Powered by Deep Web Technologies
Note: This page contains sample records for the topic "oled solid state" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Solid-State Lighting: OLED Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

Lighting: OLED Basics on Twitter Bookmark Solid-State Lighting: OLED Basics on Google Bookmark Solid-State Lighting: OLED Basics on Delicious Rank Solid-State Lighting:...

2

Quantum Dot Light Enhancement Substrate for OLED Solid-State Lighting  

SciTech Connect

With DOE Award No. DE-EE00000628, QD Vision developed and demonstrated a cost-competitive solution for increasing the light extraction efficiency of OLEDs with efficient and stable color rendering index (CRI) for solid state lighting (SSL). Solution processable quantum dot (QD) films were integrated into OLED ITO-glass substrates to generate tunable white emission from blue emitting OLED) devices as well as outcouple light from the ITO film. This QD light-enhancement substrate (QD-LED) technology demonstrated a 60% increase in OLED forward light out-coupling, a value which increases to 76% when considering total increase in multi-directional light output. The objective for the first year was an 80% increase in light output. This project seeks to develop and demonstrate a cost-competitive solution for realizing increased extraction efficiency organic light emitting devices (OLEDs) with efficient and stable color rendering index (CRI) for SSL. Solution processible quantum dot (QD) films will be utilized to generate tunable white emission from blue emitting phosphorescent OLED (Ph-OLED) devices.

James Perkins; Matthew Stevenson; Gagan Mahan; Seth Coe-Sullivan; Peter Kazlas

2011-01-21T23:59:59.000Z

3

Solid-State Lighting: Why SSL  

NLE Websites -- All DOE Office Websites (Extended Search)

Why SSL to someone by E-mail Why SSL to someone by E-mail Share Solid-State Lighting: Why SSL on Facebook Tweet about Solid-State Lighting: Why SSL on Twitter Bookmark Solid-State Lighting: Why SSL on Google Bookmark Solid-State Lighting: Why SSL on Delicious Rank Solid-State Lighting: Why SSL on Digg Find More places to share Solid-State Lighting: Why SSL on AddThis.com... Why SSL LED Basics OLED Basics Using LEDs R&D Challenges Market Challenges Why SSL Resources Solid-State Lighting: Brilliant Solutions for America's Energy Future PDF Energy Savings Potential of SSL PDF Energy Savings Estimates of LEDs PDF More Resources Since 2003, the U.S. Department of Energy has invested with industry partners in research and development of solid-state lighting (SSL)-including both light-emitting diode (LED) and organic light

4

Solid-State Lighting: Market Challenges  

NLE Websites -- All DOE Office Websites (Extended Search)

Market Challenges to someone by Market Challenges to someone by E-mail Share Solid-State Lighting: Market Challenges on Facebook Tweet about Solid-State Lighting: Market Challenges on Twitter Bookmark Solid-State Lighting: Market Challenges on Google Bookmark Solid-State Lighting: Market Challenges on Delicious Rank Solid-State Lighting: Market Challenges on Digg Find More places to share Solid-State Lighting: Market Challenges on AddThis.com... Why SSL LED Basics OLED Basics Using LEDs R&D Challenges Market Challenges Market Challenges Resources Compact Fluorescent Lighting in America PDF Guiding Market Introduction of SSL Products PDF LED Directional Lamps PDF LED MR16 Lamps Recessed LED Downlights PDF General Service LED Lamps PDF What to Ask - A Checklist for Buyers of LED Lighting Products PDF

5

Solid-State Lighting: Using LEDs  

NLE Websites -- All DOE Office Websites (Extended Search)

Using LEDs to someone by E-mail Using LEDs to someone by E-mail Share Solid-State Lighting: Using LEDs on Facebook Tweet about Solid-State Lighting: Using LEDs on Twitter Bookmark Solid-State Lighting: Using LEDs on Google Bookmark Solid-State Lighting: Using LEDs on Delicious Rank Solid-State Lighting: Using LEDs on Digg Find More places to share Solid-State Lighting: Using LEDs on AddThis.com... Why SSL LED Basics OLED Basics Using LEDs R&D Challenges Market Challenges Using LEDs Resources Using LEDs to Their Best Advantage PDF Establishing LED Equivalency PDF LED Directional Lamps LED MR16 Lamps Recessed LED Downlights PDF General Service LED Lamps What to Ask - A Checklist for Buyers of LED Lighting Products More Resources With their unique design and performance characteristics-such as directional light emission, compact profile, superior optical control,

6

Solid-State Lighting: R&D Challenges  

NLE Websites -- All DOE Office Websites (Extended Search)

R&D Challenges to someone by R&D Challenges to someone by E-mail Share Solid-State Lighting: R&D Challenges on Facebook Tweet about Solid-State Lighting: R&D Challenges on Twitter Bookmark Solid-State Lighting: R&D Challenges on Google Bookmark Solid-State Lighting: R&D Challenges on Delicious Rank Solid-State Lighting: R&D Challenges on Digg Find More places to share Solid-State Lighting: R&D Challenges on AddThis.com... Why SSL LED Basics OLED Basics Using LEDs R&D Challenges Market Challenges R&D Challenges Resources Doing Business with DOE's Solid-State Lighting Program PDF Solid-State Lighting Patents Resulting from DOE-Funded Projects PDF 2013 Project Portfolio PDF Solid-State Lighting R&D Manufacturing Roadmap PDF Solid-State Lighting R&D Multi-Year Program Plan PDF

7

Solid-State Lighting: Postings  

NLE Websites -- All DOE Office Websites (Extended Search)

Solid-State Lighting: Postings on Twitter Bookmark Solid-State Lighting: Postings on Google Bookmark Solid-State Lighting: Postings on Delicious Rank Solid-State Lighting:...

8

Solid-state lighting technology perspective.  

SciTech Connect

Solid-State Lighting (SSL) uses inorganic light-emitting diodes (LEDs) and organic light-emitting diodes (OLEDs) to convert electricity into light for illumination. SSL has the potential for enormous energy savings and accompanying environmental benefits if its promise of 50% (or greater) energy efficiencies can be achieved. This report provides a broad summary of the technologies that underlie SSL. The applications for SSL and potential impact on U.S. and world-wide energy consumption, and impact on the human visual experience are discussed. The properties of visible light and different technical metrics to characterize its properties are summarized. The many factors contributing to the capital and operating costs for SSL and traditional lighting sources (incandescent, fluorescent, and high-intensity discharge lamps) are discussed, with extrapolations for future SSL goals. The technologies underlying LEDs and OLEDs are also described, including current and possible alternative future technologies and some of the present limitations.

Tsao, Jeffrey Yeenien; Coltrin, Michael Elliott

2006-08-01T23:59:59.000Z

9

Solid-State Lighting: Solid-State Lighting  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solid-State Lighting Search Solid-State Lighting Search Search Help Solid-State Lighting HOME ABOUT THE PROGRAM R&D PROJECTS MARKET-BASED PROGRAMS SSL BASICS INFORMATION RESOURCES FINANCIAL OPPORTUNITIES EERE » Building Technologies Office » Solid-State Lighting Printable Version Share this resource Send a link to Solid-State Lighting: Solid-State Lighting to someone by E-mail Share Solid-State Lighting: Solid-State Lighting on Facebook Tweet about Solid-State Lighting: Solid-State Lighting on Twitter Bookmark Solid-State Lighting: Solid-State Lighting on Google Bookmark Solid-State Lighting: Solid-State Lighting on Delicious Rank Solid-State Lighting: Solid-State Lighting on Digg Find More places to share Solid-State Lighting: Solid-State Lighting on AddThis.com... Pause/Resume Photo of a large room with people standing around poster boards.

10

Solid-State Lighting: R&D Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

R&D R&D Projects Printable Version Share this resource Send a link to Solid-State Lighting: R&D Projects to someone by E-mail Share Solid-State Lighting: R&D Projects on Facebook Tweet about Solid-State Lighting: R&D Projects on Twitter Bookmark Solid-State Lighting: R&D Projects on Google Bookmark Solid-State Lighting: R&D Projects on Delicious Rank Solid-State Lighting: R&D Projects on Digg Find More places to share Solid-State Lighting: R&D Projects on AddThis.com... R&D Highlights R&D Projects DOE leadership and support spur advances in the efficacy and performance of light-emitting diode (LED) and organic LED (OLED) technologies-advances that might not otherwise be achieved without DOE funding. (Some of the following documents are available as Adobe Acrobat PDFs. Download Adobe

11

Solid-State Lighting: Registration  

NLE Websites -- All DOE Office Websites (Extended Search)

Lighting: Registration on Twitter Bookmark Solid-State Lighting: Registration on Google Bookmark Solid-State Lighting: Registration on Delicious Rank Solid-State Lighting:...

12

Solid State Division  

SciTech Connect

This report contains brief discussions on work done in the Solid State Division of Oak Ridge National Laboratory. The topics covered are: Theoretical Solid State Physics; Neutron scattering; Physical properties of materials; The synthesis and characterization of materials; Ion beam and laser processing; and Structure of solids and surfaces. (LSP)

Green, P.H.; Watson, D.M. (eds.)

1989-08-01T23:59:59.000Z

13

Solid-State Lighting: Solid-State Lighting Videos  

NLE Websites -- All DOE Office Websites (Extended Search)

Solid-State Lighting Videos to Solid-State Lighting Videos to someone by E-mail Share Solid-State Lighting: Solid-State Lighting Videos on Facebook Tweet about Solid-State Lighting: Solid-State Lighting Videos on Twitter Bookmark Solid-State Lighting: Solid-State Lighting Videos on Google Bookmark Solid-State Lighting: Solid-State Lighting Videos on Delicious Rank Solid-State Lighting: Solid-State Lighting Videos on Digg Find More places to share Solid-State Lighting: Solid-State Lighting Videos on AddThis.com... Conferences & Meetings Presentations Publications Webcasts Videos Tools Solid-State Lighting Videos On this page you can access DOE Solid-State Lighting (SSL) Program videos. Photo of a museum art gallery with LED lights in track fixtures overhead. The City of Los Angeles LED Streetlight Program

14

Solid-State Lighting: Solid-State Lighting Contacts  

NLE Websites -- All DOE Office Websites (Extended Search)

About the About the Program Printable Version Share this resource Send a link to Solid-State Lighting: Solid-State Lighting Contacts to someone by E-mail Share Solid-State Lighting: Solid-State Lighting Contacts on Facebook Tweet about Solid-State Lighting: Solid-State Lighting Contacts on Twitter Bookmark Solid-State Lighting: Solid-State Lighting Contacts on Google Bookmark Solid-State Lighting: Solid-State Lighting Contacts on Delicious Rank Solid-State Lighting: Solid-State Lighting Contacts on Digg Find More places to share Solid-State Lighting: Solid-State Lighting Contacts on AddThis.com... Contacts Partnerships Solid-State Lighting Contacts For information about Solid-State Lighting, contact James Brodrick Lighting Program Manager Building Technologies Office U.S. Department of Energy

15

Solid-State Lighting: Tools  

NLE Websites -- All DOE Office Websites (Extended Search)

about Solid-State Lighting: Tools on Twitter Bookmark Solid-State Lighting: Tools on Google Bookmark Solid-State Lighting: Tools on Delicious Rank Solid-State Lighting: Tools on...

16

Solid-State Lighting: News  

NLE Websites -- All DOE Office Websites (Extended Search)

about Solid-State Lighting: News on Twitter Bookmark Solid-State Lighting: News on Google Bookmark Solid-State Lighting: News on Delicious Rank Solid-State Lighting: News on...

17

Solid-State Lighting: Solid-State Lighting Manufacturing Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

Solid-State Lighting Solid-State Lighting Manufacturing Workshop to someone by E-mail Share Solid-State Lighting: Solid-State Lighting Manufacturing Workshop on Facebook Tweet about Solid-State Lighting: Solid-State Lighting Manufacturing Workshop on Twitter Bookmark Solid-State Lighting: Solid-State Lighting Manufacturing Workshop on Google Bookmark Solid-State Lighting: Solid-State Lighting Manufacturing Workshop on Delicious Rank Solid-State Lighting: Solid-State Lighting Manufacturing Workshop on Digg Find More places to share Solid-State Lighting: Solid-State Lighting Manufacturing Workshop on AddThis.com... Conferences & Meetings Past Conferences Presentations Publications Webcasts Videos Tools Solid-State Lighting Manufacturing Workshop Nearly 200 lighting industry leaders, chip makers, fixture and component

18

The solid state lighting initiative: An industry/DOE collaborativeeffort  

SciTech Connect

A new era of technology is emerging in lighting. It is being propelled by the dramatic improvements in performance of solid state light sources. These sources offer an entirely new array of design aspects not achievable with current light sources. At the same time, their performance characteristics continue to improve and are expected to eclipse those of the most common light sources within the near future. High efficiency is one of these performance attributes motivating the Department of Energy (DOE) to work with the manufacturers of this new technology to create a program plan sufficiently comprehensive to support an industry-driven Solid State Lighting Initiative before Congress. The purpose of the initiative is to educate Congress about the potential of this technology to reduce the electric lighting load within the United States and, consequently, to realize the associated environmental benefits. The initiative will solicit congressional support to accelerate the development of solid state technology through investment in the research and development necessary to overcome the technical barriers that currently limit the products to niche markets. While there are multiple technologies being developed as solid state light sources, the two technologies which hold the most promise for application to general illumination are Light Emitting Diodes (LEDs) and Organic Light Emitting Diodes (OLEDs). The form of these sources can be quite different from current sources, allowing exciting new design uses for the products. Being diffuse sources, OLEDs are much lower in intensity per unit area than LEDs. The manufacturing process for OLEDs lends itself to shapes that can be formed to different geometries, making possible luminous panels or flexible luminous materials. Conversely, LEDs are very intense point sources which can be integrated into a small space to create an intense source or used separately for less focused applications. Both OLED and LED sources are expected to be thinner than other comparable sources; this thinness offers additional design opportunities.

Johnson, Steve

2000-10-01T23:59:59.000Z

19

Solid-State Lighting: Solid-State Lighting  

NLE Websites -- All DOE Office Websites (Extended Search)

Lighting Lighting Printable Version Share this resource Send a link to Solid-State Lighting: Solid-State Lighting to someone by E-mail Share Solid-State Lighting: Solid-State Lighting on Facebook Tweet about Solid-State Lighting: Solid-State Lighting on Twitter Bookmark Solid-State Lighting: Solid-State Lighting on Google Bookmark Solid-State Lighting: Solid-State Lighting on Delicious Rank Solid-State Lighting: Solid-State Lighting on Digg Find More places to share Solid-State Lighting: Solid-State Lighting on AddThis.com... Pause/Resume Photo of a large room with people standing around poster boards. Register Now for DOE's 11th Annual SSL R&D Workshop January 28-30, join other SSL R&D professionals from industry, government, and academia to learn, share, and shape the future of lighting.

20

FAQ of Overview of Solid-State Lighting  

NLE Websites -- All DOE Office Websites (Extended Search)

FREQUENTLY ASKED QUESTIONS 3 Leds FREQUENTLY ASKED QUESTIONS 3 Leds 1. What is solid-state lighting? 2. What is a semiconductor? 3. What is a semiconductor LED (light emitting diode)? 4. What is an organic LED (OLED)? 5. Where can I see LED lighting today? 6. How do you produce white light using LEDs? 7. How does solid-state lighting differ from conventional lighting? 8. What is the energy efficiency of solid-state lighting today? How does the energy efficiency compare with incandescent and fluorescent lamps? 9. What is the cost of solid-state lighting today? How does the cost compare with incandescent and fluorescent lamps? 10. What is the quality of the white light using solid-state lighting today? How does it compare with incandescent and fluorescent lamps?

Note: This page contains sample records for the topic "oled solid state" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Energy Department Announces $4 Million Solicitation for Solid-State  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Announces $4 Million Solicitation for Solid-State Announces $4 Million Solicitation for Solid-State Lighting Research Energy Department Announces $4 Million Solicitation for Solid-State Lighting Research August 29, 2005 - 2:46pm Addthis Technology has Potential to Double Lighting Efficiency in U.S., Lowering Energy Bills WASHINGTON, DC - The U.S. Department of Energy (DOE) today announced a $4 million solicitation for research into solid-state lighting (SSL) that has the potential to create light with virtually no heat and double the efficiency of general lighting systems, saving energy costs for consumers and reducing lighting's environmental impact. Core SSL technologies include light-emitting diodes (LEDs), organic light-emitting diodes (OLEDs) and light-emitting polymers. "Solid-state lighting advances have the potential to greatly reduce energy

22

Energy Department Announces $4 Million Solicitation for Solid-State  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4 Million Solicitation for Solid-State 4 Million Solicitation for Solid-State Lighting Research Energy Department Announces $4 Million Solicitation for Solid-State Lighting Research August 29, 2005 - 2:46pm Addthis Technology has Potential to Double Lighting Efficiency in U.S., Lowering Energy Bills WASHINGTON, DC - The U.S. Department of Energy (DOE) today announced a $4 million solicitation for research into solid-state lighting (SSL) that has the potential to create light with virtually no heat and double the efficiency of general lighting systems, saving energy costs for consumers and reducing lighting's environmental impact. Core SSL technologies include light-emitting diodes (LEDs), organic light-emitting diodes (OLEDs) and light-emitting polymers. "Solid-state lighting advances have the potential to greatly reduce energy

23

Solid-State Lighting: 2013 Solid-State Lighting Manufacturing...  

NLE Websites -- All DOE Office Websites (Extended Search)

2013 Solid-State Lighting Manufacturing R&D Workshop Presentations and Materials to someone by E-mail Share Solid-State Lighting: 2013 Solid-State Lighting Manufacturing R&D...

24

Solid-State Lighting: Events  

NLE Websites -- All DOE Office Websites (Extended Search)

Events Printable Version Share this resource Send a link to Solid-State Lighting: Events to someone by E-mail Share Solid-State Lighting: Events on Facebook Tweet about Solid-State...

25

Organic Light-Emitting Devices (OLEDS) and Their Optically Detected Magnetic Resonance (ODMR)  

DOE Green Energy (OSTI)

Organic Light-Emitting Devices (OLEDs), both small molecular and polymeric have been studied extensively since the first efficient small molecule OLED was reported by Tang and VanSlyke in 1987. Burroughes' report on conjugated polymer-based OLEDs led to another track in OLED development. These developments have resulted in full color, highly efficient (up to {approx} 20% external efficiency 60 lm/W power efficiency for green emitters), and highly bright (> 140,000 Cd/m{sup 2} DC, {approx}2,000,000 Cd/m{sup 2} AC), stable (>40,000 hr at 5 mA/cm{sup 2}) devices. OLEDs are Lambertian emitters, which intrinsically eliminates the view angle problem of liquid crystal displays (LCDs). Thus OLEDs are beginning to compete with the current dominant LCDs in information display. Numerous companies are now active in this field, including large companies such as Pioneer, Toyota, Estman Kodak, Philipps, DuPont, Samsung, Sony, Toshiba, and Osram, and small companies like Cambridge Display Technology (CDT), Universal Display Corporation (UDC), and eMagin. The first small molecular display for vehicular stereos was introduced in 1998, and polymer OLED displays have begun to appear in commercial products. Although displays are the major application for OLEDs at present, they are also candidates for nest generation solid-state lighting. In this case the light source needs to be white in most cases. Organic transistors, organic solar cells, etc. are also being developed vigorously.

Gang Li

2003-12-12T23:59:59.000Z

26

OLED devices  

DOE Patents (OSTI)

An OLED device having an emission layer formed of an ambipolar phosphine oxide host material and a dopant, a hole transport layer in electrical communication with an anode, an electron transport layer in communication with a cathode, wherein the HOMO energy of the hole transport layer is substantially the same as the HOMO energy of the ambipolar host in the emission layer, and the LUMO energy of the electron transport layer is substantially the same as the LUMO energy of the ambipolar host in the emission layer.

Sapochak, Linda Susan [Arlington, VA; Burrows, Paul Edward [Kennewick, WA; Bimalchandra, Asanga [Richland, WA

2011-02-22T23:59:59.000Z

27

journal Solid State Ionics  

NLE Websites -- All DOE Office Websites (Extended Search)

Structural and transport properties of Nafion in hydrobromic Structural and transport properties of Nafion in hydrobromic acid solutions journal Solid State Ionics year month abstract p Proton exchange membranes are key solid state ion carriers in many relevant energy technologies including flow batteries fuel cells and solar fuel generators In many of these systems the membranes are in contact with electrolyte solutions In this paper we focus on the impact of different HBr a flow battery and exemplary acid electrolyte external concentrations on the conductivity of Nafion a perfluorosulfonic acid membrane that is commonly used in many energy related applications The peak and then decrease in conductivity is correlated with measured changes in the water and HBr content within the membrane In addition small angle x ray scattering is used to probe the nanostructure to

28

Solid-State Lighting: Contacts  

NLE Websites -- All DOE Office Websites (Extended Search)

Contacts Contacts Printable Version Share this resource Send a link to Solid-State Lighting: Contacts to someone by E-mail Share Solid-State Lighting: Contacts on Facebook Tweet about Solid-State Lighting: Contacts on Twitter Bookmark Solid-State Lighting: Contacts on Google Bookmark Solid-State Lighting: Contacts on Delicious Rank Solid-State Lighting: Contacts on Digg Find More places to share Solid-State Lighting: Contacts on AddThis.com... Contacts Web site and program contacts are provided below. Website Contact Send us your comments, report problems, and/or ask questions about information on this site. Program Contacts Contact information for the Solid-State Lighting Program. Contacts | Web Site Policies | U.S. Department of Energy | USA.gov Content Last Updated: 02/14

29

Materials for solid state lighting  

E-Print Network (OSTI)

in the Proceedings. Materials for Solid State Lighting S.G.Johnson Lighting Research Group Building TechnologiesMaterials for Solid State Lighting S.G. Johnson 1 and J. A.

Johnson, S.G.; Simmons, J.A.

2002-01-01T23:59:59.000Z

30

Solid-State Lighting: Partnerships  

NLE Websites -- All DOE Office Websites (Extended Search)

About the Program Printable Version Share this resource Send a link to Solid-State Lighting: Partnerships to someone by E-mail Share Solid-State Lighting: Partnerships on Facebook...

31

Solid state optical microscope  

DOE Patents (OSTI)

A solid state optical microscope wherein wide-field and high-resolution images of an object are produced at a rapid rate by utilizing conventional optics with a charge-coupled photodiode array. A galvanometer scanning mirror, for scanning in one of two orthogonal directions is provided, while the charge-coupled photodiode array scans in the other orthogonal direction. Illumination light from the object is incident upon the photodiodes, creating packets of electrons (signals) which are representative of the illuminated object. The signals are then processed, stored in a memory, and finally displayed as a video signal. 2 figs.

Young, I.T.

1983-08-09T23:59:59.000Z

32

Solid state optical microscope  

DOE Patents (OSTI)

A solid state optical microscope wherein wide-field and high-resolution images of an object are produced at a rapid rate by utilizing conventional optics with a charge-coupled photodiode array. A galvanometer scanning mirror, for scanning in one of two orthogonal directions is provided, while the charge-coupled photodiode array scans in the other orthogonal direction. Illumination light from the object is incident upon the photodiodes, creating packets of electrons (signals) which are representative of the illuminated object. The signals are then processed, stored in a memory, and finally displayed as a video signal.

Young, Ian T. (Pleasanton, CA)

1983-01-01T23:59:59.000Z

33

Solid-State Lighting: Publications  

NLE Websites -- All DOE Office Websites (Extended Search)

Publications to someone by Publications to someone by E-mail Share Solid-State Lighting: Publications on Facebook Tweet about Solid-State Lighting: Publications on Twitter Bookmark Solid-State Lighting: Publications on Google Bookmark Solid-State Lighting: Publications on Delicious Rank Solid-State Lighting: Publications on Digg Find More places to share Solid-State Lighting: Publications on AddThis.com... Conferences & Meetings Presentations Publications Postings Articles Program Fact Sheets Technology Fact Sheets CALiPER Reports GATEWAY Reports LED Lighting Facts Reports Project Reports Studies and Reports Technology Roadmaps Product Performance Guides Webcasts Videos Tools Publications The Solid-State Lighting (SSL) program produces a comprehensive portfolio of publications, ranging from overviews of the program's research

34

Solid-State Lighting: Presentations  

NLE Websites -- All DOE Office Websites (Extended Search)

Presentations to someone by Presentations to someone by E-mail Share Solid-State Lighting: Presentations on Facebook Tweet about Solid-State Lighting: Presentations on Twitter Bookmark Solid-State Lighting: Presentations on Google Bookmark Solid-State Lighting: Presentations on Delicious Rank Solid-State Lighting: Presentations on Digg Find More places to share Solid-State Lighting: Presentations on AddThis.com... Conferences & Meetings Presentations Publications Webcasts Videos Tools Presentations This page provides links to the presentations given at the DOE Solid-State Lighting Workshops, as well as links to reference materials. Some of the following documents are available as Adobe Acrobat PDFs. Download Adobe Reader. Workshop Presentations, Materials and Reports November 2013: Presentations from DOE SSL Market Introduction Workshop

35

Solid-State Lighting: Hotel Information  

NLE Websites -- All DOE Office Websites (Extended Search)

Hotel Information on Twitter Bookmark Solid-State Lighting: Hotel Information on Google Bookmark Solid-State Lighting: Hotel Information on Delicious Rank Solid-State...

36

Solid-State Lighting: Past Conferences  

NLE Websites -- All DOE Office Websites (Extended Search)

Past Conferences on Twitter Bookmark Solid-State Lighting: Past Conferences on Google Bookmark Solid-State Lighting: Past Conferences on Delicious Rank Solid-State...

37

Solid-State Lighting: Related Articles  

NLE Websites -- All DOE Office Websites (Extended Search)

Related Articles on Twitter Bookmark Solid-State Lighting: Related Articles on Google Bookmark Solid-State Lighting: Related Articles on Delicious Rank Solid-State...

38

Solid-State Lighting: Research Highlights  

NLE Websites -- All DOE Office Websites (Extended Search)

Research Highlights on Twitter Bookmark Solid-State Lighting: Research Highlights on Google Bookmark Solid-State Lighting: Research Highlights on Delicious Rank Solid-State...

39

Solid-State Lighting: Solid-State Lighting  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Lighting Search Search Help Solid-State Lighting HOME ABOUT THE PROGRAM R&D PROJECTS MARKET-BASED PROGRAMS SSL BASICS INFORMATION RESOURCES FINANCIAL OPPORTUNITIES EERE...

40

Organic Light-Emitting Diodes (OLEDs) and Optically-Detected Magnetic Resonance (ODMR) studies on organic materials  

Science Conference Proceedings (OSTI)

Organic semiconductors have evolved rapidly over the last decades and currently are considered as the next-generation technology for many applications, such as organic light-emitting diodes (OLEDs) in flat-panel displays (FPDs) and solid state lighting (SSL), and organic solar cells (OSCs) in clean renewable energy. This dissertation focuses mainly on OLEDs. Although the commercialization of the OLED technology in FPDs is growing and appears to be just around the corner for SSL, there are still several key issues that need to be addressed: (1) the cost of OLEDs is very high, largely due to the costly current manufacturing process; (2) the efficiency of OLEDs needs to be improved. This is vital to the success of OLEDs in the FPD and SSL industries; (3) the lifetime of OLEDs, especially blue OLEDs, is the biggest technical challenge. All these issues raise the demand for new organic materials, new device structures, and continued lower-cost fabrication methods. In an attempt to address these issues, we used solution-processing methods to fabricate highly efficient small molecule OLEDs (SMOLEDs); this approach is costeffective in comparison to the more common thermal vacuum evaporation. We also successfully made efficient indium tin oxide (ITO)-free SMOLEDs to further improve the efficiency of the OLEDs. We employed the spin-dependent optically-detected magnetic resonance (ODMR) technique to study the luminescence quenching processes in OLEDs and organic materials in order to understand the intrinsic degradation mechanisms. We also fabricated polymer LEDs (PLEDs) based on a new electron-accepting blue-emitting polymer and studied the effect of molecular weight on the efficiency of PLEDs. All these studies helped us to better understand the underlying relationship between the organic semiconductor materials and the OLEDs performance, and will subsequently assist in further enhancing the efficiency of OLEDs. With strongly improved device performance (in addition to other OLEDs' attributes such as mechanical flexibility and potential low cost), the OLED technology is promising to successfully compete with current technologies, such as LCDs and inorganic LEDs.

Cai, Min

2011-11-30T23:59:59.000Z

Note: This page contains sample records for the topic "oled solid state" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Solid state electrochemical current source  

DOE Patents (OSTI)

A cathode and a solid state electrochemical cell comprising said cathode, a solid anode and solid fluoride ion conducting electrolyte. The cathode comprises a metal oxide and a compound fluoride containing at least two metals with different valences. Representative compound fluorides include solid solutions of bismuth fluoride and potassium fluoride; and lead fluoride and potassium fluoride. Representative metal oxides include copper oxide, lead oxide, manganese oxide, vanadium oxide and silver oxide.

Potanin, Alexander Arkadyevich (Sarov, RU); Vedeneev, Nikolai Ivanovich (Sarov, RU)

2002-04-30T23:59:59.000Z

42

Solid-State Lighting: 2009 Solid-State Lighting Vancouver Manufacturin...  

NLE Websites -- All DOE Office Websites (Extended Search)

2009 Solid-State Lighting Vancouver Manufacturing Workshop Materials to someone by E-mail Share Solid-State Lighting: 2009 Solid-State Lighting Vancouver Manufacturing Workshop...

43

Solid State Photovoltaic Research Branch  

DOE Green Energy (OSTI)

This report summarizes the progress of the Solid State Photovoltaic Research Branch of the Solar Energy Research Institute (SERI) from October 1, 1988, through September 30,l 1989. Six technical sections of the report cover these main areas of SERIs in-house research: Semiconductor Crystal Growth, Amorphous Silicon Research, Polycrystalline Thin Films, III-V High-Efficiency Photovoltaic Cells, Solid-State Theory, and Laser Raman and Luminescence Spectroscopy. Sections have been indexed separately for inclusion on the data base.

Not Available

1990-09-01T23:59:59.000Z

44

Solid-State Lighting: 2007 Solid-State Lighting Workshop Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

2007 Solid-State Lighting 2007 Solid-State Lighting Workshop Materials to someone by E-mail Share Solid-State Lighting: 2007 Solid-State Lighting Workshop Materials on Facebook Tweet about Solid-State Lighting: 2007 Solid-State Lighting Workshop Materials on Twitter Bookmark Solid-State Lighting: 2007 Solid-State Lighting Workshop Materials on Google Bookmark Solid-State Lighting: 2007 Solid-State Lighting Workshop Materials on Delicious Rank Solid-State Lighting: 2007 Solid-State Lighting Workshop Materials on Digg Find More places to share Solid-State Lighting: 2007 Solid-State Lighting Workshop Materials on AddThis.com... Conferences & Meetings Past Conferences Presentations Publications Webcasts Videos Tools 2007 Solid-State Lighting Workshop Materials This page provides links to the presentations given at the DOE Solid-State

45

Solid-State Lighting: 2006 Solid-State Lighting Workshop Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

2006 Solid-State Lighting 2006 Solid-State Lighting Workshop Materials to someone by E-mail Share Solid-State Lighting: 2006 Solid-State Lighting Workshop Materials on Facebook Tweet about Solid-State Lighting: 2006 Solid-State Lighting Workshop Materials on Twitter Bookmark Solid-State Lighting: 2006 Solid-State Lighting Workshop Materials on Google Bookmark Solid-State Lighting: 2006 Solid-State Lighting Workshop Materials on Delicious Rank Solid-State Lighting: 2006 Solid-State Lighting Workshop Materials on Digg Find More places to share Solid-State Lighting: 2006 Solid-State Lighting Workshop Materials on AddThis.com... Conferences & Meetings Past Conferences Presentations Publications Webcasts Videos Tools 2006 Solid-State Lighting Workshop Materials This page provides links to the presentations given at the DOE Solid-State

46

Solid-State Lighting: 2012 DOE Solid-State Lighting Market Introduction  

NLE Websites -- All DOE Office Websites (Extended Search)

Program » Solid-State Lighting » Program » Solid-State Lighting » Information Resources Printable Version Share this resource Send a link to Solid-State Lighting: 2012 DOE Solid-State Lighting Market Introduction Workshop to someone by E-mail Share Solid-State Lighting: 2012 DOE Solid-State Lighting Market Introduction Workshop on Facebook Tweet about Solid-State Lighting: 2012 DOE Solid-State Lighting Market Introduction Workshop on Twitter Bookmark Solid-State Lighting: 2012 DOE Solid-State Lighting Market Introduction Workshop on Google Bookmark Solid-State Lighting: 2012 DOE Solid-State Lighting Market Introduction Workshop on Delicious Rank Solid-State Lighting: 2012 DOE Solid-State Lighting Market Introduction Workshop on Digg Find More places to share Solid-State Lighting: 2012 DOE Solid-State

47

Solid-State Lighting: NewsDetail  

NLE Websites -- All DOE Office Websites (Extended Search)

Lighting: NewsDetail on Twitter Bookmark Solid-State Lighting: NewsDetail on Google Bookmark Solid-State Lighting: NewsDetail on Delicious Rank Solid-State Lighting:...

48

High Efficancy Integrated Under-Cabinet Phosphorescent OLED  

SciTech Connect

In this two year program Universal Display Corporation (UDC) together with the University of Michigan, Teknokon, developed and delivered an energy efficient phosphorescent OLED under cabinet illumination system. Specifically the UDC team goal was in 2011 to deliver five (5) Beta level OLED under cabinet lighting fixtures each consisting of five 6-inch x 6-inch OLED lighting panels, delivering over 420 lumens, at an overall system efficacy of >60 lm/W, a CRI of >85, and a projected lifetime to 70% of initial luminance to exceed 20,000 hours. During the course of this program, the Team pursued the commercialization of these OLED based under cabinet lighting fixtures, to enable the launch of commercial OLED lighting products. The UDC team was ideally suited to develop these novel and efficient solid state lighting fixtures, having both the technical experience and commercial distribution mechanisms to leverage work performed under this contract. UDC's business strategy is to non-exclusively license its PHOLED technology to lighting manufacturers, and also supply them with our proprietary PHOLED materials. UDC is currently working with several licensees who are manufacturing OLED lighting panels using our technology. During this 2 year program, we further developed our high efficiency white Phosphorescent OLEDs from the first milestone, achieving a 80 lm/W single pixel to the final milestone, achieving an under-cabinet PHOLED lighting system that operates at 56 lm/W at 420 lumens. Each luminaire was comprised of ten 15cm x 7.5cm lighting modules mounted in outcoupling enhancement lenses and a control module. The lamps modules are connected together using either plugs or wires with plugs on each end, allowing for unlimited configurations. The lamps are driven by an OLED driver mounted in an enclosure which includes the AC plug. As a result of advancements gained under this program, the path to move OLED lighting panels from development into manufacturing has been further realized. We have found that under-cabinet lighting is an ideal first entry product opportunity to launch OLED lighting for residential applications. From the studies that we have performed, our PHOLED under-cabinet lighting system performance is very similar to many of the current commercially available LED under-cabinet luminaires. We also found that the projected cost of PHOLED luminaire should be comparable to the LED luminaire by 2015. With the additional benefits of PHOLED lighting, no glare, better uniformity and low operating temperature, it can be easily seen how the PHOLED under-cabinet luminaire could be preferred over the LED competition. Although the metrics we set for this program were extremely aggressive, the performance we achieved and reported, represents a very significant advancement in the OLED lighting industry.

Michael Hack

2001-10-31T23:59:59.000Z

49

Solid-State Lighting: Financial Opportunities  

NLE Websites -- All DOE Office Websites (Extended Search)

Financial Financial Opportunities Printable Version Share this resource Send a link to Solid-State Lighting: Financial Opportunities to someone by E-mail Share Solid-State Lighting: Financial Opportunities on Facebook Tweet about Solid-State Lighting: Financial Opportunities on Twitter Bookmark Solid-State Lighting: Financial Opportunities on Google Bookmark Solid-State Lighting: Financial Opportunities on Delicious Rank Solid-State Lighting: Financial Opportunities on Digg Find More places to share Solid-State Lighting: Financial Opportunities on AddThis.com... Current Opportunities DOE Selections Related Opportunities Financial Opportunities DOE financial opportunities for solid-state lighting (SSL) include competitive solicitations, grants, and other federal funding mechanisms to

50

Vehicle Technologies Office: Solid State Energy Conversion  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Conversion to someone by E-mail Share Vehicle Technologies Office: Solid State Energy Conversion on Facebook Tweet about Vehicle Technologies Office: Solid State Energy...

51

Vehicle Technologies Office: Solid State Energy Conversion  

NLE Websites -- All DOE Office Websites (Extended Search)

Solid State Energy Conversion The Solid State Energy Conversion R&D activity is focused on developing advanced thermoelectric technologies for utilizing engine waste heat by...

52

Development of High Efficacy, Low Cost Phosphorescent Oled Lightning Luminaire  

SciTech Connect

In this two year program, UDC together with Armstrong World Industries, Professor Stephen Forrest (University of Michigan) and Professor Mark Thompson (University of Southern California) planned to develop and deliver high efficiency OLED lighting luminaires as part of an integrated ceiling illumination system that exceed the Department of Energy (DOE) 2010 performance projections. Specifically the UDC team in 2010 delivered two prototype OLED ceiling illumination systems, each consisting of four individual OLED lighting panels on glass integrated into Armstrong's novel TechZone open architecture ceiling systems, at an overall system efficacy of 51 lm/W, a CRI = 85 and a projected lifetime to 70% of initial luminance to exceed 10,000 hours. This accomplishment represents a 50% increase in luminaire efficacy and a factor of two in lifetime over that outlined in the solicitation. In addition, the team has also delivered one 15cm x 15cm lighting panel fabricated on a flexible metal foil substrate, demonstrating the possibility using OLEDs in a range of form factors. During this program, our Team has pursued the commercialization of these OLED based ceiling luminaires, with a goal to launch commercial products within the next three years. We have proven that our team is ideally suited to develop these highly novel and efficient solid state lighting luminaires, having both the technical experience and commercial strategy to leverage work performed under this contract. Our calculations show that the success of our program could lead to energy savings of more than 0.5 quads or 8 MMTC (million metric tons of carbon) per year by 2016.

Michael Hack

2010-07-09T23:59:59.000Z

53

Solid-State Lighting: 2008 Solid-State Lighting Workshop Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

08 Solid-State Lighting 08 Solid-State Lighting Workshop Materials to someone by E-mail Share Solid-State Lighting: 2008 Solid-State Lighting Workshop Materials on Facebook Tweet about Solid-State Lighting: 2008 Solid-State Lighting Workshop Materials on Twitter Bookmark Solid-State Lighting: 2008 Solid-State Lighting Workshop Materials on Google Bookmark Solid-State Lighting: 2008 Solid-State Lighting Workshop Materials on Delicious Rank Solid-State Lighting: 2008 Solid-State Lighting Workshop Materials on Digg Find More places to share Solid-State Lighting: 2008 Solid-State Lighting Workshop Materials on AddThis.com... Conferences & Meetings Past Conferences Presentations Publications Webcasts Videos Tools 2008 Solid-State Lighting Workshop Materials This page provides links to the presentations given at the Transformations

54

Solid-State Lighting: 2014 DOE Solid-State Lighting R&D Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

2014 DOE Solid-State Lighting 2014 DOE Solid-State Lighting R&D Workshop to someone by E-mail Share Solid-State Lighting: 2014 DOE Solid-State Lighting R&D Workshop on Facebook Tweet about Solid-State Lighting: 2014 DOE Solid-State Lighting R&D Workshop on Twitter Bookmark Solid-State Lighting: 2014 DOE Solid-State Lighting R&D Workshop on Google Bookmark Solid-State Lighting: 2014 DOE Solid-State Lighting R&D Workshop on Delicious Rank Solid-State Lighting: 2014 DOE Solid-State Lighting R&D Workshop on Digg Find More places to share Solid-State Lighting: 2014 DOE Solid-State Lighting R&D Workshop on AddThis.com... Conferences & Meetings Past Conferences Presentations Publications Webcasts Videos Tools 2014 DOE Solid-State Lighting R&D Workshop logo for Next Generation Lighting Industry Alliance

55

Solid-State Lighting: ENERGY STAR® Solid-State Lighting Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

ENERGY STAR® Solid-State ENERGY STAR® Solid-State Lighting Workshop to someone by E-mail Share Solid-State Lighting: ENERGY STAR® Solid-State Lighting Workshop on Facebook Tweet about Solid-State Lighting: ENERGY STAR® Solid-State Lighting Workshop on Twitter Bookmark Solid-State Lighting: ENERGY STAR® Solid-State Lighting Workshop on Google Bookmark Solid-State Lighting: ENERGY STAR® Solid-State Lighting Workshop on Delicious Rank Solid-State Lighting: ENERGY STAR® Solid-State Lighting Workshop on Digg Find More places to share Solid-State Lighting: ENERGY STAR® Solid-State Lighting Workshop on AddThis.com... Conferences & Meetings Past Conferences Presentations Publications Webcasts Videos Tools ENERGY STAR® Solid-State Lighting Workshop Workshop Purpose: To prepare manufacturers for the launch of the ENERGY

56

Solid-State Lighting: 2011 Solid-State Lighting R&D Workshop Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

11 Solid-State Lighting R&D 11 Solid-State Lighting R&D Workshop Materials to someone by E-mail Share Solid-State Lighting: 2011 Solid-State Lighting R&D Workshop Materials on Facebook Tweet about Solid-State Lighting: 2011 Solid-State Lighting R&D Workshop Materials on Twitter Bookmark Solid-State Lighting: 2011 Solid-State Lighting R&D Workshop Materials on Google Bookmark Solid-State Lighting: 2011 Solid-State Lighting R&D Workshop Materials on Delicious Rank Solid-State Lighting: 2011 Solid-State Lighting R&D Workshop Materials on Digg Find More places to share Solid-State Lighting: 2011 Solid-State Lighting R&D Workshop Materials on AddThis.com... Conferences & Meetings Past Conferences Presentations Publications Webcasts Videos Tools 2011 Solid-State Lighting R&D Workshop Materials

57

Solid-State Lighting: DOE Solid-State Lighting Manufacturing Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE Solid-State Lighting DOE Solid-State Lighting Manufacturing Workshop to someone by E-mail Share Solid-State Lighting: DOE Solid-State Lighting Manufacturing Workshop on Facebook Tweet about Solid-State Lighting: DOE Solid-State Lighting Manufacturing Workshop on Twitter Bookmark Solid-State Lighting: DOE Solid-State Lighting Manufacturing Workshop on Google Bookmark Solid-State Lighting: DOE Solid-State Lighting Manufacturing Workshop on Delicious Rank Solid-State Lighting: DOE Solid-State Lighting Manufacturing Workshop on Digg Find More places to share Solid-State Lighting: DOE Solid-State Lighting Manufacturing Workshop on AddThis.com... Conferences & Meetings Past Conferences Presentations Publications Webcasts Videos Tools DOE Solid-State Lighting Manufacturing Workshop This page provides links to the presentations given at the 2009 DOE

58

Solid-State Lighting: 2010 Solid-State Lighting Workshop Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

2010 Solid-State Lighting 2010 Solid-State Lighting Workshop Materials to someone by E-mail Share Solid-State Lighting: 2010 Solid-State Lighting Workshop Materials on Facebook Tweet about Solid-State Lighting: 2010 Solid-State Lighting Workshop Materials on Twitter Bookmark Solid-State Lighting: 2010 Solid-State Lighting Workshop Materials on Google Bookmark Solid-State Lighting: 2010 Solid-State Lighting Workshop Materials on Delicious Rank Solid-State Lighting: 2010 Solid-State Lighting Workshop Materials on Digg Find More places to share Solid-State Lighting: 2010 Solid-State Lighting Workshop Materials on AddThis.com... Conferences & Meetings Presentations Publications Webcasts Videos Tools 2010 Solid-State Lighting Workshop Materials This page provides links to the presentations given at the Transformations

59

Solid-State Lighting: 2009 Solid-State Lighting Workshop Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

2009 Solid-State Lighting 2009 Solid-State Lighting Workshop Materials to someone by E-mail Share Solid-State Lighting: 2009 Solid-State Lighting Workshop Materials on Facebook Tweet about Solid-State Lighting: 2009 Solid-State Lighting Workshop Materials on Twitter Bookmark Solid-State Lighting: 2009 Solid-State Lighting Workshop Materials on Google Bookmark Solid-State Lighting: 2009 Solid-State Lighting Workshop Materials on Delicious Rank Solid-State Lighting: 2009 Solid-State Lighting Workshop Materials on Digg Find More places to share Solid-State Lighting: 2009 Solid-State Lighting Workshop Materials on AddThis.com... Conferences & Meetings Past Conferences Presentations Publications Webcasts Videos Tools 2009 Solid-State Lighting Workshop Materials This page provides links to the presentations given at the Transformations

60

Solid-State Lighting: Municipal Solid-State Street Lighting Consortium  

NLE Websites -- All DOE Office Websites (Extended Search)

Municipal Solid-State Street Municipal Solid-State Street Lighting Consortium Kickoff Webcast to someone by E-mail Share Solid-State Lighting: Municipal Solid-State Street Lighting Consortium Kickoff Webcast on Facebook Tweet about Solid-State Lighting: Municipal Solid-State Street Lighting Consortium Kickoff Webcast on Twitter Bookmark Solid-State Lighting: Municipal Solid-State Street Lighting Consortium Kickoff Webcast on Google Bookmark Solid-State Lighting: Municipal Solid-State Street Lighting Consortium Kickoff Webcast on Delicious Rank Solid-State Lighting: Municipal Solid-State Street Lighting Consortium Kickoff Webcast on Digg Find More places to share Solid-State Lighting: Municipal Solid-State Street Lighting Consortium Kickoff Webcast on AddThis.com... Conferences & Meetings

Note: This page contains sample records for the topic "oled solid state" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Solid-State Lighting: April 2007 Solid-State Lighting Market Introduction  

NLE Websites -- All DOE Office Websites (Extended Search)

April 2007 Solid-State Lighting April 2007 Solid-State Lighting Market Introduction Workshop Materials to someone by E-mail Share Solid-State Lighting: April 2007 Solid-State Lighting Market Introduction Workshop Materials on Facebook Tweet about Solid-State Lighting: April 2007 Solid-State Lighting Market Introduction Workshop Materials on Twitter Bookmark Solid-State Lighting: April 2007 Solid-State Lighting Market Introduction Workshop Materials on Google Bookmark Solid-State Lighting: April 2007 Solid-State Lighting Market Introduction Workshop Materials on Delicious Rank Solid-State Lighting: April 2007 Solid-State Lighting Market Introduction Workshop Materials on Digg Find More places to share Solid-State Lighting: April 2007 Solid-State Lighting Market Introduction Workshop Materials on

62

Solid-State Lighting: The Seventh Annual DOE Solid-State Lighting Market  

NLE Websites -- All DOE Office Websites (Extended Search)

Office » Solid-State Lighting » Information Office » Solid-State Lighting » Information Resources Printable Version Share this resource Send a link to Solid-State Lighting: The Seventh Annual DOE Solid-State Lighting Market Introduction Workshop to someone by E-mail Share Solid-State Lighting: The Seventh Annual DOE Solid-State Lighting Market Introduction Workshop on Facebook Tweet about Solid-State Lighting: The Seventh Annual DOE Solid-State Lighting Market Introduction Workshop on Twitter Bookmark Solid-State Lighting: The Seventh Annual DOE Solid-State Lighting Market Introduction Workshop on Google Bookmark Solid-State Lighting: The Seventh Annual DOE Solid-State Lighting Market Introduction Workshop on Delicious Rank Solid-State Lighting: The Seventh Annual DOE Solid-State Lighting Market Introduction Workshop on Digg

63

Solid-State Lighting: 2011 Solid-State Lighting Market Introduction  

NLE Websites -- All DOE Office Websites (Extended Search)

2011 Solid-State Lighting 2011 Solid-State Lighting Market Introduction Workshop Materials to someone by E-mail Share Solid-State Lighting: 2011 Solid-State Lighting Market Introduction Workshop Materials on Facebook Tweet about Solid-State Lighting: 2011 Solid-State Lighting Market Introduction Workshop Materials on Twitter Bookmark Solid-State Lighting: 2011 Solid-State Lighting Market Introduction Workshop Materials on Google Bookmark Solid-State Lighting: 2011 Solid-State Lighting Market Introduction Workshop Materials on Delicious Rank Solid-State Lighting: 2011 Solid-State Lighting Market Introduction Workshop Materials on Digg Find More places to share Solid-State Lighting: 2011 Solid-State Lighting Market Introduction Workshop Materials on AddThis.com... Conferences & Meetings

64

Solid-State Lighting: Solid-State Lighting GATEWAY Demonstration Results  

NLE Websites -- All DOE Office Websites (Extended Search)

Solid-State Lighting GATEWAY Solid-State Lighting GATEWAY Demonstration Results to someone by E-mail Share Solid-State Lighting: Solid-State Lighting GATEWAY Demonstration Results on Facebook Tweet about Solid-State Lighting: Solid-State Lighting GATEWAY Demonstration Results on Twitter Bookmark Solid-State Lighting: Solid-State Lighting GATEWAY Demonstration Results on Google Bookmark Solid-State Lighting: Solid-State Lighting GATEWAY Demonstration Results on Delicious Rank Solid-State Lighting: Solid-State Lighting GATEWAY Demonstration Results on Digg Find More places to share Solid-State Lighting: Solid-State Lighting GATEWAY Demonstration Results on AddThis.com... LED Lighting Facts CALiPER Program Standards Development Technical Information Network Gateway Demonstrations FAQs Results

65

Solid-State Lighting: July 2008 Solid-State Lighting Market Introduction  

NLE Websites -- All DOE Office Websites (Extended Search)

July 2008 Solid-State Lighting July 2008 Solid-State Lighting Market Introduction Workshop Materials to someone by E-mail Share Solid-State Lighting: July 2008 Solid-State Lighting Market Introduction Workshop Materials on Facebook Tweet about Solid-State Lighting: July 2008 Solid-State Lighting Market Introduction Workshop Materials on Twitter Bookmark Solid-State Lighting: July 2008 Solid-State Lighting Market Introduction Workshop Materials on Google Bookmark Solid-State Lighting: July 2008 Solid-State Lighting Market Introduction Workshop Materials on Delicious Rank Solid-State Lighting: July 2008 Solid-State Lighting Market Introduction Workshop Materials on Digg Find More places to share Solid-State Lighting: July 2008 Solid-State Lighting Market Introduction Workshop Materials on

66

Solid-State Lighting: 2012 Solid-State Lighting R&D Workshop Presentations  

NLE Websites -- All DOE Office Websites (Extended Search)

2012 Solid-State Lighting R&D 2012 Solid-State Lighting R&D Workshop Presentations and Materials to someone by E-mail Share Solid-State Lighting: 2012 Solid-State Lighting R&D Workshop Presentations and Materials on Facebook Tweet about Solid-State Lighting: 2012 Solid-State Lighting R&D Workshop Presentations and Materials on Twitter Bookmark Solid-State Lighting: 2012 Solid-State Lighting R&D Workshop Presentations and Materials on Google Bookmark Solid-State Lighting: 2012 Solid-State Lighting R&D Workshop Presentations and Materials on Delicious Rank Solid-State Lighting: 2012 Solid-State Lighting R&D Workshop Presentations and Materials on Digg Find More places to share Solid-State Lighting: 2012 Solid-State Lighting R&D Workshop Presentations and Materials on AddThis.com...

67

Solid-State Lighting: 2012 Solid-State Lighting Market Introduction  

NLE Websites -- All DOE Office Websites (Extended Search)

Office » Solid-State Lighting » Information Office » Solid-State Lighting » Information Resources Printable Version Share this resource Send a link to Solid-State Lighting: 2012 Solid-State Lighting Market Introduction Workshop Presentations and Materials to someone by E-mail Share Solid-State Lighting: 2012 Solid-State Lighting Market Introduction Workshop Presentations and Materials on Facebook Tweet about Solid-State Lighting: 2012 Solid-State Lighting Market Introduction Workshop Presentations and Materials on Twitter Bookmark Solid-State Lighting: 2012 Solid-State Lighting Market Introduction Workshop Presentations and Materials on Google Bookmark Solid-State Lighting: 2012 Solid-State Lighting Market Introduction Workshop Presentations and Materials on Delicious Rank Solid-State Lighting: 2012 Solid-State Lighting Market

68

Solid-State Lighting: DOE Municipal Solid-State Street Lighting Consortium  

NLE Websites -- All DOE Office Websites (Extended Search)

Market-Based Programs Printable Version Share this resource Send a link to Solid-State Lighting: DOE Municipal Solid-State Street Lighting Consortium to someone by E-mail Share Solid-State Lighting: DOE Municipal Solid-State Street Lighting Consortium on Facebook Tweet about Solid-State Lighting: DOE Municipal Solid-State Street Lighting Consortium on Twitter Bookmark Solid-State Lighting: DOE Municipal Solid-State Street Lighting Consortium on Google Bookmark Solid-State Lighting: DOE Municipal Solid-State Street Lighting Consortium on Delicious Rank Solid-State Lighting: DOE Municipal Solid-State Street Lighting Consortium on Digg Find More places to share Solid-State Lighting: DOE Municipal Solid-State Street Lighting Consortium on AddThis.com... LED Lighting Facts

69

Solid-State Lighting: DOE Hosts Solid-State Lighting Commercial Product  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE Hosts Solid-State Lighting DOE Hosts Solid-State Lighting Commercial Product Testing Program Workshop to someone by E-mail Share Solid-State Lighting: DOE Hosts Solid-State Lighting Commercial Product Testing Program Workshop on Facebook Tweet about Solid-State Lighting: DOE Hosts Solid-State Lighting Commercial Product Testing Program Workshop on Twitter Bookmark Solid-State Lighting: DOE Hosts Solid-State Lighting Commercial Product Testing Program Workshop on Google Bookmark Solid-State Lighting: DOE Hosts Solid-State Lighting Commercial Product Testing Program Workshop on Delicious Rank Solid-State Lighting: DOE Hosts Solid-State Lighting Commercial Product Testing Program Workshop on Digg Find More places to share Solid-State Lighting: DOE Hosts Solid-State Lighting Commercial Product Testing Program Workshop on

70

Solid-State Lighting: 2013 Solid-State Lighting R&D Workshop Presentations  

NLE Websites -- All DOE Office Websites (Extended Search)

2013 Solid-State Lighting R&D 2013 Solid-State Lighting R&D Workshop Presentations and Materials to someone by E-mail Share Solid-State Lighting: 2013 Solid-State Lighting R&D Workshop Presentations and Materials on Facebook Tweet about Solid-State Lighting: 2013 Solid-State Lighting R&D Workshop Presentations and Materials on Twitter Bookmark Solid-State Lighting: 2013 Solid-State Lighting R&D Workshop Presentations and Materials on Google Bookmark Solid-State Lighting: 2013 Solid-State Lighting R&D Workshop Presentations and Materials on Delicious Rank Solid-State Lighting: 2013 Solid-State Lighting R&D Workshop Presentations and Materials on Digg Find More places to share Solid-State Lighting: 2013 Solid-State Lighting R&D Workshop Presentations and Materials on AddThis.com...

71

Solid-State Lighting: Text-Alternative Version: Municipal Solid-State  

NLE Websites -- All DOE Office Websites (Extended Search)

Municipal Solid-State Street Lighting Consortium Kickoff to someone by Municipal Solid-State Street Lighting Consortium Kickoff to someone by E-mail Share Solid-State Lighting: Text-Alternative Version: Municipal Solid-State Street Lighting Consortium Kickoff on Facebook Tweet about Solid-State Lighting: Text-Alternative Version: Municipal Solid-State Street Lighting Consortium Kickoff on Twitter Bookmark Solid-State Lighting: Text-Alternative Version: Municipal Solid-State Street Lighting Consortium Kickoff on Google Bookmark Solid-State Lighting: Text-Alternative Version: Municipal Solid-State Street Lighting Consortium Kickoff on Delicious Rank Solid-State Lighting: Text-Alternative Version: Municipal Solid-State Street Lighting Consortium Kickoff on Digg Find More places to share Solid-State Lighting: Text-Alternative Version: Municipal Solid-State Street Lighting Consortium Kickoff on

72

Solid-State Lighting: 2011 Solid-State Lighting Manufacturing R&D Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

1 Solid-State Lighting 1 Solid-State Lighting Manufacturing R&D Workshop Materials to someone by E-mail Share Solid-State Lighting: 2011 Solid-State Lighting Manufacturing R&D Workshop Materials on Facebook Tweet about Solid-State Lighting: 2011 Solid-State Lighting Manufacturing R&D Workshop Materials on Twitter Bookmark Solid-State Lighting: 2011 Solid-State Lighting Manufacturing R&D Workshop Materials on Google Bookmark Solid-State Lighting: 2011 Solid-State Lighting Manufacturing R&D Workshop Materials on Delicious Rank Solid-State Lighting: 2011 Solid-State Lighting Manufacturing R&D Workshop Materials on Digg Find More places to share Solid-State Lighting: 2011 Solid-State Lighting Manufacturing R&D Workshop Materials on AddThis.com... Conferences & Meetings

73

Solid-State Lighting: 2009 Solid-State Lighting Chicago Market Introduction  

NLE Websites -- All DOE Office Websites (Extended Search)

Information Information Resources Printable Version Share this resource Send a link to Solid-State Lighting: 2009 Solid-State Lighting Chicago Market Introduction Workshop Materials to someone by E-mail Share Solid-State Lighting: 2009 Solid-State Lighting Chicago Market Introduction Workshop Materials on Facebook Tweet about Solid-State Lighting: 2009 Solid-State Lighting Chicago Market Introduction Workshop Materials on Twitter Bookmark Solid-State Lighting: 2009 Solid-State Lighting Chicago Market Introduction Workshop Materials on Google Bookmark Solid-State Lighting: 2009 Solid-State Lighting Chicago Market Introduction Workshop Materials on Delicious Rank Solid-State Lighting: 2009 Solid-State Lighting Chicago Market Introduction Workshop Materials on Digg Find More places to share Solid-State Lighting: 2009 Solid-State

74

Solid-State Lighting: 2013 Solid-State Lighting Market Introduction  

NLE Websites -- All DOE Office Websites (Extended Search)

2013 Solid-State Lighting 2013 Solid-State Lighting Market Introduction Workshop Presentations and Materials to someone by E-mail Share Solid-State Lighting: 2013 Solid-State Lighting Market Introduction Workshop Presentations and Materials on Facebook Tweet about Solid-State Lighting: 2013 Solid-State Lighting Market Introduction Workshop Presentations and Materials on Twitter Bookmark Solid-State Lighting: 2013 Solid-State Lighting Market Introduction Workshop Presentations and Materials on Google Bookmark Solid-State Lighting: 2013 Solid-State Lighting Market Introduction Workshop Presentations and Materials on Delicious Rank Solid-State Lighting: 2013 Solid-State Lighting Market Introduction Workshop Presentations and Materials on Digg Find More places to share Solid-State Lighting: 2013 Solid-State

75

Solid-State Lighting: The Fifth Annual DOE Solid-State Lighting Market  

NLE Websites -- All DOE Office Websites (Extended Search)

The Fifth Annual DOE The Fifth Annual DOE Solid-State Lighting Market Introduction Workshop to someone by E-mail Share Solid-State Lighting: The Fifth Annual DOE Solid-State Lighting Market Introduction Workshop on Facebook Tweet about Solid-State Lighting: The Fifth Annual DOE Solid-State Lighting Market Introduction Workshop on Twitter Bookmark Solid-State Lighting: The Fifth Annual DOE Solid-State Lighting Market Introduction Workshop on Google Bookmark Solid-State Lighting: The Fifth Annual DOE Solid-State Lighting Market Introduction Workshop on Delicious Rank Solid-State Lighting: The Fifth Annual DOE Solid-State Lighting Market Introduction Workshop on Digg Find More places to share Solid-State Lighting: The Fifth Annual DOE Solid-State Lighting Market Introduction Workshop on AddThis.com...

76

Solid-State Lighting: The Eighth Annual DOE Solid-State Lighting Market  

NLE Websites -- All DOE Office Websites (Extended Search)

The Eighth Annual DOE The Eighth Annual DOE Solid-State Lighting Market Introduction Workshop to someone by E-mail Share Solid-State Lighting: The Eighth Annual DOE Solid-State Lighting Market Introduction Workshop on Facebook Tweet about Solid-State Lighting: The Eighth Annual DOE Solid-State Lighting Market Introduction Workshop on Twitter Bookmark Solid-State Lighting: The Eighth Annual DOE Solid-State Lighting Market Introduction Workshop on Google Bookmark Solid-State Lighting: The Eighth Annual DOE Solid-State Lighting Market Introduction Workshop on Delicious Rank Solid-State Lighting: The Eighth Annual DOE Solid-State Lighting Market Introduction Workshop on Digg Find More places to share Solid-State Lighting: The Eighth Annual DOE Solid-State Lighting Market Introduction Workshop on AddThis.com...

77

Solid-State Lighting: The Second Annual DOE Solid-State Lighting  

NLE Websites -- All DOE Office Websites (Extended Search)

The Second Annual DOE The Second Annual DOE Solid-State Lighting Manufacturing R&D Workshop to someone by E-mail Share Solid-State Lighting: The Second Annual DOE Solid-State Lighting Manufacturing R&D Workshop on Facebook Tweet about Solid-State Lighting: The Second Annual DOE Solid-State Lighting Manufacturing R&D Workshop on Twitter Bookmark Solid-State Lighting: The Second Annual DOE Solid-State Lighting Manufacturing R&D Workshop on Google Bookmark Solid-State Lighting: The Second Annual DOE Solid-State Lighting Manufacturing R&D Workshop on Delicious Rank Solid-State Lighting: The Second Annual DOE Solid-State Lighting Manufacturing R&D Workshop on Digg Find More places to share Solid-State Lighting: The Second Annual DOE Solid-State Lighting Manufacturing R&D Workshop on AddThis.com...

78

Solid-State Lighting: Meeting Materials from 2003 Solid-State Lighting  

NLE Websites -- All DOE Office Websites (Extended Search)

Meeting Materials from 2003 Meeting Materials from 2003 Solid-State Lighting Program Planning Workshop to someone by E-mail Share Solid-State Lighting: Meeting Materials from 2003 Solid-State Lighting Program Planning Workshop on Facebook Tweet about Solid-State Lighting: Meeting Materials from 2003 Solid-State Lighting Program Planning Workshop on Twitter Bookmark Solid-State Lighting: Meeting Materials from 2003 Solid-State Lighting Program Planning Workshop on Google Bookmark Solid-State Lighting: Meeting Materials from 2003 Solid-State Lighting Program Planning Workshop on Delicious Rank Solid-State Lighting: Meeting Materials from 2003 Solid-State Lighting Program Planning Workshop on Digg Find More places to share Solid-State Lighting: Meeting Materials from 2003 Solid-State Lighting Program Planning Workshop on AddThis.com...

79

Solid-State Lighting: The Sixth Annual DOE Solid-State Lighting Market  

NLE Websites -- All DOE Office Websites (Extended Search)

The Sixth Annual DOE The Sixth Annual DOE Solid-State Lighting Market Introduction Workshop to someone by E-mail Share Solid-State Lighting: The Sixth Annual DOE Solid-State Lighting Market Introduction Workshop on Facebook Tweet about Solid-State Lighting: The Sixth Annual DOE Solid-State Lighting Market Introduction Workshop on Twitter Bookmark Solid-State Lighting: The Sixth Annual DOE Solid-State Lighting Market Introduction Workshop on Google Bookmark Solid-State Lighting: The Sixth Annual DOE Solid-State Lighting Market Introduction Workshop on Delicious Rank Solid-State Lighting: The Sixth Annual DOE Solid-State Lighting Market Introduction Workshop on Digg Find More places to share Solid-State Lighting: The Sixth Annual DOE Solid-State Lighting Market Introduction Workshop on AddThis.com...

80

Microsoft Word - oleds0805.doc  

NLE Websites -- All DOE Office Websites (Extended Search)

Organic Light Emitting Diodes (OLEDs) Organic Light Emitting Diodes (OLEDs) for General Illumination Update 2002 A A N N O O I I D D A A T T E E C C H H N N O O L L O O G G Y Y R R O O A A D D M M A A P P Date August, 2002 Sponsored by: Optoelectronics Industry Development Association (OIDA) Department of Energy - Office of Building Technology, State and Community Programs Edited by: Milan Stolka, Consultant Published by: 1133 Connecticut Avenue, NW #600 Washington, DC 20036 Ph: 202-785-4426 ♦ Fax: 202-785-4428 Web: http://www.OIDA.org OIDA Member Use Only  2002 OIDA Optoelectronics Industry Development Association All data contained in this report is proprietary to OIDA and may not be distributed in either original or reproduced form to anyone outside the client's internal organization within five years of the report

Note: This page contains sample records for the topic "oled solid state" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Solid-State Lighting: Hotel Information  

NLE Websites -- All DOE Office Websites (Extended Search)

Program » Solid-State Lighting » Program » Solid-State Lighting » Information Resources Printable Version Share this resource Send a link to Solid-State Lighting: Hotel Information to someone by E-mail Share Solid-State Lighting: Hotel Information on Facebook Tweet about Solid-State Lighting: Hotel Information on Twitter Bookmark Solid-State Lighting: Hotel Information on Google Bookmark Solid-State Lighting: Hotel Information on Delicious Rank Solid-State Lighting: Hotel Information on Digg Find More places to share Solid-State Lighting: Hotel Information on AddThis.com... Home Conferences & Meetings Past Conferences Presentations Publications Webcasts Videos Hotel Information Wyndham Grand Pittsburgh, 600 Commonwealth Place, Pittsburgh, PA 15222 The Wyndham Grand Pittsburgh room block has expired; however,

82

Solid-State Lighting: Webcast: Municipal Solid-State Street Lighting  

NLE Websites -- All DOE Office Websites (Extended Search)

Webcast: Municipal Solid-State Webcast: Municipal Solid-State Street Lighting Consortium Retrofit Financial Analysis Tool to someone by E-mail Share Solid-State Lighting: Webcast: Municipal Solid-State Street Lighting Consortium Retrofit Financial Analysis Tool on Facebook Tweet about Solid-State Lighting: Webcast: Municipal Solid-State Street Lighting Consortium Retrofit Financial Analysis Tool on Twitter Bookmark Solid-State Lighting: Webcast: Municipal Solid-State Street Lighting Consortium Retrofit Financial Analysis Tool on Google Bookmark Solid-State Lighting: Webcast: Municipal Solid-State Street Lighting Consortium Retrofit Financial Analysis Tool on Delicious Rank Solid-State Lighting: Webcast: Municipal Solid-State Street Lighting Consortium Retrofit Financial Analysis Tool on Digg

83

Solid-State Lighting: 2005 DOE Solid-State Lighting Program Planning...  

NLE Websites -- All DOE Office Websites (Extended Search)

2005 DOE Solid-State Lighting Program Planning Workshop Materials to someone by E-mail Share Solid-State Lighting: 2005 DOE Solid-State Lighting Program Planning Workshop Materials...

84

Solid-State Lighting: 2013 DOE Solid-State Lighting Market Introductio...  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Efficiency and Renewable Energy EERE Home | Programs & Offices | Consumer Information Solid-State Lighting Search Search Help Solid-State Lighting HOME ABOUT THE PROGRAM...

85

Solid-State Lighting: DOE Selections  

NLE Websites -- All DOE Office Websites (Extended Search)

Financial Financial Opportunities Printable Version Share this resource Send a link to Solid-State Lighting: DOE Selections to someone by E-mail Share Solid-State Lighting: DOE Selections on Facebook Tweet about Solid-State Lighting: DOE Selections on Twitter Bookmark Solid-State Lighting: DOE Selections on Google Bookmark Solid-State Lighting: DOE Selections on Delicious Rank Solid-State Lighting: DOE Selections on Digg Find More places to share Solid-State Lighting: DOE Selections on AddThis.com... Current Opportunities DOE Selections Related Opportunities DOE Selections The U.S. Department of Energy awards research grants targeting advances in solid-state lighting. The following links provide information on the recipients of these grants and summaries of the research projects they are

86

Solid-State Lighting: Current Opportunities  

NLE Websites -- All DOE Office Websites (Extended Search)

Financial Financial Opportunities Printable Version Share this resource Send a link to Solid-State Lighting: Current Opportunities to someone by E-mail Share Solid-State Lighting: Current Opportunities on Facebook Tweet about Solid-State Lighting: Current Opportunities on Twitter Bookmark Solid-State Lighting: Current Opportunities on Google Bookmark Solid-State Lighting: Current Opportunities on Delicious Rank Solid-State Lighting: Current Opportunities on Digg Find More places to share Solid-State Lighting: Current Opportunities on AddThis.com... Current Opportunities DOE Selections Related Opportunities Current Opportunities DE-FOA-0000973: Solid-State Lighting Advanced Technology R&D - 2014 DE-FOA-0001046: FY14 SBIR/STTR Phase I, Release 2 Contacts | Web Site Policies | U.S. Department of Energy | USA.gov

87

Solid-State Lighting: Related Opportunities  

NLE Websites -- All DOE Office Websites (Extended Search)

Financial Financial Opportunities Printable Version Share this resource Send a link to Solid-State Lighting: Related Opportunities to someone by E-mail Share Solid-State Lighting: Related Opportunities on Facebook Tweet about Solid-State Lighting: Related Opportunities on Twitter Bookmark Solid-State Lighting: Related Opportunities on Google Bookmark Solid-State Lighting: Related Opportunities on Delicious Rank Solid-State Lighting: Related Opportunities on Digg Find More places to share Solid-State Lighting: Related Opportunities on AddThis.com... Current Opportunities DOE Selections Related Opportunities Related Opportunities The U.S. Department of Energy (DOE) has created this resource to help researchers, manufacturers, and distributors of solid-state lighting products locate funding opportunities to help them advance and deploy

88

Solid-State Lighting: Technical Information Network  

NLE Websites -- All DOE Office Websites (Extended Search)

Printable Version Share this resource Send a link to Solid-State Lighting: Technical Information Network to someone by E-mail Share Solid-State Lighting: Technical Information...

89

Solid-State Lighting: Design Competitions  

NLE Websites -- All DOE Office Websites (Extended Search)

Market-Based Programs Printable Version Share this resource Send a link to Solid-State Lighting: Design Competitions to someone by E-mail Share Solid-State Lighting: Design Competitions on Facebook Tweet about Solid-State Lighting: Design Competitions on Twitter Bookmark Solid-State Lighting: Design Competitions on Google Bookmark Solid-State Lighting: Design Competitions on Delicious Rank Solid-State Lighting: Design Competitions on Digg Find More places to share Solid-State Lighting: Design Competitions on AddThis.com... LED Lighting Facts CALiPER Program Standards Development Technical Information Network Gateway Demonstrations Municipal Consortium Design Competitions Design Competitions National design competitions heighten awareness and market adoption of high-performance solid-state lighting products.

90

Solid-State Lighting: SSL Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

SSL Basics Printable Version Share this resource Send a link to Solid-State Lighting: SSL Basics to someone by E-mail Share Solid-State Lighting: SSL Basics on Facebook Tweet about...

91

Solid-State Lighting: LED Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

SSL Basics Printable Version Share this resource Send a link to Solid-State Lighting: LED Basics to someone by E-mail Share Solid-State Lighting: LED Basics on Facebook Tweet...

92

Solid-state proton conductors  

DOE Green Energy (OSTI)

The purpose of this program was to survey the field of solid-state proton conductors (SSPC), identify conductors that could be used to develop solid-state fuel cells suitable for use with coal derived fuel gases, and begin the experimental research required for the development of these fuel cells. This document covers the following topics: the history of developments and current status of the SSPC, including a review of proton conducting electrolyte structures, the current status of the medium temperature SSPC development, electrodes for moderate temperature (SSPC) fuel cell, basic material and measurement techniques applicable for SSPC development, modeling and optimization studies. Correlation and optimization studies, to include correlation studies on proton conduction and oxide cathode optimization for the SSPC fuel cell. Experiments with the SSPC fuel cells including the fabrication of the electrolyte disks, apparatus for conducting measurements, the strontium-cerium based electrolyte, the barium-cerium based electrolyte with solid foil electrodes, the barium-cerium based electrolyte with porous electrodes, and conduction mechanisms. 164 refs., 27 figs., 13 tabs.

Jewulski, J.R.; Osif, T.L.; Remick, R.J.

1990-12-01T23:59:59.000Z

93

Solid State Lighting Proficiency Testing Fees  

Science Conference Proceedings (OSTI)

Solid State Lighting Proficiency Testing Notice. April 25, 2011. *. Bookmark and Share. Contact: Timothy Rasinski 301-975-6697. ...

2011-09-21T23:59:59.000Z

94

Municipal Solid Waste in The United States  

E-Print Network (OSTI)

2005 Facts and Figures Municipal Solid Waste in The United States #12;United States Environmental Protection Agency Office of Solid Waste (5306P) EPA530-R-06-011 October 2006 www.epa.gov #12;MUNICIPAL SOLID WASTE IN THE UNITED STATES: 2005 FACTS AND FIGURES Table of Contents Chapter Page EXECUTIVE

Barlaz, Morton A.

95

Solid-state optical microscope  

DOE Patents (OSTI)

A solid state optical microscope is described wherein wide-field and high-resolution images of an object are produced at a rapid rate by utilizing conventional optics with a charge-coupled photodiode array. Means for scanning in one of two orthogonal directions are provided, while the charge-coupled photodiode array scans in the other orthogonal direction. Illumination light from the object is incident upon the photodiodes, creating packets of electrons (signals) which are representative of the illuminated object. The signals are then processed, stored in a memory, and finally displayed as a video signal.

Young, I.T.

1981-01-07T23:59:59.000Z

96

Solid state electrochromic light modulator  

DOE Patents (OSTI)

An all solid-state variable transmission electrochromic device has a source of charge compensating ions. An inorganic oxide counter electrode film which on reduction with the accompanying insertion of the charge compensating ions increases its transmission of light of predetermined wavelength is separated from a primary electrochromic film which on reduction with the accompanying insertion of the charge compensating ions decreases its transmission of light of predetermined wavelength by an insulating electrolyte film that transports the charge compensating ions. First and second electrodes are contiguous with the inorganic oxide counter electrode film and the primary electrochromic film, respectively, and separated by the three films. 4 figs.

Cogan, S.F.; Rauh, R.D.

1990-07-03T23:59:59.000Z

97

Solid state electrochromic light modulator  

DOE Patents (OSTI)

An all solid-state variable transmission electrochromic device has a source of charge compensating ions. An inorganic oxide counterelectrode film which on reduction with the accompanying insertion of the charge compensating ions increases its transmission of light of predetermined wavelength is separated from a primary electrochromic film which on reduction with the accompanying insertion of the charge compensating ions decreases its transmission of light of predetermined wavelength by an insulating electrolyte film that transports the charge compensating ions. First and second electrodes are contiguous with the inorganic oxide counter electrode film and the primary electrochromic film, respectively, and separated by the three films.

Cogan, Stuart F. (Sudbury, MA); Rauh, R. David (Newton, MA)

1993-01-01T23:59:59.000Z

98

Solid state electrochromic light modulator  

DOE Patents (OSTI)

An all solid-state variable transmission electrochromic device has a source of charge compensating ions. An inorganic oxide counterelectrode film which on reduction with the accompanying insertion of the charge compensating ions increases its transmission of light of predetermined wavelength is separated from a primary electrochromic film which on reduction with the accompanying insertion of the charge compensating ions decreases its transmission of light of predetermined wavelength by an insulating electrolyte film that transports the charge compensating ions. First and second electrodes are contiguous with the inorganic oxide counter electrode film and the primary electrochromic film, respectively, and separated by the three films.

Cogan, Stuart F. (111 Downey St., Norwood, MA 02062); Rauh, R. David (111 Downey St., Norwood, MA 02062)

1990-01-01T23:59:59.000Z

99

Solid-State Lighting: About the Program  

NLE Websites -- All DOE Office Websites (Extended Search)

About the About the Program Printable Version Share this resource Send a link to Solid-State Lighting: About the Program to someone by E-mail Share Solid-State Lighting: About the Program on Facebook Tweet about Solid-State Lighting: About the Program on Twitter Bookmark Solid-State Lighting: About the Program on Google Bookmark Solid-State Lighting: About the Program on Delicious Rank Solid-State Lighting: About the Program on Digg Find More places to share Solid-State Lighting: About the Program on AddThis.com... Contacts Partnerships About the Program The Energy Policy Act of 2005 (EPACT 2005) and the Energy Independence and Security Act of 2007 (EISA 2007) issued directives to the Secretary of Energy to carry out a Next Generation Lighting Initiative to support SSL

100

Solid-State Lighting: Project Reports  

NLE Websites -- All DOE Office Websites (Extended Search)

Project Reports to someone by Project Reports to someone by E-mail Share Solid-State Lighting: Project Reports on Facebook Tweet about Solid-State Lighting: Project Reports on Twitter Bookmark Solid-State Lighting: Project Reports on Google Bookmark Solid-State Lighting: Project Reports on Delicious Rank Solid-State Lighting: Project Reports on Digg Find More places to share Solid-State Lighting: Project Reports on AddThis.com... Conferences & Meetings Presentations Publications Postings Articles Program Fact Sheets Technology Fact Sheets CALiPER Reports GATEWAY Reports LED Lighting Facts Reports Project Reports Studies and Reports Technology Roadmaps Product Performance Guides Webcasts Videos Tools Project Reports This page contains links to project reports summarizing the solid-state lighting projects funded by DOE, providing project descriptions and

Note: This page contains sample records for the topic "oled solid state" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Solid-State Lighting: Technology Fact Sheets  

NLE Websites -- All DOE Office Websites (Extended Search)

Technology Fact Sheets to Technology Fact Sheets to someone by E-mail Share Solid-State Lighting: Technology Fact Sheets on Facebook Tweet about Solid-State Lighting: Technology Fact Sheets on Twitter Bookmark Solid-State Lighting: Technology Fact Sheets on Google Bookmark Solid-State Lighting: Technology Fact Sheets on Delicious Rank Solid-State Lighting: Technology Fact Sheets on Digg Find More places to share Solid-State Lighting: Technology Fact Sheets on AddThis.com... Conferences & Meetings Presentations Publications Postings Articles Program Fact Sheets Technology Fact Sheets CALiPER Reports GATEWAY Reports LED Lighting Facts Reports Project Reports Studies and Reports Technology Roadmaps Product Performance Guides Webcasts Videos Tools Technology Fact Sheets This page contains links to fact sheets describing solid-state lighting,

102

Solid-State Lighting: Information Resources  

NLE Websites -- All DOE Office Websites (Extended Search)

Information Resources to Information Resources to someone by E-mail Share Solid-State Lighting: Information Resources on Facebook Tweet about Solid-State Lighting: Information Resources on Twitter Bookmark Solid-State Lighting: Information Resources on Google Bookmark Solid-State Lighting: Information Resources on Delicious Rank Solid-State Lighting: Information Resources on Digg Find More places to share Solid-State Lighting: Information Resources on AddThis.com... Conferences & Meetings Presentations Publications Webcasts Videos Tools Information Resources The Solid-State Lighting (SSL) program has a large collection of resources designed to deliver current, relevant information about the status of SSL technology and applications. On this page you'll find links to DOE conferences (past and present), presentations, publications, and webcasts.

103

Solid-State Lighting: Program Fact Sheets  

NLE Websites -- All DOE Office Websites (Extended Search)

Program Fact Sheets to someone Program Fact Sheets to someone by E-mail Share Solid-State Lighting: Program Fact Sheets on Facebook Tweet about Solid-State Lighting: Program Fact Sheets on Twitter Bookmark Solid-State Lighting: Program Fact Sheets on Google Bookmark Solid-State Lighting: Program Fact Sheets on Delicious Rank Solid-State Lighting: Program Fact Sheets on Digg Find More places to share Solid-State Lighting: Program Fact Sheets on AddThis.com... Conferences & Meetings Presentations Publications Postings Articles Program Fact Sheets Technology Fact Sheets CALiPER Reports GATEWAY Reports LED Lighting Facts Reports Project Reports Studies and Reports Technology Roadmaps Product Performance Guides Webcasts Videos Tools Program Fact Sheets This page contains links to fact sheets describing solid-state lighting

104

Solid-State Lighting: LED Lighting Facts  

NLE Websites -- All DOE Office Websites (Extended Search)

Market-Based Programs Printable Version Share this resource Send a link to Solid-State Lighting: LED Lighting Facts to someone by E-mail Share Solid-State Lighting: LED Lighting Facts on Facebook Tweet about Solid-State Lighting: LED Lighting Facts on Twitter Bookmark Solid-State Lighting: LED Lighting Facts on Google Bookmark Solid-State Lighting: LED Lighting Facts on Delicious Rank Solid-State Lighting: LED Lighting Facts on Digg Find More places to share Solid-State Lighting: LED Lighting Facts on AddThis.com... LED Lighting Facts CALiPER Program Standards Development Technical Information Network Gateway Demonstrations Municipal Consortium Design Competitions LED Lighting Facts LED lighting facts - A Program of the U.S. DOE DOE's LED Lighting Facts® program showcases LED products for general

105

Solid-State Lighting: Text-Alternative Version: Municipal Solid-State  

NLE Websites -- All DOE Office Websites (Extended Search)

Municipal Solid-State Street Lighting Consortium Retrofit Financial Analysis Tool Webcast to someone by E-mail Share Solid-State Lighting: Text-Alternative Version: Municipal Solid-State Street Lighting Consortium Retrofit Financial Analysis Tool Webcast on Facebook Tweet about Solid-State Lighting: Text-Alternative Version: Municipal Solid-State Street Lighting Consortium Retrofit Financial Analysis Tool Webcast on Twitter Bookmark Solid-State Lighting: Text-Alternative Version: Municipal Solid-State Street Lighting Consortium Retrofit Financial Analysis Tool Webcast on Google Bookmark Solid-State Lighting: Text-Alternative Version: Municipal Solid-State Street Lighting Consortium Retrofit Financial Analysis Tool Webcast on Delicious Rank Solid-State Lighting: Text-Alternative Version: Municipal

106

Recovery Act - Solid-State Lighting Core Technologies Funding...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Act - Solid-State Lighting Core Technologies Funding Opportunity Recovery Act - Solid-State Lighting Core Technologies Funding Opportunity A report detailling the Solid State...

107

Solid-State Lighting: Conferences and Meetings  

NLE Websites -- All DOE Office Websites (Extended Search)

Conferences and Meetings to Conferences and Meetings to someone by E-mail Share Solid-State Lighting: Conferences and Meetings on Facebook Tweet about Solid-State Lighting: Conferences and Meetings on Twitter Bookmark Solid-State Lighting: Conferences and Meetings on Google Bookmark Solid-State Lighting: Conferences and Meetings on Delicious Rank Solid-State Lighting: Conferences and Meetings on Digg Find More places to share Solid-State Lighting: Conferences and Meetings on AddThis.com... Conferences & Meetings Past Conferences Presentations Publications Webcasts Videos Tools Conferences and Meetings DOE organizes three annual workshops to bring together a diverse gathering of participants-government, industry, academia, research institutions, energy efficiency organizations, utilities, retailers, and designers-to

108

Solid-State Lighting: Product Performance Guides  

NLE Websites -- All DOE Office Websites (Extended Search)

Product Performance Guides to Product Performance Guides to someone by E-mail Share Solid-State Lighting: Product Performance Guides on Facebook Tweet about Solid-State Lighting: Product Performance Guides on Twitter Bookmark Solid-State Lighting: Product Performance Guides on Google Bookmark Solid-State Lighting: Product Performance Guides on Delicious Rank Solid-State Lighting: Product Performance Guides on Digg Find More places to share Solid-State Lighting: Product Performance Guides on AddThis.com... Conferences & Meetings Presentations Publications Postings Articles Program Fact Sheets Technology Fact Sheets CALiPER Reports GATEWAY Reports LED Lighting Facts Reports Project Reports Studies and Reports Technology Roadmaps Product Performance Guides Webcasts Videos Tools Product Performance Guides

109

Solid-State Lighting: Hotel Information  

NLE Websites -- All DOE Office Websites (Extended Search)

Hotel Information to someone by Hotel Information to someone by E-mail Share Solid-State Lighting: Hotel Information on Facebook Tweet about Solid-State Lighting: Hotel Information on Twitter Bookmark Solid-State Lighting: Hotel Information on Google Bookmark Solid-State Lighting: Hotel Information on Delicious Rank Solid-State Lighting: Hotel Information on Digg Find More places to share Solid-State Lighting: Hotel Information on AddThis.com... Conferences & Meetings Past Conferences Presentations Publications Webcasts Videos Tools Hotel Information Hilton Tampa Downtown 211 N. Tampa St. Tampa, FL 33602 A block of hotel rooms has been reserved at the Hilton Tampa at a special rate for DOE workshop attendees. The rate for a standard room is $116 per night from January 25-February 1. The room block has been extended until noon ET on Friday, January 17,

110

Solid-State Lighting: Technology Roadmaps  

NLE Websites -- All DOE Office Websites (Extended Search)

Technology Roadmaps to someone Technology Roadmaps to someone by E-mail Share Solid-State Lighting: Technology Roadmaps on Facebook Tweet about Solid-State Lighting: Technology Roadmaps on Twitter Bookmark Solid-State Lighting: Technology Roadmaps on Google Bookmark Solid-State Lighting: Technology Roadmaps on Delicious Rank Solid-State Lighting: Technology Roadmaps on Digg Find More places to share Solid-State Lighting: Technology Roadmaps on AddThis.com... Conferences & Meetings Presentations Publications Postings Articles Program Fact Sheets Technology Fact Sheets CALiPER Reports GATEWAY Reports LED Lighting Facts Reports Project Reports Studies and Reports Technology Roadmaps Product Performance Guides Webcasts Videos Tools Technology Roadmaps This page contains links to DOE's Technology Roadmaps, multi-year plans

111

Structures and fabrication techniques for solid state ...  

Provided are low-cost, mechanically strong, highly electronically conductive porous substrates and associated structures for solid-state electrochemical devices ...

112

Solid state safety jumper cables  

DOE Patents (OSTI)

This invention consists of solid state jumper cables for connecting two batteries in parallel, having two bridge rectifiers for developing a reference voltage, a four-input decoder for determining which terminals are to be connected based on a comparison of the voltage at each of the four terminals to the reference voltage, and a pair of relays for effecting the correct connection depending on the determination of the decoder. No connection will be made unless only one terminal of each battery has a higher voltage than the reference voltage, indicating positive'' terminals, and one has a lower voltage than the reference voltage, indicating C{sup 2} negative terminals, and that, therefore, the two high voltage terminals may be connected and the two lower voltage terminals may be connected. Current flows once the appropriate relay device is closed. The relay device is preferably a MOSFET (metal oxide semiconductor field effect transistor) combined with a series array of photodiodes that develop MOSFET gate-closing potential when the decoder output causes an LED to light.

Kronberg, J.W.

1991-01-22T23:59:59.000Z

113

Solid state safety jumper cables  

DOE Patents (OSTI)

Solid state jumper cables for connecting two batteries in parallel, having two bridge rectifiers for developing a reference voltage, a four-input decoder for determining which terminals are to be connected based on a comparison of the voltage at each of the four terminals to the reference voltage, and a pair of relays for effecting the correct connection depending on the determination of the decoder. No connection will be made unless only one terminal of each battery has a higher voltage than the reference voltage, indicating positive'' terminals, and one has a lower voltage than the reference voltage, indicating negative'' terminals, and that, therefore, the two high voltage terminals may be connected and the two lower voltage terminals may be connected. Current flows once the appropriate relay device is closed. The relay device is preferably a MOSFET (metal oxide semiconductor field effect transistor) combined with a series array of photodiodes that develop MOSFET gate-closing potential when the decoder output causes an LED to light.

Kronberg, J.W.

1993-02-23T23:59:59.000Z

114

Solid state safety jumper cables  

DOE Patents (OSTI)

Solid state jumper cables for connecting two batteries in parallel, having two bridge rectifiers for developing a reference voltage, a four-input decoder for determining which terminals are to be connected based on a comparison of the voltage at each of the four terminals to the reference voltage, and a pair of relays for effecting the correct connection depending on the determination of the decoder. No connection will be made unless only one terminal of each battery has a higher voltage than the reference voltage, indicating "positive" terminals, and one has a lower voltage than the reference voltage, indicating "negative" terminals, and that, therefore, the two high voltage terminals may be connected and the two lower voltage terminals may be connected. Current flows once the appropriate relay device is closed. The relay device is preferably a MOSFET (metal oxide semiconductor field effect transistor) combined with a series array of photodiodes that develop MOSFET gate-closing potential when the decoder output causes an LED to light.

Kronberg, James W. (353 Church Rd., Beech Island, SC 29841)

1993-01-01T23:59:59.000Z

115

Solid state safety jumper cables  

DOE Patents (OSTI)

This invention consists of solid state jumper cables for connecting two batteries in parallel, having two bridge rectifiers for developing a reference voltage, a four-input decoder for determining which terminals are to be connected based on a comparison of the voltage at each of the four terminals to the reference voltage, and a pair of relays for effecting the correct connection depending on the determination of the decoder. No connection will be made unless only one terminal of each battery has a higher voltage than the reference voltage, indicating ``positive`` terminals, and one has a lower voltage than the reference voltage, indicating C{sup 2} negative terminals, and that, therefore, the two high voltage terminals may be connected and the two lower voltage terminals may be connected. Current flows once the appropriate relay device is closed. The relay device is preferably a MOSFET (metal oxide semiconductor field effect transistor) combined with a series array of photodiodes that develop MOSFET gate-closing potential when the decoder output causes an LED to light.

Kronberg, J.W.

1991-01-22T23:59:59.000Z

116

Solid state radiative heat pump  

DOE Patents (OSTI)

A solid state radiative heat pump (10, 50, 70) operable at room temperature (300.degree. K.) utilizes a semiconductor having a gap energy in the range of 0.03-0.25 eV and operated reversibly to produce an excess or deficit of charge carriers as compared to thermal equilibrium. In one form of the invention (10, 70) an infrared semiconductor photodiode (21, 71) is used, with forward or reverse bias, to emit an excess or deficit of infrared radiation. In another form of the invention (50), a homogeneous semiconductor (51) is subjected to orthogonal magnetic and electric fields to emit an excess or deficit of infrared radiation. Three methods of enhancing transmission of radiation through the active surface of the semiconductor are disclosed. In one method, an anti-reflection layer (19) is coated into the active surface (13) of the semiconductor (11), the anti-reflection layer (19) having an index of refraction equal to the square root of that of the semiconductor (11). In the second method, a passive layer (75) is spaced from the active surface (73) of the semiconductor (71) by a submicron vacuum gap, the passive layer having an index of refractive equal to that of the semiconductor. In the third method, a coupler (91) with a paraboloid reflecting surface (92) is in contact with the active surface (13, 53) of the semiconductor (11, 51), the coupler having an index of refraction about the same as that of the semiconductor.

Berdahl, Paul H. (Oakland, CA)

1986-01-01T23:59:59.000Z

117

Solid state radiative heat pump  

DOE Patents (OSTI)

A solid state radiative heat pump operable at room temperature (300 K) utilizes a semiconductor having a gap energy in the range of 0.03-0.25 eV and operated reversibly to produce an excess or deficit of change carriers as compared equilibrium. In one form of the invention an infrared semiconductor photodiode is used, with forward or reverse bias, to emit an excess or deficit of infrared radiation. In another form of the invention, a homogenous semiconductor is subjected to orthogonal magnetic and electric fields to emit an excess or deficit of infrared radiation. Three methods of enhancing transmission of radiation the active surface of the semiconductor are disclosed. In one method, an anti-refection layer is coated into the active surface of the semiconductor, the anti-reflection layer having an index of refraction equal to the square root of that of the semiconductor. In the second method, a passive layer is speaced trom the active surface of the semiconductor by a submicron vacuum gap, the passive layer having an index of refractive equal to that of the semiconductor. In the third method, a coupler with a paraboloid reflecting surface surface is in contact with the active surface of the semiconductor, the coupler having an index of refraction about the same as that of the semiconductor.

Berdahl, P.H.

1984-09-28T23:59:59.000Z

118

Solid-State Lighting: Workshop: Solid-State Lighting in Higher...  

NLE Websites -- All DOE Office Websites (Extended Search)

Resources Printable Version Share this resource Send a link to Solid-State Lighting: Workshop: Solid-State Lighting in Higher Education Facilities to someone by E-mail...

119

Materials for solid state lighting  

E-Print Network (OSTI)

and Renewable Energy, Office of Building Technology, State andand Renewable Energy, Office of Building Technology, State and

Johnson, S.G.; Simmons, J.A.

2002-01-01T23:59:59.000Z

120

Solid State Reactor Final Report  

DOE Green Energy (OSTI)

The Solid State Reactor (SSR) is an advanced reactor concept designed to take advantage of Oak Ridge National Laboratory's (ORNL's) recently developed graphite foam that has enhanced heat transfer characteristics and excellent high-temperature mechanical properties, to provide an inherently safe, self-regulated, source of heat for power and other potential applications. This work was funded by the U.S. Department of Energy's Nuclear Energy Research Initiative (NERI) program (Project No. 99-064) from August 1999 through September 30, 2002. The initial concept of utilizing the graphite foam as a basis for developing an advanced reactor concept envisioned that a suite of reactor configurations and power levels could be developed for several different applications. The initial focus was looking at the reactor as a heat source that was scalable, independent of any heat removal/power conversion process. These applications might include conventional power generation, isotope production and destruction (actinides), and hydrogen production. Having conducted the initial research on the graphite foam and having performed the scoping parametric analyses from neutronics and thermal-hydraulic perspectives, it was necessary to focus on a particular application that would (1) demonstrate the viability of the overall concept and (2) require a reasonably structured design analysis process that would synthesize those important parameters that influence the concept the most as part of a feasible, working reactor system. Thus, the application targeted for this concept was supplying power for remote/harsh environments and a design that was easily deployable, simplistic from an operational standpoint, and utilized the new graphite foam. Specifically, a 500-kW(t) reactor concept was pursued that is naturally load following, inherently safe, optimized via neutronic studies to achieve near-zero reactivity change with burnup, and proliferation resistant. These four major areas of research were undertaken: (1) establishing the design and safety-related basis via neutronic and reactor control assessments with the graphite foam as heat transfer medium; (2) evaluating the thermal performance of the graphite foam for heat removal, reactor stability, reactor operations, and overall core thermal characteristics; (3) characterizing the physical properties of the graphite foam under normal and irradiated conditions to determine any effects on structure, dimensional stability, thermal conductivity, and thermal expansion; and (4) developing a power conversion system design to match the reactor operating parameters.

Mays, G.T.

2004-03-10T23:59:59.000Z

Note: This page contains sample records for the topic "oled solid state" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Advanced Solid State Li-Ion Battery  

Research on all-solid-state rechargeable lithium batteries has increased considerably in recent years due to raised concerns relating to safety hazards such as solvent leakage and flammability of liquid electrolytes used for commercial lithium-ion ...

122

Solid State Thin Film Lithium Microbatteries  

E-Print Network (OSTI)

Solid state thin film lithium microbatteries fabricated by pulsed-laser deposition (PLD) are suggested. During deposition the following process parameters must be considered, which are laser energy and fluence, laser pulse ...

Shi, Z.

123

Nanostructured, Rechargeable Solid-State Composite Batteries  

Research on all-solid-state rechargeable lithium batteries has increased considerably in recent years due to raised concerns relating to safety hazards such as solvent leakage and flammability of liquid electrolytes used for commercial lithium-ion ...

124

Novel phosphors for solid state lighting  

E-Print Network (OSTI)

Solid state white light emitting diode lighting devices outperform conventional light sources in terms of lifetime, durability, and lumens per watt. However, the capital contribution is still to high to encourage widespread adoption. Furthermore...

Furman, Joshua D

2010-11-16T23:59:59.000Z

125

Grating enhanced solid-state laser amplifiers  

DOE Patents (OSTI)

A novel method and apparatus for suppressing ASE and parasitic oscillation modes in a high average power laser is introduced. Such an invention, as disclosed herein, uses diffraction gratings to increase gain, stored energy density, and pumping efficiency of solid-state laser gain media, such as, but not limited to rods, disks and slabs. By coupling predetermined gratings to solid-state gain media, such as crystal or ceramic laser gain media, ASE and parasitic oscillation modes can be effectively suppressed.

Erlandson, Alvin C. (Livermore, CA); Britten, Jerald A. (Clayton, CA)

2010-11-09T23:59:59.000Z

126

SOLID STATE SUPERCAPACITORS BASED ON METAL/YTTRIA-STABILISED  

E-Print Network (OSTI)

SOLID STATE SUPERCAPACITORS BASED ON METAL/YTTRIA-STABILISED ZIRCONIA COMPOSITES PROEFSCHRIFT ter Elshof #12;Hendriks, Mark Gerard Hendrik Maria Solid state supercapacitors based on metal

Verweij, Henk

127

Solid-State Lighting Recovery Act Award Selections | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solid-State Lighting Recovery Act Award Selections Solid-State Lighting Recovery Act Award Selections A chart highlighting core technology research projects and product development...

128

NREL: Energy Sciences - Solid-State Theory  

NLE Websites -- All DOE Office Websites (Extended Search)

Solid-State Theory Solid-State Theory Image showing a roughly spherical red shape that looks like an apple that is floating within a yellow hemispherical shell. The shell is floating over a square below that shows an orange ring pattern bordered by yellow, then light blue, then darker blue. Square of the wave function (red) of a hole state in a spherical CdSe colloidal quantum dot (shape in yellow). The main research activities of the Solid-State Theory team within NREL's Theoretical Materials Science Group include the following: Theory of photovoltaic semiconductors Statistical and electronic theory of metal and semiconductor alloys Semiconductor nanostructures Inverse design of materials Computational methods in first-principles theories. This team provides the main theoretical thrust in the Center for Inverse

129

Solid state division progress report, period ending February 29, 1980  

DOE Green Energy (OSTI)

Research is reported concerning theoretical solid state physics; surface and near-surface properties of solids; defects in solids; transport properties of solids; neutron scattering; crystal growth and characterization; and isotope research materials.

Not Available

1980-09-01T23:59:59.000Z

130

Passivation-free solid state battery  

DOE Patents (OSTI)

This invention pertains to passivation-free solid-state rechargeable batteries composed of Li{sub 4}Ti{sub 5}O{sub 12} anode, a solid polymer electrolyte and a high voltage cathode. The solid polymer electrolyte comprises a polymer host, such as polyacrylonitrile, poly(vinyl chloride), poly(vinyl sulfone), and poly(vinylidene fluoride), plasticized by a solution of a Li salt in an organic solvent. The high voltage cathode includes LiMn{sub 2}O{sub 4}, LiCoO{sub 2}, LiNiO{sub 2} and LiV{sub 2}O{sub 5} and their derivatives. 5 figs.

Abraham, K.M.; Peramunage, D.

1998-06-16T23:59:59.000Z

131

Passivation-free solid state battery  

DOE Patents (OSTI)

This invention pertains to passivation-free solid-state rechargeable batteries composed of Li.sub.4 Ti.sub.5 O.sub.12 anode, a solid polymer electrolyte and a high voltage cathode. The solid polymer electrolyte comprises a polymer host, such as polyacrylonitrile, poly(vinyl chloride), poly(vinyl sulfone), and poly(vinylidene fluoride), plasticized by a solution of a Li salt in an organic solvent. The high voltage cathode includes LiMn.sub.2 O.sub.4, LiCoO.sub.2, LiNiO.sub.2 and LiV.sub.2 O.sub.5 and their derivatives.

Abraham, Kuzhikalail M. (Needham, MA); Peramunage, Dharmasena (Norwood, MA)

1998-01-01T23:59:59.000Z

132

Improving OLED technology for displays  

E-Print Network (OSTI)

Organic light emitting devices (OLEDs) are brightly emissive, efficient, have fast switching speeds, and are paper-thin in format, propelling their use as an emerging flat panel display technology. However, two primary ...

Yu, Jennifer J. (Jennifer Jong-Hwa), 1980-

2008-01-01T23:59:59.000Z

133

SolidStateLEDfactSheet04a  

NLE Websites -- All DOE Office Websites (Extended Search)

research program in research program in solid-state lighting Sandia National Laboratories has a long history of research in semiconductor optoelectronic devices. We were pioneers in the technology of the vertical cavity surface emitting laser, or VCSEL, which is now a mainstay of the telecommunications industry. A few years ago we began to realize the tremendous possibilities presented by harnessing semiconductor technology for lighting. Sandia, working with leading industrial scientists from Agilent, wrote some of the first papers on solid-state lighting. In 2000, we helped the Department of Energy and the Optoelectronics Industry Development Association (OIDA) organize a national Solid-State Lighting Technology Roadmapping Workshop. That workshop identified the major scientific

134

Solid-state NMR imaging system  

DOE Patents (OSTI)

An apparatus for use with a solid-state NMR spectrometer includes a special imaging probe with linear, high-field strength gradient fields and high-power broadband RF coils using a back projection method for data acquisition and image reconstruction, and a real-time pulse programmer adaptable for use by a conventional computer for complex high speed pulse sequences.

Gopalsami, Nachappa (Naperville, IL); Dieckman, Stephen L. (Elmhurst, IL); Ellingson, William A. (Naperville, IL)

1992-01-01T23:59:59.000Z

135

Solid-state NMR imaging system  

DOE Patents (OSTI)

An accessory for use with a solid-state NMR spectrometer includes a special imaging probe with linear, high-field strength gradient fields and high-power broadband RF coils using a back projection method for data acquisition and image reconstruction, and a real-time pulse programmer adaptable for use by a conventional computer for complex high speed pulse sequences.

Gopalsami, N.; Dieckman, S.L.; Ellingson, W.A.

1990-01-01T23:59:59.000Z

136

Query processing techniques for solid state drives  

Science Conference Proceedings (OSTI)

Solid state drives perform random reads more than 100x faster than traditional magnetic hard disks, while offering comparable sequential read and write bandwidth. Because of their potential to speed up applications, as well as their reduced power consumption, ... Keywords: columnar storage, flash memory, join index, late materialization, semi-join reduction, ssd

Dimitris Tsirogiannis; Stavros Harizopoulos; Mehul A. Shah; Janet L. Wiener; Goetz Graefe

2009-06-01T23:59:59.000Z

137

Solid-state NMR imaging system  

DOE Patents (OSTI)

An accessory for use with a solid-state NMR spectrometer includes a special imaging probe with linear, high-field strength gradient fields and high-power broadband RF coils using a back projection method for data acquisition and image reconstruction, and a real-time pulse programmer adaptable for use by a conventional computer for complex high speed pulse sequences.

Gopalsami, N.; Dieckman, S.L.; Ellingson, W.A.

1990-12-31T23:59:59.000Z

138

Technology assessment and market analysis of solid state ultracapacitors  

E-Print Network (OSTI)

This report provides quantitative analysis of Solid State Ultracapacitors (SSUs) from technological and financial perspectives. SSUs are Ultracapacitors with solid electrolytes predicted to have huge application potential ...

Jiang, Zibo

2007-01-01T23:59:59.000Z

139

Physics 5555 Solid State Physics, Part I Syllabus Fall 2003  

E-Print Network (OSTI)

Physics 5555­ Solid State Physics, Part I Syllabus ­ Fall 2003 Instructor: Massimiliano Di Ventra. The following sources are the most used: · Ashcroft and Mermin, "Solid State Physics" · Ziman, "Principles" · Harrison, "Solid State Theory" · Kittel, "Quantum Theory of Solids" · Kittel and Kroemer, "Thermal Physics

Di Ventra, Massimiliano

140

Physics 5555 Solid State Physics, Part I Syllabus Fall 2001  

E-Print Network (OSTI)

Physics 5555­ Solid State Physics, Part I Syllabus ­ Fall 2001 Instructor: Massimiliano Di Ventra. The following sources are the most used: · Ashcroft and Mermin, "Solid State Physics" · Ziman, "Principles" · Harrison, "Solid State Theory" · Kittel, "Quantum Theory of Solids" · Kittel and Kroemer, "Thermal Physics

Di Ventra, Massimiliano

Note: This page contains sample records for the topic "oled solid state" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

SSPC (Solid State Proton Conductors 15 Meeting  

DOE Green Energy (OSTI)

The field of solid state protonics has had a small but dedicated following for the past several decades. The collection of papers compiled in this special issue of Solid State Ionics were presented at the most recent international conference focused specifically on this topic, the 15th International Conference on Solid State Proton Conductors (SSPC-15) held in Santa Barbara, California, United States, August 15-20, 2010. Early recognition of the importance of proton transport in solids led to the establishment of the first meeting in this series in 1981, held in Paris in the form of a Danish-Frenchworkshop. The subsequent thirteen meetingswere all held inWestern Europe,with increasing participation from Asian, Eastern European and North and South American researchers. In recognition of the growing international interest in the field, SSPC-14 was held in Kyoto, Japan. SSPC-15, the first North American meeting in this series, built on the momentum of internationalization achieved in SSPC-14, ensuring that the best and brightest minds continue to contribute to the important problems still facing the understanding and manipulation of proton transport in solids. This occasion warrants an update to the SSPC history, and is given. Overall, the oxide proton conductors were the topic of greatest interest, reflecting the deep history of Japanese involvement in these materials. Critical advances were described in both the understanding of the transport properties and the fabrication of technological devices, with particular emphasis on fuel cells. Interest in polymer and oxyacid proton conductors was also high, as with previous meetings. Again, advances in fundamental mechanistic understanding of proton transport pathways were reported in parallel with advances in device development. While only a subset of papers presented at SSPC-15 are included in this special issue, the articles reflect the breadth of topics covered. The reader is encouraged to browse the papers beyond his or her area of expertise to experience directly the remarkable breakthroughs reported at SSPC-15.

Speakers; Shu Yamaguchi; George Rossman; M. Saiful Islam; Maria Gomez; Stephen Paddison

2012-05-02T23:59:59.000Z

142

Solid-State Lighting: 2010 Municipal Consortium Southwest Region Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

0 Municipal Consortium 0 Municipal Consortium Southwest Region Workshop Materials to someone by E-mail Share Solid-State Lighting: 2010 Municipal Consortium Southwest Region Workshop Materials on Facebook Tweet about Solid-State Lighting: 2010 Municipal Consortium Southwest Region Workshop Materials on Twitter Bookmark Solid-State Lighting: 2010 Municipal Consortium Southwest Region Workshop Materials on Google Bookmark Solid-State Lighting: 2010 Municipal Consortium Southwest Region Workshop Materials on Delicious Rank Solid-State Lighting: 2010 Municipal Consortium Southwest Region Workshop Materials on Digg Find More places to share Solid-State Lighting: 2010 Municipal Consortium Southwest Region Workshop Materials on AddThis.com... Conferences & Meetings Presentations Publications

143

Solid-State Lighting: 2011 Municipal Consortium Southeast Region Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

1 Municipal Consortium 1 Municipal Consortium Southeast Region Workshop Materials to someone by E-mail Share Solid-State Lighting: 2011 Municipal Consortium Southeast Region Workshop Materials on Facebook Tweet about Solid-State Lighting: 2011 Municipal Consortium Southeast Region Workshop Materials on Twitter Bookmark Solid-State Lighting: 2011 Municipal Consortium Southeast Region Workshop Materials on Google Bookmark Solid-State Lighting: 2011 Municipal Consortium Southeast Region Workshop Materials on Delicious Rank Solid-State Lighting: 2011 Municipal Consortium Southeast Region Workshop Materials on Digg Find More places to share Solid-State Lighting: 2011 Municipal Consortium Southeast Region Workshop Materials on AddThis.com... Conferences & Meetings Presentations Publications

144

Citation Analysis Method - Solid-State Lighting  

NLE Websites -- All DOE Office Websites (Extended Search)

2 2 | Headline News | Tracking Reports | Hot Technical Papers | Citation Analysis Method | Credits & Disclaimer | CITATION ANALYSIS METHODOLOGY To examine emerging science and technology knowledge domains that may someday intersect solid-state lighting, we used a citation analysis method similar to that pioneered by the Institute of Scientific Information (ISI). (For more information, see ISI's in-cites website). The analysis below was conducted in August of 2004 and will be updated periodically. First, we searched the ISI database for recent technical articles (from January 2002 on) containing key words associated with solid-state lighting. Second, we made a scatter plot of the number of citations* to these articles as a function of publication date. On that plot, we draw a curve

145

Solid state synthesis of poly(dichlorophosphazene)  

SciTech Connect

A method for making poly(dichlorophosphazene) using solid state reactants is disclosed and described. The present invention improves upon previous methods by removing the need for chlorinated hydrocarbon solvents, eliminating complicated equipment and simplifying the overall process by providing a "single pot" two step reaction sequence. This may be accomplished by the condensation reaction of raw materials in the melt phase of the reactants and in the absence of an environmentally damaging solvent.

Allen, Christopher W. (Essex Junction, VT); Hneihen, Azzam S. (Burlington, VT); Peterson, Eric S. (Idaho Falls, ID)

2001-01-01T23:59:59.000Z

146

Recovery Act - Solid State Lighting U.S. Manufacturing | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Recovery Act - Solid State Lighting U.S. Manufacturing Recovery Act - Solid State Lighting U.S. Manufacturing A report of a Funding Opportunity Announcement (FOA), to achieve cost...

147

Solid-State Lighting: Model Specification for LED Roadway Luminaires  

NLE Websites -- All DOE Office Websites (Extended Search)

Model Specification for LED Roadway Luminaires to someone by E-mail Share Solid-State Lighting: Model Specification for LED Roadway Luminaires on Facebook Tweet about Solid-State...

148

Solid-State Lighting: Simple Modular LED Cost Model  

NLE Websites -- All DOE Office Websites (Extended Search)

Simple Modular LED Cost Model to someone by E-mail Share Solid-State Lighting: Simple Modular LED Cost Model on Facebook Tweet about Solid-State Lighting: Simple Modular LED Cost...

149

Solid-State Lighting: Guided Tour of Testing Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Guided Tour of Testing Lab to someone by E-mail Share Solid-State Lighting: Guided Tour of Testing Lab on Facebook Tweet about Solid-State Lighting: Guided Tour of Testing Lab on...

150

Flexible solid-state paper based carbon nanotube supercapacitor  

Science Conference Proceedings (OSTI)

This paper presents a flexible solid-state supercapacitor of high energy density. The electrodes of the supercapacitor are made of porous and absorbent cotton paper coated with single-wall carbon nanotubes. To ensure all solid-state configuration

Shan Hu; Rajesh Rajamani; Xun Yu

2012-01-01T23:59:59.000Z

151

Red-Emitting Phosphors for Solid-State Lighting - Energy ...  

Exceeds traditional LED color quality; Improved energy efficiency; Applications and Industries. Electronics; Solid-state lighting; Photocatalysis; Ion Conducting ...

152

Solid state transport-based thermoelectric converter - Energy ...  

A solid state thermoelectric converter includes a thermally insulating separator layer, ... Advanced Materials; Biomass and Biofuels; Building Energy Efficiency;

153

Physics 5556 Solid State Physics, Part II Syllabus Spring 2002  

E-Print Network (OSTI)

Physics 5556­ Solid State Physics, Part II Syllabus ­ Spring 2002 Instructor: Massimiliano Di subjects. The following sources are the most used: · Ashcroft and Mermin, "Solid State Physics" · Ziman, "Thermal Physics" · Madelung, "Introduction to Solid-State Theory" · Bassani and Pastori Parravicini

Di Ventra, Massimiliano

154

solidification and solid state phase transformation of allvac 718plus ...  

Science Conference Proceedings (OSTI)

Solidification and solid state transformations of Allvac 718Plus alloy were studied ... ?'/?" precipitate state and ? phase precipitation among others play a very...

155

Neutrons Reveal Quantum Order in Solid-State System  

Science Conference Proceedings (OSTI)

... Their work demonstrates a unique solid-state devicebasically a row of nickel atoms ... spins in a material that has a discrete set of quantum states. ...

2013-07-08T23:59:59.000Z

156

Nanoengineering for solid-state lighting.  

SciTech Connect

This report summarizes results from a 3-year Laboratory Directed Research and Development project performed in collaboration with researchers at Rensselaer Polytechnic Institute. Our collaborative effort was supported by Sandia's National Institute for Nanoengineering and focused on the study and application of nanoscience and nanoengineering concepts to improve the efficiency of semiconductor light-emitting diodes for solid-state lighting applications. The project explored LED efficiency advances with two primary thrusts: (1) the study of nanoscale InGaN materials properties, particularly nanoscale crystalline defects, and their impact on internal quantum efficiency, and (2) nanoscale engineering of dielectric and metal materials and integration with LED heterostructures for enhanced light extraction efficiency.

Schubert, E. Fred (Rensselaer Polytechnic Institute,Troy, NY); Koleske, Daniel David; Wetzel, Christian (Rensselaer Polytechnic Institute,Troy, NY); Lee, Stephen Roger; Missert, Nancy A.; Lin, Shawn-Yu (Rensselaer Polytechnic Institute,Troy, NY); Crawford, Mary Hagerott; Fischer, Arthur Joseph

2009-09-01T23:59:59.000Z

157

Solid State Marx Modulators for Emerging Applications  

Science Conference Proceedings (OSTI)

Emerging linear accelerator applications increasingly push the boundaries of RF system performance and economics. The power modulator is an integral part of RF systems whose characteristics play a key role in the determining parameters such as efficiency, footprint, cost, stability, and availability. Particularly within the past decade, solid-state switch based modulators have become the standard in high-performance, high power modulators. One topology, the Marx modulator, has characteristics which make it particularly attractive for several emerging applications. This paper is an overview of the Marx topology, some recent developments, and a case study of how this architecture can be applied to a few proposed linear accelerators.

Kemp, M.A.; /SLAC

2012-09-14T23:59:59.000Z

158

Fast-neutron solid-state dosimeter  

DOE Patents (OSTI)

This patent relates to an improved fast-neutron solid-state dosimeter that does not require separation of materials before it can be read out, that utilizes materials that do not melt or otherwise degrade at about 300$sup 0$C readout temperature, that provides a more efficient dosimeter, and that can be reused. The dosimeters are fabricated by intimately mixing a TL material, such as CaSO$sub 4$:Dy, with a powdered polyphenyl, such as p-sexiphenyl, and hot- pressing the mixture to form pellets, followed by out-gassing in a vacuum furnace at 150$sup 0$C prior to first use dosimeters. (auth)

Kecker, K.H.; Haywood, F.F.; Perdue, P.T.; Thorngate, J.H.

1975-07-22T23:59:59.000Z

159

Solid-State Transfer Switch Development  

Science Conference Proceedings (OSTI)

EPRIs multi-function Solid-State Switchgear System (4-S) will be a first-generation power-electronics replacement for conventional distribution switchgear. In 2007, EPRI began a project to identify major application areas and demonstration of the technology. EPRI also coordinated this effort with other EPRI programs related to the development of fault current limiters. As part of this project, EPRI is developing, testing, and refining an S-GTO based transfer switch. The S-GTO based Static Transfer Switc...

2008-12-01T23:59:59.000Z

160

Solid-State Transfer Switch Development  

Science Conference Proceedings (OSTI)

EPRI's multi-function Solid-State Switchgear System (4-S) will be a first-generation power-electronics replacement for conventional distribution switchgear. A key component of the system is the S-GTO based Static Transfer Switch (SSTS), an intelligent power-electronics device (IED) for Advanced Distribution Automation (ADA). This switch is a multi-functional, high performance, compact, high reliability cost-effective device. It utilizes the 2007 R&D100 Award winning S-GTO power-electronics devices, the l...

2009-12-10T23:59:59.000Z

Note: This page contains sample records for the topic "oled solid state" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Pulsed Power for Solid-State Lasers  

SciTech Connect

Beginning in the early 1970s, a number of research and development efforts were undertaken at U.S. National Laboratories with a goal of developing high power lasers whose characteristics were suitable for investigating the feasibility of laser-driven fusion. A number of different laser systems were developed and tested at ever larger scale in pursuit of the optimum driver for laser fusion experiments. Each of these systems had associated with it a unique pulsed power option. A considerable amount of original and innovative engineering was carried out in support of these options. Ultimately, the Solid-state Laser approach was selected as the optimum driver for the application. Following this, the Laser Program at the Lawrence Livermore National Laboratory and the University of Rochester undertook aggressive efforts directed at developing the technology. In particular, at Lawrence Livermore National Laboratory, a series of laser systems beginning with the Cyclops laser and culminating in the present with the National Ignition Facility were developed and tested. As a result, a large amount of design information for solid-state laser pulsed power systems has been documented. Some of it is in the form of published papers, but most of it is buried in internal memoranda, engineering reports and LLNL annual reports. One of the goals of this book is to gather this information into a single useable format, such that it is easily accessed and understood by other engineers and physicists for use with future designs. It can also serve as a primer, which when seriously studied, makes the subsequent reading of original work and follow-up references considerably easier. While this book deals only with the solid-state laser pulsed power systems, in the bibliography we have included a representative cross section of papers and references from much of the very fine work carried out at other institutions in support of different laser approaches. Finally, in recent years, there has been a renewed interest in high-average-power solid-state glass lasers. Much of the prime power technology developed in support of this has definite applications in the long term for fusion power plant scenarios.

Gagnon, W; Albrecht, G; Trenholme, J; Newton, M

2007-04-19T23:59:59.000Z

162

Multifunction Solid State Switchgear System (4-S)  

Science Conference Proceedings (OSTI)

The goal of EPRI's multi-function solid-state switchgear system (4-S) project is to develop a first-generation modular power-electronic replacement for conventional distribution switchgear that can be widely used in distribution switchgear applications. As the first step in the development of the 4-S, EPRI is developing, testing, and refining a 15kV class SGTO based transfer switch (SSTS). The SSTS will be an intelligent power-electronics device (IED) for Advanced Distribution Automation (ADATM). The aim...

2007-12-12T23:59:59.000Z

163

Solid State Energy Conversion Alliance (SECA) Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

NETL Publications NETL Publications 2001 Conference Proceedings Solid State Energy Conversion Alliance (SECA) Workshop March 29-30, 2001 Table of Contents Disclaimer Papers and Presentations Plenary Session Selected Presentations on Current DOE Work Supporting SECA Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government or any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

164

Solid-State Lighting: Text-Alternative Version: LED Essentials -  

NLE Websites -- All DOE Office Websites (Extended Search)

Essentials - Technology, Applications, Advantages, Disadvantages to someone Essentials - Technology, Applications, Advantages, Disadvantages to someone by E-mail Share Solid-State Lighting: Text-Alternative Version: LED Essentials - Technology, Applications, Advantages, Disadvantages on Facebook Tweet about Solid-State Lighting: Text-Alternative Version: LED Essentials - Technology, Applications, Advantages, Disadvantages on Twitter Bookmark Solid-State Lighting: Text-Alternative Version: LED Essentials - Technology, Applications, Advantages, Disadvantages on Google Bookmark Solid-State Lighting: Text-Alternative Version: LED Essentials - Technology, Applications, Advantages, Disadvantages on Delicious Rank Solid-State Lighting: Text-Alternative Version: LED Essentials - Technology, Applications, Advantages, Disadvantages on Digg

165

Nanocrystal-enabled solid state bonding.  

SciTech Connect

In this project, we performed a preliminary set of sintering experiments to examine nanocrystal-enabled diffusion bonding (NEDB) in Ag-on-Ag and Cu-on-Cu using Ag nanoparticles. The experimental test matrix included the effects of material system, temperature, pressure, and particle size. The nanoparticle compacts were bonded between plates using a customized hot press, tested in shear, and examined post mortem using microscopy techniques. NEDB was found to be a feasible mechanism for low-temperature, low-pressure, solid-state bonding of like materials, creating bonded interfaces that were able to support substantial loads. The maximum supported shear strength varied substantially within sample cohorts due to variation in bonded area; however, systematic variation with fabrication conditions was also observed. Mesoscale sintering simulations were performed in order to understand whether sintering models can aid in understanding the NEDB process. A pressure-assisted sintering model was incorporated into the SPPARKS kinetic Monte Carlo sintering code. Results reproduce most of the qualitative behavior observed in experiments, indicating that simulation can augment experiments during the development of the NEDB process. Because NEDB offers a promising route to low-temperature, low-pressure, solid-state bonding, we recommend further research and development with a goal of devising new NEDB bonding processes to support Sandia's customers.

San Diego State University, San Diego, CA; Puskar, Joseph David; Tikare, Veena; Garcia Cardona, Cristina (San Diego State University, San Diego, CA); Reece, Mark; Brewer, Luke N. (Naval Postgraduate School, Monterey, CA); Holm, Elizabeth Ann

2010-10-01T23:59:59.000Z

166

Solid-State Lighting: Retrofit Financial Analysis Tool  

NLE Websites -- All DOE Office Websites (Extended Search)

Market-Based Programs Printable Version Share this resource Send a link to Solid-State Lighting: Retrofit Financial Analysis Tool to someone by E-mail Share Solid-State Lighting: Retrofit Financial Analysis Tool on Facebook Tweet about Solid-State Lighting: Retrofit Financial Analysis Tool on Twitter Bookmark Solid-State Lighting: Retrofit Financial Analysis Tool on Google Bookmark Solid-State Lighting: Retrofit Financial Analysis Tool on Delicious Rank Solid-State Lighting: Retrofit Financial Analysis Tool on Digg Find More places to share Solid-State Lighting: Retrofit Financial Analysis Tool on AddThis.com... LED Lighting Facts CALiPER Program Standards Development Technical Information Network Gateway Demonstrations Municipal Consortium About the Consortium FAQs

167

Solid-State Lighting: DOE Hosts LED Industry Standards Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

Information Information Resources Printable Version Share this resource Send a link to Solid-State Lighting: DOE Hosts LED Industry Standards Workshop to someone by E-mail Share Solid-State Lighting: DOE Hosts LED Industry Standards Workshop on Facebook Tweet about Solid-State Lighting: DOE Hosts LED Industry Standards Workshop on Twitter Bookmark Solid-State Lighting: DOE Hosts LED Industry Standards Workshop on Google Bookmark Solid-State Lighting: DOE Hosts LED Industry Standards Workshop on Delicious Rank Solid-State Lighting: DOE Hosts LED Industry Standards Workshop on Digg Find More places to share Solid-State Lighting: DOE Hosts LED Industry Standards Workshop on AddThis.com... Conferences & Meetings Past Conferences Presentations Publications Webcasts Videos Tools

168

Solid-State Lighting: CALiPER Application Summary Reports  

NLE Websites -- All DOE Office Websites (Extended Search)

Market-Based Programs Printable Version Share this resource Send a link to Solid-State Lighting: CALiPER Application Summary Reports to someone by E-mail Share Solid-State Lighting: CALiPER Application Summary Reports on Facebook Tweet about Solid-State Lighting: CALiPER Application Summary Reports on Twitter Bookmark Solid-State Lighting: CALiPER Application Summary Reports on Google Bookmark Solid-State Lighting: CALiPER Application Summary Reports on Delicious Rank Solid-State Lighting: CALiPER Application Summary Reports on Digg Find More places to share Solid-State Lighting: CALiPER Application Summary Reports on AddThis.com... LED Lighting Facts CALiPER Program About the Program FAQs Summary Reports Detailed Reports Benchmark Reports Exploratory Studies Testing Laboratories

169

Solid-State Lighting: CALiPER Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Market-Based Programs Printable Version Share this resource Send a link to Solid-State Lighting: CALiPER Program to someone by E-mail Share Solid-State Lighting: CALiPER Program on Facebook Tweet about Solid-State Lighting: CALiPER Program on Twitter Bookmark Solid-State Lighting: CALiPER Program on Google Bookmark Solid-State Lighting: CALiPER Program on Delicious Rank Solid-State Lighting: CALiPER Program on Digg Find More places to share Solid-State Lighting: CALiPER Program on AddThis.com... LED Lighting Facts CALiPER Program About the Program FAQs Summary Reports Detailed Reports Benchmark Reports Exploratory Studies Testing Laboratories Standards Development Technical Information Network Gateway Demonstrations Municipal Consortium Design Competitions CALiPER Program

170

Solid-State Lighting: Market-Based Programs  

NLE Websites -- All DOE Office Websites (Extended Search)

Market-Based Programs Printable Version Share this resource Send a link to Solid-State Lighting: Market-Based Programs to someone by E-mail Share Solid-State Lighting: Market-Based Programs on Facebook Tweet about Solid-State Lighting: Market-Based Programs on Twitter Bookmark Solid-State Lighting: Market-Based Programs on Google Bookmark Solid-State Lighting: Market-Based Programs on Delicious Rank Solid-State Lighting: Market-Based Programs on Digg Find More places to share Solid-State Lighting: Market-Based Programs on AddThis.com... LED Lighting Facts CALiPER Program Standards Development Technical Information Network Gateway Demonstrations Municipal Consortium Design Competitions Market-Based Programs To facilitate successful market introduction of high-quality,

171

Solid-State Lighting: CALiPER Exploratory Studies  

NLE Websites -- All DOE Office Websites (Extended Search)

Market-Based Programs Printable Version Share this resource Send a link to Solid-State Lighting: CALiPER Exploratory Studies to someone by E-mail Share Solid-State Lighting: CALiPER Exploratory Studies on Facebook Tweet about Solid-State Lighting: CALiPER Exploratory Studies on Twitter Bookmark Solid-State Lighting: CALiPER Exploratory Studies on Google Bookmark Solid-State Lighting: CALiPER Exploratory Studies on Delicious Rank Solid-State Lighting: CALiPER Exploratory Studies on Digg Find More places to share Solid-State Lighting: CALiPER Exploratory Studies on AddThis.com... LED Lighting Facts CALiPER Program About the Program FAQs Summary Reports Detailed Reports Benchmark Reports Exploratory Studies Testing Laboratories Standards Development Technical Information Network

172

Solid-State Lighting: DOE Five Year Commercialization Support Plan  

NLE Websites -- All DOE Office Websites (Extended Search)

Information Information Resources Printable Version Share this resource Send a link to Solid-State Lighting: DOE Five Year Commercialization Support Plan to someone by E-mail Share Solid-State Lighting: DOE Five Year Commercialization Support Plan on Facebook Tweet about Solid-State Lighting: DOE Five Year Commercialization Support Plan on Twitter Bookmark Solid-State Lighting: DOE Five Year Commercialization Support Plan on Google Bookmark Solid-State Lighting: DOE Five Year Commercialization Support Plan on Delicious Rank Solid-State Lighting: DOE Five Year Commercialization Support Plan on Digg Find More places to share Solid-State Lighting: DOE Five Year Commercialization Support Plan on AddThis.com... Conferences & Meetings Presentations Publications Webcasts Videos

173

Solid-State Lighting: Adaptive Street Lighting Controls  

NLE Websites -- All DOE Office Websites (Extended Search)

Adaptive Street Lighting Adaptive Street Lighting Controls to someone by E-mail Share Solid-State Lighting: Adaptive Street Lighting Controls on Facebook Tweet about Solid-State Lighting: Adaptive Street Lighting Controls on Twitter Bookmark Solid-State Lighting: Adaptive Street Lighting Controls on Google Bookmark Solid-State Lighting: Adaptive Street Lighting Controls on Delicious Rank Solid-State Lighting: Adaptive Street Lighting Controls on Digg Find More places to share Solid-State Lighting: Adaptive Street Lighting Controls on AddThis.com... Conferences & Meetings Presentations Publications Webcasts Videos Tools Adaptive Street Lighting Controls This two-part DOE Municipal Solid-State Street Lighting Consortium webinar focused on LED street lighting equipped with adaptive control components.

174

International trends in solid-state lighting : analyses of the article and patent literature.  

SciTech Connect

We present an analysis of the literature of solid-state lighting, based on a comprehensive dataset of 35,851 English-language articles and 12,420 U.S. patents published or issued during the years 1977-2004 in the foundational knowledge domain of electroluminescent materials and phenomena. The dataset was created using a complex, iteratively developed search string. The records in the dataset were then partitioned according to: whether they are articles or patents, their publication or issue date, their national or continental origin, whether the active electroluminescent material was inorganic or organic, and which of a number of emergent knowledge sub-domains they aggregate into on the basis of bibliographic coupling. From these partitionings, we performed a number of analyses, including: identification of knowledge sub-domains of historical and recent importance, and trends over time of the contributions of various nations and continents to the knowledge domain and its sub-domains. Among the key results: (1) The knowledge domain as a whole has been growing quickly: the average growth rates of the inorganic and organic knowledge sub-domains have been 8%/yr and 25%/yr, respectively, compared to average growth rates less than 5%/yr for English-language articles and U.S. patents in other knowledge domains. The growth rate of the organic knowledge sub-domain is so high that its historical dominance by the inorganic knowledge sub-domain will, at current trajectories, be reversed in the coming decade. (2) Amongst nations, the U.S. is the largest contributor to the overall knowledge domain, but Japan is on a trajectory to become the largest contributor within the coming half-decade. Amongst continents, Asia became the largest contributor during the past half-decade, overwhelmingly so for the organic knowledge sub-domain. (3) The relative contributions to the article and patent datasets differ for the major continents: North America contributing relatively more patents, Europe contributing relatively more articles, and Asia contributing in a more balanced fashion. (4) For the article dataset, the nations that contribute most in quantity also contribute most in breadth, while the nations that contribute less in quantity concentrate their contributions in particular knowledge sub-domains. For the patent dataset, North America and Europe tend to contribute improvements in end-use applications (e.g., in sensing, phototherapy and communications), while Asia tends to contribute improvements at the materials and chip levels. (5) The knowledge sub-domains that emerge from aggregations based on bibliographic coupling are roughly organized, for articles, by the degree of localization of electrons and holes in the material or phenomenon of interest, and for patents, according to both their emphasis on chips, systems or applications, and their emphasis on organic or inorganic materials. (6) The six 'hottest' topics in the article dataset are: spintronics, AlGaN UV LEDs, nanowires, nanophosphors, polyfluorenes and electrophosphorescence. The nine 'hottest' topics in the patent dataset are: OLED encapsulation, active-matrix displays, multicolor OLEDs, thermal transfer for OLED fabrication, ink-jet printed OLEDs, phosphor-converted LEDs, ornamental LED packages, photocuring and phototherapy, and LED retrofitting lamps. A significant caution in interpreting these results is that they are based on English-language articles and U.S. patents, and hence will tend to over-represent the strength of English-speaking nations (particularly the U.S.), and under-represent the strength of non-English-speaking nations (particularly China).

Tsao, Jeffrey Yeenien; Huey, Mark C. (Strategic Perspectives, Incorporated, McLean, VA); Boyack, Kevin W.; Miksovic, Ann E. (Strategic Perspectives, Incorporated, McLean, VA)

2008-07-01T23:59:59.000Z

175

Lighting Group: Sources and Ballasts: OLED Cathodes  

NLE Websites -- All DOE Office Websites (Extended Search)

OLED Cathodes OLED Cathodes Development of New Cathodes for OLED's Objective The objective of this project is to develop improved cathodes for use in organic light emitting diodes (OLEDs). Approach A major challenge for organic light emitting diode (OLED) technology is to improve electron injection into the organic electroluminescent layer, which limits the efficiency of the device and the luminous flux per unit area. This project aims at overcoming such barriers by developing “structured cathodes” based on functional materials (nanotubes and nanoclusters) with characteristic size smaller than the optical wavelength. The incorporation of such nanostructured cathodes in OLEDs can significantly improve device efficiency by lowering operating voltage, and increase device stability and light extraction.

176

Nanoengineering for solid-state lighting.  

SciTech Connect

This report summarizes results from a 3-year Laboratory Directed Research and Development project performed in collaboration with researchers at Rensselaer Polytechnic Institute. Our collaborative effort was supported by Sandia's National Institute for Nanoengineering and focused on the study and application of nanoscience and nanoengineering concepts to improve the efficiency of semiconductor light-emitting diodes for solid-state lighting applications. The project explored LED efficiency advances with two primary thrusts: (1) the study of nanoscale InGaN materials properties, particularly nanoscale crystalline defects, and their impact on internal quantum efficiency, and (2) nanoscale engineering of dielectric and metal materials and integration with LED heterostructures for enhanced light extraction efficiency.

Schubert, E. Fred (Rensselaer Polytechnic Institute,Troy, NY); Koleske, Daniel David; Wetzel, Christian (Rensselaer Polytechnic Institute,Troy, NY); Lee, Stephen Roger; Missert, Nancy A.; Lin, Shawn-Yu (Rensselaer Polytechnic Institute,Troy, NY); Crawford, Mary Hagerott; Fischer, Arthur Joseph

2009-09-01T23:59:59.000Z

177

Information Resources: Solid-State Lighting Videos  

NLE Websites -- All DOE Office Websites (Extended Search)

Videos Videos On this page you can access DOE Solid-State Lighting (SSL) Program videos. Photo of a museum art gallery with LED lights in track fixtures overhead. The City of Los Angeles LED Streetlight Program View the video about the Los Angeles LED streetlight program, featuring an interview with City of Los Angeles Bureau of Street Lighting Director, Ed Ebrahimian. Photo of a museum art gallery with LED lights in track fixtures overhead. The Smithsonian American Art Museum GATEWAY Demonstration View the video about using LEDs in a GATEWAY demonstration at the Smithsonian American Art Museum in Washington, DC, including an interview with lighting designer Scott Rosenfeld. graphic of many intersecting white lines on a blue background Orchestrating Market Success

178

Electronically shielded solid state charged particle detector  

DOE Patents (OSTI)

An electronically shielded solid state charged particle detector system having enhanced radio frequency interference immunity includes a detector housing with a detector entrance opening for receiving the charged particles. A charged particle detector having an active surface is disposed within the housing. The active surface faces toward the detector entrance opening for providing electrical signals representative of the received charged particles when the received charged particles are applied to the active surface. A conductive layer is disposed upon the active surface. In a preferred embodiment, a nonconductive layer is disposed between the conductive layer and the active surface. The conductive layer is electrically coupled to the detector housing to provide a substantially continuous conductive electrical shield surrounding the active surface. The inner surface of the detector housing is supplemented with a radio frequency absorbing material such as ferrite.

Balmer, D.K.; Haverty, T.W.; Nordin, C.W.; Tyree, W.H.

1995-12-31T23:59:59.000Z

179

Solid-State Lighting: Municipal Consortium Annual Meeting Presentations and  

NLE Websites -- All DOE Office Websites (Extended Search)

Information Information Resources Printable Version Share this resource Send a link to Solid-State Lighting: Municipal Consortium Annual Meeting Presentations and Materials-Phoenix, AZ to someone by E-mail Share Solid-State Lighting: Municipal Consortium Annual Meeting Presentations and Materials-Phoenix, AZ on Facebook Tweet about Solid-State Lighting: Municipal Consortium Annual Meeting Presentations and Materials-Phoenix, AZ on Twitter Bookmark Solid-State Lighting: Municipal Consortium Annual Meeting Presentations and Materials-Phoenix, AZ on Google Bookmark Solid-State Lighting: Municipal Consortium Annual Meeting Presentations and Materials-Phoenix, AZ on Delicious Rank Solid-State Lighting: Municipal Consortium Annual Meeting Presentations and Materials-Phoenix, AZ on Digg

180

Solid-State Lighting: Frequently Asked Questions About the Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

Frequently Asked Questions Frequently Asked Questions About the Technology Demonstration GATEWAY Program to someone by E-mail Share Solid-State Lighting: Frequently Asked Questions About the Technology Demonstration GATEWAY Program on Facebook Tweet about Solid-State Lighting: Frequently Asked Questions About the Technology Demonstration GATEWAY Program on Twitter Bookmark Solid-State Lighting: Frequently Asked Questions About the Technology Demonstration GATEWAY Program on Google Bookmark Solid-State Lighting: Frequently Asked Questions About the Technology Demonstration GATEWAY Program on Delicious Rank Solid-State Lighting: Frequently Asked Questions About the Technology Demonstration GATEWAY Program on Digg Find More places to share Solid-State Lighting: Frequently Asked Questions About the Technology Demonstration GATEWAY Program on

Note: This page contains sample records for the topic "oled solid state" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Outdoor Solid-State Lighting Technology Deployment | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Technologies » Technology Deployment » Outdoor Solid-State Technologies » Technology Deployment » Outdoor Solid-State Lighting Technology Deployment Outdoor Solid-State Lighting Technology Deployment October 7, 2013 - 9:10am Addthis Outdoor solid-state lighting (SSL) technology has the potential to reduce U.S. lighting energy usage by nearly one half and contribute significantly to our nation's climate change solutions. The U.S. Department of Energy's (DOE) Buildings Technologies Office offers a wealth of information on its Solid-State Lighting website. Visit the site to find: SSL Basics Studies and Reports CALiPER Summary Reports Tools SSL Webcasts. Also see: FEMP Outdoor SSL Initiative: Resources for Outdoor SSL Applications outlines resources available for outdoor solid-state lighting projects. Better Buildings Alliance: This DOE initiative is driven and managed

182

Solid-State Lighting: 2011 Municipal Consortium North Central Region  

NLE Websites -- All DOE Office Websites (Extended Search)

Consortium North Consortium North Central Region Workshop Materials to someone by E-mail Share Solid-State Lighting: 2011 Municipal Consortium North Central Region Workshop Materials on Facebook Tweet about Solid-State Lighting: 2011 Municipal Consortium North Central Region Workshop Materials on Twitter Bookmark Solid-State Lighting: 2011 Municipal Consortium North Central Region Workshop Materials on Google Bookmark Solid-State Lighting: 2011 Municipal Consortium North Central Region Workshop Materials on Delicious Rank Solid-State Lighting: 2011 Municipal Consortium North Central Region Workshop Materials on Digg Find More places to share Solid-State Lighting: 2011 Municipal Consortium North Central Region Workshop Materials on AddThis.com... LED Lighting Facts CALiPER Program

183

Solid-State Lighting: 2011 Municipal Consortium North Central Region  

NLE Websites -- All DOE Office Websites (Extended Search)

2011 Municipal Consortium North 2011 Municipal Consortium North Central Region Workshop Materials to someone by E-mail Share Solid-State Lighting: 2011 Municipal Consortium North Central Region Workshop Materials on Facebook Tweet about Solid-State Lighting: 2011 Municipal Consortium North Central Region Workshop Materials on Twitter Bookmark Solid-State Lighting: 2011 Municipal Consortium North Central Region Workshop Materials on Google Bookmark Solid-State Lighting: 2011 Municipal Consortium North Central Region Workshop Materials on Delicious Rank Solid-State Lighting: 2011 Municipal Consortium North Central Region Workshop Materials on Digg Find More places to share Solid-State Lighting: 2011 Municipal Consortium North Central Region Workshop Materials on AddThis.com... Conferences & Meetings

184

Solid-State Lighting: 2011 Municipal Consortium Northeast Region Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

Northeast Region Workshop Materials to someone by E-mail Northeast Region Workshop Materials to someone by E-mail Share Solid-State Lighting: 2011 Municipal Consortium Northeast Region Workshop Materials on Facebook Tweet about Solid-State Lighting: 2011 Municipal Consortium Northeast Region Workshop Materials on Twitter Bookmark Solid-State Lighting: 2011 Municipal Consortium Northeast Region Workshop Materials on Google Bookmark Solid-State Lighting: 2011 Municipal Consortium Northeast Region Workshop Materials on Delicious Rank Solid-State Lighting: 2011 Municipal Consortium Northeast Region Workshop Materials on Digg Find More places to share Solid-State Lighting: 2011 Municipal Consortium Northeast Region Workshop Materials on AddThis.com... LED Lighting Facts CALiPER Program Standards Development Technical Information Network

185

Solid-State Lighting: Municipal Consortium LED Street Lighting Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

Los Angeles, CA to someone Los Angeles, CA to someone by E-mail Share Solid-State Lighting: Municipal Consortium LED Street Lighting Workshop Presentations and Materials-Los Angeles, CA on Facebook Tweet about Solid-State Lighting: Municipal Consortium LED Street Lighting Workshop Presentations and Materials-Los Angeles, CA on Twitter Bookmark Solid-State Lighting: Municipal Consortium LED Street Lighting Workshop Presentations and Materials-Los Angeles, CA on Google Bookmark Solid-State Lighting: Municipal Consortium LED Street Lighting Workshop Presentations and Materials-Los Angeles, CA on Delicious Rank Solid-State Lighting: Municipal Consortium LED Street Lighting Workshop Presentations and Materials-Los Angeles, CA on Digg Find More places to share Solid-State Lighting: Municipal Consortium

186

Solid-State Lighting: Pedestrian-Friendly Nighttime Lighting  

NLE Websites -- All DOE Office Websites (Extended Search)

Pedestrian-Friendly Nighttime Pedestrian-Friendly Nighttime Lighting to someone by E-mail Share Solid-State Lighting: Pedestrian-Friendly Nighttime Lighting on Facebook Tweet about Solid-State Lighting: Pedestrian-Friendly Nighttime Lighting on Twitter Bookmark Solid-State Lighting: Pedestrian-Friendly Nighttime Lighting on Google Bookmark Solid-State Lighting: Pedestrian-Friendly Nighttime Lighting on Delicious Rank Solid-State Lighting: Pedestrian-Friendly Nighttime Lighting on Digg Find More places to share Solid-State Lighting: Pedestrian-Friendly Nighttime Lighting on AddThis.com... Conferences & Meetings Presentations Publications Webcasts Videos Tools Pedestrian-Friendly Nighttime Lighting This November 19, 2013 webinar presented issues and considerations related to pedestrian-friendly nighttime lighting, such as color rendering, safety,

187

Solid-State Lighting: Text-Alternative Version: Understanding and  

NLE Websites -- All DOE Office Websites (Extended Search)

In Situ TMP and LM-80 Reports to someone by In Situ TMP and LM-80 Reports to someone by E-mail Share Solid-State Lighting: Text-Alternative Version: Understanding and Evaluating In Situ TMP and LM-80 Reports on Facebook Tweet about Solid-State Lighting: Text-Alternative Version: Understanding and Evaluating In Situ TMP and LM-80 Reports on Twitter Bookmark Solid-State Lighting: Text-Alternative Version: Understanding and Evaluating In Situ TMP and LM-80 Reports on Google Bookmark Solid-State Lighting: Text-Alternative Version: Understanding and Evaluating In Situ TMP and LM-80 Reports on Delicious Rank Solid-State Lighting: Text-Alternative Version: Understanding and Evaluating In Situ TMP and LM-80 Reports on Digg Find More places to share Solid-State Lighting: Text-Alternative Version: Understanding and Evaluating In Situ TMP and LM-80 Reports on

188

Solid-State Lighting: 2011 Municipal Consortium Northwest Region Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

Northwest Region Workshop Materials to someone by E-mail Northwest Region Workshop Materials to someone by E-mail Share Solid-State Lighting: 2011 Municipal Consortium Northwest Region Workshop Materials on Facebook Tweet about Solid-State Lighting: 2011 Municipal Consortium Northwest Region Workshop Materials on Twitter Bookmark Solid-State Lighting: 2011 Municipal Consortium Northwest Region Workshop Materials on Google Bookmark Solid-State Lighting: 2011 Municipal Consortium Northwest Region Workshop Materials on Delicious Rank Solid-State Lighting: 2011 Municipal Consortium Northwest Region Workshop Materials on Digg Find More places to share Solid-State Lighting: 2011 Municipal Consortium Northwest Region Workshop Materials on AddThis.com... LED Lighting Facts CALiPER Program Standards Development Technical Information Network

189

Solid-State Lighting: Orchestrating Market Success: Seattle Market...  

NLE Websites -- All DOE Office Websites (Extended Search)

Orchestrating Market Success: Seattle Market Introduction Workshop Video to someone by E-mail Share Solid-State Lighting: Orchestrating Market Success: Seattle Market Introduction...

190

NETL: Third Annual Solid State Energy Conversion Alliance (SECA...  

NLE Websites -- All DOE Office Websites (Extended Search)

2 Conference Proceedings Third Annual Solid State Energy Conversion Alliance (SECA) Workshop March 21-22, 2002 Table of Contents Disclaimer Papers and Presentations Disclaimer This...

191

Federal Energy Management Program: Outdoor Solid State Lighting...  

NLE Websites -- All DOE Office Websites (Extended Search)

& Power Resources Renewable Energy Outdoor Solid State Lighting Case Studies Picture of LED lighting in a covered parking structure. LED lighting replaced aging systems in this...

192

NETL: 2009 Conference Proceedings - 10th Annual Solid State Energy...  

NLE Websites -- All DOE Office Websites (Extended Search)

10th Annual Solid State Energy Conversion Alliance (SECA) Workshop Pittsburgh , PA July 14-16, 2009 Table of Contents Disclaimer Presentations Plenary Session Industry Teams SECA...

193

Complex Oxides for Highly Efficient Solid-State Energy ...  

Complex Oxides for Highly Efficient Solid-State Energy ... Using complex oxides to directly convert thermal to electrical energy is both ... Thermal P ...

194

Solid-State Lighting: Webcast: Evaluating LED Street Lighting...  

NLE Websites -- All DOE Office Websites (Extended Search)

Webcast: Evaluating LED Street Lighting Solutions to someone by E-mail Share Solid-State Lighting: Webcast: Evaluating LED Street Lighting Solutions on Facebook Tweet about...

195

Solid-State Lighting: LED Essentials - Technology, Applications...  

NLE Websites -- All DOE Office Websites (Extended Search)

Applications, Advantages, Disadvantages to someone by E-mail Share Solid-State Lighting: LED Essentials - Technology, Applications, Advantages, Disadvantages on Facebook Tweet...

196

Solid-State Lighting: Model Specification for LED Roadway Luminaires...  

NLE Websites -- All DOE Office Websites (Extended Search)

Model Specification for LED Roadway Luminaires Webcast to someone by E-mail Share Solid-State Lighting: Model Specification for LED Roadway Luminaires Webcast on Facebook Tweet...

197

Solid-State Lighting: Successful Selection of LED Streetlight...  

NLE Websites -- All DOE Office Websites (Extended Search)

Successful Selection of LED Streetlight Luminaires: Optimizing Illumination and Economic Performance to someone by E-mail Share Solid-State Lighting: Successful Selection of LED...

198

Coordinated Garbage Collection for RAID Array of Solid State Disks  

... or it can query the disks to determine the best time to start a global collection . Advantages Solid state disks have no mechanical moving ...

199

Federal Energy Management Program: Outdoor Solid State Street...  

NLE Websites -- All DOE Office Websites (Extended Search)

& Structures Case Studies Resources Working Group Distributed Energy ResourcesCombined Heat & Power Resources Renewable Energy Outdoor Solid State Street and Roadway Lighting...

200

Federal Energy Management Program: Outdoor Solid State Lighting...  

NLE Websites -- All DOE Office Websites (Extended Search)

& Structures Case Studies Resources Working Group Distributed Energy ResourcesCombined Heat & Power Resources Renewable Energy Outdoor Solid State Lighting Resources Picture of...

Note: This page contains sample records for the topic "oled solid state" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Federal Energy Management Program: Outdoor Solid State Parking...  

NLE Websites -- All DOE Office Websites (Extended Search)

& Structures Case Studies Resources Working Group Distributed Energy ResourcesCombined Heat & Power Resources Renewable Energy Outdoor Solid State Parking Lot and Structure...

202

Federal Energy Management Program: Outdoor Solid State Lighting...  

NLE Websites -- All DOE Office Websites (Extended Search)

a video on solid state lighting market transformation presented at the July 2011 DOE SSL Market Introduction Workshop. FEMP encourages Federal agencies to accelerate evaluation...

203

Archive of Past Calendar Events Solid-State Lighting Conferences  

NLE Websites -- All DOE Office Websites (Extended Search)

LEDs & Solid-State Lighting") Co-sponsor information here. May 17 - 20, 2006 Kintex, Korea International LED EXPO 2006 Sponsors: Paju City, Goyang City Ministry of Commerce,...

204

Worldwide Initiatives and Programs in Solid-State Lighting  

NLE Websites -- All DOE Office Websites (Extended Search)

is building, and national initiatives and programs being formed. Japan, Taiwan, Korea, and China have government-supported initiatives for solid-state lighting. Japan,...

205

NIST Solid-state lighting metrology  

Science Conference Proceedings (OSTI)

... are increasingly being introduced into lighting market, and solid ... in support of their Energy Star program ... For more information about this method, see ...

2012-12-17T23:59:59.000Z

206

NETL: Solid State Energy Conversion Alliance (SECA)  

NLE Websites -- All DOE Office Websites (Extended Search)

and fuel-flexible solid oxide fuel cell (SOFC) technology suitable for a variety of power generation applications. Collage: SECA Program Structure click image to enlarge SECA...

207

Wideband Waveform Design Principles for Solid-State Weather Radars  

Science Conference Proceedings (OSTI)

The use of solid-state transmitters is becoming increasingly viable for atmospheric radars and is a key part of the strategy to realize any dense network of low-powered radars. However, solid-state transmitters have low peak powers and this ...

Nitin Bharadwaj; V. Chandrasekar

2012-01-01T23:59:59.000Z

208

New and Underutilized Technology: Interior LED/Solid State Lighting |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Interior LED/Solid State Lighting Interior LED/Solid State Lighting New and Underutilized Technology: Interior LED/Solid State Lighting October 4, 2013 - 4:53pm Addthis The following information outlines key deployment considerations for interior LED/solid state lighting within the Federal sector. Benefits Interior LED retrofits are currently viable for down lights, track lighting, sconces, and both line and low voltage task lighting. Replacements for incandescent A-lamps have also been improving rapidly. Replacements for fluorescent tube lighting may be viable for high-cost maintenance areas. Application Interior LED/solid state lighting is a rapidly improving technology currently most applicable for down lights, track lights, task lighting, accenting, high ceiling, and high cost maintenance areas.

209

A Rising Star: Solid-State Lighting | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

A Rising Star: Solid-State Lighting A Rising Star: Solid-State Lighting A Rising Star: Solid-State Lighting June 16, 2009 - 5:00am Addthis John Lippert Just when consumers started getting familiar with the spiral ice-cream cone-shaped and prong-shaped compact fluorescents (CFLs), along comes LED lighting, a solid-state lighting (SSL) solution. Some experts are predicting that solid-state lighting is set to turn the current lighting industry on its head, and perhaps in the not-too-distant future make the century-old incandescent light bulb go the way of the dinosaur. Many consumers have been saving money and helping the environment for years by using LED lights during the holidays. These light strings use 75% less energy than conventional (i.e., incandescent) light strings. ENERGY STAR decorative light strings are independently tested to meet strict lifetime

210

New and Underutilized Technology: Exterior LED/Solid State Lighting |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Exterior LED/Solid State Lighting Exterior LED/Solid State Lighting New and Underutilized Technology: Exterior LED/Solid State Lighting October 4, 2013 - 4:55pm Addthis The following information outlines key deployment considerations for exterior LED/solid state lighting within the Federal sector. Benefits LED lighting economics can work in high electric cost areas with high hours of use. Pricing continually decreases for LED lighting. This technology provides quality, white, even lighting with good color rendition. Greater cost savings can be achieved when combined with bi-level motion sensors to reduce light levels in parking areas, garages, and walkways. Application Exterior LED/solid state lighting is applicable in areas where security and visual performance are critical, including street lighting, parking lots,

211

Review Articles of Overview of Solid-State Lighting  

NLE Websites -- All DOE Office Websites (Extended Search)

REVIEW ARTICLES REVIEW ARTICLES Solid-state lighting is an exciting and rapidly moving area of research and development. For the latest developments, please see the Science and Business News section of this website. Here, we have compiled a list of review articles covering various aspects of solid-state lighting science, technology and engineering. · June 2004. Nanoscience and solid-state lighting, presented by George Craford of Lumileds at the DOE Nanosummit, covers technology background and status, applications, technical challenges, and nanotechnology approaches. · May 2004. A detailed review, in IEEE Circuits and Devices, of the various lamp, chip and materials design choices that will be faced as solid-state lighting technology improves to the point of meeting long-term roadmap targets. This article, by Jeff Tsao at Sandia National Laboratories, is titled Solid-state lighting: lamps, chips and materials for tomorrow.

212

A Rising Star: Solid-State Lighting | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

A Rising Star: Solid-State Lighting A Rising Star: Solid-State Lighting A Rising Star: Solid-State Lighting June 16, 2009 - 5:00am Addthis John Lippert Just when consumers started getting familiar with the spiral ice-cream cone-shaped and prong-shaped compact fluorescents (CFLs), along comes LED lighting, a solid-state lighting (SSL) solution. Some experts are predicting that solid-state lighting is set to turn the current lighting industry on its head, and perhaps in the not-too-distant future make the century-old incandescent light bulb go the way of the dinosaur. Many consumers have been saving money and helping the environment for years by using LED lights during the holidays. These light strings use 75% less energy than conventional (i.e., incandescent) light strings. ENERGY STAR decorative light strings are independently tested to meet strict lifetime

213

SOLID STATE ENERGY CONVERSION ALLIANCE DELPHI SOLID OXIDE FUEL CELL  

DOE Green Energy (OSTI)

The objective of Phase I under this project is to develop a 5 kW Solid Oxide Fuel Cell power system for a range of fuels and applications. During Phase I, the following will be accomplished: Develop and demonstrate technology transfer efforts on a 5 kW stationary distributed power generation system that incorporates steam reforming of natural gas with the option of piped-in water (Demonstration System A). Initiate development of a 5 kW system for later mass-market automotive auxiliary power unit application, which will incorporate Catalytic Partial Oxidation (CPO) reforming of gasoline, with anode exhaust gas injected into an ultra-lean burn internal combustion engine. This technical progress report covers work performed by Delphi from January 1, 2003 to June 30, 2003, under Department of Energy Cooperative Agreement DE-FC-02NT41246. This report highlights technical results of the work performed under the following tasks: Task 1 System Design and Integration; Task 2 Solid Oxide Fuel Cell Stack Developments; Task 3 Reformer Developments; Task 4 Development of Balance of Plant (BOP) Components; Task 5 Manufacturing Development (Privately Funded); Task 6 System Fabrication; Task 7 System Testing; Task 8 Program Management; and Task 9 Stack Testing with Coal-Based Reformate.

Steven Shaffer; Sean Kelly; Subhasish Mukerjee; David Schumann; Gail Geiger; Kevin Keegan; John Noetzel; Larry Chick

2003-12-08T23:59:59.000Z

214

Solid State Energy Conversion Alliance Delphi SOFC  

DOE Green Energy (OSTI)

The following report details the results under the DOE SECA program for the period July 2006 through December 2006. Developments pertain to the development of a 3 to 5 kW Solid Oxide Fuel Cell power system for a range of fuels and applications. This report details technical results of the work performed under the following tasks for the SOFC Power System: Task 1 SOFC System Development; Task 2 Solid Oxide Fuel Cell Stack Developments; Task 3 Reformer Developments; Task 4 Development of Balance of Plant Components; Task 5 Project Management; and Task 6 System Modeling & Cell Evaluation for High Efficiency Coal-Based Solid Oxide Fuel Cell Gas Turbine Hybrid System.

Steven Shaffer; Gary Blake; Sean Kelly; Subhasish Mukerjee; Karl Haltiner; Larry Chick; David Schumann; Jeff Weissman; Gail Geiger; Ralphi Dellarocco

2006-12-31T23:59:59.000Z

215

SOLID STATE ENERGY CONVERSION ALLIANCE DELPHI SOLID OXIDE FUEL CELL  

DOE Green Energy (OSTI)

The objective of this project is to develop a 5 kW Solid Oxide Fuel Cell power system for a range of fuels and applications. During Phase I, the following will be accomplished: Develop and demonstrate technology transfer efforts on a 5 kW stationary distributed power generation system that incorporates steam reforming of natural gas with the option of piped-in water (Demonstration System A). Initiate development of a 5 kW system for later mass-market automotive auxiliary power unit application, which will incorporate Catalytic Partial Oxidation (CPO) reforming of gasoline, with anode exhaust gas injected into an ultra-lean burn internal combustion engine. This technical progress report covers work performed by Delphi from July 1, 2003 to December 31, 2003, under Department of Energy Cooperative Agreement DE-FC-02NT41246. This report highlights technical results of the work performed under the following tasks: Task 1 System Design and Integration; Task 2 Solid Oxide Fuel Cell Stack Developments; Task 3 Reformer Developments; Task 4 Development of Balance of Plant (BOP) Components; Task 5 Manufacturing Development (Privately Funded); Task 6 System Fabrication; Task 7 System Testing; Task 8 Program Management; Task 9 Stack Testing with Coal-Based Reformate; and Task 10 Technology Transfer from SECA CORE Technology Program. In this reporting period, unless otherwise noted Task 6--System Fabrication and Task 7--System Testing will be reported within Task 1 System Design and Integration. Task 8--Program Management, Task 9--Stack Testing with Coal Based Reformate, and Task 10--Technology Transfer from SECA CORE Technology Program will be reported on in the Executive Summary section of this report.

Steven Shaffer; Sean Kelly; Subhasish Mukerjee; David Schumann; Gail Geiger; Kevin Keegan; Larry Chick

2004-05-07T23:59:59.000Z

216

Accelerated Life Testing of Domestic Solid-State Residential Meters  

Science Conference Proceedings (OSTI)

The distribution systems infrastructure in the United States faces the challenges of aging networks, increasing demands for power, and a relentless drive for continuous improvements in reliability. The swing away from electromechanical metering to solid-state devices is well under way and it is no longer a matter of "if" utilities change to solid-state technology but "when" such change will occur. The meter represents the "cash register" of the utility, with devices spread out over a wide geographical ar...

2007-12-06T23:59:59.000Z

217

High Extraction Phosphors for Solid State Lighting  

Science Conference Proceedings (OSTI)

We have developed high-index, high efficiency bulk luminescent materials and novel nano-sized phosphors for improved solid-state white LED lamps. These advances can potentially contribute to reducing the loss in luminous efficiencies due to scattering, re-absorption, and thermal quenching. The bulk and nanostructured luminescent materials investigated are index matched to GaN and have broad and size-tunable absorption bands, size and impurity tuned emission bands, size-driven elimination of scattering effects, and a separation between absorption and emission bands. These innovations were accomplished through the use of novel synthesis techniques suitable for high volume production for LED lamp applications. The program produced a full-color set of high quantum yield phosphors with high chemical stability. In the bulk phosphor study, the ZnSeS:Cu,Ag phosphor was optimized to achieve >91% efficiency using erbium (Er) and other activators as sensitizers. Detailed analysis of temperature quenching effects on a large number of ZnSeS:Cu,Ag,X and strontium- and calcium-thiogallate phosphors lead to a breakthrough in the understanding of the ??anti-quenching? behavior and a physical bandgap model was developed of this phenomena. In a follow up to this study, optimized phosphor blends for high efficiency and color performance were developed and demonstrated a 2-component phosphor system with good white chromaticity, color temperature, and high color rendering. By extending the protocols of quantum dot synthesis, ??large? nanocrystals, greater than 20 nm in diameter were synthesized and exhibited bulk-like behavior and blue light absorption. The optimization of ZnSe:Mn nanophosphors achieved ~85% QE The limitations of core-shell nanocrystal systems were addressed by investigating alternative deltadoped structures. To address the manufacturability of these systems, a one-pot manufacturing protocol was developed for ZnSe:Mn nanophosphors. To enhance the stability of these material systems, the encapsulation of ZnSeS particle phosphors and ZnSeS screens with Al{sub 2}O{sub 3} and TiO{sub 2} using ALD was shown to improve the stability by >8X and also increased the luminescence efficiency due to improved surface passivation and optical coupling. A large-volume fluidized bed ALD system was designed that can be adapted to a commercial ALD or vapor deposition system. Throughout the program, optical simulations were developed to evaluate and optimize various phosphor mixtures and device configurations. For example, to define the scattering properties of nanophosphors in an LED device or in a stand-off screen geometry. Also this work significantly promoted and assisted in the implementation of realistic phosphor material models into commercial modeling programs.

Chris Summers; Hisham Menkara; Brent Wagner

2011-09-30T23:59:59.000Z

218

Efficient and Color-Tunable Oxyfluoride Solid Solution Phosphors for Solid-State White Lighting  

Science Conference Proceedings (OSTI)

A solid solution strategy helps increase the efficiency of Ce{sup 3+} oxyfluoride phosphors for solid-state white lighting. The use of a phosphor-capping architecture provides additional light extraction. The accompanying image displays electroluminescence spectra from a 434-nm InGaN LED phosphor that has been capped with the oxyfluoride phosphor.

Im, Won Bin; George, Nathan; Kurzman, Joshua; Brinkley, Stuart; Mikhailovsky, Alexander; Hu, Jerry; Chmelka, Bradley F.; DenBaars, Steven P.; Seshadri, Ram (UCSB)

2012-09-06T23:59:59.000Z

219

Solid-state Inorganic Lithium-Ion Conductors  

A research team at the University of Colorado Boulder led by Se-Hee Lee has developed an advanced single step, high energy ball milling system for preparation of electrodes for use in a solid state lithium-ion battery.

220

Federal Energy Management Program: Outdoor Solid-State Lighting...  

NLE Websites -- All DOE Office Websites (Extended Search)

Outdoor solid-state lighting (SSL) technology has the potential to reduce U.S. lighting energy usage by nearly one half and contribute significantly to our nation's climate...

Note: This page contains sample records for the topic "oled solid state" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Information Resources: Municipal Solid-State Street Lighting...  

NLE Websites -- All DOE Office Websites (Extended Search)

6, 2010 webcast served as the first official meeting of the new DOE Municipal Solid-State Street Lighting Consortium. Ed Smalley of Seattle City Light and Bruce Kinzey of Pacific...

222

Structural studies of amyloid fibrils using solid-state NMR  

E-Print Network (OSTI)

he development of solid-state NMR techniques and application to amyloid fibrils are presented. In addition, a new method of selective inversion based on chemical shift anisotropy is presented. An improved method for highly ...

Caporini, Marc Anthony

2008-01-01T23:59:59.000Z

223

State Solid Waste Management and Resource Recovery Plan (Montana)  

Energy.gov (U.S. Department of Energy (DOE))

The State supports the "good management of solid waste and the conservation of natural resources through the promotion or development of systems to collect, separate, reclaim, recycle, and dispose...

224

National Initiatives and Programs in Solid-State Lighting  

NLE Websites -- All DOE Office Websites (Extended Search)

these results is called "The Promise of Solid-State Lighting for General Illumination: Light Emitting Diodes and Organic Light Emitting Diodes" (pdf - 329kb). The full SSL-LED...

225

The Promise of Solid State Lighting for General Illumination  

NLE Websites -- All DOE Office Websites (Extended Search)

single phosphor strat- egy is a good place to start public demonstrations showing the utility of solid state white lighting. At a later date, other strategies might replace or...

226

Solid-State Lighting: DOE and Northeast Energy Efficiency Partnerships...  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE and Northeast Energy Efficiency Partnerships Host Two-Day Market Introduction Workshop in Boston to someone by E-mail Share Solid-State Lighting: DOE and Northeast Energy...

227

Solid-State Lighting: Municipal Consortium LED Street Lighting...  

NLE Websites -- All DOE Office Websites (Extended Search)

Boston, MA to someone by E-mail Share Solid-State Lighting: Municipal Consortium LED Street Lighting Workshop Presentations and Materials-Boston, MA on Facebook Tweet about...

228

Solid-State Lighting: Municipal Consortium LED Street Lighting...  

NLE Websites -- All DOE Office Websites (Extended Search)

Dallas, TX to someone by E-mail Share Solid-State Lighting: Municipal Consortium LED Street Lighting Workshop Presentations and Materials-Dallas, TX on Facebook Tweet about...

229

Solid-State Lighting: Text-Alternative Version: LED Replacements...  

NLE Websites -- All DOE Office Websites (Extended Search)

Text-Alternative Version: LED Replacements for Linear Fluorescent Lamps to someone by E-mail Share Solid-State Lighting: Text-Alternative Version: LED Replacements for Linear...

230

Solid-State Lighting: LED Replacements for Linear Fluorescent...  

NLE Websites -- All DOE Office Websites (Extended Search)

LED Replacements for Linear Fluorescent Lamps Webcast to someone by E-mail Share Solid-State Lighting: LED Replacements for Linear Fluorescent Lamps Webcast on Facebook Tweet about...

231

Energy Savings Potential of Solid State Lighting in General Lighting...  

NLE Websites -- All DOE Office Websites (Extended Search)

by Arthur D. Little, Inc. for U.S. Department of Energy Energy Savings Potential of Solid State Lighting in General Lighting Applications Final Report April 2001 Energy Savings...

232

MidAmerican Energy (Electric) - Municipal Solid-State Lighting...  

Open Energy Info (EERE)

must be an Iowa electric governmental customer of MidAmerican Energy Company. Light-emitting diode and induction types of solid state lighting (SSL) qualify under this program....

233

Synthesis of Titanium Dioxide by Microwave Solid State Method and ...  

Science Conference Proceedings (OSTI)

In this work, titanium dioxide was synthetized by microwave solid-state ... Properties of Low-Carbon High-strength and Low-yield Ratio Bainitic Steels ... New Methodology of Enhancing Etching Factor of Copper Pattern for Advanced Packages.

234

Solid-state lamp with integral occupancy sensor  

E-Print Network (OSTI)

Previous work demonstrated a retrofit proximity detector for fluorescent lamps using the lamp's own stray electric fields. This paper extends the retrofit sensor system to a solid-state (LED) lamp. The design and implementation ...

Cooley, John J.

235

Federal Technology Deployment Pilot: Exterior Solid State Lighting  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Federal Technology Deployment Federal Technology Deployment Pilot: Exterior Solid State Lighting Jeff McCullough, LC October 24, 2011 Pacific Northwest National Laboratory Richland, Washington 2 | FEDERAL ENERGY MANAGEMENT PROGRAM femp.energy.gov * Overview of DOE's Solid-State Lighting Program * Federal Technology Deployment Pilot: Exterior Solid State Lighting * FEMP Technology Deployment Matrix This Morning's Topics 3 | FEDERAL ENERGY MANAGEMENT PROGRAM femp.energy.gov Energy Savings Potential of Solid-State Lighting SSL Multi-Year Program Plan, May 2011: http://apps1.eere.energy.gov/buildings/publications/pdfs/ssl/ssl_mypp2011_web.pdf 4 | FEDERAL ENERGY MANAGEMENT PROGRAM femp.energy.gov A Market in Motion * Tsunami of new products coming to market * Significant learning curve for

236

Solid State Lighting: GATEWAY and CALiPER  

NLE Websites -- All DOE Office Websites (Extended Search)

Marc Ledbetter Marc Ledbetter Pacific Northwest National Laboratory Marc.Ledbetter@pnnl.gov 503.417.7557 April 3, 2013 Solid State Lighting: GATEWAY & CALiPER Solid State Lighting: GATEWAY & CALiPER 2 | Building Technologies Office eere.energy.gov GATEWAY Problem Statement GATEWAY includes Muni Consortium Multi-Year Market Development Support Plan * IDs 5 key market barriers. Most relevant to GATEWAY are: - Lack of information for buyers and lighting professionals - High transaction costs

237

Solid State Lighting: GATEWAY and CALiPER  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Marc Ledbetter Marc Ledbetter Pacific Northwest National Laboratory Marc.Ledbetter@pnnl.gov 503.417.7557 April 3, 2013 Solid State Lighting: GATEWAY & CALiPER Solid State Lighting: GATEWAY & CALiPER 2 | Building Technologies Office eere.energy.gov GATEWAY Problem Statement GATEWAY includes Muni Consortium Multi-Year Market Development Support Plan * IDs 5 key market barriers. Most relevant to GATEWAY are: - Lack of information for buyers and lighting professionals - High transaction costs

238

Synergies Connecting the Photovoltaics and Solid-State Lighting Industries  

DOE Green Energy (OSTI)

Recent increases in the efficiencies of phosphide, nitride, and organic light-emitting diodes (LEDs) inspire a vision of a revolution in lighting. If high efficiencies, long lifetimes, and low cost can be achieved, solid-state lighting could save our country many quads of electricity in the coming years. The solid-state lighting (SSL) and photovoltaic (PV) industries share many of the same challenges. This paper explores the similarities between the two industries and how they might benefit by sharing information.

Kurtz, S.

2003-05-01T23:59:59.000Z

239

Solid State Division progress report, September 30, 1981  

DOE Green Energy (OSTI)

Progress made during the 19 months from March 1, 1980, through September 30, 1981, is reported in the following areas: theoretical solid state physics (surfaces, electronic and magnetic properties, particle-solid interactions, and laser annealing); surface and near-surface properties of solids (plasma materials interactions, ion-solid interactions, pulsed laser annealing, and semiconductor physics and photovoltaic conversion); defects in solids (radiation effects, fracture, and defects and impurities in insulating crystals); transport properties of solids (fast-ion conductors, superconductivity, and physical properties of insulating materials); neutron scattering (small-angle scattering, lattice dynamics, and magnetic properties); crystal growth and characterization (nuclear waste forms, ferroelectric mateirals, high-temperature materials, and special materials); and isotope research materials. Publications and papers are listed. (WHK)

Not Available

1982-04-01T23:59:59.000Z

240

Solid-State Lighting: Industry Leaders, Research Experts Gather for 2006  

NLE Websites -- All DOE Office Websites (Extended Search)

Industry Leaders, Research Industry Leaders, Research Experts Gather for 2006 DOE Solid-State Lighting Workshop to someone by E-mail Share Solid-State Lighting: Industry Leaders, Research Experts Gather for 2006 DOE Solid-State Lighting Workshop on Facebook Tweet about Solid-State Lighting: Industry Leaders, Research Experts Gather for 2006 DOE Solid-State Lighting Workshop on Twitter Bookmark Solid-State Lighting: Industry Leaders, Research Experts Gather for 2006 DOE Solid-State Lighting Workshop on Google Bookmark Solid-State Lighting: Industry Leaders, Research Experts Gather for 2006 DOE Solid-State Lighting Workshop on Delicious Rank Solid-State Lighting: Industry Leaders, Research Experts Gather for 2006 DOE Solid-State Lighting Workshop on Digg Find More places to share Solid-State Lighting: Industry Leaders,

Note: This page contains sample records for the topic "oled solid state" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

MATERIALS DEGRADATION ANALYSIS AND DEVELOPMENT TO ENABLE ULTRA LOW COST, WEB-PROCESSED WHITE P-OLED FOR SSL  

SciTech Connect

Progress over Phase II of DE-FG02-07ER86293 'Materials Degradation Analysis and Development to Enable Ultra Low Cost, Web-Processed White P-OLED for SSL' was initially rapid in terms of device performance improvements. We exceeded our device luminance lifetime goals for printed flexible white OLEDs as laid out in our project proposal. Our Phase II performance target was to demonstrate >1500 hours luminance lifetime at 100 Cd/m2 from a printed flexible device. We now have R&D devices well in excess of 8000 hrs lifetime at 100 Cd/m2, tested in air. We also were able to produce devices which met the voltage target of >1500 hours below 15V operation. After completing the initial performance milestones, we went on to focus on color-related degradation issues which were cited as important to commercialization of the technology by our manufacturing partners. We also put additional focus on cathode work as the active material development that occurred over the STTR time period required an adaptation of the cathode from the original cathode formulations which were developed based on previous generation active layer materials. We were able to improve compatibility of the cathode with some of the newer generation active layer materials and improve device yield and voltage behavior. An additional objective of the initial Phase II was to further develop the underlying manufacturing technology and real-life product specifications. This is a key requirement that must be met to ensure eventual commercialization of this DOE-funded technology. The link between commercial investment for full commercialization and R&D efforts in OLED solid State Lighting is often a large one. Add-Vision's lower cost, printed OLED manufacturing approach is an attraction, but close engagement with manufacturing partners and addressing customer specifications is a very important link. Manufacturing technology encompasses development of moisture reduction encapsulation technology, improved cost performance, and reductions in operating voltage through thinner and higher uniformity active device layers. We have now installed a pilot encapsulation system at AVI for controlled, high throughput lamination encapsulation of flexible OLEDs in a novel process. Along with this, we have developed, with our materials supply partners, adhesives, barrier films and other encapsulation materials and we are showing total air product lifetimes in the 2-4 years range from a process consistent with our throughput goals of {approx}1M device per month ({approx}30,000 sq. ft. of processed OLEDs). Within the last year of the project, we have been working to introduce the manufacturing improvements made in our LEP deposition and annealing process to our commercial partners. Based on the success of this, a pilot scale-up program was begun. During this process, Add-Vision was acquired by a strategic partner, in no small part, because of the promise of future success of the technology as evidenced by our commercial partners pilot scale-up plans. Overall, the performance, manufacturing and product work in this project has been successful. Additional analysis and device work at LBL has also shown a unique adhesion change with device bias stressing which may result from active layer polymer cross-linking during bias stressing of device. It was shown that even small bias stresses, as a fraction of a full device lifetime stress period, result in measurable chemical change in the device. Further work needs to be conducted to fully understand the chemical nature of this interaction. Elucidation of this effect would enable doped OLED formulation to be engineered to suppress this effect and further extend lifetimes and reduce voltage climb.

DR. DEVIN MACKENZIE

2011-12-13T23:59:59.000Z

242

SOLID STATE ENERGY CONVERSION ALLIANCE DELPHI SOFC  

Science Conference Proceedings (OSTI)

The objective of Phase I under this project is to develop a 5 kW Solid Oxide Fuel Cell power system for a range of fuels and applications. During Phase I, the following will be accomplished: Develop and demonstrate technology transfer efforts on a 5 kW stationary distributed power generation system that incorporates steam reforming of natural gas with piped-in water (Demonstration System A); and Initiate development of a 5 kW system for later mass-market automotive auxiliary power unit application, which will incorporate Catalytic Partial Oxidation (CPO) reforming of gasoline, with anode exhaust gas injected into an ultra-lean burn internal combustion engine. This technical progress report covers work performed by Delphi from July through December 2002 under Department of Energy Cooperative Agreement DE-FC-02NT41246 for the 5 kW mass-market automotive (gasoline) auxiliary power unit. This report highlights technical results of the work performed under the following tasks for the automotive 5 kW system: Task 1--System Design and Integration; Task 2--Solid Oxide Fuel Cell Stack Developments; Task 3--Reformer Developments; Task 4--Development of Balance of Plant (BOP) Components; Task 5--Manufacturing Development (Privately Funded); Task 6--System Fabrication; and Task 7--System Testing.

Steven Shaffer; Sean Kelly; Subhasish Mukerjee; David Schumann; H. Skip Mieney

2003-06-09T23:59:59.000Z

243

About This Site - Solid-State Lighting - Site Map and Contact...  

NLE Websites -- All DOE Office Websites (Extended Search)

R&D Programs Solid-State Lighting at Sandia National Labs Lawrence Berkley Labs- Light Distribution Systems Worldwide Links Most Focused Solid-State Lighting Websites ...

244

Solid-State Lighting: Text-Alternative Version: L Prize-PAR 38...  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Efficiency and Renewable Energy EERE Home | Programs & Offices | Consumer Information Solid-State Lighting Search Search Help Solid-State Lighting HOME ABOUT THE PROGRAM...

245

Building Technologies Office: Solid-State Lighting  

NLE Websites -- All DOE Office Websites (Extended Search)

of two pages from the CALiPER Snapshot Report on A lamps. CALiPER Product Snapshot on LED Light Bulbs Report on the current state of the market for LED A lamp and omnidirectional...

246

FEMP Exterior Solid-State Lighting Technology Pilot  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FUPWG Fall 2012 FUPWG Fall 2012 FEMP Exterior Solid-State Lighting Technology Pilot Jeff McCullough, LC October 17, 2012 Pacific Northwest National Laboratory Richland, Washington 2 | FEDERAL ENERGY MANAGEMENT PROGRAM femp.energy.gov * State of SSL Technology - Introducing MOBLI * Federal Energy Management Program (FEMP) - Technology Deployment Matrix - Federal Exterior Market Size - FEMP Exterior SSL Initiative - FEMP-designated Efficiency Requirements - Plans for FY13 * Commercial Building Energy Alliance (CBEA) - About CBEA - Lighting Specifications * High Efficiency Troffers * Parking Structures * Parking Lots - The LEEP Campaign * Introducing MOBLI This Morning's Topics 3 | FEDERAL ENERGY MANAGEMENT PROGRAM femp.energy.gov Energy Savings Potential of Solid-State Lighting

247

Solid State Division Progress Report for period ending March 31, 1986  

Science Conference Proceedings (OSTI)

This report is divided into: theoretical solid-state physics, surface and near-surface properties of solids, defects in solids, transport properties of solids, neutron scattering, and synthesis and properties of novel materials. (DLC)

Green, P.H.; Watson, D.M. (eds.)

1986-08-01T23:59:59.000Z

248

Structures and fabrication techniques for solid state electrochemical devices  

SciTech Connect

Porous substrates and associated structures for solid-state electrochemical devices, such as solid-oxide fuel cells (SOFCs), are low-cost, mechanically strong and highly electronically conductive. Some preferred structures have a thin layer of an electrocatalytically active material (e.g., Ni--YSZ) coating a porous high-strength alloy support (e.g., SS-430) to form a porous SOFC fuel electrode. Electrode/electrolyte structures can be formed by co-firing or constrained sintering processes.

Visco, Steven J. (Berkeley, CA); Jacobson, Craig P. (El Cerrito, CA); DeJonghe, Lutgard C. (Lafayette, CA)

2008-04-01T23:59:59.000Z

249

Structures and fabrication techniques for solid state electrochemical devices  

DOE Patents (OSTI)

Porous substrates and associated structures for solid-state electrochemical devices, such as solid-oxide fuel cells (SOFCs), are low-cost, mechanically strong and highly electronically conductive. Some preferred structures have a thin layer of an electrocatalytically active material (e.g., Ni--YSZ) coating a porous high-strength alloy support (e.g., SS-430) to form a porous SOFC fuel electrode. Electrode/electrolyte structures can be formed by co-firing or constrained sintering processes.

Visco, Steven J.; Jacobson, Craig P.; DeJonghe, Lutgard C.

2012-10-09T23:59:59.000Z

250

High Efficiency, Illumination Quality OLEDs for Lighting  

SciTech Connect

The goal of the program was to demonstrate a 45 lumen per watt white light device based upon the use of multiple emission colors through the use of solution processing. This performance level is a dramatic extension of the team's previous 15 LPW large area illumination device. The fundamental material system was based upon commercial polymer materials. The team was largely able to achieve these goals, and was able to deliver to DOE a 90 lumen illumination source that had an average performance of 34 LPW a 1000 cd/m{sup 2} with peak performances near 40LPW. The average color temperature is 3200K and the calculated CRI 85. The device operated at a brightness of approximately 1000cd/m{sup 2}. The use of multiple emission colors particularly red and blue, provided additional degrees of design flexibility in achieving white light, but also required the use of a multilayered structure to separate the different recombination zones and prevent interconversion of blue emission to red emission. The use of commercial materials had the advantage that improvements by the chemical manufacturers in charge transport efficiency, operating life and material purity could be rapidly incorporated without the expenditure of additional effort. The program was designed to take maximum advantage of the known characteristics of these material and proceeded in seven steps. (1) Identify the most promising materials, (2) assemble them into multi-layer structures to control excitation and transport within the OLED, (3) identify materials development needs that would optimize performance within multilayer structures, (4) build a prototype that demonstrates the potential entitlement of the novel multilayer OLED architecture (5) integrate all of the developments to find the single best materials set to implement the novel multilayer architecture, (6) further optimize the best materials set, (7) make a large area high illumination quality white OLED. A photo of the final deliverable is shown. In 2003, a large area, OLED based illumination source was demonstrated that could provide light with a quality, quantity, and efficiency on par with what can be achieved with traditional light sources. The demonstration source was made by tiling together 16 separate 6-inch x 6-inch blue-emitting OLEDs. The efficiency, total lumen output, and lifetime of the OLED based illumination source were the same as what would be achieved with an 80 watt incandescent bulb. The devices had an average efficacy of 15 LPW and used solution-processed OLEDs. The individual 6-inch x 6-inch devices incorporated three technology strategies developed specifically for OLED lighting -- downconversion for white light generation, scattering for outcoupling efficiency enhancement, and a scalable monolithic series architecture to enable large area devices. The downconversion approach consists of optically coupling a blue-emitting OLED to a set of luminescent layers. The layers are chosen to absorb the blue OLED emission and then luminescence with high efficiency at longer wavelengths. The composition and number of layers are chosen so that the unabsorbed blue emission and the longer wavelength re-emission combine to make white light. A downconversion approach has the advantage of allowing a wide variety of colors to be made from a limited set of blue emitters. In addition, one does not have to carefully tune the emission wavelength of the individual electro-luminescent species within the OLED device in order to achieve white light. The downconversion architecture used to develop the 15LPW large area light source consisted of a polymer-based blue-emitting OLED and three downconversion layers. Two of the layers utilized perylene based dyes from BASF AG of Germany with high quantum efficiency (>98%) and one of the layers consisted of inorganic phosphor particles (Y(Gd)AG:Ce) with a quantum efficiency of {approx}85%. By independently varying the optical density of the downconversion layers, the overall emission spectrum could be adjusted to maximize performance for lighting (e.g. blackbody temp

Joseph Shiang; James Cella; Kelly Chichak; Anil Duggal; Kevin Janora; Chris Heller; Gautam Parthasarathy; Jeffery Youmans; Joseph Shiang

2008-03-31T23:59:59.000Z

251

Information Resources: Webcast: Municipal Solid-State Street Lighting  

NLE Websites -- All DOE Office Websites (Extended Search)

Municipal Solid-State Street Lighting Consortium Retrofit Financial Analysis Tool Municipal Solid-State Street Lighting Consortium Retrofit Financial Analysis Tool This April 3, 2012 webcast presented information about the Retrofit Financial Analysis Tool developed by DOE"s Municipal Solid-State Street Lighting Consortium. Doug Elliott of Pacific Northwest National Laboratory provided a guided walk-through of what the tool can do and how to use it to evaluate costs and benefits associated with converting to LED street and roadway lighting. The webcast showed how city and other government agencies, utilities, finance and budget offices, and energy efficiency organizations can use the tool to compute annualized energy-cost savings, maintenance savings, greenhouse gas reductions, net present value, and simple payback, which can be helpful when putting together construction and conservation grant applications, as well as for preparing budgets and comparing incumbent costs to new costs.

252

Document Archives from Overview of Solid-State Lighting  

NLE Websites -- All DOE Office Websites (Extended Search)

Documents Archive This page contains links to documents of archival value. While most of these documents are referenced elsewhere on this website as well, this list is provided as a convenient reference. Documents are organized into these categories: DOE -- Energy Savings Potential Reports -- SSL Program Planning -- SSL Projects -- Other Solid-State Lighting Roadmap Sandia National Laboratories -- Bibliographies -- Presentations and White Papers -- Technical/Scientific Papers Other Documents -- U.S. Legislation/Testimony -- Japan -- Other Documents Note: For overview articles on solid-state lighting, see " Review Articles " page on this website. Department of Energy Energy Savings Potential Reports · Energy Savings Potential of Solid State Lighting in General Illumination Applications (Navigant Consulting, Nov 2003) (pdf file – 414 kb)

253

All solid-state SBS phase conjugate mirror  

DOE Patents (OSTI)

A stimulated Brillouin scattering (SBS) phase conjugate laser mirror uses a solid-state nonlinear gain medium instead of the conventional liquid or high pressure gas medium. The concept has been effectively demonstrated using common optical-grade fused silica. An energy threshold of 2.5 mJ and a slope efficiency of over 90% were achieved, resulting in an overall energy reflectivity of >80% for 15 ns, 1 um laser pulses. The use of solid-state materials is enabled by a multi-pass resonant architecture which suppresses transient fluctuations that would otherwise result in damage to the SBS medium. This all solid state phase conjugator is safer, more reliable, and more easily manufactured than prior art designs. It allows nonlinear wavefront correction to be implemented in industrial and defense laser systems whose operating environments would preclude the introduction of potentially hazardous liquids or high pressure gases.

Dane, Clifford B. (Livermore, CA); Hackel, Lloyd A. (Livermore, CA)

1999-01-01T23:59:59.000Z

254

Wideband Waveform Design principles for Solid-state Weather Radars  

Science Conference Proceedings (OSTI)

The use of solid-state transmitter is becoming a key part of the strategy to realize a network of low cost electronically steered radars. However, solid-state transmitters have low peak powers and this necessitates the use of pulse compression waveforms. In this paper a frequency diversity wideband waveforms design is proposed to mitigate low sensitivity of solid-state transmitters. In addition, the waveforms mitigate the range eclipsing problem associated with long pulse compression. An analysis of the performance of pulse compression using mismatched compression filters designed to minimize side lobe levels is presented. The impact of range side lobe level on the retrieval of Doppler moments are presented. Realistic simulations are performed based on CSU-CHILL radar data and Center for Collaborative Adaptive Sensing of the Atmosphere (CASA) Integrated Project I (IP1) radar data.

Bharadwaj, Nitin; Chandrasekar, V.

2012-01-01T23:59:59.000Z

255

High Performance OLEDs with Air-stable Nanostructured Electrodes ...  

Building Energy Efficiency; ... Solar Thermal; Startup America; ... This barrier can also create heating that damages the OLED.

256

Solid-state greenhouses and their implications for icy satellites  

SciTech Connect

The 'solid-state greenhouse effect' model constituted by the subsurface solar heating of translucent, high-albedo materials is presently applied to the study of planetary surfaces, with attention to frost and ice surfaces of the solar system's outer satellites. Temperature is computed as a function of depth for an illustrative range of thermal variables, and it is discovered that the surfaces and interiors of such bodies can be warmer than otherwise suspected. Mechanisms are identified through which the modest alteration of surface properties can substantially change the solid-state greenhouse and force an interior temperature adjustment. 34 references.

Matson, D.L.; Brown, R.H.

1989-01-01T23:59:59.000Z

257

Energy efficiency and performance of solid state ballasts  

SciTech Connect

The performance of solid state ballasts for operating fluorescent lamps measured in a controlled laboratory environment are described and compared to the performance of typical core-coil type ballasts. Parameters of interest include efficiency, conducted and radiated EMI and results of some accelerated lamp life tests. The experimental design of the demonstration to retrofit three floors of an office building with solid state ballasts to evaluate their reliability and energy savings in a variety of applications is described. The most recent experimental results are presented.

Verderber, R.; Selkowitz, S.; Berman, S.

1978-06-01T23:59:59.000Z

258

Important design parameters for solid-state ballasts  

SciTech Connect

Solid-state ballasts represent a significant new business opportunity for many companies. While at first glance the development of a ballast or electronic power supply to light a fluoresent or high-intensity discharge lamp does not present major technical hurdles, these are established standards which must be met for a ballast to be techinically viable. Some of the issues which may no be apparent to an engineer with little or no lighting industry experience are highlighted, and appropriate standards which are helpful when contemplating a high-frequency solid-state ballast design are documented.

Alling, W.R. (Diablo Scientific Labs Ltd., Danville, CA (US))

1989-03-01T23:59:59.000Z

259

Power modeling of graphical user interfaces on OLED displays  

Science Conference Proceedings (OSTI)

Emerging organic light-emitting diode (OLED)-based displays obviate external lighting; and consume drastically different power when displaying different colors, due to their emissive nature. This creates a pressing need for OLED display power models ... Keywords: OLED display, graphic user interface, low power

Mian Dong; Yung-Seok Kevin Choi; Lin Zhong

2009-07-01T23:59:59.000Z

260

Controls for Solid-State Lighting  

SciTech Connect

This study predicts new hybrid lighting applications for LEDs. In hybrid lighting, LEDs provide a low-energy 'standby' light level while another, more powerful, efficient light source provides light for occupied periods. Lighting controls will allow the two light sources to work together through an appropriate control strategy, typically motion-sensing. There are no technical barriers preventing the use of low through high CRI LEDs for standby lighting in many interior and exterior applications today. The total luminous efficacy of LED systems could be raised by increasing the electrical efficiency of LED drivers to the maximum practically achievable level (94%). This would increase system luminous efficacy by 20-25%. The expected market volumes for many types of LEDs should justify the evolution of new LED drivers that use highly efficient ICs and reduce parts count by means of ASICs. Reducing their electronics parts count by offloading discrete components onto integrated circuits (IC) will allow manufacturers to reduce the cost of LED driver electronics. LED luminaire manufacturers will increasingly integrate the LED driver and thermal management directly in the LED fixture. LED luminaires of the future will likely have no need for separable lamp and ballast because the equipment life of all the LED luminaire components will all be about the same (50,000 hours). The controls and communications techniques used for communicating with conventional light sources, such as dimmable fluorescent lighting, are appropriate for LED illumination for energy management purposes. DALI has been used to control LED systems in new applications and the emerging ZigBee protocol could be used for LEDs as well. Major lighting companies are already moving in this direction. The most significant finding is that there is a significant opportunity to use LEDs today for standby lighting purposes. Conventional lighting systems can be made more efficient still by using LEDs to provide a low-energy standby state when lower light levels are acceptable.

Rubinstein, Francis

2007-06-22T23:59:59.000Z

Note: This page contains sample records for the topic "oled solid state" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Controls for Solid-State Lighting  

SciTech Connect

This study predicts new hybrid lighting applications for LEDs. In hybrid lighting, LEDs provide a low-energy 'standby' light level while another, more powerful, efficient light source provides light for occupied periods. Lighting controls will allow the two light sources to work together through an appropriate control strategy, typically motion-sensing. There are no technical barriers preventing the use of low through high CRI LEDs for standby lighting in many interior and exterior applications today. The total luminous efficacy of LED systems could be raised by increasing the electrical efficiency of LED drivers to the maximum practically achievable level (94%). This would increase system luminous efficacy by 20-25%. The expected market volumes for many types of LEDs should justify the evolution of new LED drivers that use highly efficient ICs and reduce parts count by means of ASICs. Reducing their electronics parts count by offloading discrete components onto integrated circuits (IC) will allow manufacturers to reduce the cost of LED driver electronics. LED luminaire manufacturers will increasingly integrate the LED driver and thermal management directly in the LED fixture. LED luminaires of the future will likely have no need for separable lamp and ballast because the equipment life of all the LED luminaire components will all be about the same (50,000 hours). The controls and communications techniques used for communicating with conventional light sources, such as dimmable fluorescent lighting, are appropriate for LED illumination for energy management purposes. DALI has been used to control LED systems in new applications and the emerging ZigBee protocol could be used for LEDs as well. Major lighting companies are already moving in this direction. The most significant finding is that there is a significant opportunity to use LEDs today for standby lighting purposes. Conventional lighting systems can be made more efficient still by using LEDs to provide a low-energy standby state when lower light levels are acceptable.

Rubinstein, Francis

2007-06-22T23:59:59.000Z

262

Application of Developed APCVD Transparent Conducting Oxides and Undercoat Technologies for Economical OLED Lighting  

SciTech Connect

Economics is a key factor for application of organic light emitting diodes (OLED) in general lighting relative to OLED flat panel displays that can handle high cost materials such as indium tin oxide (ITO) or Indium zinc oxide (IZO) as the transparent conducting oxide (TCO) on display glass. However, for OLED lighting to penetrate into general illumination, economics and sustainable materials are critical. The issues with ITO have been documented at the DOE SSL R&D and Manufacturing workshops for the last 5 years and the issue is being exacerbated by export controls from China (one of the major sources of elemental indium). Therefore, ITO is not sustainable because of the fluctuating costs and the United States (US) dependency on other nations such as China. Numerous alternatives to ITO/IZO are being evaluated such as Ag nanoparticles/nanowires, carbon nanotubes, graphene, and other metal oxides. Of these other metal oxides, doped zinc oxide has attracted a lot of attention over the last 10 years. The volume of zinc mined is a factor of 80,000 greater than indium and the US has significant volumes of zinc mined domestically, resulting in the ability for the US to be self-sufficient for this element that can be used in optoelectronic applications. The costs of elemental zinc is over 2 orders of magnitude less than indium, reflecting the relative abundance and availability of the elements. Arkema Inc. and an international primary glass manufacturing company, which is located in the United States, have developed doped zinc oxide technology for solar control windows. The genesis of this DOE SSL project was to determine if doped zinc oxide technology can be taken from the commodity based window market and translate the technology to OLED lighting. Thus, Arkema Inc. sought out experts, Philips Lighting, Pacific Northwest National Laboratories (PNNL) and National Renewable Research Laboratories (NREL), in OLED devices and brought them into the project. This project had a clear focus on economics and the work plan focused both on doped ZnO process and OLED device structure that would be consistent with the new TCO. The team successfully made 6 inch OLEDs with a serial construction. More process development is required to optimize commercial OLED structures. Feasibility was demonstrated on two different light extraction technologies: 1/4 lambda refractive index matching and high-low-high band pass filter. Process development was also completed on the key precursors for the TCO, which are ready for pilot-plant scale-up. Subsequently, Arkema has developed a cost of ownership model that is consistent with DOE SSL R&D Manufacturing targets as outlined in the DOE SSL R&D Manufacturing 2010 report. The overall outcome of this project was the demonstration that doped zinc oxide can be used for OLED devices without a drop-off in performance while gaining the economic and sustainable benefits of a more readily available TCO. The broad impact of this project, is the facilitation of OLED lighting market penetration into general illumination, resulting in significant energy savings, decreased greenhouse emissions, with no environmental impact issues such as mercury found in Fluorescent technology. The primary objective of this project was to develop a commercially viable process for 'Substrates' (Substrate/ undercoat/ TCO topcoat) to be used in production of OLED devices (lamps/luminaries/modules). This project focused on using Arkema's recently developed doped ZnO technology for the Fenestration industry and applying the technology to the OLED lighting industry. The secondary objective was the use of undercoat technology to improve light extraction from the OLED device. In optical fields and window applications, technology has been developed to mitigate reflection losses by selecting appropriate thicknesses and refractive indices of coatings applied either below or above the functional layer of interest. This technology has been proven and implemented in the fenestration industry for more than 15 years. Successful completion of

Martin Bluhm; James Coffey; Roman Korotkov; Craig Polsz; Alexandre Salemi; Robert Smith; Ryan Smith; Jeff Stricker; Chen Xu; Jasmine Shirazi; George Papakonstantopulous; Steve Carson; Claudia Goldman; Soren Hartmann; Frank Jessen; Bianca Krogmann; Christoph Rickers; Manfred Ruske; Holger Schwab; Dietrich Bertram

2011-01-02T23:59:59.000Z

263

Application of Developed APCVD Transparent Conducting Oxides and Undercoat Technologies for Economical OLED Lighting  

Science Conference Proceedings (OSTI)

Economics is a key factor for application of organic light emitting diodes (OLED) in general lighting relative to OLED flat panel displays that can handle high cost materials such as indium tin oxide (ITO) or Indium zinc oxide (IZO) as the transparent conducting oxide (TCO) on display glass. However, for OLED lighting to penetrate into general illumination, economics and sustainable materials are critical. The issues with ITO have been documented at the DOE SSL R&D and Manufacturing workshops for the last 5 years and the issue is being exacerbated by export controls from China (one of the major sources of elemental indium). Therefore, ITO is not sustainable because of the fluctuating costs and the United States (US) dependency on other nations such as China. Numerous alternatives to ITO/IZO are being evaluated such as Ag nanoparticles/nanowires, carbon nanotubes, graphene, and other metal oxides. Of these other metal oxides, doped zinc oxide has attracted a lot of attention over the last 10 years. The volume of zinc mined is a factor of 80,000 greater than indium and the US has significant volumes of zinc mined domestically, resulting in the ability for the US to be self-sufficient for this element that can be used in optoelectronic applications. The costs of elemental zinc is over 2 orders of magnitude less than indium, reflecting the relative abundance and availability of the elements. Arkema Inc. and an international primary glass manufacturing company, which is located in the United States, have developed doped zinc oxide technology for solar control windows. The genesis of this DOE SSL project was to determine if doped zinc oxide technology can be taken from the commodity based window market and translate the technology to OLED lighting. Thus, Arkema Inc. sought out experts, Philips Lighting, Pacific Northwest National Laboratories (PNNL) and National Renewable Research Laboratories (NREL), in OLED devices and brought them into the project. This project had a clear focus on economics and the work plan focused both on doped ZnO process and OLED device structure that would be consistent with the new TCO. The team successfully made 6 inch OLEDs with a serial construction. More process development is required to optimize commercial OLED structures. Feasibility was demonstrated on two different light extraction technologies: 1/4 lambda refractive index matching and high-low-high band pass filter. Process development was also completed on the key precursors for the TCO, which are ready for pilot-plant scale-up. Subsequently, Arkema has developed a cost of ownership model that is consistent with DOE SSL R&D Manufacturing targets as outlined in the DOE SSL R&D Manufacturing 2010 report. The overall outcome of this project was the demonstration that doped zinc oxide can be used for OLED devices without a drop-off in performance while gaining the economic and sustainable benefits of a more readily available TCO. The broad impact of this project, is the facilitation of OLED lighting market penetration into general illumination, resulting in significant energy savings, decreased greenhouse emissions, with no environmental impact issues such as mercury found in Fluorescent technology. The primary objective of this project was to develop a commercially viable process for 'Substrates' (Substrate/ undercoat/ TCO topcoat) to be used in production of OLED devices (lamps/luminaries/modules). This project focused on using Arkema's recently developed doped ZnO technology for the Fenestration industry and applying the technology to the OLED lighting industry. The secondary objective was the use of undercoat technology to improve light extraction from the OLED device. In optical fields and window applications, technology has been developed to mitigate reflection losses by selecting appropriate thicknesses and refractive indices of coatings applied either below or above the functional layer of interest. This technology has been proven and implemented in the fenestration industry for more than 15 years. Successful completion of

Martin Bluhm; James Coffey; Roman Korotkov; Craig Polsz; Alexandre Salemi; Robert Smith; Ryan Smith; Jeff Stricker; Chen Xu; Jasmine Shirazi; George Papakonstantopulous; Steve Carson; Claudia Goldman; Soren Hartmann; Frank Jessen; Bianca Krogmann; Christoph Rickers; Manfred Ruske; Holger Schwab; Dietrich Bertram

2011-01-02T23:59:59.000Z

264

SAND2006-1982J Solid-State Environmentally Safe  

E-Print Network (OSTI)

battery packs in parallel.The commercial target cost is expected to open at $50 per 1.5-volt cellSAND2006-1982J #12;Solid-State Environmentally Safe Battery for Replacing Lithium Batteries 1 Entry with High Power Battery Systems Company 5 Silkin Street, Apt. 40 Sarov, Nizhny Novgorod Russia

265

INTRODUCTION PART I 11 Introduction Part I Solid State NMR  

E-Print Network (OSTI)

10 PART I #12;INTRODUCTION ­ PART I 11 Introduction Part I ­ Solid State NMR OVERVIEW Nuclear magnetic resonance (NMR) spectroscopy can provide atomic-resolution structures of biological molecules. The exact resonance frequency depends on the chemical environment of each spins, as a result the NMR

Watts, Anthony

266

SOLID STATE ENERGY CONVERSION ALLIANCE (SECA) SOLID OXIDE FUEL CELL PROGRAM  

DOE Green Energy (OSTI)

This report summarizes the work performed for April 2003--September 2003 reporting period under Cooperative Agreement DE-FC26-01NT41245 for the U.S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled ''Solid State Energy Conversion Alliance (SECA) Solid oxide Fuel Cell Program''. During this reporting period, the conceptual system design activity was completed. The system design, including strategies for startup, normal operation and shutdown, was defined. Sealant and stack materials for the solid oxide fuel cell (SOFC) stack were identified which are capable of meeting the thermal cycling and degradation requirements. A cell module was tested which achieved a stable performance of 0.238 W/cm{sup 2} at 95% fuel utilization. The external fuel processor design was completed and fabrication begun. Several other advances were made on various aspects of the SOFC system, which are detailed in this report.

Nguyen Minh; Jim Powers

2003-10-01T23:59:59.000Z

267

SOLID STATE ENERGY CONVERSION ALLIANCE (SECA) SOLID OXIDE FUEL CELL PROGRAM  

DOE Green Energy (OSTI)

This report summarizes the progress made during the September 2001-March 2002 reporting period under Cooperative Agreement DE-FC26-01NT41245 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled ''Solid State Energy Conversion Alliance (SECA) Solid Oxide Fuel Cell Program''. The program focuses on the development of a low-cost, high-performance 3-to-10-kW solid oxide fuel cell (SOFC) system suitable for a broad spectrum of power-generation applications. The overall objective of the program is to demonstrate a modular SOFC system that can be configured to create highly efficient, cost-competitive, and environmentally benign power plants tailored to specific markets. When fully developed, the system will meet the efficiency, performance, life, and cost goals for future commercial power plants.

Unknown

2003-06-01T23:59:59.000Z

268

Realization of Deterministic Quantum Teleportation with Solid State Qubits  

E-Print Network (OSTI)

Transferring the state of an information carrier from a sender to a receiver is an essential primitive in both classical and quantum communication and information processing. In a quantum process known as teleportation the unknown state of a quantum bit can be relayed to a distant party using shared entanglement and classical information. Here we present experiments in a solid-state system based on superconducting quantum circuits demonstrating the teleportation of the state of a qubit at the macroscopic scale. In our experiments teleportation is realized deterministically with high efficiency and achieves a high rate of transferred qubit states. This constitutes a significant step towards the realization of repeaters for quantum communication at microwave frequencies and broadens the tool set for quantum information processing with superconducting circuits.

L. Steffen; A. Fedorov; M. Oppliger; Y. Salathe; P. Kurpiers; M. Baur; G. Puebla-Hellmann; C. Eichler; A. Wallraff

2013-02-22T23:59:59.000Z

269

Solid state dosimeters used in medical physics 'A review'  

SciTech Connect

Many solid-state detectors have been successfully used to perform the quality control and in vivo dosimetry in medical physics, both in diagnostic radiology and radiotherapy, as they have high sensitivity in a small volume; most of them do not require electrical connection and have dosimetric characteristics of interest such as: good accuracy and reproducibility, as well as a response independent of the energy of radiation, some of them. For this reason, the selection of an appropriate detector for use in medical physics must take into account the energy mass absorption coefficient relative to water for photon sources and the mass stopping power relative to water for beta emitters and electron beams in the energy range of interest in medical physics, as well as the effective atomic number of materials that constitute them. This paper presents a review of the dosimetric characteristics of the solid state dosimeters most suitable for use in medical physics.

Azorin-Nieto, Juan [Physics Department, Universidad Autonoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186 Col. Vicentina, 09340 Mexico, D.F. (Mexico)

2012-10-23T23:59:59.000Z

270

Compact Solid State Cooling Systems: Compact MEMS Electrocaloric Module  

SciTech Connect

BEETIT Project: UCLA is developing a novel solid-state cooling technology to translate a recent scientific discovery of the so-called giant electrocaloric effect into commercially viable compact cooling systems. Traditional air conditioners use noisy, vapor compression systems that include a polluting liquid refrigerant to circulate within the air conditioner, absorb heat, and pump the heat out into the environment. Electrocaloric materials achieve the same result by heating up when placed within an electric field and cooling down when removedeffectively pumping heat out from a cooler to warmer environment. This electrocaloric-based solid state cooling system is quiet and does not use liquid refrigerants. The innovation includes developing nano-structured materials and reliable interfaces for heat exchange. With these innovations and advances in micro/nano-scale manufacturing technologies pioneered by semiconductor companies, UCLA is aiming to extend the performance/reliability of the cooling module.

None

2010-10-01T23:59:59.000Z

271

Structures And Fabrication Techniques For Solid State Electrochemical Devices  

DOE Patents (OSTI)

Provided are low-cost, mechanically strong, highly electronically conductive porous substrates and associated structures for solid-state electrochemical devices, techniques for forming these structures, and devices incorporating the structures. The invention provides solid state electrochemical device substrates of novel composition and techniques for forming thin electrode/membrane/electrolyte coatings on the novel or more conventional substrates. In particular, in one embodiment the invention provides techniques for co-firing of device substrate (often an electrode) with an electrolyte or membrane layer to form densified electrolyte/membrane films 5 to 20 microns thick. In another embodiment, densified electrolyte/membrane films 5 to 20 microns thick may be formed on a pre-sintered substrate by a constrained sintering process. In some cases, the substrate may be a porous metal, alloy, or non-nickel cermet incorporating one or more of the transition metals Cr, Fe, Cu and Ag, or alloys thereof.

Visco, Steven J. (Berkeley, CA); Jacobson, Craig P. (El Cerrito, CA); DeJonghe, Lutgard C. (Lafayette, CA)

2005-12-27T23:59:59.000Z

272

Structures and fabrication techniques for solid state electrochemical devices  

DOE Patents (OSTI)

Provided are low-cost, mechanically strong, highly electronically conductive porous substrates and associated structures for solid-state electrochemical devices, techniques for forming these structures, and devices incorporating the structures. The invention provides solid state electrochemical device substrates of novel composition and techniques for forming thin electrode/membrane/electrolyte coatings on the novel or more conventional substrates. In particular, in one embodiment the invention provides techniques for co-firing of device substrate (often an electrode) with an electrolyte or membrane layer to form densified electrolyte/membrane films 5 to 20 microns thick. In another embodiment, densified electrolyte/membrane films 5 to 20 microns thick may be formed on a pre-sintered substrate by a constrained sintering process. In some cases, the substrate may be a porous metal, alloy, or non-nickel cermet incorporating one or more of the transition metals Cr, Fe, Cu and Ag, or alloys thereof.

Visco, Steven J. (Berkeley, CA); Jacobson, Craig P. (El Cerrito, CA); DeJonghe, Lutgard C. (Lafayette, CA)

2003-08-12T23:59:59.000Z

273

Solid-State Transfer Switch Technology and Application Update  

Science Conference Proceedings (OSTI)

Static transfer switches are used to switch between multiple voltage sources. Most legacy transfer switches typically use electromechanical devices, and some use thyristors. The advent of advanced high-voltage power semiconductors has allowed the realization of solid-state transfer switches (SSTS) that can seamlessly transfer between switches to provide high-quality uninterrupted power. Although a few legacy applications have been reported, SSTS could have an important role to play in alternating-current...

2010-12-31T23:59:59.000Z

274

Solid state laser media driven by remote nuclear powered fluorescence  

DOE Patents (OSTI)

An apparatus is provided for driving a solid state laser by a nuclear powered fluorescence source which is located remote from the fluorescence source. A nuclear reaction produced in a reaction chamber generates fluorescence or photons. The photons are collected from the chamber into a waveguide, such as a fiber optic waveguide. The waveguide transports the photons to the remote laser for exciting the laser.

Prelas, M.A.

1991-01-16T23:59:59.000Z

275

Solid state laser media driven by remote nuclear powered fluorescence  

DOE Patents (OSTI)

An apparatus is provided for driving a solid state laser by a nuclear powered fluorescence source which is located remote from the fluorescence source. A nuclear reaction produced in a reaction chamber generates fluorescence or photons. The photons are collected from the chamber into a waveguide, such as a fiber optic waveguide. The waveguide transports the photons to the remote laser for exciting the laser.

Prelas, Mark A. (Columbia, MO)

1992-01-01T23:59:59.000Z

276

Proposed solid-state Faraday anomalous-dispersion optical filter  

Science Conference Proceedings (OSTI)

We propose a Faraday anomalous dispersion optical filter (FADOF) based on a rare-earth ion doped crystal. We present theoretical analyses for the solid-state FADOF transmission. Our theoretical model predicts a maximum transmission efficiency of 71% and a double-peaked transmission spectrum with a bandwidth of 6 GHz under current experimental conditions. Our proposal may have important applications in optical communications.

Lin, Wei-Bin [Key Laboratory of Quantum Information, University of Science and Technology of China, CAS, Hefei 230026 (China); Institute of Laser Technology, Hefei University of Technology, Hefei 230009 (China); Zhou, Zong-Quan; Li, Chuan-Feng; Guo, Guang-Can [Key Laboratory of Quantum Information, University of Science and Technology of China, CAS, Hefei 230026 (China)

2011-11-15T23:59:59.000Z

277

Effect of DC Load Currents on Solid State Residential Meters  

Science Conference Proceedings (OSTI)

This report presents results of an extensive laboratory assessment of the impact of DC load currents (including half-wave rectified loads) on the metrological accuracy of residential solid state electricity meters. Sampled surveys were conducted to determine whether products producing DC currents are prevalent in residential premises. In addition, regulations and codes were studied to determine whether such products could naturally appear in the marketplace going forward. Two each of six brands of socket...

2011-12-22T23:59:59.000Z

278

Solid-state fermentation of sweet sorghum to ethanol  

Science Conference Proceedings (OSTI)

Solid-state fermentation of chopped sweet sorghum particles to ethanol was studied in static flasks using an ethanol tolerant yeast strain. The influence of various process parameters, such as temperature, yeast cell concentration, and moisture content, on the rate and extent of ethanol fermentation was investigated. Optimal values of these parameters were found to be 35 degrees C, 7 x 10/sup 8/ cells/g raw sorghum, and 70% moisture level, respectively. 25 references.

Kargi, F.; Curme, J.A.; Sheehan, J.J.

1985-01-01T23:59:59.000Z

279

Ion production from solid state laser ion sources  

Science Conference Proceedings (OSTI)

Laser ion sources based on resonant excitation and ionization of atoms are well-established tools for selective and efficient production of radioactive ion beams. Recent developments are focused on the use of the state-of-the-art all solid-state laser systems. To date, 35 elements of the periodic table are available from laser ion sources based on tunable Ti:sapphire lasers. Recent progress in this field regarding the establishment of suitable optical excitation schemes for Ti:sapphire lasers are reported.

Gottwald, T.; Mattolat, C.; Raeder, S.; Wendt, K. [Institute for Physics, University of Mainz, Staudinger Weg 7, 55128 Mainz (Germany); Havener, C.; Liu, Y. [Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Lassen, J. [TRIUMF-ISAC Division, 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3 (Canada); Rothe, S. [CERN, CH-1211 Geneve 23 (Switzerland)

2010-02-15T23:59:59.000Z

280

Quantum process tomography of a single solid state qubit  

E-Print Network (OSTI)

We present an example of quantum process tomography performed on a single solid state qubit. The qubit used is two energy levels of the triplet state in the Nitrogen-Vacancy defect in Diamond. Quantum process tomography is applied to a qubit which has been allowed to decohere for three different time periods. In each case the process is found in terms of the $\\chi$ matrix representation and the affine map representation. The discrepancy between experimentally estimated process and the closest physically valid process is noted.

M. Howard; J. Twamley; C. Wittmann; T. Gaebel; F. Jelezko; J. Wrachtrup

2005-03-16T23:59:59.000Z

Note: This page contains sample records for the topic "oled solid state" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Solid-State Lighting: The City of Los Angeles LED Streetlight...  

NLE Websites -- All DOE Office Websites (Extended Search)

The City of Los Angeles LED Streetlight Program to someone by E-mail Share Solid-State Lighting: The City of Los Angeles LED Streetlight Program on Facebook Tweet about Solid-State...

282

Diode-pumped solid-state laser drivers for inertial fusion energy  

SciTech Connect

This paper reviews work on flashlamp-pumped solid state lasers and discusses diode-pumped solid state lasers, the Mercury laser in particular. It also discusses ICF lasers beyond Mercury.

Bibeau, C; Marshall, C D; Payne, S A; Powell, H T

1998-12-18T23:59:59.000Z

283

Solid-State Lighting: Opening the Door: San Diego R&D Workshop...  

NLE Websites -- All DOE Office Websites (Extended Search)

Opening the Door: San Diego R&D Workshop Video to someone by E-mail Share Solid-State Lighting: Opening the Door: San Diego R&D Workshop Video on Facebook Tweet about Solid-State...

284

Solid-State Lighting: Considering LEDs for Street and Area Lighting  

NLE Websites -- All DOE Office Websites (Extended Search)

Considering LEDs for Street and Area Lighting to someone by E-mail Share Solid-State Lighting: Considering LEDs for Street and Area Lighting on Facebook Tweet about Solid-State...

285

Prediction of solid-aqueous equilibria: Scheme to combine first-principles calculations of solids with experimental aqueous states  

E-Print Network (OSTI)

We present an efficient scheme for combining ab initio calculated solid states with experimental aqueous states through a framework of consistent reference energies. Our work enables accurate prediction of phase stability ...

Persson, Kristin A.

286

Silicon Anode Materials for All-Solid-State Lithium-ion Microbatteries  

Science Conference Proceedings (OSTI)

Symposium, Nanostructured Materials for Lithium Ion Batteries and for Supercapacitors. Presentation Title, Silicon Anode Materials for All-Solid-State...

287

Air-stable Nanomaterials for Efficient OLEDs and Solar Cells  

Air-stable Nanomaterials for Efficient OLEDs and Solar Cells . IB-2044, IB-2231 . ... U.S. DEPARTMENT OF ENERGY OFFICE OF SCIENCE UNIVERSITY OF CALIFORNIA.

288

A Review of OLED Research at Naval Research Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Division at Naval Research Laboratory. Her research is focused on organic light emitting diode (OLED) material and devices. She will discuss the research activities at Naval...

289

OLED Display with Single Grain Si TFT. (SG-TFT).  

E-Print Network (OSTI)

??OLED is a current based device, which emitted amount of light depends on the current supplied to the device so steady current flow is needed. (more)

Naeimi, A.

2011-01-01T23:59:59.000Z

290

Available Technologies: High Performance OLEDs with Air-stable ...  

more balanced charge distribution ; Increased OLED device lifetime ; Capable of scale-up manufacturing--either "top-down" or "bottom-up" processing ;

291

7. Future Perspective 7.1 Benefits of solid-state NMR  

E-Print Network (OSTI)

192 7. Future Perspective 7.1 Benefits of solid-state NMR When trying to answer a relatively simple structural question, solid-state NMR can be perceived as being a valuable tool for the structural biologist method improves the sensitivity of the solid-state NMR approach such that we were able to use between

Watts, Anthony

292

Intensity and mosaic spread analysis from PISEMA tensors in solid-state NMR  

E-Print Network (OSTI)

Intensity and mosaic spread analysis from PISEMA tensors in solid-state NMR J.R. Quine a,b,*, S 2005 Available online 18 January 2006 Abstract The solid-state NMR experiment PISEMA, is a technique: PISEMA tensors; Solid-state NMR; Powder pattern intensity; Mosaic spread; Lineshapes 1. Introduction

Aluffi, Paolo

293

Recent advances in solid-state organic lasers  

E-Print Network (OSTI)

Organic solid-state lasers are reviewed, with a special emphasis on works published during the last decade. Referring originally to dyes in solid-state polymeric matrices, organic lasers also include the rich family of organic semiconductors, paced by the rapid development of organic light emitting diodes. Organic lasers are broadly tunable coherent sources are potentially compact, convenient and manufactured at low-costs. In this review, we describe the basic photophysics of the materials used as gain media in organic lasers with a specific look at the distinctive feature of dyes and semiconductors. We also outline the laser architectures used in state-of-the-art organic lasers and the performances of these devices with regard to output power, lifetime, and beam quality. A survey of the recent trends in the field is given, highlighting the latest developments in terms of wavelength coverage, wavelength agility, efficiency and compactness, or towards integrated low-cost sources, with a special focus on the gr...

Chenais, Sbastien; 10.1002/pi.3173

2011-01-01T23:59:59.000Z

294

Method for joining metal by solid-state bonding  

DOE Patents (OSTI)

The present development is directed to a method for joining metal at relatively low temperatures by solid-state bonding. Planar surfaces of the metal workpieces are placed in a parallel abutting relationship with one another. A load is applied to at least one of the workpieces for forcing the workpieces together while one of the workpieces is relatively slowly oscillated in a rotary motion over a distance of about 1.degree.. After a preselected number of oscillations, the rotary motion is terminated and the bond between the abutting surfaces is effected. An additional load may be applied to facilitate the bond after terminating the rotary motion.

Burkhart, L. Elkin (Oak Ridge, TN); Fultz, Chester R. (Kingston, TN); Maulden, Kerry A. (Knoxville, TN)

1979-01-01T23:59:59.000Z

295

FTIR spectrometer with solid-state drive system  

DOE Patents (OSTI)

An FTIR spectrometer (10) and method using a solid-state drive system with thermally responsive members (27) that are subject to expansion upon heating and to contraction upon cooling. Such members (27) are assembled in the device (10) so as to move an angled, reflective surface (22) a small distance. The sample light beam (13) is received at a detector (24) along with a reference light beam (13) and there it is combined into a resulting signal. This allows the "interference" between the two beams to occur for spectral analysis by a processor (29).

Rajic, Slobodan (Knoxville, TN); Seals, Roland D. (Oak Ridge, TN); Egert, Charles M. (Oak Ridge, TN)

1999-01-01T23:59:59.000Z

296

Standardized Testing Program for Solid-State Hydrogen Storage Technologies  

DOE Green Energy (OSTI)

In the US and abroad, major research and development initiatives toward establishing a hydrogen-based transportation infrastructure have been undertaken, encompassing key technological challenges in hydrogen production and delivery, fuel cells, and hydrogen storage. However, the principal obstacle to the implementation of a safe, low-pressure hydrogen fueling system for fuel-cell powered vehicles remains storage under conditions of near-ambient temperature and moderate pressure. The choices for viable hydrogen storage systems at the present time are limited to compressed gas storage tanks, cryogenic liquid hydrogen storage tanks, chemical hydrogen storage, and hydrogen absorbed or adsorbed in a solid-state material (a.k.a. solid-state storage). Solid-state hydrogen storage may offer overriding benefits in terms of storage capacity, kinetics and, most importantly, safety.The fervor among the research community to develop novel storage materials had, in many instances, the unfortunate consequence of making erroneous, if not wild, claims on the reported storage capacities achievable in such materials, to the extent that the potential viability of emerging materials was difficult to assess. This problem led to a widespread need to establish a capability to accurately and independently assess the storage behavior of a wide array of different classes of solid-state storage materials, employing qualified methods, thus allowing development efforts to focus on those materials that showed the most promise. However, standard guidelines, dedicated facilities, or certification programs specifically aimed at testing and assessing the performance, safety, and life cycle of these emergent materials had not been established. To address the stated need, the Testing Laboratory for Solid-State Hydrogen Storage Technologies was commissioned as a national-level focal point for evaluating new materials emerging from the designated Materials Centers of Excellence (MCoE) according to established and qualified standards. Working with industry, academia, and the U.S. government, SwRI set out to develop an accepted set of evaluation standards and analytical methodologies. Critical measurements of hydrogen sorption properties in the Laboratory have been based on three analytical capabilities: 1) a high-pressure Sievert-type volumetric analyzer, modified to improve low-temperature isothermal analyses of physisorption materials and permit in situ mass spectroscopic analysis of the samples gas space; 2) a static, high-pressure thermogravimetric analyzer employing an advanced magnetic suspension electro-balance, glove-box containment, and capillary interface for in situ mass spectroscopic analysis of the samples gas space; and 3) a Laser-induced Thermal Desorption Mass Spectrometer (LTDMS) system for high thermal-resolution desorption and mechanistic analyses. The Laboratory has played an important role in down-selecting materials and systems that have emerged from the MCoEs.

Miller, Michael A. [Southwest Research Institute; Page, Richard A. [Southwest Research Institute

2012-07-30T23:59:59.000Z

297

Solid State Energy Conversion Alliance (SECA) Solid Oxide Fuel Cell Program  

DOE Green Energy (OSTI)

This report summarizes the work performed for Phase I (October 2001 - August 2006) under Cooperative Agreement DE-FC26-01NT41245 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled 'Solid State Energy Conversion Alliance (SECA) Solid Oxide Fuel Cell Program'. The program focuses on the development of a low-cost, high-performance 3-to-10-kW solid oxide fuel cell (SOFC) system suitable for a broad spectrum of power-generation applications. During Phase I of the program significant progress has been made in the area of SOFC technology. A high-efficiency low-cost system was designed and supporting technology developed such as fuel processing, controls, thermal management, and power electronics. Phase I culminated in the successful demonstration of a prototype system that achieved a peak efficiency of 41%, a high-volume cost of $724/kW, a peak power of 5.4 kW, and a degradation rate of 1.8% per 500 hours. . An improved prototype system was designed, assembled, and delivered to DOE/NETL at the end of the program. This prototype achieved an extraordinary peak efficiency of 49.6%.

Nguyen Minh

2006-07-31T23:59:59.000Z

298

Low-Cost Miniature Multifunctional Solid-State Gas Sensors  

NLE Websites -- All DOE Office Websites (Extended Search)

Richard J. Dunst Richard J. Dunst Project Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236-0940 412-386-6694 richard.dunst@netl.doe.gov Eric D. Wachsman Principal Investigator University of Florida 339 Weil Hall Gainesville, FL 32611-4025 352-846-2991 ewach@mse.ufl.edu Low-Cost Miniature MuLtifunCtionaL soLid-state Gas sensors Description Research sponsored by the U.S. Department of Energy (DOE) Office of Fossil Energy (FE) through the National Energy Technology Laboratory (NETL), and performed by the University of Florida, has resulted in successful development of solid-state sensor technology that can provide an inexpensive, rugged device that is capable of measuring the concentration of multiple pollutants in lean-burn coal

299

THE PROMISE OF SOLID STATE LIGHTING FOR GENERAL ILLUMINATION  

NLE Websites -- All DOE Office Websites (Extended Search)

Conclusions and Recommendations Conclusions and Recommendations from OIDA Technology Roadmaps Co-sponsored by DOE (BTS) and OIDA OIDA OPTOELECTRONICS INDUSTRY DEVELOPMENT ASSOCIATION 1133 Connecticut Avenue, NW Suite 600 Washington, DC 20036 Ph: (202) 785-4426 Fax: (202) 785-4428 Web: http://www.OIDA.org Building Technology, State and Community Programs Energy Efficiency and Renewable Energy U.S. Department of Energy Published by: Optoelectronics Industry Development Association 1133 Connecticut Avenue NW, Suite 600 Washington, DC 20036 Phone: (202) 785-4426 Fax: (202) 785-4428 Internet: http://www.oida.org 1 The Promise of Solid State Lighting for General Illumination s Light Emitting Diodes (LEDs) © 2001 Optoelectronics Industry Development Association Executive Summary In the midst of the rising fuel prices and the blackouts in California there is silent rev-

300

Application of Developed APCVD Transparent Conducting Oxides and Undercoat Technologies for Economical OLED Lighting  

Science Conference Proceedings (OSTI)

Economics is a key factor for application of organic light emitting diodes (OLED) in general lighting relative to OLED flat panel displays that can handle high cost materials such as indium tin oxide (ITO) or Indium zinc oxide (IZO) as the transparent conducting oxide (TCO) on display glass. However, for OLED lighting to penetrate into general illumination, economics and sustainable materials are critical. The issues with ITO have been documented at the DOE SSL R&D and Manufacturing workshops for the last 5 years and the issue is being exaserbated by export controls from China (one of the major sources of elemental indium). Therefore, ITO is not sustainable because of the fluctuating costs and the United States (US) dependency on other nations such as China. Numerous alternatives to ITO/IZO are being evaluated such as Ag nanoparticles/nanowires, carbon nanotubes, graphene, and other metal oxides. Of these other metal oxides, doped zinc oxide has attracted a lot of attention over the last 10 years. The volume of zinc mined is a factor of 80,000 greater than indium and the US has significant volumes of zinc mined domestically, resulting in the ability for the US to be self-sufficient for this element that can be used in optoelectonic applications. The costs of elemental zinc is over 2 orders of magnitude less than indium, reflecting the relative abundance and availablility of the elements. Arkema Inc. and an international primary glass manufacturing company, which is located in the United States, have developed doped zinc oxide technology for solar control windows. The genesis of this DOE SSL project was to determine if doped zinc oxide technology can be taken from the commodity based window market and translate the technology to OLED lighting. Thus, Arkema Inc. sought out experts, Philips Lighting, Pacific Northwest National Laboratories (PNNL) and National Renewable Research Laboratories (NREL), in OLED devices and brought them into the project. This project had a clear focus on economics and the work plan focused both on doped ZnO process and OLED device structure that would be consistent with the new TCO. The team successfully made 6 inch OLEDs with a serial construction. More process development is required to optimize commercial OLED structures. Feasibility was demonstrated on two different light extraction technologies: 1/4 lambda refractive index matching and high-low-high band pass filter. Process development was also completed on the key precursors for the TCO, which are ready for pilot-plant scale-up. Subsequently, Arkema has developed a cost of ownership model that is consistent with DOE SSL R&D Manufacturing targets as outlined in the DOE SSL R&D Manufacturing 2010 report. The overall outcome of this project was the demonstration that doped zinc oxide can be used for OLED devices without a drop-off in performance while gaining the economic and sustainable benefits of a more readily available TCO. The broad impact of this project, is the facilitation of OLED lighting market penetration into general illumination, resulting in significant energy savings, decreased greenhouse emissions, with no environmental impact issues such as mercury found in Fluorescent technology.

Gary Silverman; Bluhm, Martin; Coffey, James; Korotkov, Roman; Polsz, Craig; Salemi, Alexandre; Smith, Robert; Smith, Ryan; Stricker, Jeff; Xu,Chen; Shirazi, Jasmine; Papakonstantopulous, George; Carson, Steve Philips Lighting GmbH Goldman, Claudia; Hartmann, Sren; Jessen, Frank; Krogmann, Bianca; Rickers, Christoph; Ruske, Manfred, Schwab, Holger; Bertram, Dietrich

2011-01-02T23:59:59.000Z

Note: This page contains sample records for the topic "oled solid state" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Energy efficiency and performance of solid state ballasts  

SciTech Connect

A project was undertaken to test the energy efficiency of ballasts. Two ballast types were used and retrofitted into existing fixtures on 3 floors in an office building in San Francisco. A core-coil energy efficient ballast was demonstrated also. The demonstration ballasts proved to be more efficient than the standard core-coil ballasts they replaced. Their energy demand reduction has resulted in a lower weekly peak demand. Operating above 20 KHz they have produced less audible noise. They also have lower heat dissipation. RFI radiation, although increased, has caused no apparent difficulties. Light output has been reduced slightly by all three demonstration ballasts. Ballast energy usage has been measured successfully with standard utility metering but there remain doubts as to the effects of the harmonics associated with solid-state circuitry. While no adverse effects have been observed, research must continue on the accuracy of electrical metering and on the effect on utility systems. The demonstration project has shown that solid-state fluorescent ballasts providing high frequency operation can be installed successfully in large numbers without adverse effects and with substantial energy saving.

Jewell, J.E.; Selkowitz, S.; Verderber, R.

1979-09-01T23:59:59.000Z

302

Solid-State Lighting: DOE and MEEA Host Fourth Annual SSL Market  

NLE Websites -- All DOE Office Websites (Extended Search)

Information Information Resources Printable Version Share this resource Send a link to Solid-State Lighting: DOE and MEEA Host Fourth Annual SSL Market Introduction Workshop to someone by E-mail Share Solid-State Lighting: DOE and MEEA Host Fourth Annual SSL Market Introduction Workshop on Facebook Tweet about Solid-State Lighting: DOE and MEEA Host Fourth Annual SSL Market Introduction Workshop on Twitter Bookmark Solid-State Lighting: DOE and MEEA Host Fourth Annual SSL Market Introduction Workshop on Google Bookmark Solid-State Lighting: DOE and MEEA Host Fourth Annual SSL Market Introduction Workshop on Delicious Rank Solid-State Lighting: DOE and MEEA Host Fourth Annual SSL Market Introduction Workshop on Digg Find More places to share Solid-State Lighting: DOE and MEEA Host

303

New OLED Lighting Systems Shine Bright, Save Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Universal Display Corporation Universal Display Corporation (UDC) (Ewing, NJ), founded in 1994, provides OLED innovations and helps commercialize new generations of OLED products through technology licensing, UniversalPHOLED® materials sales, technology development, and technology transfer services. UDC is a world leader in the development of innovative OLED technology for use in flat panel displays, lighting, and organic electronics. It holds one of the largest patent portfolios in the OLED field. www.universaldisplay.com New OLED Lighting Systems Shine Bright, Save Energy Challenge Lighting consumes over 22% of the total electricity produced in the U.S. and, according to industry estimates, accounts for over $200 billion per year in electric bills worldwide. A majority of this energy consumption

304

Solid State Division: Progress report for period ending September 30, 1987  

SciTech Connect

This paper contains a collection of articles on research done at the Solid State Division of ORNL. General topics covered are: theoretical solid state physics; neutron scattering; physical properties of superconductors and ceramics; synthesis and characterization of solids; ion beam and laser processing; and surface and defect studies. (LSP)

Green, P.H.; Watson, D.M. (eds.)

1988-03-01T23:59:59.000Z

305

Thin Film Packaging Solutions for High Efficiency OLED Lighting Products  

Science Conference Proceedings (OSTI)

The objective of the 'Thin Film Packaging Solutions for High Efficiency OLED Lighting Products' project is to demonstrate thin film packaging solutions based on SiC hermetic coatings that, when applied to glass and plastic substrates, support OLED lighting devices by providing longer life with greater efficiency at lower cost than is currently available. Phase I Objective: Demonstrate thin film encapsulated working phosphorescent OLED devices on optical glass with lifetime of 1,000 hour life, CRI greater than 75, and 15 lm/W. Phase II Objective: Demonstrate thin film encapsulated working phosphorescent OLED devices on plastic or glass composite with 25 lm/W, 5,000 hours life, and CRI greater than 80. Phase III Objective: Demonstrate 2 x 2 ft{sup 2} thin film encapsulated working phosphorescent OLED with 40 lm/W, 10,000 hour life, and CRI greater than 85. This report details the efforts of Phase III (Budget Period Three), a fourteen month collaborative effort that focused on optimization of high-efficiency phosphorescent OLED devices and thin-film encapsulation of said devices. The report further details the conclusions and recommendations of the project team that have foundation in all three budget periods for the program. During the conduct of the Thin Film Packaging Solutions for High Efficiency OLED Lighting Products program, including budget period three, the project team completed and delivered the following achievements: (1) a three-year marketing effort that characterized the near-term and longer-term OLED market, identified customer and consumer lighting needs, and suggested prototype product concepts and niche OLED applications lighting that will give rise to broader market acceptance as a source for wide area illumination and energy conservation; (2) a thin film encapsulation technology with a lifetime of nearly 15,000 hours, tested by calcium coupons, while stored at 16 C and 40% relative humidity ('RH'). This encapsulation technology was characterized as having less than 10% change in transmission during the 15,000 hour test period; (3) demonstrated thin film encapsulation of a phosphorescent OLED device with 1,500 hours of lifetime at 60 C and 80% RH; (4) demonstrated that a thin film laminate encapsulation, in addition to the direct thin film deposition process, of a polymer OLED device was another feasible packaging strategy for OLED lighting. The thin film laminate strategy was developed to mitigate defects, demonstrate roll-to-roll process capability for high volume throughput (reduce costs) and to support a potential commercial pathway that is less dependent upon integrated manufacturing since the laminate could be sold as a rolled good; (5) demonstrated that low cost 'blue' glass substrates could be coated with a siloxane barrier layer for planarization and ion-protection and used in the fabrication of a polymer OLED lighting device. This study further demonstrated that the substrate cost has potential for huge cost reductions from the white borosilicate glass substrate currently used by the OLED lighting industry; (6) delivered four-square feet of white phosphorescent OLED technology, including novel high efficiency devices with 82 CRI, greater than 50 lm/W efficiency, and more than 1,000 hours lifetime in a product concept model shelf; (7) presented and or published more than twenty internal studies (for private use), three external presentations (OLED workshop-for public use), and five technology-related external presentations (industry conferences-for public use); and (8) issued five patent applications, which are in various maturity stages at time of publication. Delivery of thin film encapsulated white phosphorescent OLED lighting technology remains a challenging technical achievement, and it seems that commercial availability of thin, bright, white OLED light that meets market requirements will continue to require research and development effort. However, there will be glass encapsulated white OLED lighting products commercialized in niche markets during the 2008 calendar year. This commercializ

None

2008-06-30T23:59:59.000Z

306

Solid state quantum memory using the 31P nuclear spin  

E-Print Network (OSTI)

The transfer of information between different physical forms is a central theme in communication and computation, for example between processing entities and memory. Nowhere is this more crucial than in quantum computation, where great effort must be taken to protect the integrity of a fragile quantum bit. Nuclear spins are known to benefit from long coherence times compared to electron spins, but are slow to manipulate and suffer from weak thermal polarisation. A powerful model for quantum computation is thus one in which electron spins are used for processing and readout while nuclear spins are used for storage. Here we demonstrate the coherent transfer of a superposition state in an electron spin 'processing' qubit to a nuclear spin 'memory' qubit, using a combination of microwave and radiofrequency pulses applied to 31P donors in an isotopically pure 28Si crystal. The electron spin state can be stored in the nuclear spin on a timescale that is long compared with the electron decoherence time and then coherently transferred back to the electron spin, thus demonstrating the 31P nuclear spin as a solid-state quantum memory. The overall store/readout fidelity is about 90%, attributed to systematic imperfections in radiofrequency pulses which can be improved through the use of composite pulses. We apply dynamic decoupling to protect the nuclear spin quantum memory element from sources of decoherence. The coherence lifetime of the quantum memory element is found to exceed one second at 5.5K.

John J. L. Morton; Alexei M. Tyryshkin; Richard M. Brown; Shyam Shankar; Brendon W. Lovett; Arzhang Ardavan; Thomas Schenkel; Eugene E. Haller; Joel W. Ager; S. A. Lyon

2008-03-13T23:59:59.000Z

307

Archived Technology Tracking Reports - Solid-State Lighting  

NLE Websites -- All DOE Office Websites (Extended Search)

4/16/2003 4/16/2003 | Headline News | Tracking Reports | Archived Tracking Reports | Hot Technical Papers |Credits & Disclaimer | ARCHIVED SCIENCE, TECHNOLOGY, BUSINESS AND NATIONAL NEWS TRACKING REPORTS This table contains archived tracking reports of news and literature related to solid-state lighting. Material from newswires, newspapers, magazines, websites, and technical journals is included. For these archived reports, links to full-text sources have been provided, but are not guaranteed to work. Issue # Dates Science & Technology Literature Business & National News 21 2003-2004 (Mid December 2003 – Early February 2004) button button 20 2003 (Mid Sept – Early December) button button 19 2003 (Mid July – Mid-September) button button 18 Archived Issue

308

A 50 kV solid state multipulse kicker modulator  

DOE Green Energy (OSTI)

Performance requirements, design concepts, and test results for a prototype multipulse kicker modulator based on solid-state switches and a voltage-adding transformer topology are described. Tape-wound cores are stacked to form the transformer primary windings and a cylindrical pipe that passes through the circular inner diameters of the cores serves as the secondary winding of the step-up transformer. Boards containing MOSFET switches, trigger circuitry, and energy-storage capacitors plug into the core housings. A 50 kV prototype modulator that meets most of the facility requirements has been designed, fabricated, and tested at LLNL. More recent work has been concerned with designing and testing cores and boards with the full volt-second capability needed for 24-pulse operation. Results of the 50 kV prototype tests, preliminary tests of the full-volt-second cores and boards, and future development needs are described.

Walstrom, P. L. (Peter L.); Cook, E. G. (Edward G.)

2003-01-01T23:59:59.000Z

309

Solid-state, resistive hydrogen sensors for safety monitoring  

DOE Green Energy (OSTI)

Solid-state, resistive hydrogen sensors have been designed and fabricated at Oak Ridge National Laboratory. Sensor response has been successfully tested with H{sub 2} gas in argon and air under ambient temperature and pressure, while immersed in transformer oil at temperatures between 25{degrees}C and 90{degrees}C, and under site-specific conditions at Westinghouse Savannah River Co. Current versions of the sensors (25 {times} 25 {times} 0.6 mm) are small enough to be incorporated into hand-held leak detectors or distributed sensor systems for safety monitoring throughout a large area. Another foreseeable application is in electrical power transformers where the buildup of hydrogen gas accompanies oil breakdown. The use of these sensors to monitor transformer oil changes could help predict and prevent catastrophic failure.

Hoffheins, B.S.; Lauf, R.J.; Fleming, P.H. [Oak Ridge National Lab., TN (United States); Nave, S.E. [Westinghouse Savannah River Co., Aiken, SC (United States)

1993-07-01T23:59:59.000Z

310

Continuous measurement of a microwave-driven solid state qubit  

E-Print Network (OSTI)

We analyze the dynamics of a continuously observed, damped, microwave driven solid state charge qubit. The qubit consists of a single electron in a double well potential, coupled to an oscillating electric field, and which is continuously observed by a nearby point contact electrometer. The microwave field induces transitions between the qubit eigenstates, which have a profound effect on the detector output current. We show that useful information about the qubit dynamics, such as dephasing and relaxation rates, and the Rabi frequency, can be extracted from the DC detector conductance and the detector output noise power spectrum. We also demonstrate that these phenomena can be used for single shot electron \\emph{spin} readout, for spin based quantum information processing.

S. D. Barrett; T. M. Stace

2004-12-10T23:59:59.000Z

311

Laser supported solid state absorption fronts in silica  

SciTech Connect

We develop a model based on simulation and experiment that explains the behavior of solid-state laser-supported absorption fronts generated in fused silica during high intensity (up to 5GW/cm{sup 2}) laser exposure. We find that the absorption front velocity is constant in time and is nearly linear in laser intensity. Further, this model can explain the dependence of laser damage site size on these parameters. This behavior is driven principally by the temperature-activated deep sub band-gap optical absorptivity, free electron transport and thermal diffusion in defect-free silica for temperatures up to 15,000K and pressures < 15GPa. The regime of parameter space critical to this problem spans and extends that measured by other means. It serves as a platform for understanding general laser-matter interactions in dielectrics under a variety of conditions.

Carr, C W; Bude, J D

2010-02-09T23:59:59.000Z

312

Extreme solid state refrigeration using nanostructured Bi-Te alloys.  

SciTech Connect

Materials are desperately needed for cryogenic solid state refrigeration. We have investigated nanostructured Bi-Te alloys for their potential use in Ettingshausen refrigeration to liquid nitrogen temperatures. These alloys form alternating layers of Bi{sub 2} and Bi{sub 2}Te{sub 3} blocks in equilibrium. The composition Bi{sub 4}Te{sub 3} was identified as having the greatest potential for having a high Ettingshausen figure of merit. Both single crystal and polycrystalline forms of this material were synthesized. After evaluating the Ettingshausen figure of merit for a large, high quality polycrystal, we simulated the limits of practical refrigeration in this material from 200 to 77 K using a simple device model. The band structure was also computed and compared to experiments. We discuss the crystal growth, transport physics, and practical refrigeration potential of Bi-Te alloys.

Lima Sharma, Ana L. (San Jose State University, San Jose, CA); Spataru, Dan Catalin; Medlin, Douglas L.; Sharma, Peter Anand; Morales, Alfredo Martin

2009-09-01T23:59:59.000Z

313

Solid-state production of ethanol from sorghum  

Science Conference Proceedings (OSTI)

The main goal of this research is to study the solid-state fermentation of sorghum-sudangrass, Grazex II (F{sub 1} hybrid of Sorghum vulgare X Sorghum sudanese), to ethanol. Our research focuses on using a modified method of ensiling to produce ethanol directly in the silo. Thirty-eight liters of ethanol/metric ton (L/MT) on a wet-weight basis were produced from sorghum receiving cellulose compared to 23.4 L/MT for sorghum not receiving cellulose additives. Based on total free sugar content, 101 and 84% of theoretical yield are achieved for cellulase-amended and nonamended sorghum, respectively. 47 refs., 4 figs., 4 tabs.

Henk, L.L.; Linden, J.C. [Colorado State Univ., Fort Collins, CO (United States)

1996-12-31T23:59:59.000Z

314

Video frame store; An advanced solid state recorder  

SciTech Connect

In many security applications, such as in nuclear facilities, solid state recorders (SSR) have been used to instantly record and play back video images of a scene when an alarm occurs in that scene. Unlike video cassette recorders (VCR) which take a second or two to start, SSRs can respond to a command from a host computer in less than 1/30th of a second. Therefore they can be a very useful tool for video alarm assessment. There are, however, four major drawbacks with current commercial SSRs. One is high cost: a typical commercial SSR unit that can store up to 128 frames of video image costs about $70,000. Another drawback is the inability to record asynchronous video. A third problem is inflexibility of system configuration; e.g., increasing memory for image storage in an SSR can only be done by purchasing an additional unit or replacing it with another one with more memory. The final drawback is the inability to handshake with a host computer to guarantee the integrity of its response to the host's commands. The Video Frame Store (CFS) is an advanced solid state recorder that provides an effective resolution to the above problems. A VFS unit that stores 128 video frames costs less than half of a typical SSR. In addition to many basic features of a typical SSR, the VFS also provides a number of advanced features. The hardware and software implementation as well as the advanced features are discussed in detail in this paper.

Thai, T.Q.; Walker, J.E. (Sandia National Labs., Albuquerque, NM (United States))

1991-01-01T23:59:59.000Z

315

High average power diode pumped solid state lasers for CALIOPE  

Science Conference Proceedings (OSTI)

Diode pumping of solid state media offers the opportunity for very low maintenance, high efficiency, and compact laser systems. For remote sensing, such lasers may be used to pump tunable non-linear sources, or if tunable themselves, act directly or through harmonic crystals as the probe. The needs of long range remote sensing missions require laser performance in the several watts to kilowatts range. At these power performance levels, more advanced thermal management technologies are required for the diode pumps. The solid state laser design must now address a variety of issues arising from the thermal loads, including fracture limits, induced lensing and aberrations, induced birefringence, and laser cavity optical component performance degradation with average power loading. In order to highlight the design trade-offs involved in addressing the above issues, a variety of existing average power laser systems are briefly described. Included are two systems based on Spectra Diode Laboratory`s water impingement cooled diode packages: a two times diffraction limited, 200 watt average power, 200 Hz multi-rod laser/amplifier by Fibertek, and TRW`s 100 watt, 100 Hz, phase conjugated amplifier. The authors also present two laser systems built at Lawrence Livermore National Laboratory (LLNL) based on their more aggressive diode bar cooling package, which uses microchannel cooler technology capable of 100% duty factor operation. They then present the design of LLNL`s first generation OPO pump laser for remote sensing. This system is specified to run at 100 Hz, 20 nsec pulses each with 300 mJ, less than two times diffraction limited, and with a stable single longitudinal mode. The performance of the first testbed version will be presented. The authors conclude with directions their group is pursuing to advance average power lasers. This includes average power electro-optics, low heat load lasing media, and heat capacity lasers.

Comaskey, B.; Halpin, J.; Moran, B.

1994-07-01T23:59:59.000Z

316

Direct Solid-State Conversion of Recyclable Metals and Alloys  

Science Conference Proceedings (OSTI)

Friction Stir Extrusion (FSE) is a novel energy-efficient solid-state material synthesis and recycling technology capable of producing large quantity of bulk nano-engineered materials with tailored, mechanical, and physical properties. The novelty of FSE is that it utilizes the frictional heating and extensive plastic deformation inherent to the process to stir, consolidate, mechanically alloy, and convert the powders, chips, and other recyclable feedstock materials directly into useable product forms of highly engineered materials in a single step (see Figure 1). Fundamentally, FSE shares the same deformation and metallurgical bonding principles as in the revolutionary friction stir welding process. Being a solid-state process, FSE eliminates the energy intensive melting and solidification steps, which are necessary in the conventional metal synthesis processes. Therefore, FSE is highly energy-efficient, practically zero emissions, and economically competitive. It represents a potentially transformational and pervasive sustainable manufacturing technology for metal recycling and synthesis. The goal of this project was to develop the technological basis and demonstrate the commercial viability of FSE technology to produce the next generation highly functional electric cables for electricity delivery infrastructure (a multi-billion dollar market). Specific focus of this project was to (1) establish the process and material parameters to synthesize novel alloys such as nano-engineered materials with enhanced mechanical, physical, and/or functional properties through the unique mechanical alloying capability of FSE, (2) verifying the expected major energy, environmental, and economic benefits of FSE technology for both the early stage 'showcase' electric cable market and the anticipated pervasive future multi-market applications across several industry sectors and material systems for metal recycling and sustainable manufacturing.

Kiran Manchiraju

2012-03-27T23:59:59.000Z

317

The Department of Energy's Solid-State Lighting Program, OAS-RA-L-13-03  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solid- Solid- State Lighting Program OAS-RA-L-13-03 February 2013 Department of Energy Washington, DC 20585 February 28, 2013 MEMORANDUM FOR THE DIRECTOR, NATIONAL ENERGY TECHNOLOGY LABORATORY FROM: Jack Rouch, Director Central Audits Division Office of Inspector General SUBJECT: INFORMATION: Audit Report on "The Department of Energy's Solid-State Lighting Program" BACKGROUND The Department of Energy's (Department) Office of Energy Efficiency and Renewable Energy established the Solid-State Lighting Program to advance the development and market introduction of energy-efficient white-light sources for general illumination. Since 2003, the Department has cooperated with industry partners to invest in research and development of solid-

318

Solid-State Lighting: Text-Alternative Version: CALiPER: Troffers, Kits,  

NLE Websites -- All DOE Office Websites (Extended Search)

CALiPER: Troffers, Kits, and Tubes Webcast to someone by E-mail CALiPER: Troffers, Kits, and Tubes Webcast to someone by E-mail Share Solid-State Lighting: Text-Alternative Version: CALiPER: Troffers, Kits, and Tubes Webcast on Facebook Tweet about Solid-State Lighting: Text-Alternative Version: CALiPER: Troffers, Kits, and Tubes Webcast on Twitter Bookmark Solid-State Lighting: Text-Alternative Version: CALiPER: Troffers, Kits, and Tubes Webcast on Google Bookmark Solid-State Lighting: Text-Alternative Version: CALiPER: Troffers, Kits, and Tubes Webcast on Delicious Rank Solid-State Lighting: Text-Alternative Version: CALiPER: Troffers, Kits, and Tubes Webcast on Digg Find More places to share Solid-State Lighting: Text-Alternative Version: CALiPER: Troffers, Kits, and Tubes Webcast on AddThis.com... Conferences & Meetings

319

Solid-State Lighting: Text-Alternative Version: Walking Through Examples of  

NLE Websites -- All DOE Office Websites (Extended Search)

Text-Alternative Version: Text-Alternative Version: Walking Through Examples of Real LM-79 & LM-80 Reports to someone by E-mail Share Solid-State Lighting: Text-Alternative Version: Walking Through Examples of Real LM-79 & LM-80 Reports on Facebook Tweet about Solid-State Lighting: Text-Alternative Version: Walking Through Examples of Real LM-79 & LM-80 Reports on Twitter Bookmark Solid-State Lighting: Text-Alternative Version: Walking Through Examples of Real LM-79 & LM-80 Reports on Google Bookmark Solid-State Lighting: Text-Alternative Version: Walking Through Examples of Real LM-79 & LM-80 Reports on Delicious Rank Solid-State Lighting: Text-Alternative Version: Walking Through Examples of Real LM-79 & LM-80 Reports on Digg Find More places to share Solid-State Lighting: Text-Alternative

320

Solid-State Lighting: LED Replacement Lamps: Current Performance and the  

NLE Websites -- All DOE Office Websites (Extended Search)

LED Replacement Lamps: Current LED Replacement Lamps: Current Performance and the Latest on ENERGY STAR® to someone by E-mail Share Solid-State Lighting: LED Replacement Lamps: Current Performance and the Latest on ENERGY STAR® on Facebook Tweet about Solid-State Lighting: LED Replacement Lamps: Current Performance and the Latest on ENERGY STAR® on Twitter Bookmark Solid-State Lighting: LED Replacement Lamps: Current Performance and the Latest on ENERGY STAR® on Google Bookmark Solid-State Lighting: LED Replacement Lamps: Current Performance and the Latest on ENERGY STAR® on Delicious Rank Solid-State Lighting: LED Replacement Lamps: Current Performance and the Latest on ENERGY STAR® on Digg Find More places to share Solid-State Lighting: LED Replacement Lamps: Current Performance and the Latest on ENERGY STAR® on

Note: This page contains sample records for the topic "oled solid state" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Solid-State Lighting: Text-Alternative Version: Model Specification for LED  

NLE Websites -- All DOE Office Websites (Extended Search)

Information Information Resources Printable Version Share this resource Send a link to Solid-State Lighting: Text-Alternative Version: Model Specification for LED Roadway Luminaires Webcast to someone by E-mail Share Solid-State Lighting: Text-Alternative Version: Model Specification for LED Roadway Luminaires Webcast on Facebook Tweet about Solid-State Lighting: Text-Alternative Version: Model Specification for LED Roadway Luminaires Webcast on Twitter Bookmark Solid-State Lighting: Text-Alternative Version: Model Specification for LED Roadway Luminaires Webcast on Google Bookmark Solid-State Lighting: Text-Alternative Version: Model Specification for LED Roadway Luminaires Webcast on Delicious Rank Solid-State Lighting: Text-Alternative Version: Model Specification for LED Roadway Luminaires Webcast on Digg

322

Solid-State Lighting: Model Specification for Adaptive Control and Remote  

NLE Websites -- All DOE Office Websites (Extended Search)

Market-Based Programs Printable Version Share this resource Send a link to Solid-State Lighting: Model Specification for Adaptive Control and Remote Monitoring of LED Roadway Luminaires, V1.0 to someone by E-mail Share Solid-State Lighting: Model Specification for Adaptive Control and Remote Monitoring of LED Roadway Luminaires, V1.0 on Facebook Tweet about Solid-State Lighting: Model Specification for Adaptive Control and Remote Monitoring of LED Roadway Luminaires, V1.0 on Twitter Bookmark Solid-State Lighting: Model Specification for Adaptive Control and Remote Monitoring of LED Roadway Luminaires, V1.0 on Google Bookmark Solid-State Lighting: Model Specification for Adaptive Control and Remote Monitoring of LED Roadway Luminaires, V1.0 on Delicious Rank Solid-State Lighting: Model Specification for Adaptive Control

323

Solid-State Lighting: SSL Luminaire Performance in the Lab: Just How Well  

NLE Websites -- All DOE Office Websites (Extended Search)

SSL Luminaire Performance in SSL Luminaire Performance in the Lab: Just How Well Do They Perform? to someone by E-mail Share Solid-State Lighting: SSL Luminaire Performance in the Lab: Just How Well Do They Perform? on Facebook Tweet about Solid-State Lighting: SSL Luminaire Performance in the Lab: Just How Well Do They Perform? on Twitter Bookmark Solid-State Lighting: SSL Luminaire Performance in the Lab: Just How Well Do They Perform? on Google Bookmark Solid-State Lighting: SSL Luminaire Performance in the Lab: Just How Well Do They Perform? on Delicious Rank Solid-State Lighting: SSL Luminaire Performance in the Lab: Just How Well Do They Perform? on Digg Find More places to share Solid-State Lighting: SSL Luminaire Performance in the Lab: Just How Well Do They Perform? on AddThis.com...

324

Solid-State Lighting: Text-Alternative Version: CALiPER Round 7 Testing  

NLE Websites -- All DOE Office Websites (Extended Search)

Round 7 Testing Results and SSL Product Life Issues to someone by Round 7 Testing Results and SSL Product Life Issues to someone by E-mail Share Solid-State Lighting: Text-Alternative Version: CALiPER Round 7 Testing Results and SSL Product Life Issues on Facebook Tweet about Solid-State Lighting: Text-Alternative Version: CALiPER Round 7 Testing Results and SSL Product Life Issues on Twitter Bookmark Solid-State Lighting: Text-Alternative Version: CALiPER Round 7 Testing Results and SSL Product Life Issues on Google Bookmark Solid-State Lighting: Text-Alternative Version: CALiPER Round 7 Testing Results and SSL Product Life Issues on Delicious Rank Solid-State Lighting: Text-Alternative Version: CALiPER Round 7 Testing Results and SSL Product Life Issues on Digg Find More places to share Solid-State Lighting: Text-Alternative

325

Solid-State Lighting: Text-Alternative Version: ENERGY STAR® for SSL:  

NLE Websites -- All DOE Office Websites (Extended Search)

Information Information Resources Printable Version Share this resource Send a link to Solid-State Lighting: Text-Alternative Version: ENERGY STAR® for SSL: Getting Ready for September 30 to someone by E-mail Share Solid-State Lighting: Text-Alternative Version: ENERGY STAR® for SSL: Getting Ready for September 30 on Facebook Tweet about Solid-State Lighting: Text-Alternative Version: ENERGY STAR® for SSL: Getting Ready for September 30 on Twitter Bookmark Solid-State Lighting: Text-Alternative Version: ENERGY STAR® for SSL: Getting Ready for September 30 on Google Bookmark Solid-State Lighting: Text-Alternative Version: ENERGY STAR® for SSL: Getting Ready for September 30 on Delicious Rank Solid-State Lighting: Text-Alternative Version: ENERGY STAR® for SSL: Getting Ready for September 30 on Digg

326

Solid-State Lighting: Text-Alternative Version: DOE Five Year  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE DOE Five Year Commercialization Support Plan to someone by E-mail Share Solid-State Lighting: Text-Alternative Version: DOE Five Year Commercialization Support Plan on Facebook Tweet about Solid-State Lighting: Text-Alternative Version: DOE Five Year Commercialization Support Plan on Twitter Bookmark Solid-State Lighting: Text-Alternative Version: DOE Five Year Commercialization Support Plan on Google Bookmark Solid-State Lighting: Text-Alternative Version: DOE Five Year Commercialization Support Plan on Delicious Rank Solid-State Lighting: Text-Alternative Version: DOE Five Year Commercialization Support Plan on Digg Find More places to share Solid-State Lighting: Text-Alternative Version: DOE Five Year Commercialization Support Plan on AddThis.com... Conferences & Meetings

327

Solid-State Lighting: Using the Street and Parking Facility Lighting  

NLE Websites -- All DOE Office Websites (Extended Search)

Using the Street and Parking Using the Street and Parking Facility Lighting Retrofit Financial Analysis Tool to someone by E-mail Share Solid-State Lighting: Using the Street and Parking Facility Lighting Retrofit Financial Analysis Tool on Facebook Tweet about Solid-State Lighting: Using the Street and Parking Facility Lighting Retrofit Financial Analysis Tool on Twitter Bookmark Solid-State Lighting: Using the Street and Parking Facility Lighting Retrofit Financial Analysis Tool on Google Bookmark Solid-State Lighting: Using the Street and Parking Facility Lighting Retrofit Financial Analysis Tool on Delicious Rank Solid-State Lighting: Using the Street and Parking Facility Lighting Retrofit Financial Analysis Tool on Digg Find More places to share Solid-State Lighting: Using the Street and

328

Solid-State Lighting: Text-Alternative Version: Successful Selection of LED  

NLE Websites -- All DOE Office Websites (Extended Search)

Text-Alternative Version: Text-Alternative Version: Successful Selection of LED Streetlight Luminaires Webcast to someone by E-mail Share Solid-State Lighting: Text-Alternative Version: Successful Selection of LED Streetlight Luminaires Webcast on Facebook Tweet about Solid-State Lighting: Text-Alternative Version: Successful Selection of LED Streetlight Luminaires Webcast on Twitter Bookmark Solid-State Lighting: Text-Alternative Version: Successful Selection of LED Streetlight Luminaires Webcast on Google Bookmark Solid-State Lighting: Text-Alternative Version: Successful Selection of LED Streetlight Luminaires Webcast on Delicious Rank Solid-State Lighting: Text-Alternative Version: Successful Selection of LED Streetlight Luminaires Webcast on Digg Find More places to share Solid-State Lighting: Text-Alternative

329

Solid-State Lighting: DOE and Northwest Partners Host Three-Day Market  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE and Northwest Partners Host DOE and Northwest Partners Host Three-Day Market Introduction Workshop in Portland to someone by E-mail Share Solid-State Lighting: DOE and Northwest Partners Host Three-Day Market Introduction Workshop in Portland on Facebook Tweet about Solid-State Lighting: DOE and Northwest Partners Host Three-Day Market Introduction Workshop in Portland on Twitter Bookmark Solid-State Lighting: DOE and Northwest Partners Host Three-Day Market Introduction Workshop in Portland on Google Bookmark Solid-State Lighting: DOE and Northwest Partners Host Three-Day Market Introduction Workshop in Portland on Delicious Rank Solid-State Lighting: DOE and Northwest Partners Host Three-Day Market Introduction Workshop in Portland on Digg Find More places to share Solid-State Lighting: DOE and Northwest

330

Solid-State Lighting: Text-Alternative Version: MSSLC Member Case Studies -  

NLE Websites -- All DOE Office Websites (Extended Search)

MSSLC MSSLC Member Case Studies - LED Street Lighting Programs Webinar to someone by E-mail Share Solid-State Lighting: Text-Alternative Version: MSSLC Member Case Studies - LED Street Lighting Programs Webinar on Facebook Tweet about Solid-State Lighting: Text-Alternative Version: MSSLC Member Case Studies - LED Street Lighting Programs Webinar on Twitter Bookmark Solid-State Lighting: Text-Alternative Version: MSSLC Member Case Studies - LED Street Lighting Programs Webinar on Google Bookmark Solid-State Lighting: Text-Alternative Version: MSSLC Member Case Studies - LED Street Lighting Programs Webinar on Delicious Rank Solid-State Lighting: Text-Alternative Version: MSSLC Member Case Studies - LED Street Lighting Programs Webinar on Digg Find More places to share Solid-State Lighting: Text-Alternative

331

Solid-State Lighting: Hitting the Target: ENERGY STAR® SSL Outdoor Area  

NLE Websites -- All DOE Office Websites (Extended Search)

Hitting the Target: ENERGY Hitting the Target: ENERGY STAR® SSL Outdoor Area Lighting Webcast to someone by E-mail Share Solid-State Lighting: Hitting the Target: ENERGY STAR® SSL Outdoor Area Lighting Webcast on Facebook Tweet about Solid-State Lighting: Hitting the Target: ENERGY STAR® SSL Outdoor Area Lighting Webcast on Twitter Bookmark Solid-State Lighting: Hitting the Target: ENERGY STAR® SSL Outdoor Area Lighting Webcast on Google Bookmark Solid-State Lighting: Hitting the Target: ENERGY STAR® SSL Outdoor Area Lighting Webcast on Delicious Rank Solid-State Lighting: Hitting the Target: ENERGY STAR® SSL Outdoor Area Lighting Webcast on Digg Find More places to share Solid-State Lighting: Hitting the Target: ENERGY STAR® SSL Outdoor Area Lighting Webcast on AddThis.com...

332

Solid-State Lighting: Text-Alternative Version: Hitting the Target: ENERGY  

NLE Websites -- All DOE Office Websites (Extended Search)

Text-Alternative Version: Text-Alternative Version: Hitting the Target: ENERGY STAR® SSL Outdoor Area Lighting to someone by E-mail Share Solid-State Lighting: Text-Alternative Version: Hitting the Target: ENERGY STAR® SSL Outdoor Area Lighting on Facebook Tweet about Solid-State Lighting: Text-Alternative Version: Hitting the Target: ENERGY STAR® SSL Outdoor Area Lighting on Twitter Bookmark Solid-State Lighting: Text-Alternative Version: Hitting the Target: ENERGY STAR® SSL Outdoor Area Lighting on Google Bookmark Solid-State Lighting: Text-Alternative Version: Hitting the Target: ENERGY STAR® SSL Outdoor Area Lighting on Delicious Rank Solid-State Lighting: Text-Alternative Version: Hitting the Target: ENERGY STAR® SSL Outdoor Area Lighting on Digg Find More places to share Solid-State Lighting: Text-Alternative

333

Solid-State Lighting: Text-Alternative Version: Evaluating LED Street  

NLE Websites -- All DOE Office Websites (Extended Search)

Evaluating LED Street Lighting Solutions to someone by E-mail Evaluating LED Street Lighting Solutions to someone by E-mail Share Solid-State Lighting: Text-Alternative Version: Evaluating LED Street Lighting Solutions on Facebook Tweet about Solid-State Lighting: Text-Alternative Version: Evaluating LED Street Lighting Solutions on Twitter Bookmark Solid-State Lighting: Text-Alternative Version: Evaluating LED Street Lighting Solutions on Google Bookmark Solid-State Lighting: Text-Alternative Version: Evaluating LED Street Lighting Solutions on Delicious Rank Solid-State Lighting: Text-Alternative Version: Evaluating LED Street Lighting Solutions on Digg Find More places to share Solid-State Lighting: Text-Alternative Version: Evaluating LED Street Lighting Solutions on AddThis.com... Conferences & Meetings Presentations

334

Solid-State Lighting: Text-Alternative Version: LEDs for Interior Office  

NLE Websites -- All DOE Office Websites (Extended Search)

LEDs LEDs for Interior Office Applications to someone by E-mail Share Solid-State Lighting: Text-Alternative Version: LEDs for Interior Office Applications on Facebook Tweet about Solid-State Lighting: Text-Alternative Version: LEDs for Interior Office Applications on Twitter Bookmark Solid-State Lighting: Text-Alternative Version: LEDs for Interior Office Applications on Google Bookmark Solid-State Lighting: Text-Alternative Version: LEDs for Interior Office Applications on Delicious Rank Solid-State Lighting: Text-Alternative Version: LEDs for Interior Office Applications on Digg Find More places to share Solid-State Lighting: Text-Alternative Version: LEDs for Interior Office Applications on AddThis.com... Conferences & Meetings Presentations Publications

335

Solid-State Lighting: L Prize(tm): The Race for Super Efficient Light Bulbs  

NLE Websites -- All DOE Office Websites (Extended Search)

L Prize(tm): The Race for Super L Prize(tm): The Race for Super Efficient Light Bulbs to someone by E-mail Share Solid-State Lighting: L Prize(tm): The Race for Super Efficient Light Bulbs on Facebook Tweet about Solid-State Lighting: L Prize(tm): The Race for Super Efficient Light Bulbs on Twitter Bookmark Solid-State Lighting: L Prize(tm): The Race for Super Efficient Light Bulbs on Google Bookmark Solid-State Lighting: L Prize(tm): The Race for Super Efficient Light Bulbs on Delicious Rank Solid-State Lighting: L Prize(tm): The Race for Super Efficient Light Bulbs on Digg Find More places to share Solid-State Lighting: L Prize(tm): The Race for Super Efficient Light Bulbs on AddThis.com... Conferences & Meetings Presentations Publications Webcasts Videos Tools L Prize(tm): The Race for Super Efficient Light Bulbs

336

Co Solid-State NMR as a New Probe for Elucidating Metal Binding in Polynucleotides  

E-Print Network (OSTI)

59 Co Solid-State NMR as a New Probe for Elucidating Metal Binding in Polynucleotides Christopher V for [Mg(H2O)6]2+ , and of high-resolution solid-state 59 Co NMR as a spectroscopic probe. Such strategy quenches fast cationic exchanges between bound and free states, while exploiting the superior NMR

Frydman, Lucio

337

EPRI Family of Multi-Functional Low-Cost Solid-State Switchgear: Requirements Definition Phase  

Science Conference Proceedings (OSTI)

This report describes the findings of the research performed to assess the requirements for a next generation solid-state breakers ("all solid-state" as well as "hybrid" designs), identify the application areas, and evaluate the economic and technical considerations for different technologies and design options for a family of low-cost solid-state switchgears. The report outlines a research roadmap for design and development of the proposed technology and identifies the key functionalities and criteria t...

2005-12-22T23:59:59.000Z

338

Solid-State Lighting: LED Site Lighting in the Commercial Building Sector:  

NLE Websites -- All DOE Office Websites (Extended Search)

Site Lighting in the Site Lighting in the Commercial Building Sector: Opportunities, Challenges, and the CBEA Performance Specification to someone by E-mail Share Solid-State Lighting: LED Site Lighting in the Commercial Building Sector: Opportunities, Challenges, and the CBEA Performance Specification on Facebook Tweet about Solid-State Lighting: LED Site Lighting in the Commercial Building Sector: Opportunities, Challenges, and the CBEA Performance Specification on Twitter Bookmark Solid-State Lighting: LED Site Lighting in the Commercial Building Sector: Opportunities, Challenges, and the CBEA Performance Specification on Google Bookmark Solid-State Lighting: LED Site Lighting in the Commercial Building Sector: Opportunities, Challenges, and the CBEA Performance Specification on Delicious

339

Application of light emitting diodes as solid state light sources in analytical chemistry.  

E-Print Network (OSTI)

??Several analytical systems were developed with light emitting diodes (LEDs) as solid state light sources. With an LED as a light source, liquid core waveguide (more)

Eom, In Yong

2005-01-01T23:59:59.000Z

340

Solid State Reactions in TEA Precipitated Cr-ZnO Nanoparticles and ...  

Science Conference Proceedings (OSTI)

Abstract Scope, This work reports the preliminary results about solid state reactions ... Active Titania-Based Nanoparticles for Composite Propellant Combustion.

Note: This page contains sample records for the topic "oled solid state" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Solid-State Phase Change Technology for Use in Passive Solar ...  

Solid-State Phase Change Technology for Use in Passive Solar Building Materials Contact Information: Jeremy Nelson Phone: 970.491.7100 Email: ...

342

High energy bursts from a solid state laser operated in the heat capacity limited regime  

DOE Patents (OSTI)

Solid state laser technology is a very well developed field and numerous embodiments and modes of operation have been demonstrated. A more recent development has been the pumping of a solid state laser active medium with an array of diode lasers (diode pumping, for short). These diode pump packages have previously been developed to pump solid state lasers with good efficiency, but low average power. This invention is a method and the resulting apparatus for operating a solid state laser in the heat capacity mode. Instead of cooling the laser, the active medium will heat up until it reaches some maximum acceptable temperature. The waste heat is stored in the active medium itself.

Albrecht, G.; George, E.V.; Krupke, W. [and others

1994-12-31T23:59:59.000Z

343

AlxIn1-xP Amber LEDs for Solid-State Lighting  

Switching to solid-state lamps is forecast to result in a 46% reduction in lighting energy consumption by 2030. Cumulative energy savings 2010-2030: ...

344

Titanium Oxides Thin Film Anodes for All-Solid-State Lithium Ion ...  

Science Conference Proceedings (OSTI)

Metallic lithium is not a suitable anode material for all-solid-state thin film batteries ... Application of Biomass Waste Materials in the Nano Mineral Synthesis.

345

Solution-Processable Transparent Conductive Hole Injection Electrode for OLED SSL  

SciTech Connect

An interconnected network of silver nanowires has been used as transparent anode in OLED devices. This layer was deposited by spin-coating and slot-die coating from an aqueous nanowire suspension. The sheet resistance of the film was 10ohms/sq with a transmission (including the glass substrate) of higher than 85%. The first phase of the project focused on the implementation of this nanowire layer with a hole-injection-layer (HIL) which has been developed at Plextronics and has been shown to provide good stability and efficiency in conventional OLED devices. We modified the HIL solution such that it coated reasonably well with suitable surface morphology so that actual devices can be manufactured. During the second phase we investigated the hole-injection and stability of hole-onlydevices. We determined that the use of the nanowire network as anode does not introduce an additional degradation mechanism since the observed device characteristics did not differ from those made with ITO anode. We then proceeded to make actual OLED devices with this nanowire / HIL stack and achieved device characteristics similar state-of-the-art OLED devices with a single junction. In order to gain traction with potential OLED manufacturers, we decided to contract Novaled to prepare large-area demonstrators for us. For these devices, we used an allevaporated stack, i.e. we did use Novaled??s HIL material instead of Plextronics??. We successfully fabricated demonstrators with an area of 25cm2 with a double or triple junction stack. Minor stack optimizations were necessary to achieve efficacies and lifetime equivalent with ITO devices made with the same devices stack. Due to the reduced microcavity effect, the color of the emitted light is significantly more stable with respect to the viewing angle compared to ITO devices. This fact in conjunction with the promise of lower production cost due to the elimination of the ITO sputtering process and the direct patterning of the anode layer are the obvious advantages of this technology. The project has shown that this nanowire technology is a viable option to achieve OLED devices with good lifetime and efficiency and we are currently working with manufacturers to utilize this technology in a production setting.

None

2012-07-15T23:59:59.000Z

346

The Hybrid Solid Oxide Fuel Cell (SOFC) and Gas Turbine (GT) Systems Steady State Modeling  

E-Print Network (OSTI)

The Hybrid Solid Oxide Fuel Cell (SOFC) and Gas Turbine (GT) Systems Steady State Modeling Penyarat plants offer high cycle efficiencies. In this work a hybrid solid oxide fuel cell and gas turbine power, Gas turbine, Hybrid, Solid Oxide Fuel Cell hal-00703135,version1-31May2012 Author manuscript

Paris-Sud XI, Université de

347

High Efficiency LED Lamp for Solid-State Lighting  

SciTech Connect

This report contains a summary of technical achievements during a three-year project to demonstrate high efficiency, solid-state lamps based on gallium nitride/silicon carbide light-emitting diodes. Novel chip designs and fabrication processes are described for a new type of nitride light-emitting diode with the potential for very high efficiency. This work resulted in the demonstration of blue light-emitting diodes in the one watt class that achieved up to 495 mW of light output at 350 mA drive current, corresponding to quantum and wall plug efficiencies of 51% and 45%, respectively. When combined with a phosphor in Cree's 7090 XLamp package, these advanced blue-emitting devices resulted in white light-emitting diodes whose efficacy exceeded 85 lumens per watt. In addition, up to 1040 lumens at greater than 85 lumens per watt was achieved by combining multiple devices to make a compact white lamp module with high optical efficiency.

James Ibbetson

2006-12-31T23:59:59.000Z

348

HIGH-EFFICIENCY NITRIDE-BASED SOLID-STATE LIGHTING  

SciTech Connect

In this second annual report we summarize the progress in the second-year period of Department of Energy contract DE-FC26-01NT41203, entitled ''High- Efficiency Nitride-Based Solid-State Lighting''. The two teams, from the University of California at Santa Barbara (Principle Investigator: Dr. Shuji Nakamura) and Rensselaer Polytechnic Institute (led by Dr. N. Narendran), are pursuing the goals of this contract from thin film growth, characterization, and packaging standpoints. The UCSB team has recently made significant progress in the development of light-emitting diodes (LEDs) with AlGaN active regions emitting in the ultraviolet (UV), resonant-cavity LEDs (RCLEDs), as well as lateral epitaxial overgrowth (LEO) techniques to obtain large-area non-polar GaN films with low average dislocation density. The Rensselaer team has benchmarked the performance of commercially available LED systems and has also conducted efforts to develop an optimized RCLED packaging scheme, including development of advanced epoxy encapsulant chemistries.

Paul T. Fini; Shuji Nakamura

2003-10-30T23:59:59.000Z

349

Papers on Solid-State Lighting at Sandia National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

| Sandia Press Releases & News Coverage | RESEARCH, REVIEW PAPERS, PRESENTATIONS Both directly as part of its GCLDRD, as well as indirectly in many other programs, Sandia conducts a wide range of research relevant to Solid-State Lighting. Bibliographies of publications (pdf file - 319kb) and patents (pdf file - 138kb) from Jan 1992 to Jul 2003, and a bibliography of presentations (pdf file - 143kb) from Jan 2000 to Jul 2003, can be found here. A bibliography of publications and patents during the October 2000 to September 2003 period is contained in the final GCLDRD report described previously. Here, we give snapshots of some of our research, review papers and presentations. Fundamental Materials Physics Conventional GaN-based materials are grown on highly-lattice-mismatched sapphire substrates and hence have very high defect densities. Their typical p-type dopant is Mg, which is not always active but can be compensated by H and other common impurities. And, optimal device designs often require incorporation of Al, which requires high temperatures, and of In, which requires low temperatures. These and other complications result in materials properties that depend sensitively on growth conditions and are poorly understood.

350

2010 Ceramics, Solid State Studies in Gordon Research Conference  

DOE Green Energy (OSTI)

The 2010 Gordon Conference on Solid State Studies in Ceramics will present forefront research on ceramic materials in energy conversion, storage, and environmental sustainability. Oxide materials in advanced Li-ion batteries will be featured, including first principles computational methods, new experimental methods, novel synthesis, and the design of batteries that exploit nanoscale cathode materials. Several speakers address advances in oxides for solar applications, including photo-catalysts for solar hydrogen production and dye sensitized solar cells, along with thin film photovoltaics. Fast ionic conducting ceramics in electrochemical energy conversion and storage will be addressed for fuel cells and electrochemical storage. New concepts for electrochemical capacitor materials will be addressed, as will thermoelectric, geopolymers, and ceramics in nuclear energy. The Conference will bring together investigators at the forefront of their field as well as junior scientists in a collegial atmosphere, with programmed discussion sessions and informal gatherings in the afternoons and evenings. Poster presentations provide opportunities for junior scientists and graduate students to present their work and exchange ideas with leaders in the field. This Conference provides an avenue for scientists from different disciplines to explore new ideas and promotes cross-disciplinary collaborations in the various research areas represented.

John Halloran

2010-08-20T23:59:59.000Z

351

Multiport solid-state imager characterization at variable pixel rates  

SciTech Connect

The imaging performance of an 8-port Full Frame Transfer Charge Coupled Device (FFT CCD) as a function of several parameters including pixel clock rate is presented. The device, model CCD- 13, manufactured by English Electric Valve (EEV) is a 512 {times} 512 pixel array designed with four individual programmable bidirectional serial registers and eight output amplifiers permitting simultaneous readout of eight segments (128 horizontal {times} 256 vertical pixels) of the array. The imager was evaluated in Los Alamos National Laboratory`s High-Speed Solid-State Imager Test Station at true pixel rates as high as 50 MHz for effective imager pixel rates approaching 400 MHz from multiporting. Key response characteristics measured include absolute responsivity, Charge-Transfer-Efficiency (CTE), dynamic range, resolution, signal-to-noise ratio, and electronic and optical crosstalk among the eight video channels. Preliminary test results and data obtained from the CCD-13 will be presented and the versatility/capabilities of the test station will be reviewed.

Yates, G.J.; Albright, K.A. [Los Alamos National Lab., NM (United States); Turko, B.T. [Lawrence Berkeley Lab., CA (United States)

1993-08-01T23:59:59.000Z

352

Solid-state energy storage module employing integrated interconnect board  

DOE Patents (OSTI)

The present invention is directed to an improved electrochemical energy storage device. The electrochemical energy storage device includes a number of solid-state, thin-film electrochemical cells which are selectively interconnected in series or parallel through use of an integrated interconnect board. The interconnect board is typically disposed within a sealed housing which also houses the electrochemical cells, and includes a first contact and a second contact respectively coupled to first and second power terminals of the energy storage device. The interconnect board advantageously provides for selective series or parallel connectivity with the electrochemical cells, irrespective of electrochemical cell position within the housing. In one embodiment, a sheet of conductive material is processed by employing a known milling, stamping, or chemical etching technique to include a connection pattern which provides for flexible and selective interconnecting of individual electrochemical cells within the housing, which may be a hermetically sealed housing. Fuses and various electrical and electro-mechanical devices, such as bypass, equalization, and communication devices for example, may also be mounted to the interconnect board and selectively connected to the electrochemical cells.

Rouillard, Jean (Saint-Luc, CA); Comte, Christophe (Montreal, CA); Daigle, Dominik (St-Hyacinthe, CA); Hagen, Ronald A. (Stillwater, MN); Knudson, Orlin B. (Vadnais Heights, MN); Morin, Andre (Longueuil, CA); Ranger, Michel (Lachine, CA); Ross, Guy (Beloeil, CA); Rouillard, Roger (Beloeil, CA); St-Germain, Philippe (Outremont, CA); Sudano, Anthony (Laval, CA); Turgeon, Thomas A. (Fridley, MN)

2000-01-01T23:59:59.000Z

353

Solid State Division progress report for period ending September 30, 1984  

SciTech Connect

During the reporting period, relatively minor changes have occurred in the research areas of interest to the Division. Nearly all the research of the Division can be classified broadly as mission-oriented basic research. Topics covered include: theoretical solid state physics; surface and near-surface properties of solids; defects in solids; transport properties of solids; neutron scattering; and preparation and characterization of research materials. (GHT)

Green, P.H.; Watson, D.M. (eds.)

1985-03-01T23:59:59.000Z

354

Method and system for making integrated solid-state fire-sets and detonators  

DOE Patents (OSTI)

A slapper detonator comprises a solid-state high-voltage capacitor, a low-jitter dielectric breakdown switch and trigger circuitry, a detonator transmission line, an exploding foil bridge, and a flier material. All these components are fabricated in a single solid-state device using thin film deposition techniques.

O' Brien, Dennis W. (Livermore, CA); Druce, Robert L. (Union City, CA); Johnson, Gary W. (Livermore, CA); Vogtlin, George E. (Fremont, CA); Barbee, Jr., Troy W. (Palo Alto, CA); Lee, Ronald S. (Livermore, CA)

1998-01-01T23:59:59.000Z

355

Industrial Solid-State Energy Harvesting: Mechanisms and Examples Matthew Kocoloski, Carnegie Mellon University  

E-Print Network (OSTI)

Industrial Solid-State Energy Harvesting: Mechanisms and Examples Matthew Kocoloski, Carnegie the potential for solid-state energy harvesting in industrial applications. In contrast to traditional heat are on the cusp of practical use. Finally, we present an example of energy harvesting using thermionic devices

Kissock, Kelly

356

Solid-state fault current limiter for voltage sag mitigation and its parameters design  

Science Conference Proceedings (OSTI)

Due to the difficulty in electric distribution network reinforcement and the interconnection of more distributed generations, fault current level has become a serious problem in system operations. The utilization of solid-state fault current limiters ... Keywords: power quality, simulation, solid-state fault current limiter, voltage sag

B. Boribun; T. Kulworawanichpong

2010-07-01T23:59:59.000Z

357

Energy Department Provides $7 Million for Solid-State Lighting Product  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7 Million for Solid-State Lighting 7 Million for Solid-State Lighting Product Development Energy Department Provides $7 Million for Solid-State Lighting Product Development June 6, 2006 - 2:15pm Addthis Funding to total $10 million with industry contribution WASHINGTON, DC - U.S. Department of Energy (DOE) Secretary Samuel W. Bodman today announced that DOE will provide a total of $7 million for five cost-shared projects for solid-state lighting (SSL) product development. Solid-state lighting has the potential to more than double the efficiency of general lighting systems, reducing overall U.S. energy consumption and saving consumers money. Companies selected are from California, Massachusetts, and New York. They will provide a 30 percent average cost-share, demonstrating a strong industry commitment to the technology.

358

Solid-State Lighting: Text-Alternative Version: Using the Street and  

NLE Websites -- All DOE Office Websites (Extended Search)

Using Using the Street and Parking Facility Lighting Retrofit Financial Analysis Tool to someone by E-mail Share Solid-State Lighting: Text-Alternative Version: Using the Street and Parking Facility Lighting Retrofit Financial Analysis Tool on Facebook Tweet about Solid-State Lighting: Text-Alternative Version: Using the Street and Parking Facility Lighting Retrofit Financial Analysis Tool on Twitter Bookmark Solid-State Lighting: Text-Alternative Version: Using the Street and Parking Facility Lighting Retrofit Financial Analysis Tool on Google Bookmark Solid-State Lighting: Text-Alternative Version: Using the Street and Parking Facility Lighting Retrofit Financial Analysis Tool on Delicious Rank Solid-State Lighting: Text-Alternative Version: Using the Street and Parking Facility Lighting Retrofit Financial Analysis Tool on

359

Solid-State Lighting: Text-Alternative Version: SSL Luminaire Performance  

NLE Websites -- All DOE Office Websites (Extended Search)

SSL SSL Luminaire Performance in the Lab: Just How Well Do They Perform? to someone by E-mail Share Solid-State Lighting: Text-Alternative Version: SSL Luminaire Performance in the Lab: Just How Well Do They Perform? on Facebook Tweet about Solid-State Lighting: Text-Alternative Version: SSL Luminaire Performance in the Lab: Just How Well Do They Perform? on Twitter Bookmark Solid-State Lighting: Text-Alternative Version: SSL Luminaire Performance in the Lab: Just How Well Do They Perform? on Google Bookmark Solid-State Lighting: Text-Alternative Version: SSL Luminaire Performance in the Lab: Just How Well Do They Perform? on Delicious Rank Solid-State Lighting: Text-Alternative Version: SSL Luminaire Performance in the Lab: Just How Well Do They Perform? on Digg

360

Energy Department Provides $7 Million for Solid-State Lighting Product  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Department Provides $7 Million for Solid-State Lighting Energy Department Provides $7 Million for Solid-State Lighting Product Development Energy Department Provides $7 Million for Solid-State Lighting Product Development June 6, 2006 - 2:15pm Addthis Funding to total $10 million with industry contribution WASHINGTON, DC - U.S. Department of Energy (DOE) Secretary Samuel W. Bodman today announced that DOE will provide a total of $7 million for five cost-shared projects for solid-state lighting (SSL) product development. Solid-state lighting has the potential to more than double the efficiency of general lighting systems, reducing overall U.S. energy consumption and saving consumers money. Companies selected are from California, Massachusetts, and New York. They will provide a 30 percent average cost-share, demonstrating a strong industry commitment to the technology.

Note: This page contains sample records for the topic "oled solid state" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Solid-State Lighting Home Page for Semiconductor light emitting diodes  

NLE Websites -- All DOE Office Websites (Extended Search)

Since 04/21/2002 Since 04/21/2002 Solid-State Lighting Archival Website As of September 1, 2006, this website is not being actively maintained. We hope that the collected news items, tracking reports, literature summaries, and links to various industry resources will be of archival value to the SSL community. Please visit Sandia's current and active Solid-State Lighting Energy Frontier Research Center website at http://ssls.sandia.gov/. Solid-State Lighting Science Energy Frontier Research Center The Mission of this site was to provide a comprehensive portal to the emerging knowledge that will enable the promise of solid-state lighting The site was active between December 2001 and September 2006, and the goal was: " … to gather together information relevant to solid-state lighting, and

362

Solid-State Lighting: CALiPER Report 20.1: Subjective Evaluation of Beam  

NLE Websites -- All DOE Office Websites (Extended Search)

Report 20.1: Subjective Report 20.1: Subjective Evaluation of Beam Quality, Shadow Quality, and Color Quality for LED PAR38 Lamps to someone by E-mail Share Solid-State Lighting: CALiPER Report 20.1: Subjective Evaluation of Beam Quality, Shadow Quality, and Color Quality for LED PAR38 Lamps on Facebook Tweet about Solid-State Lighting: CALiPER Report 20.1: Subjective Evaluation of Beam Quality, Shadow Quality, and Color Quality for LED PAR38 Lamps on Twitter Bookmark Solid-State Lighting: CALiPER Report 20.1: Subjective Evaluation of Beam Quality, Shadow Quality, and Color Quality for LED PAR38 Lamps on Google Bookmark Solid-State Lighting: CALiPER Report 20.1: Subjective Evaluation of Beam Quality, Shadow Quality, and Color Quality for LED PAR38 Lamps on Delicious Rank Solid-State Lighting: CALiPER Report 20.1: Subjective

363

Solid-State Lighting: Member Case Studies: LED Street Lighting Programs in  

NLE Websites -- All DOE Office Websites (Extended Search)

Member Case Studies: LED Street Member Case Studies: LED Street Lighting Programs in Algona (IA), Asheville (NC), and Boston (MA) to someone by E-mail Share Solid-State Lighting: Member Case Studies: LED Street Lighting Programs in Algona (IA), Asheville (NC), and Boston (MA) on Facebook Tweet about Solid-State Lighting: Member Case Studies: LED Street Lighting Programs in Algona (IA), Asheville (NC), and Boston (MA) on Twitter Bookmark Solid-State Lighting: Member Case Studies: LED Street Lighting Programs in Algona (IA), Asheville (NC), and Boston (MA) on Google Bookmark Solid-State Lighting: Member Case Studies: LED Street Lighting Programs in Algona (IA), Asheville (NC), and Boston (MA) on Delicious Rank Solid-State Lighting: Member Case Studies: LED Street Lighting Programs in Algona (IA), Asheville (NC), and Boston (MA) on Digg

364

Ris National Laboratory Fuel Cells and Solid State Chemistry Department  

E-Print Network (OSTI)

in solid oxide fuel cells (SOFCs). Doped ceria has 1 #12;2 advantages over conventional zirconia oxide, temperature and oxygen activty. High leak current densities may be deduced from reports on SOFCs with ceria

365

Solid-State Division progress report for period ending March 31, 1983  

Science Conference Proceedings (OSTI)

Progress and activities are reported on: theoretical solid-state physics (surfaces; electronic, vibrational, and magnetic properties; particle-solid interactions; laser annealing), surface and near-surface properties of solids (surface, plasma-material interactions, ion implantation and ion-beam mixing, pulsed-laser and thermal processing), defects in solids (radiation effects, fracture, impurities and defects, semiconductor physics and photovoltaic conversion), transport properties of solids (fast-ion conductors, superconductivity, mass and charge transport in materials), neutron scattering (small-angle scattering, lattice dynamics, magnetic properties, structure and instrumentation), and preparation and characterization of research materials (growth and preparative methods, nuclear waste forms, special materials). (DLC)

Green, P.H.; Watson, D.M. (eds.)

1983-09-01T23:59:59.000Z

366

Solid State Phase Transformations in Uranium-Zirconium Alloys  

E-Print Network (OSTI)

Uranium-10wt% zirconium (U-10Zr) alloy nuclear fuels have been used for decades and new variations are under consideration ranging from U-5Zr to U-50Zr. As a precursor to understanding the fission gas behavior in U-Zr alloys using ion implantation, a basic study on the U-Zr metallurgy was completed using EPMA, DSC, XRD, Optical microscopy, and TEM with a focus on solid state phase transformations in alloys containing 2, 5, 10, 20, 30, and 50wt% zirconium. Alloys were cast by crucible melting using high temperature furnace under argon atmosphere in yttrium oxide crucibles and various thermal profiles were used to study phase transformations in these alloys. Using TEM, XRD, and DSC data, it was ascertained that athermal-?, along with martensitic ?1, formed in all alloys quenched from ? phase. XRD could detect the presence of athermal-? only in U-20, 30 and 50wt%Zr alloys. BSE images for as-cast alloys of 2, 5, 10, 20, and 30wt%Zr had lamellar microstructure with lamellae rich in zirconium. All alloy samples clearly showed a heating transformation pertaining to ? ? ? in DSC data while XRD could only confirm the presence of ? phase in U-20, 30, and 50wt%Zr alloys. An explanation is offered for the absence of ? phase peaks in uranium-rich alloys based on its formation mechanism. Alloy samples of U-2, 5, and 10wt%Zr were step-cooled from ? phase by annealing in the (? + ?) phase field before cooling to room temperature revealed broad peaks for ? phase indicating incomplete collapse of {111}? planes. Both as cast and ?- quenched alloys were annealed at 600degreeC, in the (? + ?) phase field for 1, 3, 7, and 30 days. Microstructures of the samples in both cases contained uranium-rich matrix and zirconium-rich precipitates and WDS analyses were consistent with their being ?-U and ? phase respectively. However, XRD data for annealed alloys never showed peaks for ? phase even though its area fraction was within the detection limits. Moreover, the peaks which were present in U-20wt%Zr vanished after annealing for 7 days. Based on the data obtained, it is suggested that it is more appropriate to consider the presence of metastable diffusional-? instead of a stable ? in the as-cast alloys and that it is not stable at 600degreeC.

Irukuvarghula, Sandeep

2013-08-01T23:59:59.000Z

367

MidAmerican Energy (Electric) - Municipal Solid-State Lighting Grant  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

MidAmerican Energy (Electric) - Municipal Solid-State Lighting MidAmerican Energy (Electric) - Municipal Solid-State Lighting Grant Program MidAmerican Energy (Electric) - Municipal Solid-State Lighting Grant Program < Back Eligibility Local Government Savings Category Appliances & Electronics Commercial Lighting Lighting Maximum Rebate Minimum project size for the full $5,000 grant is 20 fixtures; smaller projects will receive a $250 per-fixture grant. Program Info State Iowa Program Type Utility Grant Program Rebate Amount Up to $5,000 Provider MidAmerican Energy Company MidAmerican Energy offers grants to munipalities which implement solid-state roadway street lighting upgrades. Grants of up to $5,000 are available to participating entities who install eligible roadway lighting fixtures. Participants must be an Iowa electric governmental customer of

368

On-site demonstration procedure for solid-state fluorescent ballast  

SciTech Connect

The report was presented to plant engineers and managers who were involved in an on-site demonstration of EETech solid-state ballasts for two 40-watt T12 fluorescent lamps. The report includes a brief review of the operating principles of solid-state fluorescent ballasts and the status of development achieved during the LBL program. The remainder of the test describes the techniques of managing and instrumenting a test area for assessing the performance of solid-state fluorescent ballasts at an occupied site.

Verderber, R.; Morse, O.

1980-09-01T23:59:59.000Z

369

Solid-state semiconductors are better alternatives to arc-lamps for efficient and uniform illumination in minimal access surgery  

E-Print Network (OSTI)

of technical and ergonomic limitations. White light-emitting diodes (LEDs) are energy-efficient solid- state Illumination Á Light-emitting diode Á Minimal access surgery Á Solid-state semiconductor In the 1950s

Rosso, Lula

370

Solid State Division progress report for period ending March 31, 1992  

SciTech Connect

During this period, the division conducted a broad, interdisciplinary materials research program with emphasis on theoretical solid state physics, superconductivity, neutron scattering, synthesis and characterization of materials, ion beam and laser processing, and the structure of solids and surfaces. The High Flux Isotope Reactor was returned to full operation.

Green, P.H.; Hinton, L.W. (eds.)

1992-09-01T23:59:59.000Z

371

Numerical analysis of nanostructures for enhanced light extraction from OLEDs  

E-Print Network (OSTI)

Nanostructures, like periodic arrays of scatters or low-index gratings, are used to improve the light outcoupling from organic light-emitting diodes (OLED). In order to optimize geometrical and material properties of such structures, simulations of the outcoupling process are very helpful. The finite element method is best suited for an accurate discretization of the geometry and the singular-like field profile within the structured layer and the emitting layer. However, a finite element simulation of the overall OLED stack is often beyond available computer resources. The main focus of this paper is the simulation of a single dipole source embedded into a twofold infinitely periodic OLED structure. To overcome the numerical burden we apply the Floquet transform, so that the computational domain reduces to the unit cell. The relevant outcoupling data are then gained by inverse Flouqet transforming. This step requires a careful numerical treatment as reported in this paper.

Zschiedrich, L; Burger, S; Schmidt, F; 10.1117/12.2001132

2013-01-01T23:59:59.000Z

372

High-Efficiency Nitride-Based Solid-State Lighting  

SciTech Connect

In this final technical progress report we summarize research accomplished during Department of Energy contract DE-FC26-01NT41203, entitled ''High-Efficiency Nitride-Based Solid-State Lighting''. Two teams, from the University of California at Santa Barbara (Principle Investigator: Dr. Shuji Nakamura) and the Lighting Research Center at Rensselaer Polytechnic Institute (led by Dr. N. Narendran), pursued the goals of this contract from thin film growth, characterization, and packaging/luminaire design standpoints. The UCSB team initially pursued the development of blue gallium nitride (GaN)-based vertical-cavity surface-emitting lasers, as well as ultraviolet GaN-based light emitting diodes (LEDs). In Year 2, the emphasis shifted to resonant-cavity light emitting diodes, also known as micro-cavity LEDs when extremely thin device cavities are fabricated. These devices have very directional emission and higher light extraction efficiency than conventional LEDs. Via the optimization of thin-film growth and refinement of device processing, we decreased the total cavity thickness to less than 1 {micro}m, such that micro-cavity effects were clearly observed and a light extraction efficiency of over 10% was reached. We also began the development of photonic crystals for increased light extraction, in particular for so-called ''guided modes'' which would otherwise propagate laterally in the device and be re-absorbed. Finally, we pursued the growth of smooth, high-quality nonpolar a-plane and m-plane GaN films, as well as blue light emitting diodes on these novel films. Initial nonpolar LEDs showed the expected behavior of negligible peak wavelength shift with increasing drive current. M-plane LEDs in particular show promise, as unpackaged devices had unsaturated optical output power of {approx} 3 mW at 200 mA drive current. The LRC's tasks were aimed at developing the subcomponents necessary for packaging UCSB's light emitting diodes, and packaging them to produce a white light fixture. During the third and final year of the project, the LRC team investigated alternate packaging methods for the white LED device to achieve at least 25 percent more luminous efficacy than traditional white LEDs; conducted optical ray-tracing analyses and human factors studies to determine the best form factor for the white light source under development, in terms of high luminous efficacy and greater acceptance by subjects; and developed a new die encapsulant using silicone-epoxy resins that showed less yellowing and slower degradation. At the conclusion of this project, the LRC demonstrated a new packaging method, called scattered photon extraction (SPE), that produced an average luminous flux and corresponding average efficacy of 90.7 lm and 36.3 lm/W, respectively, compared with 56.5 lm and 22.6 lm/W for a similar commercial white LED package. At low currents, the SPE package emitted white light with an efficacy of over 80 lm/W and had chromaticity values very close to the blackbody locus. The SPE package showed an overall improvement of 61% for this particular comparison, exceeding the LRC's third-year goal of 25% improvement.

Paul T. Fini; Shuji Nakamura

2005-07-30T23:59:59.000Z

373

1D Solid-state NMR Procedure (Bruker AVANCE Machines running TopSpin under WINDOWS XP)  

E-Print Network (OSTI)

1D Solid-state NMR Procedure (Bruker AVANCE Machines running TopSpin under WINDOWS XP) Jerry Hu, x NMR yourself. Be aware of High Radio-Frequency Power in Solid-state NMR. Take everything ferromagnetic of Contents 1D Solid-state NMR Procedure ................................................................... 1

Akhmedov, Azer

374

Solid-State Lighting: Text-Alternative Version: The L Prize-Winning LED A19  

NLE Websites -- All DOE Office Websites (Extended Search)

The L The L Prize-Winning LED A19 Replacement-What Commercial Building Owners/Operators Can Expect in 2012 to someone by E-mail Share Solid-State Lighting: Text-Alternative Version: The L Prize-Winning LED A19 Replacement-What Commercial Building Owners/Operators Can Expect in 2012 on Facebook Tweet about Solid-State Lighting: Text-Alternative Version: The L Prize-Winning LED A19 Replacement-What Commercial Building Owners/Operators Can Expect in 2012 on Twitter Bookmark Solid-State Lighting: Text-Alternative Version: The L Prize-Winning LED A19 Replacement-What Commercial Building Owners/Operators Can Expect in 2012 on Google Bookmark Solid-State Lighting: Text-Alternative Version: The L Prize-Winning LED A19 Replacement-What Commercial Building Owners/Operators Can Expect in 2012 on Delicious

375

Secretary of Energy Announces $5 Million for Solid State Lighting Research  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

$5 Million for Solid State Lighting $5 Million for Solid State Lighting Research Secretary of Energy Announces $5 Million for Solid State Lighting Research October 5, 2006 - 9:08am Addthis ALBUQUERQUE, NM - U.S. Department of Energy (DOE) Secretary Samuel W. Bodman today announced the selection of seven projects, valued at nearly $5 million, for Solid State Lighting (SSL) research in nanotechnology. SSL has the potential to more than double the efficiency of general lighting systems, reducing overall U.S. energy consumption and saving consumers money. Sandia National Laboratory is expected to receive approximately $2.6 million of the total funding. This funding comes from DOE's Office of Energy Efficiency and Renewable Energy. "Following the President's call for new technology in the Advanced Energy

376

Secretary of Energy Announces $5 Million for Solid State Lighting Research  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Secretary of Energy Announces $5 Million for Solid State Lighting Secretary of Energy Announces $5 Million for Solid State Lighting Research Secretary of Energy Announces $5 Million for Solid State Lighting Research October 5, 2006 - 9:08am Addthis ALBUQUERQUE, NM - U.S. Department of Energy (DOE) Secretary Samuel W. Bodman today announced the selection of seven projects, valued at nearly $5 million, for Solid State Lighting (SSL) research in nanotechnology. SSL has the potential to more than double the efficiency of general lighting systems, reducing overall U.S. energy consumption and saving consumers money. Sandia National Laboratory is expected to receive approximately $2.6 million of the total funding. This funding comes from DOE's Office of Energy Efficiency and Renewable Energy. "Following the President's call for new technology in the Advanced Energy

377

The Solid State Division Oak Ridge National Laboratory A Brief History  

NLE Websites -- All DOE Office Websites (Extended Search)

Solid State Solid State Division Oak Ridge National Laboratory A Brief History 1952-1995 Cover: The trajectory of a "channeled" ion in a crystal surrounded by journal covers featuring other Solid State Division research. Clockwise from upper left: laser ablation, glass research, surface science, sintering, neutron scattering, Z-contrast electron microscopy, ion implantation, superconductivity, laser annealing, and thin-film batteries. Foreword For more than four decades, the Solid State Division at Oak Ridge National Laboratory has been at the forefront of interdisciplinary research in condensed matter science and materials physics. This brief history chronicles the development of the division and its major scientific and technological contributions from 1950 to 1995. During this period,

378

Solid-State Lighting Mission Statement and Feature Page for Semiconductor  

NLE Websites -- All DOE Office Websites (Extended Search)

Since 04/21/2002 New! Redesigned Solid-State Lighting Website This month, we introduce a redesign of our Solid-State Lighting Website. The site has been active since December 2001, and since that time has undergone a steady evolution. However, our mission has remained the same: "to gather together information relevant to solid-state lighting, and to help stimulate the development of the science and technology foundation necessary to enable the promise and potential of solid-state lighting." The organization and content of this redesign is similar to that of the previous site. We will continue to include a comprehensive overview of science, technology, business and national news; an up-to-date list of relevant conferences; and world-wide web links. But, as national

379

Solid-State Lighting: Text-Alternative Version: LED Site Lighting in the  

NLE Websites -- All DOE Office Websites (Extended Search)

Site Lighting in the Commercial Building Sector: Opportunities, Challenges, Site Lighting in the Commercial Building Sector: Opportunities, Challenges, and the CBEA Performance Specification to someone by E-mail Share Solid-State Lighting: Text-Alternative Version: LED Site Lighting in the Commercial Building Sector: Opportunities, Challenges, and the CBEA Performance Specification on Facebook Tweet about Solid-State Lighting: Text-Alternative Version: LED Site Lighting in the Commercial Building Sector: Opportunities, Challenges, and the CBEA Performance Specification on Twitter Bookmark Solid-State Lighting: Text-Alternative Version: LED Site Lighting in the Commercial Building Sector: Opportunities, Challenges, and the CBEA Performance Specification on Google Bookmark Solid-State Lighting: Text-Alternative Version: LED Site

380

Solid-State Lighting: A Bold Goal: Boston Manufacturing R&D Workshop...  

NLE Websites -- All DOE Office Websites (Extended Search)

A Bold Goal: Boston Manufacturing R&D Workshop Video to someone by E-mail Share Solid-State Lighting: A Bold Goal: Boston Manufacturing R&D Workshop Video on Facebook Tweet about...

Note: This page contains sample records for the topic "oled solid state" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Dynamic nuclear polarization in biomolecular solid state NMR : methods and applications in peptides and membrane proteins  

E-Print Network (OSTI)

Solid state NMR can probe structure and dynamics on length scales from the atomic to the supramolecular. However, low sensitivity limits its application in macromolecules. NMR sensitivity can be improved by dynamic nuclear ...

Bajaj, Vikram Singh

2007-01-01T23:59:59.000Z

382

Solid-State Lighting: Text-Alternative Version: L Prize(tm):...  

NLE Websites -- All DOE Office Websites (Extended Search)

L Prize(tm): The Race for Super Efficient Light Bulbs to someone by E-mail Share Solid-State Lighting: Text-Alternative Version: L Prize(tm): The Race for Super Efficient Light...

383

Solid-State Lighting: CALiPER Round 7 Testing Results and SSL...  

NLE Websites -- All DOE Office Websites (Extended Search)

7 Testing Results and SSL Product Life Issues to someone by E-mail Share Solid-State Lighting: CALiPER Round 7 Testing Results and SSL Product Life Issues on Facebook Tweet about...

384

SOLID STATE DIVISION ANNUAL PROGRESS REPORT FOR PERIOD ENDING AUGUST 31, 1961  

SciTech Connect

Progress in solid state physics is reported on the following topics: theory, metals and alloys, nonmetals, reactor materials, and special projects. Twenty-one separate abstracts were prepared. (M.C.G.)

1961-12-29T23:59:59.000Z

385

Methods for measuring work surface illuminance in adaptive solid state lighting networks  

E-Print Network (OSTI)

The inherent control flexibility implied by solid-state lighting - united with the rich details offered by sensor networks - prompts us to rethink lighting control. In this research, we propose several techniques for ...

Lee, Byungkun

386

Solid-State Lighting: Life-Cycle Assessment of Energy and Environmenta...  

NLE Websites -- All DOE Office Websites (Extended Search)

Life-Cycle Assessment of Energy and Environmental Impacts of LED Lighting Products to someone by E-mail Share Solid-State Lighting: Life-Cycle Assessment of Energy and...

387

Solid-State Lighting: Webinar: The L Prize-Winning LED A19Replacement...  

NLE Websites -- All DOE Office Websites (Extended Search)

Webinar: The L Prize-Winning LED A19 Replacement-What Commercial Building OwnersOperators Can Expect in 2012 to someone by E-mail Share Solid-State Lighting: Webinar: The L...

388

Solid-State Lighting: Text Alternative Version: Life-Cycle Assessment...  

NLE Websites -- All DOE Office Websites (Extended Search)

Text Alternative Version: Life-Cycle Assessment of Energy and Environmental Impacts of LED Lighting Products to someone by E-mail Share Solid-State Lighting: Text Alternative...

389

Applications of DNP and solid-state NMR for protein structure determination  

E-Print Network (OSTI)

Magic Angle Spinning (MAS) solid state nuclear magnetic resonance (SSNMR) is a developing method for determining the structures and studying the dynamics and functions of biological molecules. This method is particularly ...

Mayrhofer, Rebecca Maria

2010-01-01T23:59:59.000Z

390

IntenCity - 2 Solid State Outdoor Luminaire SL-3200 High Output LED Street Light  

Science Conference Proceedings (OSTI)

The product under assessment is an advanced lighting technology8212a solid state outdoor luminarie light emitting diode (LED) street lighting system designed to provide various levels of direct white light.

2008-06-12T23:59:59.000Z

391

Commercialization of gallium nitride nanorod arrays on silicon for solid-state lighting  

E-Print Network (OSTI)

One important component in energy usage is lighting, which is currently dominated by incandescent and fluorescent lamps. However, due to potentially higher efficiencies and thus higher energy savings, solid-state lighting ...

Wee, Qixun

2008-01-01T23:59:59.000Z

392

Methodology and applications of high resolution solid-state NMR to structure determination of proteins  

E-Print Network (OSTI)

A number of methodological developments and applications of solid-state NMR for assignment and high resolution structure determination of microcrystalline proteins and amyloid fibrils are presented. Magic angle spinning ...

Lewandowski, Jzef Romuald

2008-01-01T23:59:59.000Z

393

Manifestations of nuclear anapole moments in solid state NMR  

E-Print Network (OSTI)

We suggest to use insulating garnets doped by rare earth ions for measurements of nuclear anapole moments. A parity violating shift of the NMR frequency arises due to the combined effect of the lattice crystal field and the anapole moment of the rare-earth nucleus. We show that there are two different observable effects related to frequency: 1) A shift of the NMR frequency in an external electric field applied to the solid. The value of the shift is about \\Delta \

T. N. Mukhamedjanov; O. P. Sushkov; J. M. Cadogan

2004-05-10T23:59:59.000Z

394

Solid-State Lighting: IESNA LM-80-08 - An Overview of the Test Procedure  

NLE Websites -- All DOE Office Websites (Extended Search)

IESNA LM-80-08 - An Overview IESNA LM-80-08 - An Overview of the Test Procedure and How it is Used for ENERGY STAR® to someone by E-mail Share Solid-State Lighting: IESNA LM-80-08 - An Overview of the Test Procedure and How it is Used for ENERGY STAR® on Facebook Tweet about Solid-State Lighting: IESNA LM-80-08 - An Overview of the Test Procedure and How it is Used for ENERGY STAR® on Twitter Bookmark Solid-State Lighting: IESNA LM-80-08 - An Overview of the Test Procedure and How it is Used for ENERGY STAR® on Google Bookmark Solid-State Lighting: IESNA LM-80-08 - An Overview of the Test Procedure and How it is Used for ENERGY STAR® on Delicious Rank Solid-State Lighting: IESNA LM-80-08 - An Overview of the Test Procedure and How it is Used for ENERGY STAR® on Digg Find More places to share Solid-State Lighting: IESNA LM-80-08 -

395

Solid-state laser system for laser cooling of Sodium  

E-Print Network (OSTI)

We demonstrate a frequency-stabilized, all-solid laser source at 589 nm with up to 800 mW output power. The laser relies on sum-frequency generation from two laser sources at 1064 nm and 1319 nm through a PPKTP crystal in a doubly-resonant cavity. We obtain conversion efficiency as high as 2 W/W^2 after optimization of the cavity parameters. The output wavelength is tunable over 60 GHz, which is sufficient to lock on the Sodium D2 line. The robustness, beam quality, spectral narrowness and tunability of our source make it an alternative to dye lasers for atomic physics experiments with Sodium atoms.

Emmanuel Mimoun; Luigi de Sarlo; Jean-Jacques Zondy; Jean Dalibard; Fabrice Gerbier

2009-08-03T23:59:59.000Z

396

Solid-state laser system for laser cooling of Sodium  

E-Print Network (OSTI)

We demonstrate a frequency-stabilized, all-solid laser source at 589 nm with up to 800 mW output power. The laser relies on sum-frequency generation from two laser sources at 1064 nm and 1319 nm through a PPKTP crystal in a doubly-resonant cavity. We obtain conversion efficiency as high as 2 W/W^2 after optimization of the cavity parameters. The output wavelength is tunable over 60 GHz, which is sufficient to lock on the Sodium D2 line. The robustness, beam quality, spectral narrowness and tunability of our source make it an alternative to dye lasers for atomic physics experiments with Sodium atoms.

Mimoun, Emmanuel; Zondy, Jean-Jacques; Dalibard, Jean; Gerbier, Fabrice

2009-01-01T23:59:59.000Z

397

Solid-state radioluminscent compsitions and light sources  

DOE Patents (OSTI)

Two new types of radioluminescent (RL) compositions light sources are provided. The first type is an all-organic system, consisting of covalently bound tritium within a solid, optically clear polymeric matrix. The matrix contains organic scintillation dyes that capture excitation energy from beta decay and red-shift the energy in a stepwise fashion, after which a chosen wavelength is emitted as fluorescence. The second type of RL light source consists of a zeolite crystalline material, in which material's intralattice spaces a tritiated compound and a luminophore are sorbed, and which material is optionally further dispersed in a refractive index-matched polymer matrix. 10 refs.

Clough, R.L.; Gill, J.T.; Hawkins, D.B. Renschler, C.L.; Shepodd, T.J.; Smith, H.M.

1989-11-13T23:59:59.000Z

398

Enhanced performance of organic light-emitting diodes (OLEDs) and OLED-based photoluminescent sensing platforms by novel microstructures and device architectures  

SciTech Connect

After a general introduction to OLEDs and OLED-based PL sensors, the transient emission mechanism of guest-host OLEDs is described both experimentally and theoretically. A monolithic and easy-to-apply process is demonstrated for fabricating multicolor microcavity OLEDs (that improve the sensor platform). The outcoupling issues of OLEDs at the substrate/air interface are addressed by using a microstructured polymer film resulting from a PS and polyethylene glycol (PEG) mixture. Based on the understanding of OLEDs and their improvement, research was done in order to realize integrated all organic-based O{sub 2} and pH sensors with improved signal intensity and sensitivity. The sensor design modification and optimization are summarized

Liu, Rui [Ames Laboratory

2012-08-01T23:59:59.000Z

399

Interim report on the state-of-the-art of solid-state motor controllers. Part 4. Failure-rate and failure-mode data  

SciTech Connect

An assessment of the reliability of solid-state motor controllers for nuclear power plants is made. Available data on failure-rate and failure-mode data for solid-state motor controllers based on industrial operating experience is meager; the data are augmented by data on other solid-state power electronic devices that are shown to have components similar to those found in solid-state motor controllers. In addition to large nonnuclear solid-state adjustable-speed motor drives, the reliability of nuclear plant inverter systems and high-voltage solid-state dc transmission-line converters is assessed. Licensee Event Report analyses from several sources, the open literature, and personal communications are used to determine the realiability of solid-state devices typical of those expected to be used in nuclear power plants in terms of failures per hour.

Jaross, R.A.

1983-09-01T23:59:59.000Z

400

Solid oxide fuel cell commercialization in the United States  

DOE Green Energy (OSTI)

This paper discusses aspects of solid oxide fuel cell (SOFC) technology commercialization in the US. It provides the status of the major SOFC developments occurring in the US by addressing both intermediate- and high-temperature SOFC`s, several SOFC designs, including both planar and tubular, and SOFC system configurations. This paper begins with general characteristics, proceeds with designs and system configurations, and finishes with a discussion of commercialization, funding, and policies. The US Department of Energy`s (DOE) Morgantown Energy Technology Center (METC) is the lead US DOE center for the implementation of a Research, Development, and Demonstration Program to develop fuel cells for stationary power. METC`s stakeholders include the electric power and gas industries, as well as fuel cell developers and others. This paper offers some new perspectives on SOFC development and commercialization which come from the broad consideration of the commercialization efforts of the entire fuel cell industry.

Williams, M.C.

1995-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "oled solid state" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Roll-to-Roll Solution-Processible Small-Molecule OLEDs  

SciTech Connect

The objective of this program is to develop key knowledge and make critical connections between technologies needed to enable low-cost manufacturing of OLED lighting products. In particular, the program was intended to demonstrate the feasibility of making high performance Small-Molecule OLEDs (SM-OLED) using a roll-to-roll (R2R) wet-coating technique by addressing the following technical risks (1) Whether the wet-coating technique can provide high performance OLEDs, (2) Whether SM-OLED can be made in a R2R manner, (3) What are the requirements for coating equipment, and (4) Whether R2R OLEDs can have the same performance as the lab controls. The program has been managed and executed according to the Program Management Plan (PMP) that was first developed at the beginning of the program and further revised accordingly as the program progressed. Significant progress and risk reductions have been accomplished by the end of the program. Specific achievements include: (1) Demonstrated that wet-coating can provide OLEDs with high LPW and long lifetime; (2) Demonstrated R2R OLEDs can be as efficient as batch controls (Figure 1) (3) Developed & validated basic designs for key equipment necessary for R2R SM-OLEDs; (4) Developed know-hows & specifications on materials & ink formulations critical to wetcoating; (5) Developed key R2R processes for each OLED layer (6) Identified key materials and components such as flexible barrier substrates necessary for R2R OLEDs.

Liu, Jie Jerry

2012-07-31T23:59:59.000Z

402

Structural insight into the interaction of amyloid- peptide with biological membranes by solid state NMR.  

E-Print Network (OSTI)

state NMR. Gerhard Gröbnera , Clemens Glaubitzb , Philip T. F. Williamsonc , Timothy Hadinghamd this information is very challenging since any structural biology method including NMR has to deal with a very complex, non-cyrstalline, and disordered system. Perspectives on Solid State NMR in Biology (Eds. S

Watts, Anthony

403

Determination of interfacial states in solid heterostructures using a variable-energy positron beam  

DOE Patents (OSTI)

A method and means is provided for characterizing interfacial electron states in solid heterostructures using a variable energy positron beam to probe the solid heterostructure. The method includes the steps of directing a positron beam having a selected energy level at a point on the solid heterostructure so that the positron beam penetrates into the solid heterostructure and causes positrons to collide with the electrons at an interface of the solid heterostructure. The number and energy of gamma rays emitted from the solid heterostructure as a result of the annihilation of positrons with electrons at the interface are detected. The data is quantified as a function of the Doppler broadening of the photopeak about the 511 keV line created by the annihilation of the positrons and electrons at the interface, preferably, as an S-parameter function; and a normalized S-parameter function of the data is obtained. The function of data obtained is compared with a corresponding function of the Doppler broadening of the annihilation photopeak about 511 keV for a positron beam having a second energy level directed at the same material making up a portion of the solid heterostructure. The comparison of these functions facilitates characterization of the interfacial states of electrons in the solid heterostructure at points corresponding to the penetration of positrons having the particular energy levels into the interface of the solid heterostructure. Accordingly, the invention provides a variable-energy non-destructive probe of solid heterostructures, such as SiO[sub 2]/Si, MOS or other semiconductor devices.

Asokakumar, P.P.V.; Lynn, K.G.

1993-04-06T23:59:59.000Z

404

Solid State Division progress report for period ending March 31, 1997  

SciTech Connect

This report covers research progress in the Solid State Division from April 1, 1995, through March 31, 1997. During this period, the division conducted a broad, interdisciplinary materials research program in support of Department of Energy science and technology missions. The report includes brief summaries of research activities in condensed matter theory, neutron scattering, synthesis and characterization of materials, ion beam and laser processing, and the structure of solids and surfaces. An addendum includes listings of division publications and professional activities.

Green, P.H.; Hinton, L.W. [eds.] [eds.

1997-12-01T23:59:59.000Z

405

Solid-State Lighting: Registration for Email Distribution List for DOE  

NLE Websites -- All DOE Office Websites (Extended Search)

Program » Solid-State Lighting » Program » Solid-State Lighting » Registration Bookmark and Share Registration for Email Distribution List for DOE Solid-State Lighting Portfolio Updates By registering for the Department of Energy's Solid-State Lighting (SSL) email distribution list, you will receive information on public meetings, document postings, and other issues pertinent to the DOE SSL Portfolio.* Please provide the following information: (*Indicates required information.) First Name* Last Name* Organization* Occupation* Select your occupation Researcher Manufacturer Distributor Lighting Designer/Professional Architect Lighting Trade Association Energy Efficiency Organization Utility Local/State/Federal Government Media/Communications Other Address 1* Address 2 City* State* Select your state / province Alabama Alaska Arizona Arkansas California Colorado Connecticut Delaware District of Columbia Florida Georgia Guam Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Puerto Rico Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virgin Islands Virginia Washington West Virginia Wisconsin Wyoming ------------U.S. Military------------ America (AA) Overseas Europe (AE) Overseas Pacific (AP) ---------------Canada--------------- Alberta British Columbia Manitoba New Brunswick Newfoundland and Labrador Nova Scotia Northwest Territories Nunavut Ontario Prince Edward Island Quebec Saskatchewan Yukon Territory --------------------------------------- Outside US and Canada

406

Solid-state photonic interfaces using semiconductor quantum dots  

E-Print Network (OSTI)

. Boyer de la Giroday, N. Skold, I. Farrer, C.A. Nicoll, D.A. Ritchie, and A.J. Shields Nature Physics, 6, 947 (2010) 3. All-electrical coherent control of the exciton states in a single quantum dot A. Boyer de la Giroday, A.J. Bennett, M.A. Pooley, R... O. Thomas, C.L. Salter, A.J. Bennett, R.M. Stevenson, M.A. Pooley, M.B. Ward, R.B. Patel, A. Boyer de la Giroday, N. Skold, I. Far- rer, C.A. Nicoll, D.A. Ritchie, and A.J. Shields Proc. QCMC 2010 2. Observation of anticrossings in the exciton state...

Boyer de la Giroday, Antoine

2012-02-07T23:59:59.000Z

407

MidAmerican Energy (Electric) - Municipal Solid-State Lighting Grant  

Open Energy Info (EERE)

MidAmerican Energy (Electric) - Municipal Solid-State Lighting Grant MidAmerican Energy (Electric) - Municipal Solid-State Lighting Grant Program (Iowa) No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Summary Last modified on November 9, 2012. Financial Incentive Program Place Iowa Additional Place applies to MidAmerican Energy Name MidAmerican Energy (Electric) - Municipal Solid-State Lighting Grant Program Incentive Type Utility Grant Program Applicable Sector Local Government Eligible Technologies Lighting, Lighting Controls/Sensors, Induction Lighitng, LED Lighting Active Incentive Yes Implementing Sector Utility Energy Category Energy Efficiency Incentive Programs Amount Up to $5,000 Equipment Requirements Fixtures must have an efficiency rating equal to or greater than 66 lumens per watt as tested under Illuminating Engineering Society of North America LM-79-08 testing to qualify for a grant.

408

Amber LEDs for Solid-State Lighting: White light with unprecendented efficiencies  

NLE Websites -- All DOE Office Websites (Extended Search)

Amber LEDs for Solid-State Lighting: Amber LEDs for Solid-State Lighting: White light with unprecedented efficiencies Commercialization Webinar December 10, 2013 2 Agenda for Today's Webinar * Welcome/Logistics * Technology Overview * Commercialization Opportunity * Q&A 3 Presenters Yoriko Morita, PhD MBA licensing manager Kirstin Alberi, PhD inventor 4 Technology Overview * Background/Context * Limitations NREL's Technology Addresses o Substrate material o Efficiency o Manufacturing * Performance Testing Results * Summary of Benefits/Advantages NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Amber LEDs for Solid-State Lighting: White light with unprecedented efficiencies

409

'All-solid-state' electrochemistry of a protein-confined polymer electrolyte film  

Science Conference Proceedings (OSTI)

Interfacial redox behavior of a heme protein (hemoglobin) confined in a solid polymer electrolyte membrane, Nafion (a perfluoro sulfonic acid ionomer) is investigated using a unique 'all-solid-state' electrochemical methodology. The supple phase-separated structure of the polymer electrolyte membrane, with hydrophilic pools containing solvated protons and water molecules, is found to preserve the incorporated protein in its active form even in the solid-state, using UV-visible, Fluorescence (of Tryptophan and Tyrosine residues) and DRIFT (diffuse reflectance infrared Fourier transform) spectroscopy. More specifically, solid-state cyclic voltammetry and electrochemical impedance of the protein-incorporated polymer films reveal that the Fe{sup 2+}-form of the entrapped protein is found to bind molecular oxygen more strongly than the native protein. In the 'all-solid-state' methodology, as there is no need to dip the protein-modified electrode in a liquid electrolyte (like the conventional electrochemical methods), it offers an easier means to study a number of proteins in a variety of polymer matrices (even biomimetic assemblies). In addition, the results of the present investigation could find interesting application in a variety of research disciplines, in addition to its fundamental scientific interest, including protein biotechnology, pharmaceutical and biomimetic chemistry.

Parthasarathy, Meera [Physical and Materials Chemistry Division, National Chemical Laboratory, Pune 411 008, Maharashtra (India); Pillai, Vijayamohanan K. [Physical and Materials Chemistry Division, National Chemical Laboratory, Pune 411 008, Maharashtra (India)], E-mail: vk.pillai@ncl.res.in; Mulla, Imtiaz S. [Physical and Materials Chemistry Division, National Chemical Laboratory, Pune 411 008, Maharashtra (India); Shabab, Mohammed; Khan, M.I. [Biochemical Sciences Division, National Chemical Laboratory, Pune 411 008, Maharashtra (India)

2007-12-07T23:59:59.000Z

410

A quantum logic gate between a solid-state quantum bit and a photon  

E-Print Network (OSTI)

Integrated quantum photonics provides a promising route towards scalable solid-state implementations of quantum networks, quantum computers, and ultra-low power opto-electronic devices. A key component for many of these applications is the photonic quantum logic gate, where the quantum state of a solid-state quantum bit (qubit) conditionally controls the state of a photonic qubit. These gates are crucial for development of robust quantum networks, non-destructive quantum measurements, and strong photon-photon interactions. Here we experimentally realize a quantum logic gate between an optical photon and a solid-state qubit. The qubit is composed of a quantum dot (QD) strongly coupled to a nano-cavity, which acts as a coherently controllable qubit system that conditionally flips the polarization of a photon on picosecond timescales, implementing a controlled-NOT (cNOT) gate. Our results represent an important step towards solid-state quantum networks and provide a versatile approach for probing QD-photon inter...

Kim, Hyochul; Shen, Thomas C; Solomon, Glenn S; Waks, Edo; 10.1038/nphoton.2013.48

2013-01-01T23:59:59.000Z

411

Solid-State Lighting at Sandia National Laboratory - Grand Challenge LDRD  

NLE Websites -- All DOE Office Websites (Extended Search)

| | Sandia Press Releases & News Coverage | GRAND CHALLENGE LDRD PROJECT 6images of light To accelerate the development of the science and technology underlying Solid State Lighting, Sandia initiated, in October 2000, a multi-year Grand Challenge Laboratory Directed Research and Development (GCLDRD) project, " A Revolution in Lighting -- Building the Science and Technology Base for Ultra-Efficient Solid-State Lighting." This project is considered one of Sandia's most successful GCLDRDs. One way in which the SSL GCLDRD was different from others was that it coincided with a larger effort by the SSL community - primarily industrial companies investing in SSL, but also universities, trade organizations, and

412

Parasitic oscillation suppression in solid state lasers using absorbing thin films  

DOE Patents (OSTI)

A thin absorbing film is bonded onto at least certain surfaces of a solid state laser gain medium. An absorbing metal-dielectric multilayer film is optimized for a broad range of incidence angles, and is resistant to the corrosive/erosive effects of a coolant such as water, used in the forced convection cooling of the film. Parasitic oscillations hamper the operation of solid state lasers by causing the decay of stored energy to amplified rays trapped within the gain medium by total and partial internal reflections off the gain medium facets. Zigzag lasers intended for high average power operation require the ASE absorber. 16 figs.

Zapata, L.E.

1994-08-02T23:59:59.000Z

413

The Use of Large Transparent Ceramics in a High Powered, Diode Pumped Solid State Laser  

SciTech Connect

The advent of large transparent ceramics is one of the key enabling technological advances that have shown that the development of very high average power compact solid state lasers is achievable. Large ceramic neodymium doped yttrium aluminum garnet (Nd:YAG) amplifier slabs are used in Lawrence Livermore National Laboratory's (LLNL) Solid State Heat Capacity Laser (SSHCL), which has achieved world record average output powers in excess of 67 kilowatts. We will describe the attributes of using large transparent ceramics, our present system architecture and corresponding performance; as well as describe our near term future plans.

Yamamoto, R; Bhachu, B; Cutter, K; Fochs, S; Letts, S; Parks, C; Rotter, M; Soules, T

2007-09-24T23:59:59.000Z

414

Ultranarrow-Band Photon Pair Source Compatible with Solid State Quantum Memories and Telecommunication Networks  

E-Print Network (OSTI)

We report on a source of ultranarrow-band photon pairs generated by widely nondegenerate cavity-enhanced spontaneous down-conversion. The source is designed to be compatible with Pr3+ solid state quantum memories and telecommunication optical fibers, with signal and idler photons close to 606 nm and 1436 nm, respectively. Both photons have a spectral bandwidth around 2 MHz, matching the bandwidth of Pr3+ doped quantum memories. This source is ideally suited for long distance quantum communication architectures involving solid state quantum memories.

Julia Fekete; Daniel Rielander; Matteo Cristiani; Hugues de Riedmatten

2013-04-25T23:59:59.000Z

415

Obstacles and opportunities in the commercialization of the solid-state-electronic fluorescent-lighting ballast  

SciTech Connect

The Solid State Ballast (SSB) Program, aimed at improving the efficiency of fluorescent lights, is described. The first generation of solid state electronic ballasts has been developed and the technology has been transferred to the private sector. This report examines the opportunities for rapid dissemination of this technology into the marketplace. It includes a description of product characteristics and their influence on the commercialization of the SSB, a description of the technology delivery system presently used by the ballast industry, an analysis of the market for SSB, and identification of some high-leverage opportunities to accelerate the commercialization process. (MCW)

Johnson, D.R.; Marcus, A.A.; Campbell, R.S.; Sommers, P.; Skumatz, L.; Berk, B.; Petty, P.; Eschbach, C.

1981-10-01T23:59:59.000Z

416

Cr/sup 3 +/-doped colquiriite solid state laser material  

DOE Patents (OSTI)

Chromium doped colquiriite, LiCaAlF/sub 6/:Cr/sup 3 +/, is useful as a tunable laser crystal that has a high intrinsic slope efficiency, comparable to or exceeding that of alexandrite, the current leading performer of vibronic sideband Cr/sup 3 +/ lasers. The laser output is tunable from at least 720 nm to 840 nm with a measured slope efficiency of about 60% in a Kr laser pumped laser configuration. The intrinsic slope efficiency (in the limit of large output coupling) may approach the quantum defect limited value of 83%. The high slope efficiency implies that excited state absorption (ESA) is negligible. The potential for efficiency and the tuning range of this material satisfy the requirements for a pump laser for a high density storage medium incorporating Nd/sup 3 +/ or Tm/sup 3 +/ for use in a multimegajoule single shot fusion research facility. 4 figs.

Payne, S.A.; Chase, L.L.; Newkirk, H.W.; Krupke, W.F.

1988-03-31T23:59:59.000Z

417

Cr.sup.3+ -doped colquiriite solid state laser material  

DOE Patents (OSTI)

Chromium doped colquiriite, LiCaAlF.sub.6 :Cr.sup.3+, is useful as a tunable laser crystal that has a high intrinsic slope efficiency, comparable to or exceeding that of alexandrite, the current leading performer of vibronic sideband Cr.sup.3+ lasers. The laser output is tunable from at least 720 nm to 840 nm with a measured slop efficiency of about 60% in a Kr laser pumped laser configuration. The intrinsic slope efficiency (in the limit of large output coupling) may approach the quantum defect limited value of 83%. The high slope efficiency implies that excited state absorption (ESA) is negligible. The potential for efficiency and the tuning range of this material satisfy the requirements for a pump laser for a high density storage medium incorporating Nd.sup.3+ or Tm.sup.3+ for use in a multimegajoule single shot fusion research facility.

Payne, Stephen A. (Castro Valley, CA); Chase, Lloyd L. (Livermore, CA); Newkirk, Herbert W. (Livermore, CA); Krupke, William F. (Pleasanton, CA)

1989-01-01T23:59:59.000Z

418

Innovative Development of Next Generation and Energy Efficient Solid State Light Sources for General Illumination  

SciTech Connect

This two year program resulted in a novel broadband spectrally dynamic solid state illumination source (BSDLED) that uses a dual wavelength light emitting diode (LED) and combinations of phosphors to create a broadband emission that is real-time controllable. Four major focuses of this work were as follows: (1) creation of a two terminal dual wavelength LED with control of the relative intensities of the two emission peaks, (2) bandgap modeling of the two terminal dual LED to explain operation based on the doping profile, (3) novel use of phosphor combinations with dual LEDs to create a broadband spectral power distribution that can be varied to mimic a blackbody radiator over a certain range and (4) investigation of novel doping schemes to create tunnel junctions or equivalent buried current spreading layers in the III-nitrides. Advances were achieved in each of these four areas which could lead to more efficient solid state light sources with greater functionality over existing devices. The two-terminal BSDLED is an important innovation for the solid-state lighting industry as a variable spectrum source. A three-terminal dual emitter was also investigated and appears to be the most viable approach for future spectrally dynamic solid state lighting sources. However, at this time reabsorption of emission between the two active regions limits the usefulness of this device for illumination applications.

Ian Ferguson

2006-07-31T23:59:59.000Z

419

Solid State Division progress report for period ending September 30, 1990  

SciTech Connect

This report covers research progress in the Solid State Division from April 1, 1989, to September 30, 1990. During this period, division research programs were significantly enhanced by the restart of the High-Flux Isotope Reactor (HFIR) and by new initiatives in processing and characterization of materials.

Green, P.H.; Hinton, L.W. (eds.)

1991-03-01T23:59:59.000Z

420

5 (2001) 281282Current Opinion in Solid State and Materials Science Editorial Overview  

E-Print Network (OSTI)

. To achieve high toughness and strength, generation industry in continuous fiber-reinforced ceramic new5 (2001) 281­282Current Opinion in Solid State and Materials Science Editorial Overview Ceramics resistance. Wiederhorn and Ferber provide an update ceramics and ceramic composites for use in gas tubine

Zok, Frank

Note: This page contains sample records for the topic "oled solid state" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Three dimensional solid-state supercapacitors from aligned single-walled carbon nanotube array templates  

E-Print Network (OSTI)

Three dimensional solid-state supercapacitors from aligned single-walled carbon nanotube array- thermore, modeling of supercapacitor architectures utilizing other dielectric layers suggests the ability, and supercapacitor technologies, are being adapted and optimized with nanostructured compo- nents [1­5]. The promise

Gordon, Roy

422

Extended Foerster-Dexter model for correlated donor-acceptor placement in solid state materials  

Science Conference Proceedings (OSTI)

The current theory of donor-acceptor interactions in solid-state materials is based on a random distribution of donors and acceptors through the crystal. In this paper, we present a model to calculate the observable transfer rates for the correlated positioning of donors and acceptors in laser materials. Chemical effects leading to such correlations are discussed.

Rotman, S.R.; Hartmann, F.X.

1987-09-25T23:59:59.000Z

423

Studies of solid state hydrogen storage materials by SAXS and QENS Qing Shi a, b  

E-Print Network (OSTI)

Studies of solid state hydrogen storage materials by SAXS and QENS Qing Shi a, b , Hjalte S on the Earth; moreover, the chemical energy per weight of hydrogen (142MJ/kg) is at least three times larger than that of other chemical fuels1 . However, hydrogen storage is still a key problem remaining

424

Book Review Melinda J. Duer, editor. "Introduction to Solid-State  

E-Print Network (OSTI)

Book Review Melinda J. Duer, editor. "Introduction to Solid-State NMR Spectroscopy" (2004 to many readers. In addition, the 2002 Duer book suffers from a heterogen- eity in level and style, as is usual for multi-author compilations. Duer's latest book is essentially a slimmed-down version of Duer

Levitt, Malcolm H.

425

In situ X-ray diffraction study of thin film Ir/Si solid state reactions  

Science Conference Proceedings (OSTI)

The solid state reaction between a thin (30nm) Ir film and different Si substrates (p-type Si(100), n- and p-type Si(111), silicon on insulator (SOI) and polycrystalline Si) was studied using a combination of in situ X-ray diffraction (XRD), in situ ... Keywords: Ir, NiSi, Si, XRD

W. Knaepen; J. Demeulemeester; D. Deduytsche; J. L. Jordan-Sweet; A. Vantomme; R. L. Van Meirhaeghe; C. Detavernier; C. Lavoie

2010-03-01T23:59:59.000Z

426

SOLID STATE NMR STUDY SUPPORTING THE LITHIUM VACANCY DEFECT MODEL IN CONGRUENT LITHIUM  

E-Print Network (OSTI)

@ Pergamon SOLID STATE NMR STUDY SUPPORTING THE LITHIUM VACANCY DEFECT MODEL IN CONGRUENT LITHIUM Nouember 1993; accepted I March 1994) Abstract-e3Nb and 7Li wideline- as well as MAS-NMR measurements were could be reduced to 0.6kHz by using MAS-NMR with a rotational lrequency of 4000Hz, thsre was no second 7

Bluemel, Janet

427

SOLID STATE DIVISION ANNUAL PROGRESS REPORT FOR PERIOD ENDING MAY 31, 1963  

SciTech Connect

Progress in solid state physics is reported in the following areas: theory, crystals, metals and nonmetals, radiation effects, and other subjects. Separate abstracts were prepared for the fifteen sections of the report. A list of 70 papers and publications is included. (D.C.W.)

1963-08-23T23:59:59.000Z

428

A smart active matrix pixelated OLED display; Smart active matrix pixelated Organic Light Emitting Diode display.  

E-Print Network (OSTI)

??An OLED display has been fabricated and successfully tested with an external optical feedback circuit to demonstrate improvement in uniformity. In addition, the process of (more)

Yu, Jennifer J. (Jennifer Jong-Hwa), 1980-

2004-01-01T23:59:59.000Z

429

FEMP Outdoor Solid State Lighting Intiative: Resources for Outdoor SSL Applications  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Municipal Solid-State Street Lighting Municipal Solid-State Street Lighting Consortium Fact Sheet - The Consortium shares technical information and experi- ences related to LED street and area light- ing demonstrations. The Consortium also serves as an objective resource for evalu- ating new products on the market intended for street and area lighting applications. http://apps1.eere.energy.gov/buildings/ publications/pdfs/ssl/consortium_fs.pdf DOE SSL GATEWAY Demonstration Project Results - DOE GATEWAY dem- onstrations showcase high-performance LED products for general illumination in a variety of commercial and residential applications. Demonstration results pro- vide real-world experience and data on state-of-the-art SSL product performance and cost effectiveness. DOE CALiPER Test Results - The DOE

430

High energy bursts from a solid state laser operated in the heat capacity limited regime  

DOE Patents (OSTI)

High energy bursts are produced from a solid state laser operated in a heat capacity limited regime. Instead of cooling the laser, the active medium is thermally well isolated. As a result, the active medium will heat up until it reaches some maximum acceptable temperature. The waste heat is stored in the active medium itself. Therefore, the amount of energy the laser can put out during operation is proportional to its mass, the heat capacity of the active medium, and the temperature difference over which it is being operated. The high energy burst capacity of a heat capacity operated solid state laser, together with the absence of a heavy, power consuming steady state cooling system for the active medium, will make a variety of applications possible. Alternately, cooling takes place during a separate sequence when the laser is not operating. Industrial applications include new material working processes.

Albrecht, Georg (Livermore, CA); George, E. Victor (Livermore, CA); Krupke, William F. (Pleasanton, CA); Sooy, Walter (Pleasanton, CA); Sutton, Steven B. (Manteca, CA)

1996-01-01T23:59:59.000Z

431

High energy bursts from a solid state laser operated in the heat capacity limited regime  

DOE Patents (OSTI)

High energy bursts are produced from a solid state laser operated in a heat capacity limited regime. Instead of cooling the laser, the active medium is thermally well isolated. As a result, the active medium will heat up until it reaches some maximum acceptable temperature. The waste heat is stored in the active medium itself. Therefore, the amount of energy the laser can put out during operation is proportional to its mass, the heat capacity of the active medium, and the temperature difference over which it is being operated. The high energy burst capacity of a heat capacity operated solid state laser, together with the absence of a heavy, power consuming steady state cooling system for the active medium, will make a variety of applications possible. Alternately, cooling takes place during a separate sequence when the laser is not operating. Industrial applications include new material working processes. 5 figs.

Albrecht, G.; George, E.V.; Krupke, W.F.; Sooy, W.; Sutton, S.B.

1996-06-11T23:59:59.000Z

432

Prediction of residual stresses in high strength carbon steel pipe weld considering solid-state phase transformation effects  

Science Conference Proceedings (OSTI)

In this paper, prediction of axial and hoop residual stresses produced in high strength carbon steel pipe weld was made by employing a sequentially coupled 3-D thermal, metallurgical and mechanical FE model. Solid-state phase transformation during welding ... Keywords: 3-D FE simulation, High strength carbon steel pipe weld, Solid-state phase transformation, Welding residual stresses

Chin-Hyung Lee; Kyong-Ho Chang

2011-01-01T23:59:59.000Z

433

Sixth International Conference on Solid State Lighting, edited by Ian T. Ferguson, Nadarajah Narendran, Tsunemasa Taguchi, Ian E. Ashdown,  

E-Print Network (OSTI)

commercial white light emitting diodes (LEDs) rely on complicated fabrication methods to produce white light: Cadmium Selenide, Nanocrystal, Photoluminescence, Phosphor, White Light, Light Emitting Diode, LED 1. INTRODUCTION 1.1 Solid state lighting Solid state lighting, in the form of white light emitting diodes (LEDs

Weiss, Sharon

434

Structural characterization of water-bearing silicate and aluminosilicate glasses by high-resolution solid-state NMR  

E-Print Network (OSTI)

-resolution solid-state NMR Eric Robert1, , a , Alan Whittington2, , a, , b , Franck Fayona , Michel Pichavantc-resolution solid-state NMR techniques have been applied to hydrous silicate and aluminosilicate glasses: simple are qualitatively similar for these two compositions. From proton NMR experiments, we observe no evidence of proton

Paris-Sud XI, Université de

435

Coal liquefaction process streams characterization and evaluation. Solid-state NMR characterization of coal liquefaction products  

DOE Green Energy (OSTI)

This study clearly demonstrated the usefulness of liquid- and solid-state {sup 13}C- and {sup 1}H-NMR for the examination of process-derived materials from direct coal liquefaction. The techniques can provide data not directly obtainable by other methods to examine the saturation of aromatic rings and to determine the modes of hydrogen utilization during coal liquefaction. In addition, these methods can be used to infer the extent of condensation and retrograde reactions occurring in the direct coal liquefaction process. Five NMR techniques were employed. Solid-state {sup 13}C-NMR measurements were made using the Cross Polarization Magic Angle Spinning (CP/MAS) and Single Pulse (SP) techniques. Solid-state {sup 1}H-NMR measurements were made using the technique of Combined Rotation and Multiple-Pulse spectroscopy (CRAMPS). Conventional liquid-state {sup 12}C- and {sup 1}H-NMR techniques were employed as appropriate. Interpretation of the NMR data, once obtained, is relatively straightforward. Combined with other information, such as elemental analyses and process conversion data, the NMR data prove to be a powerful tool for the examination of direct coal liquefaction process-derived material. Further development and more wide-spread application of this analytical method as a process development tool is justified on the basis of these results.

Miknis, F.P. [Western Research Inst., Laramie, WY (United States)

1991-11-01T23:59:59.000Z

436

Electroluminescence property of organic light emitting diode (OLED)  

Science Conference Proceedings (OSTI)

Transport properties of electrons and holes were investigated not only in a anthracene-containing poly(p-phenylene-ethynylene)- alt - poly(p-phenylene-vinylene) (PPE-PPV) polymer (AnE-PVstat) light emitting diodes (OLED) but also in an ITO/Ag/polymer/Ag electron and ITO/PEDOT:PSS/polymer/Au hole only devices. Mobility of injected carriers followed the Poole-Frenkel type conduction mechanism and distinguished in the frequency range due to the difference of transit times in admittance measurement. Beginning of light output took place at the turn-on voltage (or flat band voltage)

2013-01-01T23:59:59.000Z

437

Other U.S Agencies Initiatives and Programs in Solid-State Lighting  

NLE Websites -- All DOE Office Websites (Extended Search)

Since 09/28/2004 Since 09/28/2004 | National Initiatives | Other U.S. Agencies | Worldwide Programs | OTHER U.S. AGENCIES This website is not being actively maintained -- see note on homepage. The U.S. Department of Energy, through its Office of Energy Efficiency and Renewable Energy, is accelerating directly the development of the science and technology of Solid-State Lighting. But there are a number of other synergistic national programs, sponsored by other U.S. agencies or by other Offices within the U.S. Department of Energy. A few of these are listed here: · Department of Defense: The Defense Advanced Research Projects Agency's SUVOS Program aims to develop semiconductor UV optical sources for bio-agent detection. These UV sources may also be useful, after phosphor down-conversion, for Solid-State Lighting.

438

Hot Technical Papers (Emerging SSL Science and Technology) - Solid-State  

NLE Websites -- All DOE Office Websites (Extended Search)

Headline News | Tracking Reports | Hot Technical Papers |Citation Headline News | Tracking Reports | Hot Technical Papers |Citation Analysis Method | Credits & Disclaimer | HOT TECHNICAL PAPERS In this section, we examine emerging science and technology knowledge domains that may someday intersect solid-state lighting. To do so, we used a citation analysis method similar to that pioneered by the Institute of Scientific Information (ISI). (For more information, see ISI's in-cites website ). The analysis below was conducted in August of 2004 and will be updated periodically. Based on citation analysis, 19 relevant articles emerged as "hot papers". We note that the ways in which emerging science and technology intersect with future engineering applications are difficult (if not impossible) to predict, so we will certainly have missed some SSL-relevant material. Nevertheless, these articles can give some useful perspective on some of the most exciting, current areas of science and technology that may someday be linked with solid-state lighting.

439

High-Efficiency Solid State Cooling Technologies: Non-Equilibrium Asymmetic Thermoelectrics (NEAT) Devices  

SciTech Connect

BEETIT Project: Sheetak is developing a thermoelectric-based solid state cooling system to replace typical air conditioners that use vapor compression to cool air. With noisy mechanical components, vapor compression systems use a liquid refrigerant to circulate within the air conditioner, absorb heat, and pump the heat out into the external environment. With no noisy moving parts or polluting refrigerants, thermoelectric systems rely on an electrical current being passed through the junction of the two different conducting materials to change temperature. Using advanced semiconductor technology, Sheetak is improving solid state cooling systems by using proprietary thermoelectric materials along with other innovations to achieve significant energy efficiency. Sheetaks new design displaces compressor-based technology; improves reliability; and decreases energy usage. Sheetaks use of semiconductor manufacturing methods leads to less material usefacilitating cheaper production.

2010-09-01T23:59:59.000Z

440

Diamond as a solid state quantum computer with a linear chain of nuclear spins system  

E-Print Network (OSTI)

By removing a $^{12}C$ atom from the tetrahedral configuration of the diamond, replace it by a $^{13}C$ atom, and repeating this in a linear direction, it is possible to have a linear chain of nuclear spins one half and to build a solid state quantum computer. One qubit rotation and controlled-not (CNOT) quantum gates are obtained immediately from this configuration, and CNOT quantum gate is used to determined the design parameters of this quantum computer.

G. V. Lpez

2013-10-02T23:59:59.000Z

Note: This page contains sample records for the topic "oled solid state" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

A solid-state PWM phase-shifter. [Pulse Width Modulation  

SciTech Connect

The solid-state, pulse width modulated (PWM) phase-shifter is based on gate-turn-off (GTO) thyristors or other valves with force commutation capabilities. Besides serving the phase-shifter function, it offers regulated control over 3 independent quantities: the real power passing through it and the VARs on both sides to which it is connected. The power transferred can be bidirectional and the VARs can be leading or lagging.

Ooi, Boon Teck; Dai, Shu Zu; Galiana, F.D. (McGill Univ., Montreal (Canada))

1993-04-01T23:59:59.000Z

442

Highly Stable, All-Solid-State Nd:YLF Regenerative Amplifier  

Science Conference Proceedings (OSTI)

A diode-pumped Nd:YLF regenerative amplifier (regen) has been developed and is in use in the 60-beam, 30-kJUV OMEGA laser system's driver line. The high stability, compactness, and reliability of this all-solid-state modular design are the key features of this concept. Stable, millijoule-level output-pulse energies with an overall gain of 109 have been demonstrated.

Okishev,A.V.; Zuegel,J.D.

2004-11-20T23:59:59.000Z

443

Solid-state continuous Lyman-alpha source for laser-cooling of antihydrogen  

SciTech Connect

Cooling antihydrogen atoms is important for future experiments both to test the fundamental CPT symmetry by high-resolution laser spectroscopy and also to measure the gravitational acceleration of antimatter. Laser-cooling of antihydrogen can be done on the strong 1 S-2 P transition at the wavelength of Lyman-alpha (121.6 nm). Ongoing work to set up a solid-state continuous-wave laser source at Lyman-alpha is described.

Walz, Jochen; Beyer, Thomas; Kolbe, Daniel; Markert, Frank; Muellers, Andreas; Scheid, Martin [Institut fuer Physik, Johannes Gutenberg-Universitaet Mainz, Staudinger Weg 7, D-55128 Mainz (Germany)

2008-08-08T23:59:59.000Z

444

Development of a 15-kV Class Solid-State Current Limiter  

Science Conference Proceedings (OSTI)

The solid-state current limiter (SSCL) is a promising technology that can be applied to utility power delivery systems to address the growing problems associated with increasing fault current levels in the electric system. The present utility power delivery infrastructure is on the verge of reaching its maximum capacity and yet demand continues to grow, leading to increases in generation and transmission that result in higher fault currents. The power-electronics-based SSCL is designed to work with the p...

2009-12-23T23:59:59.000Z

445

Development of OLED panel defect detection system through improved otsu algorithm  

Science Conference Proceedings (OSTI)

OLED (Organic light-emitting) displays have been called the next generation of display devices for their unique properties: colorful images, large viewing angle, light weight and power efficiency. Complex manufacture processing makes the screen have ... Keywords: OLED panel, Otsu method, defect detection, image segmentation, subtraction operation

Jian Gao; Zhiliang Wang; Yanyun Liu; Chuanxia Jian; Xin Chen

2012-10-01T23:59:59.000Z

446

LARGE SCALE PRODUCTION, PURIFICATION, AND 65CU SOLID STATE NMR OF AZURIN  

SciTech Connect

This paper details a way to produce azurin with an effi ciency over 10 times greater than previously described and demonstrates the fi rst solid state nuclear magnetic resonance spectrum of 65Cu(I) in a metalloprotein. A synthetic gene for azurin based upon the DNA sequence from Pseudomonas aeruginosa including the periplasmic targeting sequence was subcloned into a T7 overexpression vector to create the plasmid pGS-azurin, which was transformed into BL21 (DE3) competent cells. The leader sequence on the expressed protein causes it to be exported to the periplasmic space of Escherichia coli. Bacteria grown in a fermentation unit were induced to overexpress the azurin, which was subsequently purifi ed through an endosmotic shock procedure followed by high performance liquid chromatography (HPLC). 1,500 mg of azurin were purifi ed per liter of culture. 65Cu(II) was added to apo-azurin and then reduced. The 65Cu metal cofactor in azurin was observed with solid state nuclear magnetic resonance (NMR) to determine any structural variations that accompanied copper reduction. This is the fi rst solid state NMR spectra of a copper(I) metalloprotein. Analysis of the NMR spectra is being used to complement hypotheses set forth by x-ray diffraction and computational calculations of electron transfer mechanisms in azurin.

Gao, A.; Heck, R.W.

2008-01-01T23:59:59.000Z

447

Capability and Partners in Solid-State Lighting at Sandia National  

NLE Websites -- All DOE Office Websites (Extended Search)

| Introduction | Grand Challenge LDRD Project | Research, Review Papers, Presentations | Capabilities and Partnering | | Sandia Press Releases & News Coverage | CAPABILITIES AND PARTNERING To accomplish its goals, Sandia's research in Solid State Lighting draws upon state-of-the-art semiconductor materials and fabrication capabilities: · Sandia's Center for Compound Semiconductor Science and Technology · Sandia's Microelectronics Development Laboratory Together, these capabilities enable advanced R & D in the entire range of compound and silicon-based semiconductors, and the fabrication of discrete and integrated electronic, optoelectronic, and micro electromechanical devices. Sandia also draws upon synergies with other program areas and core

448

Quantum coherence in an all-solid-state dye-sentizied solar cell  

E-Print Network (OSTI)

The reported new type of all-solid-state, inorganic solar cell will be discussed by a semiclassical light-matter interaction method. The molecular compound will be treated by a three times two-level coupled quantum system. The equation of motion of the density matrix of this system will be analytical solved, in linear approximation and due to the coherent superposition of certain states, time-independent off-diagonal elements will be obtained. These elements represent an important components for the overal optical performane of this cell.

C. Benedek

2013-01-15T23:59:59.000Z

449

JOURNAL OF DISPLAY TECHNOLOGY, VOL. 2, NO. 2, JUNE 2006 143 Maximizing Alq3 OLED Internal and External  

E-Print Network (OSTI)

bright, efficient Alq3-based [tris-(8-hydroxyquinoline) aluminum] organic light-emitting diode (OLED conversion material, lensed device, luminous intensity, organic light emitting diodes (OLED), outcoupling efficiency, quantum efficiency. I. INTRODUCTION ORGANIC light-emitting devices (OLEDs), using Alq (tris(8

Cincinnati, University of

450

Near independence of OLED operating voltage on transport layer thickness  

SciTech Connect

We report organic light emitting devices (OLEDs) with weak drive voltage dependence on the thickness of the hole transport layer (HTL) for thicknesses up to 1150 using the N,N?-Bis(naphthalen-1-yl)-N,N?-bis(phenyl)-benzidine (?-NPD) and N,N'-bis(3-methyl phenyl)-N,N'-diphenyl-[1,1'-biphenyl]-4,4'diamine (TPD), both of which have hole mobilities in the range of 2 10-3 cm2V-1s-1. Lower mobility HTL materials show larger operating voltage dependence on thickness. The near independence of the operating voltage for high mobility transport material thickness was only observed when the energy barrier for charge injection into the transport material was minimized. To ensure low injection barriers, a thin film of 2-(3-(adamantan-1-yl)propyl)-3,5,6-trifluorotetracyanoquinodimethane (F3TCNQ-Adl) was cast from solution onto the ITO surface. These results indicate that thick transport layers can be integrated into OLED stacks without the need for bulk conductivity doping.

Swensen, James S.; Wang, Liang (Frank) [Frank; Polikarpov, Evgueni; Rainbolt, James E.; Koech, Phillip K.; Cosimbescu, Lelia; Padmaperuma, Asanga B.

2013-01-01T23:59:59.000Z

451

Regular pattern formation through the retraction and pinch-off of edges during solid-state dewetting of patterned single crystal films  

E-Print Network (OSTI)

We report the formation of regular patterns of metal lines via solid-state dewetting of lithographically patterned single-crystal Ni(110) films with square and cross shapes. During the solid-state dewetting, valleys develop ...

Ye, Jongpil

452

Solid State Division progress report for period ending September 30, 1993  

SciTech Connect

This report covers research progress in the Solid State Division from April 1, 1992, to September 30, 1993. During this period, the division conducted a broad, interdisciplinary materials research program with emphasis on theoretical solid state physics, neutron scattering, synthesis and characterization of materials, ion beam and laser processing, and the structure of solids and surfaces. This research effort was enhanced by new capabilities in atomic-scale materials characterization, new emphasis on the synthesis and processing of materials, and increased partnering with industry and universities. The theoretical effort included a broad range of analytical studies, as well as a new emphasis on numerical simulation stimulated by advances in high-performance computing and by strong interest in related division experimental programs. Superconductivity research continued to advance on a broad front from fundamental mechanisms of high-temperature superconductivity to the development of new materials and processing techniques. The Neutron Scattering Program was characterized by a strong scientific user program and growing diversity represented by new initiatives in complex fluids and residual stress. The national emphasis on materials synthesis and processing was mirrored in division research programs in thin-film processing, surface modification, and crystal growth. Research on advanced processing techniques such as laser ablation, ion implantation, and plasma processing was complemented by strong programs in the characterization of materials and surfaces including ultrahigh resolution scanning transmission electron microscopy, atomic-resolution chemical analysis, synchrotron x-ray research, and scanning tunneling microscopy.

Green, P.H.; Hinton, L.W. [eds.

1994-08-01T23:59:59.000Z

453

SESAME 96170, a solid-liquid equation of state for CeO2  

Science Conference Proceedings (OSTI)

I describe an equation of state (EOS) for the low-pressure solid phase and liquid phase of cerium (IV) oxide, CeO{sub 2}. The models and parameters used to calculate the EOS are presented in detail, and I compare with data for the full-density crystal. Hugoniot data are available only for high-porosity powders, and I discuss difficulties in comparing with such data. I have constructed SESAME 96170, an EOS for cerium (IV) oxide that includes the ambient solid and liquid phases. The EOS extends over the full standard SESAME range, but should not be used at low temperatures and high densities because of the lack of a high-pressure solid phase. I have described the models used to compute the three terms of the EOS (cold curve, nuclear, and thermal electronic), and I have given the parameters used in the models. They were determined by comparison with experimental data at P = 1 atm, including the constant-pressure specific heat, coefficient of thermal expansion, and melting and boiling points. The EOS compares well with data in its intended range of validity, but the presence of high-frequency optical modes in its phonon spectrum limits the agreement of our models with thermal data. The next step is to construct a multiphase EOS that includes the low- and high-pressure solid phases and the liquid. The DAC data from Duclos will most strongly constrain the parameters of the high-pressure solid. A remaining issue is the comparison of the crystal-density EOS with experimental Hugoniot data, which are taken at much lower initial data because the samples are porous powders. A satisfactory means of modeling porosity, allowing comparison of theory and experiment, has not yet been produced.

Chisolm, Eric D. [Los Alamos National Laboratory

2012-05-02T23:59:59.000Z

454

Recovery Act: Low Cost Integrated Substrate for OLED Lighting Development  

Science Conference Proceedings (OSTI)

PPG pursued the development of an integrated substrate, including the anode, external, and internal extraction layers. The objective of PPG??s program was to achieve cost reductions by displacing the existing expensive borosilicate or double-side polished float glass substrates and developing alternative electrodes and scalable light extraction layer technologies through focused and short-term applied research. One of the key highlights of the project was proving the feasibility of using PPG??s high transmission Solarphire® float glass as a substrate to consistently achieve organic lightemitting diode (OLED) devices with good performance and high yields. Under this program, four low-cost alternatives to the Indium Tin Oxide (ITO) anode were investigated using pilot-scale magnetron sputtered vacuum deposition (MSVD) and chemical vapor deposition (CVD) technologies. The anodes were evaluated by fabricating small and large phosphorescent organic lightemitting diode (PHOLED) devices at Universal Display Corporation (UDC). The device performance and life-times comparable to commercially available ITO anodes were demonstrated. A cost-benefit analysis was performed to down-select two anodes for further low-cost process development. Additionally, PPG developed and evaluated a number of scalable and compatible internal and external extraction layer concepts such as scattering layers on the outside of the glass substrate or between the transparent anode and the glass interface. In one external extraction layer (EEL) approach, sol-gel sprayed pyrolytic coatings were deposited using lab scale equipment by hand or automated spraying of sol-gel solutions on hot glass, followed by optimizing of scattering with minimal absorption. In another EEL approach, PPG tested large-area glass texturing by scratching a glass surface with an abrasive roller and acid etching. Efficacy enhancements of 1.27x were demonstrated using white PHOLED devices for 2.0mm substrates which are at par with the standard diffuser sheets used by OLED manufacturers. For an internal extraction layer (IEL), PPG tested two concepts combining nanoparticles either in a solgel coating inserted between the anode and OLED or anode and glass interface, or incorporated into the internal surface of the glass. Efficacy enhancements of 1.31x were demonstrated using white PHOLED devices for the IEL by itself and factors of 1.73x were attained for an IEL in combination of thick acrylic block as an EEL. Recent offline measurements indicate that, with further optimization, factors over 2.0x could be achieved through an IEL alone.

Scott Benton; Abhinav Bhandari

2012-09-30T23:59:59.000Z

455

Solid state nuclear magnetic resonance methodology and applications to structure determination of peptides, proteins and amyloid fibrils  

E-Print Network (OSTI)

Several methodological developments and applications of multidimensional solid-state nuclear magnetic resonance to biomolecular structure determination are presented. Studies are performed in uniformly 3C, 15N isotope ...

Jaroniec, Christopher P

2003-01-01T23:59:59.000Z

456

Solid-State Lighting on a Shoestring Budget: The Economics of Off-Grid Lighting for Small Businesses in Kenya  

E-Print Network (OSTI)

Report #3 Solid-State Lighting on a Shoestring Budget:The Economics of Off-Grid Lighting for Small Businesses inProject includes an Off-Grid Lighting Technology Assessment

Radecsky, Kristen

2009-01-01T23:59:59.000Z

457

Energy-efficient H. I. D. solid-state ballast: Phase II final report. [150 watt high pressure sodium lamp  

SciTech Connect

The following report presents the results of Phase II, Development of Solid State 150 watt High Pressure Sodium Ballasts. Basically, the objectives of the development program were accomplished, i.e., greater than 90% efficiency, greater than 90% power factor, regulation equivalent to ferro-magnetic ballasts, and energy savings sufficient to warrant the further development of the solid-state HPS ballast for commercial production and marketing. 8 figs., 5 tabs.

1983-06-01T23:59:59.000Z

458

The Progress of SBIR Supported R& D of Solid State Pulse Modulators  

Science Conference Proceedings (OSTI)

The Small Business Innovative Research (SBIR) grant program funded by the US Department of Energy makes a number of awards each year for R&D in the field of accelerator technology including high power pulse modulators and their components. This paper outlines program requirements, and reviews some of the awards made in the last three years in support of high power modulator systems and solid state switching. A number of award recipients are presenting the results of their SBIR R&D at this workshop.

Koontz, R

2004-05-04T23:59:59.000Z

459

Assessment of municipal solid waste for energy production in the western United States  

Science Conference Proceedings (OSTI)

Municipal solid waste (MSW) represents both a significant problem and an abundant resource for the production of energy. The residential, institutional, and industrial sectors of this country generate about 250 million tons of MSW each year. In this report, the authors have compiled data on the status of MSW in the 13-state western region, including economic and environmental issues. The report is designed to assist the members of the Western Regional Biomass Energy Program Ad Hoc Resource Committee in determining the potential for using MSW to produce energy in the region. 51 refs., 7 figs., 18 tabs.

Goodman, B.J.; Texeira, R.H.

1990-08-01T23:59:59.000Z

460

Diode-Pumped Solid-State Lasers for Internal Fusion Energy  

SciTech Connect

We have begun building the ''Mercury'' laser system as the first in a series of new generation diode-pumped solid-state lasers for inertial fusion research. Mercury will integrate three key technologies: diodes, crystals, and gas cooling, within a unique laser architecture that is scalable to kilojoule and megajoule energy levels for fusion energy applications. The primary near-term performance goals include 10% electrical efficiencies at 10 Hz and 100J with a 2-10 ns pulse length at 1.047 mm wavelength. When completed, Mercury will allow rep-rated target experiments with multiple chambers for high energy density physics research.

Payne, S A; Bibeau, C; Beach, R J; Bayramian, A; Chanteloup, J C; Ebbers, C A; Emanuel, M A; Orth, C D; Rothenberg, J. E; Schaffers, K I; Skidmore, J A; Sutton, S B; Zapata, L E; Powell, H T

1999-11-15T23:59:59.000Z

Note: This page contains sample records for the topic "oled solid state" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Mercury and Beyond: Diode-Pumped Solid-State Lasers for Inertial Fusion Energy  

SciTech Connect

We have begun building the ''Mercury'' laser system as the first in a series of new generation diode-pumped solid-state lasers for inertial fusion research. Mercury will integrate three key technologies: diodes, crystals, and gas cooling, within a unique laser architecture that is scalable to kilojoule energy levels for fusion energy applications. The primary performance goals include 10% electrical efficiencies at 10 Hz and 100 J with a 2-10 ns pulse length at 1.047 pm wavelength. When completed, Mercury will allow rep-rated target experiments with multiple target chambers for high energy density physics research.

Bibeau, C.; Beach, R.J.; Bayramian, A.; Chanteloup, J.C.; Ebbers, C.A.; Emanuel, M.A.; Orth, C.D.; Rothenberg, J.E.; Schaffers, K.I.; Skidmore, J.A.; Sutton, S.B.; Zapata, L.E.; Payne, S.A.; Powell, H.T.

1999-10-19T23:59:59.000Z

462

Design modeling of the 100-J diode-pumped solid-state laser for Project Mercury  

Science Conference Proceedings (OSTI)

We present the energy, propagation, and thermal modeling for a diode-pumped solid-state laser called Mercury being designed and built at LLNL using Yb:S-FAP [i.e., Yb{sup 3+}-doped Sr{sub 5}(PO{sub 4}){sub 3}F crystals] for the gain medium. This laser is intended to produce 100 J pulses at 1 to 10 ns at 10 Hz with an electrical efficiency of {approximately}10%. Our modeling indicates that the laser will be able to meet its performance goals.

Orth, C., LLNL

1998-02-23T23:59:59.000Z

463

Solid-state ultracapacitors for electric vehicles and consumer electronics. Final report  

DOE Green Energy (OSTI)

Advanced ultracapacitors are described that are based upon conducting polymer technology. Both Type I and Type II capacitors were constructed in single cell and stacked arrays that had superior electrochemical properties. More specifically nanophase clay electrode supports were fabricated and the conducting polymers solvent deposited upon them. Both liquid phase and solid polymer electrolytes were evaluated as well. Both single cell and multiple cell capacitors were prepared that exceeded the 15Wh/kg, 1500W/kg goals set by the United States Department of Energy. In addition, it was shown that different conducting polymer electrode configurations could be constructed that showed promise.

Dr. Brian G. Dixon

1999-06-01T23:59:59.000Z

464

The Use of a Solid State Analog Television Transmitter as a Superconducting Electron Gun Power Amplifier  

Science Conference Proceedings (OSTI)

A solid state analog television transmitter designed for 200 MHz operation is being commissioned as a radio frequency power amplifier on the Wisconsin superconducting electron gun cavity. The amplifier consists of three separate radio frequency power combiner cabinets and one monitor and control cabinet. The transmitter employs rugged field effect transistors built into one kilowatt drawers that are individually hot swappable at maximum continuous power output. The total combined power of the transmitter system is 33 kW at 200 MHz, output through a standard coaxial transmission line. A low level radio frequency system is employed to digitally synthesize the 200 MHz signal and precisely control amplitude and phase.

J.G. Kulpin, K.J. Kleman, R.A. Legg

2012-07-01T23:59:59.000Z

465

Nanoscale devices for solid state refrigeration and power generation, Twentieth Annual  

E-Print Network (OSTI)

A brief review of various techniques to engineer nanoscale thermal and electrical properties of materials is given. The main emphasis is on various energy conversion mechanisms, particularly, thermo electric refrigeration and power generation. Recent experimental and theoretical results on superlattice and quantum dot thermoelectrics and solidstate and vacuum thermionic thin film devices are reviewed. We also present an overview of the research activities at the multi university Thermionic Energy Conversion Center on the design of solid-state and vacuum devices that could convert heat into electricity with hot side temperatures ranging from 300 to 650C and with high conversion efficiency.

Ali Shakouri

2004-01-01T23:59:59.000Z

466

Optimizing diode thickness for thin-film solid state thermal neutron detectors  

Science Conference Proceedings (OSTI)

In this work, we investigate the optimal thickness of a semiconductor diode for thin-film solid state thermal neutron detectors. We evaluate several diode materials, Si, CdTe, GaAs, C (diamond), and ZnO, and two neutron converter materials, {sup 10}B and {sup 6}LiF. Investigating a coplanar diode/converter geometry, we determine the minimum semiconductor thickness needed to achieve maximum neutron detection efficiency. By keeping the semiconductor thickness to a minimum, gamma rejection is kept as high as possible. In this way, we optimize detector performance for different thin-film semiconductor materials.

Murphy, John W.; Mejia, Israel; Quevedo-Lopez, Manuel A.; Gnade, Bruce [Department of Materials and Science, University of Texas at Dallas, Richardson, Texas 75080 (United States); Kunnen, George R.; Allee, David [Flexible Display Center at Arizona State University, Tempe, Arizona 85284 (United States)

2012-10-01T23:59:59.000Z

467

Low-Temperature Synthesis of Actinide Tetraborides by Solid-State Metathesis Reactions  

DOE Patents (OSTI)

The synthesis of actinide tetraborides including uranium tetraboride (UB,), plutonium tetraboride (PUB,) and thorium tetraboride (ThB{sub 4}) by a solid-state metathesis reaction are demonstrated. The present method significantly lowers the temperature required to {approx_equal}850 C. As an example, when UCl{sub 4}, is reacted with an excess of MgB{sub 2}, at 850 C, crystalline UB, is formed. Powder X-ray diffraction and ICP-AES data support the reduction of UCl{sub 3}, as the initial step in the reaction. The UB, product is purified by washing water and drying.

Lupinetti, Anthony J.; Garcia, Eduardo; Abney, Kent D.

2004-12-14T23:59:59.000Z

468

Modified Nose-Hoover thermostat for solid state for constant temperature molecular dynamics simulation  

SciTech Connect

Nose-Hoover (NH) thermostat methods incorporated with molecular dynamics (MD) simulation have been widely used to simulate the instantaneous system temperature and feedback energy in a canonical ensemble. The method simply relates the kinetic energy to the system temperature via the particles' momenta based on the ideal gas law. However, when used in a tightly bound system such as solids, the method may suffer from deriving a lower system temperature and potentially inducing early breaking of atomic bonds at relatively high temperature due to the neglect of the effect of the potential energy of atoms based on solid state physics. In this paper, a modified NH thermostat method is proposed for solid system. The method takes into account the contribution of phonons by virtue of the vibrational energy of lattice and the zero-point energy, derived based on the Debye theory. Proof of the equivalence of the method and the canonical ensemble is first made. The modified NH thermostat is tested on different gold nanocrystals to characterize their melting point and constant volume specific heat, and also their size and temperature dependence. Results show that the modified NH method can give much more comparable results to both the literature experimental and theoretical data than the standard NH. Most importantly, the present model is the only one, among the six thermostat algorithms under comparison, that can accurately reproduce the experimental data and also the T{sup 3}-law at temperature below the Debye temperature, where the specific heat of a solid at constant volume is proportional to the cube of temperature.

Chen, Wen-Hwa, E-mail: whchen@pme.nthu.edu.tw [Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan (China); National Applied Research Laboratories, Taipei 10622, Taiwan, ROC (China); Wu, Chun-Hung [Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Cheng, Hsien-Chie [Department of Aerospace and Systems Engineering, Feng Chia University, Taichung 40724, Taiwan (China)

2011-07-10T23:59:59.000Z

469

Theory of degenerate three-wave mixing using circuit QED in solid-state circuits  

Science Conference Proceedings (OSTI)

We study the theory of degenerate three-wave mixing and the generation of squeezed microwaves using circuit quantum electrodynamics in solid state circuits. The Hamiltonian for degenerate three-wave mixing, which seemed to be given phenomenologically in quantum optics, is derived by quantum mechanical calculations. The nonlinear medium needed in three-wave mixing is composed of a series of superconducting charge qubits which are located inside two superconducting transmission-line resonators. Here, the multiqubit ensemble is present to enhance the effective coupling constant between the two modes in the transmission-line resonators. In the squeezing process, the qubits are kept in their ground states so that their decoherence does not corrupt the squeezing. The main obstacle preventing a large squeezing efficiency is the decay rate of the transmission-line resonator.

Cao, Ye [Key Laboratory of Atomic and Molecular Nanosciences and Department of Physics, Tsinghua University, Beijing 100084 (China); Huo, Wen Yi [Institute of Applied Physics and Computational Mathematics, Beijing 100088 (China); Ai, Qing [Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190 (China); Long, Gui Lu [Key Laboratory of Atomic and Molecular Nanosciences and Department of Physics, Tsinghua University, Beijing 100084 (China); Tsinghua National Laboratory For Information Science and Technology, Beijing 100084 (China)

2011-11-15T23:59:59.000Z

470

Quantum process tomography and Linblad estimation of a solid state qubit  

E-Print Network (OSTI)

We present an example of quantum process tomography (QPT) performed on a single solid state qubit. The qubit used is two energy levels of the triplet state in the Nitrogen-Vacancy defect in Diamond. Quantum process tomography is applied to a qubit which has been allowed to decohere for three different time periods. In each case the process is found in terms of the chi matrix representation and the affine map representation. The discrepancy between experimentally estimated process and the closest physically valid process is noted. The results of QPT performed after three different decoherence times are used to find the error generators, or Lindblad operators, for the system, using the technique introduced by Boulant et al. [N. Boulant, T.F. Havel, M.A. Pravia and D.G. Cory, Phys. Rev. A 67, 042322 (2003)].

M. Howard; J. Twamley; C. Wittmann; T. Gaebel; F. Jelezko; J. Wrachtrup

2006-01-25T23:59:59.000Z

471

2006 Archived Selected Headlines of Solid-State Lighting Headlines News  

NLE Websites -- All DOE Office Websites (Extended Search)

March 31, 2006 Group4 Labs announced the first 2-inch GaN-on-diamond semiconductor wafer, the second product in the company's Xero Wafer family. As with the first Xero product, the new wafer also features a single GaN atomically attached to a synthetic diamond substrate, permitting high-temperature resilience for electronic, solid-state lighting, and military applications. The new material offers a unique thermal management solution by extricating heat from the chip's core almost at the instant that it is generated. This is due to the nanometer proximity of the chip's active region to diamond, a nearly perfect thermal conductor. [ Press release ] March 30, 2006 UK's Department of Trade & Industry (DTI) Technology Programme announced funding of £9 million (US$15.6 million) for collaborative R&D projects in the area of electronics and photonics, including high-e