Powered by Deep Web Technologies
Note: This page contains sample records for the topic "oled solid state" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Quantum Dot Light Enhancement Substrate for OLED Solid-State Lighting  

SciTech Connect (OSTI)

With DOE Award No. DE-EE00000628, QD Vision developed and demonstrated a cost-competitive solution for increasing the light extraction efficiency of OLEDs with efficient and stable color rendering index (CRI) for solid state lighting (SSL). Solution processable quantum dot (QD) films were integrated into OLED ITO-glass substrates to generate tunable white emission from blue emitting OLED) devices as well as outcouple light from the ITO film. This QD light-enhancement substrate (QD-LED) technology demonstrated a 60% increase in OLED forward light out-coupling, a value which increases to 76% when considering total increase in multi-directional light output. The objective for the first year was an 80% increase in light output. This project seeks to develop and demonstrate a cost-competitive solution for realizing increased extraction efficiency organic light emitting devices (OLEDs) with efficient and stable color rendering index (CRI) for SSL. Solution processible quantum dot (QD) films will be utilized to generate tunable white emission from blue emitting phosphorescent OLED (Ph-OLED) devices.

James Perkins; Matthew Stevenson; Gagan Mahan; Seth Coe-Sullivan; Peter Kazlas

2011-01-21T23:59:59.000Z

2

Multi-Faceted Scientific Strategies Toward Better Solid-State Lighting of Phosphorescent OLEDs  

SciTech Connect (OSTI)

This project has advanced solid-state lighting (SSL) by utilizing new phosphorescent systems for use in organic light-emitting diodes (OLEDs). The technical approach was two-fold: a) Targeted synthesis and screening of emitters designed to exhibit phosphorescence with maximized brightness in the solid state; and b) Construction and optimizing the performance of monochromatic and white OLEDs from the best new emitters to improve performance metrics versus the state of the art. The phosphorescent systems were screened candidates among a large variety of recentlysynthesized and newly-designed molecular and macromolecular metal-organic phosphors. The emitters and devices have been optimized to maximize light emission and color metrics, improve the long-term durability of emitters and devices, and reduce the manufacturing cost both by simplifying the process flow and by seeking less expensive device components than common ones. The project succeeded in all these goals upon comparison of the best materials and devices investigated vs. the state of the art of the technology.

Mohammad Omary; Bruce Gnade; Qi Wang; Oussama Elbjeirami; Chi Yang; Nigel Shepherd; Huiping Jia; Manuel Quevedo; Husam Alshareef; Minghang Li; Ming-Te Lin; Wei-Hsuan Chen; Iain Oswald; Pankaj Sinha; Ravi Arvapally; Usha Kaipa; John Determan; Sreekar Marpu; Roy McDougald; Gustavo Garza; Jason Halbert; Unnat Bhansali; Michael Perez

2010-08-31T23:59:59.000Z

3

Solid-State Lighting: Why SSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Why SSL to someone by E-mail Why SSL to someone by E-mail Share Solid-State Lighting: Why SSL on Facebook Tweet about Solid-State Lighting: Why SSL on Twitter Bookmark Solid-State Lighting: Why SSL on Google Bookmark Solid-State Lighting: Why SSL on Delicious Rank Solid-State Lighting: Why SSL on Digg Find More places to share Solid-State Lighting: Why SSL on AddThis.com... Why SSL LED Basics OLED Basics Using LEDs R&D Challenges Market Challenges Why SSL Resources Solid-State Lighting: Brilliant Solutions for America's Energy Future PDF Energy Savings Potential of SSL PDF Energy Savings Estimates of LEDs PDF More Resources Since 2003, the U.S. Department of Energy has invested with industry partners in research and development of solid-state lighting (SSL)-including both light-emitting diode (LED) and organic light

4

Solid-State Lighting: Market Challenges  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Market Challenges to someone by Market Challenges to someone by E-mail Share Solid-State Lighting: Market Challenges on Facebook Tweet about Solid-State Lighting: Market Challenges on Twitter Bookmark Solid-State Lighting: Market Challenges on Google Bookmark Solid-State Lighting: Market Challenges on Delicious Rank Solid-State Lighting: Market Challenges on Digg Find More places to share Solid-State Lighting: Market Challenges on AddThis.com... Why SSL LED Basics OLED Basics Using LEDs R&D Challenges Market Challenges Market Challenges Resources Compact Fluorescent Lighting in America PDF Guiding Market Introduction of SSL Products PDF LED Directional Lamps PDF LED MR16 Lamps Recessed LED Downlights PDF General Service LED Lamps PDF What to Ask - A Checklist for Buyers of LED Lighting Products PDF

5

Solid-State Lighting: Using LEDs  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Using LEDs to someone by E-mail Using LEDs to someone by E-mail Share Solid-State Lighting: Using LEDs on Facebook Tweet about Solid-State Lighting: Using LEDs on Twitter Bookmark Solid-State Lighting: Using LEDs on Google Bookmark Solid-State Lighting: Using LEDs on Delicious Rank Solid-State Lighting: Using LEDs on Digg Find More places to share Solid-State Lighting: Using LEDs on AddThis.com... Why SSL LED Basics OLED Basics Using LEDs R&D Challenges Market Challenges Using LEDs Resources Using LEDs to Their Best Advantage PDF Establishing LED Equivalency PDF LED Directional Lamps LED MR16 Lamps Recessed LED Downlights PDF General Service LED Lamps What to Ask - A Checklist for Buyers of LED Lighting Products More Resources With their unique design and performance characteristics-such as directional light emission, compact profile, superior optical control,

6

Solid-State Lighting: R&D Challenges  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

R&D Challenges to someone by R&D Challenges to someone by E-mail Share Solid-State Lighting: R&D Challenges on Facebook Tweet about Solid-State Lighting: R&D Challenges on Twitter Bookmark Solid-State Lighting: R&D Challenges on Google Bookmark Solid-State Lighting: R&D Challenges on Delicious Rank Solid-State Lighting: R&D Challenges on Digg Find More places to share Solid-State Lighting: R&D Challenges on AddThis.com... Why SSL LED Basics OLED Basics Using LEDs R&D Challenges Market Challenges R&D Challenges Resources Doing Business with DOE's Solid-State Lighting Program PDF Solid-State Lighting Patents Resulting from DOE-Funded Projects PDF 2013 Project Portfolio PDF Solid-State Lighting R&D Manufacturing Roadmap PDF Solid-State Lighting R&D Multi-Year Program Plan PDF

7

Solid-state lighting technology perspective.  

SciTech Connect (OSTI)

Solid-State Lighting (SSL) uses inorganic light-emitting diodes (LEDs) and organic light-emitting diodes (OLEDs) to convert electricity into light for illumination. SSL has the potential for enormous energy savings and accompanying environmental benefits if its promise of 50% (or greater) energy efficiencies can be achieved. This report provides a broad summary of the technologies that underlie SSL. The applications for SSL and potential impact on U.S. and world-wide energy consumption, and impact on the human visual experience are discussed. The properties of visible light and different technical metrics to characterize its properties are summarized. The many factors contributing to the capital and operating costs for SSL and traditional lighting sources (incandescent, fluorescent, and high-intensity discharge lamps) are discussed, with extrapolations for future SSL goals. The technologies underlying LEDs and OLEDs are also described, including current and possible alternative future technologies and some of the present limitations.

Tsao, Jeffrey Yeenien; Coltrin, Michael Elliott

2006-08-01T23:59:59.000Z

8

Solid-State Lighting: Solid-State Lighting  

Broader source: Energy.gov (indexed) [DOE]

Solid-State Lighting Search Solid-State Lighting Search Search Help Solid-State Lighting HOME ABOUT THE PROGRAM R&D PROJECTS MARKET-BASED PROGRAMS SSL BASICS INFORMATION RESOURCES FINANCIAL OPPORTUNITIES EERE » Building Technologies Office » Solid-State Lighting Printable Version Share this resource Send a link to Solid-State Lighting: Solid-State Lighting to someone by E-mail Share Solid-State Lighting: Solid-State Lighting on Facebook Tweet about Solid-State Lighting: Solid-State Lighting on Twitter Bookmark Solid-State Lighting: Solid-State Lighting on Google Bookmark Solid-State Lighting: Solid-State Lighting on Delicious Rank Solid-State Lighting: Solid-State Lighting on Digg Find More places to share Solid-State Lighting: Solid-State Lighting on AddThis.com... Pause/Resume Photo of a large room with people standing around poster boards.

9

Molecular Orbital Study of the First Excited State of the OLED Material Tris(8-hydroxyquinoline)aluminum(III)  

E-Print Network [OSTI]

Molecular Orbital Study of the First Excited State of the OLED Material Tris(8-hydroxyquinoline)aluminum, Michigan 48202 Received February 6, 2001. Revised Manuscript Received May 16, 2001 Tris(8-hydroxyquinoline)aluminum

Schlegel, H. Bernhard

10

Solid-State Lighting: Solid-State Lighting Videos  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Solid-State Lighting Videos to Solid-State Lighting Videos to someone by E-mail Share Solid-State Lighting: Solid-State Lighting Videos on Facebook Tweet about Solid-State Lighting: Solid-State Lighting Videos on Twitter Bookmark Solid-State Lighting: Solid-State Lighting Videos on Google Bookmark Solid-State Lighting: Solid-State Lighting Videos on Delicious Rank Solid-State Lighting: Solid-State Lighting Videos on Digg Find More places to share Solid-State Lighting: Solid-State Lighting Videos on AddThis.com... Conferences & Meetings Presentations Publications Webcasts Videos Tools Solid-State Lighting Videos On this page you can access DOE Solid-State Lighting (SSL) Program videos. Photo of a museum art gallery with LED lights in track fixtures overhead. The City of Los Angeles LED Streetlight Program

11

Solid-State Lighting: Solid-State Lighting Contacts  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

About the About the Program Printable Version Share this resource Send a link to Solid-State Lighting: Solid-State Lighting Contacts to someone by E-mail Share Solid-State Lighting: Solid-State Lighting Contacts on Facebook Tweet about Solid-State Lighting: Solid-State Lighting Contacts on Twitter Bookmark Solid-State Lighting: Solid-State Lighting Contacts on Google Bookmark Solid-State Lighting: Solid-State Lighting Contacts on Delicious Rank Solid-State Lighting: Solid-State Lighting Contacts on Digg Find More places to share Solid-State Lighting: Solid-State Lighting Contacts on AddThis.com... Contacts Partnerships Solid-State Lighting Contacts For information about Solid-State Lighting, contact James Brodrick Lighting Program Manager Building Technologies Office U.S. Department of Energy

12

Solid-State Lighting: R&D Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

R&D R&D Projects Printable Version Share this resource Send a link to Solid-State Lighting: R&D Projects to someone by E-mail Share Solid-State Lighting: R&D Projects on Facebook Tweet about Solid-State Lighting: R&D Projects on Twitter Bookmark Solid-State Lighting: R&D Projects on Google Bookmark Solid-State Lighting: R&D Projects on Delicious Rank Solid-State Lighting: R&D Projects on Digg Find More places to share Solid-State Lighting: R&D Projects on AddThis.com... R&D Highlights R&D Projects DOE leadership and support spur advances in the efficacy and performance of light-emitting diode (LED) and organic LED (OLED) technologies-advances that might not otherwise be achieved without DOE funding. (Some of the following documents are available as Adobe Acrobat PDFs. Download Adobe

13

Solid-State Lighting: Solid-State Lighting Manufacturing Workshop  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Solid-State Lighting Solid-State Lighting Manufacturing Workshop to someone by E-mail Share Solid-State Lighting: Solid-State Lighting Manufacturing Workshop on Facebook Tweet about Solid-State Lighting: Solid-State Lighting Manufacturing Workshop on Twitter Bookmark Solid-State Lighting: Solid-State Lighting Manufacturing Workshop on Google Bookmark Solid-State Lighting: Solid-State Lighting Manufacturing Workshop on Delicious Rank Solid-State Lighting: Solid-State Lighting Manufacturing Workshop on Digg Find More places to share Solid-State Lighting: Solid-State Lighting Manufacturing Workshop on AddThis.com... Conferences & Meetings Past Conferences Presentations Publications Webcasts Videos Tools Solid-State Lighting Manufacturing Workshop Nearly 200 lighting industry leaders, chip makers, fixture and component

14

Solid-State Lighting: Solid-State Lighting  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Lighting Lighting Printable Version Share this resource Send a link to Solid-State Lighting: Solid-State Lighting to someone by E-mail Share Solid-State Lighting: Solid-State Lighting on Facebook Tweet about Solid-State Lighting: Solid-State Lighting on Twitter Bookmark Solid-State Lighting: Solid-State Lighting on Google Bookmark Solid-State Lighting: Solid-State Lighting on Delicious Rank Solid-State Lighting: Solid-State Lighting on Digg Find More places to share Solid-State Lighting: Solid-State Lighting on AddThis.com... Pause/Resume Photo of a large room with people standing around poster boards. Register Now for DOE's 11th Annual SSL R&D Workshop January 28-30, join other SSL R&D professionals from industry, government, and academia to learn, share, and shape the future of lighting.

15

The solid state lighting initiative: An industry/DOE collaborativeeffort  

SciTech Connect (OSTI)

A new era of technology is emerging in lighting. It is being propelled by the dramatic improvements in performance of solid state light sources. These sources offer an entirely new array of design aspects not achievable with current light sources. At the same time, their performance characteristics continue to improve and are expected to eclipse those of the most common light sources within the near future. High efficiency is one of these performance attributes motivating the Department of Energy (DOE) to work with the manufacturers of this new technology to create a program plan sufficiently comprehensive to support an industry-driven Solid State Lighting Initiative before Congress. The purpose of the initiative is to educate Congress about the potential of this technology to reduce the electric lighting load within the United States and, consequently, to realize the associated environmental benefits. The initiative will solicit congressional support to accelerate the development of solid state technology through investment in the research and development necessary to overcome the technical barriers that currently limit the products to niche markets. While there are multiple technologies being developed as solid state light sources, the two technologies which hold the most promise for application to general illumination are Light Emitting Diodes (LEDs) and Organic Light Emitting Diodes (OLEDs). The form of these sources can be quite different from current sources, allowing exciting new design uses for the products. Being diffuse sources, OLEDs are much lower in intensity per unit area than LEDs. The manufacturing process for OLEDs lends itself to shapes that can be formed to different geometries, making possible luminous panels or flexible luminous materials. Conversely, LEDs are very intense point sources which can be integrated into a small space to create an intense source or used separately for less focused applications. Both OLED and LED sources are expected to be thinner than other comparable sources; this thinness offers additional design opportunities.

Johnson, Steve

2000-10-01T23:59:59.000Z

16

Solid-State Lighting  

Broader source: Energy.gov (indexed) [DOE]

-U.S. Senator Jeff Bingaman, Chair, Senate Committee on Energy and Natural Resources 2013-2025 * The Future of LED General Lighting 2013-2025 * The Promise of OLED General...

17

Energy Department Announces $4 Million Solicitation for Solid-State  

Broader source: Energy.gov (indexed) [DOE]

Announces $4 Million Solicitation for Solid-State Announces $4 Million Solicitation for Solid-State Lighting Research Energy Department Announces $4 Million Solicitation for Solid-State Lighting Research August 29, 2005 - 2:46pm Addthis Technology has Potential to Double Lighting Efficiency in U.S., Lowering Energy Bills WASHINGTON, DC - The U.S. Department of Energy (DOE) today announced a $4 million solicitation for research into solid-state lighting (SSL) that has the potential to create light with virtually no heat and double the efficiency of general lighting systems, saving energy costs for consumers and reducing lighting's environmental impact. Core SSL technologies include light-emitting diodes (LEDs), organic light-emitting diodes (OLEDs) and light-emitting polymers. "Solid-state lighting advances have the potential to greatly reduce energy

18

Energy Department Announces $4 Million Solicitation for Solid-State  

Broader source: Energy.gov (indexed) [DOE]

4 Million Solicitation for Solid-State 4 Million Solicitation for Solid-State Lighting Research Energy Department Announces $4 Million Solicitation for Solid-State Lighting Research August 29, 2005 - 2:46pm Addthis Technology has Potential to Double Lighting Efficiency in U.S., Lowering Energy Bills WASHINGTON, DC - The U.S. Department of Energy (DOE) today announced a $4 million solicitation for research into solid-state lighting (SSL) that has the potential to create light with virtually no heat and double the efficiency of general lighting systems, saving energy costs for consumers and reducing lighting's environmental impact. Core SSL technologies include light-emitting diodes (LEDs), organic light-emitting diodes (OLEDs) and light-emitting polymers. "Solid-state lighting advances have the potential to greatly reduce energy

19

FAQ of Overview of Solid-State Lighting  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

FREQUENTLY ASKED QUESTIONS 3 Leds FREQUENTLY ASKED QUESTIONS 3 Leds 1. What is solid-state lighting? 2. What is a semiconductor? 3. What is a semiconductor LED (light emitting diode)? 4. What is an organic LED (OLED)? 5. Where can I see LED lighting today? 6. How do you produce white light using LEDs? 7. How does solid-state lighting differ from conventional lighting? 8. What is the energy efficiency of solid-state lighting today? How does the energy efficiency compare with incandescent and fluorescent lamps? 9. What is the cost of solid-state lighting today? How does the cost compare with incandescent and fluorescent lamps? 10. What is the quality of the white light using solid-state lighting today? How does it compare with incandescent and fluorescent lamps?

20

Solid state switch  

DOE Patents [OSTI]

A solid state switch, with reverse conducting thyristors, is designed to operate at 20 kV hold-off voltage, 1500 A peak, 1.0 .mu.s pulsewidth, and 4500 pps, to replace thyratrons. The solid state switch is more reliable, more economical, and more easily repaired. The switch includes a stack of circuit card assemblies, a magnetic assist and a trigger chassis. Each circuit card assembly contains a reverse conducting thyristor, a resistor capacitor network, and triggering circuitry.

Merritt, Bernard T. (Livermore, CA); Dreifuerst, Gary R. (Livermore, CA)

1994-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "oled solid state" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Solid state switch  

DOE Patents [OSTI]

A solid state switch, with reverse conducting thyristors, is designed to operate at 20 kV hold-off voltage, 1,500 A peak, 1.0 [mu]s pulsewidth, and 4,500 pps, to replace thyratrons. The solid state switch is more reliable, more economical, and more easily repaired. The switch includes a stack of circuit card assemblies, a magnetic assist and a trigger chassis. Each circuit card assembly contains a reverse conducting thyristor, a resistor capacitor network, and triggering circuitry. 6 figs.

Merritt, B.T.; Dreifuerst, G.R.

1994-07-19T23:59:59.000Z

22

journal Solid State Ionics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Structural and transport properties of Nafion in hydrobromic Structural and transport properties of Nafion in hydrobromic acid solutions journal Solid State Ionics year month abstract p Proton exchange membranes are key solid state ion carriers in many relevant energy technologies including flow batteries fuel cells and solar fuel generators In many of these systems the membranes are in contact with electrolyte solutions In this paper we focus on the impact of different HBr a flow battery and exemplary acid electrolyte external concentrations on the conductivity of Nafion a perfluorosulfonic acid membrane that is commonly used in many energy related applications The peak and then decrease in conductivity is correlated with measured changes in the water and HBr content within the membrane In addition small angle x ray scattering is used to probe the nanostructure to

23

Solid-State Lighting: Contacts  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Contacts Contacts Printable Version Share this resource Send a link to Solid-State Lighting: Contacts to someone by E-mail Share Solid-State Lighting: Contacts on Facebook Tweet about Solid-State Lighting: Contacts on Twitter Bookmark Solid-State Lighting: Contacts on Google Bookmark Solid-State Lighting: Contacts on Delicious Rank Solid-State Lighting: Contacts on Digg Find More places to share Solid-State Lighting: Contacts on AddThis.com... Contacts Web site and program contacts are provided below. Website Contact Send us your comments, report problems, and/or ask questions about information on this site. Program Contacts Contact information for the Solid-State Lighting Program. Contacts | Web Site Policies | U.S. Department of Energy | USA.gov Content Last Updated: 02/14

24

Solid state optical microscope  

DOE Patents [OSTI]

A solid state optical microscope wherein wide-field and high-resolution images of an object are produced at a rapid rate by utilizing conventional optics with a charge-coupled photodiode array. A galvanometer scanning mirror, for scanning in one of two orthogonal directions is provided, while the charge-coupled photodiode array scans in the other orthogonal direction. Illumination light from the object is incident upon the photodiodes, creating packets of electrons (signals) which are representative of the illuminated object. The signals are then processed, stored in a memory, and finally displayed as a video signal. 2 figs.

Young, I.T.

1983-08-09T23:59:59.000Z

25

Solid state optical microscope  

DOE Patents [OSTI]

A solid state optical microscope wherein wide-field and high-resolution images of an object are produced at a rapid rate by utilizing conventional optics with a charge-coupled photodiode array. A galvanometer scanning mirror, for scanning in one of two orthogonal directions is provided, while the charge-coupled photodiode array scans in the other orthogonal direction. Illumination light from the object is incident upon the photodiodes, creating packets of electrons (signals) which are representative of the illuminated object. The signals are then processed, stored in a memory, and finally displayed as a video signal.

Young, Ian T. (Pleasanton, CA)

1983-01-01T23:59:59.000Z

26

Solid-State Lighting: Publications  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Publications to someone by Publications to someone by E-mail Share Solid-State Lighting: Publications on Facebook Tweet about Solid-State Lighting: Publications on Twitter Bookmark Solid-State Lighting: Publications on Google Bookmark Solid-State Lighting: Publications on Delicious Rank Solid-State Lighting: Publications on Digg Find More places to share Solid-State Lighting: Publications on AddThis.com... Conferences & Meetings Presentations Publications Postings Articles Program Fact Sheets Technology Fact Sheets CALiPER Reports GATEWAY Reports LED Lighting Facts Reports Project Reports Studies and Reports Technology Roadmaps Product Performance Guides Webcasts Videos Tools Publications The Solid-State Lighting (SSL) program produces a comprehensive portfolio of publications, ranging from overviews of the program's research

27

Solid-State Lighting: Presentations  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Presentations to someone by Presentations to someone by E-mail Share Solid-State Lighting: Presentations on Facebook Tweet about Solid-State Lighting: Presentations on Twitter Bookmark Solid-State Lighting: Presentations on Google Bookmark Solid-State Lighting: Presentations on Delicious Rank Solid-State Lighting: Presentations on Digg Find More places to share Solid-State Lighting: Presentations on AddThis.com... Conferences & Meetings Presentations Publications Webcasts Videos Tools Presentations This page provides links to the presentations given at the DOE Solid-State Lighting Workshops, as well as links to reference materials. Some of the following documents are available as Adobe Acrobat PDFs. Download Adobe Reader. Workshop Presentations, Materials and Reports November 2013: Presentations from DOE SSL Market Introduction Workshop

28

Solid state rapid thermocycling  

DOE Patents [OSTI]

The rapid thermal cycling of a material is targeted. A solid state heat exchanger with a first well and second well is coupled to a power module. A thermoelectric element is coupled to the first well, the second well, and the power module, is configured to transfer thermal energy from the first well to the second well when current from the power module flows through the thermoelectric element in a first direction, and is configured to transfer thermal energy from the second well to the first well when current from the power module flows through the thermoelectric element in a second direction. A controller may be coupled to the thermoelectric elements, and may switch the direction of current flowing through the thermoelectric element in response to a determination by sensors coupled to the wells that the amount of thermal energy in the wells falls below or exceeds a pre-determined threshold.

Beer, Neil Reginald; Spadaccini, Christopher

2014-05-13T23:59:59.000Z

29

OLED area illumination source  

DOE Patents [OSTI]

The present invention relates to an area illumination light source comprising a plurality of individual OLED panels. The individual OLED panels are configured in a physically modular fashion. Each OLED panel comprising a plurality of OLED devices. Each OLED panel comprises a first electrode and a second electrode such that the power being supplied to each individual OLED panel may be varied independently. A power supply unit capable of delivering varying levels of voltage simultaneously to the first and second electrodes of each of the individual OLED panels is also provided. The area illumination light source also comprises a mount within which the OLED panels are arrayed.

Foust, Donald Franklin (Scotia, NY); Duggal, Anil Raj (Niskayuna, NY); Shiang, Joseph John (Niskayuna, NY); Nealon, William Francis (Gloversville, NY); Bortscheller, Jacob Charles (Clifton Park, NY)

2008-03-25T23:59:59.000Z

30

OLED devices  

DOE Patents [OSTI]

An OLED device having an emission layer formed of an ambipolar phosphine oxide host material and a dopant, a hole transport layer in electrical communication with an anode, an electron transport layer in communication with a cathode, wherein the HOMO energy of the hole transport layer is substantially the same as the HOMO energy of the ambipolar host in the emission layer, and the LUMO energy of the electron transport layer is substantially the same as the LUMO energy of the ambipolar host in the emission layer.

Sapochak, Linda Susan [Arlington, VA; Burrows, Paul Edward [Kennewick, WA; Bimalchandra, Asanga [Richland, WA

2011-02-22T23:59:59.000Z

31

Solid-State Lighting: 2007 Solid-State Lighting Workshop Materials  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2007 Solid-State Lighting 2007 Solid-State Lighting Workshop Materials to someone by E-mail Share Solid-State Lighting: 2007 Solid-State Lighting Workshop Materials on Facebook Tweet about Solid-State Lighting: 2007 Solid-State Lighting Workshop Materials on Twitter Bookmark Solid-State Lighting: 2007 Solid-State Lighting Workshop Materials on Google Bookmark Solid-State Lighting: 2007 Solid-State Lighting Workshop Materials on Delicious Rank Solid-State Lighting: 2007 Solid-State Lighting Workshop Materials on Digg Find More places to share Solid-State Lighting: 2007 Solid-State Lighting Workshop Materials on AddThis.com... Conferences & Meetings Past Conferences Presentations Publications Webcasts Videos Tools 2007 Solid-State Lighting Workshop Materials This page provides links to the presentations given at the DOE Solid-State

32

Solid-State Lighting: 2006 Solid-State Lighting Workshop Materials  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2006 Solid-State Lighting 2006 Solid-State Lighting Workshop Materials to someone by E-mail Share Solid-State Lighting: 2006 Solid-State Lighting Workshop Materials on Facebook Tweet about Solid-State Lighting: 2006 Solid-State Lighting Workshop Materials on Twitter Bookmark Solid-State Lighting: 2006 Solid-State Lighting Workshop Materials on Google Bookmark Solid-State Lighting: 2006 Solid-State Lighting Workshop Materials on Delicious Rank Solid-State Lighting: 2006 Solid-State Lighting Workshop Materials on Digg Find More places to share Solid-State Lighting: 2006 Solid-State Lighting Workshop Materials on AddThis.com... Conferences & Meetings Past Conferences Presentations Publications Webcasts Videos Tools 2006 Solid-State Lighting Workshop Materials This page provides links to the presentations given at the DOE Solid-State

33

Solid-State Lighting: 2012 DOE Solid-State Lighting Market Introduction  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Program » Solid-State Lighting » Program » Solid-State Lighting » Information Resources Printable Version Share this resource Send a link to Solid-State Lighting: 2012 DOE Solid-State Lighting Market Introduction Workshop to someone by E-mail Share Solid-State Lighting: 2012 DOE Solid-State Lighting Market Introduction Workshop on Facebook Tweet about Solid-State Lighting: 2012 DOE Solid-State Lighting Market Introduction Workshop on Twitter Bookmark Solid-State Lighting: 2012 DOE Solid-State Lighting Market Introduction Workshop on Google Bookmark Solid-State Lighting: 2012 DOE Solid-State Lighting Market Introduction Workshop on Delicious Rank Solid-State Lighting: 2012 DOE Solid-State Lighting Market Introduction Workshop on Digg Find More places to share Solid-State Lighting: 2012 DOE Solid-State

34

Solid-State Lighting Webcasts  

Broader source: Energy.gov [DOE]

Below you'll find links to information about past webcast presentations related to solid-state lighting, including presentation slides and question-and-answer sessions, where available.

35

Solid State Photovoltaic Research Branch  

SciTech Connect (OSTI)

This report summarizes the progress of the Solid State Photovoltaic Research Branch of the Solar Energy Research Institute (SERI) from October 1, 1988, through September 30,l 1989. Six technical sections of the report cover these main areas of SERIs in-house research: Semiconductor Crystal Growth, Amorphous Silicon Research, Polycrystalline Thin Films, III-V High-Efficiency Photovoltaic Cells, Solid-State Theory, and Laser Raman and Luminescence Spectroscopy. Sections have been indexed separately for inclusion on the data base.

Not Available

1990-09-01T23:59:59.000Z

36

Solid-State Lighting: Financial Opportunities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Financial Financial Opportunities Printable Version Share this resource Send a link to Solid-State Lighting: Financial Opportunities to someone by E-mail Share Solid-State Lighting: Financial Opportunities on Facebook Tweet about Solid-State Lighting: Financial Opportunities on Twitter Bookmark Solid-State Lighting: Financial Opportunities on Google Bookmark Solid-State Lighting: Financial Opportunities on Delicious Rank Solid-State Lighting: Financial Opportunities on Digg Find More places to share Solid-State Lighting: Financial Opportunities on AddThis.com... Current Opportunities DOE Selections Related Opportunities Financial Opportunities DOE financial opportunities for solid-state lighting (SSL) include competitive solicitations, grants, and other federal funding mechanisms to

37

Sandia National Laboratories: Solid-State Lighting  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Efficiency, Events, News & Events, Solid-State Lighting The Solid-State Lighting Science (SSLS) Energy Frontier Research Center (EFRC) Director, Dr. Michael E. Coltrin,...

38

Solid-State Lighting: 2011 Solid-State Lighting R&D Workshop Materials  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

11 Solid-State Lighting R&D 11 Solid-State Lighting R&D Workshop Materials to someone by E-mail Share Solid-State Lighting: 2011 Solid-State Lighting R&D Workshop Materials on Facebook Tweet about Solid-State Lighting: 2011 Solid-State Lighting R&D Workshop Materials on Twitter Bookmark Solid-State Lighting: 2011 Solid-State Lighting R&D Workshop Materials on Google Bookmark Solid-State Lighting: 2011 Solid-State Lighting R&D Workshop Materials on Delicious Rank Solid-State Lighting: 2011 Solid-State Lighting R&D Workshop Materials on Digg Find More places to share Solid-State Lighting: 2011 Solid-State Lighting R&D Workshop Materials on AddThis.com... Conferences & Meetings Past Conferences Presentations Publications Webcasts Videos Tools 2011 Solid-State Lighting R&D Workshop Materials

39

Solid-State Lighting: DOE Solid-State Lighting Manufacturing Workshop  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

DOE Solid-State Lighting DOE Solid-State Lighting Manufacturing Workshop to someone by E-mail Share Solid-State Lighting: DOE Solid-State Lighting Manufacturing Workshop on Facebook Tweet about Solid-State Lighting: DOE Solid-State Lighting Manufacturing Workshop on Twitter Bookmark Solid-State Lighting: DOE Solid-State Lighting Manufacturing Workshop on Google Bookmark Solid-State Lighting: DOE Solid-State Lighting Manufacturing Workshop on Delicious Rank Solid-State Lighting: DOE Solid-State Lighting Manufacturing Workshop on Digg Find More places to share Solid-State Lighting: DOE Solid-State Lighting Manufacturing Workshop on AddThis.com... Conferences & Meetings Past Conferences Presentations Publications Webcasts Videos Tools DOE Solid-State Lighting Manufacturing Workshop This page provides links to the presentations given at the 2009 DOE

40

Solid-State Lighting: 2010 Solid-State Lighting Workshop Materials  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2010 Solid-State Lighting 2010 Solid-State Lighting Workshop Materials to someone by E-mail Share Solid-State Lighting: 2010 Solid-State Lighting Workshop Materials on Facebook Tweet about Solid-State Lighting: 2010 Solid-State Lighting Workshop Materials on Twitter Bookmark Solid-State Lighting: 2010 Solid-State Lighting Workshop Materials on Google Bookmark Solid-State Lighting: 2010 Solid-State Lighting Workshop Materials on Delicious Rank Solid-State Lighting: 2010 Solid-State Lighting Workshop Materials on Digg Find More places to share Solid-State Lighting: 2010 Solid-State Lighting Workshop Materials on AddThis.com... Conferences & Meetings Presentations Publications Webcasts Videos Tools 2010 Solid-State Lighting Workshop Materials This page provides links to the presentations given at the Transformations

Note: This page contains sample records for the topic "oled solid state" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Solid-State Lighting: 2009 Solid-State Lighting Workshop Materials  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2009 Solid-State Lighting 2009 Solid-State Lighting Workshop Materials to someone by E-mail Share Solid-State Lighting: 2009 Solid-State Lighting Workshop Materials on Facebook Tweet about Solid-State Lighting: 2009 Solid-State Lighting Workshop Materials on Twitter Bookmark Solid-State Lighting: 2009 Solid-State Lighting Workshop Materials on Google Bookmark Solid-State Lighting: 2009 Solid-State Lighting Workshop Materials on Delicious Rank Solid-State Lighting: 2009 Solid-State Lighting Workshop Materials on Digg Find More places to share Solid-State Lighting: 2009 Solid-State Lighting Workshop Materials on AddThis.com... Conferences & Meetings Past Conferences Presentations Publications Webcasts Videos Tools 2009 Solid-State Lighting Workshop Materials This page provides links to the presentations given at the Transformations

42

Solid-State Lighting: 2008 Solid-State Lighting Workshop Materials  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

08 Solid-State Lighting 08 Solid-State Lighting Workshop Materials to someone by E-mail Share Solid-State Lighting: 2008 Solid-State Lighting Workshop Materials on Facebook Tweet about Solid-State Lighting: 2008 Solid-State Lighting Workshop Materials on Twitter Bookmark Solid-State Lighting: 2008 Solid-State Lighting Workshop Materials on Google Bookmark Solid-State Lighting: 2008 Solid-State Lighting Workshop Materials on Delicious Rank Solid-State Lighting: 2008 Solid-State Lighting Workshop Materials on Digg Find More places to share Solid-State Lighting: 2008 Solid-State Lighting Workshop Materials on AddThis.com... Conferences & Meetings Past Conferences Presentations Publications Webcasts Videos Tools 2008 Solid-State Lighting Workshop Materials This page provides links to the presentations given at the Transformations

43

Solid-State Lighting: 2014 DOE Solid-State Lighting R&D Workshop  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2014 DOE Solid-State Lighting 2014 DOE Solid-State Lighting R&D Workshop to someone by E-mail Share Solid-State Lighting: 2014 DOE Solid-State Lighting R&D Workshop on Facebook Tweet about Solid-State Lighting: 2014 DOE Solid-State Lighting R&D Workshop on Twitter Bookmark Solid-State Lighting: 2014 DOE Solid-State Lighting R&D Workshop on Google Bookmark Solid-State Lighting: 2014 DOE Solid-State Lighting R&D Workshop on Delicious Rank Solid-State Lighting: 2014 DOE Solid-State Lighting R&D Workshop on Digg Find More places to share Solid-State Lighting: 2014 DOE Solid-State Lighting R&D Workshop on AddThis.com... Conferences & Meetings Past Conferences Presentations Publications Webcasts Videos Tools 2014 DOE Solid-State Lighting R&D Workshop logo for Next Generation Lighting Industry Alliance

44

Solid-State Lighting: ENERGY STAR® Solid-State Lighting Workshop  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ENERGY STAR® Solid-State ENERGY STAR® Solid-State Lighting Workshop to someone by E-mail Share Solid-State Lighting: ENERGY STAR® Solid-State Lighting Workshop on Facebook Tweet about Solid-State Lighting: ENERGY STAR® Solid-State Lighting Workshop on Twitter Bookmark Solid-State Lighting: ENERGY STAR® Solid-State Lighting Workshop on Google Bookmark Solid-State Lighting: ENERGY STAR® Solid-State Lighting Workshop on Delicious Rank Solid-State Lighting: ENERGY STAR® Solid-State Lighting Workshop on Digg Find More places to share Solid-State Lighting: ENERGY STAR® Solid-State Lighting Workshop on AddThis.com... Conferences & Meetings Past Conferences Presentations Publications Webcasts Videos Tools ENERGY STAR® Solid-State Lighting Workshop Workshop Purpose: To prepare manufacturers for the launch of the ENERGY

45

Coordination Chemistry in the Solid State  

Science Journals Connector (OSTI)

...February 1996 research-article Coordination Chemistry in the Solid State Peter G. Bruce Salts...form a vital bridge between coordination chemistry in solution and more classical solid-state chemistry. The solid coordination compounds are...

1996-01-01T23:59:59.000Z

46

Solid-State Lighting: The Seventh Annual DOE Solid-State Lighting Market  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Office » Solid-State Lighting » Information Office » Solid-State Lighting » Information Resources Printable Version Share this resource Send a link to Solid-State Lighting: The Seventh Annual DOE Solid-State Lighting Market Introduction Workshop to someone by E-mail Share Solid-State Lighting: The Seventh Annual DOE Solid-State Lighting Market Introduction Workshop on Facebook Tweet about Solid-State Lighting: The Seventh Annual DOE Solid-State Lighting Market Introduction Workshop on Twitter Bookmark Solid-State Lighting: The Seventh Annual DOE Solid-State Lighting Market Introduction Workshop on Google Bookmark Solid-State Lighting: The Seventh Annual DOE Solid-State Lighting Market Introduction Workshop on Delicious Rank Solid-State Lighting: The Seventh Annual DOE Solid-State Lighting Market Introduction Workshop on Digg

47

Solid-State Lighting: 2011 Solid-State Lighting Market Introduction  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2011 Solid-State Lighting 2011 Solid-State Lighting Market Introduction Workshop Materials to someone by E-mail Share Solid-State Lighting: 2011 Solid-State Lighting Market Introduction Workshop Materials on Facebook Tweet about Solid-State Lighting: 2011 Solid-State Lighting Market Introduction Workshop Materials on Twitter Bookmark Solid-State Lighting: 2011 Solid-State Lighting Market Introduction Workshop Materials on Google Bookmark Solid-State Lighting: 2011 Solid-State Lighting Market Introduction Workshop Materials on Delicious Rank Solid-State Lighting: 2011 Solid-State Lighting Market Introduction Workshop Materials on Digg Find More places to share Solid-State Lighting: 2011 Solid-State Lighting Market Introduction Workshop Materials on AddThis.com... Conferences & Meetings

48

Solid-State Lighting: Solid-State Lighting GATEWAY Demonstration Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Solid-State Lighting GATEWAY Solid-State Lighting GATEWAY Demonstration Results to someone by E-mail Share Solid-State Lighting: Solid-State Lighting GATEWAY Demonstration Results on Facebook Tweet about Solid-State Lighting: Solid-State Lighting GATEWAY Demonstration Results on Twitter Bookmark Solid-State Lighting: Solid-State Lighting GATEWAY Demonstration Results on Google Bookmark Solid-State Lighting: Solid-State Lighting GATEWAY Demonstration Results on Delicious Rank Solid-State Lighting: Solid-State Lighting GATEWAY Demonstration Results on Digg Find More places to share Solid-State Lighting: Solid-State Lighting GATEWAY Demonstration Results on AddThis.com... LED Lighting Facts CALiPER Program Standards Development Technical Information Network Gateway Demonstrations FAQs Results

49

Solid-State Lighting: July 2008 Solid-State Lighting Market Introduction  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

July 2008 Solid-State Lighting July 2008 Solid-State Lighting Market Introduction Workshop Materials to someone by E-mail Share Solid-State Lighting: July 2008 Solid-State Lighting Market Introduction Workshop Materials on Facebook Tweet about Solid-State Lighting: July 2008 Solid-State Lighting Market Introduction Workshop Materials on Twitter Bookmark Solid-State Lighting: July 2008 Solid-State Lighting Market Introduction Workshop Materials on Google Bookmark Solid-State Lighting: July 2008 Solid-State Lighting Market Introduction Workshop Materials on Delicious Rank Solid-State Lighting: July 2008 Solid-State Lighting Market Introduction Workshop Materials on Digg Find More places to share Solid-State Lighting: July 2008 Solid-State Lighting Market Introduction Workshop Materials on

50

Solid-State Lighting: 2012 Solid-State Lighting R&D Workshop Presentations  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2012 Solid-State Lighting R&D 2012 Solid-State Lighting R&D Workshop Presentations and Materials to someone by E-mail Share Solid-State Lighting: 2012 Solid-State Lighting R&D Workshop Presentations and Materials on Facebook Tweet about Solid-State Lighting: 2012 Solid-State Lighting R&D Workshop Presentations and Materials on Twitter Bookmark Solid-State Lighting: 2012 Solid-State Lighting R&D Workshop Presentations and Materials on Google Bookmark Solid-State Lighting: 2012 Solid-State Lighting R&D Workshop Presentations and Materials on Delicious Rank Solid-State Lighting: 2012 Solid-State Lighting R&D Workshop Presentations and Materials on Digg Find More places to share Solid-State Lighting: 2012 Solid-State Lighting R&D Workshop Presentations and Materials on AddThis.com...

51

Solid-State Lighting: 2012 Solid-State Lighting Market Introduction  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Office » Solid-State Lighting » Information Office » Solid-State Lighting » Information Resources Printable Version Share this resource Send a link to Solid-State Lighting: 2012 Solid-State Lighting Market Introduction Workshop Presentations and Materials to someone by E-mail Share Solid-State Lighting: 2012 Solid-State Lighting Market Introduction Workshop Presentations and Materials on Facebook Tweet about Solid-State Lighting: 2012 Solid-State Lighting Market Introduction Workshop Presentations and Materials on Twitter Bookmark Solid-State Lighting: 2012 Solid-State Lighting Market Introduction Workshop Presentations and Materials on Google Bookmark Solid-State Lighting: 2012 Solid-State Lighting Market Introduction Workshop Presentations and Materials on Delicious Rank Solid-State Lighting: 2012 Solid-State Lighting Market

52

Solid-State Lighting: DOE Municipal Solid-State Street Lighting Consortium  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Market-Based Programs Printable Version Share this resource Send a link to Solid-State Lighting: DOE Municipal Solid-State Street Lighting Consortium to someone by E-mail Share Solid-State Lighting: DOE Municipal Solid-State Street Lighting Consortium on Facebook Tweet about Solid-State Lighting: DOE Municipal Solid-State Street Lighting Consortium on Twitter Bookmark Solid-State Lighting: DOE Municipal Solid-State Street Lighting Consortium on Google Bookmark Solid-State Lighting: DOE Municipal Solid-State Street Lighting Consortium on Delicious Rank Solid-State Lighting: DOE Municipal Solid-State Street Lighting Consortium on Digg Find More places to share Solid-State Lighting: DOE Municipal Solid-State Street Lighting Consortium on AddThis.com... LED Lighting Facts

53

Solid-State Lighting: DOE Hosts Solid-State Lighting Commercial Product  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

DOE Hosts Solid-State Lighting DOE Hosts Solid-State Lighting Commercial Product Testing Program Workshop to someone by E-mail Share Solid-State Lighting: DOE Hosts Solid-State Lighting Commercial Product Testing Program Workshop on Facebook Tweet about Solid-State Lighting: DOE Hosts Solid-State Lighting Commercial Product Testing Program Workshop on Twitter Bookmark Solid-State Lighting: DOE Hosts Solid-State Lighting Commercial Product Testing Program Workshop on Google Bookmark Solid-State Lighting: DOE Hosts Solid-State Lighting Commercial Product Testing Program Workshop on Delicious Rank Solid-State Lighting: DOE Hosts Solid-State Lighting Commercial Product Testing Program Workshop on Digg Find More places to share Solid-State Lighting: DOE Hosts Solid-State Lighting Commercial Product Testing Program Workshop on

54

Solid-State Lighting: 2013 Solid-State Lighting R&D Workshop Presentations  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2013 Solid-State Lighting R&D 2013 Solid-State Lighting R&D Workshop Presentations and Materials to someone by E-mail Share Solid-State Lighting: 2013 Solid-State Lighting R&D Workshop Presentations and Materials on Facebook Tweet about Solid-State Lighting: 2013 Solid-State Lighting R&D Workshop Presentations and Materials on Twitter Bookmark Solid-State Lighting: 2013 Solid-State Lighting R&D Workshop Presentations and Materials on Google Bookmark Solid-State Lighting: 2013 Solid-State Lighting R&D Workshop Presentations and Materials on Delicious Rank Solid-State Lighting: 2013 Solid-State Lighting R&D Workshop Presentations and Materials on Digg Find More places to share Solid-State Lighting: 2013 Solid-State Lighting R&D Workshop Presentations and Materials on AddThis.com...

55

Solid-State Lighting: Text-Alternative Version: Municipal Solid-State  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Municipal Solid-State Street Lighting Consortium Kickoff to someone by Municipal Solid-State Street Lighting Consortium Kickoff to someone by E-mail Share Solid-State Lighting: Text-Alternative Version: Municipal Solid-State Street Lighting Consortium Kickoff on Facebook Tweet about Solid-State Lighting: Text-Alternative Version: Municipal Solid-State Street Lighting Consortium Kickoff on Twitter Bookmark Solid-State Lighting: Text-Alternative Version: Municipal Solid-State Street Lighting Consortium Kickoff on Google Bookmark Solid-State Lighting: Text-Alternative Version: Municipal Solid-State Street Lighting Consortium Kickoff on Delicious Rank Solid-State Lighting: Text-Alternative Version: Municipal Solid-State Street Lighting Consortium Kickoff on Digg Find More places to share Solid-State Lighting: Text-Alternative Version: Municipal Solid-State Street Lighting Consortium Kickoff on

56

Solid-State Lighting: 2011 Solid-State Lighting Manufacturing R&D Workshop  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 Solid-State Lighting 1 Solid-State Lighting Manufacturing R&D Workshop Materials to someone by E-mail Share Solid-State Lighting: 2011 Solid-State Lighting Manufacturing R&D Workshop Materials on Facebook Tweet about Solid-State Lighting: 2011 Solid-State Lighting Manufacturing R&D Workshop Materials on Twitter Bookmark Solid-State Lighting: 2011 Solid-State Lighting Manufacturing R&D Workshop Materials on Google Bookmark Solid-State Lighting: 2011 Solid-State Lighting Manufacturing R&D Workshop Materials on Delicious Rank Solid-State Lighting: 2011 Solid-State Lighting Manufacturing R&D Workshop Materials on Digg Find More places to share Solid-State Lighting: 2011 Solid-State Lighting Manufacturing R&D Workshop Materials on AddThis.com... Conferences & Meetings

57

Solid-State Lighting: Municipal Solid-State Street Lighting Consortium  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Municipal Solid-State Street Municipal Solid-State Street Lighting Consortium Kickoff Webcast to someone by E-mail Share Solid-State Lighting: Municipal Solid-State Street Lighting Consortium Kickoff Webcast on Facebook Tweet about Solid-State Lighting: Municipal Solid-State Street Lighting Consortium Kickoff Webcast on Twitter Bookmark Solid-State Lighting: Municipal Solid-State Street Lighting Consortium Kickoff Webcast on Google Bookmark Solid-State Lighting: Municipal Solid-State Street Lighting Consortium Kickoff Webcast on Delicious Rank Solid-State Lighting: Municipal Solid-State Street Lighting Consortium Kickoff Webcast on Digg Find More places to share Solid-State Lighting: Municipal Solid-State Street Lighting Consortium Kickoff Webcast on AddThis.com... Conferences & Meetings

58

Solid-State Lighting: April 2007 Solid-State Lighting Market Introduction  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

April 2007 Solid-State Lighting April 2007 Solid-State Lighting Market Introduction Workshop Materials to someone by E-mail Share Solid-State Lighting: April 2007 Solid-State Lighting Market Introduction Workshop Materials on Facebook Tweet about Solid-State Lighting: April 2007 Solid-State Lighting Market Introduction Workshop Materials on Twitter Bookmark Solid-State Lighting: April 2007 Solid-State Lighting Market Introduction Workshop Materials on Google Bookmark Solid-State Lighting: April 2007 Solid-State Lighting Market Introduction Workshop Materials on Delicious Rank Solid-State Lighting: April 2007 Solid-State Lighting Market Introduction Workshop Materials on Digg Find More places to share Solid-State Lighting: April 2007 Solid-State Lighting Market Introduction Workshop Materials on

59

Solid-State Lighting: 2009 Solid-State Lighting Chicago Market Introduction  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Information Information Resources Printable Version Share this resource Send a link to Solid-State Lighting: 2009 Solid-State Lighting Chicago Market Introduction Workshop Materials to someone by E-mail Share Solid-State Lighting: 2009 Solid-State Lighting Chicago Market Introduction Workshop Materials on Facebook Tweet about Solid-State Lighting: 2009 Solid-State Lighting Chicago Market Introduction Workshop Materials on Twitter Bookmark Solid-State Lighting: 2009 Solid-State Lighting Chicago Market Introduction Workshop Materials on Google Bookmark Solid-State Lighting: 2009 Solid-State Lighting Chicago Market Introduction Workshop Materials on Delicious Rank Solid-State Lighting: 2009 Solid-State Lighting Chicago Market Introduction Workshop Materials on Digg Find More places to share Solid-State Lighting: 2009 Solid-State

60

Solid-State Lighting: 2013 Solid-State Lighting Market Introduction  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2013 Solid-State Lighting 2013 Solid-State Lighting Market Introduction Workshop Presentations and Materials to someone by E-mail Share Solid-State Lighting: 2013 Solid-State Lighting Market Introduction Workshop Presentations and Materials on Facebook Tweet about Solid-State Lighting: 2013 Solid-State Lighting Market Introduction Workshop Presentations and Materials on Twitter Bookmark Solid-State Lighting: 2013 Solid-State Lighting Market Introduction Workshop Presentations and Materials on Google Bookmark Solid-State Lighting: 2013 Solid-State Lighting Market Introduction Workshop Presentations and Materials on Delicious Rank Solid-State Lighting: 2013 Solid-State Lighting Market Introduction Workshop Presentations and Materials on Digg Find More places to share Solid-State Lighting: 2013 Solid-State

Note: This page contains sample records for the topic "oled solid state" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Solid-state lithium battery  

DOE Patents [OSTI]

The present invention is directed to a higher power, thin film lithium-ion electrolyte on a metallic substrate, enabling mass-produced solid-state lithium batteries. High-temperature thermodynamic equilibrium processing enables co-firing of oxides and base metals, providing a means to integrate the crystalline, lithium-stable, fast lithium-ion conductor lanthanum lithium tantalate (La.sub.1/3-xLi.sub.3xTaO.sub.3) directly with a thin metal foil current collector appropriate for a lithium-free solid-state battery.

Ihlefeld, Jon; Clem, Paul G; Edney, Cynthia; Ingersoll, David; Nagasubramanian, Ganesan; Fenton, Kyle Ross

2014-11-04T23:59:59.000Z

62

Solid-State Lighting: The Second Annual DOE Solid-State Lighting  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The Second Annual DOE The Second Annual DOE Solid-State Lighting Manufacturing R&D Workshop to someone by E-mail Share Solid-State Lighting: The Second Annual DOE Solid-State Lighting Manufacturing R&D Workshop on Facebook Tweet about Solid-State Lighting: The Second Annual DOE Solid-State Lighting Manufacturing R&D Workshop on Twitter Bookmark Solid-State Lighting: The Second Annual DOE Solid-State Lighting Manufacturing R&D Workshop on Google Bookmark Solid-State Lighting: The Second Annual DOE Solid-State Lighting Manufacturing R&D Workshop on Delicious Rank Solid-State Lighting: The Second Annual DOE Solid-State Lighting Manufacturing R&D Workshop on Digg Find More places to share Solid-State Lighting: The Second Annual DOE Solid-State Lighting Manufacturing R&D Workshop on AddThis.com...

63

Solid-State Lighting: Meeting Materials from 2003 Solid-State Lighting  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Meeting Materials from 2003 Meeting Materials from 2003 Solid-State Lighting Program Planning Workshop to someone by E-mail Share Solid-State Lighting: Meeting Materials from 2003 Solid-State Lighting Program Planning Workshop on Facebook Tweet about Solid-State Lighting: Meeting Materials from 2003 Solid-State Lighting Program Planning Workshop on Twitter Bookmark Solid-State Lighting: Meeting Materials from 2003 Solid-State Lighting Program Planning Workshop on Google Bookmark Solid-State Lighting: Meeting Materials from 2003 Solid-State Lighting Program Planning Workshop on Delicious Rank Solid-State Lighting: Meeting Materials from 2003 Solid-State Lighting Program Planning Workshop on Digg Find More places to share Solid-State Lighting: Meeting Materials from 2003 Solid-State Lighting Program Planning Workshop on AddThis.com...

64

Solid-State Lighting: The Sixth Annual DOE Solid-State Lighting Market  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The Sixth Annual DOE The Sixth Annual DOE Solid-State Lighting Market Introduction Workshop to someone by E-mail Share Solid-State Lighting: The Sixth Annual DOE Solid-State Lighting Market Introduction Workshop on Facebook Tweet about Solid-State Lighting: The Sixth Annual DOE Solid-State Lighting Market Introduction Workshop on Twitter Bookmark Solid-State Lighting: The Sixth Annual DOE Solid-State Lighting Market Introduction Workshop on Google Bookmark Solid-State Lighting: The Sixth Annual DOE Solid-State Lighting Market Introduction Workshop on Delicious Rank Solid-State Lighting: The Sixth Annual DOE Solid-State Lighting Market Introduction Workshop on Digg Find More places to share Solid-State Lighting: The Sixth Annual DOE Solid-State Lighting Market Introduction Workshop on AddThis.com...

65

Solid-State Lighting: The Fifth Annual DOE Solid-State Lighting Market  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The Fifth Annual DOE The Fifth Annual DOE Solid-State Lighting Market Introduction Workshop to someone by E-mail Share Solid-State Lighting: The Fifth Annual DOE Solid-State Lighting Market Introduction Workshop on Facebook Tweet about Solid-State Lighting: The Fifth Annual DOE Solid-State Lighting Market Introduction Workshop on Twitter Bookmark Solid-State Lighting: The Fifth Annual DOE Solid-State Lighting Market Introduction Workshop on Google Bookmark Solid-State Lighting: The Fifth Annual DOE Solid-State Lighting Market Introduction Workshop on Delicious Rank Solid-State Lighting: The Fifth Annual DOE Solid-State Lighting Market Introduction Workshop on Digg Find More places to share Solid-State Lighting: The Fifth Annual DOE Solid-State Lighting Market Introduction Workshop on AddThis.com...

66

Solid-State Lighting: The Eighth Annual DOE Solid-State Lighting Market  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The Eighth Annual DOE The Eighth Annual DOE Solid-State Lighting Market Introduction Workshop to someone by E-mail Share Solid-State Lighting: The Eighth Annual DOE Solid-State Lighting Market Introduction Workshop on Facebook Tweet about Solid-State Lighting: The Eighth Annual DOE Solid-State Lighting Market Introduction Workshop on Twitter Bookmark Solid-State Lighting: The Eighth Annual DOE Solid-State Lighting Market Introduction Workshop on Google Bookmark Solid-State Lighting: The Eighth Annual DOE Solid-State Lighting Market Introduction Workshop on Delicious Rank Solid-State Lighting: The Eighth Annual DOE Solid-State Lighting Market Introduction Workshop on Digg Find More places to share Solid-State Lighting: The Eighth Annual DOE Solid-State Lighting Market Introduction Workshop on AddThis.com...

67

Solid-state radioluminescent compositions  

DOE Patents [OSTI]

A solid state radioluminescent composition for light source comprises an optically clear polymer organic matrix containing tritiated organic materials and dyes capable of "red" shifting primary scintillation emissions from the polymer matrix. The tritiated organic materials are made by reducing, with tritium, an unsaturated organic compound that prior to reduction contains olefinic or alkynylic bonds.

Clough, Roger L. (Albuquerque, NM); Gill, John T. (Miamisburg, OH); Hawkins, Daniel B. (Fairbanks, AK); Renschler, Clifford L. (Tijeras, NM); Shepodd, Timothy J. (Livermore, CA); Smith, Henry M. (Overland Park, KS)

1991-01-01T23:59:59.000Z

68

Solid-State Lighting: Hotel Information  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Program » Solid-State Lighting » Program » Solid-State Lighting » Information Resources Printable Version Share this resource Send a link to Solid-State Lighting: Hotel Information to someone by E-mail Share Solid-State Lighting: Hotel Information on Facebook Tweet about Solid-State Lighting: Hotel Information on Twitter Bookmark Solid-State Lighting: Hotel Information on Google Bookmark Solid-State Lighting: Hotel Information on Delicious Rank Solid-State Lighting: Hotel Information on Digg Find More places to share Solid-State Lighting: Hotel Information on AddThis.com... Home Conferences & Meetings Past Conferences Presentations Publications Webcasts Videos Hotel Information Wyndham Grand Pittsburgh, 600 Commonwealth Place, Pittsburgh, PA 15222 The Wyndham Grand Pittsburgh room block has expired; however,

69

OLED Testing Opportunity  

Broader source: Energy.gov [DOE]

Ongoing discussions with the OLED lighting community have identified the need for a collaborative R&D framework to accelerate developments in OLED lighting technology and manufacturing. DOE has...

70

Solid-State Lighting: Webcast: Municipal Solid-State Street Lighting  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Webcast: Municipal Solid-State Webcast: Municipal Solid-State Street Lighting Consortium Retrofit Financial Analysis Tool to someone by E-mail Share Solid-State Lighting: Webcast: Municipal Solid-State Street Lighting Consortium Retrofit Financial Analysis Tool on Facebook Tweet about Solid-State Lighting: Webcast: Municipal Solid-State Street Lighting Consortium Retrofit Financial Analysis Tool on Twitter Bookmark Solid-State Lighting: Webcast: Municipal Solid-State Street Lighting Consortium Retrofit Financial Analysis Tool on Google Bookmark Solid-State Lighting: Webcast: Municipal Solid-State Street Lighting Consortium Retrofit Financial Analysis Tool on Delicious Rank Solid-State Lighting: Webcast: Municipal Solid-State Street Lighting Consortium Retrofit Financial Analysis Tool on Digg

71

Solid-state membrane module  

DOE Patents [OSTI]

Solid-state membrane modules comprising at least one membrane unit, where the membrane unit has a dense mixed conducting oxide layer, and at least one conduit or manifold wherein the conduit or manifold comprises a dense layer and at least one of a porous layer and a slotted layer contiguous with the dense layer. The solid-state membrane modules may be used to carry out a variety of processes including the separating of any ionizable component from a feedstream wherein such ionizable component is capable of being transported through a dense mixed conducting oxide layer of the membrane units making up the membrane modules. For ease of construction, the membrane units may be planar.

Gordon, John Howard (Salt Lake City, UT); Taylor, Dale M. (Murray, UT)

2011-06-07T23:59:59.000Z

72

Solid-State Lighting: Design Competitions  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Market-Based Programs Printable Version Share this resource Send a link to Solid-State Lighting: Design Competitions to someone by E-mail Share Solid-State Lighting: Design Competitions on Facebook Tweet about Solid-State Lighting: Design Competitions on Twitter Bookmark Solid-State Lighting: Design Competitions on Google Bookmark Solid-State Lighting: Design Competitions on Delicious Rank Solid-State Lighting: Design Competitions on Digg Find More places to share Solid-State Lighting: Design Competitions on AddThis.com... LED Lighting Facts CALiPER Program Standards Development Technical Information Network Gateway Demonstrations Municipal Consortium Design Competitions Design Competitions National design competitions heighten awareness and market adoption of high-performance solid-state lighting products.

73

Solid-State Lighting: DOE Selections  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Financial Financial Opportunities Printable Version Share this resource Send a link to Solid-State Lighting: DOE Selections to someone by E-mail Share Solid-State Lighting: DOE Selections on Facebook Tweet about Solid-State Lighting: DOE Selections on Twitter Bookmark Solid-State Lighting: DOE Selections on Google Bookmark Solid-State Lighting: DOE Selections on Delicious Rank Solid-State Lighting: DOE Selections on Digg Find More places to share Solid-State Lighting: DOE Selections on AddThis.com... Current Opportunities DOE Selections Related Opportunities DOE Selections The U.S. Department of Energy awards research grants targeting advances in solid-state lighting. The following links provide information on the recipients of these grants and summaries of the research projects they are

74

Solid-State Lighting: Current Opportunities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Financial Financial Opportunities Printable Version Share this resource Send a link to Solid-State Lighting: Current Opportunities to someone by E-mail Share Solid-State Lighting: Current Opportunities on Facebook Tweet about Solid-State Lighting: Current Opportunities on Twitter Bookmark Solid-State Lighting: Current Opportunities on Google Bookmark Solid-State Lighting: Current Opportunities on Delicious Rank Solid-State Lighting: Current Opportunities on Digg Find More places to share Solid-State Lighting: Current Opportunities on AddThis.com... Current Opportunities DOE Selections Related Opportunities Current Opportunities DE-FOA-0000973: Solid-State Lighting Advanced Technology R&D - 2014 DE-FOA-0001046: FY14 SBIR/STTR Phase I, Release 2 Contacts | Web Site Policies | U.S. Department of Energy | USA.gov

75

Solid-State Lighting: Related Opportunities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Financial Financial Opportunities Printable Version Share this resource Send a link to Solid-State Lighting: Related Opportunities to someone by E-mail Share Solid-State Lighting: Related Opportunities on Facebook Tweet about Solid-State Lighting: Related Opportunities on Twitter Bookmark Solid-State Lighting: Related Opportunities on Google Bookmark Solid-State Lighting: Related Opportunities on Delicious Rank Solid-State Lighting: Related Opportunities on Digg Find More places to share Solid-State Lighting: Related Opportunities on AddThis.com... Current Opportunities DOE Selections Related Opportunities Related Opportunities The U.S. Department of Energy (DOE) has created this resource to help researchers, manufacturers, and distributors of solid-state lighting products locate funding opportunities to help them advance and deploy

76

Solid State Materials for Hydrogen Storage  

Science Journals Connector (OSTI)

This paper seeks to review the hydride/hydrogen technology and to describe the work being...5) type solid state materials for hydrogen storage. To start with a brief review of the basic theme for solid state storage

K. Ramakrishna; S. K. Singh; A. K. Singh; O. N. Srivastava

1987-01-01T23:59:59.000Z

77

Solid-state optical microscope  

DOE Patents [OSTI]

A solid state optical microscope is described wherein wide-field and high-resolution images of an object are produced at a rapid rate by utilizing conventional optics with a charge-coupled photodiode array. Means for scanning in one of two orthogonal directions are provided, while the charge-coupled photodiode array scans in the other orthogonal direction. Illumination light from the object is incident upon the photodiodes, creating packets of electrons (signals) which are representative of the illuminated object. The signals are then processed, stored in a memory, and finally displayed as a video signal.

Young, I.T.

1981-01-07T23:59:59.000Z

78

Solid state electrochromic light modulator  

DOE Patents [OSTI]

An all solid-state variable transmission electrochromic device has a source of charge compensating ions. An inorganic oxide counterelectrode film which on reduction with the accompanying insertion of the charge compensating ions increases its transmission of light of predetermined wavelength is separated from a primary electrochromic film which on reduction with the accompanying insertion of the charge compensating ions decreases its transmission of light of predetermined wavelength by an insulating electrolyte film that transports the charge compensating ions. First and second electrodes are contiguous with the inorganic oxide counter electrode film and the primary electrochromic film, respectively, and separated by the three films.

Cogan, Stuart F. (111 Downey St., Norwood, MA 02062); Rauh, R. David (111 Downey St., Norwood, MA 02062)

1990-01-01T23:59:59.000Z

79

Solid state electrochromic light modulator  

DOE Patents [OSTI]

An all solid-state variable transmission electrochromic device has a source of charge compensating ions. An inorganic oxide counterelectrode film which on reduction with the accompanying insertion of the charge compensating ions increases its transmission of light of predetermined wavelength is separated from a primary electrochromic film which on reduction with the accompanying insertion of the charge compensating ions decreases its transmission of light of predetermined wavelength by an insulating electrolyte film that transports the charge compensating ions. First and second electrodes are contiguous with the inorganic oxide counter electrode film and the primary electrochromic film, respectively, and separated by the three films.

Cogan, Stuart F. (Sudbury, MA); Rauh, R. David (Newton, MA)

1993-01-01T23:59:59.000Z

80

Solid state electrochromic light modulator  

DOE Patents [OSTI]

An all solid-state variable transmission electrochromic device has a source of charge compensating ions. An inorganic oxide counter electrode film which on reduction with the accompanying insertion of the charge compensating ions increases its transmission of light of predetermined wavelength is separated from a primary electrochromic film which on reduction with the accompanying insertion of the charge compensating ions decreases its transmission of light of predetermined wavelength by an insulating electrolyte film that transports the charge compensating ions. First and second electrodes are contiguous with the inorganic oxide counter electrode film and the primary electrochromic film, respectively, and separated by the three films. 4 figs.

Cogan, S.F.; Rauh, R.D.

1990-07-03T23:59:59.000Z

Note: This page contains sample records for the topic "oled solid state" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Solid-State Lighting: Text-Alternative Version: Municipal Solid-State  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Municipal Solid-State Street Lighting Consortium Retrofit Financial Analysis Tool Webcast to someone by E-mail Share Solid-State Lighting: Text-Alternative Version: Municipal Solid-State Street Lighting Consortium Retrofit Financial Analysis Tool Webcast on Facebook Tweet about Solid-State Lighting: Text-Alternative Version: Municipal Solid-State Street Lighting Consortium Retrofit Financial Analysis Tool Webcast on Twitter Bookmark Solid-State Lighting: Text-Alternative Version: Municipal Solid-State Street Lighting Consortium Retrofit Financial Analysis Tool Webcast on Google Bookmark Solid-State Lighting: Text-Alternative Version: Municipal Solid-State Street Lighting Consortium Retrofit Financial Analysis Tool Webcast on Delicious Rank Solid-State Lighting: Text-Alternative Version: Municipal

82

Solid-State Lighting: Information Resources  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Information Resources to Information Resources to someone by E-mail Share Solid-State Lighting: Information Resources on Facebook Tweet about Solid-State Lighting: Information Resources on Twitter Bookmark Solid-State Lighting: Information Resources on Google Bookmark Solid-State Lighting: Information Resources on Delicious Rank Solid-State Lighting: Information Resources on Digg Find More places to share Solid-State Lighting: Information Resources on AddThis.com... Conferences & Meetings Presentations Publications Webcasts Videos Tools Information Resources The Solid-State Lighting (SSL) program has a large collection of resources designed to deliver current, relevant information about the status of SSL technology and applications. On this page you'll find links to DOE conferences (past and present), presentations, publications, and webcasts.

83

Solid-State Lighting: Program Fact Sheets  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Program Fact Sheets to someone Program Fact Sheets to someone by E-mail Share Solid-State Lighting: Program Fact Sheets on Facebook Tweet about Solid-State Lighting: Program Fact Sheets on Twitter Bookmark Solid-State Lighting: Program Fact Sheets on Google Bookmark Solid-State Lighting: Program Fact Sheets on Delicious Rank Solid-State Lighting: Program Fact Sheets on Digg Find More places to share Solid-State Lighting: Program Fact Sheets on AddThis.com... Conferences & Meetings Presentations Publications Postings Articles Program Fact Sheets Technology Fact Sheets CALiPER Reports GATEWAY Reports LED Lighting Facts Reports Project Reports Studies and Reports Technology Roadmaps Product Performance Guides Webcasts Videos Tools Program Fact Sheets This page contains links to fact sheets describing solid-state lighting

84

Solid-State Lighting: About the Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

About the About the Program Printable Version Share this resource Send a link to Solid-State Lighting: About the Program to someone by E-mail Share Solid-State Lighting: About the Program on Facebook Tweet about Solid-State Lighting: About the Program on Twitter Bookmark Solid-State Lighting: About the Program on Google Bookmark Solid-State Lighting: About the Program on Delicious Rank Solid-State Lighting: About the Program on Digg Find More places to share Solid-State Lighting: About the Program on AddThis.com... Contacts Partnerships About the Program The Energy Policy Act of 2005 (EPACT 2005) and the Energy Independence and Security Act of 2007 (EISA 2007) issued directives to the Secretary of Energy to carry out a Next Generation Lighting Initiative to support SSL

85

Solid-State Lighting: Project Reports  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Project Reports to someone by Project Reports to someone by E-mail Share Solid-State Lighting: Project Reports on Facebook Tweet about Solid-State Lighting: Project Reports on Twitter Bookmark Solid-State Lighting: Project Reports on Google Bookmark Solid-State Lighting: Project Reports on Delicious Rank Solid-State Lighting: Project Reports on Digg Find More places to share Solid-State Lighting: Project Reports on AddThis.com... Conferences & Meetings Presentations Publications Postings Articles Program Fact Sheets Technology Fact Sheets CALiPER Reports GATEWAY Reports LED Lighting Facts Reports Project Reports Studies and Reports Technology Roadmaps Product Performance Guides Webcasts Videos Tools Project Reports This page contains links to project reports summarizing the solid-state lighting projects funded by DOE, providing project descriptions and

86

Solid-State Lighting: Technology Fact Sheets  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Technology Fact Sheets to Technology Fact Sheets to someone by E-mail Share Solid-State Lighting: Technology Fact Sheets on Facebook Tweet about Solid-State Lighting: Technology Fact Sheets on Twitter Bookmark Solid-State Lighting: Technology Fact Sheets on Google Bookmark Solid-State Lighting: Technology Fact Sheets on Delicious Rank Solid-State Lighting: Technology Fact Sheets on Digg Find More places to share Solid-State Lighting: Technology Fact Sheets on AddThis.com... Conferences & Meetings Presentations Publications Postings Articles Program Fact Sheets Technology Fact Sheets CALiPER Reports GATEWAY Reports LED Lighting Facts Reports Project Reports Studies and Reports Technology Roadmaps Product Performance Guides Webcasts Videos Tools Technology Fact Sheets This page contains links to fact sheets describing solid-state lighting,

87

Solid-State Lighting: LED Lighting Facts  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Market-Based Programs Printable Version Share this resource Send a link to Solid-State Lighting: LED Lighting Facts to someone by E-mail Share Solid-State Lighting: LED Lighting Facts on Facebook Tweet about Solid-State Lighting: LED Lighting Facts on Twitter Bookmark Solid-State Lighting: LED Lighting Facts on Google Bookmark Solid-State Lighting: LED Lighting Facts on Delicious Rank Solid-State Lighting: LED Lighting Facts on Digg Find More places to share Solid-State Lighting: LED Lighting Facts on AddThis.com... LED Lighting Facts CALiPER Program Standards Development Technical Information Network Gateway Demonstrations Municipal Consortium Design Competitions LED Lighting Facts LED lighting facts - A Program of the U.S. DOE DOE's LED Lighting Facts® program showcases LED products for general

88

Contamination and solid state welds.  

SciTech Connect (OSTI)

Since sensitivity to contamination is one of the verities of solid state joining, there is a need for assessing contamination of the part(s) to be joined, preferably nondestructively while it can be remedied. As the surfaces that are joined in pinch welds are inaccessible and thus provide a greater challenge, most of the discussion is of the search for the origin and effect of contamination on pinch welding and ways to detect and mitigate it. An example of contamination and the investigation and remediation of such a system is presented. Suggestions are made for techniques for nondestructive evaluation of contamination of surfaces for other solid state welds as well as for pinch welds. Surfaces that have good visual access are amenable to inspection by diffuse reflection infrared Fourier transform (DRIFT) spectroscopy. Although other techniques are useful for specific classes of contaminants (such as hydrocarbons), DRIFT can be used most classes of contaminants. Surfaces such as the interior of open tubes or stems that are to be pinch welded can be inspected using infrared reflection spectroscopy. It must be demonstrated whether or not this tool can detect graphite based contamination, which has been seen in stems. For tubes with one closed end, the technique that should be investigated is emission infrared spectroscopy.

Mills, Bernice E.

2007-05-01T23:59:59.000Z

89

Development of High Efficacy, Low Cost Phosphorescent Oled Lightning Luminaire  

SciTech Connect (OSTI)

In this two year program, UDC together with Armstrong World Industries, Professor Stephen Forrest (University of Michigan) and Professor Mark Thompson (University of Southern California) planned to develop and deliver high efficiency OLED lighting luminaires as part of an integrated ceiling illumination system that exceed the Department of Energy (DOE) 2010 performance projections. Specifically the UDC team in 2010 delivered two prototype OLED ceiling illumination systems, each consisting of four individual OLED lighting panels on glass integrated into Armstrong's novel TechZone open architecture ceiling systems, at an overall system efficacy of 51 lm/W, a CRI = 85 and a projected lifetime to 70% of initial luminance to exceed 10,000 hours. This accomplishment represents a 50% increase in luminaire efficacy and a factor of two in lifetime over that outlined in the solicitation. In addition, the team has also delivered one 15cm x 15cm lighting panel fabricated on a flexible metal foil substrate, demonstrating the possibility using OLEDs in a range of form factors. During this program, our Team has pursued the commercialization of these OLED based ceiling luminaires, with a goal to launch commercial products within the next three years. We have proven that our team is ideally suited to develop these highly novel and efficient solid state lighting luminaires, having both the technical experience and commercial strategy to leverage work performed under this contract. Our calculations show that the success of our program could lead to energy savings of more than 0.5 quads or 8 MMTC (million metric tons of carbon) per year by 2016.

Michael Hack

2010-07-09T23:59:59.000Z

90

Solid State Lighting Program (Falcon)  

SciTech Connect (OSTI)

Over the past two years, KLA-Tencor and partners successfully developed and deployed software and hardware tools that increase product yield for High Brightness LED (HBLED) manufacturing and reduce product development and factory ramp times. This report summarizes our development effort and details of how the results of the Solid State Light Program (Falcon) have started to help HBLED manufacturers optimize process control by enabling them to flag and correct identified killer defect conditions at any point of origin in the process manufacturing flow. This constitutes a quantum leap in yield management over current practice. Current practice consists of die dispositioning which is just rejection of bad die at end of process based upon probe tests, loosely assisted by optical in-line monitoring for gross process deficiencies. For the first time, and as a result of our Solid State Lighting Program, our LED manufacturing partners have obtained the software and hardware tools that optimize individual process steps to control killer defects at the point in the processes where they originate. Products developed during our two year program enable optimized inspection strategies for many product lines to minimize cost and maximize yield. The Solid State Lighting Program was structured in three phases: i) the development of advanced imaging modes that achieve clear separation between LED defect types, improves signal to noise and scan rates, and minimizes nuisance defects for both front end and back end inspection tools, ii) the creation of defect source analysis (DSA) software that connect the defect maps from back-end and front-end HBLED manufacturing tools to permit the automatic overlay and traceability of defects between tools and process steps, suppress nuisance defects, and identify the origin of killer defects with process step and conditions, and iii) working with partners (Philips Lumileds) on product wafers, obtain a detailed statistical correlation of automated defect and DSA map overlay to failed die identified using end product probe test results. Results from our two year effort have led to automated end-to-end defect detection with full defect traceability and the ability to unambiguously correlate device killer defects to optically detected features and their point of origin within the process. Success of the program can be measured by yield improvements at our partners facilities and new product orders.

Meeks, Steven

2012-06-30T23:59:59.000Z

91

Solid-State Lighting: Product Performance Guides  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Product Performance Guides to Product Performance Guides to someone by E-mail Share Solid-State Lighting: Product Performance Guides on Facebook Tweet about Solid-State Lighting: Product Performance Guides on Twitter Bookmark Solid-State Lighting: Product Performance Guides on Google Bookmark Solid-State Lighting: Product Performance Guides on Delicious Rank Solid-State Lighting: Product Performance Guides on Digg Find More places to share Solid-State Lighting: Product Performance Guides on AddThis.com... Conferences & Meetings Presentations Publications Postings Articles Program Fact Sheets Technology Fact Sheets CALiPER Reports GATEWAY Reports LED Lighting Facts Reports Project Reports Studies and Reports Technology Roadmaps Product Performance Guides Webcasts Videos Tools Product Performance Guides

92

Solid-State Lighting: Hotel Information  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hotel Information to someone by Hotel Information to someone by E-mail Share Solid-State Lighting: Hotel Information on Facebook Tweet about Solid-State Lighting: Hotel Information on Twitter Bookmark Solid-State Lighting: Hotel Information on Google Bookmark Solid-State Lighting: Hotel Information on Delicious Rank Solid-State Lighting: Hotel Information on Digg Find More places to share Solid-State Lighting: Hotel Information on AddThis.com... Conferences & Meetings Past Conferences Presentations Publications Webcasts Videos Tools Hotel Information Hilton Tampa Downtown 211 N. Tampa St. Tampa, FL 33602 A block of hotel rooms has been reserved at the Hilton Tampa at a special rate for DOE workshop attendees. The rate for a standard room is $116 per night from January 25-February 1. The room block has been extended until noon ET on Friday, January 17,

93

Solid-State Lighting: Technology Roadmaps  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Technology Roadmaps to someone Technology Roadmaps to someone by E-mail Share Solid-State Lighting: Technology Roadmaps on Facebook Tweet about Solid-State Lighting: Technology Roadmaps on Twitter Bookmark Solid-State Lighting: Technology Roadmaps on Google Bookmark Solid-State Lighting: Technology Roadmaps on Delicious Rank Solid-State Lighting: Technology Roadmaps on Digg Find More places to share Solid-State Lighting: Technology Roadmaps on AddThis.com... Conferences & Meetings Presentations Publications Postings Articles Program Fact Sheets Technology Fact Sheets CALiPER Reports GATEWAY Reports LED Lighting Facts Reports Project Reports Studies and Reports Technology Roadmaps Product Performance Guides Webcasts Videos Tools Technology Roadmaps This page contains links to DOE's Technology Roadmaps, multi-year plans

94

Solid-State Lighting: Conferences and Meetings  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Conferences and Meetings to Conferences and Meetings to someone by E-mail Share Solid-State Lighting: Conferences and Meetings on Facebook Tweet about Solid-State Lighting: Conferences and Meetings on Twitter Bookmark Solid-State Lighting: Conferences and Meetings on Google Bookmark Solid-State Lighting: Conferences and Meetings on Delicious Rank Solid-State Lighting: Conferences and Meetings on Digg Find More places to share Solid-State Lighting: Conferences and Meetings on AddThis.com... Conferences & Meetings Past Conferences Presentations Publications Webcasts Videos Tools Conferences and Meetings DOE organizes three annual workshops to bring together a diverse gathering of participants-government, industry, academia, research institutions, energy efficiency organizations, utilities, retailers, and designers-to

95

Solid-State Lighting | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

overviewbrochurefeb2013.pdf More Documents & Publications DOE Lighting Program Update: LED Validation Activities Solid-State Lighting R&D Multi-Year Program Plan Emerging...

96

Solid-State Energy Conversion Overview  

Broader source: Energy.gov (indexed) [DOE]

eere.energy.gov 1 Solid-State Energy Conversion Overview John W. Fairbanks Department of Energy Vehicle Technologies Annual Merit Review June 11, 2010 Vehicle Technologies Program...

97

Solid state safety jumper cables  

DOE Patents [OSTI]

Solid state jumper cables for connecting two batteries in parallel, having two bridge rectifiers for developing a reference voltage, a four-input decoder for determining which terminals are to be connected based on a comparison of the voltage at each of the four terminals to the reference voltage, and a pair of relays for effecting the correct connection depending on the determination of the decoder. No connection will be made unless only one terminal of each battery has a higher voltage than the reference voltage, indicating "positive" terminals, and one has a lower voltage than the reference voltage, indicating "negative" terminals, and that, therefore, the two high voltage terminals may be connected and the two lower voltage terminals may be connected. Current flows once the appropriate relay device is closed. The relay device is preferably a MOSFET (metal oxide semiconductor field effect transistor) combined with a series array of photodiodes that develop MOSFET gate-closing potential when the decoder output causes an LED to light.

Kronberg, James W. (353 Church Rd., Beech Island, SC 29841)

1993-01-01T23:59:59.000Z

98

Solid state safety jumper cables  

DOE Patents [OSTI]

Solid state jumper cables for connecting two batteries in parallel, having two bridge rectifiers for developing a reference voltage, a four-input decoder for determining which terminals are to be connected based on a comparison of the voltage at each of the four terminals to the reference voltage, and a pair of relays for effecting the correct connection depending on the determination of the decoder. No connection will be made unless only one terminal of each battery has a higher voltage than the reference voltage, indicating positive'' terminals, and one has a lower voltage than the reference voltage, indicating negative'' terminals, and that, therefore, the two high voltage terminals may be connected and the two lower voltage terminals may be connected. Current flows once the appropriate relay device is closed. The relay device is preferably a MOSFET (metal oxide semiconductor field effect transistor) combined with a series array of photodiodes that develop MOSFET gate-closing potential when the decoder output causes an LED to light.

Kronberg, J.W.

1993-02-23T23:59:59.000Z

99

Solid state radiative heat pump  

DOE Patents [OSTI]

A solid state radiative heat pump operable at room temperature (300 K) utilizes a semiconductor having a gap energy in the range of 0.03-0.25 eV and operated reversibly to produce an excess or deficit of change carriers as compared equilibrium. In one form of the invention an infrared semiconductor photodiode is used, with forward or reverse bias, to emit an excess or deficit of infrared radiation. In another form of the invention, a homogenous semiconductor is subjected to orthogonal magnetic and electric fields to emit an excess or deficit of infrared radiation. Three methods of enhancing transmission of radiation the active surface of the semiconductor are disclosed. In one method, an anti-refection layer is coated into the active surface of the semiconductor, the anti-reflection layer having an index of refraction equal to the square root of that of the semiconductor. In the second method, a passive layer is speaced trom the active surface of the semiconductor by a submicron vacuum gap, the passive layer having an index of refractive equal to that of the semiconductor. In the third method, a coupler with a paraboloid reflecting surface surface is in contact with the active surface of the semiconductor, the coupler having an index of refraction about the same as that of the semiconductor.

Berdahl, P.H.

1984-09-28T23:59:59.000Z

100

Microsoft Word - oleds0805.doc  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Organic Light Emitting Diodes (OLEDs) Organic Light Emitting Diodes (OLEDs) for General Illumination Update 2002 A A N N O O I I D D A A T T E E C C H H N N O O L L O O G G Y Y R R O O A A D D M M A A P P Date August, 2002 Sponsored by: Optoelectronics Industry Development Association (OIDA) Department of Energy - Office of Building Technology, State and Community Programs Edited by: Milan Stolka, Consultant Published by: 1133 Connecticut Avenue, NW #600 Washington, DC 20036 Ph: 202-785-4426 ♦ Fax: 202-785-4428 Web: http://www.OIDA.org OIDA Member Use Only  2002 OIDA Optoelectronics Industry Development Association All data contained in this report is proprietary to OIDA and may not be distributed in either original or reproduced form to anyone outside the client's internal organization within five years of the report

Note: This page contains sample records for the topic "oled solid state" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Solid-State Lighting Manufacturing Workshop  

Broader source: Energy.gov [DOE]

Nearly 200 lighting industry leaders, chip makers, fixture and component manufacturers, and others gathered in Fairfax, Virginia, on April 21 and 22, 2009, for the first-ever DOE Solid-State...

102

Standards Development for Solid-State Lighting  

Broader source: Energy.gov [DOE]

To accelerate the development and implementation of needed standards for solid-state lighting products, DOE works closely with a network of standards-setting organizations and offers technical assistance and support.

103

Sandia National Laboratories: Solid-State Lighting  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Optical performance of top-down fabricated InGaNGaN nanorod light emitting diode arrays On November 30, 2011, in Energy, Energy Efficiency, Solid-State Lighting EFRC researchers...

104

NREL: Energy Sciences - Solid-State Theory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Solid-State Theory Image showing a roughly spherical red shape that looks like an apple that is floating within a yellow hemispherical shell. The shell is floating over a...

105

Grating enhanced solid-state laser amplifiers  

DOE Patents [OSTI]

A novel method and apparatus for suppressing ASE and parasitic oscillation modes in a high average power laser is introduced. Such an invention, as disclosed herein, uses diffraction gratings to increase gain, stored energy density, and pumping efficiency of solid-state laser gain media, such as, but not limited to rods, disks and slabs. By coupling predetermined gratings to solid-state gain media, such as crystal or ceramic laser gain media, ASE and parasitic oscillation modes can be effectively suppressed.

Erlandson, Alvin C. (Livermore, CA); Britten, Jerald A. (Clayton, CA)

2010-11-09T23:59:59.000Z

106

Ionic Liquid-Enhanced Solid State Electrolyte Interface (SEI...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Liquid-Enhanced Solid State Electrolyte Interface (SEI) for Lithium Sulfur Batteries. Ionic Liquid-Enhanced Solid State Electrolyte Interface (SEI) for Lithium Sulfur Batteries....

107

2014 Solid-State Lighting Project Portfolio | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

2014 Solid-State Lighting Project Portfolio 2014 Solid-State Lighting Project Portfolio This report contains an overview of SSL projects currently funded by DOE, and those...

108

Solid-State Hydrogen Storage: Storage Capacity,Thermodynamics...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydrogen Storage: Storage Capacity,Thermodynamics and Kinetics. Solid-State Hydrogen Storage: Storage Capacity,Thermodynamics and Kinetics. Abstract: Solid-state reversible...

109

Solid State Vehicular Generators and HVAC Development | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Solid State Vehicular Generators and HVAC Development Solid State Vehicular Generators and HVAC Development 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit...

110

Federal Technology Deployment Pilot: Exterior Solid State Lighting...  

Energy Savers [EERE]

Technology Deployment Pilot: Exterior Solid State Lighting Federal Technology Deployment Pilot: Exterior Solid State Lighting Presentation-given at the Fall 2011 Federal Utility...

111

ELSEVIER Solid State Ionics 94 (1997) 17-25 Ceramic solid electrolytes  

E-Print Network [OSTI]

ELSEVIER Solid State Ionics 94 (1997) 17-25 SOLID STATE IoMcs Ceramic solid electrolytes John B electrolytes are best suited for solid reactants, as are found in most battery systems. Ceramic solid 78712-106.3. USA Abstract Strategies for the design of ceramic solid electrolytes are reviewed. Problems

Gleixner, Stacy

112

OLEDS FOR GENERAL LIGHTING  

SciTech Connect (OSTI)

The goal of this program was to reduce the long term technical risks that were keeping the lighting industry from embracing and developing organic light-emitting diode (OLED) technology for general illumination. The specific goal was to develop OLEDs for lighting to the point where it was possible to demonstrate a large area white light panel with brightness and light quality comparable to a fluorescence source and with an efficacy comparable to that of an incandescent source. it was recognized that achieving this would require significant advances in three area: (1) the improvement of white light quality for illumination, (2) the improvement of OLED energy efficiency at high brightness, and (3) the development of cost-effective large area fabrication techniques. The program was organized such that, each year, a ''deliverable'' device would be fabricated which demonstrated progress in one or more of the three critical research areas. In the first year (2001), effort concentrated on developing an OLED capable of generating high illumination-quality white light. Ultimately, a down-conversion method where a blue OLED was coupled with various down-conversion layers was chosen. Various color and scattering models were developed to aid in material development and device optimization. The first year utilized this approach to deliver a 1 inch x 1 inch OLED with higher illumination-quality than available fluorescent sources. A picture of this device is shown and performance metrics are listed. To their knowledge, this was the first demonstration of true illumination-quality light from an OLED. During the second year, effort concentrated on developing a scalable approach to large area devices. A novel device architecture consisting of dividing the device area into smaller elements that are monolithically connected in series was developed. In the course of this development, it was realized that, in addition to being scalable, this approach made the device tolerant to the most common OLED defect--electrical shorts. This architecture enabled the fabrication of a 6 inch x 6 inch OLED deliverable for 2002. A picture of this deliverable is shown and the performance metrics are listed. At the time, this was the highest efficiency, highest lumen output illumination-quality OLED in existence. The third year effort concentrated on improving the fabrication yield of the 6 inch x 6 inch devices and improving the underlying blue device efficiency. An efficiency breakthrough was achieved through the invention of a new device structure such that now 15 lumen per watt devices could be fabricated. A 2 feet x 2 feet OLED panel consisting of sixteen 6 inch x 6 inch high efficiency devices tiled together was then fabricated. Pictures of this panel are shown with performance metrics listed. This panel met all project objectives and was the final deliverable for the project. It is now the highest efficiency, highest lumen output, illumination-quality OLED in existence.

Anil Duggal; Don Foust; Chris Heller; Bill Nealon; Larry Turner; Joe Shiang; Nick Baynes; Tim Butler; Nalin Patel

2004-02-29T23:59:59.000Z

113

Solid state division progress report, period ending February 29, 1980  

SciTech Connect (OSTI)

Research is reported concerning theoretical solid state physics; surface and near-surface properties of solids; defects in solids; transport properties of solids; neutron scattering; crystal growth and characterization; and isotope research materials.

Not Available

1980-09-01T23:59:59.000Z

114

?B-Crystallin: A Hybrid Solid-State/Solution-State NMR...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

?B-Crystallin: A Hybrid Solid-StateSolution-State NMR Investigation Reveals Structural Aspects of the Heterogeneous ?B-Crystallin: A Hybrid Solid-StateSolution-State...

115

NREL: Energy Sciences - Solid-State Theory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Solid-State Theory Solid-State Theory Image showing a roughly spherical red shape that looks like an apple that is floating within a yellow hemispherical shell. The shell is floating over a square below that shows an orange ring pattern bordered by yellow, then light blue, then darker blue. Square of the wave function (red) of a hole state in a spherical CdSe colloidal quantum dot (shape in yellow). The main research activities of the Solid-State Theory team within NREL's Theoretical Materials Science Group include the following: Theory of photovoltaic semiconductors Statistical and electronic theory of metal and semiconductor alloys Semiconductor nanostructures Inverse design of materials Computational methods in first-principles theories. This team provides the main theoretical thrust in the Center for Inverse

116

Passivation-free solid state battery  

DOE Patents [OSTI]

This invention pertains to passivation-free solid-state rechargeable batteries composed of Li{sub 4}Ti{sub 5}O{sub 12} anode, a solid polymer electrolyte and a high voltage cathode. The solid polymer electrolyte comprises a polymer host, such as polyacrylonitrile, poly(vinyl chloride), poly(vinyl sulfone), and poly(vinylidene fluoride), plasticized by a solution of a Li salt in an organic solvent. The high voltage cathode includes LiMn{sub 2}O{sub 4}, LiCoO{sub 2}, LiNiO{sub 2} and LiV{sub 2}O{sub 5} and their derivatives. 5 figs.

Abraham, K.M.; Peramunage, D.

1998-06-16T23:59:59.000Z

117

Passivation-free solid state battery  

DOE Patents [OSTI]

This invention pertains to passivation-free solid-state rechargeable batteries composed of Li.sub.4 Ti.sub.5 O.sub.12 anode, a solid polymer electrolyte and a high voltage cathode. The solid polymer electrolyte comprises a polymer host, such as polyacrylonitrile, poly(vinyl chloride), poly(vinyl sulfone), and poly(vinylidene fluoride), plasticized by a solution of a Li salt in an organic solvent. The high voltage cathode includes LiMn.sub.2 O.sub.4, LiCoO.sub.2, LiNiO.sub.2 and LiV.sub.2 O.sub.5 and their derivatives.

Abraham, Kuzhikalail M. (Needham, MA); Peramunage, Dharmasena (Norwood, MA)

1998-01-01T23:59:59.000Z

118

SolidStateLEDfactSheet04a  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

research program in research program in solid-state lighting Sandia National Laboratories has a long history of research in semiconductor optoelectronic devices. We were pioneers in the technology of the vertical cavity surface emitting laser, or VCSEL, which is now a mainstay of the telecommunications industry. A few years ago we began to realize the tremendous possibilities presented by harnessing semiconductor technology for lighting. Sandia, working with leading industrial scientists from Agilent, wrote some of the first papers on solid-state lighting. In 2000, we helped the Department of Energy and the Optoelectronics Industry Development Association (OIDA) organize a national Solid-State Lighting Technology Roadmapping Workshop. That workshop identified the major scientific

119

Coordinated garbage collection for raid array of solid state disks  

SciTech Connect (OSTI)

An optimized redundant array of solid state devices may include an array of one or more optimized solid-state devices and a controller coupled to the solid-state devices for managing the solid-state devices. The controller may be configured to globally coordinate the garbage collection activities of each of said optimized solid-state devices, for instance, to minimize the degraded performance time and increase the optimal performance time of the entire array of devices.

Dillow, David A; Ki, Youngjae; Oral, Hakki S; Shipman, Galen M; Wang, Feiyi

2014-04-29T23:59:59.000Z

120

The Tenth Annual Solid-State Lighting R&D Workshop  

Broader source: Energy.gov [DOE]

Nearly 250 researchers, manufacturers, and other industry insiders and observers gathered in Long Beach, CA, January 2931, 2013, to participate in DOE's tenth annual Solid-State Lighting (SSL) R&D Workshop. DOE SSL Program Manager James Brodrick kicked off Day 1 by noting how far SSL has come in the past 10 years. Whereas in 2003 LEDs were just starting to gain a foothold in traffic signals and exit signs, today they're used for nearly every lighting application, and OLED niche products are gaining traction. Brodrick noted that despite the progress, there's still significant headroom, and urged attendees to explore ways to maximize efficacy, "not compared to what was, but compared to what is and what can be." He emphasized the present opportunity to push the boundaries with new approaches, product designs, form factors, and value-added features.

Note: This page contains sample records for the topic "oled solid state" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Technology assessment and market analysis of solid state ultracapacitors  

E-Print Network [OSTI]

This report provides quantitative analysis of Solid State Ultracapacitors (SSUs) from technological and financial perspectives. SSUs are Ultracapacitors with solid electrolytes predicted to have huge application potential ...

Jiang, Zibo

2007-01-01T23:59:59.000Z

122

Solid-State Lighting: 2010 Municipal Consortium Southwest Region Workshop  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

0 Municipal Consortium 0 Municipal Consortium Southwest Region Workshop Materials to someone by E-mail Share Solid-State Lighting: 2010 Municipal Consortium Southwest Region Workshop Materials on Facebook Tweet about Solid-State Lighting: 2010 Municipal Consortium Southwest Region Workshop Materials on Twitter Bookmark Solid-State Lighting: 2010 Municipal Consortium Southwest Region Workshop Materials on Google Bookmark Solid-State Lighting: 2010 Municipal Consortium Southwest Region Workshop Materials on Delicious Rank Solid-State Lighting: 2010 Municipal Consortium Southwest Region Workshop Materials on Digg Find More places to share Solid-State Lighting: 2010 Municipal Consortium Southwest Region Workshop Materials on AddThis.com... Conferences & Meetings Presentations Publications

123

Solid-State Lighting: 2011 Municipal Consortium Southeast Region Workshop  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 Municipal Consortium 1 Municipal Consortium Southeast Region Workshop Materials to someone by E-mail Share Solid-State Lighting: 2011 Municipal Consortium Southeast Region Workshop Materials on Facebook Tweet about Solid-State Lighting: 2011 Municipal Consortium Southeast Region Workshop Materials on Twitter Bookmark Solid-State Lighting: 2011 Municipal Consortium Southeast Region Workshop Materials on Google Bookmark Solid-State Lighting: 2011 Municipal Consortium Southeast Region Workshop Materials on Delicious Rank Solid-State Lighting: 2011 Municipal Consortium Southeast Region Workshop Materials on Digg Find More places to share Solid-State Lighting: 2011 Municipal Consortium Southeast Region Workshop Materials on AddThis.com... Conferences & Meetings Presentations Publications

124

OLED Basics | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

light sources. Although OLED technology is developing rapidly, it's less mature than LED technology and is still some years away from becoming a practical source of general...

125

Citation Analysis Method - Solid-State Lighting  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 2 | Headline News | Tracking Reports | Hot Technical Papers | Citation Analysis Method | Credits & Disclaimer | CITATION ANALYSIS METHODOLOGY To examine emerging science and technology knowledge domains that may someday intersect solid-state lighting, we used a citation analysis method similar to that pioneered by the Institute of Scientific Information (ISI). (For more information, see ISI's in-cites website). The analysis below was conducted in August of 2004 and will be updated periodically. First, we searched the ISI database for recent technical articles (from January 2002 on) containing key words associated with solid-state lighting. Second, we made a scatter plot of the number of citations* to these articles as a function of publication date. On that plot, we draw a curve

126

Heat Pump Water Heater using Solid-State Energy Converters |...  

Energy Savers [EERE]

Heat Pump Water Heater using Solid-State Energy Converters Heat Pump Water Heater using Solid-State Energy Converters Sheetak will work on developing a full scale prototype of its...

127

Solid-state hydrogen storage: Storage capacity, thermodynamics, and kinetics  

Science Journals Connector (OSTI)

Solid-state reversible hydrogen storage systems hold great promise for onboard applications. ... key criteria for a successful solid-state reversible storage material are high storage capacity, suitable thermodyn...

William Osborn; Tippawan Markmaitree; Leon L. Shaw; Ruiming Ren; Jianzhi Hu

2009-04-01T23:59:59.000Z

128

Friction Stir and Ultrasonic Solid State Joining of Magnesium...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Ultrasonic Solid State Joining of Magnesium to Steel Friction Stir and Ultrasonic Solid State Joining of Magnesium to Steel 2012 DOE Hydrogen and Fuel Cells Program and Vehicle...

129

Phase Behavior and Solid State Chemistry of Olivines | Department...  

Broader source: Energy.gov (indexed) [DOE]

Phase Behavior and Solid State Chemistry of Olivines Phase Behavior and Solid State Chemistry of Olivines Presentation from the U.S. DOE Office of Vehicle Technologies "Mega" Merit...

130

Solid-State Lighting: Text-Alternative Version: LED Essentials -  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Essentials - Technology, Applications, Advantages, Disadvantages to someone Essentials - Technology, Applications, Advantages, Disadvantages to someone by E-mail Share Solid-State Lighting: Text-Alternative Version: LED Essentials - Technology, Applications, Advantages, Disadvantages on Facebook Tweet about Solid-State Lighting: Text-Alternative Version: LED Essentials - Technology, Applications, Advantages, Disadvantages on Twitter Bookmark Solid-State Lighting: Text-Alternative Version: LED Essentials - Technology, Applications, Advantages, Disadvantages on Google Bookmark Solid-State Lighting: Text-Alternative Version: LED Essentials - Technology, Applications, Advantages, Disadvantages on Delicious Rank Solid-State Lighting: Text-Alternative Version: LED Essentials - Technology, Applications, Advantages, Disadvantages on Digg

131

Solid State Marx Modulators for Emerging Applications  

SciTech Connect (OSTI)

Emerging linear accelerator applications increasingly push the boundaries of RF system performance and economics. The power modulator is an integral part of RF systems whose characteristics play a key role in the determining parameters such as efficiency, footprint, cost, stability, and availability. Particularly within the past decade, solid-state switch based modulators have become the standard in high-performance, high power modulators. One topology, the Marx modulator, has characteristics which make it particularly attractive for several emerging applications. This paper is an overview of the Marx topology, some recent developments, and a case study of how this architecture can be applied to a few proposed linear accelerators.

Kemp, M.A.; /SLAC

2012-09-14T23:59:59.000Z

132

Pulsed Power for Solid-State Lasers  

SciTech Connect (OSTI)

Beginning in the early 1970s, a number of research and development efforts were undertaken at U.S. National Laboratories with a goal of developing high power lasers whose characteristics were suitable for investigating the feasibility of laser-driven fusion. A number of different laser systems were developed and tested at ever larger scale in pursuit of the optimum driver for laser fusion experiments. Each of these systems had associated with it a unique pulsed power option. A considerable amount of original and innovative engineering was carried out in support of these options. Ultimately, the Solid-state Laser approach was selected as the optimum driver for the application. Following this, the Laser Program at the Lawrence Livermore National Laboratory and the University of Rochester undertook aggressive efforts directed at developing the technology. In particular, at Lawrence Livermore National Laboratory, a series of laser systems beginning with the Cyclops laser and culminating in the present with the National Ignition Facility were developed and tested. As a result, a large amount of design information for solid-state laser pulsed power systems has been documented. Some of it is in the form of published papers, but most of it is buried in internal memoranda, engineering reports and LLNL annual reports. One of the goals of this book is to gather this information into a single useable format, such that it is easily accessed and understood by other engineers and physicists for use with future designs. It can also serve as a primer, which when seriously studied, makes the subsequent reading of original work and follow-up references considerably easier. While this book deals only with the solid-state laser pulsed power systems, in the bibliography we have included a representative cross section of papers and references from much of the very fine work carried out at other institutions in support of different laser approaches. Finally, in recent years, there has been a renewed interest in high-average-power solid-state glass lasers. Much of the prime power technology developed in support of this has definite applications in the long term for fusion power plant scenarios.

Gagnon, W; Albrecht, G; Trenholme, J; Newton, M

2007-04-19T23:59:59.000Z

133

Solid State Energy Conversion Alliance (SECA) Workshop  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

NETL Publications NETL Publications 2001 Conference Proceedings Solid State Energy Conversion Alliance (SECA) Workshop March 29-30, 2001 Table of Contents Disclaimer Papers and Presentations Plenary Session Selected Presentations on Current DOE Work Supporting SECA Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government or any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

134

Solid-State Lighting: Market-Based Programs  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Market-Based Programs Printable Version Share this resource Send a link to Solid-State Lighting: Market-Based Programs to someone by E-mail Share Solid-State Lighting: Market-Based Programs on Facebook Tweet about Solid-State Lighting: Market-Based Programs on Twitter Bookmark Solid-State Lighting: Market-Based Programs on Google Bookmark Solid-State Lighting: Market-Based Programs on Delicious Rank Solid-State Lighting: Market-Based Programs on Digg Find More places to share Solid-State Lighting: Market-Based Programs on AddThis.com... LED Lighting Facts CALiPER Program Standards Development Technical Information Network Gateway Demonstrations Municipal Consortium Design Competitions Market-Based Programs To facilitate successful market introduction of high-quality,

135

Solid-State Lighting: CALiPER Exploratory Studies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Market-Based Programs Printable Version Share this resource Send a link to Solid-State Lighting: CALiPER Exploratory Studies to someone by E-mail Share Solid-State Lighting: CALiPER Exploratory Studies on Facebook Tweet about Solid-State Lighting: CALiPER Exploratory Studies on Twitter Bookmark Solid-State Lighting: CALiPER Exploratory Studies on Google Bookmark Solid-State Lighting: CALiPER Exploratory Studies on Delicious Rank Solid-State Lighting: CALiPER Exploratory Studies on Digg Find More places to share Solid-State Lighting: CALiPER Exploratory Studies on AddThis.com... LED Lighting Facts CALiPER Program About the Program FAQs Summary Reports Detailed Reports Benchmark Reports Exploratory Studies Testing Laboratories Standards Development Technical Information Network

136

Solid-State Lighting: DOE Five Year Commercialization Support Plan  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Information Information Resources Printable Version Share this resource Send a link to Solid-State Lighting: DOE Five Year Commercialization Support Plan to someone by E-mail Share Solid-State Lighting: DOE Five Year Commercialization Support Plan on Facebook Tweet about Solid-State Lighting: DOE Five Year Commercialization Support Plan on Twitter Bookmark Solid-State Lighting: DOE Five Year Commercialization Support Plan on Google Bookmark Solid-State Lighting: DOE Five Year Commercialization Support Plan on Delicious Rank Solid-State Lighting: DOE Five Year Commercialization Support Plan on Digg Find More places to share Solid-State Lighting: DOE Five Year Commercialization Support Plan on AddThis.com... Conferences & Meetings Presentations Publications Webcasts Videos

137

Solid-State Lighting: Retrofit Financial Analysis Tool  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Market-Based Programs Printable Version Share this resource Send a link to Solid-State Lighting: Retrofit Financial Analysis Tool to someone by E-mail Share Solid-State Lighting: Retrofit Financial Analysis Tool on Facebook Tweet about Solid-State Lighting: Retrofit Financial Analysis Tool on Twitter Bookmark Solid-State Lighting: Retrofit Financial Analysis Tool on Google Bookmark Solid-State Lighting: Retrofit Financial Analysis Tool on Delicious Rank Solid-State Lighting: Retrofit Financial Analysis Tool on Digg Find More places to share Solid-State Lighting: Retrofit Financial Analysis Tool on AddThis.com... LED Lighting Facts CALiPER Program Standards Development Technical Information Network Gateway Demonstrations Municipal Consortium About the Consortium FAQs

138

Solid-State Lighting: DOE Hosts LED Industry Standards Workshop  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Information Information Resources Printable Version Share this resource Send a link to Solid-State Lighting: DOE Hosts LED Industry Standards Workshop to someone by E-mail Share Solid-State Lighting: DOE Hosts LED Industry Standards Workshop on Facebook Tweet about Solid-State Lighting: DOE Hosts LED Industry Standards Workshop on Twitter Bookmark Solid-State Lighting: DOE Hosts LED Industry Standards Workshop on Google Bookmark Solid-State Lighting: DOE Hosts LED Industry Standards Workshop on Delicious Rank Solid-State Lighting: DOE Hosts LED Industry Standards Workshop on Digg Find More places to share Solid-State Lighting: DOE Hosts LED Industry Standards Workshop on AddThis.com... Conferences & Meetings Past Conferences Presentations Publications Webcasts Videos Tools

139

Solid-State Lighting: CALiPER Application Summary Reports  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Market-Based Programs Printable Version Share this resource Send a link to Solid-State Lighting: CALiPER Application Summary Reports to someone by E-mail Share Solid-State Lighting: CALiPER Application Summary Reports on Facebook Tweet about Solid-State Lighting: CALiPER Application Summary Reports on Twitter Bookmark Solid-State Lighting: CALiPER Application Summary Reports on Google Bookmark Solid-State Lighting: CALiPER Application Summary Reports on Delicious Rank Solid-State Lighting: CALiPER Application Summary Reports on Digg Find More places to share Solid-State Lighting: CALiPER Application Summary Reports on AddThis.com... LED Lighting Facts CALiPER Program About the Program FAQs Summary Reports Detailed Reports Benchmark Reports Exploratory Studies Testing Laboratories

140

Solid-State Lighting: CALiPER Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Market-Based Programs Printable Version Share this resource Send a link to Solid-State Lighting: CALiPER Program to someone by E-mail Share Solid-State Lighting: CALiPER Program on Facebook Tweet about Solid-State Lighting: CALiPER Program on Twitter Bookmark Solid-State Lighting: CALiPER Program on Google Bookmark Solid-State Lighting: CALiPER Program on Delicious Rank Solid-State Lighting: CALiPER Program on Digg Find More places to share Solid-State Lighting: CALiPER Program on AddThis.com... LED Lighting Facts CALiPER Program About the Program FAQs Summary Reports Detailed Reports Benchmark Reports Exploratory Studies Testing Laboratories Standards Development Technical Information Network Gateway Demonstrations Municipal Consortium Design Competitions CALiPER Program

Note: This page contains sample records for the topic "oled solid state" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Solid-State Lighting: Adaptive Street Lighting Controls  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Adaptive Street Lighting Adaptive Street Lighting Controls to someone by E-mail Share Solid-State Lighting: Adaptive Street Lighting Controls on Facebook Tweet about Solid-State Lighting: Adaptive Street Lighting Controls on Twitter Bookmark Solid-State Lighting: Adaptive Street Lighting Controls on Google Bookmark Solid-State Lighting: Adaptive Street Lighting Controls on Delicious Rank Solid-State Lighting: Adaptive Street Lighting Controls on Digg Find More places to share Solid-State Lighting: Adaptive Street Lighting Controls on AddThis.com... Conferences & Meetings Presentations Publications Webcasts Videos Tools Adaptive Street Lighting Controls This two-part DOE Municipal Solid-State Street Lighting Consortium webinar focused on LED street lighting equipped with adaptive control components.

142

PHYSICS "636, SOLID STATE II: BOOKS Christopher Henley, spring 2012  

E-Print Network [OSTI]

transport, and density- functional theory. This covers many of our topics, at the level of the advanced Theory (1970). QC 176.H32 ­ The first half of this book corresponds to Solid State I, the second to SolidPHYSICS "636, SOLID STATE II: BOOKS Christopher Henley, spring 2012 My basic "text" will be set

Henley, Christopher L.

143

Improving OLED technology for displays  

E-Print Network [OSTI]

Organic light emitting devices (OLEDs) are brightly emissive, efficient, have fast switching speeds, and are paper-thin in format, propelling their use as an emerging flat panel display technology. However, two primary ...

Yu, Jennifer J. (Jennifer Jong-Hwa), 1980-

2008-01-01T23:59:59.000Z

144

UDC Demonstrates Phosphorescent OLED Systems  

Broader source: Energy.gov [DOE]

Universal Display Corporation (UDC), along with project partners Armstrong World Industries and the universities of Michigan and Southern California, have successfully demonstrated two phosphorescent OLED (PHOLED) luminaire systems, the first of their kind in the U.S. This achievement marks a critical step in the development of practical OLED lighting in a complete luminaire system, including decorative housing, power supply, mounting, and maintenance provisions. Each luminaire has overall dimensions of approximately 15x60 cm and is comprised of four 15x15 cm phosphorescent OLED panels. With a combined power supply and lamp efficacy of 51 lm/W, the prototype luminaire is about twice as efficient as the market-leading halogen-based systems. In addition, the prototype OLED lighting system snaps into Armstrong's TechZone Ceiling System, which is commercially available in the U.S.x

145

Information Resources: Solid-State Lighting Videos  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Videos Videos On this page you can access DOE Solid-State Lighting (SSL) Program videos. Photo of a museum art gallery with LED lights in track fixtures overhead. The City of Los Angeles LED Streetlight Program View the video about the Los Angeles LED streetlight program, featuring an interview with City of Los Angeles Bureau of Street Lighting Director, Ed Ebrahimian. Photo of a museum art gallery with LED lights in track fixtures overhead. The Smithsonian American Art Museum GATEWAY Demonstration View the video about using LEDs in a GATEWAY demonstration at the Smithsonian American Art Museum in Washington, DC, including an interview with lighting designer Scott Rosenfeld. graphic of many intersecting white lines on a blue background Orchestrating Market Success

146

Outdoor Solid-State Lighting Technology Deployment | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Technologies » Technology Deployment » Outdoor Solid-State Technologies » Technology Deployment » Outdoor Solid-State Lighting Technology Deployment Outdoor Solid-State Lighting Technology Deployment October 7, 2013 - 9:10am Addthis Outdoor solid-state lighting (SSL) technology has the potential to reduce U.S. lighting energy usage by nearly one half and contribute significantly to our nation's climate change solutions. The U.S. Department of Energy's (DOE) Buildings Technologies Office offers a wealth of information on its Solid-State Lighting website. Visit the site to find: SSL Basics Studies and Reports CALiPER Summary Reports Tools SSL Webcasts. Also see: FEMP Outdoor SSL Initiative: Resources for Outdoor SSL Applications outlines resources available for outdoor solid-state lighting projects. Better Buildings Alliance: This DOE initiative is driven and managed

147

Solid-State Lighting: 2011 Municipal Consortium North Central Region  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Consortium North Consortium North Central Region Workshop Materials to someone by E-mail Share Solid-State Lighting: 2011 Municipal Consortium North Central Region Workshop Materials on Facebook Tweet about Solid-State Lighting: 2011 Municipal Consortium North Central Region Workshop Materials on Twitter Bookmark Solid-State Lighting: 2011 Municipal Consortium North Central Region Workshop Materials on Google Bookmark Solid-State Lighting: 2011 Municipal Consortium North Central Region Workshop Materials on Delicious Rank Solid-State Lighting: 2011 Municipal Consortium North Central Region Workshop Materials on Digg Find More places to share Solid-State Lighting: 2011 Municipal Consortium North Central Region Workshop Materials on AddThis.com... LED Lighting Facts CALiPER Program

148

Solid-State Lighting: 2011 Municipal Consortium North Central Region  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2011 Municipal Consortium North 2011 Municipal Consortium North Central Region Workshop Materials to someone by E-mail Share Solid-State Lighting: 2011 Municipal Consortium North Central Region Workshop Materials on Facebook Tweet about Solid-State Lighting: 2011 Municipal Consortium North Central Region Workshop Materials on Twitter Bookmark Solid-State Lighting: 2011 Municipal Consortium North Central Region Workshop Materials on Google Bookmark Solid-State Lighting: 2011 Municipal Consortium North Central Region Workshop Materials on Delicious Rank Solid-State Lighting: 2011 Municipal Consortium North Central Region Workshop Materials on Digg Find More places to share Solid-State Lighting: 2011 Municipal Consortium North Central Region Workshop Materials on AddThis.com... Conferences & Meetings

149

Solid-State Lighting: 2011 Municipal Consortium Northeast Region Workshop  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Northeast Region Workshop Materials to someone by E-mail Northeast Region Workshop Materials to someone by E-mail Share Solid-State Lighting: 2011 Municipal Consortium Northeast Region Workshop Materials on Facebook Tweet about Solid-State Lighting: 2011 Municipal Consortium Northeast Region Workshop Materials on Twitter Bookmark Solid-State Lighting: 2011 Municipal Consortium Northeast Region Workshop Materials on Google Bookmark Solid-State Lighting: 2011 Municipal Consortium Northeast Region Workshop Materials on Delicious Rank Solid-State Lighting: 2011 Municipal Consortium Northeast Region Workshop Materials on Digg Find More places to share Solid-State Lighting: 2011 Municipal Consortium Northeast Region Workshop Materials on AddThis.com... LED Lighting Facts CALiPER Program Standards Development Technical Information Network

150

Solid-State Lighting: Municipal Consortium LED Street Lighting Workshop  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Los Angeles, CA to someone Los Angeles, CA to someone by E-mail Share Solid-State Lighting: Municipal Consortium LED Street Lighting Workshop Presentations and Materials-Los Angeles, CA on Facebook Tweet about Solid-State Lighting: Municipal Consortium LED Street Lighting Workshop Presentations and Materials-Los Angeles, CA on Twitter Bookmark Solid-State Lighting: Municipal Consortium LED Street Lighting Workshop Presentations and Materials-Los Angeles, CA on Google Bookmark Solid-State Lighting: Municipal Consortium LED Street Lighting Workshop Presentations and Materials-Los Angeles, CA on Delicious Rank Solid-State Lighting: Municipal Consortium LED Street Lighting Workshop Presentations and Materials-Los Angeles, CA on Digg Find More places to share Solid-State Lighting: Municipal Consortium

151

Solid-State Lighting: Pedestrian-Friendly Nighttime Lighting  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Pedestrian-Friendly Nighttime Pedestrian-Friendly Nighttime Lighting to someone by E-mail Share Solid-State Lighting: Pedestrian-Friendly Nighttime Lighting on Facebook Tweet about Solid-State Lighting: Pedestrian-Friendly Nighttime Lighting on Twitter Bookmark Solid-State Lighting: Pedestrian-Friendly Nighttime Lighting on Google Bookmark Solid-State Lighting: Pedestrian-Friendly Nighttime Lighting on Delicious Rank Solid-State Lighting: Pedestrian-Friendly Nighttime Lighting on Digg Find More places to share Solid-State Lighting: Pedestrian-Friendly Nighttime Lighting on AddThis.com... Conferences & Meetings Presentations Publications Webcasts Videos Tools Pedestrian-Friendly Nighttime Lighting This November 19, 2013 webinar presented issues and considerations related to pedestrian-friendly nighttime lighting, such as color rendering, safety,

152

Solid-State Lighting: Text-Alternative Version: Understanding and  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

In Situ TMP and LM-80 Reports to someone by In Situ TMP and LM-80 Reports to someone by E-mail Share Solid-State Lighting: Text-Alternative Version: Understanding and Evaluating In Situ TMP and LM-80 Reports on Facebook Tweet about Solid-State Lighting: Text-Alternative Version: Understanding and Evaluating In Situ TMP and LM-80 Reports on Twitter Bookmark Solid-State Lighting: Text-Alternative Version: Understanding and Evaluating In Situ TMP and LM-80 Reports on Google Bookmark Solid-State Lighting: Text-Alternative Version: Understanding and Evaluating In Situ TMP and LM-80 Reports on Delicious Rank Solid-State Lighting: Text-Alternative Version: Understanding and Evaluating In Situ TMP and LM-80 Reports on Digg Find More places to share Solid-State Lighting: Text-Alternative Version: Understanding and Evaluating In Situ TMP and LM-80 Reports on

153

Solid-State Lighting: Municipal Consortium Annual Meeting Presentations and  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Information Information Resources Printable Version Share this resource Send a link to Solid-State Lighting: Municipal Consortium Annual Meeting Presentations and Materials-Phoenix, AZ to someone by E-mail Share Solid-State Lighting: Municipal Consortium Annual Meeting Presentations and Materials-Phoenix, AZ on Facebook Tweet about Solid-State Lighting: Municipal Consortium Annual Meeting Presentations and Materials-Phoenix, AZ on Twitter Bookmark Solid-State Lighting: Municipal Consortium Annual Meeting Presentations and Materials-Phoenix, AZ on Google Bookmark Solid-State Lighting: Municipal Consortium Annual Meeting Presentations and Materials-Phoenix, AZ on Delicious Rank Solid-State Lighting: Municipal Consortium Annual Meeting Presentations and Materials-Phoenix, AZ on Digg

154

Solid-State Lighting: Frequently Asked Questions About the Technology  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Frequently Asked Questions Frequently Asked Questions About the Technology Demonstration GATEWAY Program to someone by E-mail Share Solid-State Lighting: Frequently Asked Questions About the Technology Demonstration GATEWAY Program on Facebook Tweet about Solid-State Lighting: Frequently Asked Questions About the Technology Demonstration GATEWAY Program on Twitter Bookmark Solid-State Lighting: Frequently Asked Questions About the Technology Demonstration GATEWAY Program on Google Bookmark Solid-State Lighting: Frequently Asked Questions About the Technology Demonstration GATEWAY Program on Delicious Rank Solid-State Lighting: Frequently Asked Questions About the Technology Demonstration GATEWAY Program on Digg Find More places to share Solid-State Lighting: Frequently Asked Questions About the Technology Demonstration GATEWAY Program on

155

Solid-State Lighting: 2011 Municipal Consortium Northwest Region Workshop  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Northwest Region Workshop Materials to someone by E-mail Northwest Region Workshop Materials to someone by E-mail Share Solid-State Lighting: 2011 Municipal Consortium Northwest Region Workshop Materials on Facebook Tweet about Solid-State Lighting: 2011 Municipal Consortium Northwest Region Workshop Materials on Twitter Bookmark Solid-State Lighting: 2011 Municipal Consortium Northwest Region Workshop Materials on Google Bookmark Solid-State Lighting: 2011 Municipal Consortium Northwest Region Workshop Materials on Delicious Rank Solid-State Lighting: 2011 Municipal Consortium Northwest Region Workshop Materials on Digg Find More places to share Solid-State Lighting: 2011 Municipal Consortium Northwest Region Workshop Materials on AddThis.com... LED Lighting Facts CALiPER Program Standards Development Technical Information Network

156

Outdoor Solid-State Lighting Technology Deployment | Department...  

Energy Savers [EERE]

Parking Lot Lighting FEMP Acquisition Guidance for Lighting Products (Powered by LED Lighting Facts) FEMP Outdoor Solid-State Lighting Initiative: Resources for Outdoor SSL...

157

Automatic diagnosis and control of distributed solid state lighting systems  

Science Journals Connector (OSTI)

This paper describes a new design concept of automatically diagnosing and compensating LED degradations in distributed solid state lighting (SSL) systems. A failed LED may...

Dong, Jianfei; van Driel, Willem; Zhang, Guoqi

2011-01-01T23:59:59.000Z

158

Energy Department Provides $7 Million for Solid-State Lighting...  

Energy Savers [EERE]

incandescent and fluorescent lamps, solid-state lighting creates light without producing heat. A semi-conducting material converts electricity directly into light, which maximizes...

159

Phase Behavior and Solid State Chemistry in Olivines  

Broader source: Energy.gov (indexed) [DOE]

Phase Behavior and Solid State Chemistry in Olivines Thomas J. Richardson Lawrence Berkeley National Lab May 20, 2009 es25richardson This presentation does not contain any...

160

CEMI Solid-State Lighting (text version) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Clean Energy Manufacturing Initiative Solid-State Lighting Video. There are shots from NASA of the United States at nighttime and you see these beautiful pictures of the metro...

Note: This page contains sample records for the topic "oled solid state" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Solid State Replacement of Rotating Mirror Cameras  

SciTech Connect (OSTI)

Rotating mirror cameras have been the mainstay of mega-frame per second imaging for decades. There is still no electronic camera that can match a film based rotary mirror camera for the combination of frame count, speed, resolution and dynamic range. The rotary mirror cameras are predominantly used in the range of 0.1 to 100 micro-seconds per frame, for 25 to more than a hundred frames. Electron tube gated cameras dominate the sub microsecond regime but are frame count limited. Video cameras are pushing into the microsecond regime but are resolution limited by the high data rates. An all solid state architecture, dubbed ''In-situ Storage Image Sensor'' or ''ISIS'', by Prof. Goji Etoh, has made its first appearance into the market and its evaluation is discussed. Recent work at Lawrence Livermore National Laboratory has concentrated both on evaluation of the presently available technologies and exploring the capabilities of the ISIS architecture. It is clear though there is presently no single chip camera that can simultaneously match the rotary mirror cameras, the ISIS architecture has the potential to approach their performance.

Frank, A M; Bartolick, J M

2006-08-25T23:59:59.000Z

162

Solid-State Photogalvanic Dye-Sensitized Solar Cells  

Science Journals Connector (OSTI)

Solid-State Photogalvanic Dye-Sensitized Solar Cells ... photogalvanic; dye-sensitized; solar cells; thermal; electron; transfer ... (3) Modern organic photovoltaic solar cells, wherein charge separation occurs in a photoactive layer of organic semiconductor material and must migrate to collecting electrodes,(4) can be regarded as solid-state photogalvanic cells. ...

Seare A. Berhe; Habtom B. Gobeze; Sundari D. Pokharel; Eunsol Park; W. Justin Youngblood

2014-05-29T23:59:59.000Z

163

Federal Technology Deployment Pilot: Exterior Solid State Lighting  

Broader source: Energy.gov [DOE]

Presentationgiven at the Fall 2011 Federal Utility Partnership Working Group (FUPWG) meetingprovides an overview of the U.S. Department of Energy's Solid-State Lighting Program and an exterior solid-state lighting federal technology deployment pilot project.

164

A New I/O Scheduler for Solid State Devices  

E-Print Network [OSTI]

parameters of solid state drives. Using the information from the parameter extraction, we present a new I/O scheduler design which utilizes the structure of solid state devices to efficiently schedule writes. The new scheduler, implemented on a 2.6 Linux...

Dunn, Marcus P.

2010-10-12T23:59:59.000Z

165

Solid-State Lighting Calendar | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Solid-State Lighting Calendar Solid-State Lighting Calendar February 2015 < prev next > Sun Mon Tue Wed Thu Fri Sat 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24...

166

Modulated optical solid-state spectrometer applications in plasma diagnostics  

E-Print Network [OSTI]

Modulated optical solid-state spectrometer applications in plasma diagnostics John Howard Plasma A new electro-optically modulated optical solid-state MOSS interferometer has been constructed for the measurement of the low order spectral moments of line emission from optically thin radiant media

Howard, John

167

New and Underutilized Technology: Exterior LED/Solid State Lighting |  

Broader source: Energy.gov (indexed) [DOE]

Exterior LED/Solid State Lighting Exterior LED/Solid State Lighting New and Underutilized Technology: Exterior LED/Solid State Lighting October 4, 2013 - 4:55pm Addthis The following information outlines key deployment considerations for exterior LED/solid state lighting within the Federal sector. Benefits LED lighting economics can work in high electric cost areas with high hours of use. Pricing continually decreases for LED lighting. This technology provides quality, white, even lighting with good color rendition. Greater cost savings can be achieved when combined with bi-level motion sensors to reduce light levels in parking areas, garages, and walkways. Application Exterior LED/solid state lighting is applicable in areas where security and visual performance are critical, including street lighting, parking lots,

168

Review Articles of Overview of Solid-State Lighting  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

REVIEW ARTICLES REVIEW ARTICLES Solid-state lighting is an exciting and rapidly moving area of research and development. For the latest developments, please see the Science and Business News section of this website. Here, we have compiled a list of review articles covering various aspects of solid-state lighting science, technology and engineering. · June 2004. Nanoscience and solid-state lighting, presented by George Craford of Lumileds at the DOE Nanosummit, covers technology background and status, applications, technical challenges, and nanotechnology approaches. · May 2004. A detailed review, in IEEE Circuits and Devices, of the various lamp, chip and materials design choices that will be faced as solid-state lighting technology improves to the point of meeting long-term roadmap targets. This article, by Jeff Tsao at Sandia National Laboratories, is titled Solid-state lighting: lamps, chips and materials for tomorrow.

169

New and Underutilized Technology: Interior LED/Solid State Lighting |  

Broader source: Energy.gov (indexed) [DOE]

Interior LED/Solid State Lighting Interior LED/Solid State Lighting New and Underutilized Technology: Interior LED/Solid State Lighting October 4, 2013 - 4:53pm Addthis The following information outlines key deployment considerations for interior LED/solid state lighting within the Federal sector. Benefits Interior LED retrofits are currently viable for down lights, track lighting, sconces, and both line and low voltage task lighting. Replacements for incandescent A-lamps have also been improving rapidly. Replacements for fluorescent tube lighting may be viable for high-cost maintenance areas. Application Interior LED/solid state lighting is a rapidly improving technology currently most applicable for down lights, track lights, task lighting, accenting, high ceiling, and high cost maintenance areas.

170

A Rising Star: Solid-State Lighting | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

A Rising Star: Solid-State Lighting A Rising Star: Solid-State Lighting A Rising Star: Solid-State Lighting June 16, 2009 - 5:00am Addthis John Lippert Just when consumers started getting familiar with the spiral ice-cream cone-shaped and prong-shaped compact fluorescents (CFLs), along comes LED lighting, a solid-state lighting (SSL) solution. Some experts are predicting that solid-state lighting is set to turn the current lighting industry on its head, and perhaps in the not-too-distant future make the century-old incandescent light bulb go the way of the dinosaur. Many consumers have been saving money and helping the environment for years by using LED lights during the holidays. These light strings use 75% less energy than conventional (i.e., incandescent) light strings. ENERGY STAR decorative light strings are independently tested to meet strict lifetime

171

A Rising Star: Solid-State Lighting | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

A Rising Star: Solid-State Lighting A Rising Star: Solid-State Lighting A Rising Star: Solid-State Lighting June 16, 2009 - 5:00am Addthis John Lippert Just when consumers started getting familiar with the spiral ice-cream cone-shaped and prong-shaped compact fluorescents (CFLs), along comes LED lighting, a solid-state lighting (SSL) solution. Some experts are predicting that solid-state lighting is set to turn the current lighting industry on its head, and perhaps in the not-too-distant future make the century-old incandescent light bulb go the way of the dinosaur. Many consumers have been saving money and helping the environment for years by using LED lights during the holidays. These light strings use 75% less energy than conventional (i.e., incandescent) light strings. ENERGY STAR decorative light strings are independently tested to meet strict lifetime

172

Municipal Solid-State Street Lighting Consortium Kickoff Webcast  

Broader source: Energy.gov [DOE]

This May 6, 2010 webcast served as the first official meeting of the new DOE Municipal Solid-State Street Lighting Consortium. Ed Smalley of Seattle City Light and Bruce Kinzey of Pacific Northwest...

173

A SOLID-STATE HEAT PUMP USING ELECTROCALORIC CERAMIC ELEMENTS.  

E-Print Network [OSTI]

??The thermoacoustic cycle is a robust thermodynamic cycle that can be generalizedto describe and develop an all-solid-state heat pump using generic caloric elements.Ferroelectric barium strontium (more)

Hilt, Matthew

2009-01-01T23:59:59.000Z

174

Solid-state lamp with integral occupancy sensor  

E-Print Network [OSTI]

Previous work demonstrated a retrofit proximity detector for fluorescent lamps using the lamp's own stray electric fields. This paper extends the retrofit sensor system to a solid-state (LED) lamp. The design and implementation ...

Cooley, John J.

175

FEMP Exterior Solid-State Lighting Technology Pilot  

Broader source: Energy.gov [DOE]

Presentationgiven at at the Fall 2012 Federal Utility Partnership Working Group (FUPWG) meetingcovers the Federal Energy Management Program's (FEMP's) exterior solid-state lighting initiative and technology pilot.

176

Sandia National Laboratories: solid-state lighting technology  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

in the ... Optical performance of top-down fabricated InGaNGaN nanorod light emitting diode arrays On November 30, 2011, in Energy, Energy Efficiency, Solid-State Lighting...

177

State Solid Waste Management and Resource Recovery Plan (Montana)  

Broader source: Energy.gov [DOE]

The State supports the "good management of solid waste and the conservation of natural resources through the promotion or development of systems to collect, separate, reclaim, recycle, and dispose...

178

Lighting Designer Roundtable on Solid-State Lighting  

Broader source: Energy.gov [DOE]

Roundtable meeting in Chicago of a group of lighting designers focused on examining solid-state lighting (SSL) market and technology issues and encouraging a discussion of designers experiences, ideas, and recommendations regarding SSL & SSL industry.

179

Federal Technology Deployment Pilot: Exterior Solid State Lighting  

Broader source: Energy.gov (indexed) [DOE]

Federal Technology Deployment Federal Technology Deployment Pilot: Exterior Solid State Lighting Jeff McCullough, LC October 24, 2011 Pacific Northwest National Laboratory Richland, Washington 2 | FEDERAL ENERGY MANAGEMENT PROGRAM femp.energy.gov * Overview of DOE's Solid-State Lighting Program * Federal Technology Deployment Pilot: Exterior Solid State Lighting * FEMP Technology Deployment Matrix This Morning's Topics 3 | FEDERAL ENERGY MANAGEMENT PROGRAM femp.energy.gov Energy Savings Potential of Solid-State Lighting SSL Multi-Year Program Plan, May 2011: http://apps1.eere.energy.gov/buildings/publications/pdfs/ssl/ssl_mypp2011_web.pdf 4 | FEDERAL ENERGY MANAGEMENT PROGRAM femp.energy.gov A Market in Motion * Tsunami of new products coming to market * Significant learning curve for

180

Solid-State Lighting: Industry Leaders, Research Experts Gather for 2006  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Industry Leaders, Research Industry Leaders, Research Experts Gather for 2006 DOE Solid-State Lighting Workshop to someone by E-mail Share Solid-State Lighting: Industry Leaders, Research Experts Gather for 2006 DOE Solid-State Lighting Workshop on Facebook Tweet about Solid-State Lighting: Industry Leaders, Research Experts Gather for 2006 DOE Solid-State Lighting Workshop on Twitter Bookmark Solid-State Lighting: Industry Leaders, Research Experts Gather for 2006 DOE Solid-State Lighting Workshop on Google Bookmark Solid-State Lighting: Industry Leaders, Research Experts Gather for 2006 DOE Solid-State Lighting Workshop on Delicious Rank Solid-State Lighting: Industry Leaders, Research Experts Gather for 2006 DOE Solid-State Lighting Workshop on Digg Find More places to share Solid-State Lighting: Industry Leaders,

Note: This page contains sample records for the topic "oled solid state" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Solid State Lighting: GATEWAY and CALiPER  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Marc Ledbetter Marc Ledbetter Pacific Northwest National Laboratory Marc.Ledbetter@pnnl.gov 503.417.7557 April 3, 2013 Solid State Lighting: GATEWAY & CALiPER Solid State Lighting: GATEWAY & CALiPER 2 | Building Technologies Office eere.energy.gov GATEWAY Problem Statement GATEWAY includes Muni Consortium Multi-Year Market Development Support Plan * IDs 5 key market barriers. Most relevant to GATEWAY are: - Lack of information for buyers and lighting professionals - High transaction costs

182

Solid State Lighting: GATEWAY and CALiPER  

Broader source: Energy.gov (indexed) [DOE]

Marc Ledbetter Marc Ledbetter Pacific Northwest National Laboratory Marc.Ledbetter@pnnl.gov 503.417.7557 April 3, 2013 Solid State Lighting: GATEWAY & CALiPER Solid State Lighting: GATEWAY & CALiPER 2 | Building Technologies Office eere.energy.gov GATEWAY Problem Statement GATEWAY includes Muni Consortium Multi-Year Market Development Support Plan * IDs 5 key market barriers. Most relevant to GATEWAY are: - Lack of information for buyers and lighting professionals - High transaction costs

183

E-Print Network 3.0 - assisted solid state Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

solid state Search Powered by Explorit Topic List Advanced Search Sample search results for: assisted solid state Page: << < 1 2 3 4 5 > >> 1 Information Management Software...

184

E-Print Network 3.0 - advanced solid state Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Function of Supramolecular Materials CHEM 710T15 Advanced Solid State Chemistry... Optoelectronic Devices ECE 730T10 Topics in Solid State Devices: Adv. Technology for...

185

Lighting Group: Sources and Ballasts: OLED Cathodes  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

OLED Cathodes OLED Cathodes Development of New Cathodes for OLED's Objective The objective of this project is to develop improved cathodes for use in organic light emitting diodes (OLEDs). Approach A major challenge for organic light emitting diode (OLED) technology is to improve electron injection into the organic electroluminescent layer, which limits the efficiency of the device and the luminous flux per unit area. This project aims at overcoming such barriers by developing “structured cathodes” based on functional materials (nanotubes and nanoclusters) with characteristic size smaller than the optical wavelength. The incorporation of such nanostructured cathodes in OLEDs can significantly improve device efficiency by lowering operating voltage, and increase device stability and light extraction.

186

FEMP Exterior Solid-State Lighting Technology Pilot  

Broader source: Energy.gov (indexed) [DOE]

FUPWG Fall 2012 FUPWG Fall 2012 FEMP Exterior Solid-State Lighting Technology Pilot Jeff McCullough, LC October 17, 2012 Pacific Northwest National Laboratory Richland, Washington 2 | FEDERAL ENERGY MANAGEMENT PROGRAM femp.energy.gov * State of SSL Technology - Introducing MOBLI * Federal Energy Management Program (FEMP) - Technology Deployment Matrix - Federal Exterior Market Size - FEMP Exterior SSL Initiative - FEMP-designated Efficiency Requirements - Plans for FY13 * Commercial Building Energy Alliance (CBEA) - About CBEA - Lighting Specifications * High Efficiency Troffers * Parking Structures * Parking Lots - The LEEP Campaign * Introducing MOBLI This Morning's Topics 3 | FEDERAL ENERGY MANAGEMENT PROGRAM femp.energy.gov Energy Savings Potential of Solid-State Lighting

187

Electrochemical properties of all solid state Li/S battery  

SciTech Connect (OSTI)

All-solid-state lithium/sulfur (Li/S) battery is prepared using siloxane cross-linked network solid electrolyte at room temperature. The solid electrolytes show high ionic conductivity and good electrochemical stability with lithium and sulfur. In the first discharge curve, all-solid-state Li/S battery shows three plateau potential regions of 2.4 V, 2.12 V and 2.00 V, respectively. The battery shows the first discharge capacity of 1044 mAh g{sup ?1}-sulfur at room temperature. This first discharge capacity rapidly decreases in 4th cycle and remains at 512 mAh g{sup ?1}-sulfur after 10 cycles.

Yu, Ji-Hyun; Park, Jin-Woo; Wang, Qing; Ryu, Ho-Suk; Kim, Ki-Won [School of Materials Science and Engineering, WCUNGB, RIGET, Gyeongsang National University, Jinju 660-701 (Korea, Republic of)] [School of Materials Science and Engineering, WCUNGB, RIGET, Gyeongsang National University, Jinju 660-701 (Korea, Republic of); Ahn, Jou-Hyeon [Department of Chemical and Biological Engineering, Gyeongsang National University, Jinju 660-701 (Korea, Republic of)] [Department of Chemical and Biological Engineering, Gyeongsang National University, Jinju 660-701 (Korea, Republic of); Kang, Yongku [Korea Research Institute of Chemical Technology, Daejeon 305-600 (Korea, Republic of)] [Korea Research Institute of Chemical Technology, Daejeon 305-600 (Korea, Republic of); Wang, Guoxiu [School of Materials Science and Engineering, WCUNGB, RIGET, Gyeongsang National University, Jinju 660-701 (Korea, Republic of) [School of Materials Science and Engineering, WCUNGB, RIGET, Gyeongsang National University, Jinju 660-701 (Korea, Republic of); School of Chemistry and Forensic Science, University of Technology Sydney, Broadway, Sydney, NSW 2007 (Australia); Ahn, Hyo-Jun, E-mail: ahj@gnu.ac.kr [School of Materials Science and Engineering, WCUNGB, RIGET, Gyeongsang National University, Jinju 660-701 (Korea, Republic of)] [School of Materials Science and Engineering, WCUNGB, RIGET, Gyeongsang National University, Jinju 660-701 (Korea, Republic of)

2012-10-15T23:59:59.000Z

188

Sandia National Laboratories: Solid-State Lighting  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

electronic states and ... 2009 Archives On March 24, 2011, in 2010 Archives On March 17, 2011, in 2011 Archives On March 16, 2011, in Our Team On February 10, 2011, in...

189

ENERGY STAR Solid-State Lighting Workshop  

Broader source: Energy.gov [DOE]

Workshop Purpose: To prepare manufacturers for the launch of the ENERGY STAR SSL program in late September by sharing information on the state of the SSL market, status of relevant test procedures,...

190

Solid-state current limiter for power distribution system  

SciTech Connect (OSTI)

To prevent voltage decrease of distribution systems, the principle and fundamental characteristics of a solid-state current limiter using GTO thyristors were investigated. Basic components of the apparatus were a fast solid-state switch and a current limiting impedance of low resistance in parallel with the switch. Experimental results of the test current limiter showed the fault current was limited successfully, regardless of DC component size. The time from detection of fault current was limited successfully, regardless of DC component size. The time from detection of fault occurrence to interruption of the fault current by the solid-state switch was 40 [mu]s. This time was very short in comparison with that before the fault current reached a large value. Thermal rise of the solid-state switch for conduction was solved by a self-cooling apparatus using a non-combustible cooling liquid. The results indicated that the solid-state current limiter was a valuable protecting device for high fault current distribution systems.

Ueda, T.; Morita, M. (Chubu Electric Power Co. Inc., Nagoya (Japan)); Arita, H.; Kida, J.; Kurosawa, Y.; Yamagiwa, T. (Hitachi Ltd., Ibaraki (Japan). Hitachi Research Lab.)

1993-10-01T23:59:59.000Z

191

Solid-state dewetting of continuous and patterned single crystal Ni thin films  

E-Print Network [OSTI]

Solid-state dewetting of thin films is a process through which continuous solid films agglomerate to form islands. This process is driven by capillary forces, often occurring via surface self-diffusion. Solid-state dewetting ...

Ye, Jongpil

2011-01-01T23:59:59.000Z

192

Energy efficient control of polychromatic solid-state lighting using a sensor network  

E-Print Network [OSTI]

Energy efficient control of polychromatic solid-state lighting using a sensor network Matthew in smart lighting, energy efficiency, and ubiquitous sensing, we present the design of polychromatic solid energy. Keywords: Solid state lighting, energy efficiency, sensor networks, optimization, spectral

193

Information Resources: Webcast: Municipal Solid-State Street Lighting  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Municipal Solid-State Street Lighting Consortium Retrofit Financial Analysis Tool Municipal Solid-State Street Lighting Consortium Retrofit Financial Analysis Tool This April 3, 2012 webcast presented information about the Retrofit Financial Analysis Tool developed by DOE"s Municipal Solid-State Street Lighting Consortium. Doug Elliott of Pacific Northwest National Laboratory provided a guided walk-through of what the tool can do and how to use it to evaluate costs and benefits associated with converting to LED street and roadway lighting. The webcast showed how city and other government agencies, utilities, finance and budget offices, and energy efficiency organizations can use the tool to compute annualized energy-cost savings, maintenance savings, greenhouse gas reductions, net present value, and simple payback, which can be helpful when putting together construction and conservation grant applications, as well as for preparing budgets and comparing incumbent costs to new costs.

194

Document Archives from Overview of Solid-State Lighting  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Documents Archive This page contains links to documents of archival value. While most of these documents are referenced elsewhere on this website as well, this list is provided as a convenient reference. Documents are organized into these categories: DOE -- Energy Savings Potential Reports -- SSL Program Planning -- SSL Projects -- Other Solid-State Lighting Roadmap Sandia National Laboratories -- Bibliographies -- Presentations and White Papers -- Technical/Scientific Papers Other Documents -- U.S. Legislation/Testimony -- Japan -- Other Documents Note: For overview articles on solid-state lighting, see " Review Articles " page on this website. Department of Energy Energy Savings Potential Reports · Energy Savings Potential of Solid State Lighting in General Illumination Applications (Navigant Consulting, Nov 2003) (pdf file – 414 kb)

195

All solid-state SBS phase conjugate mirror  

DOE Patents [OSTI]

A stimulated Brillouin scattering (SBS) phase conjugate laser mirror uses a solid-state nonlinear gain medium instead of the conventional liquid or high pressure gas medium. The concept has been effectively demonstrated using common optical-grade fused silica. An energy threshold of 2.5 mJ and a slope efficiency of over 90% were achieved, resulting in an overall energy reflectivity of >80% for 15 ns, 1 um laser pulses. The use of solid-state materials is enabled by a multi-pass resonant architecture which suppresses transient fluctuations that would otherwise result in damage to the SBS medium. This all solid state phase conjugator is safer, more reliable, and more easily manufactured than prior art designs. It allows nonlinear wavefront correction to be implemented in industrial and defense laser systems whose operating environments would preclude the introduction of potentially hazardous liquids or high pressure gases. 8 figs.

Dane, C.B.; Hackel, L.A.

1999-03-09T23:59:59.000Z

196

Wideband Waveform Design principles for Solid-state Weather Radars  

SciTech Connect (OSTI)

The use of solid-state transmitter is becoming a key part of the strategy to realize a network of low cost electronically steered radars. However, solid-state transmitters have low peak powers and this necessitates the use of pulse compression waveforms. In this paper a frequency diversity wideband waveforms design is proposed to mitigate low sensitivity of solid-state transmitters. In addition, the waveforms mitigate the range eclipsing problem associated with long pulse compression. An analysis of the performance of pulse compression using mismatched compression filters designed to minimize side lobe levels is presented. The impact of range side lobe level on the retrieval of Doppler moments are presented. Realistic simulations are performed based on CSU-CHILL radar data and Center for Collaborative Adaptive Sensing of the Atmosphere (CASA) Integrated Project I (IP1) radar data.

Bharadwaj, Nitin; Chandrasekar, V.

2012-01-01T23:59:59.000Z

197

All solid-state SBS phase conjugate mirror  

DOE Patents [OSTI]

A stimulated Brillouin scattering (SBS) phase conjugate laser mirror uses a solid-state nonlinear gain medium instead of the conventional liquid or high pressure gas medium. The concept has been effectively demonstrated using common optical-grade fused silica. An energy threshold of 2.5 mJ and a slope efficiency of over 90% were achieved, resulting in an overall energy reflectivity of >80% for 15 ns, 1 um laser pulses. The use of solid-state materials is enabled by a multi-pass resonant architecture which suppresses transient fluctuations that would otherwise result in damage to the SBS medium. This all solid state phase conjugator is safer, more reliable, and more easily manufactured than prior art designs. It allows nonlinear wavefront correction to be implemented in industrial and defense laser systems whose operating environments would preclude the introduction of potentially hazardous liquids or high pressure gases.

Dane, Clifford B. (Livermore, CA); Hackel, Lloyd A. (Livermore, CA)

1999-01-01T23:59:59.000Z

198

Frequently Asked Questions About the Municipal Solid-State Street Lighting Consortium  

Broader source: Energy.gov [DOE]

This page addresses many of the questions about the Municipal Solid-State Street Lighting Consortium.

199

Dynamic voltage scaling of OLED displays  

Science Journals Connector (OSTI)

Unlike liquid crystal display (LCD) panels that require high-intensity backlight, organic LED (OLED) display panels naturally consume low power and provide high image quality thanks to their self-illuminating characteristic. In spite of this fact, the ... Keywords: DVS, OLED, image processing, low-power design

Donghwa Shin; Younghyun Kim; Naehyuck Chang; Massoud Pedram

2011-06-01T23:59:59.000Z

200

Density Functional Theory applied to the solid state...  

E-Print Network [OSTI]

Density Functional Theory applied to the solid state... An introduction to VASP Jeremie Zaffran 2nd Marom (PhD) #12;Contents I- DFT and its functionals A. On the density functional theory... B #12;I- DFT and its functionals #12;I-DFT and its functionals A- On the density functional theory Why

Adler, Joan

Note: This page contains sample records for the topic "oled solid state" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

A solid?state solar?powered heat transfer device  

Science Journals Connector (OSTI)

A solar?powered solid?state heat transferdevice capable of operating in either a refrigeration or a heat?pump mode is proposed. The devices operation is based on the combined utilization of the photovoltaic and Peltier effects.

Milivoj Beli?; Joel I. Gersten

1979-01-01T23:59:59.000Z

202

PHYS 489, Physics of the Solid State Fall, 2014 Syllabus  

E-Print Network [OSTI]

(Wiley 2005). Supplementary Text: M. Ali Omar, Elementary Solid State Physics (Addison-Wesley 1993) and PHYS 304 (Electricity & Magnetism) or equivalents. Grading: Homework (most weeks) 30% Exam 1 20% Final 10-13 to 10-17 Electrons in metals; resistivity and transport. week 8 10-20 to 10-24 Electron

Ross, Joseph

203

Solid state laser media driven by remote nuclear powered fluorescence  

DOE Patents [OSTI]

An apparatus is provided for driving a solid state laser by a nuclear powered fluorescence source which is located remote from the fluorescence source. A nuclear reaction produced in a reaction chamber generates fluorescence or photons. The photons are collected from the chamber into a waveguide, such as a fiber optic waveguide. The waveguide transports the photons to the remote laser for exciting the laser.

Prelas, Mark A. (Columbia, MO)

1992-01-01T23:59:59.000Z

204

Position sensitive solid-state photomultipliers, systems and methods  

DOE Patents [OSTI]

An integrated silicon solid state photomultiplier (SSPM) device includes a pixel unit including an array of more than 2.times.2 p-n photodiodes on a common substrate, a signal division network electrically connected to each photodiode, where the signal division network includes four output connections, a signal output measurement unit, a processing unit configured to identify the photodiode generating a signal or a center of mass of photodiodes generating a signal, and a global receiving unit.

Shah, Kanai S; Christian, James; Stapels, Christopher; Dokhale, Purushottam; McClish, Mickel

2014-11-11T23:59:59.000Z

205

A smart active matrix pixelated OLED display  

E-Print Network [OSTI]

An OLED display has been fabricated and successfully tested with an external optical feedback circuit to demonstrate improvement in uniformity. In addition, the process of making an integrated system with the optical ...

Yu, Jennifer J. (Jennifer Jong-Hwa), 1980-

2004-01-01T23:59:59.000Z

206

Ole Rmer and the Speed of Light  

Science Journals Connector (OSTI)

While his 17th-century contemporaries were debating the nature of light, Ole Rmer was busy measuring its velocity. This little-known Danish scientist was the first to determine that...

Daukantas, Patricia

2009-01-01T23:59:59.000Z

207

Prediction of solid-aqueous equilibria: Scheme to combine first-principles calculations of solids with experimental aqueous states  

E-Print Network [OSTI]

We present an efficient scheme for combining ab initio calculated solid states with experimental aqueous states through a framework of consistent reference energies. Our work enables accurate prediction of phase stability ...

Persson, Kristin A.

208

E-Print Network 3.0 - all-solid-state ultraviolet laser Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ultraviolet laser Search Powered by Explorit Topic List Advanced Search Sample search results for: all-solid-state ultraviolet laser Page: << < 1 2 3 4 5 > >> 1 All-solid-state...

209

LiMnPO4 Nanoplate Grown via Solid-State Reaction in Molten Hydrocarbon...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

LiMnPO4 Nanoplate Grown via Solid-State Reaction in Molten Hydrocarbon for Li-ion Battery Cathode. LiMnPO4 Nanoplate Grown via Solid-State Reaction in Molten Hydrocarbon for Li-ion...

210

E-Print Network 3.0 - angle spinning solid-state Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

spinning solid-state Search Powered by Explorit Topic List Advanced Search Sample search results for: angle spinning solid-state Page: << < 1 2 3 4 5 > >> 1 Book Review Melinda J....

211

Funding Opportunity for Solid-State Lighting Advanced Technology R&D 2014  

Broader source: Energy.gov [DOE]

On December 6, 2013, DOE announced solid-state lighting funding opportunity DE-FOA-0000973, "Solid-State Lighting Advanced Technology R&D - 2014." A total of up to $10 million in funding is...

212

Solid-State Halogen Atom Source for Chemical Dynamics and Etching...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Br and Br* in controllable quantities and velocities, thus providing an attractive UHV compatible solid-state radical atom source. The solid-state atom source is in principle...

213

Solid-State NMR Examination of Alteration Layers on a Nuclear...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Examination of Alteration Layers on a Nuclear Waste Glasses. Solid-State NMR Examination of Alteration Layers on a Nuclear Waste Glasses. Abstract: Solid-state NMR is a powerful...

214

Progress from DOE EF RC: Solid-State Solar-Thermal Energy Conversion...  

Broader source: Energy.gov (indexed) [DOE]

Research Center of the DOE Office of Basic Energy Sciences SOLID-STATE SOLAR-THERMAL ENERGY CONVERSION CENTER Progress from DOE EFRC: Solid-State Solar-Thermal Energy...

215

Progress from DOE EF RC: Solid-State Solar-Thermal Energy Conversion...  

Broader source: Energy.gov (indexed) [DOE]

Progress from DOE EF RC: Solid-State Solar-Thermal Energy Conversion Center (S3TEC ) Progress from DOE EF RC: Solid-State Solar-Thermal Energy Conversion Center (S3TEC )...

216

Apply: Solid-State Lighting Advanced Technology R&D - 2015 Funding...  

Energy Savers [EERE]

Solid-State Lighting Advanced Technology R&D - 2015 Funding Opportunity Apply: Solid-State Lighting Advanced Technology R&D - 2015 Funding Opportunity October 14, 2014 - 3:57pm...

217

DOE Announces Funding Opportunity for Solid-State Lighting R&D  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy (DOE) announced a solid-state lighting (SSL) R&D funding opportunity on October 14, 2014. Under this funding opportunity (DE-FOA-0001171, Solid-State Lighting...

218

Energy Savings Potential of Solid-State Lighting in General Illumination Applications- Report  

Broader source: Energy.gov [DOE]

A U.S. DOE SSL report on Energy Savings Potential of Solid-State Lighting in General Illumination Applications.

219

Electrolyte Stability Determines Scaling Limits for Solid-State 3D Li Ion Batteries  

E-Print Network [OSTI]

Electrolyte Stability Determines Scaling Limits for Solid-State 3D Li Ion Batteries Dmitry Ruzmetov, all-solid-state Li ion batteries (LIBs) with high specific capacity and small footprint are highly to their high-energy density, Li ion batteries (LIBs) are attractive for these applications, and all-solid-state

Rubloff, Gary W.

220

Polymeric Nanoscale All-Solid State Battery Steven E. Bullock1  

E-Print Network [OSTI]

Polymeric Nanoscale All-Solid State Battery Steven E. Bullock1 , and Peter Kofinas2 1 Department to an all solid- state polymer battery. Such a battery would have greater safety, without potential, the search for an all solid-state battery has continued. Research on polymeric materials for batteries has

Kofinas, Peter

Note: This page contains sample records for the topic "oled solid state" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Block Copolymer Electrolytes Synthesized by Atom Transfer Radical Polymerization for Solid-State, Thin-Film  

E-Print Network [OSTI]

- cessing advantages as it is easily scalable and almost solvent-free. Solid-state, thin-film batteries, 2002. The ideal electrolyte material for a solid-state battery would have the ionic conductivity in solid-state lithium batteries, the purpose of this study was to inves- tigate the feasibility

Sadoway, Donald Robert

222

Self-doped block copolymer electrolytes for solid-state, rechargeable lithium batteries  

E-Print Network [OSTI]

Self-doped block copolymer electrolytes for solid-state, rechargeable lithium batteries Donald R. Introduction The ideal electrolyte material for a solid-state battery would have the ionic conductivity and cathode binder thin-®lm, solid-state, rechargeable lithium batteries of the type Li/ BCE/LiMnO2 have been

Sadoway, Donald Robert

223

Theoretical feasibility study on neutron spectrometry with the polyallyldiglycol carbonate (PADC) solid-state  

E-Print Network [OSTI]

It has been shown that detection and dosimetry of fast neutrons are possible with solid-state nuclear) solid-state nuclear track detector D. Nikezic a,b , K.N. Yu b,n a Faculty of Science, University November 2014 Keywords: Neutron spectrometry Polyallyldiglycol carbonate PADC CR-39 Solid-state nuclear

Yu, K.N.

224

Solid state differential temperature regulator for a solar heating system  

SciTech Connect (OSTI)

A solid state temperature regulator is provided for a solar heating system for use in conjunction with a swimming pool, or the like. The solar swimming pool heating system includes the usual components, namely, a pump, a filter, and a collector, and in which the pump serves to circulate the water from the pool through the filter and collector and back into the pool. The system also includes additional components, namely, temperature sensors for the collector and for the circulated pool water, appropriate valves, and a solid state control circuit. The solid state control circuit responds to predetermined temperature differences sensed by the sensors to cause the pool water to be circulated through the collector so long as the collector is at a higher temperature than the circulated pool water, and which causes the circulated pool water to by-pass the collector when the temperature of the collector drops below the temperature of the circulated pool water. The control circuit also has a high temperature cut-off control which activates the valves to cause the circulated pool water to by-pass the collector when the temperature of the circulated pool water exceeds a particular threshold. The control circuit also includes a mode switch which may be actuated to reverse the action of the system, causing the pool water to be circulated through the collector when the collector temperature is lower than the pool water temperature, for example, at night following a hot day, in which the collector radiates to the black sky, whereby the collector can be used to cool the water in the pool.

Firebaugh, D.C.

1980-04-01T23:59:59.000Z

225

Solid State Energy Conversion Alliance (SECA) Solid Oxide Fuel Cell Program  

SciTech Connect (OSTI)

This report summarizes the work performed for Phase I (October 2001 - August 2006) under Cooperative Agreement DE-FC26-01NT41245 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled 'Solid State Energy Conversion Alliance (SECA) Solid Oxide Fuel Cell Program'. The program focuses on the development of a low-cost, high-performance 3-to-10-kW solid oxide fuel cell (SOFC) system suitable for a broad spectrum of power-generation applications. During Phase I of the program significant progress has been made in the area of SOFC technology. A high-efficiency low-cost system was designed and supporting technology developed such as fuel processing, controls, thermal management, and power electronics. Phase I culminated in the successful demonstration of a prototype system that achieved a peak efficiency of 41%, a high-volume cost of $724/kW, a peak power of 5.4 kW, and a degradation rate of 1.8% per 500 hours. . An improved prototype system was designed, assembled, and delivered to DOE/NETL at the end of the program. This prototype achieved an extraordinary peak efficiency of 49.6%.

Nguyen Minh

2006-07-31T23:59:59.000Z

226

2009 Solid-State Lighting Vancouver Manufacturing Workshop Highlights  

Broader source: Energy.gov [DOE]

Well over 150 lighting industry leaders gathered in Vancouver, Washington, on June 24-25, 2009, for the second DOE Solid-State Lighting (SSL) Manufacturing Workshop. The primary purpose was to review and refine a "strawman" roadmap for SSL manufacturing, based on insights and recommendations from the first workshop, which was held in April in Fairfax, Virginia. These insights and recommendations focused on identifying and overcoming the key barriers to developing lower-cost, higher-quality SSL products. The outcome of both workshops will be a working roadmap to guide SSL manufacturing in general and to inform a new DOE manufacturing initiative.

227

On the role of twinning in solid-state reactions  

SciTech Connect (OSTI)

A new concept of the role of twinning in processes of plastic deformation is proposed which suggests mechanical twinning to be the main mechanism of solid-state reactions under the deformation mixing of components, in particular, the grinding of aluminum oxide (Al{sub 2}O{sub 3}) and yttrium oxide (Y{sub 2}O{sub 3}) powders, as a result of which yttrium-aluminum garnet (Y{sub 3}Al{sub 5}O{sub 12}) particles are formed.

Akchurin, M. Sh., E-mail: akchurin@ns.crys.ras.ru; Zakalyukin, R. M. [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation)

2013-05-15T23:59:59.000Z

228

Solid-State Lighting: DOE and MEEA Host Fourth Annual SSL Market  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Information Information Resources Printable Version Share this resource Send a link to Solid-State Lighting: DOE and MEEA Host Fourth Annual SSL Market Introduction Workshop to someone by E-mail Share Solid-State Lighting: DOE and MEEA Host Fourth Annual SSL Market Introduction Workshop on Facebook Tweet about Solid-State Lighting: DOE and MEEA Host Fourth Annual SSL Market Introduction Workshop on Twitter Bookmark Solid-State Lighting: DOE and MEEA Host Fourth Annual SSL Market Introduction Workshop on Google Bookmark Solid-State Lighting: DOE and MEEA Host Fourth Annual SSL Market Introduction Workshop on Delicious Rank Solid-State Lighting: DOE and MEEA Host Fourth Annual SSL Market Introduction Workshop on Digg Find More places to share Solid-State Lighting: DOE and MEEA Host

229

THE PROMISE OF SOLID STATE LIGHTING FOR GENERAL ILLUMINATION  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Conclusions and Recommendations Conclusions and Recommendations from OIDA Technology Roadmaps Co-sponsored by DOE (BTS) and OIDA OIDA OPTOELECTRONICS INDUSTRY DEVELOPMENT ASSOCIATION 1133 Connecticut Avenue, NW Suite 600 Washington, DC 20036 Ph: (202) 785-4426 Fax: (202) 785-4428 Web: http://www.OIDA.org Building Technology, State and Community Programs Energy Efficiency and Renewable Energy U.S. Department of Energy Published by: Optoelectronics Industry Development Association 1133 Connecticut Avenue NW, Suite 600 Washington, DC 20036 Phone: (202) 785-4426 Fax: (202) 785-4428 Internet: http://www.oida.org 1 The Promise of Solid State Lighting for General Illumination s Light Emitting Diodes (LEDs) © 2001 Optoelectronics Industry Development Association Executive Summary In the midst of the rising fuel prices and the blackouts in California there is silent rev-

230

Low-Cost Miniature Multifunctional Solid-State Gas Sensors  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Richard J. Dunst Richard J. Dunst Project Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236-0940 412-386-6694 richard.dunst@netl.doe.gov Eric D. Wachsman Principal Investigator University of Florida 339 Weil Hall Gainesville, FL 32611-4025 352-846-2991 ewach@mse.ufl.edu Low-Cost Miniature MuLtifunCtionaL soLid-state Gas sensors Description Research sponsored by the U.S. Department of Energy (DOE) Office of Fossil Energy (FE) through the National Energy Technology Laboratory (NETL), and performed by the University of Florida, has resulted in successful development of solid-state sensor technology that can provide an inexpensive, rugged device that is capable of measuring the concentration of multiple pollutants in lean-burn coal

231

Chemical phenomena in solid-state voltammetry in polymer solvents  

SciTech Connect (OSTI)

This paper, aimed at delineating significant chemical effects in solid-state voltammetry, describes electrochemical oxidations and reductions of electroactive monomer solutes dissolved in and diffusing through rigid and semirigid polymer electrolyte solvents. Sorption of organic monomer vapors into poly(ethylene oxide) films yields polymer solvents whose chemistry is dominated by that of the sorbed monomer as shown by coordination and precipitation effects. The dynamics of plasticization-induced changes in transport rates are quite rapid. Physical diffusion in the polymer solvent in slow enough that electron hopping reactions measurably enhance charge transport rates; the effect was used to estimate a lower limit for the (Co(bpy)/sub 3/)/sup 2+/+/ self-exchange rate constant of 2 /times/ 10/sup 9/ M/sup /minus/1/ s/sup /minus/1/. It is possible to erect polymeric film transport barriers at the electrode/polymer solvent interface and to measure the rate of permeation of monomer complexes from the polymer solvent into the polymer transport barrier film. Polymeric films of Os and Ru polypyridine complexes can be electropolymerized from polymer solutions of the corresponding monomers. Solid-state voltammetry can be extended to other polymer solvents including sulfonated polystyrene, poly(vinyl chloride), Nafion, and poly(acrylamide) gel.

Geng, L.; Reed, R.A.; Kim, M.H.; Wooster, T.T.; Oliver, B.N.; Egekeze, J.; Kennedy, R.T.; Jorgenson, J.W.; Parcher, J.F.; Murray, R.W.

1989-03-01T23:59:59.000Z

232

Tritium and neutron measurements of a solid state cell  

SciTech Connect (OSTI)

A solid state cold fusion'' cell was constructed to test for non-equilibrium fusion in a solid. The stimulus for the design was the hypothesis that the electrochemical surface layer in the Pons- Fleischmann cell could be replaced with a metal-insulator- semiconductor (MIS) barrier. Cells were constructed of alternating layers of palladium and silicon powders pressed into a ceramic form and exposed to deuterium gas at 110 psia resulting in a D/Pd ratio of 0.7. Pulses of current were passed through the cells to populate non-equilibrium states at the MIS barriers. One cell showed neutron activity and was found to have a large amount of tritium, other cells have produced tritium at a low rate consistent with neutron emission below the threshold of observability. The branching ratio for n/p has been about 1 {times} 10{sup {minus}9} in all the experiments where a substantial amount of tritium has been found. 11 refs., 9 figs., 2 tabs.

Claytor, T.N.; Seeger, P.A.; Rohwer, R.K.; Tuggle, D.G.; Doty, W.R.

1989-01-01T23:59:59.000Z

233

Rubbery Graft Copolymer Electrolytes for Solid-State, Thin-Film Lithium Batteries  

E-Print Network [OSTI]

Rubbery Graft Copolymer Electrolytes for Solid-State, Thin-Film Lithium Batteries Patrick E. Trapa to be stable over a wide temperature range and voltage window. Solid-state, thin-film batteries comprised triflate-doped POEM-g-PDMS, which exhibited solid-like mechanical behavior, were nearly identical to those

Sadoway, Donald Robert

234

Text-Alternative Version: Challenges in OLED Research and Development  

Broader source: Energy.gov [DOE]

Narrator: Organic light-emitting diodes, OLEDs, are made using organic carbon-based materials. Unlike LEDs, which are small point light sources, OLEDs are made in sheets that create diffuse area...

235

High Efficiency, Illumination Quality OLEDs for Lighting  

SciTech Connect (OSTI)

The goal of the program was to demonstrate a 45 lumen per watt white light device based upon the use of multiple emission colors through the use of solution processing. This performance level is a dramatic extension of the team's previous 15 LPW large area illumination device. The fundamental material system was based upon commercial polymer materials. The team was largely able to achieve these goals, and was able to deliver to DOE a 90 lumen illumination source that had an average performance of 34 LPW a 1000 cd/m{sup 2} with peak performances near 40LPW. The average color temperature is 3200K and the calculated CRI 85. The device operated at a brightness of approximately 1000cd/m{sup 2}. The use of multiple emission colors particularly red and blue, provided additional degrees of design flexibility in achieving white light, but also required the use of a multilayered structure to separate the different recombination zones and prevent interconversion of blue emission to red emission. The use of commercial materials had the advantage that improvements by the chemical manufacturers in charge transport efficiency, operating life and material purity could be rapidly incorporated without the expenditure of additional effort. The program was designed to take maximum advantage of the known characteristics of these material and proceeded in seven steps. (1) Identify the most promising materials, (2) assemble them into multi-layer structures to control excitation and transport within the OLED, (3) identify materials development needs that would optimize performance within multilayer structures, (4) build a prototype that demonstrates the potential entitlement of the novel multilayer OLED architecture (5) integrate all of the developments to find the single best materials set to implement the novel multilayer architecture, (6) further optimize the best materials set, (7) make a large area high illumination quality white OLED. A photo of the final deliverable is shown. In 2003, a large area, OLED based illumination source was demonstrated that could provide light with a quality, quantity, and efficiency on par with what can be achieved with traditional light sources. The demonstration source was made by tiling together 16 separate 6-inch x 6-inch blue-emitting OLEDs. The efficiency, total lumen output, and lifetime of the OLED based illumination source were the same as what would be achieved with an 80 watt incandescent bulb. The devices had an average efficacy of 15 LPW and used solution-processed OLEDs. The individual 6-inch x 6-inch devices incorporated three technology strategies developed specifically for OLED lighting -- downconversion for white light generation, scattering for outcoupling efficiency enhancement, and a scalable monolithic series architecture to enable large area devices. The downconversion approach consists of optically coupling a blue-emitting OLED to a set of luminescent layers. The layers are chosen to absorb the blue OLED emission and then luminescence with high efficiency at longer wavelengths. The composition and number of layers are chosen so that the unabsorbed blue emission and the longer wavelength re-emission combine to make white light. A downconversion approach has the advantage of allowing a wide variety of colors to be made from a limited set of blue emitters. In addition, one does not have to carefully tune the emission wavelength of the individual electro-luminescent species within the OLED device in order to achieve white light. The downconversion architecture used to develop the 15LPW large area light source consisted of a polymer-based blue-emitting OLED and three downconversion layers. Two of the layers utilized perylene based dyes from BASF AG of Germany with high quantum efficiency (>98%) and one of the layers consisted of inorganic phosphor particles (Y(Gd)AG:Ce) with a quantum efficiency of {approx}85%. By independently varying the optical density of the downconversion layers, the overall emission spectrum could be adjusted to maximize performance for lighting (e.g. blackbody temp

Joseph Shiang; James Cella; Kelly Chichak; Anil Duggal; Kevin Janora; Chris Heller; Gautam Parthasarathy; Jeffery Youmans; Joseph Shiang

2008-03-31T23:59:59.000Z

236

Application of Developed APCVD Transparent Conducting Oxides and Undercoat Technologies for Economical OLED Lighting  

SciTech Connect (OSTI)

Economics is a key factor for application of organic light emitting diodes (OLED) in general lighting relative to OLED flat panel displays that can handle high cost materials such as indium tin oxide (ITO) or Indium zinc oxide (IZO) as the transparent conducting oxide (TCO) on display glass. However, for OLED lighting to penetrate into general illumination, economics and sustainable materials are critical. The issues with ITO have been documented at the DOE SSL R&D and Manufacturing workshops for the last 5 years and the issue is being exacerbated by export controls from China (one of the major sources of elemental indium). Therefore, ITO is not sustainable because of the fluctuating costs and the United States (US) dependency on other nations such as China. Numerous alternatives to ITO/IZO are being evaluated such as Ag nanoparticles/nanowires, carbon nanotubes, graphene, and other metal oxides. Of these other metal oxides, doped zinc oxide has attracted a lot of attention over the last 10 years. The volume of zinc mined is a factor of 80,000 greater than indium and the US has significant volumes of zinc mined domestically, resulting in the ability for the US to be self-sufficient for this element that can be used in optoelectronic applications. The costs of elemental zinc is over 2 orders of magnitude less than indium, reflecting the relative abundance and availability of the elements. Arkema Inc. and an international primary glass manufacturing company, which is located in the United States, have developed doped zinc oxide technology for solar control windows. The genesis of this DOE SSL project was to determine if doped zinc oxide technology can be taken from the commodity based window market and translate the technology to OLED lighting. Thus, Arkema Inc. sought out experts, Philips Lighting, Pacific Northwest National Laboratories (PNNL) and National Renewable Research Laboratories (NREL), in OLED devices and brought them into the project. This project had a clear focus on economics and the work plan focused both on doped ZnO process and OLED device structure that would be consistent with the new TCO. The team successfully made 6 inch OLEDs with a serial construction. More process development is required to optimize commercial OLED structures. Feasibility was demonstrated on two different light extraction technologies: 1/4 lambda refractive index matching and high-low-high band pass filter. Process development was also completed on the key precursors for the TCO, which are ready for pilot-plant scale-up. Subsequently, Arkema has developed a cost of ownership model that is consistent with DOE SSL R&D Manufacturing targets as outlined in the DOE SSL R&D Manufacturing 2010 report. The overall outcome of this project was the demonstration that doped zinc oxide can be used for OLED devices without a drop-off in performance while gaining the economic and sustainable benefits of a more readily available TCO. The broad impact of this project, is the facilitation of OLED lighting market penetration into general illumination, resulting in significant energy savings, decreased greenhouse emissions, with no environmental impact issues such as mercury found in Fluorescent technology. The primary objective of this project was to develop a commercially viable process for 'Substrates' (Substrate/ undercoat/ TCO topcoat) to be used in production of OLED devices (lamps/luminaries/modules). This project focused on using Arkema's recently developed doped ZnO technology for the Fenestration industry and applying the technology to the OLED lighting industry. The secondary objective was the use of undercoat technology to improve light extraction from the OLED device. In optical fields and window applications, technology has been developed to mitigate reflection losses by selecting appropriate thicknesses and refractive indices of coatings applied either below or above the functional layer of interest. This technology has been proven and implemented in the fenestration industry for more than 15 years. Successful completion of

Martin Bluhm; James Coffey; Roman Korotkov; Craig Polsz; Alexandre Salemi; Robert Smith; Ryan Smith; Jeff Stricker; Chen Xu; Jasmine Shirazi; George Papakonstantopulous; Steve Carson; Claudia Goldman; Soren Hartmann; Frank Jessen; Bianca Krogmann; Christoph Rickers; Manfred Ruske; Holger Schwab; Dietrich Bertram

2011-01-02T23:59:59.000Z

237

The Department of Energy's Solid-State Lighting Program, OAS-RA-L-13-03  

Broader source: Energy.gov (indexed) [DOE]

Solid- Solid- State Lighting Program OAS-RA-L-13-03 February 2013 Department of Energy Washington, DC 20585 February 28, 2013 MEMORANDUM FOR THE DIRECTOR, NATIONAL ENERGY TECHNOLOGY LABORATORY FROM: Jack Rouch, Director Central Audits Division Office of Inspector General SUBJECT: INFORMATION: Audit Report on "The Department of Energy's Solid-State Lighting Program" BACKGROUND The Department of Energy's (Department) Office of Energy Efficiency and Renewable Energy established the Solid-State Lighting Program to advance the development and market introduction of energy-efficient white-light sources for general illumination. Since 2003, the Department has cooperated with industry partners to invest in research and development of solid-

238

Archived Technology Tracking Reports - Solid-State Lighting  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

4/16/2003 4/16/2003 | Headline News | Tracking Reports | Archived Tracking Reports | Hot Technical Papers |Credits & Disclaimer | ARCHIVED SCIENCE, TECHNOLOGY, BUSINESS AND NATIONAL NEWS TRACKING REPORTS This table contains archived tracking reports of news and literature related to solid-state lighting. Material from newswires, newspapers, magazines, websites, and technical journals is included. For these archived reports, links to full-text sources have been provided, but are not guaranteed to work. Issue # Dates Science & Technology Literature Business & National News 21 2003-2004 (Mid December 2003 – Early February 2004) button button 20 2003 (Mid Sept – Early December) button button 19 2003 (Mid July – Mid-September) button button 18 Archived Issue

239

Muon Spin Rotation Spectroscopy - Utilizing Muons in Solid State Physics  

SciTech Connect (OSTI)

Over the past decades muon spin rotation techniques (mSR) have established themselves as an invaluable tool to study a variety of static and dynamic phenomena in bulk solid state physics and chemistry. Common to all these approaches is that the muon is utilized as a spin microprobe and/or hydrogen-like probe, implanted in the material under investigation. Recent developments extend the range of application to near surface phenomena, thin film and super-lattice studies. After briefly summarizing the production of so called surface muons used for bulk studies, and discussing the principle differences between pulsed and continuous muon beams, the production of keV-energy muon sources will be discussed. A few topical examples from different active research fields will be presented to demonstrate the power of these techniques.

Suter, Andreas [Paul Scherrer Institut, Switzerland

2012-10-17T23:59:59.000Z

240

Microwave interferometer using 94-GHz solid-state sources  

SciTech Connect (OSTI)

A 94-GHz microwave interferometer has been designed for the Tandem Mirror Experiment Upgrade and the Mirror Fusion Test Facility to replace the 140-GHz system. The new system is smaller and has modular single-channel units designed for high reliability. It is magnetically shielded and can be mounted close to the machine, which allows the use of lower power solid-state sources. Test results of the 94-GHz prototype indicate that the phase resolution is better than 1/sup 0/, the Impatt FM noise is 5 MHz wide, and the Gunn FM noise is 6 kHz wide. This paper presents the antenna designs along with the test results and discusses the unique problems associated with diagnosing a high electron temperature plasma in the presence of electron cyclotron resonant heating.

Coffield, F.E.; Thomas, S.R.; Lang, D.D.; Stever, R.D.

1983-11-14T23:59:59.000Z

Note: This page contains sample records for the topic "oled solid state" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

DOE Municipal Solid-State Street Lighting Consortium  

Broader source: Energy.gov [DOE]

The DOE Municipal Solid-State Street Lighting Consortium shares technical information and experiences related to LED street and area lighting demonstrations and serves as an objective resource for evaluating new products on the market intended for those applications. Cities, power providers, and others who invest in street and area lighting are invited to join the Consortium and share their experiences. The goal is to build a repository of valuable field experience and data that will significantly accelerate the learning curve for buying and implementing high-quality, energy-efficient LED lighting. Consortium members are part of an international knowledge base and peer group, receive updates on Consortium tools and resources, receive the Consortium E-Newsletter, and help steer the work of the Consortium by participating on a committee. Learn more about the Consortium.

242

Clean Energy Manufacturing Initiative Solid-State Lighting  

ScienceCinema (OSTI)

The importance of U.S. manufacturing for clean energy technologies, such as solid-state lighting (SSL), is paramount to increasing competitiveness in a global marketplace. SSLs are poised to drive the lighting market, worldwide. In order to continue that competitiveness and support further innovation, the time to invest in U.S. manufacturing of clean energy technologies is now. Across the country, companies developing innovative clean energy technologies find competitive advantages to manufacturing in the U.S. The Department of Energy's Building Technology Office SSL Manufacturing Roadmap is just one example of how we support manufacturing through convening industry perspectives on opportunities to significantly reduce risk, improve quality, increase yields, and lower costs.

Thomas, Sunil; Edmond, John; Krames, Michael; Raman, Sudhakar

2014-12-03T23:59:59.000Z

243

All-Solid-State Four-Color Laser  

SciTech Connect (OSTI)

This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). The goal of this project is to develop a solid state laser that produces visible output wavelengths, including the commercially compelling blue wavelength. The basic architecture of the device consists of a single-mode optical fiber doped with Pr{sup 3+} and Yb{sup 3+} ions. When the ions are simultaneously pumped with a near infrared laser (860 nm), complex energy transfer processes involving multiple excited ions leads to population of a high-lying energy level of Pr{sup 3+}. Results include the demonstration of the existence of a photon avalanche mechanism responsible for creation of the population inversion and demonstration of the highest optical-to-optical efficiency of any up-conversion laser reported to date. A US Patent was awarded for this invention in 1998.

Gosnell, T.R.; Xie, P.

1999-06-03T23:59:59.000Z

244

Solid-state sintering of tungsten heavy alloys  

SciTech Connect (OSTI)

Solid-state sintering is a technologically important step in the fabrication of tungsten heavy alloys. This work addresses practical variables affecting the sinterability: powder particle size, powder mixing, and sintering temperature and time. Compositions containing 1 to 10 micrometer ({mu}M) tungsten (W) powders can be fully densified at temperatures near the matrix solidus. Blending with an intensifier bar provided good dispersion of elemental powders and good as-sintered mechanical properties under adequate sintering conditions. Additional ball milling increases powder bulk density which primarily benefits mold and die filling. Although fine, 1 {mu}m W powder blends have high sinterability, higher as-sintered ductilities are reached in shorter sintering times with coarser, 5 {mu}m W powder blends; 10{mu}m W powder blends promise the highest as-sintered ductilities due to their coarse microstructural W.

Gurwell, W.E.

1994-10-01T23:59:59.000Z

245

Solid-State Lighting: SSL Luminaire Performance in the Lab: Just How Well  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

SSL Luminaire Performance in SSL Luminaire Performance in the Lab: Just How Well Do They Perform? to someone by E-mail Share Solid-State Lighting: SSL Luminaire Performance in the Lab: Just How Well Do They Perform? on Facebook Tweet about Solid-State Lighting: SSL Luminaire Performance in the Lab: Just How Well Do They Perform? on Twitter Bookmark Solid-State Lighting: SSL Luminaire Performance in the Lab: Just How Well Do They Perform? on Google Bookmark Solid-State Lighting: SSL Luminaire Performance in the Lab: Just How Well Do They Perform? on Delicious Rank Solid-State Lighting: SSL Luminaire Performance in the Lab: Just How Well Do They Perform? on Digg Find More places to share Solid-State Lighting: SSL Luminaire Performance in the Lab: Just How Well Do They Perform? on AddThis.com...

246

Solid-State Lighting: Text-Alternative Version: CALiPER Round 7 Testing  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Round 7 Testing Results and SSL Product Life Issues to someone by Round 7 Testing Results and SSL Product Life Issues to someone by E-mail Share Solid-State Lighting: Text-Alternative Version: CALiPER Round 7 Testing Results and SSL Product Life Issues on Facebook Tweet about Solid-State Lighting: Text-Alternative Version: CALiPER Round 7 Testing Results and SSL Product Life Issues on Twitter Bookmark Solid-State Lighting: Text-Alternative Version: CALiPER Round 7 Testing Results and SSL Product Life Issues on Google Bookmark Solid-State Lighting: Text-Alternative Version: CALiPER Round 7 Testing Results and SSL Product Life Issues on Delicious Rank Solid-State Lighting: Text-Alternative Version: CALiPER Round 7 Testing Results and SSL Product Life Issues on Digg Find More places to share Solid-State Lighting: Text-Alternative

247

Solid-State Lighting: Text-Alternative Version: ENERGY STAR® for SSL:  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Information Information Resources Printable Version Share this resource Send a link to Solid-State Lighting: Text-Alternative Version: ENERGY STAR® for SSL: Getting Ready for September 30 to someone by E-mail Share Solid-State Lighting: Text-Alternative Version: ENERGY STAR® for SSL: Getting Ready for September 30 on Facebook Tweet about Solid-State Lighting: Text-Alternative Version: ENERGY STAR® for SSL: Getting Ready for September 30 on Twitter Bookmark Solid-State Lighting: Text-Alternative Version: ENERGY STAR® for SSL: Getting Ready for September 30 on Google Bookmark Solid-State Lighting: Text-Alternative Version: ENERGY STAR® for SSL: Getting Ready for September 30 on Delicious Rank Solid-State Lighting: Text-Alternative Version: ENERGY STAR® for SSL: Getting Ready for September 30 on Digg

248

Solid-State Lighting: Text-Alternative Version: DOE Five Year  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

DOE DOE Five Year Commercialization Support Plan to someone by E-mail Share Solid-State Lighting: Text-Alternative Version: DOE Five Year Commercialization Support Plan on Facebook Tweet about Solid-State Lighting: Text-Alternative Version: DOE Five Year Commercialization Support Plan on Twitter Bookmark Solid-State Lighting: Text-Alternative Version: DOE Five Year Commercialization Support Plan on Google Bookmark Solid-State Lighting: Text-Alternative Version: DOE Five Year Commercialization Support Plan on Delicious Rank Solid-State Lighting: Text-Alternative Version: DOE Five Year Commercialization Support Plan on Digg Find More places to share Solid-State Lighting: Text-Alternative Version: DOE Five Year Commercialization Support Plan on AddThis.com... Conferences & Meetings

249

Solid-State Lighting: Using the Street and Parking Facility Lighting  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Using the Street and Parking Using the Street and Parking Facility Lighting Retrofit Financial Analysis Tool to someone by E-mail Share Solid-State Lighting: Using the Street and Parking Facility Lighting Retrofit Financial Analysis Tool on Facebook Tweet about Solid-State Lighting: Using the Street and Parking Facility Lighting Retrofit Financial Analysis Tool on Twitter Bookmark Solid-State Lighting: Using the Street and Parking Facility Lighting Retrofit Financial Analysis Tool on Google Bookmark Solid-State Lighting: Using the Street and Parking Facility Lighting Retrofit Financial Analysis Tool on Delicious Rank Solid-State Lighting: Using the Street and Parking Facility Lighting Retrofit Financial Analysis Tool on Digg Find More places to share Solid-State Lighting: Using the Street and

250

Solid-State Lighting: Text-Alternative Version: Successful Selection of LED  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Text-Alternative Version: Text-Alternative Version: Successful Selection of LED Streetlight Luminaires Webcast to someone by E-mail Share Solid-State Lighting: Text-Alternative Version: Successful Selection of LED Streetlight Luminaires Webcast on Facebook Tweet about Solid-State Lighting: Text-Alternative Version: Successful Selection of LED Streetlight Luminaires Webcast on Twitter Bookmark Solid-State Lighting: Text-Alternative Version: Successful Selection of LED Streetlight Luminaires Webcast on Google Bookmark Solid-State Lighting: Text-Alternative Version: Successful Selection of LED Streetlight Luminaires Webcast on Delicious Rank Solid-State Lighting: Text-Alternative Version: Successful Selection of LED Streetlight Luminaires Webcast on Digg Find More places to share Solid-State Lighting: Text-Alternative

251

Solid-State Lighting: DOE and Northwest Partners Host Three-Day Market  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

DOE and Northwest Partners Host DOE and Northwest Partners Host Three-Day Market Introduction Workshop in Portland to someone by E-mail Share Solid-State Lighting: DOE and Northwest Partners Host Three-Day Market Introduction Workshop in Portland on Facebook Tweet about Solid-State Lighting: DOE and Northwest Partners Host Three-Day Market Introduction Workshop in Portland on Twitter Bookmark Solid-State Lighting: DOE and Northwest Partners Host Three-Day Market Introduction Workshop in Portland on Google Bookmark Solid-State Lighting: DOE and Northwest Partners Host Three-Day Market Introduction Workshop in Portland on Delicious Rank Solid-State Lighting: DOE and Northwest Partners Host Three-Day Market Introduction Workshop in Portland on Digg Find More places to share Solid-State Lighting: DOE and Northwest

252

Solid-State Lighting: Text-Alternative Version: MSSLC Member Case Studies -  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

MSSLC MSSLC Member Case Studies - LED Street Lighting Programs Webinar to someone by E-mail Share Solid-State Lighting: Text-Alternative Version: MSSLC Member Case Studies - LED Street Lighting Programs Webinar on Facebook Tweet about Solid-State Lighting: Text-Alternative Version: MSSLC Member Case Studies - LED Street Lighting Programs Webinar on Twitter Bookmark Solid-State Lighting: Text-Alternative Version: MSSLC Member Case Studies - LED Street Lighting Programs Webinar on Google Bookmark Solid-State Lighting: Text-Alternative Version: MSSLC Member Case Studies - LED Street Lighting Programs Webinar on Delicious Rank Solid-State Lighting: Text-Alternative Version: MSSLC Member Case Studies - LED Street Lighting Programs Webinar on Digg Find More places to share Solid-State Lighting: Text-Alternative

253

Solid-State Lighting: Hitting the Target: ENERGY STAR® SSL Outdoor Area  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hitting the Target: ENERGY Hitting the Target: ENERGY STAR® SSL Outdoor Area Lighting Webcast to someone by E-mail Share Solid-State Lighting: Hitting the Target: ENERGY STAR® SSL Outdoor Area Lighting Webcast on Facebook Tweet about Solid-State Lighting: Hitting the Target: ENERGY STAR® SSL Outdoor Area Lighting Webcast on Twitter Bookmark Solid-State Lighting: Hitting the Target: ENERGY STAR® SSL Outdoor Area Lighting Webcast on Google Bookmark Solid-State Lighting: Hitting the Target: ENERGY STAR® SSL Outdoor Area Lighting Webcast on Delicious Rank Solid-State Lighting: Hitting the Target: ENERGY STAR® SSL Outdoor Area Lighting Webcast on Digg Find More places to share Solid-State Lighting: Hitting the Target: ENERGY STAR® SSL Outdoor Area Lighting Webcast on AddThis.com...

254

Solid-State Lighting: Text-Alternative Version: Hitting the Target: ENERGY  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Text-Alternative Version: Text-Alternative Version: Hitting the Target: ENERGY STAR® SSL Outdoor Area Lighting to someone by E-mail Share Solid-State Lighting: Text-Alternative Version: Hitting the Target: ENERGY STAR® SSL Outdoor Area Lighting on Facebook Tweet about Solid-State Lighting: Text-Alternative Version: Hitting the Target: ENERGY STAR® SSL Outdoor Area Lighting on Twitter Bookmark Solid-State Lighting: Text-Alternative Version: Hitting the Target: ENERGY STAR® SSL Outdoor Area Lighting on Google Bookmark Solid-State Lighting: Text-Alternative Version: Hitting the Target: ENERGY STAR® SSL Outdoor Area Lighting on Delicious Rank Solid-State Lighting: Text-Alternative Version: Hitting the Target: ENERGY STAR® SSL Outdoor Area Lighting on Digg Find More places to share Solid-State Lighting: Text-Alternative

255

Solid-State Lighting: Text-Alternative Version: Evaluating LED Street  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Evaluating LED Street Lighting Solutions to someone by E-mail Evaluating LED Street Lighting Solutions to someone by E-mail Share Solid-State Lighting: Text-Alternative Version: Evaluating LED Street Lighting Solutions on Facebook Tweet about Solid-State Lighting: Text-Alternative Version: Evaluating LED Street Lighting Solutions on Twitter Bookmark Solid-State Lighting: Text-Alternative Version: Evaluating LED Street Lighting Solutions on Google Bookmark Solid-State Lighting: Text-Alternative Version: Evaluating LED Street Lighting Solutions on Delicious Rank Solid-State Lighting: Text-Alternative Version: Evaluating LED Street Lighting Solutions on Digg Find More places to share Solid-State Lighting: Text-Alternative Version: Evaluating LED Street Lighting Solutions on AddThis.com... Conferences & Meetings Presentations

256

Solid-State Lighting: Text-Alternative Version: LEDs for Interior Office  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

LEDs LEDs for Interior Office Applications to someone by E-mail Share Solid-State Lighting: Text-Alternative Version: LEDs for Interior Office Applications on Facebook Tweet about Solid-State Lighting: Text-Alternative Version: LEDs for Interior Office Applications on Twitter Bookmark Solid-State Lighting: Text-Alternative Version: LEDs for Interior Office Applications on Google Bookmark Solid-State Lighting: Text-Alternative Version: LEDs for Interior Office Applications on Delicious Rank Solid-State Lighting: Text-Alternative Version: LEDs for Interior Office Applications on Digg Find More places to share Solid-State Lighting: Text-Alternative Version: LEDs for Interior Office Applications on AddThis.com... Conferences & Meetings Presentations Publications

257

Solid-State Lighting: L Prize(tm): The Race for Super Efficient Light Bulbs  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

L Prize(tm): The Race for Super L Prize(tm): The Race for Super Efficient Light Bulbs to someone by E-mail Share Solid-State Lighting: L Prize(tm): The Race for Super Efficient Light Bulbs on Facebook Tweet about Solid-State Lighting: L Prize(tm): The Race for Super Efficient Light Bulbs on Twitter Bookmark Solid-State Lighting: L Prize(tm): The Race for Super Efficient Light Bulbs on Google Bookmark Solid-State Lighting: L Prize(tm): The Race for Super Efficient Light Bulbs on Delicious Rank Solid-State Lighting: L Prize(tm): The Race for Super Efficient Light Bulbs on Digg Find More places to share Solid-State Lighting: L Prize(tm): The Race for Super Efficient Light Bulbs on AddThis.com... Conferences & Meetings Presentations Publications Webcasts Videos Tools L Prize(tm): The Race for Super Efficient Light Bulbs

258

Solid-State Lighting: Text-Alternative Version: CALiPER: Troffers, Kits,  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CALiPER: Troffers, Kits, and Tubes Webcast to someone by E-mail CALiPER: Troffers, Kits, and Tubes Webcast to someone by E-mail Share Solid-State Lighting: Text-Alternative Version: CALiPER: Troffers, Kits, and Tubes Webcast on Facebook Tweet about Solid-State Lighting: Text-Alternative Version: CALiPER: Troffers, Kits, and Tubes Webcast on Twitter Bookmark Solid-State Lighting: Text-Alternative Version: CALiPER: Troffers, Kits, and Tubes Webcast on Google Bookmark Solid-State Lighting: Text-Alternative Version: CALiPER: Troffers, Kits, and Tubes Webcast on Delicious Rank Solid-State Lighting: Text-Alternative Version: CALiPER: Troffers, Kits, and Tubes Webcast on Digg Find More places to share Solid-State Lighting: Text-Alternative Version: CALiPER: Troffers, Kits, and Tubes Webcast on AddThis.com... Conferences & Meetings

259

Solid-State Lighting: Text-Alternative Version: Walking Through Examples of  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Text-Alternative Version: Text-Alternative Version: Walking Through Examples of Real LM-79 & LM-80 Reports to someone by E-mail Share Solid-State Lighting: Text-Alternative Version: Walking Through Examples of Real LM-79 & LM-80 Reports on Facebook Tweet about Solid-State Lighting: Text-Alternative Version: Walking Through Examples of Real LM-79 & LM-80 Reports on Twitter Bookmark Solid-State Lighting: Text-Alternative Version: Walking Through Examples of Real LM-79 & LM-80 Reports on Google Bookmark Solid-State Lighting: Text-Alternative Version: Walking Through Examples of Real LM-79 & LM-80 Reports on Delicious Rank Solid-State Lighting: Text-Alternative Version: Walking Through Examples of Real LM-79 & LM-80 Reports on Digg Find More places to share Solid-State Lighting: Text-Alternative

260

Solid-State Lighting: LED Replacement Lamps: Current Performance and the  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

LED Replacement Lamps: Current LED Replacement Lamps: Current Performance and the Latest on ENERGY STAR® to someone by E-mail Share Solid-State Lighting: LED Replacement Lamps: Current Performance and the Latest on ENERGY STAR® on Facebook Tweet about Solid-State Lighting: LED Replacement Lamps: Current Performance and the Latest on ENERGY STAR® on Twitter Bookmark Solid-State Lighting: LED Replacement Lamps: Current Performance and the Latest on ENERGY STAR® on Google Bookmark Solid-State Lighting: LED Replacement Lamps: Current Performance and the Latest on ENERGY STAR® on Delicious Rank Solid-State Lighting: LED Replacement Lamps: Current Performance and the Latest on ENERGY STAR® on Digg Find More places to share Solid-State Lighting: LED Replacement Lamps: Current Performance and the Latest on ENERGY STAR® on

Note: This page contains sample records for the topic "oled solid state" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Solid-State Lighting: Text-Alternative Version: Model Specification for LED  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Information Information Resources Printable Version Share this resource Send a link to Solid-State Lighting: Text-Alternative Version: Model Specification for LED Roadway Luminaires Webcast to someone by E-mail Share Solid-State Lighting: Text-Alternative Version: Model Specification for LED Roadway Luminaires Webcast on Facebook Tweet about Solid-State Lighting: Text-Alternative Version: Model Specification for LED Roadway Luminaires Webcast on Twitter Bookmark Solid-State Lighting: Text-Alternative Version: Model Specification for LED Roadway Luminaires Webcast on Google Bookmark Solid-State Lighting: Text-Alternative Version: Model Specification for LED Roadway Luminaires Webcast on Delicious Rank Solid-State Lighting: Text-Alternative Version: Model Specification for LED Roadway Luminaires Webcast on Digg

262

Solid-State Lighting: Model Specification for Adaptive Control and Remote  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Market-Based Programs Printable Version Share this resource Send a link to Solid-State Lighting: Model Specification for Adaptive Control and Remote Monitoring of LED Roadway Luminaires, V1.0 to someone by E-mail Share Solid-State Lighting: Model Specification for Adaptive Control and Remote Monitoring of LED Roadway Luminaires, V1.0 on Facebook Tweet about Solid-State Lighting: Model Specification for Adaptive Control and Remote Monitoring of LED Roadway Luminaires, V1.0 on Twitter Bookmark Solid-State Lighting: Model Specification for Adaptive Control and Remote Monitoring of LED Roadway Luminaires, V1.0 on Google Bookmark Solid-State Lighting: Model Specification for Adaptive Control and Remote Monitoring of LED Roadway Luminaires, V1.0 on Delicious Rank Solid-State Lighting: Model Specification for Adaptive Control

263

Apply: Solid-State Lighting Advanced Technology R&D 2014 (DE-FOA-0000973)  

Broader source: Energy.gov [DOE]

Closed Total DOE Funding: $10 million Deadline: February 24, 2014 This FOA seeks to fund LED and OLED core technology research, product development, and manufacturing research and development.

264

Chapter ??. Knowledge as infrastructure Ole Hanseth  

E-Print Network [OSTI]

1 Chapter ??. Knowledge as infrastructure Ole Hanseth Introduction ICT solutions are often designed process because of the need for the construction and adoption of a lot of new knowledge. For example, new knowledge is required about the design of better business processes in various business sectors

Hanseth, Ole

265

Solid-State Lighting: LED Site Lighting in the Commercial Building Sector:  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Site Lighting in the Site Lighting in the Commercial Building Sector: Opportunities, Challenges, and the CBEA Performance Specification to someone by E-mail Share Solid-State Lighting: LED Site Lighting in the Commercial Building Sector: Opportunities, Challenges, and the CBEA Performance Specification on Facebook Tweet about Solid-State Lighting: LED Site Lighting in the Commercial Building Sector: Opportunities, Challenges, and the CBEA Performance Specification on Twitter Bookmark Solid-State Lighting: LED Site Lighting in the Commercial Building Sector: Opportunities, Challenges, and the CBEA Performance Specification on Google Bookmark Solid-State Lighting: LED Site Lighting in the Commercial Building Sector: Opportunities, Challenges, and the CBEA Performance Specification on Delicious

266

Text-Alternative Version: Municipal Solid-State Street Lighting Consortium Kickoff  

Broader source: Energy.gov [DOE]

Below is the text-alternative version of the Municipal Solid-State Street Lighting Consortium Kickoff webcast, held May 6, 2010.

267

2014 Solid-State Lighting R&D Workshop Presentations and Materials  

Broader source: Energy.gov [DOE]

This page provides links to the presentations and materials from the 2014 Solid-State Lighting R&D Workshop, held January 2830 in Tampa, Florida.

268

HgCdTe superlattices for solid-state cryogenic refrigeration  

E-Print Network [OSTI]

for solid-state cryogenic refrigeration Daryoosh Vashaee a?merit ?ZT max ? 3? at cryogenic temperatures. Calculationstemperature, 16 for cryogenic refrigeration the situation

Vashaee, D; Shakouri, A

2006-01-01T23:59:59.000Z

269

Text-Alternative Version: Municipal Solid-State Street Lighting Consortium Retrofit Financial Analysis Tool Webcast  

Broader source: Energy.gov [DOE]

Below is the text-alternative version of the "Municipal Solid-State Street Lighting Consortium Retrofit Financial Analysis Tool" webcast, held April 3, 2012.

270

2013 Solid-State Lighting Manufacturing R&D Workshop Presentations and Materials  

Broader source: Energy.gov [DOE]

This page provides links to the presentations and materials from the 2013 Solid-State Lighting Manufacturing R&D Workshop, held June 56 in Boston.

271

E-Print Network 3.0 - applied solid state Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

OF ARPAD A. BERGH, PRESIDENT OF THE Summary: lighting based on solid state optoelectronics. In particular, OIDA en- dorses legislation recently... -industry initiative to...

272

E-Print Network 3.0 - active solid state Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

generally. Four members would be appointed... lighting based on solid state optoelectronics. In particular, OIDA en- dorses legislation recently... -industry initiative to...

273

A High-Energy Solid State Battery with an Extremely Long Cycle...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Stories Contact Us Index Home | ORNL | Highlights SHARE Functional Materials for Energy A High-Energy Solid State Battery with an Extremely Long Cycle Life October 15, 2014...

274

Cavity dumping versus stationary output coupling in repetitively Q-switched solid-state lasers  

Science Journals Connector (OSTI)

A comparative theoretical analysis of continuously pumped actively Q-switched solid-state lasers differing in output coupling methods (cavity dumping versus a partially transmitting...

Grishin, Mikhail

2011-01-01T23:59:59.000Z

275

Papers on Solid-State Lighting at Sandia National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

| Sandia Press Releases & News Coverage | RESEARCH, REVIEW PAPERS, PRESENTATIONS Both directly as part of its GCLDRD, as well as indirectly in many other programs, Sandia conducts a wide range of research relevant to Solid-State Lighting. Bibliographies of publications (pdf file - 319kb) and patents (pdf file - 138kb) from Jan 1992 to Jul 2003, and a bibliography of presentations (pdf file - 143kb) from Jan 2000 to Jul 2003, can be found here. A bibliography of publications and patents during the October 2000 to September 2003 period is contained in the final GCLDRD report described previously. Here, we give snapshots of some of our research, review papers and presentations. Fundamental Materials Physics Conventional GaN-based materials are grown on highly-lattice-mismatched sapphire substrates and hence have very high defect densities. Their typical p-type dopant is Mg, which is not always active but can be compensated by H and other common impurities. And, optimal device designs often require incorporation of Al, which requires high temperatures, and of In, which requires low temperatures. These and other complications result in materials properties that depend sensitively on growth conditions and are poorly understood.

276

Nitride and Oxynitride Based Phosphors for Solid State Lighting  

SciTech Connect (OSTI)

The objective of the project is to advance the technology of the Lightscape Materials Inc. (Lightscape) proprietary nitride and oxynitride phosphors for solid state lighting (SSL) from the current level of maturity of applied research to advanced engineering development. This objective will be accomplished by optimizing the novel nitride and oxynitride phosphors, whose formulations are listed in Table 1, and establishing cost-effective preparation processes for the phosphors. The target performances of the phosphors are: High luminescence efficiency: Quantum Yield = 90%. Superior thermal stability of luminescence: Thermal Quenching Loss <10% at 150 C. Superior environmental stability: Luminescence Maintenance >90% after 5,000 hours at 85 C and 85% relative humidity. Scattering loss <10%. Cost-effective preparation processes. The resulting phosphor materials and their preparation processes are anticipated to be a drop-in component for product development paths undertaken by LED lamp makers in the SSL industry. Upon program completion, Lightscape will target market insertion that enables high efficacy, high color rendering index (CRI), high thermal stability and long lifetime LED-based lighting products for general illumination that realizes substantial energy savings.

Tian, Yongchi

2011-10-15T23:59:59.000Z

277

Storage of hyperentanglement in a solid-state quantum memory  

E-Print Network [OSTI]

Two photons can simultaneously share entanglement between several degrees of freedom such as polarization, energy-time, spatial mode and orbital angular momentum. This resource is known as hyperentanglement, and it has been shown to be an important tool for optical quantum information processing. Here we demonstrate the quantum storage and retrieval of photonic hyperentanglement in a solid-state quantum memory. A pair of photons entangled in polarization and energy-time is generated such that one photon is stored in the quantum memory, while the other photon has a telecommunication wavelength suitable for transmission in optical fibre. We measured violations of a Clauser-Horne-Shimony-Holt (CHSH) Bell inequality for each degree of freedom, independently of the other one, which proves the successful storage and retrieval of the two bits of entanglement shared by the photons. Our scheme is compatible with long-distance quantum communication in optical fibre, and is in particular suitable for linear-optical entanglement purification for quantum repeaters.

Alexey Tiranov; Jonathan Lavoie; Alban Ferrier; Philippe Goldner; Varun B. Verma; Sae Woo Nam; Richard P. Mirin; Adriana E. Lita; Francesco Marsili; Harald Herrmann; Christine Silberhorn; Nicolas Gisin; Mikael Afzelius; Felix Bussieres

2014-12-19T23:59:59.000Z

278

Chapter 4 - Solid-State Nuclear Track Detectors  

Science Journals Connector (OSTI)

Part 1 describes the elements of solid-state nuclear track detectors (SSNTDs) including detector materials (crystals, glasses, and polymers), recordable particles (protons, ?-particles, fission fragments, heavy ions, neutrons, and exotic particles), track formation mechanisms, track etching, particle identification, and track measuring instruments. Part 2 describes applications in nuclear physics, astrophysics, cosmic-ray physics, fission track dating and geothermal chronology, medical science, radiation dosimetry, Rn monitoring, environmental sciences, and nanotechnology. Attention is paid to the newly emerged fields: laser acceleration, laser inertial-confinement fusion, nuclear forensics, and safeguards. The internal structure in this chapter is closely linked between materials, particles, and applications; when describing one of these, the other two are introduced. The above structure of this chapter was organized for the benefit of the reader by providing the current principles and techniques together with the broad research fields of application of SSNTDs. Numerous detector parameters and applications are provided. Essential literature references are provided for detailed information on breakthroughs and recent advances.

Shi-Lun Guo; Bao-Liu Chen; S.A. Durrani

2012-01-01T23:59:59.000Z

279

Gratings for Increasing Solid-State Laser Gain and Efficiency  

SciTech Connect (OSTI)

We introduce new concepts for increasing the efficiency of solid state lasers by using gratings deposited on laser slabs or disks. The gratings improve efficiency in two ways: (1) by coupling out of the slab deleterious amplified spontaneous emission (ASE) and (2) by increasing the absorption efficiency of pump light. The gratings also serve as antireflective coatings for the extracting laser beam. To evaluate the potential for such coatings to improve laser performance, we calculated optical properties of a 2500 groove/mm, tantala-silica grating on a 1cm x 4cm x 8cm titanium-doped sapphire slab and performed ray-trace calculations for ASE and pump light. Our calculations show substantial improvements in efficiency due to grating ASE-coupling properties. For example, the gratings reduce pump energy required to produce a 0.6/cm gain coefficient by 9%, 20% and 35% for pump pulse durations of 0.5 {micro}s, 1{micro}s and 3{micro}s, respectively. Gratings also increase 532-nm pump-light absorption efficiency, particularly when the product slab overall absorption is small. For example, when the single-pass absorption is 1 neper, absorption efficiency increases from 66%, without gratings, to 86%, when gratings are used.

Erlandson, A C; Britten, J A; Bonlie, J D

2010-04-16T23:59:59.000Z

280

Electron assisted neutron exchange process in solid state environment  

E-Print Network [OSTI]

Electron assisted neutron exchange process in solid state environment is investigated. It is shown that if a metal is irradiated with free electrons then the $e+$ $_{Z}^{A_{1}}X+$ $_{Z}^{A_{2}}X\\rightarrow e^{\\prime }+$ $% _{Z}^{A_{1}-1}X+$ $_{Z}^{A_{2}+1}X+\\Delta $ electron assisted neutron exchange process has measurable probability even in the case of slow electrons of energy much less than the reaction energy $\\Delta $. The transition probability per unit time, the cross section of the process and the yield in an irradiated sample are determined in the Weisskopf and long wavelength approximations and in the single particle shell model. Numerical data for the $e+$ $_{28}^{A_{1}}Ni+$ $_{28}^{A_{2}}Ni\\rightarrow e^{\\prime }+ $ $_{28}^{A_{1}+1}Ni+$ $_{28}^{A_{2}-1}Ni+\\Delta $ and the $e+$ $% _{46}^{A_{1}}Pd+$ $_{46}^{A_{2}}Pd\\rightarrow e^{\\prime }+$ $% _{46}^{A_{1}+1}Pd+$ $_{46}^{A_{2}-1}Pd+\\Delta $ electron assisted neutron exchange reactions are also presented.

Pter Klmn; Tams Keszthelyi

2013-12-19T23:59:59.000Z

Note: This page contains sample records for the topic "oled solid state" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Method and system for making integrated solid-state fire-sets and detonators  

DOE Patents [OSTI]

A slapper detonator comprises a solid-state high-voltage capacitor, a low-jitter dielectric breakdown switch and trigger circuitry, a detonator transmission line, an exploding foil bridge, and a flier material. All these components are fabricated in a single solid-state device using thin film deposition techniques. 13 figs.

O`Brien, D.W.; Druce, R.L.; Johnson, G.W.; Vogtlin, G.E.; Barbee, T.W. Jr.; Lee, R.S.

1998-03-24T23:59:59.000Z

282

ANALYSIS OF DETONATION STATES WHEN SHOCKING TWO-PHASE REACTIVE SOLIDS*  

E-Print Network [OSTI]

' ANALYSIS OF DETONATION STATES WHEN SHOCKING TWO-PHASE REACTIVE SOLIDS* J. M. Powers, D. S the hypothesis that observed deviations from Chapman-Jouguet detonation states inporous solid propellants for a minimum detonation wave speed analogous to a Chapman-Jouguet detonation for a single phase is given

283

Ultra Heavy Ion LET Determination with Solid State Nuclear Track Detectors  

Science Journals Connector (OSTI)

......Ion LET Determination with Solid State Nuclear Track Detectors C. Domingo C. Baixeras...such particles. If we know the linear energy transfer (LET) of these particles...mission will be exposed. Solid state nuclear track detector stacks can give us information......

C. Domingo; C. Baixeras; F. Fernndez; A. Vidal-Quadras

1990-12-01T23:59:59.000Z

284

Millisecond switching in solid state electrochromic polymer devices fabricated from ionic self-assembled multilayers  

E-Print Network [OSTI]

Millisecond switching in solid state electrochromic polymer devices fabricated from ionic self The electrochromic switching times of solid state conducting polymer devices fabricated by the ionic self shown to decrease with the active area of the electrochromic device suggesting that even faster

Heflin, Randy

285

Solid-state fault current limiter for voltage sag mitigation and its parameters design  

Science Journals Connector (OSTI)

Due to the difficulty in electric distribution network reinforcement and the interconnection of more distributed generations, fault current level has become a serious problem in system operations. The utilization of solid-state fault current limiters ... Keywords: power quality, simulation, solid-state fault current limiter, voltage sag

B. Boribun; T. Kulworawanichpong

2010-07-01T23:59:59.000Z

286

Method and system for making integrated solid-state fire-sets and detonators  

DOE Patents [OSTI]

A slapper detonator comprises a solid-state high-voltage capacitor, a low-jitter dielectric breakdown switch and trigger circuitry, a detonator transmission line, an exploding foil bridge, and a flier material. All these components are fabricated in a single solid-state device using thin film deposition techniques.

O'Brien, Dennis W. (Livermore, CA); Druce, Robert L. (Union City, CA); Johnson, Gary W. (Livermore, CA); Vogtlin, George E. (Fremont, CA); Barbee, Jr., Troy W. (Palo Alto, CA); Lee, Ronald S. (Livermore, CA)

1998-01-01T23:59:59.000Z

287

Apply: Solid-State Lighting Advanced Technology R&D- 2015 Funding Opportunity  

Broader source: Energy.gov [DOE]

Closed Application Deadline: January 15, 2015 The U.S. Department of Energy (DOE) announced a solid-state lighting (SSL) R&D funding opportunity on October 14, 2014, titled Solid-State Lighting Advanced Technology R&D 2015, DE-FOA-0001171.

288

Low Voltage White Phosphorescent OLED Achievements  

Broader source: Energy.gov [DOE]

Universal Display Corporation (UDC) and its research partners at Princeton University and the University of Southern California have succeeded in developing a white phosphorescent OLED (PHOLED) that achieved a record efficiency of 20 lumens per watt. This achievement is the result of the team's collaborative efforts to increase the efficiency of PHOLED lighting by focusing on two critical factors: lowering the drive voltages and increasing the amount of light extracted.

289

Solid-State Lighting Home Page for Semiconductor light emitting diodes  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Since 04/21/2002 Since 04/21/2002 Solid-State Lighting Archival Website As of September 1, 2006, this website is not being actively maintained. We hope that the collected news items, tracking reports, literature summaries, and links to various industry resources will be of archival value to the SSL community. Please visit Sandia's current and active Solid-State Lighting Energy Frontier Research Center website at http://ssls.sandia.gov/. Solid-State Lighting Science Energy Frontier Research Center The Mission of this site was to provide a comprehensive portal to the emerging knowledge that will enable the promise of solid-state lighting The site was active between December 2001 and September 2006, and the goal was: " … to gather together information relevant to solid-state lighting, and

290

Solid-State Lighting: CALiPER Report 20.1: Subjective Evaluation of Beam  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Report 20.1: Subjective Report 20.1: Subjective Evaluation of Beam Quality, Shadow Quality, and Color Quality for LED PAR38 Lamps to someone by E-mail Share Solid-State Lighting: CALiPER Report 20.1: Subjective Evaluation of Beam Quality, Shadow Quality, and Color Quality for LED PAR38 Lamps on Facebook Tweet about Solid-State Lighting: CALiPER Report 20.1: Subjective Evaluation of Beam Quality, Shadow Quality, and Color Quality for LED PAR38 Lamps on Twitter Bookmark Solid-State Lighting: CALiPER Report 20.1: Subjective Evaluation of Beam Quality, Shadow Quality, and Color Quality for LED PAR38 Lamps on Google Bookmark Solid-State Lighting: CALiPER Report 20.1: Subjective Evaluation of Beam Quality, Shadow Quality, and Color Quality for LED PAR38 Lamps on Delicious Rank Solid-State Lighting: CALiPER Report 20.1: Subjective

291

Energy Department Provides $7 Million for Solid-State Lighting Product  

Broader source: Energy.gov (indexed) [DOE]

7 Million for Solid-State Lighting 7 Million for Solid-State Lighting Product Development Energy Department Provides $7 Million for Solid-State Lighting Product Development June 6, 2006 - 2:15pm Addthis Funding to total $10 million with industry contribution WASHINGTON, DC - U.S. Department of Energy (DOE) Secretary Samuel W. Bodman today announced that DOE will provide a total of $7 million for five cost-shared projects for solid-state lighting (SSL) product development. Solid-state lighting has the potential to more than double the efficiency of general lighting systems, reducing overall U.S. energy consumption and saving consumers money. Companies selected are from California, Massachusetts, and New York. They will provide a 30 percent average cost-share, demonstrating a strong industry commitment to the technology.

292

Solid-State Lighting: Text-Alternative Version: Using the Street and  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Using Using the Street and Parking Facility Lighting Retrofit Financial Analysis Tool to someone by E-mail Share Solid-State Lighting: Text-Alternative Version: Using the Street and Parking Facility Lighting Retrofit Financial Analysis Tool on Facebook Tweet about Solid-State Lighting: Text-Alternative Version: Using the Street and Parking Facility Lighting Retrofit Financial Analysis Tool on Twitter Bookmark Solid-State Lighting: Text-Alternative Version: Using the Street and Parking Facility Lighting Retrofit Financial Analysis Tool on Google Bookmark Solid-State Lighting: Text-Alternative Version: Using the Street and Parking Facility Lighting Retrofit Financial Analysis Tool on Delicious Rank Solid-State Lighting: Text-Alternative Version: Using the Street and Parking Facility Lighting Retrofit Financial Analysis Tool on

293

Solid-State Lighting: Text-Alternative Version: SSL Luminaire Performance  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

SSL SSL Luminaire Performance in the Lab: Just How Well Do They Perform? to someone by E-mail Share Solid-State Lighting: Text-Alternative Version: SSL Luminaire Performance in the Lab: Just How Well Do They Perform? on Facebook Tweet about Solid-State Lighting: Text-Alternative Version: SSL Luminaire Performance in the Lab: Just How Well Do They Perform? on Twitter Bookmark Solid-State Lighting: Text-Alternative Version: SSL Luminaire Performance in the Lab: Just How Well Do They Perform? on Google Bookmark Solid-State Lighting: Text-Alternative Version: SSL Luminaire Performance in the Lab: Just How Well Do They Perform? on Delicious Rank Solid-State Lighting: Text-Alternative Version: SSL Luminaire Performance in the Lab: Just How Well Do They Perform? on Digg

294

Energy Department Provides $7 Million for Solid-State Lighting Product  

Broader source: Energy.gov (indexed) [DOE]

Energy Department Provides $7 Million for Solid-State Lighting Energy Department Provides $7 Million for Solid-State Lighting Product Development Energy Department Provides $7 Million for Solid-State Lighting Product Development June 6, 2006 - 2:15pm Addthis Funding to total $10 million with industry contribution WASHINGTON, DC - U.S. Department of Energy (DOE) Secretary Samuel W. Bodman today announced that DOE will provide a total of $7 million for five cost-shared projects for solid-state lighting (SSL) product development. Solid-state lighting has the potential to more than double the efficiency of general lighting systems, reducing overall U.S. energy consumption and saving consumers money. Companies selected are from California, Massachusetts, and New York. They will provide a 30 percent average cost-share, demonstrating a strong industry commitment to the technology.

295

Solid-State Lighting: Member Case Studies: LED Street Lighting Programs in  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Member Case Studies: LED Street Member Case Studies: LED Street Lighting Programs in Algona (IA), Asheville (NC), and Boston (MA) to someone by E-mail Share Solid-State Lighting: Member Case Studies: LED Street Lighting Programs in Algona (IA), Asheville (NC), and Boston (MA) on Facebook Tweet about Solid-State Lighting: Member Case Studies: LED Street Lighting Programs in Algona (IA), Asheville (NC), and Boston (MA) on Twitter Bookmark Solid-State Lighting: Member Case Studies: LED Street Lighting Programs in Algona (IA), Asheville (NC), and Boston (MA) on Google Bookmark Solid-State Lighting: Member Case Studies: LED Street Lighting Programs in Algona (IA), Asheville (NC), and Boston (MA) on Delicious Rank Solid-State Lighting: Member Case Studies: LED Street Lighting Programs in Algona (IA), Asheville (NC), and Boston (MA) on Digg

296

Coordinating Garbage Collection for Arrays of Solid-state Drives  

SciTech Connect (OSTI)

Although solid-state drives (SSDs) offer significant performance improvements over hard disk drives (HDDs) for a number of workloads, they can exhibit substantial variance in request latency and throughput as a result of garbage collection (GC). When GC conflicts with an I/O stream, the stream can make no forward progress until the GC cycle completes. GC cycles are scheduled by logic internal to the SSD based on several factors such as the pattern, frequency, and volume of write requests. When SSDs are used in a RAID with currently available technology, the lack of coordination of the SSD-local GC cycles amplifies this performance variance. We propose a global garbage collection (GGC) mechanism to improve response times and reduce performance variability for a RAID of SSDs. We include a high-level design of SSD-aware RAID controller and GGC-capable SSD devices and algorithms to coordinate the GGC cycles. We develop reactive and proactive GC coordination algorithms and evaluate their I/O performance and block erase counts for various workloads. Our simulations show that GC coordination by a reactive scheme improves average response time and reduces performance variability for a wide variety of enterprise workloads. For bursty, write-dominated workloads, response time was improved by 69% and performance variability was reduced by 71%. We show that a proactive GC coordination algorithm can further improve the I/O response times by up to 9% and the performance variability by up to 15%. We also observe that it could increase the lifetimes of SSDs with some workloads (e.g. Financial) by reducing the number of block erase counts by up to 79% relative to a reactive algorithm for write-dominant enterprise workloads.

Kim, Youngjae [ORNL] [ORNL; Lee, Junghee [ORNL] [ORNL; Oral, H Sarp [ORNL] [ORNL; Dillow, David A [ORNL] [ORNL; Wang, Feiyi [ORNL] [ORNL; Shipman, Galen M [ORNL] [ORNL

2014-01-01T23:59:59.000Z

297

Arabidopsis thalianafrom Polarization Transfer Solid-State NMR  

SciTech Connect (OSTI)

Polysaccharide-rich plant cell walls are hydrated under functional conditions, but the molecular interactions between water and polysaccharides in the wall have not been investigated. In this work, we employ polarization transfer solid-state NMR techniques to study the hydration of primary-wall polysaccharides of the model plant, Arabidopsis thaliana. By transferring water 1H polarization to polysaccharides through distance- and mobility-dependent 1H1H dipolar couplings and detecting it through polysaccharide 13C signals, we obtain information about water proximity to cellulose, hemicellulose, and pectins as well as water mobility. Both intact and partially extracted cell wall samples are studied. Our results show that waterpectin polarization transfer is much faster than watercellulose polarization transfer in all samples, but the extent of extraction has a profound impact on the waterpolysaccharide spin diffusion. Removal of calcium ions and the consequent extraction of homogalacturonan (HG) significantly slowed down spin diffusion, while further extraction of matrix polysaccharides restored the spin diffusion rate. These trends are observed in cell walls with similar water content, thus they reflect inherent differences in the mobility and spatial distribution of water. Combined with quantitative analysis of the polysaccharide contents, our results indicate that calcium ions and HG gelation increase the amount of bound water, which facilitates spin diffusion, while calcium removal disrupts the gel and gives rise to highly dynamic water, which slows down spin diffusion. The recovery of spin diffusion rates after more extensive extraction is attributed to increased water-exposed surface areas of the polysaccharides. Waterpectin spin diffusion precedes watercellulose spin diffusion, lending support to the single-network model of plant primary walls in which a substantial fraction of the cellulose surface is surrounded by pectins.

White, Paul B [Ames Laboratory; Wang, Tuo [Ames Laboratory; Park, Yong Bum [Pennsylvania State University; Cosgrove, Daniel J [Pennsylvania State University; Hong, Mei [Ames Laboratory

2014-07-23T23:59:59.000Z

298

Record External Quantum Efficiency in Blue OLED Device  

Broader source: Energy.gov [DOE]

Scientists at Pacific Northwest National Laboratory (PNNL) have created a blue organic light emitting diode (OLED) with an external quantum efficiency (EQE) of 11% at 800 cd/m2, exceeding their previous record EQE of 8%. The EQE of blue OLEDs is a major challenge in OLED technology development. This achievement is particularly notable since it was accomplished at a much lower operating voltage (6.2V) than previous demonstrations using similar structures, revealing the potential for much higher power efficiencies.

299

OLED Display with Single Grain Si TFT. (SG-TFT):.  

E-Print Network [OSTI]

??OLED is a current based device, which emitted amount of light depends on the current supplied to the device so steady current flow is needed. (more)

Naeimi, A.

2011-01-01T23:59:59.000Z

300

MidAmerican Energy (Electric) - Municipal Solid-State Lighting Grant  

Broader source: Energy.gov (indexed) [DOE]

MidAmerican Energy (Electric) - Municipal Solid-State Lighting MidAmerican Energy (Electric) - Municipal Solid-State Lighting Grant Program MidAmerican Energy (Electric) - Municipal Solid-State Lighting Grant Program < Back Eligibility Local Government Savings Category Appliances & Electronics Commercial Lighting Lighting Maximum Rebate Minimum project size for the full $5,000 grant is 20 fixtures; smaller projects will receive a $250 per-fixture grant. Program Info State Iowa Program Type Utility Grant Program Rebate Amount Up to $5,000 Provider MidAmerican Energy Company MidAmerican Energy offers grants to munipalities which implement solid-state roadway street lighting upgrades. Grants of up to $5,000 are available to participating entities who install eligible roadway lighting fixtures. Participants must be an Iowa electric governmental customer of

Note: This page contains sample records for the topic "oled solid state" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Solid State Division progress report for period ending March 31, 1992  

SciTech Connect (OSTI)

During this period, the division conducted a broad, interdisciplinary materials research program with emphasis on theoretical solid state physics, superconductivity, neutron scattering, synthesis and characterization of materials, ion beam and laser processing, and the structure of solids and surfaces. The High Flux Isotope Reactor was returned to full operation.

Green, P.H.; Hinton, L.W. (eds.)

1992-09-01T23:59:59.000Z

302

Nucleation of ordered solid phases of proteins via a disordered high-density state: Phenomenological approach  

E-Print Network [OSTI]

Nucleation of ordered solid phases of proteins via a disordered high-density state solid phases of proteins triggers numerous phenomena in laboratory, industry, and in healthy and sick organisms. Recent simulations and experiments with protein crystals suggest that the formation of an ordered

303

Application of Developed APCVD Transparent Conducting Oxides and Undercoat Technologies for Economical OLED Lighting  

SciTech Connect (OSTI)

Economics is a key factor for application of organic light emitting diodes (OLED) in general lighting relative to OLED flat panel displays that can handle high cost materials such as indium tin oxide (ITO) or Indium zinc oxide (IZO) as the transparent conducting oxide (TCO) on display glass. However, for OLED lighting to penetrate into general illumination, economics and sustainable materials are critical. The issues with ITO have been documented at the DOE SSL R&D and Manufacturing workshops for the last 5 years and the issue is being exaserbated by export controls from China (one of the major sources of elemental indium). Therefore, ITO is not sustainable because of the fluctuating costs and the United States (US) dependency on other nations such as China. Numerous alternatives to ITO/IZO are being evaluated such as Ag nanoparticles/nanowires, carbon nanotubes, graphene, and other metal oxides. Of these other metal oxides, doped zinc oxide has attracted a lot of attention over the last 10 years. The volume of zinc mined is a factor of 80,000 greater than indium and the US has significant volumes of zinc mined domestically, resulting in the ability for the US to be self-sufficient for this element that can be used in optoelectonic applications. The costs of elemental zinc is over 2 orders of magnitude less than indium, reflecting the relative abundance and availablility of the elements. Arkema Inc. and an international primary glass manufacturing company, which is located in the United States, have developed doped zinc oxide technology for solar control windows. The genesis of this DOE SSL project was to determine if doped zinc oxide technology can be taken from the commodity based window market and translate the technology to OLED lighting. Thus, Arkema Inc. sought out experts, Philips Lighting, Pacific Northwest National Laboratories (PNNL) and National Renewable Research Laboratories (NREL), in OLED devices and brought them into the project. This project had a clear focus on economics and the work plan focused both on doped ZnO process and OLED device structure that would be consistent with the new TCO. The team successfully made 6 inch OLEDs with a serial construction. More process development is required to optimize commercial OLED structures. Feasibility was demonstrated on two different light extraction technologies: 1/4 lambda refractive index matching and high-low-high band pass filter. Process development was also completed on the key precursors for the TCO, which are ready for pilot-plant scale-up. Subsequently, Arkema has developed a cost of ownership model that is consistent with DOE SSL R&D Manufacturing targets as outlined in the DOE SSL R&D Manufacturing 2010 report. The overall outcome of this project was the demonstration that doped zinc oxide can be used for OLED devices without a drop-off in performance while gaining the economic and sustainable benefits of a more readily available TCO. The broad impact of this project, is the facilitation of OLED lighting market penetration into general illumination, resulting in significant energy savings, decreased greenhouse emissions, with no environmental impact issues such as mercury found in Fluorescent technology.

Gary Silverman; Bluhm, Martin; Coffey, James; Korotkov, Roman; Polsz, Craig; Salemi, Alexandre; Smith, Robert; Smith, Ryan; Stricker, Jeff; Xu,Chen; Shirazi, Jasmine; Papakonstantopulous, George; Carson, Steve Philips Lighting GmbH Goldman, Claudia; Hartmann, Sren; Jessen, Frank; Krogmann, Bianca; Rickers, Christoph; Ruske, Manfred, Schwab, Holger; Bertram, Dietrich

2011-01-02T23:59:59.000Z

304

Secretary of Energy Announces $5 Million for Solid State Lighting Research  

Broader source: Energy.gov (indexed) [DOE]

Secretary of Energy Announces $5 Million for Solid State Lighting Secretary of Energy Announces $5 Million for Solid State Lighting Research Secretary of Energy Announces $5 Million for Solid State Lighting Research October 5, 2006 - 9:08am Addthis ALBUQUERQUE, NM - U.S. Department of Energy (DOE) Secretary Samuel W. Bodman today announced the selection of seven projects, valued at nearly $5 million, for Solid State Lighting (SSL) research in nanotechnology. SSL has the potential to more than double the efficiency of general lighting systems, reducing overall U.S. energy consumption and saving consumers money. Sandia National Laboratory is expected to receive approximately $2.6 million of the total funding. This funding comes from DOE's Office of Energy Efficiency and Renewable Energy. "Following the President's call for new technology in the Advanced Energy

305

The Solid State Division Oak Ridge National Laboratory A Brief History  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Solid State Solid State Division Oak Ridge National Laboratory A Brief History 1952-1995 Cover: The trajectory of a "channeled" ion in a crystal surrounded by journal covers featuring other Solid State Division research. Clockwise from upper left: laser ablation, glass research, surface science, sintering, neutron scattering, Z-contrast electron microscopy, ion implantation, superconductivity, laser annealing, and thin-film batteries. Foreword For more than four decades, the Solid State Division at Oak Ridge National Laboratory has been at the forefront of interdisciplinary research in condensed matter science and materials physics. This brief history chronicles the development of the division and its major scientific and technological contributions from 1950 to 1995. During this period,

306

Solid-State Lighting Mission Statement and Feature Page for Semiconductor  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Since 04/21/2002 New! Redesigned Solid-State Lighting Website This month, we introduce a redesign of our Solid-State Lighting Website. The site has been active since December 2001, and since that time has undergone a steady evolution. However, our mission has remained the same: "to gather together information relevant to solid-state lighting, and to help stimulate the development of the science and technology foundation necessary to enable the promise and potential of solid-state lighting." The organization and content of this redesign is similar to that of the previous site. We will continue to include a comprehensive overview of science, technology, business and national news; an up-to-date list of relevant conferences; and world-wide web links. But, as national

307

Solid-State Lighting: Text-Alternative Version: LED Site Lighting in the  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Site Lighting in the Commercial Building Sector: Opportunities, Challenges, Site Lighting in the Commercial Building Sector: Opportunities, Challenges, and the CBEA Performance Specification to someone by E-mail Share Solid-State Lighting: Text-Alternative Version: LED Site Lighting in the Commercial Building Sector: Opportunities, Challenges, and the CBEA Performance Specification on Facebook Tweet about Solid-State Lighting: Text-Alternative Version: LED Site Lighting in the Commercial Building Sector: Opportunities, Challenges, and the CBEA Performance Specification on Twitter Bookmark Solid-State Lighting: Text-Alternative Version: LED Site Lighting in the Commercial Building Sector: Opportunities, Challenges, and the CBEA Performance Specification on Google Bookmark Solid-State Lighting: Text-Alternative Version: LED Site

308

Solid-State Lighting: Text-Alternative Version: The L Prize-Winning LED A19  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The L The L Prize-Winning LED A19 Replacement-What Commercial Building Owners/Operators Can Expect in 2012 to someone by E-mail Share Solid-State Lighting: Text-Alternative Version: The L Prize-Winning LED A19 Replacement-What Commercial Building Owners/Operators Can Expect in 2012 on Facebook Tweet about Solid-State Lighting: Text-Alternative Version: The L Prize-Winning LED A19 Replacement-What Commercial Building Owners/Operators Can Expect in 2012 on Twitter Bookmark Solid-State Lighting: Text-Alternative Version: The L Prize-Winning LED A19 Replacement-What Commercial Building Owners/Operators Can Expect in 2012 on Google Bookmark Solid-State Lighting: Text-Alternative Version: The L Prize-Winning LED A19 Replacement-What Commercial Building Owners/Operators Can Expect in 2012 on Delicious

309

Secretary of Energy Announces $5 Million for Solid State Lighting Research  

Broader source: Energy.gov (indexed) [DOE]

$5 Million for Solid State Lighting $5 Million for Solid State Lighting Research Secretary of Energy Announces $5 Million for Solid State Lighting Research October 5, 2006 - 9:08am Addthis ALBUQUERQUE, NM - U.S. Department of Energy (DOE) Secretary Samuel W. Bodman today announced the selection of seven projects, valued at nearly $5 million, for Solid State Lighting (SSL) research in nanotechnology. SSL has the potential to more than double the efficiency of general lighting systems, reducing overall U.S. energy consumption and saving consumers money. Sandia National Laboratory is expected to receive approximately $2.6 million of the total funding. This funding comes from DOE's Office of Energy Efficiency and Renewable Energy. "Following the President's call for new technology in the Advanced Energy

310

FEMP Outdoor Solid-State Lighting Intiative: Resources for Outdoor SSL Applications  

Broader source: Energy.gov [DOE]

Fact sheet describes the Federal Energy Management Program's (FEMP) solid-state lighting (SSL) initiatives that provide information and resources for the application of SSL lighting in exterior spaces.

311

E-Print Network 3.0 - abundance solid-state 33s Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Summary: given for S2 is that measured in Hyakutake (33). S2 has not been detected in Hale-Bopp. b abundances... in the protosolar cloud. ISO observations of new solid state...

312

LED Components and the Related Solutions for Solid-State Lightings Applications  

Science Journals Connector (OSTI)

The high brightness (HB) and the high power (HP) LED components for solid-state lighting applications are introduced in the slides. The industry leading Lighting-Class LED components...

Shao, Jiaping

313

2013 Solid-State Lighting Market Introduction Workshop Presentations and Materials  

Broader source: Energy.gov [DOE]

This page provides links to the presentations and materials from the 2013 Solid-State Lighting Market Introduction Workshop and Pre-Workshop LED Education, held November 1214 in Portland, OR.

314

2012 Solid-State Lighting Market Introduction Workshop Presentations and Materials  

Broader source: Energy.gov [DOE]

This page provides links to the presentations and materials from the 2012 Solid-State Lighting Market Introduction Tutorials and Workshop, held July 1719 in Pittsburgh, Pennsylvania.

315

DOE Awards Seven Small Business Innovation Research Grants for Solid-State Lighting Technology  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy (DOE) has awarded seven Small Business Innovation Research (SBIR) grants targeting advances in solid-state lighting (SSL) technology. The SBIR program seeks to...

316

Solid-State Lighting Manufacturing Research and Development Round 4 (DE-FOA-0000792)  

Broader source: Energy.gov [DOE]

Closed Total DOE Funding: $11 million The objective of this Funding Opportunity Announcement (FOA) is to achieve cost reduction of solid-state lighting (SSL) for general illumination through improvements in manufacturing equipment, processes, or techniques.

317

Solid-State Lighting Manufacturing Research and Development Round 3 (DE-FOA-0000561)  

Broader source: Energy.gov [DOE]

Closed Total DOE Funding: $10 million The objective of this Funding Opportunity Announcement (FOA) is achieve cost reduction of solid-state lighting for general illumination through improvements in manufacturing equipment, processes, or techniques.

318

DOE Announces Selections for Solid-State Lighting Core Technology Research Call (Round 6)  

Broader source: Energy.gov [DOE]

The National Energy Technology Laboratory (NETL), on behalf of the U.S. Department of Energy (DOE), is pleased to announce four selections in response to the Solid-State Lighting (SSL) Core...

319

Text-Alternative Version: Solid-State Lighting Early Lessons Learned Webinar  

Broader source: Energy.gov [DOE]

Linda Sandahl: Welcome, ladies and gentlemen. I'm Linda Sandahl with the Pacific Northwest National Laboratory, and I'd like to welcome you to today's webcast, Solid-State Lighting: Early Lessons...

320

DOE Announces Selections from Solid-State Lighting Product Development Funding Opportunity Announcement  

Broader source: Energy.gov [DOE]

The National Energy Technology Laboratory (NETL), on behalf of the U.S. Department of Energy (DOE), is pleased to announce the selection of five (5) applications in response to the Solid-State...

Note: This page contains sample records for the topic "oled solid state" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Solid-State Lighting: Early Lessons Learned on the Way to Market  

Broader source: Energy.gov [DOE]

This February 20, 2014 webinar presented information from a new DOE report, Solid-State Lighting: Early Lessons Learned on the Way to Market. The SSL market continues to evolve rapidly and LED...

322

DOE Awards Five Small Business Innovation Research Grants for Solid-State Lighting Technology  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy (DOE) has awarded five Small Business Innovation Research (SBIR) grants targeting advances in solid-state lighting (SSL) technology. The SBIR program seeks to increase...

323

Solid state growth mechanisms for carbon nanotubes Peter J.F. Harris  

E-Print Network [OSTI]

Review Solid state growth mechanisms for carbon nanotubes Peter J.F. Harris Centre for Advanced.09.023 E-mail address: p.j.f.harris@rdg.ac.uk www.elsevier.com/locate/carbon Carbon 4

Harris, Peter J F

324

Multinuclear solid-state three-dimensional MRI of bone and synthetic calcium phosphates  

Science Journals Connector (OSTI)

...NMR Center, Room 2301, Department of Radiology, Massachusetts General Hospital, 149...Solid State Comm 50 : 291 295 . Human dental extractions were kindly provided by Dr. Andrew...NMR Center, Room 2301, Department of Radiology, Massachusetts General Hospital, 149...

Yaotang Wu; David A. Chesler; Melvin J. Glimcher; Leoncio Garrido; Jinxi Wang; Hong J. Jiang; Jerome L. Ackerman

1999-01-01T23:59:59.000Z

325

E-Print Network 3.0 - abundance solid-state 13c Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

we have initiated a solid-state NMR study of uni- formly 13 C- and 15 N... of these proteins in phospholipid bilayers is important for understanding their mechanisms of action....

326

Webcast: Municipal Solid-State Street Lighting Consortium Retrofit Financial Analysis Tool  

Broader source: Energy.gov [DOE]

This April 3, 2012 webcast presented information about the Retrofit Financial Analysis Tool developed by DOE"s Municipal Solid-State Street Lighting Consortium. Doug Elliott of Pacific Northwest...

327

2012 Solid-State Lighting Manufacturing R&D Workshop Presentations and Materials  

Broader source: Energy.gov [DOE]

This page provides links to the presentations and materials from the 2012 Solid-State Lighting Manufacturing R&D Workshop, held June 1314 in San Jose, California.

328

2014 Solid-State Lighting Manufacturing R&D Workshop Presentations and Materials  

Broader source: Energy.gov [DOE]

This page provides links to the presentations and materials from the 2014 Solid-State Lighting Manufacturing R&D Workshop, held May 78 in San Diego, California.

329

2013 Solid-State Lighting R&D Workshop Presentations and Materials  

Broader source: Energy.gov [DOE]

This page provides links to the presentations and materials from the 2013 Solid-State Lighting R&D Workshop, held January 2931 in Long Beach, California.

330

Methodology and applications of high resolution solid-state NMR to structure determination of proteins  

E-Print Network [OSTI]

A number of methodological developments and applications of solid-state NMR for assignment and high resolution structure determination of microcrystalline proteins and amyloid fibrils are presented. Magic angle spinning ...

Lewandowski, Jzef Romuald

2008-01-01T23:59:59.000Z

331

Dynamic nuclear polarization in biomolecular solid state NMR : methods and applications in peptides and membrane proteins  

E-Print Network [OSTI]

Solid state NMR can probe structure and dynamics on length scales from the atomic to the supramolecular. However, low sensitivity limits its application in macromolecules. NMR sensitivity can be improved by dynamic nuclear ...

Bajaj, Vikram Singh

2007-01-01T23:59:59.000Z

332

Automation of the alignment process of a solid state laser resonator  

Science Journals Connector (OSTI)

Resonator alignment is a complicated procedure in manufacturing of solid state lasers, which is mainly performed by a human operator. The description of an approach to automate it and...

Brecher, Christian; Pyschny, Nicolas; Guerrero Lule, Vicente Paul

333

DOE Awards Two Small Business Innovation Research Phase II Grants for Solid-State Lighting Technology  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy (DOE) has awarded two Small Business Innovation Research (SBIR) grants targeting advances in solid-state lighting (SSL) technology. The SBIR program seeks to increase...

334

DOE Announces Selections from Solid-State Lighting Core Technologies Funding Opportunity Announcement and Laboratory Call  

Broader source: Energy.gov [DOE]

The National Energy Technology Laboratory (NETL), on behalf of the U.S. Department of Energy (DOE) is pleased to announce the selection of sixteen (16) applications in response to the Solid-State...

335

Solid-State NMR Spectroscopic Study of Phosphate Sorption Mechanisms on Aluminum (Hydr)oxides  

E-Print Network [OSTI]

Solid-State NMR Spectroscopic Study of Phosphate Sorption Mechanisms on Aluminum (Hydr)oxides Wei the mechanism of phosphate sorption on aluminum hydroxides under different environ- mental conditions, including

Sparks, Donald L.

336

Transformations in Lighting: The Ninth Annual Solid-State Lighting R&D Workshop  

Broader source: Energy.gov [DOE]

Nearly 300 researchers, manufacturers, and other industry insiders and observers gathered in Atlanta January 31February 2, 2012, to participate in DOE's "Transformations in Lighting" Solid-State Lighting (SSL) R&D Workshop.

337

Transformations in Lighting: The Eighth Annual Solid-State Lighting R&D Workshop  

Broader source: Energy.gov [DOE]

More than 350 researchers, manufacturers, and other industry insiders and observers gathered in San Diego February 13, 2011, to participate in DOE's "Transformations in Lighting" Solid-State Lighting (SSL) R&D Workshop.

338

Energy efficient control of polychromatic solid state lighting using a sensor network  

E-Print Network [OSTI]

Motivated by opportunities in smart lighting, energy efficiency, and ubiquitous sensing, we present the design of polychromatic solid-state lighting controlled using a sensor network. We developed both a spectrally tunable ...

Paradiso, Joseph A.

339

Scalable solidstate qubits: challenging decoherence and readout  

Science Journals Connector (OSTI)

...refer to those papers for overview and insight, and take the liberty of focusing on a particular class of solid-state qubits...original bias point (ng = 1 2 nb ias ) after a time t; this will project the state j ( t)i back onto the pure charge states. If the...

2003-01-01T23:59:59.000Z

340

The Seventh Annual DOE Solid-State Lighting Market Introduction Workshop  

Broader source: Energy.gov [DOE]

Nearly 200 lighting leaders from across North America gathered in Pittsburgh July 1719, 2012, for the seventh annual Solid-State Lighting (SSL) Market Introduction Workshop, hosted by DOE. The diverse audience spanned the spectrum: industry, government, efficiency organizations, utilities, municipalities, designers, specifiers, retailers, and distributors. The purpose was to share the latest insights, updates, and strategies for the successful market introduction of high-quality solid-state lighting products.

Note: This page contains sample records for the topic "oled solid state" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

The Sixth Annual DOE Solid-State Lighting Market Introduction Workshop  

Broader source: Energy.gov [DOE]

More than 275 lighting leaders from across North America gathered in Seattle July 1214, 2011, for the sixth annual Solid-State Lighting (SSL) Market Introduction Workshop, hosted by DOE. The diverse audience spanned the spectrum from industry, to government, to efficiency organizations, to utilities, to municipalities, to designers and specifiers, to retailers and distributors. The purpose was to share the latest insights, updates, and strategies for the successful market introduction of high-quality solid-state lighting products.

342

The Eighth Annual DOE Solid-State Lighting Market Introduction Workshop  

Broader source: Energy.gov [DOE]

More than 200 lighting leaders from across North America gathered in Portland, OR, November 1214, 2013, for the eighth annual Solid-State Lighting (SSL) Market Introduction Workshop, hosted by DOE. The diverse audience spanned the spectrum: industry, government, efficiency organizations, utilities, municipalities, designers, specifiers, retailers, and distributors. The purpose was to share the latest insights, updates, and strategies for the successful market introduction of high-quality solid-state lighting products.

343

The Fifth Annual DOE Solid-State Lighting Market Introduction Workshop  

Broader source: Energy.gov [DOE]

More than 300 lighting leaders from across the continent gathered in Philadelphia July 2022, 2010, for the fifth annual Solid-State Lighting (SSL) Market Introduction Workshop, hosted by DOE. The audience was diverse, spanning the spectrum from industry, to government, to efficiency organizations, to utilities, to municipalities, to designers and specifiers, to retailers and distributors. The purpose was to share the latest insights, updates, and strategies for the successful market introduction of high-quality solid-state lighting products.

344

New OLED Lighting Systems Shine Bright, Save Energy  

Broader source: Energy.gov (indexed) [DOE]

Universal Display Corporation Universal Display Corporation (UDC) (Ewing, NJ), founded in 1994, provides OLED innovations and helps commercialize new generations of OLED products through technology licensing, UniversalPHOLED® materials sales, technology development, and technology transfer services. UDC is a world leader in the development of innovative OLED technology for use in flat panel displays, lighting, and organic electronics. It holds one of the largest patent portfolios in the OLED field. www.universaldisplay.com New OLED Lighting Systems Shine Bright, Save Energy Challenge Lighting consumes over 22% of the total electricity produced in the U.S. and, according to industry estimates, accounts for over $200 billion per year in electric bills worldwide. A majority of this energy consumption

345

Solid-State Lighting: IESNA LM-80-08 - An Overview of the Test Procedure  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

IESNA LM-80-08 - An Overview IESNA LM-80-08 - An Overview of the Test Procedure and How it is Used for ENERGY STAR® to someone by E-mail Share Solid-State Lighting: IESNA LM-80-08 - An Overview of the Test Procedure and How it is Used for ENERGY STAR® on Facebook Tweet about Solid-State Lighting: IESNA LM-80-08 - An Overview of the Test Procedure and How it is Used for ENERGY STAR® on Twitter Bookmark Solid-State Lighting: IESNA LM-80-08 - An Overview of the Test Procedure and How it is Used for ENERGY STAR® on Google Bookmark Solid-State Lighting: IESNA LM-80-08 - An Overview of the Test Procedure and How it is Used for ENERGY STAR® on Delicious Rank Solid-State Lighting: IESNA LM-80-08 - An Overview of the Test Procedure and How it is Used for ENERGY STAR® on Digg Find More places to share Solid-State Lighting: IESNA LM-80-08 -

346

Representation of the Solubility of Solids in Supercritical Fluids Using the SAFT Equation of State  

Science Journals Connector (OSTI)

Representation of the Solubility of Solids in Supercritical Fluids Using the SAFT Equation of State ... A SAFT equation of state (EOS) combined with eight mixing rules was used to evaluate the capability of the SAFT approach for modeling the solubility of solids in supercritical fluids (SCFs). ... The results show that the SAFT approach gives good correlative accuracy in general, and the results are satisfactory when the three-parameter mixing rules are used, where the average absolute deviation of solid solubility in the SCF phase is normally smaller than 10%. ...

Chongli Zhong; Hongyu Yang

2002-08-20T23:59:59.000Z

347

Thermodynamic $R$-diagrams reveal solid-like fluid states  

E-Print Network [OSTI]

We evaluate the thermodynamic curvature $R$ for fluid argon, hydrogen, carbon dioxide, and water. For these fluids, $R$ is mostly negative, but we also find significant regimes of positive $R$, which we interpret as indicating solid-like fluid properties. Regimes of positive $R$ are present in all four fluids at very high pressure. Water has, in addition, a narrow slab of positive $R$ in the stable liquid phase near its triple point. Also, water is the only fluid we found having $R$ decrease on cooling into the metastable liquid phase, consistent with a possible second critical point.

George Ruppeiner; Peter Mausbach; Helge-Otmar May

2014-11-11T23:59:59.000Z

348

Solid state 13C NMR in conducting polymers F. Devreux (*), G. Bidan (**), A. A. Syed(**,+) and C. Tsintavis (**)  

E-Print Network [OSTI]

1595 Solid state 13C NMR in conducting polymers F. Devreux (*), G. Bidan (**), A. A. Syed al. [1], the so-called solid-state high-resolution 13C NMR (CMR) could be a promis- ing way material for battery appli- cations. 2. Experimental High resolution CMR is achieved in solids by averag

Paris-Sud XI, Université de

349

Chameleon: A Color-Adaptive Web Browser for Mobile OLED Displays  

Science Journals Connector (OSTI)

Displays based on organic light-emitting diode (OLED) technology are appearing on many mobile devices. Unlike liquid crystal displays (LCD), OLED displays consume dramatically different power for showing different colors. In particular, OLED displays ... Keywords: OLED display, web browser, color transformation, low power.

Mian Dong; Lin Zhong

2012-05-01T23:59:59.000Z

350

High l state population in O sup 7+ produced in ion-solid collisions  

SciTech Connect (OSTI)

The high {ell}-state population of fast ions excited in ion-solid interactions is very different from {ell}-state populations produced under single collision conditions. A study of the population dynamics of electronic excitation and transport within the framework of a classical transport theory for O{sup 2+} (2 MeV/u) ions traversing carbon foils shows food agreement with experimental results from delayed photon emission spectroscopy. We investigate the dependence of the characteristic exponent for the power-law decay of delayed Ly{alpha} and Ly{beta} radiation on the initial n,{ell} distribution. From our simulations we find evidence that the very high {ell}-state populations produced in ion-solid collision are the consequence of a high-{ell} state diffusion under the influence of multiple inelastic and elastic collisions in the bulk of the solid. 15 refs., 4 figs.

Kemmler, J. (Centre Interdisciplinaire de Recherches avec les Ions Lourds, 14 - Caen (France)); Bourgdoerfer, J.; Reinhold, C.O. (Tennessee Univ., Knoxville, TN (United States) Oak Ridge National Lab., TN (United States))

1991-01-01T23:59:59.000Z

351

Solid-State Circuit for Spin Entanglement Generation and Purification J. M. Taylor,1  

E-Print Network [OSTI]

computers by connecting small- scale processors in a quantum network. EPR pair genera- tion and purificationSolid-State Circuit for Spin Entanglement Generation and Purification J. M. Taylor,1 W. Du¨r,2,3 P for the robust generation and purification of four-particle spin entangled states in elec- trically controlled

Yacoby, Amir

352

World Record White OLED Performance Exceeds 100 lm/W  

Broader source: Energy.gov [DOE]

Universal Display Corporation (UDC) has successfully demonstrated a record-breaking white organic light-emitting diode (WOLED) with a power efficacy of 102 lm/W at 1000 cd/m2 using its proprietary, high-efficiency phosphorescent OLED technology. This achievement represents a significant milestone for OLED technology, demonstrating performance that surpasses the power efficacy of incandescent bulbs with less than 15 lm/W and fluorescent lamps at 60-90 lm/W. Funded in part by DOE, UDC's achievement is a major step toward DOE's roadmap goal of a 150 lm/W commercial OLED light source by 2015.

353

Polymer-Nanoparticle Complexes : from Dilute Solution to Solid State  

E-Print Network [OSTI]

We report on the formation and the structural properties of supermicellar aggregates also called electrostatic complexes, made from mineral nanoparticles and polyelectrolyte-neutral block copolymers in aqueous solutions. The mineral particles put under scrutiny are ultra-fine and positively charged yttrium hydroxyacetate nanoparticles. Combining light, neutron and x-ray scattering experiments, we have characterized the sizes and the aggregation numbers of the organic-inorganic complexes. We have found that the hybrid aggregates have typical sizes in the range 100 nm and exhibit a remarkable colloidal stability with respect to ionic strength and concentration variations. Solid films with thicknesses up to several hundreds of micrometers were cast from solutions, resulting in a bulk polymer matrix in which nanoparticle clusters are dispersed and immobilized. It was found in addition that the structure of the complexes remains practically unchanged during film casting.

Jean-Francois Berret; Kazuhiko Yokota; Mikel Morvan; Ralf Schweins

2006-07-07T23:59:59.000Z

354

2008 Annual Merit Review Results Summary - 6. Solid State Energy...  

Broader source: Energy.gov (indexed) [DOE]

a large SUV as the platform vehicle of choice. GM stated that space requirements and heat loss are advantageous in this vehicle for an everyday non- commercial vehicle. A...

355

Solid-State Lighting: Registration for Email Distribution List for DOE  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Program » Solid-State Lighting » Program » Solid-State Lighting » Registration Bookmark and Share Registration for Email Distribution List for DOE Solid-State Lighting Portfolio Updates By registering for the Department of Energy's Solid-State Lighting (SSL) email distribution list, you will receive information on public meetings, document postings, and other issues pertinent to the DOE SSL Portfolio.* Please provide the following information: (*Indicates required information.) First Name* Last Name* Organization* Occupation* Select your occupation Researcher Manufacturer Distributor Lighting Designer/Professional Architect Lighting Trade Association Energy Efficiency Organization Utility Local/State/Federal Government Media/Communications Other Address 1* Address 2 City* State* Select your state / province Alabama Alaska Arizona Arkansas California Colorado Connecticut Delaware District of Columbia Florida Georgia Guam Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Puerto Rico Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virgin Islands Virginia Washington West Virginia Wisconsin Wyoming ------------U.S. Military------------ America (AA) Overseas Europe (AE) Overseas Pacific (AP) ---------------Canada--------------- Alberta British Columbia Manitoba New Brunswick Newfoundland and Labrador Nova Scotia Northwest Territories Nunavut Ontario Prince Edward Island Quebec Saskatchewan Yukon Territory --------------------------------------- Outside US and Canada

356

The Density of States in Dilute Solid Solutions  

Science Journals Connector (OSTI)

...relative to its value in the pure solvent, is derived. It is shown to...density of states in the pure solvent. The result, which follows...laborious derivation by means of Green function techniques. An application...approximate evaluation of the Green function method, is amended...

1966-01-01T23:59:59.000Z

357

Solid State Communications 122 (2002) 507?510  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

phase separation on charge ordering state in La 12x Ca x MnO 3 (x 12, 23, and 34) H.-D. Zhou, G. Li, S.-J. Feng, Y. Liu, T. Qian, X.-J. Fan, X.-G. Li * Structure Research...

358

MidAmerican Energy (Electric) - Municipal Solid-State Lighting Grant  

Open Energy Info (EERE)

MidAmerican Energy (Electric) - Municipal Solid-State Lighting Grant MidAmerican Energy (Electric) - Municipal Solid-State Lighting Grant Program (Iowa) No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Summary Last modified on November 9, 2012. Financial Incentive Program Place Iowa Additional Place applies to MidAmerican Energy Name MidAmerican Energy (Electric) - Municipal Solid-State Lighting Grant Program Incentive Type Utility Grant Program Applicable Sector Local Government Eligible Technologies Lighting, Lighting Controls/Sensors, Induction Lighitng, LED Lighting Active Incentive Yes Implementing Sector Utility Energy Category Energy Efficiency Incentive Programs Amount Up to $5,000 Equipment Requirements Fixtures must have an efficiency rating equal to or greater than 66 lumens per watt as tested under Illuminating Engineering Society of North America LM-79-08 testing to qualify for a grant.

359

Amber LEDs for Solid-State Lighting: White light with unprecendented efficiencies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Amber LEDs for Solid-State Lighting: Amber LEDs for Solid-State Lighting: White light with unprecedented efficiencies Commercialization Webinar December 10, 2013 2 Agenda for Today's Webinar * Welcome/Logistics * Technology Overview * Commercialization Opportunity * Q&A 3 Presenters Yoriko Morita, PhD MBA licensing manager Kirstin Alberi, PhD inventor 4 Technology Overview * Background/Context * Limitations NREL's Technology Addresses o Substrate material o Efficiency o Manufacturing * Performance Testing Results * Summary of Benefits/Advantages NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Amber LEDs for Solid-State Lighting: White light with unprecedented efficiencies

360

Solid-state lighting : lamp targets and implications for the semiconductor chip.  

SciTech Connect (OSTI)

A quiet revolution is underway. Over the next 5-10 years inorganic-semiconductor-based solid-state lighting technology is expected to outperform first incandescent, and then fluorescent and high-intensity-discharge, lighting. Along the way, many decision points and technical challenges will be faced. To help understand these challenges, the U.S. Department of Energy, the Optoelectronics Industry Development Association and the National Electrical Manufacturers Association recently updated the U.S. Solid-State Lighting Roadmap. In the first half of this paper, we present an overview of the high-level targets of the inorganic-semiconductor part of that update. In the second half of this paper, we discuss some implications of those high-level targets on the GaN-based semiconductor chips that will be the 'engine' for solid-state lighting.

Tsao, Jeffrey Yeenien

2003-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "oled solid state" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

PPG Industries Develops a Low-Cost Integrated OLED Substrate  

Broader source: Energy.gov [DOE]

With the help of DOE funding, PPG Industries, Inc., has developed a low-cost OLED substrate, using inexpensive soda-lime "float" glass that the company manufactures at high volume for the architectural industry. Float glass is thin sheet glass and is much less expensive than the borosilicate or double-side-polished display glass that's currently being used as substrates by OLED device manufacturers.

362

New Efficiency Record Achieved for White OLED Device  

Broader source: Energy.gov [DOE]

Osram Opto-Semiconductors, Inc. has successfully demonstrated a white organic light emitting diode (OLED) with a record efficiency of 25 lumens per watt, the highest known efficiency achieved to date for a polymer-based white OLED. The 25 LPW cool-white-emitting device was produced by applying a standard external inorganic phosphor to Osram's record-breaking blue-emitting phosphorescent polymer device with a peak luminous efficacy of 14 LPW.

363

Solid-State Lighting at Sandia National Laboratory - Grand Challenge LDRD  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

| | Sandia Press Releases & News Coverage | GRAND CHALLENGE LDRD PROJECT 6images of light To accelerate the development of the science and technology underlying Solid State Lighting, Sandia initiated, in October 2000, a multi-year Grand Challenge Laboratory Directed Research and Development (GCLDRD) project, " A Revolution in Lighting -- Building the Science and Technology Base for Ultra-Efficient Solid-State Lighting." This project is considered one of Sandia's most successful GCLDRDs. One way in which the SSL GCLDRD was different from others was that it coincided with a larger effort by the SSL community - primarily industrial companies investing in SSL, but also universities, trade organizations, and

364

The Use of Large Transparent Ceramics in a High Powered, Diode Pumped Solid State Laser  

SciTech Connect (OSTI)

The advent of large transparent ceramics is one of the key enabling technological advances that have shown that the development of very high average power compact solid state lasers is achievable. Large ceramic neodymium doped yttrium aluminum garnet (Nd:YAG) amplifier slabs are used in Lawrence Livermore National Laboratory's (LLNL) Solid State Heat Capacity Laser (SSHCL), which has achieved world record average output powers in excess of 67 kilowatts. We will describe the attributes of using large transparent ceramics, our present system architecture and corresponding performance; as well as describe our near term future plans.

Yamamoto, R; Bhachu, B; Cutter, K; Fochs, S; Letts, S; Parks, C; Rotter, M; Soules, T

2007-09-24T23:59:59.000Z

365

The Ninth Annual DOE Solid-State Lighting Market Development Workshop  

Broader source: Energy.gov [DOE]

Nearly 200 lighting leaders from across North America gathered in Detroit from November 1213, 2014, for the ninth annual Solid-State Lighting (SSL) Market Development Workshop, hosted by DOE. The diverse audience spanned the spectrum of SSL stakeholders, representing industry, government, efficiency organizations, utilities, municipalities, designers, specifiers, retailers, and distributors. The workshops purpose was to create a forum for airing issues and questions regarding todays solid-state lighting products, and identifying strategies that will speed market adoption.

366

Discovery of New Nitridosilicate Phosphors for Solid State Lighting by the Single-Particle-Diagnosis Approach  

Science Journals Connector (OSTI)

(1-9) As a revolutionary lighting technology, solid state lighting promises to consume significantly less electricity and, thus, would address urgent challenges of greenhouse gas emissions, energy security, and economic revitalization. ... (10-14) In this technology, luminescent materials play key roles by spectrally converting the ultraviolet or blue-light emitted from LED chips into useful blue-to-red emissions, thus determining the efficiency, color rendition, color temperature, reliability, and lifetime of the lighting devices. ... Whereas the efficiency of conventional incandescent and fluorescent lights is limited by fundamental factors that cannot be overcome, the efficiency of solid-state sources is limited only by human creativity and imagination. ...

Naoto Hirosaki; Takashi Takeda; Shiro Funahashi; Rong-Jun Xie

2014-06-17T23:59:59.000Z

367

Parasitic oscillation suppression in solid state lasers using absorbing thin films  

DOE Patents [OSTI]

A thin absorbing film is bonded onto at least certain surfaces of a solid state laser gain medium. An absorbing metal-dielectric multilayer film is optimized for a broad range of incidence angles, and is resistant to the corrosive/erosive effects of a coolant such as water, used in the forced convection cooling of the film. Parasitic oscillations hamper the operation of solid state lasers by causing the decay of stored energy to amplified rays trapped within the gain medium by total and partial internal reflections off the gain medium facets. Zigzag lasers intended for high average power operation require the ASE absorber.

Zapata, Luis E. (Livermore, CA)

1994-01-01T23:59:59.000Z

368

Conformational Changes of an Ion Channel Detected Through Water-Protein Interactions Using Solid-State NMR  

E-Print Network [OSTI]

Conformational Changes of an Ion Channel Detected Through Water-Protein Interactions Using Solid-State is scarce. Using 1 H spin diffusion solid-state NMR, we have now determined the water accessibility of the M NMR Spectroscopy Wenbin Luo and Mei Hong* Department of Chemistry, Iowa State UniVersity, Ames, Iowa

Hong, Mei

369

Methods for Increasing Sensitivity and Throughput of Solid-State NMR Spectroscopy of Pharmaceutical Solids  

E-Print Network [OSTI]

Spectroscopy 33 2.3.1 NMR spectroscopy for pharmaceutical analysis 33 2.3.2 High-power proton decoupling 34 2.3.3 Magic-angle spinning 35 2.3.4 Cross polarization 38 2.4 Characterization of Bulk Drugs Using SNMR 40 2... the lyophilization matrix. In the secondary phase, the residual, bound water is removed. When frozen, the material is locked in the random disorder of the liquid state. As the water sublimes, the material may maintain the structural disorder of the 16 liquid...

Schieber, Loren

2010-01-22T23:59:59.000Z

370

Progress from DOE EF RC: Solid-State Solar-Thermal Energy Conversion Center (S3TEC)  

Broader source: Energy.gov [DOE]

Introduction to the solid-state solar-thermal energy conversion center plus discussion on phonon transport and solar thermoelectric energy conversion

371

Modelling interstellar physics and chemistry: implications for surface and solid-state processes  

Science Journals Connector (OSTI)

...of the nascent H2, and the energy deposited in the dust at each...quantities are important in the energy budgets of the interstellar...for molecular clouds in the constellation of Taurus, but the value varies...within the ices and of the energy budget in the solid-state...

2013-01-01T23:59:59.000Z

372

A novel bacterial thermostable alpha-amylase system produced under solid state fermentation  

Science Journals Connector (OSTI)

A novel thermostable alpha-amylase system produced byBacillus HOP-40 at neutral pH under solid state fermentation gave three peaks in descending order at pH 5.0, 8.59.0 and 7.0.

M. V. Ramesh; B. K. Lonsane

1987-07-01T23:59:59.000Z

373

Solid-State Lighting Program Strategy Overview- 2014 BTO Peer Review  

Broader source: Energy.gov [DOE]

Presenter: James Broderick, U.S. Department of Energy This presentation at the 2014 Peer Review provided an overview of the Building Technologies Office's Solid-State Lighting Program Strategy activities. Through robust feedback, the BTO Program Peer Review enhances existing efforts and improves future designs.

374

Solid State Communications 149 (2009) 3134 Contents lists available at ScienceDirect  

E-Print Network [OSTI]

, Tokyo 152-8551, Japan d Japan Synchrotron Radiation Research Institute, SPring-8, Sayo, Hyogo 679 for Solid State Physics, The University of Tokyo, Chiba 277-8581, Japan b Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan c Tokyo Institute of Technology

Schuck, Götz

375

End-to-end system test for solid-state microdosemeters  

Science Journals Connector (OSTI)

......so the optical power increases but...end-to-end system test and calibration...out by remote operation requiring little...environment and require power sources with output...Development of high-power LED calibration...MD. 14 CRC Handbook of Chemistry and...End-to-end system test for solid-state......

V. L. Pisacane; Q. E. Dolecek; H. Malak; J. F. Dicello

2010-08-01T23:59:59.000Z

376

Electric Field Modulation of the Membrane Potential in Solid-State Ion Channels  

E-Print Network [OSTI]

channel. KEYWORDS: Nanochannel, membrane potential, electrofluidic gating, ion transport, salinityElectric Field Modulation of the Membrane Potential in Solid-State Ion Channels Weihua Guan a rapid flow of ions across the cell membrane. Normal physiological functions, such as generating action

Reed, Mark

377

Solid-State Electrochromic Devices via Ionic Self-Assembled Multilayers  

E-Print Network [OSTI]

Solid-State Electrochromic Devices via Ionic Self-Assembled Multilayers (ISAM) of a Polyviologena-Galva´n, Harry W. Gibson, James R. Heflin* Introduction Electrochromic (EC) devices undergo reversible absorbance/ transmittance change on application of external voltage.[1] Since the first major report on electrochromism

Heflin, Randy

378

Conformation of Poly(ethylene oxide)-Hydroxybenzene Molecular Complexes Studied by Solid-State NMR  

E-Print Network [OSTI]

Conformation of Poly(ethylene oxide)-Hydroxybenzene Molecular Complexes Studied by Solid-State NMR February 16, 2000 ABSTRACT: The conformation of poly(ethylene oxide), PEO, in molecular complexes. Introduction Poly(ethylene oxide), PEO, is a relatively nonpolar polymer but contains ether oxygens

Hong, Mei

379

Homogeneous, dual layer, solid state, thin film deposition for structural and/or electrochemical characteristics  

DOE Patents [OSTI]

Solid state, thin film, electrochemical devices (10) and methods of making the same are disclosed. An exemplary device 10 includes at least one electrode (14) and an electrolyte (16) deposited on the electrode (14). The electrolyte (16) includes at least two homogenous layers of discrete physical properties. The two homogenous layers comprise a first dense layer (15) and a second porous layer (16).

Pitts, J. Roland; Lee, Se-Hee; Tracy, C. Edwin; Li, Wenming

2014-04-08T23:59:59.000Z

380

THE INSTITUTE FOR SOLID STATE PHYSICS 2013 Laser and Synchrotron Research Center  

E-Print Network [OSTI]

coherent light sources based on laser and synchrotron technology over a wide spectrum range from X-ray67 THE INSTITUTE FOR SOLID STATE PHYSICS 2013 Laser and Synchrotron Research Center LASOR X X LASOR D X E SPring-8 BL07 X Laser and Synchrotron Research (LASOR) Center

Katsumoto, Shingo

Note: This page contains sample records for the topic "oled solid state" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Quantum interfaces between atomic and solid state systems Nikos Daniilidis and Hartmut Haffner  

E-Print Network [OSTI]

such as superconducting Josephson-junction devices or nanomechanical oscillators. Such hybrid quantum systems could ease, while the actual processing would be carried out with an array of Josephson-junction devices. So, from of solid-state devices such as Josephson-junction devices and nanomechanical oscillators. We focus

Haeffner, Hartmut

382

Studies of solid state hydrogen storage materials by SAXS and QENS Qing Shi a, b  

E-Print Network [OSTI]

Studies of solid state hydrogen storage materials by SAXS and QENS Qing Shi a, b , Hjalte S than that of other chemical fuels1 . However, hydrogen storage is still a key problem remaining on reversible hydrogen storage in complex metal hydrides, these materials have dominated the research field due

383

Solid-State 25Mg NMR of a Magnesium(II) Adensosine 5-Triphosphate Complex  

E-Print Network [OSTI]

Solid-State 25Mg NMR of a Magnesium(II) Adensosine 5-Triphosphate Complex Christopher V. Grant interacting with RNA, such as magnesium- (II) binding sites within ribozymes, has become a topic of intense such as magnesium(II). X-ray crystallography has been most useful at providing structural information about

Frydman, Lucio

384

System efficiency analysis for high power solid state radio frequency transmitter  

SciTech Connect (OSTI)

This paper examines some important relationships, related with the system efficiency, for very high power, radio frequency solid-state transmitter; incorporating multiple solid-state power amplifier modules, power combiners, dividers, couplers, and control/interlock hardware. In particular, the characterization of such transmitters, at the component as well as the system level, is discussed. The analysis for studying the influence of the amplitude and phase imbalance, on useful performance parameters like system efficiency and power distribution is performed. This analysis is based on a scattering parameter model. This model serves as a template for fine-tuning the results, with the help of a system level simulator. For experimental study, this approach is applied to a recently designed modular and scalable solid-state transmitter, operating at the centre frequency of 505.8?MHz and capable of delivering a continuous power of 75 kW. Such first time presented, system level study and experimental characterization for the real time operation will be useful for the high power solid-state amplifier designs, deployed in particle accelerators.

Jain, Akhilesh, E-mail: ajain@rrcat.gov.in; Sharma, D. K.; Gupta, A. K.; Lad, M. R.; Hannurkar, P. R. [RF Systems Division, Raja Ramanna Centre for Advanced Technology, Indore 452013 (India)] [RF Systems Division, Raja Ramanna Centre for Advanced Technology, Indore 452013 (India); Pathak, S. K. [Electromagnetics and Microwave Engineering, Institute for Plasma Research, Gandhinagar 382 428 (India)] [Electromagnetics and Microwave Engineering, Institute for Plasma Research, Gandhinagar 382 428 (India)

2014-02-15T23:59:59.000Z

385

Reactive air brazing: A novel method of sealing SOFCs and other solid-state electrochemical devices  

SciTech Connect (OSTI)

High temperature electrochemical devices operate via an ion gradient that develops across a solid electrolyte; consequently, hermeticity across this membrane is paramount. Not only must the electrolyte contain no interconnected porosity, but it must be connected to device chassis with a gas-tight seal. Here we report a new method of brazing developed specifically for solid-state electrochemical applications. We demonstrate that the seal is hermetic and resistant to thermal aging, can be thermally cycled under rapid heating rates with no measurable loss in seal strength, and has shown promise in sealing full-size pSOFC components.

Weil, K. Scott; Kim, Jin Yong Y.; Hardy, John S.

2005-02-28T23:59:59.000Z

386

COLLEGE OF NATURAL SCIENCES & MATHEMATICS HTTP://NSM.UH.EDU COURSE TITLE/SECTION: Solid State Physics II (Physics 7338)  

E-Print Network [OSTI]

. Course Catalog Description 7338: Solid-State Physics II: Cr. 3. (3-0). Prerequisite: PHYS 7337. Transport Physics II (Physics 7338) TIME: 1 ­ 2:30 PM, Tuesday and Thursday (Spring Semester, 2011) Instructor of Phys 7337 and 7338, students will be able to have a comprehensive understanding of modern solid state

Peng, Haibing

387

TO APPEAR IN IEEE JOURNAL OF SOLID-STATE CIRCUITS 2011 1 Design and Implementation of a Parallel  

E-Print Network [OSTI]

TO APPEAR IN IEEE JOURNAL OF SOLID-STATE CIRCUITS 2011 1 Design and Implementation of a Parallel and This paper was presented in part at the IEEE International Solid-State Circuits Conference (ISSCC), San data-rate or provides desirable power consumption for battery-powered devices of less than 100 m

388

Self-powered micro-structured solid state neutron detector with very low leakage current and high efficiency  

E-Print Network [OSTI]

Self-powered micro-structured solid state neutron detector with very low leakage current and high helps to reduce the gammas sensitivity. The neutron detec- tion efficiency of such detectors mainly, fabrication, and performance of solid-state neutron detector based on three-dimensional honeycomb-like silicon

Danon, Yaron

389

FEMP Outdoor Solid State Lighting Intiative: Resources for Outdoor SSL Applications  

Broader source: Energy.gov (indexed) [DOE]

Municipal Solid-State Street Lighting Municipal Solid-State Street Lighting Consortium Fact Sheet - The Consortium shares technical information and experi- ences related to LED street and area light- ing demonstrations. The Consortium also serves as an objective resource for evalu- ating new products on the market intended for street and area lighting applications. http://apps1.eere.energy.gov/buildings/ publications/pdfs/ssl/consortium_fs.pdf DOE SSL GATEWAY Demonstration Project Results - DOE GATEWAY dem- onstrations showcase high-performance LED products for general illumination in a variety of commercial and residential applications. Demonstration results pro- vide real-world experience and data on state-of-the-art SSL product performance and cost effectiveness. DOE CALiPER Test Results - The DOE

390

High energy bursts from a solid state laser operated in the heat capacity limited regime  

DOE Patents [OSTI]

High energy bursts are produced from a solid state laser operated in a heat capacity limited regime. Instead of cooling the laser, the active medium is thermally well isolated. As a result, the active medium will heat up until it reaches some maximum acceptable temperature. The waste heat is stored in the active medium itself. Therefore, the amount of energy the laser can put out during operation is proportional to its mass, the heat capacity of the active medium, and the temperature difference over which it is being operated. The high energy burst capacity of a heat capacity operated solid state laser, together with the absence of a heavy, power consuming steady state cooling system for the active medium, will make a variety of applications possible. Alternately, cooling takes place during a separate sequence when the laser is not operating. Industrial applications include new material working processes. 5 figs.

Albrecht, G.; George, E.V.; Krupke, W.F.; Sooy, W.; Sutton, S.B.

1996-06-11T23:59:59.000Z

391

High energy bursts from a solid state laser operated in the heat capacity limited regime  

DOE Patents [OSTI]

High energy bursts are produced from a solid state laser operated in a heat capacity limited regime. Instead of cooling the laser, the active medium is thermally well isolated. As a result, the active medium will heat up until it reaches some maximum acceptable temperature. The waste heat is stored in the active medium itself. Therefore, the amount of energy the laser can put out during operation is proportional to its mass, the heat capacity of the active medium, and the temperature difference over which it is being operated. The high energy burst capacity of a heat capacity operated solid state laser, together with the absence of a heavy, power consuming steady state cooling system for the active medium, will make a variety of applications possible. Alternately, cooling takes place during a separate sequence when the laser is not operating. Industrial applications include new material working processes.

Albrecht, Georg (Livermore, CA); George, E. Victor (Livermore, CA); Krupke, William F. (Pleasanton, CA); Sooy, Walter (Pleasanton, CA); Sutton, Steven B. (Manteca, CA)

1996-01-01T23:59:59.000Z

392

Hot Technical Papers (Emerging SSL Science and Technology) - Solid-State  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Headline News | Tracking Reports | Hot Technical Papers |Citation Headline News | Tracking Reports | Hot Technical Papers |Citation Analysis Method | Credits & Disclaimer | HOT TECHNICAL PAPERS In this section, we examine emerging science and technology knowledge domains that may someday intersect solid-state lighting. To do so, we used a citation analysis method similar to that pioneered by the Institute of Scientific Information (ISI). (For more information, see ISI's in-cites website ). The analysis below was conducted in August of 2004 and will be updated periodically. Based on citation analysis, 19 relevant articles emerged as "hot papers". We note that the ways in which emerging science and technology intersect with future engineering applications are difficult (if not impossible) to predict, so we will certainly have missed some SSL-relevant material. Nevertheless, these articles can give some useful perspective on some of the most exciting, current areas of science and technology that may someday be linked with solid-state lighting.

393

Other U.S Agencies Initiatives and Programs in Solid-State Lighting  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Since 09/28/2004 Since 09/28/2004 | National Initiatives | Other U.S. Agencies | Worldwide Programs | OTHER U.S. AGENCIES This website is not being actively maintained -- see note on homepage. The U.S. Department of Energy, through its Office of Energy Efficiency and Renewable Energy, is accelerating directly the development of the science and technology of Solid-State Lighting. But there are a number of other synergistic national programs, sponsored by other U.S. agencies or by other Offices within the U.S. Department of Energy. A few of these are listed here: · Department of Defense: The Defense Advanced Research Projects Agency's SUVOS Program aims to develop semiconductor UV optical sources for bio-agent detection. These UV sources may also be useful, after phosphor down-conversion, for Solid-State Lighting.

394

High-Efficiency Solid State Cooling Technologies: Non-Equilibrium Asymmetic Thermoelectrics (NEAT) Devices  

SciTech Connect (OSTI)

BEETIT Project: Sheetak is developing a thermoelectric-based solid state cooling system to replace typical air conditioners that use vapor compression to cool air. With noisy mechanical components, vapor compression systems use a liquid refrigerant to circulate within the air conditioner, absorb heat, and pump the heat out into the external environment. With no noisy moving parts or polluting refrigerants, thermoelectric systems rely on an electrical current being passed through the junction of the two different conducting materials to change temperature. Using advanced semiconductor technology, Sheetak is improving solid state cooling systems by using proprietary thermoelectric materials along with other innovations to achieve significant energy efficiency. Sheetaks new design displaces compressor-based technology; improves reliability; and decreases energy usage. Sheetaks use of semiconductor manufacturing methods leads to less material usefacilitating cheaper production.

None

2010-09-01T23:59:59.000Z

395

Quantum Simulation of Helium Hydride in a Solid-State Spin Register  

E-Print Network [OSTI]

\\emph{Ab initio} computation of molecular properties is one of the most promising applications of quantum computing. While this problem is widely believed to be intractable for classical computers, efficient quantum algorithms exist which have the potential to vastly accelerate research throughput in fields ranging from material science to drug discovery. Using a solid-state quantum register realized in a nitrogen-vacancy (NV) defect in diamond, we compute the bond dissociation curve of the minimal basis helium hydride cation, HeH$^+$. Moreover, we report an energy uncertainty (given our model basis) of the order of $10^{-14}$ Hartree, which is ten orders of magnitude below desired chemical precision. As NV centers in diamond provide a robust and straightforward platform for quantum information processing, our work provides several important steps towards a fully scalable solid state implementation of a quantum chemistry simulator.

Ya Wang; Florian Dolde; Jacob Biamonte; Ryan Babbush; Ville Bergholm; Sen Yang; Ingmar Jakobi; Philipp Neumann; Aln Aspuru-Guzik; James D. Whitfield; Jrg Wrachtrup

2014-05-12T23:59:59.000Z

396

The early stages of solid-state reactions in Ti/Al multilayer films  

SciTech Connect (OSTI)

The authors have investigated the solid-state reaction of Ti/Al multilayer films by x-ray diffraction (XRD) and differential scanning calorimetry (DSC), with focus on the early stages of the reaction provided by samples with pair thicknesses in the range 5--40 nm. This reaction, which results in formation of TiAl{sub 3} with metastable L1{sub 2} structure, can be modeled by a nucleation and growth process on the basis of the Johnson-Mehl-Avrami theory, with a reaction-order parameter n {approx} 1. These observations indicate the significance of nucleation barriers even at early stages of solid-state reactions, and suggests that the phenomena of phase selection and formation of metastable phases can result from the presence of nucleation barriers.

Michaelsen, C.; Woehlert, S.; Bormann, R. [GKSS Research Center, Geesthacht (Germany). Inst. for Materials Research; Barmak, K. [Lehigh Univ., Bethlehem, PA (United States). Dept. of Materials Science and Engineering

1996-12-31T23:59:59.000Z

397

Experiments Optimized for Magic Angle Spinning and Oriented Sample Solid-State NMR of Proteins  

Science Journals Connector (OSTI)

Separated local field (SLF)(7-9) and homonuclear spin-exchange(10-12) experiments are among the mainstays of solid-state NMR of proteins. ... SLF experiments provide high spectral resolution due to the different orientational dependencies of the anisotropic heteronuclear dipolar(13) and chemical shift interactions, and the observed frequencies provide measurements of the angles between bonds (and functional groups) and the direction of alignment. ... In OS solid-state NMR, the basic SLF and spin-exchange experiments provide up to three orientationally dependent frequencies for each isotopically labeled site (e.g., 1H15N dipolar coupling, 1H chemical shift, and 15N chemical shift), and this not only resolves many of the proteins signals, even in crowded spectral regions, but also yields adequate input for structure calculations in aligned samples. ...

Bibhuti B. Das; Eugene C. Lin; Stanley J. Opella

2013-09-17T23:59:59.000Z

398

Identification of solid-state forms of cucurbit[6]uril for carbon dioxide capture  

SciTech Connect (OSTI)

Three novel crystalline forms of cucurbit[6]uril (CB[6], 1) have been identified by fine control over the mixing process of the hydrochloride solution of CB[6] with ethanol. The form that exists in nanoplate particles shows permanent porosity upon desolvation and the highest CO2 uptake (15 wt%) at 298 K and 1 bar among any known solid-state forms of CB[6].

Tian, Jian; Liu, Jian; Liu, Jun; Thallapally, Praveen K.

2013-02-28T23:59:59.000Z

399

Light-Emitting Diodes in the Solid-State Lighting Systems  

E-Print Network [OSTI]

Red and green light-emitting diodes (LEDs) had been produced for several decades before blue emitting diodes, suitable for lighting applications, were widely available. Today, we have the possibility of combining the three fundamental colours to have a bright white light. And therefore, a new form of lighting, the solid-state lighting, has now become a reality. Here we discuss LEDs and some of their applications in displays and lamps.

Sparavigna, Amelia Carolina

2014-01-01T23:59:59.000Z

400

Industry Leaders, Research Experts Gather for Fourth Annual DOE Solid-State Lighting Workshop  

Broader source: Energy.gov [DOE]

More than 250 attendees gathered in Phoenix, Arizona, to participate in the 2007 DOE Solid-State Lighting (SSL) Program Planning Workshop on January 31-February 2, 2007. Lighting industry leaders, fixture manufacturers, researchers, academia, trade associations, lighting designers, energy efficiency organizations, and utilities joined DOE to share perspectives on the rapidly evolving SSL market. The workshop provided a forum for building partnerships and strategies to accelerate technology advances and guide market introduction of high efficiency, high-performance SSL products.

Note: This page contains sample records for the topic "oled solid state" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Transformations in Lighting: The Seventh Annual Solid-State Lighting R&D Workshop  

Broader source: Energy.gov [DOE]

More than 350 researchers, manufacturers, and other industry insiders and observers gathered in Raleigh, N.C., February 24, 2010, to participate in the "Transformations in Lighting" Solid-State Lighting R&D Workshop, hosted by DOE. The workshop was the seventh annual DOE meeting to accelerate SSL technology advances and guide market introduction of quality SSL products, and it brought together a diverse gathering of participants to share insights, ideas, and updates.

402

Perfect mode locking of solid-state lasers by a double passive modulation  

SciTech Connect (OSTI)

A new configuration, which incorporates a second passive modulation, has permitted complete selectivity in passive mode locking of solid-state lasers. A theoretical study is presented showing the existence of qualitatively different types of emission depending on the parameters of the system. Computed simulations are made to show the dependence of the emission on such parameters, and are used to determine their optimum range. Experimental results are presented confirming computed predictions.

Martinez, O.E.; Marconi, M.C.; Dicdati, F.P.

1982-10-01T23:59:59.000Z

403

Industry Leaders, Research Experts Gather for Second Annual DOE Solid-State Lighting Workshop  

Broader source: Energy.gov [DOE]

Technology leaders from industry, research institutions, universities, and national laboratories gathered in San Diego, California, on February 3 and 4, 2005 to attend a workshop focused on advancing solid-state lighting (SSL) technology from the laboratory to the marketplace. Sponsored by the U.S. Department of Energy (DOE) Building Technologies Office, the workshop provided an interactive forum for shaping and prioritizing DOE's SSL research and development activities.

404

In Situ Solid-State NMR Spectroscopy of Electrochemical Cells: Batteries, Supercapacitors, and Fuel Cells  

Science Journals Connector (OSTI)

In Situ Solid-State NMR Spectroscopy of Electrochemical Cells: Batteries, Supercapacitors, and Fuel Cells ... In situ NMR studies of lithium-ion batteries are performed on the entire battery, by using a coin cell design, a flat sealed plastic bag, or a cylindrical cell. ... In situ NMR studies on fuel cells (FCs) have focused on probing the chemical reactions at the electrodes and the fate of fuels such as methanol during FC operation. ...

Frdric Blanc; Michal Leskes; Clare P. Grey

2013-06-21T23:59:59.000Z

405

LARGE SCALE PRODUCTION, PURIFICATION, AND 65CU SOLID STATE NMR OF AZURIN  

SciTech Connect (OSTI)

This paper details a way to produce azurin with an effi ciency over 10 times greater than previously described and demonstrates the fi rst solid state nuclear magnetic resonance spectrum of 65Cu(I) in a metalloprotein. A synthetic gene for azurin based upon the DNA sequence from Pseudomonas aeruginosa including the periplasmic targeting sequence was subcloned into a T7 overexpression vector to create the plasmid pGS-azurin, which was transformed into BL21 (DE3) competent cells. The leader sequence on the expressed protein causes it to be exported to the periplasmic space of Escherichia coli. Bacteria grown in a fermentation unit were induced to overexpress the azurin, which was subsequently purifi ed through an endosmotic shock procedure followed by high performance liquid chromatography (HPLC). 1,500 mg of azurin were purifi ed per liter of culture. 65Cu(II) was added to apo-azurin and then reduced. The 65Cu metal cofactor in azurin was observed with solid state nuclear magnetic resonance (NMR) to determine any structural variations that accompanied copper reduction. This is the fi rst solid state NMR spectra of a copper(I) metalloprotein. Analysis of the NMR spectra is being used to complement hypotheses set forth by x-ray diffraction and computational calculations of electron transfer mechanisms in azurin.

Gao, A.; Heck, R.W.

2008-01-01T23:59:59.000Z

406

Capability and Partners in Solid-State Lighting at Sandia National  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

| Introduction | Grand Challenge LDRD Project | Research, Review Papers, Presentations | Capabilities and Partnering | | Sandia Press Releases & News Coverage | CAPABILITIES AND PARTNERING To accomplish its goals, Sandia's research in Solid State Lighting draws upon state-of-the-art semiconductor materials and fabrication capabilities: · Sandia's Center for Compound Semiconductor Science and Technology · Sandia's Microelectronics Development Laboratory Together, these capabilities enable advanced R & D in the entire range of compound and silicon-based semiconductors, and the fabrication of discrete and integrated electronic, optoelectronic, and micro electromechanical devices. Sandia also draws upon synergies with other program areas and core

407

Quantum coherence in an all-solid-state dye-sentizied solar cell  

E-Print Network [OSTI]

The reported new type of all-solid-state, inorganic solar cell will be discussed by a semiclassical light-matter interaction method. The molecular compound will be treated by a three times two-level coupled quantum system. The equation of motion of the density matrix of this system will be analytical solved, in linear approximation and due to the coherent superposition of certain states, time-independent off-diagonal elements will be obtained. These elements represent an important components for the overal optical performane of this cell.

C. Benedek

2013-01-15T23:59:59.000Z

408

Enhanced performance of organic light-emitting diodes (OLEDs) and OLED-based photoluminescent sensing platforms by novel microstructures and device architectures  

SciTech Connect (OSTI)

After a general introduction to OLEDs and OLED-based PL sensors, the transient emission mechanism of guest-host OLEDs is described both experimentally and theoretically. A monolithic and easy-to-apply process is demonstrated for fabricating multicolor microcavity OLEDs (that improve the sensor platform). The outcoupling issues of OLEDs at the substrate/air interface are addressed by using a microstructured polymer film resulting from a PS and polyethylene glycol (PEG) mixture. Based on the understanding of OLEDs and their improvement, research was done in order to realize integrated all organic-based O{sub 2} and pH sensors with improved signal intensity and sensitivity. The sensor design modification and optimization are summarized

Liu, Rui [Ames Laboratory

2012-08-01T23:59:59.000Z

409

Superconducting qubits coupled to nanoelectromechanical resonators: An architecture for solid-state quantum-information processing  

SciTech Connect (OSTI)

We describe the design for a scalable, solid-state quantum-information-processing architecture based on the integration of GHz-frequency nanomechanical resonators with Josephson tunnel junctions, which has the potential for demonstrating a variety of single- and multiqubit operations critical to quantum computation. The computational qubits are eigenstates of large-area, current-biased Josephson junctions, manipulated and measured using strobed external circuitry. Two or more of these phase qubits are capacitively coupled to a high-quality-factor piezoelectric nanoelectromechanical disk resonator, which forms the backbone of our architecture, and which enables coherent coupling of the qubits. The integrated system is analogous to one or more few-level atoms (the Josephson junction qubits) in an electromagnetic cavity (the nanomechanical resonator). However, unlike existing approaches using atoms in electromagnetic cavities, here we can individually tune the level spacing of the 'atoms' and control their 'electromagnetic' interaction strength. We show theoretically that quantum states prepared in a Josephson junction can be passed to the nanomechanical resonator and stored there, and then can be passed back to the original junction or transferred to another with high fidelity. The resonator can also be used to produce maximally entangled Bell states between a pair of Josephson junctions. Many such junction-resonator complexes can be assembled in a hub-and-spoke layout, resulting in a large-scale quantum circuit. Our proposed architecture combines desirable features of both solid-state and cavity quantum electrodynamics approaches, and could make quantum-information processing possible in a scalable, solid-state environment.

Geller, M.R. [Department of Physics and Astronomy, University of Georgia, Athens, Georgia 30602-2451 (United States); Cleland, A.N. [Department of Physics, University of California, Santa Barbara, California 93106 (United States)

2005-03-01T23:59:59.000Z

410

UDC Develops Prototype High-Efficiency OLED Undercabinet Luminaire  

Broader source: Energy.gov [DOE]

Universal Display Corporation (UDC) has demonstrated the real-world application of a novel lighting technology by developing two pre-prototype OLED undercabinet lighting systems that exceed 420 total lumens at an efficacy of more than 55 lm/W, with an estimated lifetime (LT70) in excess of 10,000 hours, and a color rendering index (CRI) greater than 85.

411

Synthesis of nanostructured AlN by solid state reaction of Al and diaminomaleonitrile  

SciTech Connect (OSTI)

The solid state reaction of diaminomaleonitrile (DAMN) with aluminum via both mechanochemical and thermal treatment routes was studied by X-ray diffraction and Fourier transform infrared spectroscopy. During the milling process, the reaction starts with the deammoniation of the DAMN molecules, followed by the formation of nanostructured AlN powder as the main solid product after milling for 7 h. The reactivity of the mixed powder was also investigated during the conventional thermal treatment process using differential scanning calorimetry, derivative thermogravimetry and thermogravimetric analysis. The results reveal that DAMN starts to polymerize at 192 Degree-Sign C by the elimination of the amine groups. Furthermore, increasing the annealing temperature leads to the formation of a nitrogen-containing carbonaceous material with the structure similar to non-crystalline carbon. However, no evidence for the formation of AlN was observed in the annealed samples even at temperatures as high as the Al melting point. - Graphical abstract: AlN nanoparticles obtained after milling of Al and diaminomaleonitrile (DAMN) for 12 h. Highlights: Black-Right-Pointing-Pointer Solid state reaction of diaminomaleonitrile (DAMN) with Al was studied via mechanochemical and thermal treatment routs. Black-Right-Pointing-Pointer Nanocrystalline AlN was successfully synthesized by the mechanochemical process. Black-Right-Pointing-Pointer The C/N material was formed by polymerization of DAMN during the thermal treatment process. Black-Right-Pointing-Pointer No reaction between DAMN and Al was detected during the thermal treatment method.

Rounaghi, S.A., E-mail: s.a.rounaghi@gmail.com [Department of Materials Engineering, Ferdowsi University of Mashhad. P.O. Box no. 91775-1111, Mashhad (Iran, Islamic Republic of); IFW Dresden, Institut fuer Komplexe Materialien, Postfach 27 01 16, Dresden D-01171 (Germany); Eshghi, H., E-mail: heshghi@ferdowsi.um.ac.ir [Department of Chemistry, Ferdowsi University of Mashhad. P.O. Box no. 91775-1436, Mashhad (Iran, Islamic Republic of); Kiani Rashid, A.R.; Vahdati Khaki, J. [Department of Materials Engineering, Ferdowsi University of Mashhad. P.O. Box no. 91775-1111, Mashhad (Iran, Islamic Republic of)] [Department of Materials Engineering, Ferdowsi University of Mashhad. P.O. Box no. 91775-1111, Mashhad (Iran, Islamic Republic of); Samadi Khoshkhoo, M.; Scudino, S. [IFW Dresden, Institut fuer Komplexe Materialien, Postfach 27 01 16, Dresden D-01171 (Germany)] [IFW Dresden, Institut fuer Komplexe Materialien, Postfach 27 01 16, Dresden D-01171 (Germany); Eckert, J. [IFW Dresden, Institut fuer Komplexe Materialien, Postfach 27 01 16, Dresden D-01171 (Germany) [IFW Dresden, Institut fuer Komplexe Materialien, Postfach 27 01 16, Dresden D-01171 (Germany); TU Dresden, Institut fuer Werkstoffwissenschaft, Dresden D-01062 (Germany)

2013-02-15T23:59:59.000Z

412

Roll-to-Roll Solution-Processible Small-Molecule OLEDs  

SciTech Connect (OSTI)

The objective of this program is to develop key knowledge and make critical connections between technologies needed to enable low-cost manufacturing of OLED lighting products. In particular, the program was intended to demonstrate the feasibility of making high performance Small-Molecule OLEDs (SM-OLED) using a roll-to-roll (R2R) wet-coating technique by addressing the following technical risks (1) Whether the wet-coating technique can provide high performance OLEDs, (2) Whether SM-OLED can be made in a R2R manner, (3) What are the requirements for coating equipment, and (4) Whether R2R OLEDs can have the same performance as the lab controls. The program has been managed and executed according to the Program Management Plan (PMP) that was first developed at the beginning of the program and further revised accordingly as the program progressed. Significant progress and risk reductions have been accomplished by the end of the program. Specific achievements include: (1) Demonstrated that wet-coating can provide OLEDs with high LPW and long lifetime; (2) Demonstrated R2R OLEDs can be as efficient as batch controls (Figure 1) (3) Developed & validated basic designs for key equipment necessary for R2R SM-OLEDs; (4) Developed know-hows & specifications on materials & ink formulations critical to wetcoating; (5) Developed key R2R processes for each OLED layer (6) Identified key materials and components such as flexible barrier substrates necessary for R2R OLEDs.

Liu, Jie Jerry

2012-07-31T23:59:59.000Z

413

SESAME 96170, a solid-liquid equation of state for CeO2  

SciTech Connect (OSTI)

I describe an equation of state (EOS) for the low-pressure solid phase and liquid phase of cerium (IV) oxide, CeO{sub 2}. The models and parameters used to calculate the EOS are presented in detail, and I compare with data for the full-density crystal. Hugoniot data are available only for high-porosity powders, and I discuss difficulties in comparing with such data. I have constructed SESAME 96170, an EOS for cerium (IV) oxide that includes the ambient solid and liquid phases. The EOS extends over the full standard SESAME range, but should not be used at low temperatures and high densities because of the lack of a high-pressure solid phase. I have described the models used to compute the three terms of the EOS (cold curve, nuclear, and thermal electronic), and I have given the parameters used in the models. They were determined by comparison with experimental data at P = 1 atm, including the constant-pressure specific heat, coefficient of thermal expansion, and melting and boiling points. The EOS compares well with data in its intended range of validity, but the presence of high-frequency optical modes in its phonon spectrum limits the agreement of our models with thermal data. The next step is to construct a multiphase EOS that includes the low- and high-pressure solid phases and the liquid. The DAC data from Duclos will most strongly constrain the parameters of the high-pressure solid. A remaining issue is the comparison of the crystal-density EOS with experimental Hugoniot data, which are taken at much lower initial data because the samples are porous powders. A satisfactory means of modeling porosity, allowing comparison of theory and experiment, has not yet been produced.

Chisolm, Eric D. [Los Alamos National Laboratory] [Los Alamos National Laboratory

2014-05-02T23:59:59.000Z

414

High-Resolution Solid-State Nuclear Magnetic Resonance Experiments on Highly Radioactive Ceramics  

SciTech Connect (OSTI)

A triple containment magic-angle spinning rotor insert system has been developed and a sample handling procedure formulated for safety analyzing highly radioactive solids by high resolution solid state NMR. The protocol and containment system have been demonstrated for magic angle spinning (MAS) experiments on ceramic samples containing 5-10 wt% 239Pu and 238Pu at rotation speeds of 3500 Hz. The technique has been used to demonstrate that MASNMR experiments can be used to measure amorphous atomic number fractions produced during accelerated internal radioactive decay. This will allow incorporated ?-emitters with short half-lives to be used to model the long-term radiation tolerance of potential ceramic radioactive waste forms. It is believed to be the first example of MASNMR spectroscopy on samples containing fissionable isotopes.

Farnan, Ian E.; Cho, Herman M.; Weber, William J.; Scheele, Randall D.; Johnson, Nigel R.; Kozelisky, Anne E.

2004-12-01T23:59:59.000Z

415

Charged particle assisted nuclear reactions in solid state environment: renaissance of low energy nuclear physics  

E-Print Network [OSTI]

The features of electron assisted neutron exchange processes in crystalline solids are survayed. It is stated that, contrary to expectations, the cross section of these processes may reach an observable magnitude even in the very low energy case because of the extremely huge increment caused by the Coulomb factor of the electron assisted processes and by the effect of the crystal-lattice. The features of electron assisted heavy charged particle exchange processes, electron assisted nuclear capure processes and heavy charged particle assisted nuclear processes are also overviewed. Experimental observations, which may be related to our theoretical findings, are dealt with. The anomalous screening phenomenon is related to electron assisted neutron and proton exchange processes in crystalline solids. A possible explanation of observations by Fleischmann and Pons is presented. The possibility of the phenomenon of nuclear transmutation is qualitatively explained with the aid of usual and charged particle assisted r...

Klmn, Pter

2015-01-01T23:59:59.000Z

416

DOE Announces Selections for Solid-State Lighting Core Technology and Product Development Funding Opportunities (Round 4)  

Broader source: Energy.gov [DOE]

The National Energy Technology Laboratory (NETL), on behalf of the U.S. Department of Energy (DOE), is pleased to announce 13 selections in response to the Solid-State Lighting (SSL) Core...

417

922 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 42, NO. 4, APRIL 2007 Power and Area Minimization for Multidimensional  

E-Print Network [OSTI]

922 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 42, NO. 4, APRIL 2007 Power and Area Minimization of California, Berkeley, CA 94704 USA. Digital Object Identifier 10.1109/JSSC.2007.892191 battery life

Nikolic, Borivoje

418

IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 43, NO. 4, APRIL 2008 881 Exploring Variability and Performance  

E-Print Network [OSTI]

IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 43, NO. 4, APRIL 2008 881 Exploring Variability consumption of these systems ultimately limits form factor, battery life, and complexity. It is therefore

Austin, Todd M.

419

Real-time nanometer-vibration measurement with a self-mixing microchip solid-state laser  

Science Journals Connector (OSTI)

Nanometer vibration analysis of a target has been demonstrated by a self-aligned optical feedback vibrometry technique that uses a laser-diode-pumped microchip solid-state laser. The...

Otsuka, Kenju; Abe, Kazutaka; Ko, Jing-Yuan; Lim, Tsong-Shin

2002-01-01T23:59:59.000Z

420

Solid state nuclear magnetic resonance methodology and applications to structure determination of peptides, proteins and amyloid fibrils  

E-Print Network [OSTI]

Several methodological developments and applications of multidimensional solid-state nuclear magnetic resonance to biomolecular structure determination are presented. Studies are performed in uniformly 3C, 15N isotope ...

Jaroniec, Christopher P

2003-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "oled solid state" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Binding Specificity of Amino Acids to Amorphous Silica Surfaces: Solid-State NMR of Glycine on SBA-15  

Science Journals Connector (OSTI)

Herein, [1-13C,15N]glycine interactions with amorphous silica surface of SBA-15 were comprehensively characterized using multinuclear, solid-state NMR techniques (REDOR, TEDOR, SLF, 2D-HETCOR). ...

Ira Ben Shir; Shifi Kababya; Asher Schmidt

2012-04-12T23:59:59.000Z

422

DOE Announces Selections for Solid-State Lighting Core Technology and Product Development Funding Opportunities (Round 3)  

Broader source: Energy.gov [DOE]

The National Energy Technology Laboratory (NETL), on behalf of the U.S. Department of Energy (DOE), is pleased to announce eight selections in response to the Solid-State Lighting (SSL) Core...

423

Journal of Nondestructive Evaluation, Vol. 7, ?Cos.3/4, 1988 Ultrasonic NDE of Solid-State Bonds  

E-Print Network [OSTI]

Journal of Nondestructive Evaluation, Vol. 7, ?Cos.3/4, 1988 Ultrasonic NDE of Solid-State Bonds, 1988 This paper discusses a number of special ultrasonic NDE problems of particular interest to inertia

Nagy, Peter B.

424

Quantum trajectories for the realistic measurement of a solid-state charge qubit  

E-Print Network [OSTI]

We present a new model for the continuous measurement of a coupled quantum dot charge qubit. We model the effects of a realistic measurement, namely adding noise to, and filtering, the current through the detector. This is achieved by embedding the detector in an equivalent circuit for measurement. Our aim is to describe the evolution of the qubit state conditioned on the macroscopic output of the external circuit. We achieve this by generalizing a recently developed quantum trajectory theory for realistic photodetectors [P. Warszawski, H. M. Wiseman and H. Mabuchi, Phys. Rev. A_65_ 023802 (2002)] to treat solid-state detectors. This yields stochastic equations whose (numerical) solutions are the ``realistic quantum trajectories'' of the conditioned qubit state. We derive our general theory in the context of a low transparency quantum point contact. Areas of application for our theory and its relation to previous work are discussed.

Neil P. Oxtoby; P. Warszawski; H. M. Wiseman; He-Bi Sun; R. E. S. Polkinghorne

2004-01-13T23:59:59.000Z

425

A Topology of On/Off Marx Modulator with Protection of Load and Solid State Switches  

SciTech Connect (OSTI)

This article discusses a proposal for an ultra fast feedback response that will protect the load and solid state switches of the ON/OFF Marx type modulators. The feedback guards main elements of a modulator against possible arcs in the load, particularly arcs inside of the electron guns. The chief concept behind the proposed response system is an employment of a fraction of the output modulator power as a controlling and guarding pulse during the delivery time. The time constant of the proposed feedback loop lies in the nanosecond range. Peculiarities of proposed topology are discussed.

Krasnykh, Anatoly; /SLAC

2007-03-05T23:59:59.000Z

426

Solid-state flexible polyaniline/silver cellulose nanofibrils aerogel supercapacitors  

Science Journals Connector (OSTI)

Abstract Hereby we report solid-state flexible aerogel supercapacitors fabricated from cellulose nanofibrils (CNF), Ag and polyaniline (PANI) nanoparticles. The electrochemical performances of PANI/Ag/CNF supercapacitors were characterized by cyclic voltammetry, galvanostatic chargedischarge curves and electric impedance spectroscopy. The specific capacitance was calculated to be 176mF/cm2 at 10mVs?1 from cyclic voltammetry. This value is significantly higher than most flexible supercapacitors reported in literature. The electrochemical properties of the as-fabricated supercapacitors also remain the same when they are bent with different bending radius.

Xiaodan Zhang; Ziyin Lin; Bo Chen; Wei Zhang; Sudhir Sharma; Wentian Gu; Yulin Deng

2014-01-01T23:59:59.000Z

427

Industry Leaders, Research Experts Gather for 2006 DOE Solid-State Lighting Workshop  

Broader source: Energy.gov [DOE]

Solid-state lighting (SSL) technology leaders from industry, research institutions, universities, and national laboratories gathered in Orlando, Florida from February 1-3, 2006 to attend a workshop focused on advancing SSL technologies from the laboratory to the marketplace. The workshop was hosted by the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (Building Technologies Office) and the Office of Science (Basic Energy Sciences Program). The 2006 workshop provided a forum for sharing updates on basic research underlying SSL technology, SSL core technology research, product development, commercialization support, and the ultimate goal of bringing energy-efficient, cost-competitive products to the market.

428

Continuous-wave solid-state two-Stokes Raman laser  

SciTech Connect (OSTI)

We report an experimental study of the first cw solid-state Raman laser operating simultaneously at the frequencies of the first and second Stokes components. Simultaneous generation is ensured by a cavity with an enhanced finesse at both Stokes frequencies. The threshold pump powers for the first (3.4 W) and second (3.67 W) Stokes components suggest that the second Stokes generation follows a cascade mechanism. We demonstrate for the first time Raman conversion with intensity stability exceeding the pump radiation stability and show that this approach may find application in Raman spectroscopy. (special issue devoted to the 80th birthday of S.A. Akhmanov)

Grabchikov, A S; Lisinetskii, V A; Orlovich, V A [B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk (Belarus); Schmitt, M; Schluecker, S; Kuestner, B; Kiefer, W [Institut fuer Physikalische Chemie, Universitat Wuerzburg, Wuerzburg (Germany)

2009-07-31T23:59:59.000Z

429

Solid-State Lighting: Early Lessons Learned on the Way to Market  

SciTech Connect (OSTI)

The purpose of this report is to document early challenges and lessons learned in the solid-state lighting (SSL) market development as part of the DOEs SSL Program efforts to continually evaluate market progress in this area. This report summarizes early actions taken by DOE and others to avoid potential problems anticipated based on lessons learned from the market introduction of compact fluorescent lamps and identifies issues, challenges, and new lessons that have been learned in the early stages of the SSL market introduction. This study identifies and characterizes12 key lessons that have been distilled from DOE SSL program results.

Sandahl, Linda J.; Cort, Katherine A.; Gordon, Kelly L.

2013-12-31T23:59:59.000Z

430

A solid-state, harmonic restraint, differential relay for transformer protection  

E-Print Network [OSTI]

A SOLID-STATE, HARMONIC RESTRAINT, DIF ERENTIAL RELAY &Y)R TRANSFORMER PROTECTION A Thesis by GARY ROGER I OWTHER Submitted to the Graduate College of Texas ALM University in oartial ulfillment of the requirement for the degree of MASTER... OF SCIENCE May 1982 Ma jor Sub ject: Electrical Engineering A 80LID-STAT:, ;iidl 0RIC R'DTRAI&'!T, RRHTIAL RELAY FOR TR" K~'. :ORYiM PROT':CTIOI&' A Thesis GARY HOG". . R LOATH-'R Approved as to stv1e ann content b r: (Chairman of Committee ) (Head...

Lowther, Gary Roger

2012-06-07T23:59:59.000Z

431

Transformations in Lighting: The Sixth Annual Solid-State Lighting R&D Workshop  

Broader source: Energy.gov [DOE]

More than 400 SSL technology leaders from industry, research organizations, universities, national laboratories, manufacturing, energy efficiency organizations, utilities and municipalities gathered in San Francisco, CA to participate in the "Transformations in Lighting" Solid-State Lighting Workshop on February 3-5, 2009. The workshop, hosted by DOE, with sponsors BetaLED, Echelon, Pacific Gas & Electric, and Southern California Edison, was the sixth annual DOE meeting to accelerate SSL technology advances and guide market introduction of quality SSL products. The workshop brought together a diverse gathering of participants - from the R&D community to lighting designers and architects - to share insights, ideas, and updates on the rapidly evolving SSL market.

432

Low-Temperature Synthesis of Actinide Tetraborides by Solid-State Metathesis Reactions  

SciTech Connect (OSTI)

The synthesis of actinide tetraborides including uranium tetraboride (UB,), plutonium tetraboride (PUB,) and thorium tetraboride (ThB{sub 4}) by a solid-state metathesis reaction are demonstrated. The present method significantly lowers the temperature required to {approx_equal}850 C. As an example, when UCl{sub 4}, is reacted with an excess of MgB{sub 2}, at 850 C, crystalline UB, is formed. Powder X-ray diffraction and ICP-AES data support the reduction of UCl{sub 3}, as the initial step in the reaction. The UB, product is purified by washing water and drying.

Lupinetti, Anthony J.; Garcia, Eduardo; Abney, Kent D.

2004-12-14T23:59:59.000Z

433

Environment-assisted quantum control of a solid-state spin via coherent dark states  

E-Print Network [OSTI]

Understanding the interplay between a quantum system and its environment lies at the heart of quantum science and its applications. To-date most efforts have focused on circumventing decoherence induced by the environment by either protecting the system from the associated noise or by manipulating the environment directly. Recently, parallel efforts using the environment as a resource have emerged, which could enable dissipation-driven quantum computation and coupling of distant quantum bits. Here, we realize the optical control of a semiconductor quantum-dot spin by relying on its interaction with an adiabatically evolving spin environment. The emergence of hyperfine-induced, quasi-static optical selection rules enables the optical generation of coherent spin dark states without an external magnetic field. We show that the phase and amplitude of the lasers implement multi-axis manipulation of the basis spanned by the dark and bright states, enabling control via projection into a spin-superposition state. Our approach can be extended, within the scope of quantum control and feedback, to other systems interacting with an adiabatically evolving environment.

Jack Hansom; Carsten H. H. Schulte; Claire Le Gall; Clemens Matthiesen; Edmund Clarke; Maxime Hugues; Jacob M. Taylor; Mete Atatre

2014-08-06T23:59:59.000Z

434

Solid State Electrochemical Sensors for Nitrogen Oxide (NOx) Detection in Lean Exhaust Gases  

E-Print Network [OSTI]

for Application in Solid Oxide Fuel Cells", (DoctoralImpedance of Solid Oxide Fuel Cell LSM/YSZ CompositeCathode materials of solid oxide fuel cells: a review, J

Rheaume, Jonathan Michael

2010-01-01T23:59:59.000Z

435

Theory of degenerate three-wave mixing using circuit QED in solid-state circuits  

SciTech Connect (OSTI)

We study the theory of degenerate three-wave mixing and the generation of squeezed microwaves using circuit quantum electrodynamics in solid state circuits. The Hamiltonian for degenerate three-wave mixing, which seemed to be given phenomenologically in quantum optics, is derived by quantum mechanical calculations. The nonlinear medium needed in three-wave mixing is composed of a series of superconducting charge qubits which are located inside two superconducting transmission-line resonators. Here, the multiqubit ensemble is present to enhance the effective coupling constant between the two modes in the transmission-line resonators. In the squeezing process, the qubits are kept in their ground states so that their decoherence does not corrupt the squeezing. The main obstacle preventing a large squeezing efficiency is the decay rate of the transmission-line resonator.

Cao, Ye [Key Laboratory of Atomic and Molecular Nanosciences and Department of Physics, Tsinghua University, Beijing 100084 (China); Huo, Wen Yi [Institute of Applied Physics and Computational Mathematics, Beijing 100088 (China); Ai, Qing [Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190 (China); Long, Gui Lu [Key Laboratory of Atomic and Molecular Nanosciences and Department of Physics, Tsinghua University, Beijing 100084 (China); Tsinghua National Laboratory For Information Science and Technology, Beijing 100084 (China)

2011-11-15T23:59:59.000Z

436

GPU-based acceleration of free energy calculations in solid state physics  

E-Print Network [OSTI]

Obtaining a thermodynamically accurate phase diagram through numerical calculations is a computationally expensive problem that is crucially important to understanding the complex phenomena of solid state physics, such as superconductivity. In this work we show how this type of analysis can be significantly accelerated through the use of modern GPUs. We illustrate this with a concrete example of free energy calculation in multi-band iron-based superconductors, known to exhibit a superconducting state with oscillating order parameter. Our approach can also be used for classical BCS-type superconductors. With a customized algorithm and compiler tuning we are able to achieve a 19x speedup compared to the CPU (119x compared to a single CPU core), reducing calculation time from minutes to mere seconds, enabling the analysis of larger systems and the elimination of finite size effects.

Januszewski, Micha?; Crivelli, Dawid; Gardas, Bart?omiej

2014-01-01T23:59:59.000Z

437

2006 Archived Selected Headlines of Solid-State Lighting Headlines News  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

March 31, 2006 Group4 Labs announced the first 2-inch GaN-on-diamond semiconductor wafer, the second product in the company's Xero Wafer family. As with the first Xero product, the new wafer also features a single GaN atomically attached to a synthetic diamond substrate, permitting high-temperature resilience for electronic, solid-state lighting, and military applications. The new material offers a unique thermal management solution by extricating heat from the chip's core almost at the instant that it is generated. This is due to the nanometer proximity of the chip's active region to diamond, a nearly perfect thermal conductor. [ Press release ] March 30, 2006 UK's Department of Trade & Industry (DTI) Technology Programme announced funding of £9 million (US$15.6 million) for collaborative R&D projects in the area of electronics and photonics, including high-efficacy solid-state lighting systems. The projects, which must include at least two partners and one end user, will be 50% funded by participants. Emphasis will be placed on projects that address identified needs with the potential for significant improvements and efficiencies. Identified needs include high-brightness, high-efficiency devices, particularly white-light sources for illumination, and improved-efficiency packaging techniques for next-generation lighting systems. [ News item in LEDs Magazine, DTI document ]

438

Characterization of proton exchange membrane materials for fuel cells by solid state nuclear magnetic resonance  

SciTech Connect (OSTI)

Solid-state nuclear magnetic resonance (NMR) has been used to explore the nanometer-scale structure of Nafion, the widely used fuel cell membrane, and its composites. We have shown that solid-state NMR can characterize chemical structure and composition, domain size and morphology, internuclear distances, molecular dynamics, etc. The newly-developed water channel model of Nafion has been confirmed, and important characteristic length-scales established. Nafion-based organic and inorganic composites with special properties have also been characterized and their structures elucidated. The morphology of Nafion varies with hydration level, and is reflected in the changes in surface-to-volume (S/V) ratio of the polymer obtained by small-angle X-ray scattering (SAXS). The S/V ratios of different Nafion models have been evaluated numerically. It has been found that only the water channel model gives the measured S/V ratios in the normal hydration range of a working fuel cell, while dispersed water molecules and polymer ribbons account for the structures at low and high hydration levels, respectively.

Kong, Zueqian

2010-03-15T23:59:59.000Z

439

Computer-intensive simulation of solid-state NMR experiments using SIMPSON  

Science Journals Connector (OSTI)

Abstract Conducting large-scale solid-state NMR simulations requires fast computer software potentially in combination with efficient computational resources to complete within a reasonable time frame. Such simulations may involve large spin systems, multiple-parameter fitting of experimental spectra, or multiple-pulse experiment design using parameter scan, non-linear optimization, or optimal control procedures. To efficiently accommodate such simulations, we here present an improved version of the widely distributed open-source SIMPSON NMR simulation software package adapted to contemporary high performance hardware setups. The software is optimized for fast performance on standard stand-alone computers, multi-core processors, and large clusters of identical nodes. We describe the novel features for fast computation including internal matrix manipulations, propagator setups and acquisition strategies. For efficient calculation of powder averages, we implemented interpolation method of Alderman, Solum, and Grant, as well as recently introduced fast Wigner transform interpolation technique. The potential of the optimal control toolbox is greatly enhanced by higher precision gradients in combination with the efficient optimization algorithm known as limited memory BroydenFletcherGoldfarbShanno. In addition, advanced parallelization can be used in all types of calculations, providing significant time reductions. SIMPSON is thus reflecting current knowledge in the field of numerical simulations of solid-state NMR experiments. The efficiency and novel features are demonstrated on the representative simulations.

Zden?k Toner; Rasmus Andersen; Baltzar Stevensson; Mattias Edn; Niels Chr. Nielsen; Thomas Vosegaard

2014-01-01T23:59:59.000Z

440

NANOSTRUCTURED HIGH PERFORMANCE ULTRAVIOLET AND BLUE LIGHT EMITTING DIODES FOR SOLID STATE LIGHTING  

SciTech Connect (OSTI)

We report on research results in this project which synergize advanced material science approaches with fundamental optical physics concepts pertaining to light-matter interaction, with the goal of solving seminal problems for the development of very high performance light emitting diodes (LEDs) in the blue and near ultraviolet for Solid State Lighting applications. Accomplishments in the first 12 month contract period include (1) new means of synthesizing zero- and one-dimensional GaN nanostructures, (2) establishment of the building blocks for making GaN-based microcavity devices, and (3) demonstration of top-down approach to nano-scale photonic devices for enhanced spontaneous emission and light extraction. These include a demonstration of eight-fold enhancement of the external emission efficiency in new InGaN QW photonic crystal structures. The body of results is presented in this report shows how a solid foundation has been laid, with several noticeable accomplishments, for innovative research, consistent with the stated milestones.

Arto V. Nurmikko; Jung Han

2004-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "oled solid state" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Thin Film Solid-State Reactions Forming Carbides as Contact Materials for Carbon-Containing Semiconductors  

SciTech Connect (OSTI)

Metal carbides are good candidates to contact carbon-based semiconductors (SiC, diamond, and carbon nanotubes). Here, we report on an in situ study of carbide formation during the solid-state reaction between thin films. The solid-state reaction was examined between 11 transition metals (W, Mo, Fe, Cr, V, Nb, Mn, Ti, Ta, Zr, and Hf) and an amorphous carbon layer. Capping layers (C or TiN) of different thicknesses were applied to prevent oxidation. Carbide formation is evidenced for nine metals and the phases formed have been identified (for a temperature ranging from 100 to 1100 C). W first forms W{sub 2}C and then WC; Mo forms Mo{sub 2}C; Fe forms Fe{sub 3}C; Cr first forms metastable phases Cr{sub 2}C and Cr{sub 3}C{sub 2-x}, and finally forms Cr{sub 3}C{sub 2}; V forms VC{sub x}; Nb transforms into Nb{sub 2}C followed by NbC; Ti forms TiC; Ta first forms Ta{sub 2}C and then TaC; and Hf transforms into HfC. The activation energy for the formation of the various carbide phases has been obtained by in situ x-ray diffraction.

Leroy,W.; Detavernier, C.; Van Meirhaeghe, R.; Lavoie, C.

2007-01-01T23:59:59.000Z

442

IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 34, NO. 3, MARCH 1999 405 Reducing Switching Activity on Datapath  

E-Print Network [OSTI]

IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 34, NO. 3, MARCH 1999 405 Reducing Switching Activity with minimal overhead. When a bus is not going to be used in a datapath, it is held in a quiescent state of high-performance systems, and battery life of portable devices. Achieving low average power dissipation

De Micheli, Giovanni

443

Solid-state electrochromic devices based on poly ,,phenylene vinylene... A. L. Holt, J. M. Leger, and S. A. Cartera  

E-Print Network [OSTI]

Solid-state electrochromic devices based on poly ,,phenylene vinylene... polymers A. L. Holt, J. M state electrochromic device based on poly phenylene vinylene light-emitting polymers and explore device-of-the-art conducting polymer electrochromic devices. © 2005 American Institute of Physics. DOI: 10

Carter, Sue

444

Colloquium: Majorana Fermions in nuclear, particle and solid-state physics  

E-Print Network [OSTI]

Ettore Majorana (1906-1938) disappeared while traveling by ship from Palermo to Naples in 1938. His fate has never been fully resolved and several articles have been written that explore the mystery itself. His demise intrigues us still today because of his seminal work, published the previous year, that established symmetric solutions to the Dirac equation that describe a fermionic particle that is its own anti-particle. This work has long had a significant impact in neutrino physics, where this fundamental question regarding the particle remains unanswered. But the formalism he developed has found many uses as there are now a number of candidate spin-1/2 neutral particles that may be truly neutral with no quantum number to distinguish them from their anti-particles. If such particles exist, they will influence many areas of nuclear and particle physics. Most notably the process of neutrinoless double beta decay can only exist if neutrinos are massive Majorana particles. Hence, many efforts to search for this process are underway. Majorana's influence doesn't stop with particle physics, however, even though that was his original consideration. The equations he derived also arise in solid state physics where they describe electronic states in materials with superconducting order. Of special interest here is the class of solutions of the Majorana equation in one and two spatial dimensions at exactly zero energy. These Majorana zero modes are endowed with some remarkable physical properties that may lead to advances in quantum computing and, in fact, there is evidence that they have been experimentally observed. This review first summarizes the basics of Majorana's theory and its implications. It then provides an overview of the rich experimental programs trying to find a fermion that is its own anti-particle in nuclear, particle, and solid state physics.

S. R. Elliott; M. Franz

2014-12-01T23:59:59.000Z

445

Diode-pumped solid-state laser driver experiments for inertial fusion energy applications  

SciTech Connect (OSTI)

Although solid-state lasers have been the primary means by which the physics of inertial confinement fusion (ICF) have been investigated, it was previously thought that solid-state laser technology could not offer adequate efficiencies for an inertial fusion energy (IFE) power plant. Orth and co-workers have recently designed a conceptual IFE power plant, however, with a high efficiency diode-pumped solid-state laser (DPSSL) driver that utilized several recent innovations in laser technology. It was concluded that DPSSLs could offer adequate performance for IFE with reasonable assumptions. This system was based on a novel diode pumped Yb-doped Sr{sub 5}(PO{sub 4}){sub 3}F (Yb:S-FAP) amplifier. Because this is a relatively new gain medium, a project was established to experimentally validate the diode-pumping and extraction dynamics of this system at the smallest reasonable scale. This paper reports on the initial experimental results of this study. We found the pumping dynamics and extraction cross-sections of Yb:S-FAP crystals to be similar to those previously inferred by purely spectroscopic techniques. The saturation fluence for pumping was measured to be 2.2 J/cm{sup 2} using three different methods based on either the spatial, temporal, or energy transmission properties of a Yb:S-FAP rod. The small signal gain implies an emission cross section of 6.0{times}10{sup {minus}20} cm{sup 2}. Up to 1.7 J/cm{sup 3} of stored energy density was achieved in a 6{times}6{times}44 mm{sup 3} Yb:S-FAP amplifier rod. In a free running configuration diode-pumped slope efficiencies up to 43% were observed with output energies up to {approximately}0.5 J per 1 ms pulse from a 3{times}3{times}30 mm{sup 3} rod. When the rod was mounted in a copper block for cooling, 13 W of average power was produced with power supply limited operation at 70 Hz with 500 {mu}s pulses.

Marshall, C.D.; Payne, S.A.; Emanuel, M.E.; Smith, L.K.; Powell, H.T.; Krupke, W.F.

1995-07-11T23:59:59.000Z

446

GEA Refrigeration Technologies / GEA Refrigeration Germany GmbH Wolfgang Dietrich / Dr. Ole Fredrich  

E-Print Network [OSTI]

GEA Refrigeration Technologies / GEA Refrigeration Germany GmbH Wolfgang Dietrich / Dr. Ole Technologies3 Achema 2012 // heat pumps using ammonia Industrial demand on heat in Germany Heatdemandin

Oak Ridge National Laboratory

447

FIA-14-0022 - In the Matter of Oles, Morrison, Rinker, Baker...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

(ROO). The Appellant, Oles, Morrison, Rinker, Baker LLP, contested the adequacy of the search for documents responsive to its FOIA request. The Appellant is a law firm that...

448

Charged particle assisted nuclear reactions in solid state environment: renaissance of low energy nuclear physics  

E-Print Network [OSTI]

The features of electron assisted neutron exchange processes in crystalline solids are survayed. It is stated that, contrary to expectations, the cross section of these processes may reach an observable magnitude even in the very low energy case because of the extremely huge increment caused by the Coulomb factor of the electron assisted processes and by the effect of the crystal-lattice. The features of electron assisted heavy charged particle exchange processes, electron assisted nuclear capure processes and heavy charged particle assisted nuclear processes are also overviewed. Experimental observations, which may be related to our theoretical findings, are dealt with. The anomalous screening phenomenon is related to electron assisted neutron and proton exchange processes in crystalline solids. A possible explanation of observations by Fleischmann and Pons is presented. The possibility of the phenomenon of nuclear transmutation is qualitatively explained with the aid of usual and charged particle assisted reactions. The electron assisted neutron exchange processes in pure $Ni$ and $Li-Ni$ composite systems (in the Rossi-type E-Cat) are analyzed and it is concluded that these reactions may be responsible for recent experimental observations.

Pter Klmn; Tams Keszthelyi

2015-02-05T23:59:59.000Z

449

Reactive solid-state dewetting of Cu-Ni films on silicon  

SciTech Connect (OSTI)

The behavior of a 50 nm Cu-Ni alloy film on Si in a process of reactive solid-state dewetting is presented. The films were annealed at a range of temperatures (300-700 deg. C) in 1%H{sub 2} 99%N{sub 2} reducing atmosphere. The resulting alloy and silicide particles formed by film dewetting and film reaction with the substrate were distinguished by selective wet etching and examined by scanning electron microscopy and spectroscopy. After potassium hydroxide etch, regions that etch slower than silicon substrate have distribution statistics similar to the alloy and silicide particles prior to their removal, indicating strong coupling between mass transport across the interface and along the surface.

Clearfield, Raphael; Railsback, Justin G.; Melechko, Anatoli V. [Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States); Pearce, Ryan C. [Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States); Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996 (United States); Hensley, Dale K.; Fowlkes, Jason D.; Fuentes-Cabrera, Miguel [Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Simpson, Michael L.; Rack, Philip D. [Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996 (United States); Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States)

2010-12-20T23:59:59.000Z

450

Single Frequency Monolithic Solid State Green Laser as a Potential Source for Vibrometry Systems  

SciTech Connect (OSTI)

In this paper miniature, monolithic single frequency solid state laser operating at 532 nm is presented. Developed Nd:GdVO{sub 4}/YVO{sub 4}/KTP consist of three crystal bonded together with a UV adhesive. The single frequency operation was obtained in wide temperature range from 17 deg. C to 27 deg. C. The laser operated with output power up to 90 mW at 532 nm. The total optical efficiency (808 nm to 532 nm) was 9.5%. Power stability was at the level of +-0.8% and the long term frequency stability was approximately 3centre dot10{sup -8}. The beam has a Gaussian profile and the M2 parameter was below 1.1.

Sotor, Jaroslaw Z.; Antonczak, Arkadiusz J.; Abramski, Krzysztof M. [Laser and Fiber Electronics Group, Institute of Telecommunications Teleinformatics and Acoustics, Wroclaw University of Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw (Poland)

2010-05-28T23:59:59.000Z

451

The Second Annual DOE Solid-State Lighting Manufacturing R&D Workshop  

Broader source: Energy.gov [DOE]

More than 250 industry leaders from all corners of the supply chain including chip makers, luminaire manufacturers, material and equipment suppliers, packagers, luminaire testers, and makers of testing equipment gathered in San Jose, CA, April 21-22, 2010, to share insights, ideas, and updates at the second annual Solid-State Lighting (SSL) Manufacturing R&D Workshop, hosted by DOE. This workshop is a key part of an initiative launched by DOE in 2009 to enhance the quality and lower the cost of SSL products through improvements in manufacturing equipment and processes and to foster a significant manufacturing role in the U.S. This year in San Jose, attendees explored a wide range of related topics and focused on reexamining and updating the DOE Manufacturing R&D Roadmap.

452

The Fifth Annual DOE Solid-State Lighting Manufacturing R&D Workshop  

Broader source: Energy.gov [DOE]

More than 150 industry leaders from across the country, representing every link in the supply chainchip makers, luminaire manufacturers, material and equipment suppliers, packagers, luminaire testers, and makers of testing equipmentgathered in Boston June 56, 2013, to share insights, ideas, and updates at the fifth annual Solid-State Lighting Manufacturing R&D Workshop, hosted by DOE. The workshop is a key component of an initiative launched by DOE in 2009 to enhance the quality and lower the cost of SSL products through improvements in manufacturing equipment and processes, and to foster a significant manufacturing role in the U.S. This year in Boston, attendees explored a wide range of related topics and focused on reexamining and updating the DOE Manufacturing R&D Roadmap.

453

The Third Annual DOE Solid-State Lighting Manufacturing R&D Workshop  

Broader source: Energy.gov [DOE]

More than 250 lighting industry leaders from across the country, representing every link in the supply chainfrom chip makers, to luminaire manufacturers, to material and equipment suppliers, to packagers, to luminaire testers, to the makers of testing equipmentgathered in Boston April 1213, 2011, to share insights, ideas, and updates at the third annual Solid-State Lighting (SSL) Manufacturing R&D Workshop, hosted by DOE. The workshop is a key component of an initiative launched by DOE in 2009 to enhance the quality and lower the cost of SSL products through improvements in manufacturing equipment and processes and to foster a significant manufacturing role in the U.S. This year in Boston, attendees explored a wide range of related topics and focused on reexamining and updating the DOE Manufacturing R&D Roadmap.

454

The Eleventh Annual Solid-State Lighting R&D Workshop  

Broader source: Energy.gov [DOE]

Two hundred researchers, manufacturers, and other industry insiders and observers gathered in Tampa, FL, January 2830, 2014, to participate in DOE's 11th annual Solid-State Lighting (SSL) R&D Workshop. DOE SSL Program Manager James Brodrick kicked off Day 1 by reminding attendees that it takes time to achieve market adoption, and that "we're still early in the game." He emphasized that the true value of SSL has yet to be "mined" by the industry, and pointed out that the technology has the potential to be far more than a commodity in the old lighting paradigm. Brodrick predicted that SSL's value-added features will drive adoption, and noted that smart-lighting options can significantly increase the energy savings.

455

Novel solid state proton-conductors based on polymeric non-oxy acids. Final report  

SciTech Connect (OSTI)

Objectives of this project were to prepare and characterize novel solid state proton-conductors and to evaluate these compounds as fuel cell electrolytes. The thrust was on the synthesis of new proton-conducting ``model`` and ``polymeric`` compounds, based on acid functions of the type (R{sub f}SO{sub 2}){sub 2}NH and (R{sub f}SO{sub 2}){sub 2}CH{sub 2} in appropriate fluorinated carbon structures, their physics-chemical characterization (Infra-red, Nuclear Magnetic Resonance, Differential Scanning Calorimetry, and X-ray Diffraction), and is pro. evaluation as candidate fuel cell electrolytes for use at elevated temperatures. This project consisted of four tasks (i) Synthesis of Proton-Conducting Polymer Electrolytes; (ii) Physical and Chemical Characterization of Proton-Conducting Polymer Electrolytes; (iii) Electrochemical Characterization of Proton-Conducting Polymer Electrolytes; and (iv) Evaluation of Proton-Conducting Polymer Electrolytes for Fuel Cells.

Appleby, A.J.; Srinivasan, S.; Parthasarathy, A.; Gonzalez, E.R. [Texas A and M Univ., College Station, TX (United States). Center for Electrochemical Systems and Hydrogen Research; DesMarteau, D.; Gillette, M.S.; Ghosh, J.K. [Clemson Univ., SC (United States). Dept. of Chemistry; Jalan, V.; Desai, M. [ElectroChem, Inc., Woburn, MA (United States)

1992-01-01T23:59:59.000Z

456

Harsh-Environment Solid-State Gamma Detector for Down-hole Gas and Oil Exploration  

SciTech Connect (OSTI)

The goal of this program was to develop a revolutionary solid-state gamma-ray detector suitable for use in down-hole gas and oil exploration. This advanced detector would employ wide-bandgap semiconductor technology to extend the gamma sensor's temperature capability up to 200 C as well as extended reliability, which significantly exceeds current designs based on photomultiplier tubes. In Phase II, project tasks were focused on optimization of the final APD design, growing and characterizing the full scintillator crystals of the selected composition, arranging the APD device packaging, developing the needed optical coupling between scintillator and APD, and characterizing the combined elements as a full detector system preparing for commercialization. What follows is a summary report from the second 18-month phase of this program.

Peter Sandvik; Stanislav Soloviev; Emad Andarawis; Ho-Young Cha; Jim Rose; Kevin Durocher; Robert Lyons; Bob Pieciuk; Jim Williams; David O'Connor

2007-08-10T23:59:59.000Z

457

Reversible Dehydrogenation of Magnesium Borohydride to Magnesium Triborane in the Solid State Under Moderate Conditions  

SciTech Connect (OSTI)

Thermal decomposition of magnesium borohydride, Mg(BH4)2, in the solid state was studied by a combination of PCT, TGA/MS and NMR spectroscopy. Dehydrogenation of Mg(BH4)2 at 200 C, results in the highly selective formation of magnesium triborane, Mg(B3H8)2. This process is reversible at 250 C under 120 atm H2. Dehydrogenation at higher temperature, > 300 C, produces a complex mixture of polyborane species. Solution phase 11B NMR spectra of the hydrolyzed decomposition products reveals the formation of the B3H8 anion, boric acid from hydrolysis of the unstable polyboranes (BnHx) (n = 3-11, x >8), and the closoborane B12H12 dianion as a minor product. A BH condensation mechanism involving metal hydride formation is proposed to explain the limited reversible hydrogen storage in magnesium borohydride.

Chong, Marina; Karkamkar, Abhijeet J.; Autrey, Thomas; Orimo, Shin-ichi; Jalisatgi, Satish; Jensen, Craig M.

2011-02-17T23:59:59.000Z

458

Science and the Energy Security Challenge: The Example of Solid-State Lighting  

ScienceCinema (OSTI)

Securing a viable, carbon neutral energy future for humankind will require an effort of gargantuan proportions. As outlined clearly in a series of workshops sponsored by the DOE Office of Basic Energy Sciences (http://www.sc.doe.gov/bes/reports/list.html), fundamental advances in scientific understanding are needed to broadly implement many of the technologies that are held out as promising options to meet future energy needs, ranging from solar energy, to nuclear energy, to approaches to clean combustion. Using solid state lighting based on inorganic materials as an example, I will discuss some recent results and new directions, emphasizing the multidisciplinary, team nature of the endeavor. I will also offer some thoughts about how to encourage translation of the science into attractive, widely available products ? a significant challenge that cannot be ignored. This case study offers insight into approaches that are likely to be beneficial for addressing other aspects of the energy security challenge.

Julia Phillips

2010-01-08T23:59:59.000Z

459

The Fourth Annual DOE Solid-State Lighting Manufacturing R&D Workshop  

Broader source: Energy.gov [DOE]

Two hundred lighting industry leaders from across the country, representing every link in the supply chainfrom chip makers, to luminaire manufacturers, to material and equipment suppliers, to packagers, to luminaire testers, to the makers of testing equipmentgathered in San Jose, CA, June 1314, 2012, to share insights, ideas, and updates at the fourth annual Solid-State Lighting (SSL) Manufacturing R&D Workshop, hosted by DOE. The workshop is a key component of an initiative launched by DOE in 2009 to enhance the quality and lower the cost of SSL products through improvements in manufacturing equipment and processes, and to foster a significant manufacturing role in the U.S. This year in San Jose, attendees explored a wide range of related topics and focused on reexamining and updating the DOE Manufacturing R&D Roadmap.

460

U. S. Department of Energy to Invest up to $20.6 Million for Solid-State  

Broader source: Energy.gov (indexed) [DOE]

U. S. Department of Energy to Invest up to $20.6 Million for U. S. Department of Energy to Invest up to $20.6 Million for Solid-State Lighting Research and Development Projects U. S. Department of Energy to Invest up to $20.6 Million for Solid-State Lighting Research and Development Projects February 12, 2008 - 11:29am Addthis Funding to total $27.8 million with industry contribution The U.S. Department of Energy (DOE) today announced that DOE will provide up to $20.6 million for a total of 13 projects aimed at advancing solid-state lighting (SSL) research and product development. Combined with industry cost share, investment in these projects will total $28 million. SSL lighting is an advanced technology that creates light with considerably less heat than incandescent and fluorescent lamps, allowing for increased energy efficiency. These projects are part of DOE's

Note: This page contains sample records for the topic "oled solid state" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Molecular Engineering of Organic Dyes for Improved Recombination Lifetime in Solid-State Dye-Sensitized Solar Cells  

Science Journals Connector (OSTI)

Metal-free dyes are advantageous because of their high molar extinction coefficients, ease of modification and engineering, lower cost and environmental impact, and increased performance in solid-state dye-sensitized solar cells (ssDSSCs). ... The operating principle of a ssDSSC: (1) upon absorption of light, the dye generates an exciton; (2) the excited electron is injected into the conduction band of the TiO2; (3) the dye is regenerated by the hole-transporting material (HTM); and (4) the charges percolate to the electrodes. ... The effect of hole transport material pore filling on photovoltaic performance in solid-state dye-sensitized solar cells ...

William H. Nguyen; Colin D. Bailie; Julian Burschka; Thomas Moehl; Michael Grtzel; Michael D. McGehee; Alan Sellinger

2013-04-15T23:59:59.000Z

462

P solid-state NMR studies of the dependence of inter-bilayer water dynamics on lipid headgroup structure and membrane peptides  

E-Print Network [OSTI]

2D 1 H­31 P solid-state NMR studies of the dependence of inter-bilayer water dynamics on lipid Revised 29 September 2008 Available online 5 October 2008 Keywords: Water Lipid membranes Solid-state NMR headgroup structure and membrane peptides Tim Doherty, Mei Hong * Department of Chemistry, Iowa State

Hong, Mei

463

Proc. ACM/SIGGRAPH Symposium on Solid State Modeling and Applications, Montreal, Quebec, Canada, May 1993 A COMPUTATIONAL APPROACH TO THE DESIGN OF MICROMECHANICAL HINGED STRUCTURES  

E-Print Network [OSTI]

Proc. ACM/SIGGRAPH Symposium on Solid State Modeling and Applications, Montreal, Quebec, Canada Modeling and Applications, Montreal, Quebec, Canada, May 1993 position. The problemis how to design

464

Space Technology and Applications International Forum Proceedings, Albuquerque, New Mexico, January 2000 Miniaturized Radioisotope Solid State Power Sources  

E-Print Network [OSTI]

thermoelectric generators (RTGs) have been successfully used for a number of deep space missions RTGs. However 2000 Miniaturized Radioisotope Solid State Power Sources J.-P. Fleurial, G.J. Snyder, J. Patel, J-pierre.fleurial@jpl.nasa.gov Abstract. Electrical power requirements for the next generation of deep space missions cover a wide range

465

422 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 40, NO. 2, FEBRUARY 2005 Noise-Shaping Techniques Applied to  

E-Print Network [OSTI]

422 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 40, NO. 2, FEBRUARY 2005 Noise-Shaping Techniques to be portable. However, as battery use continues, the battery voltage drops, sometimes gradually and sometimes suddenly, depending on the type of battery and type of electronic device. Such variations in the battery

Moon, Un-Ku

466

402 2012 IEEE International Solid-State Circuits Conference ISSCC 2012 / SESSION 23 / ADVANCES IN HETEROGENEOUS INTEGRATION / 23.2  

E-Print Network [OSTI]

402 · 2012 IEEE International Solid-State Circuits Conference ISSCC 2012 / SESSION 23 / ADVANCES remain unaddressed, such as a means to protect the battery during the time period between system assembly) with BOD (Brown- Out Detector) to prevent processor malfunctions and battery damage. The BOD also controls

Dutta, Prabal

467

IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 45, NO. 1, JANUARY 2010 189 An Efficient Piezoelectric Energy Harvesting  

E-Print Network [OSTI]

IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 45, NO. 1, JANUARY 2010 189 An Efficient Piezoelectric. The dependence on the battery as the only power source is putting an enormous burden in applications where either due to size, weight, safety or lifetime constraints, doing away with the battery is the only choice

Chandrakasan, Anantha

468

High contrast solid state electrochromic devices based on Ruthenium Purple nanocomposites fabricated by layer-by-layer assemblyw  

E-Print Network [OSTI]

High contrast solid state electrochromic devices based on Ruthenium Purple nanocomposites: 10.1039/b803915a Electrochromic Ruthenium Purple­polymer nanocomposite films, fabricated by multilayer assembly, were found to exhibit sub-second switching speed and the highest electrochromic con

Heflin, Randy

469

Probing Conformational Disorder in Neurotensin by Two-Dimensional Solid-State NMR and Comparison to Molecular Dynamics Simulations  

E-Print Network [OSTI]

Probing Conformational Disorder in Neurotensin by Two-Dimensional Solid-State NMR and Comparison is introduced to characterize conformational ensembles of intrinsically unstructured peptides on the atomic simulations. For neurotensin, a peptide that binds with high affinity to a G-protein coupled receptor

de Groot, Bert

470

Use of Coupled Rate Equations To Describe Nucleation-and-Branching Rate-Limited Solid-State Processes  

Science Journals Connector (OSTI)

Use of Coupled Rate Equations To Describe Nucleation-and-Branching Rate-Limited Solid-State Processes ... Coincident with nuclei growth may be the process of nuclei multiplication or branching. ... We consider that nucleation and branching may be considered as two interrelated yet distinct steps (often rate determining) in a series of steps required to achieve a conversion. ...

Peter J. Skrdla

2004-07-20T23:59:59.000Z

471

All-solid-state laser system tunable in deep ultraviolet based on sum-frequency generation in CLBO  

E-Print Network [OSTI]

alexandrite laser/alexandrite-laser-pumped LiF:F?? 2 color-center laser (CCL) system. F 2 CC consists and the high energy storage alexandrite laser. Due to a high gain and short CCL built-up time the systemAll-solid-state laser system tunable in deep ultraviolet based on sum-frequency generation in CLBO

Mirov, Sergey B.

472

&p.1:Abstract Numerous observations have been reported in the literature of enhanced mass transport and solid-state  

E-Print Network [OSTI]

in the development of materials technologies employing microwave radiation. For exam- ple, heat processing it was discovered that microwave energy from radar could dry large ceram- ic bodies. However, serious efforts and solid-state reaction rates during microwave heating or processing of a variety of ceramic, glass

Cooper, Reid F.

473

REVIEW OF SCIENTIFIC INSTRUMENTS 82, 083301 (2011) Increasing the energy dynamic range of solid-state nuclear track detectors  

E-Print Network [OSTI]

. This allows simultaneous imaging of both high and low energy particles from the fusion reactions D + 3 He 4REVIEW OF SCIENTIFIC INSTRUMENTS 82, 083301 (2011) Increasing the energy dynamic range of solid-state nuclear track detectors using multiple surfaces A. B. Zylstra,a) H. G. Rinderknecht, N. Sinenian, M. J

474

Correlation of solid-state NMR relaxation times to functional properties such as chemical stability and particle size  

E-Print Network [OSTI]

The purpose of the work presented in this dissertation was to investigate the correlation between the particle size of crystalline active pharmaceutical ingredients (APIs) and their solid-state NMR (SSNMR) proton spin-lattice relaxation times (1H T1...

Dempah, Kassibla Elodie

2013-05-31T23:59:59.000Z

475

Can one and two-dimensional solid-state NMR fingerprint zeolite framework topology?  

Science Journals Connector (OSTI)

Abstract In this contribution, we have explored the potential and strength of one-dimensional (1D) 29Si and two-dimensional (2D) 29S29Si and 29Si17O NMR as invariants of non-oriented graph for fingerprinting zeolite frameworks. 1D and 2D 29Si NMR can indeed provide indications on the graph vertices, edges and allow the construction of the adjacency matrix, i.e. the set of connections between the graph vertices. From the structural data, hypothetical 1D 29Si and 2D 29Si29Si NMR signatures for 193 of the zeolite frameworks reported in the Atlas of Zeolite Structures have been generated. Comparison between all signatures shows that thanks to the 1D 29Si NMR data only, almost 20% of the known zeolite frameworks could be distinguished. Further NMR signatures were generated by taking into account 2D 29Si29Si and 29Si17O correlations. By sorting and comparison of all the NMR data, up to 80% of the listed zeolites could be unambiguously discriminated. This work indicates that (i) solid-state NMR data indeed represent a rather strong graph invariant for zeolite framework, (ii) despite their difficulties and costs (isotopic labeling is often required, the NMR measurements can be long), 29Si and 17O NMR measurements are worth being investigated in the frame of zeolites structure resolution. This approach could also be generalized to other zeolite-related materials containing NMR-measurable nuclides.

Charlotte Martineau; Sandrine Vial; Dominique Barth; Franck Quessette; Francis Taulelle

2014-01-01T23:59:59.000Z

476

Anisotropy of the solid-state epitaxy of silicon carbide in silicon  

SciTech Connect (OSTI)

A new method for the solid-state synthesis of epitaxial layers is developed, in which a substrate participates in the chemical reaction and the reaction product grows not on the substrate surface, as in traditional epitaxial methods, but inside the substrate. This method offers new opportunities for elastic-energy relaxation due to a mechanism operating only in anisotropic media, specifically, the attraction of point defects formed during the chemical reaction. The attracting point centers of dilatation form relatively stable objects, dilatation dipoles, which significantly reduce the total elastic energy. It is shown that, in crystals with cubic symmetry, the most favorable arrangement of dipoles is the ?111? direction. The theory is tested by growing silicon carbide (SiC) films on Si (111) substrates by chemical reaction with carbon monoxide CO. High-quality single-crystal SiC-4H films with thicknesses of up to 100 nm are grown on Si (111). Ellipsometric analysis showed that the optical constants of the SiC-4H films are significantly anisotropic. This is caused not only by the lattice hexagonality but also by a small amount (about 26%) of carbon atoms remaining in the film due to dilatation dipoles. It is shown that the optical constants of the carbon impurity correspond to strongly anisotropic highly oriented pyrolytic graphite.

Kukushkin, S. A., E-mail: kukushkin_s@yahoo.com; Osipov, A. V. [Russian Academy of Sciences, Institute of Problems of Machine Science (Russian Federation)

2013-12-15T23:59:59.000Z

477

Multinuclear and multidimensional solid-state NMR investigations of combustion chamber deposits  

SciTech Connect (OSTI)

Multinuclear solid-state NMR has been used to study the carbonaceous backbone of combustion chamber deposits (CCDs) generated in both gasoline and diesel engines. The combination of {sup 1}H-{sup 13}C cross-polarization, and dipolar dephasing techniques have been used to {open_quotes}average molecule{close_quotes} parameters for a large number of CCDs. These parameters were correlated with gasoline composition and cylinder cleanliness. Discussion will be presented on deposits from different areas of the chamber - piston top, cylinder head, squish, non-squish, end-gas, non-end gas regions. Deposits from various cylinders in a number of dynamometer engines, fleet car engines will be compared. The use of NMR to observe the effects of bench-test engine modifications on CCD structure will be demonstrated. The macromolecular structure of the deposits was studied by {sup 13}C-{sup 13}C spin-exchange experiments which allow one to observe internuclear dipolar interactions between the various carbon functionalities in the deposit. The spatial information on fuel additive - CCD interactions that these experiments provide will be discussed.

Edwards, J.C. [Texaco Research Center, Beacon, NY (United States)

1996-10-01T23:59:59.000Z

478

The Effect of Cellulose Crystal Structure and Solid-State Morphology on the Activity of Cellulases  

SciTech Connect (OSTI)

Consistent with the US-DOE and USDA Roadmap objective of producing ethanol and chemicals from cellulosic feedstocks more efficiently, a three year research project entitled The Effect of Cellulose Crystal Structure and Solid-State Morphology on the Activity of Cellulases was initiated in early 2003 under DOE sponsorship (Project Number DE-FG02-02ER15356). A three year continuation was awarded in June 2005 for the period September 15, 2005 through September 14, 2008. The original goal of this project was to determine the effect of cellulose crystal structure, including allomorphic crystalline form (Cellulose I, II, III, IV and sub-allomorphs), relative degree of crystallinity and crystallite size, on the activity of different types of genetically engineered cellulase enzymes to provide insight into the mechanism and kinetics of cellulose digestion by pure enzymes rather than complex mixtures. We expected that such information would ultimately help enhance the accessibility of cellulose to enzymatic conversion processes thereby creating a more cost-effective commercial process yielding sugars for fermentation into ethanol and other chemical products. Perhaps the most significant finding of the initial project phase was that conversion of native bacterial cellulose (Cellulose I; BC-I) to the Cellulose II (BC-II) crystal form by aqueous NaOH pretreatment provided an increase in cellulase conversion rate approaching 2-4 fold depending on enzyme concentration and temperature, even when initial % crystallinity values were similar for both allomorphs.

Stipanovic, Arthur J [SUNY College of Environmental Science and Forestry

2014-11-17T23:59:59.000Z

479

Soldering with solid state and diode lasers: Energy coupling, temperature rise, process window  

Science Journals Connector (OSTI)

The increasing number of electrical contacts in automobiles in combination with more complex and miniaturized components leads to higher requirements for the joining technologies. In that context laser soldering represents an interesting alternative to conventional techniques. So far solid state lasers[Nd:yttriumaluminumgarnet(YAG)] and CO 2 lasers have been successfully applied in industrial production. Recently the development of high power diode lasers has offered a new laser source for soldering with technological advantages. Absorptivity of laser radiation on metals generally increases with shorter wavelength and consequently diode lasers may lead to a higher process efficiency compared to Nd:YAG lasers. The absorptivity of copper alloys with different surface conditions has been measured at 808 nm (diode) and 1064 nm (Nd:YAG). When heating up the solder joint the intensity distribution of the different laser spots becomes important too. This effect is demonstrated by means of process modeling and temperature measurements for a typical joint geometry. For the case of soldering strip-to-strip joints the effects of the different energy absorption on the process are pointed out.

M. Brandner; G. Seibold; C. Chang; F. Dausinger; H. Hgel

2000-01-01T23:59:59.000Z

480

Electronic properties of corrugated graphene, the Heisenberg principle and wormhole geometry in solid state  

E-Print Network [OSTI]

Adopting a purely two dimensional relativistic equation for graphene's carriers contradicts the Heisenberg uncertainty principle since it requires setting off-the-surface coordinate of a three-dimensional wavefunction to zero. Here we present a theoretical framework for describing graphene's massless relativistic carriers in accordance with this most fundamental of all quantum principles. A gradual confining procedure is used to restrict the dynamics onto a surface and normal to the surface parts and in the process the embedding of this surface into the three dimensional world is accounted for. As a result an invariant geometric potential arises in the surface part which scales linearly with the Mean curvature and shifts the Fermi energy of the material proportional to bending. Strain induced modification of the electronic properties or "straintronics" is clearly an important field of study in graphene. This opens a venue to producing electronic devices, MEMS and NEMS where the electronic properties are controlled by geometric means and no additional alteration of graphene is necessary. The appearance of this geometric potential also provides us with clues as to how quantum dynamics looks like in the curved space-time of general relativity. In this context, we explore a two-dimensional cross-section of the wormhole geometry realized with graphene as a solid state thought experiment.

Victor Atanasov; Avadh Saxena

2011-01-27T23:59:59.000Z

Note: This page contains sample records for the topic "oled solid state" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Water-Protein Interactions of an Arginine-Rich Membrane Peptide in Lipid Bilayers Investigated by Solid-State Nuclear Magnetic Resonance Spectroscopy  

E-Print Network [OSTI]

from water to proteins.1 For microcrystalline proteins in the solid-state, magic-angle- spinning (MASWater-Protein Interactions of an Arginine-Rich Membrane Peptide in Lipid Bilayers Investigated by Solid-State Nuclear Magnetic Resonance Spectroscopy Shenhui Li, Yongchao Su, Wenbin Luo, and Mei Hong

Hong, Mei

482

Evidence that the Yeast Desaturase Ole1p Exists as a Dimer In Vivo  

SciTech Connect (OSTI)

Desaturase enzymes are composed of two classes, the structurally well characterized soluble class found predominantly in the plastids of higher plants and the more widely distributed but poorly structurally defined integral membrane class. Despite their distinct evolutionary origins, the two classes both require an iron cofactor and molecular oxygen for activity and are inhibited by azide and cyanide, suggesting strong mechanistic similarities. The fact that the soluble desaturase is active as a homodimer prompted us test the hypothesis that an archetypal integral membrane desaturase from Saccharomyces cerevisiae, the {Delta}{sup o}-acyl-Co-A desaturase Ole1p, also exhibits a dimeric organization. Ole1p was chosen because it is one of the best characterized integral membrane desaturase and because it retains activity when fused with epitope tags. FLAG-Ole1p was detected by Western blotting of immunoprecipitates in which anti-Myc antibodies were used for capture from yeast extracts co-expressing Ole1p-Myc and Ole1p-FLAG. Interaction was confirmed by two independent bimolecular complementation assays (i.e. the split ubiquitin system and the split luciferase system). Co-expression of active and inactive Ole1p subunits resulted in an {approx}75% suppression of the accumulation of palmitoleic acid, demonstrating that the physiologically active form of Ole1p in vivo is the dimer in which both protomers must be functional.

Lou, Y.; Shanklin, J.

2010-06-18T23:59:59.000Z

483

Solid-State NMR Examination of Alteration Layers on a Nuclear Waste Glasses  

SciTech Connect (OSTI)

Solid-state NMR is a powerful tool for probing the role and significance of alteration layers in determining the kinetics for the corrosion of nuclear waste glass. NMR methods are used to probe the chemical structure of the alteration layers to elucidate information about their chemical complexity, leading to increased insight into the mechanism of altered layer formation. Two glass compositions were examined in this study: a glass preliminarily designed for nuclear waste immobilization (called AFCI) and a simplified version of this AFCI glass (which we call SA1R). Powdered glasses with controlled and known particles sizes were corroded at 90 C for periods of one and five months with a surface-area to solution-volume ratio of 100,000 m-1. 1H-29Si CP-CPMG MAS NMR, 1H-27Al CP-MAS NMR, 1H-11B CP-MAS NMR, and 1H-23Na CP-MAS NMR experiments provide isolated structural information about the alteration layers, which differ in structure from that of the pristine glass. Both glasses studied here develop alteration layers composed primarily of [IV]Si species. Aluminum is also retained in the alteration layers, perhaps facilitated by the observed increase in coordination from [IV]Al to [VI]Al, which correlates with a loss of charge balancing cations. 1H-11B CP-MAS NMR observations indicated a retention of boron in hydrated glass layers, which has not been characterized by previous work. For the AFCI glass, secondary phase formation begins during the corrosion times considered here, and these neophases are detected within the alteration layers. We identify precursor phases as crystalline sodium metasilicates. An important finding is that layer thickness depends on the length of the initial alteration stages and varies only with respect to silicon species during the residual rate regime.

Murphy, Kelly A. [Penn State Univ., State College, PA (United States). Dept. of Chemistry; Washton, Nancy M. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States). Environmental Molecular Science Lab.; Ryan, Joseph V. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Pantano, Carlo G. [Penn State Univ., State College, PA (United States). Dept. of Materials Science and Engineering; Mueller, Karl T. [Penn State Univ., State College, PA (United States). Dept. of Chemistry; Pacific Northwest National Laboratory (PNNL), Richland, WA (United States). Environmental Molecular Science Lab.

2013-06-01T23:59:59.000Z

484

Next Generation Hole Injection/Transport Nano-Composites for High Efficiency OLED Development  

SciTech Connect (OSTI)

The objective of this program is to use a novel nano-composite material system for the OLED anode coating/hole transport layer. The novel anode coating is intended to significantly increase not only hole injection/transport efficiency, but the device energy efficiency as well. Another goal of the Core Technologies Program is the optimization and scale-up of air-stable and cross-linkable novel HTL nano-composite materials synthesis and the development of low-cost, large-scale mist deposition processes for polymer OLED fabrication. This proposed technology holds the promise to substantially improve OLED energy efficiency and lifetime.

King Wang

2009-07-31T23:59:59.000Z

485

Detailed design of a 13 kA 13 kV dc solid-state turn-off switch  

SciTech Connect (OSTI)

An experimental facility for the study of electromagnetic effects in the First Wall-Blanket-shield (FWBS) systems of fusion reactors has been constructed at Argonne National Laboratory (ANL). In a test volume of 0.76 m/sup 3/, a vertical, pulsed 5 kG dipole field (B < 320 kGs/sup -1/) is perpendicular to a 10 kG solenoid field. Power supplies of 2.75 MW at 550 V dc and 5.5 MW at 550 V dc and a solid-state switch rated at 13 kA and 13 kV (169 MW) control the pulsed magnetic fields. The total stored energy in the coils is 2.6 MJ. This paper describes the design and construction features of the solid-state switching circuit which turns off a dc of 13 kA in approximately 82 ..mu..s and holds off voltages of < 13 kV.

Praeg, W.F.

1985-01-01T23:59:59.000Z

486

Solid-State Physical Form Detection and Quantitation of Pharmaceuticals in Formulations  

E-Print Network [OSTI]

The majority of pharmaceutical dosage forms are marketed as solids, and the active pharmaceutical ingredient (API) can exist in various physical forms. These physical forms can be either crystalline or amorphous, and will ...

Gorman, Eric

2011-03-25T23:59:59.000Z

487

All-solid-state high-power conduction-cooled Nd:YLF rod laser  

Science Journals Connector (OSTI)

A high-average-power conduction-cooled diode-pumped Nd:YLF rod laser has been developed. A new conduction-cooled side-pumping scheme with a solid prismatic pump-light confinement...

Hirano, Y; Yanagisawa, T; Ueno, S; Tajime, T; Uchino, O; Nagai, T; Nagasawa, C

2000-01-01T23:59:59.000Z

488

A green synthesis of a layered titanate, potassium lithium titanate; lower temperature solid-state reaction and improved materials performance  

SciTech Connect (OSTI)

A layered titanate, potassium lithium titanate, with the size range from 0.1 to 30 m was prepared to show the effects of the particle size on the materials performance. The potassium lithium titanate was prepared by solid-state reaction as reported previously, where the reaction temperature was varied. The reported temperature for the titanate preparation was higher than 800 C, though 600 C is good enough to obtain single-phase potassium lithium titanate. The lower temperature synthesis is cost effective and the product exhibit better performance as photocatalysts due to surface reactivity. - Graphical abstract: Finite particle of a layered titanate, potassium lithium titanate, was prepared by solid-state reaction at lower temperature to show modified materials performance. Display Omitted - Highlights: Potassium lithium titanate was prepared by solid-state reaction. Lower temperature reaction resulted in smaller sized particles of titanate. 600 C was good enough to obtain single phased potassium lithium titanate. The product exhibited better performance as photocatalyst.

Ogawa, Makoto, E-mail: waseda.ogawa@gmail.com [Graduate School of Creative Science and Engineering, Waseda University, 1-6-1 Nishiwaseda, Shinjuku-ku, Tokyo 169-8050 (Japan); Department of Earth Sciences, Waseda University, 1-6-1 Nishiwaseda, Shinjuku-ku, Tokyo 169-8050 (Japan); Morita, Masashi, E-mail: m-masashi@y.akane.waseda.jp [Graduate School of Creative Science and Engineering, Waseda University, 1-6-1 Nishiwaseda, Shinjuku-ku, Tokyo 169-8050 (Japan); Igarashi, Shota, E-mail: uxei_yoshi_yoshi@yahoo.co.jp [Graduate School of Creative Science and Engineering, Waseda University, 1-6-1 Nishiwaseda, Shinjuku-ku, Tokyo 169-8050 (Japan); Sato, Soh, E-mail: rookie_so_sleepy@yahoo.co.jp [Graduate School of Creative Science and Engineering, Waseda University, 1-6-1 Nishiwaseda, Shinjuku-ku, Tokyo 169-8050 (Japan)

2013-10-15T23:59:59.000Z

489

Solid State Joining of High Temperature Alloy Tubes for USC and Heat-Exchanger Systems  

SciTech Connect (OSTI)

The principal objective of this project was to develop materials enabling joining technologies for use in forward looking heat-exchanger fabrication in Brayton cycle HIPPS, IGCC, FutureGen concepts capable of operating at temperatures in excess of 1000{degree}C as well as conventional technology upgrades via Ultra Super-Critical (USC) Rankine-cycle boilers capable of operating at 760{degree}C (1400F)/38.5MPa (5500psi) steam, while still using coal as the principal fossil fuel. The underlying mission in Rankine, Brayton or Brayton-Rankine, or IGCC combined cycle heat engine is a steady quest to improving operating efficiency while mitigating global environmental concerns. There has been a progressive move to higher overall cycle efficiencies, and in the case of fossil fuels this has accelerated recently in part because of concerns about greenhouse gas emissions, notably CO{sub 2}. For a heat engine, the overall efficiency is closely related to the difference between the highest temperature in the cycle and the lowest temperature. In most cases, efficiency gains are prompted by an increase in the high temperature, and this in turn has led to increasing demands on the materials of construction used in the high temperature end of the systems. Our migration to new advanced Ni-base and Oxide Dispersion Strengthened (ODS) alloys poses significant fabrication challenges, as these materials are not readily weldable or the weld performs poorly in the high temperature creep regime. Thus the joining challenge is two-fold to a) devise appropriate joining methodologies for similar/dissimilar Ni-base and ODS alloys while b) preserving the near baseline creep performance in the welded region. Our program focus is on solid state joining of similar and dissimilar metals/alloys for heat exchanger components currently under consideration for the USC, HIPPS and IGCC power systems. The emphasis is to manipulate the joining methods and variables available to optimize joint creep performance compared to the base material creep performance. Similar and dissimilar butt joints were fabricated of MA956, IN740 alloys and using inertia welding techniques. We evaluated joining process details and heat treatments and its overall effect on creep response. Fixed and incrementally accelerated temperature creep tests were performed for similar and dissimilar joints and such incremental creep life data is compiled and reported. Long term MA956-MA556 joint tests indicate a firm 2Ksi creep stress threshold performance at 850{degree}C with a maximum exposure of over 9725 hours recorded in the current program. A Larsen Miller Parameter (LMP) of 48.50 for a 2Ksi test at 850{degree}C was further corroborated with tests at 2Ksi stress at 900{degree}C yielding a LMP=48.80. Despite this threshold the joints exhibit immense temperature sensitivity and fail promptly when test temperature raised above 900{degree}C. In comparison the performance of dissimilar joints was inferior, perhaps dictated by the creep characteristics of the mating nickel-base alloys. We describe a parametric window of joint development, and post weld heat treatment (PWHT) in dissimilar joints with solid solution (IN601, IN617) and precipitate strengthened (IN740) materials. Some concerns are evident regarding the diffusion of aluminum in dissimilar joints during high temperature recrystallization treatments. It is noted that aggressive treatments rapidly deplete the corrosion protecting aluminum reservoir in the vicinity of the joint interface. Subsequently, the impact of varying PWHT has been evaluated in the context on ensuing creep performance.

Bimal Kad

2011-12-31T23:59:59.000Z

490

Compact and efficient method of RGB to RGBW data conversion for OLED microdisplays  

E-Print Network [OSTI]

Colour Electronic Information Displays (EIDs) typically consist of pixels that are made up of red, green and blue (RGB) subpixels. A recent technology, Organic Light Emitting Diode (OLED), offers the potential to create ...

Can, Chi

2012-06-25T23:59:59.000Z

491

Solid-state NMR examination of alteration layers on nuclear waste glasses  

Science Journals Connector (OSTI)

Abstract Solid-state nuclear magnetic resonance (NMR) is a powerful tool for probing the role and significance of alteration layers in determining the kinetics for the corrosion of nuclear waste glass. NMR methods are used to probe the chemical structure of the alteration layers to elucidate information about their chemical complexity, leading to increased insight into the mechanism of altered layer formation. Two glass compositions were examined in this study: a glass preliminarily designed for nuclear waste immobilization (called AFCI) and a simplified version of this AFCI glass (which we call SA1R). Powdered glasses with controlled and known particle sizes were corroded in ASTM type I water at 90C for periods of one and five months with a glass surface-area to solution-volume ratio of 100,000m?1. 1H29Si cross-polarization Carr-Purcell-Meiboom-Gill (CP-CPMG) magic angle spinning (MAS) NMR, 1H27Al CP-MAS NMR, 1H11B CP-MAS NMR, and 1H23Na CP-MAS NMR experiments provided isolated structural information about the alteration layers, which differ in structure from that of the pristine glass. Both glasses studied here develop alteration layers composed primarily of [IV]Si species. Aluminum is also retained in the alteration layers, perhaps facilitated by the observed increase in coordination from [IV]Al to [VI]Al, which correlates with a loss of charge balancing cations. The mechanism of increasing coordination appears to occur through an unstable [V]Al intermediate. 1H11B CP-MAS NMR observations indicated a retention of boron in the hydrated glass layers, which has not been characterized by previous work. For the AFCI glass, secondary phase formation begins during the corrosion times considered here, and these new phases are detected within the alteration layers. We identify new phases (termed as precursor phases) as crystalline sodium metasilicates. An important finding is that simple glass compositions, while providing general trends about the formation of alteration layers, do not account for all of the various reaction products that occur in the corrosion of more complex nuclear waste glass compositions.

Kelly A. Murphy; Nancy M. Washton; Joseph V. Ryan; Carlo G. Pantano; Karl T. Mueller

2013-01-01T23:59:59.000Z

492

Achieving Record Efficiency for Blue OLEDs by Controlling the Charge Balance  

Broader source: Energy.gov [DOE]

Researchers at the University of Florida (UF) have demonstrated a blue phosphorescent organic light-emitting diode (OLED) with a peak power efficiency of 50 lm/W and an external quantum efficiency exceeding 20 percent at a luminance of 1,000 cd/m2, using no external light extraction techniques. This accomplishment is believed to be the world record in blue OLED efficiency.

493

Solid State Communications 143 (2007) 437441 www.elsevier.com/locate/ssc  

E-Print Network [OSTI]

for nanoscopic research and various applications including gas sensors [5], solar cells [6], optical waveguide deposition, metalorganic chemical vapor deposition and sputtering, solution-liquid­solid growth in organic and modeling impurity distribution in the end product -- nanorods and mesoporous films [8]. Resonant Raman

Chow, Lee

494

Critical importance of moisture content of the medium in alpha-amylase production by Bacillus licheniformis M27 in a solid-state fermentation system  

Science Journals Connector (OSTI)

A large reduction (about 30%78%) is observed in the production of alpha-amylase by Bacillus licheniformis...M27 in standardized wheat bran medium under solid-state fermentation when the moisture content of the m...

M. V. Ramesh; B. K. Lonsane

1990-08-01T23:59:59.000Z

495

Vehicle Technologies Office Merit Review 2014: Solid State NMR Studies of Li-Rich NMC Cathodes: Investigating Structure Change and Its Effect on Voltage Fade Phenomenon  

Broader source: Energy.gov [DOE]

Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about solid state NMR...

496

DOE Announces Selection of National Laboratory Center for Solid-State Lighting R&D and Seven Projects for Core Technology Research in Nanotechnology  

Broader source: Energy.gov [DOE]

The National Energy Technology Laboratory (NETL), on behalf of the U.S. Department of Energy (DOE), is pleased to announce the selection of the National Laboratory Center for Solid-State Lighting...

497

622 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 49, NO. 3, MARCH 2014 Co-Design of a CMOS Rectifier and Small Loop  

E-Print Network [OSTI]

622 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 49, NO. 3, MARCH 2014 Co-Design of a CMOS Rectifier (EM) en- ergy into electrical DC power. This DC power is locally stored in a capacitor or battery

Serdijn, Wouter A.

498

1352 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 37, NO. 10, OCTOBER 2002 A 120-mW 3-D Rendering Engine With 6-Mb Embedded DRAM  

E-Print Network [OSTI]

1352 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 37, NO. 10, OCTOBER 2002 A 120-mW 3-D Rendering digital assistant (PDA) in which the power has to be supplied by batteries. Since the lithium battery

Yoo, Hoi-Jun

499

310 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 40, NO. 1, JANUARY 2005 A 180-mV Subthreshold FFT Processor Using a  

E-Print Network [OSTI]

310 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 40, NO. 1, JANUARY 2005 A 180-mV Subthreshold FFT THERE is significant research activity to minimize energy dissipation at the system level to lengthen battery life

Chandrakasan, Anantha

500

IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 42, NO. 11, NOVEMBER 2007 2573 480-GMACS/mW Resonant Adiabatic  

E-Print Network [OSTI]

IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 42, NO. 11, NOVEMBER 2007 2573 480-GMACS/mW Resonant in the de- sign of portable and implantable microsystems supporting the use of a miniature battery power

Cauwenberghs, Gert