Krumpelt, Michael; Wang, Xiaoping; Carter, J. David

2005-07-12T23:59:59.000Z

90

Oxygen ion conducting materials  

DOE Patents [OSTI]

An oxygen ion conducting ceramic oxide that has applications in industry including fuel cells, oxygen pumps, oxygen sensors, and separation membranes. The material is based on the idea that substituting a dopant into the host perovskite lattice of (La,Sr)MnO.sub.3 that prefers a coordination number lower than 6 will induce oxygen ion vacancies to form in the lattice. Because the oxygen ion conductivity of (La,Sr)MnO.sub.3 is low over a very large temperature range, the material exhibits a high overpotential when used. The inclusion of oxygen vacancies into the lattice by doping the material has been found to maintain the desirable properties of (La,Sr)MnO.sub.3, while significantly decreasing the experimentally observed overpotential.

Carter, J. David; Wang, Xiaoping; Vaughey, John; Krumpelt, Michael

2004-11-23T23:59:59.000Z

91

Oxygen ion conducting materials  

DOE Patents [OSTI]

An oxygen ion conducting ceramic oxide that has applications in industry including fuel cells, oxygen pumps, oxygen sensors, and separation membranes. The material is based on the idea that substituting a dopant into the host perovskite lattice of (La,Sr)MnO.sub.3 that prefers a coordination number lower than 6 will induce oxygen ion vacancies to form in the lattice. Because the oxygen ion conductivity of (La,Sr)MnO.sub.3 is low over a very large temperature range, the material exhibits a high overpotential when used. The inclusion of oxygen vacancies into the lattice by doping the material has been found to maintain the desirable properties of (La,Sr)MnO.sub.3, while significantly decreasing the experimentally observed overpotential.

Vaughey, John (Elmhurst, IL); Krumpelt, Michael (Naperville, IL); Wang, Xiaoping (Downers Grove, IL); Carter, J. David (Bolingbrook, IL)

2003-01-01T23:59:59.000Z

92

High conductivity composite metal  

DOE Patents [OSTI]

Electrical conductors and methods of producing them are disclosed, where the conductors possess both high strength and high conductivity. Conductors are comprised of carbon steel and a material chosen from a group consisting of copper, nickel, silver, and gold. Diffusion barriers are placed between these two materials. The components of a conductor are assembled and then the assembly is subjected to heat treating and mechanical deformation steps. 10 figs.

Zhou, R.; Smith, J.L.; Embury, J.D.

1998-01-06T23:59:59.000Z

93

High conductivity composite metal  

DOE Patents [OSTI]

Electrical conductors and methods of producing them, where the conductors possess both high strength and high conductivity. Conductors are comprised of carbon steel and a material chosen from a group consisting of copper, nickel, silver, and gold. Diffusion barriers are placed between these two materials. The components of a conductor are assembled and then the assembly is subjected to heat treating and mechanical deformation steps.

Zhou, Ruoyi (Los Alamos, NM); Smith, James L. (Los Alamos, NM); Embury, John David (Hamilton, CA)

1998-01-01T23:59:59.000Z

94

Conduction cooled tube supports  

DOE Patents [OSTI]

In boilers, process tubes are suspended by means of support studs that are in thermal contact with and attached to the metal roof casing of the boiler and the upper bend portions of the process tubes. The support studs are sufficiently short that when the boiler is in use, the support studs are cooled by conduction of heat to the process tubes and the roof casing thereby maintaining the temperature of the stud so that it does not exceed 1400.degree. F.

Worley, Arthur C. (Mt. Tabor, NJ); Becht, IV, Charles (Morristown, NJ)

1984-01-01T23:59:59.000Z

95

TRANSPORT INVOLVING CONDUCTING FIBERS IN A NON-CONDUCTING MATRIX  

E-Print Network [OSTI]

to sev- eral applications including flexible thin-film transistors, PEM fuel cells, and direct energy, particularly Peltier devices, high electrical conductivity and low thermal conductivity are preferred

Walker, D. Greg

96

Enhanced Thermal Conductivity Oxide Fuels  

SciTech Connect (OSTI)

the purpose of this project was to investigate the feasibility of increasing the thermal conductivity of oxide fuels by adding small fractions of a high conductivity solid phase.

Alvin Solomon; Shripad Revankar; J. Kevin McCoy

2006-01-17T23:59:59.000Z

97

p-Type transparent conducting oxides and methods for preparation  

DOE Patents [OSTI]

A facile, low temperature and low pressure method for the preparation of a wide range of phase pure ABO.sub.2 compositions.

Shahriari, Dean Y. (Evanston, IL); Barnabe, Antoine (Toulouse, FR); Mason, Thomas O. (Evanston, IL); Poeppelmeier, Kenneth R. (Evanston, IL)

2011-05-31T23:59:59.000Z

98

An automated tool for three types of saturated hydraulic conductivity  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to someone by E-mail ShareRed CrossAn Iridate with Fermilaboratory

99

Low Conductivity Thermal Barrier Coatings  

E-Print Network [OSTI]

Low Conductivity Thermal Barrier Coatings A Dissertation Presented to The Faculty of the School conductivity of the coatings. The minimum thermal conductivity occurs at a low rotation rate and is 0.8 W intrinsic thermal conductivity, good phase stability and greater resistance to sintering and CMAS attack

Wadley, Haydn

100

PLASTIC PORT NON-CONDUCTIVE  

E-Print Network [OSTI]

PIN NO. 1 INDICATOR 81 3 5 2 4 6 7 CONDUCTIVE PLASTIC PORT NON-CONDUCTIVE PLASTIC HOUSING Description The conductive port option for the Low Cost Miniature Link component family consists of a grounding path from the conductive port to four grounding pins as shown in the package outline drawing

Berns, Hans-Gerd

Note: This page contains sample records for the topic "on-board type conductive" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

EVIDENCE FOR SOLAR FREQUENCY DEPENDENCE ON SUNSPOT TYPE  

SciTech Connect (OSTI)

High-degree solar mode frequencies as measured by ring diagrams are known to change in the presence of the strong magnetic fields found in active regions. We examine these changes in frequency for a large sample of active regions analyzed with data from the Michelson Doppler Imager on board the Solar and Heliospheric Observatory spacecraft, spanning most of solar cycle 23. We confirm that the frequencies increase with increasing magnetic field strength, and that this dependence is generally linear. We find that the dependence is slightly but significantly different for active regions with different sunspot types.

Baldner, Charles S.; Basu, Sarbani [Department of Astronomy, Yale University, P.O. Box 208101, New Haven, CT 06520-8101 (United States); Bogart, Richard S. [Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305-4085 (United States)

2011-05-20T23:59:59.000Z

102

Conductive lithium storage electrode  

DOE Patents [OSTI]

A compound comprising a composition A.sub.x(M'.sub.1-aM''.sub.a).sub.y(XD.sub.4).sub.z, A.sub.x(M'.sub.1-aM''.sub.a).sub.y(DXD.sub.4).sub.z, or A.sub.x(M'.sub.1-aM''.sub.a).sub.y(X.sub.2D.sub.7).sub.z, and have values such that x, plus y(1-a) times a formal valence or valences of M', plus ya times a formal valence or valence of M'', is equal to z times a formal valence of the XD.sub.4, X.sub.2D.sub.7, or DXD.sub.4 group; or a compound comprising a composition (A.sub.1-aM''.sub.a).sub.xM'.sub.y(XD.sub.4).sub.z, (A.sub.1-aM''.sub.a).sub.xM'.sub.y(DXD.sub.4).sub.z(A.sub.1-aM''.sub.a).s- ub.xM'.sub.y(X.sub.2D.sub.7).sub.z and have values such that (1-a).sub.x plus the quantity ax times the formal valence or valences of M'' plus y times the formal valence or valences of M' is equal to z times the formal valence of the XD.sub.4, X.sub.2D.sub.7 or DXD.sub.4 group. In the compound, A is at least one of an alkali metal and hydrogen, M' is a first-row transition metal, X is at least one of phosphorus, sulfur, arsenic, molybdenum, and tungsten, M'' any of a Group IIA, IIIA, IVA, VA, VIA, VIIA, VIIIA, IB, IIB, IIIB, IVB, VB, and VIB metal, D is at least one of oxygen, nitrogen, carbon, or a halogen, 0.0001conductivity at 27.degree. C. of at least about 10.sup.-8 S/cm. The compound can be a doped lithium phosphate that can intercalate lithium or hydrogen. The compound can be used in an electrochemical device including electrodes and storage batteries and can have a gravimetric capacity of at least about 80 mAh/g while being charged/discharged at greater than about C rate of the compound.

Chiang, Yet-Ming (Framingham, MA); Chung, Sung-Yoon (Seoul, KR); Bloking, Jason T. (Cambridge, MA); Andersson, Anna M. (Uppsala, SE)

2008-03-18T23:59:59.000Z

103

Conductive lithium storage electrode  

DOE Patents [OSTI]

A compound comprising a composition A.sub.x(M'.sub.1-aM''.sub.a).sub.y(XD.sub.4).sub.z, A.sub.x(M'.sub.1-aM''.sub.a).sub.y(DXD.sub.4).sub.z, or A.sub.x(M'.sub.1-aM''.sub.a).sub.y(X.sub.2D.sub.7).sub.z, and have values such that x, plus y(1-a) times a formal valence or valences of M', plus ya times a formal valence or valence of M'', is equal to z times a formal valence of the XD.sub.4, X.sub.2D.sub.7, or DXD.sub.4 group; or a compound comprising a composition (A.sub.1-aM''.sub.a).sub.xM'.sub.y(XD.sub.4).sub.z, (A.sub.1-aM''.sub.a).sub.xM'.sub.y(DXD.sub.4).sub.z (A.sub.1-aM''.sub.a).sub.xM'.sub.y(X.sub.2D.sub.7).sub.z and have values such that (1-a).sub.x plus the quantity ax times the formal valence or valences of M'' plus y times the formal valence or valences of M' is equal to z times the formal valence of the XD.sub.4, X.sub.2D.sub.7 or DXD.sub.4 group. In the compound, A is at least one of an alkali metal and hydrogen, M' is a first-row transition metal, X is at least one of phosphorus, sulfur, arsenic, molybdenum, and tungsten, M'' any of a Group IIA, IIIA, IVA, VA, VIA, VIIA, VIIIA, IB, IIB, IIIB, IVB, VB, and VIB metal, D is at least one of oxygen, nitrogen, carbon, or a halogen, 0.0001conductivity at 27.degree. C. of at least about 10.sup.-8 S/cm. The compound can be a doped lithium phosphate that can intercalate lithium or hydrogen. The compound can be used in an electrochemical device including electrodes and storage batteries and can have a gravimetric capacity of at least about 80 mAh/g while being charged/discharged at greater than about C rate of the compound.

Chiang, Yet-Ming (Framingham, MA); Chung, Sung-Yoon (Incheon, KR); Bloking, Jason T. (Mountain View, CA); Andersson, Anna M. (Vasteras, SE)

2012-04-03T23:59:59.000Z

104

Gas Code of Conduct (Connecticut)  

Broader source: Energy.gov [DOE]

The Gas Code of Conduct sets forth the standard of conduct for transactions, direct or indirect, between gas companies and their affiliates. The purpose of these regulations is to promote...

105

Experimental thermal conductivity and contact conductance of graphite composites  

E-Print Network [OSTI]

Figure 2. 1 One-Dimensional Heat Transfer by Conduction Across a Plane Wall Figure 2. 2 Fundamental Element for Electrically Based Thermal Model. . . 14 Figure 2. 3 Rectangular Unit Cell Orientation . 14 Figure 2. 4 Model of Parabolic Distribution... a low transverse thermal conductivity, they show better thermal performance than MMC's for some weight-critical applications (Ibrahim, 1992). Graphite/organic compound composites also will be reviewed. Using a high conductivity graphite fiber...

Jackson, Marian Christine

1998-01-01T23:59:59.000Z

106

Conducting polymers as potential active materials in electrochemical supercapacitors  

SciTech Connect (OSTI)

Electronically,conducting polymers represent an interesting class of materials for use in electrochemical capacitors because of the combination of high capacitive energy density and low materials cost. Three generalized types of electrochemical capacitors can be constructed using conducting polymers as active material, and in the third of these, which utilizes conducting polymers that can be both n- and p-doped, energy densities of up to 40 watt-hours per kilogram of active material on both electrodes have been demonstrated.

Rudge, A.; Davey, J.; Raistrick, I.; Gottesfeld, S. [Los Alamos National Lab., NM (United States); Ferraris, J.P. [Texas Univ., Richardson, TX (United States). Dept. of Chemistry

1992-12-01T23:59:59.000Z

107

Conducting polymers as potential active materials in electrochemical supercapacitors  

SciTech Connect (OSTI)

Electronically,conducting polymers represent an interesting class of materials for use in electrochemical capacitors because of the combination of high capacitive energy density and low materials cost. Three generalized types of electrochemical capacitors can be constructed using conducting polymers as active material, and in the third of these, which utilizes conducting polymers that can be both n- and p-doped, energy densities of up to 40 watt-hours per kilogram of active material on both electrodes have been demonstrated.

Rudge, A.; Davey, J.; Raistrick, I.; Gottesfeld, S. (Los Alamos National Lab., NM (United States)); Ferraris, J.P. (Texas Univ., Richardson, TX (United States). Dept. of Chemistry)

1992-01-01T23:59:59.000Z

108

Nonequilibrium Molecular Dynamics Simulation of Electric Conduction Tatsuro YUGE  

E-Print Network [OSTI]

that the system reaches a nonequilibrium steady state in the presence of an external electric field. The electrical conductivity is almost independent of the impurity distribution and the system size-Jones systems, exhibit the Fourier- type heat conduction in three dimensions, although anom- alous behaviors

Shimizu, Akira

109

Original article Sugar profiles and conductivity of stingless bee  

E-Print Network [OSTI]

Original article Sugar profiles and conductivity of stingless bee honeys from Venezuela S Bogdanov, Venezuela (Received 12 March 1996; accepted 27 July 1996) Summary — The HPLC sugar profiles and the conductivity of 42 stingless bee honey samples from Venezuela were determined. Three of the honey types were

Boyer, Edmond

110

Optical Conductivity with Holographic Lattices  

E-Print Network [OSTI]

We add a gravitational background lattice to the simplest holographic model of matter at finite density and calculate the optical conductivity. With the lattice, the zero frequency delta function found in previous calculations (resulting from translation invariance) is broadened and the DC conductivity is finite. The optical conductivity exhibits a Drude peak with a cross-over to power-law behavior at higher frequencies. Surprisingly, these results bear a strong resemblance to the properties of some of the cuprates.

Gary T. Horowitz; Jorge E. Santos; David Tong

2012-08-03T23:59:59.000Z

111

Appendix C Conducting Structured Walkthroughs  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This guide describes how to conduct a structured walkthroughs during the lifecycle stages of software engineering projects, regardless of hardware platform.

1997-05-21T23:59:59.000Z

112

Conduction cooling: multicrate fastbus hardware  

SciTech Connect (OSTI)

Described is a new and novel approach for cooling nuclear instrumentation modules via heat conduction. The simplicity of liquid cooled crates and ease of thermal management with conduction cooled modules are described. While this system was developed primarily for the higher power levels expected with Fastbus electronics, it has many general applications.

Makowiecki, D.; Sims, W.; Larsen, R.

1980-11-01T23:59:59.000Z

113

Enhancement of Topological Insulators Surface Conduction  

E-Print Network [OSTI]

Enhancement of Topological Insulators Surface Conduction AEnhancement of Topological Insulators Surface Conduction byTopological Insulator

Yu, Xinxin

2012-01-01T23:59:59.000Z

114

Mössbauer study of conductive oxide glass  

SciTech Connect (OSTI)

Heat treatment of barium iron vanadate glass, BaO?Fe{sub 2}O{sub 3}?V{sub 2}O{sub 5}, at temperatures higher than crystallization temperature causes a marked decrease in resistivity (?) from several M?cm to several ?cm. {sup 57}Fe Mössbauer spectrum of heat-treated vanadate glass shows a marked decrease in quadrupole splitting (?) of Fe{sup III}, reflecting a structural relaxation, i.e., an increased symmetry of 'distorted' FeO{sub 4} and VO{sub 4} tetrahedra which are connected to each other by sharing corner oxygen atoms. Structural relaxation of 3D-network of vanadate glass accompanies a decrease in the activation energy for the conduction, reflecting a decreased energy gap between the donor level and conduction band. A marked increase in the conductivity was observed in CuO- or Cu{sub 2}O-containing barium iron vanadate glass after heat treatment at 450 °C for 30 min or more. 'n-type semiconductor model combined with small polaron hopping theory' was proposed in order to explain the high conductivity.

Matsuda, Koken; Kubuki, Shiro [Tokyo Metropolitan University, Hachi-Oji, Tokyo 192-0397 (Japan); Nishida, Tetsuaki, E-mail: nishida@fuk.kindai.ac.jp [Kinki University, Iizuka, Fukuoka 820-8555 (Japan)

2014-10-27T23:59:59.000Z

115

Continuous production of conducting polymer  

E-Print Network [OSTI]

A device to continuously produce polypyrrole was designed, manufactured, and tested. Polypyrrole is a conducting polymer which has potential artificial muscle applications. The objective of continuous production was to ...

Gaige, Terry A. (Terry Alden), 1981-

2004-01-01T23:59:59.000Z

116

CONDUCTANCE OF NANOSYSTEMS WITH INTERACTION  

E-Print Network [OSTI]

-beam lithography or small metallic grains,[1] semiconductor quantum dots,[2] or a single large molecule of an atomic-size bridge that forms in the break,[3] or even measure the conductance of a single hydrogen

Ramsak, Anton

117

Conducting polymer actuators : temperature effects  

E-Print Network [OSTI]

In order to utilize conducting polymer actuators as a viable engineering solution, it is necessary to produce usable levels of force with a reasonable bandwidth. Polypyrrole actuated at temperatures as high as 100 °C ...

Del Zio, Michael R. (Michael Robert), 1982-

2006-01-01T23:59:59.000Z

118

Conductive Channel for Energy Transmission  

SciTech Connect (OSTI)

For many years the attempts to create conductive channels of big length were taken in order to study the upper atmosphere and to settle special tasks, related to energy transmission. There upon the program of creation of 'Impulsar' represents a great interest, as this program in a combination with high-voltage high repetition rate electrical source can be useful to solve the above mentioned problems (N. Tesla ideas for the days of high power lasers). The principle of conductive channel production can be shortly described as follows. The 'Impulsar' - laser jet engine vehicle - propulsion take place under the influence of powerful high repetition rate pulse-periodic laser radiation. In the experiments the CO{sub 2}-laser and solid state Nd:YAG laser systems had been used. Active impulse appears thanks to air breakdown (<30 km) or to the breakdown of ablated material on the board (>30 km), placed in the vicinity of the focusing mirror-acceptor of the breakdown waves. With each pulse of powerful laser the device rises up, leaving a bright and dense trace of products with high degree of ionization and metallization by conductive nano-particles due to ablation. Conductive dust plasma properties investigation in our experiments was produced by two very effective approaches: high power laser controlled ablation and by explosion of wire. Experimental and theoretical results of conductive canal modeling will be presented. The estimations show that with already experimentally demonstrated figures of specific thrust impulse the lower layers of the Ionosphere can be reached in several ten seconds that is enough to keep the high level of channel conductivity and stability with the help of high repetition rate high voltage generator. Some possible applications for new technology are highlighted.

Apollonov, Victor V. [A.M. Prokhorov General Physics Institute, Vavilov Str. 38, Moscow, 119991 (Russian Federation)

2011-11-10T23:59:59.000Z

119

Lithium ion conducting ionic electrolytes  

DOE Patents [OSTI]

A liquid, predominantly lithium-conducting, ionic electrolyte is described which has exceptionally high conductivity at temperatures of 100.degree. C. or lower, including room temperature. It comprises molten lithium salts or salt mixtures in which a small amount of an anionic polymer lithium salt is dissolved to stabilize the liquid against recrystallization. Further, a liquid ionic electrolyte which has been rubberized by addition of an extra proportion of anionic polymer, and which has good chemical and electrochemical stability, is described. This presents an attractive alternative to conventional salt-in-polymer electrolytes which are not cationic conductors.

Angell, C. Austen (Mesa, AZ); Xu, Kang (Tempe, AZ); Liu, Changle (Tulsa, OK)

1996-01-01T23:59:59.000Z

120

Electrically Conductive Bacterial Nanowires Produced by Shewanella...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Conductive Bacterial Nanowires Produced by Shewanella Oneidensis Strain MR-1 and Other Microorganisms . Electrically Conductive Bacterial Nanowires Produced by Shewanella...

Note: This page contains sample records for the topic "on-board type conductive" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Thin film ion conducting coating  

DOE Patents [OSTI]

Durable thin film ion conducting coatings are formed on a transparent glass substrate by the controlled deposition of the mixed oxides of lithium:tantalum or lithium:niobium. The coatings provide durable ion transport sources for thin film solid state storage batteries and electrochromic energy conservation devices.

Goldner, Ronald B. (Lexington, MA); Haas, Terry (Sudbury, MA); Wong, Kwok-Keung (Watertown, MA); Seward, George (Arlington, MA)

1989-01-01T23:59:59.000Z

122

Conducting Your Own Energy Audit  

E-Print Network [OSTI]

Why should you or anyone be interested in conducting a time intensive energy audit. What equipment is needed? When should you get started? Who should do it? The answer to Why is that energy costs are cutting into a company’s profit every minute...

Phillips, J.

2008-01-01T23:59:59.000Z

123

Conducting Polymer Devices for Bioelectronics  

E-Print Network [OSTI]

signals recording. Organic electrochemical transistors (OECTs) represent a step beyond conducting polymer a far superior signal-to-noise- ratio (SNR) compared to electrodes. The high SNR of the OECT recordings and contamination. The use of an organic electrochemical transistor for detection of lactate by integration

Paris-Sud XI, Université de

124

Electrically conductive rigid polyurethane foam  

DOE Patents [OSTI]

A rigid, moldable polyurethane foam comprises about 2 to 10 weight percent, based on the total foam weight, of a carbon black which is CONDUCTEX CC-40-220 or CONDUCTEX SC, whereby the rigid polyurethane foam is electrically conductive and has essentially the same mechanical properties as the same foam without carbon black added.

Neet, T.E.; Spieker, D.A.

1983-12-08T23:59:59.000Z

125

ETHICAL CONDUCT IN BIOMEDICAL RESEARCH  

E-Print Network [OSTI]

ETHICAL CONDUCT IN BIOMEDICAL RESEARCH: A Handbook for Biomedical Graduate Studies Students and Research Fellows Third Edition BIOMEDICAL GRADUATE STUDIES PROGRAM UNIVERSITY of PENNSYLVANIA #12 that a trainee in biomedical research should be taught to maintain the highest standards of scientific integrity

Plotkin, Joshua B.

126

Glass-Like Heat Conduction in Crystalline Semiconductors  

SciTech Connect (OSTI)

The thermal conductivity and structural properties of polycrystalline and single crystal semiconductor type-1 germanium clathrates are reported. Germanium clathrates exhibit thermal conductivities that are typical of amorphous materials. This behavior occurs in spite of their well-defined crystalline structure. The authors employ temperature dependent neutron diffraction data in investigating the displacements of the caged strontium atoms in Sr{sub 8}Ga{sub 16}Ge{sub 30} and their interaction with the polyhedral cages that entrap them. Their aim is to investigate the correlation between the structural properties and the low, glass-like thermal conductivity observed in this compound.

Nolas, G.S.; Cohn, J.L.; Chakoumakos, B.C.; Slack, G.A.

1999-06-13T23:59:59.000Z

127

Conduct of operations implementation plan  

SciTech Connect (OSTI)

This implementation plan describes the process and provides information and schedules that are necessary to implement and comply with the Department of Energy (DOE) Order 5480.19, {open_quotes}Conduct of Operations{close_quotes} (CoOp). This plan applies to all Pinellas Plant operations and personnel. Generally, this Plan discusses how DOE Order 5480.19 will be implemented at the Pinellas Plant.

Anderson, C.K.; Hall, R.L.

1991-02-20T23:59:59.000Z

128

Electrically conductive polymer concrete coatings  

DOE Patents [OSTI]

A sprayable electrically conductive polymer concrete coating for vertical and overhead applications is described. The coating is permeable yet has low electrical resistivity (<10 ohm-cm), good bond strength to concrete substrates, and good weatherability. A preferred formulation contains about 60 wt% calcined coke breeze, 40 wt% vinyl ester resin with 3.5 wt% modified bentonite clay. Such formulations apply evenly and provide enough rigidity for vertical or overhead structures so there is no drip or sag. 4 tabs.

Fontana, J.J.; Elling, D.; Reams, W.

1988-05-26T23:59:59.000Z

129

Electrically conductive polymer concrete coatings  

DOE Patents [OSTI]

A sprayable electrically conductive polymer concrete coating for vertical d overhead applications is described. The coating is permeable yet has low electrical resistivity (<10 ohm-cm), good bond strength to concrete substrates, and good weatherability. A preferred formulation contains about 60 wt % calcined coke breeze, 40 wt % vinyl ester with 3.5 wt % modified bentonite clay. Such formulations apply evenly and provide enough rigidity for vertical or overhead structures so there is no drip or sag.

Fontana, Jack J. (Shirley, NY); Elling, David (Centereach, NY); Reams, Walter (Shirley, NY)

1990-01-01T23:59:59.000Z

130

Electrically conductive polymer concrete coatings  

DOE Patents [OSTI]

A sprayable electrically conductive polymer concrete coating for vertical d overhead applications is described. The coating is permeable yet has low electrical resistivity (<10 ohm-cm), good bond strength to concrete substrates, and good weatherability. A preferred formulation contains about 60 wt % calcined coke breeze, 40 wt % vinyl ester with 3.5 wt % modified bentonite clay. Such formulations apply evenly and provide enough rigidity for vertical or overhead structures so there is no drip or sag.

Fontana, J.J.; Elling, D.; Reams, W.

1990-03-13T23:59:59.000Z

131

Fiber/Matrix Interfacial Thermal Conductance Effect on the Thermal Conductivity of SiC/SiC Composites  

SciTech Connect (OSTI)

SiC/SiC composites used in fusion reactor applications are subjected to high heat fluxes and require knowledge and tailoring of their in-service thermal conductivity. Accurately predicting the thermal conductivity of SiC/SiC composites as a function of temperature will guide the design of these materials for their intended use, which will eventually include the effects of 14-MeV neutron irradiations. This paper applies an Eshelby-Mori-Tanaka approach (EMTA) to compute the thermal conductivity of unirradiated SiC/SiC composites. The homogenization procedure includes three steps. In the first step EMTA computes the homogenized thermal conductivity of the unidirectional (UD) SiC fiber embraced by its coating layer. The second step computes the thermal conductivity of the UD composite formed by the equivalent SiC fibers embedded in a SiC matrix, and finally the thermal conductivity of the as-formed SiC/SiC composite is obtained by averaging the solution for the UD composite over all possible fiber orientations using the second-order fiber orientation tensor. The EMTA predictions for the transverse thermal conductivity of several types of SiC/SiC composites with different fiber types and interfaces are compared to the predicted and experimental results by Youngblood et al.

Nguyen, Ba Nghiep; Henager, Charles H.

2013-04-20T23:59:59.000Z

132

Hydraulic Conductivity Measurements Barrow 2014  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

Six individual ice cores were collected from Barrow Environmental Observatory in Barrow, Alaska, in May of 2013 as part of the Next Generation Ecosystem Experiment (NGEE). Each core was drilled from a different location at varying depths. A few days after drilling, the cores were stored in coolers packed with dry ice and flown to Lawrence Berkeley National Laboratory (LBNL) in Berkeley, CA. 3-dimensional images of the cores were constructed using a medical X-ray computed tomography (CT) scanner at 120kV. Hydraulic conductivity samples were extracted from these cores at LBNL Richmond Field Station in Richmond, CA, in February 2014 by cutting 5 to 8 inch segments using a chop saw. Samples were packed individually and stored at freezing temperatures to minimize any changes in structure or loss of ice content prior to analysis. Hydraulic conductivity was determined through falling head tests using a permeameter [ELE International, Model #: K-770B]. After approximately 12 hours of thaw, initial falling head tests were performed. Two to four measurements were collected on each sample and collection stopped when the applied head load exceeded 25% change from the original load. Analyses were performed between 2 to 3 times for each sample. The final hydraulic conductivity calculations were computed using methodology of Das et al., 1985.

Katie McKnight; Tim Kneafsey; Craig Ulrich; Jil Geller

133

Impact of degenerate n-doping on the optical absorption edge in transparent conducting cadmium oxide  

E-Print Network [OSTI]

n-type or can be heavily doped. Transparent conductive cadmium oxide (CdO) thin films, for instance devices or modern solar cells, material performance is critically important. A combination of high in the conduction bands of CdO can increase the conductivity up to values desired for technological applications

Schleife, André

134

Lead-position dependent regular oscillations and random fluctuations of conductance in graphene quantum dots  

E-Print Network [OSTI]

Lead-position dependent regular oscillations and random fluctuations of conductance in graphene.1088/0953-8984/25/8/085502 Lead-position dependent regular oscillations and random fluctuations of conductance in graphene quantum, for graphene quantum dots, the conductance variations with the lead positions. Since for graphene the types

Lai, Ying-Cheng

135

Sampling Artifacts from Conductive Silicone Tubing  

SciTech Connect (OSTI)

We report evidence that carbon impregnated conductive silicone tubing used in aerosol sampling systems can introduce two types of experimental artifacts: 1) silicon tubing dynamically absorbs carbon dioxide gas, requiring greater than 5 minutes to reach equilibrium and 2) silicone tubing emits organic contaminants containing siloxane that adsorb onto particles traveling through it and onto downstream quartz fiber filters. The consequence can be substantial for engine exhaust measurements as both artifacts directly impact calculations of particulate mass-based emission indices. The emission of contaminants from the silicone tubing can result in overestimation of organic particle mass concentrations based on real-time aerosol mass spectrometry and the off-line thermal analysis of quartz filters. The adsorption of siloxane contaminants can affect the surface properties of aerosol particles; we observed a marked reduction in the water-affinity of soot particles passed through conductive silicone tubing. These combined observations suggest that the silicone tubing artifacts may have wide consequence for the aerosol community and should, therefore, be used with caution. Gentle heating, physical and chemical properties of the particle carriers, exposure to solvents, and tubing age may influence siloxane uptake. The amount of contamination is expected to increase as the tubing surface area increases and as the particle surface area increases. The effect is observed at ambient temperature and enhanced by mild heating (<100 oC). Further evaluation is warranted.

Timko, Michael T.; Yu, Zhenhong; Kroll, Jesse; Jayne, John T.; Worsnop, Douglas R.; Miake-Lye, Richard C.; Onasch, Timothy B.; Liscinsky, David; Kirchstetter, Thomas W.; Destaillats, Hugo; Holder, Amara L.; Smith, Jared D.; Wilson, Kevin R.

2009-05-15T23:59:59.000Z

136

Student ConduCt Student Affairs  

E-Print Network [OSTI]

Code of Student ConduCt 2013-14 Student Affairs #12;Contents Letter from the Dean of Students .........................................................................................ii University Code of Student Conduct Preamble............................................. 1 Section I: Rules of Student Conduct.............................................................. 1 Section

Suzuki, Masatsugu

137

Lattice thermal conductivity of nanograined half-Heusler solid solutions  

SciTech Connect (OSTI)

We report a phenomenological model of atomic weight, lattice constant, temperature, and grain size to calculate the high-temperature lattice thermal conductivity of nanograined solid solutions. The theoretical treatment developed here is reasonably consistent with the experimental results of n-type MNiSn and p-type MCoSb alloys, where M is the combination of Hf, Zr, and Ti. For disordered half-Heusler alloys with moderated grain sizes, we predict that the reduction in lattice thermal conductivity due to grain boundary scattering is independent of the scattering parameter, which characterizes the phonon scattering cross section of point defects. In addition, the lattice thermal conductivity falls off with temperature as T{sup –1?2} around the Debye temperature.

Geng, Huiyuan, E-mail: genghuiyuan@hit.edu.cn; Meng, Xianfu; Zhang, Hao; Zhang, Jian [State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001 (China)

2014-05-19T23:59:59.000Z

138

Analyses of Compressed Hydrogen On-Board  

E-Print Network [OSTI]

analyses based on new carbon fiber winding/placement processes and/orlower cost fibers Planned, FY'11 (TBD designs and cost inputs for the fuel cycle to project: 1) Refueling cost 2) Well-to-Tank energy use and GHG emissions (ANL lead) This project provides an independent cost assessment of the hydrogen storage

139

On-Board Storage Systems Analysis  

Broader source: Energy.gov (indexed) [DOE]

Storage Determining whether activated carbons at low T & high P can meet DOE's 2007 storage targets Cryo-Compressed Hydrogen Determining combinations of P & T to achieve 4.5...

140

Water-soluble conductive polymers  

DOE Patents [OSTI]

Polymers which are soluble in water and are electrically conductive. The monomer repeat unit is a thiophene or pyrrole molecule having an alkyl group substituted for the hydrogen atom located in the beta position of the thiophene or pyrrole ring and having a surfactant molecule at the end of the alkyl chain. Polymers of this class having 8 or more carbon atoms in the alkyl chain exhibit liquid crystalline behavior, resulting in high electrical anisotropy. The monomer-to-monomer bonds are located between the carbon atoms which are adjacent to the sulfur or nitrogen atoms. The number of carbon atoms in the alkyl group may vary from 1 to 20 carbon atoms. The surfactant molecule consists of a sulfonate group, or a sulfate group, or a carboxylate group, and hydrogen or an alkali metal. Negative ions from a supporting electrolyte which may be used in the electrochemical synthesis of a polymer may be incorporated into the polymer during the synthesis and serve as a dopant to increase the conductivity.

Aldissi, M.

1988-02-12T23:59:59.000Z

Note: This page contains sample records for the topic "on-board type conductive" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Water-soluble conductive polymers  

DOE Patents [OSTI]

Polymers which are soluble in water and are electrically conductive. The monomer repeat unit is a thiophene or pyrrole molecule having an alkyl group substituted for the hydrogen atom located in the beta position of the thiophene or pyrrole ring and having a surfactant molecule at the end of the alkyl chain. Polymers of this class having 8 or more carbon atoms in the alkyl chain exhibit liquid crystalline behavior, resulting in high electrical anisotropy. The monomer-to-monomer bonds are located between the carbon atoms which are adjacent to the sulfur or nitrogen atoms. The number of carbon atoms in the alkyl group may vary from 1 to 20 carbon atoms. The surfactant molecule consists of a sulfonate group, or a sulfate group, or a carboxylate group, and hydrogen or an alkali metal. Negative ions from a supporting electrolyte which may be used in the electrochemical synthesis of a polymer may be incorporated into the polymer during the synthesis and serve as a dopant to increase the conductivity.

Aldissi, Mahmoud (Sante Fe, NM)

1989-01-01T23:59:59.000Z

142

Water-soluble conductive polymers  

DOE Patents [OSTI]

Polymers which are soluble in water and are electrically conductive. The monomer repeat unit is a thiophene or pyrrole molecule having an alkyl group substituted for the hydrogen atom located in the beta position of the thiophene or pyrrole ring and having a surfactant molecule at the end of the alkyl chain. Polymers of this class having 8 or more carbon atoms in the alkyl chain exhibit liquid crystalline behavior, resulting in high electrical anisotropy. The monomer-to-monomer bonds are located between the carbon atoms which are adjacent to the sulfur or nitrogen atoms. The number of carbon atoms in the alkyl group may vary from 1 to 20 carbon atoms. The surfactant molecule consists of a sulfonate group, or a sulfate group, or a carboxylate group, and hydrogen or an alkali metal. Negative ions from a supporting electrolyte which may be used in the electrochemical synthesis of a polymer may be incorporated into the polymer during the synthesis and serve as a dopant to increase the conductivity.

Aldissi, Mahmoud (Sante Fe, NM)

1990-01-01T23:59:59.000Z

143

Advances in inherently conducting polymers  

SciTech Connect (OSTI)

The discovery of polyacetylene as the prototype material led to extensive research on its synythesis and characterization. The techniques that emerged as the most important and promising ones are those that dealt with molecular orientation and that resulted in conductivities almost as high as that of copper. The study of dozens of other materials followed. Interest in conducting polymers stems from their nonclassical optical and electronic properties as well as their potential technological applications. However, some of the factors currently limiting their use are the lack of long-term stability and the need to develop conventional low-cost techniques for easy processing. Therefore, research was extended toward solving these problems, and progress has been recently made in that direction. The synthesis of new materials such as stable and easily processable alkylthiophenes, water-soluble polymers, and multicomponent systems, including copolymers and composites, constitutes an important step forward in the area of synthetic metals. However, a full understanding of materials chemistry and properties requires more work in the years to come. Although, few small-scale applications have proven to be successful, long-term stability and applicability tests are needed before their commercial use becomes reality.

Aldissi, M.

1987-09-01T23:59:59.000Z

144

Thermal Conductivity of Polycrystalline Semiconductors and Ceramics  

E-Print Network [OSTI]

semiconductors and ceramics with desired thermalthermal conductivity of several polycrystalline semiconductors and ceramics,Thermal Conductivity of Polycrystalline Semiconductors and Ceramics

Wang, Zhaojie

2012-01-01T23:59:59.000Z

145

Continuous Processing of High Thermal Conductivity Polyethylene...  

Broader source: Energy.gov (indexed) [DOE]

Processing of High Thermal Conductivity Polyethylene Fibers and Sheets Continuous Processing of High Thermal Conductivity Polyethylene Fibers and Sheets Massachusetts Institute of...

146

Precise Application of Transparent Conductive Oxide Coatings...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Precise Application of Transparent Conductive Oxide Coatings for Flat Panel Displays and Photovoltaic Cells Technology available for licensing: New transparent conducting oxide...

147

STUDENT CONDUCT CODE REVIEW/DISCUSSION  

E-Print Network [OSTI]

STUDENT CONDUCT CODE REVISION REVIEW/DISCUSSION Student Conduct Code Revision Workgroup #12;Agenda Introductions/Purpose History of the Student Conduct Code Revision Workgroup Highlights of the Draft Revision Introduction: Principles Promoting Student Responsibility Jurisdiction Conduct in Violation of Community

Fainman, Yeshaiahu

148

Fabrication of back-contacted silicon solar cells using thermomigration to create conductive vias  

DOE Patents [OSTI]

Methods of manufacturing back-contacted silicon solar cells fabricated using a gradient-driven solute transport process, such as thermomigration or electromigration, to create n-type conductive vias connecting the n-type emitter layer on the front side to n-type ohmic contacts located on the back side.

Gee, James M; Schmit, Russell R.

2007-01-30T23:59:59.000Z

149

A Type II Radio Burst without a Coronal Mass Ejection  

E-Print Network [OSTI]

Type II radio bursts are thought to be a signature of coronal shocks. In this paper, we analyze a short-lived type II burst that started at 07:40 UT on 2011 February 28. By carefully checking white-light images, we find that the type II radio burst is not accompanied by a coronal mass ejection, only with a C2.4 class flare and narrow jet. However, in the extreme-ultraviolet (EUV) images provided by the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory (SDO), we find a wave-like structure that propagated at a speed of $\\sim$ 600 km s$^{-1}$ during the burst. The relationship between the type II radio burst and the wave-like structure is in particular explored. For this purpose, we first derive the density distribution under the wave by the differential emission measure (DEM) method, which is used to restrict the empirical density model. We then use the restricted density model to invert the speed of the shock that produces the observed frequency drift rate in the dynamic spectrum. The ...

Su, W; Ding, M D; Chen, P F; Sun, J Q

2015-01-01T23:59:59.000Z

150

Reduced Thermal Conductivity of Compacted Silicon Nanowires  

E-Print Network [OSTI]

Thermal-Barrier-Coating Applications,” Journa of American Ceramicthermal conductivity materials are typically found among ceramicsThermal Conductivity of Porous Materials: Application to Thick Barrier Coatings,” Journal of the European Ceramic

Yuen, Taylor S.

151

Remedial Action and Waste Disposal Conduct of OperationsMatrix  

SciTech Connect (OSTI)

This Conduct of Operations (CONOPS) matrix incorporates the Environmental Restoration Disposal Facility (ERDF) CONOPS matrix (BHI-00746, Rev. 0). The ERDF CONOPS matrix has been expanded to cover all aspects of the RAWD project. All remedial action and waste disposal (RAWD) operations, including waste remediation, transportation, and disposal at the ERDF consist of construction-type activities as opposed to nuclear power plant-like operations. In keeping with this distinction, the graded approach has been applied to the developmentof this matrix.

M. A. Casbon.

1999-05-24T23:59:59.000Z

152

Solid lithium ion conducting electrolytes and methods of preparation  

DOE Patents [OSTI]

A composition comprised of nanoparticles of lithium ion conducting solid oxide material, wherein the solid oxide material is comprised of lithium ions, and at least one type of metal ion selected from pentavalent metal ions and trivalent lanthanide metal ions. Solution methods useful for synthesizing these solid oxide materials, as well as precursor solutions and components thereof, are also described. The solid oxide materials are incorporated as electrolytes into lithium ion batteries.

Narula, Chaitanya K; Daniel, Claus

2013-05-28T23:59:59.000Z

153

Organic conductive films for semiconductor electrodes  

DOE Patents [OSTI]

According to the present invention, improved electrodes overcoated with conductive polymer films and preselected catalysts are provided. The electrodes typically comprise an inorganic semiconductor over-coated with a charge conductive polymer film comprising a charge conductive polymer in or on which is a catalyst or charge-relaying agent.

Frank, A.J.

1984-01-01T23:59:59.000Z

154

The workshop on conductive polymers: Final report  

SciTech Connect (OSTI)

Reports are made by groups on: polyacetylene, polyphenylene, polyaniline, and related systems; molecular, crystallographic, and defect structures in conducting polymers; heterocyclic polymers; synthesis of new and improved conducting polymers; future applications possibilities for conducting polymers; and challenges for improved understanding of properties. (DLC)

Not Available

1985-01-01T23:59:59.000Z

155

Fourier analysis of conductive heat transfer for glazed roofing materials  

SciTech Connect (OSTI)

For low-rise buildings, roof is the most exposed surface to solar radiation. The main mode of heat transfer from outdoor via the roof is conduction. The rate of heat transfer and the thermal impact is dependent on the thermophysical properties of roofing materials. Thus, it is important to analyze the heat distribution for the various types of roofing materials. The objectives of this paper are to obtain the Fourier series for the conductive heat transfer for two types of glazed roofing materials, namely polycarbonate and polyfilled, and also to determine the relationship between the ambient temperature and the conductive heat transfer for these materials. Ambient and surface temperature data were collected from an empirical field investigation in the campus of Universiti Teknologi MARA Shah Alam. The roofing materials were installed on free-standing structures in natural ventilation. Since the temperature data are generally periodic, Fourier series and numerical harmonic analysis are applied. Based on the 24-point harmonic analysis, the eleventh order harmonics is found to generate an adequate Fourier series expansion for both glazed roofing materials. In addition, there exists a linear relationship between the ambient temperature and the conductive heat transfer for both glazed roofing materials. Based on the gradient of the graphs, lower heat transfer is indicated through polyfilled. Thus polyfilled would have a lower thermal impact compared to polycarbonate.

Roslan, Nurhana Lyana; Bahaman, Nurfaradila; Almanan, Raja Noorliyana Raja; Ismail, Razidah [Faculty of Computer and Mathematical Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor (Malaysia); Zakaria, Nor Zaini [Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor (Malaysia)

2014-07-10T23:59:59.000Z

156

Mixed ionic and electronic conducting electrode studies for an alkali metal thermal to electric converter  

E-Print Network [OSTI]

This research focuses on preparation, kinetics, and performance studies of mixed ionic and electronic conducting electrodes (MIEE) applied in an alkali metal thermal to electric converter (AMTEC). Two types of MIEE, metal/sodium titanate and metal...

Guo, Yuyan

2009-05-15T23:59:59.000Z

157

Holographic conductivity of zero temperature superconductors  

E-Print Network [OSTI]

Using the recently found by G. Horowitz and M. Roberts (arXiv:0908.3677) numerical model of the ground state of holographic superconductors (at zero temperature), we calculate the conductivity for such models. The universal relation connecting conductivity with the reflection coefficient was used for finding the conductivity by the WKB approach. The dependence of the conductivity on the frequency and charge density is discussed. Numerical calculations confirm the general arguments of (arXiv:0908.3677) in favor of non-zero conductivity even at zero temperature. In addition to the Horowitz-Roberts solution we have found (probably infinite) set of extra solutions which are normalizable and reach the same correct RN-AdS asymptotic at spatial infinity. These extra solutions (which correspond to larger values of the grand canonical potential) lead to effective potentials that also vanish at the horizon and thus correspond to a non-zero conductivity at zero temperature.

R. A. Konoplya; A. Zhidenko

2010-02-15T23:59:59.000Z

158

Transport involving conducting fibers in a non-conducting matrix R. A. Hansela  

E-Print Network [OSTI]

result is a material with high electrical conduc- tivity and low thermal conductivity. If we consider, conducting fibers, thin-film devices 1. Introduction Thermal and electrical transport through a low to predict conductance of the combined system. However, if the two materials are similar in conductivity

Walker, D. Greg

159

Conducting polymer actuator enhancement through microstructuring  

E-Print Network [OSTI]

Electroactive conducting polymers, such as polypyrrole, polyaniline, and polythiophenes are currently studied as novel biologically inspired actuators. The actuation mechanisms in these materials are based on the diffusion ...

Pillai, Priam Vasudevan

2007-01-01T23:59:59.000Z

160

Fabrication and characterization of conducting polymer microwires  

E-Print Network [OSTI]

Flexible microwires fabricated from conducting polymers have a wide range of potential applications, including smart textiles that incorporate sensing, actuation, and data processing. The development of garments that ...

Saez, Miguel Angel

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "on-board type conductive" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Low temperature proton conducting oxide devices  

DOE Patents [OSTI]

A device for conducting protons at a temperature below 550.degree. C. includes a LAMOX ceramic body characterized by an alpha crystalline structure.

Armstrong, Timothy R. (Clinton, TN); Payzant, Edward A. (Oak Ridge, TN); Speakman, Scott A. (Oak Ridge, TN); Greenblatt, Martha (Highland Park, NJ)

2008-08-19T23:59:59.000Z

162

Thermal conductivity and heat transfer in superlattices  

SciTech Connect (OSTI)

Understanding the thermal conductivity and heat transfer processes in superlattice structures is critical for the development of thermoelectric materials and devices based on quantum structures. This work reports progress on the modeling of thermal conductivity of superlattice structures. Results from the models established based on the Boltzmann transport equation could explain existing experimental results on the thermal conductivity of semiconductor superlattices in both in plane and cross-plane directions. These results suggest the possibility of engineering the interfaces to further reduce thermal conductivity of superlattice structures.

Chen, G.; Neagu, M.; Borca-Tasciuc, T.

1997-07-01T23:59:59.000Z

163

Modernizing Patent Law's Inequitable Conduct Doctrine  

E-Print Network [OSTI]

conduct doctrine, but the patent system in general. Berkeleyof the currently pending patent reform legislation containsUTCLE 12th Annual Advanced Patent Law Institute, http://

Cotropia, Christopher

2008-01-01T23:59:59.000Z

164

EPA -- Addressing Children's Health through Reviews Conducted...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Addressing Children's Health through Reviews Conducted Pursuant to the National Environmental Policy Act and Section 309 of the Clean Air Act EPA -- Addressing Children's Health...

165

Long term experience with semi-conductive glaze high voltage post insulators  

SciTech Connect (OSTI)

Insulators using semi-conductive glaze have long been known for their superior contamination performance. Early glazes for this type however were not stable and successful use of semi-conductive glazed porcelain insulators was delayed many years until tin-antimony oxide glazes were developed. Service experience of eighteen years is now available for line and station post insulators with this type of glaze. Based on this experience, the aging characteristics of tin-antimony oxide semi-conductive glazes are described and quantified. Several different applications of these insulators are also described.

Baker, A.C.; Maney, J.W.; Szilagyi, Z. (Lapp Insulator Co., LeRoy, NY (US))

1990-01-01T23:59:59.000Z

166

STUDENT CONDUCT CODE (Approved June 16, 2006)  

E-Print Network [OSTI]

CHAPTER 8 STUDENT CONDUCT CODE (Approved June 16, 2006) 8.010. Purpose 8.020. Definitions 8 of the conduct of all students" and "to enforce obedience to the rules." Although the grant of authority is broadly stated, it is well recognized that students are citizens. Students have legal rights, and deserve

Gering, Jon C.

167

Flexible moldable conductive current-limiting materials  

SciTech Connect (OSTI)

A current limiting PTC device (10) has two electrodes (14) with a thin film of electric conducting polymer material (20) disposed between the electrodes, the polymer material (20) having superior flexibility and short circuit performance, where the polymer material contains short chain aliphatic diepoxide, conductive filler particles, curing agent, and, preferably, a minor amount of bisphenol A epoxy resin.

Shea, John Joseph (Pittsburgh, PA); Djordjevic, Miomir B. (Milwaukee, WI); Hanna, William Kingston (Pittsburgh, PA)

2002-01-01T23:59:59.000Z

168

Selected factors influencing GCL hydraulic conductivity  

SciTech Connect (OSTI)

A series of confined swell and hydraulic conductivity tests were conducted on a needle-punched geosynthetic clay liner (GCL) with water as the hydrating medium and reference permeant. Increases in the static confining stress and the needle-punching both restricted GCL swell and contributed to lower bulk GCL void ratios and hence significantly lower hydraulic conductivity values. A well defined linear-log relationship is found between the bulk void ratio and hydraulic conductivity. The number of pore volumes of permeant flow and consequently the level of chemical equilibrium is shown to have a significant effect on the hydraulic conductivity. It is shown that there is a decrease in hydraulic conductivity for small amounts of permeant flow for all ethanol/water mixtures examined. At or near chemical equilibrium, low concentration mixtures (25 and 50% ethanol) continued to produce relative decreases in GCL hydraulic conductivity due to the increased viscosity of the permeant; however, highly concentrated mixtures (75 and 100% ethanol) produced relative increases in GCL hydraulic conductivity arising from double layer contraction. The implications are discussed.

Petrov, R.J. [Trow Consulting Engineers Ltd., Brampton, Ontario (Canada); Rowe, R.K.; Quigley, R.M. [Univ. of Western Ontario, London, Ontario (Canada)

1997-08-01T23:59:59.000Z

169

An Innovative High Thermal Conductivity Fuel Design  

SciTech Connect (OSTI)

Thermal conductivity of the fuel in today's Light Water Reactors, Uranium dioxide, can be improved by incorporating a uniformly distributed heat conducting network of a higher conductivity material, Silicon Carbide. The higher thermal conductivity of SiC along with its other prominent reactor-grade properties makes it a potential material to address some of the related issues when used in UO2 [97% TD]. This ongoing research, in collaboration with the University of Florida, aims to investigate the feasibility and develop a formal methodology of producing the resultant composite oxide fuel. Calculations of effective thermal conductivity of the new fuel as a function of %SiC for certain percentages and as a function of temperature are presented as a preliminary approach. The effective thermal conductivities are obtained at different temperatures from 600K to 1600K. The corresponding polynomial equations for the temperature-dependent thermal conductivities are given based on the simulation results. Heat transfer mechanism in this fuel is explained using a finite volume approach and validated against existing empirical models. FLUENT 6.1.22 was used for thermal conductivity calculations and to estimate reduction in centerline temperatures achievable within such a fuel rod. Later, computer codes COMBINE-PC and VENTURE-PC were deployed to estimate the fuel enrichment required, to maintain the same burnup levels, corresponding to a volume percent addition of SiC.

Jamil A. Khan

2009-11-21T23:59:59.000Z

170

The Organic Chemistry of Conducting Polymers  

SciTech Connect (OSTI)

For the last several years, we have examined the fundamental principles of conduction in one-dimensional systems, i.e., molecular “wires”. It is, of course, widely recognized that such systems, as components of electronically conductive materials, function in a two- and three-dimensional milieu. Thus interchain hopping and grain-boundary resistivity are limiting conductivity factors in highly conductive materials, and overall conductivity is a function of through-chain and boundary hopping. We have given considerable attention to the basic principles underlying charge transport (the “rules of the game”) in two-dimensional systems by using model systems which allow direct observation of such processes, including the examination of tunneling and hopping as components of charge transfer. In related work, we have spent considerable effort on the chemistry of conjugated heteropolymers, most especially polythiophens, with the aim of using these most efficient of readily available electroactive polymers in photovoltaic devices.

Tolbert, Laren Malcolm [Georgia Institute of Technology

2014-12-01T23:59:59.000Z

171

Proton conducting ceramic membranes for hydrogen separation  

DOE Patents [OSTI]

A multi-phase proton conducting material comprising a proton-conducting ceramic phase and a stabilizing ceramic phase. Under the presence of a partial pressure gradient of hydrogen across the membrane or under the influence of an electrical potential, a membrane fabricated with this material selectively transports hydrogen ions through the proton conducting phase, which results in ultrahigh purity hydrogen permeation through the membrane. The stabilizing ceramic phase may be substantially structurally and chemically identical to at least one product of a reaction between the proton conducting phase and at least one expected gas under operating conditions of a membrane fabricated using the material. In a barium cerate-based proton conducting membrane, one stabilizing phase is ceria.

Elangovan, S. (South Jordan, UT); Nair, Balakrishnan G. (Sandy, UT); Small, Troy (Midvale, UT); Heck, Brian (Salt Lake City, UT)

2011-09-06T23:59:59.000Z

172

Thermal conductivity measurements of Summit polycrystalline silicon.  

SciTech Connect (OSTI)

A capability for measuring the thermal conductivity of microelectromechanical systems (MEMS) materials using a steady state resistance technique was developed and used to measure the thermal conductivities of SUMMiT{trademark} V layers. Thermal conductivities were measured over two temperature ranges: 100K to 350K and 293K to 575K in order to generate two data sets. The steady state resistance technique uses surface micromachined bridge structures fabricated using the standard SUMMiT fabrication process. Electrical resistance and resistivity data are reported for poly1-poly2 laminate, poly2, poly3, and poly4 polysilicon structural layers in the SUMMiT process from 83K to 575K. Thermal conductivity measurements for these polysilicon layers demonstrate for the first time that the thermal conductivity is a function of the particular SUMMiT layer. Also, the poly2 layer has a different variation in thermal conductivity as the temperature is decreased than the poly1-poly2 laminate, poly3, and poly4 layers. As the temperature increases above room temperature, the difference in thermal conductivity between the layers decreases.

Clemens, Rebecca; Kuppers, Jaron D.; Phinney, Leslie Mary

2006-11-01T23:59:59.000Z

173

Electrical and thermal conductivities in dense plasmas  

SciTech Connect (OSTI)

Expressions for the electrical and thermal conductivities in dense plasmas are derived combining the Chester-Thellung-Kubo-Greenwood approach and the Kramers approximation. The infrared divergence is removed assuming a Drude-like behaviour. An analytical expression is obtained for the Lorenz number that interpolates between the cold solid-state and the hot plasma phases. An expression for the electrical resistivity is proposed using the Ziman-Evans formula, from which the thermal conductivity can be deduced using the analytical expression for the Lorenz number. The present method can be used to estimate electrical and thermal conductivities of mixtures. Comparisons with experiment and quantum molecular dynamics simulations are done.

Faussurier, G., E-mail: gerald.faussurier@cea.fr; Blancard, C.; Combis, P.; Videau, L. [CEA, DAM, DIF, F-91297 Arpajon (France)

2014-09-15T23:59:59.000Z

174

Thermal conductivity of bulk nanostructured lead telluride  

SciTech Connect (OSTI)

Thermal conductivity of lead telluride with embedded nanoinclusions was studied using Monte Carlo simulations with intrinsic phonon transport properties obtained from first-principles-based lattice dynamics. The nanoinclusion/matrix interfaces were set to completely reflect phonons to model the maximum interface-phonon-scattering scenario. The simulations with the geometrical cross section and volume fraction of the nanoinclusions matched to those of the experiment show that the experiment has already reached the theoretical limit of thermal conductivity. The frequency-dependent analysis further identifies that the thermal conductivity reduction is dominantly attributed to scattering of low frequency phonons and demonstrates mutual adaptability of nanostructuring and local disordering.

Hori, Takuma [Department of Mechanical Engineering, The University of Tokyo, Bunkyo, Tokyo 113-8656 (Japan); Chen, Gang [Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Shiomi, Junichiro, E-mail: shiomi@photon.t.u-tokyo.ac.jp [Department of Mechanical Engineering, The University of Tokyo, Bunkyo, Tokyo 113-8656 (Japan); PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012 (Japan)

2014-01-13T23:59:59.000Z

175

Increased thermal conductivity monolithic zeolite structures  

DOE Patents [OSTI]

A monolith comprises a zeolite, a thermally conductive carbon, and a binder. The zeolite is included in the form of beads, pellets, powders and mixtures thereof. The thermally conductive carbon can be carbon nano-fibers, diamond or graphite which provide thermal conductivities in excess of about 100 W/mK to more than 1,000 W/mK. A method of preparing a zeolite monolith includes the steps of mixing a zeolite dispersion in an aqueous colloidal silica binder with a dispersion of carbon nano-fibers in water followed by dehydration and curing of the binder is given.

Klett, James (Knoxville, TN); Klett, Lynn (Knoxville, TN); Kaufman, Jonathan (Leonardtown, MD)

2008-11-25T23:59:59.000Z

176

Effective thermal conductivity of packed beds of spheres  

E-Print Network [OSTI]

of N are known only for certain types of regular packing, however, an empirical relation for m ) 0. 3 is given as N = 11. 6(l ? m) (22) When a load is applied to a bed of spheres, the contact area between spheres is determined using the Hertz... the authors compared their analytical solutions to has consistently dealt with beds of materials which have a very low thermal conductivity compared to that of the brass and aluminum spheres. These materials have been solid and hollow glass spheres, ceramic...

Duncan, Allen Buchanan

1987-01-01T23:59:59.000Z

177

Characterization of macro-length conducting polymers and the development of a conducting polymer rotary motor  

E-Print Network [OSTI]

Conducting polymers are a subset of materials within the electroactive polymer class that exhibit active mechanical deformations. These deformations induce stresses and strains that allow for conducting polymers to be used ...

Schmid, Bryan D. (Bryan David), 1981-

2005-01-01T23:59:59.000Z

178

Method and apparatus for casting conductive and semi-conductive materials  

DOE Patents [OSTI]

A method and apparatus is disclosed for casting conductive and semi-conductive materials. The apparatus includes a plurality of conductive members arranged to define a container-like area having a desired cross-sectional shape. A portion or all of the conductive or semi-conductive material which is to be cast is introduced into the container-like area. A means is provided for inducing the flow of an electrical current in each of the conductive members, which currents act collectively to induce a current flow in the material. The induced current flow through the conductive members is in a direction substantially opposite to the induced current flow in the material so that the material is repelled from the conductive members during the casting process.

Ciszek, T.F.

1984-08-13T23:59:59.000Z

179

Large displacement fast conducting polymer actuators  

E-Print Network [OSTI]

Conducting polymers are a promising class of electroactive materials that undergo volumetric changes under applied potentials, which make them particularly useful for many actuation applications. Polypyrrole , is one of ...

Chen, Angela Y. (Angela Ying-Ju), 1982-

2006-01-01T23:59:59.000Z

180

Conducting polymer nanostructures for biological applications  

E-Print Network [OSTI]

Synthesis and characterization of conducting copolymer nanofibrils of pyrrolepolypyrrole synthesis was 0.1 M pyrrole monomer dissolved insynthesis Polypyrrole was electropolymerized from a solution of 0.1 M pyrrole (

Berdichevsky, Yevgeny

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "on-board type conductive" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

California: Conducting Polymer Binder Boosts Storage Capacity...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

- 10:17am Addthis Working with Nextval, Inc., Lawrence Berkeley National Laboratory (LBNL) developed a Conducting Polymer Binder for high-capacity lithium-ion batteries. With a...

182

Modeling tensorial conductivity of particle suspension networks  

E-Print Network [OSTI]

Significant microstructural anisotropy is known to develop during shearing flow of attractive particle suspensions. These suspensions, and their capacity to form conductive networks, play a key role in flow-battery technology, among other applications. Herein, we present and test an analytical model for the tensorial conductivity of attractive particle suspensions. The model utilizes the mean fabric of the network to characterize the structure, and the relationship to the conductivity is inspired by a lattice argument. We test the accuracy of our model against a large number of computer-generated suspension networks, based on multiple in-house generation protocols, giving rise to particle networks that emulate the physical system. The model is shown to adequately capture the tensorial conductivity, both in terms of its invariants and its mean directionality.

Tyler Olsen; Ken Kamrin

2015-01-13T23:59:59.000Z

183

Thermal Conductivity in Nanocrystalline Ceria Thin Films  

SciTech Connect (OSTI)

The thermal conductivity of nanocrystalline ceria films grown by unbalanced magnetron sputtering is determined as a function of temperature using laser-based modulated thermoreflectance. The films exhibit significantly reduced conductivity compared with stoichiometric bulk CeO2. A variety of microstructure imaging techniques including X-ray diffraction, scanning and transmission electron microscopy, X-ray photoelectron analysis, and electron energy loss spectroscopy indicate that the thermal conductivity is influenced by grain boundaries, dislocations, and oxygen vacancies. The temperature dependence of the thermal conductivity is analyzed using an analytical solution of the Boltzmann transport equation. The conclusion of this study is that oxygen vacancies pose a smaller impediment to thermal transport when they segregate along grain boundaries.

Marat Khafizov; In-Wook Park; Aleksandr Chernatynskiy; Lingfeng He; Jianliang Lin; John J. Moore; David Swank; Thomas Lillo; Simon R. Phillpot; Anter El-Azab; David H. Hurley

2014-02-01T23:59:59.000Z

184

November 15, 2012 Conducting and managing documents  

E-Print Network [OSTI]

1 November 15, 2012 Conducting and managing documents #12;2 Agenda 1. Basics of copyright 2. Necessary information for citing materials 3. Citation Manager #12;1.Basics of copyright 3 #12;Definitions

Kaji, Hajime

185

Synthesis and characterization of conducting polymer actuators  

E-Print Network [OSTI]

Conducting polymers are known to mechanically respond to electrochemical stimuli and have been utilized as linear actuators. To date, the most successful mechanism for actuation is ionic ingress and egress, though mechanisms ...

Vandesteeg, Nathan A. (Nathan Alan)

2007-01-01T23:59:59.000Z

186

Development and characterization of conducting polymer actuators  

E-Print Network [OSTI]

Conducting polymers such as polypyrrole, polythiophene and polyaniline are currently studied as novel biologically inspired actuators. The actuation mechanism of these materials depends upon the motion of ions in and out ...

Pillai, Priam Vasudevan

2011-01-01T23:59:59.000Z

187

Thermal conductivity of thermal-battery insulations  

SciTech Connect (OSTI)

The thermal conductivities of a variety of insulating materials used in thermal batteries were measured in atmospheres of argon and helium using several techniques. (Helium was used to simulate the hydrogen atmosphere that results when a Li(Si)/FeS{sub 2} thermal battery ages.) The guarded-hot-plate method was used with the Min-K insulation because of its extremely low thermal conductivity. For comparison purposes, the thermal conductivity of the Min-K insulating board was also measured using the hot-probe method. The thermal-comparator method was used for the rigid Fiberfrax board and Fiberfrax paper. The thermal conductivity of the paper was measured under several levels of compression to simulate the conditions of the insulating wrap used on the stack in a thermal battery. The results of preliminary thermal-characterization tests with several silica aerogel materials are also presented.

Guidotti, R.A.; Moss, M.

1995-08-01T23:59:59.000Z

188

M. Bahrami ENSC 388 (F09) Steady Conduction Heat Transfer 1 Steady Heat Conduction  

E-Print Network [OSTI]

of the material. In the limiting case where x0, the equation above reduces to the differential form: W dx dT k is the only energy interaction; the energy balance for the wall can be expressed: dt dE QQ wall outin). Thermal Conductivity Thermal conductivity k [W/mK] is a measure of a material's ability to conduct heat

Bahrami, Majid

189

Standards of Student Conduct: A Guide to the University of Rochester Conduct  

E-Print Network [OSTI]

Standards of Student Conduct: A Guide to the University of Rochester Conduct Process and Policies 2012-2013 Center for Student Conflict Management #12;2 STANDARDS OF STUDENT CONDUCT A Guide Student Handbook, the Residential Community Standards material, the Resident Network Acceptable Use Policy

Portman, Douglas

190

Student Conduct Information Packet A Step-by-Step Guide to the Student Conduct Process  

E-Print Network [OSTI]

Student Conduct Information Packet A Step-by-Step Guide to the Student Conduct Process Basic Overview The student conduct process at the College is summarized in the flow chart below. This chart is provided to students to explain the process during the Information Session. #12;Taking a Closer Look

Zobin, Nahum

191

Microsoft Vendor Code of Conduct (US 2012) 1 Microsoft Vendor Code of Conduct  

E-Print Network [OSTI]

Microsoft Vendor Code of Conduct (US 2012) 1 Microsoft Vendor Code of Conduct Microsoft aspires with customers, partners, governments, communities, and vendors. Through the Standards of Business Conduct (www expects its vendors to embrace this commitment to integrity by complying with and training its employees

Bernstein, Phil

192

Conductive polymeric compositions for lithium batteries  

DOE Patents [OSTI]

Novel chain polymers comprising weakly basic anionic moieties chemically bound into a polyether backbone at controllable anionic separations are presented. Preferred polymers comprise orthoborate anions capped with dibasic acid residues, preferably oxalato or malonato acid residues. The conductivity of these polymers is found to be high relative to that of most conventional salt-in-polymer electrolytes. The conductivity at high temperatures and wide electrochemical window make these materials especially suitable as electrolytes for rechargeable lithium batteries.

Angell, Charles A. (Mesa, AZ); Xu, Wu (Tempe, AZ)

2009-03-17T23:59:59.000Z

193

Transparent conducting oxides and production thereof  

SciTech Connect (OSTI)

Transparent conducting oxides and production thereof are disclosed. An exemplary method of producing a transparent conducting oxide (TCO) material may comprise: providing a TCO target doped with either a high-permittivity oxide or a low-permittivity oxide in a process chamber. The method may also comprise depositing a metal oxide on the target in the process chamber to form a thin film having enhanced optical properties without substantially decreasing electrical quality.

Gessert, Timothy A.; Yoshida, Yuki; Coutts, Timothy J.

2014-06-10T23:59:59.000Z

194

Transparent conducting oxides and production thereof  

SciTech Connect (OSTI)

Transparent conducting oxides and production thereof are disclosed. An exemplary method of producing a transparent conducting oxide (TCO) material may comprise: providing a TCO target (110) doped with either a high-permittivity oxide or a low-permittivity oxide in a process chamber (100). The method may also comprise depositing a metal oxide on the target (110) to form a thin film having enhanced optical properties without substantially decreasing electrical quality.

Gessert, Timothy A; Yoshida, Yuki; Coutts, Timothy J

2014-05-27T23:59:59.000Z

195

Types of Costs Types of Cost Estimates  

E-Print Network [OSTI]

· Types of Costs · Types of Cost Estimates · Methods to estimate capital costs MIN E 408: Mining% accuracy. ­ 2-5% of pre-production capital Types of Cost Estimates #12;3. Definitive ­ Based on definitive-even $ Production Level Fixed Cost Break-even $ Production Level Cost-Revenue Relationships · Capital Costs (or

Boisvert, Jeff

196

International Astronautical Congress, Naples, Italy. Copyright 2012 by the International Astronautical Federation. All rights reserved. IAC-12-D5.2.11 Page 1 of 14  

E-Print Network [OSTI]

by the European Space Agency (ESA) to conduct the operations for European scientific experiments on board

Tronci, Enrico

197

KAg11(VO4)4 as a Candidate p-Type Transparent Conducting Oxide  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickrinformation forTechnologiesDialysis Provider3 |K-Eastand theory

198

Structure of the Type IVa Major Pilin from the Electrically Conductive  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systemsBiSiteNeutronStrategicOurStructureSurvivorBacterial Nanowires of

199

Quantum conductance of zigzag graphene oxide nanoribbons  

SciTech Connect (OSTI)

The electronic properties of zigzag graphene oxide nanoribbons (ZGOR) are presented. The results show interesting behaviors which are considerably different from the properties of the perfect graphene nanoribbons (GNRs). The theoretical methods include a Huckel-tight binding approach, a Green's function methodology, and the Landauer formalism. The presence of oxygen on the edge results in band bending, a noticeable change in density of states and thus the conductance. Consequently, the occupation in the valence bands increase for the next neighboring carbon atom in the unit cell. Conductance drops in both the conduction and valence band regions are due to the reduction of allowed k modes resulting from band bending. The asymmetry of the energy band structure of the ZGOR is due to the energy differences of the atoms. The inclusion of a foreign atom's orbital energies changes the dispersion relation of the eigenvalues in energy space. These novel characteristics are important and valuable in the study of quantum transport of GNRs.

Kan, Zhe; Nelson, Christopher; Khatun, Mahfuza, E-mail: mkhatun@bsu.edu [Department of Physics and Astronomy, Center for Computational Nanoscience, Ball State University, Muncie, Indiana 47306 (United States)

2014-04-21T23:59:59.000Z

200

Casimir energy for surfaces with constant conductivity  

E-Print Network [OSTI]

We consider the vacuum energy of the electromagnetic field in systems characterized by a constant conductivity using the zeta-regularization approach. The interaction in two cases is investigated: two infinitely thin parallel sheets and an infinitely thin spherical shell. We found that the Casimir energy for the planar system is always attractive and it has the same characteristic distance dependence as the interaction for two perfect semi-infinite metals. The Casimir energy for the spherical shell depends on the inverse radius of the sphere, but it maybe negative or positive depending on the value of the conductivity. If the conductivity is less than a certain critical value, the interaction is attractive, otherwise the Casimir force is repulsive regardless of the spherical shell radius.

Nail Khusnutdinov; D. Drosdoff; Lilia M. Woods

2014-04-09T23:59:59.000Z

Note: This page contains sample records for the topic "on-board type conductive" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Gas storage carbon with enhanced thermal conductivity  

DOE Patents [OSTI]

A carbon fiber carbon matrix hybrid adsorbent monolith with enhanced thermal conductivity for storing and releasing gas through adsorption and desorption is disclosed. The heat of adsorption of the gas species being adsorbed is sufficiently large to cause hybrid monolith heating during adsorption and hybrid monolith cooling during desorption which significantly reduces the storage capacity of the hybrid monolith, or efficiency and economics of a gas separation process. The extent of this phenomenon depends, to a large extent, on the thermal conductivity of the adsorbent hybrid monolith. This invention is a hybrid version of a carbon fiber monolith, which offers significant enhancements to thermal conductivity and potential for improved gas separation and storage systems.

Burchell, Timothy D. (Oak Ridge, TN); Rogers, Michael Ray (Knoxville, TN); Judkins, Roddie R. (Knoxville, TN)

2000-01-01T23:59:59.000Z

202

Acetonitrile Drastically Boosts Conductivity of Ionic Liquids  

E-Print Network [OSTI]

We apply a new methodology in the force field generation (PCCP 2011, 13, 7910) to study the binary mixtures of five imidazolium-based room-temperature ionic liquids (RTILs) with acetonitrile (ACN). The investigated RTILs are composed of tetrafluoroborate (BF4) anion and dialkylimidazolium cations, where one of the alkyl groups is methyl for all RTILs, and the other group is different for each RTILs, being ethyl (EMIM), butyl (BMIM), hexyl (HMIM), octyl (OMIM), and decyl (DMIM). Specific densities, radial distribution functions, ionic cluster distributions, heats of vaporization, diffusion constants, shear viscosities, ionic conductivities, and their correlations are discussed. Upon addition of ACN, the ionic conductivity of RTILs is found to increase by more than 50 times, that significantly exceeds an impact of most known solvents. Remarkably, the sharpest conductivity growth is found for the long-tailed imidazolium-based cations. This new fact motivates to revisit an application of these binary systems as a...

Chaban, Vitaly V; Kalugin, Oleg N; Prezhdo, Oleg V

2012-01-01T23:59:59.000Z

203

Conduct of Operations and Quality Assurance Compliance  

SciTech Connect (OSTI)

The purpose of this document is to present and detail the deliverables for the Tiger Team Action Plan, Finding MF-11, and milestones in the FY92 Performance Appraisal for Conduct of Operations from Sandia National Laboratories to DOE. The ``Proposal for Reporting Conduct of Operations & Quality Assurance Compliance to DOE`` describes what the deliverables shall be. Five major steps that result in the development of line practices are covered in this document. These line practices specify what Sandia will do to comply with the above DOE management orders. The five steps include: hazard classification; programmatic risk classification; management grouping; compliance plan; and corporate reporting.

Andrews, N.S.

1992-06-01T23:59:59.000Z

204

Conduct of Operations and Quality Assurance Compliance  

SciTech Connect (OSTI)

The purpose of this document is to present and detail the deliverables for the Tiger Team Action Plan, Finding MF-11, and milestones in the FY92 Performance Appraisal for Conduct of Operations from Sandia National Laboratories to DOE. The Proposal for Reporting Conduct of Operations Quality Assurance Compliance to DOE'' describes what the deliverables shall be. Five major steps that result in the development of line practices are covered in this document. These line practices specify what Sandia will do to comply with the above DOE management orders. The five steps include: hazard classification; programmatic risk classification; management grouping; compliance plan; and corporate reporting.

Andrews, N.S.

1992-06-01T23:59:59.000Z

205

Conductivity as applied to water analysis  

E-Print Network [OSTI]

for the "Dionio Water Tester11. 1. Detection of condenser leaks. 2. Measurement of the priming of boilers. 3. Estimation of the hardness of water. 6. 4. Softening water. 5. Detection of sewage pollution. 6. Test of sewage effluent. 7. Estimation... of the purity of distilled water. 8. Checking the purity of a water supply. In most cases, conductivity is a very satisfactory means of detecting condenser leaks and may also he used in estimating the extent of the leakage. The conductivity of a sample...

Godfrey, Truman M.

1913-05-15T23:59:59.000Z

206

Electronic conduction through single crystals of polyethylene  

E-Print Network [OSTI]

May, 1966 Major Subjects Physics ELECTRONIC CONDUCTION THROUGH SINGLE CRYSTRLS OF POLYETHYLENE k Thesis By Gerald Maurice Samson Approved as to style and content by: naen of the Committee ad of the D artment ber ber c- The autho. u... talc o Polyot! ylone . -y, i'oo Gerald !':cur"' co Samson Directed by: Zr. Joe S. The predominant conduction mechani m through single cryo' mls op polyethylene is shown to be Schott!cy ( hernal) oui "sion . or tompora- o tu. es - bove 0 C. . "or...

Samson, Gerald Maurice

1966-01-01T23:59:59.000Z

207

Electrically conductive connection for an electrode  

DOE Patents [OSTI]

An electrically conductive connection for an electrode assembly of an electrolyte cell in which aluminum is produced by electrolysis in a molten salt is described. The electrode assembly comprises an electrode flask and a conductor rod. The flask has a collar above an area of minimum flask diameter. The electrically conductive connection comprises the electrode flask, the conductor rod and a structure bearing against the collar and the conductor rod for pulling the conductor rod into compressive and electrical contact with the flask. 2 figs.

Hornack, T.R.; Chilko, R.J.

1986-09-02T23:59:59.000Z

208

679.7 Prohibitions 50 CFR 679a7.doc 679.7 Prohibitions Page 1 of 16  

E-Print Network [OSTI]

not have on board a valid Federal fisheries permit issued under § 679.4. (ii) Conduct directed fishing.4 and endorsed for Atka mackerel, Pacific cod, or pollock under § 679.4(b)(5)(vi). (iii) Conduct fishing operations from a vessel using other than the operation type(s) specified on the FFP (see § 679.4(b)) issued

209

Magnetic transparent conducting oxide film and method of making  

DOE Patents [OSTI]

Cobalt-nickel oxide films of nominal 100 nm thickness, and resistivity as low as 0.06 .OMEGA..multidot.cm have been deposited by spin-casting from both aqueous and organic precursor solutions followed by annealing at 450.degree. C. in air. Films deposited on sapphire substrates exhibit a refractive index of about 1.7 and are relatively transparent in the wavelength region from 0.6 to 10.0 .mu.m. They are also magnetic. The electrical and spectroscopic properties of the oxides have been studied as a function of x=Co/(Co+Ni) ratio. An increase in film resistivity was found upon substitution of other cations (e.g., Zn.sup.2+, Al.sup.3+) for Ni in the spinel structure. However, some improvement in the mechanical properties of the films resulted. On the other hand, addition of small amounts of Li decreased the resistivity. A combination of XRD, XPS, UV/Vis and Raman spectroscopy indicated that NiCo.sub.2 O.sub.4 is the primary conducting component and that the conductivity reaches a maximum at this stoichiometry. When x<0.67, NiO forms leading to an increase in resistivity; when x>0.67, the oxide was all spinel but the increased Co content lowered the conductivity. The influence of cation charge state and site occupancy in the spinel structure markedly affects calculated electron band structures and contributes to a reduction of p-type conductivity, the formation of polarons, and the reduction in population of mobile charge carriers that tend to limit transmission in the infrared.

Windisch Jr., Charles F.; Exarhos, Gregory J.; Sharma, Shiv K.

2004-07-13T23:59:59.000Z

210

Thermal conductivity changes upon neutron transmutation of {sup 10}B doped diamond  

SciTech Connect (OSTI)

{sup 10}B doped p-type diamond samples were subjected to neutron transmutation reaction using thermal neutron flux of 0.9 × 10{sup 13} cm{sup ?2} s{sup ?1} and fast neutron flux of 0.09 × 10{sup 13} cm{sup ?2} s{sup ?1}. Another sample of epilayer grown on type IIa (110) single crystal diamond substrate was subjected to equal thermal and fast neutron flux of 10{sup 14}?cm{sup ?2} s{sup ?1}. The defects in the diamond samples were previously characterized by different methods. In the present work, thermal conductivity of these diamond samples was determined at room temperature by transient thermoreflectance method. The thermal conductivity change in the samples as a function of neutron fluence is explained by the phonon scattering from the point defects and disordered regions. The thermal conductivity of the diamond samples decreased more rapidly initially and less rapidly for larger neutron fluence. In addition, the thermal conductivity in type IIb diamond decreased less rapidly with thermal neutron fluence compared to the decrease in type IIa diamond subjected to fast neutron fluence. It is concluded that the rate of production of defects during transmutation reaction is slower when thermal neutrons are used. The thermal conductivity of epilayer of diamond subjected to high thermal and fast neutron fluence is associated with the covalent carbon network in the composite structure consisting of disordered carbon and sp{sup 2} bonded nanocrystalline regions.

Jagannadham, K., E-mail: jag-kasichainula@ncsu.edu [Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States); Verghese, K. [Nuclear Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States); Butler, J. E. [Code 6174, Naval research Laboratory, Washington, District of Columbia 20375 (United States)

2014-08-28T23:59:59.000Z

211

Application of conducting polymers to electroanalysis  

SciTech Connect (OSTI)

Conducting polymers can be used as sensitive layers in chemical microsensors leading to new applications of theses devices. They offer the potential for developing material properties that are critical to the sensor sensitivity, selectivity and fabrication. The advantages and limitations of the use of thin polymer layers in electrochemical sensors are discussed.

Josowicz, M.A.

1994-04-01T23:59:59.000Z

212

Faculty and Staff Commute Report Conducted by  

E-Print Network [OSTI]

Faculty and Staff Commute Report July 2008 Conducted by #12;Executive Summary The price of gasoline at Austin is $91.35 per month. With no relief in sight to rising gasoline prices, employees are increasingly to accommodate future vehicles, such as installing charging stations on campus for plug in cars. #12;Faculty

Yang, Zong-Liang

213

Fracture Conductivity of the Eagle Ford Shale  

E-Print Network [OSTI]

such as the Eagle Ford Shale. This work investigates the fracture conductivities of seven Eagle Ford Shale samples collected from an outcrop of facies B. Rough fractures were induced in the samples and laboratory experiments that closely followed the API RP-61...

Guzek, James J

2014-07-25T23:59:59.000Z

214

Extremal structures of multiphase heat conducting composites  

E-Print Network [OSTI]

Extremal structures of multiphase heat conducting composites A.V. Cherkaev \\Lambda L.V. Gibiansky y April 19, 1995 Abstract In this paper we construct microstructures of multiphase composites with un be easily gen­ eralized for the three­dimensional composites with arbitrary number of phases. 1 Introduction

Cherkaev, Andrej

215

Code of Conduct Etiquette at Utrecht University  

E-Print Network [OSTI]

Code of Conduct Etiquette at Utrecht University What principles underpin our behaviour of Utrecht University. The Code describes the values that govern the way people work and study for sanctions. How is Utrecht University different from other universities? What do we wish to achieve? MISSION

Utrecht, Universiteit

216

How to Conduct an Energy Efficiency Study  

E-Print Network [OSTI]

This paper describes how to organize a team of specialists in order to conduct an energy efficiency study in a totally unfamiliar plant. In-plant data gathering techniques are presented as well as methods for obtaining ideas and information from...

Biles, J. E.

1979-01-01T23:59:59.000Z

217

Heat conductivity of a pion gas  

E-Print Network [OSTI]

We evaluate the heat conductivity of a dilute pion gas employing the Uehling-Uehlenbeck equation and experimental phase-shifts parameterized by means of the SU(2) Inverse Amplitude Method. Our results are consistent with previous evaluations. For comparison we also give results for an (unphysical) hard sphere gas.

Antonio Dobado Gonzalez; Felipe J. Llanes-Estrada; Juan M. Torres Rincon

2007-02-13T23:59:59.000Z

218

Thermal Conductivity and Noise Attenuation in  

E-Print Network [OSTI]

.3.4 Corrosion-resistant and high-temperature filters 9 1.3.5 Acoustic Applications 9 2. THERMAL CONDUCTIVITY 2.1 THERMAL RESISTANCE 2.1.1 Thermal Conductors in Series 12 2.1.2 Thermal conductors in parallel 13 2 difference RTH Thermal resistance of conductor sb Stefan's constant T4 Temperature difference K* Total

Cambridge, University of

219

Conducting a Wildland Visual Resources Inventory1  

E-Print Network [OSTI]

Conducting a Wildland Visual Resources Inventory1 James F. Palmer 2/ 1/ Submitted to the National of Massachusetts, Amherst, MA 01003. Abstract: This paper describes a procedure for system- atically inventorying- tion and description of each inventoried scene are recorded on U.S. Geological Survey topographic maps

Standiford, Richard B.

220

Conduct of Operations Requirements for DOE Facilities  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

"To provide requirements and guidelines for Departmental Elements, including the National Nuclear Security Administration (NNSA), to use in developing directives, plans, and/or procedures relating to the conduct of operations at DOE facilities. The implementation of these requirements and guidelines should result in improved quality and uniformity of operations. Change 2, 10-23-2001. Canceled by DOE O 422.1.

1990-07-09T23:59:59.000Z

Note: This page contains sample records for the topic "on-board type conductive" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Types of Costs Types of Cost Estimates  

E-Print Network [OSTI]

05-1 · Types of Costs · Types of Cost Estimates · Methods to estimate capital costs MIN E 408-Revenue Relationships · Capital Costs (or first cost or capital investment): ­ Expenditures made to acquire or develop capital assets ­ Three main classes of capital costs: 1. Depreciable Investment: · Investment allocated

Boisvert, Jeff

222

Appendix A: Committee on Student Conduct Hearing Procedures Committee on Student Conduct Hearing Procedures  

E-Print Network [OSTI]

Appendix A: Committee on Student Conduct Hearing Procedures Committee on Student Conduct Hearing Procedures A. Introduction B. Parties to the Complaint C. Committee and Panels D. Cases of Physical. For the purpose of these procedures, the parties are identified as the University presenter and the accused

Amin, S. Massoud

223

Multiterminal Conductance of a Floquet Topological Insulator  

E-Print Network [OSTI]

We report on simulations of the dc conductance and quantum Hall response of a Floquet topological insulator using Floquet scattering theory. Our results reveal that laser-induced edge states in graphene lead to quantum Hall plateaus once imperfect matching with the non-illuminated leads is lessened. But the magnitude of the Hall plateaus is not directly related to the number and chirality of all the edge states at a given energy as usual. Instead, the plateaus are dominated only by those edge states adding to the dc density of states. Therefore, the dc quantum Hall conductance of a Floquet topological insulator is not directly linked to topological invariants of the full the Floquet bands.

L. E. F. Foa Torres; P. M. Perez-Piskunow; C. A. Balseiro; G. Usaj

2014-09-08T23:59:59.000Z

224

Helicopter magnetic survey conducted to locate wells  

SciTech Connect (OSTI)

A helicopter magnetic survey was conducted in August 2007 over 15.6 sq mi at the Naval Petroleum Reserve No. 3’s (NPR-3) Teapot Dome Field near Casper, Wyoming. The survey’s purpose was to accurately locate wells drilled there during more than 90 years of continuous oilfield operation. The survey was conducted at low altitude and with closely spaced flight lines to improve the detection of wells with weak magnetic response and to increase the resolution of closely spaced wells. The survey was in preparation for a planned CO2 flood for EOR, which requires a complete well inventory with accurate locations for all existing wells. The magnetic survey was intended to locate wells missing from the well database and to provide accurate locations for all wells. The ability of the helicopter magnetic survey to accurately locate wells was accomplished by comparing airborne well picks with well locations from an intense ground search of a small test area.

Veloski, G.A.; Hammack, R.W.; Stamp, V. (Rocky Mountain Oilfield Testing Center); Hall, R. (Rocky Mountain Oilfield Testing Center); Colina, K. (Rocky Mountain Oilfield Testing Center)

2008-07-01T23:59:59.000Z

225

Nuclear fission as resonance-mediated conductance  

E-Print Network [OSTI]

For 75 years the theory of nuclear fission has been based on the existence of a collective coordinate associated with the nuclear shape, an assumption required by the Bohr-Wheeler formula as well as by the R-matrix theory of fission. We show that it is also possible to formulate the theory without the help of collective coordinates. In the new formulation, fission is facilitated by individual states in the barrier region rather than channels over the barrier. In a certain limit the theory reduces to a formula closely related to the formula for electronic conductance through resonant tunneling states. In contrast, conduction through channels gives rise to a staircase excitation function that is well-known in nanoscale electronics but has never been seen in nuclear fission.

G. F. Bertsch

2014-12-18T23:59:59.000Z

226

Status of surface conduction in topological insulators  

SciTech Connect (OSTI)

In this report, we scrutinize the thickness dependent resistivity data from the recent literature on electrical transport measurements in topological insulators. A linear increase in resistivity with increase in thickness is expected in the case of these materials since they have an insulating bulk and a conducting surface. However, such a trend is not seen in the resistivity versus thickness data for all the cases examined, except for some samples, where it holds for a range of thickness.

Barua, Sourabh, E-mail: sbarua@iitk.ac.in; Rajeev, K. P. [Department of Physics, Indian Institute of Technology Kanpur, Kanpur 208016 (India)] [Department of Physics, Indian Institute of Technology Kanpur, Kanpur 208016 (India)

2014-01-15T23:59:59.000Z

227

Transverse electric conductivity of quantum collisional plasmas  

E-Print Network [OSTI]

Formulas for calculation of transverse dielectric function and transverse electric conductivity in quantum collisional plasmas under arbitrary degree of degeneracy of the electron gas are received. The Wigner - Vlasov - Boltzmann kinetic equation with collision integral in BGK (Bhatnagar, Gross and Krook) form in coordinate space is used. Various special cases are investigated. The case of fully degenerate quantum plasma was considered separately. Comparison with Lindhard's formula has been realized.

A. V. Latyshev; A. A. Yushkanov

2010-07-06T23:59:59.000Z

228

Conduct of Operations Assessment Field Handbook  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTieCelebrate Earth Codestheatfor Optimized91 * September 2005 Conduct

229

Transparent conducting oxides: A -doped superlattice approach  

SciTech Connect (OSTI)

Two-dimensional electron gases (2DEGs) at the interface of oxide heterostructures have been the subject of recent experiment and theory, due to the intriguing phenomena that occur in confined electronic states. However, while much has been done to understand the origin of 2DEGs and related phenomena, very little has been explored with regards to the control of conduction pathways and the distribution of charge carriers. Using first principles simulations and experimental thin film synthesis methods, we examine the effect of dimensionality on carrier transport in La delta-doped SrTiO3 (STO) superlattices, as a function of the thickness of the insulating STO spacer. Our computed Fermi surfaces and layer-resolved carrier density proles demonstrate that there is a critical thickness of the STO spacer, below which carrier transport is dominated by three-dimensional conduction of interface charges arising from appreciable overlap of the quantum mechanical wavefunctions between neighboring delta-doped layers. We observe that, experimentally, these superlattices remain highly transparent to visible light. Band structure calculations indicate that this is a result of the appropriately large gap between the O 2p and Ti d states. The tunability of the quantum mechanical wavefunctions and the optical transparency highlight the potential for using oxide heterostructures in novel opto-electronic devices; thus providing a route to the creation of novel transparent conducting oxides.

Cooper, Valentino R [ORNL; Seo, Sung Seok A. [University of Kentucky, Lexington; Lee, Suyoun [ORNL; Kim, Jun Sung [Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea; Choi, Woo Seok [ORNL; Okamoto, Satoshi [ORNL; Lee, Ho Nyung [ORNL

2014-01-01T23:59:59.000Z

230

Conductance valve and pressure-to-conductance transducer method and apparatus  

DOE Patents [OSTI]

A device for interrupting or throttling undesired ionic transport through a fluid network is disclosed. The device acts as a fluid valve by reversibly generating a fixed "bubble" in the conducting solvent solution carried by the network. The device comprises a porous hydrophobic structure filling a portion of a connecting channel within the network and optionally incorporates flow restrictor elements at either end of the porous structure that function as pressure isolation barriers, and a fluid reservoir connected to the region of the channel containing the porous structure. Also included is a pressure pump connected to the fluid reservoir. The device operates by causing the pump to vary the hydraulic pressure to a quantity of solvent solution held within the reservoir and porous structure. At high pressures, most or all of the pores of the structure are filled with conducting liquid so the ionic conductance is high. At lower pressures, only a fraction of the pores are filled with liquid, so ionic conductivity is lower. Below a threshold pressure, the porous structure contains only vapor, so there is no liquid conduction path. The device therefore effectively throttles ionic transport through the porous structure and acts as a "conductance valve" or "pressure-to-conductance" transducer within the network.

Schoeniger, Joseph S.; Cummings, Eric B.; Brennan, James S.

2005-01-18T23:59:59.000Z

231

Rechargeable aluminum batteries with conducting polymers as positive electrodes.  

SciTech Connect (OSTI)

This report is a summary of research results from an Early Career LDRD project con-ducted from January 2012 to December 2013 at Sandia National Laboratories. Demonstrated here is the use of conducting polymers as active materials in the posi-tive electrodes of rechargeable aluminum-based batteries operating at room tempera-ture. The battery chemistry is based on chloroaluminate ionic liquid electrolytes, which allow reversible stripping and plating of aluminum metal at the negative elec-trode. Characterization of electrochemically synthesized polypyrrole films revealed doping of the polymers with chloroaluminate anions, which is a quasi-reversible reac-tion that facilitates battery cycling. Stable galvanostatic cycling of polypyrrole and polythiophene cells was demonstrated, with capacities at near-theoretical levels (30-100 mAh g-1) and coulombic efficiencies approaching 100%. The energy density of a sealed sandwich-type cell with polythiophene at the positive electrode was estimated as 44 Wh kg-1, which is competitive with state-of-the-art battery chemistries for grid-scale energy storage.

Hudak, Nicholas S.

2013-12-01T23:59:59.000Z

232

Types of Reuse  

Broader source: Energy.gov [DOE]

The following provides greater detail regarding the types of reuse pursued for LM sites. It should be noted that many actual reuses combine several types of the uses listed below.

233

Investigation of the effect of gel residue on hydraulic fracture conductivity using dynamic fracture conductivity test  

E-Print Network [OSTI]

) ............................................................................ 51 Figure B.9: Fracture Conductivity Behavior (Polymer Concentration = 50 lb/Mgal and Gas Rate = 0.5 slm) ............................................................................ 52 Figure B.10: Fracture Conductivity Behavior (Polymer... documented in API RP-61 (1989). The recommended conditions and procedure for the test includes loading a known proppant concentration (generally 2 lb/ft2) uniformly between two steel pistons at ambient temperature, maintaining closure stress for 15 minutes...

Marpaung, Fivman

2008-10-10T23:59:59.000Z

234

Investigation of the effect of gel residue on hydraulic fracture conductivity using dynamic fracture conductivity test  

E-Print Network [OSTI]

) ............................................................................ 51 Figure B.9: Fracture Conductivity Behavior (Polymer Concentration = 50 lb/Mgal and Gas Rate = 0.5 slm) ............................................................................ 52 Figure B.10: Fracture Conductivity Behavior (Polymer... documented in API RP-61 (1989). The recommended conditions and procedure for the test includes loading a known proppant concentration (generally 2 lb/ft2) uniformly between two steel pistons at ambient temperature, maintaining closure stress for 15 minutes...

Marpaung, Fivman

2009-05-15T23:59:59.000Z

235

Synthesis of transparent conducting oxide coatings  

DOE Patents [OSTI]

A method and system for preparing a light transmitting and electrically conductive oxide film. The method and system includes providing an atomic layer deposition system, providing a first precursor selected from the group of cyclopentadienyl indium, tetrakis (dimethylamino) tin and mixtures thereof, inputting to the deposition system the first precursor for reaction for a first selected time, providing a purge gas for a selected time, providing a second precursor comprised of an oxidizer, and optionally inputting a second precursor into the deposition system for reaction and alternating for a predetermined number of cycles each of the first precursor, the purge gas and the second precursor to produce the oxide film.

Elam, Jeffrey W.; Martinson, Alex B. F.; Pellin, Michael J.; Hupp, Joseph T.

2010-05-04T23:59:59.000Z

236

Exploding conducting film laser pumping apparatus  

DOE Patents [OSTI]

Exploding conducting film laser optical pumping apparatus. The 342-nm molecular iodine and the 1.315-.mu.m atomic iodine lasers have been optically pumped by intense light from exploding-metal-film discharges. Brightness temperatures for the exploding-film discharges were approximately 25,000 K. Although lower output energies were achieved for such discharges when compared to exploding-wire techniques, the larger surface area and smaller inductance inherent in the exploding-film should lead to improved efficiency for optically-pumped gas lasers.

Ware, Kenneth D. (San Diego, CA); Jones, Claude R. (Los Alamos, NM)

1986-01-01T23:59:59.000Z

237

Universality of conductivity in interacting graphene  

E-Print Network [OSTI]

The Hubbard model on the honeycomb lattice describes charge carriers in graphene with short range interactions. While the interaction modifies several physical quantities, like the value of the Fermi velocity or the wave function renormalization, the a.c. conductivity has a universal value independent of the microscopic details of the model: there are no interaction corrections, provided that the interaction is weak enough and that the system is at half filling. We give a rigorous proof of this fact, based on exact Ward Identities and on constructive Renormalization Group methods.

A. Giuliani; V. Mastropietro; M. Porta

2011-01-11T23:59:59.000Z

238

Conductive ceramic composition and method of preparation  

DOE Patents [OSTI]

A ceramic anode composition is formed of a multivalent metal oxide or oxygenate such as an alkali metal, transition metal oxygenate. The anode is prepared as a non-stoichiometric crystalline structure by reaction and conditioning in a hydrogen gas cover containing minor proportions of carbon dioxide and water vapor. The structure exhibits a single phase and substantially enhanced electrical conductivity over that of the corresponding stoichiometric structure. Unexpectedly, such oxides and oxygenates are found to be stable in the reducing anode fuel gas of a molten carbonate fuel cell.

Smith, James L. (Lemont, IL); Kucera, Eugenia H. (Downers Grove, IL)

1991-01-01T23:59:59.000Z

239

Code of Conduct Regarding Holiday Gifts  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to User Group and Userof aChristinaCliffPublicationCode of Conduct

240

Conductive Plays - Basement | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:EnergyWisconsin:2003) | Open EnergyConductive Plays - Basement Jump to:

Note: This page contains sample records for the topic "on-board type conductive" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Conductive ceramic composition and method of preparation  

DOE Patents [OSTI]

A ceramic anode composition is formed of a multivalent metal oxide or oxygenate such as an alkali metal, transition metal oxygenate. The anode is prepared as a non-stoichiometric crystalline structure by reaction and conditioning in a hydrogen gas cover containing minor proportions of carbon dioxide and water vapor. The structure exhibits a single phase and substantially enhanced electrical conductivity over that of the corresponding stoichiometric structure. Unexpectedly, such oxides and oxygenates are found to be stable in the reducing anode fuel gas of a molten carbonate fuel cell. 4 figures.

Smith, J.L.; Kucera, E.H.

1991-04-16T23:59:59.000Z

242

Effective hydraulic conductivity of bounded, strongly heterogeneous porous media  

E-Print Network [OSTI]

Effective hydraulic conductivity of bounded, strongly heterogeneous porous media Evangelos K of Arizona, Tucson Abstract. We develop analytical expressions for the effective hydraulic conductivity Ke boundaries. The log hydraulic conductivity Y forms a Gaussian, statistically homogeneous and anisotropic

Tartakovsky, Daniel M.

243

Optoelectronic switches based on diffusive conduction Hilmi Volkan Demira  

E-Print Network [OSTI]

Optoelectronic switches based on diffusive conduction Hilmi Volkan Demira and Fatih Hakan Koklu the process of diffusive conduction that we use in our optoelectronic switches to achieve rapid optical. We demonstrate the feasibility of using such diffusive conductive optoelectronic switches

Miller, David A. B.

244

Joining Mixed Conducting Oxides Using an Air-Fired Electrically Conductive Braze  

SciTech Connect (OSTI)

Due to their mixed oxygen ion and electron conducting properties, ceramics such as lanthanum strontium cobalt ferrites (LSCF) are attractive materials for use in active electrochemical devices such as solid oxide fuel cells (SOFC) and oxygen separation membranes. However, to take full advantage of the unique properties of these materials, reliable joining techniques need to be developed. If such a joining technique yields a ceramic-to-metal junction that is also electrically conductive, the hermetic seals in the device could provide the added function of either drawing current from the mixed conducting oxide, in the case of SOFC applications, or carrying it to the oxide to initate ionic conduction, in the case of oxygen separation and electrocatalysis applications. This would greatly reduce the need for complex interconnect design, thereby simplifying one of the major challenges faced in SOFC development. A process referred to as reactive air brazing (RAB) has been developed in which firing a Ag-CuO filler material in air creates a functional ceramic-to-metal junction, in which the silver-based matrix of the braze affords both metallic ductility and conductivity in the joint. Investigating a range of Ag-CuO alloy combinations determined that compositions containing between 1.4 and 16 mol% CuO appear to offer the best combination of wettability, joint strength, and electrical conductivity.

Hardy, John S.; Kim, Jin Yong Y.; Weil, K. Scott

2004-10-01T23:59:59.000Z

245

Guidance manual for conducting technology demonstration activities  

SciTech Connect (OSTI)

This demonstration guidance manual has been prepared to assist Martin Marietta Energy Systems, Inc. (Energy Systems), staff in conducting demonstrations. It is prepared in checklist style to facilitate its use and assumes that Energy Systems personnel have project management responsibility. In addition to a detailed step-by-step listing of procedural considerations, a general checklist, logic flow diagram, and several examples of necessary plans are included to assist the user in developing an understanding of the many complex activities required to manage technology demonstrations. Demonstrations are pilot-scale applications of often innovative technologies to determine the commercial viability of the technologies to perform their designed function. Demonstrations are generally conducted on well-defined problems for which existing technologies or processes are less than satisfactory in terms of effectiveness, cost, and/or regulatory compliance. Critically important issues in demonstration management include, but are not limited to, such factors as communications with line and matrix management and with the US Department of Energy (DOE) and Energy Systems staff responsible for management oversight, budgetary and schedule requirements, regulatory compliance, and safety.

Jolley, R.L.; Morris, M.I.; Singh, S.P.N.

1991-12-01T23:59:59.000Z

246

Formed Core Sampler Hydraulic Conductivity Testing  

SciTech Connect (OSTI)

A full-scale formed core sampler was designed and functionally tested for use in the Saltstone Disposal Facility (SDF). Savannah River National Laboratory (SRNL) was requested to compare properties of the formed core samples and core drilled samples taken from adjacent areas in the full-scale sampler. While several physical properties were evaluated, the primary property of interest was hydraulic conductivity. Differences in hydraulic conductivity between the samples from the formed core sampler and those representing the bulk material were noted with respect to the initial handling and storage of the samples. Due to testing conditions, the site port samples were exposed to uncontrolled temperature and humidity conditions prior to testing whereas the formed core samples were kept in sealed containers with minimal exposure to an uncontrolled environment prior to testing. Based on the results of the testing, no significant differences in porosity or density were found between the formed core samples and those representing the bulk material in the test stand.

Miller, D. H.; Reigel, M. M.

2012-09-25T23:59:59.000Z

247

aquifer tests conducted: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Technologies and Information Sciences Websites Summary: CodeofConduct British Computer Society Code of Conduct 5 SEPTEMBER 2001 VERSION 2.0 12;INTRODUCTION This Code sets out...

248

CRAD, Conduct of Operations Assessment Plan | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Conduct of Operations Assessment Plan CRAD, Conduct of Operations Assessment Plan Performance Objective: The purpose of this assessment is to verify programmatic implementation of...

249

Conduct Operations Assessment Plan - Developed By NNSA/Nevada...  

Broader source: Energy.gov (indexed) [DOE]

August 2003 - Conduct of Operations (Programmatic Implementation) Utilize Conduct of Operations - 5480.19 Utilize BN PD-0021.001 - Formality of Operations Utilize LLNL, LANL...

250

Bureau of Land Management - Notice of Intent to Conduct Geothermal...  

Open Energy Info (EERE)

Conduct Geothermal Resource Exploration Operations Jump to: navigation, search OpenEI Reference LibraryAdd to library Form: Bureau of Land Management - Notice of Intent to Conduct...

251

CRAD, Conduct of Operations - Office of River Protection K Basin...  

Broader source: Energy.gov (indexed) [DOE]

Conduct of Operations - Office of River Protection K Basin Sludge Waste System CRAD, Conduct of Operations - Office of River Protection K Basin Sludge Waste System May 2004 A...

252

CRAD, Conduct of Operations - Los Alamos National Laboratory...  

Broader source: Energy.gov (indexed) [DOE]

Conduct of Operations - Los Alamos National Laboratory TA 55 SST Facility CRAD, Conduct of Operations - Los Alamos National Laboratory TA 55 SST Facility June 2005 A section of...

253

CRAD, Conduct of Operations - Oak Ridge National Laboratory TRU...  

Broader source: Energy.gov (indexed) [DOE]

Conduct of Operations - Oak Ridge National Laboratory TRU ALPHA LLWT Project CRAD, Conduct of Operations - Oak Ridge National Laboratory TRU ALPHA LLWT Project November 2003 A...

254

Continuous Processing of High Thermal Conductivity Fibers and...  

Broader source: Energy.gov (indexed) [DOE]

We are developing a continuous fabrication process for high thermal conductivity polyethylene (PE) films While high thermal conductivity in (PE) has been shown in isolated...

255

Federal Register Notice: Plan for Conduct of 2012 Electric Transmissio...  

Energy Savers [EERE]

Federal Register Notice: Plan for Conduct of 2012 Electric Transmission Congestion Study Federal Register Notice: Plan for Conduct of 2012 Electric Transmission Congestion Study...

256

Plan to Conduct Electric Transmission Congestion Study: Federal...  

Broader source: Energy.gov (indexed) [DOE]

Plan to Conduct Electric Transmission Congestion Study: Federal Register Volume 76, No. 218 - Nov. 10, 2011 Plan to Conduct Electric Transmission Congestion Study: Federal Register...

257

Commonwealth Aluminum: Manufacturer Conducts Plant-Wide Energy...  

Broader source: Energy.gov (indexed) [DOE]

Commonwealth Aluminum: Manufacturer Conducts Plant-Wide Energy Assessments at Two Aluminum Sheet Production Operations Commonwealth Aluminum: Manufacturer Conducts Plant-Wide...

258

Glass-like thermal conductivity in high efficiency thermoelectric...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Glass-like thermal conductivity in high efficiency thermoelectric materials Glass-like thermal conductivity in high efficiency thermoelectric materials Discusses strategies to...

259

Non carbon mixed conducting materials for PEFC electrocatalysts...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Non carbon mixed conducting materials for PEFC electrocatalysts and electrodes Non carbon mixed conducting materials for PEFC electrocatalysts and electrodes These slides were...

260

Conductivity Measurements of Synthesized Heteropoly Acid Membranes for Proton Exchange Membrane Fuel Cells  

SciTech Connect (OSTI)

Fuel cell technology is receiving attention due to its potential to be a pollution free method of electricity production when using renewably produced hydrogen as fuel. In a Proton Exchange Membrane (PEM) fuel cell H2 and O2 react at separate electrodes, producing electricity, thermal energy, and water. A key component of the PEM fuel cell is the membrane that separates the electrodes. DuPont’s Nafion® is the most commonly used membrane in PEM fuel cells; however, fuel cell dehydration at temperatures near 100°C, resulting in poor conductivity, is a major hindrance to fuel cell performance. Recent studies incorporating heteropoly acids (HPAs) into membranes have shown an increase in conductivity and thus improvement in performance. HPAs are inorganic materials with known high proton conductivities. The primary objective of this work is to measure the conductivity of Nafion, X-Ionomer membranes, and National Renewable Energy Laboratory (NREL) Developed Membranes that are doped with different HPAs at different concentrations. Four-point conductivity measurements using a third generation BekkTech? conductivity test cell are used to determine membrane conductivity. The effect of multiple temperature and humidification levels is also examined. While the classic commercial membrane, Nafion, has a conductivity of approximately 0.10 S/cm, measurements for membranes in this study range from 0.0030 – 0.58 S/cm, depending on membrane type, structure of the HPA, and the relative humidity. In general, the X-ionomer with H6P2W21O71 HPA gave the highest conductivity and the Nafion with the 12-phosphotungstic (PW12) HPA gave the lowest. The NREL composite membranes had conductivities on the order of 0.0013 – 0.025 S/cm.

Record, K.A.; Haley, B.T.; Turner, J.

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "on-board type conductive" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Westinghouse GOCO conduct of casualty drills  

SciTech Connect (OSTI)

Purpose of this document is to provide Westinghouse Government Owned Contractor Operated (GOCO) Facilities with information that can be used to implement or improve drill programs. Elements of this guide are highly recommended for use when implementing a new drill program or when assessing an existing program. Casualty drills focus on response to abnormal conditions presenting a hazard to personnel, environment, or equipment; they are distinct from Emergency Response Exercises in which the training emphasis is on site, field office, and emergency management team interaction. The DOE documents which require team training and conducting drills in nuclear facilities and should be used as guidance in non-nuclear facilities are: DOE 5480.19 (Chapter 1 of Attachment I) and DOE 5480.20 (Chapter 1, paragraphs 7 a. and d. of continuing training). Casualty drills should be an integral part of the qualification and training program at every DOE facility.

Ames, C.P.

1996-02-01T23:59:59.000Z

262

Oxygen ion-conducting dense ceramic  

DOE Patents [OSTI]

Preparation, structure, and properties of mixed metal oxide compositions containing at least strontium, cobalt, iron and oxygen are described. The crystalline mixed metal oxide compositions of this invention have, for example, structure represented by Sr.sub..alpha. (Fe.sub.1-x Co.sub.x).sub..alpha.+.beta. O.sub..delta. where x is a number in a range from 0.01 to about 1, .alpha. is a number in a range from about 1 to about 4, .beta. is a number in a range upward from 0 to about 20, and .delta. is a number which renders the compound charge neutral, and wherein the composition has a non-perovskite structure. Use of the mixed metal oxides in dense ceramic membranes which exhibit oxygen ionic conductivity and selective oxygen separation, are described as well as their use in separation of oxygen from an oxygen-containing gaseous mixture.

Balachandran, Uthamalingam (Hinsdale, IL); Kleefisch, Mark S. (Naperville, IL); Kobylinski, Thaddeus P. (Lisle, IL); Morissette, Sherry L. (Las Cruces, NM); Pei, Shiyou (Naperville, IL)

1997-01-01T23:59:59.000Z

263

Oxygen ion-conducting dense ceramic  

DOE Patents [OSTI]

Preparation, structure, and properties of mixed metal oxide compositions containing at least strontium, cobalt, iron and oxygen are described. The crystalline mixed metal oxide compositions of this invention have, for example, structure represented by Sr.sub..alpha. (Fe.sub.1-x Co.sub.x).sub..alpha.+.beta. O.sub..delta. where x is a number in a range from 0.01 to about 1, .alpha. is a number in a range from about 1 to about 4, .beta. is a number in a range upward from 0 to about 20, and .delta. is a number which renders the compound charge neutral, and wherein the composition has a non-perovskite structure. Use of the mixed metal oxides in dense ceramic membranes which exhibit oxygen ionic conductivity and selective oxygen separation, are described as well as their use in separation of oxygen from an oxygen-containing gaseous mixture.

Balachandran, Uthamalingam (Hinsdale, IL); Kleefisch, Mark S. (Naperville, IL); Kobylinski, Thaddeus P. (Lisle, IL); Morissette, Sherry L. (Las Cruces, NM); Pei, Shiyou (Naperville, IL)

1996-01-01T23:59:59.000Z

264

Nanostructured polymer membranes for proton conduction  

DOE Patents [OSTI]

Polymers having an improved ability to entrain water are characterized, in some embodiments, by unusual humidity-induced phase transitions. The described polymers (e.g., hydrophilically functionalized block copolymers) have a disordered state and one or more ordered states (e.g., a lamellar state, a gyroid state, etc.). In one aspect, the polymers are capable of undergoing a disorder-to-order transition while the polymer is exposed to an increasing temperature at a constant relative humidity. In some aspects the polymer includes a plurality of portions, wherein a first portion forms proton-conductive channels within the membrane and wherein the channels have a width of less than about 6 nm. The described polymers are capable of entraining and preserving water at high temperature and low humidity. Surprisingly, in some embodiments, the polymers are capable of entraining greater amounts of water with the increase of temperature. The polymers can be used in Polymer Electrolyte Membranes in fuel cells.

Balsara, Nitash Pervez; Park, Moon Jeong

2013-06-18T23:59:59.000Z

265

Ion-/proton-conducting apparatus and method  

DOE Patents [OSTI]

A c-axis-oriented HAP thin film synthesized by seeded growth on a palladium hydrogen membrane substrate. An exemplary synthetic process includes electrochemical seeding on the substrate, and secondary and tertiary hydrothermal treatments under conditions that favor growth along c-axes and a-axes in sequence. By adjusting corresponding synthetic conditions, an HAP this film can be grown to a controllable thickness with a dense coverage on the underlying substrate. The thin films have relatively high proton conductivity under hydrogen atmosphere and high temperature conditions. The c-axis oriented films may be integrated into fuel cells for application in the intermediate temperature range of 200-600.degree. C. The electrochemical-hydrothermal deposition technique may be applied to create other oriented crystal materials having optimized properties, useful for separations and catalysis as well as electronic and electrochemical applications, electrochemical membrane reactors, and in chemical sensors.

Yates, Matthew (Penfield, NY); Liu, Dongxia (Rochester, NY)

2011-05-17T23:59:59.000Z

266

Document control and Conduct of Operations  

SciTech Connect (OSTI)

Department of Energy (DOE) Order 5480.19, Conduct of operations, places stringent requirements on a wide range of activities at DOE facilities. These requirements directly affect personnel at the Advanced Test Reactor (ATR), which is located in the Test Reactor Area of the Idaho National Engineering Laboratory and operated for DOE by EG G Idaho, Inc. In order for the ATR to comply with 5480.19, the very personality of the reactor facility's document control unit has had to undergo a major change. The Facility and Administrative Support Unit (FAS) is charged with nudntenance of ATR's controlled ddcuments-diousands of operating and administrative procedures. Prior to the imposition of 5480.19, FAS was content to operate in a clerical support mode, seldom questioning or seeking to improve. This numer of doing business is inappropriate within the framework of DOE 5480.19 and is also at odds with the approach to Total Quality Management (TQM) promulgated by EG G Idaho.To comply with the requirements of 5480.19, FAS has Actively applied TQM principles. Empowered personnel to unprove operations through the establishment of a teatn approach. Begun an automation process that is already paying large dividends in terms of improved procedure accuracy and compliance. A state-of-the-art text retrival system is already in place. We are vigorously pursuing fully automated document tmcidng and document management. This paper describes in detail the steps taken to date, the improvements and the lessons learned. It aLw discusses plans for the future that will enable FAS to support the ATR in inccreasing its responsiveness to the Conduct of Operations Order.

Collins, S.K.; Meltzer, F.L.

1993-01-01T23:59:59.000Z

267

G-Plus report to Owens Corning-thermal conductivity Measurements of Fiberglass  

SciTech Connect (OSTI)

Fiberglass made by Owens Corning is being used in noise reduction of automobile exhaust system. Specifically, the glass fibers are packed inside the muffler to achieve the desired acoustic effect. A secondary benefit of the fibers is to serve as a thermal insulation. Because of this insulating property, the glass fibers can serve to reduce the temperature of the muffler shell. This in turn reduces the need for heat shields around mufflers and reduces the amount of exterior temperature accelerated corrosion of the muffler shell, especially in the winter ''salt belts'' where large amounts of salt are placed on highways to minimize the safety impact of snow and ice. In addition, for some applications the use of the fiberglass could allow the use of lighter weight carbon based polymer composite materials in place of steel for muffler shells. However, in order to properly design exhaust systems without heat shields or to take advantage of new materials, the thermal conductivity of the fiberglass material at operating temperatures (for some applications above 750 C) must be known. We selected two types of Owens Corning glass fibers, 17 {micro}m and 24 {micro}m in diameter, for this study. There are some room temperature thermal conductivity data for the fiberglass, but high temperature data are not available. Based on the thermal radiation model, thermal conductivity should increase rapidly at high temperature, providing less thermal insulation. In addition, thermal conductivity depends on packing density of the glass fibers. We will study the effect of packing density on thermal conductivity. Another issue is that the glass fiber conducts heat better along the fiber, while the conduction across the fibers is poor, because thermal conduction from one fiber to another has to go through an interface with thermal resistance. In fiberglass, most fibers are not in good contact with the surrounding fibers, thus, most heat transfer is dependent on the thermal radiation effect. Among the many methods of measuring thermal conductivity, only a few can be used for glass fibers. The traditional heat flow meter is used in testing thermal insulations near room temperature. At higher temperatures this method cannot be used due to material and instrument limitations. Our plan is to use a transient plane source (TPS) method to measure thermal conductivity directly. The advantage of the TPS method is that measurements can be taken at over 700 C, and covers the temperature of the automobile exhausts. The following is a report for the G-Plus project conducted at ORNL to apply the TPS method to characterizing the thermal conductivity of two types of fiberglass and also the effect of packing density.

Wang, H

2003-04-15T23:59:59.000Z

268

Measurement of thermal conductivity P t BPart B  

E-Print Network [OSTI]

wave Take the Fourier transform of this frequency domain solution #12;For a low thermal conductivity thin filmFor a low thermal conductivity thin film on a high thermal conductivity substrate (Factor of 2Measurement of thermal conductivity Part A: P t BPart B: · Time domain thermoreflectance #12

Braun, Paul

269

Materials and methods for autonomous restoration of electrical conductivity  

DOE Patents [OSTI]

An autonomic conductivity restoration system includes a solid conductor and a plurality of particles. The particles include a conductive fluid, a plurality of conductive microparticles, and/or a conductive material forming agent. The solid conductor has a first end, a second end, and a first conductivity between the first and second ends. When a crack forms between the first and second ends of the conductor, the contents of at least a portion of the particles are released into the crack. The cracked conductor and the released contents of the particles form a restored conductor having a second conductivity, which may be at least 90% of the first conductivity.

Blaiszik, Benjamin J; Odom, Susan A; Caruso, Mary M; Jackson, Aaron C; Baginska, Marta B; Ritchey, Joshua A; Finke, Aaron D; White, Scott R; Moore, Jeffrey S; Sottos, Nancy R; Braun, Paul V; Amine, Khalil

2014-03-25T23:59:59.000Z

270

Tunable ionic-conductivity of collapsed Sandia octahedral molecular sieves (SOMS).  

SciTech Connect (OSTI)

This proposal focuses on the synthesis and characterization of ''tunable'' perovskite ceramics with resulting controlled strength and temperature of dielectric constants and/or with ionic conductivity. Traditional methods of synthesis involve high temperature oxide mixing and baking. We developed a new methodology of synthesis involving the (1) low temperature hydrothermal synthesis of metastable porous phases with ''tuned'' stoichiometry, and element types, and then (2) low temperature heat treatment to build exact stoichiometry perovskites, with the desired vacancy concentrations. This flexible pathway can lead to compositions and structures not attainable by conventional methods. During the course of this program, a series of Na-Nb perovskites were synthesized by calcining and collapsing microporous Sandia Octahedral Molecular Sieve (SOMS) phases. These materials were studied by various characterization techniques and conductivity measurements to better delineate stability and stoichiometry/bulk conductivity relationships. The conductivity can be altered by changing the concentration and type of the substituting framework cation(s) or by ion exchange of sodium. To date, the Na{sub 0.9}Mg{sub 0.1}Nb{sub 0.8}Ti{sub 0.2}O{sub 3-{delta}} shows the best conductivity.

Pless, Jason; Nenoff, Tina Maria; Garino, Terry J.; Axness, Marlene

2006-11-01T23:59:59.000Z

271

Rock types, pore types, and hydrocarbon exploration  

SciTech Connect (OSTI)

A proposed exploration-oriented method of classifying porosity in sedimentary rocks is based on microscopic examination cores or cuttings. Factors include geometry, size, abundance, and connectivity of the pores. The porosity classification is predictive of key petrophysical characteristics: porosity-permeability relationships, capillary pressures, and (less certainly) relative permeabilities. For instance, intercrystalline macroporosity typically is associated with high permeability for a given porosity, low capillarity, and favorable relative permeabilities. This is found to be true whether this porosity type occurs in a sucrosic dolomite or in a sandstone with pervasive quartz overgrowths. This predictive method was applied in three Rocky Mountain oil plays. Subtle pore throat traps could be recognized in the J sandstone (Cretaceous) in the Denver basin of Colorado by means of porosity permeability plotting. Variations in hydrocarbon productivity from a Teapot Formation (Cretaceous) field in the Powder River basin of Wyoming were related to porosity types and microfacies; the relationships were applied to exploration. Rock and porosity typing in the Red River Formation (Ordovician) reconciled apparent inconsistencies between drill-stem test, log, and mud-log data from a Williston basin wildcat. The well was reevaluated and completed successfully, resulting in a new field discovery. In each of these three examples, petrophysics was fundamental for proper evaluation of wildcat wells and exploration plays.

Coalson, E.B.; Hartmann, D.J.; Thomas, J.B.

1985-05-01T23:59:59.000Z

272

Experimental Investigation of Propped Fracture Conductivity in Tight Gas Reservoirs Using The Dynamic Conductivity Test  

E-Print Network [OSTI]

in unconventional reservoirs such as coalbed methane, shale gas and tight gas reservoirs. Developing these types of unconventional gas reservoirs improves our energy security, and benefits the overall economy. Also, natural gas is one of the cleanest and most...

Romero Lugo, Jose 1985-

2012-10-24T23:59:59.000Z

273

Ion/proton-conducting apparatus and method  

DOE Patents [OSTI]

A c-axis-oriented HAP thin film synthesized by seeded growth on a palladium hydrogen membrane substrate. An exemplary synthetic process includes electrochemical seeding on the substrate, and secondary and tertiary hydrothermal treatments under conditions that favor growth along c-axes and a-axes in sequence. By adjusting corresponding synthetic conditions, an HAP this film can be grown to a controllable thickness with a dense coverage on the underlying substrate. The thin films have relatively high proton conductivity under hydrogen atmosphere and high temperature conditions. The c-axis oriented films may be integrated into fuel cells for application in the intermediate temperature range of 200-600.degree. C. The electrochemical-hydrothermal deposition technique may be applied to create other oriented crystal materials having optimized properties, useful for separations and catalysis as well as electronic and electrochemical applications, electrochemical membrane reactors, and in chemical sensors. Additional high-density and gas-tight HAP film compositions may be deposited using a two-step deposition method that includes an electrochemical deposition method followed by a hydrothermal deposition method. The two-step method uses a single hydrothermal deposition solution composition. The method may be used to deposit HAP films including but not limited to at least doped HAP films, and more particularly including carbonated HAP films. In addition, the high-density and gas-tight HAP films may be used in proton exchange membrane fuel cells.

Yates, Matthew; Xue, Wei

2014-12-23T23:59:59.000Z

274

Typed Self-Optimization  

E-Print Network [OSTI]

type T y[O]. The operator IsIs is self-applicative, in thatargument t is any of Is[O] or IsIs, and otherwise behavesproof constant introduced by IsIs proves that the type of t

Brown, Matt

2013-01-01T23:59:59.000Z

275

Current conducting end plate of fuel cell assembly  

DOE Patents [OSTI]

A fuel cell assembly has a current conducting end plate with a conductive body formed integrally with isolating material. The conductive body has a first surface, a second surface opposite the first surface, and an electrical connector. The first surface has an exposed portion for conducting current between a working section of the fuel cell assembly and the electrical connector. The isolating material is positioned on at least a portion of the second surface. The conductive body can have support passage(s) extending therethrough for receiving structural member(s) of the fuel cell assembly. Isolating material can electrically isolate the conductive body from the structural member(s). The conductive body can have service passage(s) extending therethrough for servicing one or more fluids for the fuel cell assembly. Isolating material can chemically isolate the one or more fluids from the conductive body. The isolating material can also electrically isolate the conductive body from the one or more fluids.

Walsh, Michael M. (Fairfield, CT)

1999-01-01T23:59:59.000Z

276

Microcomputer-based on-board tractor performance monitor  

E-Print Network [OSTI]

46 vii Chapter Page IV EXPERIHENTAL PROCEDURE 49 Calibration A/D Strain Gage Offsets Scan Timer and Counters Fuel Flowmeter PTO Dynamometer Test Speed Trials Field Test Design and Procedures Scan Parameters Tractor Logbook... 68 V RESULTS AND DISCUSSION 73 Field Performance Axle Load Heasurement Fuel Flowmeter Drawbar Load Cell Alternator Bubble Hemory PTO Dynamometer Test Speed Trials Soil Data Analysis 74 74 75 75 76 76 77 77 81 Tractor Performance...

Morris, David Alan

1984-01-01T23:59:59.000Z

277

On-Board Hydrogen Gas Production System For Stirling Engines  

DOE Patents [OSTI]

A hydrogen production system for use in connection with Stirling engines. The production system generates hydrogen working gas and periodically supplies it to the Stirling engine as its working fluid in instances where loss of such working fluid occurs through usage through operation of the associated Stirling engine. The hydrogen gas may be generated by various techniques including electrolysis and stored by various means including the use of a metal hydride absorbing material. By controlling the temperature of the absorbing material, the stored hydrogen gas may be provided to the Stirling engine as needed. A hydrogen production system for use in connection with Stirling engines. The production system generates hydrogen working gas and periodically supplies it to the Stirling engine as its working fluid in instances where loss of such working fluid occurs through usage through operation of the associated Stirling engine. The hydrogen gas may be generated by various techniques including electrolysis and stored by various means including the use of a metal hydride absorbing material. By controlling the temperature of the absorbing material, the stored hydrogen gas may be provided to the Stirling engine as needed.

Johansson, Lennart N. (Ann Arbor, MI)

2004-06-29T23:59:59.000Z

278

Hydrogen Storage Materials Requirements to Meet the 2017 On Board...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Fill & Drain Ports P S PS T P Rupture Disk @ 2 bar (INS-01) L Flapper Doors " Plastic " Plastic 38" SS Reactor Heater (H-1) 38" SS PRV @ 5 bar (V-4) INS-08 INS-07 PRV...

279

Analyses of Compressed Hydrogen On-Board Storage Systems  

Broader source: Energy.gov (indexed) [DOE]

designs and cost inputs for the fuel cycle to project: 1) Refueling cost 2) Well-to-Tank energy use and GHG emissions (ANL lead) This project provides an independent cost...

280

Summary of On-Board Storage Models and Analyses  

Broader source: Energy.gov (indexed) [DOE]

+ 0.1 NaOH 10 IPA 5 H2O 1.1 Na 2.9 NaOH +6 H2O 0.7 O2 0.3 O2 23 Energy Consumption (50% Heat Integration, U.S. Grid 2015) 0 200 400 600 800 1000 1200 1400 AnH-AqH AqH-AqH An-Aq...

Note: This page contains sample records for the topic "on-board type conductive" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

SAFETY PROCEDURES ON BOARD THE SEDCOIBP-471 {JOIDES RESOLUTION)  

E-Print Network [OSTI]

environment, into the daily operation of the drilling vessel. All equipment aboard the ship is installed by Joint Oceanographic Institutions, Inc., under contract with the National Science Foundation. Funding of the University of Tokyo (Japan) National Science Foundation (United States) Natural Environment Research Council

282

On Board Fuel Quality Sensor | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F SSales LLC OrderEfficiencyOceanOctober0High

283

Delphi On-board Ammonia Generation (OAG) | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat Pump Models | Department1 Prepared1217 Release Notes Dekker

284

Diesel Reformers for On-board Hydrogen Applications  

Broader source: Energy.gov (indexed) [DOE]

After-treatment Catalyst Clean Exhaust Effective Catalyst Regeneration Emission Reduction Electricity for On-road and Idling Loads SOFC APU Efficiency Boost Reformers for...

285

Document Type: Subject Terms  

E-Print Network [OSTI]

Title: Authors: Source: Document Type: Subject Terms: Abstract: Full Text Word Count: ISSN at creating team results. In fact, it's priceless. Managers in Western corporations have received a lifetime

Major, Arkady

286

Tailoring the Thermoelectric Behavior of Electrically Conductive Polymer Composites  

E-Print Network [OSTI]

fabrication temperatures. These concerns have led research efforts into electrically conductive polymer composites prepared in ambient conditions from aqueous solutions. By combining polymer latex with carbon nanotubes (CNT), electrical conductivity can...

Moriarty, Gregory P.

2013-05-21T23:59:59.000Z

287

NO.sub.x sensing devices having conductive oxide electrodes  

DOE Patents [OSTI]

A NO.sub.x sensing device includes at least one pair of spaced electrodes, at least one of which is made of a conductive oxide, and an oxygen-ion conducting material in bridging electrical communication with the electrodes.

Montgomery, Frederick C. (Oak Ridge, TN); West, David L. (Oak Ridge, TN); Armstrong, Timothy R. (Clinton, TN); Maxey, Lonnie C. (Powell, TN)

2010-03-16T23:59:59.000Z

288

Integrated experimental and modeling study of the ionic conductivity...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

modeling study of the ionic conductivity of samaria-doped ceria thin films. Abstract: Oxygen diffusion and ionic conductivity of samaria-doped ceria (SDC) thin films have been...

289

Structure, Magnetism and Conductivity in Epitaxial Ti-doped ...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Magnetism and Conductivity in Epitaxial Ti-doped -Fe2O3 Hematite: Experiment and density functional theory Structure, Magnetism and Conductivity in Epitaxial Ti-doped -Fe2O3...

290

Laboratory-scale fracture conductivity created by acid etching  

E-Print Network [OSTI]

Success of acid fracturing treatment depends greatly on the created conductivity under closure stress. In order to have sufficient conductivity, the fracture face must be non-uniformly etched while the fracture strength maintained to withstand...

Pournik, Maysam

2009-05-15T23:59:59.000Z

291

Imparting Electrical Conductivity into Asphalt Composites Using Graphite  

E-Print Network [OSTI]

Electrically conductive asphalt composites have immense potential for various multifunctional applications such as self-healing, self-sensing, snow and ice removal, and energy harvesting, and controlling asphalt conductivity is the first step...

Baranikumar, Aishwarya

2013-07-09T23:59:59.000Z

292

MATHEMATICAL ANALYSIS OF CONDUCTING AND SUPERCONDUCTING TRANSMISSION LINES  

E-Print Network [OSTI]

MATHEMATICAL ANALYSIS OF CONDUCTING AND SUPERCONDUCTING TRANSMISSION LINES ANNE-SOPHIE BONNET propagation in the microstrip transmission lines used in microelectronics. In the first part, the case of the perfectly conducting strip. Key words. superconducting transmission lines, waveguides, spectral analysis

Ramdani, Karim - Institut de Mathématiques �lie Cartan, Université Henri Poincaré

293

Conductivity of Oriented Samaria-Doped Ceria Thin Films Grown...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Conductivity of Oriented Samaria-Doped Ceria Thin Films Grown by Oxygen-plasma-assisted Molecular Beam Epitaxy. Conductivity of Oriented Samaria-Doped Ceria Thin Films Grown by...

294

Quantum Hall conductance of two-terminal graphene devices  

E-Print Network [OSTI]

Measurement and theory of the two-terminal conductance of monolayer and bilayer graphene in the quantum Hall regime are compared. We examine features of conductance as a function of gate voltage that allow monolayer, ...

Williams, J. R.

295

anisotropic conductive film: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and CdIn2O4. Thin films of amorphous Cd2SnO4 were prepared by Nozik with conductivities thin films of polycrystalline spinel Cd2SnO4 with conductivities exceeding 6700 Scm.7...

296

Department of Residential Life Revised Conduct and Contractual Process  

E-Print Network [OSTI]

Department of Residential Life Revised Conduct and Contractual Process Appeal Does Not Meet Criteria Process Complete: Sanctions administered by appropriate staff. Student complies and vacates. Case Declines Administrative Decision Appeals Conduct Board Decision Decision Final; Process Complete Process

Harms, Kyle E.

297

METHOD DEVELOPMENT FOR DETERMINING THE HYDRAULIC CONDUCTIVITY OF FRACTURED POROUS MEDIA  

SciTech Connect (OSTI)

Plausible, but unvalidated, theoretical model constructs for unsaturated hydraulic conductivity of fractured porous media are currently used in Performance Assessment (PA) modeling for cracked saltstone and concrete (Flach 2011). The Nuclear Regulatory Commission (NRC) has expressed concern about the lack of model support for these assumed Moisture Characteristic Curves (MCC) data, as noted in Requests for Additional Information (RAIs) PA-8 and SP-4 (Savannah River Remediation, LLC, 2011). The objective of this task was to advance PA model support by developing an experimental method for determining the hydraulic conductivity of fractured cementitious materials under unsaturated conditions, and to demonstrate the technique on fractured saltstone samples. The task was requested through Task Technical Request (TTR) HLW-SSF-TTR-2012-0016 and conducted in accordance with Task Technical & Quality Assurance Plan (TTQAP) SRNL-TR-2012-00090. Preliminary method development previously conducted by Kohn et al. (2012) identified transient outflow extraction as the most promising method for characterizing the unsaturated properties of fractured porous media. While the research conducted by Kohn et al. (2012) focused on fractured media analogs such as stacked glass slides, the current task focused directly on fractured saltstone. For this task, four sample types with differing fracture geometries were considered: 1) intact saltstone, 2) intact saltstone with a single saw cut, smooth surface fracture, 3) micro-fractured saltstone (induced by oven drying), and 4) micro-fractured saltstone with a single, fully-penetrating, rough-surface fracture. Each sample type was tested initially for saturated hydraulic conductivity following method ASTM D 5084 using a flexible wall permeameter. Samples were subsequently tested using the transient outflow extraction method to determine cumulative outflow as a function of time and applied pressure. Of the four sample types tested, two yielded datasets suitable for analysis (sample types 3 and 4). The intact saltstone sample (sample type 1) did not yield any measureable outflow over the pressure range of the outflow test (0-1000 cm H{sub 2}O). This was expected because the estimated air entry pressure for intact saltstone is on the order of 100,000 cm H{sub 2}O (Dixon et al., 2009). The intact saltstone sample with a single saw cut smooth surface fracture (sample type 2) did not produce useable data because the fracture completely drained at less than 10 cm H{sub 2}O applied pressure. The cumulative outflow data from sample types 3 and 4 were analyzed using an inverse solution of the Richard’s equation for water flow in variably saturated porous media. This technique was implemented using the computer code Hydrus-1D (Šim?nek et al., 2008) and the resulting output included the van Genuchten-Mualem water retention and relative permeability parameters and predicted saturated hydraulic conductivity (Van Genuchten, 1980; Van Genuchten et al., 1991). Estimations of relative permeability and saturated conductivity are possible because the transient response of the sample to pressure changes is recorded during the multi-step outflow extraction test. Characteristic curves were developed for sample types 3 and 4 based on the results of the transient outflow method and compared to that of intact saltstone previously reported by Dixon et al. (2009). The overall results of this study indicate that the outflow extraction method is suitable for measuring the hydraulic properties of micro-fractured porous media. The resulting cumulative outflow data can be analyzed using the computer code Hydrus-1D to generate the van Genuchten curve fitting parameters that adequately describe fracture drainage. The resulting characteristic curves are consistent with blended characteristic curves that combine the behaviors of low pressure drainage associated with fracture flow with high pressure drainage from the bulk saltstone matrix.

Dixon, K.

2013-09-30T23:59:59.000Z

298

Theoretical investigation of the impact of grain boundaries and fission gases on UO2 thermal conductivity  

SciTech Connect (OSTI)

Thermal conductivity is one of the most important metrics of nuclear fuel performance. Therefore, it is crucial to understand the impact of microstructure features on thermal conductivity, especially since the microstructure evolves with burn-up or time in the reactor. For example, UO{sub 2} fuels are polycrystalline and for high-burnup fuels the outer parts of the pellet experience grain sub-division leading to a very fine grain structure. This is known to impact important physical properties such as thermal conductivity as fission gas release. In a previous study, we calculated the effect of different types of {Sigma}5 grain boundaries on UO{sub 2} thermal conductivity and predicted the corresponding Kapitza resistances, i.e. the resistance of the grain boundary in relation to the bulk thermal resistance. There have been reports of pseudoanisotropic effects for the thermal conductivity in cubic polycrystalline materials, as obtained from molecular dynamics simulations, which means that the conductivity appears to be a function of the crystallographic direction of the temperature gradient. However, materials with cubic symmetry should have isotropic thermal conductivity. For this reason it is necessary to determine the cause of this apparent anisotropy and in this report we investigate this effect in context of our earlier simulations of UO{sub 2} Kapitza resistances. Another source of thermal resistance comes from fission products and fission gases. Xe is the main fission gas and when generated in sufficient quantity it dissolves from the lattice and forms gas bubbles inside the crystalline structure. We have performed studies of how Xe atoms dissolved in the UO{sub 2} matrix or precipitated as bubbles impact thermal conductivity, both in bulk UO{sub 2} and in the presence of grain boundaries.

Du, Shiyu [Los Alamos National Laboratory; Andersson, Anders D. [Los Alamos National Laboratory; Germann, Timothy C. [Los Alamos National Laboratory; Stanek, Christopher R. [Los Alamos National Laboratory

2012-05-02T23:59:59.000Z

299

CRAD, Conduct of Operations - Los Alamos National Laboratory...  

Broader source: Energy.gov (indexed) [DOE]

National Laboratory Waste Characterization, Reduction, and Repackaging Facility CRAD, Conduct of Operations - Los Alamos National Laboratory Waste Characterization, Reduction,...

300

In-Plane Conductivity Testing Procedures and Results  

Broader source: Energy.gov [DOE]

This presentation on conductivity testing was given at the High Temperature Membrane Working Group Meeting in May 2007.

Note: This page contains sample records for the topic "on-board type conductive" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Molecular Dynamic Study of Thermal Conductivity of Amorphous Nanoporous Silica  

E-Print Network [OSTI]

as a thermal isolation layer”. Ceramics International, 34(Thermal conductivity of highly porous zirconia”. Journal of the European Ceramic

Coquil, Thomas; Fang, Jin; Pilon, Laurent

2011-01-01T23:59:59.000Z

302

Enhanced Power Stability for Proton Conducting Solid Oxides Fuel Cells  

SciTech Connect (OSTI)

In order to provide the basis for a rational approach to improving the performance of Y-doped BaZrO{sub 3} electrolytes for proton conducting ceramic fuel cells, we carried out a series of coupled computational and experimental studies to arrive at a consensus view of the characteristics affecting the proton conductivity of these systems. The computational part of the project developed a practical first principles approach to predicting the proton mobility as a function of temperature and doping for polycrystalline systems. This is a significant breakthrough representing the first time that first principles methods have been used to study diffusion across grain boundaries in such systems. The basis for this breakthrough was the development of the ReaxFF reactive force field that accurately describes the structure and energetics of Y-doped BaZrO{sub 3} as the proton hops from site to site. The ReaxFF parameters are all derived from an extensive set of quantum mechanics calculations on various clusters, two dimensionally infinite slabs, and three dimensionally infinite periodic systems for combinations of metals, metal alloys, metal oxides, pure and Y-doped BaZrO{sub 3}, including chemical reaction pathways and proton transport pathways, structures. The ReaxFF force field enables molecular dynamics simulations to be carried out quickly for systems with {approx} 10,000 atoms rather than the {approx}100 or so practical for QM. The first 2.5 years were spent on developing and validating the ReaxFF and we have only had an opportunity to apply these methods to only a few test cases. However these simulations lead to transport properties (diffusion coefficients and activation energy) for multi-granular systems in good agreement with current experimental results. Now that we have validated the ReaxFF for diffusion across grain boundaries, we are in the position of being able to use computation to explore strategies to improve the diffusion of protons across grain boundaries, which both theory and experiment agree is the cause of the low conductivity of multi-granular systems. Our plan for a future project is to use the theory to optimize the additives and processing conditions and following this with experiment on the most promising systems. The experimental part of this project focused on improving the synthetic techniques for controlling the grain size and making measurements on the properties of these systems as a function of doping of impurities and of process conditions. A significant attention was paid to screening potential cathode materials (transition metal perovskites) and anode electrocatalysts (metals) for reactivity with Y-doped BaZrO{sub 3}, fabrication compatibility, and chemical stability in fuel cell environment. A robust method for fabricating crack-free thin membranes, as well as methods for sealing anode and cathode chambers, have been successfully developed. Our Pt|BYZ|Pt fuel cell, with a 100 {micro}m thick Y-doped BaZrO{sub 3} electrolyte layer, demonstrates the peak power density and short circuit current density of 28 mW/cm{sup 2} and 130mA/cm{sup 2}, respectively. These are the highest values of this type of fuel cell. All of these provide the basis for a future project in which theory and computation are combined to develop modified ceramic electrolytes capable of both high proton conductivity and excellent mechanical and chemical stability.

Boris Merinov; William A. Goddard III; Sossina Haile; Adri van Duin; Peter Babilo; Sang Soo Han

2005-12-29T23:59:59.000Z

303

Optimal Three-Material Wheel Assemblage of Conducting and Elastic Composites  

E-Print Network [OSTI]

We describe a new type of three material microstructures which we call wheel assemblages, that correspond to extremal conductivity and extremal bulk modulus for a composite made of two materials and an ideal material. The exact lower bounds for effective conductivity and matching laminates was found in (Cherkaev, 2009) and for anisotropic composites, in (Cherkaev, Zhang, 2011). Here, we show different optimal structures that generalize the classical Hashin-Shtrikman coated spheres (circles). They consist of circular inclusions which contain a solid central circle (hub) and radial spikes in a surrounding annulus, and (for larger volume fractions of the best material) an annulus filled with it. The same wheel assemblages are optimal for the pair of dual problems of minimal conductivity (resistivity) of a composite made from two materials and an ideal conductor (insulator), in the problem of maximal effective bulk modulus of elastic composites made from two linear elastic material and void, and the dual minimum problem.

Andrej Cherkaev

2011-05-22T23:59:59.000Z

304

STANDARDS OF CONDUCT A MESSAGE FROM THE CHANCELLOR  

E-Print Network [OSTI]

STANDARDS OF CONDUCT A MESSAGE FROM THE CHANCELLOR Dear Faculty and Staff: At Vanderbilt University standards and lawful conduct. The Vanderbilt University Compliance Program articulates specifically what is expected of us, and completing the Standards of Conduct training will ensure that you have a thorough

Bordenstein, Seth

305

CONDUCTION HEAT TRANSFER Dr. Ruhul Amin Fall 2011  

E-Print Network [OSTI]

ME 525 CONDUCTION HEAT TRANSFER Dr. Ruhul Amin Fall 2011 Office: 201C Roberts Hall Lecture Room of conduction heat transfer. Important results which are useful for engineering application will also: 121 Roberts Hall Phone: 994-6295 Lecture Periods: 12:45- 2:00, TR TEXT: Heat Conduction, M. N. Ozisik

Dyer, Bill

306

Ultralow Thermal Conductivity of Isotope-Doped Silicon Nanowires  

E-Print Network [OSTI]

conductivity of SiNWs is about 2 orders of magnitude smaller than that of bulk crystals.18,19 The low thermal conductivity (0.05 W/m K) found in layered materials.22 So it is indispensable to reduce the thermal conUltralow Thermal Conductivity of Isotope-Doped Silicon Nanowires Nuo Yang, Gang Zhang,*, and Baowen

Li, Baowen

307

Monte Carlo Simulations of Thermal Conductivity in Nanoporous Si Membranes  

E-Print Network [OSTI]

candidates for thermoelectric materials as they can provide extremely low thermal conductivity , relatively of boundary scattering on the thermal conductivity. We show that the material porosity strongly affects1 Monte Carlo Simulations of Thermal Conductivity in Nanoporous Si Membranes Stefanie Wolf1

308

Pushing the boundaries of the thermal conductivity of materials  

E-Print Network [OSTI]

Pushing the boundaries of the thermal conductivity of materials David G. Cahill, C. Chiritescu, Y. · Advances in time-domain thermoreflectance. · Amorphous limit to the thermal conductivity of materials. #12;50 nm Interfaces are critical at the nanoscale · Low thermal conductivity in nanostructured

Braun, Paul

309

Thermal Conductivity of High-Modulus Polymer Fibers Xiaojia Wang,*,  

E-Print Network [OSTI]

to be the dominate carriers of heat. 1. INTRODUCTION Polymeric materials typically have a low thermal conductivity transfer is critical are often limited by low thermal conductivity. Here, we leverage the enormous research and low-density PE with varying fiber volume fractions.11 They reported an axial thermal conductivity

Cahill, David G.

310

PREPARING FOR YOUR CONDUCT APPEAL PURPOSE OF THE APPEAL PROCESS  

E-Print Network [OSTI]

PREPARING FOR YOUR CONDUCT APPEAL 9/15/11 PURPOSE OF THE APPEAL PROCESS The purpose of the appeal process is to ensure that students who engage in the University of Vermont's conduct process, through in and are treated fairly in this process. The appeal process is not a rehearing of the original conduct case

Hayden, Nancy J.

311

Thermopower, electrical and Hall conductivity of undoped and doped iron disilicide single crystals  

SciTech Connect (OSTI)

The electrical transport properties of {beta}-FeSi{sub 2} single crystals have been investigated in dependence on the purity of the source material and on doping with 3d transition metals. The transport properties included are electrical conductivity, Hall conductivity and thermopower mainly in the temperature range from 4K to 300K. The single crystals have been prepared by chemical transport reaction in a closed system with iodine as transport agent. In undoped single crystals prepared with 5N Fe both electrical conductivity and thermopower depend on the composition within the homogeneity range of {beta}-FeSi{sub 2} which is explained by different intrinsic defects at the Si-rich and Fe-rich phase boundaries. In both undoped and doped single crystals impurity band conduction is observed at low temperatures but above 100K extrinsic behavior determined by shallow impurity states. The thermopower shows between 100K and 200K a significant phonon drag contribution which depends on intrinsic defects and additional doping. The Hall resistivity is considered mainly with respect to an anomalous contribution found in p-type and n-type single crystals and thin films. In addition doped single crystals show at temperatures below about 130K an hysteresis of the Hall voltage. These results make former mobility data uncertain. Comparison will be made between the transport properties of single crystals and polycrystalline material.

Heinrich, A.; Behr, G.; Griessmann, H.; Teichert, S.; Lange, H.

1997-07-01T23:59:59.000Z

312

Development and modeling of conducting polymer actuators and the fabrication of a conducting polymer based feedback loop  

E-Print Network [OSTI]

Conducting polymers as a class of materials can be used to build a diverse range of devices. Conducting polymer based actuators (muscles), transistors (neurons), strain gages (muscle spindles), force sensors (Golgi tendon ...

Madden, Peter Geoffrey Alexander, 1971-

2003-01-01T23:59:59.000Z

313

On The 5D Extra-Force according to Basini-Capozziello-Leon Formalism and five important features: Kar-Sinha Gravitational Bending of Light, Chung-Freese Superluminal Behaviour, Maartens-Clarkson Black Strings, Experimental measures of Extra Dimensions on board International Space Station(ISS) and the existence of the Particle $Z$ due to a Higher Dimensional spacetime  

E-Print Network [OSTI]

We use the Conformal Metric as described in Kar-Sinha work on Gravitational Bending of Light in a 5D Spacetime to recompute the equations of the 5D Force in Basini-Capozziello-Leon Formalism and we arrive at a result that possesses some advantages. The equations of the Extra Force as proposed by Leon are now more elegant in Conformal Formalism and many algebraic terms can be simplified or even suppressed. Also we recompute the Kar-Sinha Gravitational Bending of Light affected by the presence of the Extra Dimension and analyze the Superluminal Chung-Freese Features of this Formalism describing the advantages of the Chung-Freese BraneWorld when compared to other Superluminal spacetime metrics(eg:Warp Drive) and we describe why the Extra Dimension is invisible and how the Extra Dimension could be made visible at least in theory.We also examine the Maartens-Clarkson Black Holes in 5D(Black Strings) coupled to massive Kaluza-Klein graviton modes predicted by Extra Dimensions theories and we study experimental detection of Extra Dimensions on-board LIGO and LISA Space Telescopes.We also propose the use of International Space Station(ISS) to measure the additional terms(resulting from the presence of Extra Dimensions) in the Kar-Sinha Gravitational Bending of Light in Outer Space to verify if we really lives in a Higher Dimensional Spacetime.Also we demonstrate that Particle $Z$ can only exists if the 5D spacetime exists.

Fernando Rego Loup

2013-05-30T23:59:59.000Z

314

Heat conduction through a trapped solid: effect of structural changes on thermal conductance  

E-Print Network [OSTI]

We study the conduction of heat across a narrow solid strip trapped by an external potential and in contact with its own liquid. Structural changes, consisting of addition and deletion of crystal layers in the trapped solid, are produced by altering the depth of the confining potential. Nonequilibrium molecular dynamics simulations and, wherever possible, simple analytical calculations are used to obtain the thermal resistance in the liquid, solid and interfacial regions (Kapitza or contact resistance). We show that these layering transitions are accompanied by sharp jumps in the contact thermal resistance. Dislocations, if present, are shown to increase the thermal resistance of the strip drastically.

Debasish Chaudhuri; Abhishek Chaudhuri; Surajit Sengupta

2007-03-20T23:59:59.000Z

315

Improving chemical vapor deposition graphene conductivity using molybdenum trioxide: An in-situ field effect transistor study  

SciTech Connect (OSTI)

By using in situ field effect transistor characterization integrated with molecular beam epitaxy technique, we demonstrate the strong surface transfer p-type doping effect of single layer chemical vapor deposition (CVD) graphene, through the surface functionalization of molybdenum trioxide (MoO{sub 3}) layer. After doping, both the hole and electron mobility of CVD graphene are nearly retained, resulting in significant enhancement of graphene conductivity. With coating of 10 nm MoO{sub 3}, the conductivity of CVD graphene can be increased by about 7 times, showing promising application for graphene based electronics and transparent, conducting, and flexible electrodes.

Han, Cheng [Department of Physics and Institute for Advanced Study, Nanchang University, 999 Xue Fu Da Dao, Nanchang (China) [Department of Physics and Institute for Advanced Study, Nanchang University, 999 Xue Fu Da Dao, Nanchang (China); Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542 (Singapore); Lin, Jiadan; Xiang, Du [Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542 (Singapore)] [Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542 (Singapore); Wang, Chaocheng; Wang, Li [Department of Physics and Institute for Advanced Study, Nanchang University, 999 Xue Fu Da Dao, Nanchang (China)] [Department of Physics and Institute for Advanced Study, Nanchang University, 999 Xue Fu Da Dao, Nanchang (China); Chen, Wei [Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542 (Singapore) [Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542 (Singapore); Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543 and Graphene Research Centre, National University of Singapore, 2 Science Drive 3, Singapore 117542 (Singapore)

2013-12-23T23:59:59.000Z

316

Using electrical impedance tomography to map subsurface hydraulic conductivity  

DOE Patents [OSTI]

The use of Electrical Impedance Tomography (EIT) to map subsurface hydraulic conductivity. EIT can be used to map hydraulic conductivity in the subsurface where measurements of both amplitude and phase are made. Hydraulic conductivity depends on at least two parameters: porosity and a length scale parameter. Electrical Resistance Tomography (ERT) measures and maps electrical conductivity (which can be related to porosity) in three dimensions. By introducing phase measurements along with amplitude, the desired additional measurement of a pertinent length scale can be achieved. Hydraulic conductivity controls the ability to flush unwanted fluid contaminants from the surface. Thus inexpensive maps of hydraulic conductivity would improve planning strategies for subsequent remediation efforts. Fluid permeability is also of importance for oil field exploitation and thus detailed knowledge of fluid permeability distribution in three-dimension (3-D) would be a great boon to petroleum reservoir analysts.

Berryman, James G. (Danville, CA); Daily, William D. (Livermore, CA); Ramirez, Abelardo L. (Pleasanton, CA); Roberts, Jeffery J. (Livermore, CA)

2000-01-01T23:59:59.000Z

317

Effect of Aggregation on Thermal Conduction in Colloidal Nanofluids  

SciTech Connect (OSTI)

Using effective medium theory we demonstrate that the thermal conductivity of nanofluids can be significantly enhanced by the aggregation of nanoparticles into clusters. The enhancement is based purely on conduction and does not require a novel mechanism. Predictions of the effective medium theory are in excellent agreement with detailed numerical calculations on model nanofluids involving fractal clusters and show the importance of cluster morphology on thermal conductivity enhancements.

R Prasher; W Evans; J Fish; P Meakin; P Phelan; Pawel Keblinski

2006-08-10T23:59:59.000Z

318

Thermal conductivity of graphene nanoribbons in noble gaseous environments  

SciTech Connect (OSTI)

We investigate the thermal conductivity of suspended graphene nanoribbons in noble gaseous environments using molecular dynamics simulations. It is reported that the thermal conductivity of perfect graphene nanoribbons decreases with the gaseous pressure. The decreasing is more obvious for the noble gas with large atomic number. However, the gaseous pressure cannot change the thermal conductivity of defective graphene nanoribbons apparently. The phonon spectra of graphene nanoribbons are also provided to give corresponding supports.

Zhong, Wei-Rong, E-mail: wrzhong@hotmail.com; Xu, Zhi-Cheng; Zheng, Dong-Qin [Department of Physics and Siyuan Laboratory, College of Science and Engineering, Jinan University, Guangzhou 510632 (China); Ai, Bao-Quan, E-mail: aibq@scnu.edu.cn [Laboratory of Quantum Information Technology, ICMP and SPTE, South China Normal University, Guangzhou 510006 (China)

2014-02-24T23:59:59.000Z

319

NNSA's Summary of Experiments Conducted in Support of Stockpile...  

National Nuclear Security Administration (NNSA)

Press Releases Video Gallery Photo Gallery Jobs Apply for Our Jobs Our Jobs Working at NNSA Blog Home NNSA Blog NNSA's Summary of Experiments Conducted in Support ... NNSA's...

320

LM Conducts Groundwater and Soil Investigation at Riverton, Wyoming...  

Energy Savers [EERE]

Investigation at Riverton, Wyoming, in Response to 2010 Flood LM Conducts Groundwater and Soil Investigation at Riverton, Wyoming, in Response to 2010 Flood What does this project...

Note: This page contains sample records for the topic "on-board type conductive" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Improved Electrical Conductivity of Graphene Films Integrated with Metal Nanowires  

E-Print Network [OSTI]

tin oxide films in electrochromic (EC) devices. The successful integration of such graphene/NW films. KEYWORDS: Graphene, nanowires, transparent conductive films, electrochromic devices Due to low electron

322

NNSA, Sultanate of Oman Conduct WMD Terrorism-Related Commodities...  

National Nuclear Security Administration (NNSA)

Sultanate of Oman Conduct WMD Terrorism-Related Commodities Workshop and Counterterrorism Tabletop Exercise | National Nuclear Security Administration Facebook Twitter Youtube...

323

Conducting and Using Energy Efficiency Studies for States Presentation  

Broader source: Energy.gov [DOE]

This presentation, given through the DOE's Technical Assitance Program (TAP), provides information on how to effectively conduct and use Energy Efficiency Studies for States.

324

CRAD, Conduct of Operations - Oak Ridge National Laboratory High...  

Broader source: Energy.gov (indexed) [DOE]

Oak Ridge National Laboratory High Flux Isotope Reactor Contractor ORR CRAD, Conduct of Operations - Oak Ridge National Laboratory High Flux Isotope Reactor Contractor ORR February...

325

NNSA to conduct Aerial Radiation Assessment Survey over Phoenix...  

National Nuclear Security Administration (NNSA)

conduct Aerial Radiation Assessment Survey over Phoenix, Scottsdale, Glendale, Tempe Areas | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People...

326

Los Alamos conducts important hydrodynamic experiment in Nevada  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the experiment, conducted at NNSS's U1a underground complex in collaboration with NSTec and supported by Sandia National Laboratories, Los Alamos scientists and technicians...

327

Software optimization for electrical conductivity imaging in polycrystalline diamond cutters  

SciTech Connect (OSTI)

We previously reported on an electrical conductivity imaging instrument developed for measurements on polycrystalline diamond cutters. These cylindrical cutters for oil and gas drilling feature a thick polycrystalline diamond layer on a tungsten carbide substrate. The instrument uses electrical impedance tomography to profile the conductivity in the diamond table. Conductivity images must be acquired quickly, on the order of 5 sec per cutter, to be useful in the manufacturing process. This paper reports on successful efforts to optimize the conductivity reconstruction routine, porting major portions of it to NVIDIA GPUs, including a custom CUDA kernel for Jacobian computation.

Bogdanov, G.; Ludwig, R. [Department of Electrical and Computer Engineering, Worcester Polytechnic Institute, 100 Institute Rd, Worcester, MA 01609 (United States); Wiggins, J.; Bertagnolli, K. [US Synthetic, 1260 South 1600 West, Orem, UT 84058 (United States)

2014-02-18T23:59:59.000Z

328

Community Wind Handbook/Understand Your Wind Resource and Conduct...  

Open Energy Info (EERE)

Wind Resource and Conduct a Preliminary Estimate < Community Wind Handbook Jump to: navigation, search WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHCommunity Wind Handbook...

329

Teachers Conduct Research at Prestigious Department of Energy...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

teachers to conduct practical and essential group research on a variety of projects at CEBAF including: Data analysis, construction and operation of safety systems, and control...

330

The synthesis and characterization of porous, conductive, and ordered materials  

E-Print Network [OSTI]

Two different classes of polymers were pursued as candidates for materials possessing porosity, conductivity, and crystalline order. Attempts were made with hexaazatrinaphthylene- and dibenzotetrathiafulvalene-based ...

Narayan, Tarun Chandru

2013-01-01T23:59:59.000Z

331

analyzing skin conductance: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

coupling between each tactile sensing chip and a ground Shinoda, Hiroyuki 8 HandWave: Design and Manufacture of a Wearable Wireless Skin Conductance Computer Technologies and...

332

Electrical and thermal conductivity of low temperature CVD graphene...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and thermal conductivity of low temperature CVD graphene: the effect of disorder This article has been downloaded from IOPscience. Please scroll down to see the full text article....

333

Chemical anchoring of organic conducting polymers to semiconducting surfaces  

DOE Patents [OSTI]

According to the present invention, an improved method of coating electrodes with conductive polymer films and/or preselected catalysts is provided. The charge-conductive polymer is covalently or coordinatively attached to the electrode surface to strengthen the adhesion characteristics of the polymer to the electrode surface or to improve charge-conductive properties between the conductive polymer and the electrode surface. Covalent or coordinative attachment is achieved by a number of alternative methods including covalently or coordinatively attaching the desired monomer to the electrode by means of a suitable coupling reagent and, thereafter, electrochemically polymerizing the monomer in situ.

Frank, Arthur J. (Lakewood, CO); Honda, Kenji (Wheatridge, CO)

1984-01-01T23:59:59.000Z

334

Chemical anchoring of organic conducting polymers to semiconducting surfaces  

DOE Patents [OSTI]

According to the present invention, an improved method of coating electrodes with conductive polymer films and/or preselected catalysts is provided. The charge conductive polymer is covalently or coordinatively attached to the electrode surface to strengthen the adhesion characteristics of the polymer to the electrode surface or to improve charge conductive properties between the conductive polymer and the electrode surface. Covalent or coordinative attachment is achieved by a number of alternative methods including covalently or coordinatively attaching the desired monomer to the electrode by means of a suitable coupling reagent and, thereafter, electrochemically polymerizing the monomer in situ.

Frank, A.J.; Honda, K.

1984-01-01T23:59:59.000Z

335

NMSLO Application for Permit to Conduct Geophysical Exploration...  

Open Energy Info (EERE)

Reference LibraryAdd to library Legal Document- OtherOther: NMSLO Application for Permit to Conduct Geophysical Exploration on Unleased State LandsLegal Published NA Year...

336

Electromagnetic wave scattering by small perfectly conducting particles and applications  

E-Print Network [OSTI]

A formula for the electromagnetic (EM) field in the medium, in which many small perfectly conducting particles of an arbitrary shape are distributed, is derived.

Alexander G. Ramm

2014-02-13T23:59:59.000Z

337

Electromagnetic wave scattering by many conducting small particles  

E-Print Network [OSTI]

A rigorous theory of electromagnetic (EM) wave scattering by small perfectly conducting particles is developed. The limiting case when the number of particles tends to infinity is discussed.

A. G. Ramm

2008-04-21T23:59:59.000Z

338

Method of forming an electrically conductive cellulose composite  

DOE Patents [OSTI]

An electrically conductive cellulose composite includes a cellulose matrix and an electrically conductive carbonaceous material incorporated into the cellulose matrix. The electrical conductivity of the cellulose composite is at least 10 .mu.S/cm at 25.degree. C. The composite can be made by incorporating the electrically conductive carbonaceous material into a culture medium with a cellulose-producing organism, such as Gluconoacetobacter hansenii. The composites can be used to form electrodes, such as for use in membrane electrode assemblies for fuel cells.

Evans, Barbara R. (Oak Ridge, TN); O'Neill, Hugh M. (Knoxville, TN); Woodward, Jonathan (Ashtead, GB)

2011-11-22T23:59:59.000Z

339

First Subcritical Experiment Conducted at Nevada Test Site |...  

National Nuclear Security Administration (NNSA)

Subcritical Experiment Conducted at Nevada Test Site | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing...

340

EM Conducts Third Annual Spanish Language Training with Record...  

Energy Savers [EERE]

SAN DIEGO - EM conducted a training program with mock exercises in radiological accident response this year that drew record attendance, more than twice the participants from...

Note: This page contains sample records for the topic "on-board type conductive" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Dust around Type Ia supernovae  

E-Print Network [OSTI]

Dust around Type Ia supernovae Lifan Wang 1,2 LawrenceIa. Subject headings: Supernovae: General, Dust, Extinctionline) bands for Type Ia supernovae. (a), upper panel, shows

Wang, Lifan

2005-01-01T23:59:59.000Z

342

Wolter type i LAMAR  

SciTech Connect (OSTI)

Observational objectives for the LAMAR and their influence on the instrument design are discussed. It is concluded that the most important design parameter is the angular resolution of the LAMAR modules since it so strongly influences sensitivity, optical identifications, source confusion, spectral resolution for objective gratings and the ability to resolve small extended sources. A high resolution Wolter Type I LAMAR module is described, its hardware status discussed, and the performance of a LAMAR observatory presented. A promising technique for enhancing the reflectivity of Wolter Type I X-ray optics in a selected bandpass at high energy has been investigated and the performance of the LAMAR module, utilizing this method, has been calculated.

Catura, R.C.; Joki, E.G.

1981-11-01T23:59:59.000Z

343

Determining resistivity of a formation adjacent to a borehole having casing with an apparatus having all current conducting electrodes within the cased well  

DOE Patents [OSTI]

Methods of operation of different types of multiple electrode apparatus vertically disposed in a cased well to measure information useful to determine the resistivity of adjacent geological formations from within the cased well are described. The multiple electrode apparatus has a plurality of spaced apart voltage measurement electrodes that electrically engage a portion of the interior of the cased well. During measurements of information useful to determine formation resistivity, current is conducted between a first current conducting electrode in electrical contact with the interior of the cased well to a second current conducting electrode that is also in electrical contact with the interior of the cased well. The first and second current conducting electrodes are separated by a distance sufficient so that at least a portion of the current conducted between the first and second current conducting electrodes is conducted through the geological formation of interest.

Vail, III, William Banning (Bothell, WA)

2001-01-01T23:59:59.000Z

344

Definitions: Types of Commissioning  

E-Print Network [OSTI]

Workshop on the Continuous Commissioning® Process Joseph T. Martinez, PCC Carlos Yagua, PE Hiroko Masuda, Juan-Carlos Baltazar, PhD, PE Ahmet Ugursal, PhD Clean Air Through Energy Efficiency (CATEE) Conference, Dallas, Texas. November 18, 2014... 5. Continuous Commissioning Measures 6. Measurement and Verification ESL-KT-14-11-41 CATEE 2014: Clean Air Through Efficiency Conference, Dallas, Texas Nov. 18-20 Definitions: Types of Commissioning Joseph T. Martinez, PCC Carlos Yagua, PE Hiroko...

Martinez, J. T.

2014-01-01T23:59:59.000Z

345

NOT DEAD YET: COOL CIRCUMGALACTIC GAS IN THE HALOS OF EARLY-TYPE GALAXIES  

SciTech Connect (OSTI)

We report new observations of circumgalactic gas in the halos of early-type galaxies (ETGs) obtained by the COS-Halos Survey with the Cosmic Origins Spectrograph on board the Hubble Space Telescope. We find that detections of H I surrounding ETGs are typically as common and strong as around star-forming galaxies, implying that the total mass of circumgalactic material is comparable in the two populations. For ETGs, the covering fraction for H I absorption above 10{sup 16} cm{sup -2} is {approx}40%-50% within {approx}150 kpc. Line widths and kinematics of the detected material show it to be cold (T {approx}< 10{sup 5} K) in comparison to the virial temperature of the host halos. The implied masses of cool, photoionized circumgalactic medium baryons may be up to 10{sup 9}-10{sup 11} M{sub Sun }. Contrary to some theoretical expectations, strong halo H I absorbers do not disappear as part of the quenching of star formation. Even passive galaxies retain significant reservoirs of halo baryons that could replenish the interstellar gas reservoir and eventually form stars. This halo gas may feed the diffuse and molecular gas that is frequently observed inside ETGs.

Thom, Christopher; Tumlinson, Jason; Sembach, Kenneth R. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Werk, Jessica K.; Xavier Prochaska, J. [UCO/Lick Observatory, University of California, Santa Cruz, CA 95064 (United States); Oppenheimer, Benjamin D. [Leiden Observatory, Leiden University, P.O. Box 9513, NL-2300 RA Leiden (Netherlands); Peeples, Molly S. [Department of Physics and Astronomy, University of California Los Angeles, Los Angeles, CA 90095 (United States); Tripp, Todd M.; Katz, Neal S. [Department of Astronomy, University of Massachusetts, Amherst, MA 01003-9305 (United States); O'Meara, John M. [Department of Chemistry and Physics, Saint Michael's College, Colchester, VT 05439 (United States); Ford, Amanda Brady; Dave, Romeel [Steward Observatory, University of Arizona, 933 N. Cherry Avenue, Tucson, AZ 85721 (United States); Weinberg, David H. [Department of Astronomy, Ohio State University, 140 W. 18th Avenue, Columbus, OH 43210 (United States)

2012-10-20T23:59:59.000Z

346

Theme Types of programs and initiatives Princeton examples Recruitment  

E-Print Network [OSTI]

1 Theme Types of programs and initiatives Princeton examples Recruitment initiatives Develop summer research programs to bring promising non-Princeton undergraduates to campus to build their research. These students conduct original research on which they receive detailed feedback. Students in these programs

347

The Electrical Conductivity Of Partly Ionized Helium Plasma  

SciTech Connect (OSTI)

In this paper we analyzed atoms influence on electro conductivity, partially ionized helium plasma, in temperature region 5 000 K - 40 000 K and pressure 0.1 - 10 atm. Electro conductivity was calculated using 'Frost like' formula and Random Phase Approximation method and Semi-Classical (SC) approximation.

Sreckovic, Vladimir A.; Ignjatovic, Ljubinko; Mihajlov, A. A. [Institute of Physics, PO Box 57, 11001 Belgrade (Serbia and Montenegro)

2007-04-23T23:59:59.000Z

348

THERMAL CONDUCTIVITY OF HEMP CONCRETES: VARIATION WITH FORMULATION, DENSITY AND  

E-Print Network [OSTI]

envelope and on the performance of systems. This behaviour is related to hygric and thermal propertiesTHERMAL CONDUCTIVITY OF HEMP CONCRETES: VARIATION WITH FORMULATION, DENSITY AND WATER CONTENT of formulation, density and water content on the thermal conductivity of hemp concretes. The investigations

349

Unsaturated hydraulic conductivity function based on a soil fragmentation process  

E-Print Network [OSTI]

Unsaturated hydraulic conductivity function based on a soil fragmentation process Shmuel Assouline-parameter expression for relative hydraulic conductivity (RHC) of partially saturated soils. It is based on the premise. This assumption allows us to derive hydraulic properties of soils (water retention curves and unsaturated

Tartakovsky, Daniel M.

350

Original article Hydraulic conductance of two co-occuring neotropical  

E-Print Network [OSTI]

Original article Hydraulic conductance of two co-occuring neotropical understory shrubs December 1999) Abstract ­ Whole plant hydraulic conductance was measured for two co-occuring neotropical hydraulic con- ductance and leaf specific conducance in the drought-avoiding species, P. trigonum, than

Paris-Sud XI, Université de

351

BOWLING GREEN STATE UNIVERSITY CODE OF ETHICS AND CONDUCT  

E-Print Network [OSTI]

BOWLING GREEN STATE UNIVERSITY CODE OF ETHICS AND CONDUCT June 24, 2005 I. PREAMBLE: It is the policy of Bowling Green State University ("University") to pursue its mission and conduct its academic University, Policy on Misconduct in Research · Bowling Green State University, Conflict of Interest

Moore, Paul A.

352

Thermal conductivity of electroless nickel-phosphorus alloy plating  

SciTech Connect (OSTI)

Properties of specific heat, thermal diffusivity, density, and calculated thermal conductivity have been determined for a modified acid bath electroless nickel-12.7 wt% phosphorus alloy between 298 ad 423 K. Thermal conductivity values are about half those of pure nickel.

Smith, D.D.

1982-04-01T23:59:59.000Z

353

Student Conduct Code Procedure: Rochester Table of Contents  

E-Print Network [OSTI]

Student Conduct Code Procedure: Rochester PROCEDURE Table of Contents Introduction and purpose To whom does this policy apply Complaints of violations of Board of Regents Policy: Student Conduct Code Informal Resolution Formal Resolution Possible sanctions for violations of Board of Regents Policy: Student

Jiang, Tiefeng

354

Nanopatterned Metallic Films for Use As Transparent Conductive Electrodes in  

E-Print Network [OSTI]

Nanopatterned Metallic Films for Use As Transparent Conductive Electrodes in Optoelectronic Devices metallic films as transparent conductive electrodes in optoelectronic devices. We find that the physics electrodes are critical to the operation of optoelectronic devices. Effective elec- trodes need to combine

Fan, Shanhui

355

Morphology and thermal conductivity of yttria-stabilized zirconia coatings  

E-Print Network [OSTI]

yttria-stabilized zir- conia (YSZ) is then applied to provide thermal insulation [1]. This ceramic layer]. The thermal conductivity of the ceramic layer has been found to depend on the pore morphology within a coatingMorphology and thermal conductivity of yttria-stabilized zirconia coatings Hengbei Zhao a

Wadley, Haydn

356

MOLECULAR DYNAMICS SIMULATION OF THERMAL BOUNDARY CONDUCTANCE BETWEEN SWNT AND  

E-Print Network [OSTI]

MOLECULAR DYNAMICS SIMULATION OF THERMAL BOUNDARY CONDUCTANCE BETWEEN SWNT AND SURROUNDING FLUIDS JinHyeok Cha, Shohei Chiashi, Junichiro Shiomi, and Shigeo Maruyama* Department of Mechanical applications. In particular, the thermal boundary conductance (TBC) K between an SWNT and surrounding fluid

Maruyama, Shigeo

357

Interactions Between Membrane Conductances Underlying Thalamocortical Slow-Wave Oscillations  

E-Print Network [OSTI]

or oscillations can be explained by interactions between calcium- and voltage-dependent channels. At the networkInteractions Between Membrane Conductances Underlying Thalamocortical Slow-Wave Oscillations A: Oscillations and Bursts Emerging From the Interplay of Intrinsic Conductances in Single Neurons 1404 A

Destexhe, Alain

358

Oak Ridge National Laboratory's Values in the Conduct of  

E-Print Network [OSTI]

#12;Oak Ridge National Laboratory's Values in the Conduct of Research and Development Prepared RIDGE NATIONAL LABORATORY Oak Ridge, Tennessee 37831-6285 operated by LOCKHEED MARTIN ENERGY RESEARCH in the Conduct of Research and Development Introduction No quality of the Oak Ridge National Laboratory (ORNL

359

Pricing and Firm Conduct in California's Deregulated Electricity Market  

E-Print Network [OSTI]

sector to competitive forces by restructuring the method of procuring electricity. Private electricPWP-080 Pricing and Firm Conduct in California's Deregulated Electricity Market Steven L. Puller.ucei.berkeley.edu/ucei #12;Pricing and Firm Conduct in California's Deregulated Electricity Market Steven L. Puller August

California at Berkeley. University of

360

POLYMERIC MICROCOMBUSTORS FOR SOLID-PHASE CONDUCTIVE FUELS  

E-Print Network [OSTI]

combustor for the ignition and reaction of solid conductive fuels. Solid fuels can he made conductive, the hum rate of fuel in the overall combustor can he decoupled from the chemical reaction rate by changing igniter volume density; the combustor housing can be made of a low-temperature, low-cost mate

Note: This page contains sample records for the topic "on-board type conductive" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

HEALTH CARE COLLEGES CODE OF STUDENT PROFESSIONAL CONDUCT  

E-Print Network [OSTI]

10/14/08 Page 1 HEALTH CARE COLLEGES CODE OF STUDENT PROFESSIONAL CONDUCT (APPROVED BY THE BOARD OF TRUSTEES) ARTICLE 1: INTRODUCTION A. Rationale The credibility of a health care professional is based. Consequently, students in the health care colleges have a particular obligation to conduct themselves at all

Hayes, Jane E.

362

NANO REVIEW Open Access Thermal conductivity and thermal boundary  

E-Print Network [OSTI]

NANO REVIEW Open Access Thermal conductivity and thermal boundary resistance of nanostructures and the thermal transport prop- erties is a key point to design materials with preferred thermal properties with the heat dissipation on them. The influence of the interfacial roughness on the thermal conductivity

Boyer, Edmond

363

Nano Res (2010) 3: 452458452 Aqueous Supercapacitors on Conductive Cotton  

E-Print Network [OSTI]

Nano Res (2010) 3: 452­458452 Aqueous Supercapacitors on Conductive Cotton Mauro Pasta1,2 , Fabio the fabrication of wearable supercapacitors using cotton fabric as an essential component. Carbon nanotubes are conformally coated onto the cotton fibers, leading to a highly electrically conductive interconnecting network

Cui, Yi

364

Extraordinarily Efficient Conduction in a Redox-Active Ionic Liquid  

E-Print Network [OSTI]

Iodine added to iodide-based ionic liquids leads to extraordinarily efficient charge transport, vastly exceeding that expected for such viscous systems. Using terahertz time-domain spectroscopy, in conjunction with dc conductivity, diffusivity and viscosity measurements we unravel the conductivity pathways in 1-methyl-3-propylimidazolium iodide melts. This study presents evidence of the Grotthuss mechanism as a significant contributor to the conductivity, and provides new insights into ion pairing processes as well as the formation of polyiodides. The terahertz and transport results are reunited in a model providing a quantitative description of the conduction by physical diffusion and the Grotthuss bond-exchange process. These novel results are important for the fundamental understanding of conduction in molten salts and for applications where ionic liquids are used as charge-transporting media such as in batteries and dye-sensitized solar cells.

Verner K. Thorsmølle; Guido Rothenberger; Daniel Topgaard; Jan C. Brauer; Dai-Bin Kuang; Shaik M. Zakeeruddin; Björn Lindman; Michael Grätzel; Jacques-E. Moser

2010-11-09T23:59:59.000Z

365

Forecast Technical Document Forecast Types  

E-Print Network [OSTI]

Forecast Technical Document Forecast Types A document describing how different forecast types are implemented in the 2011 Production Forecast system. Tom Jenkins Robert Matthews Ewan Mackie Lesley Halsall #12;PF2011 ­ Forecast Types Background Different `types' of forecast are possible for a specified area

366

Determination of hydraulic conductivities of low permeability materials in the Sierra Ladrones Formation, Albuquerque basin  

SciTech Connect (OSTI)

Low permeability materials in the Sierra Ladrones Formation were sampled and analyzed to determine their hydraulic conductivities using the falling head centrifugation method (fc) as described by Nimmo et al. (1991). The method is similar to the traditional falling head method, only it uses greatly increased centrifugal forces, allowing measurements to make in a relatively short amount of time. Using these measurements, variations in saturated hydraulic conductivities between different sediment types were analyzed using Analysis of Variance (ANOVA). Sampling resulted in useable data chiefly from the clay and silt facies of the formation. The range of conductivities determined are representative of brown and red clays, and silts which make up the overbank deposits of this region. Hydraulic conductivities for these overbank fines were found to range from approximately log K = {minus}9 m/s to log K = {minus}7 m/s. The upper measurement limit of the centrifuge apparatus was determined to be approximately 1.43 {times} 10{sup {minus}7} m/s and the lower limit was approximately 7.6 {times} 10{sup {minus}12} m/s.

Planert, C.S.

1995-06-01T23:59:59.000Z

367

Uncertainty Analysis on the Design of Thermal Conductivity Measurement by a Guarded Cut-Bar Technique  

SciTech Connect (OSTI)

A technique adapted from the guarded-comparative-longitudinal heat flow method was selected for the measurement of the thermal conductivity of a nuclear fuel compact over a temperature range characteristic of its usage. This technique fulfills the requirement for non-destructive measurement of the composite compact. Although numerous measurement systems have been created based on the guarded comparative method, comprehensive systematic (bias) and measurement (precision) uncertainty associated with this technique have not been fully analyzed. In addition to the geometric effect in the bias error, which has been analyzed previously, this paper studies the working condition which is another potential error source. Using finite element analysis, this study showed the effect of these two types of error sources in the thermal conductivity measurement process and the limitations in the design selection of various parameters by considering their effect on the precision error. The results and conclusions provide valuable reference for designing and operating an experimental measurement system using this technique.

Jeff Phillips; Changhu Xing; Colby Jensen; Heng Ban1

2011-07-01T23:59:59.000Z

368

Electrolytic process to produce sodium hypochlorite using sodium ion conductive ceramic membranes  

DOE Patents [OSTI]

An electrochemical process for the production of sodium hypochlorite is disclosed. The process may potentially be used to produce sodium hypochlorite from seawater or low purity un-softened or NaCl-based salt solutions. The process utilizes a sodium ion conductive ceramic membrane, such as membranes based on NASICON-type materials, in an electrolytic cell. In the process, water is reduced at a cathode to form hydroxyl ions and hydrogen gas. Chloride ions from a sodium chloride solution are oxidized in the anolyte compartment to produce chlorine gas which reacts with water to produce hypochlorous and hydrochloric acid. Sodium ions are transported from the anolyte compartment to the catholyte compartment across the sodium ion conductive ceramic membrane. Sodium hydroxide is transported from the catholyte compartment to the anolyte compartment to produce sodium hypochlorite within the anolyte compartment.

Balagopal, Shekar; Malhotra, Vinod; Pendleton, Justin; Reid, Kathy Jo

2012-09-18T23:59:59.000Z

369

The Impact of Thermal Conductivity and Diffusion Rates on Water Vapor Transport through Gas Diffusion Layers  

E-Print Network [OSTI]

Water management in a hydrogen polymer electrolyte membrane (PEM) fuel cell is critical for performance. The impact of thermal conductivity and water vapor diffusion coefficients in a gas diffusion layer (GDL) has been studied by a mathematical model. The fraction of product water that is removed in the vapour phase through the GDL as a function of GDL properties and operating conditions has been calculated and discussed. Furthermore, the current model enables identification of conditions when condensation occurs in each GDL component and calculation of temperature gradient across the interface between different layers, providing insight into the overall mechanism of water transport in a given cell design. Water transport mode and condensation conditions in the GDL components depend on the combination of water vapor diffusion coefficients and thermal conductivities of the GDL components. Different types of GDL and water removal scenarios have been identified and related to experimentally-determined GDL proper...

Burlatsky, S F; Gummallaa, M; Condita, D; Liua, F

2013-01-01T23:59:59.000Z

370

Nuclear Spin Lattice Relaxation and Conductivity Studies of the Non-Arrhenius Conductivity Behavior in Lithium Fast Ion Conducting Sulfide Glasses  

SciTech Connect (OSTI)

As time progresses, the world is using up more of the planet's natural resources. Without technological advances, the day will eventually arrive when these natural resources will no longer be sufficient to supply all of the energy needs. As a result, society is seeing a push for the development of alternative fuel sources such as wind power, solar power, fuel cells, and etc. These pursuits are even occurring in the state of Iowa with increasing social pressure to incorporate larger percentages of ethanol in gasoline. Consumers are increasingly demanding that energy sources be more powerful, more durable, and, ultimately, more cost efficient. Fast Ionic Conducting (FIC) glasses are a material that offers great potential for the development of new batteries and/or fuel cells to help inspire the energy density of battery power supplies. This dissertation probes the mechanisms by which ions conduct in these glasses. A variety of different experimental techniques give a better understanding of the interesting materials science taking place within these systems. This dissertation discusses Nuclear Magnetic Resonance (NMR) techniques performed on FIC glasses over the past few years. These NMR results have been complimented with other measurement techniques, primarily impedance spectroscopy, to develop models that describe the mechanisms by which ionic conduction takes place and the dependence of the ion dynamics on the local structure of the glass. The aim of these measurements was to probe the cause of a non-Arrhenius behavior of the conductivity which has been seen at high temperatures in the silver thio-borosilicate glasses. One aspect that will be addressed is if this behavior is unique to silver containing fast ion conducting glasses. more specifically, this study will determine if a non-Arrhenius correlation time, {tau}, can be observed in the Nuclear Spin Lattice Relaxation (NSLR) measurements. If so, then can this behavior be modeled with a new single distribution of activation energies (DAE) to calculate the corresponding conductivity and relaxation rates as a function of temperature and frequency?

Benjamin Michael Meyer

2003-05-31T23:59:59.000Z

371

Final Report - Hydraulic Conductivity with Depth for Underground Test Area (UGTA) Wells  

SciTech Connect (OSTI)

Hydraulic conductivity with depth has been calculated for Underground Test Area (UGTA) wells in volcanic tuff and carbonate rock. The following wells in volcanic tuff are evaluated: ER-EC-1, ER-EC-2a, ER-EC-4, ER-EC-5, ER-5-4#2, ER-EC-6, ER-EC-7, and ER-EC-8. The following wells in carbonate rock are evaluated: ER-7-1, ER-6-1, ER-6-1#2, and ER-12-3. There are a sufficient number of wells in volcanic tuff and carbonate rock to associate the conductivity values with the specific hydrogeologic characteristics such as the stratigraphic unit, hydrostratigraphic unit, hydrogeologic unit, lithologic modifier, and alteration modifier used to describe the hydrogeologic setting. Associating hydraulic conductivity with hydrogeologic characteristics allows an evaluation of the data range and the statistical distribution of values. These results are relevant to how these units are considered in conceptual models and represented in groundwater models. The wells in volcanic tuff illustrate a wide range of data values and data distributions when associated with specific hydrogeologic characteristics. Hydraulic conductivity data within a hydrogeologic characteristic can display normal distributions, lognormal distributions, semi-uniform distribution, or no identifiable distribution. There can be multiple types of distributions within a hydrogeologic characteristic such as a single stratigraphic unit. This finding has implications for assigning summary hydrogeologic characteristics to hydrostratigraphic and hydrogeologic units. The results presented herein are specific to the hydrogeologic characteristic and to the wells used to describe hydraulic conductivity. The wells in carbonate rock are associated with a fewer number of hydrogeologic characteristics. That is, UGTA wells constructed in carbonate rock have tended to be in similar hydrogeologic materials, and show a wide range in hydraulic conductivity values and data distributions. Associations of hydraulic conductivity and hydrogeologic characteristics are graphically presented even when there are only a few data. This approach benchmarks what is currently known about the association of depth-specific hydraulic conductivity and hydrogeologic characteristics.

P. Oberlander; D. McGraw; C. Russell

2007-10-31T23:59:59.000Z

372

A study of temperature distributions due to conduction reservoir heating  

E-Print Network [OSTI]

of thermal conductivity with temperature. He showed this effect could be very important in considering a material such as oil shale, where the conductivity of the raw shale may be five times as great as that of the spent shale. Neglecting this variation... conduction model to investigate the in place heating of oil shale by hot gases forced through a fracture. The heat injection rate he considered is much less than would normally be employed for steam injection into permeable reservoirs and is only about...

Connaughton, Charles Richard

2012-06-07T23:59:59.000Z

373

Thermal Crosslinking of Organic Semiconducting Polythiophene Improves Transverse Hole Conductivity  

SciTech Connect (OSTI)

Thermal crosslinking using a suitable radical initiator simultaneously improves electrical conductivity in the semiconducting polymer poly(3-hexylthiophene) and makes the material insoluble. Crosslinked polythiophene shows as much as a fivefold increase in hole conductivity across the film thickness without any shift in spectral light absorption. Grazing incidence x-ray diffraction reveals more in-plane polymer lamellae stacking with only a small decrease in film crystallinity. Improved transverse conductivity increases the performance of model planar solar cells by threefold, from 0.07% to 0.2%. The ability to render polythiophene insoluble without disrupting film structural order enables fabrication pathways to more complex device architectures.

Gearba, I.R.; Nam, C.-Y.; Pindak, R.; Black, C.T.

2009-10-26T23:59:59.000Z

374

THERMAL CONDUCTIVITY AND OTHER PROPERTIES OF CEMENTITIOUS GROUTS  

SciTech Connect (OSTI)

The thermal conductivity and other properties cementitious grouts have been investigated in order to determine suitability of these materials for grouting vertical boreholes used with geothermal heat pumps. The roles of mix variables such as water/cement ratio, sand/cement ratio and superplasticizer dosage were measured. In addition to thermal conductivity, the cementitious grouts were also tested for bleeding, permeability, bond to HDPE pipe, shrinkage, coefficient of thermal expansion, exotherm, durability and environmental impact. This paper summarizes the results for selected grout mixes. Relatively high thermal conductivities were obtained and this leads to reduction in predicted bore length and installation costs. Improvements in shrinkage resistance and bonding were achieved.

ALLAN,M.

1998-05-01T23:59:59.000Z

375

Stochastic System Identification of the Compliance of Conducting Polymers  

E-Print Network [OSTI]

Conducting polymers such as polypyrrole, polythiophene and polyaniline are currently studied as novel biologically inspired actuators. The actuation mechanism of these materials depends upon the motion of ions in and out ...

Hunter, Ian

376

Thermoelectric Conductivities at Finite Magnetic Field and the Nernst Effect  

E-Print Network [OSTI]

We study electric, thermoelectric, and thermal conductivities of a strongly correlated system in the presence of magnetic field by gauge/gravity duality. We consider a general class of Einstein-Maxwell-Dilaton theory with axion fields imposing momentum relaxation. Analytic general formulas for DC conductivities and the Nernst signal are derived in terms of the black hole horizon data. For an explicit model study we analyse in detail the dyonic black hole modified by momentum relaxation. In this model, the Nernst signal shows a typical vortex-liquid effect when momentum relaxation effect is comparable to chemical potential. We compute all AC electric, thermoelectric, and thermal conductivities by numerical analysis and confirms that their zero frequency limits precisely reproduce our analytic formulas, which is a non-trivial consistency check of our methods. We discuss the momentum relaxation effect on conductivities including cyclotron resonance poles.

Keun-Young Kim; Kyung Kiu Kim; Yunseok Seo; Sang-Jin Sin

2015-03-17T23:59:59.000Z

377

Thermal Conductivity Spectroscopy Technique to Measure Phonon Mean Free Paths  

E-Print Network [OSTI]

Size effects in heat conduction, which occur when phonon mean free paths (MFPs) are comparable to characteristic lengths, are being extensively explored in many nanoscale systems for energy applications. Knowledge of MFPs ...

Schmidt, A. J.

378

An Analytical Study Of A 2-Layer Transient Thermal Conduction...  

Open Energy Info (EERE)

Study Of A 2-Layer Transient Thermal Conduction Problem As Applied To Soil-Temperature Surveys Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article:...

379

Conductivity factor in the electrostatic coalescence of crude oil emulsions  

E-Print Network [OSTI]

vertically-oriented, cylindrical coalescer. The electrical conductivity of each phase of the water-in-oil emulsion was varied to determine their effects on the rate of coalescence. Both light and intermediate grades of crude oil emulsions were modified...

Nelson, James B

1998-01-01T23:59:59.000Z

380

Real time density functional simulations of quantum scale conductance  

E-Print Network [OSTI]

We study electronic conductance through single molecules by subjecting a molecular junction to a time dependent potential and propagating the electronic state in real time using time-dependent density functional theory ...

Evans, Jeremy Scott

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "on-board type conductive" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Electronic structure and quantum conductance of molecular and nano electronics  

E-Print Network [OSTI]

This thesis is dedicated to the application of a large-scale first-principles approach to study the electronic structure and quantum conductance of realistic nanomaterials. Three systems are studied using Landauer formalism, ...

Li, Elise Yu-Tzu

2011-01-01T23:59:59.000Z

382

Electrical Conductivity and Water in the Mantle Steven Constable  

E-Print Network [OSTI]

Electrical Conductivity and Water in the Mantle Steven Constable Scripps Institution of Oceanography http://marineemlab.ucsd.edu With thanks to: Jim Behrens, Cathy Constable, Al Duba, Kerry Key

Constable, Steve

383

Conductive Rigid Skeleton Supported Silicon as High-Performance...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and technologies. Citation: Chen X, X Li, F Ding, W Xu, J Xiao, Y Cao, P Meduri, J Liu, GL Graff, and J Zhang.2012."Conductive Rigid Skeleton Supported Silicon as High-Performance...

384

Development of mixed-conducting ceramic membranes for hydrogen separation.  

SciTech Connect (OSTI)

SrCeO{sub 3}- and BaCeO{sub 3}-based proton conductors have been prepared and their transport properties have been investigated by impedance spectroscopy in conjunction with open circuit voltage and water vapor evolution measurements. BaCe{sub 0.8}Y{sub 0.2}O{sub 3-{delta}} exhibits the highest conductivity in a hydrogen-containing atmosphere; however, its electronic conductivity is not adequate for hydrogen separation in a nongalvanic mode. In an effort to enhance ambipolar conductivity and improve interfacial catalytic properties, BaCe{sub 0.8}Y{sub 0.2}O{sub 3-{delta}} cermets have been fabricated into membranes. The effects of ambipolar conductivity, membrane thickness, and interfacial resistance on permeation rates have been investigated. In particular, the significance of interfacial resistance is emphasized.

Guan, J.

1998-05-18T23:59:59.000Z

385

Progress and Status on Through-Plane Resistance and Conductivity...  

Broader source: Energy.gov (indexed) [DOE]

2 GDE 2 GDE 1 Overlap Area Bottom Top Top View U.S. Patent No. 7,652,479 Side View 14 Offset electrode geometry for 4-probe conductivity measurement of thin film electrolytes V...

386

Roll-to-Roll Embedding of Conductive Sintered Silver Grids.  

E-Print Network [OSTI]

?? R2R embedding of conductive sintered grids: Within the organic light emitting diode(OLED) and organic photovoltaic(OPV) applications, to improve the efficiency of these devices, high… (more)

Pagudala, Ashish Kumar

2012-01-01T23:59:59.000Z

387

Seven Universities Selected To Conduct Advanced Turbine Technology Studies  

Broader source: Energy.gov [DOE]

Seven universities have been selected by the U.S. Department of Energy to conduct advanced turbine technology studies under the Office of Fossil Energy's University Turbine Systems Research Program.

388

Conduct of operations training - An innovative approach to team building  

SciTech Connect (OSTI)

The conduct of nuclear power plant operations is a key parameter for station management and regulators alike. Indeed, the basic methods and demeanor in which operating crews approach overall plant operations is perhaps the principal factor leading to safe and efficient operations. Hence, Commonwealth Edison's Zion Station has initiated an innovative and positive training program designed to increase operator awareness of conducting station operations in an attentive, diligent, and conscientious manner. This Conduct of Operations Training Program is a collaborative joint effort between Commonwealth Edison and the Westinghouse Nuclear Training Center. In particular, the key managers of Zion's operating department brainstormed various philosophies and strategies with senior training staff members of the Westinghouse Nuclear Training Center. The outcome of these sessions has formed the skeleton of an intensified, one-day Conduct of Operations course. Several unique aspects of this innovative course are described.

Widen, W.C.; Kurth, W.; Broccolo, A.

1987-01-01T23:59:59.000Z

389

Experimental investigations of solid-solid thermal interface conductance  

E-Print Network [OSTI]

Understanding thermal interface conductance is important for nanoscale systems where interfaces can play a critical role in heat transport. In this thesis, pump and probe transient thermoreflectance methods are used to ...

Collins, Kimberlee C. (Kimberlee Chiyoko)

2010-01-01T23:59:59.000Z

390

Subsurface conductive isolation of refraction correlative magnetic signals (SCIRCMS)  

E-Print Network [OSTI]

Isolation of terrestrially-observed magnetic signals by restoring their diffusive loss due to subsurface electrical conductivity sufficiently correlates these signals with those derived from the Alfven ionospheric electron movement of refraction...

Erck, Eric Stephenson

2004-11-15T23:59:59.000Z

391

Organic photovoltaic cell incorporating electron conducting exciton blocking layers  

DOE Patents [OSTI]

The present disclosure relates to photosensitive optoelectronic devices including a compound blocking layer located between an acceptor material and a cathode, the compound blocking layer including: at least one electron conducting material, and at least one wide-gap electron conducting exciton blocking layer. For example, 3,4,9,10 perylenetetracarboxylic bisbenzimidazole (PTCBI) and 1,4,5,8-napthalene-tetracarboxylic-dianhydride (NTCDA) function as electron conducting and exciton blocking layers when interposed between the acceptor layer and cathode. Both materials serve as efficient electron conductors, leading to a fill factor as high as 0.70. By using an NTCDA/PTCBI compound blocking layer structure increased power conversion efficiency is achieved, compared to an analogous device using a conventional blocking layers shown to conduct electrons via damage-induced midgap states.

Forrest, Stephen R.; Lassiter, Brian E.

2014-08-26T23:59:59.000Z

392

Design of a variable-conductance vacuum insulation  

SciTech Connect (OSTI)

This paper describes one approach to the design of a variable-conductance vacuum insulation. In this design, the vacuum insulation consists of a permanently sealed, thin sheet steel, evacuated envelope of whatever geometry is required for the application. The steel envelope is supported internally against the atmospheric pressure loads by an array of discrete, low-conductance, ceramic supports, and radiative heat transfer is blocked by layers of thin metal radiation shields. Thermal conductance through this insulation is controlled electronically by changing the temperature of a small metal hydride connected to the vacuum envelope. The hydride reversibly absorbs/desorbs hydrogen to produce a hydrogen pressure typically within the range from less than 10{sup {minus}6} to as much as 1 torr. Design calculations are compared with results from laboratory tests of bench scale samples, and some possible automotive applications for this variable-conductance vacuum insulation are suggested.

Benson, D K; Potter, T F; Tracy, C E

1994-01-01T23:59:59.000Z

393

RIS-M-2478 ELECTRICAL CONDUCTIVITY, DEFECT STRUCTURE AND  

E-Print Network [OSTI]

BACKGROUND 7 THEORY 8 MODEL FOR CALCULATION OF THEORETICAL DENSITY IN THE SYSTEM 10 EXPERIMENTAL 12 sensors, fuel c e l l s and electrolyzers. The defect responsible for the high conductivity

394

Activation of conductive pathways via deformation-induced instabilities  

E-Print Network [OSTI]

Inspired by the pattern transformation of periodic elastomeric cellular structures, the purpose of this work is to exploit this unique ability to activate conductive via deformation-induced instabilities. Two microstructural ...

Ni, Xinchen

2014-01-01T23:59:59.000Z

395

A benchmark study on the thermal conductivity of nanofluids  

E-Print Network [OSTI]

This article reports on the International Nanofluid Property Benchmark Exercise, or INPBE, in which the thermal conductivity of identical samples of colloidally stable dispersions of nanoparticles or “nanofluids,” was ...

Buongiorno, Jacopo

396

Investigation on thermal conductivity and AC impedance of graphite suspension  

E-Print Network [OSTI]

Over the past decade, some groups have reported that nanofluids, which are liquids containing suspensions of nanoparticles, have substantially higher thermal conductivity than that of the base fluids. However, the reported ...

Wang, Jianjian, S.M. Massachusetts Institute of Technology

2011-01-01T23:59:59.000Z

397

Process for fabricating composite material having high thermal conductivity  

DOE Patents [OSTI]

A process for fabricating a composite material such as that having high thermal conductivity and having specific application as a heat sink or heat spreader for high density integrated circuits. The composite material produced by this process has a thermal conductivity between that of diamond and copper, and basically consists of coated diamond particles dispersed in a high conductivity metal, such as copper. The composite material can be fabricated in small or relatively large sizes using inexpensive materials. The process basically consists, for example, of sputter coating diamond powder with several elements, including a carbide forming element and a brazeable material, compacting them into a porous body, and infiltrating the porous body with a suitable braze material, such as copper-silver alloy, thereby producing a dense diamond-copper composite material with a thermal conductivity comparable to synthetic diamond films at a fraction of the cost.

Colella, Nicholas J. (Livermore, CA); Davidson, Howard L. (San Carlos, CA); Kerns, John A. (Livermore, CA); Makowiecki, Daniel M. (Livermore, CA)

2001-01-01T23:59:59.000Z

398

Experimental Study of Acid Fracture Conductivity of Austin Chalk Formation  

E-Print Network [OSTI]

Acid fracture conductivity and the effect of key variables in the etching process during acid fracturing can be assessed at the laboratory scale. This is accomplished by using an experimental apparatus that simulates acid injection fluxes comparable...

Nino Penaloza, Andrea

2013-05-01T23:59:59.000Z

399

In-Plane Conductivity Testing Procedures and Results  

Broader source: Energy.gov (indexed) [DOE]

Plane Conductivity Testing Procedures & Results Samples Tested: N112 NRE212 NRE211 N117 N1035 N1135 Work performed under subcontract with FSECUCF DOE Award No. DE-FC36-06GO16028...

400

Conductivity and entanglement entropy of high dimensional holographic superconductors  

E-Print Network [OSTI]

We investigate the dependence of the conductivity and the entanglement entropy on the space-time dimensionality $d$ in two holographic superconductors: one dual to a quantum critical point with spontaneous symmetry breaking, and the other modeled by a charged scalar that condenses at a sufficiently low temperature in the presence of a Maxwell field. In both cases the gravity background is asymptotically Anti de Sitter (AdS). In the large $d$ limit we obtain explicit analytical results for the conductivity at zero temperature and the entanglement entropy by a $1/d$ expansion. We show that the entanglement entropy is always smaller in the broken phase and identify a novel decay of the conductivity for intermediate frequencies. As dimensionality increases, the entanglement entropy decreases, the coherence peak in the conductivity becomes narrower and the ratio between the energy gap and the critical temperature decreases. These results suggest that the condensate interactions become weaker in high spatial dimens...

Romero-Bermúdez, Aurelio

2015-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "on-board type conductive" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Determining the Porosity and Saturated Hydraulic Conductivity of Binary Mixtures  

SciTech Connect (OSTI)

Gravels and coarse sands make up significant portions of some environmentally important sediments, while the hydraulic properties of the sediments are typically obtained in the laboratory using only the fine fraction (e.g., <2 mm or 4.75 mm). Researchers have found that the content of gravel has significant impacts on the hydraulic properties of the bulk soils. Laboratory experiments were conducted to measure the porosity and the saturated hydraulic conductivity of binary mixtures with different fractions of coarse and fine components. We proposed a mixing-coefficient model to estimate the porosity and a power-averaging method to determine the effective particle diameter and further to predict the saturated hydraulic conductivity of binary mixtures. The proposed methods could well estimate the porosity and saturated hydraulic conductivity of the binary mixtures for the full range of gravel contents and was successfully applied to two data sets in the literature.

Zhang, Z. F.; Ward, Anderson L.; Keller, Jason M.

2009-09-27T23:59:59.000Z

402

Resonant bonding leads to low lattice thermal conductivity  

E-Print Network [OSTI]

Understanding the lattice dynamics and low thermal conductivities of IV–VI, V[subscript 2]–VI[subscript 3] and V materials is critical to the development of better thermoelectric and phase-change materials. Here we provide ...

Lee, Sangyeop

403

Conductive layer for biaxially oriented semiconductor film growth  

DOE Patents [OSTI]

A conductive layer for biaxially oriented semiconductor film growth and a thin film semiconductor structure such as, for example, a photodetector, a photovoltaic cell, or a light emitting diode (LED) that includes a crystallographically oriented semiconducting film disposed on the conductive layer. The thin film semiconductor structure includes: a substrate; a first electrode deposited on the substrate; and a semiconducting layer epitaxially deposited on the first electrode. The first electrode includes a template layer deposited on the substrate and a buffer layer epitaxially deposited on the template layer. The template layer includes a first metal nitride that is electrically conductive and has a rock salt crystal structure, and the buffer layer includes a second metal nitride that is electrically conductive. The semiconducting layer is epitaxially deposited on the buffer layer. A method of making such a thin film semiconductor structure is also described.

Findikoglu, Alp T. (Los Alamos, NM); Matias, Vladimir (Santa Fe, NM)

2007-10-30T23:59:59.000Z

404

Thermal conductivity of beryllium-gas packed bed  

SciTech Connect (OSTI)

Unsintered packed bed has been suggested as a material form for solid breeder and multiplier in the ITER and fusion power reactor blankets. Study of the effective bed thermal conductivity can provide tools for analysis of the blanket performance under different operating conditions, and of how to actively control the thermal behavior of the blanket. Issues of particular interest are the ability to predict and to control the thermal conductivity. The 2-D model developed at UCLA is used to study the effect of particle diameter, solid-to-gas conductivity ratio, bed porosity, contact area, and surface roughness characteristics on bed thermal conductivity. The study shows that all parameters except bed porosity play important roles in determining the bed thermal controllability.

Xu, M.; Abdou, M.A.; Raffray, A.R. [Univ. of California, Los Angeles, CA (United States)

1994-12-31T23:59:59.000Z

405

Fabrication and Characterization of a Conduction Cooled Thermal Neutron Filter  

SciTech Connect (OSTI)

Installation of a conduction cooled thermal (low-energy) neutron filter in an existing domestic test reactor would provide the U.S. the capability to test new reactor fuels and materials for advanced fast (high-energy) reactor concepts. A composite consisting of Al3Hf-Al has been proposed for the neutron filter due to both the neutron filtering properties of hafnium and the conducting capabilities of aluminum. Knowledge of the thermal conductivity of the Al3Hf-Al composite is essential for the design of the filtering system. The present objectives are to identify a suitable fabrication technique and to measure the thermophysical properties of the Al3Hf intermetallic, which has not been done previous to this study. A centrifugal casting method was used to prepare samples of Al3Hf. X-ray diffraction and Rietveld analysis were conducted to determine the structural make-up of each of the samples. Thermophysical properties were measured as follows: specific heat by a differential scanning calorimeter (DSC), thermal diffusivity by a laser flash thermal diffusivity measuring system, thermal expansion by a dilatometer, and thermal conductivity was calculated based on the previous measurements. All measurements were acquired over a temperature range of 90°C - 375°C with some measurements outside these bounds. The average thermal conductivity of the intermetallic Al3Hf (~7 at.% Hf) was found to be ~ 41 W/m-K for the given temperature range. This information fills a knowledge gap in the thermophysical properties of the intermetallic Al3Hf with the specified percentage of hafnium. A model designed to predict composite properties was used to calculate a thermal conductivity of ~177 W/m-K for an Al3Hf-Al composite with 23 vol% Al3Hf. This calculation was based upon the average thermal conductivity of Al3Hf over the specified temperature range.

Heather Wampler; Adam Gerth; Heng Ban; Donna Post Guillen; Douglas Porter; Cynthia Papesch

2010-06-01T23:59:59.000Z

406

The thermal conductivity of sediments as a function of porosity  

E-Print Network [OSTI]

1979 Major Subject: Civil Engineering THE THERMAL CONDUCTIVITY OF SEDIMENTS AS A FUNCTION OF POROSITY A Thesis by JAMES WARREN MILLER Approved as to style and content by: Louis J. hompson CE)(Chairman of Committee) Harry M. Coyle (CE)( ember...THE THERMAL CONDUCTIVITY OF SEDIMENTS AS A FUNCTION OF POROSITY A Thesis by JAMES WARREN MILLER Submitted to the Graduate College of Texas AAM University in partial fulfillment of the requirement for the degree of MASTER OF SCIENCE August...

Miller, James W

1979-01-01T23:59:59.000Z

407

Modeling the thermal conductivity of fiber-reinforced ceramic composites  

SciTech Connect (OSTI)

A review of models for the prediction of the thermal conductivity of uni-directional fiber-reinforced composites will be presented. The ability of these models to give an accurate prediction of the composite thermal conductivity depends on the amount of information known about the constituent phase properties under the assumption that these properties do not change as a result of processing. Also presented are models that take into account the effects of fiber coatings.

Beecher, S.C.; Dinwiddie, R.B.

1993-06-01T23:59:59.000Z

408

A study conducted on laterally loaded cylindrical footings  

E-Print Network [OSTI]

A STUDY CONDUCTED ON LATERALLY LOADED CYLINDRICAL FOOTINGS A Thesis by Kenneth Joseph Koch Submitted to the Graduate College of the Texas A&M University in partial fulfillment of the requirements for the degree oi MASTER OF SCIENCE May 1968... Major Subject Civil Engineering A STUDY CONDUCTED ON LATERALLY LOADED CYLINDRICAL FOOTINGS A Thesis by Kenneth Joseph Koch Approved as to style and content by (Chairman of Committee) (Head of Department) (Member) (M ber) May 1968...

Koch, Kenneth Joseph

1968-01-01T23:59:59.000Z

409

In-Pile Thermal Conductivity Measurement Method for Nuclear Fuels  

SciTech Connect (OSTI)

Thermophysical properties of advanced nuclear fuels and materials during irradiation must be known prior to their use in existing, advanced, or next generation reactors. Thermal conductivity is one of the most important properties for predicting fuel and material performance. A joint Utah State University (USU) / Idaho National Laboratory (INL) project, which is being conducted with assistance from the Institute for Energy Technology at the Norway Halden Reactor Project, is investigating in-pile fuel thermal conductivity measurement methods. This paper focuses on one of these methods – a multiple thermocouple method. This two-thermocouple method uses a surrogate fuel rod with Joule heating to simulate volumetric heat generation to gain insights about in-pile detection of thermal conductivity. Preliminary results indicated that this method can measure thermal conductivity over a specific temperature range. This paper reports the thermal conductivity values obtained by this technique and compares these values with thermal property data obtained from standard thermal property measurement techniques available at INL’s High Test Temperature Laboratory. Experimental results and material properties data are also compared to finite element analysis results.

Joy L. Rempe; Brandon Fox; Heng Ban; Joshua E. Daw; Darrell L. Knudson; Keith G. Condie

2009-08-01T23:59:59.000Z

410

PROTON-CONDUCTING DENSE CERAMIC MEMBRANES FOR HYDROGEN SEPARATION  

SciTech Connect (OSTI)

This project is aimed at preparation of thin (1-10? m) membranes of a modified strontium ceramic material with improved hydrogen permeance on mesoporous substrates. The research work conducted in this reporting period was focused on the following three aspects: (1) preparation of thick proton-conducting ceramic membranes and synthesis of porous substrates as support for thin proton-conducting ceramic film, (2) setting up RF sputter deposition unit for deposition of thin ceramic films and performing deposition experiments with the sputter deposition unit, and (3) modeling hydrogen permeation through the proton-conducting ceramic membranes. Proton-conducting thulium doped strontium cerate membranes were reproducibly prepared by the citrate method. Mesoporous ceria membranes were fabricated by a sol-gel method. The membranes will be used as the substrate for coating thin strontium cerate films. A magnetron sputter deposition unit was set up and good quality thin metal alloy films were formed on the mesoporous substrates by an alternative deposition method with the sputter deposition unit. A theoretical model has been developed for hydrogen permeation through proton conducting ceramic membranes. This model can be used to quantitatively describe the hydrogen permeation data.

Jerry Y.S. Lin

2001-11-30T23:59:59.000Z

411

Metallic coatings for enhancement of thermal contact conductance  

SciTech Connect (OSTI)

The reliability of standard electronic modules may be improved by decreasing overall module temperature. This may be accomplished by enhancing the thermal contact conductance at the interface between the module frame guide rib and the card rail to which the module is clamped. Some metallic coatings, when applied to the card rail, would deform under load, increasing the contact area and associated conductance. This investigation evaluates the enhancements in thermal conductance afforded by vapor deposited silver and gold coatings. Experimental thermal conductance measurements were made for anodized aluminum 6101-T6 and electroless nickel-plated copper C11000-H03 card materials to the aluminum A356-T61 rail material. Conductance values for the electroless nickel-plated copper junction ranged from 600 to 2800 W/m(exp 2)K and those for the anodized aluminum junction ranged from 25 to 91 W/m(exp 2)K for contact pressures of 0.172-0.862 MPa and mean junction temperatures of 20-100 C. Experimental thermal conductance values of vapor deposited silver- and gold-coated aluminum A356-T61 rail surfaces indicate thermal enhancements of 1.25-2.19 for the electroless nickel-plated copper junctions and 1.79-3.41 for the anodized aluminum junctions. The silver and gold coatings provide significant thermal enhancement; however, these coating-substrate combinations are susceptible to galvanic corrosion under some conditions. 25 refs.

Lambert, M.A.; Fletcher, L.S. (Texas A M Univ., College Station, TX (United States))

1994-04-01T23:59:59.000Z

412

Mechanism design with approximate types  

E-Print Network [OSTI]

In mechanism design, we replace the strong assumption that each player knows his own payoff type exactly with the more realistic assumption that he knows it only approximately: each player i only knows that his true type ...

Zhu, Zeyuan Allen

2012-01-01T23:59:59.000Z

413

Types of Farming in Texas.  

E-Print Network [OSTI]

.......... .......-.----------------------. 8 Labor -..-.....-----...------------------------------------------------. 9 Land Tenure .--.----....---....--------------------------------- 9 Number and Size of Farms ....----...----.-._--------- 10 Capital... -------------...-------.---------------------------- 21 Hogs -......-....--------------------------------------------------- 22 Poultry .-.---.-.....--.-..------.---------------------------------- 22 Horses and Mules ---..-....---..--..------------------------ 23 Types of Farming and Type-of-farming...

Bonnen, C. A.

1960-01-01T23:59:59.000Z

414

Cost-benefit analysis conducted for nutrition education in California  

E-Print Network [OSTI]

colorectal cancer and osteoporosis. † Source: Lambur et al.on colorectal cancer, osteoporosis, type 2 diabetes, obesitycriteria simultaneously Osteoporosis Drink milk Improve food

Block Joy, Amy; Goldman, George; Pradhan, Vijay

2006-01-01T23:59:59.000Z

415

Manifestation of the Purcell effect in the conductivity of InAs/AlSb short-period superlattices  

SciTech Connect (OSTI)

Vertical transport in short-period InAs/AlSb superlattices with type-II heterojunctions is studied at room temperature. It is found that negative differential conductivity appears in the miniband-conduction mode upon the overlapping of quantum-confined states in a periodic system of quantum wells. In the nonresonant-tunneling mode, equidistant peaks appear on the current-voltage characteristic of these superlattices. These peaks are attributed to the influence of the optical cavity on optical electron transitions in quantum wells (Purcell effect)

Kagan, M. S., E-mail: kagan@cplire.ru; Altukhov, I. V. [Russian Academy of Sciences, Kotel'nikov Institute of Radio Engineering and Electronics (Russian Federation)] [Russian Academy of Sciences, Kotel'nikov Institute of Radio Engineering and Electronics (Russian Federation); Baranov, A. N. [Universite Montpellier 2, Institute d'Electronique du Sud (France)] [Universite Montpellier 2, Institute d'Electronique du Sud (France); Il'inskaya, N. D. [Russian Academy of Sciences, Ioffe Physical-Technical Institute (Russian Federation)] [Russian Academy of Sciences, Ioffe Physical-Technical Institute (Russian Federation); Paprotskiy, S. K. [Russian Academy of Sciences, Kotel'nikov Institute of Radio Engineering and Electronics (Russian Federation)] [Russian Academy of Sciences, Kotel'nikov Institute of Radio Engineering and Electronics (Russian Federation); Teissier, R. [Universite Montpellier 2, Institute d'Electronique du Sud (France)] [Universite Montpellier 2, Institute d'Electronique du Sud (France); Usikova, A. A. [Russian Academy of Sciences, Kotel'nikov Institute of Radio Engineering and Electronics (Russian Federation)] [Russian Academy of Sciences, Kotel'nikov Institute of Radio Engineering and Electronics (Russian Federation)

2013-11-15T23:59:59.000Z

416

Estimation of composite thermal conductivity of a heterogeneous methane hydrate sample using iTOUGH2  

E-Print Network [OSTI]

15–17, 2006 ESTIMATION OF COMPOSITE THERMAL CONDUCTIVITY OFABSTRACT We determined the composite thermal conductivity (kfrom granular ice. The composite thermal conductivity was

Gupta, Arvind; Kneafsey, Timothy J.; Moridis, George J.; Seol, Yongkoo; Kowalsky, Michael B.; Sloan Jr., E.D.

2006-01-01T23:59:59.000Z

417

Tornado type wind turbines  

DOE Patents [OSTI]

A tornado type wind turbine has a vertically disposed wind collecting tower with spaced apart inner and outer walls and a central bore. The upper end of the tower is open while the lower end of the structure is in communication with a wind intake chamber. An opening in the wind chamber is positioned over a turbine which is in driving communication with an electrical generator. An opening between the inner and outer walls at the lower end of the tower permits radially flowing air to enter the space between the inner and outer walls while a vertically disposed opening in the wind collecting tower permits tangentially flowing air to enter the central bore. A porous portion of the inner wall permits the radially flowing air to interact with the tangentially flowing air so as to create an intensified vortex flow which exits out of the top opening of the tower so as to create a low pressure core and thus draw air through the opening of the wind intake chamber so as to drive the turbine.

Hsu, Cheng-Ting (Ames, IA)

1984-01-01T23:59:59.000Z

418

Mixed oxygen ion/electron-conducting ceramics for oxygen separation  

SciTech Connect (OSTI)

Solid mixed-conducting electrolytes in the series La{sub l-x}A{sub x}Co{sub l-y}Fe{sub y}O{sub 3-{delta}} (A = Sr,Ca,Ba) are potentially useful as passive membranes to separate high purity oxygen from air and as cathodes in fuel cells. All of the compositions studied exhibited very high electrical conductivities. At lower temperatures, conductivities increased with increasing temperature, characterized by activation energies of 0.05 to 0.16 eV that are consistent with a small polaron (localized electronic carrier) conduction mechanism. At higher temperatures, electronic conductivities tended to decrease with increasing temperature, which is attributed to decreased electronic carrier populations associated with lattice oxygen loss. Oxygen ion conductivities were higher than that of yttria stabilized zirconia and increased with the cobalt content and also increased with the extent of divalent A-site substitution. Thermogravimetric studies were conducted to establish the extent of oxygen vacancy formation as a function of temperature, oxygen partial pressure, and composition. These vacancy populations strongly depend on the extent of A-site substitution. Passive oxygen permeation rates were established for each of the compositions as a function of temperature and oxygen partial pressure gradient. For 2.5 mm thick membranes in an oxygen vs nitrogen partial pressure gradient, oxygen fluxes at 900 C ranged from approximately 0.3 sccm/cm{sup 2} for compositions high in iron and with low amounts of strontium A-site substitution to approximately 0.8 sccm/cm{sup 2} for compositions high in cobalt and strontium. A-site substitution with calcium instead of strontium resulted in substantially lower fluxes.

Stevenson, J.W.; Armstrong, B.L.; Armstrong, T.R.; Bates, J.L.; Pederson, L.R.; Weber, W.J.

1995-05-01T23:59:59.000Z

419

Behavior of type 304 and type 316 austenitic stainless in 55% lithium bromide heavy brine environments  

SciTech Connect (OSTI)

Cylindrical tensile specimens of AISI type 304 (UNS S30400) and type 316 (UNS S31600) stainless steels (SS) were tested under constant-load conditions in 55% lithium bromide (LiBr) heavy brines at temperatures of 120 C and 140 C. Elongation and open-circuit potential (OCP) were recorded during the tensile test. Potentiodynamic polarization measurements were conducted, and the failed surface fractures were examined by scanning electron microscopy. The tested SS were subjected to stress corrosion under the test environments. Sensitivity was affected strongly by pH values. In LiBr brine of pH = 11.6, the passivation processes were more effective than in brine of pH = 6 [approximately] 8. Because of effective passivation behavior in brine of pH = 11.6, lower values of [delta]l[sub 0] were measured, indicating lower dislocation relaxation processes and high resistance to stress corrosion cracking.

Itzhak, D.; Elias, O. (Ben-Gurion Univ., Beer-Sheva (Israel). Dept. of Materials Engineering)

1994-02-01T23:59:59.000Z

420

THERMAL CONDUCTIVITY OF NON-REPOSITORY LITHOSTRATIGRAPHIC LAYERS  

SciTech Connect (OSTI)

This model report addresses activities described in ''Technical Work Plan for: Near-Field Environment and Transport Thermal Properties and Analysis Reports Integration'' (BSC 2004 [DIRS 171708]). The model develops values for thermal conductivity, and its uncertainty, for the nonrepository layers of Yucca Mountain; in addition, the model provides estimates for matrix porosity and dry bulk density for the nonrepository layers. The studied lithostratigraphic units, as identified in the ''Geologic Framework Model'' (GFM 2000) (BSC 2004 [DIRS 170029]), are the Timber Mountain Group, the Tiva Canyon Tuff, the Yucca Mountain Tuff, the Pah Canyon Tuff, the Topopah Spring Tuff (excluding the repository layers), the Calico Hills Formation, the Prow Pass Tuff, the Bullfrog Tuff, and the Tram Tuff. The deepest model units of the GFM (Tund and Paleozoic) are excluded from this study because no data suitable for model input are available. The parameter estimates developed in this report are used as input to various models and calculations that simulate heat transport through the rock mass. Specifically, analysis model reports that use product output from this report are: (1) Drift-scale coupled processes (DST and TH seepage) models; (2) Drift degradation analysis; (3) Multiscale thermohydrologic model; and (4) Ventilation model and analysis report. In keeping with the methodology of the thermal conductivity model for the repository layers in ''Thermal Conductivity of the Potential Repository Horizon'' (BSC 2004 [DIRS 169854]), the Hsu et al. (1995 [DIRS 158073]) three-dimensional (3-D) cubic model (referred to herein as ''the Hsu model'') was used to represent the matrix thermal conductivity as a function of the four parameters (matrix porosity, thermal conductivity of the saturating fluid, thermal conductivity of the solid, and geometric connectivity of the solid). The Hsu model requires input data from each test specimen to meet three specific conditions: (1) Known value for matrix porosity; (2) Known values for wet and dry thermal conductivity; and (3) The location of the measured specimen in relation to the model stratigraphic unit. The only matrix thermal conductivity values developed are limited to fully saturated and dry conditions. The model does not include the effects of convection and thermal radiation in voids. The model does not include temperature dependence of thermal conductivity, porosity, or bulk density.

R. JONES

2004-10-22T23:59:59.000Z

Note: This page contains sample records for the topic "on-board type conductive" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Developing a High Thermal Conductivity Fuel with Silicon Carbide Additives  

SciTech Connect (OSTI)

The objective of this research is to increase the thermal conductivity of uranium oxide (UO{sub 2}) without significantly impacting its neutronic properties. The concept is to incorporate another high thermal conductivity material, silicon carbide (SiC), in the form of whiskers or from nanoparticles of SiC and a SiC polymeric precursor into UO{sub 2}. This is expected to form a percolation pathway lattice for conductive heat transfer out of the fuel pellet. The thermal conductivity of SiC would control the overall fuel pellet thermal conductivity. The challenge is to show the effectiveness of a low temperature sintering process, because of a UO{sub 2}-SiC reaction at 1,377°C, a temperature far below the normal sintering temperature. Researchers will study three strategies to overcome the processing difficulties associated with pore clogging and the chemical reaction of SiC and UO{sub 2} at temperatures above 1,300°C:

Ronald baney; James Tulenko

2012-11-20T23:59:59.000Z

422

Optimal anisotropic three-phase conducting composites: Plane problem  

E-Print Network [OSTI]

The paper establishes tight lower bound for effective conductivity tensor $K_*$ of two-dimensional three-phase conducting anisotropic composites and defines optimal microstructures. It is assumed that three materials are mixed with fixed volume fractions and that the conductivity of one of the materials is infinite. The bound expands the Hashin-Shtrikman and Translation bounds to multiphase structures, it is derived using the technique of {\\em localized polyconvexity} that is a combination of Translation method and additional inequalities on the fields in the materials; similar technique was used by Nesi (1995) and Cherkaev (2009) for isotropic multiphase composites. This paper expands the bounds to the anisotropic composites. The lower bound of conductivity (G-closure) is a piece-wise analytic function of eigenvalues of $K_*$, that depends only on conductivities of components and their volume fractions. Also, we find optimal microstructures that realize the bounds, developing the technique suggested earlier by Albin Cherkaev and Nesi (2007) and Cherkaev (2009). The optimal microstructures are laminates of some rank for all regions. The found structures match the bounds in all but one region of parameters; we discuss the reason for the gap and numerically estimate it.

Andrej Cherkaev; and Yuan Zhang

2011-05-22T23:59:59.000Z

423

Semiconductor structures having electrically insulating and conducting portions formed from an AlSb-alloy layer  

DOE Patents [OSTI]

The semiconductor structure comprises a plurality of semiconductor layers formed on a substrate including at least one layer of a III-V compound semiconductor alloy comprising aluminum (Al) and antimony (Sb), with at least a part of the AlSb-alloy layer being chemically converted by an oxidation process to form superposed electrically insulating and electrically conducting portions. The electrically insulating portion formed from the AlSb-alloy layer comprises an oxide of aluminum (e.g., Al{sub 2}O{sub 3}), while the electrically conducting portion comprises Sb. A lateral oxidation process allows formation of the superposed insulating and conducting portions below monocrystalline semiconductor layers for forming many different types of semiconductor structures having particular utility for optoelectronic devices such as light-emitting diodes, edge-emitting lasers, vertical-cavity surface-emitting lasers, photodetectors and optical modulators (waveguide and surface normal), and for electronic devices such as heterojunction bipolar transistors, field-effect transistors and quantum-effect devices. The invention is expected to be particularly useful for forming light-emitting devices for use in the 1.3--1.6 {mu}m wavelength range, with the AlSb-alloy layer acting to define an active region of the device and to effectively channel an electrical current therein for efficient light generation. 10 figs.

Spahn, O.B.; Lear, K.L.

1998-03-10T23:59:59.000Z

424

Thermally conductive cementitious grouts for geothermal heat pumps. Progress report FY 1998  

SciTech Connect (OSTI)

Research commenced in FY 97 to determine the suitability of superplasticized cement-sand grouts for backfilling vertical boreholes used with geothermal heat pump (GHP) systems. The overall objectives were to develop, evaluate and demonstrate cementitious grouts that could reduce the required bore length and improve the performance of GHPs. This report summarizes the accomplishments in FY 98. The developed thermally conductive grout consists of cement, water, a particular grade of silica sand, superplasticizer and a small amount of bentonite. While the primary function of the grout is to facilitate heat transfer between the U-loop and surrounding formation, it is also essential that the grout act as an effective borehole sealant. Two types of permeability (hydraulic conductivity) tests was conducted to evaluate the sealing performance of the cement-sand grout. Additional properties of the proposed grout that were investigated include bleeding, shrinkage, bond strength, freeze-thaw durability, compressive, flexural and tensile strengths, elastic modulus, Poisson`s ratio and ultrasonic pulse velocity.

Allan, M.L.; Philippacopoulos, A.J.

1998-11-01T23:59:59.000Z

425

Semiconductor structures having electrically insulating and conducting portions formed from an AlSb-alloy layer  

DOE Patents [OSTI]

A semiconductor structure. The semiconductor structure comprises a plurality of semiconductor layers formed on a substrate including at least one layer of a III-V compound semiconductor alloy comprising aluminum (Al) and antimony (Sb), with at least a part of the AlSb-alloy layer being chemically converted by an oxidation process to form superposed electrically insulating and electrically conducting portions. The electrically insulating portion formed from the AlSb-alloy layer comprises an oxide of aluminum (e.g. Al.sub.2 O.sub.3), while the electrically conducting portion comprises Sb. A lateral oxidation process allows formation of the superposed insulating and conducting portions below monocrystalline semiconductor layers for forming many different types of semiconductor structures having particular utility for optoelectronic devices such as light-emitting diodes, edge-emitting lasers, vertical-cavity surface-emitting lasers, photodetectors and optical modulators (waveguide and surface normal), and for electronic devices such as heterojunction bipolar transistors, field-effect transistors and quantum-effect devices. The invention is expected to be particularly useful for forming light-emitting devices for use in the 1.3-1.6 .mu.m wavelength range, with the AlSb-alloy layer acting to define an active region of the device and to effectively channel an electrical current therein for efficient light generation.

Spahn, Olga B. (Albuquerque, NM); Lear, Kevin L. (Albuquerque, NM)

1998-01-01T23:59:59.000Z

426

Thermally conductive cementitious grout for geothermal heat pump systems  

DOE Patents [OSTI]

A thermally conductive cement-sand grout for use with a geothermal heat pump system. The cement sand grout contains cement, silica sand, a superplasticizer, water and optionally bentonite. The present invention also includes a method of filling boreholes used for geothermal heat pump systems with the thermally conductive cement-sand grout. The cement-sand grout has improved thermal conductivity over neat cement and bentonite grouts, which allows shallower bore holes to be used to provide an equivalent heat transfer capacity. In addition, the cement-sand grouts of the present invention also provide improved bond strengths and decreased permeabilities. The cement-sand grouts can also contain blast furnace slag, fly ash, a thermoplastic air entraining agent, latex, a shrinkage reducing admixture, calcium oxide and combinations thereof.

Allan, Marita (Old Field, NY)

2001-01-01T23:59:59.000Z

427

The State of Water in Proton Conducting Membranes  

SciTech Connect (OSTI)

The research carried out under grant No. DE-FG02-07ER46371, "The State of Water in Proton Conducting Membranes", during the period June 1, 2008 -May 31, 2010 was comprised of three related parts. These are: 1. An examination of the state of water in classical proton conduction membranes with the use of deuterium T1 NMR spectroscopy (Allcock and Benesi groups). 2. A dielectric relaxation examination of the behavior of water in classical ionomer membranes (Macdonald program). 3. Attempts to synthesize new proton-conduction polymers and membranes derived from the polyphosphazene system. (Allcock program) All three are closely related, crucial aspects of the design and development of new and improved polymer electrolyte fuel cell membranes on which the future of fuel cell technology for portable applications depends.

Allcock, Harry R., Benesi, Alan, Macdonald, Digby, D.

2010-08-27T23:59:59.000Z

428

Electrically conductive resinous bond and method of manufacture  

DOE Patents [OSTI]

A method of bonding elements together with a bond of high strength and good electrical conductivity which comprises: applying an unfilled polyimide resin between surfaces of the elements to be bonded, heat treating said unfilled polyimide resin in stages between a temperature range of about 40 to 365/sup 0/C to form a strong adhesive bond between said elements, applying a metal-filled polyimide resin overcoat between said elements so as to provide electrical connection therebetween, and heat treating said metal-filled polyimide resin with substantially the same temperature profile as the unfilled polyimide resin. The present invention is also concerned with an adhesive, resilient, substantially void free bonding combination for providing a high strength, electrically conductive adhesive attachment between electrically conductive elements which comprises a major amount of an unfilled polyimide resin and a minor amount of a metal-filled polyimide resin.

Snowden, T.M. Jr.; Wells, B.J.

1985-01-01T23:59:59.000Z

429

Large piezoresistive effect in surface conductive nanocrystalline diamond  

SciTech Connect (OSTI)

Surface conductivity in hydrogen-terminated single crystal diamond is an intriguing phenomenon for fundamental reasons as well as for application driven research. Surface conductivity is also observed in hydrogen-terminated nanocrystalline diamond although the electronic transport mechanisms remain unclear. In this work, the piezoresistive properties of intrinsic surface conductive nanocrystalline diamond are investigated. A gauge factor of 35 is calculated from bulging a diamond membrane of 350?nm thick, with a diameter of 656??m and a sheet resistance of 1.45 M?/sq. The large piezoresistive effect is reasoned to originate directly from strain-induced changes in the resistivity of the grain boundaries. Additionally, we ascribe a small time-dependent fraction of the piezoresistive effect to charge trapping of charge carriers at grain boundaries. In conclusion, time-dependent piezoresistive effect measurements act as a tool for deeper understanding the complex electronic transport mechanisms induced by grain boundaries in a polycrystalline material or nanocomposite.

Janssens, S. D., E-mail: stoffel.d.janssens@gmail.com; Haenen, K., E-mail: ken.haenen@uhasselt.be [Institute for Materials Research (IMO), Hasselt University, Wetenschapspark 1, B-3590 Diepenbeek (Belgium); IMOMEC, IMEC vzw, Wetenschapspark 1, B-3590 Diepenbeek (Belgium); Drijkoningen, S. [Institute for Materials Research (IMO), Hasselt University, Wetenschapspark 1, B-3590 Diepenbeek (Belgium)

2014-09-08T23:59:59.000Z

430

Effective Conductivity of Spiral and other Radial Symmetric Assemblages  

E-Print Network [OSTI]

Assemblies of circular inclusions with spiraling laminate structure inside them are studied, such as spirals with inner inclusions, spirals with shells, assemblies of "wheels" - structures from laminates with radially dependent volume fractions, complex axisymmetric three-dimensional micro-geometries called Connected Hubs and Spiky Balls. The described assemblages model structures met in rock mechanics, biology, etc. The classical effective medium theory coupled with hierarchical homogenization is used. It is found that fields in spiral assemblages satisfy a coupled system of two second order differential equations, rather than a single differential equation; a homogeneous external field applied to the assembly is transformed into a rotated homogeneous field inside of the inclusions. The effective conductivity of the two-dimensional Star assembly is equivalent to that of Hashin-Shtrikman coated circles, but the conductivity of analogous three-dimensional Spiky Ball is different from the conductivity of coated sphere geometry.

Andrej Cherkaev; Alexander D. Pruss

2012-06-20T23:59:59.000Z

431

Magnetic Transparent Conducting Oxide Film And Method Of Making  

DOE Patents [OSTI]

Cobalt-nickel oxide films of nominal 100 nm thickness, and resistivity as low as 0.06 O·cm have been deposited by spin-casting from both aqueous and organic precursor solutions followed by annealing at 450° C. in air. An increase in film resistivity was found upon substitution of other cations (e.g., Zn2+, Al3+) for Ni in the spinel structure. However, some improvement in the mechanical properties of the films resulted. On the other hand, addition of small amounts of Li decreased the resistivity. A combination of XRD, XPS, UV/Vis and Raman spectroscopy indicated that NiCo2O4 is the primary conducting component and that the conductivity reaches a maximum at this stoichiometry. When x<0.67, NiO forms leading to an increase in resistivity; when x>0.67, the oxide was all spinel but the increased Co content lowered the conductivity.

Windisch, Jr., Charles F. (Richland, WA); Exarhos, Gregory J. (Richland, WA); Sharma, Shiv K. (Honolulu, HI)

2006-03-14T23:59:59.000Z

432

Multi-rate flowing Wellbore electric conductivity logging method  

SciTech Connect (OSTI)

The flowing wellbore electric conductivity logging method involves the replacement of wellbore water by de-ionized or constant-salinity water, followed by constant pumping with rate Q, during which a series of fluid electric conductivity logs are taken. The logs can be analyzed to identify depth locations of inflow, and evaluate the transmissivity and electric conductivity (salinity) of the fluid at each inflow point. The present paper proposes the use of the method with two or more pumping rates. In particular it is recommended that the method be applied three times with pumping rates Q, Q /2, and 2Q. Then a combined analysis of the multi-rate data allows an efficient means of determining transmissivity and salinity values of all inflow points along a well with a confidence measure, as well as their inherent or far-field pressure heads. The method is illustrated by a practical example.

Tsang, Chin-Fu; Doughty, Christine

2003-04-22T23:59:59.000Z

433

On the asymptotic homotopy type of inductive limit Type ...  

E-Print Network [OSTI]

In this note we exhibit large classes of (projeetionless) stable, nuclear C*- algebras whose asymptotic homotopy type is determined by K-theoretical data.

434

Assembly for electrical conductivity measurements in the piston cylinder device  

DOE Patents [OSTI]

An assembly apparatus for measurement of electrical conductivity or other properties of a sample in a piston cylinder device wherein pressure and heat are applied to the sample by the piston cylinder device. The assembly apparatus includes a body, a first electrode in the body, the first electrode operatively connected to the sample, a first electrical conductor connected to the first electrode, a washer constructed of a hard conducting material, the washer surrounding the first electrical conductor in the body, a second electrode in the body, the second electrode operatively connected to the sample, and a second electrical conductor connected to the second electrode.

Watson, Heather Christine (Dublin, CA); Roberts, Jeffrey James (Livermore, CA)

2012-06-05T23:59:59.000Z

435

Conductivity fuel cell collector plate and method of fabrication  

DOE Patents [OSTI]

An improved method of manufacturing a PEM fuel cell collector plate is disclosed. During molding a highly conductive polymer composite is formed having a relatively high polymer concentration along its external surfaces. After molding the polymer rich layer is removed from the land areas by machining, grinding or similar process. This layer removal results in increased overall conductivity of the molded collector plate. The polymer rich surface remains in the collector plate channels, providing increased mechanical strength and other benefits to the channels. The improved method also permits greater mold cavity thickness providing a number of advantages during the molding process.

Braun, James C. (Juno Beach, FL)

2002-01-01T23:59:59.000Z

436

Electrostatic Discharge Sensitivity and Electrical Conductivity of Composite Energetic Materials  

SciTech Connect (OSTI)

Composite energetic material response to electrical stimuli was investigated and a correlation between electrical conductivity and ignition sensitivity was examined. The composites consisted of micrometer particle aluminum combined with another metal, metal oxide, or fluoropolymer. Of the nine tested mixtures, aluminum with copper oxide was the only mixture to ignite by electrostatic discharge with minimum ignition energy (MIE) of 25 mJ and an electrical conductivity of 1246.25 nS; two orders of magnitude higher than the next composite. This study showed a similar trend in MIE for ignition triggered by a discharged spark compared with a thermal hot wire source.

Michael A. Daniels; Daniel J. Prentice; Chelsea Weir; Michelle L. Pantoya; Gautham Ramachandran; Tim Dallas

2013-02-01T23:59:59.000Z

437

Single-photon heat conduction in electrical circuits  

E-Print Network [OSTI]

We study photonic heat conduction between two resistors coupled weakly to a single superconducting microwave cavity. At low enough temperature, the dominating part of the heat exchanged between the resistors is transmitted by single-photon excitations of the fundamental mode of the cavity. This manifestation of single-photon heat conduction should be experimentally observable with the current state of the art. Our scheme can possibly be utilized in remote interference-free temperature control of electric components and environment engineering for superconducting qubits coupled to cavities.

Jones, P J; Tan, K Y; Möttönen, M

2011-01-01T23:59:59.000Z

438

Single-photon heat conduction in electrical circuits  

E-Print Network [OSTI]

We study photonic heat conduction between two resistors coupled weakly to a single superconducting microwave cavity. At low enough temperature, the dominating part of the heat exchanged between the resistors is transmitted by single-photon excitations of the fundamental mode of the cavity. This manifestation of single-photon heat conduction should be experimentally observable with the current state of the art. Our scheme can possibly be utilized in remote interference-free temperature control of electric components and environment engineering for superconducting qubits coupled to cavities.

P. J. Jones; J. A. M. Huhtamäki; K. Y. Tan; M. Möttönen

2011-07-14T23:59:59.000Z

439

Electronically conductive polymer binder for lithium-ion battery electrode  

DOE Patents [OSTI]

A family of carboxylic acid group containing fluorene/fluorenon copolymers is disclosed as binders of silicon particles in the fabrication of negative electrodes for use with lithium ion batteries. These binders enable the use of silicon as an electrode material as they significantly improve the cycle-ability of silicon by preventing electrode degradation over time. In particular, these polymers, which become conductive on first charge, bind to the silicon particles of the electrode, are flexible so as to better accommodate the expansion and contraction of the electrode during charge/discharge, and being conductive promote the flow battery current.

Liu, Gao; Xun, Shidi; Battaglia, Vincent S; Zheng, Honghe

2014-10-07T23:59:59.000Z

440

High thermal conductivity lossy dielectric using a multi layer configuration  

DOE Patents [OSTI]

Systems and methods are described for loss dielectrics. A loss dielectric includes at least one high dielectric loss layer and at least one high thermal conductivity-electrically insulating layer adjacent the at least one high dielectric loss layer. A method of manufacturing a loss dielectric includes providing at least one high dielectric loss layer and providing at least one high thermal conductivity-electrically insulating layer adjacent the at least one high dielectric loss layer. The systems and methods provide advantages because the loss dielectrics are less costly and more environmentally friendly than the available alternatives.

Tiegs, Terry N. (Lenoir City, TN); Kiggans, Jr., James O. (Oak Ridge, TN)

2003-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "on-board type conductive" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Electrically conducting porphyrin and porphyrin-fullerene electropolymers  

DOE Patents [OSTI]

Compounds with aryl ring(s) at porphyrin meso position(s) bearing an amino group in position 4 relative to the porphyrin macrocycle, and at least one unsubstituted 5 (hydrogen-bearing) meso position with the 10-, 15-, and/or 20-relationship to the aryl ring bearing the amino group, and metal complexes thereof, feature broad spectral absorption throughout the visible region. These compounds are electropolymerized to form electrically conducting porphyrin and porphyrin-fullerene polymers that are useful in photovoltaic applications. The structure of one such electrically conducting porphyrin polymer is shown below. ##STR00001##

Gust, Jr., John Devens; Liddell, Paul Anthony; Gervaldo, Miguel Andres; Bridgewater, James Ward; Brennan, Bradley James; Moore, Thomas Andrew; Moore, Ana Lorenzelli

2014-03-11T23:59:59.000Z

442

<type text  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

investigation conducted at a waste site that served as a former landfill at the Hanford Construction Camp during the 1940s. The investigation helped to shed light on the...

443

Beam dynamics studies for transverse electromagnetic mode type rf deflectors  

DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

We have performed three-dimensional simulations of beam dynamics for transverse electromagnetic mode (TEM) type rf deflectors: normal and superconducting. The compact size of these cavities as compared to the conventional TM110 type structures is more attractive particularly at low frequency. Highly concentrated electromagnetic fields between the parallel bars provide strong electrical stability to the beam for any mechanical disturbance. An array of six 2-cell normal conducting cavities or a single cell superconducting structure is enough to produce the required vertical displacement at the target point. Both the normal and superconducting structures show very small emittance dilution due to the vertical kick of the beam.

Ahmed, Shahid; Krafft, Geoffrey A.; Deitrick, Kirsten; De Silva, Subashini U.; Delayen, Jean R.; Spata, Mike; Tiefenback, Michael; Hofler, Alicia; Beard, Kevin

2012-02-01T23:59:59.000Z

444

Electron-donor dopant, method of improving conductivity of polymers by doping therewith, and a polymer so treated  

DOE Patents [OSTI]

Polymers with conjugated backbones, both polyacetylene and polyaromatic heterocyclic types, are doped with electron-donor agents to increase their electrical conductivity. The electron-donor agents are either electride dopants made in the presence of lithium or dopants derived from alkalides made in the presence of lithium. The dopants also contain a metal such as cesium and a trapping agent such as a crown ether.

Liepins, R.; Aldissi, M.

1984-07-27T23:59:59.000Z

445

Effect of interfacial interactions on the thermal conductivity and interfacial thermal conductance in tungsten–graphene layered structure  

SciTech Connect (OSTI)

Graphene film was deposited by microwave plasma assisted deposition on polished oxygen free high conductivity copper foils. Tungsten–graphene layered film was formed by deposition of tungsten film by magnetron sputtering on the graphene covered copper foils. Tungsten film was also deposited directly on copper foil without graphene as the intermediate film. The tungsten–graphene–copper samples were heated at different temperatures up to 900?°C in argon atmosphere to form an interfacial tungsten carbide film. Tungsten film deposited on thicker graphene platelets dispersed on silicon wafer was also heated at 900?°C to identify the formation of tungsten carbide film by reaction of tungsten with graphene platelets. The films were characterized by scanning electron microscopy, Raman spectroscopy, and x-ray diffraction. It was found that tungsten carbide film formed at the interface upon heating only above 650?°C. Transient thermoreflectance signal from the tungsten film surface on the samples was collected and modeled using one-dimensional heat equation. The experimental and modeled results showed that the presence of graphene at the interface reduced the cross-plane effective thermal conductivity and the interfacial thermal conductance of the layer structure. Heating at 650 and 900?°C in argon further reduced the cross-plane thermal conductivity and interface thermal conductance as a result of formation nanocrystalline tungsten carbide at the interface leading to separation and formation of voids. The present results emphasize that interfacial interactions between graphene and carbide forming bcc and hcp elements will reduce the cross-plane effective thermal conductivity in composites.

Jagannadham, K., E-mail: jag-kasichainula@ncsu.edu [Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States)

2014-09-01T23:59:59.000Z

446

VALIDATION OF A THERMAL CONDUCTIVITY MEASUREMENT SYSTEM FOR FUEL COMPACTS  

SciTech Connect (OSTI)

A high temperature guarded-comparative-longitudinal heat flow measurement system has been built to measure the thermal conductivity of a composite nuclear fuel compact. It is a steady-state measurement device designed to operate over a temperature range of 300 K to 1200 K. No existing apparatus is currently available for obtaining the thermal conductivity of the composite fuel in a non-destructive manner due to the compact’s unique geometry and composite nature. The current system design has been adapted from ASTM E 1225. As a way to simplify the design and operation of the system, it uses a unique radiative heat sink to conduct heat away from the sample column. A finite element analysis was performed on the measurement system to analyze the associated error for various operating conditions. Optimal operational conditions have been discovered through this analysis and results are presented. Several materials have been measured by the system and results are presented for stainless steel 304, inconel 625, and 99.95% pure iron covering a range of thermal conductivities of 10 W/m*K to 70 W/m*K. A comparison of the results has been made to data from existing literature.

Jeff Phillips; Colby Jensen; Changhu Xing; Heng Ban

2011-03-01T23:59:59.000Z

447

Low resolution conductivity estimation to improve source localization  

E-Print Network [OSTI]

source analysis in the brain is sensitive to the conductivities of head tissues, which vary across of 10-8 ) [4]. Fig. 1. Realistic four compartment (scalp, skull, CSF, brain) finite element head model Neuroscience, University of California San Diego, USA Abstract. Bioelectric source localization in the brain

Utah, University of

448

Remarkable Reduction of Thermal Conductivity in Silicon Nanotubes  

E-Print Network [OSTI]

localization, thermoelectric material T hermoelectric (TE) materials can provide electricity when subjected materials can be characterized by the dimen- sionless thermoelectric figure of merit ZT ) S2 T/, where S to be responsible for the reduction of thermal conductivity. Our study suggests SiNT is a promising thermoelectric

Li, Baowen

449

Multisublevel Magnetoquantum Conductance in Single and Coupled Double Quantum Wires  

SciTech Connect (OSTI)

We study the ballistic and diffusive magnetoquantum transport using a typical quantum point contact geometry for single and tunnel-coupled double wires that are wide (less than or similar to1 mum) in one perpendicular direction with densely populated sublevels and extremely confined in the other perpendicular (i.e., growth) direction. A general analytic solution to the Boltzmann equation is presented for multisublevel elastic scattering at low temperatures. The solution is employed to study interesting magnetic-field dependent behavior of the conductance such as a large enhancement and quantum oscillations of the conductance for various structures and field orientations. These phenomena originate from the following field-induced properties: magnetic confinement, displacement of the initial- and final-state wave functions for scattering, variation of the Fermi velocities, mass enhancement, depopulation of the sublevels and anticrossing (in double quantum wires). The magnetoconductance is strikingly different in long diffusive (or rough. dirty) wires from the quantized conductance in short ballistic (or clean) wires. Numerical results obtained for the rectangular confinement potentials in the growth direction are satisfactorily interpreted in terms of the analytic solutions based on harmonic confinement potentials. Some of the predicted features of the field-dependent diffusive and quantized conductances are consistent with recent data from GaAs/AlxGa1-xAs double quantum wires.

Lyo, Sungkwun Ken; Huang, Danhong

2001-09-15T23:59:59.000Z

450

Thin film method of conducting lithium-ions  

DOE Patents [OSTI]

The present invention relates to the composition of a solid lithium-ion electrolyte based on the Li.sub.2 O--CeO.sub.2 --SiO.sub.2 system having good transparent characteristics and high ion conductivity suitable for uses in lithium batteries, electrochromic devices and other electrochemical applications.

Zhang, Ji-Guang (Golden, CO); Benson, David K. (Golden, CO); Tracy, C. Edwin (Golden, CO)

1998-11-10T23:59:59.000Z

451

Thin film method of conducting lithium-ions  

DOE Patents [OSTI]

The present invention relates to the composition of a solid lithium-ion electrolyte based on the Li{sub 2}O-CeO{sub 2}-SiO{sub 2} system having good transparent characteristics and high ion conductivity suitable for uses in lithium batteries, electrochromic devices and other electrochemical applications. 12 figs.

Zhang, J.G.; Benson, D.K.; Tracy, C.E.

1998-11-10T23:59:59.000Z

452

Microscopic Conductivity Distributions of Non--Interacting Fermions  

E-Print Network [OSTI]

measure 0 d#. Therefore, electric fields generally produce heat in such systems. In fact, the conductivity production is the classical work performed by electric fields on the system in presence of currents of which describes the resistivity of the system. This leads to Joule's law, i.e., the heat produced

453

CRAD, Conduct of Operations- Idaho MF-628 Drum Treatment Facility  

Broader source: Energy.gov [DOE]

A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a May, 2007 readiness assessment of the Conduct of Operations program at the Advanced Mixed Waste Treatment Project.

454

CRAD, Conduct of Operations- Idaho Accelerated Retrieval Project Phase II  

Broader source: Energy.gov [DOE]

A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February, 2006 Commencement of Operations assessment of the Conduct of Operations program at the Idaho Accelerated Retrieval Project Phase II.

455

Self-assessment of conduct of operations in safe shutdown  

SciTech Connect (OSTI)

This report documents a self-assessment of the Conduct of Operations Program as it applies to safe shutdown activities at the Pinellas Plant. The self-assessment was performed in two parts: Part one consisted of a review to determine the adequacy of programs, plans and procedures. Part two assessed the effectiveness of the implementation of programs, plans and procedures.

Not Available

1995-01-01T23:59:59.000Z

456

Thermal Conductivity of Composites Under Di erent Heating Scenarios  

E-Print Network [OSTI]

Thermal Conductivity of Composites Under Di#11;erent Heating Scenarios H.T. Banks #3; , J.H. Hogan of composites under three di#11;erent heating scenarios: (i) a laser pulse heat source, (ii) a preheated composite sample, and (iii) a continuous heat source. 1 Introduction Adhesives such as epoxies, gels

457

Technology Transfer Expansion Planned UTCA is conducting a major project  

E-Print Network [OSTI]

Technology Transfer Expansion Planned UTCA is conducting a major project to evaluate and extend its technology transfer activities (UTCA project 03217). Steven Jones and David Eckhoff of UAB are working to expand the current technology transfer program to showcase the successes of the UTCA projects. Samples

Carver, Jeffrey C.

458

Benchmark density functional theory calculations for nanoscale conductance  

E-Print Network [OSTI]

Benchmark density functional theory calculations for nanoscale conductance M. Strange,a I. S. The transmission functions are calculated using two different density functional theory methods, namely state density functional theory DFT . The resulting NEGF- DFT formalism provides a numerically efficient

Thygesen, Kristian

459

Dendritic Ca2 -Activated K Conductances Regulate Electrical  

E-Print Network [OSTI]

Dendritic Ca2 -Activated K Conductances Regulate Electrical Signal Propagation in an Invertebrate studies revealed that backpropagating Na spikes and synaptically evoked EPSPs caused Ca2 entry through low-voltage-activated Ca2 channels that are distrib- uted throughout the neurites. Voltage-clamp recordings from the soma

Wessel, Ralf

460

Electrically conductive polycrystalline diamond and particulate metal based electrodes  

DOE Patents [OSTI]

An electrically conducting and dimensionally stable diamond (12, 14) and metal particle (13) electrode produced by electrodepositing the metal on the diamond is described. The electrode is particularly useful in harsh chemical environments and at high current densities and potentials. The electrode is particularly useful for generating hydrogen, and for reducing oxygen and oxidizing methanol in reactions which are of importance in fuel cells.

Swain, Greg M.; Wang, Jian

2005-04-26T23:59:59.000Z

Note: This page contains sample records for the topic "on-board type conductive" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Measuring Thermal Transport in Extreme Environments: Thermal Conductivity  

E-Print Network [OSTI]

Chen California Institute of Technology Jackie Li University of Michigan supported by CarnegieMeasuring Thermal Transport in Extreme Environments: Thermal Conductivity of Water Ice VII to 20 GPa David G. Cahill, Wen-Pin Hsieh, Dallas Trinkle, University of Illinois at Urbana-Champaign Bin

Braun, Paul

462

Crumpled graphene: Conductive inks made by startup company Vorbeck  

E-Print Network [OSTI]

Crumpled graphene: Conductive inks made by startup company Vorbeck Materials contain crumpled graphene. This atomic-force microscope image is colorized to show the topography of a piece of graphene Technology Review in English | en Español | auf Deutsch | in Italiano | Bringing Graphene to Market

Aksay, Ilhan A.

463

Conductive inks for metalization in integrated polymer microsystems  

DOE Patents [OSTI]

A system of metalization in an integrated polymer microsystem. A flexible polymer substrate is provided and conductive ink is applied to the substrate. In one embodiment the flexible polymer substrate is silicone. In another embodiment the flexible polymer substrate comprises poly(dimethylsiloxane).

Davidson, James Courtney (Livermore, CA); Krulevitch, Peter A. (Pleasanton, CA); Maghribi, Mariam N. (Livermore, CA); Benett, William J. (Livermore, CA); Hamilton, Julie K. (Tracy, CA); Tovar, Armando R. (San Antonio, TX)

2006-02-28T23:59:59.000Z

464

04.10 1 Ethics and Conduct REGENTS' POLICY  

E-Print Network [OSTI]

's official action; 3. hold any investment or engage in any financial, business, commercial, or private other things, AS 39.52 prohibits official action when personal or financial interests are affected by the president. (06-20-97) #12;04.10 2 Ethics and Conduct P04.10.030. Conflict of Interest. A. Any action

Pantaleone, Jim

465

Financial Analysis of Experimental Releases Conducted at Glen Canyon Dam  

E-Print Network [OSTI]

Department of Energy Western Area Power Administration #12;ii FOREWORD This report was prepared by Argonne Canyon Dam (GCD) conducted for the U.S. Department of Energy's Western Area Power Administration (Western. The facilities known collectively as the Salt Lake City Area Integrated Projects include dams equipped for power

Kemner, Ken

466

Stanford University School of Medicine Responsible Conduct of Research  

E-Print Network [OSTI]

Stanford University School of Medicine Responsible Conduct of Research Session 6: Tissue Use Makeup Cases Please choose one case and write a 3-5 page paper that answers the questions that accompany many years gathering tissue samples from women with breast cancer. All donors gave permission

467

WATER TRANSPORT IN VESSELLESS ANGIOSPERMS: CONDUCTING EFFICIENCY AND CAVITATION SAFETY  

E-Print Network [OSTI]

WATER TRANSPORT IN VESSELLESS ANGIOSPERMS: CONDUCTING EFFICIENCY AND CAVITATION SAFETY U. G. Hacke. Second, vesselless wood ought to be exceptionally safe from cavitation if the small cumulative area woods averaged a cavitation pressure of Ã?3:4 6 0:3 MPa, which is low for their wet habitats

Hacke, Uwe

468

Intrinsically conducting polymers and copolymers containing triazole moieties  

E-Print Network [OSTI]

at such temperatures increase the efficiency of the fuel cell, reduce the overall cost by decreasing the required by Elsevier B.V. Keywords: Proton conduction; Triazole; Fuel cell; Proton exchange membrane 1. Introduction The commercialization of polymer electrolyte membrane fuel cells (PEMFCs) is becoming an increasingly important goal

469

Mode dependent lattice thermal conductivity of single layer graphene  

SciTech Connect (OSTI)

Molecular dynamics simulation is performed to extract the phonon dispersion and phonon lifetime of single layer graphene. The mode dependent thermal conductivity is calculated from the phonon kinetic theory. The predicted thermal conductivity at room temperature exhibits important quantum effects due to the high Debye temperature of graphene. But the quantum effects are reduced significantly when the simulated temperature is as high as 1000?K. Our calculations show that out-of-plane modes contribute about 41.1% to the total thermal conductivity at room temperature. The relative contribution of out-of-plane modes has a little decrease with the increase of temperature. Contact with substrate can reduce both the total thermal conductivity of graphene and the relative contribution of out-of-plane modes, in agreement with previous experiments and theories. Increasing the coupling strength between graphene and substrate can further reduce the relative contribution of out-of-plane modes. The present investigations also show that the relative contribution of different mode phonons is not sensitive to the grain size of graphene. The obtained phonon relaxation time provides useful insight for understanding the phonon mean free path and the size effects in graphene.

Wei, Zhiyong; Yang, Juekuan; Bi, Kedong; Chen, Yunfei, E-mail: yunfeichen@seu.edu.cn [Jiangsu Key Laboratory for Design and Manufacture of Micro/Nano Biomedical Instruments and School of Mechanical Engineering, Southeast University, Nanjing 210096 (China)

2014-10-21T23:59:59.000Z

470

Conducting Cybersecurity Research Legally and Ethically Aaron J. Burstein  

E-Print Network [OSTI]

Conducting Cybersecurity Research Legally and Ethically Aaron J. Burstein University of California cybersecurity are not outright prohibitions but rather the difficulty of determining which of a large set by explaining the areas of law that are most gener- ally applicable to cybersecurity researchers and offering

Paxson, Vern

471

Effective Thermal Conductivity of Graded Nanocomposites with Interfacial Thermal  

E-Print Network [OSTI]

.M. Yin", G. H. Paulino", W.G. Buttlar", and L.Z. Sun'' '^Department of Civil and Environmental the effective thermal conductivity distribution in functionally graded materials (FGMs) considering the Kapitza is developed to derive the averaged heat flux field of the particle phase. Then the temperature gradient can

Paulino, Glaucio H.

472

Creation and Impairment of Hydraulic Fracture Conductivity in Shale Formations  

E-Print Network [OSTI]

Multi-stage hydraulic fracturing is the key to the success of many shale gas and shale oil reservoirs. The main objectives of hydraulic fracturing in shale are to create artificial fracture networks that are conductive for oil and gas flow...

Zhang, Junjing

2014-07-10T23:59:59.000Z

473

Electronically and ionically conducting electrodes for thermoelectric generators  

DOE Patents [OSTI]

A composite article comprising a porous cermet electrode on a dense solid electrolyte and method of making same. The cerment electrode comprises beta-type-alumina and refractory metal.

Novak, Robert F. (Farmington Hills, MI); Weber, Neill (Murray, UT)

1987-01-01T23:59:59.000Z

474

A Correction Scheme for Thermal Conductivity Measurement Using the Comparative Cut-bar Technique Based on a 3D Numerical Simulation  

SciTech Connect (OSTI)

As an important factor affecting the accuracy of the thermal conductivity measurement, systematic (bias) error in the guarded comparative axial heat flow (cut-bar) method was mostly neglected by previous researches. This bias is due primarily to the thermal conductivity mismatch between sample and meter bars (reference), which is common for a sample of unknown thermal conductivity. A correction scheme, based on a finite element simulation of the measurement system, was proposed to reduce the magnitude of the overall measurement uncertainty. This scheme was experimentally validated by applying corrections on four types of sample measurements in which the specimen thermal conductivity is much smaller, slightly smaller, equal and much larger than that of the meter bar. As an alternative to the optimum guarding technique proposed before, the correction scheme can be used to minimize uncertainty contribution from the measurement system with non-optimal guarding conditions. It is especially necessary for large thermal conductivity mismatches between sample and meter bars.

Douglas W. Marshall; Changhu Xing; Charles Folsom; Colby Jensen; Heng Ban

2014-05-01T23:59:59.000Z

475

Soft Typing PHP Patrick Camphuijsen  

E-Print Network [OSTI]

Soft Typing PHP Patrick Camphuijsen Jurriaan Hage Stefan Holdermans Technical Report UU-CS-2009.O. Box 80.089 3508 TB Utrecht The Netherlands #12;Soft Typing PHP with PHP-validator Patrick Camphuijsen@cs.uu.nl Abstract PHP is a popular language for building websites, but also notori- ously lax in that almost every

Utrecht, Universiteit

476

Cofinal types of directed orders  

E-Print Network [OSTI]

, ) directed partial orders #12;Cofinal types (P, ), (Q, ) directed partial orders Tukey reducibility: (P orders Tukey reducibility: (P, ) T (Q, ) if f : P Q X P unbounded = f [X] Q unbounded g : Q P Y Q cofinal = g[Y ] P cofinal #12;Cofinal types (P, ), (Q, ) directed partial orders Tukey reducibility: (P

Mátrai, Tamás

477

Thermal conductivity of Zn{sub 4{minus}x}Cd{sub x}Sb{sub 3} solid solutions  

SciTech Connect (OSTI)

{beta}-Zn{sub 4}Sb{sub 3} was recently identified at the Jet Propulsion Laboratory as a new high performance p-type thermoelectric material with a maximum dimensionless thermoelectric figure of merit ZT of 1.4 at a temperature of 673K. A usual approach, used for many state-of-the-art thermoelectric materials, to further improve ZT values is to alloy {beta}-Zn{sub 4}Sb{sub 3} with isostructural compounds because of the expected decrease in lattice thermal conductivity. The authors have grown Zn{sub 4{minus}x}Cd{sub x}Sb{sub 3} crystals with 0.2 {le} x < 1.2 and measured their thermal conductivity from 10 to 500K. The thermal conductivity values of Zn{sub 4{minus}x}Cd{sub x}Sb{sub 3} alloys are significantly lower than those measured for {beta}-Zn{sub 4}Sb{sub 3} and are comparable to its calculated minimum thermal conductivity. A strong atomic disorder is believed to be primarily at the origin of the very low thermal conductivity of these materials which are also fairly good electrical conductors and are therefore excellent candidates for thermoelectric applications.

Caillat, T.; Borshchevsky, A.; Fleurial, J.P.

1997-07-01T23:59:59.000Z

478

New approaches for modeling type Ia supernovae  

E-Print Network [OSTI]

runaway in Type Ia supernovae: How to run away? oIgnition in Type Ia Supernovae. II. A Three- dimensionalnumber modeling of type Ia supernovae. I. hydrodynamics.

Zingale, Michael; Almgren, Ann S.; Bell, John B.; Day, Marcus S.; Rendleman, Charles A.; Woosley, Stan

2007-01-01T23:59:59.000Z

479

Serpentine Thermal Coupling Between a Stream and a Conducting Body  

SciTech Connect (OSTI)

Here we document the effect of flow configuration on the heat transfer performance of a serpentine shaped stream embedded in a conducting solid. Several configurations with fixed volume of fluid are considered: U-shaped with varying spacing between the parallel portions of the U, serpentine shapes with three elbows, and conducting soil with several parallelepipedal shapes. We show that the spacing must be greater than a critical value in order for the heat transfer density of the stream-solid configuration to be the highest that it can be. Spacings larger than this critical value do not yield improvements in heat transfer density. We also show that even though the heat transfer is time dependent, the stream-solid configuration has an effective number of heat transfer units Ntu that is nearly constant in time. The larger Ntu values correspond to the configurations with greater heat transfer density.

Kobayashi, H.; Lorente, S.; Anderson, R.; Bejan, A.

2012-02-15T23:59:59.000Z

480

Conducting operations at the Solid Waste Management Department at WRSC  

SciTech Connect (OSTI)

Conduct of Operations, which is one of the entities within the Westinghouse Savannah River Company`s Performance Improvement Plan, is based on commercial nuclear power industry standards that were developed to improve operations in that industry. Implementation and compliance to the Conduct of Operations requirements are enhancing the Site`s Mission: To serve the national interest of the United States by safely producing nuclear materials while protecting the employee and public health, as well as the environment. It also contributes to our Site`s Vision: To be the recognized model of excellence for the United States Department of Energy Nuclear Weapons Complex, valuing and involving the individual to continually improve operations, safety, health environmental protection, quality, and customer satisfaction.

Bloedau, R.K.; Scogin, J.T.

1994-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "on-board type conductive" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Mixed ionic and electronic conducting ceramic membranes for hydrocarbon processing  

DOE Patents [OSTI]

The invention relates to mixed phase materials for the preparation of catalytic membranes which exhibit ionic and electronic conduction and which exhibit improved mechanical strength compared to single phase ionic and electronic conducting materials. The mixed phase materials are useful for forming gas impermeable membranes either as dense ceramic membranes or as dense thin films coated onto porous substrates. The membranes and materials of this invention are useful in catalytic membrane reactors in a variety of applications including synthesis gas production. One or more crystalline second phases are present in the mixed phase material at a level sufficient to enhance the mechanical strength of the mixture to provide membranes for practical application in CMRs.

Van Calcar, Pamela (Superior, CO); Mackay, Richard (Lafayette, CO); Sammells, Anthony F. (Boulder, CO)

2002-01-01T23:59:59.000Z

482

Fluorine compounds for doping conductive oxide thin films  

DOE Patents [OSTI]

Methods of forming a conductive fluorine-doped metal oxide layer on a substrate by chemical vapor deposition are described. The methods may include heating the substrate in a processing chamber, and introducing a metal-containing precursor and a fluorine-containing precursor to the processing chamber. The methods may also include adding an oxygen-containing precursor to the processing chamber. The precursors are reacted to deposit the fluorine-doped metal oxide layer on the substrate. Methods may also include forming the conductive fluorine-doped metal oxide layer by plasma-assisted chemical vapor deposition. These methods may include providing the substrate in a processing chamber, and introducing a metal-containing precursor, and a fluorine-containing precursor to the processing chamber. A plasma may be formed that includes species from the metal-containing precursor and the fluorine-containing precursor. The species may react to deposit the fluorine-doped metal oxide layer on the substrate.

Gessert, Tim; Li, Xiaonan; Barnes, Teresa M; Torres, Jr., Robert; Wyse, Carrie L

2013-04-23T23:59:59.000Z

483

Identification of building applications for a variable-conductance insulation  

SciTech Connect (OSTI)

Recent experiments have confirmed the feasibility of controllable, reversible disabling of a vacuum insulation panel, which may result in the development of energy-efficient building envelope components. These components could extend the managed energy exchange through the building envelope from about 30% (typical with fenestration systems in commercial buildings), to as much as 90% of the gross wall and roof areas. Further investigation will be required to optimized the thermal response and the magnitude of the R-value swing (from a difference between insulating and conducting insulating values of 4 to as high as a factor of 100). The potential for energy reduction by using the variable-conductance insulation in the building envelope is discussed, and other potential building applications are mentioned.

Potter, T.F. [National Renewable Energy Lab., Golden, CO (United States); Tuluca, A. [Winter (Steven) Associates, Inc., New York, NY (United States)

1992-07-01T23:59:59.000Z

484

Lattice thermal conductivity of filled skutterudites: An anharmonicity perspective  

SciTech Connect (OSTI)

We report a phenomenological model to calculate the high-temperature lattice thermal conductivity of filled skutterudite antimonides. The model needs no phonon resonant scattering terms. Instead, we assume that umklapp processes dominate the high-temperature phonon scattering. In order to represent the anharmonicity introduced by the filling atom, we introduce a Gaussian term into the relaxation time of the umklapp process. The developed model agrees remarkably well with the experimental results of RE{sub f}Co{sub 4}Sb{sub 12} and RE{sub f}Fe{sub 4}Sb{sub 12} (RE?=?Yb, Ba, and Ca) alloys. To further test the validity of our model, we calculate the lattice thermal conductivity of nanostructured or multi-filled skutterudites. The calculation results are also in good agreement with experiment, increasing our confidence in the developed anharmonicity model.

Geng, Huiyuan, E-mail: genghuiyuan@hit.edu.cn; Meng, Xianfu; Zhang, Hao; Zhang, Jian [State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001 (China)

2014-10-28T23:59:59.000Z

485

Enhanced Semiconductor Nanocrystal Conductance via Solution Grown Contacts  

SciTech Connect (OSTI)

We report a 100,000-fold increase in the conductance of individual CdSe nanorods when they are electrically contacted via direct solution phase growth of Au tips on the nanorod ends. Ensemble UV-Vis and X-Ray photoelectron spectroscopy indicate this enhancement does not result from alloying of the nanorod. Rather, low temperature tunneling and high temperature (250-400 K) thermionic emission across the junction at the Au contact reveal a 75percent lower interface barrier to conduction compared to a control sample. We correlate this barrier lowering with the electronic structure at the Au-CdSe interface. Our results emphasize the importance of nanocrystal surface structure for robust device performance and the advantage of this contact method.

Sheldon, Matthew T.; Trudeau, Paul-Emile; Mokari, Taleb; Wang, Lin-Wang; Alivisatos, A. Paul

2009-08-19T23:59:59.000Z

486

Enhanced electronic conductivity by controlled self-doping in pyrochlores  

SciTech Connect (OSTI)

Most 5d transition-metal (TM) pyrochlores exhibit metallic behavior, but 3d and 4d TM pyrochlores are generally electronic semiconductors or insulators. Here, we report a semiconductor metal transition induced by introducing excess Ti metal as interstitials into Y2Ti2O7. These Ti interstitials prefer anion vacant 8a sites or bridge sites between two neighboring cations along the h010i direction. Density functional theory calculations suggest that an increased electronic conductivity originates from the interplay between the extra Ti and its neighboring cations. These findings suggest a means for achieving metallic behavior in semiconducting pyrochlore oxides and tuning the electronic conduction in pyrochlores for their electrochemical applications in solid oxide fuel cells.

Xiao, Haiyan [University of Tennessee, Knoxville (UTK); Zhang, Yanwen [ORNL; Weber, William J [ORNL

2012-01-01T23:59:59.000Z

487

Contactless measurement of alternating current conductance in quantum Hall structures  

SciTech Connect (OSTI)

We report a procedure to determine the frequency-dependent conductance of quantum Hall structures in a broad frequency domain. The procedure is based on the combination of two known probeless methods—acoustic spectroscopy and microwave spectroscopy. By using the acoustic spectroscopy, we study the low-frequency attenuation and phase shift of a surface acoustic wave in a piezoelectric crystal in the vicinity of the electron (hole) layer. The electronic contribution is resolved using its dependence on a transverse magnetic field. At high frequencies, we study the attenuation of an electromagnetic wave in a coplanar waveguide. To quantitatively calibrate these data, we use the fact that in the quantum-Hall-effect regime the conductance at the maxima of its magnetic field dependence is determined by extended states. Therefore, it should be frequency independent in a broad frequency domain. The procedure is verified by studies of a well-characterized p-SiGe/Ge/SiGe heterostructure.

Drichko, I. L.; Diakonov, A. M.; Malysh, V. A.; Smirnov, I. Yu.; Ilyinskaya, N. D.; Usikova, A. A. [A. F. Ioffe Physical-Technical Institute of the Russian Academy of Sciences, 194021 St. Petersburg (Russian Federation); Galperin, Y. M. [Department of Physics, University of Oslo, P.O. Box 1048 Blindern, 0316 Oslo (Norway); A. F. Ioffe Physical-Technical Institute of the Russian Academy of Sciences, 194021 St. Petersburg (Russian Federation); Kummer, M.; Känel, H. von [Laboratorium für Festkörperphysik ETH Zürich, CH-8093 Zürich (Switzerland)

2014-10-21T23:59:59.000Z

488

Methods of conducting simultaneous exothermic and endothermic reactions  

DOE Patents [OSTI]

Integrated Combustion Reactors (ICRs) and methods of making ICRs are described in which combustion chambers (or channels) are in direct thermal contact to reaction chambers for an endothermic reaction. Superior results were achieved for combustion chambers which contained a gap for free flow through the chamber. Particular reactor designs are also described. Processes of conducting reactions in integrated combustion reactors are described and results presented. Some of these processes are characterized by unexpected and superior results.

Tonkovich, Anna Lee (Marysville, OH); Roberts, Gary L. (West Richland, WA); Perry, Steven T. (Galloway, OH); Fitzgerald, Sean P. (Columbus, OH)

2005-11-29T23:59:59.000Z

489

Westinghouse conduct of operations manual as a tool  

SciTech Connect (OSTI)

This presentation discusses the Westinghouse Government-Owned and Contractor-Operated (GOCO) Conduct of Operations Manual and how it compares with US Department of Energy (DOE) Order 5480.19 and with the Price Anderson Safety Guide, 10 CFR 830.310. This presentation will focus on what has been added to the requirements of the DOE order and how these items can be used as tools to create excellence in operation.

Schilperoort, D.L.; Scanlan, P.R.

1992-04-01T23:59:59.000Z

490

Conduct of operations: The foundation of safety -- An overview  

SciTech Connect (OSTI)

This paper discusses issues and approaches dealing with conceptualizing, implementing, and maintaining configuration control commensurate with the conduct of operations approach defined by DOE ORDER 5480.19. Specific topics reviewed will include key elements of assessments to determine the status quo such as assessment criteria, assessment personnel, and assessment scope; administrative programs to maintain the status quo such as organizational definition, responsibilities, interfaces, and priorities; oversight to determine control effectiveness via compliance and performance assessment.

Willett, D.J.; Hertel, N.E.

1992-05-01T23:59:59.000Z

491

EFFECT OF COMPRESSION ON CONDUCTIVITY AND MORPHOLOGY OF PFSA MEMBRANES  

SciTech Connect (OSTI)

Polymer-Electrolyte-Fuel-Cells (PEFCs) are promising candidates for powering vehicles and portable devices using renewable-energy sources. The core of a PEFC is the solid electrolyte membrane that conducts protons from anode to cathode, where water is generated. The conductivity of the membrane, however, depends on the water content of the membrane, which is strongly related to the cell operating conditions. The membrane and other cell components are typically compressed to minimize various contact resistances. Moreover, the swelling of a somewhat constrained membrane in the cell due to the humidity changes generates additional compressive stresses in the membrane. These external stresses are balanced by the internal swelling pressure of the membrane and change the swelling equilibrium. It was shown using a fuel-cell setup that compression could reduce the water content of the membrane or alter the cell resistance. Nevertheless, the effect of compression on the membrane’s transport properties is yet to be understood, as well as its implications in the structure-functions relationships of the membrane. We previously studied, both experimentally and theoretically, how compression affects the water content of the membrane.6 However, more information is required the gain a fundamental understanding of the compression effects. In this talk, we present the results of our investigation on the in-situ conductivity of the membrane as a function of humidity and cell compression pressure. Moreover, to better understand the morphology of compressed membrane, small-angle X-ray-scattering (SAXS) experiments were performed. The conductivity data is then analyzed by investigating the size of the water domains of the compressed membrane determined from the SAXS measurements.

Kusoglu, Ahmet; Weber, Adam; Jiang, Ruichin; Gittleman, Craig

2011-07-20T23:59:59.000Z

492

Systematic Variability of Soil Hydraulic Conductivity Across Three Vertisol Catenas  

E-Print Network [OSTI]

of soil measured on small samples is log-normally distributed and related to physical properties of that soil sample (Mapa, 1995; Reynolds and Zebchuk, 1996; Lin et al., 1998; Baldock and Nelson, 2000). The United States Department of Agriculture (USDA... structure and water content for clayey soils (Mapa, 1995; Baldock and Nelson, 2000). 6 Measurement Methods A variety of laboratory and field methods of measuring Ks are available. Laboratory measurements are typically conducted on undisturbed soil...

Rivera, Leonardo Daniel

2011-10-21T23:59:59.000Z

493

Heat Transfer Derivation of differential equations for heat transfer conduction  

E-Print Network [OSTI]

) or kW *h or Btu. U is the change in stored energy, in units of kW *h (kWh) or Btu. qx is the heat conducted (heat flux) into the control volume at surface edge x, in units of kW/m2 or Btu/(h-ft2). qx volume is positive), in kW/m3 or Btu/(h-ft3) (a heat sink, heat drawn out of the volume, is negative

Veress, Alexander

494

National Synchrotron Light Source guidelines for the conduct of operations  

SciTech Connect (OSTI)

To improve the quality and uniformity of operations at the Department of Energy`s facilities, the DOE issued Order 5480.19 ``Conduct of Operations Requirements at DOE facilities.`` This order recognizes that the success of a facilities mission critically depends upon a high level of performance by its personnel and equipment. This performance can be severely impaired if the facility`s Conduct of Operations pays inadequate attention to issues of organization, safety, health, and the environment. These guidelines are Brookhaven National Laboratory`s and the National Synchrotron Light Source`s acknowledgement of the principles of Conduct of Operations and the response to DOE Order 5480.19. These guidelines cover the following areas: (1) operations organization and administration; (2) shift routines and operating practices; (3) control area activities; (4) communications; (5) control of on-shift training; (6) investigation of abnormal events; (7) notifications; (8) control of equipment and system studies; (9) lockouts and tagouts; (10) independent verification; (11) log-keeping; (12) operations turnover; (13) operations aspects of facility process control (14) required reading; (15) timely orders to operators; (16) operations procedures; (17) operator aid posting; and (18) equipment sizing and labeling.

Buckley, M. [Brookhaven National Lab., Upton, NY (United States). National Synchrotron Light Source

1998-01-01T23:59:59.000Z

495

Performance objectives and criteria for conducting DOE environmental audits  

SciTech Connect (OSTI)

This document contains the Performance Objectives and Criteria (POC) that have been developed for environmental audits and assessments conducted by the Office of the Assistant Secretary for Environment, Safety and Health. The Environmental POC can serve multiple purposes. Primarily, they are to serve as guidelines for the technical specialists conducted the audits and assessments, and for the team management. The POC can also serve as supporting documents for training of technical discipline specialists and Team Leaders and as bases for DOE programs and field offices and contractors conducting audit or assessment activities or improving environmental protection programs. It must be recognized that not all of the POC will necessarily apply to all DOE facilities. The users of this document must rely upon their knowledge of the facility and their professional judgment, or the judgment of qualified environmental professionals to determine the applicability of each POC. The POC cover eleven technical disciplines: air; surface water and drinking water quality; groundwater; waste management; toxic and chemical materials; radiation; quality assurance; inactive waste sites and releases; ecological and cultural resources; the National Environmental Policy Act (NEPA); and environmental management systems.

NONE

1994-01-01T23:59:59.000Z

496

Regular Type III and Type N Approximate Solutions  

E-Print Network [OSTI]

New type III and type N approximate solutions which are regular in the linear approximation are shown to exist. For that, we use complex transformations on self-dual Robinson-Trautman metrics rather then the classical approach. The regularity criterion is the boundedness and vanishing at infinity of a scalar obtained by saturating the Bel-Robinson tensor of the first approximation by a time-like vector which is constant with respect to the zeroth approximation.

Philip Downes; Paul MacAllevey; Bogdan Nita; Ivor Robinson

2001-05-18T23:59:59.000Z

497

P-type gallium nitride  

DOE Patents [OSTI]

Several methods have been found to make p-type gallium nitride. P-type gallium nitride has long been sought for electronic devices. N-type gallium nitride is readily available. Discovery of p-type gallium nitride and the methods for making it will enable its use in ultraviolet and blue light-emitting diodes and lasers. pGaN will further enable blue photocathode elements to be made. Molecular beam epitaxy on substrates held at the proper temperatures, assisted by a nitrogen beam of the proper energy produced several types of p-type GaN with hole concentrations of about 5{times}10{sup 11} /cm{sup 3} and hole mobilities of about 500 cm{sup 2} /V-sec, measured at 250 K. P-type GaN can be formed of unintentionally-doped material or can be doped with magnesium by diffusion, ion implantation, or co-evaporation. When applicable, the nitrogen can be substituted with other group III elements such as Al. 9 figs.

Rubin, M.; Newman, N.; Fu, T.; Ross, J.; Chan, J.

1997-08-12T23:59:59.000Z

498

P-type gallium nitride  

DOE Patents [OSTI]

Several methods have been found to make p-type gallium nitride. P-type gallium nitride has long been sought for electronic devices. N-type gallium nitride is readily available. Discovery of p-type gallium nitride and the methods for making it will enable its use in ultraviolet and blue light-emitting diodes and lasers. pGaN will further enable blue photocathode elements to be made. Molecular beam epitaxy on substrates held at the proper temperatures, assisted by a nitrogen beam of the proper energy produced several types of p-type GaN with hole concentrations of about 5.times.10.sup.11 /cm.sup.3 and hole mobilities of about 500 cm.sup.2 /V-sec, measured at 250.degree. K. P-type GaN can be formed of unintentionally-doped material or can be doped with magnesium by diffusion, ion implantation, or co-evaporation. When applicable, the nitrogen can be substituted with other group III elements such as Al.

Rubin, Michael (Berkeley, CA); Newman, Nathan (Montara, CA); Fu, Tracy (Berkeley, CA); Ross, Jennifer (Pleasanton, CA); Chan, James (Berkeley, CA)

1997-01-01T23:59:59.000Z

499

Multi-scale quantum point contact model for filamentary conduction in resistive random access memories devices  

SciTech Connect (OSTI)

We depart from first-principle simulations of electron transport along paths of oxygen vacancies in HfO{sub 2} to reformulate the Quantum Point Contact (QPC) model in terms of a bundle of such vacancy paths. By doing this, the number of model parameters is reduced and a much clearer link between the microscopic structure of the conductive filament (CF) and its electrical properties can be provided. The new multi-scale QPC model is applied to two different HfO{sub 2}-based devices operated in the unipolar and bipolar resistive switching (RS) modes. Extraction of the QPC model parameters from a statistically significant number of CFs allows revealing significant structural differences in the CF of these two types of devices and RS modes.

Lian, Xiaojuan, E-mail: xjlian2005@gmail.com; Cartoixà, Xavier; Miranda, Enrique; Suñé, Jordi [Departament d'Enginyeria Electrònica, Universitat Autònoma de Barcelona, 08193 Bellaterra (Spain); Perniola, Luca [CEA-LETI, MINATEC, Grenoble (France); Rurali, Riccardo [Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus de Bellaterra, 08193 Bellaterra (Spain); Long, Shibing; Liu, Ming [Laboratory of Nanofabrication and Novel Device Integration, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029 (China)

2014-06-28T23:59:59.000Z

500

Data Mining-Aided Crystal Engineering for the Design of Transparent Conducting Oxides: Preprint  

SciTech Connect (OSTI)

The purpose of this paper is to accelerate the pace of material discovery processes by systematically visualizing the huge search space that conventionally needs to be explored. To this end, we demonstrate not only the use of empirical- or crystal chemistry-based physical intuition for decision-making, but also to utilize knowledge-based data mining methodologies in the context of finding p-type delafossite transparent conducting oxides (TCOs). We report on examples using high-dimensional visualizations such as radial visualization combined with machine learning algorithms such as k-nearest neighbor algorithm (k-NN) to better define and visualize the search space (i.e. structure maps) of functional materials design. The vital role of search space generated from these approaches is discussed in the context of crystal chemistry of delafossite crystal structure.

Suh, C.; Kim, K.; Berry, J. J.; Lee, J.; Jones, W. B.

2010-12-01T23:59:59.000Z