National Library of Energy BETA

Sample records for oklahoma state university

  1. Fermilab Today | Oklahoma State University

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    University group is involved in top quark studies, searches for a non-Standard Model Higgs boson, heavy flavor tagging and upgrade of the pixel detector in the ATLAS...

  2. Oklahoma State University proposed Advanced Technology Research Center. Environmental Assessment

    SciTech Connect (OSTI)

    1995-06-01

    The Department of Energy (DOE) has prepared an Environmental Assessment (EA) evaluating the construction and equipping of the proposed Advanced Technology Research Center (ATRC) at Oklahoma State University (OSU) in Stillwater, Oklahoma. Based on the analysis in the EA, the DOE has determined that the proposed action does not constitute a major federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, the preparation of an Environmental Impact Statement is not required.

  3. Oklahoma

    U.S. Energy Information Administration (EIA) Indexed Site

    Oklahoma

  4. Recovery Act State Memos Oklahoma

    Broader source: Energy.gov (indexed) [DOE]

    Oklahoma For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  5. U.S. Representative Frank Lucas and Oklahoma State Senator

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 U.S. Representative Frank Lucas and Oklahoma State Senator David Myers recently voiced ... Though the SGP central facility and activity hub near Lamont, Oklahoma, has 31 employees ...

  6. University of Oklahoma - High Energy Physics

    SciTech Connect (OSTI)

    Skubic, Patrick L.

    2013-07-31

    The High Energy Physics program at the University of Oklahoma, Pat Skubic, Principal Investigator, is attempting to understand nature at the deepest level using the most advanced experimental and theoretical tools. The four experimental faculty, Brad Abbott, Phil Gutierrez, Pat Skubic, and Mike Strauss, together with post-doctoral associates and graduate students, are finishing their work as part of the D0 collaboration at Fermilab, and increasingly focusing their investigations at the Large Hadron Collidor (LHC) as part of the ATLAS Collaboration. Work at the LHC has become even more exciting with the recent discovery by ATLAS and the other collaboration, CMS, of the long-sought Higgs boson, which plays a key role in generating masses for the elementary constituents of matter. Work of the OUHEP group has been in the three areas of hardware, software, and analysis. Now that the Higgs boson has been discovered, completing the Standard Model of fundamental physics, new efforts will focus on finding hints of physics beyond the standard model, such as supersymmetry. The OUHEP theory group (Kim Milton, PI) also consists of four faculty members, Howie Baer, Chung Kao, Kim Milton, and Yun Wang, and associated students and postdocs. They are involved in understanding fundamental issues in formulating theories of the microworld, and in proposing models that carry us past the Standard Model, which is an incomplete description of nature. They therefore work in close concert with their experimental colleagues. One also can study fundamental physics by looking at the large scale structure of the universe; in particular the ``dark energy'' that seems to be causing the universe to expand at an accelerating rate, effectively makes up about 3/4 of the energy in the universe, and yet is totally unidentified. Dark energy and dark matter, which together account for nearly all of the energy in the universe, are an important probe of fundamental physics at the very shortest distances

  7. Oklahoma State Historic Preservation Programmatic Agreement | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Oklahoma State Historic Preservation Programmatic Agreement Oklahoma State Historic Preservation Programmatic Agreement Fully executed programmatic agreement between DOE, State Energy Office and State Historic Preservation Office. state_historic_preservation_programmatic_agreement_ok.pdf (1.13 MB) More Documents & Publications Delaware State Historic Preservation Programmatic Agreement Florida State Historic Preservation Programmatic Agreement Louisiana

  8. Oklahoma - Compare - U.S. Energy Information Administration (EIA)

    U.S. Energy Information Administration (EIA) Indexed Site

    Oklahoma Oklahoma

  9. Oklahoma - Rankings - U.S. Energy Information Administration (EIA)

    U.S. Energy Information Administration (EIA) Indexed Site

    Oklahoma Oklahoma

  10. Oklahoma - Search - U.S. Energy Information Administration (EIA)

    U.S. Energy Information Administration (EIA) Indexed Site

    Oklahoma Oklahoma

  11. Cost-Effectiveness of ASHRAE Standard 90.1-2010 for the State of Oklahoma

    SciTech Connect (OSTI)

    Hart, Philip R.; Rosenberg, Michael I.; Xie, YuLong; Zhang, Jian; Richman, Eric E.; Elliott, Douglas B.; Loper, Susan A.; Myer, Michael

    2013-11-01

    Moving to the ANSI/ASHRAE/IES Standard 90.1-2010 version from the Base Code (90.1-2007) is cost-effective for all building types and climate zones in the State of Oklahoma.

  12. Oklahoma County, Oklahoma: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    City, Oklahoma Nichols Hills, Oklahoma Nicoma Park, Oklahoma Oklahoma City, Oklahoma Smith Village, Oklahoma Spencer, Oklahoma The Village, Oklahoma Valley Brook, Oklahoma Warr...

  13. Bryan County, Oklahoma: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Oklahoma Bennington, Oklahoma Bokchito, Oklahoma Caddo, Oklahoma Calera, Oklahoma Colbert, Oklahoma Durant, Oklahoma Hendrix, Oklahoma Kemp, Oklahoma Kenefic, Oklahoma Mead,...

  14. Okmulgee County, Oklahoma: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    County, Oklahoma Beggs, Oklahoma Dewar, Oklahoma Grayson, Oklahoma Henryetta, Oklahoma Hoffman, Oklahoma Liberty, Oklahoma Morris, Oklahoma Okmulgee, Oklahoma Schulter, Oklahoma...

  15. Pottawatomie County, Oklahoma: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Asher, Oklahoma Bethel Acres, Oklahoma Brooksville, Oklahoma Earlsboro, Oklahoma Johnson, Oklahoma Macomb, Oklahoma Maud, Oklahoma McLoud, Oklahoma Oklahoma City, Oklahoma...

  16. Fermilab Today | Wayne State University

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wayne State University May 29, 2013 NAME: Wayne State University HOME TOWN: Detroit, Mich. COLORS: Green and gold COLLABORATING AT FERMILAB SINCE: 1995 WORLDWIDE PARTICLE PHYSICS...

  17. Fermilab Today | Kansas State University

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Kansas State University Feb. 27, 2013 NAME: Kansas State University HOME TOWN: Manhattan, Kan. MASCOT: Willie the Wildcat COLORS: Royal purple COLLABORATING AT FERMILAB SINCE: 1993...

  18. Garfield County, Oklahoma: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    in Garfield County, Oklahoma Breckenridge, Oklahoma Carrier, Oklahoma Covington, Oklahoma Douglas, Oklahoma Drummond, Oklahoma Enid, Oklahoma Fairmont, Oklahoma Garber, Oklahoma...

  19. Blaine County, Oklahoma: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    in Blaine County, Oklahoma Canton, Oklahoma Geary, Oklahoma Greenfield, Oklahoma Hitchcock, Oklahoma Hydro, Oklahoma Longdale, Oklahoma Okeene, Oklahoma Watonga, Oklahoma...

  20. Payne County, Oklahoma: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Oklahoma Drumright, Oklahoma Glencoe, Oklahoma Mulhall, Oklahoma Orlando, Oklahoma Perkins, Oklahoma Ripley, Oklahoma Stillwater, Oklahoma Yale, Oklahoma Retrieved from "http:...

  1. Comanche County, Oklahoma: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Oklahoma Cache, Oklahoma Chattanooga, Oklahoma Elgin, Oklahoma Faxon, Oklahoma Fletcher, Oklahoma Geronimo, Oklahoma Indiahoma, Oklahoma Lawton, Oklahoma Medicine Park,...

  2. The Potential Economic Impact of Electricity Restructuring in the State of Oklahoma: Phase II Report

    SciTech Connect (OSTI)

    Hadley, SW

    2001-10-30

    Because of the recent experiences of several states undergoing restructuring (e.g., higher prices, greater volatility, lower reliability), concerns have been raised in states currently considering restructuring as to whether their systems are equally vulnerable. Factors such as local generation costs, transmission constraints, market concentration, and market design can all play a role in the success or failure of the market. These factors along with the mix of generation capacity supplying the state will influence the relative prices paid by consumers. The purpose of this project is to provide a model and process to evaluate the potential price and economic impacts of restructuring the Oklahoma electric industry. The Phase I report concentrated on providing an analysis of the Oklahoma system in the near-term, using only present generation resources and customer demands. This Phase II study analyzed the Oklahoma power market in 2010, incorporating the potential of new generation resources and customer responses. Five key findings of this Phase II were made: (1) Projected expansion in generating capacity exceeds by over 3,000 MW the demands within the state plus the amount that could be exported with the current transmission system. (2) Even with reduced new plant construction, most new plants could lose money (although residential consumers would see lower rates) unless they have sufficient market power to raise their prices without losing significant market share (Figure S-1). (3) If new plants can raise prices to stay profitable, existing low-cost coal and hydro plants will have very high profits. Average prices to customers could be 5% to 25% higher than regulated rates (Figure S-1). If the coal and hydro plants are priced at cost-based rates (through long-term contracts or continued regulation) while all other plants use market-based rates then prices are lower. (4) Customer response to real-time prices can lower the peak capacity requirements by around 9

  3. Oregon State University | Open Energy Information

    Open Energy Info (EERE)

    University Jump to: navigation, search Logo: Oregon State University Name: Oregon State University Address: Oregon State University Corvallis, OR Zip: 97331-4501 Year Founded: 1868...

  4. Sequoyah County, Oklahoma: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Notchietown, Oklahoma Paradise Hill, Oklahoma Pinhook Corners, Oklahoma Redbird Smith, Oklahoma Remy, Oklahoma Roland, Oklahoma Sallisaw, Oklahoma Short, Oklahoma Stoney...

  5. Pennsylvania State University | Open Energy Information

    Open Energy Info (EERE)

    University Jump to: navigation, search Logo: Pennsylvania State University Name: Pennsylvania State University Address: 201 Shields Building University Park, PA 16802 Zip: 16802...

  6. Michigan State University | Open Energy Information

    Open Energy Info (EERE)

    State University Jump to: navigation, search Name: Michigan State University Place: East Lansing, MI Website: www.michiganstateuniversity.co References: Michigan State University...

  7. Kansas State University: Business Plan

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wildcat Wind Power Advisors Electrical Dr. Ruth Miller, Associate Professor, Kansas State University Mechanical Dr. Warren White, Associate Professor, Kansas State Greg Spaulding, P.E., Assistant Professor, Kansas State Dr. Youqi Wang, Professor, Kansas State University Business Kim Fowler, Graduate Student, Kansas State Jason Schmitt, Founder & COO, Nitride Solutions Mechanical Team Joe Kuhn - CEO/President Aaron Akin Stuart Disberger Bret Gross Aaron Thomsen Jordan Robl Cody Yost Lane

  8. Wagoner County, Oklahoma: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Arrow, Oklahoma Catoosa, Oklahoma Coweta, Oklahoma Fair Oaks, Oklahoma Okay, Oklahoma Porter, Oklahoma Redbird, Oklahoma Tullahassee, Oklahoma Tulsa, Oklahoma Wagoner, Oklahoma...

  9. Pennsylvania State University Hydrodynamics | Open Energy Information

    Open Energy Info (EERE)

    State University Hydrodynamics Jump to: navigation, search Hydro | Hydrodynamic Testing Facilities Name Pennsylvania State University Address Applied Research Laboratory, Garfield...

  10. CASL - North Carolina State University

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    North Carolina State University Raleigh, NC NC State University has a proven record of working with industry and government to advance research in support of solving nuclear industry challenges. Key Contributions Uncertainty quantification & data assimilation Fuel cladding material performance Multiphysics coupling Fluid dynamics upscaling STEM education Key Outcomes Nuclear power plant margin management using best estimate plus uncertainty prediction capability Fuel cladding enhanced

  11. The Potential Economic Impact of Electricity Restructuring in the State of Oklahoma: Phase I Report

    SciTech Connect (OSTI)

    Hadley, SW

    2001-03-27

    Because of the recent experiences of several states undergoing restructuring (e.g., higher prices, greater volatility, lower reliability), concerns have been raised in states currently considering restructuring as to whether their systems are equally vulnerable. Factors such as local generation costs, transmission constraints, market concentration, and market design can all play a role in the success or failure of the market. These factors along with the mix of generation capacity supplying the state will influence the relative prices paid by consumers. The purpose of this project is to provide a model and process to evaluate the potential price and economic impacts of restructuring the Oklahoma electric industry. This Phase I report concentrates on providing an analysis of the Oklahoma system in the near-term, using only present generation resources and customer demands. In Phase II, a longer-term analysis will be conducted, incorporating the potential of new generation resources and customer responses. Oak Ridge National Laboratory (ORNL) has developed the Oak Ridge Competitive Electricity Dispatch (ORCED) model to evaluate marginal-cost-based and regulated prices for the state. The model dispatches the state's power plants to meet the demands from all customers based on the marginal cost of production. Consequent market-clearing prices for each hour of the year are applied to customers' demands to determine the average prices paid. The revenues from the sales are paid to each plant for their generation, resulting in a net profit or loss depending on the plant's costs and prices when it operates. Separately, the model calculates the total cost of generation, including fixed costs such as depreciation, interest and required return on equity. These costs are allocated among the customer classes to establish regulated prices for each class. These prices can be compared to the average market-based prices to see if prices increase or decrease with restructuring. An

  12. Washington State University | Open Energy Information

    Open Energy Info (EERE)

    University Jump to: navigation, search Name: Washington State University Place: Spokane, WA Website: www.washingtonstateuniversity. References: Washington State University1...

  13. Kansas State University | Open Energy Information

    Open Energy Info (EERE)

    University Jump to: navigation, search Name Kansas State University Facility Kansas State University Sector Wind energy Facility Type Small Scale Wind Facility Status In Service...

  14. Coal County, Oklahoma: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Oklahoma Bromide, Oklahoma Centrahoma, Oklahoma Coalgate, Oklahoma Lehigh, Oklahoma Phillips, Oklahoma Tupelo, Oklahoma Retrieved from "http:en.openei.orgw...

  15. Universal equation for Efimov states

    SciTech Connect (OSTI)

    Braaten, Eric; Hammer, H.-W.; Kusunoki, M.

    2003-02-01

    Efimov states are a sequence of shallow three-body bound states that arise when the two-body scattering length is large. Efimov showed that the binding energies of these states can be calculated in terms of the scattering length and a three-body parameter by solving a transcendental equation involving a universal function of one variable. We calculate this universal function using effective field theory and use it to describe the three-body system of {sup 4}He atoms. We also extend Efimov's theory to include the effects of deep two-body bound states, which give widths to the Efimov states.

  16. Ferris State University | Open Energy Information

    Open Energy Info (EERE)

    Ferris State University Jump to: navigation, search Name: Ferris State University Place: Big Rapids, MI Website: www.ferrisstateuniversity.com References: Ferris State...

  17. Cleveland County, Oklahoma: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Veolia Energy Places in Cleveland County, Oklahoma Etowah, Oklahoma Lexington, Oklahoma Moore, Oklahoma Noble, Oklahoma Norman, Oklahoma Oklahoma City, Oklahoma Purcell, Oklahoma...

  18. Canadian County, Oklahoma: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    in Canadian County, Oklahoma Calumet, Oklahoma El Reno, Oklahoma Geary, Oklahoma Mustang, Oklahoma Okarche, Oklahoma Oklahoma City, Oklahoma Piedmont, Oklahoma Union City,...

  19. North Carolina State University | Open Energy Information

    Open Energy Info (EERE)

    University Jump to: navigation, search Name: North Carolina State University Place: Raleigh, North Carolina Zip: 27695 Sector: Biofuels, Biomass, Solar Product: Public university...

  20. Healthcare Energy: State University of New York Upstate Medical University

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    East Wing | Department of Energy State University of New York Upstate Medical University East Wing Healthcare Energy: State University of New York Upstate Medical University East Wing The Building Technologies Office conducted a healthcare energy end-use monitoring project in partnership with two hospitals. This page contains highlights from monitoring at the East Wing, a hospital building addition at the State University of New York Upstate Medical University. In the figure above, click on

  1. Oklahoma City, Oklahoma: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    congressional district and Oklahoma's 5th congressional district.12 US Recovery Act Smart Grid Projects in Oklahoma City, Oklahoma Oklahoma Gas and Electric Company Smart...

  2. Hughes County, Oklahoma: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Oklahoma Holdenville, Oklahoma Horntown, Oklahoma Lamar, Oklahoma Spaulding, Oklahoma Stuart, Oklahoma Wetumka, Oklahoma Yeager, Oklahoma Retrieved from "http:en.openei.orgw...

  3. McClain County, Oklahoma: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Zone Subtype A. Places in McClain County, Oklahoma Blanchard, Oklahoma Byars, Oklahoma Cole, Oklahoma Dibble, Oklahoma Goldsby, Oklahoma Newcastle, Oklahoma Purcell, Oklahoma...

  4. Ottawa County, Oklahoma: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Zone Subtype A. Places in Ottawa County, Oklahoma Afton, Oklahoma Cardin, Oklahoma Commerce, Oklahoma Dotyville, Oklahoma Fairland, Oklahoma Miami, Oklahoma Narcissa, Oklahoma...

  5. Mayes County, Oklahoma: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Murphy, Oklahoma Pensacola, Oklahoma Pin Oak Acres, Oklahoma Pryor Creek, Oklahoma Pump Back, Oklahoma Salina, Oklahoma Sams Corner, Oklahoma Snake Creek, Oklahoma Spavinaw,...

  6. Johnston County, Oklahoma: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    in Johnston County, Oklahoma Bromide, Oklahoma Mannsville, Oklahoma Milburn, Oklahoma Mill Creek, Oklahoma Ravia, Oklahoma Tishomingo, Oklahoma Wapanucka, Oklahoma Retrieved from...

  7. PROJECT PROFILE: Oregon State University

    Broader source: Energy.gov [DOE]

    Oregon State University will continue the development of a microchannel solar receiver, using supercritical carbon dioxide (sCO2) as the heat transfer fluid. The research will resolve key issues associated with the commercial viability of the technology, which allows for a radical reduction in the size of a solar central receiver. The project will culminate in a field test of a commercial scale receiver module with a surface area of approximately one square meter.

  8. Portland State University Shattuck Hall

    High Performance Buildings Database

    Portland, OR Portland State's Shattuck hall was originally constructed as an elementary school in 1915. In 2007 the university undertook extensive renovations of the building to bring it up to current seismic requirements. In addition to structural improvements, the design team was able to upgraded the building's aging mechanical and electrical systems, upgrade plumbing, and restore the large light wells that bring daylight into the U-shaped building. The resulting building houses Portland State's Architecture department, where students are able to learn from the exposed building systems.

  9. California State University CSU | Open Energy Information

    Open Energy Info (EERE)

    University CSU Jump to: navigation, search Name: California State University (CSU) Place: Los Angeles, California Zip: 90802-4210 Sector: Solar Product: One of the largest higher...

  10. Arizona State University | Open Energy Information

    Open Energy Info (EERE)

    University Jump to: navigation, search Name: Arizona State University Place: Tempe, Arizona Zip: 85287 Website: asu.edu Coordinates: 33.4183159, -111.9311939 Show Map Loading...

  11. Bisfuel links - Arizona State University

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Arizona State University http://chemistry.asu.edu/" target="_blank">ASU Department of Chemistry and Biochemistry http://sustainability.asu.edu/index.php" target="_blank">ASU Global Institute of Sustainability http://asulightworks.com/" target="_blank">ASU Lightworks http://sols.asu.edu/" target="_blank">ASU School of Life Sciences http://www.biodesign.asu.edu/" target="_blank">Biodesign Institute

  12. Oklahoma Center for High Energy Physics (OCHEP)

    SciTech Connect (OSTI)

    S. Nandi; M.J. Strauss; J. Snow; F. Rizatdinova; B. Abbott; K. Babu; P. Gutierrez; C. Kao; A. Khanov; K.A. Milton; H. Neaman; H. Severini, P. Skubic

    2012-02-29

    The DOE EPSCoR implementation grant, with the support from the State of Oklahoma and from the three universities, Oklahoma State University, University of Oklahoma and Langston University, resulted in establishing of the Oklahoma Center for High Energy Physics (OCHEP) in 2004. Currently, OCHEP continues to flourish as a vibrant hub for research in experimental and theoretical particle physics and an educational center in the State of Oklahoma. All goals of the original proposal were successfully accomplished. These include foun- dation of a new experimental particle physics group at OSU, the establishment of a Tier 2 computing facility for the Large Hadron Collider (LHC) and Tevatron data analysis at OU and organization of a vital particle physics research center in Oklahoma based on resources of the three universities. OSU has hired two tenure-track faculty members with initial support from the grant funds. Now both positions are supported through OSU budget. This new HEP Experimental Group at OSU has established itself as a full member of the Fermilab D0 Collaboration and LHC ATLAS Experiment and has secured external funds from the DOE and the NSF. These funds currently support 2 graduate students, 1 postdoctoral fellow, and 1 part-time engineer. The grant initiated creation of a Tier 2 computing facility at OU as part of the Southwest Tier 2 facility, and a permanent Research Scientist was hired at OU to maintain and run the facility. Permanent support for this position has now been provided through the OU university budget. OCHEP represents a successful model of cooperation of several universities, providing the establishment of critical mass of manpower, computing and hardware resources. This led to increasing Oklahoma’s impact in all areas of HEP, theory, experiment, and computation. The Center personnel are involved in cutting edge research in experimental, theoretical, and computational aspects of High Energy Physics with the research

  13. Illinois State University | OpenEI Community

    Open Energy Info (EERE)

    Illinois State University Home Dloomis's picture Submitted by Dloomis(21) Member 28 June, 2012 - 15:41 User Manuals Illinois State University We have a beta version of two user...

  14. Pennsylvania State University | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    represented Pennsylvania State University (Penn State) in ... In addition, the students aimed to gain real-world ... design while business classes polished the marketing plan. ...

  15. Oregon State University OSU | Open Energy Information

    Open Energy Info (EERE)

    OSU Jump to: navigation, search Name: Oregon State University OSU Address: 1148 Kelley Engineering Center Place: Corvallis Zip: 97331 Region: United States Sector: Marine and...

  16. Colorado State University Technology Marketing Summaries - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovation Portal Colorado State University Technology Marketing Summaries Here you'll find marketing summaries for technologies available for licensing from the Colorado State University (CSU). The summaries provide descriptions of the technologies including their benefits, applications and industries, and development stage. Colorado State University 16 Technology Marketing Summaries Category Title and Abstract Laboratories Date Advanced Materials Biomass and Biofuels Industrial

  17. Factors Influencing Oil Prices: A Survey of the Current State of Knowledge in the Context of the 2007-08 Oil Price Volatility Interactions in the U.S. Crude Oil Market

    U.S. Energy Information Administration (EIA) Indexed Site

    Factors Influencing Oil Prices: A Survey of the Current State of Knowledge in the Context of the 2007-08 Oil Price Volatility Louis H. Ederington, University of Oklahoma Chitru S. Fernano, University of Oklahoma Thomas K. Lee, U.S. Energy Information Administration Scott C. Linn, University of Oklahoma Anthony D. May, Wichita State University August 2011 Independent Statistics & Analysis www.eia.gov U.S. Energy Information Administration Washington, DC 20585 This paper is released to

  18. Grady County, Oklahoma: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Zone Subtype A. Places in Grady County, Oklahoma Alex, Oklahoma Amber, Oklahoma Blanchard, Oklahoma Bradley, Oklahoma Bridge Creek, Oklahoma Chickasha, Oklahoma Minco,...

  19. Le Flore County, Oklahoma: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Zone Subtype A. Places in Le Flore County, Oklahoma Arkoma, Oklahoma Bokoshe, Oklahoma Cameron, Oklahoma Cowlington, Oklahoma Fanshawe, Oklahoma Fort Coffee, Oklahoma Heavener,...

  20. Woods County, Oklahoma: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    County, Oklahoma Alva, Oklahoma Avard, Oklahoma Capron, Oklahoma Dacoma, Oklahoma Freedom, Oklahoma Waynoka, Oklahoma Retrieved from "http:en.openei.orgw...

  1. Stephens County, Oklahoma: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Central High, Oklahoma Comanche, Oklahoma Duncan, Oklahoma Empire City, Oklahoma Loco, Oklahoma Marlow, Oklahoma Velma, Oklahoma Retrieved from "http:en.openei.orgw...

  2. Custer County, Oklahoma: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Number 3 Climate Zone Subtype A. Places in Custer County, Oklahoma Arapaho, Oklahoma Butler, Oklahoma Clinton, Oklahoma Custer City, Oklahoma Hammon, Oklahoma Thomas, Oklahoma...

  3. Washington County, Oklahoma: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    Subtype A. Places in Washington County, Oklahoma Bartlesville, Oklahoma Copan, Oklahoma Dewey, Oklahoma Ochelata, Oklahoma Ramona, Oklahoma Vera, Oklahoma Retrieved from "http:...

  4. Muskogee County, Oklahoma: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Oklahoma Sour John, Oklahoma Summit, Oklahoma Taft, Oklahoma Wainwright, Oklahoma Warner, Oklahoma Webbers Falls, Oklahoma Retrieved from "http:en.openei.orgw...

  5. Washita County, Oklahoma: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Number 3 Climate Zone Subtype A. Places in Washita County, Oklahoma Bessie, Oklahoma Burns Flat, Oklahoma Canute, Oklahoma Clinton, Oklahoma Colony, Oklahoma Corn, Oklahoma Dill...

  6. Pittsburg County, Oklahoma: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Oklahoma Krebs, Oklahoma Longtown, Oklahoma McAlester, Oklahoma Pittsburg, Oklahoma Quinton, Oklahoma Savanna, Oklahoma Retrieved from "http:en.openei.orgw...

  7. Beckham County, Oklahoma: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Zone Subtype A. Places in Beckham County, Oklahoma Carter, Oklahoma Elk City, Oklahoma Erick, Oklahoma Sayre, Oklahoma Sweetwater, Oklahoma Texola, Oklahoma Retrieved from "http:...

  8. Adair County, Oklahoma: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Number 3 Climate Zone Subtype A. Places in Adair County, Oklahoma Bell, Oklahoma Cherry Tree, Oklahoma Chewey, Oklahoma Christie, Oklahoma Fairfield, Oklahoma Greasy, Oklahoma...

  9. GE funds initiative to support STEM initiatives in Oklahoma ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    STEM Empowers OK: Initiative to enrich STEM education in Oklahoma On April 21, 2015, GE announced a grant to the state of Oklahoma to enhance STEM education initiatives. Jeff ...

  10. Colorado State University | Open Energy Information

    Open Energy Info (EERE)

    University Jump to: navigation, search Name: Colorado State University Place: Colorado Phone Number: (970) 491-1101 or 907-491-6444 Website: www.colostate.edu Outage Hotline:...

  11. 2014 Race to Zero Student Design Competition: Penn State University...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Penn State University Profile 2014 Race to Zero Student Design Competition: Penn State University Profile 2014 Race to Zero Student Design Competition: Penn State University ...

  12. Kansas State University | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Kansas State University Kansas State University From left to right: Aaron Thomsen, Stuart Disberger, Bret Gross, Cody Yost, Joe Kuhn, Lane Yoder, Hussam Alghamdi, Will Duren, Martin Mixon, Ying Huang, Alex Wurtz, Tanzila Ahmed, Armando Marquez. Not pictured: Jordan Robl, Brandon Young, Shae Pelkowski. Photo from Kansas State University. From left to right: Aaron Thomsen, Stuart Disberger, Bret Gross, Cody Yost, Joe Kuhn, Lane Yoder, Hussam Alghamdi, Will Duren, Martin Mixon, Ying Huang, Alex

  13. Bioenergy Technologies Office Judges Washington State University...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    State University is hosting the Imagine Tomorrow competition to challenge high school students to explore new ways to support the transition to alternative energy sources. ...

  14. Colorado State University Hydrodynamics | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Hydro | Hydrodynamic Testing Facilities Name Colorado State University Address Daryl B. Simons Building, Engineering Research Center, 1320 Campus...

  15. Final Report - Montana State University - Microbial Activity...

    Office of Scientific and Technical Information (OSTI)

    Media Citation Details In-Document Search Title: Final Report - Montana State University - Microbial Activity and Precipitation at Solution-Solution Mixing Zones in Porous Media ...

  16. Argonne National Laboratory and Mississippi State University...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Argonne National Laboratory and Mississippi State University Partner to Create Energy Storage Technology Solutions for Southeast Region News Release Media Contacts Ben Schiltz ...

  17. Workplace Charging Challenge Partner: Michigan State University...

    Energy Savers [EERE]

    Michigan State University is committed to reducing its carbon footprint by using and promoting clean transportation. As the employee demand for charging stations became more ...

  18. Kansas State University: Technical Design Report

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    WIND TURBINE DESIGN REPORT Wildcat Wind Power - Kansas State University 18 April 2014 1 Table of Contents Introduction .................................................................................................................................................. 2 Mechanical Design ........................................................................................................................................ 3 Design Motivations

  19. Oregon State University Hydrodynamics | Open Energy Information

    Open Energy Info (EERE)

    search Hydro | Hydrodynamic Testing Facilities Name Oregon State University Address O.H. Hinsdale Wave Research Laboratory, 220 Owen Hall Place Corvallis, Oregon Zip 97331...

  20. Earth sheltered housing in the south central United States

    SciTech Connect (OSTI)

    Grondzik, W.T. (Oklahoma State Univ., Stillwater); Grondzik, C.S.

    1982-01-01

    A detailed study of identified, occupied earth sheltered residences in the south central United States has been conducted by the Oklahoma State University. Selected results from this investigation of more than 150 residences in the states of Arkansas, Colorado, Iowa, Kansas, Missouri, Nebraska, New Mexico, Oklahoma, and Texas are presented, focusing upon the issues of habitability and energy performance of such structures.

  1. The Ohio State University Bioproducts Innovation Center Sustainable...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ohio State University Bioproducts Innovation Center Sustainable Materials Networking Event The Ohio State University Bioproducts Innovation Center Sustainable Materials Networking...

  2. Kansas State University | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Kansas State University Kansas State University Team roster: Tanzila Ahmed, Electrical Engineering; Lawryn Edmonds, Electrical Engineering; Jacob Meyer, Electrical Engineering; Michael Banowetz, Electrical Engineering; David Plenert, Electrical Engineering; Timothy Sample, Electrical Engineering; Stephen Debes, Electrical Engineering; Connor Krause, Electrical Engineering; Andrew Johnson, Electrical Engineering; Sshangxian Wang, Electrical Engineering; Mark Ronning, Electrical Engineering;

  3. Boise State University Idaho | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Boise State University Idaho Boise State University Idaho Team Roster: Anaysa Aguilar, Mechanical Engineering; Chris Davis, Mechanical Engineering; Dennis Twitty, Mechanical Engineering; Omar Alozaymi, Electrical Engineering; Joe Fercho, Electrical Engineering; Seth Townsend, Electrical Engineering; Carson Heagen, Business; Alex Hernandez, Business; Ashley Hulse, Business; Colin Lesch, Business; Joseph Skogen, Business Team Roster: Anaysa Aguilar, Mechanical Engineering; Chris Davis, Mechanical

  4. California State University, Chico | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    California State University, Chico California State University, Chico Team roster: Aditya Joshi , Computer Science; Angelina Teal Jonson, Mechanical Engineering; Aubrey Connors, Business Administration, Option: Entrepreneurship; Colleen Robb, Co-PI, Entrepreneurship, College of Business; Corey Starbird, Electrical Engineering; Darrell Sinclair, Mechanical Engineering; David Alexander, PI, Mechanical Engineering; Eric Myers, Business Administration, Option: Entrepreneurship; Henry Sanchez,

  5. NREL: MIDC/Elizabeth City State University (36.28 N, 76.22 W, 26 m, GMT-5)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Elizabeth City State University

  6. Noble County, Oklahoma: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    County, Oklahoma Billings, Oklahoma Marland, Oklahoma Morrison, Oklahoma Perry, Oklahoma Red Rock, Oklahoma Retrieved from "http:en.openei.orgwindex.php?titleNobleCounty,Okl...

  7. Colorado State University Video (Text Version)

    Broader source: Energy.gov [DOE]

    Steve Hultin, Executive Director, Facilities Management Colorado State University: This week in the Drive Leadership Program I drove the Cadillac DLR, a beautiful car and I also drove the Nissan...

  8. Workplace Charging Challenge Partner: Louisiana State University...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Rouge, LA Domestic Employees: 36,757 Louisiana State University (LSU) has 3 charging stations on campus, and 12 plug-in electric vehicles routinely used the stations in 2015. ...

  9. Pennsylvania State University: Business Plan

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Penn State - Collegiate Wind Competition Business Plan Remote Wind Power Systems Unit April 18, 2014 Remote Wind PSU Organization Teams Team Contact Number of Members Business Plan Bridget Dougherty - bad5194@psu.edu 6 Market Issues Bridget Dougherty - bad5194@psu.edu 3 Market Turbine Prototype Design and Construction Ken Palamara - kjp5176@psu.edu 7 Manufacturing and Cost Analysis Ty Druce - tvd5081@psu.edu 7 Lifetime Analysis Nick Ward - njw5071@psu.edu 3 Market Opportunity Evan Masters -

  10. Kansas State University Final Report: Wildcat Wind Power

    Energy Savers [EERE]

    Warren White, Associate Professor, Kansas State University Dr. Liang-Wu Cai, Associate Professor, Kansas State University Graduate Advisor Shane Smith, Graduate Student, Kansas ...

  11. Penn State University Puts Collegiate Wind Competition-Winning...

    Energy Savers [EERE]

    Penn State University Puts Collegiate Wind Competition-Winning Turbine on Display Penn State University Puts Collegiate Wind Competition-Winning Turbine on Display July 15, 2016 - ...

  12. Boise State University, CAES Energy Efficiency Research Institute...

    Open Energy Info (EERE)

    State University, CAES Energy Efficiency Research Institute Jump to: navigation, search Name: Boise State University, CAES Energy Efficiency Research Institute Address: 1910...

  13. RES Oklahoma 2016

    Broader source: Energy.gov [DOE]

    The National Center for American Indian Enterprise Development is hosting RES Oklahoma. The four-day conference includes events, tradeshow, business expo, procurement, and more.

  14. Pawnee County, Oklahoma: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Climate Zone Number 3 Climate Zone Subtype A. Places in Pawnee County, Oklahoma Blackburn, Oklahoma Cleveland, Oklahoma Hallett, Oklahoma Jennings, Oklahoma Mannford,...

  15. Thomas Mallouk > Pennsylvania State University > Scientific Advisory Board

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    > The Energy Materials Center at Cornell Thomas Mallouk Pennsylvania State University

  16. Jackson State University | OSTI, US Dept of Energy Office of...

    Office of Scientific and Technical Information (OSTI)

    ORNL Mentor-Protg Accomplishments with Jackson State University Jackson State establishes internship program in China Research Links Resource Links DOE Jackson State Grant ...

  17. Arizona State University TUV Rheinland JV | Open Energy Information

    Open Energy Info (EERE)

    University TUV Rheinland JV Jump to: navigation, search Name: Arizona State University & TUV Rheinland JV Sector: Solar Product: Solar JV formed for technology testing and...

  18. Washington State University Extension Energy Program | Open Energy...

    Open Energy Info (EERE)

    University Extension Energy Program Jump to: navigation, search Name: Washington State University Extension Energy Program Address: 905 Plum Street SE Bldg No 3 Place: Olympia,...

  19. Fermilab Today | University of Oklahoma

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    - especially supersymmetry - oriented toward the physics that is starting to emerge from the Large Hadron Collider. Our theory group also works on nonperturbative quantum...

  20. 2014 Race to Zero Student Design Competition: Illinois State University

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Profile | Department of Energy Illinois State University Profile 2014 Race to Zero Student Design Competition: Illinois State University Profile 2014 Race to Zero Student Design Competition: Illinois State University Profile, as posted on the U.S. Department of Energy website. rtz_illinois_profile.pdf (478.78 KB) More Documents & Publications 2014 Race to Zero Student Design Competition: University of Pittsburgh Profile 2014 Race to Zero Student Design Competition: Ryerson University -

  1. Pennsylvania State University | OSTI, US Dept of Energy Office of

    Office of Scientific and Technical Information (OSTI)

    Scientific and Technical Information Pennsylvania State University Spotlights Home DOE Applauds Pennsylvania State University Science and Technical Programs Penn State Commencement 2012 chu4.png United States Secretary of Energy Dr. Steven Chu was the commencement speaker at Penn State's Eberly College of Science 2012 spring graduation ceremony held May 5 at the Bryce Jordan Center on the University Park campus. Read more. Research Links Research at Penn State Capabilities and Projects

  2. Alternative Fuels Data Center: Louisiana State University: The...

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Louisiana State University: The State's First Workplace Charging Challenge Partner " Since the installation of the EV charging stations on campus, we have seen a dramatic rise in ...

  3. Workplace Charging Challenge Partner: Appalachian State University...

    Broader source: Energy.gov (indexed) [DOE]

    The University's transportation department has installed two charging stations on campus and a plug-in electric vehicle (PEV) is available to all campus members. The university has ...

  4. Latimer County, Oklahoma: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Number 3 Climate Zone Subtype A. Places in Latimer County, Oklahoma Fanshawe, Oklahoma Red Oak, Oklahoma Wilburton, Oklahoma Retrieved from "http:en.openei.orgw...

  5. Key Renewable Energy Opportunities for Oklahoma Tribes | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Key Renewable Energy Opportunities for Oklahoma Tribes Key Renewable Energy Opportunities for Oklahoma Tribes August 13, 2012 Oklahoma City, Oklahoma Cox Convention Center The...

  6. Oklahoma Natural Gas Plant Liquids Production Extracted in Oklahoma

    Gasoline and Diesel Fuel Update (EIA)

    (Million Cubic Feet) Oklahoma (Million Cubic Feet) Oklahoma Natural Gas Plant Liquids Production Extracted in Oklahoma (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 166,776 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: NGPL Production, Gaseous Equivalent Oklahoma-Oklahoma

  7. Oklahoma Natural Gas Processed in Oklahoma (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Oklahoma (Million Cubic Feet) Oklahoma Natural Gas Processed in Oklahoma (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 1,121,999 1,282,707 1,349,870 1,670,265 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: Natural Gas Processed Oklahoma-Oklahoma

  8. Fermilab Today | State University of New York at Stony Brook

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stony Brook August 13, 2009 NAME: State University of New York at Stony Brook HOME TOWN: Stony Brook, New York MASCOT: The university mascot is the Seawolf, but the High Energy...

  9. Pennsylvania State University Wins Big In Las Vegas: Energy Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Crowns Collegiate Wind Competition Champion | Department of Energy State University Wins Big In Las Vegas: Energy Department Crowns Collegiate Wind Competition Champion Pennsylvania State University Wins Big In Las Vegas: Energy Department Crowns Collegiate Wind Competition Champion May 8, 2014 - 9:30am Addthis Pennsylvania State University was crowned the winner of the Energy Department's inaugural Collegiate Wind Competition. The team designed a small-scale wind turbine that can be easily

  10. EERE Success Story-Colorado State University Industrial Assessment Center

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Saves Manufacturers Money and Trains the Next Generation of Engineers | Department of Energy Colorado State University Industrial Assessment Center Saves Manufacturers Money and Trains the Next Generation of Engineers EERE Success Story-Colorado State University Industrial Assessment Center Saves Manufacturers Money and Trains the Next Generation of Engineers April 18, 2013 - 12:00am Addthis Partnering with EERE, Colorado State University's Industrial Assessment Center (IAC) provides small-

  11. Boise State University Wins Collegiate Wind Competition 2015 | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Boise State University Wins Collegiate Wind Competition 2015 Boise State University Wins Collegiate Wind Competition 2015 May 4, 2015 - 1:54pm Addthis Boise State University Wins Collegiate Wind Competition 2015 Jose Zayas Jose Zayas Office Director, Wind and Water Power Technologies Office This past week, seven teams of students from across the country gathered at the National Renewable Energy Laboratory's National Wind Technology Center (NWTC) for a fierce blade-to-blade wind

  12. Pennsylvania State University Wins the 2016 Collegiate Wind Competition |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Pennsylvania State University Wins the 2016 Collegiate Wind Competition Pennsylvania State University Wins the 2016 Collegiate Wind Competition May 27, 2016 - 12:35pm Addthis 1 of 10 The Pennsylvania State University won first place at the U.S. Department of Energy Collegiate Wind Competition in New Orleans on Wednesday, May 25, 2016. The team also won the Turbine Testing and Business Plan contests. Image: Dennis Schroeder, National Renewable Energy Laboratory 2 of 10

  13. Washington State University Wins 2014 Hydrogen Student Design Contest |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Washington State University Wins 2014 Hydrogen Student Design Contest Washington State University Wins 2014 Hydrogen Student Design Contest May 12, 2014 - 12:00pm Addthis Washington State University of Pullman, Washington, has won the Hydrogen Education Foundation's 2014 Hydrogen Student Design Contest. The contest, supported by the U.S. Department of Energy (DOE), is aligned with DOE's efforts to work with the public, academic and energy institutions, to ensure that

  14. CMI Education Partner: Iowa State University | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Partner: Iowa State University Iowa State University offers courses in several areas: Materials Engineering Materials Science and Engineering Recycling/Industrial Engineering Geology Chemistry http://catalog.iastate.edu/collegescurricula/ Course could be changed semester by semester. The list below is based on general information of Iowa State University. Materials Engineering Courses primarily for undergraduates: MAT E 214. Structural Characterization of Materials. (2-2) Cr. 3. F.S. Prereq: MAT

  15. Tom Lograsso, Ames Laboratory (Iowa State University), Future...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tom Lograsso, Ames Laboratory (Iowa State University), Future Directions in Rare Earth Research: Critical Materials for 21st Century Industry Tom Lograsso, Ames Laboratory (Iowa...

  16. Argonne and Mississippi State University partner to create energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mississippi State University partner to create energy storage technology solutions for southeast region August 13, 2015 Tweet EmailPrint Starkville, Miss., - The U.S. Department of...

  17. Secretary Chu to Visit Morgan State University | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    to helping the nation win the future through science, technology, engineering and mathematics (STEM) education. Morgan State University is part of a consortium that is leading...

  18. DOE - Office of Legacy Management -- Ohio State University Metallurgic...

    Office of Legacy Management (LM)

    Ohio State University Metallurgical Engineering Experiment Station -OH 0-05 FUSRAP ... 130 grams of uranium from the AEC. This commercial supply order was filled by Fernald. ...

  19. Delaware State University | OSTI, US Dept of Energy Office of...

    Office of Scientific and Technical Information (OSTI)

    DOE Applauds Delaware State University Science and Technical Programs bbc-logo-new.gif ... Angela Lundbert will help analyze Curiosity's Mars data DSU Breaks Ground for New Optics ...

  20. Boise State University Wind2Water Filtration System

    Broader source: Energy.gov (indexed) [DOE]

    MBE BRONCOS- BOISE STATE UNIVERSITY WIND2WATER FILTRATION SYSTEM Louis Stokes Alliance for Minority Participation MBE Broncos Wind2Water Filtration System 1 Executive Summary The ...

  1. Fermilab Today | State University of New York at Buffalo Profile

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Buffalo May 30, 2012 NAME: State University of New York at Buffalo HOME TOWN: Buffalo, New York MASCOT: Victor E. Bull SCHOOL COLORS: Blue and white PARTICLE PHYSICS...

  2. New Mexico State University District Heating Low Temperature...

    Open Energy Info (EERE)

    Heating Low Temperature Geothermal Facility Jump to: navigation, search Name New Mexico State University District Heating Low Temperature Geothermal Facility Facility New...

  3. NETL Launches a University Coalition for Fossil Energy Research at Pennsylvania State University

    Broader source: Energy.gov [DOE]

    The Department of Energy’s (DOE) National Energy Technology Laboratory (NETL) has selected Pennsylvania State University as the lead institution to establish the University Coalition for Fossil Energy Research. The Coalition will bring together a multi-disciplinary team of researchers from participating universities to address the fundamental research challenges that impede advancement of fossil energy-based technologies.

  4. Organization: Iowa Tribe of Oklahoma

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    * Iowa Tribe of Oklahoma ØFederally Recognized Indian Tribe ØCentral Oklahoma (between OKC & Tulsa) ØStrong Commitment to Energy Efficiency & Renewables * BKJ Solutions, Inc. ØTribally Owned Construction Company ØConstruction with USACE, IHS, BIA & Tribe ØFuture Renewable Energy Development Iowa Tribe of Oklahoma's traditional jurisdictional lands FEASIBILITY GRANT * Objectives ØConduct in-Depth Feasibility Study of Wind Energy ØIdentify & Address Technical Issues Related

  5. PROJECT PROFILE: University at Buffalo, the State University of New York

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (PVRD-SIPS) | Department of Energy at Buffalo, the State University of New York (PVRD-SIPS) PROJECT PROFILE: University at Buffalo, the State University of New York (PVRD-SIPS) Project Name: Green, Stable and Earth Abundant Ionic Photovoltaic Absorbers Based on Chalcogenide Perovskite Funding Opportunity: PVRD-SIPS SunShot Subprogram: Photovoltaics Location: Buffalo, NY SunShot Award Amount: $224,814 Awardee Cost Share: $60,657 Project Investigator: Hao Zeng This project aims to accelerate

  6. Center for Catalysis at Iowa State University

    SciTech Connect (OSTI)

    Kraus, George A.

    2006-10-17

    The overall objective of this proposal is to enable Iowa State University to establish a Center that enjoys world-class stature and eventually enhances the economy through the transfer of innovation from the laboratory to the marketplace. The funds have been used to support experimental proposals from interdisciplinary research teams in areas related to catalysis and green chemistry. Specific focus areas included: Catalytic conversion of renewable natural resources to industrial materials Development of new catalysts for the oxidation or reduction of commodity chemicals Use of enzymes and microorganisms in biocatalysis Development of new, environmentally friendly reactions of industrial importance These focus areas intersect with barriers from the MYTP draft document. Specifically, section 2.4.3.1 Processing and Conversion has a list of bulleted items under Improved Chemical Conversions that includes new hydrogenation catalysts, milder oxidation catalysts, new catalysts for dehydration and selective bond cleavage catalysts. Specifically, the four sections are: 1. Catalyst development (7.4.12.A) 2. Conversion of glycerol (7.4.12.B) 3. Conversion of biodiesel (7.4.12.C) 4. Glucose from starch (7.4.12.D) All funded projects are part of a soybean or corn biorefinery. Two funded projects that have made significant progress toward goals of the MYTP draft document are: Catalysts to convert feedstocks with high fatty acid content to biodiesel (Kraus, Lin, Verkade) and Conversion of Glycerol into 1,3-Propanediol (Lin, Kraus). Currently, biodiesel is prepared using homogeneous base catalysis. However, as producers look for feedstocks other than soybean oil, such as waste restaurant oils and rendered animal fats, they have observed a large amount of free fatty acids contained in the feedstocks. Free fatty acids cannot be converted into biodiesel using homogeneous base-mediated processes. The CCAT catalyst system offers an integrated and cooperative catalytic system

  7. Tulsa, Oklahoma: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    in Tulsa, Oklahoma Harvest Solar Utility Companies in Tulsa, Oklahoma Earth Power Resources Inc References US Census Bureau Incorporated place and minor civil division...

  8. Oklahoma/Incentives | Open Energy Information

    Open Energy Info (EERE)

    Yes Property Tax Exemption for Wind Generators (Oklahoma) Property Tax Incentive Yes Red River Valley REA - Heat Pump Loan Program (Oklahoma) Utility Loan Program Yes...

  9. ,"Oklahoma Natural Gas Consumption by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Oklahoma Natural Gas Consumption by End ... 11:05:14 AM" "Back to Contents","Data 1: Oklahoma Natural Gas Consumption by End Use" ...

  10. ,"Oklahoma Natural Gas Vehicle Fuel Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Oklahoma Natural Gas Vehicle Fuel Consumption ... 12:00:19 PM" "Back to Contents","Data 1: Oklahoma Natural Gas Vehicle Fuel Consumption ...

  11. ,"Oklahoma Natural Gas Underground Storage Withdrawals (MMcf...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Oklahoma Natural Gas Underground Storage ... 11:44:01 AM" "Back to Contents","Data 1: Oklahoma Natural Gas Underground Storage ...

  12. ,"Oklahoma Natural Gas Underground Storage Capacity (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Oklahoma Natural Gas Underground Storage Capacity ... 11:44:43 AM" "Back to Contents","Data 1: Oklahoma Natural Gas Underground Storage Capacity ...

  13. ,"Oklahoma Heat Content of Natural Gas Consumed"

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Oklahoma Heat Content of Natural Gas ... 11:00:12 AM" "Back to Contents","Data 1: Oklahoma Heat Content of Natural Gas Consumed

  14. DOE - Office of Legacy Management -- Ohio State University Metallurgical

    Office of Legacy Management (LM)

    Engineering Experiment Station -OH 0-05 Ohio State University Metallurgical Engineering Experiment Station -OH 0-05 FUSRAP Considered Sites Site: OHIO STATE UNIVERSITY, METALLURGICAL ENGINEERING EXPERIMENT STATION (OH.0-05 ) Eliminated from consideration under FUSRAP - Referred to NRC Designated Name: Not Designated Alternate Name: None Location: Columbus , Ohio OH.0-05-1 Evaluation Year: 1986 OH.0-05-2 Site Operations: Ohio State ordered 130 grams of uranium from the AEC. This commercial

  15. The state of the Java universe

    SciTech Connect (OSTI)

    2011-02-08

    Speaker Bio: James Gosling received a B.Sc. in computer science from the University of Calgary, Canada in 1977. He received a Ph.D. in computer science from Carnegie-Mellon University in 1983. The title of his thesis was The Algebraic Manipulation of Constraints. He has built satellite data acquisition systems, a multiprocessor version of UNIX®, several compilers, mail systems, and window managers. He has also built a WYSIWYG text editor, a constraint-based drawing editor, and a text editor called Emacs, for UNIX systems. At Sun his early activity was as lead engineer of the NeWS window system. He did the original design of the Java programming language and implemented its original compiler and virtual machine. He has recently been a contributor to the Real-Time Specification for Java.

  16. The state of the Java universe

    ScienceCinema (OSTI)

    None

    2011-10-06

    Speaker Bio: James Gosling received a B.Sc. in computer science from the University of Calgary, Canada in 1977. He received a Ph.D. in computer science from Carnegie-Mellon University in 1983. The title of his thesis was The Algebraic Manipulation of Constraints. He has built satellite data acquisition systems, a multiprocessor version of UNIX®, several compilers, mail systems, and window managers. He has also built a WYSIWYG text editor, a constraint-based drawing editor, and a text editor called Emacs, for UNIX systems. At Sun his early activity was as lead engineer of the NeWS window system. He did the original design of the Java programming language and implemented its original compiler and virtual machine. He has recently been a contributor to the Real-Time Specification for Java.

  17. NREL: Wind Research - Boise State University Wins Collegiate...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Boise State University Wins Collegiate Wind Competition 2015 A group of five men wearing blue shirts hold up their first place trophy in the center of the photo. Collegiate Wind...

  18. Boise State University Places First in DOE's Collegiate Wind Competition

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2015 | Department of Energy Boise State University Places First in DOE's Collegiate Wind Competition 2015 Boise State University Places First in DOE's Collegiate Wind Competition 2015 September 15, 2015 - 3:28pm Addthis Collegiate Wind Competition 2015 participants and judges at the National Wind Technology Center at the National Renewable Energy Laboratory. <em>Photo by Lee Jay Fingersh</em> Collegiate Wind Competition 2015 participants and judges at the National Wind Technology

  19. Final Report - Montana State University - Microbial Activity and

    Office of Scientific and Technical Information (OSTI)

    Precipitation at Solution-Solution Mixing Zones in Porous Media (Technical Report) | SciTech Connect Final Report - Montana State University - Microbial Activity and Precipitation at Solution-Solution Mixing Zones in Porous Media Citation Details In-Document Search Title: Final Report - Montana State University - Microbial Activity and Precipitation at Solution-Solution Mixing Zones in Porous Media Background. The use of biological and chemical processes that degrade or immobilize

  20. Argonne National Laboratory and Mississippi State University Partner to

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Create Energy Storage Technology Solutions for Southeast Region - Joint Center for Energy Storage Research Argonne National Laboratory and Mississippi State University Partner to Create Energy Storage Technology Solutions for Southeast Region News Release Starkville, Miss., Aug. 13, 2015 - The U.S. Department of Energy's Argonne National Laboratory and Mississippi State University (MSU) are collaborating to develop new technologies that address next-generation energy storage challenges.

  1. DOE - Office of Legacy Management -- Iowa State University Ames Laboratory

    Office of Legacy Management (LM)

    - IA 01 State University Ames Laboratory - IA 01 FUSRAP Considered Sites Site: Iowa State University Ames Laboratory (IA.01 ) Eliminated from further consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: Wallace Road , Ames , Iowa IA.01-1 IA.01-2 Evaluation Year: Circa 1985 IA.01-3 Site Operations: Produced uranium and thorium metal, recovered uranium scrap, and conducted studies and experimental investigations in connection with chemistry and metallurgy

  2. CMI Education Partner: Rutgers, The State University of New Jersey |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Critical Materials Institute Rutgers, The State University of New Jersey Rutgers, the state university of New Jersey, offers courses in several areas: Materials Science and Engineering, undergraduate level MSE Energy Conversion and Storage Chemical and Biological Engineering Geology-related courses in School of Science and Art Materials Science and Engineering curriculum Online list can be found at http://mse.rutgers.edu/undergraduate-courses

  3. PROJECT PROFILE: Colorado State University (PVRD-SIPS) | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Colorado State University (PVRD-SIPS) PROJECT PROFILE: Colorado State University (PVRD-SIPS) Project Name: Novel Approach to Front-Contact Passivation for Cadmium Telluride Photovoltaics Funding Opportunity: PVRD-SIPS SunShot Subprogram: Photovoltaics Location: Fort Collins, CO SunShot Award Amount: $150,000 Awardee Cost Share: $16,667 Project Investigator: Jason Kephart This project aims to develop front contact passivation for cadmium telluride (CdTe) photovoltaics (PV) through the

  4. Oklahoma Tribe to Install Solar Roof

    Broader source: Energy.gov [DOE]

    An Indian tribe in Anadarko, Oklahoma is installing solar panel roofs on two tribal government buildings.

  5. DOE - Office of Legacy Management -- North Carolina State University - NC

    Office of Legacy Management (LM)

    01 Carolina State University - NC 01 FUSRAP Considered Sites Site: NORTH CAROLINA STATE UNIVERSITY (NC.01) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: North Carolina State College NC.01-1 Location: Raleigh , North Carolina NC.01-1 Evaluation Year: 1993 NC.01-2 Site Operations: Performed investigative research concerning the measurement of the thermal properties of certain granular materials in 1953 and 1954. NC.01-1 NC.01-4 NC.01-5 Site

  6. Key Renewable Energy Opportunities for Oklahoma Tribes | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Key Renewable Energy Opportunities for Oklahoma Tribes Key Renewable Energy Opportunities for Oklahoma Tribes August 13, 2012 Oklahoma City, Oklahoma Cox Convention Center The Office of Indian Energy Tribal Leader Energy Forum on Key Renewable Energy Opportunities for Oklahoma Tribes was held August 13, 2012, in Oklahoma City, Oklahoma. The forum gave Oklahoma tribal leaders the opportunity to receive the latest updates on DOE's energy development efforts in Indian Country and

  7. Bioenergy Technologies Office Judges Washington State University Energy Competition

    Broader source: Energy.gov [DOE]

    Washington State University is hosting the Imagine Tomorrow competition to challenge high school students to explore new ways to support the transition to alternative energy sources. The competition, held on May 30–June 1, 2014, asks students to work together in teams to research topics related to biofuels, technology, behavior, or design.

  8. OREGON STATE UNIVERSITY AND NORTHWEST NATIONAL MARINE RENEWABLE ENERGY CENTER

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    OREGON STATE UNIVERSITY AND NORTHWEST NATIONAL MARINE RENEWABLE ENERGY CENTER WAVE ENERGY TEST PROJECT DRAFT ENVIRONMENTAL ASSESSMENT June 2012 DOE/EA-1917 U.S. Department of Energy Golden Field Office 1617 Cole Boulevard Golden, CO 80401 NNMREC and OSU Wave Energy Test Project Draft Environmental Assessment i June 2012 Contents List of Tables .......................................................................................................................................... iv List of

  9. Johnson, Oklahoma: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Johnson is a town in Pottawatomie County, Oklahoma. It falls under Oklahoma's 5th...

  10. Purcell, Oklahoma: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Purcell is a city in Cleveland County and McClain County, Oklahoma. It falls under Oklahoma's...

  11. Elizabeth City State University: Elizabeth City, North Carolina (Data)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Stoffel, T.; Andreas, A.

    The Historically Black Colleges and Universities (HBCU) Solar Radiation Monitoring Network operated from July 1985 through December 1996. Funded by DOE, the six-station network provided 5-minute averaged measurements of direct normal, global, and diffuse horizontal solar irradiance. The data were processed at NREL to improve the assessment of the solar radiation resources in the southeastern United States. Historical HBCU data available online include quality assessed 5-min data, monthly reports, and plots. In January 1997 the HBCU sites became part of the CONFRRM solar monitoring network and data from the two remaining active stations, Bluefield State College and Elizabeth City State University, are collected by the NREL Measurement & Instrumentation Data Center (MIDC).

  12. Elizabeth City State University: Elizabeth City, North Carolina (Data)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Stoffel, T.; Andreas, A.

    1985-09-25

    The Historically Black Colleges and Universities (HBCU) Solar Radiation Monitoring Network operated from July 1985 through December 1996. Funded by DOE, the six-station network provided 5-minute averaged measurements of direct normal, global, and diffuse horizontal solar irradiance. The data were processed at NREL to improve the assessment of the solar radiation resources in the southeastern United States. Historical HBCU data available online include quality assessed 5-min data, monthly reports, and plots. In January 1997 the HBCU sites became part of the CONFRRM solar monitoring network and data from the two remaining active stations, Bluefield State College and Elizabeth City State University, are collected by the NREL Measurement & Instrumentation Data Center (MIDC).

  13. Oklahoma Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Oklahoma Primary Renewable Energy Capacity Source Wind Primary Renewable Energy Generation Source Wind Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 21,022 100.0 Total Net Summer Renewable Capacity 2,412 11.5 Geothermal - - Hydro Conventional 858 4.1 Solar - - Wind 1,480 7.0 Wood/Wood Waste 58 0.3 MSW/Landfill Gas 16 0.1 Other Biomass - - Generation (thousand megawatthours) Total Electricity Net Generation 72,251 100.0 Total Renewable Net Generation

  14. Oklahoma Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Oklahoma" "Primary Renewable Energy Capacity Source","Wind" "Primary Renewable Energy Generation Source","Wind" "Capacity (megawatts)","Value","Percent of State Total" "Total Net Summer Electricity Capacity",21022,100 "Total Net Summer Renewable Capacity",2412,11.5 " Geothermal","-","-" " Hydro Conventional",858,4.1 " Solar","-","-"

  15. Iowa Tribe of Oklahoma Wind Feasibility Study

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Oklahoma Wind Feasibility Study ORGANIZATION * Iowa Tribe of Oklahoma Federally Recognized Indian Tribe Central Oklahoma (between OKC & Tulsa) Strong Commitment to Energy Efficiency & Renewables * BKJ Solutions, Inc. Tribally Owned Construction Company Construction with USACE, IHS, BIA & Tribe Iowa Tribe of Oklahoma's traditional jurisdictional lands FEASIBILITY GRANT * Objectives Conduct in-Depth Feasibility Study of Wind Energy Identify & Address Technical

  16. ARM - Evaluation Product - Oklahoma Mesonet Soil Moisture Product

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ProductsOklahoma Mesonet Soil Moisture Product ARM Data Discovery Browse Data Documentation Use the Data File Inventory tool to view data availability at the file level. Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Evaluation Product : Oklahoma Mesonet Soil Moisture Product [ ARM research - evaluation data product ] Land surface and subsurface states (e.g., soil moisture) are critical for analyses of land-atmospheric interactions in climate

  17. Heavy Element Synthesis Reactions W. Loveland Oregon State University

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reactions W. Loveland Oregon State University The role of ATLAS in helping us understand heavy element synthesis reactions and heavy element properties * Hot (E*=35-60 MeV) and Cold (E*=15 MeV) fusion reactions * Multi-nucleon transfer reactions * Fission * Atomic physics and chemistry of the heaviest elements * Structure of the heaviest nuclei The challenge of studying the heaviest elements at ATLAS * ATLAS beam time is oversubscribed * Low cross section studies - High luminosity - ATLAS has

  18. Sustainable Hydrogen Fueling Station, California State University, Los Angeles

    SciTech Connect (OSTI)

    Blekhman, David

    2013-01-25

    The College of Engineering, Computer Science, & Technology at California State University, Los Angeles as part of its alternative and renewable energy leadership efforts has built a sustainable hydrogen station to teach and demonstrate the production and application of hydrogen as the next generation of fully renewable fuel for transportation. The requested funding was applied toward the acquisition of the core hydrogen station equipment: electrolyzer, compressors and hydrogen storage.

  19. Heavy Element Synthesis Reaction Mechanisms W. Loveland Oregon State University

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reaction Mechanisms W. Loveland Oregon State University Production of Heavy Elements in Complete Fusion Reactions * We need to know three spin-dependent quantities: (a) the capture cross section, (b) the fusion probability and (c) the survival probability, and their isospin dependence where Examples of cold fusion predictions The problem Hot fusion examples "How good are the model predictions of cross sections" * Very controversial Zagrebaev and Greiner (2015) Zagrebaev et al. (2001)

  20. 2016 Race to Zero Competition: Appalachian State University Team Summary

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Appalachian State University Team (re)Connect RESILIENT HOUSE Project Summary Resilient House was born through a union of the ASU 2016 Advanced Building Science graduate course and the senior design studio to create the newest edition to a local builder's Net-Zero-Energy line. Deltec Homes, a prefabricated home builder r headquartered out of Asheville, NC, recently launched the Renew Collection of net-zero homes. A single family residence that is not only sustainable and zero-energy ready, but

  1. Single stage anaerobic digester at Tarleton State University. Final report

    SciTech Connect (OSTI)

    Not Available

    1980-01-01

    The design and operation of the demonstration plant facilities at Tarleton State University to produce methane in a single stage anaerobic digester are described. A combination of manures from hogs and poultry are used as feedstock. Uses for the methane, cost of the digester, and value of the energy produced are discussed. During the 21 months of operation, 310 people have visited the project. (DMC)

  2. New Mexico State University Campus geothermal demonstration project

    SciTech Connect (OSTI)

    Cuniff, R.A.; Fisher, K.P.; Chintawongvanich, P.

    1984-04-01

    This report presents the design, construction highlights, and performance of the New Mexico State University Campus Geothermal Demonstration Project at Las Cruces, New Mexico. Construction started in July 1981, first system use was January 1982, and the system was dedicated on April 21, 1982. Included herein are summary observations after two years of use. The geothermal hot water from New Mexico State University wells is used to heat potable water, which in turn provides 83 percent of the domestic hot water on the New Mexico State University campus, as well as space heat to two buildings, and for two heated swimming pools. The original system is providing service to 30 total buildings, with two additional buildings (150,000 square feet) in process of geothermal conversion.) The system overall performance has been excellent, except for geothermal well pump problems. In terms of operating efficiency, the system has exceeded the design parameters. In spite of abnormally high costs for well and pump repairs, the system has shown a positive cost avoidance of more than $118,000 for the first year of operation. For the first two full years of operation, the system has produced a net positive cost avoidance of more than $200,000. Payback on the total investment of $1,670,000 is projected to be 6 to 10 years, depending on the future prices of natural gas and electricity.

  3. JLab's role in FRIB at Michigan State University (The State News.com) |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jefferson Lab role in FRIB at Michigan State University (The State News.com) External Link: http://statenews.com/index.php/article/2012/08/when_a_star_explodes By jlab_admin on Thu, 2012-08-02

  4. FE0003537_UofOklahoma | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Next Generation Surfactants for Improved Chemical Flooding Technology Last Reviewed 12/15/2012 DE-FE0003537 Goal The principle objective of the project is to characterize and test current and next generation high performance surfactants for improved chemical flooding technology, focusing on reservoirs in Pennsylvanian age (Penn) sands. Performer Oklahoma University Enhanced Oil Recovery Design Center, Norman, OK Background Primary and secondary methods have produced approximately one-third of

  5. Anisotropy in Broken Cloud Fields Over Oklahoma from Ladsat Data

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Anisotropy in Broken Cloud Fields Over Oklahoma from Landsat Data L. M. Hinkelman National Institute of Aerospace Hampton, Virginia K. F. Evans University of Colorado Boulder, Colorado Introduction Previously, it was shown (Hinkelman et al. 2002) that anisotropy, or the existence of a preferred direction, in cumulus fields significantly affects solar radiative transfer through these fields. In this poster, we investigate the occurrence of anisotropy in broken cloud fields near the Atmospheric

  6. GE funds initiative to support STEM initiatives in Oklahoma | GE Global

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research STEM Empowers OK: Initiative to enrich STEM education in Oklahoma Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) STEM Empowers OK: Initiative to enrich STEM education in Oklahoma On April 21, 2015, GE announced a grant to the state of Oklahoma to enhance STEM education initiatives. Jeff Immelt, GE's

  7. Energy Department Awards Cooperative Agreement to Mississippi State University

    Broader source: Energy.gov [DOE]

    Cincinnati – The U.S. Department of Energy (DOE) today awarded a cooperative agreement to Mississippi State University, Institute for Clean Energy Technology (MSU-ICET), to continue research efforts in the evaluation of High-Efficiency Particulate Air Filters (HEPA) and other technologies to enhance nuclear safety in the defense waste complex. The total value of the cooperative agreement over five years is $5 million. The project period of the cooperative agreement will be from January 20, 2015 through January 19, 2020.

  8. Hierarchical Diagnosis W. R. Cotton Colorado State University

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    W. R. Cotton Colorado State University Department of Atmospheric Science Fort Collins, CO 80523 coarse grid of 80 km down to the finest 2.22 km grid, thus explicitly capturing the system as it transitioned from a convective line only to a system with convective and stratiform regions. This simulation serves us in two ways. First, it acts as further verification for the Level 2.5w convective scheme (the "convective engine" for the MCS parameterization). Second, diagnostic analyses guide

  9. Universal dynamical decoupling of multiqubit states from environment

    SciTech Connect (OSTI)

    Jiang, Liang; Imambekov, Adilet

    2011-12-15

    We study the dynamical decoupling of multiqubit states from environment. For a system of m qubits, the nested Uhrig dynamical decoupling (NUDD) sequence can efficiently suppress generic decoherence induced by the system-environment interaction to order N using (N+1){sup 2m} pulses. We prove that the NUDD sequence is universal, i.e., it can restore the coherence of an m-qubit quantum system independent of the details of the system-environment interaction. We also construct a general mapping between dynamical decoupling problems and discrete quantum walks in certain functional spaces.

  10. Smith Village, Oklahoma: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Smith Village is a town in Oklahoma County, Oklahoma. It falls under Oklahoma's 5th...

  11. Oklahoma Regions | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Oklahoma Regions National Science Bowl (NSB) NSB Home About High School High School ... High School Regionals Oklahoma Regions Print Text Size: A A A FeedbackShare Page Oklahoma ...

  12. Forest Park, Oklahoma: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Forest Park is a town in Oklahoma County, Oklahoma. It falls under Oklahoma's 5th congressional...

  13. Key Renewable Energy Opportunities for Oklahoma Tribes

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    KEY RENEWABLE ENERGY OPPORTUNITIES FOR OKLAHOMA TRIBES August 13, 2012 COX CONVENTION CENTER 100 West Sheridan Avenue, Oklahoma City, OK 73102 (405) 602-8500 The fifth in a series of planned U.S. DOE Office of Indian Energy-sponsored strategic energy development & investment forums, this forum is designed to give Oklahoma tribal leaders the opportunity to receive the latest updates on DOE's energy development efforts in Indian Country. The Forum will provide a venue for tribal leaders to

  14. Iowa Tribe of Oklahoma - Assessment of Wind Resource on Tribal Land

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tribe of Oklahoma The Iowa Tribe of Oklahoma is a federally recognized Indian Tribe eligible for the special programs and services provided by the United States to Indian Tribes, and is recognized as possessing and exercising powers of self- government. Mission The overall objective of the Tribe is to improve the economic and social quality of life for Tribal members and adjacent communities, and to secure the rights, powers and privileges common to a sovereign entity of government. The

  15. Porter, Oklahoma: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Porter, Oklahoma: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 35.8709334, -95.522476 Show Map Loading map... "minzoom":false,"mappingservic...

  16. Oklahoma/Wind Resources | Open Energy Information

    Open Energy Info (EERE)

    Guidebook >> Oklahoma Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical...

  17. ,"Oklahoma Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...ame","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Oklahoma Natural Gas Gross Withdrawals and Production",10,"Monthly","42016","01151989" ,"Release ...

  18. Moore, Oklahoma: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Moore, Oklahoma: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 35.3395079, -97.4867028 Show Map Loading map... "minzoom":false,"mappingservic...

  19. ,"Oklahoma Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Oklahoma Natural Gas Gross Withdrawals and Production",10,"Annual",2014,"06301967" ,"Release...

  20. Tulsa, Oklahoma: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Tulsa, Oklahoma: Energy Resources (Redirected from Tulsa, OK) Jump to: navigation, search Equivalent URI DBpedia Coordinates 36.1539816, -95.992775 Show Map Loading map......

  1. Mustang, Oklahoma: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Mustang, Oklahoma: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 35.384226, -97.7244867 Show Map Loading map... "minzoom":false,"mappingservi...

  2. Oklahoma Natural Gas - Residential Efficiency Rebates | Department...

    Broader source: Energy.gov (indexed) [DOE]

    250 Clothes Dryer: up to 500 Summary To encourage customers to install high-efficiency natural gas equipment in homes, Oklahoma Natural Gas offers rebates to residential...

  3. Arkansas Oklahoma Gas (AOG) Residential Rebate Program

    Broader source: Energy.gov [DOE]

    Arkansas Oklahoma Gas (AOG) provides financial incentives to its residential and small commercial customers for both existing and new construction homes and small business whose primary fuel for...

  4. Bixby, Oklahoma: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    1st congressional district.12 Registered Energy Companies in Bixby, Oklahoma Sun City Solar Energy References US Census Bureau Incorporated place and minor civil...

  5. ,"Oklahoma Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...282016 11:29:50 AM" "Back to Contents","Data 1: Total Underground Storage" ... Natural Gas in Underground Storage (Base Gas) (MMcf)","Oklahoma Natural Gas in ...

  6. City of Lexington, Oklahoma (Utility Company) | Open Energy Informatio...

    Open Energy Info (EERE)

    Lexington, Oklahoma (Utility Company) Jump to: navigation, search Name: City of Lexington Place: Oklahoma Phone Number: (405) 527-6123 Website: www.cityoflexington.comutilit...

  7. Alfalfa County, Oklahoma ASHRAE 169-2006 Climate Zone | Open...

    Open Energy Info (EERE)

    Alfalfa County, Oklahoma ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Alfalfa County, Oklahoma ASHRAE Standard ASHRAE 169-2006 Climate Zone...

  8. Silicon Valley Power and Oklahoma Municipal Power Authority Win...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Silicon Valley Power and Oklahoma Municipal Power Authority Win 2014 Public Power Wind Awards Silicon Valley Power and Oklahoma Municipal Power Authority Win 2014 Public Power Wind ...

  9. Oklahoma Wind Energy Center - A | Open Energy Information

    Open Energy Info (EERE)

    A Jump to: navigation, search Name Oklahoma Wind Energy Center - A Facility Oklahoma Wind Energy Center - A Sector Wind energy Facility Type Commercial Scale Wind Facility Status...

  10. Oklahoma Wind Energy Center - B | Open Energy Information

    Open Energy Info (EERE)

    B Jump to: navigation, search Name Oklahoma Wind Energy Center - B Facility Oklahoma Wind Energy Center - B Sector Wind energy Facility Type Commercial Scale Wind Facility Status...

  11. Tulsa County, Oklahoma: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Zone Subtype A. Registered Energy Companies in Tulsa County, Oklahoma Harvest Solar Sun City Solar Energy Utility Companies in Tulsa County, Oklahoma Earth Power Resources Inc...

  12. Oklahoma Regions | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Oklahoma Regions National Science Bowl (NSB) NSB Home About High School Middle School ... Middle School Regionals Oklahoma Regions Print Text Size: A A A FeedbackShare Page ...

  13. ,"Oklahoma Dry Natural Gas Expected Future Production (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Oklahoma Dry Natural Gas Expected Future ... 12:18:22 PM" "Back to Contents","Data 1: Oklahoma Dry Natural Gas Expected Future ...

  14. ,"Oklahoma Natural Gas Liquids Lease Condensate, Proved Reserves...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Oklahoma Natural Gas Liquids Lease Condensate, ... 12:17:34 PM" "Back to Contents","Data 1: Oklahoma Natural Gas Liquids Lease Condensate, ...

  15. Oklahoma Corporate Commission Oil and Gas | Open Energy Information

    Open Energy Info (EERE)

    Corporate Commission Oil and Gas Jump to: navigation, search Name: Oklahoma Corporate Commission Oil and Gas Place: Oklahoma Zip: 73152-2000 Website: www.occeweb.comogoghome.htm...

  16. New Mexico State University Arrowhead Center PROSPER Project

    SciTech Connect (OSTI)

    Peach, James

    2012-12-31

    This document is the final technical report of the Arrowhead Center Prosper Project at New Mexico State University. The Prosper Project was a research and public policy initiative funded by the National Energy Technology Laboratory (NETL) of the U.S. Department of Energy (DOE). The Prosper project (DOE Grant Number DE-NT0004397) began on October 1, 2008 (FY2009, Quarter 1) and ended on December 31, 2012 (FY2013, Quarter 1). All project milestones were completed on time and within the budget. This report contains a summary of ten technical reports resulting from research conducted during the project. This report also contains a detailed description of the research dissemination and outreach activities of the project including a description of the policy impacts of the project. The report also describes project activities that will be maintained after the end of the project.

  17. Mississippi State University Wins DOE and GM Challenge X 2008 Advanced

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Competition | Department of Energy Mississippi State University Wins DOE and GM Challenge X 2008 Advanced Vehicle Competition Mississippi State University Wins DOE and GM Challenge X 2008 Advanced Vehicle Competition May 21, 2008 - 12:00pm Addthis Launches EcoCAR: The NeXt Challenge WASHINGTON - U.S. Secretary of Energy Samuel W. Bodman today announced that Mississippi State University in Starkville, Miss. is the first place winner of Challenge X, in which 17 university teams from

  18. 2014 Race to Zero Student Design Competition: Penn State University Profile

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Penn State University Profile 2014 Race to Zero Student Design Competition: Penn State University Profile 2014 Race to Zero Student Design Competition: Penn State University Profile, as posted on the U.S. Department of Energy website. rtz_pennstate_profile.pdf (316.25 KB) More Documents & Publications 2014 Race to Zero Student Design Competition: Auburn University Profile 2014 Race to Zero Student Design Competition: Georgia Institute of Technology Profile 2014

  19. Selenium in Oklahoma ground water and soil

    SciTech Connect (OSTI)

    Atalay, A.; Vir Maggon, D.

    1991-03-30

    Selenium with a consumption of 2 liters per day (5). The objectives of this study are: (1) to determine the concentrations of Se in Oklahoma ground water and soil samples. (2) to map the geographical distribution of Se species in Oklahoma. (3) to relate groundwater depth, pH and geology with concentration of Se.

  20. Pennsylvania State University | OSTI, US Dept of Energy, Office...

    Office of Scientific and Technical Information (OSTI)

    Libraries Sustainability Global Reach Penn State Live Social Media Penn State is on Facebook pennstatelive's photostream Penn State with Google+ Penn State Live Official Twitter ...

  1. University at Albany: State University of New York Video (Text Version) |

    Broader source: Energy.gov (indexed) [DOE]

    data dashboard for University Park, Maryland, a partner in the Better Buildings Neighborhood Program. University Park Data Dashboard (307.91 KB) More Documents & Publications Massachusetts -- SEP Data Dashboard Maryland Data Dashboard Bainbridge Island Data Dashboard

    Summary of data reported by Better Buildings Neighborhood Program partner Town of University Park, Maryland. University Park Summary of Reported Data (2.12 MB) More Documents & Publications NYSERDA Summary of Reported

  2. Jobs, tax revenue persuade Oklahoma to waive buyback rule

    SciTech Connect (OSTI)

    Hines, V.

    1985-10-28

    The chance to add up to 900 new jobs and $54 million in tax revenues led Oklahoma regulators to agree to a one-time waiver of a controversial state ruling that discourages long-term buyback rates for cogenerators. The ruling will allow a 100 MW cogeneration project to proceed with its plan to sell steam to the Firestone tire plant and electricity to the local utility. Economic forecasts show that the deal will give the Oklahoma facility the lowest operating cost for any Firestone plant in the country. It will also make Oklahoma more attractive to new businesses and industry. Regulators emphasize that the waiver of rule 58-H applies only to this project, with future proposals to be judged on their own merits. Despite its large gas surplus, the state has virtually no cogeneration, which requires a steady, low-cost fuel supply, an expanding requirement for electricity, and the presence of large industrial steam users. Other issues the commission considered were the capacity and energy buyback rates.

  3. Ball State University Completes Nation's Largest Ground-Source...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and serves as a model for other major facilities and universities across the nation. The Energy Department's Office of Energy Efficiency and Renewable Energy (EERE)...

  4. U.S. Department of Energy Selects Michigan State University To Design and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Establish Facility for Rare Isotope Beams | Department of Energy Michigan State University To Design and Establish Facility for Rare Isotope Beams U.S. Department of Energy Selects Michigan State University To Design and Establish Facility for Rare Isotope Beams December 11, 2008 - 8:51am Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) announced today that Michigan State University (MSU) in East Lansing, MI has been selected to design and establish the Facility for Rare Isotope

  5. Ohio State University Races to the Finish as the Winner of EcoCAR...

    Office of Environmental Management (EM)

    vehicle that runs on electricity and E85. | Photo ... the vehicle's fuel consumption and reducing its ... In the end, Wayne State University's car had the fastest ...

  6. EA-0952: The Louisiana State University Waste-to Energy Incinerator, Baton Rouge, Louisiana

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of the proposal for incinerating combustible, non-recyclable office wastes from Louisiana State University (LSU) administrative/academic areas and...

  7. The Ohio State University Defends Title, Wins Second Year of EcoCAR 3

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Competition | Department of Energy The Ohio State University Defends Title, Wins Second Year of EcoCAR 3 Competition The Ohio State University Defends Title, Wins Second Year of EcoCAR 3 Competition May 27, 2016 - 4:06pm Addthis The Ohio State University won year two of the four-year EcoCAR 3 Competition. | Photo by Advanced Vehicle Technology Competition The Ohio State University won year two of the four-year EcoCAR 3 Competition. | Photo by Advanced Vehicle Technology Competition NEWS

  8. GE Global Research in Oklahoma City

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Oklahoma City, USA Oklahoma City, USA GE's first sector-specific global research center is dedicated to developing and accelerating innovative oil and gas technologies. Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) Visit the Careers page to search and apply for Global Research jobs in Oklahoma City. We also welcome

  9. EXECUTIVE SUMMARY OF STATE DATA RELATED TO ABANDONED CENTRALIZED AND COMMERCIAL DRILLING-FLUID DISPOSAL SITES IN LOUISIANA, NEW MEXICO, OKLAHOMA, AND TEXAS

    SciTech Connect (OSTI)

    H. Seay Nance

    2003-03-01

    This 2003 Spring Semi-Annual Report contains a summary of the Final Technical Report being prepared for the Soil Remediation Requirements at Commercial and Centralized Drilling-Fluid Disposal (CCDD) Sites project funded by the United States Department of Energy under DOE Award No. DE-AC26-99BC15225. The summary describes (1) the objectives of the investigation, (2) a rationale and methodology of the investigation, (3) sources of data, assessment of data quality, and data availability, (4) examples of well documented centralized and commercial drilling-fluid disposal (CCDD) sites and other sites where drilling fluid was disposed of, and (5) examples of abandoned sites and measures undertaken for their assessment and remediation. The report also includes most of the figures, tables, and appendices that will be included in the final report.

  10. Oklahoma Electric Cooperative- Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Oklahoma Energy Cooperative (OEC) offers rebates to residential customers for the purchase of air-source heat pumps, geothermal heat pumps and water heaters. Air-source heat pumps are eligible for...

  11. Oklahoma Electric Coop Inc | Open Energy Information

    Open Energy Info (EERE)

    Electric Coop Inc Place: Oklahoma Phone Number: 1-405-321-2024 Website: www.okcoop.org Twitter: @okcoop Facebook: https:www.facebook.comOklaElec Outage Hotline: 405-321-2024...

  12. Iowas of Oklahoma Renewable Energy Project

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    FUN * Involved in a Renewable Energy Project Grant Application - April 2009 Notification - September 2009 Finalized Details - March 2010 Project Kickoff - May 2010 * Cutting Edge Technology * Economic Development for Tribe FORTUNATE * Project Manager * Iowa Tribe of Oklahoma Federally Recognized Indian Tribe Central Oklahoma (between OKC & Tulsa) Fewer than 700 Tribal Members * BKJ Solutions, Inc. 8(a) / HUBZone Certified Business with SBA Construction with U.S.

  13. EcoCAR 2 Announces Year One Winner: Mississippi State University |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Announces Year One Winner: Mississippi State University EcoCAR 2 Announces Year One Winner: Mississippi State University May 24, 2012 - 10:40am Addthis NEWS MEDIA CONTACT (202) 586-4940 Los Angeles, Calif. - EcoCAR 2: Plugging In to the Future today named Mississippi State University its Year One winner at the EcoCAR 2012 Competition in Los Angeles. The 15 universities competing in EcoCAR 2 gathered for six days of judged competition this week with $100,000 in prize

  14. EcoCAR 2 Competition Announces Year Two Winner: Penn State University |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Competition Announces Year Two Winner: Penn State University EcoCAR 2 Competition Announces Year Two Winner: Penn State University May 24, 2013 - 2:14pm Addthis News Media Contact (202) 586-4940 SAN DIEGO, Calif. - EcoCAR 2: Plugging In to the Future today named Pennsylvania State University its Year Two winner at the EcoCAR 2013 Competition in San Diego. The 15 universities competing in EcoCAR 2 gathered in Yuma, Arizona last week for six days of rigorous vehicle

  15. CARLSBAD ENVIRONMENTAL MONITORING & RESEARCH CENTER NEW MEXICO STATE UNIVERSITY TELEPHONE (575) 887-2759

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ENVIRONMENTAL MONITORING & RESEARCH CENTER NEW MEXICO STATE UNIVERSITY TELEPHONE (575) 887-2759 1400 UNIVERSITY DRIVE, CARLSBAD, NEW MEXICO 88220 FAX NUMBER (575) 887-3051 An Update on CEMRC radiological results from air and surface water sampling activities following the February 14 th , 2014 radiation detection event The Carlsbad Environmental Monitoring and Research Center (CEMRC), an entity of New Mexico State University, continues to conduct radiological separation and analyses on a

  16. Penn State University Puts Collegiate Wind Competition-Winning Turbine on

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Display | Department of Energy Penn State University Puts Collegiate Wind Competition-Winning Turbine on Display Penn State University Puts Collegiate Wind Competition-Winning Turbine on Display July 15, 2016 - 1:00pm Addthis Amber Passmore Collegiate Wind Competition Manager 5 Facts About the Collegiate Wind Competition In May, teams from 12 universities across the country descended upon New Orleans to compete in the Energy Department's second biennial Collegiate Wind Competition. The

  17. Iowa State University student named a 2015 Goldwater Scholar | The Ames

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory Iowa State University student named a 2015 Goldwater Scholar AMES, Iowa -- Iowa State University student Catherine Meis, Le Mars, has been named a 2015 Goldwater Scholar, the nation's premier undergraduate scholarship in mathematics, natural sciences and engineering. Meis is a third-year student, majoring in materials engineering with a minor in bioengineering. Two other Iowa State students earned Honorable Mention in this year's competition. They are Samuel Schulte, a third-year

  18. Changing scene highlights III. [Iowa State University] (Technical...

    Office of Scientific and Technical Information (OSTI)

    Research Org: Ames Lab., IA (USA) Country of Publication: United States Language: English ... ISOTOPE SEPARATION; MATERIALS TESTING; MINING; NATIONAL ORGANIZATIONS; NICKEL ...

  19. Pennsylvania State University Wins Big In Las Vegas: Energy Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Finally, Pennsylvania State was also crowned as the People's Choice winner-the audience's pick for the best business "pitch" presentation. Learn more about the Collegiate Wind ...

  20. Pennsylvania State University | OSTI, US Dept of Energy Office...

    Office of Scientific and Technical Information (OSTI)

    to move inland Penn State's Center for Science and the Schools strengthens STEM education Gamma-ray bursts' highest power side unveiled by Fermi Telescope, Image: NASA Prof. ...

  1. Washington State University Wins 2014 Hydrogen Student Design...

    Broader source: Energy.gov (indexed) [DOE]

    Contest participants included 14 teams of students from the United States, Egypt, India, Japan, Taiwan, South Africa, and China. Representatives from the National Renewable Energy ...

  2. City of Perry, Oklahoma (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    City of Perry, Oklahoma (Utility Company) Jump to: navigation, search Name: City of Perry Place: Oklahoma Phone Number: 580-336-4241 or 580-336-4113 or 580-336-4111 Website:...

  3. El Reno, Oklahoma: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. El Reno is a city in Canadian County, Oklahoma. It falls under Oklahoma's 3rd congressional...

  4. City of Orlando, Oklahoma (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    Orlando, Oklahoma (Utility Company) Jump to: navigation, search Name: City of Orlando Place: Oklahoma References: EIA Form EIA-861 Final Data File for 2010 - File1a1 EIA Form...

  5. ,"Oklahoma Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    586-8800",,,"1292016 12:16:15 AM" "Back to Contents","Data 1: Oklahoma Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035OK3" "Date","Oklahoma...

  6. Rich Mountain Elec Coop, Inc (Oklahoma) | Open Energy Information

    Open Energy Info (EERE)

    Inc (Oklahoma) Jump to: navigation, search Name: Rich Mountain Elec Coop, Inc Place: Oklahoma Phone Number: 1-877-828-4074 Website: www.rmec.com Outage Hotline: 1-877-828-4074...

  7. ,"Oklahoma Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    AM" "Back to Contents","Data 1: Oklahoma Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035OK3" "Date","Oklahoma Natural Gas Industrial Price ...

  8. ,"Oklahoma Natural Gas Underground Storage Net Withdrawals (MMcf...

    U.S. Energy Information Administration (EIA) Indexed Site

    AM" "Back to Contents","Data 1: Oklahoma Natural Gas Underground Storage Net Withdrawals (MMcf)" "Sourcekey","N5070OK2" "Date","Oklahoma Natural Gas Underground Storage Net ...

  9. GE launches 'STEM empowers OK' initiative in Oklahoma City |...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    GE Foundation donates 400,000 to enhance STEM education initiatives across Oklahoma STEM Empowers OK to sponsor week-long, GE Summer Science Academy at OSSM for Oklahoma students ...

  10. Penn State University Puts Collegiate Wind Competition-Winning Turbine on

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Display | Department of Energy Penn State University Puts Collegiate Wind Competition-Winning Turbine on Display Penn State University Puts Collegiate Wind Competition-Winning Turbine on Display Addthis 1 of 5 Team Winergize, from The Pennsylvania State University, visited the U.S. Department of Energy headquarters in Washington, D.C., in July to put their prize-winning wind turbine on display in the lobby. Image: Jeremy Kahn, The Hannon Group 2 of 5 Team Winergize, from The Pennsylvania

  11. Alternative Fuels Data Center: Oklahoma Transportation Data for Alternative

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuels and Vehicles Oklahoma Transportation Data for Alternative Fuels and Vehicles to someone by E-mail Share Alternative Fuels Data Center: Oklahoma Transportation Data for Alternative Fuels and Vehicles on Facebook Tweet about Alternative Fuels Data Center: Oklahoma Transportation Data for Alternative Fuels and Vehicles on Twitter Bookmark Alternative Fuels Data Center: Oklahoma Transportation Data for Alternative Fuels and Vehicles on Google Bookmark Alternative Fuels Data Center:

  12. SBOT OKLAHOMA SOUTHWESTERN POWER ADMIN POC Gary Bridges Telephone

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    OKLAHOMA SOUTHWESTERN POWER ADMIN POC Gary Bridges Telephone (918) 595-6671 Email gary.bridges@swpa...

  13. Wind Resources on Tribal Land. Iowa Tribe of Oklahoma

    SciTech Connect (OSTI)

    Holiday, Michelle

    2015-03-27

    Final project report submitted by the Iowa Tribe of Oklahoma for the Department of Energy Wind Energy Grant

  14. Community-Scale Project Development and Finance Workshop: Oklahoma |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Oklahoma Community-Scale Project Development and Finance Workshop: Oklahoma June 9, 2015 - 10:19am Addthis June 9-11, 2015 Norman, Oklahoma Riverwind Hotel and Casino The DOE Office of Indian Energy hosted a Community-Scale Renewable Energy Project Development and Finance Workshop June 9-11, 2015, at the Riverwind Hotel and Casino in Norman, Oklahoma. Download the agenda and presentations. Addthis Related Articles Ted Wright of the Stillaguamish Tribe and Shannon Loeve

  15. Universities Across the United States Make Strides in Energy...

    Broader source: Energy.gov (indexed) [DOE]

    Energized students on campuses across the United States are learning at a young age just how much money and energy they can save by taking some easy, energy-saving steps. A new ...

  16. Oct. 25-27, 2011 Louisiana State University, Lod Cook Alumni...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    State University, Lod Cook Alumni Center, Baton Rouge, LA (All Activities in Abell Room) Tues Oct. 25: Arrive 6:00 pm: Dinner (provided in Abell room), set up posters Wed Oct...

  17. Pennsylvania State University Wins Big In Las Vegas: Energy Department Crowns Collegiate Wind Competition Champion

    Broader source: Energy.gov [DOE]

    Yesterday in Las Vegas, the Energy Department announced Pennsylvania State University as the winner of the inaugural Collegiate Wind Competition. The clean energy and STEM-focused competition...

  18. The Ohio State University Bioproducts Innovation Center Sustainable Materials Networking Event

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy Bioenergy Technologies Office Deputy Director Dr. Valerie Reed addressed members of The Ohio State University Bioproducts Innovation Center on October 15, 2015, on the main campus of The Ohio State University. Dr. Reed spoke about important upcoming opportunities from the U.S. Department of Energy and the U.S. Department of Agriculture supporting the national bioeconomy.

  19. Michigan State University | OSTI, US Dept of Energy Office of Scientific

    Office of Scientific and Technical Information (OSTI)

    and Technical Information Michigan State University Spotlights Home DOE Applauds Michigan State University Science and Technical Programs Professors and Faculty of Interest Asst. Prof. Lisa Lapidus advances fundamental understanding of protein assembly Dist. Prof. Bradley Sherrill hosts FRIB's international scientists works Assoc. Prof. Norbert Mueller leads team to develop wave disk generator Exceptional Student Research Student engineers construct a humanitarian bicycle built for two

  20. One West Third Street Tulsa, Oklahoma

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Third Street Tulsa, Oklahoma 74103-3502 918-595-6600 Fax 918-595-6656 www.swpa.gov The UPDATE is published by and for customers, retirees, and employees of Southwestern Power Administration like: Katherine (K.C.) Thomas Director, Division of Information Technology (CIO) Tulsa, Oklahoma Special thanks to: Ron Beck Miya Boyken Ashley Butler Scott Carpenter Mike Deihl Ruben Garcia William Hiller David Kannady Jim McDonald Beth Nielsen Fritha Ohlson Tracey Stewart U P D AT E S O U T H W E S T E R N

  1. Oklahoma Shale Production (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Production (Billion Cubic Feet) Oklahoma Shale Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 40 168 249 2010's 403 476 637 698 869 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Shale Natural Gas Estimated Production Oklahoma Shale Gas Proved Reserves, Reserves Changes, and

  2. Oklahoma Shale Proved Reserves (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Proved Reserves (Billion Cubic Feet) Oklahoma Shale Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 944 3,845 6,389 2010's 9,670 10,733 12,572 12,675 16,653 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Shale Natural Gas Proved Reserves as of Dec. 31 Oklahoma Shale Gas

  3. Connecticut State University System Initiative for Nanotechnology-Related Equipment, Faculty Development and Curriculum Development

    SciTech Connect (OSTI)

    Broadbridge, Christine C.

    2013-03-28

    DOE grant used for partial fulfillment of necessary laboratory equipment for course enrichment and new graduate programs in nanotechnology at the four institutions of the Connecticut State University System (CSUS). Equipment in this initial phase included variable pressure scanning electron microscope with energy dispersive x-ray spectroscopy elemental analysis capability [at Southern Connecticut State University]; power x-ray diffractometer [at Central Connecticut State University]; a spectrophotometer and spectrofluorimeter [at Eastern Connecticut State University; and a Raman Spectrometer [at Western Connecticut State University]. DOE's funding was allocated for purchase and installation of this scientific equipment and instrumentation. Subsequently, DOE funding was allocated to fund the curriculum, faculty development and travel necessary to continue development and implementation of the System's Graduate Certificate in Nanotechnology (GCNT) program and the ConnSCU Nanotechnology Center (ConnSCU-NC) at Southern Connecticut State University. All of the established outcomes have been successfully achieved. The courses and structure of the GCNT program have been determined and the program will be completely implemented in the fall of 2013. The instrumentation has been purchased, installed and has been utilized at each campus for the implementation of the nanotechnology courses, CSUS GCNT and the ConnSCU-NC. Additional outcomes for this grant include curriculum development for non-majors as well as faculty and student research.

  4. Delaware State University | OSTI, US Dept of Energy Office of Scientific

    Office of Scientific and Technical Information (OSTI)

    and Technical Information Delaware State University Spotlights Home DOE Applauds Delaware State University Science and Technical Programs bbc-logo-new.gif chudsu.png DSU Leads the Way in Better Buildings DSU is one of the first university partners in the US to join the Department of Energy's Better Buildings inititative to reduce its carbon footprint by 25% by 2015. Secretary of Energy Chu participated in the DSU kick-off program to commemorate the school's efforts in July 2012. Read more

  5. Universities Across the United States Make Strides in Energy Education |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy Eric Barendsen Energy Technology Program Specialist, Office of Energy Efficiency and Renewable Energy When I was in college, money wasn't exactly flying in the door. I ate enough frozen pizza to last a lifetime in the name of fiscal responsibility. But there were certainly better ways to save money than changing my diet, and now I know a few of them. Energized students on campuses across the United States are learning at a young age just how much money and energy they

  6. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of North Dakota Mallory Row, University of Oklahoma Robert Schrom, Pennsylvania State University Elizabeth Smith, University of Oklahoma Jae-in Song, Yonsei University, Korea ...

  7. At Hampton University, Energy Sec. Moniz to Echo President's State of the

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Union Call to Make America a Magnet for Good Jobs and Innovation | Department of Energy At Hampton University, Energy Sec. Moniz to Echo President's State of the Union Call to Make America a Magnet for Good Jobs and Innovation At Hampton University, Energy Sec. Moniz to Echo President's State of the Union Call to Make America a Magnet for Good Jobs and Innovation January 30, 2014 - 12:00pm Addthis News Media Contact (202) 586-4940 WASHINGTON - Tomorrow, Friday, January 31, Secretary of

  8. Arizona State University | OSTI, US Dept of Energy Office of Scientific and

    Office of Scientific and Technical Information (OSTI)

    Technical Information Arizona State University Spotlights Home DOE Applauds Arizona State University Science and Technical Programs az_knowledge.png ASU research awards grew to more than $347 million in 2010 Read about DOE's Research Initiatives Southwest%20Energy%20Innovation%20Forum. Southwest Energy Innovation Forum - Report ARPA-E%20Award%20Cyanobacteria%20for%20S Cyanobacteria for Solar-Powered Biofuels (ARPA-E) DOE%20Funds%20Bio-Inspired%20Solar%20Fue DOE Funds Bio-Inspired Solar Fuel

  9. Kansas Natural Gas Processed in Oklahoma (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Oklahoma (Million Cubic Feet) Kansas Natural Gas Processed in Oklahoma (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 804 775 703 248 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: Natural Gas Processed Kansas-Oklahoma

  10. Kansas Natural Gas Plant Liquids Production Extracted in Oklahoma (Million

    Gasoline and Diesel Fuel Update (EIA)

    Cubic Feet) Oklahoma (Million Cubic Feet) Kansas Natural Gas Plant Liquids Production Extracted in Oklahoma (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 7 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: NGPL Production, Gaseous Equivalent Kansas-Oklahoma

  11. Love County, Oklahoma: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Love County, Oklahoma: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.985839, -97.2221421 Show Map Loading map... "minzoom":false,"mappings...

  12. Smart Meters Helping Oklahoma Consumers Save Hundreds During...

    Energy Savers [EERE]

    Smart Meters Helping Oklahoma Consumers Save Hundreds During Summer Heat July 26, 2011 - ... on Good Morning America that he's saving over 320 per month compared to last ...

  13. Texas County, Oklahoma: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Texas County, Oklahoma: Energy Resources Jump to: navigation, search Equivalent URI DBpedia...

  14. Alfalfa County, Oklahoma: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Alfalfa County, Oklahoma: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 36.7435919, -98.3964938 Show Map Loading map... "minzoom":false,"mapp...

  15. Dewey County, Oklahoma: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Dewey County, Oklahoma: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 36.017265, -98.9245343 Show Map Loading map... "minzoom":false,"mapping...

  16. ,"Oklahoma Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Oklahoma...

  17. Rocky Mountain, Oklahoma: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Rocky Mountain, Oklahoma: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 35.8053663, -94.7674486 Show Map Loading map... "minzoom":false,"mapp...

  18. Sand Springs, Oklahoma: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Sand Springs, Oklahoma: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 36.1398102, -96.108891 Show Map Loading map... "minzoom":false,"mapping...

  19. Valley Brook, Oklahoma: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Valley Brook, Oklahoma: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 35.4020066, -97.4814258 Show Map Loading map... "minzoom":false,"mappin...

  20. Warr Acres, Oklahoma: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Warr Acres, Oklahoma: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 35.5225567, -97.6189304 Show Map Loading map... "minzoom":false,"mappings...

  1. Cotton County, Oklahoma: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Cotton County, Oklahoma: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 34.309094, -98.3964938 Show Map Loading map... "minzoom":false,"mappin...

  2. Oklahoma Crude Oil + Lease Condensate Proved Reserves (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Oklahoma Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Decade Year-0 ... Release Date: 11192015 Next Release Date: 12312016 Referring Pages: Crude Oil plus ...

  3. Cherry Tree, Oklahoma: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Tree, Oklahoma: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 35.7414755, -94.6432774 Show Map Loading map... "minzoom":false,"mappingservice...

  4. Oklahoma Municipal Power Authority- Commercial and Industrial Energy Efficiency Program

    Broader source: Energy.gov [DOE]

    The Oklahoma Municipal Power Authority (OMPA) offers the Demand and Energy Efficiency Program (DEEP) to eligible commercial, industrial, and municipal government customers served by OMPA. This...

  5. City of Edmond, Oklahoma (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    Edmond Place: Oklahoma Phone Number: (405) 359-4541 Website: www.edmondok.comindex.aspx?NI Twitter: @cityofedmond Facebook: https:www.facebook.comcoedmond Outage Hotline: After...

  6. ,"Oklahoma Natural Gas Underground Storage Net Withdrawals (MMcf...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Oklahoma Natural Gas Underground Storage Net Withdrawals (MMcf)",1,"Monthly","102015" ,"Release...

  7. ,"Oklahoma Natural Gas Vehicle Fuel Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Oklahoma Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)",1,"Annual",2012 ,"Release...

  8. Valley Park, Oklahoma: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Park, Oklahoma: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 36.2928744, -95.737483 Show Map Loading map... "minzoom":false,"mappingservice"...

  9. Woodlawn Park, Oklahoma: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Woodlawn Park, Oklahoma: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 35.5114455, -97.6500419 Show Map Loading map... "minzoom":false,"mappi...

  10. Nicoma Park, Oklahoma: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Nicoma Park, Oklahoma: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 35.4911731, -97.3230893 Show Map Loading map... "minzoom":false,"mapping...

  11. RES Oklahoma 2016: Office of Indian Energy Session on Tribal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Office of Indian Energy Session on Tribal Energy: Strategic Roadmap 2025 RES Oklahoma 2016: Office of Indian Energy Session on Tribal Energy: Strategic Roadmap 2025 July 12, 2016 ...

  12. ,"Oklahoma Natural Gas Plant Liquids, Expected Future Production...

    U.S. Energy Information Administration (EIA) Indexed Site

    Plant Liquids, Expected Future Production (Million Barrels)" ,"Click worksheet name or tab ... Data for" ,"Data 1","Oklahoma Natural Gas Plant Liquids, Expected Future Production ...

  13. Oklahoma Working Natural Gas Underground Storage Capacity (Million...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Oklahoma Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun...

  14. Oklahoma Municipal Power Authority- WISE Residential Energy Efficiency Rebate Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Oklahoma Municipal Power Authority (OMPA) offers residential customers rebates on a variety of HVAC equipment through its WISE Rebate program. This program encourages residential customers and...

  15. Ball State University Completes Nation's Largest Ground-Source Geothermal System with Support from Recovery Act

    Broader source: Energy.gov [DOE]

    As part of the Obama Administration's all-of-the-above approach to American energy, the Energy Department today congratulated Ball State University for its campus-wide ground-source geothermal system, the nation's largest geothermal heating and cooling system.

  16. Microsoft Word - DOE-ID-14-053 Boise State University EC B3.15.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6 SECTION A. Project Title: Nanostructured Bulk Thermoelectric Generator for Efficient Power Harvesting for Self-powered Sensor Networks - Boise State University SECTION B. Project Description Boise State University will conduct research to research is to develop efficient and reliable thermoelectric generators (TEGs) based on high-efficiency nanostructured bulk materials that directly convert heat into electricity to power wireless sensor nodes (WSNs) for nuclear applications. The university,

  17. Grand Valley State University Checks Out Energy Savings at New Mary Idema Pew Library

    SciTech Connect (OSTI)

    none,

    2013-03-01

    Grand Valley State University (GVSU) partnered with the Department of Energy (DOE) to develop and implement solutions to build new, low-energy buildings that are at least 50% below Standard 90.1-2007 of the American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE), the American National Standards Institute (ANSI), and the Illuminating Engineering Society of North America (IESNA) as part of DOE’s Commercial Building Partnerships (CBP) Program.

  18. PROJECT PROFILE: Arizona State University 2 (PVRD-SIPS) | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy 2 (PVRD-SIPS) PROJECT PROFILE: Arizona State University 2 (PVRD-SIPS) Project Name: Sound Assisted Low Temperature Spalling for Low Cost Silicon Funding Opportunity: PVRD-SIPS SunShot Subprogram: Photovoltaics Location: Tempe, AZ SunShot Award Amount: $179,284 Awardee Cost Share: $19,930 Project Investigator: Mariana Bertoni This project is evaluating and developing a method for sound-assisted low temperature (SALT) spalling to enable low-cost silicon wafers. This disruptive

  19. Microsoft Word - DOE-ID-14-041 Oregon State University _2 EC B3-6.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 SECTION A. Project Title: Imagining a Dry Storage Cask with Cosmic Ray Muons- Oregon State University SECTION B. Project Description Oregon State University will build a prototype system for monitoring spent nuclear fuel dry storage casks (DSCs) using cosmic ray muon imaging technique. Such a system will have the capability of verifying and measuring the content inside a DSC without opening it. This proposal has six major tasks: i) a literature survey on the current state-of-knowledge related

  20. Texas Onshore Natural Gas Plant Liquids Production Extracted in Oklahoma

    Gasoline and Diesel Fuel Update (EIA)

    (Million Cubic Feet) Oklahoma (Million Cubic Feet) Texas Onshore Natural Gas Plant Liquids Production Extracted in Oklahoma (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 8,718 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: NGPL Production, Gaseous Equivalent Texas Onshore-Oklahoma

  1. Texas Onshore Natural Gas Processed in Oklahoma (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Oklahoma (Million Cubic Feet) Texas Onshore Natural Gas Processed in Oklahoma (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 96,052 85,735 84,723 84,386 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: Natural Gas Processed Texas Onshore-Oklahoma

  2. Browse by Discipline -- E-print Network Subject Pathways: Energy...

    Office of Scientific and Technical Information (OSTI)

    ... Oklahoma State University - School of Electrical and Computer Engineering, Center for Laser and Photonics Research Oklahoma, University of - Department of Physics and Astronomy, ...

  3. Evidence for Universal Four-Body States Tied to an Efimov Trimer

    SciTech Connect (OSTI)

    Ferlaino, F.; Knoop, S.; Berninger, M.; Harm, W.; Naegerl, H.-C.; D'Incao, J. P.; Grimm, R.

    2009-04-10

    We report on the measurement of four-body recombination rate coefficients in an atomic gas. Our results obtained with an ultracold sample of cesium atoms at negative scattering lengths show a resonant enhancement of losses and provide strong evidence for the existence of a pair of four-body states, which is strictly connected to Efimov trimers via universal relations. Our findings confirm recent theoretical predictions and demonstrate the enrichment of the Efimov scenario when a fourth particle is added to the generic three-body problem.

  4. Oklahoma Natural Gas Repressuring (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Repressuring (Million Cubic Feet) Oklahoma Natural Gas Repressuring (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 81,755 86,285 87,196 1970's 86,432 85,027 82,265 82,396 83,488 83,486 85,479 89,365 91,342 96,366 1980's 101,198 2000's 0 0 0 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date:

  5. Jackson County, Oklahoma: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Jackson County is a county in Oklahoma. Its FIPS County Code is 065. It is classified as...

  6. Oklahoma Dry Natural Gas New Reservoir Discoveries in Old Fields...

    U.S. Energy Information Administration (EIA) Indexed Site

    New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Oklahoma Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 ...

  7. City of Pawhuska, Oklahoma (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    search Name: City of Pawhuska Place: Oklahoma Phone Number: 918-287-2751 Website: ok-pawhuska.civiccities.comin Outage Hotline: After Hours 918-287-3260 References: EIA...

  8. Category:Oklahoma City, OK | Open Energy Information

    Open Energy Info (EERE)

    OK Jump to: navigation, search Go Back to PV Economics By Location Media in category "Oklahoma City, OK" The following 16 files are in this category, out of 16 total....

  9. City of Purcell, Oklahoma (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    Name: Purcell City of Place: Oklahoma Phone Number: (405) 527-6561 Website: www.purcell.ok.govindex.aspx? Twitter: @CityOfPurcellOK Facebook: https:www.facebook.com...

  10. City of Cordell, Oklahoma (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    search Name: City of Cordell Place: Oklahoma Phone Number: 580-832-3825 Website: cordell-ok.comcity.html Outage Hotline: 580-832-3825 References: EIA Form EIA-861 Final Data File...

  11. ,"Oklahoma Natural Gas Price Sold to Electric Power Consumers...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,"(202) 586-8800",,,"03282016 11:41:07 AM" "Back to Contents","Data 1: Oklahoma Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)" ...

  12. Tri-County Electric Coop, Inc (Oklahoma) | Open Energy Information

    Open Energy Info (EERE)

    Logo: Tri-County Electric Coop, Inc Name: Tri-County Electric Coop, Inc Address: PO Box 880 302 East Glaydas Place: Hooker, Oklahoma Zip: 73945 Product: Distribution Electric...

  13. City of Newkirk, Oklahoma (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    Place: Oklahoma Phone Number: 580 362-2117 or 580 362-2155 Website: newkirkchamber.comhtmlUtilit Outage Hotline: 580 362-2117 References: EIA Form EIA-861 Final Data File for...

  14. City of Mooreland, Oklahoma (Utility Company) | Open Energy Informatio...

    Open Energy Info (EERE)

    Oklahoma Phone Number: 580-994-5924 or 580-994-5925 Website: www.moorelandok.comindex.html Outage Hotline: 580-994-5924 or 580-994-5925 References: EIA Form EIA-861 Final Data...

  15. West Peavine, Oklahoma: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. West Peavine is a census-designated place in Adair County, Oklahoma.1 References US...

  16. Oklahoma Municipal Power Authority- WISE Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    The Oklahoma Municipal Power Authority (OMPA) offers rebates on a variety of HVAC equipment through its WISE Rebate program. This program encourages residential customers and builders to upgrade to...

  17. Murray County, Oklahoma: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Murray County is a county in Oklahoma. Its FIPS County Code is 099. It is classified as...

  18. Water Law and Management in Oklahoma | Open Energy Information

    Open Energy Info (EERE)

    OpenEI Reference LibraryAdd to library PermittingRegulatory Guidance - GuideHandbook: Water Law and Management in OklahomaPermittingRegulatory GuidanceGuideHandbook Abstract...

  19. Oklahoma Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet) Oklahoma Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 7,051 6,368 ...

  20. Oklahoma Natural Gas in Underground Storage (Working Gas) (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Working Gas) (Million Cubic Feet) Oklahoma Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 129,245 ...

  1. 2009 National Electric Transmission Congestion Study- Oklahoma City Workshop

    Broader source: Energy.gov [DOE]

    On June 18, 2008, DOE hosted a regional pre-study workshop in Oklahoma City, OK to receive input and suggestions concerning the 2009 National Electric Transmission Congestion Study. The agenda,...

  2. Oklahoma Municipal Power Authority- WISE Energy Efficiency Loan Program

    Broader source: Energy.gov [DOE]

    The Oklahoma Municipal Power Authority (OMPA) offers loans for a variety of measures and equipment through its "Ways I Save Electricity" (WISE) Loan Program. This program encourages residential and...

  3. City of Stroud, Oklahoma (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    Stroud Place: Oklahoma Phone Number: (918) 968-2571 Website: cityofstroud.comindex.aspx?ni Outage Hotline: (918) 968-2571 or After Hours (918) 968-2733 References: EIA Form...

  4. Logan County, Oklahoma: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Logan County is a county in Oklahoma. Its FIPS County Code is 083. It is classified as...

  5. Oklahoma Coalbed Methane Proved Reserves (Billion Cubic Feet...

    U.S. Energy Information Administration (EIA) Indexed Site

    Coalbed Methane Proved Reserves (Billion Cubic Feet) Oklahoma Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  6. Oklahoma Total Electric Power Industry Net Generation, by Energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    Oklahoma" "Energy Source",2006,2007,2008,2009,2010 "Fossil",68093,67765,70122,68700,65435 " Coal",35032,34438,36315,34059,31475 " Petroleum",64,160,23,9,18 " Natural ...

  7. Harper County, Oklahoma: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Harper County is a county in Oklahoma. Its FIPS County Code is 059. It is classified as...

  8. U.S. Department of Energy Awards Contract for Management and Operation of Ames Laboratory to Iowa State University

    Broader source: Energy.gov [DOE]

    WASHINGTON, DC - The U.S. Department of Energy (DOE) has awarded a new $150 million, five-year contract for management and operation of Ames Laboratory to Iowa State University (ISU).

  9. Reducing Peak Demand to Defer Power Plant Construction in Oklahoma

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reducing Peak Demand to Defer Power Plant Construction in Oklahoma Located in the heart of "Tornado Alley," Oklahoma Gas & Electric Company's (OG&E) electric grid faces significant challenges from severe weather, hot summers, and about 2% annual load growth. To better control costs and manage electric reliability under these conditions, OG&E is pursuing demand response strategies made possible by implementation of smart grid technologies, tools, and techniques from

  10. Microsoft Word - DOE-ID-14-038 Ohio State University _4 EC B3-6.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8 SECTION A. Project Title: Experimental Investigation and CFD Analysis of Steam Ingress Accidents in HTGRs - Ohio State University SECTION B. Project Description Ohio State University The goal of the proposed research is to better understand steam ingress phenomenon in High-Temperature Gas Reactors. The specific objectives are to: 1. Experimentally investigate steam ingress accidents caused by a postulated SG tube rupture initiating event, focusing on the integral effects of both the

  11. Microsoft Word - DOE-ID-14-039 Oregon State University _1 EC B3-6.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    39 SECTION A. Project Title: Fluid Stratification Separate Effects Analysis, Testing, and Benchmarking- Oregon State University SECTION B. Project Description Oregon State University will perform research to experimentally characterize, in a scaled separate effects test facility, the role of stratified flow as it contributes to the air-ingress accident related to a high-temperature gas reactor. Thus the study has the following scope: 1. Implement scaling analysis to preserve the dominant

  12. Microsoft Word - DOE-ID-14-049 Iowa State University EC B3-6.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    49 SECTION A. Project Title: Advanced Models for Nondestructive Evaluation of Aging Nuclear Power Plant Cables - Iowa State University SECTION B. Project Description Iowa State University will perform R&D related to modeling the aging of two major NPP cable polymers - ethylene propylene rubber (EPR) and cross-linked polyethylene (XLPE). The cable polymers will be aged under various conditions e.g. elevated temperature, neutron/gamma irradiation, and water immersion. The testing using

  13. Solar energy system performance evaluation: seasonal report for Elcam Tempe Arizona State University, Tempe, Arizona

    SciTech Connect (OSTI)

    Not Available

    1980-05-01

    The analysis used is based on instrumented system data monitored and collected for at least one full season of operation. The objective of the analysis is to report the long-term field performance of the installed system and to make technical contributions to the definition of techniques and requirements for solar energy system design. The solar system, Elcam-Tempe, was designed to supply commercial domestic hot water heating systems that utilize two, four by eight foot flat plate collectors to heat water in a fifty-two gallon preheat tank or a fifty-two gallon domestic hot water (DHW) tank. The DHW tank provides hot water to the Agriculture Department residence at Arizona State University. The system uses an automatic cascade control system to control three independent actuators, the coolant circulation pump, the cascade valve, and the electric heating element. The system provides freeze protection by automatically circulating hot water from the hot water tank through the collectors when the collector outlet temperature is below a specified value. The building is a single story residence located at the agriculture experiment farm of the Arizona State University. The Elcam-Tempe Solar Energy System has four modes of operation.

  14. Geothermal Well and Heat Flow Data for the United States (Southern Methodist University (SMU) Geothermal Laboratory)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Blackwell, D.D. and others

    Southern Methodist University makes two databases and several detailed maps available. The Regional Heat Flow Database for the United States contains information on primarily regional or background wells that determine the heat flow for the United States; temperature gradients and conductivity are used to generate heat flow measurements. Information on geology of the location, porosity, thermal conductivity, water table depth, etc. are also included when known. There are usually three data files for each state or region. The first files were generated in 1989 for the data base creating the Decade of North America Geology (DNAG) Geothermal Map. The second set is from 1996 when the data base was officially updated for the Department of Energy. The third set is from 1999 when the Western U.S. High Temperature Geothermal data base was completed. As new data is received, the files continue to be updated. The second major resource is the Western Geothermal Areas Database, a database of over 5000 wells in primarily high temperature geothermal areas from the Rockies to the Pacific Ocean. The majority of the data are from company documents, well logs, and publications with drilling dates ranging from 1960 to 2000. Many of the wells were not previously accessible to the public. Users will need to register, but will then have free, open access to the databases. The contents of each database can be viewed and downloaded as Excel spreadsheets. See also the heat flow maps at http://www.smu.edu/geothermal/heatflow/heatflow.htm

  15. Results from the NRC AP600 testing program at the Oregon State University APEX facility

    SciTech Connect (OSTI)

    Reyes, J.N. Jr.; Bessette, D.E.; DiMarzo, M.

    1996-03-01

    The Department of Nuclear Engineering at Oregon State University (OSU) is performing a series of confirmatory tests for the U.S. Nuclear Regulatory Commission. These tests are being conducted in the Advanced Plant Experiment (APEX) facility which is a 1/4 length scale and 1/192 volume scale integral system simulation of the Westinghouse Advanced Passive 600 MWe (AP600) plant. The purpose of the testing program is to examine AP600 passive safety system performance, particularly during long term cooling. Thus far, OSU has successfully performed ten integral system tests for the NRC. This paper presents a description of the APEX facility and summarizes the important results of the NRC test program at OSU.

  16. HYDROGEN AND FUEL CELL EDUCATION AT CALIFORNIA STATE UNIVERSITY, LOS ANGELES

    SciTech Connect (OSTI)

    Blekhman, David

    2011-09-30

    California State University, Los Angeles, has partnered with the Department of Energy in addressing the workforce preparation and public education needs of the fuel cell industry and the US economy through a comprehensive set of curriculum development and training activities: * Developing and offering several courses in fuel cell technologies, hydrogen and alternative fuels production, alternative and renewable energy technologies as means of zero emissions hydrogen economy, and sustainable environment. * Establishing a zero emissions PEM fuel cell and hydrogen laboratory supporting curriculum and graduate students teaching and research experiences. * Providing engaging capstone projects for multi-disciplinary teams of senior undergraduate students. * Fostering partnerships with automotive OEMs and energy providers. * Organizing and participating in synergistic projects and activities that grow the program and assure its sustainability.

  17. New Global Oil & Gas Hub in Oklahoma City | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Selects Oklahoma City Site for New Global Hub of Oil & Gas Technology Innovation Click to ... GE Selects Oklahoma City Site for New Global Hub of Oil & Gas Technology Innovation New ...

  18. Oklahoma Natural Gas Processed (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Processed (Million Cubic Feet) Oklahoma Natural Gas Processed (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 1,038,103 1,122,692 1,167,150 1970's 1,183,273 1,123,614 1,116,872 1,175,548 1,092,487 1,033,003 1,072,992 1,057,326 1,069,293 1980's 1,063,256 1,112,740 1,023,057 1,118,403 1,137,463 1,103,062 1,127,780 1,301,673 1,145,688 1990's 1,102,301 1,100,812 1,071,426 1,082,452 1,092,734 1,015,965 1,054,123 1,014,008 947,177 892,396 2000's

  19. Iowa Tribe of Oklahoma's Assessment of Wind Resources on Tribal Land

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Oklahoma's Assessment of Wind Resources on Tribal Land DOE's Tribal Energy Program Review March 24-27, 2014 - Denver, CO Overview  Iowa Tribe of Oklahoma  Iowa Tribe Long Term Energy Vision  Historical Renewable Energy Timeline  Project Objectives  Wind Study Reports  New Location Update  Changes and Challenges  Next Steps and Final Report Iowa Tribe of Oklahoma  Tribal enrollment is over 780  Organized under the Oklahoma Indian Welfare Act, which authorized the

  20. Labs & Universities | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Michigan State University Minnesota, University of Mississippi State University Missouri, University of New Hampshire, University of New Mexico, University of New Mexico State ...

  1. The Intense Slow Positron Beam Facility at the NC State University PULSTAR Reactor

    SciTech Connect (OSTI)

    Hawari, Ayman I.; Moxom, Jeremy; Hathaway, Alfred G.; Brown, Benjamin; Xu, Jun

    2009-03-10

    An intense slow positron beam is in its early stages of operation at the 1-MW open-pool PULSTAR research reactor at North Carolina State University. The positron beam line is installed in a beam port that has a 30-cmx30-cm cross sectional view of the core. The positrons are created in a tungsten converter/moderator by pair-production using gamma rays produced in the reactor core and by neutron capture reactions in cadmium cladding surrounding the tungsten. Upon moderation, slow ({approx}3 eV) positrons that are emitted from the moderator are electrostatically extracted, focused and magnetically guided until they exit the reactor biological shield with 1-keV energy, approximately 3-cm beam diameter and an intensity exceeding 6x10{sup 8} positrons per second. A magnetic beam switch and transport system has been installed and tested that directs the beam into one of two spectrometers. The spectrometers are designed to implement state-of-the-art PALS and DBS techniques to perform positron and positronium annihilation studies of nanophases in matter.

  2. Oklahoma Dry Natural Gas Reserves Sales (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Sales (Billion Cubic Feet) Oklahoma Dry Natural Gas Reserves Sales (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,243 480 767 1,598 511 539 821 1,545 395 600 2010's 219 2,995 1,133 733 1,088 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Dry Natural Gas Reserves Sales Oklahoma Dry Natural

  3. Oklahoma Natural Gas Plant Liquids Production Extracted in Texas (Million

    Gasoline and Diesel Fuel Update (EIA)

    Cubic Feet) Texas (Million Cubic Feet) Oklahoma Natural Gas Plant Liquids Production Extracted in Texas (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 2,434 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: NGPL Production, Gaseous Equivalent Oklahoma-Texas

  4. Smart Meters Helping Oklahoma Consumers Save Hundreds During Summer Heat |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Meters Helping Oklahoma Consumers Save Hundreds During Summer Heat Smart Meters Helping Oklahoma Consumers Save Hundreds During Summer Heat July 26, 2011 - 4:27pm Addthis Small business owner Steve Kaplan told ABC News’ “Show Me the Money” on Good Morning America that he's saving over $320 per month compared to last summer, which they calculated could result in $1,300 a year. Small business owner Steve Kaplan told ABC News' "Show Me the Money" on

  5. Oklahoma Dry Natural Gas Production (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Proved Reserves (Billion Cubic Feet) Oklahoma Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 568 684 1,265 511 338 2010's 325 274 439 440 602 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 Oklahoma Coalbed Methane

  6. Oklahoma Natural Gas Processed in Texas (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Texas (Million Cubic Feet) Oklahoma Natural Gas Processed in Texas (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 16,462 18,595 18,455 17,361 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: Natural Gas Processed Oklahoma-Texas

  7. Final Report: An Undergraduate Minor in Wind Energy at Iowa State University

    SciTech Connect (OSTI)

    James McCalley

    2012-11-14

    This report describes an undergraduate minor program in wind energy that has been developed at Iowa State University. The minor program targets engineering and meteorology students and was developed to provide interested students with focused technical expertise in wind energy science and engineering, to increase their employability and ultimate effectiveness in this growing industry. The report describes the requirements of the minor program and courses that fulfill those requirements. Five new courses directly addressing wind energy have been developed. Topical descriptions for these five courses are provided in this report. Six industry experts in various aspects of wind energy science and engineering reviewed the wind energy minor program and provided detailed comments on the program structure, the content of the courses, and the employability in the wind energy industry of students who complete the program. The general consensus is that the program is well structured, the course content is highly relevant, and students who complete it will be highly employable in the wind energy industry. The detailed comments of the reviewers are included in the report.

  8. Final report to DOE: Matching Grant Program for the Penn State University Nuclear Engineering Program

    SciTech Connect (OSTI)

    Jack S. Brenizer, Jr.

    2003-01-17

    The DOE/Industry Matching Grant Program is designed to encourage collaborative support for nuclear engineering education as well as research between the nation's nuclear industry and the U.S. Department of Energy (DOE). Despite a serious decline in student enrollments in the 1980s and 1990s, the discipline of nuclear engineering remained important to the advancement of the mission goals of DOE. The program is designed to ensure that academic programs in nuclear engineering are maintained and enhanced in universities throughout the U.S. At Penn State, the Matching Grant Program played a critical role in the survival of the Nuclear Engineering degree programs. Funds were used in a variety of ways to support both undergraduate and graduate students directly. Some of these included providing seed funding for new graduate research initiatives, funding the development of new course materials, supporting new teaching facilities, maintenance and purchase of teaching laboratory equipment, and providing undergraduate scholarships, graduate fellowships, and wage payroll positions for students.

  9. Mississippi State University Cooling, Heating, and Power (Micro-CHP) and Bio-Fuel Center

    SciTech Connect (OSTI)

    Mago, Pedro; Newell, LeLe

    2014-01-31

    Between 2008 and 2014, the U.S. Department of Energy funded the MSU Micro-CHP and Bio-Fuel Center located at Mississippi State University. The overall objective of this project was to enable micro-CHP (micro-combined heat and power) utilization, to facilitate and promote the use of CHP systems and to educate architects, engineers, and agricultural producers and scientists on the benefits of CHP systems. Therefore, the work of the Center focused on the three areas: CHP system modeling and optimization, outreach, and research. In general, the results obtained from this project demonstrated that CHP systems are attractive because they can provide energy, environmental, and economic benefits. Some of these benefits include the potential to reduce operational cost, carbon dioxide emissions, primary energy consumption, and power reliability during electric grid disruptions. The knowledge disseminated in numerous journal and conference papers from the outcomes of this project is beneficial to engineers, architects, agricultural producers, scientists and the public in general who are interested in CHP technology and applications. In addition, more than 48 graduate students and 23 undergraduate students, benefited from the training and research performed in the MSU Micro-CHP and Bio-Fuel Center.

  10. Blackwell | Open Energy Information

    Open Energy Info (EERE)

    Energy Purchaser Oklahoma State University via Oklahoma Gas & Electric Location Nardin OK Coordinates 36.85261694, -97.43310928 Show Map Loading map... "minzoom":false,"mapp...

  11. Field Evaluation of a Near Zero Energy Home in Oklahoma

    SciTech Connect (OSTI)

    Hendron, R.; Hancock, E.; Barker, G.; Reeves, P.

    2008-08-01

    The authors evaluated a zero energy home built by Ideal Homes in Edmond, Oklahoma, that included an extensive package of energy-efficient technologies and a photovoltaic array for site electricity generation. The home was part of a Building America research project in partnership with the Building Science Consortium to exhibit high efficiency technologies while keeping costs within the reach of average home buyers.

  12. Oklahoma Dry Natural Gas Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Oklahoma Dry Natural Gas Production (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2006 129,135 117,495 130,894 129,451 133,836 135,150 137,891 136,729 ...

  13. Oklahoma Recovery Act State Memo | Department of Energy

    Office of Environmental Management (EM)

    oil, gas, solar, wind, and hydroelectric power. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. ...

  14. Oklahoma-Kansas Natural Gas Plant Processing

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Speculation and Oil Price Volatility Robert J. Weiner Robert J. Weiner Professor of International Business, Public Policy & Professor of International Business, Public Policy & Public Administration, and International Affairs Public Administration, and International Affairs George Washington University; George Washington University; Membre Associ Membre Associ é é , GREEN, Universit , GREEN, Universit é é Laval Laval EIA Annual Conference Washington Washington 7 April 2009 7 April

  15. Surface coal mining operations in two Oklahoma Counties raise questions about prime farmland reclamation and bond adequacy

    SciTech Connect (OSTI)

    Not Available

    1985-08-08

    The Surface Mining Control and Reclamation Act of 1977 allows prime farmland to be mined but requires the coal operator to reclaim it according to special reclamation standards. To be considered prime farmland, the soil must meet the Secretary of Agriculture's definition of prime soil and have historically been used for intensive agricultural purposes. In Oklahoma, the historical-use provision has generally been applied to lands that have been used for cropland for 5 of the preceding 10 years. GAO's review of mining activities in two Oklahoma counties showed that the land comprising 54 of the 58 mine permits issued since the act's passage contained some prime soil. None, however, required reclamation to prime farmland standards because landowners signed letters stating that the land had not been farmed for crops for five of the preceding 10 years. GAO also found that numerous sites in the two counties were abandoned by mining companies after the act was passed. Since abandonment, no reclamation has occurred on most of these sites. The Department of the Interior's Office of Surface Mining questions whether the bonds on the unreclaimed sites, if collected, will be adequate to do the necessary reclamation. Oklahoma's Department of Mines has taken action to increase bond amounts on newly-issued permits and on some older permitted areas in order to prevent future reclamation problems.

  16. Advanced Ground Source Heat Pump Technology for Very-Low-Energy Buildings

    Broader source: Energy.gov [DOE]

    Lead Performer: Oak Ridge National Laboratory - Oak Ridge, TN Partners: -- ClimateMaster - Oklahoma City, OK -- Oklahoma State University - Stillwater, OK -- Oklahoma Gas & Electric - Oklahoma City, OK -- International Ground Source Heat Pump Association - Stillwater, OK -- Chinese Academy of Building Research - Beijing, China -- Tongji University - Shanghai, China -- Tianjin University - Tianjin, China -- Chongqin University - Chongqing, China

  17. Microsoft Word - DOE-ID-14-037 Ohio State University _2 EC B3-6.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7 SECTION A. Project Title: Rare Earth Electrochemical Property Measurements and Phase Diagram Development in a Complex Molten Slat Mixture for Molten Salt Recycling - Ohio State University SECTION B. Project Description The research activities consist of conducting fundamental data measurements and phase diagram development for rare earths in complex molten salts for applications to development of rare earth drawdown electrolysis for molten salt recycle. The primary goal of the proposed

  18. EXPLOITATION AND OPTIMIZATION OF RESERVOIR PERFORMANCE IN HUNTON FORMATION, OKLAHOMA

    SciTech Connect (OSTI)

    Mohan Kelkar

    2002-03-31

    The West Carney Field in Lincoln County, Oklahoma is one of few newly discovered oil fields in Oklahoma. Although profitable, the field exhibits several unusual characteristics. These include decreasing water-oil ratios, decreasing gas-oil ratios, decreasing bottomhole pressures during shut-ins in some wells, and transient behavior for water production in many wells. This report explains the unusual characteristics of West Carney Field based on detailed geological and engineering analyses. We propose a geological history that explains the presence of mobile water and oil in the reservoir. The combination of matrix and fractures in the reservoir explains the reservoir's flow behavior. We confirm our hypothesis by matching observed performance with a simulated model and develop procedures for correlating core data to log data so that the analysis can be extended to other, similar fields where the core coverage may be limited.

  19. Exploitation and Optimization of Reservoir Performance in Hunton Formation, Oklahoma

    SciTech Connect (OSTI)

    Mohan Kelkar

    2007-06-30

    Hunton formation in Oklahoma has been the subject of attention for the last ten years. The new interest started with the drilling of the West Carney field in 1995 in Lincoln County. Subsequently, many other operators have expanded the search for oil and gas in Hunton formation in other parts of Oklahoma. These fields exhibit many unique production characteristics, including: (1) decreasing water-oil or water-gas ratio over time; (2) decreasing gas-oil ratio followed by an increase; (3) poor prediction capability of the reserves based on the log data; and (4) low geological connectivity but high hydrodynamic connectivity. The purpose of this investigation is to understand the principal mechanisms affecting the production, and propose methods by which we can optimize the production from fields with similar characteristics.

  20. AmeriFlux US-Shd Shidler- Oklahoma

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Verma, Shashi [University of Nebraska - Lincoln

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-Shd Shidler- Oklahoma. Site Description - Native tall grass prairie. A prairie management prescribed burn was conducted in the spring of 1997, but not in 1996. The site was not grazed from early August 1996-September 1997. almost all plants are warm season C4 species, grasslands, temperate continental climate

  1. Silicon Valley Power and Oklahoma Municipal Power Authority Win 2014 Public Power Wind Awards

    Broader source: Energy.gov [DOE]

    The Energy Department and the American Public Power Association named Oklahoma Municipal Power Authority and Silicon Valley Power as the winners of the 2014 Public Power Wind Awards.

  2. FPDS-NG Change Management Notice for the Oklahoma Tornado and Storm

    Broader source: Energy.gov [DOE]

    A new National Interest Action value for the 'Oklahoma Tornado and Storm 2013' has been added to the FPDS-NG Production system.

  3. AEP Public Service Company of Oklahoma- Non-Residential Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    AEP Public Services Company of Oklahoma (PSO) offers several incentives and programs to non-residential customers who install energy efficiency measures.

  4. Field trip guide to selected outcrops, Arbuckle Mountains, Oklahoma

    SciTech Connect (OSTI)

    1991-11-17

    The Arbuckle Mountains, named for Brigadier General Matthew Arbuckle, are located in south-central Oklahoma. The formations that comprise the Arbuckle Mountains have been extensively studied for hydrocarbon source rock and reservoir rock characteristics that can be applied to the subsurface in the adjacent Anadarko and Ardmore basins. Numerous reports and guidebooks have been written concerning the Arbuckle Mountains. A few important general publications are provided in the list of selected references. The purpose of this handout is to provide general information on the geology of the Arbuckle Mountains and specific information on the four field trip stops, adapted from the literature. The four stops were at: (1) Sooner Rock and Sand Quarry; (2) Woodford Shale; (3) Hunton Anticline and Hunton Quarry; and (4) Tar Sands of Sulfur Area. As part of this report, two papers are included for more detail: Paleomagnetic dating of basinal fluid migration, base-metal mineralization, and hydrocarbon maturation in the Arbuckle Mountains, Oklahoma and Laminated black shale-bedded chert cyclicity in the Woodford Formation, southern Oklahoma.

  5. Energy Department to Lead Workshop on Tribal Renewable Energy Development in Oklahoma

    Broader source: Energy.gov [DOE]

    Oklahoma tribal energy leaders have an opportunity to explore the tribal energy project development and financing process hands-on at an interactive workshop being hosted by the U.S. Department of Energy (DOE) Office of Indian Energy June 9–11 at the Riverwind Hotel and Casino in Norman, Oklahoma.

  6. Selenium in Oklahoma ground water and soil. Quarterly report No. 6

    SciTech Connect (OSTI)

    Atalay, A.; Vir Maggon, D.

    1991-03-30

    Selenium with a consumption of 2 liters per day (5). The objectives of this study are: (1) to determine the concentrations of Se in Oklahoma ground water and soil samples. (2) to map the geographical distribution of Se species in Oklahoma. (3) to relate groundwater depth, pH and geology with concentration of Se.

  7. Solar Radiation Monitoring Station (SoRMS): Humboldt State University, Arcata, California (Data)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Wilcox, S.; Andreas, A.

    2007-05-02

    A partnership with HSU and U.S. Department of Energy's National Renewable Energy Laboratory (NREL) to collect solar data to support future solar power generation in the United States. The measurement station monitors global horizontal, direct normal, and diffuse horizontal irradiance to define the amount of solar energy that hits this particular location.

  8. Solar Radiation Monitoring Station (SoRMS): Humboldt State University, Arcata, California (Data)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Wilcox, S.; Andreas, A.

    A partnership with HSU and U.S. Department of Energy's National Renewable Energy Laboratory (NREL) to collect solar data to support future solar power generation in the United States. The measurement station monitors global horizontal, direct normal, and diffuse horizontal irradiance to define the amount of solar energy that hits this particular location.

  9. Feasibility study of heavy oil recovery in the Midcontinent region (Kansas, Missouri, Oklahoma)

    SciTech Connect (OSTI)

    Olsen, D.K.; Johnson, W.I.

    1993-08-01

    This report is one of a series of publications assessing the feasibility/constraints of increasing domestic heavy oil production. Each report covers a select area of the United States. The Midcontinent (Kansas, Nssouri, Oklahoma) has produced significant oil, but contrary to early reports, the area does not contain the huge volumes of heavy oil that, along with the development of steam and in situ combustion as oil production technologies, sparked the area`s oil boom of the 1960s. Recovery of this heavy oil has proven economically unfeasible for most operators due to the geology of the formations rather than the technology applied to recover the oil. The geology of the southern Midcontinent, as well as results of field projects using thermal enhanced oil recovery (TEOR) methods to produce the heavy oil, was examined based on analysis of data from secondary sources. Analysis of the performance of these projects showed that the technology recovered additional heavy oil above what was produced from primary production from the consolidated, compartmentalized, fluvial dominated deltaic sandstone formations in the Cherokee and Forest City basins. The only projects producing significant economic and environmentally acceptable heavy oil in the Midcontinent are in higher permeability, unconsolidated or friable, thick sands such as those found in south-central Oklahoma. There are domestic heavy oil reservoirs in other sedimentary basins that are in younger formations, are less consolidated, have higher permeability and can be economically produced with current TEOR technology. Heavy oil production from the carbonates of central and wester Kansas has not been adequately tested, but oil production is anticipated to remain low. Significant expansion of Midcontinent heavy oil production is not anticipated because the economics of oil production and processing are not favorable.

  10. Oklahoma Dry Natural Gas Reserves Acquisitions (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Acquisitions (Billion Cubic Feet) Oklahoma Dry Natural Gas Reserves Acquisitions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,325 671 845 1,864 763 728 1,202 1,567 599 387 2010's 1,519 2,459 975 738 1,210 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Dry Natural Gas Reserves Acquisitions

  11. Oklahoma Dry Natural Gas Reserves Adjustments (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Adjustments (Billion Cubic Feet) Oklahoma Dry Natural Gas Reserves Adjustments (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 36 615 -138 1980's -1,099 1,017 891 -323 -337 -500 835 559 203 202 1990's 838 -451 -121 -94 374 -67 122 82 106 -1,233 2000's 424 196 904 226 -113 297 -149 13 99 984 2010's -394 -368 -686 -622 816 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company

  12. Oklahoma Dry Natural Gas Reserves New Field Discoveries (Billion Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) New Field Discoveries (Billion Cubic Feet) Oklahoma Dry Natural Gas Reserves New Field Discoveries (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 181 155 197 1980's 168 412 376 53 53 94 14 11 26 91 1990's 50 10 0 25 0 23 30 2 4 0 2000's 20 13 14 6 8 1 0 6 21 0 2010's 51 47 44 2 135 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015

  13. Oklahoma Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's - 0 0 0 2000's 0 0 0 0 0 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring Pages: Nonhydrocarbon Gases Removed from Natural Gas Oklahoma Natural Gas Gross Withdrawals and Production

  14. Oklahoma Natural Gas Plant Liquids, Reserves Based Production (Million

    Gasoline and Diesel Fuel Update (EIA)

    Barrels) Reserves Based Production (Million Barrels) Oklahoma Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 59 1980's 62 65 67 70 75 77 76 76 79 73 1990's 75 76 77 77 76 70 74 71 69 70 2000's 69 66 61 59 64 65 67 69 74 77 2010's 82 88 96 99 117 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date:

  15. Exploitation and Optimization of Reservoir Performance in Hunton Formation, Oklahoma

    SciTech Connect (OSTI)

    Kelkar, Mohan

    2001-05-08

    This report presents the work done so far on Hunton Formation in West Carney Field in Lincoln County, Oklahoma. West Carney Field produces oil and gas from the Hunton Formation. The field was developed starting in 1995. Some of the unique characteristics of the field include decreasing water oil and ratio over time, decreasing gas-oil ratio at the beginning of production, inability to calculate oil reserves in the field based on long data, and sustained oil rates over long periods of time.

  16. Oklahoma Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)

    U.S. Energy Information Administration (EIA) Indexed Site

    Reserves in Nonproducing Reservoirs (Million Barrels) Oklahoma Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA NA 98 80 2000's 111 109 105 92 92 101 90 118 129 138 2010's 143 244 279 292 444 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Proved

  17. Oklahoma Natural Gas Liquids Lease Condensate, Proved Reserves (Million

    U.S. Energy Information Administration (EIA) Indexed Site

    Barrels) Liquids Lease Condensate, Proved Reserves (Million Barrels) Oklahoma Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 72 1980's 67 66 78 89 86 95 89 79 79 68 1990's 65 61 63 68 60 69 69 75 85 82 2000's 96 89 94 104 124 142 160 152 164 180 2010's 216 271 346 450 480 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  18. Oklahoma Natural Gas Plant Liquids, Expected Future Production (Million

    U.S. Energy Information Administration (EIA) Indexed Site

    Barrels) Liquids, Expected Future Production (Million Barrels) Oklahoma Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 511 1980's 537 565 667 740 683 731 768 702 686 586 1990's 592 567 566 575 592 605 615 610 613 667 2000's 639 605 601 582 666 697 732 797 870 985 2010's 1,270 1,445 1,452 1,408 1,752 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  19. Oklahoma Renewable Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Oklahoma" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",624,3066,3811,3553,2809 "Solar","-","-","-","-","-" "Wind",1712,1849,2358,2698,3808 "Wood/Wood Waste",297,276,23,68,255 "MSW Biogenic/Landfill Gas","-",4,5,"-","-" "Other

  20. Permian karst topography in the Wichita uplift, southwestern Oklahoma

    SciTech Connect (OSTI)

    Donovan, R.N. Busbey, A.B. . Geology Dept.)

    1993-02-01

    The Wichita uplift in southwestern Oklahoma is one part of a record of Pennsylvania and early Permian deformation that affected the Southern Oklahoma aulacogen. As a result of a partial inversion, the Lower Paleozoic section of this aulacogen was sequentially stripped off an uplift between the Wichita uplift and the Anadarko basin, resulting in the exposure of ultrabasic rocks deep in the Cambrian igneous fill of the aulacogen. Following the late Paleozoic tectonism, the topography of the uplift was entombed beneath Permian sediments and remained essentially undisturbed until exhumation during the present erosional cycle. Modern erosion is gradually exposing this topography, permitting morphometric analysis of the Permian hill forms. Because of the variation of lithology in the uplift, it is possible to isolate the effects of weathering processes such as intense hydrolysis of the igneous rocks (producing, among other features, or topography) and limestone dissolution, in the form of a surface and subsurface karst imprint. The latter process resulted in a network of small caves that are essentially fissures eroded along tectonic fractures. These small caves can be found in all the exposed areas of limestone. They are particularly noteworthy for three reasons: in at least five examples they contain a complex fauna of Permian vertebrates (mostly fragmentary), speleothems in some examples contain hydrocarbon inclusions, derived from the underlying Anadarko basin, some of the caves yield evidence of post burial evolution in the form of clay infiltration from the surface and brine flushing from the underlying Anadarko basin.

  1. University Partners Panel

    Office of Energy Efficiency and Renewable Energy (EERE)

    Matt Tirrell, Pritzker Director and Professor, Institute for Molecular Engineering, University of Chicago Thomas Glasmacher, Facility for Rare Isotope Beams (FRIB) Project Manager, Michigan State University

  2. FEASIBILITY ANALYSIS FOR INSTALLING A CIRCULATING FLUIDIZED BED BOILER FOR COFIRING MULTIPLE BIOFUELS AND OTHER WASTES WITH COAL AT PENN STATE UNIVERSITY

    SciTech Connect (OSTI)

    Bruce G. Miller; Sharon Falcone Miller; Robert Cooper; Douglas Donovan; John Gaudlip; Matthew Lapinsky; William Serencsits; Neil Raskin; Tom Steitz

    2002-10-14

    The Pennsylvania State University, under contract to the U.S. Department of Energy, National Energy Technology Laboratory is performing a feasibility analysis on installing a state-of-the-art circulating fluidized bed boiler and ceramic filter emission control device at Penn State's University Park campus for cofiring multiple biofuels and other wastes with coal, and developing a test program to evaluate cofiring multiple biofuels and coal-based feedstocks. The objective of the project is being accomplished using a team that includes personnel from Penn State's Energy Institute, Office of Physical Plant, and College of Agricultural Sciences; Foster Wheeler Energy Services, Inc.; Parsons Energy and Chemicals Group, Inc.; and Cofiring Alternatives. During this reporting period, the final technical design and cost estimate were submitted to Penn State by Foster Wheeler. In addition, Penn State initiated the internal site selection process to finalize the site for the boiler plant.

  3. Micro Cooling, Heating, and Power (Micro-CHP) and Bio-Fuel Center, Mississippi State University

    SciTech Connect (OSTI)

    Louay Chamra

    2008-09-26

    Initially, most micro-CHP systems will likely be designed as constant-power output or base-load systems. This implies that at some point the power requirement will not be met, or that the requirement will be exceeded. Realistically, both cases will occur within a 24-hour period. For example, in the United States, the base electrical load for the average home is approximately 2 kW while the peak electrical demand is slightly over 4 kW. If a 3 kWe micro- CHP system were installed in this situation, part of the time more energy will be provided than could be used and for a portion of the time more energy will be required than could be provided. Jalalzadeh-Azar [6] investigated this situation and presented a comparison of electrical- and thermal-load-following CHP systems. In his investigation he included in a parametric analysis addressing the influence of the subsystem efficiencies on the total primary energy consumption as well as an economic analysis of these systems. He found that an increase in the efficiencies of the on-site power generation and electrical equipment reduced the total monthly import of electricity. A methodology for calculating performance characteristics of different micro-CHP system components will be introduced in this article. Thermodynamic cycles are used to model each individual prime mover. The prime movers modeled in this article are a spark-ignition internal combustion engine (Otto cycle) and a diesel engine (Diesel cycle). Calculations for heat exchanger, absorption chiller, and boiler modeling are also presented. The individual component models are then linked together to calculate total system performance values. Performance characteristics that will be observed for each system include maximum fuel flow rate, total monthly fuel consumption, and system energy (electrical, thermal, and total) efficiencies. Also, whether or not both the required electrical and thermal loads can sufficiently be accounted for within the system

  4. FEASIBILITY ANALYSIS FOR INSTALLING A CIRCULATING FLUIDIZED BED BOILER FOR COFIRING MULTIPLE BIOFUELS AND OTHER WASTES WITH COAL AT PENN STATE UNIVERSITY

    SciTech Connect (OSTI)

    Bruce G. Miller; Sharon Falcone Miller; Robert Cooper; Douglas Donovan; John Gaudlip; Matthew Lapinsky; William Serencsits; Neil Raskin; Dale Lamke; Joseph J. Battista

    2001-03-31

    The Pennsylvania State University, under contract to the U.S. Department of Energy (DOE), National Energy Technology Laboratory (NETL) is performing a feasibility analysis on installing a state-of-the-art circulating fluidized bed (CFB) boiler and ceramic filter emission control device at Penn State's University Park campus for cofiring multiple biofuels and other wastes with coal, and developing a test program to evaluate cofiring multiple biofuels and coal-based feedstocks. Penn State currently operates an aging stoker-fired steam plant at its University Park campus and has spent considerable resources over the last ten to fifteen years investigating boiler replacements and performing life extension studies. This effort, in combination with a variety of agricultural and other wastes generated at the agricultural-based university and the surrounding rural community, has led Penn State to assemble a team of fluidized bed and cofiring experts to assess the feasibility of installing a CFB boiler for cofiring biomass and other wastes along with coal-based fuels. The objective of the project is being accomplished using a team that includes personnel from Penn State's Energy Institute and the Office of Physical Plant, Foster Wheeler Energy Services, Inc., and Cofiring Alternatives.

  5. FEASIBILITY ANALYSIS FOR INSTALLING A CIRCULATING FLUIDIZED BED BOILER FOR COFIRING MULTIPLE BIOFUELS AND OTHER WASTES WITH COAL AT PENN STATE UNIVERSITY

    SciTech Connect (OSTI)

    Bruce G. Miller; Sharon Falcone Miller; Robert Cooper; Douglas Donovan; John Gaudlip; Matthew Lapinsky; William Serencsits; Neil Raskin; Tom Steitz

    2002-07-12

    The Pennsylvania State University, under contract to the U.S. Department of Energy (DOE), National Energy Technology Laboratory (NETL) is performing a feasibility analysis on installing a state-of-the-art circulating fluidized bed (CFB) boiler and ceramic filter emission control device at Penn State's University Park campus for cofiring multiple biofuels and other wastes with coal, and developing a test program to evaluate cofiring multiple biofuels and coal-based feedstocks. Penn State currently operates an aging stoker-fired steam plant at its University Park campus and has spent considerable resources over the last ten to fifteen years investigating boiler replacements and performing life extension studies. This effort, in combination with a variety of agricultural and other wastes generated at the agricultural-based university and the surrounding rural community, has led Penn State to assemble a team of fluidized bed and cofiring experts to assess the feasibility of installing a CFB boiler for cofiring biomass and other wastes along with coal-based fuels. The objective of the project is being accomplished using a team that includes personnel from Penn State's Energy Institute, Office of Physical Plant, and College of Agricultural Sciences; Foster Wheeler Energy Services, Inc.; Parsons Energy and Chemicals Group, Inc.; and Cofiring Alternatives.

  6. Oklahoma Dry Natural Gas Reserves Extensions (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Extensions (Billion Cubic Feet) Oklahoma Dry Natural Gas Reserves Extensions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1,129 1,324 1,022 1980's 1,690 1,864 1,815 1,191 1,016 1,134 861 823 1,030 713 1990's 707 485 382 548 818 661 714 638 600 624 2000's 894 1,325 1,186 1,509 1,983 1,818 2,051 2,380 2,974 3,463 2010's 4,571 5,735 4,903 3,300 3,661 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  7. Oklahoma Dry Natural Gas Reserves Revision Decreases (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decreases (Billion Cubic Feet) Oklahoma Dry Natural Gas Reserves Revision Decreases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1,016 969 1,211 1980's 1,303 1,371 2,520 1,891 1,611 1,648 1,963 2,047 2,280 1,732 1990's 1,542 1,456 1,263 1,008 932 1,049 1,602 1,282 1,997 2,251 2000's 1,331 1,895 1,513 2,843 1,912 2,945 1,868 1,366 2,580 3,592 2010's 3,474 6,856 7,731 5,031 4,585 - = No Data Reported; -- = Not Applicable; NA = Not

  8. Oklahoma Dry Natural Gas Reserves Revision Increases (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Increases (Billion Cubic Feet) Oklahoma Dry Natural Gas Reserves Revision Increases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 837 962 1,026 1980's 1,293 1,262 2,374 2,189 2,245 2,357 2,158 2,251 2,538 1,984 1990's 1,803 1,710 1,988 1,554 1,580 1,892 1,886 2,396 2,995 3,029 2000's 2,498 1,458 2,159 2,892 2,173 3,064 1,515 2,115 2,786 2,894 2010's 3,224 5,142 4,153 4,118 6,573 - = No Data Reported; -- = Not Applicable; NA = Not

  9. Oklahoma Natural Gas Lease Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Fuel Consumption (Million Cubic Feet) Oklahoma Natural Gas Lease Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 49,480 60,470 57,064 54,495 68,664 60,418 51,833 1990's 72,318 46,200 53,278 60,658 55,607 45,946 37,803 51,042 35,509 32,868 2000's 41,032 38,916 30,281 40,292 35,875 35,989 36,396 38,229 42,250 40,164 2010's 39,489 40,819 43,727 45,581 50,621 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  10. Oklahoma Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Oklahoma Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 87,824 86,666 86,172 1990's 85,790 86,744 87,120 88,181 87,494 88,358 89,852 90,284 89,711 80,986 2000's 80,558 79,045 80,029 79,733 79,512 78,726 78,745 93,991 94,247 94,314 2010's 92,430 93,903 94,537 95,385 96,004 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  11. Oklahoma Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Oklahoma Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,772 2,689 2,877 1990's 2,889 2,840 2,859 2,912 2,853 2,845 2,843 2,531 3,295 3,040 2000's 2,821 3,403 3,438 3,367 3,283 2,855 2,811 2,822 2,920 2,618 2010's 2,731 2,733 2,872 2,958 3,063 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  12. Oklahoma Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Oklahoma Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 809,171 805,107 806,875 1990's 814,296 824,172 832,677 842,130 845,448 856,604 866,531 872,454 877,236 867,922 2000's 859,951 868,314 875,338 876,420 875,271 880,403 879,589 920,616 923,650 924,745 2010's 914,869 922,240 927,346 931,981 937,237 - = No Data Reported; -- = Not Applicable; NA = Not

  13. Oklahoma Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Oklahoma Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 26,130 24,242 23,833 2000's 21,001 23,537 23,340 30,396 30,370 31,444 31,333 28,463 27,581 28,876 2010's 30,611 30,948 32,838 41,813 45,391 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016

  14. Oklahoma Natural Gas Plant Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Fuel Consumption (Million Cubic Feet) Oklahoma Natural Gas Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 29,750 31,237 31,121 29,705 35,751 40,508 38,392 1990's 39,249 42,166 39,700 39,211 35,432 34,900 35,236 30,370 26,034 25,055 2000's 25,934 28,266 25,525 26,276 27,818 27,380 28,435 28,213 27,161 24,089 2010's 23,238 24,938 27,809 32,119 36,231 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  15. Oklahoma Natural Gas Plant Liquids Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquids Production (Million Cubic Feet) Oklahoma Natural Gas Plant Liquids Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 50,952 55,724 57,270 1970's 58,926 55,914 56,376 61,647 62,860 60,008 52,087 55,238 61,868 71,559 1980's 74,434 80,401 85,934 90,772 98,307 99,933 100,305 99,170 103,302 94,889 1990's 96,698 101,851 104,609 101,962 101,564 94,930 100,379 96,830 92,785 93,308 2000's 96,787 88,885 81,287 74,745 84,355 87,404

  16. Oklahoma Natural Gas Total Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Consumption (Million Cubic Feet) Oklahoma Natural Gas Total Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 567,050 575,855 538,329 2000's 538,563 491,458 508,298 540,103 538,576 582,536 624,400 658,379 687,989 659,305 2010's 675,727 655,919 691,661 658,569 640,607 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next

  17. Oklahoma Natural Gas Vented and Flared (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Vented and Flared (Million Cubic Feet) Oklahoma Natural Gas Vented and Flared (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 126,629 129,408 130,766 1970's 129,629 39,799 38,797 36,411 34,199 31,802 30,197 29,186 27,489 26,605 1980's 25,555 2000's 0 0 0 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release

  18. Oklahoma Quantity of Production Associated with Reported Wellhead Value

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Oklahoma Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,730,061 1,985,869 1,936,341 1,917,493 2,004,797 2,106,632 2,185,204 1990's 2,186,153 2,119,161 1,937,224 2,005,971 1,879,257 1,765,788 1,751,487 1,452,233 1,644,531 1,577,961 2000's 1,612,890 1,477,058 1,456,375

  19. Oklahoma Natural Gas Plant Liquids Production Extracted in Kansas (Million

    Gasoline and Diesel Fuel Update (EIA)

    Commercial Consumers (Number of Elements) Oklahoma Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 87,824 86,666 86,172 1990's 85,790 86,744 87,120 88,181 87,494 88,358 89,852 90,284 89,711 80,986 2000's 80,558 79,045 80,029 79,733 79,512 78,726 78,745 93,991 94,247 94,314 2010's 92,430 93,903 94,537 95,385 96,004 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  20. Oklahoma Natural Gas Vented and Flared (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2010 21 19 21 20 21 20 21 21 20 21 20 21 2011 22 20 22 21 22 21 22 22 21 22 21 22 2012 22 20 22 21 22 21 22 22 21 22 21 22 2013 29 27 29 28 29 28 29 29 28 29 28 29 2014 34 31 34 33 34 33 34 34 33 34 33 34 2015 24 22 24 24 24 32 34 34 33 34 33 34 2016 38 35 38 37 44 43

    Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Oklahoma Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5

  1. Small Wind Electric Systems: An Oklahoma Consumer's Guide

    SciTech Connect (OSTI)

    Not Available

    2007-08-01

    Small Wind Electric Systems: An Oklahoma Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and economics. Topics include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

  2. Oklahoma Associated-Dissolved Natural Gas, Wet After Lease Separation,

    U.S. Energy Information Administration (EIA) Indexed Site

    Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Oklahoma Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 2,246 1980's 2,252 2,441 2,426 2,269 2,244 2,149 2,191 2,017 1,894 1,785 1990's 1,820 1,406 1,483 1,550 1,342 1,228 1,023 1,015 1,196 1,238 2000's 1,113 1,109 1,177

  3. Oklahoma Dry Natural Gas Expected Future Production (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Expected Future Production (Billion Cubic Feet) Oklahoma Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 13,889 14,417 13,816 1980's 13,138 14,699 16,207 16,211 16,126 16,040 16,685 16,711 16,495 15,916 1990's 16,151 14,725 13,926 13,289 13,487 13,438 13,074 13,439 13,645 12,543 2000's 13,699 13,558 14,886 15,401 16,238 17,123 17,464 19,031 20,845 22,769 2010's 26,345 27,830 26,599 26,873 31,778 -

  4. Oklahoma Natural Gas Underground Storage Volume (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Underground Storage Volume (Million Cubic Feet) Oklahoma Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 296,629 281,511 286,917 279,978 298,202 307,083 317,720 325,432 332,591 338,392 353,804 327,277 1991 283,982 278,961 284,515 298,730 313,114 323,305 324,150 328,823 338,810 342,711 317,072 306,300 1992 288,415 280,038 276,287 282,263 290,192 301,262 318,719 326,705 339,394 346,939 330,861 299,990 1993 275,054 253,724

  5. Oklahoma Natural Gas, Wet After Lease Separation Proved Reserves (Billion

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Oklahoma Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 14,545 1980's 13,908 15,507 17,140 17,261 17,102 17,078 17,779 17,703 17,450 16,733 1990's 16,967 15,518 14,732 14,099 14,323 14,295 13,952 14,311 14,517 13,490 2000's 14,543 14,366 15,753 16,231 17,200 18,146 18,535 20,184 22,113 24,207 2010's

  6. Oklahoma Nonassociated Natural Gas, Wet After Lease Separation, Proved

    U.S. Energy Information Administration (EIA) Indexed Site

    Reserves (Billion Cubic Feet) Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Oklahoma Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 12,299 1980's 11,656 13,066 14,714 14,992 14,858 14,929 15,588 15,686 15,556 14,948 1990's 15,147 14,112 13,249 12,549 12,981 13,067 12,929 13,296 13,321 12,252 2000's 13,430 13,256 14,576

  7. Arkansas Oklahoma Gas Company (AOG)- Commerial and Industrial Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    The Arkansas Oklahoma Gas (AOG) programs are available to all commercial and industrial AOG customers in Arkansas. The Commercial and Industrial Prescriptive program offers rebates for the instal...

  8. EIA - Renewable Electricity State Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Oklahoma Renewable Electricity Profile 2010 Oklahoma profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Wind Primary Renewable Energy Generation Source Wind Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 21,022 100.0 Total Net Summer Renewable Capacity 2,412 11.5 Geothermal - - Hydro Conventional 858 4.1 Solar - - Wind 1,480 7.0 Wood/Wood Waste 58 0.3 MSW/Landfill Gas 16 0.1 Other Biomass

  9. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Oklahoma Renewable Electricity Profile 2010 Oklahoma profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Wind Primary Renewable Energy Generation Source Wind Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 21,022 100.0 Total Net Summer Renewable Capacity 2,412 11.5 Geothermal - - Hydro Conventional 858 4.1 Solar - - Wind 1,480 7.0 Wood/Wood Waste 58 0.3 MSW/Landfill Gas 16 0.1 Other Biomass

  10. Oklahoma Regional High School Science Bowl | U.S. DOE Office of Science

    Office of Science (SC) Website

    (SC) Oklahoma Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About Regional Competitions Rules, Forms, and Resources High School Regionals Middle School Regionals National Finals Volunteers Key Dates Frequently Asked Questions News Media Contact Us WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 E: Email Us High School Regionals Oklahoma Regional High School

  11. Oklahoma Regional Middle School Science Bowl | U.S. DOE Office of Science

    Office of Science (SC) Website

    (SC) Oklahoma Regional Middle School Science Bowl National Science Bowl® (NSB) NSB Home About Regional Competitions Rules, Forms, and Resources High School Regionals Middle School Regionals National Finals Volunteers Key Dates Frequently Asked Questions News Media Contact Us WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 E: Email Us Middle School Regionals Oklahoma Regional Middle

  12. Interactions Between the Daytime Mixed Layer and the Surface: Oklahoma Mesonet and EBBR Heat Fluxes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Interactions Between the Daytime Mixed Layer and the Surface: Oklahoma Mesonet and EBBR Heat Fluxes R. L. Coulter Argonne National Laboratory Argonne, Illinois Introduction Surface layer estimates of surface sensible heat flux have been made at 10 - 14 locations within the Central Facility (CF) of the Southern Great Plains (SGP) Atmospheric Radiation Measurement (ARM) Program site by using energy balance Bowen ratio (EBBR) stations located mostly in uncultivated areas. The advent of the Oklahoma

  13. Louisiana State University

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    K2K Near Detectors: Scintillator Strips Water erenkov ... -5 +10 -3 1 (Solar + Atmospheric LSND) Sterile ... Data is pouring in from expts Monte Carlo Generators NUANCE, ...

  14. FEASIBILITY ANALYSIS FOR INSTALLING A CIRCULATING FLUIDIZED BED BOILER FOR COFIRING MULTIPLE BIOFUELS AND OTHER WASTES WITH COAL AT PENN STATE UNIVERSITY

    SciTech Connect (OSTI)

    Bruce G. Miller; Sharon Falcone Miller; Robert Cooper; Douglas Donovan; John Gaudlip; Matthew Lapinsky; William Serencsits; Neil Raskin; Dale Lamke

    2001-10-12

    The Pennsylvania State University, under contract to the U.S. Department of Energy (DOE), National Energy Technology Laboratory (NETL) is performing a feasibility analysis on installing a state-of-the-art circulating fluidized bed (CFB) boiler and ceramic filter emission control device at Penn State's University Park campus for cofiring multiple biofuels and other wastes with coal, and developing a test program to evaluate cofiring multiple biofuels and coal-based feedstocks. Penn State currently operates an aging stoker-fired steam plant at its University Park campus and has spent considerable resources over the last ten to fifteen years investigating boiler replacements and performing life extension studies. This effort, in combination with a variety of agricultural and other wastes generated at the agricultural-based university and the surrounding rural community, has led Penn State to assemble a team of fluidized bed and cofiring experts to assess the feasibility of installing a CFB boiler for cofiring biomass and other wastes along with coal-based fuels.

  15. FEASIBILITY ANALYSIS FOR INSTALLING A CIRCULATING FLUIDIZED BED BOILER FOR COFIRING MULTIPLE BIOFUELS AND OTHER WASTES WITH COAL AT PENN STATE UNIVERSITY

    SciTech Connect (OSTI)

    Bruce G. Miller; Curtis Jawdy

    2000-10-09

    The Pennsylvania State University, under contract to the US Department of Energy, National Energy Technology Laboratory is performing a feasibility analysis on installing a state-of-the-art circulating fluidized bed boiler and ceramic filter emission control device at Penn State's University Park campus for cofiring multiple biofuels and other wastes with coal or coal refuse, and developing a test program to evaluate cofiring multiple biofuels and coal-based feedstocks. The objective of the project is being accomplished using a team that includes personnel from Penn State's Energy Institute and the Office of Physical Plant, Foster Wheeler Energy Corporation, Foster Wheeler Development Corporation, and Cofiring Alternatives. The major emphasis of work during this reporting period was to assess the types and quantities of potential feedstocks and collect samples of them for analysis. Approximately twenty different biomass, animal waste, and other wastes were collected and analyzed.

  16. FEASIBILITY ANALYSIS FOR INSTALLING A CIRCULATING FLUIDIZED BED BOILER FOR COFIRING MULTIPLE BIOFUELS AND OTHER WASTES WITH COAL AT PENN STATE UNIVERSITY

    SciTech Connect (OSTI)

    Bruce G. Miller; Sharon Falcone Miller; Robert Cooper; Douglas Donovan; John Gaudlip; Matthew Lapinsky; William Serencsits; Neil Raskin; Dale Lamke

    2001-07-13

    The Pennsylvania State University, under contract to the U.S. Department of Energy, National Energy Technology Laboratory is performing a feasibility analysis on installing a state-of-the-art circulating fluidized bed boiler and ceramic filter emission control device at Penn State's University Park campus for cofiring multiple biofuels and other wastes with coal, and developing a test program to evaluate cofiring multiple biofuels and coal-based feedstocks. The objective of the project is being accomplished using a team that includes personnel from Penn State's Energy Institute, Office of Physical Plant, and College of Agricultural Sciences, Foster Wheeler Energy Services, Inc., Parsons Energy and Chemicals Group, Inc., and Cofiring Alternatives. During this reporting period, work focused on completing the biofuel characterization and the design of the conceptual fluidized bed system.

  17. Oklahoma Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Estimated Production (Billion Cubic Feet) Oklahoma Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1,691 1,667 1,592 1980's 1,526 1,700 1,636 1,544 1,778 1,686 1,658 1,813 1,896 1,983 1990's 2,058 1,983 1,895 1,770 1,721 1,562 1,580 1,555 1,544 1,308 2000's 1,473 1,481 1,518 1,554 1,563 1,587 1,601 1,659 1,775 1,790 2010's 1,703 1,697 1,763 1,890 2,123 - = No Data Reported; -- = Not Applicable;

  18. Oklahoma Natural Gas Pipeline and Distribution Use Price (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Oklahoma Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.15 0.15 1.65 1970's 0.18 0.18 0.19 0.22 0.26 0.27 0.36 0.58 0.66 0.99 1980's 1.45 1.83 2.53 2.75 2.71 2.48 2.30 2.06 2.10 1.83 1990's 1.85 1.62 1.79 1.72 1.64 1.36 2.12 2.34 1.90 2.04 2000's 3.49 3.21 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA

  19. Oklahoma Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,040 1,037 1,038 1,039 1,041 1,043 1,044 1,042 1,042 1,044 1,043 1,042 2014 1,036 1,036 1,039 1,037 1,040 1,043 1,042 1,042 1,044 1,043 1,041 1,041 2015 1,042 1,043 1,044 1,045 1,048 1,049 1,050 1,047 1,049 1,049 1,047 1,050 2016 1,049 1,047 1,048 1,044 1,047 1,046

    % of Total Residential Deliveries (Percent) Oklahoma Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5

  20. EXPLOITATION AND OPTIMIZATION OF RESERVOIR PERFORMANCE IN HUNTON FORMATION, OKLAHOMA

    SciTech Connect (OSTI)

    Mohan Kelkar

    2005-02-01

    Hunton formation in Oklahoma has displayed some unique production characteristics. These include high initial water-oil and gas-oil ratios, decline in those ratios over time and temporary increase in gas-oil ratio during pressure build up. The formation also displays highly complex geology, but surprising hydrodynamic continuity. This report addresses three key issues related specifically to West Carney Hunton field and, in general, to any other Hunton formation exhibiting similar behavior: (1) What is the primary mechanism by which oil and gas is produced from the field? (2) How can the knowledge gained from studying the existing fields can be extended to other fields which have the potential to produce? (3) What can be done to improve the performance of this reservoir? We have developed a comprehensive model to explain the behavior of the reservoir. By using available production, geological, core and log data, we are able to develop a reservoir model which explains the production behavior in the reservoir. Using easily available information, such as log data, we have established the parameters needed for a field to be economically successful. We provide guidelines in terms of what to look for in a new field and how to develop it. Finally, through laboratory experiments, we show that surfactants can be used to improve the hydrocarbons recovery from the field. In addition, injection of CO{sub 2} or natural gas also will help us recover additional oil from the field.

  1. Oklahoma Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet) Oklahoma Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.14 0.14 0.15 1970's 0.16 0.16 0.16 0.19 0.28 0.32 0.50 0.79 0.90 1.12 1980's 1.51 1.88 2.74 2.83 2.72 2.47 1.71 1.47 1.55 1.59 1990's 1.57 1.47 1.70 1.88 1.70 1.44 2.21 2.32 1.77 2.05 2000's 3.63 4.03 2.94 4.97 5.52 7.21 6.32 6.24 7.56 3.53 2010's 4.71 - = No Data Reported; -- = Not Applicable;

  2. FEASIBILITY ANALYSIS FOR INSTALLING A CIRCULATING FLUIDIZED BED BOILER FOR COFIRING MULTIPLE BIOFUELS AND OTHER WASTES WITH COAL AT PENN STATE UNIVERSITY

    SciTech Connect (OSTI)

    Bruce G. Miller; Sharon Falcone Miller; Robert Cooper; John Gaudlip; Matthew Lapinsky; Rhett McLaren; William Serencsits; Neil Raskin; Tom Steitz; Joseph J. Battista

    2003-03-26

    The Pennsylvania State University, utilizing funds furnished by the U.S. Department of Energy's Biomass Power Program, investigated the installation of a state-of-the-art circulating fluidized bed boiler at Penn State's University Park campus for cofiring multiple biofuels and other wastes with coal, and developing a test program to evaluate cofiring biofuels and coal-based feedstocks. The study was performed using a team that included personnel from Penn State's Energy Institute, Office of Physical Plant, and College of Agricultural Sciences; Foster Wheeler Energy Services, Inc.; Foster Wheeler Energy Corporation; Parsons Energy and Chemicals Group, Inc.; and Cofiring Alternatives. The activities included assessing potential feedstocks at the University Park campus and surrounding region with an emphasis on biomass materials, collecting and analyzing potential feedstocks, assessing agglomeration, deposition, and corrosion tendencies, identifying the optimum location for the boiler system through an internal site selection process, performing a three circulating fluidized bed (CFB) boiler design and a 15-year boiler plant transition plan, determining the costs associated with installing the boiler system, developing a preliminary test program, determining the associated costs for the test program, and exploring potential emissions credits when using the biomass CFB boiler.

  3. U.S. Energy Information Administration (EIA) Indexed Site

    Oklahoma Oklahoma

  4. RES Oklahoma 2016: Office of Indian Energy Session on Tribal Energy: Strategic Roadmap 2025

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) Office of Indian Energy will be hosting a session entitled “Tribal Energy: Strategic Roadmap 2025” at the Reservation Economic Summit (RES) taking place in Tulsa, Oklahoma, July 11–14.

  5. Native Intern Profile Page

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The intern will work with the executive management teams to solve other problems as they arise. Morgan Gray Tribal A liation: Chickasaw Nation University: Oklahoma State University ...

  6. Fermilab Today | University Profiles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    University Profiles Archive Subscribe | Contact Fermilab Today | Archive | Classifieds Search GO More than 2,000 scientists worldwide work with Fermilab. In the United States,...

  7. Oklahoma Dry Natural Gas Production (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Speculation and Oil Price Volatility Robert J. Weiner Robert J. Weiner Professor of International Business, Public Policy & Professor of International Business, Public Policy & Public Administration, and International Affairs Public Administration, and International Affairs George Washington University; George Washington University; Membre Associ Membre Associ é é , GREEN, Universit , GREEN, Universit é é Laval Laval EIA Annual Conference Washington Washington 7 April 2009 7 April

  8. United States

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... (no replacement) Coalgate, Oklahoma Larry Krebs Dairy Manteca, California Supremo Foods ... NV Valley Dairy Coalgate, OK Larry Krebs Dairy Collection Date 08106 06103 06tlO ...

  9. for Nuclear Energy Graduate Fellowships Subject: Integrated University...

    Energy Savers [EERE]

    ... University of Texas at Austin 22 Pennsylvania State University 53 University of Texas of the Permian Basin 23 Purdue University 54 University of Utah 3 No. CollegeUniversity No. ...

  10. EXPLOITATION AND OPTIMIZATION OF RESERVOIR PERFORMANCE IN HUNTON FORMATION, OKLAHOMA

    SciTech Connect (OSTI)

    Mohan Kelkar

    2003-10-01

    This report presents the work done so far on Hunton Formation in West Carney Field in Lincoln County, Oklahoma. West Carney Field produces oil and gas from the Hunton Formation. The field was developed starting in 1995. Some of the unique characteristics of the field include decreasing water oil ratio over time, decreasing gas-oil ratio at the beginning of production, inability to calculate oil reserves in the field based on log data, and sustained oil rates over long periods of time. To understand the unique characteristics of the field, an integrated evaluation was undertaken. Production data from the field were meticulously collected, and over forty wells were cored and logged to better understand the petrophysical and engineering characteristics. Based on the work done in this budget period so far, some of the preliminary conclusions can be listed as follows: (1) Based on PVT analysis, the field most likely contains volatile oil with bubble point close to initial reservoir pressure of 1,900 psia. (2) The initial oil in place, which is contact with existing wells, can be determined by newly developed material balance technique. The oil in place, which is in communication, is significantly less than determined by volumetric analysis, indicating heterogeneous nature of the reservoir. The oil in place, determined by material balance, is greater than determined by decline curve analysis. This difference may lead to additional locations for in fill wells. (3) The core and log evaluation indicates that the intermediate pores (porosity between 2 and 6 %) are very important in determining production potential of the reservoir. These intermediate size pores contain high oil saturation. (4) The limestone part of the reservoir, although low in porosity (mostly less than 6 %) is much more prolific in terms of oil production than the dolomite portion of the reservoir. The reason for this difference is the higher oil saturation in low porosity region. As the average porosity

  11. Categorical Exclusion (CX) Determinations By State | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    State Categorical Exclusion (CX) Determinations By State Alabama Alaska Arizona Arkansas California Colorado Connecticut Delaware Florida Georgia Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington

  12. PULSAR: A High-Repetition-Rate, High-Power, CE Phase-Locked Laser for the J.R. Macdonald Laboratory at Kansas State University

    SciTech Connect (OSTI)

    Ben-Itzhak, Itzik; Carnes, Kevin D.; Cocke, C. Lew; Fehrenbach, Charles W.; Kumarappan, Vinod; Rudenko, Artem; Trallero, Carlos

    2014-05-09

    This instrumentation grant funded the development and installation of a state-of-the-art laser system to be used for the DOE funded research at the J.R. Macdonald Laboratory at Kansas State University. Specifically, we purchased a laser based on the KMLABs Red-Dragon design, which has a high repetition rate of 10-20 kHz crucial for multi-parameter coincidence measurements conducted in our lab. This laser system is carrier-envelope phase (CEP) locked and provides pulses as short as 21 fs directly from the amplifier (see details below). In addition, we have developed a pulse compression setup that provides sub 5 fs pulses and a CEP tagging capability that allows for long measurements of CEP dependent processes.

  13. Whole-building Design Increases Energy Efficiency in a Mixed-Humid Climate: Ideal Homes - Norman, Oklahoma

    SciTech Connect (OSTI)

    2001-06-01

    New houses designed by Ideal Homes, with technical support from the U.S. Department of Energy's Building America Program, save their homeowners money by applying the principles of "whole-building" design. The homes are in Norman, Oklahoma.

  14. A study of the Oklahoma City urban heat island using ground measurements and remote sensing

    SciTech Connect (OSTI)

    Brown, M. J.; Ivey, A.; McPherson, T. N.; Boswell, D.; Pardyjak, E. R.

    2004-01-01

    Measurements of temperature and position were collected during the night from an instrumented van on routes through Oklahoma City and the rural outskirts. The measurements were taken as part of the Joint URBAN 2003 Tracer Field Experiment conducted in Oklahoma City from June 29, 2003 to July 30, 2003 (Allwine et al., 2004). The instrumented van was driven over four primary routes that included legs from the downtown core to four different 'rural' areas. Each route went through residential areas and most often went by a line of permanently fixed temperature probes (Allwine et al., 2004) for cross-checking purposes. Each route took from 20 to 40 minutes to complete. Based on seven nights of data, initial analyses indicate that there was a temperature difference of 0.5-6.5 C between the urban core and nearby 'rural' areas. Analyses also suggest that there were significant fine scale temperature differences over distances of tens of meters within the city and in the nearby rural areas. The temperature measurements that were collected are intended to supplement the meteorological measurements taken during the Joint URBAN 2003 Field Experiment, to assess the importance of the urban heat island phenomenon in Oklahoma City, and to test new urban canopy parameterizations that have been developed for regional scale meteorological codes (e.g., Chin et al., 2000; Holt and Shi, 2004). In addition to the ground measurements, skin temperature measurements were also analyzed from remotely sensed images taken from the Earth Observing System's Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER). A surface kinetic temperature thermal infrared image captured by the ASTER of the Oklahoma City area on July 21, 2001 was analyzed within ESRI's ArcGIS 8.3 to correlate variations in temperature with land use type. Analysis of this imagery suggests distinct variations in temperature across different land use categories. Through the use of remotely sensed imagery we hope to

  15. New Mexico State University campus geothermal demonstration project: an engineering construction design and economic evaluation. Final technical report, February 25, 1980-April 24, 1981

    SciTech Connect (OSTI)

    Cunniff, R.A.; Ferguson, E.; Archey, J.

    1981-07-01

    A detailed engineering construction cost estimate and economic evaluation of low temperature geothermal energy application for the New Mexico State University Campus are provided. Included are results from controlled experiments to acquire design data, design calculations and parameters, detailed cost estimates, and a comprehensive cost and benefit analysis. Detailed designs are given for a system using 140 to 145{sup 0}F geothermal water to displace 79 billion Btu per year of natural gas now being burned to generate steam. This savings represents a displacement of 44 to 46 percent of NMSU central plant natural gas consumption, or 32 to 35 percent of total NMSU natural gas consumption. The report forms the basis for the system construction phase with work scheduled to commence in July 1981, and target on-stream data of February 1982.

  16. Development of Innovative Radioactive Isotope Production Techniques at the Pennsylvania State University Radiation Science and Engineering Center

    SciTech Connect (OSTI)

    Johnsen, Amanda M.; Heidrich, Brenden; Durrant, Chad; Bascom, Andrew; Unlu, Kenan

    2013-08-15

    The Penn State Breazeale Nuclear Reactor (PSBR) at the Radiation Science and Engineering Center (RSEC) has produced radioisotopes for research and commercial purposes since 1956. With the rebirth of the radiochemistry education and research program at the RSEC, the Center stands poised to produce a variety of radioisotopes for research and industrial work that is in line with the mission of the DOE Office of Science, Office of Nuclear Physics, Isotope Development and Production Research and Application Program. The RSEC received funding from the Office of Science in 2010 to improve production techniques and develop new capabilities. Under this program, we improved our existing techniques to provide four radioisotopes (Mn-56, Br-82, Na-24, and Ar-41) to researchers and industry in a safe and efficient manner. The RSEC is also working to develop new innovative techniques to provide isotopes in short supply to researchers and others in the scientific community, specifically Cu-64 and Cu-67. Improving our existing radioisotopes production techniques and investigating new and innovative methods are two of the main initiatives of the radiochemistry research program at the RSEC.

  17. Oklahoma/Wind Resources/Full Version | Open Energy Information

    Open Energy Info (EERE)

    City, OK 73104-3234 Phone: 800-879-6552 E-mail: info@okcommerce.gov State Energy Office Jennifer Jenkins Distributed Wind Energy Association PO Box 1861 Flagstaff, AZ 86002...

  18. 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Intercomparison of Cloud Base Height at the Atmospheric Radiation Measurement Southern Great Plains Site C.P. Kalb Ohio State University Columbus, Ohio and Oklahoma Weather Center National Science Foundation Research Experiences for Undergraduates Norman, Oklahoma A.R. Dean, R.A. Peppler, and K.L. Sonntag Atmospheric Radiation Measurement Data Quality Office The University of Oklahoma Norman, Oklahoma Introduction The Atmospheric Radiation Measurement (ARM) Program is an interagency program

  19. Faculty Annual Review | MIT-Harvard Center for Excitonics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Factors Influencing Oil Prices: A Survey of the Current State of Knowledge in the Context of the 2007-08 Oil Price Volatility Louis H. Ederington, University of Oklahoma Chitru S. Fernano, University of Oklahoma Thomas K. Lee, U.S. Energy Information Administration Scott C. Linn, University of Oklahoma Anthony D. May, Wichita State University August 2011 Independent Statistics & Analysis www.eia.gov U.S. Energy Information Administration Washington, DC 20585 This paper is released to

  20. University of Kansas | Open Energy Information

    Open Energy Info (EERE)

    Kansas Jump to: navigation, search Name: University of Kansas Place: Lawrence, Kansas Zip: 66045 Product: A public university in the state of Kansas. Coordinates: 44.40581,...

  1. University of Maine | Open Energy Information

    Open Energy Info (EERE)

    search Name: University of Maine Place: United States Sector: Services Product: General Financial & Legal Services ( Academic Research foundation ) References: University of...

  2. Triangle Universities Nuclear Laboratory : 2011

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hill KamLAND: Hugon Karwowski and Ryan Rohm, UNC at Chapel Hill; Christopher Gould and Albert Young, NC State University; Diane Markoff, NC Central University; and Werner Tornow,...

  3. Boise State University: Executive Summary

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Executive Summary With record growth in the wind energy industry and the increasing discussion of ... but also to educate our younger population about the benefits and utility of ...

  4. Pennsylvania State University: Executive Summary

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... in the organizational phase of development at this time. The company plans to take advantage of economic incentives to aid its development such as the Keystone Innovation Network ...

  5. Central State University Career Fair

    Office of Energy Efficiency and Renewable Energy (EERE)

    Location:Beacom/Lewis Gymnasium, 1401 Bush Row Road, Wilberforce, OH, 45384POC: Trisha ZamarronWebsite: http://www.centralstate.edu/current/career/details.php?num=16

  6. Boise State University: Business Plan

    Broader source: Energy.gov (indexed) [DOE]

    Business Team Britteny Carlson ... Leaders John Gardner ... the horizons for students enrolled in college curriculum. ...

  7. Kansas State University: Executive Summary

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wildcat Wind Power seeks to provide affordable, reliable, and efficient wind and solar powered lighting solutions. We believe that providing renewable-energy powered street lights that work independently from the grid can offer more than just energy savings. During power outages, our street lights will continue to glow, promoting safety during a potentially troublesome time. We believe that this feature will allow us to succeed across the globe, as there are many reasons for grid issues,

  8. State

    U.S. Energy Information Administration (EIA) Indexed Site

    Created on: 8/26/2016 3:22:30 PM Table 2. Natural gas consumption in the United States, 2011-2016 (billion cubic feet, or as indicated) Year and Month Lease and Plant Fuel a Pipeline and Distribution Use b Delivered to Consumers Total Consumption Heating Value c (Btu per cubic foot) Residential Commercial Industrial Electric Power Vehicle Fuel Total 2011 Total 1,323 688 4,714 3,155 6,994 7,574 30 22,467 24,477 1,022 2012 Total 1,396 731 4,150 2,895 7,226 9,111 30 23,411 25,538 1,024 2013 Total

  9. GE launches 'STEM empowers OK' initiative in Oklahoma City | GE Global

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research GE, OCAST and OSSM Partner to Launch "STEM Empowers OK" Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) GE, OCAST and OSSM Partner to Launch "STEM Empowers OK" stem empowers ok GE Foundation donates $400,000 to enhance STEM education initiatives across Oklahoma STEM Empowers OK to

  10. ,"Oklahoma Coalbed Methane Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Oklahoma Coalbed Methane Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  11. ,"Oklahoma Crude Oil + Lease Condensate Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    + Lease Condensate Proved Reserves (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Oklahoma Crude Oil + Lease Condensate Proved Reserves (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  12. ,"Oklahoma Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Oklahoma Natural Gas Gross Withdrawals and Production",10,"Monthly","6/2016","01/15/1989" ,"Release Date:","08/31/2016" ,"Next Release Date:","09/30/2016" ,"Excel File

  13. ,"Oklahoma Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Oklahoma Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)",1,"Annual",2010 ,"Release Date:","8/31/2016" ,"Next Release Date:","9/30/2016" ,"Excel File

  14. ,"Oklahoma Shale Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Oklahoma Shale Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  15. Enhanced Oil Recovery with Downhole Vibrations Stimulation in Osage County, Oklahoma

    SciTech Connect (OSTI)

    J. Ford Brett; Robert V. Westermark

    2001-09-30

    This Technical Quarterly Report is for the reporting period July 1, 2001 to September 30, 2001. The report provides details of the work done on the project entitled ''Enhanced Oil Recovery with Downhole Vibration Stimulation in Osage County Oklahoma''. The project is divided into nine separate tasks. Several of the tasks are being worked on simultaneously, while other tasks are dependent on earlier tasks being completed. The vibration stimulation well is permitted as Well 111-W-27, section 8 T26N R6E Osage County Oklahoma. It was spud July 28, 2001 with Goober Drilling Rig No. 3. The well was drilled to 3090-feet cored, logged, cased and cemented. The Rig No.3 moved off August 6, 2001. Phillips Petroleum Co. has begun analyzing the cores recovered from the test well. Standard porosity, permeability and saturation measurements will be conducted. They will then begin the sonic stimulation core tests Calumet Oil Company, the operator of the NBU, has begun to collect both production and injection wells information to establish a baseline for the project in the pilot field test area. Green Country Submersible Pump Company, a subsidiary of Calumet Oil Company, will provide both the surface equipment and downhole tools to allow the Downhole Vibration Tool to be operated by a surface rod rotating system. The 7-inch Downhole Vibration Tool (DHVT) has been built and is ready for initial shallow testing. The shallow testing will be done in a temporarily abandoned well operated by Calumet Oil Co. in the Wynona waterflood unit. The data acquisition doghouse and rod rotating equipment have been placed on location in anticipation of the shallow test in Well No.20-12 Wynona Waterflood Unit. A notice of invention disclosure was submitted to the DOE Chicago Operations Office. DOE Case No.S-98,124 has been assigned to follow the documentation following the invention disclosure. A paper covering the material presented to the Oklahoma Geologic Survey (OGS)/DOE Annual Workshop in

  16. Oklahoma Renewable Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Oklahoma" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",851,851,851,854,858 "Solar","-","-","-","-","-" "Wind",594,689,708,1130,1480 "Wood/Wood Waste",63,63,63,58,58 "MSW/Landfill Gas",16,16,16,16,16 "Other

  17. Oklahoma Total Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Oklahoma" "Energy Source",2006,2007,2008,2009,2010 "Fossil",18301,18083,18364,18532,18350 " Coal",5372,5364,5302,5330,5330 " Petroleum",75,70,71,71,69 " Natural Gas",12854,12649,12985,13125,12951 " Other Gases","-","-",6,6,"-" "Nuclear","-","-","-","-","-" "Renewables",1524,1618,1637,2057,2412 "Pumped

  18. Oklahoma Energy and Cost Savings for New Single- and Multifamily Homes: 2012 IECC as Compared to the 2009 IRC

    SciTech Connect (OSTI)

    Lucas, Robert G.; Taylor, Zachary T.; Mendon, Vrushali V.; Goel, Supriya

    2012-06-15

    The 2012 International Energy Conservation Code (IECC) yields positive benefits for Oklahoma homeowners. Moving to the 2012 IECC from Chapter 11 of the 2009 International Residential Code (IRC) is cost effective over a 30-year life cycle. On average, Oklahoma homeowners will save $5,786 with the 2012 IECC. After accounting for upfront costs and additional costs financed in the mortgage, homeowners should see net positive cash flows (i.e., cumulative savings exceeding cumulative cash outlays) in 1 year for the 2012 IECC. Average annual energy savings are $408 for the 2012 IECC.

  19. ARM - Collaborations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Administration (NOAA) National Science Foundation (NSF) National Weather Service, Papua New Guinea Oklahoma Mesonet Pennsylvania State University Regional & Global Climate Modeling ...

  20. Final Report (Technical Report) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Research Org: University of Oklahoma Sponsoring Org: USDOE; USDOE Office of Science (SC), High Energy Physics (HEP) (SC-25) Country of Publication: United States Language: English ...

  1. State Overview

    Energy Savers [EERE]

    Power Plants: 85 (1% total U.S.) Coal-fired: 7 (1% total U.S.) Petroleum-fired: 13 ... leading cause of natural gas processing plant disruptions in Oklahoma from 2005 to 2014 ...

  2. Stabilization of Oklahoma expensive soils using lime and class C fly ash

    SciTech Connect (OSTI)

    Buhler, R.L.; Cerato, A.B.

    2007-01-15

    This study uses lime and class C fly ash, an industrial byproduct of electric power production produced from burning lignite and subbituminous coal, to study the plasticity reduction in highly expensive natural clays from Idabel, Oklahoma. This study is important, especially in Oklahoma, because most of the native soils are expansive and cause seasonal damage to roadways and structures. The addition of lime or fly ash helps to arrest the shrinkage and swelling behavior of soil. Four soil samples with the same AASHTO classification were used in this study to show shrinkage variability within a soil group with the addition of lime and class C fly ash. The plasticity reduction in this study was quantified using the linear shrinkage test. It was found that soils classified within the same AASHTO group had varying shrinkage characteristics. It was also found that both lime and fly ash reduced the lienar shrinkage, however, the addition of lime reduced the linear shrinkage to a greater degree than the same percentage of class C fly ash. Even though it takes much less lime than fly ash to reduce the plasticity of a highly expansive soil, it may be less expensive to utilize fly ash, which is a waste product of electric power production. Lime also has a lower unit weight than fly ash so weight percentage results may be misleading.

  3. MiniBooNE Status Ryan B. Patterson Princeton University Argonne Workshop on Trends in Neutrino Physics, Argonne National Laboratry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Status Ryan B. Patterson Princeton University Argonne Workshop on Trends in Neutrino Physics, Argonne National Laboratry May 14, 2003 The collaboration University of Alabama Bucknell University University of California, Riverside University of Cincinnati University of Colorado Columbia University Embry Riddle Aeronautical University Fermi National Accelerator Laboratory Indiana University Los Alamos National Laboratory Louisiana State University University of Michigan Princeton University ~60

  4. Studies Related to the Oregon State University High Temperature Test Facility: Scaling, the Validation Matrix, and Similarities to the Modular High Temperature Gas-Cooled Reactor

    SciTech Connect (OSTI)

    Richard R. Schultz; Paul D. Bayless; Richard W. Johnson; William T. Taitano; James R. Wolf; Glenn E. McCreery

    2010-09-01

    The Oregon State University (OSU) High Temperature Test Facility (HTTF) is an integral experimental facility that will be constructed on the OSU campus in Corvallis, Oregon. The HTTF project was initiated, by the U.S. Nuclear Regulatory Commission (NRC), on September 5, 2008 as Task 4 of the 5 year High Temperature Gas Reactor Cooperative Agreement via NRC Contract 04-08-138. Until August, 2010, when a DOE contract was initiated to fund additional capabilities for the HTTF project, all of the funding support for the HTTF was provided by the NRC via their cooperative agreement. The U.S. Department of Energy (DOE) began their involvement with the HTTF project in late 2009 via the Next Generation Nuclear Plant project. Because the NRC interests in HTTF experiments were only centered on the depressurized conduction cooldown (DCC) scenario, NGNP involvement focused on expanding the experimental envelope of the HTTF to include steady-state operations and also the pressurized conduction cooldown (PCC). Since DOE has incorporated the HTTF as an ingredient in the NGNP thermal-fluids validation program, several important outcomes should be noted: 1. The reference prismatic reactor design, that serves as the basis for scaling the HTTF, became the modular high temperature gas-cooled reactor (MHTGR). The MHTGR has also been chosen as the reference design for all of the other NGNP thermal-fluid experiments. 2. The NGNP validation matrix is being planned using the same scaling strategy that has been implemented to design the HTTF, i.e., the hierarchical two-tiered scaling methodology developed by Zuber in 1991. Using this approach a preliminary validation matrix has been designed that integrates the HTTF experiments with the other experiments planned for the NGNP thermal-fluids verification and validation project. 3. Initial analyses showed that the inherent power capability of the OSU infrastructure, which only allowed a total operational facility power capability of 0.6 MW, is

  5. Enhanced Oil Recovery with Downhole Vibration Stimulation in Osage County, Oklahoma

    SciTech Connect (OSTI)

    J. Ford Brett; Robert V. Westermark

    2002-06-30

    This Technical Quarterly Report is for the reporting period March 31, 2002 to June 30, 2002. The report provides details of the work done on the project entitled ''Enhanced Oil Recovery with Downhole Vibration Stimulation in Osage County Oklahoma''. The project is divided into nine separate tasks. Several of the tasks are being worked on simultaneously, while other tasks are dependent on earlier tasks being completed. The vibration stimulation Well 111-W-27 is located in section 8 T26N R6E of the North Burbank Unit (NBU), Osage County Oklahoma. It was drilled to 3090-feet cored, logged, cased and cemented. The rig moved off August 6, 2001. Phillips Petroleum Co. has performed several core studies on the cores recovered from the test well. Standard porosity, permeability and saturation measurements have been conducted. In addition Phillips has prepared a Core Petrology Report, detailing the lithology, stratigraphy and sedimentology for Well 111-W27, NBU. Phillips has also conducted the sonic stimulation core tests, the final sonic stimulation report has not yet been released. Calumet Oil Company, the operator of the NBU, began collecting both production and injection wells information to establish a baseline for the project in the pilot field test area since May 2001. The original 7-inch Downhole Vibration Tool (DHVT) has been thoroughly tested and it has been concluded that it needs to be redesigned. An engineering firm from Fayetteville AR has been retained to assist in developing a new design for the DHVT. The project participants requested from the DOE, a no-cost extension for the project through December 31, 2002. The no-cost extension amendment to the contract was signed during this reporting period. A technical paper SPE 75254 ''Enhanced Oil Recovery with Downhole Vibration Stimulation, Osage County, Oklahoma'' was presented at the 2002 SPE/DOE Thirteenth Symposium on Improved Oil Recovery, in Tulsa OK, April 17, 2002. A one-day short course was conducted at

  6. Triangle Universities Nuclear Laboratory : 2011

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Physics| NC-State Physics| UNC-Chapel Hill Physics| Graduate Education at TUNL - Students from Duke University, North Carolina State University, and the University of North Carolina at Chapel Hill perform collaborative research on a wide variety of topics. There are approximately 40 graduate students conducting research projects on a wide variety of topics that include nuclear astrophysics, fundamental symmetries, neutrino physics, weak interactions, few-nucleon, sub-nucleon, and many-body

  7. Oklahoma Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    and Plant Fuel Consumption (Million Cubic Feet) Oklahoma Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 65,167 84,259 103,361 1970's 98,417 101,126 98,784 80,233 80,780 79,728 84,025 77,631 82,046 128,475 1980's 59,934 56,785 91,465 79,230 91,707 88,185 84,200 104,415 100,926 90,225 1990's 111,567 88,366 92,978 99,869 91,039 80,846 73,039 81,412 61,543 - = No Data Reported; -- = Not Applicable;

  8. Oklahoma Natural Gas Number of Gas and Gas Condensate Wells (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Gas and Gas Condensate Wells (Number of Elements) Oklahoma Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 27,443 1990's 24,547 28,216 28,902 29,118 29,121 29,733 29,733 29,734 30,101 21,790 2000's 21,507 32,672 33,279 34,334 35,612 36,704 38,060 38,364 41,921 43,600 2010's 44,000 41,238 40,000 39,776 40,070 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  9. Oklahoma Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Oklahoma Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 3.83 3.06 2.66 2.36 2.36 2.36 2.46 2.49 1.72 2000's 1.61 6.59 5.34 6.71 8.55 11.61 16.67 12.83 11.01 9.69 2010's 8.18 10.98 9.13 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release

  10. Oklahoma Natural Gas in Underground Storage - Change in Working Gas from

    U.S. Energy Information Administration (EIA) Indexed Site

    Same Month Previous Year (Million Cubic Feet) Million Cubic Feet) Oklahoma Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 -3,932 5,480 7,289 -2,690 234 1,959 -4,575 -3,502 -6,399 723 4,670 1991 -18,020 -11,848 -7,774 9,453 9,540 10,851 1,058 -1,981 846 -1,053 -36,391 -20,972 1992 4,433 1,077 -7,840 -16,283 -22,923 -22,043 -5,431 -2,118 584 4,227 9,780 -10,318 1993 -69,197

  11. Oklahoma Natural Gas Delivered to Commercial Consumers for the Account of

    Gasoline and Diesel Fuel Update (EIA)

    Others (Million Cubic Feet) Delivered to Commercial Consumers for the Account of Others (Million Cubic Feet) Oklahoma Natural Gas Delivered to Commercial Consumers for the Account of Others (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 0 12,217 3,988 1990's 2,944 3,445 4,052 4,095 4,214 5,894 7,165 8,204 11,752 11,218 2000's 11,920 10,549 11,682 10,755 14,253 18,468 17,798 21,216 19,870 22,220 2010's 21,966 21,697 21,258 24,494

  12. Oklahoma Natural Gas in Underground Storage (Base Gas) (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Base Gas) (Million Cubic Feet) Oklahoma Natural Gas in Underground Storage (Base Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 167,385 163,458 167,385 163,458 167,385 167,385 167,385 167,385 167,385 167,385 173,097 172,762 1991 172,757 172,757 172,757 172,757 172,757 172,757 172,757 172,757 172,757 172,757 172,757 172,757 1992 172,757 172,757 172,368 172,573 172,757 172,757 172,757 172,757 172,757 172,757 176,765 176,765 1993 228,593 227,252 227,560 226,942

  13. Local Universities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Universities Local Universities Los Alamos Lab recruits the best minds on the planet and offers job search information and assistance to our dual career spouses or partners. Contact Us dualcareers@lanl.gov The listing of schools, colleges and universities in New Mexico is organized by region. Northern New Mexico Area Espanola Public Schools District (K-12) Los Alamos Public Schools McCurdy Charter School New Mexico School for the Deaf Northern New Mexico Community College Pojoaque Valley Schools

  14. transims-studies-at-the-university

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Studies at the University at Buffalo, the State University of New York Adel W. Sadek, Ph.D. Associate Professor University at Buffalo, The State University of New York 233 Ketter Hall Buffalo, NY 14260 Phone: (716) 645-4367 FAX: (716) 645-3733 E-mail: This email address is being protected from spambots. You need JavaScript enabled to view it. List of Authors ================ Adel W. Sadek, Ph.D. Shan Huang Liya Guo Yan Yang Irene Casas, Ph.D. University at Buffalo, The State University of New

  15. University Research | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    University Research Universities Universities Home Interactive Grants Map SC In Your State University Science Highlights University Research News Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 University Research Print Text Size: A A A Subscribe FeedbackShare Page GO 09.02.16University Research Subatomic Microscopy Key to Building New Classes of Materials External link Researchers at Penn State and the Molecular

  16. Enhanced Oil Recovery with Downhole Vibration Stimulation in Osage County, Oklahoma

    SciTech Connect (OSTI)

    J. Ford Brett; Robert V. Westermark

    2001-12-31

    This Technical Quarterly Report is for the reporting period September 30, 2001 to December 31, 2001. The report provides details of the work done on the project entitled ''Enhanced Oil Recovery with Downhole Vibration Stimulation in Osage County Oklahoma''. The project is divided into nine separate tasks. Several of the tasks are being worked on simultaneously, while other tasks are dependent on earlier tasks being completed. The vibration stimulation well was permitted as Well 111-W-27, section 8 T26N R6E Osage County Oklahoma. It was spud July 28, 2001 with Goober Drilling Rig No. 3. The well was drilled to 3090-feet cored, logged, cased and cemented. The Rig No.3 moved off August 6, 2001. Phillips Petroleum Co. has performed standard core analysis on the cores recovered from the test well. Standard porosity, permeability and saturation measurements have been conducted. Phillips has begun the sonic stimulation core tests. Calumet Oil Company, the operator of the NBU, has been to collecting both production and injection wells information to establish a baseline for the project in the pilot field test area since May 2001. The 7-inch Downhole Vibration Tool (DHVT) has been built and has been run in a shallow well for initial power source testing. This testing was done in a temporarily abandoned well, Wynona Waterflood Unit, Well No.20-12 operated by Calumet Oil Co both in October and December 2001. The data acquisition system, and rod rotating equipment performed as designed. However, the DHVT experienced two internal failures during vibration operations. The DHVT has been repaired with modifications to improve its functionality. A proposed technical paper abstract has been accepted by the SPE to be presented at the 2002 SPE/DOE Thirteenth Symposium on Improved Oil Recovery, in Tulsa OK, 13-17 April 2002. A one-day SPE sponsored short course which is planned to cover seismic stimulation efforts around the world, will be offered at the SPE/DOE Thirteenth Symposium on

  17. 2014 Race to Zero Student Design Competition: Illinois State...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Illinois State University Profile 2014 Race to Zero Student Design Competition: Illinois State University Profile 2014 Race to Zero Student Design Competition: Illinois State ...

  18. 2014 Race to Zero Student Design Competition: University of Pittsburgh...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications 2014 Race to Zero Student Design Competition: Illinois State University Profile 2014 Race to Zero Student Design Competition: Ryerson University - ...

  19. Other States Total Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    Alaska Arkansas California Colorado Federal Offshore Gulf of Mexico Kansas Louisiana Montana New Mexico North Dakota Ohio Oklahoma Pennsylvania Texas Utah West Virginia Wyoming Other States Total Alabama Arizona Florida Illinois Indiana Kentucky Maryland Michigan Mississippi Missouri Nebraska Nevada New York Oregon South Dakota Tennessee Virginia Period-Unit: Monthly-Million Cubic Feet Monthly-Million Cubic Feet per Day Annual-Million Cubic Feet Download Series History Download Series History

  20. Passive energy design and habitability aspects of earth-sheltered housing in Oklahoma

    SciTech Connect (OSTI)

    Boyer, L.L.; Grondzik, W.T.; Weber, M.J.

    1980-05-01

    Identified earth-sheltered houses in Oklahoma were examined through a detailed questionnaire during the first phase of a long-range funded project. Preliminary results of energy and habitability aspects are presented here. Saving energy is reported to be the primary incentive for building such structures. Habitability aspects have generally not received much study until recently. The results indicate that although a majority of the respondents feel their energy-savings expectations have been reached, over 40% feel that their energy consumption is much higher than they expected. Preliminary energy performance studies indicate that in a majority of the projects, the potential thermal mass of the structure has been decoupled by insulation and furred interior surface treatments. This situation can lead to a significant reduction in the amount of free earth cooling available during the summer months. Other factors, not yet studied, undoubtedly contribute additional adverse effects. The substantial energy savings that are realized have been achieved with little decrease, and often an increase, in comfort and habitability aspects. Most occupants are particularly satisfied with the safety of the structure and the arrangement of the rooms, which in most cases were custom designed by or for the occupants. However, daylighting and privacy of family members, for example, were not as highly rated. A number of other parameters are identified from the survey that present implications for design enhancement in this contemporary type of residential structure. 14 references, 4 figures, 6 tables.

  1. Oklahoma Natural Gas in Underground Storage - Change in Working Gas from

    U.S. Energy Information Administration (EIA) Indexed Site

    Same Month Previous Year (Percent) Percent) Oklahoma Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 -13.9 -10.0 -6.5 8.1 7.3 7.8 0.7 -1.3 0.5 -0.6 -20.1 -13.6 1992 4.0 1.0 -7.0 -12.9 -16.3 -14.6 -3.6 -1.4 0.4 2.5 6.8 -7.7 1993 -59.8 -75.3 -81.3 -71.8 -58.1 -47.8 -43.7 -38.0 -33.1 -31.7 -34.3 -29.9 1994 20.6 33.2 68.7 60.2 49.2 29.1 25.2 21.3 11.9 8.6 24.6 27.3 1995 54.1 106.0 91.5

  2. Regional geologic characteristics relevant to horizontal drilling, Woodford Shale, Anadarko basin, Oklahoma

    SciTech Connect (OSTI)

    Hester, T.C.; Schmoker, J.W. )

    1991-06-01

    Horizontal drilling in the Late Devonian-Early Mississippian Bakken Formation of the Williston basin has spurred new interest in other black shales as primary hydrocarbon reservoirs. The Late Devonian-Early Mississippian Woodford Shale, which is similar in some respects to the Bakken Formation, is a major source of oil and gas in the Anadarko basin of Oklahoma and could prove to be a significant reservoir rock as well. The three regional geologic characteristics of the Woodford discussed here are of likely importance to horizontal drilling programs, although direct relations to drilling strategy cannot be developed until empirical data from horizontal tests become available. First, the Woodford Shale is composed of three distinct depositional units (the upper, middle, and lower informal members) with different physical and geochemical properties. Second, a paleotopographic high that was rising before and during Woodford deposition divided the Woodford Shale into northeast and southwest depocenters. Third, Woodford depositional patterns are overprinted by thermal-maturity trends shaped primarily by differential burial of the Woodford during Pennsylvanian and Permian time. The Woodford Shale northeast of the forebulge is generally immature to marginally mature, whereas its thermal maturity southwest of the forebulge ranges from mature to postmature with respect to oil generation. A formation resistivity of about 35 ohm-m approximates the updip limit of oil-saturated Woodford Shale from which free oil might be produced from fracture systems.

  3. Optical losses of solar mirrors due to atmospheric contamination at Liberal, Kansas and Oologah, Oklahoma

    SciTech Connect (OSTI)

    Dake, L.S.; Lind, M.A.

    1981-09-01

    An assessment is presented of the effect of outdoor exposure on mirrors located at two sites selected for potential solar cogeneration/repowering facilities: Liberal, Kansas and Oologah, Oklahoma. Mirror coupons were placed on tracking heliostat simulators located in the proposed heliostat fields and were removed periodically. The spectral hemispherical and diffuse reflectances of these coupons were measured. Representative samples were analyzed for the chemical composition of the dust particulates using SEM/EDX. Other samples were washed with a high pressure spray and recharacterized to determine the effects of the residual dust. Average specular reflectance losses over the entire test period (up to 504 days) were 6 to 12%, with a range of 1 to 30%. Specular reflectance losses varied widely from day to day depending on local weather conditions. The losses due to scattering were 2 to 5 times greater than the losses due to absorptance. The average degradation rate over the first thirty days was an order of magnitude larger than the average degradation rate over the entire sampling period. Specular reflectance loss rates averaged 0.5% per day and greater between periods of natural cleaning. The chemical composition of the dust on the mirrors was characteristic of the indigenous soil, with some samples also showing the presence of sulfur and chlorine, possibly from cooling tower drift.

  4. Determining sand-body geometries for waterflood reservoirs: Examples from Oklahoma

    SciTech Connect (OSTI)

    Kreisa, R.D.; Pinero, E. )

    1987-02-01

    Waterflood projects require an accurate knowledge of reservoir geometry and well-to-well continuity. However, sandstones with thin, multiple-pay zones can be extremely difficult to correlate with confidence. Two case studies of Pennsylvanian sandstones in Oklahoma illustrate how a model for the depositional history of such reservoirs can be an effective tool for determining reservoir continuity. In contrast, correlation criteria such as similar wireline log signatures and relative sand-body thicknesses are not reliable in many situations. In Southwest Logan field (Beaver County), 5 to 15-ft thick reservoir sands formed as shallow marine sand ridges. Their dimensions were approximated from height-to-width ratios of modern sand ridges. Then the reservoir sands were mapped using wireline logs and core data. Individual reservoir sands were approximately 1-2 km wide and stacked en echelon vertically. Thus, a line-drive waterflood pattern oriented parallel to the axes of the ridges is recommended. Tatums field (Carter County) consists of 5 to 50-ft thick sandstones deposited in various deltaic environments. Distributary channel sands have good continuity downdip, but are narrow and lenticular across depositional strike. Crevasse splay and other bay-fill sands were deposited marginal to the channels and are extremely discontinuous. This depositional model can be used to improve flood patterns for these sands, leading to improved sweep efficiency. In both examples, for effective mapping, the depositional facies models have been used to register reservoir quality and wireline log signatures.

  5. Triangle Universities Nuclear Laboratory : 2011

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Postdoctoral Position in Fundamental Symmetries Postdoctoral Position in Fundamental Symmetries - North Carolina State University, Department of Physics The Experimental Nuclear Physics group at North Carolina State University solicits applications for a postdoctoral research associate to work with us on the SNS-based neutron electric dipole moment experiment. Applicants must have a Ph.D. in physics, astronomy, or a related field. Candidates having low temperature (<4 K) experience are

  6. Source rock geochemistry and liquid and solid petroleum occurrences of the Ouachita Mountains, Oklahoma

    SciTech Connect (OSTI)

    Curiale, J.A.

    1981-01-01

    Crude oils, solid bitumens and potential oil source rocks of the Frontal and Central Ouachita Mountains of southeastern Oklahoma were examined. The purposes of this study are to characterize the organic matter in each of these materials, and to correlate oils to potential source rocks in the Ouachita Mountains. Four Ouachita Mountain oils and seven solid bitumens (grahamite and impsonite were analyzed. The oils are paraffinic and range from 31.8 to 43.1 API gravity. Results indicate that the oils are thermally mature and generally unaltered. All four oils are commonly sourced, as suggested by n-alkane, sterane and hopane distributions, stable isotope ratios, infrared spectra and vanadium/nickel ratios. A common source for the solid bitumens is also suggested by isotope ratios and pyrolyzate characteristics. An origin due to crude oil biodegradation is suggested for these solids, based on carbon isotope ratios, elemental analyses, and sterane distributions of the solid bitumen pyrolyzates. Several stratigraphic intervals in the Ouachita Mountains possess adequate source potential for petroleum generation, based on contents of total organic carbon and extractable organic matter. Devonian rocks are oil-generative. The entire Paleozoic section examined is thermally mature enough to have generated oil, being located at about the middle of the oil window. In general, the best oil source potential is present in upper Ordovician (Polk Creek/Womble) rocks. Oil-source rock correlation techniques indicate that oils examined from the Frontal and Central Ouachita Mountains have a Siluro-Ordovician (Missouri Mountain-Polk Creek-Womble) source.

  7. U.S. States - U.S. Energy Information Administration (EIA)

    Gasoline and Diesel Fuel Update (EIA)

    U.S. Energy Information Administration (EIA) The page does not exist for . To view this page, please select a state: United States Alabama Alaska Arizona Arkansas California Colorado Connecticut Delaware District of Columbia Florida Georgia Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon

  8. ,"Oklahoma Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Oklahoma Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)",1,"Monthly","6/2016" ,"Release Date:","8/31/2016" ,"Next Release

  9. Sandia National Laboratories: Careers: Students & Postdocs: Campus

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Recruiting: Universities Universities A partial list of universities hosting Sandia recruiting events: California Institute of Technology Carnegie Mellon University Cornell University DeVry University - Phoenix Georgia Institute of Technology Massachusetts Institute of Technology New Mexico Institute of Mining and Technology New Mexico State University Oklahoma State University Prairie View A&M University Purdue University Stanford University Texas A&M University University of

  10. United States Government

    Office of Legacy Management (LM)

    & Merrel Co., Saginaw, M ichigan l North Carolina State University, Raleigh, North Carolina l National Smelt & Refining, Cleveland, O h io Sutton Steele & Steele, Dallas, Texas <. ...

  11. CENSUS AND STATISTICAL CHARACTERIZATION OF SOIL AND WATER QUALITY AT ABANDONED AND OTHER CENTRALIZED AND COMMERCIAL DRILLING-FLUID DISPOSAL SITES IN LOUISIANA, NEW MEXICO, OKLAHOMA, AND TEXAS

    SciTech Connect (OSTI)

    Alan R. Dutton; H. Seay Nance

    2003-06-01

    Commercial and centralized drilling-fluid disposal (CCDD) sites receive a portion of spent drilling fluids for disposal from oil and gas exploration and production (E&P) operations. Many older and some abandoned sites may have operated under less stringent regulations than are currently enforced. This study provides a census, compilation, and summary of information on active, inactive, and abandoned CCDD sites in Louisiana, New Mexico, Oklahoma, and Texas, intended as a basis for supporting State-funded assessment and remediation of abandoned sites. Closure of abandoned CCDD sites is within the jurisdiction of State regulatory agencies. Sources of data used in this study on abandoned CCDD sites mainly are permit files at State regulatory agencies. Active and inactive sites were included because data on abandoned sites are sparse. Onsite reserve pits at individual wells for disposal of spent drilling fluid are not part of this study. Of 287 CCDD sites in the four States for which we compiled data, 34 had been abandoned whereas 54 were active and 199 were inactive as of January 2002. Most were disposal-pit facilities; five percent were land treatment facilities. A typical disposal-pit facility has fewer than 3 disposal pits or cells, which have a median size of approximately 2 acres each. Data from well-documented sites may be used to predict some conditions at abandoned sites; older abandoned sites might have outlier concentrations for some metal and organic constituents. Groundwater at a significant number of sites had an average chloride concentration that exceeded nonactionable secondary drinking water standard of 250 mg/L, or a total dissolved solids content of >10,000 mg/L, the limiting definition for underground sources of drinking water source, or both. Background data were lacking, however, so we did not determine whether these concentrations in groundwater reflected site operations. Site remediation has not been found necessary to date for most abandoned

  12. Saint Joseph's University Institute for Environmental Stewardship

    SciTech Connect (OSTI)

    McCann, Michael P; Springer, Clint

    2013-10-15

    Task A: Examination of the physiological, morphological, and reproductive responses of Panicum virgatum (switchgrass) cultivars identified as potential biofuel producing cultivars as well as naturally-occurring varieties of switchgrass to projected changes in climate for the central portion of the United States. This project was a multi-year project set in a field site located at the Konza Prairie Biological Station near Manhattan, KS USA. At the field site we planted switchgrass collected from regions in Kansas, Oklahoma, and Texas. After a year of establishment we implemented a set of two-year water treatments that examined the responses in physiology, growth and development of switchgrass to predicted changes in precipitation amount for the central United States. After this experiment was completed we performed a second set of experiments that examined the responses of switchgrass physiology, growth, and development to changes in precipitation frequency. We also included in this analysis how genome size of individuals influenced their responses to precipitation frequency changes. Generally, we found switchgrass to be unresponsive to realistic predictions of precipitation changes for the Central Plains of the United States. These studies have provided significant insight into how this important grassland species will respond to future climate change from both an ecological and applied biological perspective. Finally, we provided insight into the mechanism through which this species changes in the face of altered water availability by not supporting the hypothesis that the control of switchgrass responses to changes in precipitation is altered by genome size. Task B: Installation of an extensive green roof system on the Science Center at Saint Joseph's University for research, research-training and educational outreach activities. An experimental green roof system was designed and installed by an outside contractor (Roofmeadows) on the roof of the Science Center

  13. Hydrogeologic subdivision of the Wolfcamp series and Pennsylvanian system of eastern Texas Panhandle, north-central Texas, and southwestern Oklahoma

    SciTech Connect (OSTI)

    Kayal, R.R.; Kistner, D.J.; Kranes, R.; Verock, F.P.

    1987-03-01

    The Pennsylvanian-Wolfcamp section in the Palo Duro Basin includes brine aquifers that are considered to be the most important ground-water flow paths in the deep-basin system. This report is the fifth in a series providing summary documentation of studies that subdivide the section into hydrogeologic units based on their judged relative capacities for transmitting water. This report extends the hydrogeologic study area to the eastern Texas Panhandle, north-central Texas, and southwestern Oklahoma. It includes 37 counties in Texas and Oklahoma. Underground patterns of rock distribution are delineated from a hydrologic perspective and at a level of detail appropriate for numerical modeling of regional ground-water flow. Hydrogeologic units are defined and characterized so that appropriate porosity and permeability values can be assigned to each unit during construction of the numerical models (not part of this study), and so that modelers can combine units where necessary. In this study, hydrogeologic units have been defined as mappable, physically continuous rock bodies that function in bulk as water-transmitting or water-retarding units relative to adjacent rocks. Interpretations are made primarily from geophysical logs. Hydrologic characteristics are assessed on the basis of properties typically associated with certain lithologies (e.g., sandstones are more pervious than shales) and on the basis of gross variations in effective porosity (particularly in carbonate sequences). 44 refs., 32 figs., 1 tab.

  14. National Uranium Resource Evaluation Program. Data report: Arkansas, Louisiana, Mississippi, Missouri, Oklahoma, and Texas. Hydrogeochemical and stream sediment reconnaissance

    SciTech Connect (OSTI)

    Fay, W M; Sargent, K A; Cook, J R

    1982-02-01

    This report presents the results of ground water, stream water, and stream sediment reconnaissance in Arkansas, Louisiana, Mississippi, Missouri, Oklahoma, and Texas. The following samples were collected: Arkansas-3292 stream sediments, 5121 ground waters, 1711 stream waters; Louisiana-1017 stream sediments, 0 ground waters, 0 stream waters; Misissippi-0 stream sediments, 814 ground waters, 0 stream waters; Missouri-2162 stream sediments, 3423 ground waters 1340 stream waters; Oklahoma-2493 stream sediments, 2751 ground waters, 375 stream waters; and Texas-279 stream sediments, 0 ground waters, 0 stream waters. Neutron activation analyses are given for U, Br, Cl, F, Mn, Na, Al, V, and Dy in ground water and stream water, and for U, Th, Hf, Ce, Fe, Mn, Na, Sc, Ti, V, Al, Dy, Eu, La, Sm, Yb, and Lu in sediments. The results of mass spectroscopic analysis for He are given for 563 ground water sites in Mississippi. Field measurements and observations are reported for each site. Oak Ridge National Laboratory analyzed sediment samples which were not analyzed by Savannah River Laboratory neutron activation.

  15. Open University

    ScienceCinema (OSTI)

    None

    2011-04-25

    Michel Pentz est née en Afrique du Sud et venu au Cern en 1957 comme physicien et président de l'associaion du personnel. Il est également fondateur du mouvement Antiapartheid de Genève et a participé à la fondation de l'Open University en Grande-Bretagne. Il nous parle des contextes pédagogiques, culturels et nationaux dans lesquels la méthode peut s'appliquer.

  16. PROJECT PROFILE: University at Buffalo, the State University...

    Broader source: Energy.gov (indexed) [DOE]

    Green, Stable and Earth Abundant Ionic Photovoltaic Absorbers Based on Chalcogenide ... abundant ionic photovoltaic (PV) absorbers based on chalcogenide perovskite materials. ...

  17. ENHANCED OIL RECOVERY WITH DOWNHOLE VIBRATION STIMULATION IN OSAGE COUNTY OKLAHOMA

    SciTech Connect (OSTI)

    Robert Westermark; J. Ford Brett

    2003-11-01

    This Final Report covers the entire project from July 13, 2000 to June 30, 2003. The report summarizes the details of the work done on the project entitled ''Enhanced Oil Recovery with Downhole Vibration Stimulation in Osage County Oklahoma'' under DOE Contract Number DE-FG26-00BC15191. The project was divided into nine separate tasks. This report is written in an effort to document the lessons learned during the completion of each task. Therefore each task will be discussed as the work evolved for that task throughout the duration of the project. Most of the tasks are being worked on simultaneously, but certain tasks were dependent on earlier tasks being completed. During the three years of project activities, twelve quarterly technical reports were submitted for the project. Many individual topic and task specific reports were included as appendices in the quarterly reports. Ten of these reports have been included as appendices to this final report. Two technical papers, which were written and accepted by the Society of Petroleum Engineers, have also been included as appendices. The three primary goals of the project were to build a downhole vibration tool (DHVT) to be installed in seven inch casing, conduct a field test of vibration stimulation in a mature waterflooded field and evaluate the effects of the vibration on both the produced fluid characteristics and injection well performance. The field test results are as follows: In Phase I of the field test the DHVT performed exceeding well, generating strong clean signals on command and as designed. During this phase Lawrence Berkeley National Laboratory had installed downhole geophones and hydrophones to monitor the signal generated by the downhole vibrator. The signals recorded were strong and clear. Phase II was planned to be ninety-day reservoir stimulation field test. This portion of the field tests was abruptly ended after one week of operations, when the DHVT became stuck in the well during a routine

  18. University of Chicago, Chicago, Illinois,

    Office of Legacy Management (LM)

    University of Chicago, Chicago, Illinois, from December 1982 to October 1987 Department of Ener Technical Services B y ivision Oak Ridge Operations Office December 1989 -1 _--_ _ ~~~ ---- m.. *-*...___, .a. dez4em. A I LEGAL NoT1CE This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Department of Energy, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any

  19. Saint Joseph's University Institute for Environmental Stewardship

    SciTech Connect (OSTI)

    McCann, Micahel P.; Springer, Clint J.

    2014-06-03

    Task A: Examination of the physiological, morphological, and reproductive responses of Panicum virgatum (switchgrass) cultivars identified as potential biofuel producing cultivars as well as naturally-occurring varieties of switchgrass to projected changes in climate for the central portion of the United States. This project was a multi-year project set in a field site located at the Konza Prairie Biological Station near Manhattan, KS USA. The major objective of the study was to understand the physiological and growth responses of the important biofuel grass species, Panicum virgatum (switch grass) to simulated changes in precipitation expected for the Central Plains region of the United States. Population level adaptation to broad-scale regional climates or within-population variation in genome size of this genetically and phenotypically diverse C4 grass species may influence the responses to future precipitation variability associated with climate change. Therefore, we investigated switchgrass responses to water variability between natural populations collected across latitudinal gradient and populations. P. virgatum plants from natural populations originating from Kansas, Oklahoma, and Texas received frequent, small precipitation events (“ambient’) or infrequent, large precipitation events (‘altered”) to simulate contrasting rainfall variability expected from this region. We measured leaf-level physiology, aboveground biomass varied significantly by population origin but did not differ by genome size. Our results suggest that trait variation in P. virgatum is primarily attributed to population-level adaptation across latitudinal gradient, not genome size, and that neither population-level adaptation nor genome size may be important predictors of P. virgatum responses to future climatic conditions. Based solely on the data presented here, the most important consideration when deciding what varieties of switchgrass to cultivate for biofuel feedstocks under

  20. Saint Joseph's University Institute for Environmental Stewardship

    SciTech Connect (OSTI)

    McCann, Michael P.; Springer, Clint J.

    2014-06-05

    Task A: Examination of the physiological, morphological, and reproductive responses of Panicum virgatum (switchgrass) cultivars identified as potential biofuel producing cultivars as well as naturally-occurring varieties of switchgrass to projected changes in climate for the central portion of the United States. This project was a multi-year project set in a field site located at the Konza Prairie Biological Station near Manhattan, KS USA. The major objective of the study was to understand the physiological and growth responses of the important biofuel grass species, Panicum virgatum (switch grass) to simulated changes in precipitation expected for the Central Plains region of the United States. Population level adaptation to broad-scale regional climates or within-population variation in genome size of this genetically and phenotypically diverse C4 grass species may influence the responses to future precipitation variability associated with climate change. Therefore, we investigated switchgrass responses to water variability between natural populations collected across latitudinal gradient and populations. P. virgatum plants from natural populations originating from Kansas, Oklahoma, and Texas received frequent, small precipitation events (“ambient’) or infrequent, large precipitation events (‘altered”) to simulate contrasting rainfall variability expected from this region. We measured leaf-level physiology, aboveground biomass varied significantly by population origin but did not differ by genome size. Our results suggest that trait variation in P. virgatum is primarily attributed to population-level adaptation across latitudinal gradient, not genome size, and that neither population-level adaptation nor genome size may be important predictors of P. virgatum responses to future climatic conditions. Based solely on the data presented here, the most important consideration when deciding what varieties of switchgrass to cultivate for biofuel feedstocks under

  1. Saint Joseph's University Institute for Environmental Stewardship

    SciTech Connect (OSTI)

    McCann, Michael; Springer, Clint

    2014-06-18

    Task A: Examination of the physiological, morphological, and reproductive responses of Panicum virgatum (switchgrass) cultivars identified as potential biofuel producing cultivars as well as naturally-occurring varieties of switchgrass to projected changes in climate for the central portion of the United States. This project was a multi-year project set in a field site located at the Konza Prairie Biological Station near Manhattan, KS USA. The major objective of the study was to understand the physiological and growth responses of the important biofuel grass species, Panicum virgatum (switch grass) to simulated changes in precipitation expected for the Central Plains region of the United States. Population level adaptation to broad-scale regional climates or within-population variation in genome size of this genetically and phenotypically diverse C4 grass species may influence the responses to future precipitation variability associated with climate change. Therefore, we investigated switchgrass responses to water variability between natural populations collected across latitudinal gradient and populations. P. virgatum plants from natural populations originating from Kansas, Oklahoma, and Texas received frequent, small precipitation events (“ambient’) or infrequent, large precipitation events (‘altered”) to simulate contrasting rainfall variability expected from this region. We measured leaf-level physiology, aboveground biomass varied significantly by population origin but did not differ by genome size. Our results suggest that trait variation in P. virgatum is primarily attributed to population-level adaptation across latitudinal gradient, not genome size, and that neither population-level adaptation nor genome size may be important predictors of P. virgatum responses to future climatic conditions. Based solely on the data presented here, the most important consideration when deciding what varieties of switchgrass to cultivate for biofuel feedstocks under

  2. Colleges and Universities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Education & Professional Development » Colleges and Universities Colleges and Universities STATE All College All SEARCH Reset Map Here you'll find resources on higher education learning opportunities in energy, particularly those concerning energy efficiency and renewable energy. This list is a work in progress and is not intended to be all-inclusive or to assure individual program quality. You can also search for university programs in your state at the Interstate Renewable Energy

  3. Geothermal Data via the Virginia Tech and DMME Portal to the National Geothermal Data System for the Eastern and Southeastern United States from the Regional Geophysics Laboratory of Virginia Polytechnic Institute and State University

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The former title for this record was "Geothermal Data for the Eastern and Southeastern U.S. from the Regional Geophysics Laboratory of Virginia Tech." The content originally referenced is still available. It includes geothermal maps of seven southeastern states with accompanying data tables. The seven states are: New Jersey, Maryland, Delaware, Virginia, North Carolina, South Caroline, and Georgia. Data types include geothermal data, seismic data, and magnetic and gravity data. Typical geothermal data may include tables of temperature versus depth data, plots of temperature/gradient versus depth, tables of thermal conductivity data, and tables of gamma log data. Other resources available from the RGL provide information about hot springs in the southeastern U.S., temperatures for Atlantic Coastal Plain sediments, and deep fracture permeability in crystalline rocks in the eastern and southeastern U.S. Recently, this website and its collection of geothermal data has been renamed and reorganized as a portal into the National Geothermal Data System, a move that makes far more data both available and integrated.

  4. TITLE AUTHORS SUBJECT SUBJECT RELATED DESCRIPTION PUBLISHER AVAILABILI...

    Office of Scientific and Technical Information (OSTI)

    J He Z University of Michigan Ann Arbor MI United States Mackin D Beddar S MD Anderson Cancer Center Houston TX United States Zheng Y Procure Proton Therapy Center Oklahoma City OK...

  5. The U.S. Department of Energy Office of Indian Energy Policy and Programs, Tulsa, Oklahoma, Roundtable Summary

    SciTech Connect (OSTI)

    2011-04-14

    TULSA EXECUTIVE SUMMARY The Tulsa, Oklahoma DOE Tribal Roundtable convened on April 14th, at the Hard Rock Hotel and Casino. The meeting was hosted by the Department of Energy (DOE) Office of Indian Policy and Programs and facilitated by Debra Drecksel, Senior Program Manager, Senior Facilitator, Udall Foundation’s U.S. Institute for Environmental Conflict Resolution (U.S. Institute) and Brian Manwaring, Program Manager, U.S. Institute. They were assisted by Lindsey Sexton, Program Associate, U.S. Institute.  Tribal leaders and representatives from multiple tribal communities attended the roundtable. David Conrad, Director of Tribal and Intergovernmental Affairs, DOE Office of Congressional and Intergovernmental Affairs represented DOE at the meeting.  

  6. Nocturnal Low-Level-Jet-Dominated Atmospheric Boundary Layer Observed by a Doppler Lidar Over Oklahoma City during JU2003

    SciTech Connect (OSTI)

    Wang, Yansen; Klipp, Cheryl L.; Garvey, Dennis M.; Ligon, David; Williamson, Chatt C.; Chang, Sam S.; Newsom, Rob K.; Calhoun, Ron

    2007-12-01

    Boundary layer wind data observed by a Doppler lidar and sonic anemometers during the mornings of three intensive observational periods (IOP2, IOP3, and IOP7) of the Joint Urban 2003 (JU2003) field experiment are analyzed to extract the mean and turbulent characteristics of airflow over Oklahoma City, Oklahoma. A strong nocturnal low-level jet (LLJ) dominated the flow in the boundary layer over the measurement domain from midnight to the morning hours. Lidar scans through the LLJ taken after sunrise indicate that the LLJ elevation shows a gradual increase of 25-100 m over the urban area relative to that over the upstream suburban area. The mean wind speed beneath the jet over the urban area is about 10%-15% slower than that over the suburban area. Sonic anemometer observations combined with Doppler lidar observations in the urban and suburban areas are also analyzed to investigate the boundary layer turbulence production in the LLJ-dominated atmospheric boundary layer. The turbulence kinetic energy was higher over the urban domain mainly because of the shear production of building surfaces and building wakes. Direct transport of turbulent momentum flux from the LLJ to the urban street level was very small because of the relatively high elevation of the jet. However, since the LLJ dominated the mean wind in the boundary layer, the turbulence kinetic energy in the urban domain is correlated directly with the LLJ maximum speed and inversely with its height. The results indicate that the jet Richardson number is a reasonably good indicator for turbulent kinetic energy over the urban domain in the LLJ-dominated atmospheric boundary layer.

  7. Nanomaterial Laboratory Safety, Boise State University | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A nanomaterial, as defined by The ASTM Committee on Nanotechnology, is a particle ... Safety Implementation Plan, Ames Laboratory Approaches to Safe Nanotechnology

  8. APPALACHIAN STATE UNIVERSITY MOUNTAIN LAUREL HOME Project...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced framing techniques along with an efficient layout reduced material requirements while increasing our mechanical systems' efficiencies. The Mountain Laurel design creates ...

  9. NSU Norfolk State University | Department of Energy

    Office of Environmental Management (EM)

    NRDC Ex Parte Communication NRDC Ex Parte Communication On Thursday, September 24, 2015, Benjamin Longstreth, NRDC, and Tim Ballo, Earthjustice, met with Dan Cohen of the Department of Energy to discuss the process of considering standards for (a) battery chargers and external power supplies and (b) computers and battery back-up systems. Meeting on Batteries and computers (35.69 KB) More Documents & Publications Ex Parte Communication Memorandum Ex Parte Memorandum - Natural Resources

  10. Fermilab Today | Michigan State University Profile

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    top quark pair physics, single-top physics, QCD jet physics, searches for new phenomena, Higgs Boson searches, photondi-photon production, W+jets physics, underlying-event...

  11. Final Report The Pennsylvania State University

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    lithification leaves at least the sandstone layers at a lower stress than bounding shale. ... , where poroelastic conditions under uniaxial strain yields the best prediction of stress. ...

  12. PROJECT PROFILE: Arizona State University 3 (PVRD)

    Office of Energy Efficiency and Renewable Energy (EERE)

    This project examines the manufacturability of n-type industrial silicon heterojunction cells and develops methods to improve energy yield and increase the attractiveness of this type of cell to manufacturers. The research performed will help to improve cell efficiency by 2% and reduce the cost of the cells by improving electrical yield based on a range of new processing improvements. The project also aims to demonstrate the feasibility of using thinner cells to increase the lifetime of the wafer and achieve a 26% record efficiency. The knowledge gleaned from this research is expected to help improve the manufacturing of silicon heterojunction cells in the near to mid-term.

  13. The Pennsylvania State University APPLIED RESEARCH LABORATORY

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    WATER COLUMN DEVICE USING THE WELLS TURBINE By Christopher S. Smith, Steven M. ... The PCC optimization is centered on the selection and sizing of a Wells Turbine and ...

  14. EDUconnections Highlights Arizona State University Research ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    LightWorks is a multidisciplinary effort to leverage ASU's unique strengths, particularly in renewable energy fields including artificial photosynthesis, biofuels, and ...

  15. Final Report - Montana State University - Microbial Activity...

    Office of Scientific and Technical Information (OSTI)

    Biological and chemical reactions all require diffusive transport of solutes to reaction sites at the molecular scale and accordingly, the success of processes at the meter-scale ...

  16. Kansas State University 2014 | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Kahuku Wind Power, LLC, Construction of the Kahuku Wind Power Facility in Kahuku, O'ahu, Hawaii Kahuku Wind Power Biological Opinion (4.75 MB) More Documents & Publications EA-1726: Final Environmental Assessment EA-1374: Final Environmental Assessment Wind Turbine Interactions with Birds, Bats, and their Habitats: A Summary of Research Results and Priority Questions

    Turbine blades being delivered to Kahuku. | Courtesy of First Wind Turbine blades being delivered to Kahuku. | Courtesy of

  17. Pennsylvania State University 2014 | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Presentation by 11-Wang to DOE Hydrogen Pipeline R&D Project Review Meeting held January 5-6, 2005 at Oak Ridge National Laboratory in Oak Ridge, Tennessee. 11_wang_infra.pdf (9.72 MB) More Documents & Publications Hydrogen Regional Infrastructure Program in Pennsylvania Proceedings of the 2005 Hydrogen Pipeline Working Group Workshop Delivery Tech Team

    Charles McDonald, Jeremy Ogorzalek, Peter Tavantowicz, Kody Veit, Brian Wallace, Michael Popp, Parth Patel, Susan Stewart, Angelina

  18. Pennsylvania State University: Technical Design Report

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A Review of the Conceptual Design Process and the Analysis of the Remote Wind PSU Turbine Prepared for: The DOE Collegiate Wind Turbine Design Competition Principle Contributors: Ken Palamara Parth Patel Mike Popp Sahil Desai Greg Liptak Jake Lampenfield Armstrong Liu Kevin Knechtel Advisors Dr. Susan Stewart Dr. Dennis McLaughlin Assistant Professor & Research Associate, Aerospace Engineering Professor of Aerospace Engineering Mr. Brian Wallace Ph.D. Candidate in Aerospace Engineering 1

  19. OpenEI Community - Illinois State University

    Open Energy Info (EERE)

    Manuals http:en.openei.orgcommunitydiscussionuser-manuals

    We have a beta version of two user manuals ready and we were wondering if it might be appropriate to...

  20. Iowa State University / Ames Laboratory Leave Information

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Iowa Powder Atomization Technologies, Inc. America's Next Top Energy Innovator Challenge 6067 likes Iowa Powder Atomization Technologies, Inc. Ames Laboratory Iowa Powder Atomization Technologies, Inc. (IPAT) aims to become a leading domestic titanium powder producer allowing for a paradigm shift in the cost of titanium powders for metal injection molding (MIM) feedstock. Decreasing this cost will create vast opportunities for aerospace, military, biomedical, and consumer applications. Titanium