Sample records for oled integrated substrate

  1. PPG Industries Develops a Low-Cost Integrated OLED Substrate

    Broader source: Energy.gov [DOE]

    With the help of DOE funding, PPG Industries, Inc., has developed a low-cost OLED substrate, using inexpensive soda-lime "float" glass that the company manufactures at high volume for the architectural industry. Float glass is thin sheet glass and is much less expensive than the borosilicate or double-side-polished display glass that's currently being used as substrates by OLED device manufacturers.

  2. Recovery Act: Low Cost Integrated Substrate for OLED Lighting Development

    SciTech Connect (OSTI)

    Scott Benton; Abhinav Bhandari

    2012-09-30T23:59:59.000Z

    PPG pursued the development of an integrated substrate, including the anode, external, and internal extraction layers. The objective of PPGâ??s program was to achieve cost reductions by displacing the existing expensive borosilicate or double-side polished float glass substrates and developing alternative electrodes and scalable light extraction layer technologies through focused and short-term applied research. One of the key highlights of the project was proving the feasibility of using PPGâ??s high transmission Solarphire® float glass as a substrate to consistently achieve organic lightemitting diode (OLED) devices with good performance and high yields. Under this program, four low-cost alternatives to the Indium Tin Oxide (ITO) anode were investigated using pilot-scale magnetron sputtered vacuum deposition (MSVD) and chemical vapor deposition (CVD) technologies. The anodes were evaluated by fabricating small and large phosphorescent organic lightemitting diode (PHOLED) devices at Universal Display Corporation (UDC). The device performance and life-times comparable to commercially available ITO anodes were demonstrated. A cost-benefit analysis was performed to down-select two anodes for further low-cost process development. Additionally, PPG developed and evaluated a number of scalable and compatible internal and external extraction layer concepts such as scattering layers on the outside of the glass substrate or between the transparent anode and the glass interface. In one external extraction layer (EEL) approach, sol-gel sprayed pyrolytic coatings were deposited using lab scale equipment by hand or automated spraying of sol-gel solutions on hot glass, followed by optimizing of scattering with minimal absorption. In another EEL approach, PPG tested large-area glass texturing by scratching a glass surface with an abrasive roller and acid etching. Efficacy enhancements of 1.27x were demonstrated using white PHOLED devices for 2.0mm substrates which are at par with the standard diffuser sheets used by OLED manufacturers. For an internal extraction layer (IEL), PPG tested two concepts combining nanoparticles either in a solgel coating inserted between the anode and OLED or anode and glass interface, or incorporated into the internal surface of the glass. Efficacy enhancements of 1.31x were demonstrated using white PHOLED devices for the IEL by itself and factors of 1.73x were attained for an IEL in combination of thick acrylic block as an EEL. Recent offline measurements indicate that, with further optimization, factors over 2.0x could be achieved through an IEL alone.

  3. Quantum Dot Light Enhancement Substrate for OLED Solid-State Lighting

    SciTech Connect (OSTI)

    James Perkins; Matthew Stevenson; Gagan Mahan; Seth Coe-Sullivan; Peter Kazlas

    2011-01-21T23:59:59.000Z

    With DOE Award No. DE-EE00000628, QD Vision developed and demonstrated a cost-competitive solution for increasing the light extraction efficiency of OLEDs with efficient and stable color rendering index (CRI) for solid state lighting (SSL). Solution processable quantum dot (QD) films were integrated into OLED ITO-glass substrates to generate tunable white emission from blue emitting OLED) devices as well as outcouple light from the ITO film. This QD light-enhancement substrate (QD-LED) technology demonstrated a 60% increase in OLED forward light out-coupling, a value which increases to 76% when considering total increase in multi-directional light output. The objective for the first year was an 80% increase in light output. This project seeks to develop and demonstrate a cost-competitive solution for realizing increased extraction efficiency organic light emitting devices (OLEDs) with efficient and stable color rendering index (CRI) for SSL. Solution processible quantum dot (QD) films will be utilized to generate tunable white emission from blue emitting phosphorescent OLED (Ph-OLED) devices.

  4. Organic light emitting diodes (OLEDS) and OLED-based structurally integrated optical sensors

    SciTech Connect (OSTI)

    Cai, Yuankun

    2010-05-16T23:59:59.000Z

    General introduction to OLED basics and OLED-based structurally integrated sensors was provided in chapter 1 and chapter 2. As discussed in chapter 3, OLEDs were developed or improved using novel engineering methods for better charge injection (increased by over 1 order of magnitude) and efficiency. As the excitation sources, these OLEDs have preferred characteristics for sensor applications, including narrowed emission, emission at desired wavelength, and enhanced output for reduced EL background, higher absorption and improved device lifetime. In addition to OLEDs with desired performance, sensor integration requires oxidase immobilization with the sensor film for O{sub 2}-based biological and chemical sensing. Nanoparticles such as ZnO have large surface area and high isoelectric point ({approx}9.5), which favors enzyme immobilization via physical adsorption as well as Coulombic bonding. In chapter 4, it was demonstrated that ZnO could be used for this purpose, although future work is needed to further bond the ZnO to the sensor film. In chapter 5, single unit sensor was extended to multianalyte parallel sensing based on an OLED platform, which is compact and integrated with silicon photodiodes and electronics. Lactate and glucose were simultaneously monitored with a low limit of detection 0.02 mM, fast response time ({approx} 1 minute) and dynamic range from 0-8.6 ppm of dissolved oxygen. As discovered in previous work, the dynamic range covers 0-100% gas phase O{sub 2} or 0-40 ppm dissolved oxygen at room temperature. PL decay curve, which is used to extract the decay time, is usually not a simple exponential at high O{sub 2} concentration, which indicates that O{sub 2} is not equally accessible for different luminescent sites. This creates a challenge for data analysis, which however was successfully processed by stretched exponential as shown in chapter 6. This also provides an insight about the distribution of O{sub 2}:dye collisional quenching rate due to microheterogeneity. Effect of TiO{sub 2} doping was also discussed. Stretched exponential analysis also generates calibration curves with higher sensitivity, which is preferred from the operational point of view. The work of enhanced integration was shown in chapter 7 with a polymer photodetector, which enables the preferred operation mode, decay time measurement, due to fast reponse (<20 {mu}s). Device thickness was enlarged for maximum absorption of the PL, which was realized by slow spincoating rate and shorter spincoating time. Film prepared this way shows more crystalline order by Raman spectra, probably due to slow evaporation. This also ensures charge transport is not affected even with a thick film as indicated in the response time. Combination of OLEDs and polymer photodetectors present opportunities for solution processed all-organic sensors, which enables cheap processing at large scale. Future development can focus on monolithically integration of OLEDs and organic photodetectors (OPD) on the same substrate at a small scale, which could be enabled by inkjet printing. As OLED and OPD technologies continue to advance, small-sized, flexible and all-organic structurally integrated sensor platforms will become true in the near future.

  5. Integrated fuses for OLED lighting device

    DOE Patents [OSTI]

    Pschenitzka, Florian (San Jose, CA)

    2007-07-10T23:59:59.000Z

    An embodiment of the present invention pertains to an electroluminescent lighting device for area illumination. The lighting device is fault tolerant due, in part, to the patterning of one or both of the electrodes into strips, and each of one or more of these strips has a fuse formed on it. The fuses are integrated on the substrate. By using the integrated fuses, the number of external contacts that are used is minimized. The fuse material is deposited using one of the deposition techniques that is used to deposit the thin layers of the electroluminescent lighting device.

  6. High Efficancy Integrated Under-Cabinet Phosphorescent OLED

    SciTech Connect (OSTI)

    Michael Hack

    2001-10-31T23:59:59.000Z

    In this two year program Universal Display Corporation (UDC) together with the University of Michigan, Teknokon, developed and delivered an energy efficient phosphorescent OLED under cabinet illumination system. Specifically the UDC team goal was in 2011 to deliver five (5) Beta level OLED under cabinet lighting fixtures each consisting of five 6-inch x 6-inch OLED lighting panels, delivering over 420 lumens, at an overall system efficacy of >60 lm/W, a CRI of >85, and a projected lifetime to 70% of initial luminance to exceed 20,000 hours. During the course of this program, the Team pursued the commercialization of these OLED based under cabinet lighting fixtures, to enable the launch of commercial OLED lighting products. The UDC team was ideally suited to develop these novel and efficient solid state lighting fixtures, having both the technical experience and commercial distribution mechanisms to leverage work performed under this contract. UDC's business strategy is to non-exclusively license its PHOLED technology to lighting manufacturers, and also supply them with our proprietary PHOLED materials. UDC is currently working with several licensees who are manufacturing OLED lighting panels using our technology. During this 2 year program, we further developed our high efficiency white Phosphorescent OLEDs from the first milestone, achieving a 80 lm/W single pixel to the final milestone, achieving an under-cabinet PHOLED lighting system that operates at 56 lm/W at 420 lumens. Each luminaire was comprised of ten 15cm x 7.5cm lighting modules mounted in outcoupling enhancement lenses and a control module. The lamps modules are connected together using either plugs or wires with plugs on each end, allowing for unlimited configurations. The lamps are driven by an OLED driver mounted in an enclosure which includes the AC plug. As a result of advancements gained under this program, the path to move OLED lighting panels from development into manufacturing has been further realized. We have found that under-cabinet lighting is an ideal first entry product opportunity to launch OLED lighting for residential applications. From the studies that we have performed, our PHOLED under-cabinet lighting system performance is very similar to many of the current commercially available LED under-cabinet luminaires. We also found that the projected cost of PHOLED luminaire should be comparable to the LED luminaire by 2015. With the additional benefits of PHOLED lighting, no glare, better uniformity and low operating temperature, it can be easily seen how the PHOLED under-cabinet luminaire could be preferred over the LED competition. Although the metrics we set for this program were extremely aggressive, the performance we achieved and reported, represents a very significant advancement in the OLED lighting industry.

  7. Manufacturing Process for OLED Integrated Substrate | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment3311, 3312), October 2012 (MECS 2006)

  8. Enhanced performance of organic light-emitting diodes (OLEDs) and OLED-based photoluminescent sensing platforms by novel microstructures and device architectures

    SciTech Connect (OSTI)

    Liu, Rui [Ames Laboratory

    2012-08-01T23:59:59.000Z

    After a general introduction to OLEDs and OLED-based PL sensors, the transient emission mechanism of guest-host OLEDs is described both experimentally and theoretically. A monolithic and easy-to-apply process is demonstrated for fabricating multicolor microcavity OLEDs (that improve the sensor platform). The outcoupling issues of OLEDs at the substrate/air interface are addressed by using a microstructured polymer film resulting from a PS and polyethylene glycol (PEG) mixture. Based on the understanding of OLEDs and their improvement, research was done in order to realize integrated all organic-based O{sub 2} and pH sensors with improved signal intensity and sensitivity. The sensor design modification and optimization are summarized

  9. Thin Film Packaging Solutions for High Efficiency OLED Lighting Products

    SciTech Connect (OSTI)

    None

    2008-06-30T23:59:59.000Z

    The objective of the 'Thin Film Packaging Solutions for High Efficiency OLED Lighting Products' project is to demonstrate thin film packaging solutions based on SiC hermetic coatings that, when applied to glass and plastic substrates, support OLED lighting devices by providing longer life with greater efficiency at lower cost than is currently available. Phase I Objective: Demonstrate thin film encapsulated working phosphorescent OLED devices on optical glass with lifetime of 1,000 hour life, CRI greater than 75, and 15 lm/W. Phase II Objective: Demonstrate thin film encapsulated working phosphorescent OLED devices on plastic or glass composite with 25 lm/W, 5,000 hours life, and CRI greater than 80. Phase III Objective: Demonstrate 2 x 2 ft{sup 2} thin film encapsulated working phosphorescent OLED with 40 lm/W, 10,000 hour life, and CRI greater than 85. This report details the efforts of Phase III (Budget Period Three), a fourteen month collaborative effort that focused on optimization of high-efficiency phosphorescent OLED devices and thin-film encapsulation of said devices. The report further details the conclusions and recommendations of the project team that have foundation in all three budget periods for the program. During the conduct of the Thin Film Packaging Solutions for High Efficiency OLED Lighting Products program, including budget period three, the project team completed and delivered the following achievements: (1) a three-year marketing effort that characterized the near-term and longer-term OLED market, identified customer and consumer lighting needs, and suggested prototype product concepts and niche OLED applications lighting that will give rise to broader market acceptance as a source for wide area illumination and energy conservation; (2) a thin film encapsulation technology with a lifetime of nearly 15,000 hours, tested by calcium coupons, while stored at 16 C and 40% relative humidity ('RH'). This encapsulation technology was characterized as having less than 10% change in transmission during the 15,000 hour test period; (3) demonstrated thin film encapsulation of a phosphorescent OLED device with 1,500 hours of lifetime at 60 C and 80% RH; (4) demonstrated that a thin film laminate encapsulation, in addition to the direct thin film deposition process, of a polymer OLED device was another feasible packaging strategy for OLED lighting. The thin film laminate strategy was developed to mitigate defects, demonstrate roll-to-roll process capability for high volume throughput (reduce costs) and to support a potential commercial pathway that is less dependent upon integrated manufacturing since the laminate could be sold as a rolled good; (5) demonstrated that low cost 'blue' glass substrates could be coated with a siloxane barrier layer for planarization and ion-protection and used in the fabrication of a polymer OLED lighting device. This study further demonstrated that the substrate cost has potential for huge cost reductions from the white borosilicate glass substrate currently used by the OLED lighting industry; (6) delivered four-square feet of white phosphorescent OLED technology, including novel high efficiency devices with 82 CRI, greater than 50 lm/W efficiency, and more than 1,000 hours lifetime in a product concept model shelf; (7) presented and or published more than twenty internal studies (for private use), three external presentations (OLED workshop-for public use), and five technology-related external presentations (industry conferences-for public use); and (8) issued five patent applications, which are in various maturity stages at time of publication. Delivery of thin film encapsulated white phosphorescent OLED lighting technology remains a challenging technical achievement, and it seems that commercial availability of thin, bright, white OLED light that meets market requirements will continue to require research and development effort. However, there will be glass encapsulated white OLED lighting products commercialized in niche markets during the 2008 calendar year. This commercializ

  10. Using prismatic microstructured films for image blending in OLEDS

    DOE Patents [OSTI]

    Haenichen, Lukas (Anspach, DE); Pschenitzka, Florian (San Francisco, CA)

    2009-09-08T23:59:59.000Z

    An apparatus such as a light source is disclosed which has an OLED device and a microstructured film disposed on the substrate or transparent electrode of said OLED device and on the exterior of said OLED device. The microstructured film contains features which diffuse light emitted by said OLED device and increase the luminance of the device.

  11. OLED area illumination source

    DOE Patents [OSTI]

    Foust, Donald Franklin (Scotia, NY); Duggal, Anil Raj (Niskayuna, NY); Shiang, Joseph John (Niskayuna, NY); Nealon, William Francis (Gloversville, NY); Bortscheller, Jacob Charles (Clifton Park, NY)

    2008-03-25T23:59:59.000Z

    The present invention relates to an area illumination light source comprising a plurality of individual OLED panels. The individual OLED panels are configured in a physically modular fashion. Each OLED panel comprising a plurality of OLED devices. Each OLED panel comprises a first electrode and a second electrode such that the power being supplied to each individual OLED panel may be varied independently. A power supply unit capable of delivering varying levels of voltage simultaneously to the first and second electrodes of each of the individual OLED panels is also provided. The area illumination light source also comprises a mount within which the OLED panels are arrayed.

  12. OLED devices

    DOE Patents [OSTI]

    Sapochak, Linda Susan [Arlington, VA; Burrows, Paul Edward [Kennewick, WA; Bimalchandra, Asanga [Richland, WA

    2011-02-22T23:59:59.000Z

    An OLED device having an emission layer formed of an ambipolar phosphine oxide host material and a dopant, a hole transport layer in electrical communication with an anode, an electron transport layer in communication with a cathode, wherein the HOMO energy of the hole transport layer is substantially the same as the HOMO energy of the ambipolar host in the emission layer, and the LUMO energy of the electron transport layer is substantially the same as the LUMO energy of the ambipolar host in the emission layer.

  13. Novel Structured LED and OLED Devices - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to achieve a semiconductor island structure of high crystalline quality for covering the substrate. Similarly, light extraction, particularly for OLEDs, remains an obstacle to...

  14. Integrated broadband bowtie antenna on transparent substrate

    E-Print Network [OSTI]

    Zhang, Xingyu; Subbaraman, Harish; Zhan, Qiwen; Pan, Zeyu; Chung, Chi-jui; Yan, Hai; Chen, Ray T

    2015-01-01T23:59:59.000Z

    The bowtie antenna is a topic of growing interest in recent years. In this paper, we design, fabricate, and characterize a modified gold bowtie antenna integrated on a transparent glass substrate. We numerically investigate the antenna characteristics, specifically its resonant frequency and enhancement factor. We simulate the dependence of resonance frequency on bowtie geometry, and verify the simulation results through experimental investigation, by fabricating different sets of bowtie antennas on glass substrates utilizing CMOS compatible processes and measuring their resonance frequencies. Our designed bowtie antenna provides a strong broadband electric field enhancement in its feed gap. The far-field radiation pattern of the bowtie antenna is measured, and it shows dipole-like characteristics with large beam width. Such a broadband antenna will be useful for a myriad of applications, ranging from wireless communications to electromagnetic wave detection.

  15. Development of High Efficacy, Low Cost Phosphorescent Oled Lightning Luminaire

    SciTech Connect (OSTI)

    Michael Hack

    2010-07-09T23:59:59.000Z

    In this two year program, UDC together with Armstrong World Industries, Professor Stephen Forrest (University of Michigan) and Professor Mark Thompson (University of Southern California) planned to develop and deliver high efficiency OLED lighting luminaires as part of an integrated ceiling illumination system that exceed the Department of Energy (DOE) 2010 performance projections. Specifically the UDC team in 2010 delivered two prototype OLED ceiling illumination systems, each consisting of four individual OLED lighting panels on glass integrated into Armstrong's novel TechZone open architecture ceiling systems, at an overall system efficacy of 51 lm/W, a CRI = 85 and a projected lifetime to 70% of initial luminance to exceed 10,000 hours. This accomplishment represents a 50% increase in luminaire efficacy and a factor of two in lifetime over that outlined in the solicitation. In addition, the team has also delivered one 15cm x 15cm lighting panel fabricated on a flexible metal foil substrate, demonstrating the possibility using OLEDs in a range of form factors. During this program, our Team has pursued the commercialization of these OLED based ceiling luminaires, with a goal to launch commercial products within the next three years. We have proven that our team is ideally suited to develop these highly novel and efficient solid state lighting luminaires, having both the technical experience and commercial strategy to leverage work performed under this contract. Our calculations show that the success of our program could lead to energy savings of more than 0.5 quads or 8 MMTC (million metric tons of carbon) per year by 2016.

  16. A Middleware Substrate for Integrating Services on the Grid

    E-Print Network [OSTI]

    Daniels, Jeffrey J.

    A Middleware Substrate for Integrating Services on the Grid Viraj Bhat and Manish Parashar://www.caip.rutgers.edu/TASSL Abstract. In this paper we present the design, implementation and evaluation of the Grid-enabled Discover middleware substrate. The mid- dleware substrate enables Grid infrastructure services provided by the Globus

  17. My Favorite OLED Panel

    Energy Savers [EERE]

    My Favorite OLED Panel Basar Erdener Sun and Snow Photo Courtesy 2009-2015 Kvikken 2 Sizable 3 Sizable Photo Courtesy Printmeneer on Etsy 4 5 Shapeable Photo Courtesy Dia...

  18. Integration of indium phosphide based devices with flexible substrates

    E-Print Network [OSTI]

    Chen, Wayne Huai

    2011-01-01T23:59:59.000Z

    Silicon Layers onto Flexible Substrates”, Electrochemicalof single-crystalline InP with flexible substrates", AppliedInfrared Bolometers on Flexible Polyimide Substrates,"

  19. Roll-to-Roll Solution-Processible Small-Molecule OLEDs

    SciTech Connect (OSTI)

    Liu, Jie Jerry

    2012-07-31T23:59:59.000Z

    The objective of this program is to develop key knowledge and make critical connections between technologies needed to enable low-cost manufacturing of OLED lighting products. In particular, the program was intended to demonstrate the feasibility of making high performance Small-Molecule OLEDs (SM-OLED) using a roll-to-roll (R2R) wet-coating technique by addressing the following technical risks (1) Whether the wet-coating technique can provide high performance OLEDs, (2) Whether SM-OLED can be made in a R2R manner, (3) What are the requirements for coating equipment, and (4) Whether R2R OLEDs can have the same performance as the lab controls. The program has been managed and executed according to the Program Management Plan (PMP) that was first developed at the beginning of the program and further revised accordingly as the program progressed. Significant progress and risk reductions have been accomplished by the end of the program. Specific achievements include: (1) Demonstrated that wet-coating can provide OLEDs with high LPW and long lifetime; (2) Demonstrated R2R OLEDs can be as efficient as batch controls (Figure 1) (3) Developed & validated basic designs for key equipment necessary for R2R SM-OLEDs; (4) Developed know-hows & specifications on materials & ink formulations critical to wetcoating; (5) Developed key R2R processes for each OLED layer (6) Identified key materials and components such as flexible barrier substrates necessary for R2R OLEDs.

  20. High Efficiency, Illumination Quality OLEDs for Lighting

    SciTech Connect (OSTI)

    Joseph Shiang; James Cella; Kelly Chichak; Anil Duggal; Kevin Janora; Chris Heller; Gautam Parthasarathy; Jeffery Youmans; Joseph Shiang

    2008-03-31T23:59:59.000Z

    The goal of the program was to demonstrate a 45 lumen per watt white light device based upon the use of multiple emission colors through the use of solution processing. This performance level is a dramatic extension of the team's previous 15 LPW large area illumination device. The fundamental material system was based upon commercial polymer materials. The team was largely able to achieve these goals, and was able to deliver to DOE a 90 lumen illumination source that had an average performance of 34 LPW a 1000 cd/m{sup 2} with peak performances near 40LPW. The average color temperature is 3200K and the calculated CRI 85. The device operated at a brightness of approximately 1000cd/m{sup 2}. The use of multiple emission colors particularly red and blue, provided additional degrees of design flexibility in achieving white light, but also required the use of a multilayered structure to separate the different recombination zones and prevent interconversion of blue emission to red emission. The use of commercial materials had the advantage that improvements by the chemical manufacturers in charge transport efficiency, operating life and material purity could be rapidly incorporated without the expenditure of additional effort. The program was designed to take maximum advantage of the known characteristics of these material and proceeded in seven steps. (1) Identify the most promising materials, (2) assemble them into multi-layer structures to control excitation and transport within the OLED, (3) identify materials development needs that would optimize performance within multilayer structures, (4) build a prototype that demonstrates the potential entitlement of the novel multilayer OLED architecture (5) integrate all of the developments to find the single best materials set to implement the novel multilayer architecture, (6) further optimize the best materials set, (7) make a large area high illumination quality white OLED. A photo of the final deliverable is shown. In 2003, a large area, OLED based illumination source was demonstrated that could provide light with a quality, quantity, and efficiency on par with what can be achieved with traditional light sources. The demonstration source was made by tiling together 16 separate 6-inch x 6-inch blue-emitting OLEDs. The efficiency, total lumen output, and lifetime of the OLED based illumination source were the same as what would be achieved with an 80 watt incandescent bulb. The devices had an average efficacy of 15 LPW and used solution-processed OLEDs. The individual 6-inch x 6-inch devices incorporated three technology strategies developed specifically for OLED lighting -- downconversion for white light generation, scattering for outcoupling efficiency enhancement, and a scalable monolithic series architecture to enable large area devices. The downconversion approach consists of optically coupling a blue-emitting OLED to a set of luminescent layers. The layers are chosen to absorb the blue OLED emission and then luminescence with high efficiency at longer wavelengths. The composition and number of layers are chosen so that the unabsorbed blue emission and the longer wavelength re-emission combine to make white light. A downconversion approach has the advantage of allowing a wide variety of colors to be made from a limited set of blue emitters. In addition, one does not have to carefully tune the emission wavelength of the individual electro-luminescent species within the OLED device in order to achieve white light. The downconversion architecture used to develop the 15LPW large area light source consisted of a polymer-based blue-emitting OLED and three downconversion layers. Two of the layers utilized perylene based dyes from BASF AG of Germany with high quantum efficiency (>98%) and one of the layers consisted of inorganic phosphor particles (Y(Gd)AG:Ce) with a quantum efficiency of {approx}85%. By independently varying the optical density of the downconversion layers, the overall emission spectrum could be adjusted to maximize performance for lighting (e.g. blackbody temp

  1. A Novel Thermal Position Sensor Integrated On A Plastic Substrate

    E-Print Network [OSTI]

    A. Petropoulos; G. Kaltsas; D. Goustouridis; A. G. Nassiopoulou

    2008-01-07T23:59:59.000Z

    A thermal position sensor was fabricated and evaluated. The device consists of an array of temperature sensing elements, fabricated entirely on a plastic substrate. A novel fabrication technology was implemented which allows direct integration with read out electronics and communication to the macro-world without the use of wire bonding. The fabricated sensing elements are temperature sensitive Pt resistors with an average TCR of 0.0024/C. The device realizes the detection of the position and the motion of a heating source by monitoring the resistance variation of the thermistor array. The application field of such a cost-effective position sensor is considered quite extensive.

  2. 2014 OLED Stakeholder Meeting Report

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... 16 1 1. Introduction The 2014 Organic Light Emitting Diode (OLED) Stakeholder Meeting was convened by the U.S. Department of Energy (DOE)...

  3. Substrate engineering for monolithic integration of III-V semiconductors with Si CMOS technology

    E-Print Network [OSTI]

    Dohrman, Carl Lawrence

    2008-01-01T23:59:59.000Z

    Ge virtual substrates, fabricated using Si1-xGex-.Ge, compositionally graded buffers, enable the epitaxial growth of device-quality GaAs on Si substrates, but monolithic integration of III-V semiconductors with Si CMOS ...

  4. Substrate-Integrated Waveguide Filter Design Using Mode-Matching Techniques

    E-Print Network [OSTI]

    Bornemann, Jens

    technologies, substrate-integrated waveguide (SIW) components have emerged as low-cost and planar alternatives for the analysis and design of substrate-integrated waveguide (SIW) filters. Recently developed fabrication methods, which are more geared towards waveguide-based analysis and design, are in demand. Two

  5. UDC Demonstrates Phosphorescent OLED Systems

    Broader source: Energy.gov [DOE]

    Universal Display Corporation (UDC), along with project partners Armstrong World Industries and the universities of Michigan and Southern California, have successfully demonstrated two phosphorescent OLED (PHOLED™) luminaire systems, the first of their kind in the U.S. This achievement marks a critical step in the development of practical OLED lighting in a complete luminaire system, including decorative housing, power supply, mounting, and maintenance provisions. Each luminaire has overall dimensions of approximately 15x60 cm and is comprised of four 15x15 cm phosphorescent OLED panels. With a combined power supply and lamp efficacy of 51 lm/W, the prototype luminaire is about twice as efficient as the market-leading halogen-based systems. In addition, the prototype OLED lighting system snaps into Armstrong's TechZone™ Ceiling System, which is commercially available in the U.S.x

  6. Tunable Substrate Integrated Waveguide Filters Implemented with PIN Diodes and RF MEMS Switches 

    E-Print Network [OSTI]

    Armendariz, Marcelino

    2012-02-14T23:59:59.000Z

    This thesis presents the first fully tunable substrate integrated waveguide (SIW) filter implemented with PIN diodes and RF MEMS switches. The methodology for tuning SIW filters is explained in detail and is used to create three separate designs...

  7. Tunable Substrate Integrated Waveguide Filters Implemented with PIN Diodes and RF MEMS Switches

    E-Print Network [OSTI]

    Armendariz, Marcelino

    2012-02-14T23:59:59.000Z

    This thesis presents the first fully tunable substrate integrated waveguide (SIW) filter implemented with PIN diodes and RF MEMS switches. The methodology for tuning SIW filters is explained in detail and is used to create three separate designs...

  8. LED Watch: The Outlook for OLEDs

    Broader source: Energy.gov [DOE]

    December 2014 LED Watch: The Outlook for OLEDs James Brodrick, U.S. Department of Energy LD+A Magazine

  9. High Quantum Efficiency OLED Lighting Systems

    SciTech Connect (OSTI)

    Shiang, Joseph

    2011-09-30T23:59:59.000Z

    The overall goal of the program was to apply improvements in light outcoupling technology to a practical large area plastic luminaire, and thus enable the product vision of an extremely thin form factor high efficiency large area light source. The target substrate was plastic and the baseline device was operating at 35 LPW at the start of the program. The target LPW of the program was a >2x improvement in the LPW efficacy and the overall amount of light to be delivered was relatively high 900 lumens. Despite the extremely difficult challenges associated with scaling up a wet solution process on plastic substrates, the program was able to make substantial progress. A small molecule wet solution process was successfully implemented on plastic substrates with almost no loss in efficiency in transitioning from the laboratory scale glass to large area plastic substrates. By transitioning to a small molecule based process, the LPW entitlement increased from 35 LPW to 60 LPW. A further 10% improvement in outcoupling efficiency was demonstrated via the use of a highly reflecting cathode, which reduced absorptive loss in the OLED device. The calculated potential improvement in some cases is even larger, ~30%, and thus there is considerable room for optimism in improving the net light coupling efficacy, provided absorptive loss mechanisms are eliminated. Further improvements are possible if scattering schemes such as the silver nanowire based hard coat structure are fully developed. The wet coating processes were successfully scaled to large area plastic substrate and resulted in the construction of a 900 lumens luminaire device.

  10. Soft lithography microlens fabrication and array for enhanced light extraction from organic light emitting diodes (OLEDs)

    SciTech Connect (OSTI)

    Leung, Wai Y.; Park, Joong-Mok; Gan, Zhengqing; Constant, Kristen P.; Shinar, Joseph; Shinar, Ruth; ho, Kai-Ming

    2014-06-03T23:59:59.000Z

    Provided are microlens arrays for use on the substrate of OLEDs to extract more light that is trapped in waveguided modes inside the devices and methods of manufacturing same. Light extraction with microlens arrays is not limited to the light emitting area, but is also efficient in extracting light from the whole microlens patterned area where waveguiding occurs. Large microlens array, compared to the size of the light emitting area, extract more light and result in over 100% enhancement. Such a microlens array is not limited to (O)LEDs of specific emission, configuration, pixel size, or pixel shape. It is suitable for all colors, including white, for microcavity OLEDs, and OLEDs fabricated directly on the (modified) microlens array.

  11. Series connected OLED structure and fabrication method

    DOE Patents [OSTI]

    Foust, Donald Franklin; Balch, Ernest Wayne; Duggal, Anil Raj; Heller, Christian Maria; Guida, Renato; Nealon, William Francis; Faircloth, Tami Janene

    2006-05-23T23:59:59.000Z

    A light emitting device comprises a plurality of organic light emitting diode (OLED) modules. The OLED modules are arranged into a series group where the individual OLED modules are electrically connected in series. The device is configured to be coupled to a power supply. A display is also provided. The display includes a plurality of OLED modules arranged to depict a shape selected from the group consisting of at least one letter, at least one number, at least one image, and a combination thereof.

  12. Challenges in OLED Research and Development

    Broader source: Energy.gov [DOE]

    View the video about OLED technology’s advantages and what is needed to move it fully into the lighting market.

  13. Novel Low Cost Organic Vapor Jet Printing of Striped High Efficiency Phosphorescent OLEDs for White Lighting

    SciTech Connect (OSTI)

    Mike Hack

    2008-12-31T23:59:59.000Z

    In this program, Universal Display Corporation and University of Michigan proposed to integrate three innovative concepts to meet the DOE's Solid State Lighting (SSL) goals: (1) high-efficiency phosphorescent organic light emitting device (PHOLED{trademark}) technology, (2) a white lighting design that is based on a series of red, green and blue OLED stripes, and (3) the use of a novel cost-effective, high rate, mask-less deposition process called organic vapor jet printing (OVJP). Our PHOLED technology offers up to four-times higher power efficiency than other OLED approaches for general lighting. We believe that one of the most promising approaches to maximizing the efficiency of OLED lighting sources is to produce stripes of the three primary colors at such a pitch (200-500 {mu}m) that they appear as a uniform white light to an observer greater than 1 meter (m) away from the illumination source. Earlier work from a SBIR Phase 1 entitled 'White Illumination Sources Using Striped Phosphorescent OLEDs' suggests that stripe widths of less than 500 {mu}m appear uniform from a distance of 1m without the need for an external diffuser. In this program, we intend to combine continued advances in this PHOLED technology with the striped RGB lighting design to demonstrate a high-efficiency, white lighting source. Using this background technology, the team has focused on developing and demonstrating the novel cost-effective OVJP process to fabricate these high-efficiency white PHOLED light sources. Because this groundbreaking OVJP process is a direct printing approach that enables the OLED stripes to be printed without a shadow mask, OVJP offers very high material utilization and high throughput without the costs and wastage associated with a shadow mask (i.e. the waste of material that deposits on the shadow mask itself). As a direct printing technique, OVJP also has the potential to offer ultra-high deposition rates (> 1,000 Angstroms/second) for any size or shaped features. As a result, we believe that this work will lead to the development of a cost-effective manufacturing solution to produce very-high efficiency OLEDs. By comparison to more common ink-jet printing (IJP), OVJP can also produce well-defined patterns without the need to pattern the substrate with ink wells or to dry/anneal the ink. In addition, the material set is not limited by viscosity and solvent solubility. During the program we successfully demonstrated a 6-inch x 6-inch PHOLED lighting panel consisting of fine-featured red, green and blue (R-G-B) stripes (1mm width) using an OVJP deposition system that was designed, procured and installed into UDC's cleanroom as part of this program. This project will significantly accelerate the DOE's ability to meet its 2015 DOE SSL targets of 70-150 lumens/Watt and less than $10 per 1,000 lumens for high CRI lighting index (76-90). Coupled with a low cost manufacturing path through OVJP, we expect that this achievement will enable the DOE to achieve its 2015 performance goals by the year 2013, two years ahead of schedule. As shown by the technical work performed under this program, we believe that OVJP is a very promising technology to produce low cost, high efficacy, color tunable light sources. While we have made significant progress to develop OVJP technology and build a pilot line tool to study basic aspects of the technology and demonstrate a lighting panel prototype, further work needs to be performed before its full potential and commercial viability can be fully assessed.

  14. Method and system for evaluating integrity of adherence of a conductor bond to a mating surface of a substrate

    DOE Patents [OSTI]

    Telschow, K.L.; Siu, B.K.

    1996-07-09T23:59:59.000Z

    A method of evaluating integrity of adherence of a conductor bond to a substrate includes: (a) impinging a plurality of light sources onto a substrate; (b) detecting optical reflective signatures emanating from the substrate from the impinged light; (c) determining location of a selected conductor bond on the substrate from the detected reflective signatures; (d) determining a target site on the selected conductor bond from the detected reflective signatures; (e) optically imparting an elastic wave at the target site through the selected conductor bond and into the substrate; (f) optically detecting an elastic wave signature emanating from the substrate resulting from the optically imparting step; and (g) determining integrity of adherence of the selected conductor bond to the substrate from the detected elastic wave signature emanating from the substrate. A system is disclosed which is capable of conducting the method. 13 figs.

  15. Thin SiGe virtual substrates for Ge heterostructures integration on silicon

    SciTech Connect (OSTI)

    Cecchi, S., E-mail: stefano.cecchi@mdm.imm.cnr.it; Chrastina, D.; Frigerio, J.; Isella, G. [L-NESS, Dipartimento di Fisica, Politecnico di Milano–Polo Territoriale di Como, Via Anzani 42, I-22100 Como (Italy); Gatti, E.; Guzzi, M. [L-NESS, Dipartimento di Scienza dei Materiali, Università di Milano Bicocca, via Cozzi 53, I-20126 Milano (Italy); Müller Gubler, E. [Electron Microscopy ETH Zurich, ETH Zurich, Auguste-Piccard-Hof 1, CH-8093 Zurich (Switzerland); Paul, D. J. [School of Engineering, University of Glasgow, Rankine Building, Oakfield Avenue, Glasgow G12 8LT (United Kingdom)

    2014-03-07T23:59:59.000Z

    The possibility to reduce the thickness of the SiGe virtual substrate, required for the integration of Ge heterostructures on Si, without heavily affecting the crystal quality is becoming fundamental in several applications. In this work, we present 1??m thick Si{sub 1?x}Ge{sub x} buffers (with x?>?0.7) having different designs which could be suitable for applications requiring a thin virtual substrate. The rationale is to reduce the lattice mismatch at the interface with the Si substrate by introducing composition steps and/or partial grading. The relatively low growth temperature (475?°C) makes this approach appealing for complementary metal-oxide-semiconductor integration. For all the investigated designs, a reduction of the threading dislocation density compared to constant composition Si{sub 1?x}Ge{sub x} layers was observed. The best buffer in terms of defects reduction was used as a virtual substrate for the deposition of a Ge/SiGe multiple quantum well structure. Room temperature optical absorption and photoluminescence analysis performed on nominally identical quantum wells grown on both a thick graded virtual substrate and the selected thin buffer demonstrates a comparable optical quality, confirming the effectiveness of the proposed approach.

  16. Creation of a U.S. Phosphorescent OLED Lighting Panel Manufacturing Facility

    SciTech Connect (OSTI)

    Hack, Michael

    2013-09-30T23:59:59.000Z

    Universal Display Corporation (UDC) has pioneered high efficacy phosphorescent OLED (PHOLED™) technology to enable the realization of an exciting new form of high quality, energy saving solid-date lighting. In laboratory test devices, we have demonstrated greater than 100 lm/W conversion efficacy. In this program, Universal Display will demonstrate the scalability of its proprietary UniversalPHOLED technology and materials for the manufacture of white OLED lighting panels that meet commercial lighting targets. Moser Baer Technologies will design and build a U.S.- based pilot facility. The objective of this project is to establish a pilot phosphorescent OLED (PHOLED) manufacturing line in the U.S. Our goal is that at the end of the project, prototype lighting panels could be provided to U.S. luminaire manufacturers for incorporation into products to facilitate the testing of design concepts and to gauge customer acceptance, so as to facilitate the growth of the embryonic U.S. OLED lighting industry. In addition, the team will provide a cost of ownership analysis to quantify production costs including OLED performance metrics which relate to OLED cost such as yield, materials usage, cycle time, substrate area, and capital depreciation. This project was part of a new DOE initiative designed to help establish and maintain U.S. leadership in this program will support key DOE objectives by showing a path to meet Department of Energy Solid-State Lighting Manufacturing Roadmap cost targets, as well as meeting its efficiency targets by demonstrating the energy saving potential of our technology through the realization of greater than 76 lm/W OLED lighting panels by 2012.

  17. OLED Stakeholder Meeting Report | Department of Energy

    Energy Savers [EERE]

    Report OLED Stakeholder Meeting Report.pdf More Documents & Publications 2015 Project Portfolio 2015 SSL R&D WORKSHOP PRESENTATIONS - DAY 2 Solid-State Lighting R&D...

  18. Application of Developed APCVD Transparent Conducting Oxides and Undercoat Technologies for Economical OLED Lighting

    SciTech Connect (OSTI)

    Martin Bluhm; James Coffey; Roman Korotkov; Craig Polsz; Alexandre Salemi; Robert Smith; Ryan Smith; Jeff Stricker; Chen Xu; Jasmine Shirazi; George Papakonstantopulous; Steve Carson; Claudia Goldman; Soren Hartmann; Frank Jessen; Bianca Krogmann; Christoph Rickers; Manfred Ruske; Holger Schwab; Dietrich Bertram

    2011-01-02T23:59:59.000Z

    Economics is a key factor for application of organic light emitting diodes (OLED) in general lighting relative to OLED flat panel displays that can handle high cost materials such as indium tin oxide (ITO) or Indium zinc oxide (IZO) as the transparent conducting oxide (TCO) on display glass. However, for OLED lighting to penetrate into general illumination, economics and sustainable materials are critical. The issues with ITO have been documented at the DOE SSL R&D and Manufacturing workshops for the last 5 years and the issue is being exacerbated by export controls from China (one of the major sources of elemental indium). Therefore, ITO is not sustainable because of the fluctuating costs and the United States (US) dependency on other nations such as China. Numerous alternatives to ITO/IZO are being evaluated such as Ag nanoparticles/nanowires, carbon nanotubes, graphene, and other metal oxides. Of these other metal oxides, doped zinc oxide has attracted a lot of attention over the last 10 years. The volume of zinc mined is a factor of 80,000 greater than indium and the US has significant volumes of zinc mined domestically, resulting in the ability for the US to be self-sufficient for this element that can be used in optoelectronic applications. The costs of elemental zinc is over 2 orders of magnitude less than indium, reflecting the relative abundance and availability of the elements. Arkema Inc. and an international primary glass manufacturing company, which is located in the United States, have developed doped zinc oxide technology for solar control windows. The genesis of this DOE SSL project was to determine if doped zinc oxide technology can be taken from the commodity based window market and translate the technology to OLED lighting. Thus, Arkema Inc. sought out experts, Philips Lighting, Pacific Northwest National Laboratories (PNNL) and National Renewable Research Laboratories (NREL), in OLED devices and brought them into the project. This project had a clear focus on economics and the work plan focused both on doped ZnO process and OLED device structure that would be consistent with the new TCO. The team successfully made 6 inch OLEDs with a serial construction. More process development is required to optimize commercial OLED structures. Feasibility was demonstrated on two different light extraction technologies: 1/4 lambda refractive index matching and high-low-high band pass filter. Process development was also completed on the key precursors for the TCO, which are ready for pilot-plant scale-up. Subsequently, Arkema has developed a cost of ownership model that is consistent with DOE SSL R&D Manufacturing targets as outlined in the DOE SSL R&D Manufacturing 2010 report. The overall outcome of this project was the demonstration that doped zinc oxide can be used for OLED devices without a drop-off in performance while gaining the economic and sustainable benefits of a more readily available TCO. The broad impact of this project, is the facilitation of OLED lighting market penetration into general illumination, resulting in significant energy savings, decreased greenhouse emissions, with no environmental impact issues such as mercury found in Fluorescent technology. The primary objective of this project was to develop a commercially viable process for 'Substrates' (Substrate/ undercoat/ TCO topcoat) to be used in production of OLED devices (lamps/luminaries/modules). This project focused on using Arkema's recently developed doped ZnO technology for the Fenestration industry and applying the technology to the OLED lighting industry. The secondary objective was the use of undercoat technology to improve light extraction from the OLED device. In optical fields and window applications, technology has been developed to mitigate reflection losses by selecting appropriate thicknesses and refractive indices of coatings applied either below or above the functional layer of interest. This technology has been proven and implemented in the fenestration industry for more than 15 years. Successful completion of

  19. Text-Alternative Version: Challenges in OLED Research and Development

    Broader source: Energy.gov [DOE]

    Narrator: Organic light-emitting diodes, OLEDs, are made using organic carbon-based materials. Unlike LEDs, which are small point light sources, OLEDs are made in sheets that create diffuse area...

  20. Coaxial recess integration of InGaAs edge emitting laser diodes with waveguides on silicon substrates : a complete solution to laser integration on ICs

    E-Print Network [OSTI]

    Famenini, Shaya

    2012-01-01T23:59:59.000Z

    In this thesis, the first demonstration of the full integration of 1.55[mu]m InGaAs/InP edge emitting platelet laser diodes with SiON/SiO2 dielectric waveguides on a silicon substrate is presented. Small footprint laser ...

  1. Low Voltage White Phosphorescent OLED Achievements

    Broader source: Energy.gov [DOE]

    Universal Display Corporation (UDC) and its research partners at Princeton University and the University of Southern California have succeeded in developing a white phosphorescent OLED (PHOLED™) that achieved a record efficiency of 20 lumens per watt. This achievement is the result of the team's collaborative efforts to increase the efficiency of PHOLED lighting by focusing on two critical factors: lowering the drive voltages and increasing the amount of light extracted.

  2. Record External Quantum Efficiency in Blue OLED Device

    Broader source: Energy.gov [DOE]

    Scientists at Pacific Northwest National Laboratory (PNNL) have created a blue organic light emitting diode (OLED) with an external quantum efficiency (EQE) of 11% at 800 cd/m2, exceeding their previous record EQE of 8%. The EQE of blue OLEDs is a major challenge in OLED technology development. This achievement is particularly notable since it was accomplished at a much lower operating voltage (6.2V) than previous demonstrations using similar structures, revealing the potential for much higher power efficiencies.

  3. OLED Manufacture Challenge: Strategy for Cost Reduction and Yield...

    Energy Savers [EERE]

    activity in China will help to leverage the fund for potential market of OLED lighting: Eye-shielding Lamps for Children Shadowless Surgical Operating Lamp New Construction Design...

  4. Spectrally narrowed leaky waveguide edge emission and transient electrluminescent dynamics of OLEDs

    SciTech Connect (OSTI)

    Zhengqing, Gan

    2010-05-16T23:59:59.000Z

    In summary, there are two major research works presented in this dissertation. The first research project (Chapter 4) is spectrally narrowed edge emission from Organic Light Emitting Diodes. The second project (Chapter 5) is about transient electroluminescent dynamics in OLEDs. Chapter 1 is a general introduction of OLEDs. Chapter 2 is a general introduction of organic semiconductor lasers. Chapter 3 is a description of the thermal evaporation method for OLED fabrication. The detail of the first project was presented in Chapter 4. Extremely narrowed spectrum was observed from the edge of OLED devices. A threshold thickness exists, above which the spectrum is narrow, and below which the spectrum is broad. The FWHM of spectrum depends on the material of the organic thin films, the thickness of the organic layers, and length of the OLED device. A superlinear relationship between the output intensity of the edge emission and the length of the device was observed, which is probably due to the misalignment of the device edge and the optical fiber detector. The original motivation of this research is for organic semiconductor laser that hasn't been realized due to the extremely high photon absorption in OLED devices. Although we didn't succeed in fabricating an electrically pumped organic laser diode, we made a comprehensive research in edge emission of OLEDs which provides valuable results in understanding light distribution and propagation in OLED devices. Chapter 5 focuses on the second project. A strong spike was observed at the falling edge of a pulse, and a long tail followed. The spike was due to the recombination of correlated charge pair (CCP) created by trapped carriers in guest molecules of the recombination zone. When the bias was turned off, along with the decreasing of electric field in the device, the electric field induced quenching decreases and the recombination rate of the CCP increases which result in the spike. This research project provides a profound understanding of the EL dynamics of OLED, and the theoretical model can fit and explain the experiment data quite well. For the edge emission, we focused on the spectrum and the relative intensity of the edge emission. In the future, more research can be done on the comparison of the intensity between the total edge emission and the surface emission which will give us a sense what fraction of light was trapped in the device. Micro structures can be integrated into the OLED such as DFB and DBR, the character of edge emission should be very interesting. For the transient spike, the CCP model can give a good explanation. But in the model, the effect of the electric field change is not included, because from the start point (t=0), we assume the mobility of carriers is a constant. If we consider the details of the change of the electric field, then when turning of the bias, the decrease of the electric field results in decrease of the carrier mobility and the dissociation rate. If we can add the electric field effect into the model, the whole theory will be more convincing.

  5. Solution-Processable Transparent Conductive Hole Injection Electrode for OLED SSL

    SciTech Connect (OSTI)

    None

    2012-07-15T23:59:59.000Z

    An interconnected network of silver nanowires has been used as transparent anode in OLED devices. This layer was deposited by spin-coating and slot-die coating from an aqueous nanowire suspension. The sheet resistance of the film was 10ohms/sq with a transmission (including the glass substrate) of higher than 85%. The first phase of the project focused on the implementation of this nanowire layer with a hole-injection-layer (HIL) which has been developed at Plextronics and has been shown to provide good stability and efficiency in conventional OLED devices. We modified the HIL solution such that it coated reasonably well with suitable surface morphology so that actual devices can be manufactured. During the second phase we investigated the hole-injection and stability of hole-onlydevices. We determined that the use of the nanowire network as anode does not introduce an additional degradation mechanism since the observed device characteristics did not differ from those made with ITO anode. We then proceeded to make actual OLED devices with this nanowire / HIL stack and achieved device characteristics similar state-of-the-art OLED devices with a single junction. In order to gain traction with potential OLED manufacturers, we decided to contract Novaled to prepare large-area demonstrators for us. For these devices, we used an allevaporated stack, i.e. we did use Novaledâ??s HIL material instead of Plextronicsâ??. We successfully fabricated demonstrators with an area of 25cm2 with a double or triple junction stack. Minor stack optimizations were necessary to achieve efficacies and lifetime equivalent with ITO devices made with the same devices stack. Due to the reduced microcavity effect, the color of the emitted light is significantly more stable with respect to the viewing angle compared to ITO devices. This fact in conjunction with the promise of lower production cost due to the elimination of the ITO sputtering process and the direct patterning of the anode layer are the obvious advantages of this technology. The project has shown that this nanowire technology is a viable option to achieve OLED devices with good lifetime and efficiency and we are currently working with manufacturers to utilize this technology in a production setting.

  6. OLED Stakeholder Meeting Report | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaeferAprilOverview |November(National RenewableAnnual Report O H A fficeThisOLED

  7. Monolithic heteroepitaxial integration of III-V semiconductor lasers on Si substrates

    E-Print Network [OSTI]

    Groenert, Michael

    2002-01-01T23:59:59.000Z

    Monolithic optoelectronic integration on silicon-based integrated circuits has to date been limited to date by the large material differences between silicon (Si) and the direct-bandgap GaAs compounds from which optoelectronic ...

  8. Chameleon: Color Transformation on OLED Displays Mian Dong, and Lin Zhong

    E-Print Network [OSTI]

    Zhong, Lin

    system energy consumers in mobile systems. Emerging organic light-emitting diode (OLED)-based displays

  9. World Record White OLED Performance Exceeds 100 lm/W

    Broader source: Energy.gov [DOE]

    Universal Display Corporation (UDC) has successfully demonstrated a record-breaking white organic light-emitting diode (WOLED) with a power efficacy of 102 lm/W at 1000 cd/m2 using its proprietary, high-efficiency phosphorescent OLED technology. This achievement represents a significant milestone for OLED technology, demonstrating performance that surpasses the power efficacy of incandescent bulbs with less than 15 lm/W and fluorescent lamps at 60-90 lm/W. Funded in part by DOE, UDC's achievement is a major step toward DOE's roadmap goal of a 150 lm/W commercial OLED light source by 2015.

  10. Monolithic integration of AlGaInP laser diodes on SiGe/Si substrates by molecular beam epitaxy

    SciTech Connect (OSTI)

    Kwon, O.; Boeckl, J. J.; Lee, M. L.; Pitera, A. J.; Fitzgerald, E. A.; Ringel, S. A. [Department of Electrical and Computer Engineering, Ohio State University, Columbus, Ohio 43210 (United States); Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Department of Electrical and Computer Engineering, Ohio State University, Columbus, Ohio 43210 (United States)

    2006-07-01T23:59:59.000Z

    Room temperature operation of visible AlGaInP laser diodes epitaxially integrated on Si was demonstrated. Compressively strained laser heterostructures were grown by molecular beam epitaxy (MBE) on low dislocation density SiGe/Si substrates, where the threading dislocation density of the top relaxed Ge layers was measured in the range of 2x10{sup 6} cm{sup -2}. A threshold current density of J{sub th}{approx}1.65 kA/cm{sup 2} for the as-cleaved, gain-guided AlGaInP laser grown on SiGe/Si was obtained at the peak emission wavelength of 680 nm under pulsed mode current injection. These results show that not only can high quality AlGaInP materials grown by MBE be achieved on Si via relaxed SiGe interlayers, but the prototype demonstration of laser diode operation on Si illustrates that very defect sensitive optoelectronics in the III-P system can indeed be integrated with Si substrates by heteroepitaxial methods.

  11. New Efficiency Record Achieved for White OLED Device

    Broader source: Energy.gov [DOE]

    Osram Opto-Semiconductors, Inc. has successfully demonstrated a white organic light emitting diode (OLED) with a record efficiency of 25 lumens per watt, the highest known efficiency achieved to date for a polymer-based white OLED. The 25 LPW cool-white-emitting device was produced by applying a standard external inorganic phosphor to Osram's record-breaking blue-emitting phosphorescent polymer device with a peak luminous efficacy of 14 LPW.

  12. Engineered substrates for coplanar integration of lattice-mismatched semiconductors with silicon

    E-Print Network [OSTI]

    Pitera, Arthur Joseph, 1975-

    2005-01-01T23:59:59.000Z

    As we approach the end of traditional CMOS scaling, further improvements in integrated circuit performance and functionality will become limited by the inherently low carrier mobility and indirect bandgap of silicon. These ...

  13. GreenVis: Energy-Saving Color Schemes for Sequential Data Visualization on OLED Displays

    E-Print Network [OSTI]

    North Virginia Tech Blacksburg, VA north@cs.vt.edu ABSTRACT The organic light emitting diode (OLED, Color Scheme, Visualization 1. INTRODUCTION The organic light-emitting diode (OLED) display is an emerg

  14. Power-Saving Color Transformation of Mobile Graphical User Interfaces on OLED-based Displays

    E-Print Network [OSTI]

    Zhong, Lin

    , Houston, TX 77025 {dongmian, ykc1,lzhong}@rice.edu ABSTRACT Emerging organic light-emitting diode (OLED of the display content or GUI design [1]. In contrast, emerging organic light-emitting diode (OLED

  15. Numerical analysis of nanostructures for enhanced light extraction from OLEDs

    E-Print Network [OSTI]

    Zschiedrich, L; Burger, S; Schmidt, F; 10.1117/12.2001132

    2013-01-01T23:59:59.000Z

    Nanostructures, like periodic arrays of scatters or low-index gratings, are used to improve the light outcoupling from organic light-emitting diodes (OLED). In order to optimize geometrical and material properties of such structures, simulations of the outcoupling process are very helpful. The finite element method is best suited for an accurate discretization of the geometry and the singular-like field profile within the structured layer and the emitting layer. However, a finite element simulation of the overall OLED stack is often beyond available computer resources. The main focus of this paper is the simulation of a single dipole source embedded into a twofold infinitely periodic OLED structure. To overcome the numerical burden we apply the Floquet transform, so that the computational domain reduces to the unit cell. The relevant outcoupling data are then gained by inverse Flouqet transforming. This step requires a careful numerical treatment as reported in this paper.

  16. Chameleon: A Color-Adaptive Web Browser for Mobile OLED Displays

    E-Print Network [OSTI]

    Zhong, Lin

    }@rice.edu ABSTRACT Displays based on organic light-emitting diode (OLED) technology are appearing on many mobile

  17. UDC Develops Prototype High-Efficiency OLED Undercabinet Luminaire

    Broader source: Energy.gov [DOE]

    Universal Display Corporation (UDC) has demonstrated the real-world application of a novel lighting technology by developing two pre-prototype OLED undercabinet lighting systems that exceed 420 total lumens at an efficacy of more than 55 lm/W, with an estimated lifetime (LT70) in excess of 10,000 hours, and a color rendering index (CRI) greater than 85.

  18. Late Quaternary history of Washington Land, North Greenland OLE BENNIKE

    E-Print Network [OSTI]

    Ingólfsson, Ólafur

    Late Quaternary history of Washington Land, North Greenland OLE BENNIKE Bennike, O. 2002 (September): Late Quaternary history of Washington Land, North Greenland. Boreas, Vol. 31, 260­272. Oslo. ISSN 0300-9483. During the last glacial stage, Washington Land in western North Greenland was probably completely inun

  19. Methods of preparing flexible photovoltaic devices using epitaxial liftoff, and preserving the integrity of growth substrates used in epitaxial growth

    DOE Patents [OSTI]

    Forrest, Stephen R; Zimmerman, Jeramy; Lee, Kyusang; Shiu, Kuen-Ting

    2013-02-19T23:59:59.000Z

    There is disclosed methods of making photosensitive devices, such as flexible photovoltaic (PV) devices, through the use of epitaxial liftoff. Also described herein are methods of preparing flexible PV devices comprising a structure having a growth substrate, wherein the selective etching of protective layers yields a smooth growth substrate that us suitable for reuse.

  20. OLED Deposition Technology - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire3627 FederalTransformers |OJT! September 5, 2008 One

  1. GEA Refrigeration Technologies / GEA Refrigeration Germany GmbH Wolfgang Dietrich / Dr. Ole Fredrich

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    GEA Refrigeration Technologies / GEA Refrigeration Germany GmbH Wolfgang Dietrich / Dr. Ole Technologies3 Achema 2012 // heat pumps using ammonia Industrial demand on heat in Germany Heatdemandin

  2. Low Power, Red, Green and Blue Carbon Nanotube Enabled Vertical Organic Light Emitting Transistors for Active Matrix OLED Displays

    SciTech Connect (OSTI)

    McCarthy, M. A. [University of Florida, Gainesville; Liu, B. [University of Florida, Gainesville; Donoghue, E. P. [University of Florida, Gainesville; Kravchenko, Ivan I [ORNL; Kim, D. Y. [University of Florida, Gainesville; So, Franky [University of Florida, Gainesville; Rinzler, A. G. [University of Florida, Gainesville

    2011-01-01T23:59:59.000Z

    Organic semiconductors are potential alternatives to polycrystalline silicon as the semiconductor used in the backplane of active matrix organic light emitting diode displays. Demonstrated here is a light-emitting transistor with an organic channel, operating with low power dissipation at low voltage, and high aperture ratio, in three colors: red, green and blue. The single-wall carbon nanotube network source electrode is responsible for the high level of performance demonstrated. A major benefit enabled by this architecture is the integration of the drive transistor, storage capacitor and light emitter into a single device. Performance comparable to commercialized polycrystalline-silicon TFT driven OLEDs is demonstrated.

  3. Power Modeling of Graphical User Interfaces on OLED Mian Dong Yung-Seok Kevin Choi Lin Zhong

    E-Print Network [OSTI]

    Zhong, Lin

    1,lzhong}@rice.edu ABSTRACT Emerging organic light-emitting diode (OLED)-based displays obviate light-emitting diode (OLED)-based displays [5] is highly dependent on the display content because

  4. Large grain Ge growth on amorphous substrates for CMOS back-end-of-line integration of active optoelectronic devices

    E-Print Network [OSTI]

    Pearson, Brian (Brian Sung-Il)

    2012-01-01T23:59:59.000Z

    The electronic-photonic integrated circuit (EPIC) has emerged as a leading technology to surpass the interconnect bottlenecks that threaten to limit the progress of Moore's Law in microprocessors. Compared to conventional ...

  5. Towards large size substrates for III-V co-integration made by direct wafer bonding on Si

    SciTech Connect (OSTI)

    Daix, N., E-mail: dai@zurich.ibm.com; Uccelli, E.; Czornomaz, L.; Caimi, D.; Rossel, C.; Sousa, M.; Siegwart, H.; Marchiori, C.; Fompeyrine, J. [IBM Research - Zürich, Säumerstrasse 4, CH-8803 Rüschlikon (Switzerland); Hartmann, J. M. [CEA, LETI 17, rue des Martyrs, F-38054 Grenoble (France); Shiu, K.-T.; Cheng, C.-W.; Krishnan, M.; Lofaro, M.; Kobayashi, M.; Sadana, D. [IBM T. J. Watson Research Center, 1101 Kitchawan Rd., Route 134 Yorktown Heights, New York 10598 (United States)

    2014-08-01T23:59:59.000Z

    We report the first demonstration of 200 mm InGaAs-on-insulator (InGaAs-o-I) fabricated by the direct wafer bonding technique with a donor wafer made of III-V heteroepitaxial structure grown on 200 mm silicon wafer. The measured threading dislocation density of the In{sub 0.53}Ga{sub 0.47}As (InGaAs) active layer is equal to 3.5 × 10{sup 9} cm{sup ?2}, and it does not degrade after the bonding and the layer transfer steps. The surface roughness of the InGaAs layer can be improved by chemical-mechanical-polishing step, reaching values as low as 0.4 nm root-mean-square. The electron Hall mobility in 450 nm thick InGaAs-o-I layer reaches values of up to 6000 cm{sup 2}/Vs, and working pseudo-MOS transistors are demonstrated with an extracted electron mobility in the range of 2000–3000 cm{sup 2}/Vs. Finally, the fabrication of an InGaAs-o-I substrate with the active layer as thin as 90 nm is achieved with a Buried Oxide of 50 nm. These results open the way to very large scale production of III-V-o-I advanced substrates for future CMOS technology nodes.

  6. Electroluminescence property of organic light emitting diode (OLED)

    SciTech Connect (OSTI)

    Özdemir, Orhan; Kavak, Pelin; Saatci, A. Evrim; Gökdemir, F. P?nar; Menda, U. Deneb; Can, Nursel; Kutlu, Kubilay [Y?ld?z Technical University, Department of Physics, Esenler, Istanbul (Turkey); Tekin, Emine; Pravadal?, Selin [National Metrology Inst?tute of Turkey (TUB?TAK-UME), Kocaeli (Turkey)

    2013-12-16T23:59:59.000Z

    Transport properties of electrons and holes were investigated not only in a anthracene-containing poly(p-phenylene-ethynylene)- alt - poly(p-phenylene-vinylene) (PPE-PPV) polymer (AnE-PVstat) light emitting diodes (OLED) but also in an ITO/Ag/polymer/Ag electron and ITO/PEDOT:PSS/polymer/Au hole only devices. Mobility of injected carriers followed the Poole-Frenkel type conduction mechanism and distinguished in the frequency range due to the difference of transit times in admittance measurement. Beginning of light output took place at the turn-on voltage (or flat band voltage), 1.8 V, which was the difference of energy band gap of polymer and two barrier offsets between metals and polymer.

  7. Next Generation Hole Injection/Transport Nano-Composites for High Efficiency OLED Development

    SciTech Connect (OSTI)

    King Wang

    2009-07-31T23:59:59.000Z

    The objective of this program is to use a novel nano-composite material system for the OLED anode coating/hole transport layer. The novel anode coating is intended to significantly increase not only hole injection/transport efficiency, but the device energy efficiency as well. Another goal of the Core Technologies Program is the optimization and scale-up of air-stable and cross-linkable novel HTL nano-composite materials synthesis and the development of low-cost, large-scale mist deposition processes for polymer OLED fabrication. This proposed technology holds the promise to substantially improve OLED energy efficiency and lifetime.

  8. Integration

    E-Print Network [OSTI]

    Koschorke, Albrecht; Musanovic, Emina

    2013-01-01T23:59:59.000Z

    Integration By Albrecht Koschorkeby Emina Musanovic [Integration (from Lat. integrare, “toa social unity. Social integration is distinct from systemic

  9. Compact and efficient method of RGB to RGBW data conversion for OLED microdisplays 

    E-Print Network [OSTI]

    Can, Chi

    2012-06-25T23:59:59.000Z

    Colour Electronic Information Displays (EIDs) typically consist of pixels that are made up of red, green and blue (RGB) subpixels. A recent technology, Organic Light Emitting Diode (OLED), offers the potential to create ...

  10. Achieving Record Efficiency for Blue OLEDs by Controlling the Charge Balance

    Broader source: Energy.gov [DOE]

    Researchers at the University of Florida (UF) have demonstrated a blue phosphorescent organic light-emitting diode (OLED) with a peak power efficiency of 50 lm/W and an external quantum efficiency exceeding 20 percent at a luminance of 1,000 cd/m2, using no external light extraction techniques. This accomplishment is believed to be the world record in blue OLED efficiency.

  11. Effects of low temperature annealing on the adhesion of electroless plated copper thin films in TiN deposited silicon integrated circuit substrates

    E-Print Network [OSTI]

    Tate, Adam Timothy

    2013-02-22T23:59:59.000Z

    present on modern IC substrates. Electroless deposition, which plates a seed layer of copper onto a substrate in a liquid bath without the use of a power source, is a reliable method of depositing copper. Effects of low temperature annealing...

  12. Organic Light-Emitting Diodes (OLEDs) and Optically-Detected Magnetic Resonance (ODMR) studies on organic materials

    SciTech Connect (OSTI)

    Cai, Min

    2011-11-30T23:59:59.000Z

    Organic semiconductors have evolved rapidly over the last decades and currently are considered as the next-generation technology for many applications, such as organic light-emitting diodes (OLEDs) in flat-panel displays (FPDs) and solid state lighting (SSL), and organic solar cells (OSCs) in clean renewable energy. This dissertation focuses mainly on OLEDs. Although the commercialization of the OLED technology in FPDs is growing and appears to be just around the corner for SSL, there are still several key issues that need to be addressed: (1) the cost of OLEDs is very high, largely due to the costly current manufacturing process; (2) the efficiency of OLEDs needs to be improved. This is vital to the success of OLEDs in the FPD and SSL industries; (3) the lifetime of OLEDs, especially blue OLEDs, is the biggest technical challenge. All these issues raise the demand for new organic materials, new device structures, and continued lower-cost fabrication methods. In an attempt to address these issues, we used solution-processing methods to fabricate highly efficient small molecule OLEDs (SMOLEDs); this approach is costeffective in comparison to the more common thermal vacuum evaporation. We also successfully made efficient indium tin oxide (ITO)-free SMOLEDs to further improve the efficiency of the OLEDs. We employed the spin-dependent optically-detected magnetic resonance (ODMR) technique to study the luminescence quenching processes in OLEDs and organic materials in order to understand the intrinsic degradation mechanisms. We also fabricated polymer LEDs (PLEDs) based on a new electron-accepting blue-emitting polymer and studied the effect of molecular weight on the efficiency of PLEDs. All these studies helped us to better understand the underlying relationship between the organic semiconductor materials and the OLEDs’ performance, and will subsequently assist in further enhancing the efficiency of OLEDs. With strongly improved device performance (in addition to other OLEDs' attributes such as mechanical flexibility and potential low cost), the OLED technology is promising to successfully compete with current technologies, such as LCDs and inorganic LEDs.

  13. 2014 Solid-State Lighting Manufacturing R&D Workshop Presentations...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Low-Cost Manufacturing of OLED Lighting John Hamer, OLEDWorks Large-Area Integrated Substrate for OLED Lighting Cheng-Hung Hung, PPG Industries Day 2 LED Lighting Global...

  14. Permanent polarization and charge distribution in organic light-emitting diodes (OLEDs): Insights from near-infrared charge-modulation spectroscopy of an operating OLED

    SciTech Connect (OSTI)

    Marchetti, Alfred P.; Haskins, Terri L.; Young, Ralph H.; Rothberg, Lewis J. [Department of Chemistry, University of Rochester, Rochester, New York 14627 (United States)

    2014-03-21T23:59:59.000Z

    Vapor-deposited Alq{sub 3} layers typically possess a strong permanent electrical polarization, whereas NPB layers do not. (Alq{sub 3} is tris(8-quinolinolato)aluminum(III); NPB is 4,4?-bis[N-(1-naphthyl)-N-phenylamino]biphenyl.) The cause is a net orientation of the Alq{sub 3} molecules with their large dipole moments. Here we report on consequences for an organic light-emitting diode (OLED) with an NPB hole-transport layer and Alq{sub 3} electron-transport layer. The discontinuous polarization at the NPB|Alq{sub 3} interface has the same effect as a sheet of immobile negative charge there. It is more than compensated by a large concentration of injected holes (NPB{sup +}) when the OLED is running. We discuss the implications and consequences for the quantum efficiency and the drive voltage of this OLED and others. We also speculate on possible consequences of permanent polarization in organic photovoltaic devices. The concentration of NPB{sup +} was measured by charge-modulation spectroscopy (CMS) in the near infrared, where the NPB{sup +} has a strong absorption band, supplemented by differential-capacitance and current-voltage measurements. Unlike CMS in the visible, this method avoids complications from modulation of the electroluminescence and electroabsorption.

  15. Resonance et contr^ole en cavite ouverte Jer^ome Hoepffner

    E-Print Network [OSTI]

    Hoepffner, Jérôme

    R´esonance et contr^ole en cavit´e ouverte J´er^ome Hoepffner KTH, Sweden Avec Espen °Akervik, Uwe) From Rowley et al, JFM 2002 Self sustained cycle: perturbation growth pressure wave new perturbation localised and where are they sensitive ? #12;Optimal transient energy growth from initial conditions System

  16. Application of Developed APCVD Transparent Conducting Oxides and Undercoat Technologies for Economical OLED Lighting

    SciTech Connect (OSTI)

    Gary Silverman; Bluhm, Martin; Coffey, James; Korotkov, Roman; Polsz, Craig; Salemi, Alexandre; Smith, Robert; Smith, Ryan; Stricker, Jeff; Xu,Chen; Shirazi, Jasmine; Papakonstantopulous, George; Carson, Steve Philips Lighting GmbH Goldman, Claudia; Hartmann, Sören; Jessen, Frank; ,; Krogmann, Bianca; Rickers, Christoph; Ruske, Manfred, Schwab, Holger; Bertram, Dietrich

    2011-01-02T23:59:59.000Z

    Economics is a key factor for application of organic light emitting diodes (OLED) in general lighting relative to OLED flat panel displays that can handle high cost materials such as indium tin oxide (ITO) or Indium zinc oxide (IZO) as the transparent conducting oxide (TCO) on display glass. However, for OLED lighting to penetrate into general illumination, economics and sustainable materials are critical. The issues with ITO have been documented at the DOE SSL R&D and Manufacturing workshops for the last 5 years and the issue is being exaserbated by export controls from China (one of the major sources of elemental indium). Therefore, ITO is not sustainable because of the fluctuating costs and the United States (US) dependency on other nations such as China. Numerous alternatives to ITO/IZO are being evaluated such as Ag nanoparticles/nanowires, carbon nanotubes, graphene, and other metal oxides. Of these other metal oxides, doped zinc oxide has attracted a lot of attention over the last 10 years. The volume of zinc mined is a factor of 80,000 greater than indium and the US has significant volumes of zinc mined domestically, resulting in the ability for the US to be self-sufficient for this element that can be used in optoelectonic applications. The costs of elemental zinc is over 2 orders of magnitude less than indium, reflecting the relative abundance and availablility of the elements. Arkema Inc. and an international primary glass manufacturing company, which is located in the United States, have developed doped zinc oxide technology for solar control windows. The genesis of this DOE SSL project was to determine if doped zinc oxide technology can be taken from the commodity based window market and translate the technology to OLED lighting. Thus, Arkema Inc. sought out experts, Philips Lighting, Pacific Northwest National Laboratories (PNNL) and National Renewable Research Laboratories (NREL), in OLED devices and brought them into the project. This project had a clear focus on economics and the work plan focused both on doped ZnO process and OLED device structure that would be consistent with the new TCO. The team successfully made 6 inch OLEDs with a serial construction. More process development is required to optimize commercial OLED structures. Feasibility was demonstrated on two different light extraction technologies: 1/4 lambda refractive index matching and high-low-high band pass filter. Process development was also completed on the key precursors for the TCO, which are ready for pilot-plant scale-up. Subsequently, Arkema has developed a cost of ownership model that is consistent with DOE SSL R&D Manufacturing targets as outlined in the DOE SSL R&D Manufacturing 2010 report. The overall outcome of this project was the demonstration that doped zinc oxide can be used for OLED devices without a drop-off in performance while gaining the economic and sustainable benefits of a more readily available TCO. The broad impact of this project, is the facilitation of OLED lighting market penetration into general illumination, resulting in significant energy savings, decreased greenhouse emissions, with no environmental impact issues such as mercury found in Fluorescent technology.

  17. Integration of GaAsP alloys on SiGe virtual substrates for Si-based dual-junction solar cells

    E-Print Network [OSTI]

    Sharma, Prithu

    2013-01-01T23:59:59.000Z

    Integration of III-V compound semiconductors with silicon is an area that has generated a lot of interest because III-V materials and Si are best suited for different types of devices. Monolithic integration enables the ...

  18. Method of forming through substrate vias (TSVs) and singulating and releasing die having the TSVs from a mechanical support substrate

    DOE Patents [OSTI]

    Okandan, Murat; Nielson, Gregory N

    2014-12-09T23:59:59.000Z

    Accessing a workpiece object in semiconductor processing is disclosed. The workpiece object includes a mechanical support substrate, a release layer over the mechanical support substrate, and an integrated circuit substrate coupled over the release layer. The integrated circuit substrate includes a device layer having semiconductor devices. The method also includes etching through-substrate via (TSV) openings through the integrated circuit substrate that have buried ends at or within the release layer including using the release layer as an etch stop. TSVs are formed by introducing one or more conductive materials into the TSV openings. A die singulation trench is etched at least substantially through the integrated circuit substrate around a perimeter of an integrated circuit die. The integrated circuit die is at least substantially released from the mechanical support substrate.

  19. Sjldne fugle i Danmark og Grnland i 2005 OLE AMSTRUP, ALEX SAND FRICH, TIM HESSELBALLE HANSEN, HENRIK HAANING NIELSEN,

    E-Print Network [OSTI]

    Thorup, Kasper

    Sjældne fugle i Danmark og Grønland i 2005 OLE AMSTRUP, ALEX SAND FRICH, TIM HESSELBALLE HANSEN færdigbehandlede sager fra Danmark, heraf 141 fra 2005. Heri ind- går 8 sager, som SU har behandlet på opfordring

  20. Molecular Orbital Study of the First Excited State of the OLED Material Tris(8-hydroxyquinoline)aluminum(III)

    E-Print Network [OSTI]

    Schlegel, H. Bernhard

    Molecular Orbital Study of the First Excited State of the OLED Material Tris(8-hydroxyquinoline)aluminum, Michigan 48202 Received February 6, 2001. Revised Manuscript Received May 16, 2001 Tris(8-hydroxyquinoline)aluminum

  1. Stacked white OLED having separate red, green and blue sub-elements

    DOE Patents [OSTI]

    Forrest, Stephen; Qi, Xiangfei; Slootsky, Michael

    2014-07-01T23:59:59.000Z

    The present invention relates to efficient organic light emitting devices (OLEDs). The devices employ three emissive sub-elements, typically emitting red, green and blue, to sufficiently cover the visible spectrum. Thus, the devices may be white-emitting OLEDs, or WOLEDs. Each sub-element comprises at least one organic layer which is an emissive layer--i.e., the layer is capable of emitting light when a voltage is applied across the stacked device. The sub-elements are vertically stacked and are separated by charge generating layers. The charge-generating layers are layers that inject charge carriers into the adjacent layer(s) but do not have a direct external connection.

  2. Solution-Procesed Small-Molecule OLED Luminaire for Interior Illumination

    SciTech Connect (OSTI)

    Parker, Ian

    2012-02-29T23:59:59.000Z

    Prototype lighting panels and luminaires were fabricated using DuPont Displaysâ?? solution-processed small-molecule OLED technology. These lighting panels were based on a spatially-patterned, 3-color design, similar in concept to an OLED display panel, with materials chosen to maximize device efficacy. The majority of the processing steps take place in air (rather than high vacuum). Optimization of device architecture, processing and construction was undertaken, with a final prototype design of 50 cm{sup 2} being fabricated and tested. Performance of these panels reached 35 lm/W at illuminant-A. A unique feature of this technology is the ability to color tune the emission, and color temperatures ranging from 2700 to > 6,500K were attained in the final build. Significant attention was paid to low-cost fabrication techniques.

  3. Spontaneous fluctuations of transition dipole moment orientation in OLED triplet emitters

    E-Print Network [OSTI]

    Steiner, Florian; Vogelsang, Jan; Lupton, John M

    2015-01-01T23:59:59.000Z

    The efficiency of an organic light-emitting diode (OLED) depends on the microscopic orientation of transition dipole moments of the molecular emitters. The most effective materials used for light generation have threefold symmetry, which prohibit a priori determination of dipole orientation due to the degeneracy of the fundamental transition. Single-molecule spectroscopy reveals that the model triplet emitter tris(2-phenylisoquinoline)iridium(III) (Ir(piq)3) does not behave as a linear dipole, radiating with lower polarization anisotropy than expected. Spontaneous symmetry breaking occurs in the excited state, leading to a random selection of one of the three ligands to form a charge transfer state with the metal. This non-deterministic localization is revealed in switching of the degree of linear polarization of phosphorescence. Polarization scrambling likely raises out-coupling efficiency and should be taken into account when deriving molecular orientation of the guest emitter within the OLED host from ense...

  4. New OLED Cathode Materials with Tailored Low Work Function - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337, 2011R - 445 CUNew

  5. Roll-To-Roll Process for Transparent Metal Electrodes in OLED Manufacturing

    SciTech Connect (OSTI)

    Slafer, W. Dennis

    2010-06-02T23:59:59.000Z

    This program will develop and demonstrate a new manufacturing technology that can help to improve the efficiency and reduce the cost of producing the next generation solid-state lighting (OLEDs)for a broad range of commercial applications. This will not only improve US competitiveness in the manufacturing sector but will also result in a positive impact in meeting the Department of Energy’s goal of developing high efficiency lighting while reducing the environmental impact.

  6. Power electronics substrate for direct substrate cooling

    DOE Patents [OSTI]

    Le, Khiet (Mission Viejo, CA); Ward, Terence G. (Redondo Beach, CA); Mann, Brooks S. (Redondo Beach, CA); Yankoski, Edward P. (Corona, CA); Smith, Gregory S. (Woodland Hills, CA)

    2012-05-01T23:59:59.000Z

    Systems and apparatus are provided for power electronics substrates adapted for direct substrate cooling. A power electronics substrate comprises a first surface configured to have electrical circuitry disposed thereon, a second surface, and a plurality of physical features on the second surface. The physical features are configured to promote a turbulent boundary layer in a coolant impinged upon the second surface.

  7. DuPont Displays Develops Low-Cost Method of Printing OLED Panels

    Broader source: Energy.gov [DOE]

    DuPont Displays Inc. (DDI) has developed a novel way of printing color-tunable OLED lighting panels that keeps manufacturing costs low. The method involves processing the organic layers from solution, with most of the process steps taking place under atmospheric conditions rather than in a high vacuum. Industry-standard slot-coating methods are used in conjunction with nozzle printing—in which the solutions of organic materials are continuously jetted through an array of nozzles moving at high speed—allowing the light-emitting materials to be spatially patterned.

  8. New OLED Lighting Systems Shine Bright, Save Energy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOilNEW HAMPSHIREof EnergyBulbs | Department ofofWins R&DCyberOLED

  9. Hybrid stretchable circuits on silicone substrate

    SciTech Connect (OSTI)

    Robinson, A., E-mail: adam.1.robinson@nokia.com; Aziz, A., E-mail: a.aziz1@lancaster.ac.uk [Nanoscience Centre, University of Cambridge, Cambridge CB01FF (United Kingdom); Liu, Q.; Suo, Z. [School of Engineering and Applied Sciences and Kavli Institute for Bionano Science and Technology, Harvard University, Cambridge, Massachusetts 02138 (United States); Lacour, S. P., E-mail: stephanie.lacour@epfl.ch [Centre for Neuroprosthetics and Laboratory for Soft Bioelectronics Interfaces, School of Engineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne 1015 (Switzerland)

    2014-04-14T23:59:59.000Z

    When rigid and stretchable components are integrated onto a single elastic carrier substrate, large strain heterogeneities appear in the vicinity of the deformable-non-deformable interfaces. In this paper, we report on a generic approach to manufacture hybrid stretchable circuits where commercial electronic components can be mounted on a stretchable circuit board. Similar to printed circuit board development, the components are electrically bonded on the elastic substrate and interconnected with stretchable electrical traces. The substrate—a silicone matrix carrying concentric rigid disks—ensures both the circuit elasticity and the mechanical integrity of the most fragile materials.

  10. Fabrication of the ZnO thin films using wet-chemical etching processes on application for organic light emitting diode (OLED) devices

    E-Print Network [OSTI]

    Boo, Jin-Hyo

    - sively used in solar cells, touch panels, heat mirrors, organic electro- luminescence devices (OLED), for example, has been commercially used in OLEDs. However, because of the cost and the scarcity of indium reactants and produce new species. Wet-chemical etching has great advantages such as low cost

  11. Multi-Faceted Scientific Strategies Toward Better Solid-State Lighting of Phosphorescent OLEDs

    SciTech Connect (OSTI)

    Mohammad Omary; Bruce Gnade; Qi Wang; Oussama Elbjeirami; Chi Yang; Nigel Shepherd; Huiping Jia; Manuel Quevedo; Husam Alshareef; Minghang Li; Ming-Te Lin; Wei-Hsuan Chen; Iain Oswald; Pankaj Sinha; Ravi Arvapally; Usha Kaipa; John Determan; Sreekar Marpu; Roy McDougald; Gustavo Garza; Jason Halbert; Unnat Bhansali; Michael Perez

    2010-08-31T23:59:59.000Z

    This project has advanced solid-state lighting (SSL) by utilizing new phosphorescent systems for use in organic light-emitting diodes (OLEDs). The technical approach was two-fold: a) Targeted synthesis and screening of emitters designed to exhibit phosphorescence with maximized brightness in the solid state; and b) Construction and optimizing the performance of monochromatic and white OLEDs from the best new emitters to improve performance metrics versus the state of the art. The phosphorescent systems were screened candidates among a large variety of recentlysynthesized and newly-designed molecular and macromolecular metal-organic phosphors. The emitters and devices have been optimized to maximize light emission and color metrics, improve the long-term durability of emitters and devices, and reduce the manufacturing cost both by simplifying the process flow and by seeking less expensive device components than common ones. The project succeeded in all these goals upon comparison of the best materials and devices investigated vs. the state of the art of the technology.

  12. 23.2 / J. X. Sun 23.2: An Efficient Stacked OLED with Double-Sided Light Emission

    E-Print Network [OSTI]

    23.2 / J. X. Sun 23.2: An Efficient Stacked OLED with Double-Sided Light Emission J. X. Sun, X. L;23.2 / J. X. Sun 2. Experimental Details The SOLED were fabricated on 75nm-ITO coated glass with a sheet

  13. Observer Design for Gas Lifted Oil Wells Ole Morten Aamo, Gisle Otto Eikrem, Hardy Siahaan, and Bjarne Foss

    E-Print Network [OSTI]

    Foss, Bjarne A.

    Observer Design for Gas Lifted Oil Wells Ole Morten Aamo, Gisle Otto Eikrem, Hardy Siahaan flow systems is an area of increasing interest for the oil and gas industry. Oil wells with highly related to oil and gas wells exist, and in this study, unstable gas lifted wells will be the area

  14. 3-TFT OLED Pixel Circuit for High Stability with In-pixel Current Source Ting Liu and James C. Sturm

    E-Print Network [OSTI]

    ), a driving TFT (T2), a programming TFT (T3), a storage capacitor (Cs) and an OLED. The control signal lines], the positive threshold voltage shift ( Vth) of the driving a-Si TFT under gate bias leads to reduced drain because of the parasitic capacitance of data lines and inconvenient constant current sources that control

  15. Polished polymide substrate

    DOE Patents [OSTI]

    Farah, John; Sudarshanam, Venkatapuram S.

    2003-05-13T23:59:59.000Z

    Polymer substrates, in particular polyimide substrates, and polymer laminates for optical applications are described. Polyimide substrates are polished on one or both sides depending on their thickness, and single-layer or multi-layer waveguide structures are deposited on the polished polyimide substrates. Optical waveguide devices are machined by laser ablation using a combination of IR and UV lasers. A waveguide-fiber coupler with a laser-machined groove for retaining the fiber is also disclosed.

  16. Fabrication of the ZnO thin films using wet-chemical etching processes on application for organic light emitting diode (OLED) devices

    E-Print Network [OSTI]

    Hong, Byungyou

    - sively used in solar cells, touch panels, heat mirrors, organic electro- luminescence devices (OLED- chemical etching behaviors of ZnO films were also investigated using various chemicals. In order

  17. Method of producing an electronic unit having a polydimethylsiloxane substrate and circuit lines

    DOE Patents [OSTI]

    Davidson, James Courtney (Livermore, CA); Krulevitch, Peter A. (Pleasanton, CA); Maghribi, Mariam N. (Livermore, CA); Benett, William J. (Livermore, CA); Hamilton, Julie K. (Tracy, CA); Tovar, Armando R. (San Antonio, TX)

    2012-06-19T23:59:59.000Z

    A system of metalization in an integrated polymer microsystem. A flexible polymer substrate is provided and conductive ink is applied to the substrate. In one embodiment the flexible polymer substrate is silicone. In another embodiment the flexible polymer substrate comprises poly(dimethylsiloxane).

  18. Fabrication and Characterization of New Hybrid Organic Light Emitting Diode (OLED): Europium-picrate-triethylene oxide Complex

    SciTech Connect (OSTI)

    Sarjidan, M. A. Mohd; Abu Zakaria, N. Z. A.; Abd. Majid, W. H. [Solid State Research Laboratory, Department of Physics, University of Malaya, 50603, Kuala Lumpur (Malaysia); Kusrini, Eny; Saleh, M. I. [School of Chemical Sciences, Universiti Sains Malaysia, 11800 Penang (Malaysia)

    2009-07-07T23:59:59.000Z

    Thin-film light emitting devices based on organic materials have attracted vast interest in applications such as light emitting diode (LED) and flat-panel display. The organic material can be attached with inorganic material to enhance the performance of the light emitting device. A hybrid OLED based on a new complex of europium picrate (Eu-pic) with triethylene oxide (EO3) ligand is fabricated. The OLED is fabricated by using spin coating technique with acetone as the solvent and aluminum as the top electrode. The optical, photoluminescence (PL) and electrical properties of the sample are carried out by UV-Vis spectroscopy (Jasco V-750), luminescence spectroscopy (Perkin Elmer LS-500) and source measure unit (SMU)(Keithly), respectively.

  19. Modifying the organic/electrode interface in Organic Solar Cells (OSCs) and improving the efficiency of solution-processed phosphorescent Organic Light-Emitting Diodes (OLEDs)

    SciTech Connect (OSTI)

    Xiao, Teng

    2012-04-27T23:59:59.000Z

    Organic semiconductors devices, such as, organic solar cells (OSCs), organic light-emitting diodes (OLEDs) and organic field-effect transistors (OFETs) have drawn increasing interest in recent decades. As organic materials are flexible, light weight, and potentially low-cost, organic semiconductor devices are considered to be an alternative to their inorganic counterparts. This dissertation will focus mainly on OSCs and OLEDs. As a clean and renewable energy source, the development of OSCs is very promising. Cells with 9.2% power conversion efficiency (PCE) were reported this year, compared to < 8% two years ago. OSCs belong to the so-called third generation solar cells and are still under development. While OLEDs are a more mature and better studied field, with commercial products already launched in the market, there are still several key issues: (1) the cost of OSCs/OLEDs is still high, largely due to the costly manufacturing processes; (2) the efficiency of OSCs/OLEDs needs to be improved; (3) the lifetime of OSCs/OLEDs is not sufficient compared to their inorganic counterparts; (4) the physics models of the behavior of the devices are not satisfactory. All these limitations invoke the demand for new organic materials, improved device architectures, low-cost fabrication methods, and better understanding of device physics. For OSCs, we attempted to improve the PCE by modifying the interlayer between active layer/metal. We found that ethylene glycol (EG) treated poly(3,4-ethylenedioxythiophene): polystyrenesulfonate (PEDOT: PSS) improves hole collection at the metal/polymer interface, furthermore it also affects the growth of the poly(3- hexylthiophene) (P3HT):phenyl-C61-butyric acid methyl ester (PCBM) blends, making the phase segregation more favorable for charge collection. We then studied organic/inorganic tandem cells. We also investigated the effect of a thin LiF layer on the hole-collection of copper phthalocyanine (CuPc)/C70-based small molecular OSCs. A thin LiF layer serves typically as the electron injection layer in OLEDs and electron collection interlayer in the OSCs. However, several reports showed that it can also assist in holeinjection in OLEDs. Here we first demonstrate that it assists hole-collection in OSCs, which is more obvious after air-plasma treatment, and explore this intriguing dual role. For OLEDs, we focus on solution processing methods to fabricate highly efficient phosphorescent OLEDs. First, we investigated OLEDs with a polymer host matrix, and enhanced charge injection by adding hole- and electron-transport materials into the system. We also applied a hole-blocking and electron-transport material to prevent luminescence quenching by the cathode. Finally, we substituted the polymer host by a small molecule, to achieve more efficient solution processed small molecular OLEDs (SMOLEDs); this approach is cost-effective in comparison to the more common vacuum thermal evaporation. All these studies help us to better understand the underlying relationship between the organic semiconductor materials and the OSCs and OLEDs’ performance and will subsequently assist in further enhancing the efficiencies of OSCs and OLEDs. With better efficiency and longer lifetime, the OSCs and OLEDs will be competitive with their inorganic counterparts.

  20. MATERIALS DEGRADATION ANALYSIS AND DEVELOPMENT TO ENABLE ULTRA LOW COST, WEB-PROCESSED WHITE P-OLED FOR SSL

    SciTech Connect (OSTI)

    DR. DEVIN MACKENZIE

    2011-12-13T23:59:59.000Z

    Progress over Phase II of DE-FG02-07ER86293 'Materials Degradation Analysis and Development to Enable Ultra Low Cost, Web-Processed White P-OLED for SSL' was initially rapid in terms of device performance improvements. We exceeded our device luminance lifetime goals for printed flexible white OLEDs as laid out in our project proposal. Our Phase II performance target was to demonstrate >1500 hours luminance lifetime at 100 Cd/m2 from a printed flexible device. We now have R&D devices well in excess of 8000 hrs lifetime at 100 Cd/m2, tested in air. We also were able to produce devices which met the voltage target of >1500 hours below 15V operation. After completing the initial performance milestones, we went on to focus on color-related degradation issues which were cited as important to commercialization of the technology by our manufacturing partners. We also put additional focus on cathode work as the active material development that occurred over the STTR time period required an adaptation of the cathode from the original cathode formulations which were developed based on previous generation active layer materials. We were able to improve compatibility of the cathode with some of the newer generation active layer materials and improve device yield and voltage behavior. An additional objective of the initial Phase II was to further develop the underlying manufacturing technology and real-life product specifications. This is a key requirement that must be met to ensure eventual commercialization of this DOE-funded technology. The link between commercial investment for full commercialization and R&D efforts in OLED solid State Lighting is often a large one. Add-Vision's lower cost, printed OLED manufacturing approach is an attraction, but close engagement with manufacturing partners and addressing customer specifications is a very important link. Manufacturing technology encompasses development of moisture reduction encapsulation technology, improved cost performance, and reductions in operating voltage through thinner and higher uniformity active device layers. We have now installed a pilot encapsulation system at AVI for controlled, high throughput lamination encapsulation of flexible OLEDs in a novel process. Along with this, we have developed, with our materials supply partners, adhesives, barrier films and other encapsulation materials and we are showing total air product lifetimes in the 2-4 years range from a process consistent with our throughput goals of {approx}1M device per month ({approx}30,000 sq. ft. of processed OLEDs). Within the last year of the project, we have been working to introduce the manufacturing improvements made in our LEP deposition and annealing process to our commercial partners. Based on the success of this, a pilot scale-up program was begun. During this process, Add-Vision was acquired by a strategic partner, in no small part, because of the promise of future success of the technology as evidenced by our commercial partners pilot scale-up plans. Overall, the performance, manufacturing and product work in this project has been successful. Additional analysis and device work at LBL has also shown a unique adhesion change with device bias stressing which may result from active layer polymer cross-linking during bias stressing of device. It was shown that even small bias stresses, as a fraction of a full device lifetime stress period, result in measurable chemical change in the device. Further work needs to be conducted to fully understand the chemical nature of this interaction. Elucidation of this effect would enable doped OLED formulation to be engineered to suppress this effect and further extend lifetimes and reduce voltage climb.

  1. Signal Integrity Analysis of a 2-D and 3-D Integrated Potentiostat for Neurotransmitter Sensing

    E-Print Network [OSTI]

    Stanacevic, Milutin

    for the substrate, power network, and through silicon vias (TSVs). These models are combined integrated implantable systems. I. INTRODUCTION A multichannel potentiostat, integrated with micro and power dissipation. Signal integrity characteristics of a 2- D and 3-D integrated potentiostat

  2. Substrate Recognition Strategy for Botulinum Neurotoxin

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our InstagramStructure of All-Polymer. . ~0sFailureSubscribe toSubstrateSubstrate

  3. On the R\\^ole of a Torsion-like Field in a Scenario for the Spin Hall Effect

    E-Print Network [OSTI]

    Godinho, C F L

    2014-01-01T23:59:59.000Z

    Starting from an action that describes a Dirac fermion, we propose and analyze a model based on a low-relativistic Pauli equation coupled to a torsion-like term to study Spin Hall Effect (SHE). We point out a very particular connection between the modified Pauli equation and the (SHE), where what we refer to torsion as field playing an important r\\^ole in the spin-orbit coupling process. In this scenario, we present a proposal of a spin-type current, considering the tiny contributions of torsion in connection with geometrical properties of the material.

  4. Nanomechanics of hard films on compliant substrates.

    SciTech Connect (OSTI)

    Reedy, Earl David, Jr. (Sandia National Laboratories, Albuquerque, NM); Emerson, John Allen (Sandia National Laboratories, Albuquerque, NM); Bahr, David F. (Washington State University, Pullman, WA); Moody, Neville Reid; Zhou, Xiao Wang; Hales, Lucas (University of Minnesota, Minneapolis, MN); Adams, David Price (Sandia National Laboratories, Albuquerque, NM); Yeager,John (Washington State University, Pullman, WA); Nyugen, Thao D. (Johns Hopkins University, Baltimore, MD); Corona, Edmundo (Sandia National Laboratories, Albuquerque, NM); Kennedy, Marian S. (Clemson University, Clemson, SC); Cordill, Megan J. (Erich Schmid Institute, Leoben, Austria)

    2009-09-01T23:59:59.000Z

    Development of flexible thin film systems for biomedical, homeland security and environmental sensing applications has increased dramatically in recent years [1,2,3,4]. These systems typically combine traditional semiconductor technology with new flexible substrates, allowing for both the high electron mobility of semiconductors and the flexibility of polymers. The devices have the ability to be easily integrated into components and show promise for advanced design concepts, ranging from innovative microelectronics to MEMS and NEMS devices. These devices often contain layers of thin polymer, ceramic and metallic films where differing properties can lead to large residual stresses [5]. As long as the films remain substrate-bonded, they may deform far beyond their freestanding counterpart. Once debonded, substrate constraint disappears leading to film failure where compressive stresses can lead to wrinkling, delamination, and buckling [6,7,8] while tensile stresses can lead to film fracture and decohesion [9,10,11]. In all cases, performance depends on film adhesion. Experimentally it is difficult to measure adhesion. It is often studied using tape [12], pull off [13,14,15], and peel tests [16,17]. More recent techniques for measuring adhesion include scratch testing [18,19,20,21], four point bending [22,23,24], indentation [25,26,27], spontaneous blisters [28,29] and stressed overlayers [7,26,30,31,32,33]. Nevertheless, sample design and test techniques must be tailored for each system. There is a large body of elastic thin film fracture and elastic contact mechanics solutions for elastic films on rigid substrates in the published literature [5,7,34,35,36]. More recent work has extended these solutions to films on compliant substrates and show that increasing compliance markedly changes fracture energies compared with rigid elastic solution results [37,38]. However, the introduction of inelastic substrate response significantly complicates the problem [10,39,40]. As a result, our understanding of the critical relationship between adhesion, properties, and fracture for hard films on compliant substrates is limited. To address this issue, we integrated nanomechanical testing and mechanics-based modeling in a program to define the critical relationship between deformation and fracture of nanoscale films on compliant substrates. The approach involved designing model film systems and employing nano-scale experimental characterization techniques to isolate effects of compliance, viscoelasticity, and plasticity on deformation and fracture of thin hard films on substrates that spanned more than two orders of compliance magnitude exhibit different interface structures, have different adhesion strengths, and function differently under stress. The results of this work are described in six chapters. Chapter 1 provides the motivation for this work. Chapter 2 presents experimental results covering film system design, sample preparation, indentation response, and fracture including discussion on the effects of substrate compliance on fracture energies and buckle formation from existing models. Chapter 3 describes the use of analytical and finite element simulations to define the role of substrate compliance and film geometry on the indentation response of thin hard films on compliant substrates. Chapter 4 describes the development and application of cohesive zone model based finite element simulations to determine how substrate compliance affects debond growth. Chapter 5 describes the use of molecular dynamics simulations to define the effects of substrate compliance on interfacial fracture of thin hard tungsten films on silicon substrates. Chapter 6 describes the Workshops sponsored through this program to advance understanding of material and system behavior.

  5. Bonded semiconductor substrate

    DOE Patents [OSTI]

    Atwater, Jr.; Harry A. (South Pasadena, CA), Zahler; James M. (Pasadena, CA)

    2010-07-13T23:59:59.000Z

    Ge/Si and other nonsilicon film heterostructures are formed by hydrogen-induced exfoliation of the Ge film which is wafer bonded to a cheaper substrate, such as Si. A thin, single-crystal layer of Ge is transferred to Si substrate. The bond at the interface of the Ge/Si heterostructures is covalent to ensure good thermal contact, mechanical strength, and to enable the formation of an ohmic contact between the Si substrate and Ge layers. To accomplish this type of bond, hydrophobic wafer bonding is used, because as the invention demonstrates the hydrogen-surface-terminating species that facilitate van der Waals bonding evolves at temperatures above 600.degree. C. into covalent bonding in hydrophobically bound Ge/Si layer transferred systems.

  6. Substrate system for spray forming

    DOE Patents [OSTI]

    Chu, Men G. (Export, PA); Chernicoff, William P. (Harrisburg, PA)

    2002-01-01T23:59:59.000Z

    A substrate system for receiving a deposit of sprayed metal droplets including a movable outer substrate on which the sprayed metal droplets are deposited. The substrate system also includes an inner substrate disposed adjacent the outer substrate where the sprayed metal droplets are deposited on the outer substrate. The inner substrate includes zones of differing thermal conductivity to resist substrate layer porosity and to resist formation of large grains and coarse constituent particles in a bulk layer of the metal droplets which have accumulated on the outer substrate. A spray forming apparatus and associated method of spray forming a molten metal to form a metal product using the substrate system of the invention is also provided.

  7. Substrate system for spray forming

    DOE Patents [OSTI]

    Chu, Men G. (Export, PA); Chernicoff, William P. (Harrisburg, PA)

    2000-01-01T23:59:59.000Z

    A substrate system for receiving a deposit of sprayed metal droplets including a movable outer substrate on which the sprayed metal droplets are deposited. The substrate system also includes an inner substrate disposed adjacent the outer substrate where the sprayed metal droplets are deposited on the outer substrate. The inner substrate includes zones of differing thermal conductivity to resist substrate layer porosity and to resist formation of large grains and coarse constituent particles in a bulk layer of the metal droplets which have accumulated on the outer substrate. A spray forming apparatus and associated method of spray forming a molten metal to form a metal product using the substrate system of the invention is also provided.

  8. Pure Aluminum as the Anode in Top Emission OLED Xiao-Ming Yu, Hua-Jun Peng, Xiu-Ling Zhu, Jia-Xin Sun,

    E-Print Network [OSTI]

    Pure Aluminum as the Anode in Top Emission OLED Xiao-Ming Yu, Hua-Jun Peng, Xiu-Ling Zhu, Jia (TOLED) with pure aluminum metal layer as the bottom anode has been fabricated. The brightness as high as that of the TOLED with additional high work function silver deposited on aluminum as the anode

  9. CX-010821: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Manufacturing Process for Organic Light-Emitting Diode (OLED) Integrated Substrate CX(s) Applied: B3.6 Date: 07/30/2013 Location(s): Pennsylvania Offices(s): National Energy Technology Laboratory

  10. CX-010823: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Manufacturing Process for Organic Light-Emitting Diode (OLED) Integrated Substrate CX(s) Applied: B3.6 Date: 07/30/2013 Location(s): Pennsylvania Offices(s): National Energy Technology Laboratory

  11. CX-010824: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Manufacturing Process for Organic Light-Emitting Diode (OLED) Integrated Substrate CX(s) Applied: B3.6 Date: 07/30/2013 Location(s): New Jersey Offices(s): National Energy Technology Laboratory

  12. CX-010822: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Manufacturing Process for Organic Light-Emitting Diode (OLED) Integrated Substrate CX(s) Applied: B3.6 Date: 07/30/2013 Location(s): Illinois Offices(s): National Energy Technology Laboratory

  13. NETL F 451.1/1-1, Categorical Exclusion Designation Form

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    commercialization of a large area and low-cost "integrated substrate" for rigid OLED SSL lighting. James C. Robinson II Digitally signed by James C. Robinson II DN: cnJames C....

  14. A Polysilicon Active Matrix Organic Light Emitting Diode Display with Integrated Drivers R.M.A. Dawson, Z. Shen, D.A. Furst, S. Connor, J. Hsu, M.G. Kane, R.G. Stewart, A. Ipri

    E-Print Network [OSTI]

    A Polysilicon Active Matrix Organic Light Emitting Diode Display with Integrated Drivers R.S.A. Abstract The design of an active matrix organic light emitting diode (AMOLED) display using a polysilicon. Introduction Organic light emitting diodes (OLEDs) are presently of great interest due to their potential

  15. Conductive inks for metalization in integrated polymer microsystems

    DOE Patents [OSTI]

    Davidson, James Courtney (Livermore, CA); Krulevitch, Peter A. (Pleasanton, CA); Maghribi, Mariam N. (Livermore, CA); Benett, William J. (Livermore, CA); Hamilton, Julie K. (Tracy, CA); Tovar, Armando R. (San Antonio, TX)

    2006-02-28T23:59:59.000Z

    A system of metalization in an integrated polymer microsystem. A flexible polymer substrate is provided and conductive ink is applied to the substrate. In one embodiment the flexible polymer substrate is silicone. In another embodiment the flexible polymer substrate comprises poly(dimethylsiloxane).

  16. Pedestal substrate for coated optics

    DOE Patents [OSTI]

    Hale, Layton C. (Livermore, CA); Malsbury, Terry N. (Tracy, CA); Patterson, Steven R. (Concord, NC)

    2001-01-01T23:59:59.000Z

    A pedestal optical substrate that simultaneously provides high substrate dynamic stiffness, provides low surface figure sensitivity to mechanical mounting hardware inputs, and constrains surface figure changes caused by optical coatings to be primarily spherical in nature. The pedestal optical substrate includes a disk-like optic or substrate section having a top surface that is coated, a disk-like base section that provides location at which the substrate can be mounted, and a connecting cylindrical section between the base and optics or substrate sections. The connecting cylindrical section may be attached via three spaced legs or members. However, the pedestal optical substrate can be manufactured from a solid piece of material to form a monolith, thus avoiding joints between the sections, or the disk-like base can be formed separately and connected to the connecting section. By way of example, the pedestal optical substrate may be utilized in the fabrication of optics for an extreme ultraviolet (EUV) lithography imaging system, or in any optical system requiring coated optics and substrates with reduced sensitivity to mechanical mounts.

  17. Sealed substrate carrier for electroplating

    DOE Patents [OSTI]

    Ganti, Kalyana Bhargava (Fremont, CA)

    2012-07-17T23:59:59.000Z

    One embodiment relates to a substrate carrier for use in electroplating a plurality of substrates. The substrate carrier includes a non-conductive carrier body on which the substrates are held, and conductive lines are embedded within the carrier body. A conductive bus bar is embedded into a top side of the carrier body and is conductively coupled to the conductive lines. A thermoplastic overmold covers a portion of the bus bar, and there is a plastic-to-plastic bond between the thermoplastic overmold and the non-conductive carrier body. Other embodiments, aspects and features are also disclosed.

  18. Substrate Recognition Strategy for Botulinum Neurotoxin

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our InstagramStructure of All-Polymer. . ~0sFailureSubscribe toSubstrate Recognition

  19. Substrate Recognition Strategy for Botulinum Neurotoxin

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our InstagramStructure of All-Polymer. . ~0sFailureSubscribe toSubstrate

  20. Composite substrate for bipolar electrodes

    DOE Patents [OSTI]

    Tekkanat, Bora (Milwaukee, WI); Bolstad, James J. (Shorewood, WI)

    1992-12-22T23:59:59.000Z

    Substrates for electrode systems, particularly those to be used for bipolar electrodes in zinc-bromine batteries, are disclosed. The substrates preferably include carbon-black as a conductive filler in a polymeric matrix, with reinforcing materials such as glass fibers. Warpage of the zinc-bromine electrodes which was experienced in the prior art and which was believed to be caused by physical expansion of the electrodes due to bromine absorption by the carbon-black, is substantially eliminated when new substrate fabrication techniques are employed. In the pesent invention, substrates are prepared using a lamination process known as glass mat reinforced thermoplastics technology or, in an alternate embodiment, the substrate is made using a slurry process.

  1. Composite substrate for bipolar electrodes

    DOE Patents [OSTI]

    Tekkanat, B.; Bolstad, J.J.

    1992-12-22T23:59:59.000Z

    Substrates for electrode systems, particularly those to be used for bipolar electrodes in zinc-bromine batteries, are disclosed. The substrates preferably include carbon-black as a conductive filler in a polymeric matrix, with reinforcing materials such as glass fibers. Warpage of the zinc-bromine electrodes which was experienced in the prior art and which was believed to be caused by physical expansion of the electrodes due to bromine absorption by the carbon-black, is substantially eliminated when new substrate fabrication techniques are employed. In the present invention, substrates are prepared using a lamination process known as glass mat reinforced thermoplastics technology or, in an alternate embodiment, the substrate is made using a slurry process. 4 figs.

  2. Method of processing a substrate

    DOE Patents [OSTI]

    Babayan, Steven E. (Huntington Beach, CA); Hicks, Robert F. (Los Angeles, CA)

    2008-02-12T23:59:59.000Z

    The invention is embodied in a plasma flow device or reactor having a housing that contains conductive electrodes with openings to allow gas to flow through or around them, where one or more of the electrodes are powered by an RF source and one or more are grounded, and a substrate or work piece is placed in the gas flow downstream of the electrodes, such that said substrate or work piece is substantially uniformly contacted across a large surface area with the reactive gases emanating therefrom. The invention is also embodied in a plasma flow device or reactor having a housing that contains conductive electrodes with openings to allow gas to flow through or around them, where one or more of the electrodes are powered by an RF source and one or more are grounded, and one of the grounded electrodes contains a means of mixing in other chemical precursors to combine with the plasma stream, and a substrate or work piece placed in the gas flow downstream of the electrodes, such that said substrate or work piece is contacted by the reactive gases emanating therefrom. In one embodiment, the plasma flow device removes organic materials from a substrate or work piece, and is a stripping or cleaning device. In another embodiment, the plasma flow device kills biological microorganisms on a substrate or work piece, and is a sterilization device. In another embodiment, the plasma flow device activates the surface of a substrate or work piece, and is a surface activation device. In another embodiment, the plasma flow device etches materials from a substrate or work piece, and is a plasma etcher. In another embodiment, the plasma flow device deposits thin films onto a substrate or work piece, and is a plasma-enhanced chemical vapor deposition device or reactor.

  3. Direct cooled power electronics substrate

    DOE Patents [OSTI]

    Wiles, Randy H [Powell, TN; Wereszczak, Andrew A [Oak Ridge, TN; Ayers, Curtis W. (Kingston, TN) [Kingston, TN; Lowe, Kirk T. (Knoxville, TN) [Knoxville, TN

    2010-09-14T23:59:59.000Z

    The disclosure describes directly cooling a three-dimensional, direct metallization (DM) layer in a power electronics device. To enable sufficient cooling, coolant flow channels are formed within the ceramic substrate. The direct metallization layer (typically copper) may be bonded to the ceramic substrate, and semiconductor chips (such as IGBT and diodes) may be soldered or sintered onto the direct metallization layer to form a power electronics module. Multiple modules may be attached to cooling headers that provide in-flow and out-flow of coolant through the channels in the ceramic substrate. The modules and cooling header assembly are preferably sized to fit inside the core of a toroidal shaped capacitor.

  4. Crack formation in GaAs heteroepitaxial films on Si and SiGe virtual substrates

    E-Print Network [OSTI]

    Crack formation in GaAs heteroepitaxial films on Si and SiGe virtual substrates V. K. Yang, MAs films grown on Si and SiGe virtual substrates analytically and experimentally. The analytical model­10 Relaxed SiGe graded layers on Si have produced the highest quality GaAs on Si to date for the integration

  5. Technological assessment of silicon on lattice engineered substrate (SOLES) for optical applications

    E-Print Network [OSTI]

    Leung, Man Yin

    2008-01-01T23:59:59.000Z

    Over the past decade, much effort had been placed to integrate optoelectronic and electronic devices. Silicon on lattice engineered substrate (SOLES) had been developed for such purpose. As SOLES technology mature, a ...

  6. Commercialization of silicon on lattice-engineered substrate for electronic applications

    E-Print Network [OSTI]

    Liang, Yu Yan

    2008-01-01T23:59:59.000Z

    The commercial potential of SOLES (Silicon on Lattice-Engineered Substrate) is investigated considering the competing technologies, competing market players and market demands. Monolithic integration of Si devices with ...

  7. Substrate for thin silicon solar cells

    DOE Patents [OSTI]

    Ciszek, Theodore F. (Evergreen, CO)

    1998-01-01T23:59:59.000Z

    A substrate for a photovoltaic device wherein the substrate is the base upon which photosensitive material is to be grown and the substrate comprises an alloy having boron in a range from 0.1 atomic % of the alloy to 1.3 atomic % of the alloy and the substrate has a resistivity less than 3.times.10.sup.-3 ohm-cm.

  8. Semiconductor films on flexible iridium substrates

    DOE Patents [OSTI]

    Goyal, Amit

    2005-03-29T23:59:59.000Z

    A laminate semiconductor article includes a flexible substrate, an optional biaxially textured oxide buffer system on the flexible substrate, a biaxially textured Ir-based buffer layer on the substrate or the buffer system, and an epitaxial layer of a semiconductor. Ir can serve as a substrate with an epitaxial layer of a semiconductor thereon.

  9. Porous substrates filled with nanomaterials

    DOE Patents [OSTI]

    Worsley, Marcus A.; Baumann, Theodore F.; Satcher, Jr., Joe H.; Stadermann, Michael

    2014-08-19T23:59:59.000Z

    A composition comprising: at least one porous carbon monolith, such as a carbon aerogel, comprising internal pores, and at least one nanomaterial, such as carbon nanotubes, disposed uniformly throughout the internal pores. The nanomaterial can be disposed in the middle of the monolith. In addition, a method for making a monolithic solid with both high surface area and good bulk electrical conductivity is provided. A porous substrate having a thickness of 100 microns or more and comprising macropores throughout its thickness is prepared. At least one catalyst is deposited inside the porous substrate. Subsequently, chemical vapor deposition is used to uniformly deposit a nanomaterial in the macropores throughout the thickness of the porous substrate. Applications include electrical energy storage, such as batteries and capacitors, and hydrogen storage.

  10. Coatings on reflective mask substrates

    DOE Patents [OSTI]

    Tong, William Man-Wai (Oakland, CA); Taylor, John S. (Livermore, CA); Hector, Scott D. (Oakland, CA); Mangat, Pawitter J. S. (Gilbert, AZ); Stivers, Alan R. (San Jose, CA); Kofron, Patrick G. (San Jose, CA); Thompson, Matthew A. (Austin, TX)

    2002-01-01T23:59:59.000Z

    A process for creating a mask substrate involving depositing: 1) a coating on one or both sides of a low thermal expansion material EUVL mask substrate to improve defect inspection, surface finishing, and defect levels; and 2) a high dielectric coating, on the backside to facilitate electrostatic chucking and to correct for any bowing caused by the stress imbalance imparted by either other deposited coatings or the multilayer coating of the mask substrate. An film, such as TaSi, may be deposited on the front side and/or back of the low thermal expansion material before the material coating to balance the stress. The low thermal expansion material with a silicon overlayer and a silicon and/or other conductive underlayer enables improved defect inspection and stress balancing.

  11. Arsenic Trisulfide on Lithium Niobate Devices for Infrared Integrated Optics 

    E-Print Network [OSTI]

    Xia, Xin

    2012-07-16T23:59:59.000Z

    Arsenic trisulfide (As?S?) waveguide devices on lithium niobate substrates (LiNbO?) provide a set of compact and versatile means for guiding and manipulating optical modes in infrared integrated optical circuits, including the integrated trace gas...

  12. Arsenic Trisulfide on Lithium Niobate Devices for Infrared Integrated Optics

    E-Print Network [OSTI]

    Xia, Xin

    2012-07-16T23:59:59.000Z

    Arsenic trisulfide (As?S?) waveguide devices on lithium niobate substrates (LiNbO?) provide a set of compact and versatile means for guiding and manipulating optical modes in infrared integrated optical circuits, including the integrated trace gas...

  13. POSTDOCTORAL POSITION ADVANCED SUBSTRATE ENGINEERING

    E-Print Network [OSTI]

    ; Information regarding SMART: http://smart.mit.edu/home.html Professor Fitzgerald's Web Site: http AND SMART, C.S. TAN, NTU AND SMART, AND S.F. YOON, NTU AND SMART BACKGROUND: There is an opening in MIT's Singapore research center (SMART) for post-doctoral fellow in the area of advanced substrate engineering

  14. Integration of indium phosphide based devices with flexible substrates

    E-Print Network [OSTI]

    Chen, Wayne Huai

    2011-01-01T23:59:59.000Z

    the transport properties of heat and hydrogen to be that ofhydrogen- induced damage in the InP render relatively poor electrical properties (properties and could be modified with low doses of hydrogen

  15. Multilayer capacitor suitable for substrate integration and multimegahertz filtering

    DOE Patents [OSTI]

    Ngo, Khai D. T. (Gainesville, FL)

    1990-01-01T23:59:59.000Z

    A multilayer capacitor comprises stacked, spaced-apart electrodes of sheet form, dielectric layers between the electrodes, and first and second groups of spaced-apart conductive vias extending transversely of the sheet-form electrodes and through aligned holes in the dielectric layers. Alternate electrodes are instantaneously positive, and the remaining electrodes are instantaneously negative. Each via of the first group is electrically connected to the positive electrodes and passes insulatingly through the negative electrodes. Similarly, each via of the second group is electrically connected to the negative electrodes and passes insulatingly through the positive electrodes. Each via has, in the plane of the electrodes, a cross-sectional form in the shape of an elongated rib of greater length than width. The elongated ribs of the first group are disposed in a first plurality of rows with their lengths in spaced-apart, aligned relationship, and the ribs of the second group are disposed in a second plurality of rows with their lengths in spaced-apart, aligned relationship. The first plurality of rows is disposed substantially orthogonally with respect to the second plurality of rows.

  16. Graphene folding on flat substrates

    SciTech Connect (OSTI)

    Chen, Xiaoming; Zhao, Yadong; Ke, Changhong, E-mail: cke@binghamton.edu [Department of Mechanical Engineering, State University of New York at Binghamton, Binghamton, New York 13902 (United States); Zhang, Liuyang; Wang, Xianqiao [College of Engineering, University of Georgia, Athens, Georgia 30602 (United States)

    2014-10-28T23:59:59.000Z

    We present a combined experimental-theoretical study of graphene folding on flat substrates. The structure and deformation of the folded graphene sheet are experimentally characterized by atomic force microscopy. The local graphene folding behaviors are interpreted based on nonlinear continuum mechanics modeling and molecular dynamics simulations. Our study on self-folding of a trilayer graphene sheet reports a bending stiffness of about 6.57?eV, which is about four times the reported values for monolayer graphene. Our results reveal that an intriguing free sliding phenomenon occurs at the interlayer van der Waals interfaces during the graphene folding process. This work demonstrates that it is a plausible venue to quantify the bending stiffness of graphene based on its self-folding conformation on flat substrates. The findings reported in this work are useful to a better understanding of the mechanical properties of graphene and in the pursuit of its applications.

  17. Preparing reflective substrate surfaces for laser treatment

    DOE Patents [OSTI]

    Flick, F.F.

    1984-11-21T23:59:59.000Z

    A coating of either copper oxide or felt tip pen ink is used on reflective copper or gold substrates to enhance laser beam coupling when the substrates are cut or welded with a laser.

  18. Substrate for thin silicon solar cells

    DOE Patents [OSTI]

    Ciszek, T.F.

    1998-07-28T23:59:59.000Z

    A substrate is described for a photovoltaic device wherein the substrate is the base upon which photosensitive material is to be grown and the substrate comprises an alloy having boron in a range from 0.1 atomic % of the alloy to 1.3 atomic % of the alloy and the substrate has a resistivity less than 3{times}10{sup {minus}3} ohm-cm. 4 figs.

  19. Luminescence Efficiency of InGaN/GaN Quantum Wells on Bulk GaN Substrate M. Dworzak1

    E-Print Network [OSTI]

    Nabben, Reinhard

    Luminescence Efficiency of InGaN/GaN Quantum Wells on Bulk GaN Substrate M. Dworzak1 , T. Stempel1/37, 01-142 Warsaw, Poland ABSTRACT Time-integrated and time-resolved photoluminescence measurements on InGaN quantum wells grown by MOCVD on two different substrates (sapphire and GaN) show that the lumines- cence

  20. Automated cassette-to-cassette substrate handling system

    DOE Patents [OSTI]

    Kraus, Joseph Arthur; Boyer, Jeremy James; Mack, Joseph; DeChellis, Michael; Koo, Michael

    2014-03-18T23:59:59.000Z

    An automated cassette-to-cassette substrate handling system includes a cassette storage module for storing a plurality of substrates in cassettes before and after processing. A substrate carrier storage module stores a plurality of substrate carriers. A substrate carrier loading/unloading module loads substrates from the cassette storage module onto the plurality of substrate carriers and unloads substrates from the plurality of substrate carriers to the cassette storage module. A transport mechanism transports the plurality of substrates between the cassette storage module and the plurality of substrate carriers and transports the plurality of substrate carriers between the substrate carrier loading/unloading module and a processing chamber. A vision system recognizes recesses in the plurality of substrate carriers corresponding to empty substrate positions in the substrate carrier. A processor receives data from the vision system and instructs the transport mechanism to transport substrates to positions on the substrate carrier in response to the received data.

  1. Combined plasma/liquid cleaning of substrates

    DOE Patents [OSTI]

    Selwyn, Gary S. (Los Alamos, NM); Henins, Ivars (Los Alamos, NM)

    2003-04-15T23:59:59.000Z

    Apparatus and method for cleaning substrates. A substrate is held and rotated by a chuck and an atmospheric pressure plasma jet places a plasma onto predetermined areas of the substrate. Subsequently liquid rinse is sprayed onto the predetermined areas. In one embodiment, a nozzle sprays a gas onto the predetermined areas to assist in drying the predetermined areas when needed.

  2. Preparation of CaO as OLED getter material through control of crystal growth of CaCO{sub 3} by block copolymers in aqueous solution

    SciTech Connect (OSTI)

    Park, Jae-Hyung [Department of Chemical Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Oh, Seong-Geun [Department of Chemical Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of)], E-mail: seongoh@hanyang.ac.kr

    2009-01-08T23:59:59.000Z

    As the starting materials of organic light-emitting diode (OLED) getter, calcium carbonate (CaCO{sub 3}) particles with various shapes and crystal structures have been successfully prepared with additives (L64 or PEGPG), which contain blocks of poly(ethylene oxide) (PEO) and poly(propylene oxide) (PPO). These CaCO{sub 3} particles were calcinated into highly crystalline calcium oxide (CaO) nanoparticles with high capacity of water adsorption up to 14.23 wt.%. The CaCO{sub 3} and CaO particles prepared at various conditions were characterized using the field emission scanning electron microscopy (FE-SEM), Fourier transform infrared microscopy (FT-IR), X-ray powder diffraction (XRD), and dynamic vapor sorption (DVS) method.

  3. Textured substrate tape and devices thereof

    DOE Patents [OSTI]

    Goyal, Amit

    2006-08-08T23:59:59.000Z

    A method for forming a sharply biaxially textured substrate, such as a single crystal substrate, includes the steps of providing a deformed metal substrate, followed by heating above the secondary recrystallization temperature of the deformed substrate, and controlling the secondary recrystallization texture by either using thermal gradients and/or seeding. The seed is selected to shave a stable texture below a predetermined temperature. The sharply biaxially textured substrate can be formed as a tape having a length of 1 km, or more. Epitaxial articles can be formed from the tapes to include an epitaxial electromagnetically active layer. The electromagnetically active layer can be a superconducting layer.

  4. Plasmons in graphene on uniaxial substrates

    SciTech Connect (OSTI)

    Arrazola, I. [Universidad del País Vasco, 48940 Leioa (Spain) [Universidad del País Vasco, 48940 Leioa (Spain); CIC nanoGUNE Consolider, 20018 Donostia-San Sebastián (Spain); Hillenbrand, R.; Nikitin, A. Yu., E-mail: alexeynik@rambler.ru [CIC nanoGUNE Consolider, 20018 Donostia-San Sebastián (Spain); Ikerbasque, Basque Foundation for Science, 48011 Bilbao (Spain)

    2014-01-06T23:59:59.000Z

    Placing graphene on uniaxial substrates may have interesting application potential for graphene-based photonic and optoelectronic devices. Here, we analytically derive the dispersion relation for graphene plasmons on uniaxial substrates and discuss their momentum, propagation length, and polarization as a function of frequency, propagation direction, and both ordinary and extraordinary dielectric permittivities of the substrate. We find that the plasmons exhibit an anisotropic propagation, yielding radially asymmetric field patterns when a point emitter launches plasmons in the graphene layer.

  5. Substrate for thin silicon solar cells

    DOE Patents [OSTI]

    Ciszek, Theodore F. (Evergreen, CO)

    1995-01-01T23:59:59.000Z

    A photovoltaic device for converting solar energy into electrical signals comprises a substrate, a layer of photoconductive semiconductor material grown on said substrate, wherein the substrate comprises an alloy of boron and silicon, the boron being present in a range of from 0.1 to 1.3 atomic percent, the alloy having a lattice constant substantially matched to that of the photoconductive semiconductor material and a resistivity of less than 1.times.10.sup.-3 ohm-cm.

  6. Substrate for thin silicon solar cells

    DOE Patents [OSTI]

    Ciszek, T.F.

    1995-03-28T23:59:59.000Z

    A photovoltaic device for converting solar energy into electrical signals comprises a substrate, a layer of photoconductive semiconductor material grown on said substrate, wherein the substrate comprises an alloy of boron and silicon, the boron being present in a range of from 0.1 to 1.3 atomic percent, the alloy having a lattice constant substantially matched to that of the photoconductive semiconductor material and a resistivity of less than 1{times}10{sup {minus}3} ohm-cm. 4 figures.

  7. Superconducting Cuprates on Catalytic Substrates - Energy Innovation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transmission Electricity Transmission Find More Like This Return to Search Superconducting Cuprates on Catalytic Substrates Brookhaven National Laboratory Contact BNL About...

  8. Sandia National Laboratories: flexible PV substrate

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PV substrate Sandia, Endicott Interconnect Technologies, EMCORE, International Micro Industries, NREL, Universal Instruments: Solar Glitter On March 21, 2013, in Capabilities,...

  9. Substrate-Induced Band-Gap Opening in Epitaxial Graphene

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our InstagramStructure of All-Polymer. . ~0sFailureSubscribe MarkSubstrate-Induced

  10. Substrate-Induced Band-Gap Opening in Epitaxial Graphene

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our InstagramStructure of All-Polymer. . ~0sFailureSubscribeSubstrate-Induced

  11. Flexible cadmium telluride thin films grown on electron-beam-irradiated graphene/thin glass substrates

    SciTech Connect (OSTI)

    Seo, Won-Oh; Kim, Jihyun, E-mail: hyunhyun7@korea.ac.kr [Department of Chemical and Biological Engineering, Korea University, Anam-dong, Sungbuk-gu, Seoul 136-713 (Korea, Republic of); Koo, Yong Hwan; Kim, Byungnam; Lee, Byung Cheol [Radiation Integrated System Research Division, Korea Atomic Energy Research Institute (KAERI), Daejeon 305-353 (Korea, Republic of); Kim, Donghwan [Department of Materials Science and Engineering, Korea University, Seoul 136-701 (Korea, Republic of)

    2014-08-25T23:59:59.000Z

    We demonstrate the close-spaced sublimation growth of polycrystalline cadmium telluride (CdTe) thin films on a flexible graphene electrode/thin glass substrate structure. Prior to the growth of CdTe films, chemical-vapor-deposited graphene was transferred onto a flexible glass substrate and subjected to electron-beam irradiation at an energy of 0.2?MeV in order to intentionally introduce the defects into it in a controlled manner. Micro-Raman spectroscopy and sheet resistance measurements were employed to monitor the damage and disorder in the electron-beam irradiated graphene layers. The morphology and optical properties of the CdTe thin films deposited on a graphene/flexible glass substrate were systematically characterized. The integration of the defective graphene layers with a flexible glass substrate can be a useful platform to grow various thin-film structures for flexible electronic and optoelectronic devices.

  12. Interfacial Shear Strength of Oxide Scale and SS 441 Substrate

    SciTech Connect (OSTI)

    Liu, Wenning N.; Sun, Xin; Stephens, Elizabeth V.; Khaleel, Mohammad A.

    2011-05-01T23:59:59.000Z

    Recent developments on decreasing the operating temperature for Solid Oxide Fuel Cells (SOFCs) have enabled the use of high temperature ferritic alloys as interconnect materials. Oxide scale will inevitably grow on the ferritic interconnects in a high temperature oxidation environment of SOFCs. The growth of the oxide scale induces growth stresses in the scale layer and on the scale/substrate interface. These growth stresses combined with the thermal stresses induced upon stacking cooling by the thermal expansion coefficient mismatch between the oxide scale and the substrate may lead to scale delamination/buckling and eventual spallation, which may lead to serious cell performance degradation. Hence the interfacial adhesion strength between the oxide scale and the substrate is crucial to the reliability and durability of the metallic interconnect in SOFC operating environments. In this paper, we applied an integrated experimental/modeling methodology to quantify the interfacial adhesion strength between the oxide scale and the SS 441 metallic interconnect. The predicted interfacial strength is discussed in details.

  13. Screening method for selecting semiconductor substrates having defects below a predetermined level in an oxide layer

    DOE Patents [OSTI]

    Warren, W.L.; Vanheusden, K.J.R.; Schwank, J.R.; Fleetwood, D.M.; Shaneyfelt, M.R.; Winokur, P.S.; Devine, R.A.B.

    1998-07-28T23:59:59.000Z

    A method is disclosed for screening or qualifying semiconductor substrates for integrated circuit fabrication. The method comprises the steps of annealing at least one semiconductor substrate at a first temperature in a defect-activating ambient (e.g. hydrogen, forming gas, or ammonia) for sufficient time for activating any defects within on oxide layer of the substrate; measuring a defect-revealing electrical characteristic of at least a portion of the oxide layer for determining a quantity of activated defects therein; and selecting substrates for which the quantity of activated defects is below a predetermined level. The defect-revealing electrical characteristic may be a capacitance-versus voltage (C-V) characteristic or a current-versus-voltage (I-V) characteristic that is dependent on an electrical charge in the oxide layer generated by the activated defects. Embodiments of the present invention may be applied for screening any type of semiconductor substrate or wafer having an oxide layer formed thereon or therein. This includes silicon-on-insulator substrates formed by a separation by the implantation of oxygen (SIMOX) process or the bond and etch back silicon-on-insulator (BESOI) process, as well as silicon substrates having a thermal oxide layer or a deposited oxide layer. 5 figs.

  14. Integration of planar transformer and/or planar inductor with power switches in power converter

    DOE Patents [OSTI]

    Chen, Kanghua (Canton, MI); Ahmed, Sayeed (Canton, MI); Zhu, Lizhi (Canton, MI)

    2007-10-30T23:59:59.000Z

    A power converter integrates at least one planar transformer comprising a multi-layer transformer substrate and/or at least one planar inductor comprising a multi-layer inductor substrate with a number of power semiconductor switches physically and thermally coupled to a heat sink via one or more multi-layer switch substrates.

  15. Heterogeneous lithium niobate photonics on silicon substrates

    E-Print Network [OSTI]

    Fathpour, Sasan

    Heterogeneous lithium niobate photonics on silicon substrates Payam Rabiei,1,* Jichi Ma,1 Saeed-confined lithium niobate photonic devices and circuits on silicon substrates is reported based on wafer bonding high- performance lithium niobate microring optical resonators and Mach- Zehnder optical modulators

  16. Passive hybrid sensing tag with flexible substrate saw device

    DOE Patents [OSTI]

    Skinner, Jack L.; Chu, Eric Y.; Ho, Harvey

    2012-12-25T23:59:59.000Z

    The integration of surface acoustic wave (SAW) filters, microfabricated transmission lines, and sensors onto polymer substrates in order to enable a passive wireless sensor platform is described herein. Incident microwave pulses on an integrated antenna are converted to an acoustic wave via a SAW filter and transmitted to an impedance based sensor, which for this work is a photodiode. Changes in the sensor state induce a corresponding change in the impedance of the sensor resulting in a reflectance profile. Data collected at a calibrated receiver is used to infer the state of the sensor. Based on this principal, light levels were passively and wirelessly demonstrated to be sensed at distances of up to about 12 feet.

  17. Thin Film Transistors On Plastic Substrates

    DOE Patents [OSTI]

    Carey, Paul G. (Mountain View, CA); Smith, Patrick M. (San Ramon, CA); Sigmon, Thomas W. (Portola Valley, CA); Aceves, Randy C. (Livermore, CA)

    2004-01-20T23:59:59.000Z

    A process for formation of thin film transistors (TFTs) on plastic substrates replaces standard thin film transistor fabrication techniques, and uses sufficiently lower processing temperatures so that inexpensive plastic substrates may be used in place of standard glass, quartz, and silicon wafer-based substrates. The silicon based thin film transistor produced by the process includes a low temperature substrate incapable of withstanding sustained processing temperatures greater than about 250.degree. C., an insulating layer on the substrate, a layer of silicon on the insulating layer having sections of doped silicon, undoped silicon, and poly-silicon, a gate dielectric layer on the layer of silicon, a layer of gate metal on the dielectric layer, a layer of oxide on sections of the layer of silicon and the layer of gate metal, and metal contacts on sections of the layer of silicon and layer of gate metal defining source, gate, and drain contacts, and interconnects.

  18. Substrate solder barriers for semiconductor epilayer growth

    DOE Patents [OSTI]

    Drummond, Timothy J. (Tijeras, NM); Ginley, David S. (Albuquerque, NM); Zipperian, Thomas E. (Albuquerque, NM)

    1989-01-01T23:59:59.000Z

    During the growth of compound semiconductors by epitaxial processes, substrates are typically mounted to a support. In modular beam epitaxy, mounting is done using indium as a solder. This method has two drawbacks: the indium reacts with the substrate, and it is difficult to uniformly wet the back of a large diameter substrate. Both of these problems have been successfully overcome by sputter coating the back of the substrate with a thin layer of tungsten carbide or tungsten carbide and gold. In addition to being compatible with the growth of high quality semiconductor epilayers this coating is also inert in all standard substrate cleaning etchants used for compound semiconductors, and provides uniform distribution of energy in radiant heating.

  19. Substrate solder barriers for semiconductor epilayer growth

    DOE Patents [OSTI]

    Drummond, T.J.; Ginley, D.S.; Zipperian, T.E.

    1989-05-09T23:59:59.000Z

    During the growth of compound semiconductors by epitaxial processes, substrates are typically mounted to a support. In modular beam epitaxy, mounting is done using indium as a solder. This method has two drawbacks: the indium reacts with the substrate, and it is difficult to uniformly wet the back of a large diameter substrate. Both of these problems have been successfully overcome by sputter coating the back of the substrate with a thin layer of tungsten carbide or tungsten carbide and gold. In addition to being compatible with the growth of high quality semiconductor epilayers this coating is also inert in all standard substrate cleaning etchants used for compound semiconductors, and provides uniform distribution of energy in radiant heating.

  20. Self-integration of nanowires into circuits via guided growth

    E-Print Network [OSTI]

    Joselevich, Ernesto

    Self-integration of nanowires into circuits via guided growth Mark Schvartzmana , David Tsiviona discrete nanowires (NWs) with nanoscale precision on a substrate is the key to their integration applied this approach for the integration of 14 discrete NWs into an electronic circuit operat- ing

  1. Methods for integrating a functional component into a microfluidic device

    DOE Patents [OSTI]

    Simmons, Blake; Domeier, Linda; Woo, Noble; Shepodd, Timothy; Renzi, Ronald F.

    2014-08-19T23:59:59.000Z

    Injection molding is used to form microfluidic devices with integrated functional components. One or more functional components are placed in a mold cavity, which is then closed. Molten thermoplastic resin is injected into the mold and then cooled, thereby forming a solid substrate including the functional component(s). The solid substrate including the functional component(s) is then bonded to a second substrate, which may include microchannels or other features.

  2. Method of forming fluorine-bearing diamond layer on substrates, including tool substrates

    DOE Patents [OSTI]

    Chang, R. P. H. (Glenview, IL); Grannen, Kevin J. (Evanston, IL)

    2002-01-01T23:59:59.000Z

    A method of forming a fluorine-bearing diamond layer on non-diamond substrates, especially on tool substrates comprising a metal matrix and hard particles, such as tungsten carbide particles, in the metal matrix. The substrate and a fluorine-bearing plasma or other gas are then contacted under temperature and pressure conditions effective to nucleate fluorine-bearing diamond on the substrate. A tool insert substrate is treated prior to the diamond nucleation and growth operation by etching both the metal matrix and the hard particles using suitable etchants.

  3. Metallic coatings on silicon substrates, and methods of forming metallic coatings on silicon substrates

    DOE Patents [OSTI]

    Branagan, Daniel J. (Idaho Falls, ID); Hyde, Timothy A. (Idaho Falls, ID); Fincke, James R. (Los Alamos, NM)

    2008-03-11T23:59:59.000Z

    The invention includes methods of forming a metallic coating on a substrate which contains silicon. A metallic glass layer is formed over a silicon surface of the substrate. The invention includes methods of protecting a silicon substrate. The substrate is provided within a deposition chamber along with a deposition target. Material from the deposition target is deposited over at least a portion of the silicon substrate to form a protective layer or structure which contains metallic glass. The metallic glass comprises iron and one or more of B, Si, P and C. The invention includes structures which have a substrate containing silicon and a metallic layer over the substrate. The metallic layer contains less than or equal to about 2 weight % carbon and has a hardness of at least 9.2 GPa. The metallic layer can have an amorphous microstructure or can be devitrified to have a nanocrystalline microstructure.

  4. Wafer bonded virtual substrate and method for forming the same

    DOE Patents [OSTI]

    Atwater, Jr., Harry A. (So. Pasadena, CA); Zahler, James M. (Pasadena, CA); Morral, Anna Fontcuberta i (Paris, FR)

    2007-07-03T23:59:59.000Z

    A method of forming a virtual substrate comprised of an optoelectronic device substrate and handle substrate comprises the steps of initiating bonding of the device substrate to the handle substrate, improving or increasing the mechanical strength of the device and handle substrates, and thinning the device substrate to leave a single-crystal film on the virtual substrate such as by exfoliation of a device film from the device substrate. The handle substrate is typically Si or other inexpensive common substrate material, while the optoelectronic device substrate is formed of more expensive and specialized electro-optic material. Using the methodology of the invention a wide variety of thin film electro-optic materials of high quality can be bonded to inexpensive substrates which serve as the mechanical support for an optoelectronic device layer fabricated in the thin film electro-optic material.

  5. Electron mobility calculation for graphene on substrates

    SciTech Connect (OSTI)

    Hirai, Hideki; Ogawa, Matsuto [Department of Electrical and Electronic Engineering, Graduate School of Engineering, Kobe University, 1-1, Rokko-dai, Nada-ku, Kobe 657-8501 (Japan); Tsuchiya, Hideaki, E-mail: tsuchiya@eedept.kobe-u.ac.jp [Department of Electrical and Electronic Engineering, Graduate School of Engineering, Kobe University, 1-1, Rokko-dai, Nada-ku, Kobe 657-8501 (Japan); Japan Science and Technology Agency, CREST, Chiyoda, Tokyo 102-0075 (Japan); Kamakura, Yoshinari; Mori, Nobuya [Japan Science and Technology Agency, CREST, Chiyoda, Tokyo 102-0075 (Japan); Division of Electrical, Electronic and Information Engineering, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871 (Japan)

    2014-08-28T23:59:59.000Z

    By a semiclassical Monte Carlo method, the electron mobility in graphene is calculated for three different substrates: SiO{sub 2}, HfO{sub 2}, and hexagonal boron nitride (h-BN). The calculations account for polar and non-polar surface optical phonon (OP) scatterings induced by the substrates and charged impurity (CI) scattering, in addition to intrinsic phonon scattering in pristine graphene. It is found that HfO{sub 2} is unsuitable as a substrate, because the surface OP scattering of the substrate significantly degrades the electron mobility. The mobility on the SiO{sub 2} and h-BN substrates decreases due to CI scattering. However, the mobility on the h-BN substrate exhibits a high electron mobility of 170?000?cm{sup 2}/(V·s) for electron densities less than 10{sup 12?}cm{sup ?2}. Therefore, h-BN should be an appealing substrate for graphene devices, as confirmed experimentally.

  6. Implantable biomedical devices on bioresorbable substrates

    DOE Patents [OSTI]

    Rogers, John A; Kim, Dae-Hyeong; Omenetto, Fiorenzo; Kaplan, David L; Litt, Brian; Viventi, Jonathan; Huang, Yonggang; Amsden, Jason

    2014-03-04T23:59:59.000Z

    Provided herein are implantable biomedical devices, methods of administering implantable biomedical devices, methods of making implantable biomedical devices, and methods of using implantable biomedical devices to actuate a target tissue or sense a parameter associated with the target tissue in a biological environment. Each implantable biomedical device comprises a bioresorbable substrate, an electronic device having a plurality of inorganic semiconductor components supported by the bioresorbable substrate, and a barrier layer encapsulating at least a portion of the inorganic semiconductor components. Upon contact with a biological environment the bioresorbable substrate is at least partially resorbed, thereby establishing conformal contact between the implantable biomedical device and the target tissue in the biological environment.

  7. Substrate solder barriers for semiconductor epilayer growth

    DOE Patents [OSTI]

    Drummond, T.J.; Ginley, D.S.; Zipperian, T.E.

    1987-10-23T23:59:59.000Z

    During the growth of compound semiconductors by epitaxial processes, substrates are typically mounted to a support. In molecular beam epitaxy, mounting is done using indium as a solder. This method has two drawbacks: the indium reacts with the substrate, and it is difficult to uniformly wet the back of a large diameter substrate. Both of these problems have been successfully overcome by sputter coating the back of the substrate with a thin layer of tungsten carbide or tungsten carbide and gold. In addition to being compatible with the growth of high quality semiconductor epilayers this coating is also inert in all standard substate cleaning etchants used for compound semiconductors, and provides uniform distribution of energy in radiant heating. 1 tab.

  8. Coiling of elastic rods on rigid substrates

    E-Print Network [OSTI]

    Khalid Jawed, Mohammad

    We investigate the deployment of a thin elastic rod onto a rigid substrate and study the resulting coiling patterns. In our approach, we combine precision model experiments, scaling analyses, and computer simulations toward ...

  9. Coiling of elastic rods on rigid substrates

    E-Print Network [OSTI]

    Khalid Jawed, Mohammad

    2014-01-01T23:59:59.000Z

    We investigate the deployment of a thin elastic rod onto a rigid substrate and study the resulting coiling patterns. In our approach, we combine precision model experiments, scaling analyses, and computer simulations towards ...

  10. Direct transfer of graphene onto flexible substrates

    E-Print Network [OSTI]

    Araujo, P. T.

    In this paper we explore the direct transfer via lamination of chemical vapor deposition graphene onto different flexible substrates. The transfer method investigated here is fast, simple, and does not require an intermediate ...

  11. Off-axis silicon carbide substrates

    DOE Patents [OSTI]

    Edgar, James; Dudley, Michael; Kuball, Martin; Zhang, Yi; Wang, Guan; Chen, Hui; Zhang, Yu

    2014-09-02T23:59:59.000Z

    A method of epitaxial growth of a material on a crystalline substrate includes selecting a substrate having a crystal plane that includes a plurality of terraces with step risers that join adjacent terraces. Each terrace of the plurality or terraces presents a lattice constant that substantially matches a lattice constant of the material, and each step riser presents a step height and offset that is consistent with portions of the material nucleating on adjacent terraces being in substantial crystalline match at the step riser. The method also includes preparing a substrate by exposing the crystal plane; and epitaxially growing the material on the substrate such that the portions of the material nucleating on adjacent terraces merge into a single crystal lattice without defects at the step risers.

  12. Substrate Recognition Strategy for Botulinum Neurotoxin

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (green arrow and circle), BoNTA light-chain helices (tan) 1-4, the helical N-terminal of the substrate (red), approximate locations (green) of contacting side chains...

  13. Labeling and Identification of Direct Kinase Substrates

    E-Print Network [OSTI]

    Carlson, Scott M.

    Identifying kinase substrates is an important step in mapping signal transduction pathways, but it remains a difficult and time-consuming process. Analog-sensitive (AS) kinases have been used to selectively tag and identify ...

  14. Composition containing aerogel substrate loaded with tritium

    DOE Patents [OSTI]

    Ashley, Carol S. (Albuquerque, NM); Brinker, C. Jeffrey (Albuquerque, NM); Ellefson, Robert E. (Centerville, OH); Gill, John T. (Miamisburg, OH); Reed, Scott (Albuquerque, NM); Walko, Robert J. (Albuquerque, NM)

    1992-01-01T23:59:59.000Z

    The invention provides a process for loading an aerogel substrate with tritium and the resultant compositions. According to the process, an aerogel substrate is hydrolyzed so that surface OH groups are formed. The hydrolyzed aerogel is then subjected to tritium exchange employing, for example, a tritium-containing gas, whereby tritium atoms replace H atoms of surface OH groups. OH and/or CH groups of residual alcohol present in the aerogel may also undergo tritium exchange.

  15. Biaxially oriented film on flexible polymeric substrate

    DOE Patents [OSTI]

    Finkikoglu, Alp T. (Los Alamos, NM); Matias, Vladimir (Santa Fe, NM)

    2009-10-13T23:59:59.000Z

    A flexible polymer-based template having a biaxially oriented film grown on the surface of a polymeric substrate. The template having the biaxially oriented film can be used for further epitaxial growth of films of interest for applications such as photovoltaic cells, light emitting diodes, and the like. Methods of forming such a flexible template and providing the polymeric substrate with a biaxially oriented film deposited thereon are also described.

  16. Method for deposition of a conductor in integrated circuits

    DOE Patents [OSTI]

    Creighton, J.R.; Dominguez, F.; Johnson, A.W.; Omstead, T.R.

    1997-09-02T23:59:59.000Z

    A method is described for fabricating integrated semiconductor circuits and, more particularly, for the selective deposition of a conductor onto a substrate employing a chemical vapor deposition process. By way of example, tungsten can be selectively deposited onto a silicon substrate. At the onset of loss of selectivity of deposition of tungsten onto the silicon substrate, the deposition process is interrupted and unwanted tungsten which has deposited on a mask layer with the silicon substrate can be removed employing a halogen etchant. Thereafter, a plurality of deposition/etch back cycles can be carried out to achieve a predetermined thickness of tungsten. 2 figs.

  17. Method for deposition of a conductor in integrated circuits

    DOE Patents [OSTI]

    Creighton, J. Randall (Albuquerque, NM); Dominguez, Frank (Albuquerque, NM); Johnson, A. Wayne (Albuquerque, NM); Omstead, Thomas R. (Albuquerque, NM)

    1997-01-01T23:59:59.000Z

    A method is described for fabricating integrated semiconductor circuits and, more particularly, for the selective deposition of a conductor onto a substrate employing a chemical vapor deposition process. By way of example, tungsten can be selectively deposited onto a silicon substrate. At the onset of loss of selectivity of deposition of tungsten onto the silicon substrate, the deposition process is interrupted and unwanted tungsten which has deposited on a mask layer with the silicon substrate can be removed employing a halogen etchant. Thereafter, a plurality of deposition/etch back cycles can be carried out to achieve a predetermined thickness of tungsten.

  18. Characterization of the plastic substrates, the reflective layers...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the plastic substrates, the reflective layers, the adhesives, and the grooves of today's archival-grade Characterization of the plastic substrates, the reflective layers, the...

  19. Spatially tracking 13C labeled substrate (bicarbonate) accumulation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    tracking 13C labeled substrate (bicarbonate) accumulation in microbial communities using laser ablation isotope ratio Spatially tracking 13C labeled substrate (bicarbonate)...

  20. Substrate Changes Associated with the Chemistry of Self-Assembled...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Substrate Changes Associated with the Chemistry of Self-Assembled Monolayers on Silicon. Substrate Changes Associated with the Chemistry of Self-Assembled Monolayers on Silicon....

  1. Grid Integration

    SciTech Connect (OSTI)

    Not Available

    2008-09-01T23:59:59.000Z

    Summarizes the goals and activities of the DOE Solar Energy Technologies Program efforts within its grid integration subprogram.

  2. Evolution integrals

    E-Print Network [OSTI]

    Rocco Duvenhage

    2006-05-24T23:59:59.000Z

    A framework analogous to path integrals in quantum physics is set up for abstract dynamical systems in a W*-algebraic setting. We consider spaces of evolutions, defined in a specific way, of a W*-algebra A as an analogue of spaces of classical paths, and show how integrals over such spaces, which we call ``evolution integrals'', lead to dynamics in a Hilbert space on a ``higher level'' which is viewed as an analogue of quantum dynamics obtained from path integrals. The measures with respect to which these integrals are performed are projection valued.

  3. Integrated field emission array for ion desorption

    DOE Patents [OSTI]

    Resnick, Paul J; Hertz, Kristin L; Holland, Christopher; Chichester, David; Schwoebel, Paul

    2013-09-17T23:59:59.000Z

    An integrated field emission array for ion desorption includes an electrically conductive substrate; a dielectric layer lying over the electrically conductive substrate comprising a plurality of laterally separated cavities extending through the dielectric layer; a like plurality of conically-shaped emitter tips on posts, each emitter tip/post disposed concentrically within a laterally separated cavity and electrically contacting the substrate; and a gate electrode structure lying over the dielectric layer, including a like plurality of circular gate apertures, each gate aperture disposed concentrically above an emitter tip/post to provide a like plurality of annular gate electrodes and wherein the lower edge of each annular gate electrode proximate the like emitter tip/post is rounded. Also disclosed herein are methods for fabricating an integrated field emission array.

  4. Determination of Interfacial Adhesion Strength between Oxide Scale and Substrate for Metallic SOFC Interconnects

    SciTech Connect (OSTI)

    Sun, Xin; Liu, Wenning N.; Stephens, Elizabeth V.; Khaleel, Mohammad A.

    2008-01-21T23:59:59.000Z

    The interfacial adhesion strength between the oxide scale and the substrate is crucial to the reliability and durability of metallic interconnects in SOFC operating environments. It is necessary, therefore, to establish a methodology to quantify the interfacial adhesion strength between the oxide scale and the metallic interconnect substrate, and furthermore to design and optimize the interconnect material as well as the coating materials to meet the design life of an SOFC system. In this paper, we present an integrated experimental/analytical methodology for quantifying the interfacial adhesion strength between oxide scale and a ferritic stainless steel interconnect. Stair-stepping indentation tests are used in conjunction with subsequent finite element analyses to predict the interfacial strength between the oxide scale and Crofer 22 APU substrate.

  5. Passivation coating for flexible substrate mirrors

    DOE Patents [OSTI]

    Tracy, C. Edwin (Golden, CO); Benson, David K. (Golden, CO)

    1990-01-01T23:59:59.000Z

    A protective diffusion barrier for metalized mirror structures is provided by a layer or coating of silicon nitride which is a very dense, transparent, dielectric material that is impervious to water, alkali, and other impurities and corrosive substances that typically attack the metal layers of mirrors and cause degradation of the mirrors' reflectivity. The silicon nitride layer can be deposited on the substrate before metal deposition thereon to stabilize the metal/substrate interface, and it can be deposited over the metal to encapsulate it and protect the metal from corrosion or other degradation. Mirrors coated with silicon nitride according to this invention can also be used as front surface mirrors. Also, the silver or other reflective metal layer on mirrors comprising thin, lightweight, flexible substrates of metal or polymer sheets coated with glassy layers can be protected with silicon nitride according to this invention.

  6. Methods of selectively incorporating metals onto substrates

    DOE Patents [OSTI]

    Ernst; Richard D. (Salt Lake City, UT), Eyring; Edward M. (Salt Lake City, UT), Turpin; Gregory C. (Salt Lake City, UT), Dunn; Brian C. (Salt Lake City, UT)

    2008-09-30T23:59:59.000Z

    A method for forming multi-metallic sites on a substrate is disclosed and described. A substrate including active groups such as hydroxyl can be reacted with a pretarget metal complex. The target metal attached to the active group can then be reacted with a secondary metal complex such that an oxidation-reduction (redox) reaction occurs to form a multi-metallic species. The substrate can be a highly porous material such as aerogels, xerogels, zeolites, and similar materials. Additional metal complexes can be reacted to increase catalyst loading or control co-catalyst content. The resulting compounds can be oxidized to form oxides or reduced to form metals in the ground state which are suitable for practical use.

  7. Inverter power module with distributed support for direct substrate cooling

    DOE Patents [OSTI]

    Miller, David Harold (San Pedro, CA); Korich, Mark D. (Chino Hills, CA); Ward, Terence G. (Redondo Beach, CA); Mann, Brooks S. (Redondo Beach, CA)

    2012-08-21T23:59:59.000Z

    Systems and/or methods are provided for an inverter power module with distributed support for direct substrate cooling. An inverter module comprises a power electronic substrate. A first support frame is adapted to house the power electronic substrate and has a first region adapted to allow direct cooling of the power electronic substrate. A gasket is interposed between the power electronic substrate and the first support frame. The gasket is configured to provide a seal between the first region and the power electronic substrate. A second support frame is adapted to house the power electronic substrate and joined to the first support frame to form the seal.

  8. Cleaning process for EUV optical substrates

    DOE Patents [OSTI]

    Weber, Frank J. (Sunol, CA); Spiller, Eberhard A. (Mt. Kiso, NY)

    1999-01-01T23:59:59.000Z

    A cleaning process for surfaces with very demanding cleanliness requirements, such as extreme-ultraviolet (EUV) optical substrates. Proper cleaning of optical substrates prior to applying reflective coatings thereon is very critical in the fabrication of the reflective optics used in EUV lithographic systems, for example. The cleaning process involves ultrasonic cleaning in acetone, methanol, and a pH neutral soap, such as FL-70, followed by rinsing in de-ionized water and drying with dry filtered nitrogen in conjunction with a spin-rinse.

  9. Insolation integrator

    DOE Patents [OSTI]

    Dougherty, John J. (Norristown, PA); Rudge, George T. (Lansdale, PA)

    1980-01-01T23:59:59.000Z

    An electric signal representative of the rate of insolation is integrated to determine if it is adequate for operation of a solar energy collection system.

  10. ZnO buffer layer for metal films on silicon substrates

    DOE Patents [OSTI]

    Ihlefeld, Jon

    2014-09-16T23:59:59.000Z

    Dramatic improvements in metallization integrity and electroceramic thin film performance can be achieved by the use of the ZnO buffer layer to minimize interfacial energy between metallization and adhesion layers. In particular, the invention provides a substrate metallization method utilizing a ZnO adhesion layer that has a high work of adhesion, which in turn enables processing under thermal budgets typically reserved for more exotic ceramic, single-crystal, or metal foil substrates. Embodiments of the present invention can be used in a broad range of applications beyond ferroelectric capacitors, including microelectromechanical systems, micro-printed heaters and sensors, and electrochemical energy storage, where integrity of metallized silicon to high temperatures is necessary.

  11. Technical Note Graphene: Substrate preparation and introduction

    E-Print Network [OSTI]

    Technical Note Graphene: Substrate preparation and introduction Radosav S. Pantelic a , Ji Won Suk September 2010 Accepted 4 October 2010 Available online xxxx Keywords: Graphene Graphene oxide Cryo the transfer of continuous, single-layer, pristine graphene to standard Quan- tifoil TEM grids. We compare

  12. Electrochemical cell including ribbed electrode substrates

    SciTech Connect (OSTI)

    Breault, R.D.; Goller, G.J.; Roethlein, R.J.; Sprecher, G.C.

    1981-07-21T23:59:59.000Z

    An electrochemical cell including an electrolyte retaining matrix layer located between and in contact with cooperating anode and cathode electrodes is disclosed herein. Each of the electrodes is comprised of a ribbed (or grooved) substrate including a gas porous body as its main component and a catalyst layer located between the substrate and one side of the electrolyte retaining matrix layer. Each substrate body includes a ribbed section for receiving reactant gas and lengthwise side portions on opposite sides of the ribbed section. Each of the side portions includes a channel extending along its entire length from one surface thereof (e.g., its outer surface) to but stopping short of an opposite surface (e.g., its inner surface) so as to provide a web directly between the channel and the opposite surface. Each of the channels is filled with a gas impervious substance and each of the webs is impregnated with a gas impervious substance so as to provide a gas impervious seal along the entire length of each side portion of each substrate and between the opposite faces thereof (e.g., across the entire thickness thereof).

  13. CX-001307: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Low-Cost Integrated Substrate for Organic Light-Emitting Diode (OLED) Lighting (Harmar)CX(s) Applied: B3.6Date: 03/19/2010Location(s): Harmar, PennsylvaniaOffice(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory

  14. CX-001308: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Low-Cost Integrated Substrate for Organic Light-Emitting Diode (OLED) Lighting (Allison Park)CX(s) Applied: A2, A9Date: 03/19/2010Location(s): Allison Park, PennsylvaniaOffice(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory

  15. CX-001309: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Low-Cost Integrated Substrate for Organic Light-Emitting Diode (OLED) Lighting (Monroeville)CX(s) Applied: B3.6Date: 03/19/2010Location(s): Monroeville, PennsylvaniaOffice(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory

  16. CX-001310: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Low-Cost Integrated Substrate for Organic Light-Emitting Diode (OLED) Lighting (Ewing)CX(s) Applied: B3.6Date: 03/19/2010Location(s): Ewing, New JerseyOffice(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory

  17. Aerospace Applications for OLED Lighting

    Energy Savers [EERE]

    2015 Boeing. All rights reserved. Export Controlled ECCN: 9E991 NLR Aerospace economics drive long development cycles and even longer product lifecycles * Development of a...

  18. OLED Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOilNEWResponse to Time-BasedDecember 23,Misc Cases ArchiveWorker AppealSSL

  19. Optical substrate materials for synchrotron radiation beamlines

    SciTech Connect (OSTI)

    Howells, M.R. [Lawrence Berkeley National Lab., CA (United States). Advanced Light Source; Paquin, R.A. [Univ. of Arizona, Tucson, AZ (United States). Optical Sciences Center

    1997-06-01T23:59:59.000Z

    The authors consider the materials choices available for making optical substrates for synchrotron radiation beam lines. They find that currently the optical surfaces can only be polished to the required finish in fused silica and other glasses, silicon, CVD silicon carbide, electroless nickel and 17-4 PH stainless steel. Substrates must therefore be made of one of these materials or of a metal that can be coated with electroless nickel. In the context of material choices for mirrors they explore the issues of dimensional stability, polishing, bending, cooling, and manufacturing strategy. They conclude that metals are best from an engineering and cost standpoint while the ceramics are best from a polishing standpoint. They then give discussions of specific materials as follows: silicon carbide, silicon, electroless nickel, Glidcop{trademark}, aluminum, precipitation-hardening stainless steel, mild steel, invar and superinvar. Finally they summarize conclusions and propose ideas for further research.

  20. Enhanced photoacoustic detection using photonic crystal substrate

    SciTech Connect (OSTI)

    Zhao, Yunfei; Liu, Kaiyang [Department of Electrical and Computer Engineering, Iowa State University, Ames, Iowa 50011 (United States); McClelland, John [Ames Laboratory-USDOE, Ames, Iowa 50011 (United States); Department of Mechanical Engineering, Iowa State University, Ames, Iowa 50011 (United States); Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa 50011 (United States); Lu, Meng, E-mail: menglu@iastate.edu [Department of Electrical and Computer Engineering, Iowa State University, Ames, Iowa 50011 (United States); Department of Mechanical Engineering, Iowa State University, Ames, Iowa 50011 (United States)

    2014-04-21T23:59:59.000Z

    This paper demonstrates the enhanced photoacoustic sensing of surface-bound light absorbing molecules and metal nanoparticles using a one-dimensional photonic crystal (PC) substrate. The PC structure functions as an optical resonator at the wavelength where the analyte absorption is strong. The optical resonance of the PC sensor provides an intensified evanescent field with respect to the excitation light source and results in enhanced optical absorption by surface-immobilized samples. For the analysis of a light absorbing dye deposited on the PC surface, the intensity of photoacoustic signal was enhanced by more than 10-fold in comparison to an un-patterned acrylic substrate. The technique was also applied to detect gold nanorods and exhibited more than 40 times stronger photoacoustic signals. The demonstrated approach represents a potential path towards single molecule absorption spectroscopy with greater performance and inexpensive instrumentation.

  1. Reversible Attraction-Mediated Colloidal Crystallization on Patterned Substrates

    E-Print Network [OSTI]

    Fernandes, Gregory

    2009-05-15T23:59:59.000Z

    In this dissertation we used tunable particle-particle and particle-substrate attraction to achieve reversible two-dimensional crystallization of colloids on homogeneous and patterned substrates. Total internal reflection and video microscopy...

  2. Surface control alloy substrates and methods of manufacture therefor

    DOE Patents [OSTI]

    Fritzemeier, Leslie G. (Mendon, MA); Li, Qi (Marlborough, MA); Rupich, Martin W. (Framingham, MA); Thompson, Elliott D. (Coventry, RI); Siegal, Edward J. (Malden, MA); Thieme, Cornelis Leo Hans (Westborough, MA); Annavarapu, Suresh (Brookline, MA); Arendt, Paul N. (Los Alamos, NM); Foltyn, Stephen R. (Los Alamos, NM)

    2004-05-04T23:59:59.000Z

    Methods and articles for controlling the surface of an alloy substrate for deposition of an epitaxial layer. The invention includes the use of an intermediate layer to stabilize the substrate surface against oxidation for subsequent deposition of an epitaxial layer.

  3. Substrate-Induced Band-Gap Opening in Epitaxial Graphene

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Substrate-Induced Band-Gap Opening in Epitaxial Graphene Substrate-Induced Band-Gap Opening in Epitaxial Graphene Print Wednesday, 26 March 2008 00:00 Prospective challengers to...

  4. Hard Bottom Substrate Monitoring Horns Rev Offshore Wind Farm

    E-Print Network [OSTI]

    Hard Bottom Substrate Monitoring Horns Rev Offshore Wind Farm Annual Status Report 2003 #12;Hard Bottom Substrate Monitoring Horns Rev Offshore Wind Farm Annual Status Report 2003 Published: 14 May 2004

  5. ORNL: Low-Cost Direct Bonded Aluminum (DBA) Substrates (Agreement...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ORNL: Low-Cost Direct Bonded Aluminum (DBA) Substrates (Agreement ID:23278) ORNL: Low-Cost Direct Bonded Aluminum (DBA) Substrates (Agreement ID:23278) 2013 DOE Hydrogen and Fuel...

  6. Oxygen Incorporation During Fabrication of Substrate CdTe Photovoltaic Devices: Preprint

    SciTech Connect (OSTI)

    Duenow, J. N.; Dhere, R. G.; Kuciauskas, D.; Li, J. V.; Pankow, J. W.; DeHart, C. M.; Gessert, T. A.

    2012-06-01T23:59:59.000Z

    Recently, CdTe photovoltaic (PV) devices fabricated in the nonstandard substrate configuration have attracted increasing interest because of their potential compatibility with flexible substrates such as metal foils and polymer films. This compatibility could lead to the suitability of CdTe for roll-to-roll processing and building-integrated PV. Currently, however, the efficiencies of substrate CdTe devices reported in the literature are significantly lower ({approx}6%-8%) than those of high-performance superstrate devices ({approx}17%) because of significantly lower open-circuit voltage (Voc) and fill factor (FF). In our recent device development efforts, we have found that processing parameters required to fabricate high-efficiency substrate CdTe PV devices differ from those necessary for traditional superstrate CdTe devices. Here, we investigate how oxygen incorporation in the CdTe deposition, CdCl2 heat treatment, CdS deposition, and post-deposition heat treatment affect device characteristics through their effects on the junction. By adjusting whether oxygen is incorporated during these processing steps, we have achieved Voc values greater than 860 mV and efficiencies greater than 10%.

  7. Method for removing semiconductor layers from salt substrates

    DOE Patents [OSTI]

    Shuskus, Alexander J. (West Hartford, CT); Cowher, Melvyn E. (East Brookfield, MA)

    1985-08-27T23:59:59.000Z

    A method is described for removing a CVD semiconductor layer from an alkali halide salt substrate following the deposition of the semiconductor layer. The semiconductor-substrate combination is supported on a material such as tungsten which is readily wet by the molten alkali halide. The temperature of the semiconductor-substrate combination is raised to a temperature greater than the melting temperature of the substrate but less than the temperature of the semiconductor and the substrate is melted and removed from the semiconductor by capillary action of the wettable support.

  8. Metallic substrates for high temperature superconductors

    DOE Patents [OSTI]

    Truchan, Thomas G. (Chicago, IL); Miller, Dean J. (Darien, IL); Goretta, Kenneth C. (Downers Grove, IL); Balachandran, Uthamalingam (Hinsdale, IL); Foley, Robert (Chicago, IL)

    2002-01-01T23:59:59.000Z

    A biaxially textured face-centered cubic metal article having grain boundaries with misorientation angles greater than about 8.degree. limited to less than about 1%. A laminate article is also disclosed having a metal substrate first rolled to at least about 95% thickness reduction followed by a first annealing at a temperature less than about 375.degree. C. Then a second rolling operation of not greater than about 6% thickness reduction is provided, followed by a second annealing at a temperature greater than about 400.degree. C. A method of forming the metal and laminate articles is also disclosed.

  9. Thin film reactions on alloy semiconductor substrates

    SciTech Connect (OSTI)

    Olson, D.A.

    1990-11-01T23:59:59.000Z

    The interactions between Pt and In{sub .53}Ga{sub .47}As have been studied. In{sub .53}Ga{sub .47}As substrates with 70nm Pt films were encapsulated in SiO{sub 2}, and annealed up to 600{degree}C in flowing forming gas. The composition and morphology of the reaction product phases were studied using x-ray diffraction, Auger depth profiling, and transmission electron microscopy. The reaction kinetics were examined with Rutherford Backscattering. Results show that Pt/In{sub .53}Ga{sub .47}As reacts to form many of the reaction products encountered in the Pt/GaAs and Pt/InP reactions: PtGa, Pt{sub 3}Ga, and PtAs{sub 2}. In addition, a ternary phase, Pt(In:Ga){sub 2}, develops, which is a solid solution between PtIn{sub 2} and PtGa{sub 2}. The amount of Ga in the ternary phase increases with annealing temperature, which causes a decrease in the lattice parameter of the phase. The reaction products show a tendency to form layered structures, especially for higher temperatures and longer annealing times. Unlike the binary case, the PtAs{sub 2}, phase is randomly oriented on the substrate, and is intermingle with a significant amount of Pt(In:Ga){sub 2}. Following Pt/In{sub .53}Ga{sub .47}As reactions, two orientation relationships between the Pt(In:Ga){sub 2} product phase and the substrate were observed, despite the large mismatch with the substrate ({approximately}8%). For many metal/compound semiconductor interactions, the reaction rate is diffusion limited, i.e. exhibits a parabolic dependence on time. An additional result of this study was the development of an In-rich layer beneath the reacted layer. The Auger depth profile showed a substantial increase in the sample at this layer. This is a significant result for the production of ohmic contacts, as the Schottky barrier height in this system lower for higher In concentrations. 216 refs.

  10. Effects of magnetic flux density and substrate bias voltage on Ni films prepared on a flexible substrate material using unbalanced magnetron sputtering assisted by inductively coupled plasma

    SciTech Connect (OSTI)

    Koda, Tatsunori [Graduate School of Science and Technology, Hiroshima Institute of Technology, 2-1-1, Miyake, Saeki-ku, Hiroshima 7315193 (Japan); Toyota, Hiroshi, E-mail: h.toyota.za@it-hiroshima.ac.jp [Department of Electronics and Computer Engineering, Hiroshima Institute of Technology, 2-1-1, Miyake, Saeki-ku, Hiroshima 7315193 (Japan)

    2014-03-15T23:59:59.000Z

    The authors fabricated Ni films on a flexible substrate material using unbalanced magnetron sputtering assisted by inductively coupled plasma. The effects of magnetic flux density B{sub C} and substrate DC bias voltage V{sub S} on the Ni film structures were investigated. For V{sub S}?=??40?V, the average surface grain size D{sub G} measured by atomic force microscopy for B{sub C}?=?0, 3, and 5?mT was 88.2, 95.4, and 104.4?nm, respectively. In addition, D{sub G} increased with V{sub S}. From x-ray diffraction measurements, the (111) and (200) peaks were clearly visible for the fabricated Ni films. The ratio of the integrated intensities of I(111)/I(200) increased with V{sub S}. For V{sub S}?=??40?V and B{sub C}?=?3?mT, a film resistivity ? of 8.96?×?10{sup ?6} ? cm was observed, which is close to the Ni bulk value of 6.84?×?10{sup ?6} ? cm. From these results, the authors determined that the structure of the fabricated Ni films on the flexible substrate material was affected by the values of B{sub C} and V{sub S}.

  11. Light emitting device having peripheral emissive region

    DOE Patents [OSTI]

    Forrest, Stephen R

    2013-05-28T23:59:59.000Z

    Light emitting devices are provided that include one or more OLEDs disposed only on a peripheral region of the substrate. An OLED may be disposed only on a peripheral region of a substantially transparent substrate and configured to emit light into the substrate. Another surface of the substrate may be roughened or include other features to outcouple light from the substrate. The edges of the substrate may be beveled and/or reflective. The area of the OLED(s) may be relatively small compared to the substrate surface area through which light is emitted from the device. One or more OLEDs also or alternatively may be disposed on an edge of the substrate about perpendicular to the surface of the substrate through which light is emitted, such that they emit light into the substrate. A mode expanding region may be included between each such OLED and the substrate.

  12. Planar Integrated Optics and astronomical interferometry

    E-Print Network [OSTI]

    Pierre Kern; Jean-Philippe Berger; Pierre Haguenauer; Fabien Malbet; Karine Perraut

    2005-08-01T23:59:59.000Z

    Integrated optics (IO) is an optical technology that allows to reproduce optical circuits on a planar substrate. Since 1996, we have investigated the potentiality of IO in the framework of astronomical single mode interferometry. We review in this paper the principles of IO, the requirements for interferometry and the corresponding solutions offered by IO, the results of component characterization and the possible fields of application.

  13. Improved substrate structures for InP-based devices

    SciTech Connect (OSTI)

    Wanlass, M.; Sheldon, P.

    1988-09-30T23:59:59.000Z

    A substrate structure for an InP-based semiconductor device having an InP-based film is disclosed. The substrate structure includes a substrate region having a light-weight bulk substrate and an upper GaAs layer. An interconnecting region is disposed between the substrate region and the InP-based device. The interconnecting region includes a compositionally graded intermediate layer substantially lattice matched at its one end to the GaAs layer and substantially lattice matched at its opposite end to the InP-based film. The interconnecting region further includes a dislocation mechanism disposed between the GaAs layer and the InP-based film in cooperation with the graded intermediate layer, the buffer mechanism blocking and inhibiting propagation of threading dislocations between the substrate region and the InP-based device. 1 fig.

  14. Substrate structures for InP-based devices

    SciTech Connect (OSTI)

    Wanlass, M.W.; Sheldon, P.

    1990-10-16T23:59:59.000Z

    A substrate structure for an InP-based semiconductor device having an InP based film is described. The substrate structure includes a substrate region having a lightweight bulk substrate and an upper GaAs layer. An interconnecting region is disposed between the substrate region and the InP-based device. The interconnecting region includes a compositionally graded intermediate layer substantially lattice-matched at the opposite end to the InP=based film. The interconnecting region further includes a dislocation mechanism disposed between the GaAs layer and the InP-based film in cooperation with the graded intermediate layer, the buffer mechanism blocking and inhibiting propagation of threading dislocations between the substrate region, and the InP-based device.

  15. Substrate structures for InP-based devices

    SciTech Connect (OSTI)

    Wanlass, Mark W. (Golden, CO); Sheldon, Peter (Lakewood, CO)

    1990-01-01T23:59:59.000Z

    A substrate structure for an InP-based semiconductor device having an InP based film is disclosed. The substrate structure includes a substrate region having a lightweight bulk substrate and an upper GaAs layer. An interconnecting region is disposed between the substrate region and the InP-based device. The interconnecting region includes a compositionally graded intermediate layer substantially lattice-matched at one end to the GaAs layer and substantially lattice-matched at the opposite end to the InP-based film. The interconnecting region further includes a dislocation mechanism disposed between the GaAs layer and the InP-based film in cooperation with the graded intermediate layer, the buffer mechanism blocking and inhibiting propagation of threading dislocations between the substrate region, and the InP-based device.

  16. Vitreous carbon mask substrate for X-ray lithography

    DOE Patents [OSTI]

    Aigeldinger, Georg (Livermore, CA); Skala, Dawn M. (Fremont, CA); Griffiths, Stewart K. (Livermore, CA); Talin, Albert Alec (Livermore, CA); Losey, Matthew W. (Livermore, CA); Yang, Chu-Yeu Peter (Dublin, CA)

    2009-10-27T23:59:59.000Z

    The present invention is directed to the use of vitreous carbon as a substrate material for providing masks for X-ray lithography. The new substrate also enables a small thickness of the mask absorber used to pattern the resist, and this enables improved mask accuracy. An alternative embodiment comprised the use of vitreous carbon as a LIGA substrate wherein the VC wafer blank is etched in a reactive ion plasma after which an X-ray resist is bonded. This surface treatment provides a surface enabling good adhesion of the X-ray photoresist and subsequent nucleation and adhesion of the electrodeposited metal for LIGA mold-making while the VC substrate practically eliminates secondary radiation effects that lead to delamination of the X-ray resist form the substrate, the loss of isolated resist features, and the formation of a resist layer adjacent to the substrate that is insoluble in the developer.

  17. Role of substrate temperature at graphene synthesis in arc discharge

    E-Print Network [OSTI]

    Fang, Xiuqi; Keidar, Michael

    2015-01-01T23:59:59.000Z

    Substrate temperature required for synthesis of graphene in arc discharge plasma was studied. It was shown that increase of the copper substrate temperature up to melting point leads to increase in the amount of graphene production and quality of graphene sheets. Favorable range of substrate temperatures for arc-based graphene synthesis was determined in relatively narrow range of about 1340-1360K which is near the melting point of copper.

  18. Direct Water-Cooled Power Electronics Substrate Packaging

    Broader source: Energy.gov (indexed) [DOE]

    Water-Cooled Power Electronics Substrate Packaging Randy H. Wiles Oak Ridge National Laboratory June 10, 2010 Project ID: APE001 This presentation does not contain any proprietary,...

  19. Substrate Studies of an Electrically-Assisted Diesel Particulate...

    Broader source: Energy.gov (indexed) [DOE]

    directly determine cordierite substrate temperature during operation on engine * Fiber optics have been polished with angled tip to enable side view of channel wall Optical...

  20. Method For Making Selected Regions Of A Substrate

    DOE Patents [OSTI]

    Fusaro, Jr., Robert Anthony (Cobleskill, NY); Bethel, Timothy Francis (Ballston Lake, NY)

    2003-07-15T23:59:59.000Z

    Described herein is a method for providing a clean edge at the interface of a portion of a substrate coated with a coating system and an adjacent portion of the substrate which is uncoated. The method includes the step of forming a zone of non-adherence on the substrate portion which is to be uncoated, prior to application of the coating system. The zone of non-adherence is adjacent the interface, so that the coating system will not adhere to the zone of non-adherence, but will adhere to the portion of the substrate which is to be coated with the coating system.

  1. Substrate-Induced Band-Gap Opening in Epitaxial Graphene

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Substrate-Induced Band-Gap Opening in Epitaxial Graphene Print Prospective challengers to silicon, the long-reigning king of semiconductors for computer chips and other electronic...

  2. amorphous carbon substrates: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CaF2 films on amorphous substrates Wang, Gwo-Ching 5 NICKELHYDROGENATED AMORPHOUS CARBON COMPOSITE FILMS DEPOSITED IN ACETYLENEARGON MICROWAVE PLASMA DISCHARGE CiteSeer...

  3. aluminium oxide substrates: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Huang, Shih-Yu 2009-01-01 99 Fabrication And Characterization Of Barium Titanate Thin Film On Polycrystalline Nickel Substrate. Open Access Theses and Dissertations Summary:...

  4. Light-Emitting Diodes on Semipolar Bulk Gallium Nitride Substrate...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    semipolar light-emitting diodes (LEDs) on low-defect bulk gallium nitride (GaN) substrates. Peak internal quantum efficiency (IQE) values of greater than 80% are...

  5. Crystallographically tilted and partially strain relaxed GaN grown on inclined (111) facets etched on Si(100) substrate

    SciTech Connect (OSTI)

    Ansah Antwi, K. K. [Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576 (Singapore); Institute of Materials Research and Engineering, 3 Research Link, 117602 Singapore (Singapore); Soh, C. B. [Singapore Institute of Technology, 10 Dover Drive, Singapore 138683 (Singapore); Wee, Q. [Singapore-MIT Alliance, National University of Singapore, Singapore 117576 (Singapore); Tan, Rayson J. N.; Tan, H. R. [Institute of Materials Research and Engineering, 3 Research Link, 117602 Singapore (Singapore); Yang, P. [Singapore Synchrotron Light Source, National University of Singapore, 5 Research Link, 117603 Singapore (Singapore); Sun, L. F.; Shen, Z. X. [School of Physical and Mathematical Sciences, Nanyang Technological University, SPMS-03-01, 21 Nanyang Link (Singapore); Chua, S. J., E-mail: elecsj@nus.edu.sg [Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576 (Singapore); Institute of Materials Research and Engineering, 3 Research Link, 117602 Singapore (Singapore); Singapore-MIT Alliance, National University of Singapore, Singapore 117576 (Singapore)

    2013-12-28T23:59:59.000Z

    High resolution X-ray diffractometry (HR-XRD), Photoluminescence, Raman spectroscopy, and Transmission electron microscope measurements are reported for GaN deposited on a conventional Si(111) substrate and on the (111) facets etched on a Si(100) substrate. HR-XRD reciprocal space mappings showed that the GaN(0002) plane is tilted by about 0.63°?±?0.02° away from the exposed Si(111) growth surface for GaN deposited on the patterned Si(100) substrate, while no observable tilt existed between the GaN(0002) and Si(111) planes for GaN deposited on the conventional Si(111) substrate. The ratio of integrated intensities of the yellow to near band edge (NBE) luminescence (I{sub YL}/I{sub NBE}) was determined to be about one order of magnitude lower in the case of GaN deposited on the patterned Si(100) substrate compared with GaN deposited on the conventional Si(111) substrate. The Raman E{sub 2}(high) optical phonon mode at 565.224?±?0.001?cm{sup ?1} with a narrow full width at half maximum of 1.526?±?0.002?cm{sup ?1} was measured, for GaN deposited on the patterned Si(100) indicating high material quality. GaN deposition within the trench etched on the Si(100) substrate occurred via diffusion and mass-transport limited mechanism. This resulted in a differential GaN layer thickness from the top (i.e., 1.8??m) of the trench to the bottom (i.e., 0.3??m) of the trench. Mixed-type dislocation constituted about 80% of the total dislocations in the GaN grown on the inclined Si(111) surface etched on Si(100)

  6. NREL: Energy Systems Integration - Energy Systems Integration...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Printable Version Energy Systems Integration Facility Newsroom The Energy Systems Integration Facility (ESIF) will be one of the only megawatt-scale test facilities in the United...

  7. Substrate comprising a nanometer-scale projection array

    DOE Patents [OSTI]

    Cui, Yi; Zhu, Jia; Hsu, Ching-Mei; Connor, Stephen T; Yu, Zongfu; Fan, Shanhui; Burkhard, George

    2012-11-27T23:59:59.000Z

    A method for forming a substrate comprising nanometer-scale pillars or cones that project from the surface of the substrate is disclosed. The method enables control over physical characteristics of the projections including diameter, sidewall angle, and tip shape. The method further enables control over the arrangement of the projections including characteristics such as center-to-center spacing and separation distance.

  8. Substrate-Free Gas-Phase Synthesis of Graphene Sheets

    E-Print Network [OSTI]

    Frenklach, Michael

    Substrate-Free Gas-Phase Synthesis of Graphene Sheets Albert Dato,*, Velimir Radmilovic, Zonghoon graphene sheets in the gas phase using a substrate-free, atmospheric-pressure microwave plasma reactor. Graphene sheets were synthesized by passing liquid ethanol droplets into an argon plasma. The graphene

  9. Thin film with oriented cracks on a flexible substrate

    DOE Patents [OSTI]

    Feng, Bao; McGilvray, Andrew; Shi, Bo

    2010-07-27T23:59:59.000Z

    A thermoelectric film is disclosed. The thermoelectric film includes a substrate that is substantially electrically non-conductive and flexible and a thermoelectric material that is deposited on at least one surface of the substrate. The thermoelectric film also includes multiple cracks oriented in a predetermined direction.

  10. Method for fabricating a substrate having spaced apart microcapillaries thereon

    DOE Patents [OSTI]

    Jarvis, E.E.

    1995-01-24T23:59:59.000Z

    Methods are disclosed for manufacturing a self-supporting substrate having a plurality of spaced-apart needles (spikes or microcapillaries) projecting upwardly from a major surface of the substrate. In a preferred method, metal is deposited onto a porous membrane such that the metal extends into the pores, after which the membrane is dissolved. 9 figures.

  11. Reactive ion etched substrates and methods of making and using

    DOE Patents [OSTI]

    Rucker, Victor C. (San Francisco, CA); Shediac, Rene (Oakland, CA); Simmons, Blake A. (San Francisco, CA); Havenstrite, Karen L. (New York, NY)

    2007-08-07T23:59:59.000Z

    Disclosed herein are substrates comprising reactive ion etched surfaces and specific binding agents immobilized thereon. The substrates may be used in methods and devices for assaying or isolating analytes in a sample. Also disclosed are methods of making the reactive ion etched surfaces.

  12. An aluminum resist substrate for microfabrication by LIGA.

    SciTech Connect (OSTI)

    Kelly, James J.; Boehme, Dale R.; Hauck, Cheryl A. (Lawrence Berkeley National Laboratory, Berkeley, CA); Yang, Chu-Yeu Peter; Hunter, Luke L.; Griffiths, Stewart K.; McLean, Dorrance E.; Aigeldinger, Georg; Hekmaty, Michelle A.; Hachman, John T.; Losey, Matthew W.; Skala, Dawn M.; Korellis, John S.; Friedmann, Thomas Aquinas (Sandia National Laboratories, Albuquerque, NM); Yang, Nancy Y. C.; Lu, Wei-Yang

    2005-04-01T23:59:59.000Z

    Resist substrates used in the LIGA process must provide high initial bond strength between the substrate and resist, little degradation of the bond strength during x-ray exposure, acceptable undercut rates during development, and a surface enabling good electrodeposition of metals. Additionally, they should produce little fluorescence radiation and give small secondary doses in bright regions of the resist at the substrate interface. To develop a new substrate satisfying all these requirements, we have investigated secondary resist doses due to electrons and fluorescence, resist adhesion before exposure, loss of fine features during extended development, and the nucleation and adhesion of electrodeposits for various substrate materials. The result of these studies is a new anodized aluminum substrate and accompanying methods for resist bonding and electrodeposition. We demonstrate successful use of this substrate through all process steps and establish its capabilities via the fabrication of isolated resist features down to 6 {micro}m, feature aspect ratios up to 280 and electroformed nickel structures at heights of 190 to 1400 {micro}m. The minimum mask absorber thickness required for this new substrate ranges from 7 to 15 {micro}m depending on the resist thickness.

  13. Plasticity in fretting of coated substrates Matthew R. Begleya

    E-Print Network [OSTI]

    Hutchinson, John W.

    Plasticity in fretting of coated substrates Matthew R. Begleya , John W. Hutchinsonb of the plastic deformation in a metal substrate fretted by a ¯at- bottomed circular peg under steady normal load of the corners of the peg. Deformation within the plastic zone is characterized, including regions of elastic

  14. Lateral Buckling Mechanics in Silicon Nanowires on Elastomeric Substrates

    E-Print Network [OSTI]

    Rogers, John A.

    Lateral Buckling Mechanics in Silicon Nanowires on Elastomeric Substrates Seung Yoon Ryu, Jianliang-liquid-solid (VLS) growth and transferred onto PDMS substrates. The behavior involves lateral buckling Manuscript Received July 17, 2009 ABSTRACT We describe experimental and theoretical studies of the buckling

  15. Towards the Integration of APECS and VE-Suite for Virtual Power Plant Co-Simulation

    SciTech Connect (OSTI)

    Zitney, S.E.; McCorkle, D. (Iowa State University, Ames, IA); Yang, C. (Reaction Engineering International, Salt Lake City, UT); Jordan, T.; Swensen, D. (Reaction Engineering International, Salt Lake City, UT); Bryden, M. (Iowa State University, Ames, IA)

    2007-05-01T23:59:59.000Z

    Process modeling and simulation tools are widely used for the design and operation of advanced power generation systems. These tools enable engineers to solve the critical process systems engineering problems that arise throughout the lifecycle of a power plant, such as designing a new process, troubleshooting a process unit or optimizing operations of the full process. To analyze the impact of complex thermal and fluid flow phenomena on overall power plant performance, the Department of Energy’s (DOE) National Energy Technology Laboratory (NETL) has developed the Advanced Process Engineering Co-Simulator (APECS). The APECS system is an integrated software suite that combines process simulation (e.g., Aspen Plus) and high-fidelity equipment simulations such as those based on computational fluid dynamics (CFD), together with advanced analysis capabilities including case studies, sensitivity analysis, stochastic simulation for risk/uncertainty analysis, and multi-objective optimization. In this paper we discuss the initial phases of the integration of the APECS system with the immersive and interactive virtual engineering software, VE-Suite, developed at Iowa State University and Ames Laboratory. VE-Suite uses the ActiveX (OLE Automation) controls in the Aspen Plus process simulator wrapped by the CASI library developed by Reaction Engineering International to run process/CFD co-simulations and query for results. This integration represents a necessary step in the development of virtual power plant co-simulations that will ultimately reduce the time, cost, and technical risk of developing advanced power generation systems.

  16. Influence of Substrate on Crystallization in Polythiophene/fullerene Blends

    SciTech Connect (OSTI)

    C He; D Germack; J Kline; D Delongchamp; D Fischer; C Snyder; M Toney; J Kushmerick; L Richter

    2011-12-31T23:59:59.000Z

    The nanoscale morphology of the active layer in organic, bulk heterojunction (BHJ) solar cells is crucial to device performance. Often a combination of casting conditions and post deposition thermal treatment is used to optimize the morphology. In general, the development of microscopic crystals is deleterious, as the exciton diffusion length is {approx}10 nm. We find that the microscopic crystallization behavior in polythiophene/fullerene blends is strongly influenced by the substrate on which the BHJ is cast. With a silicon oxide substrate, the crystal nucleation density is high and significant crystallization occurs at a temperature of 140 C. On more hydrophobic substrates, significantly higher temperatures are required for observable crystallization. This difference is attributed to the interfacial segregation of the PCBM, controlled by the substrate surface energy. The substrate dependence of crystallization has significant implications on the fullerene crystal growth mechanisms and practical implications for device studies.

  17. Magneto-Optical Thin Films for On-Chip Monolithic Integration of Non-Reciprocal Photonic Devices

    E-Print Network [OSTI]

    Bi, Lei

    Achieving monolithic integration of nonreciprocal photonic devices on semiconductor substrates has been long sought by the photonics research society. One way to achieve this goal is to deposit high quality magneto-optical ...

  18. Substrate Recognition Strategy for Botulinum Neurotoxin

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our InstagramStructure of All-Polymer. . ~0sFailureSubscribe

  19. Transverse-longitudinal integrated resonator

    DOE Patents [OSTI]

    Hutchinson, Donald P. (Knoxville, TN); Simpson, Marcus L. (Knoxville, TN); Simpson, John T. (Knoxville, TN)

    2003-03-11T23:59:59.000Z

    A transverse-longitudinal integrated optical resonator (TLIR) is disclosed which includes a waveguide, a first and a second subwavelength resonant grating in the waveguide, and at least one photonic band gap resonant structure (PBG) in the waveguide. The PBG is positioned between the first and second subwavelength resonant gratings. An electro-optic waveguide material may be used to permit tuning the TLIR and to permit the TLIR to perform signal modulation and switching. The TLIR may be positioned on a bulk substrate die with one or more electronic and optical devices and may be communicably connected to the same. A method for fabricating a TLIR including fabricating a broadband reflective grating is disclosed. A method for tuning the TLIR's transmission resonance wavelength is also disclosed.

  20. Integration of single-crystal devices with flexible substrates using conductive adhesive layers

    E-Print Network [OSTI]

    Doran, Christopher Kyle Gregory

    2011-01-01T23:59:59.000Z

    Journal of Microelectromechanical Systems. 12, 256 (2003).in fabricating microelectromechanical systems. 1.1: Current

  1. FABRICATION OF 18 INTEGRATED OPTICAL POWER SPLITTER IN SOI SUBSTRATE WITH OPTIMIZED DESIGN PARAMETERS

    E-Print Network [OSTI]

    Das, Bijoy Krishna

    be realized with large cross-section single-mode rib waveguide (LCRW) structures using conventional], compact design directional coupler [11] and ITU channel interleaver [12] have been demonstrated in our

  2. RNA Editing in Trypanosomes: Substrate Recognition and its Integration to RNA Metabolism

    E-Print Network [OSTI]

    Hernandez, Alfredo J.

    2012-02-14T23:59:59.000Z

    RNA Editing ................................................................................... 3 U-Insertion/Deletion RNA Editing ................................................ 6 Other Types of RNA Editing... .......................................................... 19 4 Electron Micrographs of kDNA from T. brucei ......................................... 34 5 Domain Architecture of RNase III Classes ................................................ 38 6 Crystal Structure of Bacterial RNase III...

  3. Effects of Non-uniform Substrate Temperature on the Clock Signal Integrity in High Performance Designs*

    E-Print Network [OSTI]

    Pedram, Massoud

    to higher power dissipation and increasing die and interconnect temperature. Management of thermally related- performance microprocessor chips [2]. Dynamic power management (DPM) and functional block clock gating can performance, i.e. signal delay and clock skew. A systematic way of calculating the thermal profile

  4. Linear Tapered Slot Antenna with Substrate Integrated Waveguide Feed Ian Wood*(1)

    E-Print Network [OSTI]

    Bornemann, Jens

    antennas. Several TSA types exist, the most common being linear-tapered (LTSA), Vivaldi-tapered (VTSA) The beamwidths of CWSA's are typically the smallest, followed by LTSA's and VTSA's. As one would expect, the situation is opposite for the side lobe level. As such LTSA's are an ideal compromise between beamwidth

  5. Analysis and Design of a Fluidic-Reconfigurable Substrate Integrated Waveguide Resonator

    E-Print Network [OSTI]

    Barrera, Joel

    2012-02-14T23:59:59.000Z

    systems are designed to expedite research efforts in finding low-loss microwave fluidics. Both systems accurately compute dielectric constant but not loss tangents. The initial systems provide necessary first steps in the design of future highly accurate...

  6. RNA Editing in Trypanosomes: Substrate Recognition and its Integration to RNA Metabolism 

    E-Print Network [OSTI]

    Hernandez, Alfredo J.

    2012-02-14T23:59:59.000Z

    RNA Editing ................................................................................... 3 U-Insertion/Deletion RNA Editing ................................................ 6 Other Types of RNA Editing... .......................................................... 19 4 Electron Micrographs of kDNA from T. brucei ......................................... 34 5 Domain Architecture of RNase III Classes ................................................ 38 6 Crystal Structure of Bacterial RNase III...

  7. Advanced engineered substrates for the integration of lattice-mismatched materials with silicon

    E-Print Network [OSTI]

    Isaacson, David Michael, 1976-

    2006-01-01T23:59:59.000Z

    The dramatic advances in Si/SiO2-based microelectronic processing witnessed over the past several decades can largely be attributed to relatively material-independent device scaling. However, with physical and economic ...

  8. Analysis of Full-Wave Conductor System Impedance over Substrate Using Novel Integration Techniques

    E-Print Network [OSTI]

    Daniel, Luca

    Xin Hu M.I.T. xinhu@mit.edu Jung Hoon Lee M.I.T. junghoon@mit.edu Jacob White M.I.T. white and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post

  9. Coupling effects in inductive discharges with radio frequency substrate biasing

    SciTech Connect (OSTI)

    Schulze, J.; Schuengel, E.; Czarnetzki, U.

    2012-01-09T23:59:59.000Z

    Low pressure inductively coupled plasmas (ICP) operated in neon at 27.12 MHz with capacitive substrate biasing (CCP) at 13.56 MHz are investigated by phase resolved optical emission spectroscopy, voltage, and current measurements. Three coupling mechanisms are found potentially limiting the separate control of ion energy and flux: (i) Sheath heating due to the substrate biasing affects the electron dynamics even at high ratios of ICP to CCP power. At fixed CCP power, (ii) the substrate sheath voltage and (iii) the amplitude as well as frequency of plasma series resonance oscillations of the RF current are affected by the ICP power.

  10. Lattice matched semiconductor growth on crystalline metallic substrates

    DOE Patents [OSTI]

    Norman, Andrew G; Ptak, Aaron J; McMahon, William E

    2013-11-05T23:59:59.000Z

    Methods of fabricating a semiconductor layer or device and said devices are disclosed. The methods include but are not limited to providing a metal or metal alloy substrate having a crystalline surface with a known lattice parameter (a). The methods further include growing a crystalline semiconductor alloy layer on the crystalline substrate surface by coincident site lattice matched epitaxy. The semiconductor layer may be grown without any buffer layer between the alloy and the crystalline surface of the substrate. The semiconductor alloy may be prepared to have a lattice parameter (a') that is related to the lattice parameter (a). The semiconductor alloy may further be prepared to have a selected band gap.

  11. Charge-free method of forming nanostructures on a substrate

    DOE Patents [OSTI]

    Hoffbauer; Mark (Los Alamos, NM), Akhadov; Elshan (Los Alamos, NM)

    2010-07-20T23:59:59.000Z

    A charge-free method of forming a nanostructure at low temperatures on a substrate. A substrate that is reactive with one of atomic oxygen and nitrogen is provided. A flux of neutral atoms of least one of oxygen and nitrogen is generated within a laser-sustained-discharge plasma source and a collimated beam of energetic neutral atoms and molecules is directed from the plasma source onto a surface of the substrate to form the nanostructure. The energetic neutral atoms and molecules in the beam have an average kinetic energy in a range from about 1 eV to about 5 eV.

  12. Recovery of Mo/Si multilayer coated optical substrates

    DOE Patents [OSTI]

    Baker, Sherry L. (Pleasanton, CA); Vernon, Stephen P. (Pleasanton, CA); Stearns, Daniel G. (Los Altos, CA)

    1997-12-16T23:59:59.000Z

    Mo/Si multilayers are removed from superpolished ZERODUR and fused silica substrates with a dry etching process that, under suitable processing conditions, produces negligible change in either the substrate surface figure or surface roughness. The two step dry etching process removes SiO.sub.2 overlayer with a fluroine-containing gas and then moves molybdenum and silicon multilayers with a chlorine-containing gas. Full recovery of the initial normal incidence extreme ultra-violet (EUV) reflectance response has been demonstrated on reprocessed substrates.

  13. Recovery of Mo/Si multilayer coated optical substrates

    DOE Patents [OSTI]

    Baker, S.L.; Vernon, S.P.; Stearns, D.G.

    1997-12-16T23:59:59.000Z

    Mo/Si multilayers are removed from superpolished ZERODUR and fused silica substrates with a dry etching process that, under suitable processing conditions, produces negligible change in either the substrate surface figure or surface roughness. The two step dry etching process removes SiO{sub 2} overlayer with a fluroine-containing gas and then moves molybdenum and silicon multilayers with a chlorine-containing gas. Full recovery of the initial normal incidence extreme ultra-violet (EUV) reflectance response has been demonstrated on reprocessed substrates. 5 figs.

  14. Fabrication and Characterization of Through-Substrate Interconnects

    E-Print Network [OSTI]

    del Alamo, Jesus A.

    We developed a through-substrate copper-damascene interconnect technology in silicon with minimal impedance. Via impedance was extracted using parameter measurements at 50 GHz that were matched to simple circuit models. ...

  15. Control of Substrate Access to the Active Site and Catalytic...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Control of Substrate Access to the Active Site and Catalytic Mechanism of Methane and Toluene Monooxygenases Friday, June 22, 2012 - 3:30pm SSRL Main Conference Room 137-322 Prof....

  16. Method for formation of thin film transistors on plastic substrates

    DOE Patents [OSTI]

    Carey, P.G.; Smith, P.M.; Sigmon, T.W.; Aceves, R.C.

    1998-10-06T23:59:59.000Z

    A process for formation of thin film transistors (TFTs) on plastic substrates replaces standard thin film transistor fabrication techniques, and uses sufficiently lower processing temperatures so that inexpensive plastic substrates may be used in place of standard glass, quartz, and silicon wafer-based substrates. The process relies on techniques for depositing semiconductors, dielectrics, and metals at low temperatures; crystallizing and doping semiconductor layers in the TFT with a pulsed energy source; and creating top-gate self-aligned as well as back-gate TFT structures. The process enables the fabrication of amorphous and polycrystalline channel silicon TFTs at temperatures sufficiently low to prevent damage to plastic substrates. The process has use in large area low cost electronics, such as flat panel displays and portable electronics. 5 figs.

  17. ORNL: Low-Cost Direct Bonded Aluminum (DBA) Substrates (Agreement...

    Broader source: Energy.gov (indexed) [DOE]

    ORNL) 4 Managed by UT-Battelle for the Department of Energy FY13 - 1: Complete optimization of fabrication processing parameters for DBA substrates with alumina (Al 2 O 3 )...

  18. Determining graphene adhesion via substrate-regulated morphology of graphene

    E-Print Network [OSTI]

    Li, Teng

    Determining graphene adhesion via substrate-regulated morphology of graphene Zhao Zhang and Teng Li Institute of Physics. Related Articles Identification of graphene crystallographic orientation by atomic two-dimensional, epitaxially-grown, nanostructured graphene for study of single molecule

  19. Method for formation of thin film transistors on plastic substrates

    DOE Patents [OSTI]

    Carey, Paul G. (Mountain View, CA); Smith, Patrick M. (San Ramon, CA); Sigmon, Thomas W. (Portola Valley, CA); Aceves, Randy C. (Livermore, CA)

    1998-10-06T23:59:59.000Z

    A process for formation of thin film transistors (TFTs) on plastic substrates replaces standard thin film transistor fabrication techniques, and uses sufficiently lower processing temperatures so that inexpensive plastic substrates may be used in place of standard glass, quartz, and silicon wafer-based substrates. The process relies on techniques for depositing semiconductors, dielectrics, and metals at low temperatures; crystallizing and doping semiconductor layers in the TFT with a pulsed energy source; and creating top-gate self-aligned as well as back-gate TFT structures. The process enables the fabrication of amorphous and polycrystalline channel silicon TFTs at temperatures sufficiently low to prevent damage to plastic substrates. The process has use in large area low cost electronics, such as flat panel displays and portable electronics.

  20. The macroscopic delamination of thin films from elastic substrates

    E-Print Network [OSTI]

    Reis, Pedro Miguel

    The wrinkling and delamination of stiff thin films adhered to a polymer substrate have important applications in “flexible electronics.” The resulting periodic structures, when used for circuitry, have remarkable mechanical ...

  1. Nanofabrication on unconventional substrates using transferred hard masks

    E-Print Network [OSTI]

    Li, Luozhou

    A major challenge in nanofabrication is to pattern unconventional substrates that cannot be processed for a variety of reasons, such as incompatibility with spin coating, electron beam lithography, optical lithography, or ...

  2. Tearing Graphene Sheets From Adhesive Substrates Produces Tapered Nanoribbons

    E-Print Network [OSTI]

    Entekhabi, Dara

    Thin films Tearing Graphene Sheets From Adhesive Substrates Produces Tapered Nanoribbons Dipanjan Sen, Kostya S. Novoselov, Pedro M. Reis, and Markus J. Buehler* Graphene is a truly two- film materials have been studied extensively, the key mechanical properties of graphene

  3. Diamond Substrate Development at the Michigan State University...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Diamond Substrate Development at the Michigan State University and Fraunhofer USA's Center for Coatings and Diamond Technologies May 4, 2015 11:00AM to 12:00PM Presenter Thomas...

  4. Aza-Tryptamine Substrates in Monoterpene Indole Alkaloid Biosynthesis

    E-Print Network [OSTI]

    Lee, Hyang-Yeol

    Biosynthetic pathways can be hijacked to yield novel compounds by introduction of novel starting materials. Here we have altered tryptamine, which serves as the starting substrate for a variety of alkaloid biosynthetic ...

  5. Semiconductor nanowire array: potential substrates for photocatalysis and photovoltaics

    E-Print Network [OSTI]

    Yang, Peidong

    Semiconductor nanowire array: potential substrates for photocatalysis and photovoltaics Yiying Wu, these nanowire arrays could find unique applications in photocatalysis and photovoltaics. KEY WORDS luminescence efficiency [5,6], enhancement of thermoelectric figure of merit [7] and lowered lasing threshold

  6. Structural Defects in Laterally Overgrown GaN Layers Grown on Non-polar Substrates

    E-Print Network [OSTI]

    Liliental-Weber, Z.; Ni, X.; Morkoc, H.

    2007-01-01T23:59:59.000Z

    Overgrown GaN Layers Grown on Non-polar Substrates Z.in GaN layers grown on polar and non-polar substrates areGaN-based layers, since they are grown heteroepitaxially on foreign substrates (

  7. Formation of thin-film resistors on silicon substrates

    DOE Patents [OSTI]

    Schnable, George L. (Montgomery County, PA); Wu, Chung P. (Hamilton Township, Mercer County, NJ)

    1988-11-01T23:59:59.000Z

    The formation of thin-film resistors by the ion implantation of a metallic conductive layer in the surface of a layer of phosphosilicate glass or borophosphosilicate glass which is deposited on a silicon substrate. The metallic conductive layer materials comprise one of the group consisting of tantalum, ruthenium, rhodium, platinum and chromium silicide. The resistor is formed and annealed prior to deposition of metal, e.g. aluminum, on the substrate.

  8. Microstructure and properties of copper thin films on silicon substrates

    E-Print Network [OSTI]

    Jain, Vibhor Vinodkumar

    2009-05-15T23:59:59.000Z

    representation of four point probe .................................................... 45 20. X-Ray results of Cu film deposited on Si (100) substrate at 100W, 200W, 600W deposition power... ........................................................................................ 46 21. X-Ray results of Cu film deposited on Si (110) substrate at 100W, 200W, 600W deposition power ........................................................................................ 47 22. X-Ray results of Cu film deposited on SiO 2...

  9. Substrates suitable for deposition of superconducting thin films

    DOE Patents [OSTI]

    Feenstra, Roeland (Oak Ridge, TN); Boatner, Lynn A. (Oak Ridge, TN)

    1993-01-01T23:59:59.000Z

    A superconducting system for the lossless transmission of electrical current comprising a thin film of superconducting material Y.sub.1 Ba.sub.2 Cu.sub.3 O.sub.7-x epitaxially deposited upon a KTaO.sub.3 substrate. The KTaO.sub.3 is an improved substrate over those of the prior art since the it exhibits small lattice constant mismatch and does not chemically react with the superconducting film.

  10. Manifold Integration: Data Integration on Multiple Manifolds

    E-Print Network [OSTI]

    Choi, Hee Youl

    2011-08-08T23:59:59.000Z

    MANIFOLD INTEGRATION: DATA INTEGRATION ON MULTIPLE MANIFOLDS A Dissertation by HEE YOUL CHOI Submitted to the O?ce of Graduate Studies of Texas A&M University in partial fulflllment of the requirements for the degree of DOCTOR OF PHILOSOPHY... May 2010 Major Subject: Computer Science MANIFOLD INTEGRATION: DATA INTEGRATION ON MULTIPLE MANIFOLDS A Dissertation by HEE YOUL CHOI Submitted to the O?ce of Graduate Studies of Texas A&M University in partial fulflllment of the requirements...

  11. Apparatus and method for depositing coating onto porous substrate

    DOE Patents [OSTI]

    Isenberg, A.O.; Zymboly, G.E.

    1986-09-02T23:59:59.000Z

    Disclosed is an apparatus for forming a chemically vapor deposited coating on a porous substrate where oxygen from a first gaseous reactant containing a source of oxygen permeates through the pores of the substrate to react with a second gaseous reactant that is present on the other side of the substrate. The apparatus includes means for controlling the pressure and flow rate of each gaseous reactant, a manometer for measuring the difference in pressure between the gaseous reactants on each side of the substrate, and means for changing the difference in pressure between the gaseous reactants. Also disclosed is a method of detecting and closing cracks in the coating by reducing the pressure difference between the two gaseous reactants whenever the pressure difference falls suddenly after gradually rising, then again increasing the pressure difference on the two gases. The attack by the by-products of the reaction on the substrate are reduced by maintaining the flow rate of the first reactant through the pores of the substrate. 1 fig.

  12. Apparatus and method for depositing coating onto porous substrate

    DOE Patents [OSTI]

    Isenberg, Arnold O. (Forest Hills Boro, PA); Zymboly, Gregory E. (Penn Hills Township, Allegheny County, PA)

    1986-01-01T23:59:59.000Z

    Disclosed is an apparatus for forming a chemically vapor deposited coating on a porous substrate where oxygen from a first gaseous reactant containing a source of oxygen permeates through the pores of the substrate to react with a second gaseous reactant that is present on the other side of the substrate. The apparatus includes means for controlling the pressure and flow rate of each gaseous reactant, a manometer for measuring the difference in pressure between the gaseous reactants on each side of the substrate, and means for changing the difference in pressure between the gaseous reactants. Also disclosed is a method of detecting and closing cracks in the coating by reducing the pressure difference between the two gaseous reactants whenever the pressure difference falls suddenly after gradually rising, then again increasing the pressure difference on the two gases. The attack by the by-products of the reaction on the substrate are reduced by maintaining the flow rate of the first reactant through the pores of the substrate.

  13. Numerical Integration Numerical Summation

    E-Print Network [OSTI]

    Cohen, Henri

    Numerical Integration Numerical Summation Numerical Extrapolation Numerical Recipes for Multiprecision Computations #12;Numerical Integration Numerical Summation Numerical Extrapolation Multiprecision, integration, summation, extrapolation, evaluation of continued fractions, Euler products and sums, complete

  14. Thermal Control & System Integration

    Broader source: Energy.gov [DOE]

    The thermal control and system integration activity focuses on issues such as the integration of motor and power control technologies and the development of advanced thermal control technologies....

  15. The Cauchy Integral Formula

    E-Print Network [OSTI]

    Steve Bell

    2009-06-24T23:59:59.000Z

    Feb 23, 2009 ... Cauchy Integral Formula basics. I'm using the enumerate environment on this slide. 1. The Cauchy Integral Formula was discovered by Cauchy ...

  16. Systems integration for global sustainability

    E-Print Network [OSTI]

    2015-01-01T23:59:59.000Z

    Le, A. Z. Khan, Improving integration for integrated coastal347 ISSUE 6225 Systems integration for global sustainabilitySUSTAINABILITY Systems integration for global sustainability

  17. SURFACE MODIFICATION OF ZIRCALOY-4 SUBSTRATES WITH NICKEL ZIRCONIUM INTERMETALLICS

    SciTech Connect (OSTI)

    Luscher, Walter G.; Gilbert, Edgar R.; Pitman, Stan G.; Love, Edward F.

    2013-02-01T23:59:59.000Z

    Surfaces of Zircaloy-4 (Zr-4) substrates were modified with nickel-zirconium (NiZr) intermetallics to tailor oxidation performance for specialized applications. Surface modification was achieved by electroplating Zr-4 substrates with nickel (Ni) and then performing thermal treatments to fully react the Ni plating with the substrates, which resulted in a coating of NiZr intermetallics on the substrate surfaces. Both plating thickness and thermal treatment were evaluated to determine the effects of these fabrication parameters on oxidation performance and to identify an optimal surface modification process. Isothermal oxidation tests were performed on surface-modified materials at 290°, 330°, and 370°C under a constant partial pressure of oxidant (i.e., 1 kPa D2O in dry Ar at 101 kPa) for 64 days. Test results revealed an enhanced, transient oxidation rate that decreased asymptotically toward the rate of the Zr-4 substrate. Oxidation kinetics were analyzed from isothermal weight gain data, which were correlated with microstructure, hydrogen pickup, strength, and hardness.

  18. Turnitin Moodle Direct Integration

    E-Print Network [OSTI]

    de Lijser, Peter

    Turnitin Moodle® Direct Integration Instructor User Manual Turnitin Moodle Integration Manual: 1. Turnitin Moodle Integration Manual: 2 Contents Instructor User Manual 1 Creating a Turnitin Assignment 3 Accessing GradeMark® 15 Glossary 16 #12;Instructor User Manual Turnitin Moodle Integration Manual: 3

  19. Electroluminescent apparatus having a structured luminescence conversion layer

    DOE Patents [OSTI]

    Krummacher, Benjamin Claus (Sunnyvale, CA)

    2008-09-02T23:59:59.000Z

    An apparatus such as a light source is disclosed which has an OLED device and a structured luminescence conversion layer disposed on the substrate or transparent electrode of said OLED device and on the exterior of said OLED device. The structured luminescence conversion layer contains color-changing and non-color-changing regions arranged in a particular pattern.

  20. Plated lamination structures for integrated magnetic devices

    SciTech Connect (OSTI)

    Webb, Bucknell C.

    2014-06-17T23:59:59.000Z

    Semiconductor integrated magnetic devices such as inductors, transformers, etc., having laminated magnetic-insulator stack structures are provided, wherein the laminated magnetic-insulator stack structures are formed using electroplating techniques. For example, an integrated laminated magnetic device includes a multilayer stack structure having alternating magnetic and insulating layers formed on a substrate, wherein each magnetic layer in the multilayer stack structure is separated from another magnetic layer in the multilayer stack structure by an insulating layer, and a local shorting structure to electrically connect each magnetic layer in the multilayer stack structure to an underlying magnetic layer in the multilayer stack structure to facilitate electroplating of the magnetic layers using an underlying conductive layer (magnetic or seed layer) in the stack as an electrical cathode/anode for each electroplated magnetic layer in the stack structure.

  1. Thin-film chip-to-substrate interconnect and methods for making same

    DOE Patents [OSTI]

    Tuckerman, D.B.

    1988-06-06T23:59:59.000Z

    Integrated circuit chips are electrically connected to a silicon wafer interconnection substrate. Thin film wiring is fabricated down bevelled edges of the chips. A subtractive wire fabrication method uses a series of masks and etching steps to form wires in a metal layer. An additive method direct laser writes or deposits very thin lines which can then be plated up to form wires. A quasi-additive or subtractive/additive method forms a pattern of trenches to expose a metal surface which can nucleate subsequent electrolytic deposition of wires. Low inductance interconnections on a 25 micron pitch (1600 wires on a 1 cm square chip) can be produced. The thin film hybrid interconnect eliminates solder joints or welds, and minimizes the levels of metallization. Advantages include good electrical properties, very high wiring density, excellent backside contact, compactness, and high thermal and mechanical reliability. 6 figs.

  2. System and method for floating-substrate passive voltage contrast

    DOE Patents [OSTI]

    Jenkins, Mark W. (Albuquerque, NM); Cole, Jr., Edward I. (Albuquerque, NM); Tangyunyong, Paiboon (Albuquerque, NM); Soden, Jerry M. (Placitas, NM); Walraven, Jeremy A. (Albuquerque, NM); Pimentel, Alejandro A. (Albuquerque, NM)

    2009-04-28T23:59:59.000Z

    A passive voltage contrast (PVC) system and method are disclosed for analyzing ICs to locate defects and failure mechanisms. During analysis a device side of a semiconductor die containing the IC is maintained in an electrically-floating condition without any ground electrical connection while a charged particle beam is scanned over the device side. Secondary particle emission from the device side of the IC is detected to form an image of device features, including electrical vias connected to transistor gates or to other structures in the IC. A difference in image contrast allows the defects or failure mechanisms be pinpointed. Varying the scan rate can, in some instances, produce an image reversal to facilitate precisely locating the defects or failure mechanisms in the IC. The system and method are useful for failure analysis of ICs formed on substrates (e.g. bulk semiconductor substrates and SOI substrates) and other types of structures.

  3. Extreme ultraviolet mask substrate surface roughness effects on lithography patterning

    SciTech Connect (OSTI)

    George, Simi; Naulleau, Patrick; Salmassi, Farhad; Mochi, Iacopo; Gullikson, Eric; Goldberg, Kenneth; Anderson, Erik

    2010-06-21T23:59:59.000Z

    In extreme ultraviolet lithography exposure systems, mask substrate roughness induced scatter contributes to LER at the image plane. In this paper, the impact of mask substrate roughness on image plane speckle is explicitly evaluated. A programmed roughness mask was used to study the correlation between mask roughness metrics and wafer plane aerial image inspection. We find that the roughness measurements by top surface topography profile do not provide complete information on the scatter related speckle that leads to LER at the image plane. We suggest at wavelength characterization by imaging and/or scatter measurements into different frequencies as an alternative for a more comprehensive metrology of the mask substrate/multilayer roughness effects.

  4. Electrodeposition of biaxially textured layers on a substrate

    DOE Patents [OSTI]

    Bhattacharya, Raghu N; Phok, Sovannary; Spagnol, Priscila; Chaudhuri, Tapas

    2013-11-19T23:59:59.000Z

    Methods of producing one or more biaxially textured layer on a substrate, and articles produced by the methods, are disclosed. An exemplary method may comprise electrodepositing on the substrate a precursor material selected from the group consisting of rare earths, transition metals, actinide, lanthanides, and oxides thereof. An exemplary article (150) may comprise a biaxially textured base material (130), and at least one biaxially textured layer (110) selected from the group consisting of rare earths, transition metals, actinides, lanthanides, and oxides thereof. The at least one biaxially textured layer (110) is formed by electrodeposition on the biaxially textured base material (130).

  5. Conductive and robust nitride buffer layers on biaxially textured substrates

    DOE Patents [OSTI]

    Sankar, Sambasivan [Chicago, IL; Goyal, Amit [Knoxville, TN; Barnett, Scott A [Evanston, IL; Kim, Ilwon [Skokie, IL; Kroeger, Donald M [Knoxville, TN

    2009-03-31T23:59:59.000Z

    The present invention relates to epitaxial, electrically conducting and mechanically robust, cubic nitride buffer layers deposited epitaxially on biaxially textured substrates such as metals and alloys. The invention comprises of a biaxially textured substrate with epitaxial layers of nitrides. The invention also discloses a method to form such epitaxial layers using a high rate deposition method as well as without the use of forming gases. The invention further comprises epitaxial layers of oxides on the biaxially textured nitride layer. In some embodiments the article further comprises electromagnetic devices which may have superconducting properties.

  6. Monolithic integration of a MOSFET with a MEMS device

    DOE Patents [OSTI]

    Bennett, Reid (Albuquerque, NM); Draper, Bruce (Albuquerque, MN)

    2003-01-01T23:59:59.000Z

    An integrated microelectromechanical system comprises at least one MOSFET interconnected to at least one MEMS device on a common substrate. A method for integrating the MOSFET with the MEMS device comprises fabricating the MOSFET and MEMS device monolithically on the common substrate. Conveniently, the gate insulator, gate electrode, and electrical contacts for the gate, source, and drain can be formed simultaneously with the MEMS device structure, thereby eliminating many process steps and materials. In particular, the gate electrode and electrical contacts of the MOSFET and the structural layers of the MEMS device can be doped polysilicon. Dopant diffusion from the electrical contacts is used to form the source and drain regions of the MOSFET. The thermal diffusion step for forming the source and drain of the MOSFET can comprise one or more of the thermal anneal steps to relieve stress in the structural layers of the MEMS device.

  7. Wafer Fusion for Integration of Semiconductor Materials and Devices

    SciTech Connect (OSTI)

    Choquette, K.D.; Geib, K.M.; Hou, H.Q.; Allerman, A.A.; Kravitz, S.; Follstaedt, D.M.; Hindi, J.J.

    1999-05-01T23:59:59.000Z

    We have developed a wafer fusion technology to achieve integration of semiconductor materials and heterostructures with widely disparate lattice parameters, electronic properties, and/or optical properties for novel devices not now possible on any one substrate. Using our simple fusion process which uses low temperature (400-600 C) anneals in inert N{sub 2} gas, we have extended the scope of this technology to examine hybrid integration of dissimilar device technologies. As a specific example, we demonstrate wafer bonding vertical cavity surface emitting lasers (VCSELs) to transparent AlGaAs and GaP substrates to fabricate bottom-emitting short wavelength VCSELs. As a baseline fabrication technology applicable to many semiconductor systems, wafer fusion will revolutionize the way we think about possible semiconductor devices, and enable novel device configurations not possible by epitaxial growth.

  8. Wind Integration Study Methods (Presentation)

    SciTech Connect (OSTI)

    Milligan, M.; Kirby, B.

    2011-04-01T23:59:59.000Z

    This presentation provides an overview of common elements, differences, integration costs, and errors in integration analysis.

  9. The influence of substrate surface preparation on LP MOVPE GaN epitaxy on differently oriented 4H-SiC substrates

    E-Print Network [OSTI]

    Ozbay, Ekmel

    The influence of substrate surface preparation on LP MOVPE GaN epitaxy on differently oriented 4H preparation and off-cut of 4H-SiC substrates on morphological and structural properties of GaN grown by low-SiC is most suitable for GaN epitaxy and that substrate etching improves the surface morphology of epilayer

  10. Patterned silicon substrates: a common platform for room temperature GaN and ZnO polariton lasers

    E-Print Network [OSTI]

    Zuniga-Perez, J; Hahe, R; Rashid, M J; Bouchoule, S; Brimont, C; Disseix, P; Duboz, J Y; Gommé, G; Guillet, T; Jamadi, O; Lafosse, X; Leroux, M; Leymarie, J; Li, Feng; Réveret, F; Semond, F

    2014-01-01T23:59:59.000Z

    A new platform for fabricating polariton lasers operating at room temperature is introduced: nitride-based distributed Bragg reflectors epitaxially grown on patterned silicon substrates. The patterning allows for an enhanced strain relaxation thereby enabling to stack a large number of crack-free AlN/AlGaN pairs and achieve cavity quality factors of several thousands with a large spatial homogeneity. GaN and ZnO active regions are epitaxially grown thereon and the cavities are completed with top dielectric Bragg reflectors. The two structures display strong-coupling and polariton lasing at room temperature and constitute an intermediate step in the way towards integrated polariton devices.

  11. Buried waste integrated demonstration technology integration process

    SciTech Connect (OSTI)

    Ferguson, J.S.; Ferguson, J.E.

    1992-04-01T23:59:59.000Z

    A Technology integration Process was developed for the Idaho National Energy Laboratories (INEL) Buried Waste Integrated Demonstration (BWID) Program to facilitate the transfer of technology and knowledge from industry, universities, and other Federal agencies into the BWID; to successfully transfer demonstrated technology and knowledge from the BWID to industry, universities, and other Federal agencies; and to share demonstrated technologies and knowledge between Integrated Demonstrations and other Department of Energy (DOE) spread throughout the DOE Complex. This document also details specific methods and tools for integrating and transferring technologies into or out of the BWID program. The document provides background on the BWID program and technology development needs, demonstrates the direction of technology transfer, illustrates current processes for this transfer, and lists points of contact for prospective participants in the BWID technology transfer efforts. The Technology Integration Process was prepared to ensure compliance with the requirements of DOE's Office of Technology Development (OTD).

  12. Buried waste integrated demonstration technology integration process

    SciTech Connect (OSTI)

    Ferguson, J.S.; Ferguson, J.E.

    1992-04-01T23:59:59.000Z

    A Technology integration Process was developed for the Idaho National Energy Laboratories (INEL) Buried Waste Integrated Demonstration (BWID) Program to facilitate the transfer of technology and knowledge from industry, universities, and other Federal agencies into the BWID; to successfully transfer demonstrated technology and knowledge from the BWID to industry, universities, and other Federal agencies; and to share demonstrated technologies and knowledge between Integrated Demonstrations and other Department of Energy (DOE) spread throughout the DOE Complex. This document also details specific methods and tools for integrating and transferring technologies into or out of the BWID program. The document provides background on the BWID program and technology development needs, demonstrates the direction of technology transfer, illustrates current processes for this transfer, and lists points of contact for prospective participants in the BWID technology transfer efforts. The Technology Integration Process was prepared to ensure compliance with the requirements of DOE`s Office of Technology Development (OTD).

  13. Balancing Intermolecular and MoleculeSubstrate Interactions in Supramolecular Assemblies

    E-Print Network [OSTI]

    Ortega, Enrique

    Balancing Intermolecular and Molecule­Substrate Interactions in Supramolecular Assemblies By Dimas of the relevant molecular interactions by the appropriate choice of molecular species in mixed supramolecular for Materials Science 1-1 Namiki, Tsukuba 305-0044 (Japan) Dr. E. Barrena, Prof. H. Dosch ITAP, Universita

  14. Multiple ERK substrates execute single biological processes in Caenorhabditis elegans

    E-Print Network [OSTI]

    Multiple ERK substrates execute single biological processes in Caenorhabditis elegans germ, 2008) RAS-extracellular signal regulated kinase (ERK) signaling governs multiple aspects of cell fate. Understanding how perturbations to the ERK signaling pathway lead to developmental disorders and cancer hinges

  15. NANO-INDENTATION OF COPPER THIN FILMS ON SILICON SUBSTRATES

    E-Print Network [OSTI]

    Suresh, Subra

    on the nano-indentation of polycrystalline Cu thin films, of three different thicknesses) Si substrates. The films were then vacuum-annealed at 475°C for 1 h. The resulting polycrystalline. A diamond Berkovich pyramid indentor with a tip radius, R 50 nm, was used. It is known from nano

  16. Graphene growth directly on functional substrate , L. Baratona

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Graphene growth directly on functional substrate C. S. Leea , L. Baratona , Z. B. Hea , J E-mail address: laurent.baraton@polytechnique.edu. Abstract Graphene is perhaps the most promising of the awaited graphene film formed at the surface of catalyst layer, we observed the formation of a second

  17. Lithium Diisopropylamide Solvated by Hexamethylphosphoramide: Substrate-Dependent

    E-Print Network [OSTI]

    Collum, David B.

    Lithium Diisopropylamide Solvated by Hexamethylphosphoramide: Substrate-Dependent Mechanisms-1301 Received February 9, 2006; E-mail: dbc6@cornell.edu Abstract: Lithium diisopropylamide of lithium-ion solvation at a molecular level of resolution.5 Our interest in HMPA stems from studies

  18. The Properties of Conducting Polymers and Substrates for Printed Electronics

    E-Print Network [OSTI]

    Fleming, Paul D. "Dan"

    * , Laura K. Wood*, Jan Pekarovic* , Alexandra Pekarovicova* , Paul D. Fleming* , and Valery Bliznyuk films as well as pressed pellets. Electrical properties of silver inks on different paper substrates are beginning to turn toward electronic printed RFID tags on label papers. To reduce production costs

  19. Strong, non-magnetic, cube textured alloy substrates

    SciTech Connect (OSTI)

    Goyal, Amit (Knoxville, TN)

    2011-02-01T23:59:59.000Z

    A warm-rolled, annealed, polycrystalline, cube-textured, {100}<100>, FCC-based alloy substrate is characterized by a yield strength greater than 200 MPa and a biaxial texture characterized by a FWHM of less than 15.degree. in all directions.

  20. Substrate specificity of Arabidopsis 3-ketoacyl-CoA synthases

    SciTech Connect (OSTI)

    Blacklock, Brenda J. [Department of Chemistry and Chemical Biology, Purdue School of Science, Indiana University-Purdue University Indianapolis (IUPUI), Indianapolis, IN 46202 (United States)]. E-mail: blacklock@chem.iupui.edu; Jaworski, Jan G. [Donald Danforth Plant Science Center, 975 North Warson Road, St. Louis, MO 63132 (United States)

    2006-07-28T23:59:59.000Z

    The very long chain fatty acids (VLCFA) incorporated into plant lipids are derived from the iterative addition of C2 units provided by malonyl-CoA to an acyl-CoA by the 3-ketoacyl-CoA synthase (KCS) component of a fatty acid elongase (FAE) complex. Mining of the Arabidopsis genome sequence database revealed 20 genes with homology to seed-specific FAE1 KCS. Eight of the 20 putative KCSs were cloned, expressed in yeast, and isolated as (His){sub 6} fusion proteins. Five of the eight (At1g71160, At1g19440, At1g07720, At5g04530, and At4g34250) had little or no activity with C16 to C20 substrates while three demonstrated activity with C16, C18, and C20 saturated acyl-CoA substrates. At1g01120 KCS (KCS1) and At2g26640 KCS had broad substrate specificities when assayed with saturated and mono-unsaturated C16 to C24 acyl-CoAs while At4g34510 KCS was specific for saturated fatty acyl-CoA substrates.

  1. Flexible Electronics New Devices on Nearly Any Type of Substrate

    E-Print Network [OSTI]

    Rogers, John A.

    Flexible Electronics ­ New Devices on Nearly Any Type of Substrate by Angelika Boeer published: 2011-07-06 Flexible electronic devices ­ this is a fascinating topic and becoming more and more such as display systems, flexible and stretchable electronics, or other, no-waver-based devices. Sign up

  2. TIF film, substrates and nonfumigant soil disinfestation maintain fruit yields

    E-Print Network [OSTI]

    2013-01-01T23:59:59.000Z

    Monterey Bay Academy Coir Peat and perlite 9.63b* 10.46aBerry Coir 9.61bc 1.21bc Peat and perlite 9.86ab 1.26abtraditionally used coir, peat or other soilless substrates

  3. Hard Bottom Substrate Monitoring Horns Rev Offshore Wind Farm

    E-Print Network [OSTI]

    #12;Hard Bottom Substrate Monitoring Horns Rev Offshore Wind Farm 2004 Survey Report No. 1 March protection and at the wind turbine towers at six turbine sites. Video recordings were planned at different- scription. 2. Methodology Weather and wind conditions as well as hydrographical data such as current

  4. Growth of Germanium Nanowires on a Flexible Organic Substrate

    E-Print Network [OSTI]

    Garfunkel, Eric

    2000; Wu and Yang 2000; Hanrath and Korgel 2002; Hanrath and Korgel 2004) (Greytak 2004) The small size-efficient substrate for potential applications such as those of photovoltaics or display technologies, due in large be manufactured to enable the extension of our methods to other nanowire/nanotube growth systems such as silicon

  5. Transmission Commercial Project Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Improvement (CBPI) Customer Forum Energy Imbalance Market Generator Interconnection Reform Implementation Network Integration Transmission Service (NT Service) Network Open...

  6. Problems and Opportunities in OLED Lighting Manufacturing

    Energy Savers [EERE]

    NY. * Our first product was introduced last year - an amber marker light for the health care market. * We have will soon complete our commercialization of a competitive...

  7. Ultrabright fluorescent OLEDS using triplet sinks

    DOE Patents [OSTI]

    Zhang, Yifan; Forrest, Stephen R; Thompson, Mark

    2013-06-04T23:59:59.000Z

    A first device is provided. The first device further comprises an organic light emitting device. The organic light emitting device further comprises an anode, a cathode, and an emissive layer disposed between the anode and the cathode. The emissive layer further comprises an organic host compound, an organic emitting compound capable of fluorescent emission at room temperature, and an organic dopant compound. The triplet energy of the dopant compound is lower than the triplet energy of the host compound. The dopant compound does not strongly absorb the fluorescent emission of the emitting compound.

  8. OLE DE L' ' EQUATION DES ONDES

    E-Print Network [OSTI]

    Burq, Nicolas

    'ees orthonormales, (x; y) avec O = (0; 0) et au voisinage de O, on a \\Omega c = f(x; y) ; x â?? 0 etb (x) Ÿ y Ÿ a (x

  9. OLED Testing Opportunity | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in ManyDepartment of Order No. EA-212-AOAHU2014)OHIO E.P.A. JULR&D

  10. OLED T Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLuOpenNorth AmericaNorthwest RuralNujiraSolar Thermal World

  11. IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. , NO. , 2012 1 Dynamic Driver Supply Voltage Scaling for Organic

    E-Print Network [OSTI]

    Pedram, Massoud

    Dynamic Driver Supply Voltage Scaling for Organic Light Emitting Diode Displays Donghwa Shin, Student, Fellow, IEEE Abstract--Organic light emitting diode (OLED) display is a self-illuminating device]. On the other hand, an organic light emitting diode (OLED) is self-illuminating using organic light emission

  12. Lateral color integration on rare-earth-doped GaN electroluminescent D. S. Lee and A. J. Steckla)

    E-Print Network [OSTI]

    Steckl, Andrew J.

    and thermal robust- ness. GaN films were grown on p-type 111 Si substrate by molecular beam epitaxy MBE growth from solid sources. GaN:RE layers were typically grown for 1 h at either 100 or 400 °C substrateLateral color integration on rare-earth-doped GaN electroluminescent thin films D. S. Lee and A. J

  13. Community-oriented information integration

    E-Print Network [OSTI]

    Katsis, Ioannis

    2009-01-01T23:59:59.000Z

    2.6.1 Community-oriented Integration . . 2.6.2Chapter 5 Integration Conclusions and FutureFigure Community-oriented Integration Architecture . . . .

  14. Art Integration and Cognitive Development

    E-Print Network [OSTI]

    Baker, Dawn

    2013-01-01T23:59:59.000Z

    journal on arts integration in schools and communities. 1(Art Integration and Cognitive Development Dawn Baker,in the curriculum. Art integration involves learning core

  15. Motion Integration Using Competitive Priors

    E-Print Network [OSTI]

    Wu, Shuang; Lu, Hongjing; Lee, Alan; Yuille, Alan

    2009-01-01T23:59:59.000Z

    to investigate motion integration across orientation andspace. VSS 2006. Motion integration using competitive priorsMotion integration using competitive priors Shuang Wu 1 ,

  16. Motion Integration Using Competitive Priors

    E-Print Network [OSTI]

    Shuang Wu; Hongjing Lu; Alan Lee; Alan Yuille

    2011-01-01T23:59:59.000Z

    to investigate motion integration across orientation andspace. VSS 2006. Motion integration using competitive priorsMotion integration using competitive priors Shuang Wu 1 ,

  17. Sandia National Laboratories: Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Grid Integration Energy Supply Transformation Needed On February 20, 2013, in DETL, Distribution Grid Integration, Energy, Energy Assurance, Energy Surety, Grid Integration,...

  18. POTENTIAL OF ARID ZONE VEGETATION AS A SOURCE OF SUBSTRATES

    E-Print Network [OSTI]

    Bassham, J.A.

    2011-01-01T23:59:59.000Z

    the The integrated solar green plant cells than if it werevapor. Efficiency of Plants as Solar Energy Converters. Ifon total solar radiation incident on the plants with total

  19. Monolithic amorphous silicon modules on continuous polymer substrate

    SciTech Connect (OSTI)

    Grimmer, D.P. (Iowa Thin Film Technologies, Inc., Ames, IA (United States))

    1992-03-01T23:59:59.000Z

    This report examines manufacturing monolithic amorphous silicon modules on a continuous polymer substrate. Module production costs can be reduced by increasing module performance, expanding production, and improving and modifying production processes. Material costs can be reduced by developing processes that use a 1-mil polyimide substrate and multilayers of low-cost material for the front encapsulant. Research to speed up a-Si and ZnO deposition rates is needed to improve throughputs. To keep throughput rates compatible with depositions, multibeam fiber optic delivery systems for laser scribing can be used. However, mechanical scribing systems promise even higher throughputs. Tandem cells and production experience can increase device efficiency and stability. Two alternative manufacturing processes are described: (1) wet etching and sheet handling and (2) wet etching and roll-to-roll fabrication.

  20. Method of forming biaxially textured alloy substrates and devices thereon

    DOE Patents [OSTI]

    Goyal, Amit (Knoxville, TN); Specht, Eliot D. (Knoxville, TN); Kroeger, Donald M. (Knoxville, TN); Paranthaman, Mariappan (Knoxville, TN)

    1999-01-01T23:59:59.000Z

    Specific alloys, in particular Ni-based alloys, that can be biaxially textured, with a well-developed, single component texture are disclosed. These alloys have a significantly reduced Curie point, which is very desirable from the point of view of superconductivity applications. The biaxially textured alloy substrates also possess greatly enhanced mechanical properties (yield strength, ultimate tensile strength) which are essential for most applications, in particular, superconductors. A method is disclosed for producing complex multicomponent alloys which have the ideal physical properties for specific applications, such as lattice parameter, degree of magnetism and mechanical strength, and which cannot be fabricated in textured form. In addition, a method for making ultra thin biaxially textured substrates with complex compositions is disclosed.

  1. Method of forming biaxially textured alloy substrates and devices thereon

    DOE Patents [OSTI]

    Goyal, Amit (300 Walker Springs Rd., #19E, Knoxville, TN 37923); Specht, Eliot D. (10639 Rivermist La., Knoxville, TN 37922); Kroeger, Donald M. (716 Villa Crest Dr., Knoxville, TN 37923); Paranthaman, Mariappan (1117 Oak Haven Rd., Knoxville, TN 37923)

    2000-01-01T23:59:59.000Z

    Specific alloys, in particular Ni-based alloys, that can be biaxially textured, with a well-developed, single component texture are disclosed. These alloys have a significantly reduced Curie point, which is very desirable from the point of view of superconductivity applications. The biaxially textured alloy substrates also possess greatly enhanced mechanical properties (yield strength, ultimate tensile strength) which are essential for most applications, in particular, superconductors. A method is disclosed for producing complex multicomponent alloys which have the ideal physical properties for specific applications, such as lattice parameter, degree of magnetism and mechanical strength, and which cannot be in textured form. In addition, a method for making ultra thin biaxially textured substrates with complex compositions is disclosed.

  2. PATCHY SILICA-COATED SILVER NANOWIRES AS SERS SUBSTRATES

    SciTech Connect (OSTI)

    Murph, S.; Murphy, C.

    2013-03-29T23:59:59.000Z

    We report a class of core-shell nanomaterials that can be used as efficient surface-enhancement Raman scattering (SERS) substrates. The core consists of silver nanowires, prepared through a chemical reduction process, that are used to capture 4- mercaptobenzoic acid (4-MBA), a model analyte. The shell was prepared through a modified Stöber method and consists of patchy or full silica coats. The formation of silica coats was monitored via transmission electron microscopy, UV-visible spectroscopy and phase-analysis light scattering for measuring effective surface charge. Surprisingly, the patchy silica coated silver nanowires are better SERS substrate than silver nanowires; nanomolar concentration of 4-MBA can be detected. In addition, “nano-matryoshka” configurations were used to quantitate/explore the effect of the electromagnetic field at the tips of the nanowire (“hot spots”) in the Raman scattering experiment.

  3. Graphdiyne as a Promising Substrate for Stabilizing Pt Nanoparticle Catalyst

    E-Print Network [OSTI]

    Lin, Zheng-Zhe

    2015-01-01T23:59:59.000Z

    At present, Pt nanoparticle catalysts in fuel cells suffer from aggregation and loss of chemical activity. In this work, graphdiyne, which has natural porous structure, was proposed as substrate with high adsorption ability to stabilize Pt nanoparticles. Using multiscale calculations by ab initio method and the ReaxFF potential, geometry optimizations, molecular dynamics simulations, Metropolis Monte Carlo simulations and minimum energy paths calculations were performed to investigate the adsorption energy and the rates of desorption and migration of Pt nanoparticles on graphdiyne and graphene. According to the comparison between graphdiyne and graphene, it was found that the high adsorption ability of graphdiyne can avoid Pt nanoparticle migration and aggregation on substrate. Then, simulations indicated the potential catalytic ability of graphdiyne-Pt-nanoparticle system to the oxygen reduction reaction in fuel cells. In summary, graphdiyne should be an excellent material to replace graphite or amorphous ca...

  4. How water droplets evaporate on a superhydrophobic substrate

    E-Print Network [OSTI]

    Gelderblom, Hanneke; Nair, Hrudya; van Houselt, Arie; Lefferts, Leon; Snoeijer, Jacco H; Lohse, Detlef

    2010-01-01T23:59:59.000Z

    Evaporation of water droplets on a superhydrophobic substrate, on which the contact line is pinned, is investigated. While previous studies mainly focused on droplets with contact angles smaller than $90^\\circ$, here we analyze almost the full range of possible contact angles (10$^\\circ$-150$^\\circ$). The greater contact angles and pinned contact lines can be achieved by the use of superhydrophobic Carbon Nanofiber substrates. The time-evolutions of the contact angle and the droplet mass are examined. The experimental data is in good quantitative agreement with the model presented by Popov (Physical Review E 71, 2005), demonstrating that the evaporation process is quasi-static, diffusion-driven, and that thermal effects play no role. Furthermore, we show that the experimental data for the evolution of both the contact angle and the droplet mass can be collapsed onto one respective universal curve for all droplet sizes and initial contact angles.

  5. Method for forming silicon on a glass substrate

    DOE Patents [OSTI]

    McCarthy, Anthony M. (Menlo Park, CA)

    1995-01-01T23:59:59.000Z

    A method by which single-crystal silicon microelectronics may be fabricated on glass substrates at unconventionally low temperatures. This is achieved by fabricating a thin film of silicon on glass and subsequently forming the doped components by a short wavelength (excimer) laser doping procedure and conventional patterning techniques. This method may include introducing a heavily boron doped etch stop layer on a silicon wafer using an excimer laser, which permits good control of the etch stop layer removal process. This method additionally includes dramatically reducing the remaining surface roughness of the silicon thin films after etching in the fabrication of silicon on insulator wafers by scanning an excimer laser across the surface of the silicon thin film causing surface melting, whereby the surface tension of the melt causes smoothing of the surface during recrystallization. Applications for this method include those requiring a transparent or insulating substrate, such as display manufacturing. Other applications include sensors, actuators, optoelectronics, radiation hard and high temperature electronics.

  6. Method for forming a hardened surface on a substrate

    DOE Patents [OSTI]

    Branagan, Daniel J. (Iona, ID)

    2008-01-29T23:59:59.000Z

    The invention encompasses a method of forming a metallic coating. A metallic glass coating is formed over a metallic substrate. After formation of the coating, at least a portion of the metallic glass can be converted into a crystalline material having a nanocrystalline grain size. The invention also encompasses metallic coatings comprising metallic glass. Additionally, the invention encompasses metallic coatings comprising crystalline metallic material, with at least some of the crystalline metallic material having a nanocrystalline grain size.

  7. Substrate dielectric effects on graphene field effect transistors

    SciTech Connect (OSTI)

    Hu, Zhaoying; Prasad Sinha, Dhiraj; Ung Lee, Ji, E-mail: jlee1@albany.edu; Liehr, Michael [College of Nanoscale Science and Engineering, The State University of New York at Albany, Albany, New York 12203 (United States)

    2014-05-21T23:59:59.000Z

    Graphene is emerging as a promising material for future electronics and optoelectronics applications due to its unique electronic structure. Understanding the graphene-dielectric interaction is of vital importance for the development of graphene field effect transistors (FETs) and other novel graphene devices. Here, we extend the exploration of substrate dielectrics from conventionally used thermally grown SiO{sub 2} and hexagonal boron nitride films to technologically relevant deposited dielectrics used in semiconductor industry. A systematic analysis of morphology and optical and electrical properties was performed to study the effects of different substrates (SiO{sub 2}, HfO{sub 2}, Al{sub 2}O{sub 3}, tetraethyl orthosilicate (TEOS)-oxide, and Si{sub 3}N{sub 4}) on the carrier transport of chemical vapor deposition-derived graphene FET devices. As baseline, we use graphene FETs fabricated on thermal SiO{sub 2} with a relatively high carrier mobility of 10?000 cm{sup 2}/(V s). Among the deposited dielectrics studied, silicon nitride showed the highest mobility, comparable to the properties of graphene fabricated on thermal SiO{sub 2}. We conclude that this result comes from lower long range scattering and short range scattering rates in the nitride compared those in the other deposited films. The carrier fluctuation caused by substrates, however, seems to be the main contributing factor for mobility degradation, as a universal mobility-disorder density product is observed for all the dielectrics examined. The extrinsic doping trend is further confirmed by Raman spectra. We also provide, for the first time, correlation between the intensity ratio of G peak and 2D peak in the Raman spectra to the carrier mobility of graphene for different substrates.

  8. Low Voltage Reversible Electrowetting Exploiting Lubricated Polymer Honeycomb Substrates

    E-Print Network [OSTI]

    Edward Bormashenko; Roman Pogreb; Yelena Bormashenko; Roman Grynyov; Oleg Gendelman

    2014-06-16T23:59:59.000Z

    Low-voltage electrowetting-on-dielectric scheme realized with lubricated honeycomb polymer surfaces is reported. Polycarbonate honeycomb reliefs manufactured with the breath-figures self-assembly were impregnated with silicone and castor oils. The onset of the reversible electrowetting for silicone oil impregnated substrates occurred at 35 V, whereas for castor oil impregnated ones it took place at 80 V. The semi-quantitative analysis of electrowetting of impregnated surfaces is proposed.

  9. Design and Fabrication of Integrated Optical Waveguides and Sidewall Bragg Gratings 

    E-Print Network [OSTI]

    Wang, Xin

    2014-11-20T23:59:59.000Z

    In this dissertation, a novel design platform with arsenic tri-sulfide (As2S3) on titanium-diffused lithium niobate substrate (Ti:LiNbO3) is introduced to provide physical foundation for integrated optical device applications. LiNbO3 possesses...

  10. Very high frequency GaAlAs laser field-effect transistor monolithic integrated circuit

    SciTech Connect (OSTI)

    Ury, I.; Lau, K.Y.; Bar-Chaim, N.; Yariv, A.

    1982-07-15T23:59:59.000Z

    A very low threshold GaAlAs buried heterostructure laser has been monolithically integrated with a recessed structure metal-semiconductor field-effect transistor on a semi-insulating substrate. At cw operation, the device has a direct modulation bandwidth of at least 4 GHz.

  11. Aerosol-Jet-Printed, 1 Volt HBridge Drive Circuit on Plastic with Integrated Electrochromic Pixel

    E-Print Network [OSTI]

    Kim, Chris H.

    Aerosol-Jet-Printed, 1 Volt HBridge Drive Circuit on Plastic with Integrated Electrochromic Pixel electrochromic (EC) pixel as large as 4 mm2 that is printed on the same substrate. All of the key components, flexible electronics, electrochromic pixel, transistor, capacitor, ion gel 1. INTRODUCTION Printing

  12. Seamless On-Wafer Integration of Si(100) MOSFETs and GaN HEMTs

    E-Print Network [OSTI]

    Piner, Edwin L.

    The first on-wafer integration of Si(100) MOSFETs and AlGaN/GaN high electron mobility transistors (HEMTs) is demonstrated. To enable a fully Si-compatible process, we fabricated a novel Si(100)-GaN-Si(100) virtual substrate ...

  13. Structural basis of substrate discrimination and integrin binding by autotaxin

    SciTech Connect (OSTI)

    Hausmann, Jens; Kamtekar, Satwik; Christodoulou, Evangelos; Day, Jacqueline E.; Wu, Tao; Fulkerson, Zachary; Albers, Harald M.H.G.; van Meeteren, Laurens A.; Houben, Anna J.S.; van Zeijl, Leonie; Jansen, Silvia; Andries, Maria; Hall, Troii; Pegg, Lyle E.; Benson, Timothy E.; Kasiem, Mobien; Harlos, Karl; Vander Kooi, Craig W.; Smyth, Susan S.; Ovaa, Huib; Bollen, Mathieu; Morris, Andrew J.; Moolenaar, Wouter H.; Perrakis, Anastassis (Pfizer); (Leuven); (Oxford); (NCI-Netherlands); (Kentucky)

    2013-09-25T23:59:59.000Z

    Autotaxin (ATX, also known as ectonucleotide pyrophosphatase/phosphodiesterase-2, ENPP2) is a secreted lysophospholipase D that generates the lipid mediator lysophosphatidic acid (LPA), a mitogen and chemoattractant for many cell types. ATX-LPA signaling is involved in various pathologies including tumor progression and inflammation. However, the molecular basis of substrate recognition and catalysis by ATX and the mechanism by which it interacts with target cells are unclear. Here, we present the crystal structure of ATX, alone and in complex with a small-molecule inhibitor. We have identified a hydrophobic lipid-binding pocket and mapped key residues for catalysis and selection between nucleotide and phospholipid substrates. We have shown that ATX interacts with cell-surface integrins through its N-terminal somatomedin B-like domains, using an atypical mechanism. Our results define determinants of substrate discrimination by the ENPP family, suggest how ATX promotes localized LPA signaling and suggest new approaches for targeting ATX with small-molecule therapeutic agents.

  14. Substrate Atomic-Termination-Induced Anisotropic Growth of ZnO Nanowires/Nanorods by the VLS Process

    E-Print Network [OSTI]

    Wang, Zhong L.

    Substrate Atomic-Termination-Induced Anisotropic Growth of ZnO Nanowires/Nanorods by the VLSO substrate, we demonstrate the effect of substrate surface termination on nanowire growth. Symmetric) substrates have asymmetrically grown nanostructures. For the Zn-terminated (0001) substrate surface, uniform

  15. Surface-Enhanced Raman Scattering Study on Graphene-Coated Metallic Nanostructure Substrates

    E-Print Network [OSTI]

    #12;Surface-Enhanced Raman Scattering Study on Graphene-Coated Metallic Nanostructure Substrates University, University Park, Pennsylvania 16802, United States *S Supporting Information ABSTRACT: Graphene, we combine graphene with conventional metallic surface- enhanced Raman scattering (SERS) substrates

  16. Apparatus and method for rapid cooling of large area substrates in vacuum

    DOE Patents [OSTI]

    Barth, Kurt L.; Enzenroth, Robert A.; Sampath, Walajabad S.

    2012-11-06T23:59:59.000Z

    The present invention is directed to an apparatus and method for rapid cooling of a large substrate in a vacuum environment. A first cooled plate is brought into close proximity with one surface of a flat substrate. The spatial volume between the first cooling plate and the substrate is sealed and brought to a higher pressure than the surrounding vacuum level to increase the cooling efficiency. A second cooled plate is brought into close proximity with the opposite surface of the flat substrate. A second spatial volume between the second cooling plate and the substrate is sealed and the gas pressure is equalized to the gas pressure in the first spatial volume. The equalization of the gas pressure on both sides of the flat substrate eliminates deflection of the substrate and bending stress in the substrate.

  17. Apparatus and method for rapid cooling of large area substrates in vacuum

    DOE Patents [OSTI]

    Barth, Kurt L.; Enzenroth, Robert A.; Sampath, Walajabad S.

    2010-09-28T23:59:59.000Z

    The present invention is directed to an apparatus and method for rapid cooling of a large substrate in a vacuum environment. A first cooled plate is brought into close proximity with one surface of a flat substrate. The spatial volume between the first cooling plate and the substrate is sealed and brought to a higher pressure than the surrounding vacuum level to increase the cooling efficiency. A second cooled plate is brought into close proximity with the opposite surface of the flat substrate. A second spatial volume between the second cooling plate and the substrate is sealed and the gas pressure is equalized to the gas pressure in the first spatial volume. The equalization of the gas pressure on both sides of the flat substrate eliminates deflection of the substrate and bending stress in the substrate.

  18. Commercialization potential of compositionally graded Ge - Si??x?Gex? - Si substrates for solar applications

    E-Print Network [OSTI]

    Goh, Johnathan Jian Ming

    2006-01-01T23:59:59.000Z

    This project considers the potential of Ge - Si??x?Gex? - Si substrates for solar applications. The use of compositionally graded substrates to achieve heterointegration across different materials platforms such as Si, Ge ...

  19. Breakdown mechanism in AlGaN/GaN HEMTs on Si substrate

    E-Print Network [OSTI]

    Lu, Bin

    AlGaN/GaN high electron mobility transistors (HEMTs) grown on Si substrates have attracted a great interest for power electronics applications. Despite the low cost of the Si substrate, the breakdown voltage (V[subscript ...

  20. III-V Nanowires and Nanoneedles on Lattice Mismatched Substrates for Optoelectronic Device Applications

    E-Print Network [OSTI]

    Chuang, Chih-Wei

    2009-01-01T23:59:59.000Z

    in GaN thin films on silicon and sapphire substrates. J.thin-film GaN grown on a sapphire substrate. This rotationsubstrate surface and its effect on the growth of GaN. J.

  1. The development of integrated chemical microsensors in GaAs

    SciTech Connect (OSTI)

    CASALNUOVO,STEPHEN A.; ASON,GREGORY CHARLES; HELLER,EDWIN J.; HIETALA,VINCENT M.; BACA,ALBERT G.; HIETALA,S.L.

    1999-11-01T23:59:59.000Z

    Monolithic, integrated acoustic wave chemical microsensors are being developed on gallium arsenide (GaAs) substrates. With this approach, arrays of microsensors and the high frequency electronic components needed to operate them reside on a single substrate, increasing the range of detectable analytes, reducing overall system size, minimizing systematic errors, and simplifying assembly and packaging. GaAs is employed because it is both piezoelectric, a property required to produce the acoustic wave devices, and a semiconductor with a mature microelectronics fabrication technology. Many aspects of integrated GaAs chemical sensors have been investigated, including: surface acoustic wave (SAW) sensors; monolithic SAW delay line oscillators; GaAs application specific integrated circuits (ASIC) for sensor operation; a hybrid sensor array utilizing these ASICS; and the fully monolithic, integrated SAW array. Details of the design, fabrication, and performance of these devices are discussed. In addition, the ability to produce heteroepitaxial layers of GaAs and aluminum gallium arsenide (AlGaAs) makes possible micromachined membrane sensors with improved sensitivity compared to conventional SAW sensors. Micromachining techniques for fabricating flexural plate wave (FPW) and thickness shear mode (TSM) microsensors on thin GaAs membranes are presented and GaAs FPW delay line and TSM resonator performance is described.

  2. Integrated diamond networks for quantum nanophotonics

    E-Print Network [OSTI]

    Birgit J. M. Hausmann; Brendan Shields; Qimin Quan; Patrick Maletinsky; Murray McCutcheon; Jennifer T. Choy; Tom M. Babinec; Alexander Kubanek; Amir Yacoby; Mikhail D. Lukin; Marko Loncar

    2012-01-05T23:59:59.000Z

    Diamond is a unique material with exceptional physical and chemical properties that offers potential for the realization of high-performance devices with novel functionalities. For example diamond's high refractive index, transparency over wide wavelength range, and large Raman gain are of interest for the implementation of novel photonic devices. Recently, atom-like impurities in diamond emerged as an exceptional system for quantum information processing, quantum sensing and quantum networks. For these and other applications, it is essential to develop an integrated nanophotonic platform based on diamond. Here, we report on the realization of such an integrated diamond photonic platform, diamond on insulator (DOI), consisting of a thin single crystal diamond film on top of an insulating silicon dioxide/silicon substrate. Using this approach, we demonstrate diamond ring resonators that operate in a wide wavelength range, including the visible (630nm) and near-infrared (1,550nm). Finally, we demonstrate an integrated, on-chip quantum nanophotonic network, consisting of ring resonators coupled to low loss waveguides with grating couplers, that enables the generation and efficient routing of single photons at room temperature.

  3. Method for integrating microelectromechanical devices with electronic circuitry

    DOE Patents [OSTI]

    Barron, Carole C. (Austin, TX); Fleming, James G. (Albuquerque, NM); Montague, Stephen (Albuquerque, NM)

    1999-01-01T23:59:59.000Z

    A method is disclosed for integrating one or more microelectromechanical (MEM) devices with electronic circuitry on a common substrate. The MEM device can be fabricated within a substrate cavity and encapsulated with a sacrificial material. This allows the MEM device to be annealed and the substrate planarized prior to forming electronic circuitry on the substrate using a series of standard processing steps. After fabrication of the electronic circuitry, the electronic circuitry can be protected by a two-ply protection layer of titanium nitride (TiN) and tungsten (W) during an etch release process whereby the MEM device is released for operation by etching away a portion of a sacrificial material (e.g. silicon dioxide or a silicate glass) that encapsulates the MEM device. The etch release process is preferably performed using a mixture of hydrofluoric acid (HF) and hydrochloric acid (HCI) which reduces the time for releasing the MEM device compared to use of a buffered oxide etchant. After release of the MEM device, the TiN:W protection layer can be removed with a peroxide-based etchant without damaging the electronic circuitry.

  4. Apparatus and method for selective area deposition of thin films on electrically biased substrates

    DOE Patents [OSTI]

    Zuhr, R.A.; Haynes, T.E.; Golanski, A.

    1999-06-08T23:59:59.000Z

    An ion beam deposition process for selective area deposition on a polarized substrate uses a potential applied to the substrate which allows the ionized particles to reach into selected areas for film deposition. Areas of the substrate to be left uncoated are held at a potential that repels the ionized particles. 3 figs.

  5. Reduced thermal resistance of the silicon-synthetic diamond composite substrates at elevated temperatures

    E-Print Network [OSTI]

    /Si sub- strates, depends on the polycrystalline-diamond grain size, diamond layer thicknessReduced thermal resistance of the silicon-synthetic diamond composite substrates at elevated of synthetic diamond-silicon composite substrates. Although composite substrates are more thermally resistive

  6. Apparatus and method for selective area deposition of thin films on electrically biased substrates

    DOE Patents [OSTI]

    Zuhr, Raymond A. (Oak Ridge, TN); Haynes, Tony E. (Knoxville, TN); Golanski, Andrzej (Le Cheylas, FR)

    1999-01-01T23:59:59.000Z

    An ion beam deposition process for selective area deposition on a polarized substrate uses a potential applied to the substrate which allows the ionized particles to reach into selected areas for film deposition. Areas of the substrate to be left uncoated are held at a potential that repells the ionized particles.

  7. THE RATCHETING OF COMPRESSED THERMALLY GROWN THIN FILMS ON DUCTILE SUBSTRATES

    E-Print Network [OSTI]

    Hutchinson, John W.

    THE RATCHETING OF COMPRESSED THERMALLY GROWN THIN FILMS ON DUCTILE SUBSTRATES M. Y. HE1 , A. G by oxidation of the substrate. It is shown that, in some circumstances, ratcheting occurs, wherein which ratcheting does not occur. This critical size is related to the expansion mis®t, the substrate

  8. Inorganic islands on a highly stretchable polyimide substrate Jeong-Yun Sun

    E-Print Network [OSTI]

    Inorganic islands on a highly stretchable polyimide substrate Jeong-Yun Sun Department of Material. A polyimide substrate is first coated with a thin layer of an elastomer, on top of which SiNx islands, but SiNx islands on much stiffer polyimide (PI) sub- strates crack and debond when the substrates

  9. Complex hydraulic and substrate variables limit freshwater mussel species richness and abundance

    E-Print Network [OSTI]

    Vaughn, Caryn

    Complex hydraulic and substrate variables limit freshwater mussel species richness and abundance. We examined how substrate and complex hydraulic variables limit the distribution of freshwater mussels. We sampled mussels and measured substrate and hydraulic variables (at low and high flows) at 6

  10. Particle/substrate interaction in the cold-spray bonding process

    E-Print Network [OSTI]

    Grujicic, Mica

    , atomic inter-diffusion is not expected to play a significant role in particle/substrate bonding. This canC2 148 9 Particle/substrate interaction in the cold-spray bonding process M. GRUJICIC, Clemson in this chapter to the problem of particle/substrate interactions and bonding during cold spray. The actual

  11. TEM studies of laterally overgrown GaN layers grown on non-polar substrates

    E-Print Network [OSTI]

    Liliental-Weber, Z.; Ni, X.; Morkoc, H.

    2006-01-01T23:59:59.000Z

    between these substrates and the GaN layers leads to a highpendeo-epitaxial GaN layer grown on (1120) 4H-SiC substrate.in GaN layers grown on polar and non-polar substrates are

  12. NREL: Transmission Grid Integration - Wind Integration Datasets

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy: Grid IntegrationReportTransmission Planning andStudy PhaseWind

  13. Technology Integration Overview

    Broader source: Energy.gov (indexed) [DOE]

    Technology Integration Overview Dennis A. Smith - Clean Cities Deployment Connie Bezanson - Vehicle Education June 17, 2014 VEHICLE TECHNOLOGIES OFFICE This presentation does not...

  14. Integrated Technology Deployment

    Office of Energy Efficiency and Renewable Energy (EERE)

    Integrated technology deployment is a comprehensive approach to implementing solutions that increase the use of energy efficiency and renewable energy technologies. Federal, state, and local...

  15. Technology Integration Overview

    Broader source: Energy.gov (indexed) [DOE]

    -Technology Integration Overview - Dennis A. Smith Connie Bezanson U. S. Department of Energy Headquarters Office - Washington, D.C. May 2013 Project ID: TI000 2013 Department of...

  16. Algal Integrated Biorefineries

    Broader source: Energy.gov [DOE]

    The Algae Program works closely with the Demonstration and Deployment Program on projects that can validate advancements toward commercialization at increasing scales. Integrated biorefineries...

  17. Growth and properties of AlGaInP resonant cavity light emitting diodes on Ge/SiGe/Si substrates

    SciTech Connect (OSTI)

    Kwon, O.; Boeckl, J.; Lee, M.L.; Pitera, A.J.; Fitzgerald, E.A.; Ringel, S.A. [Department of Electrical Engineering, Ohio State University, Columbus, Ohio 43210 (United States); Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Department of Electrical and Computer Engineering, Ohio State University, 2015 Neil Avenue, Columbus, Ohio 43210 (United States)

    2005-02-01T23:59:59.000Z

    Visible AlGaInP resonant cavity light emitting diodes (RCLEDs) were grown by molecular beam epitaxy and fabricated on low-dislocation density, SiGe/Si metamorphic substrates. A comparison with identical devices grown on GaAs and Ge substrates shows that not only did the RCLED device structure successfully transfer to the SiGe/Si substrate, but also a higher optical output power was obtained. This result is attributed to enhanced lateral current spreading by the low residual dislocation density ({approx}1x10{sup 6} cm{sup -2}) network within the virtual Ge substrate and the superior thermal conductivity of the underlying Si wafer. In addition, the growth of an AlGaAs current spreading layer and a modified top metal contact were incorporated in the RCLED on SiGe to optimize device performance. The measured electroluminescent output power was 166 {mu}W at a 665 nm peak wavelength under 500 mA current injection. Extremely narrow electroluminescence linewidths were achieved with a full width half maximum value of 3.63 nm under 50 mA current injection. These results demonstrate great promise for the monolithic integration of visible band optical sources with Si-based electronic circuitry.

  18. Reconditioning of semiconductor substrates to remove photoresist during semiconductor device fabrication

    DOE Patents [OSTI]

    Farino, Anthony J.

    2004-01-27T23:59:59.000Z

    A method for reconditioning the surface of a semiconductor substrate to remove an unwanted (i.e. defective) layer of photoresist is disclosed. The method adapts a conventional automated spinner which is used to rotate the substrate at high speed while a stream of a first solvent (e.g. acetone) is used to dissolve the photoresist. A stream of a second solvent (e.g. methanol) is then used to clean the substrate at a lower speed, with the substrate being allowed to dry with continued rotation. The method of the present invention can be used within a photolithography track so that the substrates need never leave the track for reconditioning.

  19. Water Waves and Integrability

    E-Print Network [OSTI]

    Rossen I. Ivanov

    2007-07-12T23:59:59.000Z

    The Euler's equations describe the motion of inviscid fluid. In the case of shallow water, when a perturbative asymtotic expansion of the Euler's equations is taken (to a certain order of smallness of the scale parameters), relations to certain integrable equations emerge. Some recent results concerning the use of integrable equation in modeling the motion of shallow water waves are reviewed in this contribution.

  20. Systems Integration (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01T23:59:59.000Z

    The Systems Integration (SI) subprogram works closely with industry, universities, and the national laboratories to overcome technical barriers to the large-scale deployment of solar technologies. To support these goals, the subprogram invests primarily in four areas: grid integration, technology validation, solar resource assessment, and balance of system development.

  1. Full-wave analysis of large conductor systems over substrate

    E-Print Network [OSTI]

    Hu, Xin, 1979-

    2006-01-01T23:59:59.000Z

    Designers of high-performance integrated circuits are paying ever-increasing attention to minimizing problems associated with interconnects such as noise, signal delay, crosstalk, etc., many of which are caused by the ...

  2. Microfabrication of freestanding metal structures released from graphite substrates.

    SciTech Connect (OSTI)

    Makarova, O. V.; Tang, C.-M.; Mancini, D. C.; Moldovan, N.; Divan, R.; Ryding, D. G.; Lee, R. H.

    2002-02-22T23:59:59.000Z

    A sacrificial layer is usually used to release electroformed microstructures. Because of the chemistry applied to the sacrificial layer, only a limited number of metals can be used for electroforming. A novel method to fabricate freestanding electroformed copper structures is presented. A graphite substrate allows the release of the metal part, by abrasive removal of the graphite after electroforming. Results on fabrication of high-aspect-ratio freestanding copper grids are presented; these can be used as x-ray collimator in medical imaging to reduce scattered radiation. This process has potential application to the fabrication of injection molds and microparts on pick-and-place carriers for microelectromechanical systems (MEMS).

  3. Quantitative adhesion data for electroless nickel deposited on various substrates

    SciTech Connect (OSTI)

    Dini, J.W.; Johnson, H.R.

    1982-09-20T23:59:59.000Z

    This paper includes a review of the literature on quantitative adhesion of electroless nickel coatings and then presents recent ring shear quantitative data for the electroless nickel deposited on a variety of substrates. Procedures for obtaining good adhesion between electroless nickel coatings and a variety of aluminum alloys (1100, 2024, 5083, 6061 and 7075), beryllium-copper, 4340 steel, HP 9-4-20 steel, and U-0.75 Ti are outlined. In addition, data are presented on a procedure for activating electroless nickel for subsequent coating with electrodeposited nickel. 6 tables.

  4. Quantitative adhesion data for electroless nickel deposited on various substrates

    SciTech Connect (OSTI)

    Dini, J.W.; Johnson, H.R.

    1983-01-01T23:59:59.000Z

    A review of the literature on quantitative adhesion of electroless nickel coatings is given and recent ring shear quantitative data for the electroless nickel deposited on a variety of substrates are presented. Procedures for obtaining good adhesion between electroless nickel coatings and a variety of aluminum alloys (1100, 2024, 5083, 6061 and 7075), beryllium-copper, 4340 steel and HP 9-4-20 steel are outlined. In addition, data are presented on a procedure for activating electroless nickel for subsequent coating with electrodeposited nickel.

  5. Epitaxial electrodeposition of freestanding large area single crystal substrates

    SciTech Connect (OSTI)

    Shin, Jae Wook; Standley, Adam; Chason, Eric [Brown University, Box D, Providence, Rhode Island 02912 (United States)

    2007-06-25T23:59:59.000Z

    The authors report on a method for producing freestanding single crystal metal films over large areas using electrodeposition and selective etching. The method can be turned into an inexpensive continuous process for making long ribbons or a large area of single crystal films. Results from a 5x5 mm{sup 2} Ni single crystal film using electron backscattering pattern pole figures and x-ray diffraction demonstrate that the quality of material produced is equivalent to the initial substrate without annealing or polishing.

  6. Stereoscopic PIV measurements of swirling flow entering a catalyst substrate

    SciTech Connect (OSTI)

    Persoons, T. [Trinity College Dublin, Mechanical Engineering Department, Parsons Building, Dublin 2 (Ireland); Vanierschot, M.; Van den Bulck, E. [Katholieke Universiteit Leuven, Department of Mechanical Engineering, Celestijnenlaan 300A, 3001 Leuven (Belgium)

    2008-09-15T23:59:59.000Z

    This experimental study investigates the stagnation region of a swirling flow entering an automotive catalyst substrate. A methodology is established using stereoscopic particle image velocimetry (PIV) to determine three-component velocity distributions up to 0.2 mm from the catalyst entrance face. In adverse conditions of strong out-of-plane velocity, PIV operating parameters are adjusted for maximum spatial correlation strength. The measurement distance to the catalyst is sufficiently small to observe radial flow spreading. A scaling analysis of the stagnation flow region provides a model for the flow uniformization as a function of the catalyst pressure drop. (author)

  7. Substrate-Induced Band-Gap Opening in Epitaxial Graphene

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening a solid ... StrengtheningLabSubmitting JobsSubseaSubstrate-Induced

  8. Thick adherent dielectric films on plastic substrates and method for depositing same

    DOE Patents [OSTI]

    Wickboldt, Paul (Walnut Creek, CA); Ellingboe, Albert R. (Fremont, CA); Theiss, Steven D. (Woodbury, MN); Smith, Patrick M. (San Ramon, CA)

    2002-01-01T23:59:59.000Z

    Thick adherent dielectric films deposited on plastic substrates for use as a thermal barrier layer to protect the plastic substrates from high temperatures which, for example, occur during laser annealing of layers subsequently deposited on the dielectric films. It is desirable that the barrier layer has properties including: a thickness of 1 .mu.m or greater, adheres to a plastic substrate, does not lift-off when cycled in temperature, has few or no cracks and does not crack when subjected to bending, resistant to lift-off when submersed in fluids, electrically insulating and preferably transparent. The thick barrier layer may be composed, for example, of a variety of dielectrics and certain metal oxides, and may be deposited on a variety of plastic substrates by various known deposition techniques. The key to the method of forming the thick barrier layer on the plastic substrate is maintaining the substrate cool during deposition of the barrier layer. Cooling of the substrate maybe accomplished by the use of a cooling chuck on which the plastic substrate is positioned, and by directing cooling gas, such as He, Ar and N.sub.2, between the plastic substrate and the cooling chucks. Thick adherent dielectric films up to about 5 .mu.m have been deposited on plastic substrates which include the above-referenced properties, and which enable the plastic substrates to withstand laser processing temperatures applied to materials deposited on the dielectric films.

  9. Thin-film solar cell fabricated on a flexible metallic substrate

    DOE Patents [OSTI]

    Tuttle, John R.; Noufi, Rommel; Hasoon, Falah S.

    2006-05-30T23:59:59.000Z

    A thin-film solar cell (10) is provided. The thin-film solar cell (10) comprises a flexible metallic substrate (12) having a first surface and a second surface. A back metal contact layer (16) is deposited on the first surface of the flexible metallic substrate (12). A semiconductor absorber layer (14) is deposited on the back metal contact. A photoactive film deposited on the semiconductor absorber layer (14) forms a heterojunction structure and a grid contact (24) deposited on the heterjunction structure. The flexible metal substrate (12) can be constructed of either aluminium or stainless steel. Furthermore, a method of constructing a solar cell is provided. The method comprises providing an aluminum substrate (12), depositing a semiconductor absorber layer (14) on the aluminum substrate (12), and insulating the aluminum substrate (12) from the semiconductor absorber layer (14) to inhibit reaction between the aluminum substrate (12) and the semiconductor absorber layer (14).

  10. Thin-Film Solar Cell Fabricated on a Flexible Metallic Substrate

    DOE Patents [OSTI]

    Tuttle, J. R.; Noufi, R.; Hasoon, F. S.

    2006-05-30T23:59:59.000Z

    A thin-film solar cell (10) is provided. The thin-film solar cell (10) comprises a flexible metallic substrate (12) having a first surface and a second surface. A back metal contact layer (16) is deposited on the first surface of the flexible metallic substrate (12). A semiconductor absorber layer (14) is deposited on the back metal contact. A photoactive film deposited on the semiconductor absorber layer (14) forms a heterojunction structure and a grid contact (24) deposited on the heterjunction structure. The flexible metal substrate (12) can be constructed of either aluminium or stainless steel. Furthermore, a method of constructing a solar cell is provided. The method comprises providing an aluminum substrate (12), depositing a semiconductor absorber layer (14) on the aluminum substrate (12), and insulating the aluminum substrate (12) from the semiconductor absorber layer (14) to inhibit reaction between the aluminum substrate (12) and the semiconductor absorber layer (14).

  11. Development of strain reduced GaN on Si (111) by substrate engineering

    SciTech Connect (OSTI)

    Jamil, M.; Grandusky, J.R.; Jindal, V.; Shahedipour-Sandvik, F.; Guha, S.; Arif, M. [College of Nanoscale Science and Engineering, University at Albany-State University of New York, 255 Fuller Rd, Albany, New York 12203 (United States); Department of Physics and Astronomy, University of Missouri-Columbia, Columbia, Missouri 65211 (United States)

    2005-08-22T23:59:59.000Z

    We report on a novel scheme of substrate engineering to obtain high-quality GaN layers on Si substrates. Ion implantation of an AlN/Si substrate is performed to create a defective layer that partially isolates the III-nitride layer and the Si substrate and helps to reduce the strain in the film. Raman spectroscopy shows a substantial decrease in in-plane strain in GaN films grown on nitrogen implanted substrates. This is confirmed by the enhancement of the E{sub 2} (TO) phonon frequency from 564 to 567 cm{sup -1} corresponding to 84% stress reduction and substantial decrease in crack density for a 2-{mu}m-thick GaN film. GaN films grown on implanted AlN/Si substrate have better optical properties and smoother surface morphology as compared to nonimplanted AlN/Si substrate.

  12. Substrate specificity of the sialic acid biosynthetic pathway

    SciTech Connect (OSTI)

    Jacobs, Christina L.; Goon, Scarlett; Yarema, Kevin J.; Hinderlich, Stephan; Hang, Howard C.; Chai, Diana H.; Bertozzi, Carolyn R.

    2001-07-18T23:59:59.000Z

    Unnatural analogs of sialic acid can be delivered to mammalian cell surfaces through the metabolic transformation of unnatural N-acetylmannosamine (ManNAc) derivatives. In previous studies, mannosamine analogs bearing simple N-acyl groups up to five carbon atoms in length were recognized as substrates by the biosynthetic machinery and transformed into cell-surface sialoglycoconjugates [Keppler, O. T., et al. (2001) Glycobiology 11, 11R-18R]. Such structural alterations to cell surface glycans can be used to probe carbohydrate-dependent phenomena. This report describes our investigation into the extent of tolerance of the pathway toward additional structural alterations of the N-acyl substituent of ManNAc. A panel of analogs with ketone-containing N-acyl groups that varied in the lengthor steric bulk was chemically synthesized and tested for metabolic conversion to cell-surface glycans. We found that extension of the N-acyl chain to six, seven, or eight carbon atoms dramatically reduced utilization by the biosynthetic machinery. Likewise, branching from the linear chain reduced metabolic conversion. Quantitation of metabolic intermediates suggested that cellular metabolism is limited by the phosphorylation of the N-acylmannosamines by ManNAc 6-kinase in the first step of the pathway. This was confirmed by enzymatic assay of the partially purified enzyme with unnatural substrates. Identification of ManNAc 6-kinase as a bottleneck for unnatural sialic acid biosynthesis provides a target for expanding the metabolic promiscuity of mammalian cells.

  13. Development of fast response electrochromic devices on polymeric substrate

    SciTech Connect (OSTI)

    Antinucci, M.; Ferriolo, A. [Conphoebus, Catania (Italy)

    1994-12-31T23:59:59.000Z

    Electrochromic devices have been widely studied in the past years for their very promising application in large-area glazing, smart windows, high contrast displays, automotive glazing. The development of full solid-state electrochromic (EC) devices on polymeric substrate is underway within a CEC BRITE-EURAM project (Project ``FREDOPS``, BE-4137) carried out by four industries, two universities and two research centers from Belgium, Denmark, France and Italy. Specific goal of the project is to develop a Fast Response Electrochromic Device On Polymeric Substrate (FREDOPS); in order to satisfy the required range of specifications in terms of fast response, long term performance and high contrast ratio, several systems based on different materials have been tested. The full cells consist of an electrochromic material layer and a counter-electrode, inserted between two PET/ITO layers and separated by a polymeric electrolyte. Different types of polymeric electrolytes, counter electrodes and electrochromic layers have been developed, studied and checked. Full devices have been assembled using different combinations. Voltammetric and spectrophotometric measurements have been executed to check the electrochromic behavior of the developed layers in half and full cells. Comparison of the electrochromic performances of different materials based cells has led to the rejection of several solutions due to poor performance and incompatibilities between layers. The present paper discusses these results in order to indicate the best foreseen solutions.

  14. Method for forming silicon on a glass substrate

    DOE Patents [OSTI]

    McCarthy, A.M.

    1995-03-07T23:59:59.000Z

    A method by which single-crystal silicon microelectronics may be fabricated on glass substrates at unconventionally low temperatures. This is achieved by fabricating a thin film of silicon on glass and subsequently forming the doped components by a short wavelength (excimer) laser doping procedure and conventional patterning techniques. This method may include introducing a heavily boron doped etch stop layer on a silicon wafer using an excimer laser, which permits good control of the etch stop layer removal process. This method additionally includes dramatically reducing the remaining surface roughness of the silicon thin films after etching in the fabrication of silicon on insulator wafers by scanning an excimer laser across the surface of the silicon thin film causing surface melting, whereby the surface tension of the melt causes smoothing of the surface during recrystallization. Applications for this method include those requiring a transparent or insulating substrate, such as display manufacturing. Other applications include sensors, actuators, optoelectronics, radiation hard and high temperature electronics. 15 figs.

  15. Integrated assessment briefs

    SciTech Connect (OSTI)

    NONE

    1995-04-01T23:59:59.000Z

    Integrated assessment can be used to evaluate and clarify resource management policy options and outcomes for decision makers. The defining characteristics of integrated assessment are (1) focus on providing information and analysis that can be understood and used by decision makers rather than for merely advancing understanding and (2) its multidisciplinary approach, using methods, styles of study, and considerations from a broader variety of technical areas than would typically characterize studies produced from a single disciplinary standpoint. Integrated assessment may combine scientific, social, economic, health, and environmental data and models. Integrated assessment requires bridging the gap between science and policy considerations. Because not everything can be valued using a single metric, such as a dollar value, the integrated assessment process also involves evaluating trade-offs among dissimilar attributes. Scientists at Oak Ridge National Laboratory (ORNL) recognized the importance and value of multidisciplinary approaches to solving environmental problems early on and have pioneered the development of tools and methods for integrated assessment over the past three decades. Major examples of ORNL`s experience in the development of its capabilities for integrated assessment are given.

  16. Integrated optics for astronomical interferometry. I. Concept and astronomical applications

    E-Print Network [OSTI]

    F. Malbet; P. Kern; I. Schanen-Duport; J. -P. Berger; K. Rousselet-Perraut

    1999-07-02T23:59:59.000Z

    We propose a new instrumental concept for long-baseline optical single-mode interferometry using integrated optics which were developed for telecommunication. Visible and infrared multi-aperture interferometry requires many optical functions (spatial filtering, beam combination, photometric calibration, polarization control) to detect astronomical signals at very high angular resolution. Since the 80's, integrated optics on planar substrate have become available for telecommunication applications with multiple optical functions like power dividing, coupling, multiplexing, etc. We present the concept of an optical / infrared interferometric instrument based on this new technology. The main advantage is to provide an interferometric combination unit on a single optical chip. Integrated optics are compact, provide stability, low sensitivity to external constrains like temperature, pressure or mechanical stresses, no optical alignment except for coupling, simplicity and intrinsic polarization control. The integrated optics devices are inexpensive compared to devices that have the same functionalities in bulk optics. We think integrated optics will fundamentally change single-mode interferometry. Integrated optics devices are in particular well-suited for interferometric combination of numerous beams to achieve aperture synthesis imaging or for space-based interferometers where stability and a minimum of optical alignments are wished.

  17. PEV Integration with Renewables (Presentation)

    SciTech Connect (OSTI)

    Markel, T.

    2014-06-18T23:59:59.000Z

    This presentation discusses current research at NREL on integrating plug-in electric vehicles with the grid and using renewable energy to charge the grid. The Electric Vehicle Grid Integration (EVGI) and Integrated Network Testbed for Energy Grid Research and Technology Experimentation (INTEGRATE) are addressing the opportunities and technical requirements for vehicle grid integration that will increase marketability and lead to greater petroleum reduction.

  18. Problems on Integration.

    E-Print Network [OSTI]

    2007-07-02T23:59:59.000Z

    INTEGRATION. V2.0. 1. One-liners. Problem 1. True of false: If f is a non-negative function defined on. R and. ?. R f dx < ?, then lim|x|?? f(x) = 0. Problem 2.

  19. INTEGRATING PHOTOVOLTAIC SYSTEMS

    E-Print Network [OSTI]

    Delaware, University of

    for Energy and Environmental Policy University of Delaware February 2006 #12;INTEGRATING PHOTOVOLTAIC Delmarva Power Delaware Energy Office University of Delaware Center for Energy and Environmental Policy..................................................................................................... 5 3.3.1 Delaware's Solar Resource

  20. On Web Taxonomy Integration

    E-Print Network [OSTI]

    Zhang, Dell

    We address the problem of integrating objects from a source taxonomy into a master taxonomy. This problem is not only pervasive on the nowadays web, but also important to the emerging semantic web. A straightforward approach ...

  1. SOLAR PROGRAM: SYSTEMS INTEGRATION

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2010 2. Current Request for Information (RFI) 3. Questions 4 | Systems Integration eere.energy.gov Summary of 1W Workshop Date: August 11th and 12th, 2010 Attendees: 86 total;...

  2. Integrated optical isolators

    E-Print Network [OSTI]

    Zaman, Tauhid R

    2005-01-01T23:59:59.000Z

    Introduction: Optical isolators are important components in lasers. Their main function is to eliminate noise caused by back-reflections into these lasers. The need for integrated isolators comes from the continuing growth ...

  3. IDC Integrated Master Plan.

    SciTech Connect (OSTI)

    Clifford, David J.; Harris, James M.

    2014-12-01T23:59:59.000Z

    This is the IDC Re-Engineering Phase 2 project Integrated Master Plan (IMP). The IMP presents the major accomplishments planned over time to re-engineer the IDC system. The IMP and the associate Integrated Master Schedule (IMS) are used for planning, scheduling, executing, and tracking the project technical work efforts. REVISIONS Version Date Author/Team Revision Description Authorized by V1.0 12/2014 IDC Re- engineering Project Team Initial delivery M. Harris

  4. Simplistic Integration for Complex Wigglers

    E-Print Network [OSTI]

    Forest, E.

    2011-01-01T23:59:59.000Z

    y (c) and (d) are for 35 integration steps, (e) and (f) arey — p y plot for 15 integration steps which is equivalent to32792 UC-410 Symplectic Integration for Complex Wigglers E.

  5. China's Civil-Military Integration

    E-Print Network [OSTI]

    LAFFERTY, Brian; SHRABERG, Aaron; CLEMENS, Morgan

    2013-01-01T23:59:59.000Z

    China’s civil-military integration, and China’s high tech2013 China’s Civil-Military Integration Brian LAFFERTY Aarons pursuit of civil-military integration (CMI) intensified in

  6. NREL: Energy Systems Integration Facility - Systems Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency Visit |Infrastructure The foundation of

  7. Plasma-assisted molecular beam epitaxy of GaN on porous SiC substrates with varying porosity

    E-Print Network [OSTI]

    Feenstra, Randall

    1 Plasma-assisted molecular beam epitaxy of GaN on porous SiC substrates with varying porosity York, 12222 Abstract: We have grown GaN on porous SiC substrates and studied the effect of substrate show that the GaN film grown on porous substrates contains open tubes and a low dislocation density

  8. A novel method of fabricating integrated FETs for MEMS applications.

    SciTech Connect (OSTI)

    Okandan, Murat; Bennett, Reid Stuart; Draper, Bruce Leroy; Mani, Seethambal S.

    2003-07-01T23:59:59.000Z

    This paper demonstrates a simple technique for building n-channel MOSFETs and complex micromechanical systems simultaneously instead of serially, allowing a more straightforward integration of complete systems. The fabrication sequence uses few additional process steps and only one additional masking layer compared to a MEMS-only technology. The process flow forms the MOSFET gate electrode using the first level of mechanical polycrystalline silicon, while the MOSFET source and drain regions are formed by dopant diffusions into the substrate from subsequent levels of heavily doped poly that is used for mechanical elements. The process yields devices with good, repeatable electrical characteristics suitable for a wide range of digital and analog applications.

  9. Method of forming a hardened surface on a substrate

    DOE Patents [OSTI]

    Branagan, Daniel J. (Iona, ID)

    2010-08-31T23:59:59.000Z

    The invention includes a method of producing a hard metallic material by forming a mixture containing at least 55% iron and at least one of B, C, Si and P. The mixture is formed into an alloy and cooled to form a metallic material having a hardness of greater than about 9.2 GPa. The invention includes a method of forming a wire by combining a metal strip and a powder. The metal strip and the powder are rolled to form a wire containing at least 55% iron and from two to seven additional elements including at least one of C, Si and B. The invention also includes a method of forming a hardened surface on a substrate by processing a solid mass to form a powder, applying the powder to a surface to form a layer containing metallic glass, and converting the glass to a crystalline material having a nanocrystalline grain size.

  10. Physiological Integration and Phenotypic Variation

    E-Print Network [OSTI]

    Arnold, Jonathan

    Physiological Integration and Phenotypic Variation in Vertebrates Seminar and Roundtable Guest Speaker: Lynn "Marty" Martin, PhD Assistant Professor Department of Integrative Biology, University

  11. Sandia National Laboratories: Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    IEC 61400-26 Availability Standard On June 12, 2014, in Analysis, Distribution Grid Integration, Energy, Grid Integration, Infrastructure Security, News, News & Events,...

  12. Systems Integration | ornl.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Systems Integration SHARE Systems Integration The Distributed Energy Communications and Controls (DECC) Laboratory offers a unique test bed for testing distributed energy...

  13. A Practical Test Method for Mode I Fracture Toughness of Adhesive Joints with Dissimilar Substrates

    SciTech Connect (OSTI)

    Boeman, R.G.; Erdman, D.L.; Klett, L.B.; Lomax, R.D.

    1999-09-27T23:59:59.000Z

    A practical test method for determining the mode I fracture toughness of adhesive joints with dissimilar substrates will be discussed. The test method is based on the familiar Double Cantilever Beam (DCB) specimen geometry, but overcomes limitations in existing techniques that preclude their use when testing joints with dissimilar substrates. The test method is applicable to adhesive joints where the two bonded substrates have different flexural rigidities due to geometric and/or material considerations. Two specific features discussed are the use of backing beams to prevent substrate damage and a compliance matching scheme to achieve symmetric loading conditions. The procedure is demonstrated on a modified DCB specimen comprised of SRIM composite and thin-section, e-coat steel substrates bonded with an epoxy adhesive. Results indicate that the test method provides a practical means of characterizing the mode I fracture toughness of joints with dissimilar substrates.

  14. Examining Implicit Acculturation and Bicultural Identity Integration

    E-Print Network [OSTI]

    Miramontez, Daniel Robert

    2010-01-01T23:59:59.000Z

    Bicultural identity Integration (BII): Components, andBicultural identity integration (BII) and valence ofassimilation, separation, integration, and marginalization.

  15. Transportation and Stationary Power Integration: Workshop Proceedings...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Integration: Workshop Proceedings Transportation and Stationary Power Integration: Workshop Proceedings Proceedings for the Transportation and Stationary Power Integration Workshop...

  16. Thin film transistors on plastic substrates with reflective coatings for radiation protection

    DOE Patents [OSTI]

    Wolfe, Jesse D. (Fairfield, CA); Theiss, Steven D. (Woodbury, MN); Carey, Paul G. (Mountain View, CA); Smith, Patrick M. (San Ramon, CA); Wickbold, Paul (Walnut Creek, CA)

    2006-09-26T23:59:59.000Z

    Fabrication of silicon thin film transistors (TFT) on low-temperature plastic substrates using a reflective coating so that inexpensive plastic substrates may be used in place of standard glass, quartz, and silicon wafer-based substrates. The TFT can be used in large area low cost electronics, such as flat panel displays and portable electronics such as video cameras, personal digital assistants, and cell phones.

  17. Thin film transistors on plastic substrates with reflective coatings for radiation protection

    DOE Patents [OSTI]

    Wolfe, Jesse D.; Theiss, Steven D.; Carey, Paul G.; Smith, Patrick M.; Wickboldt, Paul

    2003-11-04T23:59:59.000Z

    Fabrication of silicon thin film transistors (TFT) on low-temperature plastic substrates using a reflective coating so that inexpensive plastic substrates may be used in place of standard glass, quartz, and silicon wafer-based substrates. The TFT can be used in large area low cost electronics, such as flat panel displays and portable electronics such as video cameras, personal digital assistants, and cell phones.

  18. Method for improving the oxidation-resistance of metal substrates coated with thermal barrier coatings

    DOE Patents [OSTI]

    Thompson, Anthony Mark (Niskayuna, NY); Gray, Dennis Michael (Delanson, NY); Jackson, Melvin Robert (Niskayuna, NY)

    2002-01-01T23:59:59.000Z

    A method for providing a protective coating on a metal-based substrate is disclosed. The method involves the application of an aluminum-rich mixture to the substrate to form a discontinuous layer of aluminum-rich particles, followed by the application of a second coating over the discontinuous layer of aluminum-rich particles. Aluminum diffuses from the aluminum-rich layer into the substrate, and into any bond coat layer which is subsequently applied. Related articles are also described.

  19. Environmentally-assisted technique for transferring devices onto non-conventional substrates

    DOE Patents [OSTI]

    Lee, Chi-Hwan; Kim, Dong Rip; Zheng, Xiaolin

    2014-08-26T23:59:59.000Z

    A device fabrication method includes: (1) providing a growth substrate including a base and an oxide layer disposed over the base; (2) forming a metal layer over the oxide layer; (3) forming a stack of device layers over the metal layer; (4) performing interfacial debonding of the metal layer to separate the stack of device layers and the metal layer from the growth substrate; and (5) affixing the stack of device layers to a target substrate.

  20. Cubic GaN on Nanopatterned 3C-SiC/Si (001) Substrates

    E-Print Network [OSTI]

    As, Donat Josef

    Chapter 15 Cubic GaN on Nanopatterned 3C-SiC/Si (001) Substrates Ricarda Maria Kemper, Donat Josef relaxed cubic GaN by plasma-assisted molecular beam epitaxy on prepat- terned 3C-SiC/Si (001) substrates) process. We analyze the influence of the substrate on the GaN growth and show that it is possible to grow

  1. Substrate Integrated Waveguide-Fed Tapered Slot Antenna With Smooth Performance Characteristics Over an Ultra-Wide Bandwidth

    E-Print Network [OSTI]

    Bornemann, Jens

    (LTSA) design. From a parametric study involving eight designs, the best compromise LTSA is selected

  2. Design of a lattice-matched III-V-N/Si photovoltaic tandem cell monolithically integrated on silicon

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Design of a lattice-matched III-V-N/Si photovoltaic tandem cell monolithically integrated cells monolithically grown on a silicon substrate using GaAsPN absorber layer. InGaAs(N) quantum dots emission. For photovoltaic applications, we consider the GaAsPN diluted nitride alloy as the top junction

  3. Reactor design for uniform chemical vapor deposition-grown films without substrate rotation

    SciTech Connect (OSTI)

    Wanlass, Mark (Golden, CO)

    1987-01-01T23:59:59.000Z

    A quartz reactor vessel for growth of uniform semiconductor films includes a vertical, cylindrical reaction chamber in which a substrate-supporting pedestal provides a horizontal substrate-supporting surface spaced on its perimeter from the chamber wall. A cylindrical confinement chamber of smaller diameter is disposed coaxially above the reaction chamber and receives reaction gas injected at a tangent to the inside chamber wall, forming a helical gas stream that descends into the reaction chamber. In the reaction chamber, the edge of the substrate-supporting pedestal is a separation point for the helical flow, diverting part of the flow over the horizontal surface of the substrate in an inwardly spiraling vortex.

  4. Novel Growth Substrates and Smart Irrigation Strategies to Reduce Water Consumption of

    E-Print Network [OSTI]

    Fay, Noah

    Novel Growth Substrates and Smart Irrigation Strategies to Reduce Water Consumption of Arizona and transducer) 2 Load cells Flow meter Solenoid valve #12;Experiment Measurements Datalogger, collected every

  5. Reactor design for uniform chemical vapor deposition-grown films without substrate rotation

    DOE Patents [OSTI]

    Wanlass, M.

    1985-02-19T23:59:59.000Z

    A quartz reactor vessel for growth of uniform semiconductor films includes a vertical, cylindrical reaction chamber in which a substrate-supporting pedestal provides a horizontal substrate-supporting surface spaced on its perimeter from the chamber wall. A cylindrical confinement chamber of smaller diameter is disposed coaxially above the reaction chamber and receives reaction gas injected at a tangent to the inside chamber wall, forming a helical gas stream that descends into the reaction chamber. In the reaction chamber, the edge of the substrate-supporting pedestal is a separation point for the helical flow, diverting part of the flow over the horizontal surface of the substrate in an inwardly spiraling vortex.

  6. Pretreatment process for forming a smooth surface diamond film on a carbon-coated substrate

    DOE Patents [OSTI]

    Feng, Z.; Brewer, M.; Brown, I.; Komvopoulos, K.

    1994-05-03T23:59:59.000Z

    A process is disclosed for the pretreatment of a carbon-coated substrate to provide a uniform high density of nucleation sites thereon for the subsequent deposition of a continuous diamond film without the application of a bias voltage to the substrate. The process comprises exposing the carbon-coated substrate, in a microwave plasma enhanced chemical vapor deposition system, to a mixture of hydrogen-methane gases, having a methane gas concentration of at least about 4% (as measured by partial pressure), while maintaining the substrate at a pressure of about 10 to about 30 Torr during the pretreatment. 6 figures.

  7. XP-SiC: An Innovative Substrate for Future Applications with...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Diesel Particulate Filter Testing Key Parameters Affecting DPF Performance Degradation and Impact on Lifetime Fuel Economy Tailored Acicular Mullite Substrates for...

  8. Reducing intrinsic loss in superconducting resonators by surface treatment and deep etching of silicon substrates

    E-Print Network [OSTI]

    A. Bruno; G. de Lange; S. Asaad; K. L. van der Enden; N. K. Langford; L. DiCarlo

    2015-02-13T23:59:59.000Z

    We present microwave-frequency NbTiN resonators on silicon, systematically achieving internal quality factors above 1 M in the quantum regime. We use two techniques to reduce losses associated with two-level systems: an additional substrate surface treatment prior to NbTiN deposition to optimize the metal-substrate interface, and deep reactive-ion etching of the substrate to displace the substrate-vacuum interfaces away from high electric fields. The temperature and power dependence of resonator behavior indicate that two-level systems still contribute significantly to energy dissipation, suggesting that more interface optimization could further improve performance.

  9. Transfer and characterization of silicon nanomembrane based photonic devices on flexible polyimide substrate

    E-Print Network [OSTI]

    Texas at Austin, University of

    Transfer and characterization of silicon nanomembrane based photonic devices on flexible polyimide nanomembrane based photonic devices on a Kapton polyimide flexible substrate. Compared with electronic devices

  10. Line-tension effects on heterogeneous nucleation on a spherical substrate and in a spherical cavity

    E-Print Network [OSTI]

    Masao Iwamatsu

    2015-03-17T23:59:59.000Z

    The line-tension effects on heterogeneous nucleation are considered when a spherical lens-shaped nucleus is nucleated on top of a spherical substrate and on the bottom of the wall of a spherical cavity. The effect of line tension on the nucleation barrier can be separated from the usual volume term. As the radius of the substrate increases, the nucleation barrier decreases and approaches that of a flat substrate. However, as the radius of the cavity increases, the nucleation barrier increases and approaches that of a flat substrate. A small spherical substrate is a less active nucleation site than a flat substrate, and a small spherical cavity is a more active nucleation site than a flat substrate. In contrast, the line-tension effect on the nucleation barrier is maximum when the radii of the nucleus and the substrate or cavity become comparable. Therefore, by tuning the size of the spherical substrate or spherical cavity, the effect of the line tension can be optimized. These results will be useful in broad range of applications from material processing to understanding of global climate, where the heterogeneous nucleation plays a vital role.

  11. Method for applying a barrier layer to a silicon based substrate

    DOE Patents [OSTI]

    Eaton, Harry E. (Woodstock, CT); Lawton, Thomas H. (Wethersfield, CT)

    2002-01-01T23:59:59.000Z

    A method for applying a barrier layer which comprises a barium-strontium aluminosilicate to a silicon containing substrate which inhibits the formation of cracks.

  12. Method for applying a barrier layer to a silicon based substrate

    SciTech Connect (OSTI)

    Eaton, Harry E. (Woodstock, CT); Lawton, Thomas H. (Wethersfield, CT)

    2001-01-01T23:59:59.000Z

    A method for applying a barrier layer which comprises a barium-strontium aluminosilicate to a silicon containing substrate which inhibits the formation of cracks.

  13. Infrared emission from the substrate of GaAs-based semiconductor lasers Mathias Ziegler,1,a

    E-Print Network [OSTI]

    Peinke, Joachim

    by metal- organic vapor phase epitaxy on a n-type GaAs substrate. The red-emitting laser employs an InGaP

  14. Lapped substrate for enhanced backsurface reflectivity in a thermophotovoltaic energy conversion system

    DOE Patents [OSTI]

    Baldasaro, Paul F (Clifton Park, NY); Brown, Edward J (Clifton Park, NY); Charache, Greg W (Clifton Park, NY); DePoy, David M (Clifton Park, NY)

    2000-01-01T23:59:59.000Z

    A method for fabricating a thermophotovoltaic energy conversion cell including a thin semiconductor wafer substrate (10) having a thickness (.beta.) calculated to decrease the free carrier absorption on a heavily doped substrate; wherein the top surface of the semiconductor wafer substrate is provided with a thermophotovoltaic device (11), a metallized grid (12) and optionally an antireflective (AR) overcoating; and, the bottom surface (10') of the semiconductor wafer substrate (10) is provided with a highly reflecting coating which may comprise a metal coating (14) or a combined dielectric/metal coating (17).

  15. Lapped substrate for enhanced backsurface reflectivity in a thermophotovoltaic energy conversion system

    DOE Patents [OSTI]

    Baldasaro, Paul F; Brown, Edward J; Charache, Greg W; DePoy, David M

    2000-09-05T23:59:59.000Z

    A method for fabricating a thermophotovoltaic energy conversion cell including a thin semiconductor wafer substrate (10) having a thickness (.beta.) calculated to decrease the free carrier absorption on a heavily doped substrate; wherein the top surface of the semiconductor wafer substrate is provided with a thermophotovoltaic device (11), a metallized grid (12) and optionally an antireflective (AR) overcoating; and, the bottom surface (10') of the semiconductor wafer substrate (10) is provided with a highly reflecting coating which may comprise a metal coating (14) or a combined dielectric/metal coating (17).

  16. Numerical Integration Gordon K. Smyth

    E-Print Network [OSTI]

    Smyth, Gordon K.

    Numerical Integration Gordon K. Smyth in Encyclopedia of Biostatistics (ISBN 0471 975761) Edited by Peter Armitage and Theodore Colton John Wiley & Sons, Ltd, Chichester, 1998 #12;Numerical Integration Numerical integration is the study of how the numerical value of an integral can be found. Also called

  17. Numerical Integration Gordon K. Smyth

    E-Print Network [OSTI]

    Smyth, Gordon K.

    Numerical Integration Gordon K. Smyth May 1997 Numerical integration is the study of how the numerical value of an integral can be found. Also called quadrature, which refers to finding a square whose \\Lambda . Of central interest is the process of approximating a definite integral from values of the in

  18. Twisted symmetries and integrable systems

    E-Print Network [OSTI]

    G. Cicogna; G. Gaeta

    2010-02-07T23:59:59.000Z

    Symmetry properties are at the basis of integrability. In recent years, it appeared that so called "twisted symmetries" are as effective as standard symmetries in many respects (integrating ODEs, finding special solutions to PDEs). Here we discuss how twisted symmetries can be used to detect integrability of Lagrangian systems which are not integrable via standard symmetries.

  19. Smart Grid Integration Laboratory

    SciTech Connect (OSTI)

    Wade Troxell

    2011-09-30T23:59:59.000Z

    The initial federal funding for the Colorado State University Smart Grid Integration Laboratory is through a Congressionally Directed Project (CDP), DE-OE0000070 Smart Grid Integration Laboratory. The original program requested in three one-year increments for staff acquisition, curriculum development, and instrumentation â?? all which will benefit the Laboratory. This report focuses on the initial phase of staff acquisition which was directed and administered by DOE NETL/ West Virginia under Project Officer Tom George. Using this CDP funding, we have developed the leadership and intellectual capacity for the SGIC. This was accomplished by investing (hiring) a core team of Smart Grid Systems engineering faculty focused on education, research, and innovation of a secure and smart grid infrastructure. The Smart Grid Integration Laboratory will be housed with the separately funded Integrid Laboratory as part of CSUâ??s overall Smart Grid Integration Center (SGIC). The period of performance of this grant was 10/1/2009 to 9/30/2011 which included one no cost extension due to time delays in faculty hiring. The Smart Grid Integration Laboratoryâ??s focus is to build foundations to help graduate and undergraduates acquire systems engineering knowledge; conduct innovative research; and team externally with grid smart organizations. Using the results of the separately funded Smart Grid Workforce Education Workshop (May 2009) sponsored by the City of Fort Collins, Northern Colorado Clean Energy Cluster, Colorado State University Continuing Education, Spirae, and Siemens has been used to guide the hiring of faculty, program curriculum and education plan. This project develops faculty leaders with the intellectual capacity to inspire its students to become leaders that substantially contribute to the development and maintenance of Smart Grid infrastructure through topics such as: (1) Distributed energy systems modeling and control; (2) Energy and power conversion; (3) Simulation of electrical power distribution system that integrates significant quantities of renewable and distributed energy resources; (4) System dynamic modeling that considers end-user behavior, economics, security and regulatory frameworks; (5) Best practices for energy management IT control solutions for effective distributed energy integration (including security with the underlying physical power systems); (6) Experimental verification of effects of various arrangements of renewable generation, distributed generation and user load types along with conventional generation and transmission. Understanding the core technologies for enabling them to be used in an integrated fashion within a distribution network remains is a benefit to the future energy paradigm and future and present energy engineers.

  20. Integrity at CERN

    E-Print Network [OSTI]

    Department, HR

    2015-01-01T23:59:59.000Z

    In the fulfillment of its mission, CERN relies upon the trust and material support of its Member States and partners, and is committed to exercising exemplary stewardship of the resources with which it is entrusted. Accordingly, CERN expects the highest level of integrity from all its contributors (whether members of the personnel, consultants, contractors working on site, or persons engaged in any other capacity at or on behalf of CERN). Integrity is a core value of CERN, defined in the Code of Conduct as “behaving ethically, with intellectual honesty and being accountable for one’s own actions”.

  1. Integrated heterodyne terahertz transceiver

    DOE Patents [OSTI]

    Lee, Mark (Albuquerque, NM); Wanke, Michael C. (Albuquerque, NM)

    2009-06-23T23:59:59.000Z

    A heterodyne terahertz transceiver comprises a quantum cascade laser that is integrated on-chip with a Schottky diode mixer. An antenna connected to the Schottky diode receives a terahertz signal. The quantum cascade laser couples terahertz local oscillator power to the Schottky diode to mix with the received terahertz signal to provide an intermediate frequency output signal. The fully integrated transceiver optimizes power efficiency, sensitivity, compactness, and reliability. The transceiver can be used in compact, fieldable systems covering a wide variety of deployable applications not possible with existing technology.

  2. Integrated heterodyne terahertz transceiver

    DOE Patents [OSTI]

    Wanke, Michael C. (Albuquerque, NM); Lee, Mark (Albuquerque, NM); Nordquist, Christopher D. (Albuquerque, NM); Cich, Michael J. (Albuquerque, NM)

    2012-09-25T23:59:59.000Z

    A heterodyne terahertz transceiver comprises a quantum cascade laser that is integrated on-chip with a Schottky diode mixer. A terahertz signal can be received by an antenna connected to the mixer, an end facet or sidewall of the laser, or through a separate active section that can amplify the incident signal. The quantum cascade laser couples terahertz local oscillator power to the Schottky diode to mix with the received terahertz signal to provide an intermediate frequency output signal. The fully integrated transceiver optimizes power efficiency, sensitivity, compactness, and reliability. The transceiver can be used in compact, fieldable systems covering a wide variety of deployable applications not possible with existing technology.

  3. Integrated Energy Efficiency 

    E-Print Network [OSTI]

    Heins, S.

    2007-01-01T23:59:59.000Z

    6 Customer Story Bemis Manufacturing Sheboygan Falls, WI Before After Energy & Financial Impacts Annual Energy Savings $317,897 Maintenance Savings $63,579 Payback Period Less than 2 years Annual Displaced Energy 6,300,289 kWh Displaced Capacity 731... 10 Off The Grid Sensor Integration Natural Daylight Base and Peak Energy Reduction 11 Lowest Cost Renewable Solar Integrated Lighting $1.0 million/MW $6 – 9 million/MW Wind $1.3 - 1.9 million/MW Biomass $1.5 – 2.5 million/MW Geothermal $1.6 million...

  4. Integration of optoelectronics and MEMS by free-space micro-optics

    SciTech Connect (OSTI)

    WARREN,MIAL E.; SPAHN,OLGA B.; SWEATT,WILLIAM C.; SHUL,RANDY J.; WENDT,JOEL R.; VAWTER,GREGORY A.; KRYGOWSKI,TOM W.; REYES,DAVID NMN; RODGERS,M. STEVEN; SNIEGOWSKI,JEFFRY J.

    2000-06-01T23:59:59.000Z

    This report represents the completion of a three-year Laboratory-Directed Research and Development (LDRD) program to investigate combining microelectromechanical systems (MEMS) with optoelectronic components as a means of realizing compact optomechanical subsystems. Some examples of possible applications are laser beam scanning, switching and routing and active focusing, spectral filtering or shattering of optical sources. The two technologies use dissimilar materials with significant compatibility problems for a common process line. This project emphasized a hybrid approach to integrating optoelectronics and MEMS. Significant progress was made in developing processing capabilities for adding optical function to MEMS components, such as metal mirror coatings and through-vias in the substrate. These processes were used to demonstrate two integration examples, a MEMS discriminator driven by laser illuminated photovoltaic cells and a MEMS shutter or chopper. Another major difficulty with direct integration is providing the optical path for the MEMS components to interact with the light. The authors explored using folded optical paths in a transparent substrate to provide the interconnection route between the components of the system. The components can be surface-mounted by flip-chip bonding to the substrate. Micro-optics can be fabricated into the substrate to reflect and refocus the light so that it can propagate from one device to another and them be directed out of the substrate into free space. The MEMS components do not require the development of transparent optics and can be completely compatible with the current 5-level polysilicon process. They report progress on a MEMS-based laser scanner using these concepts.

  5. Reliable, High Performance Transistors on Flexible Substrates - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Technical s o Freiberge s 3 c/) Release for Announcement

  6. Selective Oxidation of Organic Substrates to Partially Oxidized Products -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz is Taking OverEvaluating ' How do

  7. Integrated Ceramic Membrane System for Hydrogen Production

    SciTech Connect (OSTI)

    Schwartz, Joseph; Lim, Hankwon; Drnevich, Raymond

    2010-08-05T23:59:59.000Z

    Phase I was a technoeconomic feasibility study that defined the process scheme for the integrated ceramic membrane system for hydrogen production and determined the plan for Phase II. The hydrogen production system is comprised of an oxygen transport membrane (OTM) and a hydrogen transport membrane (HTM). Two process options were evaluated: 1) Integrated OTM-HTM reactor – in this configuration, the HTM was a ceramic proton conductor operating at temperatures up to 900°C, and 2) Sequential OTM and HTM reactors – in this configuration, the HTM was assumed to be a Pd alloy operating at less than 600°C. The analysis suggested that there are no technical issues related to either system that cannot be managed. The process with the sequential reactors was found to be more efficient, less expensive, and more likely to be commercialized in a shorter time than the single reactor. Therefore, Phase II focused on the sequential reactor system, specifically, the second stage, or the HTM portion. Work on the OTM portion was conducted in a separate program. Phase IIA began in February 2003. Candidate substrate materials and alloys were identified and porous ceramic tubes were produced and coated with Pd. Much effort was made to develop porous substrates with reasonable pore sizes suitable for Pd alloy coating. The second generation of tubes showed some improvement in pore size control, but this was not enough to get a viable membrane. Further improvements were made to the porous ceramic tube manufacturing process. When a support tube was successfully coated, the membrane was tested to determine the hydrogen flux. The results from all these tests were used to update the technoeconomic analysis from Phase I to confirm that the sequential membrane reactor system can potentially be a low-cost hydrogen supply option when using an existing membrane on a larger scale. Phase IIB began in October 2004 and focused on demonstrating an integrated HTM/water gas shift (WGS) reactor to increase CO conversion and produce more hydrogen than a standard water gas shift reactor would. Substantial improvements in substrate and membrane performance were achieved in another DOE project (DE-FC26-07NT43054). These improved membranes were used for testing in a water gas shift environment in this program. The amount of net H2 generated (defined as the difference of hydrogen produced and fed) was greater than would be produced at equilibrium using conventional water gas shift reactors up to 75 psig because of the shift in equilibrium caused by continuous hydrogen removal. However, methanation happened at higher pressures, 100 and 125 psig, and resulted in less net H2 generated than would be expected by equilibrium conversion alone. An effort to avoid methanation by testing in more oxidizing conditions (by increasing CO2/CO ratio in a feed gas) was successful and net H2 generated was higher (40-60%) than a conventional reactor at equilibrium at all pressures tested (up to 125 psig). A model was developed to predict reactor performance in both cases with and without methanation. The required membrane area depends on conditions, but the required membrane area is about 10 ft2 to produce about 2000 scfh of hydrogen. The maximum amount of hydrogen that can be produced in a membrane reactor decreased significantly due to methanation from about 2600 scfh to about 2400 scfh. Therefore, it is critical to eliminate methanation to fully benefit from the use of a membrane in the reaction. Other modeling work showed that operating a membrane reactor at higher temperature provides an opportunity to make the reactor smaller and potentially provides a significant capital cost savings compared to a shift reactor/PSA combination.

  8. Integrated Safety Management

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-04-25T23:59:59.000Z

    The order ensures that DOE/NNSA, systematically integrates safety into management and work practices at all levels, so that missions are accomplished efficiently while protecting the workers, the public, and the environment. Cancels DOE M 450.4-1 and DOE M 411.1-1C

  9. Integrated Safety Management Policy

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-04-25T23:59:59.000Z

    The policy establishes DOE's expectation for safety, including integrated safety management that will enable the Department’s mission goals to be accomplished efficiently while ensuring safe operations at all departmental facilities and activities. Cancels DOE P 411.1, DOE P 441.1, DOE P 450.2A, DOE P 450.4, and DOE P 450.7

  10. Bioluminescent bioreporter integrated circuit

    DOE Patents [OSTI]

    Simpson, Michael L. (Knoxville, TN); Sayler, Gary S. (Blaine, TN); Paulus, Michael J. (Knoxville, TN)

    2000-01-01T23:59:59.000Z

    Disclosed are monolithic bioelectronic devices comprising a bioreporter and an OASIC. These bioluminescent bioreporter integrated circuit are useful in detecting substances such as pollutants, explosives, and heavy-metals residing in inhospitable areas such as groundwater, industrial process vessels, and battlefields. Also disclosed are methods and apparatus for environmental pollutant detection, oil exploration, drug discovery, industrial process control, and hazardous chemical monitoring.

  11. Modular Integrated Energy Systems

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    Building 3147 Oak Ridge, TN 37831 April 27, 2006 Prepared by: Honeywell Laboratories 3660 Technology Drive Honeywell #12;Modular Integrated Energy Systems Task 5 Prototype Development Reference Design Documentation: Steve Gabel, Program Manager (612) 951-7555 Honeywell Laboratories 3660 Technology Drive Minneapolis

  12. Modular Integrated Energy Systems

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    Building 3147 Oak Ridge, TN 37831 July 22, 2005 Prepared by: Honeywell Laboratories 3660 Technology Drive­April 2005 Honeywell #12;Modular Integrated Energy Systems Task 6 Field Monitoring Interim Report Period Oak Ridge, TN 37831 Prepared by: Steve Gabel, Program Manager (612) 951-7555 Honeywell Laboratories

  13. Modular Integrated Energy Systems

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    Building 3147 Oak Ridge, TN 37831 March 24, 2005 Prepared by: Honeywell Laboratories 3660 Technology Drive­December 2004 Honeywell #12;Modular Integrated Energy Systems Task 6 Field Monitoring Interim Report Period Oak Ridge, TN 37831 Prepared by: Steve Gabel, Program Manager (612) 951-7555 Honeywell Laboratories

  14. Modular Integrated Energy Systems

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    Honeywell Modular Integrated Energy Systems Task 6 Field Monitoring Interim Report Period Covered 3147 Oak Ridge, TN 37831 Prepared by: Honeywell Laboratories 3660 Technology Drive Minneapolis, MN 3147 Oak Ridge, TN 37831 Prepared by: Steve Gabel, Program Manager (612) 951-7555 Honeywell

  15. integration division Human Systems

    E-Print Network [OSTI]

    integration division Human Systems Eye-Movement Metrics: Non-Intrusive Quantitative Tools for Monitoring Human Visual Performance Objective Approach Impact A reliable quantitative yet non-intrusive methodologies that provide quantitative yet non-intrusive measures of human visual performance for use

  16. Epitaxial growth of 100-?m thick M-type hexaferrite crystals on wide bandgap semiconductor GaN/Al{sub 2}O{sub 3} substrates

    SciTech Connect (OSTI)

    Hu, Bolin; Su, Zhijuan; Bennett, Steve; Chen, Yajie, E-mail: y.chen@neu.edu; Harris, Vincent G. [Center for Microwave Magnetic Materials and Integrated Circuits and Department of Electrical and Computer Engineering, Northeastern University, Boston, Massachusetts 02115 (United States)

    2014-05-07T23:59:59.000Z

    Thick barium hexaferrite BaFe{sub 12}O{sub 19} (BaM) films having thicknesses of ?100??m were epitaxially grown on GaN/Al{sub 2}O{sub 3} substrates from a molten-salt solution by vaporizing the solvent. X-ray diffraction measurement verified the growth of BaM (001) textured growth of thick films. Saturation magnetization, 4?M{sub s}, was measured for as-grown films to be 4.6 ± 0.2 kG and ferromagnetic resonance measurements revealed a microwave linewidth of ?100?Oe at X-band. Scanning electron microscopy indicated clear hexagonal crystals distributed on the semiconductor substrate. These results demonstrate feasibility of growing M-type hexaferrite crystal films on wide bandgap semiconductor substrates by using a simple powder melting method. It also presents a potential pathway for the integration of ferrite microwave passive devices with active semiconductor circuit elements creating system-on-a-wafer architectures.

  17. Fundamentals of embossing nanoimprint lithography in polymer substrates.

    SciTech Connect (OSTI)

    Simmons, Blake Alexander; King, William P. (University of Illinois, Urbana IL)

    2011-02-01T23:59:59.000Z

    The convergence of micro-/nano-electromechanical systems (MEMS/NEMS) and biomedical industries is creating a need for innovation and discovery around materials, particularly in miniaturized systems that use polymers as the primary substrate. Polymers are ubiquitous in the microelectronics industry and are used as sensing materials, lithography tools, replication molds, microfluidics, nanofluidics, and biomedical devices. This diverse set of operational requirements dictates that the materials employed must possess different properties in order to reduce the cost of production, decrease the scale of devices to the appropriate degree, and generate engineered devices with new functional properties at cost-competitive levels of production. Nanoscale control of polymer deformation at a massive scale would enable breakthroughs in all of the aforementioned applications, but is currently beyond the current capabilities of mass manufacturing. This project was focused on developing a fundamental understanding of how polymers behave under different loads and environments at the nanoscale in terms of performance and fidelity in order to fill the most critical gaps in our current knowledgebase on this topic.

  18. Highly textured oxypnictide superconducting thin films on metal substrates

    SciTech Connect (OSTI)

    Iida, Kazumasa, E-mail: iida@nuap.nagoya-u.ac.jp; Kurth, Fritz; Grinenko, Vadim; Hänisch, Jens [Institute for Metallic Materials, IFW Dresden, D-01171 Dresden (Germany); Chihara, Masashi; Sumiya, Naoki; Hatano, Takafumi; Ikuta, Hiroshi [Department of Crystalline Materials Science, Nagoya University, Chikusa, Nagoya 464-8603 (Japan); Ichinose, Ataru; Tsukada, Ichiro [Central Research Institute of Electric Power Industry, 2-6-1 Nagasaka, Yokosuka, Kanagawa 240-0196 (Japan); Matias, Vladimir [iBeam Materials, Inc., 2778A Agua Fria Street, Santa Fe, New Mexico 87507 (United States); Holzapfel, Bernhard [Institute for Technical Physics, Karlsruhe Institute of Technology, Hermann von Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen (Germany)

    2014-10-27T23:59:59.000Z

    Highly textured NdFeAs(O,F) thin films have been grown on ion beam assisted deposition-MgO/Y{sub 2}O{sub 3}/Hastelloy substrates by molecular beam epitaxy. The oxypnictide coated conductors showed a superconducting transition temperature (T{sub c}) of 43?K with a self-field critical current density (J{sub c}) of 7.0×10{sup 4}?A/cm{sup 2} at 5?K, more than 20 times higher than powder-in-tube processed SmFeAs(O,F) wires. Albeit higher T{sub c} as well as better crystalline quality than Co-doped BaFe{sub 2}As{sub 2} coated conductors, in-field J{sub c} of NdFeAs(O,F) was lower than that of Co-doped BaFe{sub 2}As{sub 2}. These results suggest that grain boundaries in oxypnictides reduce J{sub c} significantly compared to that in Co-doped BaFe{sub 2}As{sub 2} and, hence biaxial texture is necessary for high J{sub c.}.

  19. Process and Layout Dependent Substrate Resistance Modeling for Deep Sub-Micron ESD Protection Devices

    E-Print Network [OSTI]

    - tion by forming a current path from the drain to the source and substrate. More importantly current, Id is the total drain current, 0-7803-5860-0/00/$10.0002000IEEE .-1-6- Gate I - Substrate- back, and it is extracted using the y-intercept, "beon 0.8 Rsub=- --Isubo Isubo where Vbeonis the turn

  20. Selective light sintering of Aerosol-Jet printed silver nanoparticle inks on polymer substrates

    SciTech Connect (OSTI)

    Schuetz, K., E-mail: klaus.schuetz1@gmx.de, E-mail: hoerber@faps.uni-erlangen.de, E-mail: franke@faps.uni-erlangen.de; Hoerber, J., E-mail: klaus.schuetz1@gmx.de, E-mail: hoerber@faps.uni-erlangen.de, E-mail: franke@faps.uni-erlangen.de; Franke, J., E-mail: klaus.schuetz1@gmx.de, E-mail: hoerber@faps.uni-erlangen.de, E-mail: franke@faps.uni-erlangen.de [Institute for Factory Automation and Production Systems, University of Erlangen-Nuremberg (Germany)

    2014-05-15T23:59:59.000Z

    Printing silver nanoparticle inks to generate conductive structures for electronics on polymer substrates has gained increasing relevance in recent years. In this context, the Aerosol-Jet Technology is well suited to print silver ink on 3D-Molded Interconnect Devices (MID). The deposited ink requires thermal post-treatment to obtain sufficient electrical conductivity and adhesion. However, commonly used oven sintering cannot be applied for many thermoplastic substrates due to low melting temperatures. In this study a new sintering technology, selective light sintering, is presented, based on the focused, continuous light beam of a xenon lamp. Sintering experiments were conducted with Aerosol-Jet printed structures on various polycarbonate (PC) substrates. Especially on neat, light transparent PC, silver tracks were evenly sintered with marginal impact to the substrate. Electrical conductivities significantly exceed the values obtained with conventional oven sintering. Adhesive strength is sufficient for conductive tracks. Experiments with non-transparent PC substrates led to substrate damage due to increased light absorption. Therefore a concept for a variation of light sintering was developed, using optical filters. First experiments showed significant reduction of substrate damage and good sintering qualities. The highly promising results of the conducted experiments provide a base for further investigations to increase adhesion and qualifying the technology for MID applications and a broad spectrum of thermoplastic substrates.

  1. Manipulation of magnetic anisotropy of Co ultrathin films by substrate engineering

    E-Print Network [OSTI]

    Hasegawa, Shuji

    Manipulation of magnetic anisotropy of Co ultrathin films by substrate engineering Yuki Saisyu September 2011) The magnetic and structural properties of Co films prepared on various substrates were-energy electron diffraction (RHEED) and scanning tunneling microscopy (STM). The magnetic signals of the Co films

  2. Room temperature 1.6 m electroluminescence from Ge light emitting diode on Si substrate

    E-Print Network [OSTI]

    Vuckovic, Jelena

    Room temperature 1.6 µm electroluminescence from Ge light emitting diode on Si substrate Szu n+/p light emitting diode on a Si substrate. Unlike normal electrically pumped devices, this device.4670) Optical materials; (230.3670) Light-emitting diodes. References and links 1. L. C. Kimerling, "Silicon

  3. Substrate-limited electron dynamics in graphene S. Fratini1,2 and F. Guinea2

    E-Print Network [OSTI]

    Boyer, Edmond

    Substrate-limited electron dynamics in graphene S. Fratini1,2 and F. Guinea2 1Institut Néel dynamics in graphene. We find that the quasiparticle spectrum acquires a finite broadening due to the long-range interaction with the polar modes at the interface between graphene and the substrate. This mechanism results

  4. Effects of oxygen on the growth characteristics of carbon nanotubes on conductive substrates

    E-Print Network [OSTI]

    Bonaparte, Ryan K

    2009-01-01T23:59:59.000Z

    The effects of oxygen on Fe-catalyzed carbon nanotube (CNT) growth on Ta substrates was studied. CNTs were grown on Fe thin-film catalysts deposited on silicon substrates via exposure to C?H? in a thermal chemical vapor ...

  5. Substrate-Dependent Control of ERK Phosphorylation Can Lead to Oscillations

    E-Print Network [OSTI]

    Shvartsman, Stanislav "Stas"

    Substrate-Dependent Control of ERK Phosphorylation Can Lead to Oscillations Ping Liu, Ioannis G University, Princeton, New Jersey ABSTRACT The extracellular signal-regulated kinase (ERK) controls cellular processes by phosphorylating multiple substrates. The ERK protein can use the same domains to interact

  6. Moleculardynamics simulation of thermal stress at the (100) diamond/substrate interface: effect of film continuity

    E-Print Network [OSTI]

    Adler, Joan

    with the development of advanced CVD techniques 2 producing polycrystalline diamond of quality approachingMolecular­dynamics simulation of thermal stress at the (100) diamond/substrate interface: effect at the (100) diamond/substrate interface. The stress­induced binding energy reduction obtained

  7. Bendable single crystal silicon thin film transistors formed by printing on plastic substrates

    E-Print Network [OSTI]

    Rogers, John A.

    Bendable single crystal silicon thin film transistors formed by printing on plastic substrates E on plastic substrates using an efficient dry transfer printing technique. In these devices, free standing-Si is then transferred, to a specific location and with a controlled orientation, onto a thin plastic sheet

  8. Short Channel Amorphous-Silicon TFT's on High-Temperature Clear Plastic Substrates

    E-Print Network [OSTI]

    Short Channel Amorphous-Silicon TFT's on High-Temperature Clear Plastic Substrates K. Long, H@princeton.edu To achieve light-weight flexible AMOLED displays on plastic substrates, the substratesmust be optically clear for plastic. High-temperature plastics such as polyimide (e.g. KaptonB E) have a glass transition temperature

  9. Site-specific labeling of cellular proteins with unnatural substrates of biotin ligases

    E-Print Network [OSTI]

    Chen, Irwin

    2007-01-01T23:59:59.000Z

    E. coli biotin ligase (BirA) catalyzes the site-specific ligation of biotin to the lysine within its 15-amino acid peptide substrate (AP). We harnessed the high peptide substrate specificity of BirA to develop a general ...

  10. CIGS Solar Cell on Flexible Stainless Steel Substrate Fabricated by Sputtering Method: Simulation and Experimental Results

    E-Print Network [OSTI]

    Kanicki, Jerzy

    CIGS Solar Cell on Flexible Stainless Steel Substrate Fabricated by Sputtering Method: Simulation-electronic properties of the Cu(InGa)Se2(CIGS) solar cell fabricated by sputtering method on stainless steel substrate are consistent with each other. 1. Introduction Flexible Cu In Ga Se (CIGS) solar cells are very attractive

  11. Dynamic cell behavior on shape memory polymer substrates Kevin A. Davis a,b

    E-Print Network [OSTI]

    Mather, Patrick T.

    Dynamic cell behavior on shape memory polymer substrates Kevin A. Davis a,b , Kelly A. Burke b: Cell culture Shape memory Thermally responsive material Surface topography a b s t r a c t Cell culture-responsive cell culture system that uses shape memory polymer (SMP) substrates that are programmed to change

  12. Development of a Low Cost Insulated Foil Substrate for Cu(InGaSe)2 Photovoltaics

    SciTech Connect (OSTI)

    ERTEN ESER

    2012-01-22T23:59:59.000Z

    The project validated the use of stainless steel flexible substrate coated with silicone-based resin dielectric, developed by Dow Corning Corporation, for Cu(InGa)Se2 based photovoltaics. The projects driving force was the high performance of Cu(InGa)Se2 based photovoltaics coupled with potential cost reduction that could be achieved with dielectric coated SS web substrate.

  13. Sintered molybdenum for a metallized ceramic substrate packaging for the wide-

    E-Print Network [OSTI]

    Boyer, Edmond

    ; molybdenum; Spark Plasma Sintering I. INTRODUCTION Wide-bandgap semiconductors devices, such as silicon nitride (AlN) and molybdenum (Mo) is reported in this paper. This substrate is built using a spark plasmaSintered molybdenum for a metallized ceramic substrate packaging for the wide- bandgap devices

  14. An investigation of thin-film coating/substrate systems by nanoindentation

    SciTech Connect (OSTI)

    Li, J.; Thostenson, E.T.; Chou, T.W. [Univ. of Delaware, Newark, DE (United States); Riester, L. [Oak Ridge National Lab., TN (United States)

    1998-04-01T23:59:59.000Z

    The indentation load-displacement behavior of three material systems tested with a Berkovich indenter has been examined. The materials studied were the substrate materials--silicon and polycarbonate, and the coating/substrate systems--diamond-like carbon (DLC) coating on silicon, and DLC coating on polycarbonate. They represent three material systems, namely, bulk, soft-coating/hard-substrate, and hard-coating on soft-substrate. Delaminations in the soft-coating/hard-substrate (DLC/Si) system and cracking in the hard-coating/soft-substrate system (DLC/Polycarbonate) were observed. Parallel to the experimental work, an elastic analytical effort has been made to examine the influence of the film thickness and the properties of the coating/substrate systems. Comparisons between the experimental data and analytical solutions of the load-displacement curves during unloading show good agreement. The analytical solution also suggests that the Young`s modulus and hardness of the thin film can not be measured accurately using Sneddon`s solution for bulk materials when the thickness of the film is comparable to the loading contact radius of the indenter. The elastic stress field analysis provides a basis for understanding the experimentally observed delaminations and cracking of the coating/substrate systems.

  15. The effect of coating in increasing the critical size of islands on a compliant substrate

    E-Print Network [OSTI]

    Suo, Zhigang

    ,3,4 The critical size of the is- lands depends on materials of the substrate and the islands5,6 and variesThe effect of coating in increasing the critical size of islands on a compliant substrate Juil Yoon strains but the islands may debond if they exceed a critical size. The authors show that a thin layer

  16. Microstructures of GaN films deposited on (001) and (111) Si substrates using electron

    E-Print Network [OSTI]

    Basu, Soumendra N.

    Microstructures of GaN films deposited on (001) and (111) Si substrates using electron cyclotron 1993; accepted 26 April 1994) The microstructures of GaN films, grown on (001) and (111) Si substrates-blende structure. The GaN buffer layer, grown in the first deposition step, accommodated the 17% lattice mismatch

  17. Compact description of substrate-related aberrations in high numerical-aperture optical

    E-Print Network [OSTI]

    Stallinga, Sjoerd

    ) and advanced optical disk4 (AOD) make use of GaN lasers with wavelength 0.405 m, with BD using a numericalCompact description of substrate-related aberrations in high numerical-aperture optical disk) through the substrate. Deviations of the thickness from the nominal value result in spherical aberration

  18. Single crystal growth and heteroepitaxy of polyacene thin films on arbitrary substrates

    E-Print Network [OSTI]

    Headrick, Randall L.

    in a number of low-cost, large area electronic applications such as flat panel displays. Organic thin film as other substrates.6-12 Recently, significant progress has been made towards fabricating high quality is to prepare single crystal films on arbitrary substrates. Here we describe two significant advances towards

  19. PHYSICAL REVIEW E 83, 026306 (2011) How water droplets evaporate on a superhydrophobic substrate

    E-Print Network [OSTI]

    Snoeijer, Jacco

    2011-01-01T23:59:59.000Z

    PHYSICAL REVIEW E 83, 026306 (2011) How water droplets evaporate on a superhydrophobic substrate October 2010; published 17 February 2011) Evaporation of water droplets on a superhydrophobic substrate ). The greater contact angles and pinned contact lines can be achieved by use of superhydrophobic carbon

  20. Direct numerical integration for multi-loop integrals

    E-Print Network [OSTI]

    Sebastian Becker; Stefan Weinzierl

    2013-03-18T23:59:59.000Z

    We present a method to construct a suitable contour deformation in loop momentum space for multi-loop integrals. This contour deformation can be used to perform the integration for multi-loop integrals numerically. The integration can be performed directly in loop momentum space without the introduction of Feynman or Schwinger parameters. The method can be applied to finite multi-loop integrals and to divergent multi-loop integrals with suitable subtraction terms. The algorithm extends techniques from the one-loop case to the multi-loop case. Examples at two and three loops are discussed explicitly.

  1. Process for ion-assisted laser deposition of biaxially textured layer on substrate

    DOE Patents [OSTI]

    Russo, Richard E. (Walnut Creek, CA); Reade, Ronald P. (Berkeley, CA); Garrison, Stephen M. (Palo Alto, CA); Berdahl, Paul (Oakland, CA)

    1995-01-01T23:59:59.000Z

    A process for depositing a biaxially aligned intermediate layer over a non-single crystal substrate is disclosed which permits the subsequent deposition thereon of a biaxially oriented superconducting film. The process comprises depositing on a substrate by laser ablation a material capable of being biaxially oriented and also capable of inhibiting the migration of substrate materials through the intermediate layer into such a superconducting film, while simultaneously bombarding the substrate with an ion beam. In a preferred embodiment, the deposition is carried out in the same chamber used to subsequently deposit a superconducting film over the intermediate layer. In a further aspect of the invention, the deposition of the superconducting layer over the biaxially oriented intermediate layer is also carried out by laser ablation with optional additional bombardment of the coated substrate with an ion beam during the deposition of the superconducting film.

  2. Process for ion-assisted laser deposition of biaxially textured layer on substrate

    DOE Patents [OSTI]

    Russo, R.E.; Reade, R.P.; Garrison, S.M.; Berdahl, P.

    1995-07-11T23:59:59.000Z

    A process for depositing a biaxially aligned intermediate layer over a non-single crystal substrate is disclosed which permits the subsequent deposition thereon of a biaxially oriented superconducting film. The process comprises depositing on a substrate by laser ablation a material capable of being biaxially oriented and also capable of inhibiting the migration of substrate materials through the intermediate layer into such a superconducting film, while simultaneously bombarding the substrate with an ion beam. In a preferred embodiment, the deposition is carried out in the same chamber used to subsequently deposit a superconducting film over the intermediate layer. In a further aspect of the invention, the deposition of the superconducting layer over the biaxially oriented intermediate layer is also carried out by laser ablation with optional additional bombardment of the coated substrate with an ion beam during the deposition of the superconducting film. 8 figs.

  3. Edge coating apparatus with movable roller applicator for solar cell substrates

    DOE Patents [OSTI]

    Pavani, Luca; Abas, Emmanuel

    2012-12-04T23:59:59.000Z

    A non-contact edge coating apparatus includes an applicator for applying a coating material on an edge of a solar cell substrate and a control system configured to drive the applicator. The control system may drive the applicator along an axis to maintain a distance with an edge of the substrate as the substrate is rotated to have the edge coated with a coating material. The applicator may include a recessed portion into which the edge of the substrate is received for edge coating. For example, the applicator may be a roller with a groove. Coating material may be introduced into the groove for application onto the edge of the substrate. A variety of coating materials may be employed with the apparatus including hot melt ink and UV curable plating resist.

  4. Method and apparatus for separating continuous cast strip from a rotating substrate

    DOE Patents [OSTI]

    King, Edward L. (Trenton, OH); Follstaedt, Donald W. (Middletown, OH); Sussman, Richard C. (West Chester, OH)

    1991-01-01T23:59:59.000Z

    The continuous casting of strip, ribbon and wire is improved by using a free jet nozzle which provides a fluid that follows a rotating substrate surface to the separation point. The nozzle includes an inclined surface having a ratio of its length to the gap between the substrate and the nozzle edge of 5:1 to 15:1. The inclined surface improves the ability of the jet to tangentially follow the substrate in a direction opposite to its rotation to the separation point. This also allows a close positioning of the nozzle to the substrate which serves to provide a back-up mechanical separation means by using the edge of nozzle lip. The nozzle may be rotated from its operating position for cleaning of the substrate and the nozzle.

  5. Method for producing textured substrates for thin-film photovoltaic cells

    DOE Patents [OSTI]

    Lauf, R.J.

    1994-04-26T23:59:59.000Z

    The invention pertains to the production of ceramic substrates used in the manufacture of thin-film photovoltaic cells used for directly converting solar energy to electrical energy. Elongated ribbon-like sheets of substrate precursor containing a mixture of ceramic particulates, a binder, and a plasticizer are formed and then while green provided with a mechanically textured surface region used for supporting the thin film semiconductor of the photovoltaic cell when the sheets of the substrate precursor are subsequently cut into substrate-sized shapes and then sintered. The textured surface pattern on the substrate provides enhanced light trapping and collection for substantially increasing the solar energy conversion efficiency of thin-film photovoltaic cells. 4 figures.

  6. Method for producing textured substrates for thin-film photovoltaic cells

    DOE Patents [OSTI]

    Lauf, Robert J. (Oak Ridge, TN)

    1996-01-01T23:59:59.000Z

    The invention pertains to the production of ceramic substrates used in the manufacture of thin-film photovoltaic cells used for directly converting solar energy to electrical energy. Elongated ribbon-like sheets of substrate precursor containing a mixture of ceramic particulates, a binder, and a plasticizer are formed and then while green provided with a mechanically textured surface region used for supporting the thin film semiconductor of the photovoltaic cell when the sheets of the substrate precursor are subsequently cut into substrate-sized shapes and then sintered. The textured surface pattern on the substrate provides enhanced light trapping and collection for substantially increasing the, solar energy conversion efficiency of thin-film photovoltaic cells.

  7. Method for producing textured substrates for thin-film photovoltaic cells

    DOE Patents [OSTI]

    Lauf, R.J.

    1996-04-02T23:59:59.000Z

    The invention pertains to the production of ceramic substrates used in the manufacture of thin-film photovoltaic cells used for directly converting solar energy to electrical energy. Elongated ribbon-like sheets of substrate precursor containing a mixture of ceramic particulates, a binder, and a plasticizer are formed and then while green provided with a mechanically textured surface region used for supporting the thin film semiconductor of the photovoltaic cell when the sheets of the substrate precursor are subsequently cut into substrate-sized shapes and then sintered. The textured surface pattern on the substrate provides enhanced light trapping and collection for substantially increasing the, solar energy conversion efficiency of thin-film photovoltaic cells. 4 figs.

  8. Method for producing textured substrates for thin-film photovoltaic cells

    DOE Patents [OSTI]

    Lauf, Robert J. (Oak Ridge, TN)

    1994-01-01T23:59:59.000Z

    The invention pertains to the production of ceramic substrates used in the manufacture of thin-film photovoltaic cells used for directly converting solar energy to electrical energy. Elongated ribbon-like sheets of substrate precursor containing a mixture of ceramic particulates, a binder, and a plasticizer are formed and then while green provided with a mechanically textured surface region used for supporting the thin film semiconductor of the photovoltaic cell when the sheets of the substrate precursor are subsequently cut into substrate-sized shapes and then sintered. The textured surface pattern on the substrate provides enhanced light trapping and collection for substantially increasing the solar energy conversion efficiency of thin-film photovoltaic cells.

  9. Suppression of structural imperfection in strained Si by utilizing SiGe bulk substrate

    SciTech Connect (OSTI)

    Usami, N.; Nose, Y.; Fujiwara, K.; Nakajima, K. [Institute for Materials Research (IMR), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan)

    2006-05-29T23:59:59.000Z

    We attempted to utilize homemade SiGe bulk crystal as a substrate for epitaxy of strain-controlled heterostructures. X-ray reciprocal space mapping clarified that the growth of a Si thin film on a SiGe bulk substrate leads to reduction in the orientation fluctuation compared with that on a SiGe virtual substrate. Furthermore, analysis of Raman spectra revealed a dramatic decrease of the strain fluctuation in the strained Si film on the SiGe bulk substrate. These results suggest that the SiGe bulk crystal can be utilized as a substrate for various strain-controlled heterostructures for fundamental studies as well as improvement of device performance.

  10. A microwave integrated optical cutoff modulator at 1.3 microns 

    E-Print Network [OSTI]

    Marx, Jeffrey Michael

    1991-01-01T23:59:59.000Z

    &M University Chair of Advisory Committee: Dr. Ohannes Eknoyan A cutoff type integrated optical intensity modulator has been fabricated for use at a wavelength of 1. 3 microns using zinc indiffusion in x-cut lithium tantalate. A novel electrode design... Characteristics of direct laser modulation. Ib Characteristics of external laser modulation. lla Electrooptic substrate comparison. lib A comparison of waveguide processing techniques. III Optical power data. 48 LIST OF FIGURES Figure 1. Mach Zehnder...

  11. Dual chamber system providing simultaneous etch and deposition on opposing substrate sides for growing low defect density epitaxial layers

    DOE Patents [OSTI]

    Kulkarni, Nagraj S. (Knoxville, TN); Kasica, Richard J. (Ashburn, VA) ,

    2011-03-08T23:59:59.000Z

    A dual-chamber reactor can include a housing enclosing a volume having a divider therein, where the divider defines a first chamber and a second chamber. The divider can include a substrate holder that supports at least one substrate and exposes a first side of the substrate to the first chamber and a second side of the substrate to the second chamber. The first chamber can include an inlet for delivering at least one reagent to the first chamber for forming a film on the first side of the substrate, and the second chamber can include a removal device for removing material from the second side of the substrate.

  12. Substrate having high absorptance and emitance black electroless nicel coating and a process for producing the same

    SciTech Connect (OSTI)

    Greeson, R.; Geikas, G. I.

    1985-04-16T23:59:59.000Z

    A substrate having high absorptance and emittance is produced by roughening the surface of the substrate, immersing the substrate in a first electroless plating bath having a low phosphorus to nickel concentration, then immersing the substrate in a second electroless plating bath having a phosphorus to nickel concentration higher than that of said first electroless plating bath. Thereafter, the resulting electroless nickel-phosphorus alloy coated substrate is immersed in an aqueous acidic etchant bath containing sulfuric acid, nitric acid and divalent nickel to develop a highly blackened surface on said substrate.

  13. Substrate CdTe Efficiency Improvements - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our InstagramStructure of All-Polymer. . ~0sFailureSubscribe to

  14. Substrate Recognition Strategy for Botulinum Neurotoxin Serotype A

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our InstagramStructure of All-Polymer. . ~0sFailureSubscribe Mark A. Breidenbach1

  15. Substrate-Induced Band-Gap Opening in Epitaxial Graphene

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our InstagramStructure of All-Polymer. . ~0sFailureSubscribe Mark A.

  16. Substrate-Induced Band-Gap Opening in Epitaxial Graphene

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our InstagramStructure of All-Polymer. . ~0sFailureSubscribe Mark

  17. Substrate-Induced Band-Gap Opening in Epitaxial Graphene

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our InstagramStructure of All-Polymer. . ~0sFailureSubscribe

  18. Quantum measure and integration theory

    E-Print Network [OSTI]

    Stan Gudder

    2009-09-11T23:59:59.000Z

    This article begins with a review of quantum measure spaces. Quantum forms and indefinite inner-product spaces are then discussed. The main part of the paper introduces a quantum integral and derives some of its properties. The quantum integral's form for simple functions is characterized and it is shown that the quantum integral generalizes the Lebesgue integral. A bounded, monotone convergence theorem for quantum integrals is obtained and it is shown that a Radon-Nikodym type theorem does not hold for quantum measures. As an example, a quantum-Lebesgue integral on the real line is considered.

  19. Integrated turbomachine oxygen plant

    SciTech Connect (OSTI)

    Anand, Ashok Kumar; DePuy, Richard Anthony; Muthaiah, Veerappan

    2014-06-17T23:59:59.000Z

    An integrated turbomachine oxygen plant includes a turbomachine and an air separation unit. One or more compressor pathways flow compressed air from a compressor through one or more of a combustor and a turbine expander to cool the combustor and/or the turbine expander. An air separation unit is operably connected to the one or more compressor pathways and is configured to separate the compressed air into oxygen and oxygen-depleted air. A method of air separation in an integrated turbomachine oxygen plant includes compressing a flow of air in a compressor of a turbomachine. The compressed flow of air is flowed through one or more of a combustor and a turbine expander of the turbomachine to cool the combustor and/or the turbine expander. The compressed flow of air is directed to an air separation unit and is separated into oxygen and oxygen-depleted air.

  20. Integrated Optical Probes

    SciTech Connect (OSTI)

    Brent Frogget, Douglas DeVore, Vincent Romero, David Esquibel, and David Holtkamp

    2008-09-04T23:59:59.000Z

    Optical probes used in velocimetry measurements have typically been individual probes that collect data for a single diagnostic at a single point. These probes have been used in diagnostics such as VISAR, PDV, and radiometry, which measure surface velocity, temperature, and other characteristics. When separate probes are used for these measurements, the different diagnostic points measured must be significantly separated. We have developed integrated probes that collect data for multiple optical diagnostics; these probes measure points in close proximity.

  1. Integrated Energy Efficiency

    E-Print Network [OSTI]

    Heins, S.

    Integrated Energy Efficiency Steve Heins VP Communications and Government Affairs Orion Energy Systems, Inc. 2 MegaTrend Convergence We need companies to commercialize technologies that use less energy without compromise to operations. Energy... Environment US electricity consumption growing 43% by 2030 Power generation expected to account for 50% of CO 2 emission increases 3 How Electricity Is Used 24 Hour Operation Midnight 6 a.m. Noon 6 p.m. Midnight kW 4 Lighting is a Major Component...

  2. Integrated Deployment and the Energy Systems Integration Facility: Workshop Proceedings

    SciTech Connect (OSTI)

    Kroposki, B.; Werner, M.; Spikes, A.; Komomua, C.

    2013-01-01T23:59:59.000Z

    This report summarizes the workshop entitled: Integrated Deployment and the Energy Systems Integration Facility. In anticipation of the opening of the ESIF, NREL held the workshop August 21-23, 2012 and invited participants from utilities, government, industry, and academia to discuss renewable integration challenges and discover new ways to meet them by taking advantage of the ESIF's capabilities.

  3. Integrative Bioengineering Institute

    SciTech Connect (OSTI)

    Eddington, David; Magin,L,Richard; Hetling, John; Cho, Michael

    2009-01-09T23:59:59.000Z

    Microfabrication enables many exciting experimental possibilities for medicine and biology that are not attainable through traditional methods. However, in order for microfabricated devices to have an impact they must not only provide a robust solution to a current unmet need, but also be simple enough to seamlessly integrate into standard protocols. Broad dissemination of bioMEMS has been stymied by the common aim of replacing established and well accepted protocols with equally or more complex devices, methods, or materials. The marriage of a complex, difficult to fabricate bioMEMS device with a highly variable biological system is rarely successful. Instead, the design philosophy of my lab aims to leverage a beneficial microscale phenomena (e.g. fast diffusion at the microscale) within a bioMEMS device and adapt to established methods (e.g. multiwell plate cell culture) and demonstrate a new paradigm for the field (adapt instead of replace). In order for the field of bioMEMS to mature beyond novel proof-of-concept demonstrations, researchers must focus on developing systems leveraging these phenomena and integrating into standard labs, which have largely been ignored. Towards this aim, the Integrative Bioengineering Institute has been established.

  4. High Efficiency Integrated Package

    SciTech Connect (OSTI)

    Ibbetson, James

    2013-09-15T23:59:59.000Z

    Solid-state lighting based on LEDs has emerged as a superior alternative to inefficient conventional lighting, particularly incandescent. LED lighting can lead to 80 percent energy savings; can last 50,000 hours – 2-50 times longer than most bulbs; and contains no toxic lead or mercury. However, to enable mass adoption, particularly at the consumer level, the cost of LED luminaires must be reduced by an order of magnitude while achieving superior efficiency, light quality and lifetime. To become viable, energy-efficient replacement solutions must deliver system efficacies of ? 100 lumens per watt (LPW) with excellent color rendering (CRI > 85) at a cost that enables payback cycles of two years or less for commercial applications. This development will enable significant site energy savings as it targets commercial and retail lighting applications that are most sensitive to the lifetime operating costs with their extended operating hours per day. If costs are reduced substantially, dramatic energy savings can be realized by replacing incandescent lighting in the residential market as well. In light of these challenges, Cree proposed to develop a multi-chip integrated LED package with an output of > 1000 lumens of warm white light operating at an efficacy of at least 128 LPW with a CRI > 85. This product will serve as the light engine for replacement lamps and luminaires. At the end of the proposed program, this integrated package was to be used in a proof-of-concept lamp prototype to demonstrate the component’s viability in a common form factor. During this project Cree SBTC developed an efficient, compact warm-white LED package with an integrated remote color down-converter. Via a combination of intensive optical, electrical, and thermal optimization, a package design was obtained that met nearly all project goals. This package emitted 1295 lm under instant-on, room-temperature testing conditions, with an efficacy of 128.4 lm/W at a color temperature of ~2873K and 83 CRI. As such, the package’s performance exceeds DOE’s warm-white phosphor LED efficacy target for 2013. At the end of the program, we assembled an A19 sized demonstration bulb housing the integrated package which met Energy Star intensity variation requirements. With further development to reduce overall component cost, we anticipate that an integrated remote converter package such as developed during this program will find application in compact, high-efficacy LED-based lamps, particularly those requiring omnidirectional emission.

  5. January 2005 INTEGRATING IT SECURITY

    E-Print Network [OSTI]

    January 2005 INTEGRATING IT SECURITY INTO THE CAPITAL PLANNING AND INVESTMENT CONTROL PROCESS By Joan S. Hash, Computer Security Division, Information Technology Laboratory, National Institute of Standards and Technology Introduction To assist federal agencies with effec tively integrating security

  6. Reactor design for uniform chemical vapor deposition-grown films without substrate rotation

    SciTech Connect (OSTI)

    Wanlass, M.

    1987-03-17T23:59:59.000Z

    A reactor vessel is described for chemical vapor deposition of a uniform semiconductor film on a substrate, comprising: a generally cylindrical reaction chamber for receiving a substrate and a flow of reaction gas capable of depositing a film on the substrate under the conditions of the chamber, the chamber having upper and lower portion and being oriented about a vertical axis; a supporting means having a substrate support surface generally perpendicular to the vertical axis for carrying the substrate within the lower portion of the reaction chamber in a predetermined relative position with respect to the upper portion of the reaction chamber, the upper portion including a cylindrically shaped confinement chamber. The confinement chamber has a smaller diameter than the lower portion of the reaction chamber and is positioned above the substrate support surface; and a means for introducing a reaction gas into the confinement chamber in a nonaxial direction so as to direct the reaction gas into the lower portion of the reaction chamber with a non-axial flow having a rotational component with respect to the vertical axis. In this way the reaction gas defines an inward vortex flow pattern with respect to the substrate surface.

  7. Effect of Substrate Thickness on Oxide Scale Spallation for Solid Oxide Fuel Cells

    SciTech Connect (OSTI)

    Liu, Wenning N.; Sun, Xin; Stephens, Elizabeth V.; Khaleel, Mohammad A.

    2011-07-01T23:59:59.000Z

    In this paper, the effect of the ferritic substrate's thickness on the delamination/spallation of the oxide scale was investigated experimentally and numerically. At the high-temperature oxidation environment of solid oxide fuel cells (SOFCs), a combination of growth stress with thermal stresses may lead to scale delamination/buckling and eventual spallation during SOFC stack cooling, even leading to serious degradation of cell performance. The growth stress is induced by the growth of the oxide scale on the scale/substrate interface, and thermal stress is induced by a mismatch of the coefficient of thermal expansion between the oxide scale and the substrate. The numerical results show that the interfacial shear stresses, which are the driving force of scale delamination between the oxide scale and the ferritic substrate, increase with the growth of the oxide scale and also with the thickness of the ferritic substrate; i.e., the thick ferritic substrate can easily lead to scale delamination and spallation. Experimental observation confirmed the predicted results of the delamination and spallation of the oxide scale on the ferritic substrate.

  8. Pendulum Integration and Elliptic Functions

    E-Print Network [OSTI]

    P. L. Garrido; G. Gallavotti

    2008-12-12T23:59:59.000Z

    Revisiting canonical integration of the classical pendulum around its unstable equilibrium, normal hyperbolic canonical coordinates are constructed

  9. Noncommutative integrable systems and quasideterminants

    SciTech Connect (OSTI)

    Hamanaka, Masashi [Department of Mathematics, Nagoya University, Chikusa-ku, Nagoya, 464-8602 (Japan)

    2010-03-08T23:59:59.000Z

    We discuss extension of soliton theories and integrable systems into noncommutative spaces. In the framework of noncommutative integrable hierarchy, we give infinite conserved quantities and exact soliton solutions for many noncommutative integrable equations, which are represented in terms of Strachan's products and quasi-determinants, respectively. We also present a relation to an noncommutative anti-self-dual Yang-Mills equation, and make comments on how 'integrability' should be considered in noncommutative spaces.

  10. Integrated Biorefineries | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    displayed. Integrated biorefineries use novel technologies and diverse biomass feedstocks-requiring significant investments in research, development, and deployment to...

  11. BIOTIC INTEGRITY OF STREAMS IN THE SAVANNAH RIVER SITE INTEGRATOR OPERABLE UNITS, 1996 TO 2003

    SciTech Connect (OSTI)

    Paller, M; Susan Dyer, S

    2004-11-08T23:59:59.000Z

    The Savannah River Site (SRS) has been divided into six Integrator Operable Units (IOUs) that correspond to the watersheds of the five major streams on the SRS (Upper Three Runs, Fourmile Branch, Pen Branch, Steel Creek, and Lower Three Runs) and the portions of the Savannah River and Savannah River Swamp associated with the SRS. The streams are the primary integrators within each IOU because they potentially receive, through surface or subsurface drainage, soluble contaminants from all waste sites within their watersheds. If these contaminants reach biologically significant levels, they would be expected to effect the numbers, types, and health of stream organisms. In this study, biological sampling was conducted within each IOU as a measure of the cumulative ecological effects of the waste sites within the IOUs. The use of information from biological sampling to assess environmental quality is often termed bioassessment. The IOU bioassessment program included 38 sites in SRS streams and nine sites in the Savannah River. Sampling was conducted in 1996 to 1998, 2000, and 2003. Four bioassessment methods were used to evaluate ecological conditions in the IOU streams: the Index of Biotic Integrity, the Fish Health Assessment Index, measurement of fish tissue contaminant levels, and two benthic macroinvertebrate indices. The Index of Biotic Integrity (IBI) is an EPA supported method based on comparison of ecologically important and sensitive fish assemblage variables between potentially disturbed and reference (i.e., undisturbed) sites. It is designed to assess the ability of a stream to support a self-sustaining biological community and ecological processes typical of undisturbed, natural conditions. Since many types of contaminants can bioaccumulate, fish tissue contaminant data were used to determine the types of chemicals fish were exposed to and their relative magnitudes among IOUs. The Fish Health Assessment Index (HAI) is an EPA supported method for assessing the health and condition of individual fish based on dissection and internal examination. It helped to determine whether contaminant concentrations were high enough to adversely affect the health of individual fish. The benthic macroinvertebrate multimetric index (HDMI), used in 1997 to 2000, is a method for assessing stream health based on macroinvertebrate data collected with Hester-Dendy artificial substrates. In 2003 it was replaced with the Multiple Habitat Sampling protocol, a SCDHEC method for collecting and analyzing benthic macroinvertebrate data from natural substrate. These two macroinvertebrate based methods were used in conjunction with the fish based IBI to provide a more comprehensive assessment of ecological conditions. Lastly, habitat data were collected from each stream to assist in determining whether ecological integrity was compromised by physical factors (e.g., erosion) or chemical factors (e.g., discharge of toxic materials). Fish from many SRS streams exhibited evidence of contamination as a result of current or former SRS operations. The most prevalent radiological contaminants were cesium-137 (highest in fish from Lower Three Runs followed by Steel Creek and Fourmile Branch), tritium (highest in fish from Fourmile Branch followed by Pen Branch, and the Savannah River swamp), and strontium (highest in fish from Fourmile Branch followed by Pen Branch). Radiological contaminants were also found in fish collected from the Savannah River near the mouths of contaminated SRS streams; however, contaminant levels were substantially lower than in fish from the streams themselves. Mercury levels were moderately elevated in fish from some streams, particularly Lower Three Runs, and in fish from the Savannah River. Despite the occurrence of contaminants, most SRS streams exhibited comparatively high biotic integrity (based on IBI, HDMI, and MHSP scores) and minimal levels of pathology among individual fish (e.g., presence of tumors or extreme thinness), indicating that contaminant levels were generally insufficient to cause significant ecological de

  12. Thin films of metal oxide nanoparticles deposited on substrates find applications in various technologies such as sensors, heterogeneous

    E-Print Network [OSTI]

    oven, which restrict the choice of substrates (metal, glass) and can negatively affects their performances (stress induction, oxidation, substrate warping). VALUE PROPOSITION This novel process offers key+ hours in traditional ovens (including ramp up & down) Delivers equal or superior optoelectronic

  13. THEORETICAL & APPLIED MECHANICS LETTERS 1, 041002 (2011) Competing failure mechanisms of thin metal films on polymer substrates

    E-Print Network [OSTI]

    Li, Teng

    2011-01-01T23:59:59.000Z

    by the tensile tests of thin Cu films on polyimide substrates, in which Cu films well bonded to polyimide substrates can sustain tensile strain above 50 % without fracture, while those poorly bonded to polyimide

  14. Structured luminescence conversion layer

    DOE Patents [OSTI]

    Berben, Dirk; Antoniadis, Homer; Jermann, Frank; Krummacher, Benjamin Claus; Von Malm, Norwin; Zachau, Martin

    2012-12-11T23:59:59.000Z

    An apparatus device such as a light source is disclosed which has an OLED device and a structured luminescence conversion layer deposited on the substrate or transparent electrode of said OLED device and on the exterior of said OLED device. The structured luminescence conversion layer contains regions such as color-changing and non-color-changing regions with particular shapes arranged in a particular pattern.

  15. Understanding Substrate Features Influenced by Pretreatments that Limit Biomass Deconstruction by Enzymes

    E-Print Network [OSTI]

    Gao, Xiadi

    2013-01-01T23:59:59.000Z

    Figure 1.1 An integrated biorefinery for producing fuels,3 Figure 2.1 An integrated biorefinery producing fuel,Figure 1.1 An integrated biorefinery for producing fuels,

  16. Lectures on integrable Hamiltonian systems

    E-Print Network [OSTI]

    G. Sardanashvily

    2013-03-21T23:59:59.000Z

    We consider integrable Hamiltonian systems in a general setting of invariant submanifolds which need not be compact. For instance, this is the case a global Kepler system, non-autonomous integrable Hamiltonian systems and integrable systems with time-dependent parameters.

  17. Aligned crystalline semiconducting film on a glass substrate and method of making

    DOE Patents [OSTI]

    Findikoglu, Alp T. (Los Alamos, NM)

    2010-08-24T23:59:59.000Z

    A semiconducting structure having a glass substrate. In one embodiment, the glass substrate has a softening temperature of at least about 750.degree. C. The structure includes a nucleation layer formed on a surface of the substrate, a template layer deposited on the nucleation layer by one of ion assisted beam deposition and reactive ion beam deposition, at least on biaxially oriented buffer layer epitaxially deposited on the template layer, and a biaxially oriented semiconducting layer epitaxially deposited on the buffer layer. A method of making the semiconducting structure is also described.

  18. Large area substrate for surface enhanced Raman spectroscopy (SERS) using glass-drawing technique

    DOE Patents [OSTI]

    Ivanov, Ilia N.; Simpson, John T.

    2012-06-26T23:59:59.000Z

    A method of making a large area substrate comprises drawing a plurality of tubes to form a plurality of drawn tubes, and cutting the plurality of drawn tubes into cut drawn tubes. Each cut drawn tube has a first end and a second end along the longitudinal direction of the respective cut drawn tube. The cut drawn tubes collectively have a predetermined periodicity. The method of making a large area substrate also comprises forming a metal layer on the first ends of the cut drawn tubes to provide a large area substrate.

  19. Process for depositing an oxide epitaxially onto a silicon substrate and structures prepared with the process

    DOE Patents [OSTI]

    McKee, Rodney A. (Kingston, TN); Walker, Frederick J. (Oak Ridge, TN)

    1993-01-01T23:59:59.000Z

    A process and structure involving a silicon substrate utilizes an ultra high vacuum and molecular beam epitaxy (MBE) methods to grow an epitaxial oxide film upon a surface of the substrate. As the film is grown, the lattice of the compound formed at the silicon interface becomes stabilized, and a base layer comprised of an oxide having a sodium chloride-type lattice structure grows epitaxially upon the compound so as to cover the substrate surface. A perovskite may then be grown epitaxially upon the base layer to render a product which incorporates silicon, with its electronic capabilities, with a perovskite having technologically-significant properties of its own.

  20. Evaluation of GaN substrates grown in supercritical basic ammonia

    SciTech Connect (OSTI)

    Saito, Makoto; Yamada, Hisashi; Iso, Kenji; Sato, Hitoshi; Hirasawa, Hirohiko; Kamber, Derrick S.; Hashimoto, Tadao; Baars, Steven P. den; Speck, James S.; Nakamura, Shuji [Materials Department, University of California, Santa Barbara, California 93106 (United States)

    2009-02-02T23:59:59.000Z

    GaN crystals grown by the basic ammonothermal method were investigated for their use as substrates for device regrowth. X-ray diffraction analysis indicated that the substrates contained multiple grains while secondary ion mass spectroscopy (SIMS) revealed a high concentration of hydrogen, oxygen, and sodium. Despite these drawbacks, the emission from the light emitting diode structures grown by metal organic chemical vapor deposition on both the c-plane and m-plane epitaxial wafers was demonstrated. The SIMS depth profiles showed that the diffusion of the alkali metal from the substrate into the epitaxial film was small, especially in the m-direction.