National Library of Energy BETA

Sample records for olefinic hydrocarbon recovered

  1. Recovering hydrocarbons from hydrocarbon-containing vapors

    DOE Patents [OSTI]

    Mirza, Zia I.; Knell, Everett W.; Winter, Bruce L.

    1980-09-30

    Values are recovered from a hydrocarbon-containing vapor by contacting the vapor with quench liquid consisting essentially of hydrocarbons to form a condensate and a vapor residue, the condensate and quench fluid forming a combined liquid stream. The combined liquid stream is mixed with a viscosity-lowering liquid to form a mixed liquid having a viscosity lower than the viscosity of the combined liquid stream to permit easy handling of the combined liquid stream. The quench liquid is a cooled portion of the mixed liquid. Viscosity-lowering liquid is separated from a portion of the mixed liquid and cycled to form additional mixed liquid.

  2. Upgrading heavy hydrocarbons with supercritical water and light olefins

    SciTech Connect (OSTI)

    Paspek, S. C. Jr.

    1984-11-20

    Heavy hydrocarbons are upgraded and cracked in a process comprising contacting the heavy hydrocarbons with olefins containing 5 or less carbon atoms and a solvent, at a temperature both sufficient for cracking and greater than or equal to the critical temperature of the solvent.

  3. Apparatus for recovering gaseous hydrocarbons from hydrocarbon...

    Office of Scientific and Technical Information (OSTI)

    A method and apparatus are provided for producing gaseous hydrocarbons from formations comprising solid hydrocarbon hydrates located under either a body of land or a body of water. ...

  4. Method for recovering light hydrocarbons from coal agglomerates

    DOE Patents [OSTI]

    Huettenhain, Horst (Benicia, CA); Benz, August D. (Hillsborough, CA); Getsoian, John (Ann Arbor, MI)

    1991-01-01

    A method and apparatus for removing light hydrocarbons, such as heptane, from coal agglomerates includes an enclosed chamber having a substantially horizontal perforate surface therein. The coal agglomerates are introduced into a water bath within the chamber. The agglomerates are advanced over the surface while steam is substantially continuously introduced through the surface into the water bath. Steam heats the water and causes volatilization of the light hydrocarbons, which may be collected from the overhead of the chamber. The resulting agglomerates may be collected at the opposite end from the surface and subjected to final draining processes prior to transportation or use.

  5. Process for removing carbonyl-sulfide from liquid hydrocarbon feedstocks

    SciTech Connect (OSTI)

    Debras, G.L.G.; DeClippeleir, G.E.M.J.; Cahen, R.M.

    1986-09-23

    A process is described for removing carbonyl sulfide from a liquid olefinic hydrocarbon feedstock comprising: (a) passing the hydrocarbon feedstock over an absorbent material comprising zinc oxide and a promoter selected from the group consisting of alumina, silico-aluminas and any combination thereof wherein the promoter is present in amounts from about 3 to about 15 percent by weight of the absorbent material; and (b) recovering a liquid olefinic hydrocarbon stream having a substantially reduced carbonyl sulfide content.

  6. Substantially self-powered method and apparatus for recovering hydrocarbons from hydrocarbon-containing solid hydrates

    DOE Patents [OSTI]

    Elliott, Guy R. B. (Los Alamos, NM); Barraclough, Bruce L. (Santa Fe, NM); Vanderborgh, Nicholas E. (Los Alamos, NM)

    1983-01-01

    A method and apparatus are provided for producing gaseous hydrocarbons from formations comprising solid hydrocarbon hydrates located under either a body of land or a body of water. The vast natural resources of such hydrocarbon hydrates can thus now be economically mined. Relatively warm brine or water is brought down from an elevation above that of the hydrates through a portion of the apparatus and passes in contact with the hydrates, thus melting them. The liquid then continues up another portion of the apparatus, carrying entrained hydrocarbon vapors in the form of bubbles, which can easily be separated from the liquid. After a short startup procedure, the process and apparatus are substantially self-powered.

  7. Apparatus for recovering gaseous hydrocarbons from hydrocarbon-containing solid hydrates

    DOE Patents [OSTI]

    Elliott, Guy R. B. (Los Alamos, NM); Barraclough, Bruce L. (Santa Fe, NM); Vanderborgh, Nicholas E. (Los Alamos, NM)

    1984-01-01

    A method and apparatus are provided for producing gaseous hydrocarbons from formations comprising solid hydrocarbon hydrates located under either a body of land or a body of water. The vast natural resources of such hydrocarbon hydrates can thus now be economically mined. Relatively warm brine or water is brought down from an elevation above that of the hydrates through a portion of the apparatus and passes in contact with the hydrates, thus melting them. The liquid then continues up another portion of the apparatus, carrying entrained hydrocarbon vapors in the form of bubbles, which can easily be separated from the liquid. After a short startup procedure, the process and apparatus are substantially self-powered.

  8. Substantially self-powered method and apparatus for recovering hydrocarbons from hydrocarbon-containing solid hydrates

    DOE Patents [OSTI]

    Elliott, G.R.B.; Barraclough, B.L.; Vanderborgh, N.E.

    1981-02-19

    A method and apparatus are provided for producing gaseous hydrocarbons from formations comprising solid hydrocarbon hydrates located under either a body of land or a body of water. The vast natural resources of such hydrocarbon hydrates can thus now be economically mined. Relatively warm brine or water is brought down from an elevation above that of the hydrates through a portion of the apparatus, and passes in contact with the hydrates, thus melting them. The liquid then continues up another portion of the apparatus carrying entrained hydrocarbon vapors in the form of bubbles, which can easily be separated from the liquid. After a short startup procedure, the process and apparatus are substantially self-powered.

  9. In situ method for recovering hydrocarbon from subterranean oil shale deposits

    SciTech Connect (OSTI)

    Friedman, R.H.

    1987-11-03

    This patent describes in situ method for recovering hydrocarbons from subterranean oil shale deposits, the deposits comprising mineral rock and kerogen, comprising (a) penetrating the oil shale deposit with at least one well; (b) forming a zone of fractured and/or rubbilized oil shale material adjacent the well by hydraulic or explosive fracturing; (c) introducing a hydrogen donor solvent including tetralin into the portion of the oil shale formation treated in step (b) in a volume sufficient to fill substantially all of the void space created by the fracturing and rubbilizing treatment; (d) applying hydrogen to the tetralin and maintaining a predetermined pressure for a predetermined period of time sufficient to cause disintegration of the oil shale material; (e) thereafter introducing an oxidative environment into the portion of the oil shale deposit (f) producing the solvent in organic fragments to the surface of the earth, and (g) separating the organic fragments from the solvent.

  10. Recovery of olefin monomers

    DOE Patents [OSTI]

    Golden, Timothy Christoph; Weist, Jr., Edward Landis; Johnson, Charles Henry

    2004-03-16

    In a process for the production of a polyolefin, an olefin monomer is polymerised said polyolefin and residual monomer is recovered. A gas stream comprising the monomer and nitrogen is subjected to a PSA process in which said monomer is adsorbed on a periodically regenerated silica gel or alumina adsorbent to recover a purified gas stream containing said olefin and a nitrogen rich stream containing no less than 99% nitrogen and containing no less than 50% of the nitrogen content of the gas feed to the PSA process.

  11. Olefin recovery via chemical absorption

    SciTech Connect (OSTI)

    Barchas, R.

    1998-06-01

    The recovery of fight olefins in petrochemical plants has generally been accomplished through cryogenic distillation, a process which is very capital and energy intensive. In an effort to simplify the recovery process and reduce its cost, BP Chemicals has developed a chemical absorption technology based on an aqueous silver nitrate solution. Stone & Webster is now marketing, licensing, and engineering the technology. The process is commercially ready for recovering olefins from olefin derivative plant vent gases, such as vents from polyethylene, polypropylene, ethylene oxide, and synthetic ethanol units. The process can also be used to debottleneck C{sub 2} or C{sub 3} splinters, or to improve olefin product purity. This paper presents the olefin recovery imp technology, discusses its applications, and presents economics for the recovery of ethylene and propylene.

  12. Additive for lubricants and hydrocarbon fuels comprising reaction products of olefins, sulfur, hydrogen sulfide and nitrogen containing polymeric compounds

    SciTech Connect (OSTI)

    Horodysky, A.G.; Law, D.A.

    1987-04-28

    A process is described for making an additive for lubricant compositions comprising co-reacting: a monoolefin selected from the group consisting of butenes, propenes, pentenes, and mixtures of two or more thereof; sulfur; hydrogen sulfide; polymeric nitrogen-containing compound selected from the group consisting of succinimides, amides, imides, polyoxyazoline polymers and alkyl imidazoline compounds; and a catalytic amount of an amine selected from the group consisting of polyethylene amines and hydroxyl-containing amines; at a temperature between about 130/sup 0/C and about 200/sup 0/C and a pressure of about 0 psig to about 900 psig, the reactants being reacted in a molar ratio of olefin, polymeric nitrogen-containing compound, and hydrogen sulfide to sulfur of 2 to 0.5, 0.001 to 0.4, and 0.5 to 0.7, respectively, and the concentration of amine being between 0.5 and 10 percent of the total weight of reactants.

  13. Process for recovering uranium from waste hydrocarbon oils containing the same. [Uranium contaminated lubricating oils from gaseous diffusion compressors

    DOE Patents [OSTI]

    Conrad, M.C.; Getz, P.A.; Hickman, J.E.; Payne, L.D.

    1982-06-29

    The invention is a process for the recovery of uranium from uranium-bearing hydrocarbon oils containing carboxylic acid as a degradation product. In one aspect, the invention comprises providing an emulsion of water and the oil, heating the same to a temperature effecting conversion of the emulsion to an organic phase and to an acidic aqueous phase containing uranium carboxylate, and recovering the uranium from the aqueous phase. The process is effective, simple and comparatively inexpensive. It avoids the use of toxic reagents and the formation of undesirable intermediates.

  14. Process feasibility of DME to olefin conversion

    SciTech Connect (OSTI)

    Tartamella, T.L.; Fullerton, K.L.; Lee, S.; Kulik, C.J.

    1994-12-31

    The production of hydrocarbons via a synthetic route has been extensively studied by Mobil through its methanol based Methanol-to-Gasoline (MTG) process. An alternative approach using dimethyl ether (DME) has been developed by the University of Akron -- UA/EPRI DME-to-Hydrocarbons Process. The process feasibility of the production of hydrocarbons from DME has been illustrated in a bench scale, fluidized bed reactor using ZSM-5 type catalyst. In an effort to satisfy the growing demand for olefins as an intermediate chemical feedstocks a mechanistic/kinetic study was developed. The synthesis of olefins has been studied in packed bed micro-reactor using ZSM-5 catalyst. Experimental work has given details of reaction kinetics and mechanism in the conversion of DME to olefins. DME concentration weight hourly space velocity (WHSV), as well as reactor temperature and pressure were investigated in the study. This work was used as a precursor to the production of olefins/hydrocarbons from DME in a fluidized bed reactor. Product gas analysis was performed using an external GC standard method.

  15. Olefins from High Yield Autothermal Reforming Process

    Energy Innovation Portal (Marketing Summaries) [EERE]

    2012-03-06

    The autothermal reforming method employs an improved dehydrogenation process for olefin production, utilizing platinum based dehydrogenation catalysts in the presence of oxygen. The autothermal process requires no external energy input following ignition and produces high conversions and yields from the gaseous hydrocarbon feeds. Autothermal reforming is an effective solution that meets the high demands of the chemical market industry by producing high yields...

  16. Field Demonstration of a Membrane Process to Recover Heavy Hydrocarbons and to Remove Water from Natural Gas

    SciTech Connect (OSTI)

    Kaaeid Lokhandwala

    2003-09-29

    The objective of this project is to design, construct and field demonstrate a membrane system to recover natural gas liquids (NGLs) and remove water from raw natural gas. To convince industry users of the efficiency and reliability of the process, we plan to conduct an extended field test to demonstrate system performance under real-world conditions. The membrane system has been designed and fabricated by Membrane Technology and Research, Inc. (MTR). The MTR membrane system and the compressor are now onsite at BP's Pascagoula, MS plant. The plant is undergoing a very significant expansion and the installation of the membrane unit into the test location is being implemented, albeit at a slower rate than we expected. The startup of the system and conducting of tests will occur in the next six months, depending on the availability of the remaining budget. In the interim, significant commercial progress has been made regarding the introduction of the NGL membrane and systems into the natural gas market.

  17. FIELD DEMONSTRATION OF A MEMBRANE PROCESS TO RECOVER HEAVY HYDROCARBONS AND TO REMOVE WATER FROM NATURAL GAS

    SciTech Connect (OSTI)

    R. Baker; T. Hofmann; J. Kaschemekat; K.A. Lokhandwala; Membrane Group; Module Group; Systems Group

    2001-01-11

    The objective of this project is to design, construct and field demonstrate a 3-MMscfd membrane system to recover natural gas liquids (NGL) and remove water from raw natural gas. An extended field test to demonstrate system performance under real-world conditions is required to convince industry users of the efficiency and reliability of the process. The system will be designed and fabricated by Membrane Technology and Research, Inc. (MTR) and then installed and operated at British Petroleum (BP)-Amoco's Pascagoula, MS plant. The Gas Research Institute will partially support the field demonstration and BP-Amoco will help install the unit and provide onsite operators and utilities. The gas processed by the membrane system will meet pipeline specifications for dewpoint and Btu value and can be delivered without further treatment to the pipeline. Based on data from prior membrane module tests, the process is likely to be significantly less expensive than glycol dehydration followed by propane refrigeration, the principal competitive technology. At the end of this demonstration project the process will be ready for commercialization. The route to commercialization will be developed during this project and may involve collaboration with other companies already servicing the natural gas processing industry.

  18. FIELD DEMONSTRATION OF A MEMBRANE PROCESS TO RECOVER HEAVY HYDROCARBONS AND TO REMOVE WATER FROM NATURAL GAS

    SciTech Connect (OSTI)

    Unknown

    2002-04-10

    The objective of this project is to design, construct and field demonstrate a 3-MMscfd membrane system to recover natural gas liquids (NGL) and remove water from raw natural gas. The gas processed by the membrane system will meet pipeline specifications for dew point and Btu value, and the process is likely to be significantly less expensive than glycol dehydration followed by propane refrigeration, the principal competitive technology. The BP-Amoco gas processing plant in Pascagoula, MS was finalized as the location for the field demonstration. Detailed drawings of the MTR membrane skid (already constructed) were submitted to the plant in February, 2000. However, problems in reaching an agreement on the specifications of the system compressor delayed the project significantly, so MTR requested (and was subsequently granted) a no-cost extension to the project. Following resolution of the compressor issues, the goal is to order the compressor during the first quarter of 2002, and to start field tests in mid-2002. Information from potential users of the membrane separation process in the natural gas processing industry suggests that applications such as fuel gas conditioning and wellhead gas processing are the most promising initial targets. Therefore, most of our commercialization effort is focused on promoting these applications. Requests for stream evaluations and for design and price quotations have been received through MTR's web site, from direct contact with potential users, and through announcements in industry publications. To date, about 90 commercial quotes have been supplied, and orders totaling about $1.13 million for equipment or rental of membrane units have been received.

  19. Preparation of olefins from synthesis gas using ruthenium supported on ceric oxide

    DOE Patents [OSTI]

    Pierantozzi, R.

    1985-04-09

    A catalyst comprising a ruthenium carbonyl compound deposited on a cerium oxide-containing support material provides for the selective synthesis of low molecular weight olefinic hydrocarbons from mixtures of hydrogen and carbon monoxide.

  20. Ruthenium carbonyl catalyst supported on ceric oxide for preparation of olefins from synthesis gas

    DOE Patents [OSTI]

    Pierantozzi, R.

    1985-04-02

    A catalyst comprising a ruthenium carbonyl compound deposited on a cerium oxide-containing support material provides for the selective synthesis of low molecular weight olefinic hydrocarbons from mixtures of hydrogen and carbon monoxide.

  1. Preparation of olefins from synthesis gas using ruthenium supported on ceric oxide

    DOE Patents [OSTI]

    Pierantozzi, Ronald

    1985-01-01

    A catalyst comprising a ruthenium carbonyl compound deposited on a cerium oxide-containing support material provides for the selective synthesis of low molecular weight olefinic hydrocarbons from mixtures of hydrogen and carbon monoxide.

  2. Ruthenium carbonyl catalyst supported on ceric oxide for preparation of olefins from synthesis gas

    DOE Patents [OSTI]

    Pierantozzi, Ronald

    1985-01-01

    A catalyst comprising a ruthenium carbonyl compound deposited on a cerium oxide-containing support material provides for the selective synthesis of low molecular weight olefinic hydrocarbons from mixtures of hydrogen and carbon monoxide.

  3. Apparatus for hydrocarbon extraction

    DOE Patents [OSTI]

    Bohnert, George W.; Verhulst, Galen G.

    2013-03-19

    Systems and methods for hydrocarbon extraction from hydrocarbon-containing material. Such systems and methods relate to extracting hydrocarbon from hydrocarbon-containing material employing a non-aqueous extractant. Additionally, such systems and methods relate to recovering and reusing non-aqueous extractant employed for extracting hydrocarbon from hydrocarbon-containing material.

  4. Conversion of olefins to liquid motor fuels

    DOE Patents [OSTI]

    Rabo, Jule A.; Coughlin, Peter K.

    1988-01-01

    Linear and/or branched claim C.sub.2 to C.sub.12 olefins are converted to hydrocarbon mixtures suitable for use as liquid motor fuels by contact with a catalyst capable of ensuring the production of desirable products with only a relatively minor amount of heavy products boiling beyond the diesel oil range. The catalyst having desirable stability during continuous production operations, comprises a steam stabilized zeolite Y catalyst of hydrophobic character, desirably in aluminum-extracted form. The olefins such as propylene, may be diluted with inerts, such as paraffins or with water, the latter serving to moderate the acidity of the catalyst, or to further moderate the activity of the aluminum-extracted catalyst, so as to increase the effective life of the catalyst.

  5. Living olefin polymerization processes

    DOE Patents [OSTI]

    Schrock, Richard R.; Bauman, Robert

    2006-11-14

    Processes for the living polymerization of olefin monomers with terminal carbon-carbon double bonds are disclosed. The processes employ initiators that include a metal atom and a ligand having two group 15 atoms and a group 16 atom or three group 15 atoms. The ligand is bonded to the metal atom through two anionic or covalent bonds and a dative bond. The initiators are particularly stable under reaction conditions in the absence of olefin monomer. The processes provide polymers having low polydispersities, especially block copolymers having low polydispersities. It is an additional advantage of these processes that, during block copolymer synthesis, a relatively small amount of homopolymer is formed.

  6. Living olefin polymerization processes

    DOE Patents [OSTI]

    Schrock, Richard R.; Baumann, Robert

    2003-08-26

    Processes for the living polymerization of olefin monomers with terminal carbon-carbon double bonds are disclosed. The processes employ initiators that include a metal atom and a ligand having two group 15 atoms and a group 16 atom or three group 15 atoms. The ligand is bonded to the metal atom through two anionic or covalent bonds and a dative bond. The initiators are particularly stable under reaction conditions in the absence of olefin monomer. The processes provide polymers having low polydispersities, especially block copolymers having low polydispersities. It is an additional advantage of these processes that, during block copolymer synthesis, a relatively small amount of homopolymer is formed.

  7. Living olefin polymerization processes

    DOE Patents [OSTI]

    Schrock, Richard R. (Winchester, MA); Baumann, Robert (Cambridge, MA)

    1999-01-01

    Processes for the living polymerization of olefin monomers with terminal carbon-carbon double bonds are disclosed. The processes employ initiators that include a metal atom and a ligand having two group 15 atoms and a group 16 atom or three group 15 atoms. The ligand is bonded to the metal atom through two anionic or covalent bonds and a dative bond. The initiators are particularly stable under reaction conditions in the absence of olefin monomer. The processes provide polymers having low polydispersities, especially block copolymers having low polydispersities. It is an additional advantage of these processes that, during block copolymer synthesis, a relatively small amount of homopolymer is formed.

  8. Living olefin polymerization processes

    DOE Patents [OSTI]

    Schrock, R.R.; Baumann, R.

    1999-03-30

    Processes for the living polymerization of olefin monomers with terminal carbon-carbon double bonds are disclosed. The processes employ initiators that include a metal atom and a ligand having two group 15 atoms and a group 16 atom or three group 15 atoms. The ligand is bonded to the metal atom through two anionic or covalent bonds and a dative bond. The initiators are particularly stable under reaction conditions in the absence of olefin monomer. The processes provide polymers having low polydispersities, especially block copolymers having low polydispersities. It is an additional advantage of these processes that, during block copolymer synthesis, a relatively small amount of homopolymer is formed.

  9. Apparatus for recovering gaseous hydrocarbons from hydrocarbon...

    Office of Scientific and Technical Information (OSTI)

    Authors: Elliott, Guy R. B. 1 ; Barraclough, Bruce L. 2 ; Vanderborgh, Nicholas E. 1 + Show Author Affiliations (Los Alamos, NM) (Santa Fe, NM) Publication Date: 1984-01-01 ...

  10. Fluidized bed pyrolysis to gases containing olefins

    SciTech Connect (OSTI)

    Kuester, J.L.

    1980-01-01

    Recent gasification data are presented for a system designed to produce liquid hydrocarbon fuel from various biomass feedstocks. The factors under investigation were feedstock type, fluidizing gas type, residence time, temperature and catalyst usage. The response was gas phase composition. A fluidized bed system was utilized with a separate regenerator-combustor. An olefin content as high as 39 mole % was achieved. Hydrogen/carbon monoxide ratios were easily manipulated via steam addition over a broad range with an autocatalytic effect apparent for most feedstocks.

  11. Conversion of LPG hydrocarbons to distillate fuels or lubes using integration of LPG dehydrogenation and mogdl

    SciTech Connect (OSTI)

    Chang, C.D.; Penick, J.E.; Socha, R.F.

    1987-07-07

    This patent describes an apparatus for producing distillates of lubes from paraffins, which comprise: (a) a dehydrogenation reactor including means for passing a paraffinic feedstock stream into a dehydrogenation zone at conditions of pressure and temperature selected to convert the paraffins to an olefin rich effluent stream comprising at least one of the group consisting of propylene and butylene; (b) a low pressure oligomerization catalytic reactor including means for contacting the olefin rich effluent stream in a low pressure oligomerization catalytic reactor zone with a crystalline zeolite oligomerization catalyst at conditions of pressure and temperature selected to convert olefins to a first reactor effluent stream rich in liquid olefinic gasoline range hydrocarbons; (c) a first means for separating the first reactor effluent stream to form a substantially liquid C/sub 5/+ rich stream and a C/sub 4/- rich stream; (d) means for passing the C/sub 5/+ rich stream to a high pressure oligomerization catalytic reactor zone; (e) a high pressure oligomerization catalytic reactor including means for contacting the substantially liquid C/sub 5/+ rich stream in the high pressure oligomerization catalytic reactor zone with a crystalline zeolite oligomerization catalyst at conditions of temperature and pressure selected to produce a second reactor effluent stream which is rich in distillate; (f) second means for separating the second reactor effluent stream to recover an olefinic gasoline stream and a distillate stream; and (g) a hydrotreating reactor including means for contacting the distillate stream with hydrogen in a hydrotreating unit to produce a hydrotreated distillate stream comprising lube range hydrocarbons.

  12. Process for conversion of light olefins to LPG and aromatics

    SciTech Connect (OSTI)

    Martindale, D.C.; Andermann, R.E.; Mowry, J.R.

    1989-01-03

    A hydrocarbon conversion process is described which comprises passing a hydrocarbon feed stream comprising at least 30 mole percent olefins having 3 to 4 carbon atoms per molecule and also comprising at least 50 mole percent paraffins having 3 to 4 carbon atoms per molecule and containing less than 10 mole percent C/sub 5/-plus hydrocarbons into a catalytic reaction zone operated at low severity conditions and contacting the feed stream with a solid catalyst gallium. A reaction zone effluent stream is produced comprising C/sub 6/-C/sub 8/ aromatic hydrocarbons and C/sub 3/-C/sub 4/ paraffins, with the reaction zone effluent stream containing less than 10 mole percent olefinic hydrocarbons. The low severity conditions include a combination of pressure, feed space velocity and temperature, including a temperature below 425/sup 0/C, which results in a partial conversion of the feed hydrocarbons into aromatic hydrocarbons whereby: (i) when the effluent is separated there are produced a first product stream, which first product stream is rich in C/sub 6/-C/sub 8/ aromatic hydrocarbons and is withdrawn from the process, with the second product stream, which second product stream is rich in C/sub 3/-C/sub 4/ paraffins and is withdrawn from the process, with the second product stream having a flow rate equal to at least 30 wt. percent of the flow rate of the feed stream; and (ii) the mass flow rate of paraffinic hydrocarbons out of the reaction zone exceeds the mass flow rate of paraffinic hydrocarbons into the reaction zone.

  13. Stereospecific olefin polymerization catalysts

    DOE Patents [OSTI]

    Bercaw, J.E.; Herzog, T.A.

    1998-01-13

    A metallocene catalyst system is described for the polymerization of {alpha}-olefins to yield stereospecific polymers including syndiotactic, and isotactic polymers. The catalyst system includes a metal and a ligand of the formula shown wherein: R{sup 1}, R{sup 2}, and R{sup 3} are independently selected from the group consisting of hydrogen, C{sub 1} to C{sub 10} alkyl, 5 to 7 membered cycloalkyl, which in turn may have from 1 to 3 C{sub 1} to C{sub 10} alkyls as a substituent, C{sub 6} to C{sub 15} aryl or arylalkyl in which two adjacent radicals may together stand for cyclic groups having 4 to 15 carbon atoms which in turn may be substituted, or Si(R{sup 8}){sub 3} where R{sup 8} is selected from the group consisting of C{sub 1} to C{sub 10} alkyl, C{sub 6} to C{sub 15} aryl or C{sub 3} to C{sub 10} cycloalkyl; R{sup 4} and R{sup 6} are substituents both having van der Waals radii larger than the van der Waals radii of groups R{sup 1} and R{sup 3}; R{sup 5} is a substituent having a van der Waals radius less than about the van der Waals radius of a methyl group; E{sup 1}, E{sup 2} are independently selected from the group consisting of Si(R{sup 9}){sub 2}, Si(R{sup 9}){sub 2}--Si(R{sup 9}){sub 2}, Ge(R{sup 9}){sub 2}, Sn(R{sup 9}){sub 2}, C(R{sup 9}){sub 2}, C(R{sup 9}){sub 2}--C(R{sup 9}){sub 2}, where R{sup 9} is C{sub 1} to C{sub 10} alkyl, C{sub 6} to C{sub 15} aryl or C{sub 3} to C{sub 10} cycloalkyl; and the ligand may have C{sub S} or C{sub 1}-symmetry. Preferred metals are selected from the group consisting of group III, group IV, group V or lanthanide group elements. The catalysts are used to prepare stereoregular polymers including polypropylene from {alpha}-olefin monomers.

  14. Stereospecific olefin polymerization catalysts

    DOE Patents [OSTI]

    Bercaw, John E.; Herzog, Timothy A.

    1998-01-01

    A metallocene catalyst system for the polymerization of .alpha.-olefins to yield stereospecific polymers including syndiotactic, and isotactic polymers. The catalyst system includes a metal and a ligand of the formula ##STR1## wherein: R.sup.1, R.sup.2, and R.sup.3 are independently selected from the group consisting of hydrogen, C.sub.1 to C.sub.10 alkyl, 5 to 7 membered cycloalkyl, which in turn may have from 1 to 3 C.sub.1 to C.sub.10 alkyls as a substituent, C.sub.6 to C.sub.15 aryl or arylalkyl in which two adjacent radicals may together stand for cyclic groups having 4 to 15 carbon atoms which in turn may be substituted, or Si(R.sup.8).sub.3 where R.sup.8 is selected from the group consisting of C.sub.1 to C.sub.10 alkyl, C.sub.6 to C.sub.15 aryl or C.sub.3 to C.sub.10 cycloalkyl; R.sup.4 and R.sup.6 are substituents both having van der Waals radii larger than the van der Waals radii of groups R.sup.1 and R.sup.3 ; R.sup.5 is a substituent having a van der Waals radius less than about the van der Waals radius of a methyl group; E.sup.1, E.sup.2 are independently selected from the group consisting of Si(R.sup.9).sub.2, Si(R.sup.9).sub.2 --Si(R.sup.9).sub.2, Ge(R.sup.9).sub.2, Sn(R.sup.9).sub.2, C(R.sup.9).sub.2, C(R.sup.9).sub.2 --C(R.sup.9).sub.2, where R.sup.9 is C.sub.1 to C.sub.10 alkyl, C.sub.6 to C.sub.15 aryl or C.sub.3 to C.sub.10 cycloalkyl; and the ligand may have C.sub.S or C.sub.1 -symmetry. Preferred metals are selected from the group consisting of group III, group IV, group V or lanthanide group elements. The catalysts are used to prepare stereoregular polymers including polypropylene from .alpha.-olefin monomers.

  15. METHOD FOR RECOVERING URANIUM FROM OILS

    DOE Patents [OSTI]

    Gooch, L.H.

    1959-07-14

    A method is presented for recovering uranium from hydrocarbon oils, wherein the uranium is principally present as UF/sub 4/. According to the invention, substantially complete removal of the uranium from the hydrocarbon oil may be effected by intimately mixing one part of acetone to about 2 to 12 parts of the hydrocarbon oil containing uranium and separating the resulting cake of uranium from the resulting mixture. The uranium in the cake may be readily recovered by burning to the oxide.

  16. Apparatus and methods for hydrocarbon extraction

    DOE Patents [OSTI]

    Bohnert, George W.; Verhulst, Galen G.

    2016-04-26

    Systems and methods for hydrocarbon extraction from hydrocarbon-containing material. Such systems and methods relate to extracting hydrocarbon from hydrocarbon-containing material employing a non-aqueous extractant. Additionally, such systems and methods relate to recovering and reusing non-aqueous extractant employed for extracting hydrocarbon from hydrocarbon-containing material.

  17. CATALYST-ASSISTED PRODUCTION OF OLEFINS FROM NATURAL GAS LIQUIDS...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CATALYST-ASSISTED PRODUCTION OF OLEFINS FROM NATURAL GAS LIQUIDS: PROTOTYPE DEVELOPMENT AND FULL-SCALE TESTING CATALYST-ASSISTED PRODUCTION OF OLEFINS FROM NATURAL GAS LIQUIDS: ...

  18. Chemistry of Furan Conversion into Aromatics and Olefins over HZSM-5: A Model Biomass Conversion Reaction

    SciTech Connect (OSTI)

    Cheng, Yu-Ting; Huber, George W.

    2011-06-03

    The conversion of furan (a model of cellulosic biomass) over HZSM-5 was investigated in a thermogravimetric analysismass spectrometry system, in situ Fourier transform infrared analysis, and in a continuous-flow fixed-bed reactor. Furan adsorbed as oligomers at room temperature with a 1.73 of adsorbed furan/Al ratio. These oligomers were polycyclic aromatic compounds that were converted to CO, CO?, aromatics, and olefins at temperatures from 400 to 600 C. Aromatics (e.g., benzene, toluene, and naphthalene), oligomer isomers (e.g., benzofuran, 2,2-methylenebisfuran, and benzodioxane), and heavy oxygenates (C??{sub +} oligomers) were identified as intermediates formed inside HZSM-5 at different reaction temperatures. During furan conversion, graphite-type coke formed on the catalyst surface, which caused the aromatics and olefins formation to deactivate within the first 30 min of time on-stream. We have measured the effects of space velocity and temperature for furan conversion to help us understand the chemistry of biomass conversion inside zeolite catalysts. The major products for furan conversion included CO, CO?, allene, C?C? olefins, benzene, toluene, styrene, benzofuran, indene, and naphthalene. The aromatics (benzene and toluene) and olefins (ethylene and propylene) selectivity decreased with increasing space velocity. Unsaturated hydrocarbons such as allene, cyclopentadiene, and aromatics selectivity increased with increasing space velocity. The product distribution was selective to olefins and CO at high temperatures (650 C) but was selective to aromatics (benzene and toluene) at intermediate temperatures (450600 C). At low temperatures (450 C), benzofuran and coke contributed 60% of the carbon selectivity. Several different reactions were occurring for furan conversion over zeolites. Some important reactions that we have identified in this study include DielsAlder condensation (e.g., two furans form benzofuran and water), decarbonylation (e

  19. Conversion of LPG hydrocarbons into distillate fuels using an integral LPG dehydrogenation-MOGD process

    SciTech Connect (OSTI)

    Owen, H.; Zahner, J.C.

    1987-06-23

    This patent describes a process for converting lower paraffinic hydrocarbon feedstock comprising propane and/or butane into heavier hydrocarbons comprising gasoline and distillate, comprising the steps of: feeding the paraffinic feedstock to a dehydrogenation zone under conversion conditions for dehydrogenating at least a portion of the feedstock; recovering a first dehydrogenation gaseous effluent stream comprising propene and/or butene; contacting the first gaseous effluent steam with a liquid lean oil sorbent stream comprising C/sub 5//sup +/ hydrocarbons under sorption conditions to produce a C/sub 3//sup +/ rich liquid absorber stream and a light gas stream; sequentially pressurizing, heating and passing the C/sub 3//sup +/ rich liquid absorber stream to an oligomerization reactor zone at elevated temperature and pressure; contacting the C/sub 3//sup +/ rich stream with oligomerization catalyst in the oligomerization reactor zone for conversion of at least a portion of lower olefins to heavier hydrocarbons under oligomerization reaction conditions to provide a second reactor effluent stream comprising gasoline and distillate boiling range hydrocarbons; flash separating the second reactor effluent stream into a separator vapor stream comprising a major portion of the hydrocarbons which later form the lean oil stream, and a major portion of the C/sub 4//sup -/ hydrocarbons and a separator liquid stream comprising the gasoline and distillate boiling range materials produced in the oligomerization reactor zone; fractionating the separator liquid stream in a first product debutanizer tower into a first debutanizer overhead vapor stream comprising C/sub 4//sup -/ hydrocarbons and a product debutanizer liquid bottoms stream comprising C/sub 5//sup +/ gasoline and distillate boiling range hydrocarbons.

  20. Olefin separation membrane and process

    DOE Patents [OSTI]

    Pinnau, Ingo; Toy, Lora G.; Casillas, Carlos

    1997-01-01

    A membrane and process for separating unsaturated hydrocarbons from fluid mixtures. The membrane and process differ from previously known membranes and processes, in that the feed and permeate streams can both be dry, the membrane need not be water or solvent swollen, and the membrane is characterized by a selectivity for an unsaturated hydrocarbon over a saturated hydrocarbon having the same number of carbon atoms of at least about 20, and a pressure-normalized flux of said unsaturated hydrocarbon of at least about 5.times.10.sup.-6 cm.sup.3 (STP)/cm.sup.2 .multidot.s.multidot.cmHg, said flux and selectivity being measured with a gas mixture containing said unsaturated and saturated hydrocarbons, and in a substantially dry environment.

  1. Olefin separation membrane and process

    DOE Patents [OSTI]

    Pinnau, I.; Toy, L.G.; Casillas, C.

    1997-09-23

    A membrane and process are disclosed for separating unsaturated hydrocarbons from fluid mixtures. The membrane and process differ from previously known membranes and processes, in that the feed and permeate streams can both be dry, the membrane need not be water or solvent swollen, and the membrane is characterized by a selectivity for an unsaturated hydrocarbon over a saturated hydrocarbon having the same number of carbon atoms of at least about 20, and a pressure-normalized flux of said unsaturated hydrocarbon of at least about 5{times}10{sup {minus}6}cm{sup 3}(STP)/cm{sup 2}{center_dot}s{center_dot}cmHg, said flux and selectivity being measured with a gas mixture containing said unsaturated and saturated hydrocarbons, and in a substantially dry environment. 4 figs.

  2. Energy and materials flows in the production of olefins and their derivatives

    SciTech Connect (OSTI)

    Gaines, L.L.; Shen, S.Y.

    1980-08-01

    Production of olefins and their derivatives uses almost 3.5% of the oil and gas consumed annually in the United States. It is estimated that their production requires an input energy of 2 Q, which is 50% of the energy used in the production of all petrochemicals. Substantial amounts of this energy could be recovered through recycling. For example, recycling of a single plastic product, polyester soft drink bottles, could have recovered about 0.014 Q in 1979. (About 1.4 Q is used to produce plastic derivatives of olefins). Petrochemical processes use fuels as feedstocks, as well as for process energy, and a portion of this energy is not foregone and can be recovered through combustion of the products. The energy foregone in the production of ethylene is estimated to be 7800 Btu/lb. The energy foregone in plastics production ranges from 12,100 Btu/lb for the new linear low-density polyethylene to 77,200 Btu/lb for nylon 66, which is about 60% of the total energy input for that product. Further investigation of the following areas could yield both material and energy savings in the olefins industry: (1) recycling of petrochemical products to recover energy in addition to that recoverable through combustion, (2) impact of feedstock substitution on utilization of available national resources, and (3) effective use of the heat embodied in process steam. This steam accounts for a major fraction of the industry's energy input.

  3. Membrane separation of hydrocarbons

    DOE Patents [OSTI]

    Funk, Edward W.; Kulkarni, Sudhir S.; Chang, Y. Alice

    1986-01-01

    Mixtures of heavy oils and light hydrocarbons may be separated by passing the mixture over a polymeric membrane which comprises a polymer capable of maintaining its integrity in the presence of hydrocarbon compounds at temperature ranging from about ambient to about 100.degree. C. and pressures ranging from about 50 to about 1000 psi. The membranes which possess pore sizes ranging from about 10 to about 500 Angstroms are cast from a solvent solution and recovered.

  4. Metathesis process for preparing an alpha, omega-functionalized olefin

    DOE Patents [OSTI]

    Burdett, Kenneth A.; Mokhtarzadeh, Morteza; Timmers, Francis J.

    2010-10-12

    A cross-metathesis process for preparing an .alpha.,.omega.-functionalized olefin, such as methyl 9-decenoate, and an .alpha.-olefin having three or more carbon atoms, such as 1-decene. The process involves contacting in a first reaction zone an .alpha.-functionalized internal olefin, such as methyl oleate, and an .alpha.-olefinic monomer having three or more carbon atoms, such as 1-decene, with a first metathesis catalyst to prepare an effluent stream containing the .alpha.,.omega.-functionalized olefin, such as methyl 9-decenoate, an unfunctionalized internal olefin, such as 9-octadecene, unconverted reactant olefins, and optionally, an .alpha.,.omega.-difunctionalized internal olefinic dimer, such as dimethyl 9-octadecen-1,18-dioate; separating said effluent streams; then contacting in a second reaction zone the unfunctionalized internal olefin with ethylene in the presence of a second metathesis catalyst to obtain a second product effluent containing the .alpha.-olefinic monomer having three or more carbon atoms; and cycling a portion of the .alpha.-olefinic monomer stream(s) to the first zone.

  5. Methods of producing alkylated hydrocarbons from an in situ heat treatment process liquid

    DOE Patents [OSTI]

    Roes, Augustinus Wilhelmus Maria; Mo, Weijian; Muylle, Michel Serge Marie; Mandema, Remco Hugo; Nair, Vijay

    2009-09-01

    A method for producing alkylated hydrocarbons is disclosed. Formation fluid is produced from a subsurface in situ heat treatment process. The formation fluid is separated to produce a liquid stream and a first gas stream. The first gas stream includes olefins. The liquid stream is fractionated to produce at least a second gas stream including hydrocarbons having a carbon number of at least 3. The first gas stream and the second gas stream are introduced into an alkylation unit to produce alkylated hydrocarbons. At least a portion of the olefins in the first gas stream enhance alkylation.

  6. Production of LPG olefins by catalytic dehydrogenation

    SciTech Connect (OSTI)

    Pujado, P.R.; Vora, B.V.

    1984-09-01

    Catalytic dehydrogenation allows for the production of specific olefins thus avoiding the large capital and operating expenses associated with the recovery and processing of the many by-products from pyrolysis units. The chemistry of the process is discussed along with the process economics.

  7. Olefin Recovery from Chemical Industry Waste Streams

    SciTech Connect (OSTI)

    A.R. Da Costa; R. Daniels; A. Jariwala; Z. He; A. Morisato; I. Pinnau; J.G. Wijmans

    2003-11-21

    The objective of this project was to develop a membrane process to separate olefins from paraffins in waste gas streams as an alternative to flaring or distillation. Flaring these streams wastes their chemical feedstock value; distillation is energy and capital cost intensive, particularly for small waste streams.

  8. Homogeneous catalysts for stereoregular olefin polymerization

    DOE Patents [OSTI]

    Marks, T.J.; Eisen, M.S.; Giardello, M.A.

    1995-10-03

    The synthesis, and use as precatalysts of chiral organozirconium complexes for olefin polymerization are disclosed, having the structure (C{sub 5}R{prime}{sub 4{minus}x}R*{sub x})A(C{sub 5}R{double_prime}{sub 4{minus}y}R{double_prime}{prime}{sub y})MQ{sub p}, where x and y represent the number of unsubstituted locations on the cyclopentadienyl ring; R{prime}, R{double_prime}, R{double_prime}{prime}, and R* represent substituted and unsubstituted alkyl groups having 1--30 carbon atoms and R* is a chiral ligand; A is a fragment containing a Group 13, 14, 15, or 16 element of the Periodic Table; M is a Group 3, 4, or 5 metal of the Periodic Table; and Q is a hydrocarbyl radical, or halogen radical, with 3{>=}p{>=}0. Related complexes may be prepared by alkylation of the corresponding dichlorides. In the presence of methylalumoxane or triarylborane cocatalysts, these complexes form ``cation-like`` species which are highly active for olefin polymerization. In combination with a Lewis acid cocatalyst, propylene or other {alpha}-olefin polymerization can be effected with very high efficiency and isospecificity. 1 fig.

  9. Homogeneous catalysts for stereoregular olefin polymerization

    DOE Patents [OSTI]

    Marks, Tobin J.; Eisen, Moris S.; Giardello, Michael A.

    1995-01-01

    The synthesis, and use as precatalysts of chiral organozirconium complexes for olefin polymerization are disclosed, having the structure (C.sub.5 R'.sub.4-x R*.sub.x) A (C.sub.5 R".sub.4-y R"'.sub.y) M Q.sub.p, where x and y represent the number of unsubstituted locations on the cyclopentadienyl ring; R', R", R"', and R* represent substituted and unsubstituted alkyl groups having 1-30 carbon atoms and R* is a chiral ligand; A is a fragment containing a Group 13, 14, 15, or 16 element of the Periodic Table; M is a Group 3, 4, or 5 metal of the Periodic Table; and Q is a hydrocarbyl radical, or halogen radical, with 3.ltoreq.p.ltoreq.o. Related complexes may be prepared by alkylation of the corresponding dichorides. In the presence of methylalumoxane or triarylborane cocatalysts, these complexes form "cation-like" species which are highly active for olefin polymerization. In combination with a Lewis acid cocatalyst, propylene or other .alpha.-olefin polymerization can be effected with very high efficiency and isospecificity.

  10. Homogeneous catalysts for stereoregular olefin polymerization

    DOE Patents [OSTI]

    Marks, Tobin J.; Eisen, Moris S.; Giardello, Michael A.

    1994-01-01

    The synthesis, and use as precatalysts of chiral organozirconium complexes for olefin polymerization are disclosed, having the structure (C.sub.5 R'.sub.4-x R*.sub.x) A (C.sub.5 R".sub.4-y R'".sub.y) M Q.sub.p, where x and y represent the number of unsubstituted locations on the cyclopentadienyl ring; R', R", R'", and R* represent substituted and unsubstituted alkyl groups having 1-30 carbon atoms and R* is a chiral ligand; A is a fragment containing a Group 13, 14, 15, or 16 element of the Periodic Table; M is a Group 3, 4, or 5 metal of the Periodic Table; and Q is a hydrocarbyl radical, or halogen radical, with 3.ltoreq.p.ltoreq.o. Related complexes may be prepared by alkylation of the corresponding dichorides. In the presence of methylalumoxane or triarylborane cocatalysts, these complexes form "cation-like" species which are highly active for olefin polymerization. In combination with a Lewis acid cocatalyst, propylene or other .alpha.-olefin polymerization can be effected with very high efficiency and isospecificity.

  11. Homogeneous catalysts for stereoregular olefin polymerization

    DOE Patents [OSTI]

    Marks, T.J.; Eisen, M.S.; Giardello, M.A.

    1994-07-19

    The synthesis, and use as precatalysts of chiral organozirconium complexes for olefin polymerization are disclosed, having the structure (C[sub 5]R[prime][sub 4[minus]x]R*[sub x])-A-(C[sub 5]R[double prime][sub 4[minus]y]R[prime][double prime][sub y])-M-Q[sub p], where x and y represent the number of unsubstituted locations on the cyclopentadienyl ring; R[prime], R[double prime], R[prime][double prime], and R* represent substituted and unsubstituted alkyl groups having 1--30 carbon atoms and R* is a chiral ligand; A is a fragment containing a Group 13, 14, 15, or 16 element of the Periodic Table; M is a Group 3, 4, or 5 metal of the Periodic Table; and Q is a hydrocarbyl radical, or halogen radical, with 3 [<=] p [<=] 0. Related complexes may be prepared by alkylation of the corresponding dichlorides. In the presence of methylalumoxane or triarylborane cocatalysts, these complexes form cation-like'' species which are highly active for olefin polymerization. In combination with a Lewis acid cocatalyst, propylene or other [alpha]-olefin polymerization can be effected with very high efficiency and isospecificity. 1 fig.

  12. New Catalyst Boosts Selective Formation of Olefins from Syngas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Catalyst Boosts Selective Formation of Olefins from Syngas New Catalyst Boosts Selective Formation of Olefins from Syngas Print Wednesday, 10 August 2016 00:00 Experiments at the ALS have helped to explain how a new catalyst significantly boosts the formation of light olefin molecules-important building blocks in the petrochemical industry-from a basic gas mixture called syngas (synthesis gas). A research team from China recently developed the nanocomposite catalyst and used ambient-pressure

  13. Cobalt carbonyl catalyzed olefin hydroformylation in supercritical carbon dioxide

    DOE Patents [OSTI]

    Rathke, Jerome W. (Lockport, IL); Klingler, Robert J. (Westmount, IL)

    1993-01-01

    A method of olefin hydroformylation is provided wherein an olefin reacts with a carbonyl catalyst and with reaction gases such as hydrogen and carbon monoxide in the presence of a supercritical reaction solvent, such as carbon dioxide. The invention provides higher yields of n-isomer product without the gas-liquid mixing rate limitation seen in conventional Oxo processes using liquid media.

  14. Supported organometallic catalysts for hydrogenation and Olefin Polymerization

    DOE Patents [OSTI]

    Marks, Tobin J.; Ahn, Hongsang

    2001-01-01

    Novel heterogeneous catalysts for the which hydrogenation of olefins and arenes with high conversion rates under ambient conditions and the polymerization of olefins have been developed. The catalysts are synthesized from Ziegler-type precatalysts by supporting them on sulfate-modified zirconia.

  15. Cobalt carbonyl catalyzed olefin hydroformylation in supercritical carbon dioxide

    DOE Patents [OSTI]

    Rathke, J.W.; Klingler, R.J.

    1993-03-30

    A method of olefin hydroformylation is provided wherein an olefin reacts with a carbonyl catalyst and with reaction gases such as hydrogen and carbon monoxide in the presence of a supercritical reaction solvent, such as carbon dioxide. The invention provides higher yields of n-isomer product without the gas-liquid mixing rate limitation seen in conventional Oxo processes using liquid media.

  16. Membrane separation of hydrocarbons using cycloparaffinic solvents

    DOE Patents [OSTI]

    Kulkarni, Sudhir S.; Chang, Y. Alice; Gatsis, John G.; Funk, Edward W.

    1988-01-01

    Heavy crude oils which contain metal contaminants such as nickel, vanadium and iron may be separated from light hydrocarbon oils by passing a solution of the crude oil dissolved in a cycloparaffinic hydrocarbon solvent containing from about 5 to about 8 carbon atoms by passing through a polymeric membrane which is capable of maintaining its integrity in the presence of hydrocarbon compounds. The light hydrocarbon oils which possess relatively low molecular weights will be recovered as the permeate while the heavy oils which possess relatively high molecular weights as well as the metal contaminants will be recovered as the retentate.

  17. Membrane separation of hydrocarbons using cycloparaffinic solvents

    DOE Patents [OSTI]

    Kulkarni, S.S.; Chang, Y.A.; Gatsis, J.G.; Funk, E.W.

    1988-06-14

    Heavy crude oils which contain metal contaminants such as nickel, vanadium and iron may be separated from light hydrocarbon oils by passing a solution of the crude oil dissolved in a cycloparaffinic hydrocarbon solvent containing from about 5 to about 8 carbon atoms by passing through a polymeric membrane which is capable of maintaining its integrity in the presence of hydrocarbon compounds. The light hydrocarbon oils which possess relatively low molecular weights will be recovered as the permeate while the heavy oils which possess relatively high molecular weights as well as the metal contaminants will be recovered as the retentate.

  18. PROCESS OF RECOVERING URANIUM

    DOE Patents [OSTI]

    Carter, J.M.; Larson, C.E.

    1958-10-01

    A process is presented for recovering uranium values from calutron deposits. The process consists in treating such deposits to produce an oxidlzed acidic solution containing uranium together with the following imparities: Cu, Fe, Cr, Ni, Mn, Zn. The uranium is recovered from such an impurity-bearing solution by adjusting the pH of the solution to the range 1.5 to 3.0 and then treating the solution with hydrogen peroxide. This results in the precipitation of uranium peroxide which is substantially free of the metal impurities in the solution. The peroxide precipitate is then separated from the solution, washed, and calcined to produce uranium trioxide.

  19. Improving olefin tolerance and production in E. coli using native...

    Office of Scientific and Technical Information (OSTI)

    Thus we used 1-hexene as a model compound to implement a directed evolution strategy to further improve the tolerance phenotype towards this alpha-olefin. We focused on ...

  20. New Catalyst Boosts Selective Formation of Olefins from Syngas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Catalyst Boosts Selective Formation of Olefins from Syngas Print Experiments at the ALS have helped to explain how a new catalyst significantly boosts the formation of light olefin molecules-important building blocks in the petrochemical industry-from a basic gas mixture called syngas (synthesis gas). A research team from China recently developed the nanocomposite catalyst and used ambient-pressure x-ray photoelectron spectroscopy (AP-XPS) to investigate the chemical changes occurring at the

  1. New Catalyst Boosts Selective Formation of Olefins from Syngas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Catalyst Boosts Selective Formation of Olefins from Syngas Print Experiments at the ALS have helped to explain how a new catalyst significantly boosts the formation of light olefin molecules-important building blocks in the petrochemical industry-from a basic gas mixture called syngas (synthesis gas). A research team from China recently developed the nanocomposite catalyst and used ambient-pressure x-ray photoelectron spectroscopy (AP-XPS) to investigate the chemical changes occurring at the

  2. New Catalyst Boosts Selective Formation of Olefins from Syngas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Catalyst Boosts Selective Formation of Olefins from Syngas Print Experiments at the ALS have helped to explain how a new catalyst significantly boosts the formation of light olefin molecules-important building blocks in the petrochemical industry-from a basic gas mixture called syngas (synthesis gas). A research team from China recently developed the nanocomposite catalyst and used ambient-pressure x-ray photoelectron spectroscopy (AP-XPS) to investigate the chemical changes occurring at the

  3. Methods for suppressing isomerization of olefin metathesis products

    DOE Patents [OSTI]

    Firth, Bruce E.; Kirk, Sharon E.; Gavaskar, Vasudeo S.

    2015-09-22

    A method for suppressing isomerization of an olefin metathesis product produced in a metathesis reaction includes adding an isomerization suppression agent to a mixture that includes the olefin metathesis product and residual metathesis catalyst from the metathesis reaction under conditions that are sufficient to passivate at least a portion of the residual metathesis catalyst. The isomerization suppression agent is phosphorous acid, a phosphorous acid ester, phosphinic acid, a phosphinic acid ester or combinations thereof. Methods of refining natural oils are described.

  4. Methods for suppressing isomerization of olefin metathesis products

    DOE Patents [OSTI]

    Firth, Bruce E.; Kirk, Sharon E.

    2015-10-27

    A method for suppressing isomerization of an olefin metathesis product produced in a metathesis reaction includes adding an isomerization suppression agent that includes nitric acid to a mixture that includes the olefin metathesis product and residual metathesis catalyst from the metathesis reaction under conditions that are sufficient to passivate at least a portion of the residual metathesis catalyst. Methods of refining a natural oil are described.

  5. New Catalyst Boosts Selective Formation of Olefins from Syngas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Catalyst Boosts Selective Formation of Olefins from Syngas Print Experiments at the ALS have helped to explain how a new catalyst significantly boosts the formation of light olefin molecules-important building blocks in the petrochemical industry-from a basic gas mixture called syngas (synthesis gas). A research team from China recently developed the nanocomposite catalyst and used ambient-pressure x-ray photoelectron spectroscopy (AP-XPS) to investigate the chemical changes occurring at the

  6. New Catalyst Boosts Selective Formation of Olefins from Syngas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Catalyst Boosts Selective Formation of Olefins from Syngas Print Experiments at the ALS have helped to explain how a new catalyst significantly boosts the formation of light olefin molecules-important building blocks in the petrochemical industry-from a basic gas mixture called syngas (synthesis gas). A research team from China recently developed the nanocomposite catalyst and used ambient-pressure x-ray photoelectron spectroscopy (AP-XPS) to investigate the chemical changes occurring at the

  7. Zwitterionic Group VIII transition metal initiators supported by olefin ligands

    DOE Patents [OSTI]

    Bazan, Guillermo C.; Chen, Yaofeng

    2011-10-25

    A zwitterionic Group VIII transition metal complex containing the simple and relatively small 3-(arylimino)-but-1-en-2-olato ligand that catalyzes the formation of polypropylene and high molecular weight polyethylene. A novel feature of this catalyst is that the active species is stabilized by a chelated olefin adduct. The present invention also provides methods of polymerizing olefin monomers using zwitterionic catalysts, particularly polypropylene and high molecular weight polyethylene.

  8. Producing Linear Alpha Olefins From Biomass - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Producing Linear Alpha Olefins From Biomass Great Lakes Bioenergy Research Center Contact GLBRC About This Technology Technology Marketing Summary Linear alpha olefins (LAOs) are valuable commodity chemicals traditionally derived from petroleum. They are versatile building blocks for making a range of chemical products like polyethylene, synthetic oils, plasticizers, detergents and oilfield fluids. Relying on fossil fuel to manufacture LAOs is problematic. Not only are the standard methods

  9. Process for the conversion of alcohols and oxygenates to hydrocarbons in a turbulent fluid bed reactor

    SciTech Connect (OSTI)

    Avidan, A. A.; Kam, A. Y.

    1985-04-23

    Improvements in converting C/sub 1/-C/sub 3/ monohydric alcohols, particularly methanol, related oxygenates of said alcohols and/or oxygenates produced by Fischer-Tropsch synthesis to light olefins, gasoline boiling range hydrocarbons and/or distillate boiling range hydrocarbons are obtained in a fluidized bed of ZSM-5 type zeolite catalyst operating under conditions effective to provide fluidization in the turbulent regime.

  10. Process of producing liquid hydrocarbon fuels from biomass

    DOE Patents [OSTI]

    Kuester, James L.

    1987-07-07

    A continuous thermochemical indirect liquefaction process to convert various biomass materials into diesel-type transportation fuels which fuels are compatible with current engine designs and distribution systems comprising feeding said biomass into a circulating solid fluidized bed gasification system to produce a synthesis gas containing olefins, hydrogen and carbon monoxide and thereafter introducing the synthesis gas into a catalytic liquefaction system to convert the synthesis gas into liquid hydrocarbon fuel consisting essentially of C.sub.7 -C.sub.17 paraffinic hydrocarbons having cetane indices of 50+.

  11. Process of producing liquid hydrocarbon fuels from biomass

    DOE Patents [OSTI]

    Kuester, J.L.

    1987-07-07

    A continuous thermochemical indirect liquefaction process is described to convert various biomass materials into diesel-type transportation fuels which fuels are compatible with current engine designs and distribution systems comprising feeding said biomass into a circulating solid fluidized bed gasification system to produce a synthesis gas containing olefins, hydrogen and carbon monoxide and thereafter introducing the synthesis gas into a catalytic liquefaction system to convert the synthesis gas into liquid hydrocarbon fuel consisting essentially of C[sub 7]-C[sub 17] paraffinic hydrocarbons having cetane indices of 50+. 1 fig.

  12. Process and catalyst for carbonylating olefins

    DOE Patents [OSTI]

    Zoeller, J.R.

    1998-06-02

    Disclosed is an improved catalyst system and process for preparing aliphatic carbonyl compounds such as aliphatic carboxylic acids, alkyl esters of aliphatic carboxylic acids and anhydrides of aliphatic carboxylic acids by carbonylating olefins in the presence of a catalyst system comprising (1) a first component selected from at least one Group 6 metal, i.e., chromium, molybdenum, and/or tungsten and (2) a second component selected from at least one of certain halides and tertiary and quaternary compounds of a Group 15 element, i.e., nitrogen, phosphorus and/or arsenic, and (3) as a third component, a polar, aprotic solvent. The process employing the improved catalyst system is carried out under carbonylating conditions of pressure and temperature discussed herein. The process constitutes and improvement over known processes since it can be carried out at moderate carbonylation conditions without the necessity of using an expensive noble metal catalyst, volatile, toxic materials such as nickel tetracarbonyl, formic acid or a formate ester. Further, the addition of a polar, aprotic solvent to the catalyst system significantly increases, or accelerates, the rate at which the carbonylation takes place.

  13. Process for recovering uranium

    DOE Patents [OSTI]

    MacWood, G. E.; Wilder, C. D.; Altman, D.

    1959-03-24

    A process useful in recovering uranium from deposits on stainless steel liner surfaces of calutrons is presented. The deposit is removed from the stainless steel surface by washing with aqueous nitric acid. The solution obtained containing uranium, chromium, nickel, copper, and iron is treated with an excess of ammonium hydroxide to precipitnte the uranium, iron, and chromium and convert the nickel and copper to soluble ammonio complexions. The precipitated material is removed, dried and treated with carbon tetrachloride at an elevated temperature of about 500 to 600 deg C to form a vapor mixture of UCl/ sub 4/, UCl/sub 5/, FeCl/sub 3/, and CrCl/sub 4/. The UCl/sub 4/ is separated from this vapor mixture by selective fractional condensation at a temperature of about 500 to 400 deg C.

  14. METHOD OF RECOVERING THORIUM

    DOE Patents [OSTI]

    Fisher, R.W.

    1957-12-10

    A method is described for recovering thorium from impurities found in a slag containing thorium and said impurities, comprising leaching a composition containing thorium with water, removing the water solution, treating the residue with hydrochloric acid, separating the solution from the insoluble residue, adjusting its acidity to 1 to 3 normal, adding oxalic acid, and thereafter separating the precipitated thorium oxalate digesting the residue from the hydrochloric acid treatment with a strong solution of sodium hydroxide at an elevated temperature, removing said solution and treating the insoluble residue with hydrochloric acid, separating the solution from the insoluble residue, adjusting the acidity of this solution to 1 to 3 normal, adding nitric acid to oxidize the iron present, adding oxalic acid and thereafter separating the thorium oxalate thus precipitated.

  15. PROCESS FOR RECOVERING URANIUM

    DOE Patents [OSTI]

    MacWood, G.E.; Wilder, C.D.; Altman, D.

    1959-03-24

    A process is described for recovering uranium from deposits on stainless steel liner surfaces of calutrons. The deposit is removed from the stainless steel surface by washing with aqueous nitric acid. The solution obtained containing uranium, chromium, nickels copper, and iron is treated with excess of ammonium hydroxide to precipitatc the uranium, irons and chromium and convert thc nickel and copper to soluble ammonia complexions. The precipitated material is removed, dried, and treated with carbon tetrachloride at an elevated temperature of about 500 to 600 deg C to form a vapor mixture of UCl/sub 4/, UCl/sub 5/, FeCl/ sub 3/, and CrCl/sub 4/. The UCl/sub 4/ is separated from this vapor mixture by selective fractional condensation at a temprrature of about 300 to400 deg C.

  16. Method of recovering uranium hexafluoride

    DOE Patents [OSTI]

    Schuman, S.

    1975-12-01

    A method of recovering uranium hexafluoride from gaseous mixtures which comprises adsorbing said uranium hexafluoride on activated carbon is described.

  17. PROCESS OF RECOVERING URANIUM

    DOE Patents [OSTI]

    Kilner, S.B.

    1959-12-29

    A method is presented for separating and recovering uranium from a complex mixure of impurities. The uranium is dissolved to produce an aqueous acidic solution including various impurities. In accordance with one method, with the uranium in the uranyl state, hydrogen cyanide is introduced into the solution to complex the impurities. Subsequently, ammonia is added to the solution to precipitate the uraniunn as ammonium diuranate away from the impurities in the solution. Alternatively, the uranium is precipitated by adding an alkaline metal hydroxide. In accordance with the second method, the uranium is reduced to the uranous state in the solution. The reduced solution is then treated with solid alkali metal cyanide sufficient to render the solution about 0.1 to 1.0 N in cyanide ions whereat cyanide complex ions of the metal impurities are produced and the uranium is simultaneously precipituted as uranous hydroxide. Alternatively, hydrogen cyanide may be added to the reduced solution and the uranium precipitated subsequently by adding ammonium hydroxide or an alkali metal hydroxide. Other refinements of the method are also disclosed.

  18. Ionic liquids for separation of olefin-paraffin mixtures

    DOE Patents [OSTI]

    Dai, Sheng; Luo, Huimin; Huang, Jing-Fang

    2014-07-15

    The invention is directed to an ionic liquid comprising (i) a cationic portion containing a complex of a silver (I) ion and one or more neutral ligands selected from organoamides, organoamines, olefins, and organonitriles, and (ii) an anionic portion having the chemical formula ##STR00001## wherein m and n are independently 0 or an integer of 1 or above, and p is 0 or 1, provided that when p is 0, the group --N--SO.sub.2--(CF.sub.2).sub.nCF.sub.3 subtended by p is replaced with an oxide atom connected to the shown sulfur atom. The invention is also directed to a method for separating an olefin from an olefin-paraffin mixture by passing the mixture through a layer of the ionic liquid described above.

  19. Ionic liquids for separation of olefin-paraffin mixtures

    DOE Patents [OSTI]

    Dai, Sheng; Luo, Huimin; Huang, Jing-Fang

    2013-09-17

    The invention is directed to an ionic liquid comprising (i) a cationic portion containing a complex of a silver (I) ion and one or more neutral ligands selected from organoamides, organoamines, olefins, and organonitriles, and (ii) an anionic portion having the chemical formula ##STR00001## wherein m and n are independently 0 or an integer of 1 or above, and p is 0 or 1, provided that when p is 0, the group --N--SO.sub.2--(CF.sub.2).sub.nCF.sub.3 subtended by p is replaced with an oxide atom connected to the shown sulfur atom. The invention is also directed to a method for separating an olefin from an olefin-paraffin mixture by passing the mixture through a layer of the ionic liquid described above.

  20. Biological enhancement of hydrocarbon extraction

    DOE Patents [OSTI]

    Brigmon, Robin L.; Berry, Christopher J.

    2009-01-06

    A method of microbial enhanced oil recovery for recovering oil from an oil-bearing rock formation is provided. The methodology uses a consortium of bacteria including a mixture of surfactant producing bacteria and non-surfactant enzyme producing bacteria which may release hydrocarbons from bitumen containing sands. The described bioprocess can work with existing petroleum recovery protocols. The consortium microorganisms are also useful for treatment of above oil sands, ground waste tailings, subsurface oil recovery, and similar materials to enhance remediation and/or recovery of additional hydrocarbons from the materials.

  1. Method for producing viscous hydrocarbons

    DOE Patents [OSTI]

    Poston, Robert S. (Winter Park, FL)

    1982-01-01

    A method for recovering viscous hydrocarbons and synthetic fuels from a subterranean formation by drilling a well bore through the formation and completing the well by cementing a casing means in the upper part of the pay zone. The well is completed as an open hole completion and a superheated thermal vapor stream comprised of steam and combustion gases is injected into the lower part of the pay zone. The combustion gases migrate to the top of the pay zone and form a gas cap which provides formation pressure to produce the viscous hydrocarbons and synthetic fuels.

  2. FCC LPG olefinicity and branching enhanced by octane catalysts

    SciTech Connect (OSTI)

    Keyworth, D.A.; Reid, T.A.; Kreider, K.R.; Yatsu, C.A.

    1989-05-29

    Refiners are increasingly recognizing the downstream opportunities for fluid catalytic cracking LPG olefins for the production of methyl tertiary butyl ether (MTBE), ethyl tertiary butyl ether (ETBE, if the ethanol subsidy is extended to the production of ETBE), and as petrochemical feedstocks. Some of new gasoline FCC octane-enhancing catalysts can support those opportunities because their low non-framework alumina (low NFA) preserve both LPG olefinicity and promote branching of the LPG streams from the FCCU. The combined effect results in more isobutane for alkylate feed, more propylene in the propane/propylene stream, and more isobutene - which makes the addition of an MTBE unit very enticing.

  3. Sterically shielded diboron-containing metallocene olefin polymerization catalysts

    DOE Patents [OSTI]

    Marks, Tobin J.; Ja, Li; Yang, Xinmin

    1995-09-05

    A non-coordinating anion, preferably containing a sterically shielded diboron hydride, if combined with a cyclopenta-dienyl-substituted metallocene cation component, such as a zirconocene metallocene, is a useful olefin polymerization catalyst component. The anion preferably has the formula ##STR1## where R is branched lower alkyl, such as t-butyl.

  4. Recover Heat from Boiler Blowdown

    SciTech Connect (OSTI)

    Not Available

    2006-01-01

    This revised ITP tip sheet on recovering heat from boiler blowdown provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

  5. Chlorinated Hydrocarbons

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    by Satish C. B. Myneni, Department of Geosciences, Princeton University, Princeton, NJ 08544 When we think of chlorine, we often relate it to the salt used in food preparation, chloride in the oceans, chlorine gas from swimming pools, and gaseous chlorofluorocarbons that have close links to the depletion of stratospheric ozone. We rarely think of thousands of chlorinated hydrocarbons that exist in the natural systems, several of which are highly toxic to humans (1). The C-Cl bond, common to all

  6. Synthesis of terminal alkenes from internal alkenes and ethylene via olefin metathesis

    DOE Patents [OSTI]

    Schrodi, Yann

    2016-02-09

    This invention relates generally to olefin metathesis, and more particularly relates to the synthesis of terminal alkenes from internal alkenes using a cross-metathesis reaction catalyzed by a selected olefin metathesis catalyst. In one embodiment of the invention, for example, a method is provided for synthesizing a terminal olefin, the method comprising contacting an olefinic substrate comprised of at least one internal olefin with ethylene, in the presence of a metathesis catalyst, wherein the catalyst is present in an amount that is less than about 1000 ppm relative to the olefinic substrate, and wherein the metathesis catalyst has the structure of formula (II) ##STR00001## wherein the various substituents are as defined herein. The invention has utility, for example, in the fields of catalysis, organic synthesis, and industrial chemistry.

  7. Synthesis of terminal alkenes from internal alkenes and ethylene via olefin metathesis

    DOE Patents [OSTI]

    Schrodi, Yann

    2011-11-29

    This invention relates generally to olefin metathesis, and more particularly relates to the synthesis of terminal alkenes from internal alkenes using a cross-metathesis reaction catalyzed by a selected olefin metathesis catalyst. In one embodiment of the invention, for example, a method is provided for synthesizing a terminal olefin, the method comprising contacting an olefinic substrate comprised of at least one internal olefin with ethylene, in the presence of a metathesis catalyst, wherein the catalyst is present in an amount that is less than about 1000 ppm relative to the olefinic substrate, and wherein the metathesis catalyst has the structure of formula (II) ##STR00001## wherein the various substituents are as defined herein. The invention has utility, for example, in the fields of catalysis, organic synthesis, and industrial chemistry.

  8. Synthesis of terminal alkenes from internal alkenes and ethylene via olefin metathesis

    DOE Patents [OSTI]

    Schrodi, Yann

    2013-07-09

    This invention relates generally to olefin metathesis, and more particularly relates to the synthesis of terminal alkenes from internal alkenes using a cross-metathesis reaction catalyzed by a selected olefin metathesis catalyst. In one embodiment of the invention, for example, a method is provided for synthesizing a terminal olefin, the method comprising contacting an olefinic substrate comprised of at least one internal olefin with ethylene, in the presence of a metathesis catalyst, wherein the catalyst is present in an amount that is less than about 1000 ppm relative to the olefinic substrate, and wherein the metathesis catalyst has the structure of formula (II) ##STR00001## wherein the various substituents are as defined herein. The invention has utility, for example, in the fields of catalysis, organic synthesis, and industrial chemistry.

  9. Synthesis of terminal alkenes from internal alkenes and ethylene via olefin metathesis

    DOE Patents [OSTI]

    Schrodi, Yann

    2015-09-22

    This invention relates generally to olefin metathesis, and more particularly relates to the synthesis of terminal alkenes from internal alkenes using a cross-metathesis reaction catalyzed by a selected olefin metathesis catalyst. In one embodiment of the invention, for example, a method is provided for synthesizing a terminal olefin, the method comprising contacting an olefinic substrate comprised of at least one internal olefin with ethylene, in the presence of a metathesis catalyst, wherein the catalyst is present in an amount that is less than about 1000 ppm relative to the olefinic substrate, and wherein the metathesis catalyst has the structure of formula (II) ##STR00001## wherein the various substituents are as defined herein. The invention has utility, for example, in the fields of catalysis, organic synthesis, and industrial chemistry.

  10. Olefins from High Yield Autothermal Reforming Process - Energy Innovation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Portal Olefins from High Yield Autothermal Reforming Process DOE Grant Recipients University of Minnesota Contact University of Minnesota About This Technology <span id="Caption"><span id="ctl00_MainContentHolder_zoomimage_defaultCaption">Isobutylene is used to produce fuel additives.</span></span> Isobutylene is used to produce fuel additives. <span id="Caption"><span

  11. Integrated process and dual-function catalyst for olefin epoxidation

    DOE Patents [OSTI]

    Zhou, Bing (Cranbury, NJ); Rueter, Michael (Plymouth Meeting, PA)

    2003-01-01

    The invention discloses a dual-functional catalyst composition and an integrated process for production of olefin epoxides including propylene oxide by catalytic reaction of hydrogen peroxide from hydrogen and oxygen with olefin feeds such as propylene. The epoxides and hydrogen peroxide are preferably produced simultaneously in situ. The dual-functional catalyst comprises noble metal crystallites with dimensions on the nanometer scale (on the order of <1 nm to 10 nm), specially dispersed on titanium silicalite substrate particles. The dual functional catalyst catalyzes both the direct reaction of hydrogen and oxygen to generate hydrogen peroxide intermediate on the noble metal catalyst surface and the reaction of the hydrogen peroxide intermediate with the propylene feed to generate propylene oxide product. Combining both these functions in a single catalyst provides a very efficient integrated process operable below the flammability limits of hydrogen and highly selective for the production of hydrogen peroxide to produce olefin oxides such as propylene oxide without formation of undesired co-products.

  12. Low severity coal liquefaction promoted by cyclic olefins

    SciTech Connect (OSTI)

    Curtis, C.W.

    1992-07-27

    Low severity coal liquefaction allows for solubilization of coal with reduced gas make. These lower severity conditions may result in some selective bond rupture. Promotion of coal solubilization through hydrogen transfer using highly active and effective hydrogen donors is the objective of this study. The highly effective donors being tested are cyclic olefins. Representative cyclic olefins are isotetralin, which is 1,4,5,8-tetrahydronaphthalene, and 1,4,5,8,9,10-hexahydroanthracene. These compounds are hydroaromatics without aromatic rings and have been shown to be highly effective donors. The objective of the work performed in this study during this quarter was to evaluate reaction parameters for low severity liquefaction reactions using the cyclic olefin, hexahydroanthracene, and the aromatic, anthracene. These model compounds were reacted under a variety of conditions to evaluate their reactivity without coal. The reactions were performed under both thermal and catalytic conditions. Finely divided catalysts from different molybdenum precursors were used to determine their activity in promoting hydrogenation and hydrogen transfer at low severity conditions. The catalysts used were Molyvan L, sulfurized oxymolybdenum dithiocarbamate, molybdenum naphthenate, and Molyvan 822, organo molybdenum dithiocarbamate.

  13. Catalysts and process for liquid hydrocarbon fuel production

    DOE Patents [OSTI]

    White, Mark G; Liu, Shetian

    2014-12-09

    The present invention provides a novel process and system in which a mixture of carbon monoxide and hydrogen synthesis gas, or syngas, is converted into hydrocarbon mixtures composed of high quality gasoline components, aromatic compounds, and lower molecular weight gaseous olefins in one reactor or step. The invention utilizes a novel molybdenum-zeolite catalyst in high pressure hydrogen for conversion, as well as a novel rhenium-zeolite catalyst in place of the molybdenum-zeolite catalyst, and provides for use of the novel catalysts in the process and system of the invention.

  14. Separation of Olefin/Paraffin Mixtures With Carrier-Facilitated Transport Membranes

    SciTech Connect (OSTI)

    2004-07-01

    Use of Membranes Could Significantly Reduce Energy Costs. Olefins, a group of petrochemicals that includes ethylene and propylene, are the primary building blocks for the petrochemical industry.

  15. Recovery of co-adsorbed hydrocarbons from molecular sieve adsorption units

    SciTech Connect (OSTI)

    Clark, K.R.

    1990-11-20

    This patent describes a process for removing carbonyl sulfide from a hydrocarbon feedstock. It comprises: providing a feedstock of hydrocarbons; passing the feedstock in the liquid phase; terminating the passage; draining the bed; concurrently to the direction of flow into the bed; recovering the hydrocarbon; and regenerating the adsorption bed.

  16. PROCESS OF RECOVERING ALKALI METALS

    DOE Patents [OSTI]

    Wolkoff, J.

    1961-08-15

    A process is described of recovering alkali metal vapor by sorption on activated alumina, activated carbon, dehydrated zeolite, activated magnesia, or Fuller's earth preheated above the vaporization temperature of the alkali metal and subsequent desorption by heating the solvent under vacuum. (AEC)

  17. Method for recovering palladium and technetium values from nuclear fuel reprocessing waste solutions

    DOE Patents [OSTI]

    Horwitz, E. Philip; Delphin, Walter H.

    1979-07-24

    A method for recovering palladium and technetium values from nuclear fuel reprocessing waste solutions containing these and other values by contacting the waste solution with an extractant of tricaprylmethylammonium nitrate in an inert hydrocarbon diluent which extracts the palladium and technetium values from the waste solution. The palladium and technetium values are recovered from the extractant and from any other coextracted values with a strong nitric acid strip solution.

  18. One million curies of radioactive material recovered

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Radioactive material recovered One million curies of radioactive material recovered The accomplishment represents a major milestone in protecting our nation and the world from...

  19. Carbonaceous adsorbent regeneration and halocarbon displacement by hydrocarbon gases

    DOE Patents [OSTI]

    Senum, Gunnar I.; Dietz, Russell N.

    1994-01-01

    This invention describes a process for regeneration of halocarbon bearing carbonaceous adsorbents through which a carbonaceous adsorbent is contacted with hydrocarbon gases, preferably propane, butane and pentane at near room temperatures and at atmospheric pressure. As the hydrocarbon gases come in contact with the adsorbent, the hydrocarbons displace the halocarbons by physical adsorption. As a result of using this process, the halocarbon concentration and the hydrocarbon eluant is increased thereby allowing for an easier recovery of pure halocarbons. By using the process of this invention, carbonaceous adsorbents can be regenerated by an inexpensive process which also allows for subsequent re-use of the recovered halocarbons.

  20. Carbonaceous adsorbent regeneration and halocarbon displacement by hydrocarbon gases

    DOE Patents [OSTI]

    Senum, G.I.; Dietz, R.N.

    1994-04-05

    This invention describes a process for regeneration of halocarbon bearing carbonaceous adsorbents through which a carbonaceous adsorbent is contacted with hydrocarbon gases, preferably propane, butane and pentane at near room temperatures and at atmospheric pressure. As the hydrocarbon gases come in contact with the adsorbent, the hydrocarbons displace the halocarbons by physical adsorption. As a result of using this process, the halocarbon concentration and the hydrocarbon eluant is increased thereby allowing for an easier recovery of pure halocarbons. By using the process of this invention, carbonaceous adsorbents can be regenerated by an inexpensive process which also allows for subsequent re-use of the recovered halocarbons. 8 figures.

  1. Control contaminants in olefin feedstocks and products. Part 2

    SciTech Connect (OSTI)

    Reid, J.A.; McPhaul, D.R. [Stone and Webster Engineering Corp., Houston, TX (United States)

    1996-09-01

    Impurities in polymer feedstocks affect new, site-specific, third-generation catalysts. To increase productivity and to manufacture value-added resins, polymer operators are using newer polymerization processes and subsequently converting to site-specific catalysts. Consequently, olefin producers must offer feedstocks that are nearly contaminant-free. An overview of innovative removal systems shows how to cost-effectively clean up process streams. The paper describes impurity removal systems for acetylene, CO{sub 2}, CO, H{sub 2}, CH{sub 4}, ethane in ethylene, and ethylene in propylene. It also discusses specific poisons to catalysts: ammonia, arsine, phosphine, and carbonyl sulfide.

  2. Recovering entanglement by local operations

    SciTech Connect (OSTI)

    D’Arrigo, A.; Lo Franco, R.; Benenti, G.; Paladino, E.; Falci, G.

    2014-11-15

    We investigate the phenomenon of bipartite entanglement revivals under purely local operations in systems subject to local and independent classical noise sources. We explain this apparent paradox in the physical ensemble description of the system state by introducing the concept of “hidden” entanglement, which indicates the amount of entanglement that cannot be exploited due to the lack of classical information on the system. For this reason this part of entanglement can be recovered without the action of non-local operations or back-transfer process. For two noninteracting qubits under a low-frequency stochastic noise, we show that entanglement can be recovered by local pulses only. We also discuss how hidden entanglement may provide new insights about entanglement revivals in non-Markovian dynamics.

  3. Methods of recovering alkali metals

    SciTech Connect (OSTI)

    Krumhansl, James L; Rigali, Mark J

    2014-03-04

    Approaches for alkali metal extraction, sequestration and recovery are described. For example, a method of recovering alkali metals includes providing a CST or CST-like (e.g., small pore zeolite) material. The alkali metal species is scavenged from the liquid mixture by the CST or CST-like material. The alkali metal species is extracted from the CST or CST-like material.

  4. In vivo and in vitro olefin cyclopropanation catalyzed by heme enzymes

    DOE Patents [OSTI]

    Coelho, Pedro S; Brustad, Eric M; Arnold, Frances H; Wang, Zhan; Lewis, Jared C

    2015-03-31

    The present invention provides methods for catalyzing the conversion of an olefin to any compound containing one or more cyclopropane functional groups using heme enzymes. In certain aspects, the present invention provides a method for producing a cyclopropanation product comprising providing an olefinic substrate, a diazo reagent, and a heme enzyme; and admixing the components in a reaction for a time sufficient to produce a cyclopropanation product. In other aspects, the present invention provides heme enzymes including variants and fragments thereof that are capable of carrying out in vivo and in vitro olefin cyclopropanation reactions. Expression vectors and host cells expressing the heme enzymes are also provided by the present invention.

  5. METHOD OF RECOVERING URANIUM COMPOUNDS

    DOE Patents [OSTI]

    Poirier, R.H.

    1957-10-29

    S>The recovery of uranium compounds which have been adsorbed on anion exchange resins is discussed. The uranium and thorium-containing residues from monazite processed by alkali hydroxide are separated from solution, and leached with an alkali metal carbonate solution, whereby the uranium and thorium hydrorides are dissolved. The carbonate solution is then passed over an anion exchange resin causing the uranium to be adsorbed while the thorium remains in solution. The uranium may be recovered by contacting the uranium-holding resin with an aqueous ammonium carbonate solution whereby the uranium values are eluted from the resin and then heating the eluate whereby carbon dioxide and ammonia are given off, the pH value of the solution is lowered, and the uranium is precipitated.

  6. Process for recovering actinide values

    DOE Patents [OSTI]

    Horwitz, E. Philip; Mason, George W.

    1980-01-01

    A process for rendering actinide values recoverable from sodium carbonate scrub waste solutions containing these and other values along with organic compounds resulting from the radiolytic and hydrolytic degradation of neutral organophosphorous extractants such as tri-n butyl phosphate (TBP) and dihexyl-N,N-diethyl carbamylmethylene phosphonate (DHDECAMP) which have been used in the reprocessing of irradiated nuclear reactor fuels. The scrub waste solution is preferably made acidic with mineral acid, to form a feed solution which is then contacted with a water-immiscible, highly polar organic extractant which selectively extracts the degradation products from the feed solution. The feed solution can then be processed to recover the actinides for storage or recycled back into the high-level waste process stream. The extractant is recycled after stripping the degradation products with a neutral sodium carbonate solution.

  7. Catalyst for converting synthesis gas to light olefins

    DOE Patents [OSTI]

    Rao, V. Udaya S.; Gormley, Robert J.

    1982-01-01

    A catalyst and process for making same useful in the catalytic hydrogenation of carbon monoxide in which a silicalite support substantially free of aluminum is soaked in an aqueous solution of iron and potassium salts wherein the iron and potassium are present in concentrations such that the dried silicalite has iron present in the range of from about 5 to about 25 percent by weight and has potassium present in an amount not less than about 0.2 percent by weight, and thereafter the silicalite is dried and combined with amorphous silica as a binder for pellets, the catalytic pellets are used to convert synthesis gas to C.sub.2 -C.sub.4 olefins.

  8. Recovering Radioactive Materials with OSRP team

    ScienceCinema (OSTI)

    None

    2010-01-08

    The National Nuclear Security Administration sponsors a program, executed by Los Alamos National Laboratory, to recover radioisotopes used by industry and academia and no longer needed. Called the "Offsite Source Recovery Program (OSRP), it has recovered

  9. Olefin metathesis for effective polymer healing via dynamic exchange of strong carbon-carbon bonds

    DOE Patents [OSTI]

    Guan, Zhibin; Lu, Yixuan

    2015-09-15

    A method of preparing a malleable and/or self-healing polymeric or composite material is provided. The method includes providing a polymeric or composite material comprising at least one alkene-containing polymer, combining the polymer with at least one homogeneous or heterogeneous transition metal olefin metathesis catalyst to form a polymeric or composite material, and performing an olefin metathesis reaction on the polymer so as to form reversible carbon-carbon double bonds in the polymer. Also provided is a method of healing a fractured surface of a polymeric material. The method includes bringing a fractured surface of a first polymeric material into contact with a second polymeric material, and performing an olefin metathesis reaction in the presence of a transition metal olefin metathesis catalyst such that the first polymeric material forms reversible carbon-carbon double bonds with the second polymeric material. Compositions comprising malleable and/or self-healing polymeric or composite material are also provided.

  10. Organo-Lewis acid as cocatalyst for cationic homogenous metallocene Ziegler-Natta olefin polymerizations

    DOE Patents [OSTI]

    Marks, Tobin J.; Chen, You-Xian

    2000-01-01

    The synthesis of the organo-Lewis acid perfluorobiphenylborane (PBB) and the activation of metallocenes for the formation of a variety of highly active homogeneous Ziegler-Natta metallocene olefin polymerization, copolymerization and ring-opening polymerization catalysts is described.

  11. Regioselectivity of radical attacks on substituted olefins. Application of the SCD model

    SciTech Connect (OSTI)

    Shaik, S.S. ); Canadell, E. )

    1990-02-14

    The SCD model is used to derive regiochemical trends in radical addition to olefins. Regiochemistry is discussed by appeal to two fundamental properties of the radical and the olefin. The first factor is the relative spin density in the {sup 3}{pi}{pi}* state of the olefin. Thus, radical attack is directed toward the olefinic carbon which possesses the highest spin density. The second factor is the relative bond strengths of the radical to the olefinic carbons. This factor directs the regiochemistry toward the olefinic terminus which forms the strongest bond with the radical. When the two effects join up, regioselectivity will be large, e.g., for CH{sub 2}=CHX (X = NR{sub 2}, CR, Cl, CN, Ph). When the two effects oppose one another, regioselectivity will be smaller, and regioselectivity crossovers are expected, e.g., for CF{sub 2}=CHF. The normal regiochemistry is shown to coincide with the spin density rule which makes identical predictions to the HOMO rule.

  12. Catalysts for the production of hydrocarbons from carbon monoxide and water

    DOE Patents [OSTI]

    Sapienza, R.S.; Slegeir, W.A.; Goldberg, R.I.

    1985-11-06

    A method of converting low H/sub 2//CO ratio syngas to carbonaceous products comprising reacting the syngas with water or steam at 200 to 350/sup 0/C in the presence of a metal catalyst supported on zinc oxide. Hydrocarbons are produced with a catalyst selected from cobalt, nickel or ruthenium and alcohols are produced with a catalyst selected from palladium, platinum, ruthenium or copper on the zinc oxide support. The ratio of the reactants are such that for alcohols and saturated hydrocarbons: (2n + 1) greater than or equal to x greater than or equal to O and for olefinic hydrocarbons: 2n greater than or equal to x greater than or equal to O where n is the number of carbon atoms in the product and x is the molar amount of water in the reaction mixture.

  13. Catalysts for the production of hydrocarbons from carbon monoxide and water

    DOE Patents [OSTI]

    Sapienza, Richard S.; Slegeir, William A.; Goldberg, Robert I.

    1987-01-01

    A method of converting low H.sub.2 /CO ratio syngas to carbonaceous products comprising reacting the syngas with water or steam at 200.degree. to 350.degree. C. in the presence of a metal catalyst supported on zinc oxide. Hydrocarbons are produced with a catalyst selected from cobalt, nickel or ruthenium and alcohols are produced with a catalyst selected from palladium, platinium, ruthenium or copper on the zinc oxide support. The ratio of the reactants are such that for alcohols and saturated hydrocarbons: (2n+1).gtoreq.x.gtoreq.O and for olefinic hydrocarbons: 2n.gtoreq.x.gtoreq.O where n is the number of carbon atoms in the product and x is the molar amount of water in the reaction mixture.

  14. FINAL TECHNICAL REPORT Synthetic, Structural and Mechanistic Investigations of Olefin Polymerization Catalyzed by Early Transition Metal Compounds

    SciTech Connect (OSTI)

    Bercaw, John E.

    2014-05-23

    The goal of this project is to develop new catalysts and provide understanding of ligand effects on catalyst composition in order to guide development of superior catalyst systems for polymerization of olefins. Our group is designing and synthesizing new “LX2”,“pincer” type ligands and complexing early transition metals to afford precatalysts. In a collaboration with Hans Brintzinger from the University of Konstanz, we are also examining the structures of the components of catalyst systems obtained from reaction of zirconocene dichlorides with aluminum alkyls and aluminum hydrides. Such systems are currently used commercially to produce polyolefins, but the nature of the active and dormant species as well as the mechanisms of their interconversions are not understood. New information on catalyst design and performance may lead to new types of polymers and/or new chemical transformations between hydrocarbons and transition metal centers, ultimately contributing to the development of catalytic reactions for the production of fuels, commodity and polymeric materials.

  15. Hydrogen, Hydrocarbons, and Bioproduct Precursors from Wastewaters...

    Office of Environmental Management (EM)

    Hydrogen, Hydrocarbons, and Bioproduct Precursors from Wastewaters Workshop Hydrogen, Hydrocarbons, and Bioproduct Precursors from Wastewaters Workshop The Hydrogen, Hydrocarbons, ...

  16. Transition metal ion-assisted photochemical generation of alkyl halides and hydrocarbons from carboxylic acids

    SciTech Connect (OSTI)

    Carraher, Jack; Pestovsky, Oleg; Bakac, Andreja

    2012-03-14

    Near-UV photolysis of aqueous solutions of propionic acid and aqueous Fe3+ in the absence of oxygen generates a mixture of hydrocarbons (ethane, ethylene and butane), carbon dioxide, and Fe2+. The reaction becomes mildly catalytic (about five turnovers) in the presence of oxygen which converts a portion of alkyl radicals to oxidizing intermediates that reoxidize Fe2+. The photochemistry in the presence of halide ions (X− = Cl−, Br−) generates ethyl halides via halogen atom abstraction from FeXn3−n by ethyl radicals. Near-quantitative yields of C2H5X are obtained at ≥0.05 M X−. Competition experiments with Co(NH3)5Br2+ provided kinetic data for the reaction of ethyl radicals with FeCl2+ (k = (4.0 ± 0.5) × 106 M−1 s−1) and with FeBr2+ (k = (3.0 ± 0.5) × 107 M−1 s−1). Photochemical decarboxylation of propionic acid in the presence of Cu2+ generates ethylene and Cu+. Longer-chain acids also yield alpha olefins as exclusive products. These reactions become catalytic under constant purge with oxygen which plays a dual role. It reoxidizes Cu+ to Cu2+, and removes gaseous olefins to prevent accumulation of Cu+(olefin) complexes and depletion of Cu2+. The results underscore the profound effect that the choice of metal ions, the medium, and reaction conditions exert on the photochemistry of carboxylic acids.

  17. Recovering Radioactive Materials with ORSP Team

    ScienceCinema (OSTI)

    LANL

    2009-09-01

    The National Nuclear Security Administration sponsors a program, executed by Los Alamos National Laboratory, to recover radioisotopes used by industry and academia and no longer needed. Called the "Offsite Source Recovery Program (OSRP), it has recovered more than 16,000 orphan sources as of 2008.

  18. Method and apparatus for secondary and tertiary recovery of hydrocarbons

    SciTech Connect (OSTI)

    Rivas, N.; Beichel, R.

    1987-07-07

    This patent describes an apparatus for secondary and tertiary recovery of hydrocarbons from oil fields comprising: a. a bipropellant generator capable of producing exhaust gases at supercritical pressures and temperatures; b. transport means for carrying the exhaust gases into a well bore, at least a portion of the well bore extending into a hydrocarbon bearing formation from which hydrocarbons are to be recovered; c. means for introducing water into the transport means; and d. a water cooling jacket extending into at least the upper portion of the well bore, the center of the cooling jacket receiving the exhaust gases from the transport means, means being provided for the introduction of chemical additives through a portion of the cooling jacket. A process is described for secondary and tertiary recovery of hydrocarbons from geological formations comprising: a. providing a well bore extending at least into the strata of the geologic formation containing the hydrocarbons to be recovered; b. providing at least the upper portion of the well bore with a cooling jacket, the cooling jacket being provided with a central, open portion; c. generating gases at supercritical temperatures and pressures; d. introducing water into the supercritical gases to form steam; e. forcing the mixture of supercritical combustion gases and steam through the central open portion of the cooling jacket and the well bore into the hydrocarbon strata; and f. adding chemical additives to the mixture of combustion gases and steam below the cooling jacket.

  19. Onsite Recovered Energy LP | Open Energy Information

    Open Energy Info (EERE)

    to: navigation, search Name: Onsite Recovered Energy LP Address: Centurion Region: South Africa Sector: Marine and Hydrokinetic Year Founded: 2009 Phone Number: +27 (0)83 526-3767...

  20. Recovered materials and the proposed procurement rule

    SciTech Connect (OSTI)

    Bergeson, L.L.

    1994-07-01

    The US Environmental Protection Agency (EPA) proposed a Comprehensive Procurement Guideline'' in April designating items that are or can be made with recovered materials. The Agency is proposing to designate 21 additional items and to amend the building installation guideline to establish recovered materials content levels for fiberglass and increase the levels for rock wool. The Comprehensive Procurement Guideline implements Section 6002(e) of the Resource Conservation and Recovery Act (RCRA), and Section 502 of Executive Order 12873. RCRA Section 6002 requires EPA to designate items that are or can be made with recovered materials and to recommend practices to assist federal procuring agencies with meeting their statutory obligations under RCRA Section 6002. After EPA designates an item, RCRA requires that each procuring agency purchase that designated item composed of the highest percentage of recovered materials practicable.

  1. Substantially self-powered method and apparatus for recovering...

    Office of Scientific and Technical Information (OSTI)

    A method and apparatus are provided for producing gaseous hydrocarbons from formations comprising solid hydrocarbon hydrates located under either a body of land or a body of water. ...

  2. One million curies of radioactive material recovered

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Radioactive material recovered One million curies of radioactive material recovered The accomplishment represents a major milestone in protecting our nation and the world from material that could be used in "dirty bombs" by terrorists. December 22, 2014 Rick Day of Los Alamos National Laboratory's International Threat Reduction group and the Off-Site Source Recovery Project (OSRP) holds a non-radioactive training mockup of what a typical cobalt-60 source might look like. The source is

  3. Final Technical Report "Catalytic Hydrogenation of Carbon Monoxide and Olefin Oxidation" Grant number : DE-FG02-86ER13615

    SciTech Connect (OSTI)

    Wayland, B.B.

    2009-08-31

    Title: Catalytic Hydrogenation of Carbon Monoxide and Olefin Oxidation Grant No. DE-FG02-86ER13615 PI: Wayland, B. B. (wayland@sas.upenn.edu) Abstract Development of new mechanistic strategies and catalyst materials for activation of CO, H2, CH4, C2H4, O2, and related substrates relevant to the conversion of carbon monoxide, alkanes, and alkenes to organic oxygenates are central objectives encompassed by this program. Design and synthesis of metal complexes that manifest reactivity patterns associated with potential pathways for the hydrogenation of carbon monoxide through metallo-formyl (M-CHO), dimetal ketone (M-C(O)-M), and dimetal dionyl (M-C(O)-C(O)-M) species is one major focus. Hydrocarbon oxidation using molecular oxygen is a central goal for methane activation and functionalization as well as regioselective oxidation of olefins. Discovery of new reactivity patterns and control of selectivity are pursued through designing new metal complexes and adjusting reaction conditions. Variation of reaction media promotes distinct reaction pathways that control both reaction rates and selectivities. Dimetalloradical diporphyrin complexes preorganize transition states for substrate reactions that involve two metal centers and manifest large rate increases over mono-metalloradical reactions of hydrogen, methane, and other small molecule substrates. Another broad goal and recurring theme of this program is to contribute to the thermodynamic database for a wide scope of organo-metal transformations in a range of reaction media. One of the most complete descriptions of equilibrium thermodynamics for organometallic reactions in water and methanol is emerging from the study of rhodium porphyrin substrate reactions in aqueous and alcoholic media. Water soluble group nine metalloporphyrins manifest remarkably versatile substrate reactivity in aqueous and alcoholic media which includes producing rhodium formyl (Rh-CHO) and hydroxy methyl (Rh-CH2OH) species. Exploratory

  4. Plasma Processing Of Hydrocarbon

    SciTech Connect (OSTI)

    Grandy, Jon D; Peter C. Kong; Brent A. Detering; Larry D. Zuck

    2007-05-01

    The Idaho National Laboratory (INL) developed several patented plasma technologies for hydrocarbon processing. The INL patents include nonthermal and thermal plasma technologies for direct natural gas to liquid conversion, upgrading low value heavy oil to synthetic light crude, and to convert refinery bottom heavy streams directly to transportation fuel products. Proof of concepts has been demonstrated with bench scale plasma processes and systems to convert heavy and light hydrocarbons to higher market value products. This paper provides an overview of three selected INL patented plasma technologies for hydrocarbon conversion or upgrade.

  5. Method and apparatus for recovering unstable cores

    DOE Patents [OSTI]

    McGuire, Patrick L. (Los Alamos, NM); Barraclough, Bruce L. (Los Alamos, NM)

    1983-01-01

    A method and apparatus suitable for stabilizing hydrocarbon cores are given. Such stabilized cores have not previously been obtainable for laboratory study, and such study is believed to be required before the hydrate reserves can become a utilizable resource. The apparatus can be built using commercially available parts and is very simple and safe to operate.

  6. Hydroprocessing hydrocarbon oils

    SciTech Connect (OSTI)

    Simpson, H.D.; Borgens, P.B.

    1990-07-10

    This patent describes a catalytic hydroprocess of a hydrocarbon oil containing nitrogen or sulfur. It comprises: contacting a catalytic composition with the hydrocarbon oil under hydroprocessing conditions so as to produce a product hydrocarbon oil containing less nitrogen or sulfur than the hydrocarbon oil, the catalytic composition prepared by the method comprising the steps of impregnating porous refractory support particles with an aqueous impregnating solution comprising one or more Group VIB metal components, one or more phosphorus components and citric acid, the citric acid in a mole ratio to the Group VIB metal components calculated as the Group VIB metal trioxide of less than 1 to 1. The solution has a pH less than 1.0 and calcining the impregnated support particles to produce a catalytic composition containing a Group VIB metal component and a phosphorous component on the porous refractory oxide support.

  7. Hydrocarbon geoscience research strategy

    SciTech Connect (OSTI)

    Not Available

    1990-04-01

    This document outlines a strategy for oil and gas related research focused on optimizing the economic producibility of the Nation's resources. The Hydrocarbon Geoscience Strategy was developed by the Hydrocarbon Geoscience Research Coordinating Committee of the Department of Energy (DOE). This strategy forms the basis for the development of DOE Fossil Energy's Oil Research Program Implementation Plan and Natural Gas Program Implementation Plan. 24 refs., 5 figs., 3 tabs.

  8. Final Report: Experimental and Theoretical Studies of Surface Oxametallacycles - Connections to Heterogeneous Olefin Epoxidation

    SciTech Connect (OSTI)

    Mark A. Barteau

    2009-09-15

    This project has aimed at the rational design of catalysts for direct epoxidation of olefins. This chemistry remains one of the most challenging problems in heterogeneous catalysis. Although the epoxidation of ethylene by silver catalysts to form ethylene oxide (EO) has been practiced for decades, little progress has been made in expanding this technology to other products and processes. We have made significant advances through the combination of surface science experiments, Density Functional Theory (DFT) calculations, and catalytic reactor experiments, toward understanding the mechanism of this reaction on silver catalysts, and to the rational improvement of selectivity. The key has been our demonstration of surface oxametallacycle intermediates as the species that control reaction selectivity. This discovery permits the influence of catalyst promoters on selectivity to be probed, and new catalyst formulations to be developed. It also guides the development of new chemistry with potential for direct epoxidation of more complex olefins. During the award period we have focused on 1. the formation and reaction selectivity of complex olefin epoxides on silver surfaces, and 2. the influence of co-adsorbed oxygen atoms on the reactions of surface oxametallacycles on silver, and 3. the computational prediction, synthesis, characterization and experimental evaluation of bimetallic catalysts for ethylene epoxidation. The significance of these research thrusts is as follows. Selective epoxidation of olefins more complex than ethylene requires suppression of not only side reactions available to the olefin such as C-H bond breaking, but it requires formation and selective ring closure of the corresponding oxametallacycle intermediates. The work carried out under this grant has significantly advanced the field of catalyst design from first principles. The combination of computational tools, surface science, and catalytic reactor experiments in a single laboratory has few

  9. Method and apparatus for production of subsea hydrocarbon formations

    DOE Patents [OSTI]

    Blandford, J.W.

    1995-01-17

    A system for controlling, separating, processing and exporting well fluids produced from subsea hydrocarbon formations is disclosed. The subsea well tender system includes a surface buoy supporting one or more decks above the water surface for accommodating equipment to process oil, gas and water recovered from the subsea hydrocarbon formation. The surface buoy includes a surface-piercing central flotation column connected to one or more external flotation tanks located below the water surface. The surface buoy is secured to the sea bed by one or more tendons which are anchored to a foundation with piles imbedded in the sea bed. The system accommodates multiple versions on the surface buoy configuration. 20 figures.

  10. Method and apparatus for production of subsea hydrocarbon formations

    DOE Patents [OSTI]

    Blandford, Joseph W.

    1995-01-01

    A system for controlling, separating, processing and exporting well fluids produced from subsea hydrocarbon formations is disclosed. The subsea well tender system includes a surface buoy supporting one or more decks above the water surface for accommodating equipment to process oil, gas and water recovered from the subsea hydrocarbon formation. The surface buoy includes a surface-piercing central flotation column connected to one or more external floatation tanks located below the water surface. The surface buoy is secured to the seabed by one or more tendons which are anchored to a foundation with piles imbedded in the seabed. The system accommodates multiple versions on the surface buoy configuration.

  11. Syngas Conversion to Hydrocarbon Fuels through Mixed Alcohol Intermediates

    SciTech Connect (OSTI)

    Dagle, Robert A.; Lebarbier, Vanessa M.; Albrecht, Karl O.; Li, Jinjing; Taylor, Charles E.; Bao, Xinhe; Wang, Yong

    2013-05-13

    Synthesis gas (syngas) can be used to synthesize a variety of fuels and chemicals. Domestic transportation and military operational interests have driven continued focus on domestic syngas-based fuels production. Liquid transportation fuels may be made from syngas via four basic processes: 1) higher alcohols, 2) Fischer-Tropsch (FT), 3) methanol-to-gasoline (MTG), and 4) methanol-to-olefins (MTO) and olefins-to-gasoline/distillate (MOGD). Compared to FT and higher alcohols, MTG and MTO-MOGD have received less attention in recent years. Due to the high capital cost of these synthetic fuel plants, the production cost of the finished fuel cannot compete with petroleum-derived fuel. Pacific Northwest National Laboratory has recently evaluated one way to potentially reduce capital cost and overall production cost for MTG by combining the methanol and MTG syntheses in a single reactor. The concept consists of mixing the conventional MTG catalyst (i.e. HZSM-5) with an alcohol synthesis catalyst. It was found that a methanol synthesis catalyst, stable at high temperature (i.e. Pd/ZnO/Al2O3) [1], when mixed with ZSM-5, was active for syngas conversion. Relatively high syngas conversion can be achieved as the equilibrium-driven conversion limitations for methanol and dimethyl ether are removed as they are intermediates to the final hydrocarbon product. However, selectivity control was difficult to achieve as formation of undesirable durene and light hydrocarbons was problematic [2]. The objective of the present study was thus to evaluate other potential composite catalyst systems and optimize the reactions conditions for the conversion of syngas to hydrocarbon fuels, through the use of mixed alcohol intermediates. Mixed alcohols are of interest as they have recently been reported to produce higher yields of gasoline compared to methanol [3]. 1. Lebarbier, V.M., Dagle, R.A., Kovarik, L., Lizarazo-Adarme, J.A., King, D.L., Palo, D.R., Catalyst Science & Technology, 2012, 2

  12. Process for recovering filler from polymer

    DOE Patents [OSTI]

    Smith, Maurice L.; Smith, Robert M.

    1978-01-01

    This disclosure relates to a process for recovering filler material from a polymeric matrix by reacting the matrix at an elevated temperature in a gas atmosphere with a controlled oxidizing potential and thereafter separating and cleaning the residue from the reaction mixture.

  13. Recover Heat from Boiler Blowdown, Energy Tips: STEAM, Steam...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    0 Recover Heat from Boiler Blowdown Heat can be recovered from boiler blowdown by using a heat exchanger to preheat boiler makeup water. Any boiler with continuous blowdown ...

  14. Use a Vent Condenser to Recover Flash Steam Energy | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Use a Vent Condenser to Recover Flash Steam Energy (January 2012) (374.64 KB) More Documents & Publications Recover Heat from Boiler Blowdown Deaerators in Industrial Steam Systems ...

  15. Recovering START institutional knowledge (Conference) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    Recovering START institutional knowledge Citation Details In-Document Search Title: Recovering START institutional knowledge You are accessing a document from the Department of ...

  16. The generation of efficient supported (Heterogeneous) olefin metathesis catalysts

    SciTech Connect (OSTI)

    Grubbs, Robert H

    2013-04-05

    Over the past decade, a new family of homogeneous metathesis catalysts has been developed that will tolerate most organic functionalities as well as water and air. These homogeneous catalysts are finding numerous applications in the pharmaceutical industry as well as in the production of functional polymers. In addition the catalysts are being used to convert seed oils into products that can substitute for those that are now made from petroleum products. Seed oils are unsaturated, contain double bonds, and are a ready source of linear hydrocarbon fragments that are specifically functionalized. To increase the number of applications in the area of biomaterial conversion to petrol chemicals, the activity and efficiency of the catalysts need to be as high as possible. The higher the efficiency of the catalysts, the lower the cost of the conversion and a larger number of practical applications become available. Active supported catalysts were prepared and tested in the conversion of seed oils and other important starting materials. The outcome of the work was successful and the technology has been transferred to a commercial operation to develop viable applications of the discovered systems. A biorefinery that converts seed oils is under construction in Indonesia. The catalysts developed in this study will be considered for the next generation of operations.

  17. Substantially isotactic, linear, alternating copolymers of carbon monoxide and an olefin

    DOE Patents [OSTI]

    Sen, Ayusman; Jiang, Zhaozhong

    1996-01-01

    The compound, [Pd(Me-DUPHOS)(MeCN).sub.2 ](BF.sub.4).sub.2, [Me-DUPHOS: 1,2-bis(2,5-dimethylphospholano)benzene] is an effective catalyst for the highly enantioselective, alternating copolymerization of olefins, such as aliphatic .alpha.-olefins, with carbon monoxide to form optically active, isotactic polymers which can serve as excellent starting materials for the synthesis of other classes of chiral polymers. For example, the complete reduction of a propylene-carbon monoxide copolymer resulted in the formation of a novel, optically active poly(1,4-alcohol). Also, the previously described catalyst is a catalyst for the novel alternating isomerization cooligomerization of 2-butene with carbon monoxide to form optically active, isotactic poly(1,5-ketone)

  18. Substantially isotactic, linear, alternating copolymers of carbon monoxide and an olefin

    DOE Patents [OSTI]

    Sen, A.; Jiang, Z.

    1996-05-28

    The compound, [Pd(Me-DUPHOS)(MeCN){sub 2}](BF{sub 4}){sub 2}, [Me-DUPHOS: 1,2-bis(2,5-dimethylphospholano)benzene] is an effective catalyst for the highly enantioselective, alternating copolymerization of olefins, such as aliphatic {alpha}-olefins, with carbon monoxide to form optically active, isotactic polymers which can serve as excellent starting materials for the synthesis of other classes of chiral polymers. For example, the complete reduction of a propylene-carbon monoxide copolymer resulted in the formation of a novel, optically active poly(1,4-alcohol). Also, the previously described catalyst is a catalyst for the novel alternating isomerization cooligomerization of 2-butene with carbon monoxide to form optically active, isotactic poly(1,5-ketone).

  19. Apparatus for separating and recovering hydrogen isotopes

    DOE Patents [OSTI]

    Heung, Leung K.

    1994-01-01

    An apparatus for recovering hydrogen and separating its isotopes. The apparatus includes a housing bearing at least a fluid inlet and a fluid outlet. A baffle is disposed within the housing, attached thereto by a bracket. A hollow conduit is coiled about the baffle, in spaced relation to the baffle and the housing. The coiled conduit is at least partially filled with a hydride. The hydride can be heated to a high temperature and cooled to a low temperature quickly by circulating a heat transfer fluid in the housing. The spacing between the baffle and the housing maximizes the heat exchange rate between the fluid in the housing and the hydride in the conduit. The apparatus can be used to recover hydrogen isotopes (protium, deuterium and tritium) from gaseous mixtures, or to separate hydrogen isotopes from each other.

  20. Improving olefin tolerance and production in E. coli using native and evolved AcrB

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Mingardon, Florence; Clement, Camille; Hirano, Kathleen; Nhan, Melissa; Luning, Eric G.; Chanal, Angelique; Mukhopadhyay, Aindrila

    2015-01-20

    Microorganisms can be engineered for the production of chemicals utilized in the polymer industry. However many such target compounds inhibit microbial growth and might correspondingly limit production levels. Here, we focus on compounds that are precursors to bioplastics, specifically styrene and representative alpha-olefins; 1-hexene, 1-octene, and 1-nonene. We evaluated the role of the Escherichia coli efflux pump, AcrAB-TolC, in enhancing tolerance towards these olefin compounds. AcrAB-TolC is involved in the tolerance towards all four compounds in E. coli. Both styrene and 1-hexene are highly toxic to E. coli. Styrene is a model plastics precursor with an established route for productionmore » in E. coli (McKenna and Nielsen, 2011). Though our data indicates that AcrAB-TolC is important for its optimal production, we observed a strong negative selection against the production of styrene in E. coli. Thus we used 1-hexene as a model compound to implement a directed evolution strategy to further improve the tolerance phenotype towards this alpha-olefin. We focused on optimization of AcrB, the inner membrane domain known to be responsible for substrate binding, and found several mutations (A279T, Q584R, F617L, L822P, F927S, and F1033Y) that resulted in improved tolerance. Several of these mutations could also be combined in a synergistic manner. Our study shows efflux pumps to be an important mechanism in host engineering for olefins, and one that can be further improved using strategies such as directed evolution, to increase tolerance and potentially production.« less

  1. Sequential pyrolysis of plastic to recover polystyrene HCL and terephthalic acid

    DOE Patents [OSTI]

    Evans, Robert J. (Lakewood, CO); Chum, Helena L. (Arvada, CO)

    1995-01-01

    A process of pyrolyzing plastic waste feed streams containing polyvinyl chloride, polyethylene terephthalate, polystyrene and polyethylene to recover polystyrene HCl and terephthalic acid comprising: heating the plastic waste feed stream to a first temperature; adding an acid or base catalyst on an oxide or carbonate support; heating the plastic waste feed stream to pyrolyze polyethylene terephthalate and polyvinyl chloride; separating terephthalic acid or HCl; heating to a second temperature to pyrolyze polystyrene; separating styrene; heating the waste feed stream to a third temperature to pyrolyze polyethylene; and separating hydrocarbons.

  2. Sequential pyrolysis of plastic to recover polystyrene, HCl and terephthalic acid

    DOE Patents [OSTI]

    Evans, R.J.; Chum, H.L.

    1995-11-07

    A process is described for pyrolyzing plastic waste feed streams containing polyvinyl chloride, polyethylene terephthalate, polystyrene and polyethylene to recover polystyrene, HCl and terephthalic acid comprising: heating the plastic waste feed stream to a first temperature; adding an acid or base catalyst on an oxide or carbonate support; heating the plastic waste feed stream to pyrolyze polyethylene terephthalate and polyvinyl chloride; separating terephthalic acid or HCl; heating to a second temperature to pyrolyze polystyrene; separating styrene; heating the waste feed stream to a third temperature to pyrolyze polyethylene; and separating hydrocarbons. 83 figs.

  3. Hydrocarbon Technologies | Open Energy Information

    Open Energy Info (EERE)

    Technologies Jump to: navigation, search Name: Hydrocarbon Technologies Place: Lawrenceville, New Jersey Zip: 8648 Sector: Efficiency Product: String representation...

  4. Dispersant solutions for dispersing hydrocarbons

    DOE Patents [OSTI]

    Tyndall, R.L.

    1997-03-11

    A dispersant solution includes a hydrocarbon dispersing solution derived from a bacterium from ATCC 75527, ATCC 75529, or ATCC 55638.

  5. Dispersant solutions for dispersing hydrocarbons

    DOE Patents [OSTI]

    Tyndall, Richard L. (Clinton, TN)

    1997-01-01

    A dispersant solution includes a hydrocarbon dispersing solution derived from a bacterium from ATCC 75527, ATCC 75529, or ATCC 55638.

  6. Method for recovering metals from waste

    DOE Patents [OSTI]

    Wicks, G.G.; Clark, D.E.; Schulz, R.L.

    1998-12-01

    A method is described for recovering metals from metals-containing wastes, and vitrifying the remainder of the wastes for disposal. Metals-containing wastes such as circuit boards, cathode ray tubes, vacuum tubes, transistors and so forth, are broken up and placed in a suitable container. The container is heated by microwaves to a first temperature in the range of approximately 300--800 C to combust organic materials in the waste, then heated further to a second temperature in the range of approximately 1,000--1,550 C at which temperature glass formers present in the waste will cause it to melt and vitrify. Low-melting-point metals such as tin and aluminum can be recovered after organics combustion is substantially complete. Metals with higher melting points, such as gold, silver and copper, can be recovered from the solidified product or separated from the waste at their respective melting points. Network former-containing materials can be added at the start of the process to assist vitrification. 2 figs.

  7. Method for recovering materials from waste

    DOE Patents [OSTI]

    Wicks, G.G.; Clark, D.E.; Schulz, R.L.

    1994-01-01

    A method for recovering metals from metals-containing wastes, a vitrifying the remainder of the wastes for disposal. Metals-containing wastes such as circuit boards, cathode ray tubes, vacuum tubes, transistors and so forth, are broken up and placed in a suitable container. The container is heated by microwaves to a first temperature in the range of approximately 300--800{degrees}C to combust organic materials in the waste, then heated further to a second temperature in the range of approximately 1000--1550{degrees}C at which temperature glass formers present in the waste will cause it to melt and vitrify. Low-melting-point metals such as tin and aluminum can be recovered after organics combustion is substantially complete. Metals with higher melting points, such as gold, silver and copper, can be recovered from the solidified product or separated from the waste at their respective melting points. Network former-containing materials can be added at the start of the process to assist vitrification.

  8. Method for recovering metals from waste

    DOE Patents [OSTI]

    Wicks, George G.; Clark, David E.; Schulz, Rebecca L.

    2000-01-01

    A method for recovering metals from metals-containing wastes, and vitrifying the remainder of the wastes for disposal. Metals-containing wastes such as circuit boards, cathode ray tubes, vacuum tubes, transistors and so forth, are broken up and placed in a suitable container. The container is heated by microwaves to a first temperature in the range of approximately 300-800.degree. C. to combust organic materials in the waste, then heated further to a second temperature in the range of approximately 1,000-1,550.degree. C. at which temperature glass formers present in the waste will cause it to melt and vitrify. Low-melting-point metals such as tin and aluminum can be recovered after organics combustion is substantially complete. Metals with higher melting points, such as gold, silver and copper, can be recovered from the solidified product or separated from the waste at their respective melting points. Network former-containing materials can be added at the start of the process to assist vitrification.

  9. Method for recovering metals from waste

    DOE Patents [OSTI]

    Wicks, George G.; Clark, David E.; Schulz, Rebecca L.

    1998-01-01

    A method for recovering metals from metals-containing wastes, and vitrifying the remainder of the wastes for disposal. Metals-containing wastes such as circuit boards, cathode ray tubes, vacuum tubes, transistors and so forth, are broken up and placed in a suitable container. The container is heated by microwaves to a first temperature in the range of approximately 300.degree.-800.degree. C. to combust organic materials in the waste, then heated further to a second temperature in the range of approximately 1,000.degree.-1,550.degree. C. at which temperature glass formers present in the waste will cause it to melt and vitrify. Low-melting-point metals such as tin and aluminum can be recovered after organics combustion is substantially complete. Metals with higher melting points, such as gold, silver and copper, can be recovered from the solidified product or separated from the waste at their respective melting points. Network former-containing materials can be added at the start of the process to assist vitrification.

  10. Cyclopentadienyl-Containing Low-Valent Early Transition Metal Olefin Polymerization Catalysts

    DOE Patents [OSTI]

    Marks, Tobin J.; Luo, Lubin; Yoon, Sung Cheol

    2004-06-08

    A catalyst system useful to polymerize and co-polymerize polar and non-polar olefin monomers is formed by in situ reduction with a reducing agent of a catalyst precursor comprising {Cp*MRR'.sub.n }.sup.+ {A}.sup.- wherein Cp* is a cyclopentadienyl or substituted cyclopentadienyl moiety; M is an early transition metal; R is a C.sub.1 -C.sub.20 hydrocarbyl; R' are independently selected from hydride, C.sub.1 -C.sub.20 hydrocarbyl, SiR".sub.3, NR".sub.2, OR", SR", GeR".sub.3, SnR".sub.3, and C.dbd.C-containing groups (R"=C.sub.1 -C.sub.10 hydrocarbyl); n is an integer selected to balance the oxidation state of M; and A is a suitable non-coordinating anionic cocatalyst or precursor. This catalyst system may form stereoregular olefin polymers including syndiotactic polymers of styrene and methylmethacrylate and isotactic copolymers of polar and nonpolar olefin monomers such as methylmethacrylate and styrene.

  11. Cyclopentadienyl-containing low-valent early transition metal olefin polymerization catalysts

    DOE Patents [OSTI]

    Marks, Tobin J.; Luo, Lubin; Yoon, Sung Cheol

    2006-10-10

    A catalyst system useful to polymerize and co-polymerize polar and non-polar olefin monomers is formed by in situ reduction with a reducing agent of a catalyst precursor comprising {Cp*MRR'.sub.n}.sup.+{A}.sup.- wherein Cp* is a cyclopentadienyl or substituted cyclopentadienyl moiety; M is an early transition metal; R is a C.sub.1 C.sub.20 hydrocarbyl; R' are independently selected from hydride, C.sub.1 C.sub.20 hydrocarbyl, SiR''.sub.3, NR''.sub.2, OR'', SR'', GeR''.sub.3, SnR''.sub.3, and C.dbd.C-containing groups (R''=C.sub.1 C.sub.10 hydrocarbyl); n is an integer selected to balance the oxidation state of M; and A is a suitable non-coordinating anionic cocatalyst or precursor. This catalyst system may form stereoregular olefin polymers including syndiotactic polymers of styrene and methylmethacrylate and isotactic copolymers of polar and nonpolar olefin monomers such as methylmethacrylate and styrene.

  12. Cyclopentadienyl-containing low-valent early transition metal olefin polymerization catalysts

    DOE Patents [OSTI]

    Marks, Tobin J.; Luo, Lubin; Yoon, Sung Cheol

    2007-01-09

    A catalyst system useful to polymerize and co-polymerize polar and non-polar olefin monomers is formed by in situ reduction with a reducing agent of a catalyst precursor comprising {Cp*MRR'.sub.n}.sup.+{A}.sup.- wherein Cp* is a cyclopentadienyl or substituted cyclopentadienyl moiety; M is an early transition metal; R is a C.sub.1 C.sub.20 hydrocarbyl; R' are independently selected from hydride, C.sub.1 C.sub.20 hydrocarbyl, SiR''.sub.3, NR''.sub.2, OR'', SR'', GeR''.sub.3, SnR''.sub.3, and C.dbd.C-containing groups (R''=C.sub.1 C.sub.10 hydrocarbyl); n is an integer selected to balance the oxidation state of M; and A is a suitable non-coordinating anionic cocatalyst or precursor. This catalyst system may form stereoregular olefin polymers including syndiotactic polymers of styrene and methylmethacrylate and isotactic copolymers of polar and nonpolar olefin monomers such as methylmethacrylate and styrene.

  13. Cyclopentadienyl-containing low-valent early transition metal olefin polymerization catalysts

    DOE Patents [OSTI]

    Marks, Tobin J.; Luo, Lubin; Yoon, Sung Cheol

    2003-12-30

    A catalyst system useful to polymerize and co-polymerize polar and non-polar olefin monomers is formed by in situ reduction with a reducing agent of a catalyst precursor comprising wherein Cp* is a cyclopentadienyl or substituted cyclopentadienyl moiety; M is an early transition metal; R is a C.sub.1 -C.sub.20 hydrocarbyl; R' are independently selected from hydride, C.sub.1 -C.sub.20 hydrocarbyl, SiR".sub.3, NR".sub.2, OR", SR", GeR".sub.3, SnR".sub.3, and C.dbd.C containing groups (R".dbd.C.sub.1 -C.sub.10 hydrocarbyl); n is an integer selected to balance the oxidation state of M; and A is a suitable non-coordinating anionic cocatalyst or precursor. This catalyst system may form stereoregular olefin polymers including syndiotactic polymers of styrene and methylmethacrylate and isotactic copolymers of polar and nonpolar olefin monomers such as methylmethacrylate and styrene.

  14. Cyclopentadienyl-containing low-valent early transition metal olefin polymerization catalysts

    DOE Patents [OSTI]

    Marks, Tobin J.; Luo, Lubin; Yoon, Sung Cheol

    2003-04-08

    A catalyst system useful to polymerize and co-polymerize polar and non-polar olefin monomers is formed by in situ reduction with a reducing agent of a catalyst precursor comprising {Cp*MRR'.sub.n }.sup.+ {A}.sup.- wherein Cp* is a cyclopentadienyl or substituted cyclopentadienyl moiety; M is an early transition metal; R is a C.sub.1 -C.sub.20 hydrocarbyl; R' are independently selected from hydride, C.sub.1 -C.sub.20 hydrocarbyl, SiR".sub.3, NR".sub.2, OR", SR", GeR".sub.3, and SnR".sub.3 containing groups (R"=C.sub.1 -C.sub.10 hydrocarbyl); n is an integer selected to balance the oxidation state of M; and A is a suitable non-coordinating anionic cocatalyst or precursor. This catalyst system may form stereoregular olefin polymers including syndiotactic polymers of styrene and methylmethacrylate and isotactic copolymers of polar and nonpolar olefin monomers such as methylmethacrylate and styrene.

  15. Low severity coal liquefaction promoted by cyclic olefins. Quarterly report, April--June 1992

    SciTech Connect (OSTI)

    Curtis, C.W.

    1992-07-27

    Low severity coal liquefaction allows for solubilization of coal with reduced gas make. These lower severity conditions may result in some selective bond rupture. Promotion of coal solubilization through hydrogen transfer using highly active and effective hydrogen donors is the objective of this study. The highly effective donors being tested are cyclic olefins. Representative cyclic olefins are isotetralin, which is 1,4,5,8-tetrahydronaphthalene, and 1,4,5,8,9,10-hexahydroanthracene. These compounds are hydroaromatics without aromatic rings and have been shown to be highly effective donors. The objective of the work performed in this study during this quarter was to evaluate reaction parameters for low severity liquefaction reactions using the cyclic olefin, hexahydroanthracene, and the aromatic, anthracene. These model compounds were reacted under a variety of conditions to evaluate their reactivity without coal. The reactions were performed under both thermal and catalytic conditions. Finely divided catalysts from different molybdenum precursors were used to determine their activity in promoting hydrogenation and hydrogen transfer at low severity conditions. The catalysts used were Molyvan L, sulfurized oxymolybdenum dithiocarbamate, molybdenum naphthenate, and Molyvan 822, organo molybdenum dithiocarbamate.

  16. Optrode for sensing hydrocarbons

    DOE Patents [OSTI]

    Miller, H.; Milanovich, F.P.; Hirschfeld, T.B.; Miller, F.S.

    1987-05-19

    A two-phase system employing the Fujiwara reaction is provided for the fluorometric detection of halogenated hydrocarbons. A fiber optic is utilized to illuminate a column of pyridine trapped in a capillary tube coaxially attached at one end to the illuminating end of the fiber optic. A strongly alkaline condition necessary for the reaction is maintained by providing a reservoir of alkali in contact with the column of pyridine, the surface of contact being adjacent to the illuminating end of the fiber optic. A semipermeable membrane caps the other end of the capillary tube, the membrane being preferentially permeable to the halogenated hydrocarbon but preferentially impermeable to water and pyridine. As the halogenated hydrocarbon diffuses through the membrane and into the column of pyridine, fluorescent reaction products are formed. Light propagated by the fiber optic from a light source, excites the fluorescent products. Light from the fluorescence emission is also collected by the same fiber optic and transmitted to a detector. The intensity of the fluorescence gives a measure of the concentration of the halogenated hydrocarbons. 6 figs.

  17. Optrode for sensing hydrocarbons

    DOE Patents [OSTI]

    Miller, H.; Milanovich, F.P.; Hirschfeld, T.B.; Miller, F.S.

    1988-09-13

    A two-phase system employing the Fujiwara reaction is provided for the fluorometric detection of halogenated hydrocarbons. A fiber optic is utilized to illuminate a column of pyridine trapped in a capillary tube coaxially attached at one end to the illuminating end of the fiber optic. A strongly alkaline condition necessary for the reaction is maintained by providing a reservoir of alkali in contact with the column of pyridine, the surface of contact being adjacent to the illuminating end of the fiber optic. A semipermeable membrane caps the other end of the capillary tube, the membrane being preferentially permeable to the halogenated hydrocarbon and but preferentially impermeable to water and pyridine. As the halogenated hydrocarbon diffuses through the membrane and into the column of pyridine, fluorescent reaction products are formed. Light propagated by the fiber optic from a light source, excites the fluorescent products. Light from the fluorescence emission is also collected by the same fiber optic and transmitted to a detector. The intensity of the fluorescence gives a measure of the concentration of the halogenated hydrocarbons. 5 figs.

  18. Optrode for sensing hydrocarbons

    DOE Patents [OSTI]

    Miller, Holly (Bethel Island, CA); Milanovich, Fred P. (Lafayette, CA); Hirschfeld, Tomas B. (Livermore, CA); Miller, Fred S. (Bethel Island, CA)

    1987-01-01

    A two-phase system employing the Fujiwara reaction is provided for the fluorometric detection of halogenated hydrocarbons. A fiber optic is utilized to illuminate a column of pyridine trapped in a capillary tube coaxially attached at one end to the illuminating end of the fiber optic. A strongly alkaline condition necessary for the reaction is maintained by providing a reservoir of alkali in contact with the column of pyridine, the surface of contact being adjacent to the illuminating end of the fiber optic. A semipermeable membrane caps the other end of the capillary tube, the membrane being preferentially permeable to the halogenated hydrocarbon and but preferentially impermeable to water and pyridine. As the halogenated hydrocarbon diffuses through the membrane and into the column of pyridine, fluorescent reaction products are formed. Light propagated by the fiber optic from a light source, excites the fluorescent products. Light from the fluorescence emission is also collected by the same fiber optic and transmitted to a detector. The intensity of the fluorescence gives a measure of the concentration of the halogenated hydrocarbons.

  19. Optrode for sensing hydrocarbons

    DOE Patents [OSTI]

    Miller, Holly (Bethel Island, CA); Milanovich, Fred P. (Lafayette, CA); Hirschfeld, Tomas B. (Livermore, CA); Miller, Fred S. (Bethel Island, CA)

    1988-01-01

    A two-phase system employing the Fujiwara reaction is provided for the fluorometric detection of halogenated hydrocarbons. A fiber optic is utilized to illuminate a column of pyridine trapped in a capillary tube coaxially attached at one end to the illuminating end of the fiber optic. A strongly alkaline condition necessary for the reaction is maintained by providing a reservoir of alkali in contact with the column of pyridine, the surface of contact being adjacent to the illuminating end of the fiber optic. A semipermeable membrane caps the other end of the capillary tube, the membrane being preferentially permeable to the halogenated hydrocarbon and but preferentially impermeable to water and pyridine. As the halogenated hydrocarbon diffuses through the membrane and into the column of pyridine, fluorescent reaction products are formed. Light propagated by the fiber optic from a light source, excites the fluorescent products. Light from the fluorescence emission is also collected by the same fiber optic and transmitted to a detector. The intensity of the fluorescence gives a measure of the concentration of the halogenated hydrocarbons.

  20. Hydrogen, Hydrocarbons, and Bioproduct Precursors from Wastewaters...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen, Hydrocarbons, and Bioproduct Precursors from Wastewaters Workshop: Agenda and Objectives Hydrogen, Hydrocarbons, and Bioproduct Precursors from Wastewaters Workshop:...

  1. Conversion of heavy hydrocarbon oils

    SciTech Connect (OSTI)

    Chen, N.Y.; Pelrine, B.P.; Yan, T.Y.

    1982-12-14

    This invention provides a process for upgrading a heavy hydrocarbon oil to motor fuel products. The heavy hydrocarbon oil is admixed with a metal halide catalyst and a solvent component under supercritical conditions to form (1) a dense-gas solvent phase which contains refined hydrocarbon crackate, and which is substantially free of metal halide catalyst content; and (2) a residual asphaltic phase.

  2. Hydrocarbonization research: completion report

    SciTech Connect (OSTI)

    Youngblood, E.L.; Cochran, H.D. Jr.; Westmoreland, P.R.; Brown, C.H. Jr.; Oswald, G.E.; Barker, R.E.

    1981-01-01

    Hydrocarbonization is a relatively simple process used for producing oil, substitute natural gas, and char by heating coal under a hydrogen-rich atmosphere. This report describes studies that were performed in a bench-scale hydrocarbonization system at Oak Ridge National Laboratory (ORNL) during the period 1975 to 1978. The results of mock-up studies, coal metering valve and flowmeter development, and supporting work in an atmospheric hydrocarbonization system are also described. Oil, gas, and char yields were determined by hydrocarbonization of coal in a 0.1-m-diam fluidized-bed reactor operated at a pressure of 2170 kPa and at temperatures ranging from 694 to 854 K. The nominal coal feed rate was 4.5 kg/h. Wyodak subbituminous coal was used for most of the experiments. A maximum oil yield of approx. 21% based on moisture- and ash-free (maf) coal was achieved in the temperature range of 810 to 840 K. Recirculating fluidized-bed, uniformly fluidized-bed, and rapid hydropyrolysis reactors were used. A series of operability tests was made with Illinois No. 6 coal to determine whether caking coal could be processed in the recirculating fluidized-bed reactor. These tests were generally unsuccessful because of agglomeration and caking problems; however, these problems were eliminated by the use of chemically pretreated coal. Hydrocarbonization experiments were carried out with Illinois No. 6 coal that had been pretreated with CaO-NaOH, Na/sub 2/CO/sub 3/, and CaO-Na/sub 2/CO/sub 3/. Oil yields of 14, 24, and 21%, respectively, were obtained from the runs with treated coal. Gas and char yield data and the composition of the oil, gas, and char products are presented.

  3. Membrane separation of hydrocarbons

    DOE Patents [OSTI]

    Chang, Y. Alice; Kulkarni, Sudhir S.; Funk, Edward W.

    1986-01-01

    Mixtures of heavy oils and light hydrocarbons may be separated by passing the mixture through a polymeric membrane. The membrane which is utilized to effect the separation comprises a polymer which is capable of maintaining its integrity in the presence of hydrocarbon compounds and which has been modified by being subjected to the action of a sulfonating agent. Sulfonating agents which may be employed will include fuming sulfuric acid, chlorosulfonic acid, sulfur trioxide, etc., the surface or bulk modified polymer will contain a degree of sulfonation ranging from about 15 to about 50%. The separation process is effected at temperatures ranging from about ambient to about 100.degree. C. and pressures ranging from about 50 to about 1000 psig.

  4. Hydrocarbons from methanol

    SciTech Connect (OSTI)

    Chang, C.D.

    1983-01-01

    During the early 1970s, the conversion of methanol to hydrocarbons emerged as a viable industrial process due to two events: the discovery by workers at Mobil Oil Company of the selective catalytic conversion of methanol to high octane gasoline over zeolite catalysts and the 1973 Arab oil embargo. This survey attempts to comprehensively cover the journal literature and selectively cover the patent literature dealing with the theoretical aspects of the methanol conversion. 178 references. (BLM)

  5. Direct hydrocarbon fuel cells

    DOE Patents [OSTI]

    Barnett, Scott A.; Lai, Tammy; Liu, Jiang

    2010-05-04

    The direct electrochemical oxidation of hydrocarbons in solid oxide fuel cells, to generate greater power densities at lower temperatures without carbon deposition. The performance obtained is comparable to that of fuel cells used for hydrogen, and is achieved by using novel anode composites at low operating temperatures. Such solid oxide fuel cells, regardless of fuel source or operation, can be configured advantageously using the structural geometries of this invention.

  6. Process for recovering organic vapors from air

    DOE Patents [OSTI]

    Baker, Richard W.

    1985-01-01

    A process for recovering and concentrating organic vapor from a feed stream of air having an organic vapor content of no more than 20,000 ppm by volume. A thin semipermeable membrane is provided which has a feed side and a permeate side, a selectivity for organic vapor over air of at least 50, as measured by the ratio of organic vapor permeability to nitrogen permeability, and a permeability of organic vapor of at least 3.times.10.sup.-7 cm.sup.3 (STP) cm/cm.sup.2 sec.cm Hg. The feed stream is passed across the feed side of the thin semipermeable membrane while providing a pressure on the permeate side which is lower than the feed side by creating a partial vacuum on the permeate side so that organic vapor passes preferentially through the membrane to form an organic vapor depleted air stream on the feed side and an organic vapor enriched stream on the permeate side. The organic vapor which has passed through the membrane is compressed and condensed to recover the vapor as a liquid.

  7. PROCESS OF RECOVERING URANIUM FROM ITS ORES

    DOE Patents [OSTI]

    Galvanek, P. Jr.

    1959-02-24

    A process is presented for recovering uranium from its ores. The crushed ore is mixed with 5 to 10% of sulfuric acid and added water to about 5 to 30% of the weight of the ore. This pugged material is cured for 2 to 3 hours at 100 to 110 deg C and then cooled. The cooled mass is nitrate-conditioned by mixing with a solution equivalent to 35 pounds of ammunium nitrate and 300 pounds of water per ton of ore. The resulting pulp containing 70% or more solids is treated by upflow percolation with a 5% solution of tributyl phosphate in kerosene at a rate equivalent to a residence time of about one hour to extract the solubilized uranium. The uranium is recovered from the pregnant organic liquid by counter-current washing with water. The organic extractant may be recycled. The uranium is removed from the water solution by treating with ammonia to precipitate ammonium diuranate. The filtrate from the last step may be recycled for the nitrate-conditioning treatment.

  8. Radical scavengers from heavy hydrocarbons

    SciTech Connect (OSTI)

    Kubo, Junichi

    1996-10-01

    The hydrogen-donating properties of some hydrocarbons form the basis for processes such as coal liquefaction and heavy oil upgrading. However, these hydrocarbons have seldom been used for other purposes, because their potential applications have not been well recognized. Research has indicated that these hydrogen-donating hydrocarbons can be used in important reactions as radical scavengers and have properties particular to those of pure hydrocarbons without functional groups containing heteroatoms. Over years of study researchers have found that pure hydrocarbons with radical-scavenging effects nearly as high as those in conventional hindered phenolic antioxidants can be produced from petroleum, and these hydrogen-donating hydrocarbons exhibit such effects even in oxidative atmospheres (i.e., they function as antioxidants). He has also shown that these mixtures have some properties particular to pure hydrocarbons without functional groups containing heteroatoms, and they`ve seen that a mechanism based on the steric effects appears when these hydrocarbons are used in heavy oil hydroprocessing. Hydrogen-donating hydrocarbons should be a viable resource in many applications. In this article, he presents radical-scavenging abilities, characteristics as pure hydrocarbons, and applications on the basis of the studies.

  9. PROCESSES OF RECOVERING URANIUM FROM A CALUTRON

    DOE Patents [OSTI]

    Baird, D.O.; Zumwalt, L.R.

    1958-07-15

    An improved process is described for recovering the residue of a uranium compound which has been subjected to treatment in a calutron, from the parts of the calutron disposed in the source region upon which the residue is deposited. The process may be utilized when the uranium compound adheres to a surface containing metals of the group consisting of copper, iron, chromium, and nickel. The steps comprise washing the surface with an aqueous acidic oxidizing solvent for the uranium whereby there is obtained an acidic aqueous Solution containing uranium as uranyl ions and metals of said group as impurities, treating the acidic solution with sodium acetate in the presenee of added sodium nitrate to precipitate the uranium as sodium uranyl acetate away from the impurities in the solution, and separating the sodium uranyl acetate from the solution.

  10. Apparatus to recover tritium from tritiated molecules

    DOE Patents [OSTI]

    Swansiger, William A. (Livermore, CA)

    1988-01-01

    An apparatus for recovering tritium from tritiated compounds is provided, including a preheater for heating tritiated water and other co-injected tritiated compounds to temperatures of about 600.degree. C. and a reactor charged with a mixture of uranium and uranium dioxide for receiving the preheated mixture. The reactor vessel is preferably stainless steel of sufficient mass so as to function as a heat sink preventing the reactor side walls from approaching high temperatures. A disposable copper liner extends between the reaction chamber and stainless steel outer vessel to prevent alloying of the uranium with the outer vessel. The uranium dioxide functions as an insulating material and heat sink preventing the reactor side walls from attaining reaction temperatures to thereby minimize tritium permeation rates. The uranium dioxide also functions as a diluent to allow for volumetric expansion of the uranium as it is converted to uranium dioxide.

  11. Cyclic olefin homopolymer-based microfluidics for protein crystallization and in situ X-ray diffraction

    SciTech Connect (OSTI)

    Emamzadah, Soheila [Department of Molecular Biology, University of Geneva, CH-1205 Geneva (Switzerland); Department of Biochemistry, University of Geneva, CH-1205 Geneva (Switzerland); Petty, Tom J. [Department of Molecular Biology, University of Geneva, CH-1205 Geneva (Switzerland); Biomedical Graduate Studies Genomics and Computational Biology Group, University of Pennsylvania, Philadelphia, PA 19104 (United States); De Almeida, Victor [Department of Molecular Biology, University of Geneva, CH-1205 Geneva (Switzerland); Department of Biochemistry, University of Geneva, CH-1205 Geneva (Switzerland); Nishimura, Taisuke [Department of Plant Biology, University of Geneva, CH-1205 Geneva (Switzerland); Joly, Jacques; Ferrer, Jean-Luc [Institut de Biologie Structurale J.-P. Ebel, CEA-CNRS-University J. Fourier, 38027 Grenoble CEDEX 1 (France); Halazonetis, Thanos D., E-mail: thanos.halazonetis@unige.ch [Department of Molecular Biology, University of Geneva, CH-1205 Geneva (Switzerland); Department of Biochemistry, University of Geneva, CH-1205 Geneva (Switzerland)

    2009-09-01

    A cyclic olefin homopolymer-based microfluidics system has been established for protein crystallization and in situ X-ray diffraction. Microfluidics is a promising technology for the rapid identification of protein crystallization conditions. However, most of the existing systems utilize silicone elastomers as the chip material which, despite its many benefits, is highly permeable to water vapour. This limits the time available for protein crystallization to less than a week. Here, the use of a cyclic olefin homopolymer-based microfluidics system for protein crystallization and in situ X-ray diffraction is described. Liquid handling in this system is performed in 2 mm thin transparent cards which contain 500 chambers, each with a volume of 320 nl. Microbatch, vapour-diffusion and free-interface diffusion protocols for protein crystallization were implemented and crystals were obtained of a number of proteins, including chicken lysozyme, bovine trypsin, a human p53 protein containing both the DNA-binding and oligomerization domains bound to DNA and a functionally important domain of Arabidopsis Morpheus molecule 1 (MOM1). The latter two polypeptides have not been crystallized previously. For X-ray diffraction analysis, either the cards were opened to allow mounting of the crystals on loops or the crystals were exposed to X-rays in situ. For lysozyme, an entire X-ray diffraction data set at 1.5 resolution was collected without removing the crystal from the card. Thus, cyclic olefin homopolymer-based microfluidics systems have the potential to further automate protein crystallization and structural genomics efforts.

  12. LPG--a direct source of C/sub 3/-C/sub 4/ olefins

    SciTech Connect (OSTI)

    Pujado, P.R.; Berg, R.C.; Vora, B.V.

    1983-03-28

    This article describes the selective production of olefins by the catalytic dehydrogenation of the corresponding paraffins by means of UOP's Oleflex process. In this process, propylene can be obtained at about 85 mol % selectivity by the catalytic dehydrogenation of propane. Isobutylene can be obtained at selectivities in excess of 90 mol % from isobutane, and n-butenes (1-butene plus 2-butene) at about 80 mol % from n-butane. The availability of this technology, coupled with an abundant supply of LPG (C/sub 3/ and C/sub 4/ paraffins), opens new avenues for the selective production of propylene and butylenes.

  13. Catalytic partial oxidation of hydrocarbons

    DOE Patents [OSTI]

    Schmidt, Lanny D.; Krummenacher, Jakob J.; West, Kevin N.

    2007-08-28

    A process for the production of a reaction product including a carbon containing compound. The process includes providing a film of a fuel source including at least one organic compound on a wall of a reactor, contacting the fuel source with a source of oxygen, forming a vaporized mixture of fuel and oxygen, and contacting the vaporized mixture of fuel and oxygen with a catalyst under conditions effective to produce a reaction product including a carbon containing compound. Preferred products include .alpha.-olefins and synthesis gas. A preferred catalyst is a supported metal catalyst, preferably including rhodium, platinum, and mixtures thereof.

  14. Catalytic partial oxidation of hydrocarbons

    DOE Patents [OSTI]

    Schmidt, Lanny D.; Krummenacher, Jakob J.; West, Kevin N.

    2009-05-19

    A process for the production of a reaction product including a carbon containing compound. The process includes providing a film of a fuel source including at least one organic compound on a wall of a reactor, contacting the fuel source with a source of oxygen, forming a vaporized mixture of fuel and oxygen, and contacting the vaporized mixture of fuel and oxygen with a catalyst under conditions effective to produce a reaction product including a carbon containing compound. Preferred products include .alpha.-olefins and synthesis gas. A preferred catalyst is a supported metal catalyst, preferably including rhodium, platinum, and mixtures thereof.

  15. Sequential pyrolysis of plastic to recover polystyrene HCL and...

    Office of Scientific and Technical Information (OSTI)

    feed stream to a third temperature to pyrolyze polyethylene; and separating hydrocarbons. ... Sponsoring Org: USDOE Country of Publication: United States Language: English Subject: ...

  16. Recovering metals from spent hydroprocessing catalysts

    SciTech Connect (OSTI)

    Hubred, G. L.; Van Leirshurg, D. A.

    1985-02-19

    A process for recovering the metal values from spent hydroprocessing catalyst particles. The metal values will include at least one metal of Group VIII of the Periodic Table and at least one metal of Group Vb or Group VIb of the Periodic Table. The spent catalyst particles are first roasted at between 400/sup 0/ C. and 600/sup 0/ C. and then contacted with a first aqueous solution of ammonia and an ammonium salt forming a first pregnant liquor. The once-leached spent hydroprocessing catalysts are contacted with a second aqueous solution of sulfur dioxide forming a second pregnant liquor. The metal values are precipitated from the second pregnant liquor with hydrogen sulfide and the precipitate is roasted with unroasted spent hydroprocessing catalysts. The metal values of Group Vb and Group VIb in the first pregnant liquor are transferred into a first organic solution by liquid ion exchange. The first organic solution is stripped by an aqueous strip solution and the metal values separated by sequential precipitation. The metals of Group VIII are separated and purified by serial liquid ion exchange.

  17. Electrochemical processes in recovering metals from ores

    SciTech Connect (OSTI)

    Felker, D.L. ); Bautista, R.G. . Dept. of Chemical and Metallurgical Engineering)

    1990-04-01

    Chalcopyrite (CuFeS{sub 2}) is one of the most abundant copper-bearing minerals in the U.S. Oxidative leaching and smelting and refining are the most common methods used for recovering copper from chalcopyrite. One of the problems associated with oxidative leaching is the formation of an elemental sulfur product layer around the unreacted chalcopyrite core. The sulfur coating slows the reaction by inhibiting both the diffusion of the oxidant to the unreacted core, and the diffusion of the copper and iron species to the bulk solution. Another problem with leaching is that the iron and copper are oxidized simultaneously. Both appear in the bulk solution in their most oxidized states. The direct electrodissolution of copper sulfide ore slurries could reduce the number of steps involved in the copper recovery process, possibly leading to significant reductions in energy consumption and operating costs. The potential application of electrodissolution processes in hydrometallurgy has been reviewed. This paper reviews investigations of the electrochemical dissolution of chalcopyrite, digenite (Cu{sub 1.8}S), chalcocite (Cu{sub 2}S) and covellite (CuS).

  18. Metal catalyzed synthesis of hyperbranched ethylene and/or .alpha.-olefin polymers

    DOE Patents [OSTI]

    Sen, Ayusman; Kim, Jang Sub; Pawlow, James H.; Murtuza, Shahid; Kacker, Smita; Wojcinski, III, Louis M.

    2001-01-01

    Oily hyperbranched polymers derived from ethylene, propylene, butene and/or a C.sub.5 -C.sub.24 .alpha.-olefin, and a method for their synthesis, are disclosed. The polymers have non-regular microstructures and are characterized by a ratio ({character pullout})of methyl hydrogens centered around 0.85 ppm on the 1H-NMR spectra of the polymers relative to total aliphatic hydrogens of from about 0.40 to about 0.65 for polymers derived from ethylene or butene, and a ratio ({character pullout})of from greater than 0.50 to about 0.65 for polymers derived from propylene. A method for grafting hyperbranched polymers derived from ethylene, propylene, butene and/or a C.sub.5 -C.sub.24 .alpha.-olefin onto aromatic rings in organic molecules and polymers, and the resulting grafted materials, are also disclosed. The hyperbranched polymers and grafted materials are useful, for example, as lubricants and lubricant additives.

  19. Plasma-Hydrocarbon conversion - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrocarbon conversion Idaho National Laboratory Contact INL About This Technology Technology Marketing Summary INL's Plasma-Hydrocarbon Conversion process enables conversion of heavy hydrocarbons, such as heavy crude oil and hydrocarbon gases like natural gas, into lighter hydrocarbon materials (e.g. synthetic light oil). Description It can convert hydrocarbon gases to liquid fuels/chemicals. The dielectric barrier discharge plasma process that adds carbon and hydrogen simultaneously to heavy

  20. Hydrocarbon sensors and materials therefor

    DOE Patents [OSTI]

    Pham, Ai Quoc; Glass, Robert S.

    2000-01-01

    An electrochemical hydrocarbon sensor and materials for use in sensors. A suitable proton conducting electrolyte and catalytic materials have been found for specific application in the detection and measurement of non-methane hydrocarbons. The sensor comprises a proton conducting electrolyte sandwiched between two electrodes. At least one of the electrodes is covered with a hydrocarbon decomposition catalyst. Two different modes of operation for the hydrocarbon sensors can be used: equilibrium versus non-equilibrium measurements and differential catalytic. The sensor has particular application for on-board monitoring of automobile exhaust gases to evaluate the performance of catalytic converters. In addition, the sensor can be utilized in monitoring any process where hydrocarbons are exhausted, for instance, industrial power plants. The sensor is low cost, rugged, sensitive, simple to fabricate, miniature, and does not suffer cross sensitivities.

  1. Apparatus for removing hydrocarbon contaminants from solid materials

    DOE Patents [OSTI]

    Bala, G.A.; Thomas, C.P.

    1996-02-13

    A system is described for removing hydrocarbons from solid materials. Contaminated solids are combined with a solvent (preferably terpene based) to produce a mixture. The mixture is washed with water to generate a purified solid product (which is removed from the system) and a drainage product. The drainage product is separated into a first fraction (consisting mostly of contaminated solvent) and a second fraction (containing solids and water). The first fraction is separated into a third fraction (consisting mostly of contaminated solvent) and a fourth fraction (containing residual solids and water). The fourth fraction is combined with the second fraction to produce a sludge which is separated into a fifth fraction (containing water which is ultimately reused) and a sixth fraction (containing solids). The third fraction is then separated into a seventh fraction (consisting of recovered solvent which is ultimately reused) and an eighth fraction (containing hydrocarbon waste). 4 figs.

  2. Apparatus for removing hydrocarbon contaminants from solid materials

    DOE Patents [OSTI]

    Bala, Gregory A. (Idaho Falls, ID); Thomas, Charles P. (Idaho Falls, ID)

    1996-01-01

    A system for removing hydrocarbons from solid materials. Contaminated solids are combined with a solvent (preferably terpene based) to produce a mixture. The mixture is washed with water to generate a purified solid product (which is removed from the system) and a drainage product. The drainage product is separated into a first fraction (consisting mostly of contaminated solvent) and a second fraction (containing solids and water). The first fraction is separated into a third fraction (consisting mostly of contaminated solvent) and a fourth fraction (containing residual solids and water). The fourth fraction is combined with the second fraction to produce a sludge which is separated into a fifth fraction (containing water which is ultimately reused) and a sixth fraction (containing solids). The third fraction is then separated into a seventh fraction (consisting of recovered solvent which is ultimately reused) and an eighth fraction (containing hydrocarbon waste).

  3. Method for removing hydrocarbon contaminants from solid materials

    DOE Patents [OSTI]

    Bala, Gregory A. (Idaho Falls, ID); Thomas, Charles P. (Idaho Falls, ID)

    1995-01-01

    A system for removing hydrocarbons from solid materials. Contaminated solids are combined with a solvent (preferably terpene based) to produce a mixture. The mixture is washed with water to generate a purified solid product (which is removed from the system) and a drainage product. The drainage product is separated into a first fraction (consisting mostly of contaminated solvent) and a second fraction (containing solids and water). The first fraction is separated into a third fraction (consisting mostly of contaminated solvent) and a fourth fraction (containing residual solids and water). The fourth fraction is combined with the second fraction to produce a sludge which is separated into a fifth fraction (containing water which is ultimately reused) and a sixth fraction (containing solids). The third fraction is then separated into a seventh fraction (consisting of recovered solvent which is ultimately reused) and an eighth fraction (containing hydrocarbon waste).

  4. Method for removing hydrocarbon contaminants from solid materials

    DOE Patents [OSTI]

    Bala, G.A.; Thomas, C.P.

    1995-10-03

    A system is described for removing hydrocarbons from solid materials. Contaminated solids are combined with a solvent (preferably terpene based) to produce a mixture. The mixture is washed with water to generate a purified solid product (which is removed from the system) and a drainage product. The drainage product is separated into a first fraction (consisting mostly of contaminated solvent) and a second fraction (containing solids and water). The first fraction is separated into a third fraction (consisting mostly of contaminated solvent) and a fourth fraction (containing residual solids and water). The fourth fraction is combined with the second fraction to produce a sludge which is separated into a fifth fraction (containing water which is ultimately reused) and a sixth fraction (containing solids). The third fraction is then separated into a seventh fraction (consisting of recovered solvent which is ultimately reused) and an eighth fraction (containing hydrocarbon waste). 4 figs.

  5. Hydrogen, Hydrocarbons, and Bioproduct Precursors from Wastewaters...

    Broader source: Energy.gov (indexed) [DOE]

    Office jointly sponsored a workshop on Hydrogen, Hydrocarbons, and Bioproduct Precursors ... and other techniques to produce hydrogen and higher hydrocarbons (containing ...

  6. Mechanism of Efficient Anti-Markovnikov Olefin Hydroarylation Catalyzed by Homogeneous Ir(III) Complexes

    SciTech Connect (OSTI)

    Bhalla, Gaurav; Bischof, Steven M; Ganesh, Somesh K; Liu, Xiang Y; Jones, C J; Borzenko, Andrey; Tenn, William J; Ess, Daniel H; Hashiguchi, Brian G; Lokare, Kapil S; Leung, Chin Hin; Oxgaard, Jonas; Goddard, William A; Periana, Roy A

    2011-01-01

    The mechanism of the hydroarylation reaction between unactivated olefins (ethylene, propylene, and styrene) and benzene catalyzed by [(R)Ir(?-acac-O,O,C{sup 3})-(acac-O,O){sub 2}]{sub 2} and [R-Ir(acac-O,O){sub 2}(L)] (R = acetylacetonato, CH{sub 3}, CH{sub 2}CH{sub 3}, Ph, or CH{sub 2}CH{sub 2}Ph, and L = H{sub 2}O or pyridine) Ir(III) complexes was studied by experimental methods. The system is selective for generating the anti-Markovnikov product of linear alkylarenes (61:39 for benzene + propylene and 98:2 for benzene + styrene). The reaction mechanism was found to follow a rate law with first-order dependence on benzene and catalyst, but a non-linear dependence on olefin. {sup 13}C-labelling studies with CH{sub 3}{sup 13}CH{sub 2}-Ir-Py showed that reversible ?-hydride elimination is facile, but unproductive, giving exclusively saturated alkylarene products. The migration of the {sup 13}C-label from the ? to ?-positions was found to be slower than the CH activation of benzene (and thus formation of ethane and Ph-d{sub 5}-Ir-Py). Kinetic analysis under steady state conditions gave a ratio of the rate constants for CH activation and ?-hydride elimination (k{sub CH}: k{sub ?}) of ~0.5. The comparable magnitude of these rates suggests a common rate determining transition state/intermediate, which has been shown previously with B3LYP density functional theory (DFT) calculations. Overall, the mechanism of hydroarylation proceeds through a series of pre-equilibrium dissociative steps involving rupture of the dinuclear species or the loss of L from Ph-Ir-L to the solvento, 16-electron species, Ph-Ir(acac-O,O){sub 2}-Sol (where Sol refers to coordinated solvent). This species then undergoes trans to cisisomerization of the acetylacetonato ligand to yield the pseudo octahedral species cis-Ph-Ir-Sol, which is followed by olefin insertion (the regioselective and rate determining step), and then activation of the CH bond of an incoming benzene to generate the product and

  7. Recover Heat from Boiler Blowdown | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PDF icon Recover Heat from Boiler Blowdown (January 2012) More Documents & Publications Install an Automatic Blowdown-Control System Flash High-Pressure Condensate to Regenerate ...

  8. Recover Heat from Boiler Blowdown | Department of Energy

    Energy Savers [EERE]

    STEAM TIP SHEET 10 Recover Heat from Boiler Blowdown (January 2012) (372.21 KB) More Documents & Publications Install an Automatic Blowdown-Control System Consider Installing a ...

  9. Use Vapor Recompression to Recover Low-Pressure Waste Steam

    Broader source: Energy.gov [DOE]

    This tip sheet on recovering low-pressure waste steam provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

  10. Process for upgrading wax from Fischer-Tropsch synthesis

    SciTech Connect (OSTI)

    Derr, W.R. Jr.; Garwood, W.E.; Kuo, J.C.; Leib, T.M.; Nace, D.M.; Tabak, S.A.

    1987-08-04

    A processor is described for converting synthesis gas to liquid hydrocarbons comprising the steps of: (a) charging the synthesis gas to a Fischer-Tropsch synthesis conversion zone containing a catalyst providing CO reducing characteristics to produce a waxy hydrocarbon liquid; (b) separating hydrocarbon wax from the waxy liquid; (c) catalytically cracking the wax in a fluidized bed of acid crystalline zeolite at cracking temperature under process conditions requiring a supply of heat to effect cracking, producing olefinic liquid hydrocarbon crackate in the gasoline and distillate boiling range along with olefinic light gas; (d) recovering distillate range hydrocarbons from the liquid crackate; (e) further converting the olefinic gasoline range hydrocarbon crackate and olefinic light gas under oligomerization conditions in contact with a shape selective medium pore acid oligomerization catalyst to upgrade at least a portion of the olefinic crackate and olefinic light gas to distillate range hydrocarbon product and producing by-product light fuel gas; (f) separating the light fuel gas from step (e) and passing the light fuel gas to cracking step (c) to supply heat.

  11. Improving olefin tolerance and production in E. coli using native and evolved AcrB

    SciTech Connect (OSTI)

    Mingardon, Florence; Clement, Camille; Hirano, Kathleen; Nhan, Melissa; Luning, Eric G.; Chanal, Angelique; Mukhopadhyay, Aindrila

    2015-01-20

    Microorganisms can be engineered for the production of chemicals utilized in the polymer industry. However many such target compounds inhibit microbial growth and might correspondingly limit production levels. Here, we focus on compounds that are precursors to bioplastics, specifically styrene and representative alpha-olefins; 1-hexene, 1-octene, and 1-nonene. We evaluated the role of the Escherichia coli efflux pump, AcrAB-TolC, in enhancing tolerance towards these olefin compounds. AcrAB-TolC is involved in the tolerance towards all four compounds in E. coli. Both styrene and 1-hexene are highly toxic to E. coli. Styrene is a model plastics precursor with an established route for production in E. coli (McKenna and Nielsen, 2011). Though our data indicates that AcrAB-TolC is important for its optimal production, we observed a strong negative selection against the production of styrene in E. coli. Thus we used 1-hexene as a model compound to implement a directed evolution strategy to further improve the tolerance phenotype towards this alpha-olefin. We focused on optimization of AcrB, the inner membrane domain known to be responsible for substrate binding, and found several mutations (A279T, Q584R, F617L, L822P, F927S, and F1033Y) that resulted in improved tolerance. Several of these mutations could also be combined in a synergistic manner. Our study shows efflux pumps to be an important mechanism in host engineering for olefins, and one that can be further improved using strategies such as directed evolution, to increase tolerance and potentially production.

  12. Enrichment of light hydrocarbon mixture

    DOE Patents [OSTI]

    Yang, Dali; Devlin, David; Barbero, Robert S.; Carrera, Martin E.; Colling, Craig W.

    2011-11-29

    Light hydrocarbon enrichment is accomplished using a vertically oriented distillation column having a plurality of vertically oriented, nonselective micro/mesoporous hollow fibers. Vapor having, for example, both propylene and propane is sent upward through the distillation column in between the hollow fibers. Vapor exits neat the top of the column and is condensed to form a liquid phase that is directed back downward through the lumen of the hollow fibers. As vapor continues to ascend and liquid continues to countercurrently descend, the liquid at the bottom of the column becomes enriched in a higher boiling point, light hydrocarbon (propane, for example) and the vapor at the top becomes enriched in a lower boiling point light hydrocarbon (propylene, for example). The hollow fiber becomes wetted with liquid during the process.

  13. Enrichment of light hydrocarbon mixture

    DOE Patents [OSTI]

    Yang; Dali; Devlin, David; Barbero, Robert S.; Carrera, Martin E.; Colling, Craig W.

    2010-08-10

    Light hydrocarbon enrichment is accomplished using a vertically oriented distillation column having a plurality of vertically oriented, nonselective micro/mesoporous hollow fibers. Vapor having, for example, both propylene and propane is sent upward through the distillation column in between the hollow fibers. Vapor exits neat the top of the column and is condensed to form a liquid phase that is directed back downward through the lumen of the hollow fibers. As vapor continues to ascend and liquid continues to countercurrently descend, the liquid at the bottom of the column becomes enriched in a higher boiling point, light hydrocarbon (propane, for example) and the vapor at the top becomes enriched in a lower boiling point light hydrocarbon (propylene, for example). The hollow fiber becomes wetted with liquid during the process.

  14. Analysis of ``soft`` recovered shaped charge jet particles

    SciTech Connect (OSTI)

    Lassila, D.H.; Nikkel, D.J. Jr.; Kershaw, R.P.; Walters, W.P.

    1996-04-01

    A shaped charge with an 81 mm diameter, 42{degree} apex angle oxygen-free high-conductivity (OFHC) copper conical liner was fired into a ``soft`` recovery bunker to allow metallurgical examination of recovered jet particles and the slug. The initial weight of the copper liner was 245 g, of which 184 g was recovered. The number of jet particles recovered was 37 (approximately 63% of the particles formed by the charge). Extensive metallurgical analyses were performed on the recovered slug and jet particles. The microstructural features associated with voids, e.g., dendritic grain growth, clearly indicate that the regions in the vicinity of the centerline of the slug and jet particles were melted. In this work the authors present calculations of jet temperature as a function of constitutive behavior. In order to predict melt in the center region of the jet they find it necessary to scale flow stress with a pressure dependent shear modulus.

  15. Improving CO2 Efficiency for Recovering Oil in Heterogeneous Reservoirs

    SciTech Connect (OSTI)

    Grigg, Reid B.; Svec, Robert K.

    2003-03-10

    The work strived to improve industry understanding of CO2 flooding mechanisms with the ultimate goal of economically recovering more of the U.S. oil reserves. The principle interests are in the related fields of mobility control and injectivity.

  16. Recover Heat from Boiler Blowdown - Steam Tip Sheet #10

    SciTech Connect (OSTI)

    2012-01-31

    This revised AMO tip sheet on recovering heat from boiler blowdown provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

  17. Working Together to Recover and Rebuild After Hurricane Sandy | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Recover and Rebuild After Hurricane Sandy Working Together to Recover and Rebuild After Hurricane Sandy November 5, 2012 - 6:30pm Addthis Supervising Engineer for Public Service Electric and Gas Company, Michael Vincent, right, Department of Energy Secretary Steven Chu, center, and FEMA Deputy Administrator Rich Serino review power restoration at the Hoboken electrical substation. Restoration of power to communities impacted by Hurricane Sandy remains a high priority. | Photo by

  18. Pyrochemical investigations into recovering plutonium from americium extraction salt residues

    SciTech Connect (OSTI)

    Fife, K.W.; West, M.H.

    1987-05-01

    Progress into developing a pyrochemical technique for separating and recovering plutonium from spent americium extraction waste salts has concentrated on selective chemical reduction with lanthanum metal and calcium metal and on the solvent extraction of americium with calcium metal. Both techniques are effective for recovering plutonium from the waste salt, although neither appears suitable as a separation technique for recycling a plutonium stream back to mainline purification processes. 17 refs., 13 figs., 2 tabs.

  19. Downhole fluid injection systems, CO.sub.2 sequestration methods, and hydrocarbon material recovery methods

    DOE Patents [OSTI]

    Schaef, Herbert T.; McGrail, B. Peter

    2015-07-28

    Downhole fluid injection systems are provided that can include a first well extending into a geological formation, and a fluid injector assembly located within the well. The fluid injector assembly can be configured to inject a liquid CO.sub.2/H.sub.2O-emulsion into the surrounding geological formation. CO.sub.2 sequestration methods are provided that can include exposing a geological formation to a liquid CO.sub.2/H.sub.2O-emulsion to sequester at least a portion of the CO.sub.2 from the emulsion within the formation. Hydrocarbon material recovery methods are provided that can include exposing a liquid CO.sub.2/H.sub.2O-emulsion to a geological formation having the hydrocarbon material therein. The methods can include recovering at least a portion of the hydrocarbon material from the formation.

  20. Downhole fluid injection systems, CO2 sequestration methods, and hydrocarbon material recovery methods

    DOE Patents [OSTI]

    Schaef, Herbert T.; McGrail, B. Peter

    2015-07-28

    Downhole fluid injection systems are provided that can include a first well extending into a geological formation, and a fluid injector assembly located within the well. The fluid injector assembly can be configured to inject a liquid CO2/H2O-emulsion into the surrounding geological formation. CO2 sequestration methods are provided that can include exposing a geological formation to a liquid CO2/H2O-emulsion to sequester at least a portion of the CO2 from the emulsion within the formation. Hydrocarbon material recovery methods are provided that can include exposing a liquid CO2/H2O-emulsion to a geological formation having the hydrocarbon material therein. The methods can include recovering at least a portion of the hydrocarbon material from the formation.

  1. Approach to Recover Hydrocarbons from Currently Off-Limit Areas of the Antrim Formation, MI Using Low-Impact Technologies

    SciTech Connect (OSTI)

    James Wood; William Quinlan

    2008-09-30

    The goal of this project was to develop and execute a novel drilling and completion program in the Antrim Shale near the western shoreline of Northern Michigan. The target was the gas in the Lower Antrim Formation (Upper Devonian). Another goal was to see if drilling permits could be obtained from the Michigan DNR that would allow exploitation of reserves currently off-limits to exploration. This project met both of these goals: the DNR (Michigan Department of Natural Resources) issued permits that allow drilling the shallow subsurface for exploration and production. This project obtained drilling permits for the original demonstration well AG-A-MING 4-12 HD (API: 21-009-58153-0000) and AG-A-MING 4-12 HD1 (API: 21-009-58153-0100) as well as for similar Antrim wells in Benzie County, MI, the Colfax 3-28 HD and nearby Colfax 2-28 HD which were substituted for the AG-A-MING well. This project also developed successful techniques and strategies for producing the shallow gas. In addition to the project demonstration well over 20 wells have been drilled to date into the shallow Antrim as a result of this project's findings. Further, fracture stimulation has proven to be a vital step in improving the deliverability of wells to deem them commercial. Our initial plan was very simple; the 'J-well' design. We proposed to drill a vertical or slant well 30.48 meters (100 feet) below the glacial drift, set required casing, then angle back up to tap the resource lying between the base to the drift and the conventional vertical well. The 'J'-well design was tested at Mancelona Township in Antrim County in February of 2007 with the St. Mancelona 2-12 HD 3.

  2. Biological Conversion of Sugars To Hydrocarbons | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    To Hydrocarbons Biological Conversion of Sugars To Hydrocarbons PDF explaining the biological process of bioenergy Biological Conversion of Sugars To Hydrocarbons (190.69 KB) More Documents & Publications Catalytic Upgrading Sugars To Hydrocarbons Catalytic Upgrading of Sugars to Hydrocarbons Technology Pathway Biological Conversion of Sugars to Hydrocarbons Technology Pathway

  3. Syngas Upgrading to Hydrocarbon Fuels Technology Pathway

    SciTech Connect (OSTI)

    Talmadge, M.; Biddy, M.; Dutta, A.; Jones, S.; Meyer, A.

    2013-03-01

    This technology pathway case investigates the upgrading of woody biomass derived synthesis gas (syngas) to hydrocarbon biofuels. While this specific discussion focuses on the conversion of syngas via a methanol intermediate to hydrocarbon blendstocks, there are a number of alternative conversion routes for production of hydrocarbons through a wide array of intermediates from syngas. Future work will also consider the variations to this pathway to determine the most economically viable and lowest risk conversion route. Technical barriers and key research needs have been identified that should be pursued for the syngas-to-hydrocarbon pathway to be competitive with petroleum-derived gasoline-, diesel- and jet-range hydrocarbon blendstocks.

  4. Solvent-free mechanochemical preparation of phosphonium salts, phosphorus ylides, and olefins

    DOE Patents [OSTI]

    Pecharsky, Vitalij K; Balema, Viktor P; Wiench, Jerzy W; Pruski, Marek

    2006-09-12

    The present invention provides a method of preparing a phosphonium salt of the formula [R.sup.1R.sup.2R.sup.3P--CR.sup.4R.sup.5R.sup.6]X, comprising ball-milling a phosphine of the formula R.sup.1R.sup.2R.sup.3P with a compound of the formula XCR.sup.4R.sup.5R.sup.6; a method of preparing a phosphorus ylide of the formula R.sup.1R.sup.2R.sup.3P.dbd.CR.sup.4R.sup.5, comprising ball-milling a phosphonium salt of the formula [R.sup.1R.sup.2R.sup.3P--HCR.sup.4R.sup.5]X in the presence of a base; and a method of preparing an olefin of the formula R.sup.4R.sup.5C.dbd.CR.sup.7H or R.sup.4R.sup.5C.dbd.CR.sup.7R.sup.8, comprising ball-milling a phosphorus ylide of the formula R.sup.1R.sup.2R.sup.3P.dbd.CR.sup.4R.sup.5 with a compound of the formula R.sup.7C(O)H or R.sup.7C(O)R.sup.8. The inventive method produces phosphonium salts and phosphorus ylides by mechanical processing solid reagents under solvent-free conditions. The advantages of the present invention over conventional solution methods, include: (1) extremely high selectivity; (2) high yields; (3) low processing temperatures; (4) simple and scalable reactions using commercially available equipment; and (5) the complete elimination of solvents from the reaction.

  5. Solvent-free mechanochemical preparation of phosphonium salts, phosphorus ylides, and olefins

    DOE Patents [OSTI]

    Pecharsky, Vitalij K.; Balema, Viktor P.; Wiench, Jerzy W.; Pruski, Marek

    2004-05-04

    The present invention provides a method of preparing a phosphonium salt of the formula [R.sup.1 R.sup.2 R.sup.3 P--CR.sup.4 R.sup.5 R.sup.6 ]X, comprising ball-milling a phosphine of the formula R.sup.1 R.sup.2 R.sup.3 P with a compound of the formula XCR.sup.4 R.sup.5 R.sup.6 ; a method of preparing a phosphorus ylide of the formula R.sup.1 R.sup.2 R.sup.3 P.dbd.CR.sup.4 R.sup.5, comprising ball-milling a phosphonium salt of the formula [R.sup.1 R.sup.2 R.sup.3 P--HCR.sup.4 R.sup.5 ]X in the presence of a base; and a method of preparing an olefin of the formula R.sup.4 R.sup.5 C.dbd.CR.sup.7 H or R.sup.4 R.sup.5 C.dbd.CR.sup.7 R.sup.8, comprising ball-milling a phosphorus ylide of the formula R.sup.1 R.sup.2 R.sup.3 P.dbd.CR.sup.4 R.sup.5 with a compound of the formula R.sup.7 C(O)H or R.sup.7 C(O)R.sup.8. The inventive method produces phosphonium salts and phosphorus ylides by mechanical processing solid reagents under solvent-free conditions. The advantages of the present invention over conventional solution methods, include: (1) extremely high selectivity; (2) high yields; (3) low processing temperatures; (4) simple and scalable reactions using commercially available equipment; and (5) the complete elimination of solvents from the reaction.

  6. Dry reforming of hydrocarbon feedstocks

    SciTech Connect (OSTI)

    Shah, Yatish T.; Gardner, Todd H.

    2014-09-25

    Developments in catalyst technology for the dry reforming of hydrocarbon feedstocks are reviewed for methane, higher hydrocarbons and alcohols. Thermodynamics, mechanisms and the kinetics of dry reforming are also reviewed. The literature on Ni catalysts, bi-metallic Ni catalysts and the role of promoters on Ni catalysts is critically evaluated. The use of noble and transitional metal catalysts for dry reforming is discussed. The application of solid oxide and metal carbide catalysts to dry reforming is also evaluated. Finally, various mechanisms for catalyst deactivation are assessed. This review also examines the various process related issues associated with dry reforming such as its application and heat optimization. Novel approaches such as supercritical dry reforming and microwave assisted dry reforming are briefly expanded upon.

  7. Catalytic method for synthesizing hydrocarbons

    DOE Patents [OSTI]

    Sapienza, Richard S.; Sansone, Michael J.; Slegeir, William A. R.

    1984-01-01

    A method for synthesizing hydrocarbons from carbon monoxide and hydrogen by contacting said gases with a slurry of a catalyst composed of palladium or platinum and cobalt supported on a solid phase is disclosed. The catalyst is prepared by heating a heterogeneous component of the palladium or platinum deposited on the solid support in a solution of cobalt carbonyl or precursors thereof. The catalyst exhibits excellent activity, stability in air, and produces highly desirable product fractions even with dilute gaseous reactants.

  8. Catalytic method for synthesizing hydrocarbons

    DOE Patents [OSTI]

    Sapienza, R.S.; Sansone, M.J.; Slegeir, W.A.R.

    A method for synthesizing hydrocarbons from carbon monoxide and hydrogen by contacting said gases with a slurry of a catalyst composed of palladium or platinum and cobalt supported on a solid phase is disclosed. The catalyst is prepared by heating a heterogeneous component of the palladium or platinum deposited on the solid support in a solution of cobalt carbonyl or precursors thereof. The catalyst exhibits excellent activity, stability in air, and produces highly desirable product fractions even with dilute gaseous reactants.

  9. Deep desulfurization of hydrocarbon fuels

    DOE Patents [OSTI]

    Song, Chunshan; Ma, Xiaoliang; Sprague, Michael J.; Subramani, Velu

    2012-04-17

    The invention relates to processes for reducing the sulfur content in hydrocarbon fuels such as gasoline, diesel fuel and jet fuel. The invention provides a method and materials for producing ultra low sulfur content transportation fuels for motor vehicles as well as for applications such as fuel cells. The materials and method of the invention may be used at ambient or elevated temperatures and at ambient or elevated pressures without the need for hydrogen.

  10. Process for recovering niobium from uranium-niobium alloys

    DOE Patents [OSTI]

    Wallace, Steven A.; Creech, Edward T.; Northcutt, Walter G.

    1983-01-01

    Niobium is recovered from scrap uranium-niobium alloy by melting the scrap with tin, solidifying the billet thus formed, heating the billet to combine niobium with tin therein, placing the billet in hydrochloric acid to dissolve the uranium and leave an insoluble residue of niobium stannide, then separating the niobium stannide from the acid.

  11. Process for recovering niobium from uranium-niobium alloys

    DOE Patents [OSTI]

    Wallace, S.A.; Creech, E.T.; Northcutt, W.G.

    1982-09-27

    Niobium is recovered from scrap uranium-niobium alloy by melting the scrap with tin, solidifying the billet thus formed, heating the billet to combine niobium with tin therein, placing the billet in hydrochloric acid to dissolve the uranium and form a precipitate of niobium stannide, then separating the precipitate from the acid.

  12. HYDROCARBON AND SULFUR SENSORS FOR SOFC SYSTEMS

    SciTech Connect (OSTI)

    A.M. Azad; Chris Holt; Todd Lesousky; Scott Swartz

    2003-11-01

    The following report summarizes work conducted during the Phase I program Hydrocarbon and Sulfur Sensors for SOFC Systems under contract No. DE-FC26-02NT41576. For the SOFC application, sensors are required to monitor hydrocarbons and sulfur in order to increase the operation life of SOFC components. This report discusses the development of two such sensors, one based on thick film approach for sulfur monitoring and the second galvanic based for hydrocarbon monitoring.

  13. Hydrogen, Hydrocarbons, and Bioproduct Precursors from Wastewaters

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Workshop: Agenda and Objectives | Department of Energy Workshop: Agenda and Objectives Hydrogen, Hydrocarbons, and Bioproduct Precursors from Wastewaters Workshop: Agenda and Objectives Agenda and objectives for the Hydrogen, Hydrocarbons, and Bioproduct Precursors from Wastewaters Workshop held March 18-19, 2015. Workshop Agenda and Objectives (146.49 KB) More Documents & Publications Hydrogen, Hydrocarbons, and Bioproduct Precursors from Wastewaters Workshop Report Anaerobic MBR:

  14. Vaporization and gasification of hydrocarbon feedstocks

    SciTech Connect (OSTI)

    Davies, H.S.; Garstang, J.H.; Timmins, C.

    1983-08-23

    Heavy hydrocarbon feedstocks, e.g. gas oils, are vaporized and subsequently gasified at high temperatures without pyrolytic degradation by first admixing the hydrocarbon with a hot gaseous reactant, e.g. product gas or steam, to bring the temperature of the mixture above that of the dew point of the hydrocarbon and thereafter raising the temperature of the mixture to above that at which pyrolysis of the hydrocarbon begins to be significant by admixture with further quantities of the reactant which are superheated thereby to bring the temperature of the resultant mixture to that required for effecting a catalytic gasification reaction.

  15. Molecular catalytic hydrogenation of aromatic hydrocarbons and

    Office of Scientific and Technical Information (OSTI)

    catalytic hydrogenation of aromatic hydrocarbons and hydrotreating of coal liquids. Yang, Shiyong; Stock, L.M. 01 COAL, LIGNITE, AND PEAT; 40 CHEMISTRY; COAL LIQUIDS;...

  16. Nox reduction system utilizing pulsed hydrocarbon injection

    DOE Patents [OSTI]

    Brusasco, Raymond M.; Penetrante, Bernardino M.; Vogtlin, George E.; Merritt, Bernard T.

    2001-01-01

    Hydrocarbon co-reductants, such as diesel fuel, are added by pulsed injection to internal combustion engine exhaust to reduce exhaust NO.sub.x to N.sub.2 in the presence of a catalyst. Exhaust NO.sub.x reduction of at least 50% in the emissions is achieved with the addition of less than 5% fuel as a source of the hydrocarbon co-reductants. By means of pulsing the hydrocarbon flow, the amount of pulsed hydrocarbon vapor (itself a pollutant) can be minimized relative to the amount of NO.sub.x species removed.

  17. Molecular catalytic hydrogenation of aromatic hydrocarbons and...

    Office of Scientific and Technical Information (OSTI)

    and hydrotreating of coal liquids. Citation Details In-Document Search Title: Molecular catalytic hydrogenation of aromatic hydrocarbons and hydrotreating of coal liquids. ...

  18. Enhanced Anaerobic Digestion and Hydrocarbon Precursor Production...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Enhanced Anaerobic Digestion and Hydrocarbon Precursor Production from Sewage Sludge Breakout Session 2-C: Biogas and Beyond: Challenges and Opportunities for Advanced Biofuels ...

  19. Enhanced Anaerobic Digestion and Hydrocarbon Precursor Production...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Presentation by Meltem Urgun-Demirtas, Argonne National Laboratory, during the "Targeting High-Value Challenges" panel at the Hydrogen, Hydrocarbons, and Bioproduct Precursors from ...

  20. George A. Olah, Carbocation and Hydrocarbon Chemistry

    Office of Scientific and Technical Information (OSTI)

    George A. Olah, Carbocation and Hydrocarbon Chemistry Resources with Additional Information * Patents George A. Olah Courtesy Rand Larson, Morningstar Productions George Olah ...

  1. Catalytic Upgrading Sugars To Hydrocarbons | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sugars To Hydrocarbons Catalytic Upgrading Sugars To Hydrocarbons PDF on catalytic bioenergy process Catalytic Upgrading Sugars To Hydrocarbons (477.56 KB) More Documents & Publications Biological Conversion of Sugars To Hydrocarbons Technology Pathway Selection Effort Catalytic Upgrading of Sugars to Hydrocarbons Technology Pathway

  2. Process for recovering tritium from molten lithium metal

    DOE Patents [OSTI]

    Maroni, Victor A.

    1976-01-01

    Lithium tritide (LiT) is extracted from molten lithium metal that has been exposed to neutron irradiation for breeding tritium within a thermonuclear or fission reactor. The extraction is performed by intimately contacting the molten lithium metal with a molten lithium salt, for instance, lithium chloride - potassium chloride eutectic to distribute LiT between the salt and metal phases. The extracted tritium is recovered in gaseous form from the molten salt phase by a subsequent electrolytic or oxidation step.

  3. Method of recovering hazardous waste from phenolic resin filters

    DOE Patents [OSTI]

    Meikrantz, David H.; Bourne, Gary L.; McFee, John N.; Burdge, Bradley G.; McConnell, Jr., John W.

    1991-01-01

    The invention is a process for the recovery of hazardous wastes such as heavy metals and radioactive elements from phenolic resin filter by a circulating a solution of 8 to 16 molar nitric acid at a temperature of 110 to 190 degrees F. through the filter. The hot solution dissolves the filter material and releases the hazardous material so that it can be recovered or treated for long term storage in an environmentally safe manner.

  4. Method for recovering oil from an underground formation

    SciTech Connect (OSTI)

    Hesselink, F.T.; Saidi, A.M.

    1982-12-21

    Method for recovering oil from an underground formation consisting of blocks of relatively low permeability with an oilwet pore space containing oil surrounded by a fracture network of relatively high permeability by supplying to the fracture network an aqueous solution of a surfactant adapted for decreasing the surface tension between water and oil and displacing the oil from the oil-wet pore space of the blocks.

  5. Methods for Recovering Metals From Electronic Waste, and Related Systems -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Innovation Portal Industrial Technologies Industrial Technologies Find More Like This Return to Search Methods for Recovering Metals From Electronic Waste, and Related Systems Idaho National Laboratory Contact INL About This Technology Publications: PDF Document Publication Technology Summary Poster (4,219 KB) PDF Document Publication Technology Fact Sheet (1,012 KB) Technology Marketing Summary End-of-life electronic devices such as smart phones, computers, televisions and other

  6. Conversion of organic solids to hydrocarbons

    DOE Patents [OSTI]

    Greenbaum, Elias

    1995-01-01

    A method of converting organic solids to liquid and gaseous hydrocarbons includes impregnating an organic solid with photosensitizing ions and exposing the impregnated solid to light in a non-oxidizing atmosphere for a time sufficient to photocatalytically reduce the solid to at least one of a liquid and a gaseous hydrocarbon.

  7. Conversion of organic solids to hydrocarbons

    DOE Patents [OSTI]

    Greenbaum, E.

    1995-05-23

    A method of converting organic solids to liquid and gaseous hydrocarbons includes impregnating an organic solid with photosensitizing ions and exposing the impregnated solid to light in a non-oxidizing atmosphere for a time sufficient to photocatalytically reduce the solid to at least one of a liquid and a gaseous hydrocarbon. 5 Figs.

  8. Methanol conversion to light olefins over nanostructured CeAPSO-34 catalyst: Thermodynamic analysis of overall reactions and effect of template type on catalytic properties and performance

    SciTech Connect (OSTI)

    Aghamohammadi, Sogand; Haghighi, Mohammad; Charghand, Mojtaba

    2014-02-01

    Graphical abstract: In this research nanostructured CeAPSO-34 was synthesized to explore the effect of TEAOH and morpholine on its physiochemical properties and MTO performance. Prepared catalysts were characterized with XRD, FESEM, BET, FTIR and NH3-TPD techniques. The results indicated that the nature of the template determines the physiochemical properties of CeAPSO-34 due to different rate of crystal growth. The catalyst obtained by using morpholine showed longer life time as well as sustaining light olefins selectivity at higher values. Furthermore, a comprehensive thermodynamic analysis of overall reactions network was carried out to address the major channels of methanol to olefins conversion. - Highlights: • Introduction of Ce into SAPO-34 framework. • Comparison of CeAPSO-34 synthesized using morpholine and TEAOH. • The nature of the template determines the physiochemical properties of CeAPSO-34. • Morpholine enhances catalyst lifetime in MTO process. • Presenting a complete reaction network for MTO process. - Abstract: TEAOH and morpholine were employed in synthesis of nanostructured CeAPSO-34 molecular sieve and used in methanol to olefins conversion. Prepared samples were characterized by XRD, FESEM, EDX, BET, FTIR and NH{sub 3}-TPD techniques. XRD patterns reflected the higher crystallinity of the catalyst synthesized with morpholine. The FESEM results indicated that the nature of the template determines the morphology of nanostructured CeAPSO-34 due to different rate of crystal growth. There was a meaningful difference in the strength of both strong and weak acid sites for CeAPSO-34 catalysts synthesized with TEAOH and morpholine templates. The catalyst synthesized with morpholine showed higher desorption temperature of both weak and strong acid sites evidenced by NH{sub 3}-TPD characterization. The catalyst obtained using morpholine template had the longer lifetime and sustained desired light olefins at higher values. A comprehensive

  9. Polynuclear aromatic hydrocarbons for fullerene synthesis in flames

    DOE Patents [OSTI]

    Alford, J. Michael; Diener, Michael D.

    2006-12-19

    This invention provides improved methods for combustion synthesis of carbon nanomaterials, including fullerenes, employing multiple-ring aromatic hydrocarbon fuels selected for high carbon conversion to extractable fullerenes. The multiple-ring aromatic hydrocarbon fuels include those that contain polynuclear aromatic hydrocarbons. More specifically, multiple-ring aromatic hydrocarbon fuels contain a substantial amount of indene, methylnapthalenes or mixtures thereof. Coal tar and petroleum distillate fractions provide low cost hydrocarbon fuels containing polynuclear aromatic hydrocarbons, including without limitation, indene, methylnapthalenes or mixtures thereof.

  10. Catalytic conversion of hydrocarbons to hydrogen and high-value carbon

    DOE Patents [OSTI]

    Shah, Naresh; Panjala, Devadas; Huffman, Gerald P.

    2005-04-05

    The present invention provides novel catalysts for accomplishing catalytic decomposition of undiluted light hydrocarbons to a hydrogen product, and methods for preparing such catalysts. In one aspect, a method is provided for preparing a catalyst by admixing an aqueous solution of an iron salt, at least one additional catalyst metal salt, and a suitable oxide substrate support, and precipitating metal oxyhydroxides onto the substrate support. An incipient wetness method, comprising addition of aqueous solutions of metal salts to a dry oxide substrate support, extruding the resulting paste to pellet form, and calcining the pellets in air is also discloses. In yet another aspect, a process is provided for producing hydrogen from an undiluted light hydrocarbon reactant, comprising contacting the hydrocarbon reactant with a catalyst as described above in a reactor, and recovering a substantially carbon monoxide-free hydrogen product stream. In still yet another aspect, a process is provided for catalytic decomposition of an undiluted light hydrocarbon reactant to obtain hydrogen and a valuable multi-walled carbon nanotube coproduct.

  11. Syngas Conversion to Gasoline-Range Hydrocarbons over Pd/ZnO/Al2O3 and ZSM-5 Composite Catalyst System

    SciTech Connect (OSTI)

    Dagle, Robert A.; Lizarazo Adarme, Jair A.; Lebarbier, Vanessa MC; Gray, Michel J.; White, James F.; King, David L.; Palo, Daniel R.

    2014-07-01

    A composite Pd/ZnO/Al2O3-HZSM-5 (Si/Al=40) catalytic system was evaluated for the synthesis of gasoline-range hydrocarbons directly from synthesis gas. Bifunctional catalyst comprising PdZn metal and acid sites present the required catalytically active sites necessary for the methanol synthesis, methanol dehydration, and methanol-to-gasoline reactions. This system provides a unique catalytic pathway for the production of liquid hydrocarbons directly from syngas. However, selectivity control is difficult and poses many challenges. The composite catalytic system was evaluated under various process conditions. Investigated were the effects of temperature (310-375oC), pressure (300-1000 psig), time-on-stream (50 hrs), and gas-hour space velocity (740-2970 hr-1), using a H2/CO molar syngas ratio of 2.0. By operating at the lower end of the temperature range investigated, liquid hydrocarbon formation was favored, as was decreased amounts of undesirable light hydrocarbons. However, lower operating temperatures also facilitated undesirable CO2 formation via the water-gas shift reaction. Higher operating pressures slightly favored liquid synthesis. Operating at relatively low pressures (e.g. 300 psig) was made possible, whereas for methanol synthesis alone higher pressure are usually required to achieve similar conversion levels (e.g. 1000 psig). Thermodynamic constraints on methanol synthesis are eased by pushing the equilibrium through hydrocarbon formation. Catalytic performance was also evaluated by altering Pd and Zn composition of the Pd/ZnO/Al2O3 catalyst. Of the catalysts and conditions tested, selectivity toward liquid hydrocarbon was highest when using a 5% Pd metal loading and Pd/Zn molar ratio of 0.25 and mixed with HZMS-5, operating at 310oC and 300 psig, CO conversion was 43 % and selectivity (carbon weight basis) to hydrocarbons was 49 wt. %. Of the hydrocarbon fraction, 44wt. % was in the C5-C12 liquid product range and consisted primarily of aromatic

  12. Low-Temperature Hydrocarbon/CO Oxidation Catalysis in Support...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Low-Temperature HydrocarbonCO Oxidation Catalysis in Support of HCCI Emission Control Low-Temperature HydrocarbonCO Oxidation Catalysis in Support ...

  13. Conversion of Ethanol to Hydrocarbons on Hierarchical HZSM-5...

    Office of Scientific and Technical Information (OSTI)

    Conversion of Ethanol to Hydrocarbons on Hierarchical HZSM-5 Zeolites Citation Details In-Document Search Title: Conversion of Ethanol to Hydrocarbons on Hierarchical HZSM-5 ...

  14. Ethanol-to-Hydrocarbon Technology Moves Closer to Commercialization...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ethanol-to-Hydrocarbon Technology Moves Closer to Commercialization Ethanol-to-Hydrocarbon Technology Moves Closer to Commercialization December 16, 2015 - 2:23pm Addthis Dr. ...

  15. EERE Success Story-Ethanol-to-Hydrocarbon Technology Moves Closer...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ethanol-to-Hydrocarbon Technology Moves Closer to Commercialization EERE Success Story-Ethanol-to-Hydrocarbon Technology Moves Closer to Commercialization January 27, 2016 - 1:40pm ...

  16. NNSA Recovers Radiological Material from Mexico | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration | (NNSA) Recovers Radiological Material from Mexico July 28, 2015 The irradiators were loaded on the U.S. Air Force C-17 in Southern Mexico and flown back to a base in the United States. WASHINGTON, D.C. - The Department of Energy's (DOE) National Nuclear Security Administration (NNSA), in partnership with the Defense Threat Reduction Agency (DTRA), the U.S. Air Force (USAF), the U.S. Department of Agriculture (USDA), and the United Mexican States, has successfully completed

  17. Fractional distillation of C/sub 2//C/sub 3/ hydrocarbons at optimum pressures

    SciTech Connect (OSTI)

    Tedder, D.W.

    1984-08-07

    A method of recovering by distillation the separate components of a hydrocarbon gas mixture comprising ethylene, ethane, propylene and propane which comprises separating the ethylene and ethane as an overhead from a propylene and propane bottom in a first distillation tower at from about 400 to about 600 psia, separating ethylene and ethane as an ethylene overhead and an ethane bottom in a second distillation tower at from about 600 to about 700 psia, and separating propylene as an overhead from a propane bottom in a third distillation tower at from about 280 to about 300 psia is disclosed.

  18. Thermal acidization and recovery process for recovering viscous petroleum

    DOE Patents [OSTI]

    Poston, Robert S.

    1984-01-01

    A thermal acidization and recovery process for increasing production of heavy viscous petroleum crude oil and synthetic fuels from subterranean hydrocarbon formations containing clay particles creating adverse permeability effects is described. The method comprises injecting a thermal vapor stream through a well bore penetrating such formations to clean the formation face of hydrocarbonaceous materials which restrict the flow of fluids into the petroleum-bearing formation. Vaporized hydrogen chloride is then injected simultaneously to react with calcium and magnesium salts in the formation surrounding the bore hole to form water soluble chloride salts. Vaporized hydrogen fluoride is then injected simultaneously with its thermal vapor to dissolve water-sensitive clay particles thus increasing permeability. Thereafter, the thermal vapors are injected until the formation is sufficiently heated to permit increased recovery rates of the petroleum.

  19. Using supercritical fluids to refine hydrocarbons

    DOE Patents [OSTI]

    Yarbro, Stephen Lee

    2015-06-09

    A system and method for reactively refining hydrocarbons, such as heavy oils with API gravities of less than 20 degrees and bitumen-like hydrocarbons with viscosities greater than 1000 cp at standard temperature and pressure, using a selected fluid at supercritical conditions. A reaction portion of the system and method delivers lightweight, volatile hydrocarbons to an associated contacting unit which operates in mixed subcritical/supercritical or supercritical modes. Using thermal diffusion, multiphase contact, or a momentum generating pressure gradient, the contacting unit separates the reaction products into portions that are viable for use or sale without further conventional refining and hydro-processing techniques.

  20. Selective photooxidation of hydrocarbons in zeolites by oxygen

    DOE Patents [OSTI]

    Frei, Heinz; Blatter, Fritz; Sun, Hai

    1998-01-01

    A selective photooxidation process for the conversion of hydrocarbon molecules to partially oxygenated derivatives, which comprises the steps of adsorbing a hydrocarbon and oxygen onto a dehydrated zeolite support matrix to form a hydrocarbon-oxygen contact pair, and subsequently exposing the hydrocarbon-oxygen contact pair to visible light, thereby forming a partially oxygenated derivative.

  1. Enhanced Anaerobic Digestion and Hydrocarbon Precursor Production

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation by Meltem Urgun-Demirtas, Argonne National Laboratory, during the "Targeting High-Value Challenges" panel at the Hydrogen, Hydrocarbons, and Bioproduct Precursors from Wastewaters Workshop held March 18–19, 2015.

  2. Method of recovering adsorbed liquid compounds from molecular sieve columns

    DOE Patents [OSTI]

    Burkholder, Harvey R.; Fanslow, Glenn E.

    1983-01-01

    Molecularly adsorbed volatile liquid compounds are recovered from molecular sieve adsorbent columns by directionally applying microwave energy to the bed of the adsorbent to produce a mixed liquid-gas effluent. The gas portion of the effluent generates pressure within the bed to promote the discharge of the effluent from the column bottoms. Preferably the discharged liquid-gas effluent is collected in two to three separate fractions, the second or intermediate fraction having a substantially higher concentration of the desorbed compound than the first or third fractions. The desorption does not need to be assisted by passing a carrier gas through the bed or by applying reduced pressure to the outlet from the bed.

  3. Method of recovering adsorbed liquid compounds from molecular sieve columns

    DOE Patents [OSTI]

    Burkholder, H.R.; Fanslow, G.E.

    1983-12-20

    Molecularly adsorbed volatile liquid compounds are recovered from molecular sieve adsorbent columns by directionally applying microwave energy to the bed of the adsorbent to produce a mixed liquid-gas effluent. The gas portion of the effluent generates pressure within the bed to promote the discharge of the effluent from the column bottoms. Preferably the discharged liquid-gas effluent is collected in two to three separate fractions, the second or intermediate fraction having a substantially higher concentration of the desorbed compound than the first or third fractions. The desorption does not need to be assisted by passing a carrier gas through the bed or by applying reduced pressure to the outlet from the bed. 8 figs.

  4. Process for recovering organic components from liquid streams

    DOE Patents [OSTI]

    Blume, Ingo; Baker, Richard W.

    1991-01-01

    A separation process for recovering organic components from liquid streams. The process is a combination of pervaporation and decantation. In cases where the liquid stream contains the organic to be separated in dissolved form, the pervaporation step is used to concentrate the organic to a point above the solubility limit, so that a two-phase permeate is formed and then decanted. In cases where the liquid stream is a two-phase mixture, the decantation step is performed first, to remove the organic product phase, and the residue from the decanter is then treated by pervaporation. The condensed permeate from the pervaporation unit is sufficiently concentrated in the organic component to be fed back to the decanter. The process can be tailored to produce only two streams: an essentially pure organic product stream suitable for reuse, and a residue stream for discharge or reuse.

  5. Separated-orbit bisected energy-recovered linear accelerator

    DOE Patents [OSTI]

    Douglas, David R.

    2015-09-01

    A separated-orbit bisected energy-recovered linear accelerator apparatus and method. The accelerator includes a first linac, a second linac, and a plurality of arcs of differing path lengths, including a plurality of up arcs, a plurality of downgoing arcs, and a full energy arc providing a path independent of the up arcs and downgoing arcs. The up arcs have a path length that is substantially a multiple of the RF wavelength and the full energy arc includes a path length that is substantially an odd half-integer multiple of the RF wavelength. Operation of the accelerator includes accelerating the beam utilizing the linacs and up arcs until the beam is at full energy, at full energy executing a full recirculation to the second linac using a path length that is substantially an odd half-integer of the RF wavelength, and then decelerating the beam using the linacs and downgoing arcs.

  6. Innovative Elution Processes for Recovering Uranium from Seawater

    SciTech Connect (OSTI)

    Wai, Chien; Tian, Guoxin; Janke, Christopher

    2014-05-29

    Utilizing amidoxime-based polymer sorbents for extraction of uranium from seawater has attracted considerable interest in recent years. Uranium collected in the sorbent is recovered typically by elution with an acid. One drawback of acid elution is deterioration of the sorbent which is a significant factor that limits the economic competitiveness of the amidoxime-based sorbent systems for sequestering uranium from seawater. Developing innovative elution processes to improve efficiency and to minimize loss of sorbent capacity become essential in order to make this technology economically feasible for large-scale industrial applications. This project has evaluated several elution processes including acid elution, carbonate elution, and supercritical fluid elution for recovering uranium from amidoxime-based polymer sorbents. The elution efficiency, durability and sorbent regeneration for repeated uranium adsorption- desorption cycles in simulated seawater have been studied. Spectroscopic techniques are used to evaluate chemical nature of the sorbent before and after elution. A sodium carbonate-hydrogen peroxide elution process for effective removal of uranium from amidoxime-based sorbent is developed. The cause of this sodium carbonate and hydrogen peroxide synergistic leaching of uranium from amidoxime-based sorbent is attributed to the formation of an extremely stable uranyl peroxo-carbonato complex. The efficiency of uranium elution by the carbonate-hydrogen peroxide method is comparable to that of the hydrochloric acid elution but damage to the sorbent material is much less for the former. The carbonate- hydrogen peroxide elution also does not need any elaborate step to regenerate the sorbent as those required for hydrochloric acid leaching. Several CO2-soluble ligands have been tested for extraction of uranium from the sorbent in supercritical fluid carbon dioxide. A mixture of hexafluoroacetylacetone and tri-n-butylphosphate shows the best result but uranium

  7. George A. Olah, Carbocation and Hydrocarbon Chemistry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    George A. Olah, Carbocation and Hydrocarbon Chemistry Resources with Additional Information * Patents George A. Olah Courtesy Rand Larson, Morningstar Productions George Olah received the 1994 Nobel Prize in Chemistry "for his contribution to carbocation chemistry" and his 'role in the chemistry of hydrocarbons. In particular, he developed superacids ... that are much stronger than ordinary acids, are non-nucleophilic, and are fluid at low temperatures. In such media ... carbocations

  8. Department of Chemistry | Center for Catalytic Hydrocarbon

    Broader source: All U.S. Department of Energy (DOE) Office Webpages

    Functionalization Department of Chemistry Faculty & Research Outreach Programs Graduate Studies Events & Seminars Undergraduate Studies Contact Us Faculty & Research > Research Centers & Programs > Center for Catalytic Hydrocarbon Functionalization CCHF Center for Catalytic Hydrocarbon Functionalization Catalysts are central to the efficient and clean utilization of energy resources, and they impact all aspects of the energy sector. With the University of Virginia as

  9. Upgrading heavy hydrocarbon oils using sodium hypochlorite

    SciTech Connect (OSTI)

    Rankel, L.A.

    1986-07-22

    A process is described for demetallizing a residual hydrocarbon fraction comprising: (a) contacting the hydrocarbon fraction with an aqueous solution of a hypochlorite salt; (b) separating the mixture into an aqueous phase and an oil phase; (c) contacting the oil phase with a deasphalting solvent and (d) obtaining by separation a product comprising a demetallized oil fraction suitable for use as a feedstock for catalytic processing.

  10. Syngas Upgrading to Hydrocarbon Fuels Technology Pathway | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Syngas Upgrading to Hydrocarbon Fuels Technology Pathway Syngas Upgrading to Hydrocarbon Fuels Technology Pathway This technology pathway case investigates the upgrading of woody biomass derived synthesis gas (syngas) to hydrocarbon biofuels. While this specific discussion focuses on the conversion of syngas via a methanol intermediate to hydrocarbon blendstocks, there are a number of alternative conversion routes for production of hydrocarbons through a wide array of intermediates