Powered by Deep Web Technologies
Note: This page contains sample records for the topic "oklahoma nat gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Oklahoma Natural Gas- Residential Efficiency Rebates (Oklahoma)  

Broader source: Energy.gov [DOE]

To encourage customers to install high-efficiency natural gas equipment in homes, Oklahoma Natural Gas offers rebates to residential customers and builders for furnace, water heating, or space...

2

,"Oklahoma Natural Gas Gross Withdrawals and Production"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Oklahoma Natural Gas Gross Withdrawals and Production",10,"Monthly","112014","1151989" ,"Release...

3

Nat  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |EnergyonSupport0.pdf5 OPAM SEMIANNUALNASCAR Green Gets FirstNafeesa Hunt OwensNat i o N a l

4

Oklahoma Natural Gas Processed in Oklahoma (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30 2013 Macroeconomicper ThousandResidential Consumers (Number(MillionOklahoma

5

Tight Oklahoma gas sands remain an attractive play  

SciTech Connect (OSTI)

The Cherokee tight gas sands of Oklahoma remain an attractive play because of improvements in drilling and completion practices and actions by the Oklahoma Corporation Commission (OCC) that allow separate allowables for new wells. The expired federal tax credits for tight gas wells have not been the only reason for increased activity. Since decontrol of most regulated gas pricing and since 1986, the number of wells drilled and gas production per well have been increasing in the cherokee area while overall drilling in Oklahoma has decreased. These conclusions are based on wells as categorized by permit date and not by the spud, completion, or first production date. A few wells outside but adjacent to the Cherokee area may have been included, although, their impact on the conclusions is considered nominal. The paper discusses the tight gas credit, proration units, the concept of separate allowables, costs, completion efficiency, and the economic outlook for this area.

Cartwright, G.L. [Marathon Oil Co., Oklahoma City, OK (United States)

1995-04-24T23:59:59.000Z

6

Kansas-Oklahoma Natural Gas Plant Processing  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14 15 0Month Previous YearThousand1

7

New Global Oil & Gas Hub in Oklahoma City | GE Global Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

GE Selects Oklahoma City Site for New Global Hub of Oil & Gas Technology Innovation Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window)...

8

Oklahoma Cherokee formation study shows benefits of gas tax credits  

SciTech Connect (OSTI)

To no one's surprise, the administration's recently released energy initiative package does not advocate the use of tax incentives such as the Internal Revenue Code Sec. 29 (tight sand gas) credit that expired Dec. 31, 1992. This is unfortunate since tax credits do stimulate drilling, as the authors' recent study of Oklahoma's Pennsylvanian age Cherokee formation demonstrates. Within this 783,000 acre study area, more than 130 additional wells were drilled between 1991--92 because of tax credit incentives. And such tax credits also increase total federal tax revenues by causing wells to be drilled that would not have been drilled or accelerating the drilling of wells, thereby increasing taxable revenue. In short, tax credits create a win-win situation: they stimulate commerce, increase tax revenues, reduce the outflow of capital to foreign petroleum projects, and add to the nation's natural gas reserve, which is beneficial for national security, balance of payments, the environment, and gas market development. The paper discusses the study assumptions, study results, and the tax credit policy.

Stanley, B.J.; Cline, S.B. (Hefner Corp., Oklahoma City, OK (United States))

1994-01-10T23:59:59.000Z

9

CenterPoint Energy (Gas)- Residential Efficiency Rebates (Oklahoma)  

Broader source: Energy.gov [DOE]

To encourage customers to install high-efficiency natural gas equipment in eligible homes and businesses, CenterPoint Energy offers new construction and retrofit residential and commercial...

10

CenterPoint Energy (Gas)- Commercial Efficiency Rebates (Oklahoma)  

Broader source: Energy.gov [DOE]

To encourage customers to install high-efficiency natural gas equipment in their homes and businesses, CenterPoint Energy offers new construction and retrofit residential and commercial customers...

11

,"Oklahoma Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: EnergyShale Proved Reserves (Billion CubicPrice SoldPriceGas, Wet AfterShale ProvedPriceSummary"

12

Texas Onshore-Oklahoma Natural Gas Plant Processing  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic4,630.2perSep-14Base Gas)(Million Cubic2011

13

Oklahoma Gas & Electric Co | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's HeatMexico:CommunityNorthwestInformationOildale,Gas & Electric Co

14

Oil and gas developments in Oklahoma and panhandle of Texas in 1985  

SciTech Connect (OSTI)

Declining oil prices, curtailed gas sales, and uncertain tax law changes contributed to a 9.1% decrease in drilling, a 25.3% drop in gas production, and a 5% drop in oil production in Oklahoma and the panhandle of Texas (Texas Railroad Commission District 10) in 1985. Exploration focused on development and extension of existing fields, with development wells outnumbering exploratory wells 20 to 1. Operators completed 14.3% fewer exploratory wells and 9.1% fewer development wells. The success rate for exploratory wells declined to 28.9%, and the success rate for development wells dropped to 72.3%. The Cherokee shelf was the most active trend, with 90 exploratory wells completed in 1985. 3 figures, 4 tables.

Fryklund, R.E.

1986-10-01T23:59:59.000Z

15

Oklahoma Opportunity Fund (Oklahoma)  

Broader source: Energy.gov [DOE]

The Oklahoma Opportunity Fund was established to promote economic development and related infrastructure development. Eligible applicants are for-profit entities; non-profit entities; and state and...

16

Oil and gas developments in Oklahoma and Panhandle of Texas in 1986  

SciTech Connect (OSTI)

In 1986, a 46% drop in the price of oil and a 10% drop in the price of gas, coupled with a decrease in demand, forced a 40.4% decrease in drilling, a 67% drop in gas production, and an 11% drop in oil production in Oklahoma and the Panhandle of Texas (Texas Railroad Commission District 10). Exploration focused on development and extension of existing fields, with development wells outnumbering exploratory wells 18 to 1. Operators completed 58.6% fewer exploratory wells and 59.2% fewer development wells in 1986 than in 1985. The 1986 success rate for exploratory wells dropped 0.8%, and the success rate for development wells increased 0.9%. The Cherokee shelf was the most active trend, with 53 exploratory wells completed in 1986. The dominant plays were the Marrow-Springer and granite wash in the Anadarko basin, Misener on the Sedgwick shelf, Viola and Hunton in the Gold Trend along the Pauls Valley uplift, and Wapanucka, Cromwell, and Atoka in the Arkoma basin. 3 figures, 4 tables.

Fryklund, R.E.

1987-10-01T23:59:59.000Z

17

Reducing Peak Demand to Defer Power Plant Construction in Oklahoma  

Broader source: Energy.gov (indexed) [DOE]

Reducing Peak Demand to Defer Power Plant Construction in Oklahoma Located in the heart of "Tornado Alley," Oklahoma Gas & Electric Company's (OG&E) electric grid faces significant...

18

Oklahoma Clean Air Act (Oklahoma)  

Broader source: Energy.gov [DOE]

This legislation establishes the authority for the Oklahoma Department of Environmental Quality to administer programs to maintain and monitor air quality across Oklahoma. The Department monitors...

19

Oil and gas developments in Oklahoma and Panhandle of Texas in 1987  

SciTech Connect (OSTI)

Exploration in 1987 focused on development and extension of existing fields, with development wells out-numbering exploratory wells 13 to 1. Operators completed 4.3% more exploratory wells and 25.7% fewer development wells than in 1986. The success rate for exploratory wells increased 7.7%; the success rate for development wells remained constant. The Cherokee shelf was the most active trend, with 53 exploratory wells completed in 1987. The dominant plays were the Atoka, Morrow, Springer, and Marchand in the Anadarko basin; the Misener in Grant County, Oklahoma, on the Sedgwick shelf; the Viola in the Golden Trend along the Pauls Valley uplift; and the Wapanucka, Cromwell, and Atoka in the Arkoma basin. Nineteen eight-seven was a year of major sales and acquisition of Oklahoma and Panhandle of Texas reserves and leases with more than 20 companies buying or selling out. 3 figs., 4 tabs.

Fryklund, R.E.

1988-10-01T23:59:59.000Z

20

RES Oklahoma  

Broader source: Energy.gov [DOE]

RES Oklahoma will feature respected tribal leaders, state, and local elected officials and top CEOs, networking, teaming opportunities, business development sessions, American Indian Procurement...

Note: This page contains sample records for the topic "oklahoma nat gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Census Snapshot: Oklahoma  

E-Print Network [OSTI]

WILLIAMS INSTITUTE CENSUS SNAPSHOT | OKLAHOMA | JANUARY 2008OKLAHOMA Adam P. Romero, Public Policy Fellow Clifford J.couples raising children in Oklahoma. We compare same-sex “

Romero, Adam P; Rosky, Clifford J; Badgett, M.V. Lee; Gates, Gary J

2008-01-01T23:59:59.000Z

22

,"Oklahoma Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: EnergyShale Proved Reserves (Billion CubicPrice SoldPriceGas, Wet AfterShaleVolumeGas, Wet After Lease

23

SELECTION AND TREATMENT OF STRIPPER GAS WELLS FOR PRODUCTION ENHANCEMENT, MOCANE-LAVERNE FIELD, OKLAHOMA  

SciTech Connect (OSTI)

In 1996, Advanced Resources International (ARI) began performing R&D targeted at enhancing production and reserves from natural gas fields. The impetus for the effort was a series of field R&D projects in the early-to-mid 1990's, in eastern coalbed methane and gas shales plays, where well remediation and production enhancement had been successfully demonstrated. As a first step in the R&D effort, an assessment was made of the potential for restimulation to provide meaningful reserve additions to the U.S. gas resource base, and what technologies were needed to do so. That work concluded that: (1) A significant resource base did exist via restimulation (multiples of Tcf). (2) The greatest opportunities existed in non-conventional plays where completion practices were (relatively) complex and technology advancement was rapid. (3) Accurate candidate selection is the greatest single factor that contributes to a successful restimulation program. With these findings, a field-oriented program targeted at tight sand formations was initiated to develop and demonstrate successful candidate recognition technology. In that program, which concluded in 2001, nine wells were restimulated in the Green River, Piceance and East Texas basins, which in total added 2.9 Bcf of reserves at an average cost of $0.26/Mcf. In addition, it was found that in complex and heterogeneous reservoirs (such as tight sand formations), candidate selection procedures should involve a combination of fundamental engineering and advanced pattern recognition approaches, and that simple statistical methods for identifying candidate wells are not effective. In mid-2000, the U.S. Department of Energy (DOE) awarded ARI an R&D contract to determine if the methods employed in that project could also be applied to stripper gas wells. In addition, the ability of those approaches to identify more general production enhancement opportunities (beyond only restimulation), such as via artificial lift and compression, was also sought. A key challenge in this effort was that, whereas the earlier work suggested that better (producing) wells tended to make better restimulation candidates, stripper wells are by definition low-volume producers (either due to low pressure, low permeability, or both). Nevertheless, the potential application of this technology was believed to hold promise for enhancing production for the thousands of stripper gas wells that exist in the U.S. today. The overall procedure for the project was to select a field test site, apply the candidate recognition methodology to select wells for remediation, remediate them, and gauge project success based on the field results. This report summarizes the activities and results of that project.

Scott Reeves; Buckley Walsh

2003-08-01T23:59:59.000Z

24

Oklahoma Census Snapshot: 2010  

E-Print Network [OSTI]

Oklahoma Census Snapshot: 2010 Same-sex couples per 1,000same-sex couples County Oklahoma Same-sex couples (adjusted)households (adjusted) Tulsa Oklahoma City Norman Shawnee

Gates, Gary J.; Cooke, Abigail M.

2011-01-01T23:59:59.000Z

25

Forestry Policies (Oklahoma)  

Broader source: Energy.gov [DOE]

Oklahoma's forests are managed by the Oklahoma Forestry Services, a division of the Oklahoma Department of Agriculture, Food, and Forestry. In 2008 the Department issued the "Forest Resources of...

26

,"Oklahoma Dry Natural Gas Expected Future Production (Billion Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: EnergyShale Proved Reserves (Billion CubicPrice SoldPriceGas, Wet AfterShale Proved

27

,"Oklahoma Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: EnergyShale Proved Reserves (Billion CubicPrice SoldPriceGas, Wet AfterShale ProvedPrice (Dollars per

28

,"Oklahoma Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: EnergyShale Proved Reserves (Billion CubicPrice SoldPriceGas, Wet AfterShale ProvedPrice (Dollars

29

,"Oklahoma Natural Gas Plant Liquids, Expected Future Production (Million Barrels)"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: EnergyShale Proved Reserves (Billion CubicPrice SoldPriceGas, Wet AfterShale ProvedPrice (DollarsPlant

30

,"Oklahoma Natural Gas Underground Storage Net Withdrawals (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: EnergyShale Proved Reserves (Billion CubicPrice SoldPriceGas, Wet AfterShale

31

,"Oklahoma Natural Gas Underground Storage Volume (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: EnergyShale Proved Reserves (Billion CubicPrice SoldPriceGas, Wet AfterShaleVolume (MMcf)"

32

,"Oklahoma Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: EnergyShale Proved Reserves (Billion CubicPrice SoldPriceGas, Wet AfterShaleVolume

33

Oklahoma Agriculture Agriculture  

E-Print Network [OSTI]

Oklahoma Agriculture Agriculture #12;Oklahoma Agriculture 2011Oklahoma Agriculture 2011 Oklahoma agriculture affects each of us every day, young and old, whether we live in largely rural regions or the state's Division of Agricultural Sciences and Natural Resources promotes sustainable land use and embraces the land

Veiga, Pedro Manuel Barbosa

34

Oklahoma Natural Gas Prices  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996) inDecadeDecadeFeet) Year Jan (MillionThousand

35

Oklahoma Natural Gas Prices  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996) inDecadeDecadeFeet) Year Jan (MillionThousandSep-14

36

Oklahoma Natural Gas Summary  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing ReservoirsYear-Month WeekReservesYearYear Jan Feb Mar Apr May

37

Census Snapshot: Oklahoma  

E-Print Network [OSTI]

McClain McCurtain McIntosh Major Marshall County Mayes Murray Muskogee Noble Nowata Okfuskee Oklahoma

Romero, Adam P; Rosky, Clifford J; Badgett, M.V. Lee; Gates, Gary J

2008-01-01T23:59:59.000Z

38

Oklahoma-Oklahoma Natural Gas Plant Processing  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet) Year JanProduction 4 125Feet)SameFeet)

39

Water Quality Standards Implementation (Oklahoma)  

Broader source: Energy.gov [DOE]

The Oklahoma Department of Environmental Quality regulates Oklahoma's Water Quality Standards. The law states the requirements and standards for point source discharges. It also establishes...

40

Quality Jobs Investment Program (Oklahoma)  

Broader source: Energy.gov [DOE]

The Oklahoma Quality Jobs Program allows qualifying businesses which are creating new quality jobs to receive a special incentive to locate or expand in Oklahoma.

Note: This page contains sample records for the topic "oklahoma nat gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Credit Enhancement Program (Oklahoma)  

Broader source: Energy.gov [DOE]

The Credit Enhancement Program is a means by which the Oklahoma Finance Authority provides guarantees for small companies, manufacturing facilities and communities in need of funds for expansion...

42

2009 National Electric Transmission Congestion Study - Oklahoma...  

Broader source: Energy.gov (indexed) [DOE]

- Oklahoma City Workshop 2009 National Electric Transmission Congestion Study - Oklahoma City Workshop On June 18, 2008, DOE hosted a regional pre-study workshop in Oklahoma City,...

43

,"Oklahoma Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: EnergyShale Proved Reserves (Billion CubicPrice SoldPriceGas, Wet AfterShaleVolumeGas, Wet After

44

HeinOnline --33 Nat. Resources J. 569 1993 HeinOnline --33 Nat. Resources J. 570 1993  

E-Print Network [OSTI]

HeinOnline -- 33 Nat. Resources J. 569 1993 #12;HeinOnline -- 33 Nat. Resources J. 570 1993 #12;HeinOnline -- 33 Nat. Resources J. 571 1993 #12;HeinOnline -- 33 Nat. Resources J. 572 1993 #12;HeinOnline -- 33 Nat. Resources J. 573 1993 #12;HeinOnline -- 33 Nat. Resources J. 574 1993 #12;HeinOnline -- 33

Brown, Gregory G.

45

,"Oklahoma Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: EnergyShale Proved Reserves (Billion CubicPrice SoldPriceGas, Wet AfterShale Proved Reserves

46

,"Oklahoma Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: EnergyShale Proved Reserves (Billion CubicPrice SoldPriceGas, Wet AfterShale ProvedPrice

47

Water Quality (Oklahoma)  

Broader source: Energy.gov [DOE]

The Water Quality Act establishes cumulative remedies to prevent, abate and control the pollution of the waters of the state. The act establishes responsibilities of the Oklahoma Department of...

48

Radiation Management Act (Oklahoma)  

Broader source: Energy.gov [DOE]

This Act establishes The Department of Environmental Quality as the designated official agency of the State of Oklahoma for all regulatory activities for the use of atomic energy and sources of...

49

Reservoir Protection (Oklahoma)  

Broader source: Energy.gov [DOE]

The Oklahoma Water Resource Board has the authority to make rules for the control of sanitation on all property located within any reservoir or drainage basin. The Board works with the Department...

50

Oklahoma Department of Agriculture, Food, and Forestry -Forestry Service Oklahoma Cooperative Extension Service  

E-Print Network [OSTI]

E-988 Oklahoma Department of Agriculture, Food, and Forestry - Forestry Service Oklahoma of Wildlife Conservation Natural Resources Conservation Service Oklahoma Department of Agriculture, Food Cooperative Extension Service United States Department of Agriculture - Forestry Service Oklahoma Department

Balasundaram, Balabhaskar "Baski"

51

Oklahoma Natural Gas Plant Processing  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet) Year JanProduction 4 125Feet) Year Jan2008 2009 2010 2011

52

Microsoft Word - 20140718 Nat Gas Memo - FINAL  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F S i DOE Tribal Leader ForumStatus400 North TO:View fromMayJune

53

Economic Feasibility of Small Oklahoma Wineries.  

E-Print Network [OSTI]

??Until recently, winemaking was almost non-existent in Oklahoma. While some may have been interested in operating wineries in Oklahoma, the industry saw little change after… (more)

Hill, Amanda Ruth

2010-01-01T23:59:59.000Z

54

Chickasaw National Recreational Area, Chickasaw, Oklahoma | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Chickasaw National Recreational Area, Chickasaw, Oklahoma Chickasaw National Recreational Area, Chickasaw, Oklahoma Photo of Comfort Station at the Chickasaw National Recreation...

55

National Park Service- Chickasaw, Oklahoma  

Broader source: Energy.gov [DOE]

The Chickasaw National Recreation Area is located 100 miles south of Oklahoma City, Oklahoma, on the Lake of the Arbuckles. To save taxpayers' money and minimize adverse impacts on the environment, the National Park Service (NPS) recently incorporated solar energy into the design of three new comfort stations.

56

Organizing the 'living Dead': Civil Rights in Oklahoma City and Tulsa, Oklahoma, 1954-1964.  

E-Print Network [OSTI]

??By providing an in-depth examination of the civil rights movements in Oklahoma City and Tulsa, Oklahoma through the lens of the black newspapers in each… (more)

Baehler, Joel Edward

2012-01-01T23:59:59.000Z

57

Oklahoma Local Development and Enterprise Zone Incentive Leverage Act (Oklahoma)  

Broader source: Energy.gov [DOE]

The Oklahoma Local Development and Enterprise Zone Incentive Leverage Act provides funding for local units of government to match local tax revenue dedicated to support a project located in an...

58

Exploitation and Optimization of Reservoir Performance in Hunton Formation, Oklahoma  

SciTech Connect (OSTI)

Hunton formation in Oklahoma has been the subject of attention for the last ten years. The new interest started with the drilling of the West Carney field in 1995 in Lincoln County. Subsequently, many other operators have expanded the search for oil and gas in Hunton formation in other parts of Oklahoma. These fields exhibit many unique production characteristics, including: (1) decreasing water-oil or water-gas ratio over time; (2) decreasing gas-oil ratio followed by an increase; (3) poor prediction capability of the reserves based on the log data; and (4) low geological connectivity but high hydrodynamic connectivity. The purpose of this investigation is to understand the principal mechanisms affecting the production, and propose methods by which we can optimize the production from fields with similar characteristics.

Mohan Kelkar

2007-06-30T23:59:59.000Z

59

Testing of SP-100 reactor control approaches in the NAT  

SciTech Connect (OSTI)

The Generic Flight System (GFS) reactor control approach will be tested at the SP-100 Ground Engineering System (GES) test site as part of the Nuclear Assembly Test (NAT) program. A control scheme for the NAT has been developed to emulate the GFS conditions for testing of the GFS reactor control approach in the NAT. Comparisons between the GFS simulation results and the NAT simulation results show that a reasonably good emulation of the GFS conditions can be achieved in the NAT using the control scheme described in this paper.

Rhow, S.K.; Meyer, R.A.; Wong, K.K.; Halfen, F.J. (General Electric Company, SP-100 Programs, Astro Space Division, San Jose, California 95153-5354 (US))

1991-01-01T23:59:59.000Z

60

Property Tax Exemption for Wind Generators (Oklahoma)  

Broader source: Energy.gov [DOE]

The state of Oklahoma offers a five year ad valorem property tax exemption for certain windpower generators.

Note: This page contains sample records for the topic "oklahoma nat gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

PayneOklahoma SOIL SURVEY OF PAYNE COUNTY, OKLAHOMA  

E-Print Network [OSTI]

SOIL SURVEY OF PAYNE COUNTY, OKLAHOMA OSURR Headquarters 0 700 1,400 2,100 2,800350 Feet 0 200 400100 Meters Web Soil Survey 1.1 National Cooperative Soil Survey 5/7/2007 Page 1 of 4 #12;MAP INFORMATION SOIL Web Soil Survey URL: http://websoilsurvey.nrcs.usda.gov Coordinate System: UTM Zone 14 Soil Survey

Ghajar, Afshin J.

62

Oklahoma Industrial Energy Management Program  

E-Print Network [OSTI]

In Oklahoma, industry consumes about 35% of the total energy consumed. While it is true that much work has been done in the larger companies, most small to medium sized companies have yet to undertake a substantial energy management program. Often...

Turner, W. C.; Estes, C. B.

1982-01-01T23:59:59.000Z

63

EXPLOITATION AND OPTIMIZATION OF RESERVOIR PERFORMANCE IN HUNTON FORMATION, OKLAHOMA  

SciTech Connect (OSTI)

The West Carney Field in Lincoln County, Oklahoma is one of few newly discovered oil fields in Oklahoma. Although profitable, the field exhibits several unusual characteristics. These include decreasing water-oil ratios, decreasing gas-oil ratios, decreasing bottomhole pressures during shut-ins in some wells, and transient behavior for water production in many wells. This report explains the unusual characteristics of West Carney Field based on detailed geological and engineering analyses. We propose a geological history that explains the presence of mobile water and oil in the reservoir. The combination of matrix and fractures in the reservoir explains the reservoir's flow behavior. We confirm our hypothesis by matching observed performance with a simulated model and develop procedures for correlating core data to log data so that the analysis can be extended to other, similar fields where the core coverage may be limited.

Mohan Kelkar

2002-03-31T23:59:59.000Z

64

Silicon Valley Power and Oklahoma Municipal Power Authority Win...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Silicon Valley Power and Oklahoma Municipal Power Authority Win 2014 Public Power Wind Awards Silicon Valley Power and Oklahoma Municipal Power Authority Win 2014 Public Power Wind...

65

Exploitation and Optimization of Reservoir Performance in Hunton Formation, Oklahoma  

SciTech Connect (OSTI)

This report presents the work done so far on Hunton Formation in West Carney Field in Lincoln County, Oklahoma. West Carney Field produces oil and gas from the Hunton Formation. The field was developed starting in 1995. Some of the unique characteristics of the field include decreasing water oil and ratio over time, decreasing gas-oil ratio at the beginning of production, inability to calculate oil reserves in the field based on long data, and sustained oil rates over long periods of time.

Kelkar, Mohan

2001-05-08T23:59:59.000Z

66

NatEl | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's HeatMexico: EnergyMithun JumpMuscoy,Jump9 CaseNatEl Jump to: navigation,

67

State Facilities Energy Conservation Program (Oklahoma)  

Broader source: Energy.gov [DOE]

In 2012, Senate Bill 1096 (SB1096), established the Oklahoma State Facilities Energy Conservation Program. The program directs all state agencies and higher education institutions to achieve an...

68

Qualifying RPS State Export Markets (Oklahoma)  

Broader source: Energy.gov [DOE]

This entry lists the states with Renewable Portfolio Standard (RPS) policies that accept generation located in Oklahoma as eligible sources towards their RPS targets or goals. For specific...

69

Oklahoma Homicides: An Examination of Weapon Selection.  

E-Print Network [OSTI]

??This study examined 216 solved homicide cases from the state of Oklahoma. The cases occurred from 1995 to 2005. The purpose of the study was… (more)

Kinard, Demita

2009-01-01T23:59:59.000Z

70

,"Oklahoma Coalbed Methane Proved Reserves, Reserves Changes...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Oklahoma Coalbed Methane Proved Reserves, Reserves Changes, and Production",10,"Annual",2013,"630...

71

Wastewater and Wastewater Treatment Systems (Oklahoma)  

Broader source: Energy.gov [DOE]

The Oklahoma Department of Environmental Quality administers regulations for waste water and waste water treatment systems. Construction of a municipal treatment work, non-industrial waste water...

72

A Legal Analysis of Litigation Against Oklahoma Educators and School Districts under the Oklahoma Governmental Tort Claims Act.  

E-Print Network [OSTI]

??This dissertation analyzed public court decisions in cases against Oklahoma school districts and their employees involving sovereign immunity claims filed under Oklahoma's Governmental Tort Claims… (more)

Lacefield, Kevin Lee

2010-01-01T23:59:59.000Z

73

Oklahoma Dry Natural Gas Proved Reserves  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996) inDecadeDecade (MillionThousand CubicYear Jan Feb

74

Oklahoma Heat Content of Natural Gas Consumed  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996) inDecadeDecade (MillionThousandFeet)44 1,043 1,041

75

Oklahoma Natural Gas Consumption by End Use  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996) inDecadeDecade (MillionThousandFeet)44Year Jan

76

Oklahoma Natural Gas Gross Withdrawals and Production  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996) inDecadeDecade (MillionThousandFeet)44Year9 2010

77

Oklahoma Natural Gas Gross Withdrawals and Production  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996) inDecadeDecade (MillionThousandFeet)44Year9

78

Oklahoma Natural Gas Processed (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996) inDecadeDecadeFeet) Year Jan

79

Oklahoma Natural Gas Repressuring (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996) inDecadeDecadeFeet) Year JanRepressuring (Million

80

Oklahoma Natural Gas Repressuring (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996) inDecadeDecadeFeet) Year JanRepressuring

Note: This page contains sample records for the topic "oklahoma nat gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Oklahoma Underground Natural Gas Storage - All Operators  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996) inDecadeDecadeFeet)Decade Year-0313,210 337,260

82

Oklahoma Heat Content of Natural Gas Consumed  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet) Year JanProduction 4 125 2006YearSales (Billion Cubic

83

Oklahoma Number of Natural Gas Consumers  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet) Year JanProduction 4 125Feet)Same Month923,650 924,745

84

Oklahoma Underground Natural Gas Storage Capacity  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet) Year JanProduction 4 125Feet)Same

85

Oklahoma-Kansas Natural Gas Plant Processing  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet) Year JanProduction 4 125Feet)SameFeet) Working8,527

86

Oklahoma-Texas Natural Gas Plant Processing  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet) Year JanProduction 4 125Feet)SameFeet)6,462 18,595

87

Red Fork sandstone of Oklahoma: depositional history and reservoir distribution  

SciTech Connect (OSTI)

The Middle Pennsylvanian Red Fork sandstone formed as a result of progradation across eastern Kansas and most of Oklahoma. The Red Fork is one of several transgressive-regressive sequences (cyclothems) developed within the Desmoinesian Cherokee Group. Sea level changes, together with varying subsidence, were dominant factors controlling the general stratigraphic (correlative) characteristics of the Red Fork interval. Progradation was episodic, with sand deposition in the more active part of the basin during lower sea level stands and valley-fill deposition in the more stable areas during sea level rises. A map of Red Fork sand trends reveals an alluvial-deltaic complex covering most of Oklahoma. The Red Fork consists primarily of alluvial-valley and plain (fluvial) bodies in the northernmost part of northeastern Oklahoma, alluvial-deltaic bodies in most of the remaining parts of the shelf area, and off-shelf submarine-fan and slope basinal-floor complexes within the deeper part of the Anadarko basin. Determination of reservoir trend and genesis requires integration of rock and log data. Logs need to be calibrated to cores in order to estimate depositional environments accurately and to make a reasonable assessment of diagenetic overprints. Much of the oil and gas has been trapped in stratigraphic traps, and a significant amount of oil is in channel sandstones with trends at high angles to the structural grain. In some areas, secondary clay, in particular chloritic clay, has resulted in microporosity, high water saturation, and correspondingly low resistivities in oil reserves.

Shelton, J.W.; Fritz, R.D.; Johnson, C.

1989-03-01T23:59:59.000Z

88

Selenium in Oklahoma ground water and soil  

SciTech Connect (OSTI)

Selenium with a consumption of 2 liters per day (5). The objectives of this study are: (1) to determine the concentrations of Se in Oklahoma ground water and soil samples. (2) to map the geographical distribution of Se species in Oklahoma. (3) to relate groundwater depth, pH and geology with concentration of Se.

Atalay, A.; Vir Maggon, D.

1991-03-30T23:59:59.000Z

89

Clean Cities: Central Oklahoma Clean Cities (Oklahoma City) coalition  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New Substation SitesStandingtheirCheckInnovation,ClassroomArkansasCentral Oklahoma

90

Oklahoma City, Oklahoma: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Powerstories onFocus AreaDataBusPFAN)Change AssessmentOhopOklahoma: Energy

91

Employment Discrimination against Lesbian, Gay, Bisexual, and Transgender People in Oklahoma  

E-Print Network [OSTI]

last visited Sept. 6, 2009). Oklahoma Office of PersonnelJustice for her performance as an Oklahoma police officer).Oklahoma Office of Personnel Management Affirmative Action,

Mallory, Christy; Herman, Jody L.; Badgett, M.V. Lee

2011-01-01T23:59:59.000Z

92

E-Print Network 3.0 - area oklahoma implications Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Oklahoma is an isolated area... Management Area about 16 miles south of Tahlequah, Cherokee County, northeastern Oklahoma, I saw a Ground... Bulletin of the OKLAHOMA...

93

Fermilab Today | Oklahoma State University  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicyFeasibility ofSmall Works:Oklahoma State University March 27, 2013

94

Native American Conference on Petroleum Energy; November 16-17, 1996; Bartlesville, Oklahoma  

SciTech Connect (OSTI)

Thirty-three Native American tribal members, council members, and other interested parties gathered in Bartlesville, Oklahoma, to attend the Native American Conference on Petroleum Energy on October 16 and 17 1996, sponsored by the U.S. Department of Energy and BDM-Oklahoma, Inc. Tribes represented at the workshop included the Cherokee, Chickasaw, Hopi, Jicarilla Apache, Osage, Seminole, and Ute. Representatives of the Bureau of Indian Affairs (BIA), the Bureau of Land Management (BLM), and the Minerals Management Service (MMS) also attended. BDM-Oklahoma developed and organized the Native American Conference on Petroleum Energy to help meet the goals of the U.S. Department of Energy's Domestic Gas and Oil Initiative to help Native American Tribes become more self-sufficient in developing and managing petroleum resources.

NONE

1999-04-27T23:59:59.000Z

95

Oklahoma: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth'sOklahoma/Geothermal < Oklahoma Jump to: navigation, searchWindOklahoma:

96

Oklahoma Electric Cooperative- Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Oklahoma Energy Cooperative (OEC) offers rebates to residential customers for the purchase of air-source heat pumps, dual-fuel heat pumps, geothermal heat pumps and water heaters. Air-source heat...

97

Oklahoma Indian Gaming Association Annual Conference  

Broader source: Energy.gov [DOE]

Join more than 2,500 industry professionals from all over the country at the 2012 Oklahoma Indian Gaming Association (OIGA) Conference and Trade Show specifically devoted to all aspects of the...

98

Oklahoma City- Residential Energy Efficiency Loan Program  

Broader source: Energy.gov [DOE]

Beginning in 2010, homeowners in Oklahoma City are eligible for energy efficiency loans up to $10,000. Residents must have an annual income of $100,000 or less and must repay the loan within 36...

99

Training For Industry Program (TIP) (Oklahoma)  

Broader source: Energy.gov [DOE]

The Oklahoma Department of Career and Technology Education runs the Training For Industry Program (TIP) is a no-cost/low-cost way for new or growing companies that create jobs to get a skilled,...

100

Oklahoma Coalbed Methane Proved Reserves Extensions (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Extensions (Billion Cubic Feet) Oklahoma Coalbed Methane Proved Reserves Extensions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

Note: This page contains sample records for the topic "oklahoma nat gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Oklahoma Coalbed Methane Proved Reserves Revision Decreases ...  

U.S. Energy Information Administration (EIA) Indexed Site

Decreases (Billion Cubic Feet) Oklahoma Coalbed Methane Proved Reserves Revision Decreases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

102

Oklahoma Coalbed Methane Proved Reserves Revision Increases ...  

U.S. Energy Information Administration (EIA) Indexed Site

Increases (Billion Cubic Feet) Oklahoma Coalbed Methane Proved Reserves Revision Increases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

103

Oklahoma Coalbed Methane Proved Reserves Adjustments (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Adjustments (Billion Cubic Feet) Oklahoma Coalbed Methane Proved Reserves Adjustments (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

104

Oklahoma Coalbed Methane Proved Reserves Acquisitions (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Acquisitions (Billion Cubic Feet) Oklahoma Coalbed Methane Proved Reserves Acquisitions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

105

OKLAHOMA STATE UNIVERSITY Mechanical and Aerospace Engineering  

E-Print Network [OSTI]

OKLAHOMA STATE UNIVERSITY Mechanical and Aerospace Engineering Assistant Professor The School (6) tenure-track faculty positions at the Assistant Professor rank. Exceptional candidates in all precision manufacturing, HVAC&R, vibrations, aircraft and spacecraft, robotics, unmanned systems, autonomy

106

Oklahoma/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth'sOklahoma/Geothermal < Oklahoma Jump to: navigation, search

107

Oklahoma seismic network. Final report  

SciTech Connect (OSTI)

The US Nuclear Regulatory Commission has established rigorous guidelines that must be adhered to before a permit to construct a nuclear-power plant is granted to an applicant. Local as well as regional seismicity and structural relationships play an integral role in the final design criteria for nuclear power plants. The existing historical record of seismicity is inadequate in a number of areas of the Midcontinent region because of the lack of instrumentation and (or) the sensitivity of the instruments deployed to monitor earthquake events. The Nemaha Uplift/Midcontinent Geophysical Anomaly is one of five principal areas east of the Rocky Mountain front that has a moderately high seismic-risk classification. The Nemaha uplift, which is common to the states of Oklahoma, Kansas, and Nebraska, is approximately 415 miles long and 12-14 miles wide. The Midcontinent Geophysical Anomaly extends southward from Minnesota across Iowa and the southeastern corner of Nebraska and probably terminates in central Kansas. A number of moderate-sized earthquakes--magnitude 5 or greater--have occurred along or west of the Nemaha uplift. The Oklahoma Geological Survey, in cooperation with the geological surveys of Kansas, Nebraska, and Iowa, conducted a 5-year investigation of the seismicity and tectonic relationships of the Nemaha uplift and associated geologic features in the Midcontinent. This investigation was intended to provide data to be used to design nuclear-power plants. However, the information is also being used to design better large-scale structures, such as dams and high-use buildings, and to provide the necessary data to evaluate earthquake-insurance rates in the Midcontinent.

Luza, K.V.; Lawson, J.E. Jr. [Oklahoma Geological Survey, Norman, OK (United States)]|[Univ. of Oklahoma, Norman, OK (United States). Energy Center

1993-07-01T23:59:59.000Z

108

Oklahoma  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ <Information Administration (EIA) 10 MECS Survey Data 2010 | 2006 | 20024.9513BOE

109

Identification and evaluation of fluvial-dominated deltaic (Class 1 oil) reservoirs in Oklahoma. Yearly technical progress report, January 1--December 31, 1994  

SciTech Connect (OSTI)

The Oklahoma Geological Survey and the University of Oklahoma are engaged in a five-year program to identify and address Oklahoma`s oil recovery opportunities in fluvial-dominated deltaic (FDD) reservoirs. This program includes the systematic and comprehensive collection, evaluation, and distribution of information on all of Oklahoma`s FDD oil reservoirs and the recovery technologies that can be applied to those reservoirs with commercial success. To date, the lead geologists have defined the initial geographic extents of Oklahoma`s FDD plays, and compiled known information about those plays. Nine plays have been defined, all of them Pennsylvanian in age and most from the Cherokee Group. A bibliographic database has been developed to record the literature sources and their related plays. Trend maps are being developed to identify the FDD portions of the relevant reservoirs, through accessing current production databases and through compiling the literature results. A reservoir database system also has been developed, to record specific reservoir data elements that are identified through the literature, and through public and private data sources. The project team is working with the Oklahoma Nomenclature Committee of the Mid-Continent Oil and Gas Association to update oil field boundary definitions in the project area. Also, team members are working with several private companies to develop demonstration reservoirs for the reservoir characterization and simulation activities. All of the information gathered through these efforts will be transferred to the Oklahoma petroleum industry through a series of publications and workshops. Additionally, plans are being developed, and hardware and software resources are being acquired, in preparation for the opening of a publicly-accessible computer users laboratory, one component of the technology transfer program.

Mankin, C.J. [Oklahoma Geological Survey, Norman, OK (United States)] [Oklahoma Geological Survey, Norman, OK (United States); Banken, M.K. [Oklahoma Univ., Norman, OK (United States)] [Oklahoma Univ., Norman, OK (United States)

1995-11-21T23:59:59.000Z

110

File:PerspectiveHealthNatGas.pdf | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power Basics (TheEtelligence (Smart GridHomeFederated Ruralsource History

111

Observations on the capability of the Criner fault, southern Oklahoma  

E-Print Network [OSTI]

Results of previous investigations have indicated the possibility that recent deformation has occurred on the Criner fault of southern Oklahoma. The Criner fault is located in Carter and Love Counties, Oklahoma, approximately 100 kilometers...

Williamson, Shawn Collin

2012-06-07T23:59:59.000Z

112

The early planning and development of Oklahoma City  

E-Print Network [OSTI]

An analysis of the planning, development, and implementation of Oklahoma City's Grand Boulevard. In the early days of 1909, a plan emerged to build an expansive parks and boulevard system to encircle Oklahoma City. Such ...

Humphreys, Blair D. (Blair David)

2009-01-01T23:59:59.000Z

113

Oklahoma GSHP Ini0a0ve Jim Bullington  

E-Print Network [OSTI]

Oklahoma GSHP Ini0a0ve Jim Bullington Trade & Industrial Education Oklahoma Department for Business and Industry · Describe the Oklahoma CareerTech GSHP Ini0a0ve Model and Technical Educa0on · Encourage you to contact them to get an ini0a0ve rolling #12

114

Oklahoma Natural Gas in Underground Storage (Working Gas) (Million Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996) inDecadeDecadeFeet) YearTotalDecadeVented

115

Rural Direct and Counter-cyclical Payments and Their Impact in a Rural-urban Perspective (A Case in Oklahoma).  

E-Print Network [OSTI]

??The total value of goods and services traded between rural and urban Oklahoma is estimated around 7.42 billion in 2008. Rural Oklahoma supplied urban Oklahoma… (more)

Tegegne, Eyosiyas L.

2011-01-01T23:59:59.000Z

116

From Industry Dominance to Legislative Progress: The Political and Public Health Struggle of Tobacco Control on Oklahoma  

E-Print Network [OSTI]

Director, Arkansas & Oklahoma. Interview with Andrew Spivak.Constitution of the State of Oklahoma (2005), Article 5,Lobbyist Registration; Oklahoma Ethics Commission, Form L-

Spivak, Andrew L. M.A.; Givel, Michael S. Ph.D.

2005-01-01T23:59:59.000Z

117

Oklahoma/Geothermal | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth'sOklahoma/Geothermal < Oklahoma Jump to: navigation, search GEOTHERMAL

118

Subsurface Geology of Arsenic-Bearing Permian Sedimentary Rocks in the Garber-Wellington Interval of the Central Oklahoma Aquifer, Cleveland County, Oklahoma.  

E-Print Network [OSTI]

??The Central Oklahoma Aquifer is an important source of drinking water in central Oklahoma. The major formations making up the aquifer, the Garber Sandstone and… (more)

Abbott, Ben Nicholas

2005-01-01T23:59:59.000Z

119

Land Use and natUraL resoUrces  

E-Print Network [OSTI]

............................................................................................9 Cultural Resource Management: CEQA, NEPA and Section 106 and Natural Resources Department UC Davis Extension #12;3 COnTEnTs Land Use PLanning Community InvolvementLand Use and natUraL resoUrces spring 2014 new Courses: Tribal Water Law and Policy Effective

California at Davis, University of

120

Land Use and natUraL resoUrces  

E-Print Network [OSTI]

..........................................................................9 natUraL resoUrces Cultural Resource Management: CEQA, NEPA and Section 106 Extension is expanding its Land Use and Natural Resource Planning portfolio to include courses (with and Natural Resource Planning portfolio can help you be more effective in achieving your goals. Julia Lave

Ferrara, Katherine W.

Note: This page contains sample records for the topic "oklahoma nat gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

110112 NatSciLab -Numerical Software Introduction to MATLAB  

E-Print Network [OSTI]

Outline 110112 NatSciLab - Numerical Software Introduction to MATLAB Onur Oktay Jacobs University Bremen Spring 2010 #12;MATLAB Desktop Environment The Command line Operators MATLAB data types Outline 1 MATLAB Desktop Environment 2 The Command line A quick start Indexing 3 Operators Arithmetic (Array

Vasylkevych, Sergiy

122

Land Use and natUraL resoUrces  

E-Print Network [OSTI]

in other areas. Students in our Green Building and Sustainable Design and Renewable Energy certificate1 Land Use and natUraL resoUrces Fall 2013 Including: Mitigation and Conservation Banking Climate making changes in our lives. We move to another city, change jobs or change our diet to be healthier. UC

California at Davis, University of

123

Land Use and natUraL resoUrces  

E-Print Network [OSTI]

Land Use and natUraL resoUrces summer 2012 Including: Climate Change and Local Planning Strategies Overview of Environmental Statistics Green Building Design Studio CONTINuING AND PrOFessIONAL eDuCATION #12Ndar........................................................................................................................4 laNd USe plaNNiNg Climate Change and Local Planning Strategies

California at Davis, University of

124

OKLAHOMA STATE UNIVERSITY ENERGY CONFERENCE  

E-Print Network [OSTI]

in a Competitive Market In the ultra-competitive landscape of domestic onshore exploration and production, how.m. Creating Incremental Value from Unconventional Assets So-called unconventional oil and gas resources have and gas markets around the world? Jonathan Lewis, Ph.D., Senior VP, Completion and Production Division

Veiga, Pedro Manuel Barbosa

125

Exploitation and Optimization of Reservoir Performance in Hunton Formation, Oklahoma  

SciTech Connect (OSTI)

West Carney field--one of the newest fields discovered in Oklahoma--exhibits many unique production characteristics. These characteristics include: (1) decreasing water-oil ratio; (2) decreasing gas-oil ratio followed by an increase; (3) poor prediction capability of the reserves based on the log data; and (4) low geological connectivity but high hydrodynamic connectivity. The purpose of this investigation is to understand the principal mechanisms affecting the production, and propose methods by which we can extend the phenomenon to other fields with similar characteristics. In our experimental investigation section, we continue to describe the use of surfactant to alter the wettability of the rock. By altering the wettability, we may be able to recover additional oil through imbibition and gravity drainage process. In our Engineering and Geological Analysis section, we present a new technique to generate alternate permeability distributions at unsampled wells.

Mohan Kelkar

2006-01-01T23:59:59.000Z

126

Exploitation and Optimization of Reservoir Performance in Hunton Formation, Oklahoma  

SciTech Connect (OSTI)

West Carney field--one of the newest fields discovered in Oklahoma--exhibits many unique production characteristics. These characteristics include: (1) decreasing water-oil ratio; (2) decreasing gas-oil ratio followed by an increase; (3) poor prediction capability of the reserves based on the log data; and (4) low geological connectivity but high hydrodynamic connectivity. The purpose of this investigation is to understand the principal mechanisms affecting the production, and propose methods by which we can extend the phenomenon to other fields with similar characteristics. In our experimental investigation section, we continue to describe the use of surfactant to alter the wettability of the rock. By altering the wettability, we may be able to recover additional oil through imbibition and gravity drainage process.

Mohan Kelkar

2006-06-30T23:59:59.000Z

127

HATCH PROJECT PROPOSAL OKLAHOMA AGRICULTURAL EXPERIMENT STATION  

E-Print Network [OSTI]

or Revised Project Procedures for initiating a new project or for revising an existing project entail: 1. Abstracting the essential features of the objective and procedures sections from the project outline for CRISHATCH PROJECT PROPOSAL OKLAHOMA AGRICULTURAL EXPERIMENT STATION USDA PROJECT OUTLINE DEVELOPMENT

Ghajar, Afshin J.

128

ENVIRONMENTAL ASSESSMENT OF OKLAHOMA ABANDONED DRILLING AND PRODUCTION SITES AND ASSOCIATED PUBLIC EDUCATION/OUTREACH ACTIVITIES  

SciTech Connect (OSTI)

The U.S. Department of Energy has participated with the Oklahoma Energy Resource Board (OERB) since 1995 by providing grant funding for on-going work in both environmental assessment of abandoned oilfield exploration and production sites and associated public education/outreach activities. The OERB, a state agency created in 1993 by the Oklahoma legislature, administers programs funded by an assessment of one tenth of one percent on all oil and natural gas produced and sold in the state of Oklahoma. Approximately one half of the funds are used to assess and remediate abandoned oilfield sites and the other half are being used to educate about the importance of the oil and natural gas industry and OERB's environmental efforts. Financial participation through grant funding by the U.S. D.O.E. has been $200,000 annually which represents approximately 3 percent of OERB's private funding. Most of OERB's revenues come from an assessment of 1/10th of 1% on the sale of crude and natural gas in Oklahoma. The assessment is considered voluntary in that any interest owner may ask for a refund annually of their contributions to the fund. On average, 95% of the assessment dollars have remained with OERB, which shows tremendous support by the industry. This Final Report summarizes the progress of the three year grant. The purpose of this three-year project was to continue the progress of the OERB to accomplish its environmental and educational objectives and transfer information learned to other organizations and producing states in the industry.

Mike Terry

2002-03-01T23:59:59.000Z

129

EXPLOITATION AND OPTIMIZATION OF RESERVOIR PERFORMANCE IN HUNTON FORMATION, OKLAHOMA  

SciTech Connect (OSTI)

Hunton formation in Oklahoma has displayed some unique production characteristics. These include high initial water-oil and gas-oil ratios, decline in those ratios over time and temporary increase in gas-oil ratio during pressure build up. The formation also displays highly complex geology, but surprising hydrodynamic continuity. This report addresses three key issues related specifically to West Carney Hunton field and, in general, to any other Hunton formation exhibiting similar behavior: (1) What is the primary mechanism by which oil and gas is produced from the field? (2) How can the knowledge gained from studying the existing fields can be extended to other fields which have the potential to produce? (3) What can be done to improve the performance of this reservoir? We have developed a comprehensive model to explain the behavior of the reservoir. By using available production, geological, core and log data, we are able to develop a reservoir model which explains the production behavior in the reservoir. Using easily available information, such as log data, we have established the parameters needed for a field to be economically successful. We provide guidelines in terms of what to look for in a new field and how to develop it. Finally, through laboratory experiments, we show that surfactants can be used to improve the hydrocarbons recovery from the field. In addition, injection of CO{sub 2} or natural gas also will help us recover additional oil from the field.

Mohan Kelkar

2005-02-01T23:59:59.000Z

130

Oklahoma – Sexual Orientation and Gender Identity Law and Documentation of Discrimination  

E-Print Network [OSTI]

the trial court. Id. OKLAHOMA Williams Institute EmploymentId. at 1575. 59 Id. OKLAHOMA Williams Institute Employment3 Memorandum from the City of Oklahoma City Office of the

Sears, Brad

2009-01-01T23:59:59.000Z

131

Estimating profile soil moisture and groundwater variations using GRACE and Oklahoma Mesonet soil moisture data  

E-Print Network [OSTI]

D. Eilts (1995), The Oklahoma Mesonet: A technical overview,technical update on the Oklahoma Mesonet, J. Atmos. Oceanicdoi:10.1029/2006WR005374. J. Basara, Oklahoma Climatological

Swenson, Sean; Famiglietti, James; Basara, Jeffrey; Wahr, John

2008-01-01T23:59:59.000Z

132

E-Print Network 3.0 - arbuckle mountains oklahoma Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

arbuckle mountains oklahoma Search Powered by Explorit Topic List Advanced Search Sample search results for: arbuckle mountains oklahoma Page: << < 1 2 3 4 5 > >> 1 Characterizing...

133

Oklahoma Municipal Power Authority- Commercial and Industrial Energy Efficiency Program  

Broader source: Energy.gov [DOE]

The Oklahoma Municipal Power Authority (OMPA) offers the Demand and Energy Efficiency Program (DEEP) to eligible commercial, industrial, and municipal government customers served by OMPA. This...

134

Oklahoma Municipal Power Authority- WISE Energy Efficiency Loan Program  

Broader source: Energy.gov [DOE]

The Oklahoma Municipal Power Authority (OMPA) offers loans for a variety of measures and equipment through its WISE Loan Program. This program encourages residential and commercial customers to...

135

Transformative Learning Experiences of Oklahoma Child Care Licensing Specialists.  

E-Print Network [OSTI]

??The purpose of this study was to understand and describe the transformational educational experiences of Oklahoma child care licensing workers who are currently or were… (more)

Averill, Sherry Gale

2006-01-01T23:59:59.000Z

136

Oklahoma's Identity: Three Characteristics of the American West.  

E-Print Network [OSTI]

??This study examines three characteristics of the American West that Oklahoma also possesses. Primary materials include newspapers, court decisions, a pending lawsuit, and federal treaties… (more)

Anders, Michael Kevin, II

2012-01-01T23:59:59.000Z

137

Private Water Well Education for Adult Residents of Oklahoma.  

E-Print Network [OSTI]

??The scope of this study involved an investigation into the education of the adult residents of Oklahoma regarding private water wells. The groundwater supply for… (more)

Robbins, Sharon Marie

2012-01-01T23:59:59.000Z

138

Developing a Soil Property Database for the Oklahoma Mesonet.  

E-Print Network [OSTI]

??The objective of this study was to create a comprehensive database of soil hydraulic and physical properties of the Oklahoma Mesonet station soils. Replicate soil… (more)

Scott, Bethany

2012-01-01T23:59:59.000Z

139

Organic Agriculture in Oklahoma: Catalysts and Roadblocks for Producers.  

E-Print Network [OSTI]

??This study surveyed certified and non-certified Oklahoma organic producers to examine their personal and farm characteristics, the reasons cited for their extent of involvement in… (more)

Mitchell, Shelley

2007-01-01T23:59:59.000Z

140

Oklahoma Coalbed Methane Proved Reserves New Reservoir Discoveries...  

U.S. Energy Information Administration (EIA) Indexed Site

New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Oklahoma Coalbed Methane Proved Reserves New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0...

Note: This page contains sample records for the topic "oklahoma nat gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

N3280RDCOTTONWOODRD PayneOklahoma 11  

E-Print Network [OSTI]

51 2 54 11 51 49 4 11 2 11 10 72 51 96 26 47 51 2651 26 76 76 26 4 32 11 26 3 11 26 10 72 51 31 26 51 11 2626 72 11 49 10 11 26 11 26 96 76 26 41 11 76 51 1011 74 31 51 11 SOIL SURVEY OF PAYNE COUNTY Soil Survey Area: Payne County, Oklahoma Spatial Version of Data: 2 Soil Map Compilation Scale: 1

Ghajar, Afshin J.

142

Okay, Oklahoma: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoading map...(UtilityCounty, Michigan: Energy ResourcesCo Jump to:Ohio:Okay, Oklahoma: Energy

143

Limestone, Oklahoma: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey,(Monaster And Coolbaugh, 2007) JumpDesignLimestone, Oklahoma: Energy

144

Gregory, Oklahoma: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio:Greer County is a county in Oklahoma. Its FIPS County Code

145

Luther, Oklahoma: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey,(MonasterLowell Point, Alaska: EnergyLudlow,LumetaLuther, Oklahoma:

146

Porter, Oklahoma: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County, Maine:Plug Power Inc JumpPortage, New York: EnergyPorter, Oklahoma:

147

Tulsa, Oklahoma: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty LtdSteen,LtdInformationTulsa, Oklahoma: Energy Resources (Redirected

148

Oklahoma Center for High Energy Physics (OCHEP)  

SciTech Connect (OSTI)

The DOE EPSCoR implementation grant, with the support from the State of Oklahoma and from the three universities, Oklahoma State University, University of Oklahoma and Langston University, resulted in establishing of the Oklahoma Center for High Energy Physics (OCHEP) in 2004. Currently, OCHEP continues to flourish as a vibrant hub for research in experimental and theoretical particle physics and an educational center in the State of Oklahoma. All goals of the original proposal were successfully accomplished. These include foun- dation of a new experimental particle physics group at OSU, the establishment of a Tier 2 computing facility for the Large Hadron Collider (LHC) and Tevatron data analysis at OU and organization of a vital particle physics research center in Oklahoma based on resources of the three universities. OSU has hired two tenure-track faculty members with initial support from the grant funds. Now both positions are supported through OSU budget. This new HEP Experimental Group at OSU has established itself as a full member of the Fermilab D0 Collaboration and LHC ATLAS Experiment and has secured external funds from the DOE and the NSF. These funds currently support 2 graduate students, 1 postdoctoral fellow, and 1 part-time engineer. The grant initiated creation of a Tier 2 computing facility at OU as part of the Southwest Tier 2 facility, and a permanent Research Scientist was hired at OU to maintain and run the facility. Permanent support for this position has now been provided through the OU university budget. OCHEP represents a successful model of cooperation of several universities, providing the establishment of critical mass of manpower, computing and hardware resources. This led to increasing Oklahoma�¢����s impact in all areas of HEP, theory, experiment, and computation. The Center personnel are involved in cutting edge research in experimental, theoretical, and computational aspects of High Energy Physics with the research areas ranging from the search for new phenomena at the Fermilab Tevatron and the CERN Large Hadron Collider to theoretical modeling, computer simulation, detector development and testing, and physics analysis. OCHEP faculty members participating on the D0 collaboration at the Fermilab Tevatron and on the ATLAS collaboration at the CERN LHC have made major impact on the Standard Model (SM) Higgs boson search, top quark studies, B physics studies, and measurements of Quantum Chromodynamics (QCD) phenomena. The OCHEP Grid computing facility consists of a large computer cluster which is playing a major role in data analysis and Monte Carlo productions for both the D0 and ATLAS experiments. Theoretical efforts are devoted to new ideas in Higgs bosons physics, extra dimensions, neutrino masses and oscillations, Grand Unified Theories, supersymmetric models, dark matter, and nonperturbative quantum field theory. Theory members are making major contributions to the understanding of phenomena being explored at the Tevatron and the LHC. They have proposed new models for Higgs bosons, and have suggested new signals for extra dimensions, and for the search of supersymmetric particles. During the seven year period when OCHEP was partially funded through the DOE EPSCoR implementation grant, OCHEP members published over 500 refereed journal articles and made over 200 invited presentations at major conferences. The Center is also involved in education and outreach activities by offering summer research programs for high school teachers and college students, and organizing summer workshops for high school teachers, sometimes coordinating with the Quarknet programs at OSU and OU. The details of the Center can be found in http://ochep.phy.okstate.edu.

S. Nandi; M.J. Strauss; J. Snow; F. Rizatdinova; B. Abbott; K. Babu; P. Gutierrez; C. Kao; A. Khanov; K.A. Milton; H. Neaman; H. Severini, P. Skubic

2012-02-29T23:59:59.000Z

149

Depositional framework and reservoir distribution of Red Fork sandstone in Oklahoma  

SciTech Connect (OSTI)

The Middle Pennsylvanian Red Fork sandstone formed as a result of southward progradation across most of Oklahoma. The Red Fork is one of several cyclothemic (transgressive-regressive) sequences developed within the Desmoinesian Cherokee Group. Sea level changes and stability of the depositional area were dominant factors in determining the general stratigraphic characteristics of the Red Fork interval. Progradation was episodic, with sand deposition in the distal, more subsident part of the basin during lower sea level stands, and valley-fill deposition in the more stable areas during sea level rises. Red Fork sandstone trends depict an alluvial-deltaic complex covering most of Oklahoma. The Red Fork consists primarily of alluvial-valley and plain (fluvial) bodies in the northern part of northeastern Oklahoma, alluvial-deltaic bodies in most of the remaining parts of the shelf area, and off-shelf submarine-fan and slope/basin-floor complexes within the deeper part of the Anadarko basin. Determination of reservoir trend and genesis requires integration of rock data and log data, with logs calibrated to cores for estimating depositional environments and assessing diagenetic overprints. Much of the oil and gas has been trapped in stratigraphic traps, some of which represent channelized sandstones with trends at high angles to the structural grain. Secondary chlorite, in particular, is associated locally with development of productive reservoirs showing microporosity, high water saturation, and correspondingly low resistivities.

Shelton, J.W.; Fritz, R.D.; Johnson, C. (Masera Corp., Tulsa, OK (USA))

1989-08-01T23:59:59.000Z

150

SOIL SURVEY OF PAYNE COUNTY, OKLAHOMA OSURR Section 17  

E-Print Network [OSTI]

66 26 76 26 26 26 SOIL SURVEY OF PAYNE COUNTY, OKLAHOMA OSURR Section 17 0 300 600 900 1,200150 Feet 0 100 20050 Meters Web Soil Survey 1.1 National Cooperative Soil Survey 5/7/2007 Page 1 of 3 #12;MAP INFORMATION SOIL SURVEY OF PAYNE COUNTY, OKLAHOMA OSURR Section 17 Source of Map: Natural Resources

Ghajar, Afshin J.

151

Oklahoma Water Resources Research Institute Annual Technical Report  

E-Print Network [OSTI]

and hydraulic fracturing. Introduction 1 #12;Research Program Introduction In 2012, OWRRI revised its annualOklahoma Water Resources Research Institute Annual Technical Report FY 2012 Oklahoma Water Water Resources Research Institute (OWRRI) continued its integration in to the Division of Agricultural

152

Exploitation and Optimization of Reservoir Performance in Hunton Formation, Oklahoma  

SciTech Connect (OSTI)

West Carney field--one of the newest fields discovered in Oklahoma--exhibits many unique production characteristics. These characteristics include: (1) decreasing water-oil ratio; (2) decreasing gas-oil ratio followed by an increase; (3) poor prediction capability of the reserves based on the log data; and (4) low geological connectivity but high hydrodynamic connectivity. The purpose of this investigation is to understand the principal mechanisms affecting the production, and propose methods by which we can extend the phenomenon to other fields with similar characteristics. In our experimental investigation section, we continue to describe the use of surfactant to alter the wettability of the rock. By altering the wettability, we should be able to change the water-gas ratio in the reservoir and, hence, improve productivity from the well. In our Engineering and Geological Analysis section, we present our rock typing analysis work which combines the geological data with engineering data to develop a unique rock characteristics description. By using porosity as a variable, we can generate alternate rock type descriptions at logged wells. This procedure also allows us to quantify uncertainties in rock type description.

Mohan Kelkar

2005-10-01T23:59:59.000Z

153

Division of Agricultural Sciences and Natural Resources Oklahoma State University Oklahoma Cooperative Extension Fact Sheets  

E-Print Network [OSTI]

Division of Agricultural Sciences and Natural Resources · Oklahoma State University NREM-2877 into prairies. Fire Effects on Plants Much of a plant's adaptation to fire is determined by its growth form, bud climatic patterns (e.g. drought), and previous intensity and duration of herbivory.For example

Balasundaram, Balabhaskar "Baski"

154

Division of Agricultural Sciences and Natural Resources Oklahoma State University Oklahoma Cooperative Extension Fact Sheets  

E-Print Network [OSTI]

. Giles Professor Canola is fed upon by many insect and arthropod pests including several species to be found in canola grown in Oklahoma are the army cutworm and the diamondback moth. Army cutworm (Euxoa fields (like a newly prepared field ready for canola planting

Balasundaram, Balabhaskar "Baski"

155

EXPLOITATION AND OPTIMIZATION OF RESERVOIR PERFORMANCE IN HUNTON FORMATION, OKLAHOMA  

SciTech Connect (OSTI)

West Carney field--one of the newest fields discovered in Oklahoma--exhibits many unique production characteristics. These characteristics include: (1) decreasing water-oil ratio; (2) decreasing gas-oil ratio followed by an increase; (3) poor prediction capability of the reserves based on the log data; and (4) low geological connectivity but high hydrodynamic connectivity. The purpose of this investigation is to understand the principal mechanisms affecting the production, and propose methods by which we can extend the phenomenon to other fields with similar characteristics. In our experimental investigation section, we present the data on surfactant injection in near well bore region. We demonstrate that by injecting the surfactant, the relative permeability of water could be decreased, and that of gas could be increased. This should result in improved gas recovery from the reservoir. Our geological analysis of the reservoir develops the detailed stratigraphic description of the reservoir. Two new stratigraphic units, previously unrecognized, are identified. Additional lithofacies are recognized in new core descriptions. Our engineering analysis has determined that well density is an important parameter in optimally producing Hunton reservoirs. It appears that 160 acre is an optimal spacing. The reservoir pressure appears to decline over time; however, recovery per well is only weakly influenced by the pressure. This indicates that additional opportunity to drill wells exists in relatively depleted fields. A simple material balance technique is developed to validate the recovery of gas, oil and water. This technique can be used to further extrapolate recoveries from other fields with similar field characteristics.

Mohan Kelkar

2004-10-01T23:59:59.000Z

156

NatioNal MuseuM of NatUral History  

E-Print Network [OSTI]

NatioNal MuseuM of NatUral History @ 100 | Past, PreseNt & future #12;NatioNal MuseuM of Nat, and the Museum's accomplishments have been no less significant. in our first century, we have assembled and our place in it. Knowledge for a Sustainable Future, the Museum's strategic Plan for 2010 to 2015

Mathis, Wayne N.

157

Noble, Oklahoma: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoading map...(Utility Company) Jump to:City) JumpOpenJV Jump to:Billings, OklahomaNoble,

158

Bixby, Oklahoma: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin: Energy ResourcesJersey:form View sourceEnergyBiscayne Park,Bixby, Oklahoma:

159

Burbank, Oklahoma: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin: EnergyBoston Areais a villageBucyrus,Burbank, Oklahoma: Energy Resources Jump

160

Bushyhead, Oklahoma: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin: EnergyBoston Areais aBurkittsville,Bushyhead, Oklahoma: Energy Resources Jump

Note: This page contains sample records for the topic "oklahoma nat gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Skiatook, Oklahoma: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty Ltd Jump to: navigation,PvtSouth Dakota) Jump to:Oklahoma: Energy Resources

162

Adair, Oklahoma: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop,SaveWhiskeyEnergyAd-Venta Jump to: navigation,Adair CountyOklahoma:

163

Jenks, Oklahoma: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429 Throttled (botOpen6 Climate Zone Subtype A.645565°,JehinJenks, Oklahoma:

164

GE Global Research in Oklahoma City  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr Flickr Editor's note:ComputingFusion roadmappingBangalore,Oklahoma

165

Foyil, Oklahoma: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublicIDAPowerPlantSitingConstruction.pdfNotify98.pdf JumpFlixMapFileFostoria,Chapel,Foyil, Oklahoma: Energy

166

Tulsa, Oklahoma: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty LtdSteen,LtdInformationTulsa, Oklahoma: Energy Resources (Redirected from

167

Turley, Oklahoma: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty LtdSteen,LtdInformationTulsa, Oklahoma:Energy Information

168

High potential recovery -- Gas repressurization  

SciTech Connect (OSTI)

The objective of this project was to demonstrate that small independent oil producers can use existing gas injection technologies, scaled to their operations, to repressurize petroleum reservoirs and increase their economic oil production. This report gives background information for gas repressurization technologies, the results of workshops held to inform small independent producers about gas repressurization, and the results of four gas repressurization field demonstration projects. Much of the material in this report is based on annual reports (BDM-Oklahoma 1995, BDM-Oklahoma 1996, BDM-Oklahoma 1997), a report describing the results of the workshops (Olsen 1995), and the four final reports for the field demonstration projects which are reproduced in the Appendix. This project was designed to demonstrate that repressurization of reservoirs with gas (natural gas, enriched gas, nitrogen, flue gas, or air) can be used by small independent operators in selected reservoirs to increase production and/or decrease premature abandonment of the resource. The project excluded carbon dioxide because of other DOE-sponsored projects that address carbon dioxide processes directly. Two of the demonstration projects, one using flue gas and the other involving natural gas from a deeper coal zone, were both technical and economic successes. The two major lessons learned from the projects are the importance of (1) adequate infrastructure (piping, wells, compressors, etc.) and (2) adequate planning including testing compatibility between injected gases and fluids, and reservoir gases, fluids, and rocks.

Madden, M.P.

1998-05-01T23:59:59.000Z

169

EXPLOITATION AND OPTIMIZATION OF RESERVOIR PERFORMANCE IN HUNTON FORMATION, OKLAHOMA  

SciTech Connect (OSTI)

West Carney field--one of the newest fields discovered in Oklahoma--exhibits many unique production characteristics. These characteristics include: (1) decreasing water-oil ratio; (2) decreasing gas-oil ratio followed by an increase; (3) poor prediction capability of the reserves based on the log data; and (4) low geological connectivity but high hydrodynamic connectivity. The purpose of this investigation is to understand the principal mechanisms affecting the production, and propose methods by which we can extend the phenomenon to other fields with similar characteristics. In our experimental investigation section, we present the data on methane injection using huff-n-puff process. It appears that additional oil can be recovered using methane as a solvent. Additional experiments will be needed to confirm our analysis. Our engineering analysis has laid out detailed indicators to make the de-watering successful. Using those indicators, we are currently investigating potential in fill well locations in West Carney field. Our technology transfer activities continued this quarter with two presentations and one workshop.

Mohan Kelkar

2005-04-01T23:59:59.000Z

170

James N. Leiker and Ramon Powers, The Northern Cheyenne Exodus in History and Memory (Norman, Okla.: University of Oklahoma Press, 2011).  

E-Print Network [OSTI]

Okla. : University of Oklahoma Press, 2011). The story ofCheyenne brethren in Oklahoma, and which continues today

Luckett, Matthew

2012-01-01T23:59:59.000Z

171

Oklahoma Municipal Power Authority- WISE Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

The Oklahoma Municipal Power Authority (OMPA) offers rebates on a variety of HVAC equipment through its WISE Rebate program. This program encourages residential customers and builders to upgrade to...

172

Investigation of Soil Moisture - Vegetation Interactions in Oklahoma  

E-Print Network [OSTI]

, but not well understood climate factor. This study examines soil moisture-vegetation health interactions using both in situ observations and land surface model simulations. For the observational study, soil moisture is taken from 20 in situ Oklahoma Mesonet...

Ford, Trenton W.

2013-03-06T23:59:59.000Z

173

Oklahoma Coalbed Methane Proved Reserves Sales (Billion Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

Sales (Billion Cubic Feet) Oklahoma Coalbed Methane Proved Reserves Sales (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 6...

174

Oklahoma Coalbed Methane Proved Reserves New Field Discoveries...  

U.S. Energy Information Administration (EIA) Indexed Site

Oklahoma Coalbed Methane Proved Reserves New Field Discoveries (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 2010's 0 0...

175

2009 National Electric Transmission Congestion Study- Oklahoma City Workshop  

Broader source: Energy.gov [DOE]

On June 18, 2008, DOE hosted a regional pre-study workshop in Oklahoma City, OK to receive input and suggestions concerning the 2009 National Electric Transmission Congestion Study. The agenda,...

176

Oklahoma Water Resources Research Institute Annual Technical Report  

E-Print Network [OSTI]

Quality Descriptors: Watershed, GIS, poultry littler, phosporus, hydrology, Best management Practices (BMP The Environmental Institute (EI) at Oklahoma State University promotes interdisciplinary environmental research Selection of Management Practices, Policies, and Technological Alternatives for Phosphorus Abatement: Using

177

Small Business Administration (SBA) Guarantee Fee Tax Credit (Oklahoma)  

Broader source: Energy.gov [DOE]

The Small Business Administration (SBA) Guarantee Fee Tax Credit allows for small businesses operating in Oklahoma to claim a credit against income tax liability. This credit may be claimed for tax...

178

SOIL SURVEY OF PAYNE COUNTY, OKLAHOMA OSURR Section 4  

E-Print Network [OSTI]

25 6 4 11 25 41 72 25 74 49 74 11 51 4926 26 74 26 26 26 SOIL SURVEY OF PAYNE COUNTY, OKLAHOMA OSURR Section 4 0 400 800 1,200 1,600200 Feet 0 100 20050 Meters Web Soil Survey 1.1 National Cooperative Soil Survey 5/7/2007 Page 1 of 3 #12;MAP INFORMATION SOIL SURVEY OF PAYNE COUNTY, OKLAHOMA OSURR Section 4

Ghajar, Afshin J.

179

The northwest extension of the Meers Fault in southwestern Oklahoma  

E-Print Network [OSTI]

THE NORTHWEST EXTENSION OF THE MEERS FAULT IN SOUTIRVESTERN OKLAHOMA A Thesis by HASAN CETIN Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE... May 1991 Major Subject: Geology THE NORTHWEST EXTENSION OF THE MEERS FAULT IN SOUTHWESTERN OKLAHOMA A Thesis by HASAN CETIN Approved as to style and content by: Norman R. ford (Chair of ommittee) Chr stopher C. Mathewson (Member) ne A...

Cetin, Hasan

1991-01-01T23:59:59.000Z

180

The Texas- Oklahoma Cattle Feeding Industry: Structure and Operational Characteristics.  

E-Print Network [OSTI]

December 1968 I The Texas-Oklahoma 1 Cattle Feeding Industry Structure I and Operational 1 Characteristics TEXAS A&M UNIVERSITY Texas Agricultural Experiment Station H. 0. Kunkel, Acting Director, College Station, Texas In Cooperation... accounted for about 40 per- , Oklahoma) has been characterized by rapidly increas- cent of the cattle fed during 1966-67. More recent ing numbers of large commercial feedlots and has developments indicate that the Texas Panhandle undergone some recent...

Dietrich, Raymond A.

1968-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "oklahoma nat gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Lower Pennsylvanian (Morrowan) crinoids from Arkansas, Oklahoma, and Texas  

E-Print Network [OSTI]

the mid- dle Wapanucka of southern Oklahoma. N. Gary Lane (1964) in a study New Pennsylvanian crinoids from Clark County, Nevada described two spe- cies from Morrowan strata of the Callville Formation as Polusocrinus pachyplax Lane and Polusocrinus calycu... the mid- dle Wapanucka of southern Oklahoma. N. Gary Lane (1964) in a study New Pennsylvanian crinoids from Clark County, Nevada described two spe- cies from Morrowan strata of the Callville Formation as Polusocrinus pachyplax Lane and Polusocrinus calycu...

Moore, R. C.; Strimple, H. L.

1973-06-22T23:59:59.000Z

182

Are Oklahoma City Residents Ok? a Socio-spatial Analysis of Physicians and Supermarkets Via Accessibility and Affordability.  

E-Print Network [OSTI]

??The study examined how the built environment could contribute to individual health by analyzing neighborhoods in the Oklahoma City, Oklahoma Metropolitan Statistical Area (MSA). Due… (more)

Brown, Stacey Renee

2011-01-01T23:59:59.000Z

183

"Where the Great Plains and South Collide: A History of Farm Tenancy in Oklahoma, 1890-1950".  

E-Print Network [OSTI]

??This study demonstrates that farm tenancy in Oklahoma was unique when compared with that in other states. Oklahoma farm tenancy was a hybrid of regional… (more)

Lively, Kurt

2010-01-01T23:59:59.000Z

184

""Where the Great Plains and South Collide: A History of Farm Tenancy in Oklahoma, 1890-1950"".  

E-Print Network [OSTI]

??This study demonstrates that farm tenancy in Oklahoma was unique when compared with that in other states. Oklahoma farm tenancy was a hybrid of regional… (more)

Lively, Kurt

2010-01-01T23:59:59.000Z

185

,"Oklahoma Nonassociated Natural Gas Proved Reserves, Wet After...  

U.S. Energy Information Administration (EIA) Indexed Site

37437,14576,762,2076,1414,664,766,1204,13,19,1442 37802,15176,184,2908,2838,1603,1923,1511,6,10,1501 38168,16301,-76,2103,1711,496,756,2052,9,8,1520...

186

Oklahoma Gas & Electric Co | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoading map...(UtilityCounty, Michigan: Energy ResourcesCo JumpElectric Co Jump to: navigation,

187

Oklahoma Gas & Electric Co | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoading map...(UtilityCounty, Michigan: Energy ResourcesCo JumpElectric Co Jump to:

188

Oklahoma Gas and Electric Company Smart Grid Project | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoading map...(UtilityCounty, Michigan: Energy ResourcesCo JumpElectric Co Jump

189

Oklahoma Dry Natural Gas Production (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996) inDecadeDecade (MillionThousand Cubic

190

Oklahoma Dry Natural Gas Production (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996) inDecadeDecade (MillionThousand CubicYear Jan Feb Mar

191

Oklahoma Dry Natural Gas Reserves Acquisitions (Billion Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996) inDecadeDecade (MillionThousand CubicYear Jan

192

Oklahoma Dry Natural Gas Reserves Adjustments (Billion Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996) inDecadeDecade (MillionThousand CubicYear

193

Oklahoma Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996) inDecadeDecade (MillionThousand CubicYearEstimated

194

Oklahoma Dry Natural Gas Reserves Extensions (Billion Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996) inDecadeDecade (MillionThousand

195

Oklahoma Dry Natural Gas Reserves New Field Discoveries (Billion Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996) inDecadeDecade (MillionThousandFeet) New Field

196

Oklahoma Dry Natural Gas Reserves Revision Decreases (Billion Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996) inDecadeDecade (MillionThousandFeet) New

197

Oklahoma Dry Natural Gas Reserves Revision Increases (Billion Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996) inDecadeDecade (MillionThousandFeet) NewIncreases

198

Oklahoma Dry Natural Gas Reserves Sales (Billion Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996) inDecadeDecade (MillionThousandFeet)

199

Oklahoma Natural Gas % of Total Residential - Sales (Percent)  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996) inDecadeDecade (MillionThousandFeet)44

200

Oklahoma Natural Gas % of Total Residential - Sales (Percent)  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996) inDecadeDecade (MillionThousandFeet)44Year Jan Feb

Note: This page contains sample records for the topic "oklahoma nat gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Oklahoma Natural Gas Deliveries to Electric Power Consumers (Million Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996) inDecadeDecade (MillionThousandFeet)44Year

202

Oklahoma Natural Gas Gross Withdrawals from Coalbed Wells (Million Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996) inDecadeDecade

203

Oklahoma Natural Gas Gross Withdrawals from Coalbed Wells (Million Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996) inDecadeDecadeFeet) Year Jan Feb Mar Apr May Jun

204

Oklahoma Natural Gas Industrial Consumption (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996) inDecadeDecadeFeet) Year Jan Feb Mar

205

Oklahoma Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996) inDecadeDecadeFeet) Year Jan Feb MarDecade Year-0

206

Oklahoma Natural Gas Injections into Underground Storage (Million Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996) inDecadeDecadeFeet) Year Jan Feb MarDecade

207

Oklahoma Natural Gas Injections into Underground Storage (Million Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996) inDecadeDecadeFeet) Year Jan Feb MarDecadeFeet)

208

Oklahoma Natural Gas Lease Fuel Consumption (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996) inDecadeDecadeFeet) Year Jan Feb

209

Oklahoma Natural Gas Number of Commercial Consumers (Number of Elements)  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996) inDecadeDecadeFeet) Year Jan Feband Plant

210

Oklahoma Natural Gas Number of Industrial Consumers (Number of Elements)  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996) inDecadeDecadeFeet) Year Jan FebandIndustrial

211

Oklahoma Natural Gas Number of Residential Consumers (Number of Elements)  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996) inDecadeDecadeFeet) Year Jan

212

Oklahoma Natural Gas Pipeline and Distribution Use (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996) inDecadeDecadeFeet) Year Jan (Million Cubic Feet)

213

Oklahoma Natural Gas Pipeline and Distribution Use Price (Dollars per  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996) inDecadeDecadeFeet) Year Jan (Million Cubic

214

Oklahoma Natural Gas Plant Fuel Consumption (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996) inDecadeDecadeFeet) Year Jan (Million CubicFuel

215

Oklahoma Natural Gas Plant Liquids Production (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996) inDecadeDecadeFeet) Year Jan (Million

216

Oklahoma Natural Gas Reserves Summary as of Dec. 31  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996) inDecadeDecadeFeet) Year JanRepressuring22,113

217

Oklahoma Natural Gas Residential Consumption (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996) inDecadeDecadeFeet) Year

218

Oklahoma Natural Gas Total Consumption (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996) inDecadeDecadeFeet) YearTotal Consumption (Million

219

Oklahoma Natural Gas Underground Storage Capacity (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996) inDecadeDecadeFeet) YearTotal Consumption

220

Oklahoma Natural Gas Underground Storage Capacity (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996) inDecadeDecadeFeet) YearTotal ConsumptionYear Jan

Note: This page contains sample records for the topic "oklahoma nat gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Oklahoma Natural Gas Underground Storage Net Withdrawals (Million Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996) inDecadeDecadeFeet) YearTotal ConsumptionYear

222

Oklahoma Natural Gas Underground Storage Withdrawals (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996) inDecadeDecadeFeet) YearTotal ConsumptionYearDecade

223

Oklahoma Natural Gas Underground Storage Withdrawals (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996) inDecadeDecadeFeet) YearTotal

224

Oklahoma Natural Gas Vehicle Fuel Consumption (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996) inDecadeDecadeFeet) YearTotalDecade Year-0 Year-1

225

Oklahoma Natural Gas Vehicle Fuel Consumption (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996) inDecadeDecadeFeet) YearTotalDecade Year-0

226

Oklahoma Natural Gas Vented and Flared (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996) inDecadeDecadeFeet) YearTotalDecade

227

Oklahoma Natural Gas Vented and Flared (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996) inDecadeDecadeFeet) YearTotalDecadeVented and

228

Oklahoma Nonassociated Natural Gas Proved Reserves, Wet After Lease  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996) inDecadeDecadeFeet)

229

Oklahoma Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996) inDecadeDecadeFeet)Decade Year-0 Year-1 Year-2

230

Oklahoma Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996) inDecadeDecadeFeet)Decade Year-0 Year-1 Year-2Year

231

Oklahoma Price of Natural Gas Delivered to Residential Consumers (Dollars  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996) inDecadeDecadeFeet)Decade Year-0 Year-1

232

Oklahoma Shale Gas Proved Reserves, Reserves Changes, and Production  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996) inDecadeDecadeFeet)Decade Year-0

233

Texas Onshore Natural Gas Processed in Oklahoma (Million Cubic Feet)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteamYear JanSeparation, Proved1 4.70 1967-2010 ImportsNew Mexico

234

Natural Gas Delivered to Consumers in Oklahoma (Including Vehicle Fuel)  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs Year2per6.48 6.18(Million(Million Cubic

235

Oklahoma Associated-Dissolved Natural Gas, Wet After Lease Separation,  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing ReservoirsYear-Month WeekReservesYear Jan Feb0Proved Reserves

236

Oklahoma Dry Natural Gas Expected Future Production (Billion Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing ReservoirsYear-Month WeekReservesYear Jan Feb0Proved+Expected

237

Oklahoma Natural Gas Deliveries to Electric Power Consumers (Million Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing ReservoirsYear-Month WeekReservesYear JanFeet) Year Jan Feb

238

Oklahoma Natural Gas Gross Withdrawals (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing ReservoirsYear-Month WeekReservesYear JanFeet) Year Jan

239

Oklahoma Natural Gas Gross Withdrawals (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing ReservoirsYear-Month WeekReservesYear JanFeet) Year JanYear

240

Oklahoma Natural Gas Industrial Consumption (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing ReservoirsYear-Month WeekReservesYear JanFeet) Year

Note: This page contains sample records for the topic "oklahoma nat gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Oklahoma Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing ReservoirsYear-Month WeekReservesYear JanFeet) YearYear Jan

242

Oklahoma Natural Gas Liquids Lease Condensate, Proved Reserves (Million  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing ReservoirsYear-Month WeekReservesYear JanFeet) YearYear

243

Oklahoma Natural Gas Marketed Production (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing ReservoirsYear-Month WeekReservesYear JanFeet) YearYearDecade

244

Oklahoma Natural Gas Marketed Production (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing ReservoirsYear-Month WeekReservesYear JanFeet)

245

Oklahoma Natural Gas Plant Liquids, Expected Future Production (Million  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing ReservoirsYear-Month WeekReservesYear JanFeet)Barrels)

246

Oklahoma Natural Gas Residential Consumption (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing ReservoirsYear-Month WeekReservesYearYear Jan Feb Mar Apr May Jun

247

Oklahoma Natural Gas Underground Storage Net Withdrawals (Million Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing ReservoirsYear-Month WeekReservesYearYear Jan Feb Mar Apr

248

Oklahoma Natural Gas Underground Storage Volume (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing ReservoirsYear-Month WeekReservesYearYear Jan Feb Mar

249

Oklahoma Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing ReservoirsYear-Month WeekReservesYearYear Jan Feb MarWellhead

250

Oklahoma Natural Gas, Wet After Lease Separation Proved Reserves (Billion  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing ReservoirsYear-Month WeekReservesYearYear Jan Feb MarWellheadCubic

251

Oklahoma Nonassociated Natural Gas, Wet After Lease Separation, Proved  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing ReservoirsYear-Month WeekReservesYearYear Jan Feb

252

Oklahoma Price of Natural Gas Delivered to Residential Consumers (Dollars  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing ReservoirsYear-Month WeekReservesYearYear Jan Febper Thousand

253

Oklahoma Corporate Commission Oil and Gas | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWende New Energy CoFirstNovos Sistemas deOstsee Wind AG

254

Oklahoma Natural Gas % of Total Residential Deliveries (Percent)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30 2013 Macroeconomicper Thousand CubicProcessedProvedFoot) Year Jan Feb%

255

Oklahoma Natural Gas Liquids Lease Condensate, Reserves Based Production  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30 2013 Macroeconomicper Thousand CubicProcessedProvedFoot)Year Jan

256

Oklahoma Natural Gas Plant Liquids, Reserves Based Production (Million  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30 2013 Macroeconomicper ThousandResidential Consumers (Number ofBarrels)

257

Oklahoma Natural Gas Processed in Kansas (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30 2013 Macroeconomicper ThousandResidential Consumers (Number(Million

258

Oklahoma Natural Gas Processed in Texas (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30 2013 Macroeconomicper ThousandResidential Consumers

259

Oil & Gas Technology at Oklahoma City | GE Global Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - September 2006 The 2002 WholesaleEnergy's 10 Office ofOffshore windResearch

260

Kansas Natural Gas Processed in Oklahoma (Million Cubic Feet)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam CoalReserves (MillionYear Jan FebFoot)Barrels)Kansas

Note: This page contains sample records for the topic "oklahoma nat gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Natural Gas Delivered to Consumers in Oklahoma (Including Vehicle Fuel)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet) Year Jan Feb Mar Apr(Million

262

Oklahoma Dry Natural Gas Production (Million Cubic Feet)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet) Year JanProduction 4 125 2006Year Jan Feb2012 2013511Year Jan

263

Oklahoma Natural Gas Delivered for the Account of Others  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet) Year JanProduction 4 125 2006YearSales (BillionDecade33,2510

264

Oklahoma Natural Gas Plant Liquids, Proved Reserves (Million Barrels)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet) Year JanProduction 4 125Feet) Year Jan

265

Oklahoma Natural Gas Underground Storage Capacity (Million Cubic Feet)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet) Year JanProduction 4 125Feet) YearDecade Year-0Year Jan

266

Oklahoma Working Natural Gas Underground Storage Capacity (Million Cubic  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet) Year JanProduction 4 125Feet)SameFeet) Working

267

NEP.o. DETEmIINATION RECIPIENT:Oklahoma Municipal Power Authority  

Broader source: Energy.gov (indexed) [DOE]

OFENERG. EERE PROJECT :VI ANAGE:VIENT ('EN rER NEP.o. DETEmIINATION RECIPIENT:Oklahoma Municipal Power Authority PROJECT TITLE: OKLAHOMA SEP ARRA - OMPA Large System Rebate...

268

Oklahoma Natural Gas Number of Gas and Gas Condensate Wells (Number of  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996) inDecadeDecadeFeet) Year Jan Feband

269

Oklahoma State University proposed Advanced Technology Research Center. Environmental Assessment  

SciTech Connect (OSTI)

The Department of Energy (DOE) has prepared an Environmental Assessment (EA) evaluating the construction and equipping of the proposed Advanced Technology Research Center (ATRC) at Oklahoma State University (OSU) in Stillwater, Oklahoma. Based on the analysis in the EA, the DOE has determined that the proposed action does not constitute a major federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, the preparation of an Environmental Impact Statement is not required.

NONE

1995-06-01T23:59:59.000Z

270

Oklahoma/Wind Resources/Full Version | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth'sOklahoma/Geothermal < Oklahoma Jump to: navigation, searchWind

271

Geologic challenges and opportunities of the Cherokee group play (Pennsylvanian): Anadarko basin, Oklahoma. Topical report, January-March 1993  

SciTech Connect (OSTI)

The report has four objectives: (1) to summarize both the geologic characteristics of the Cherokee Group and its production highlights; (2) to summarize what current Cherokee producing companies perceive to be the primary geologic challenges they face in developing the Cherokee play; (3) to suggest geologic strategies to help respond to these challenges; and (4) to assess the benefits to operators of geologic studies of the Cherokee. To increase the understanding and utilization of natural gas resources in the Cherokee Group of west-central Oklahoma and to help assess future geological and technological needs for efficient development of this resource, the report highlights current geological knowledge of the Cherokee play.

Hentz, T.F.

1993-11-01T23:59:59.000Z

272

An evaluation of known remaining oil resources in the state of Oklahoma: Project on advanced oil recovery and the states. Volume 7  

SciTech Connect (OSTI)

The Interstate Oil and Gas Compact Commission (IOGCC) has conducted a series of studies to evaluate the known, remaining oil resource in twenty-three (23) states. The primary objective of die IOGCC`s effort is to examine the potential impact of an aggressive and focused program of research, development, and demonstration (RD&D) and technology transfer on future oil recovery in the United States. As part of a larger effort by the IOGCC, this report focuses on the potential economic benefits of improved oil recovery in the state of Oklahoma. Individual reports for seven other oil producing states and a national report have been separately published by the IOGCC. Several major technical insights for state and Federal policymakers and regulators can be reached from this analysis. Overall, well abandonments and more stringent environmental regulations could limit economic access to Oklahoma`s known, remaining oil resource. The high risk of near-term abandonment and the significant benefits of future application of improved oil recovery technoloy, clearly point to a need for more aggressive transfer of currently available technologies to domestic oil producers. Development and application of advanced oil recovery technologies could leave even greater benefits to the nation. A collaborative, focused RD&D effort, integrating the resources and expertise of industry, state and local governments, and the Federal government, is clearly warranted. With effective RD&D and a program of aggressive technology transfer to widely disseminate its results, Oklahoma oil production could be maximized. The resulting increase and improvement in production rates, employment, operator profits, state and Federal tax revenues, energy security will benefit both the state of Oklahoma and the nation as a whole.

NONE

1993-11-01T23:59:59.000Z

273

LittleRockCreek SOIL SURVEY OF ATOKA COUNTY, OKLAHOMA  

E-Print Network [OSTI]

3800600 3800600 3800800 3800800 3801000 3801000 3801200 3801200 3801400 3801400 SOIL SURVEY OF ATOKA 200 400100 Meters Web Soil Survey 1.1 National Cooperative Soil Survey 3/17/2007 Page 1 of 3 #12;MAP INFORMATION SOIL SURVEY OF ATOKA COUNTY, OKLAHOMA Wes Watkins Agricultural Research and Extension Center

Ghajar, Afshin J.

274

Language Maintenance And Language Renewal Among Cherokee People in Oklahoma  

E-Print Network [OSTI]

to forfeit culture and language. Today remnants of some Indian tribes are striving to find ways to maintain or renew their own languages. This paper explores some of the issues involved, and then focuses on efforts to maintain and renew Oklahoma Cherokee....

Brooks, Barbara J.

1992-01-01T23:59:59.000Z

275

Field Evaluation of a Near Zero Energy Home in Oklahoma  

SciTech Connect (OSTI)

The authors evaluated a zero energy home built by Ideal Homes in Edmond, Oklahoma, that included an extensive package of energy-efficient technologies and a photovoltaic array for site electricity generation. The home was part of a Building America research project in partnership with the Building Science Consortium to exhibit high efficiency technologies while keeping costs within the reach of average home buyers.

Hendron, R.; Hancock, E.; Barker, G.; Reeves, P.

2008-08-01T23:59:59.000Z

276

Climatology of aerosol optical depth in northcentral Oklahoma: 19922008  

E-Print Network [OSTI]

of aerosol models; for identification of aerosols from spe- cific events (e.g., the Central American fires Radiation Measurement Program central facility near Lamont, Oklahoma, since the fall of 1992. Most dimming; that is, the decrease in solar radiation reaching Earth's surface. Additionally, the wavelength

277

The University of Oklahoma OU RETIREMENT PLANS MANAGEMENT COMMITTEE  

E-Print Network [OSTI]

The University of Oklahoma OU RETIREMENT PLANS MANAGEMENT COMMITTEE March 30, 2011 President Boren established the OU Retirement Plans Management Committee to identify ways for OU to help increase its,000 OU employees participating in the retirement savings plans. A transition period to the master

Oklahoma, University of

278

University of Oklahoma - High Energy Physics  

SciTech Connect (OSTI)

The High Energy Physics program at the University of Oklahoma, Pat Skubic, Principal Investigator, is attempting to understand nature at the deepest level using the most advanced experimental and theoretical tools. The four experimental faculty, Brad Abbott, Phil Gutierrez, Pat Skubic, and Mike Strauss, together with post-doctoral associates and graduate students, are finishing their work as part of the D0 collaboration at Fermilab, and increasingly focusing their investigations at the Large Hadron Collidor (LHC) as part of the ATLAS Collaboration. Work at the LHC has become even more exciting with the recent discovery by ATLAS and the other collaboration, CMS, of the long-sought Higgs boson, which plays a key role in generating masses for the elementary constituents of matter. Work of the OUHEP group has been in the three areas of hardware, software, and analysis. Now that the Higgs boson has been discovered, completing the Standard Model of fundamental physics, new efforts will focus on finding hints of physics beyond the standard model, such as supersymmetry. The OUHEP theory group (Kim Milton, PI) also consists of four faculty members, Howie Baer, Chung Kao, Kim Milton, and Yun Wang, and associated students and postdocs. They are involved in understanding fundamental issues in formulating theories of the microworld, and in proposing models that carry us past the Standard Model, which is an incomplete description of nature. They therefore work in close concert with their experimental colleagues. One also can study fundamental physics by looking at the large scale structure of the universe; in particular the ``dark energy'' that seems to be causing the universe to expand at an accelerating rate, effectively makes up about 3/4 of the energy in the universe, and yet is totally unidentified. Dark energy and dark matter, which together account for nearly all of the energy in the universe, are an important probe of fundamental physics at the very shortest distances, or at the very highest energies. The outcomes of the group's combined experimental and theoretical research will be an improved understanding of nature, at the highest energies reachable, from which applications to technological innovation will surely result, as they always have from such studies in the past.

Skubic, Patrick L. [University of Oklahoma] [University of Oklahoma

2013-07-31T23:59:59.000Z

279

Oklahoma 4-H Enrollment Form Today's Date: ___________________  

E-Print Network [OSTI]

- wind, electric, hydro, solar, gas, oil, coal, etc. EOklahoma 4-H Enrollment Form Today's Date: ___________________ Personal Information First Name student/child to receive direct electric/USP communications from 4-H / OCES staff for educational

Ghajar, Afshin J.

280

NatSci 390IH Team-oriented Lab Discovery in Renewable Energy Course Vision  

E-Print Network [OSTI]

NatSci 390IH ­ Team-oriented Lab Discovery in Renewable Energy [iCons 3E] Syllabus 3/13/2012 Course Vision This course involves student-driven, team-oriented laboratory projects focused on the interrelated by society. The iCons Energy Laboratory encompasses a four-week "energy bootcamp" followed by two

Auerbach, Scott M.

Note: This page contains sample records for the topic "oklahoma nat gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Prof. Dr. rer. nat. Karsten Meyer Chair of Inorganic and General Chemistry  

E-Print Network [OSTI]

in Uranium Coordination Chemistry Structure & Bonding 2008, 127, 119 ­ 176. C. Hauser and K. Meyer Uranchemie-Atom Transfer Chemistry Mediated by a Nucleophilic Uranium(V) Imido Complex Angew. Chem. Int. Ed. 2006, 45, 1757Prof. Dr. rer. nat. Karsten Meyer Chair of Inorganic and General Chemistry Department of Chemistry

Meyer, Karsten

282

Am. Midl. Nat. 144:168177 Use of PVC Pipe Refugia as a Sampling Technique for  

E-Print Network [OSTI]

168 Am. Midl. Nat. 144:168­177 Use of PVC Pipe Refugia as a Sampling Technique for Hylid Treefrogs.--We used retreats made from white polyvinyl chloride (PVC) pipes to capture hylids and determined how pipe- ficial refugia such as polyvinyl chloride (PVC) pipe, bamboo, tin cans and wood nest boxes (Goin, 1958

Johnson, Matthew

283

The Colorado River and its tributaries have undergone drastic alterations from their nat  

E-Print Network [OSTI]

The Colorado River and its tributaries have undergone drastic alterations from their nat ural basin (Figure), the Colorado River has been changed from its natural state perhaps as much as any river laden with silt and chemical pollutants. The Gila River of Arizona, one of the Colorado's largest

284

National Carbon Sequestration Database and Geographic Information System (NatCarb)  

SciTech Connect (OSTI)

This annual and final report describes the results of the multi-year project entitled 'NATional CARBon Sequestration Database and Geographic Information System (NatCarb)' (http://www.natcarb.org). The original project assembled a consortium of five states (Indiana, Illinois, Kansas, Kentucky and Ohio) in the midcontinent of the United States (MIDCARB) to construct an online distributed Relational Database Management System (RDBMS) and Geographic Information System (GIS) covering aspects of carbon dioxide (CO{sub 2}) geologic sequestration. The NatCarb system built on the technology developed in the initial MIDCARB effort. The NatCarb project linked the GIS information of the Regional Carbon Sequestration Partnerships (RCSPs) into a coordinated regional database system consisting of datasets useful to industry, regulators and the public. The project includes access to national databases and GIS layers maintained by the NatCarb group (e.g., brine geochemistry) and publicly accessible servers (e.g., USGS, and Geography Network) into a single system where data are maintained and enhanced at the local level, but are accessed and assembled through a single Web portal to facilitate query, assembly, analysis and display. This project improves the flow of data across servers and increases the amount and quality of available digital data. The purpose of NatCarb is to provide a national view of the carbon capture and storage potential in the U.S. and Canada. The digital spatial database allows users to estimate the amount of CO{sub 2} emitted by sources (such as power plants, refineries and other fossil-fuel-consuming industries) in relation to geologic formations that can provide safe, secure storage sites over long periods of time. The NatCarb project worked to provide all stakeholders with improved online tools for the display and analysis of CO{sub 2} carbon capture and storage data through a single website portal (http://www.natcarb.org/). While the external project is ending, NatCarb will continue as an internal US Department of Energy National Energy Technology Laboratory (NETL) project with the continued cooperation of personnel at both West Virginia University and the Kansas Geological Survey. The successor project will continue to organize and enhance the information about CO{sub 2} sources and developing the technology needed to access, query, analyze, display, and distribute natural resource data critical to carbon management. Data are generated, maintained and enhanced locally at the RCSP level, or at the national level in specialized data warehouses, and assembled, accessed, and analyzed in real-time through a single geoportal. To address the broader needs of a spectrum of users form high-end technical queries to the general public, NatCarb will be moving to an improved and simplified display for the general public using readily available web tools such as Google Earth{trademark} and Google Maps{trademark}. The goal is for NatCarb to expand in terms of technology and areal coverage and remain the premier functional demonstration of distributed data-management systems that cross the boundaries between institutions and geographic areas, and forms the foundation of a functioning carbon cyber-infrastructure. NatCarb provides access to first-order information to evaluate the costs, economic potential and societal issues of CO{sub 2} capture and storage, including public perception and regulatory aspects.

Kenneth Nelson; Timothy Carr

2009-03-31T23:59:59.000Z

285

Recovering Flare Gas Energy - A Different Approach  

E-Print Network [OSTI]

Energy Technology Conference, Houston, TX, September 16-18, 1987 SLIDLIN CH81ICAL CX1'1PANY RARE GAS RECXNERY SYSID1 K.O, ~LM 19) PSIG STEAM F,D, FAN0'1 '" N Z N NAT~L GAS SEAL SEAL FU\\RE OIL PoT STACK TANK FLARE GAS I?T ~y ~LM ~LM ESL...RECOVERING FLARE GAS ENERGY - A DIFFERENT APPROACH \\ WALTER BRENNER Process Engineer SunOlin Chemical Co. Claymont, Delaware AUSTRACT Most petrochemical complexes and oil re fineries have systems to collect and dispose of waste gases...

Brenner, W.

286

Small Manufacturer Strategic Decision Making Assistance Tool (SMSDM): a Case Study of a Small Oklahoma Manufacturer.  

E-Print Network [OSTI]

??The propose was to design an informative analytical tool for small Oklahoma manufacturing firms that would assist in their strategic planning and decision making processes.… (more)

Robertson, William D.

2011-01-01T23:59:59.000Z

287

Comparing Place Attachment and Environmental Ethics of Visitors and State Park Employees in Oklahoma.  

E-Print Network [OSTI]

??This research examines the relationship between place attachment and environmental ethics of state parks visitors and employees in Oklahoma. Furthermore, this research also examines differences… (more)

Bradley, Michael Joshua

2012-01-01T23:59:59.000Z

288

Coming to America: Examining Why International Students Choose to Pursue a Degree at Oklahoma State University.  

E-Print Network [OSTI]

??The purpose of this study was to examine the factors that influenced the decision of international students to attend Oklahoma State University. The participants were… (more)

Jenkins, Christopher

2007-01-01T23:59:59.000Z

289

Defense Attorneys' Perceptions of Competency to Stand Trial Evaluations in Oklahoma: A Second Look.  

E-Print Network [OSTI]

??The purpose of this study was to examine Oklahoma defense attorneys' perceptions of competency to stand trial evaluations. Participants in this study were 47 attorneys… (more)

Graham, Angila

2007-01-01T23:59:59.000Z

290

Religious Scruples and the Politics of Anticommunism in Oklahoma, 1917-1951.  

E-Print Network [OSTI]

??This study surveys the progression and interaction between anticommunism and religious faith in Oklahoma state and local politics from 1917 to 1951. Employing primary source… (more)

Bolin, Steven Dewayne

2009-01-01T23:59:59.000Z

291

International Baccalaureate Diploma Programs (IBDP) in Oklahoma - A Mixed Method's Study.  

E-Print Network [OSTI]

??As Oklahoma grows in technical markets, the need for science, technology, engineering, and mathematics (STEM) educated individuals will continue to increase. Our focus in aviation… (more)

Hood, Susan J.

2012-01-01T23:59:59.000Z

292

Potential Climate Change Impacts on Wind Resources in Oklahoma: a Focus on Future Energy Output.  

E-Print Network [OSTI]

??The current study focused on the potential climate change effects on wind resources in Oklahoma. This was a quantitative study that involved Global Climate Model… (more)

Dryden, James Mack, Jr.

2011-01-01T23:59:59.000Z

293

EXPLOITATION AND OPTIMIZATION OF RESERVOIR PERFORMANCE IN HUNTON FORMATION, OKLAHOMA  

SciTech Connect (OSTI)

This report presents the work done so far on Hunton Formation in West Carney Field in Lincoln County, Oklahoma. West Carney Field produces oil and gas from the Hunton Formation. The field was developed starting in 1995. Some of the unique characteristics of the field include decreasing water oil ratio over time, decreasing gas-oil ratio at the beginning of production, inability to calculate oil reserves in the field based on log data, and sustained oil rates over long periods of time. To understand the unique characteristics of the field, an integrated evaluation was undertaken. Production data from the field were meticulously collected, and over forty wells were cored and logged to better understand the petrophysical and engineering characteristics. Based on the work done in this budget period so far, some of the preliminary conclusions can be listed as follows: (1) Based on PVT analysis, the field most likely contains volatile oil with bubble point close to initial reservoir pressure of 1,900 psia. (2) The initial oil in place, which is contact with existing wells, can be determined by newly developed material balance technique. The oil in place, which is in communication, is significantly less than determined by volumetric analysis, indicating heterogeneous nature of the reservoir. The oil in place, determined by material balance, is greater than determined by decline curve analysis. This difference may lead to additional locations for in fill wells. (3) The core and log evaluation indicates that the intermediate pores (porosity between 2 and 6 %) are very important in determining production potential of the reservoir. These intermediate size pores contain high oil saturation. (4) The limestone part of the reservoir, although low in porosity (mostly less than 6 %) is much more prolific in terms of oil production than the dolomite portion of the reservoir. The reason for this difference is the higher oil saturation in low porosity region. As the average porosity increases, the remaining oil saturation decreases. This is evident from log and core analysis. (5) Using a compositional simulator, we are able to reproduce the important reservoir characteristics by assuming a two layer model. One layer is high permeability region containing water and the other layer is low permeability region containing mostly oil. The results are further verified by using a dual porosity model. Assuming that most of the volatile oil is contained in the matrix and the water is contained in the fractures, we are able to reproduce important reservoir performance characteristics. (6) Evaluation of secondary mechanisms indicates that CO{sub 2} flooding is potentially a viable option if CO{sub 2} is available at reasonable price. We have conducted detailed simulation studies to verify the effectiveness of CO{sub 2} huff-n-puff process. We are in the process of conducting additional lab tests to verify the efficacy of the same displacement. (7) Another possibility of improving the oil recovery is to inject surfactants to change the near well bore wettability of the rock from oil wet to water wet. By changing the wettability, we may be able to retard the water flow and hence improve the oil recovery as a percentage of total fluid produced. If surfactant is reasonably priced, other possibility is also to use huff-n-puff process using surfactants. Laboratory experiments are promising, and additional investigation continues. (8) Preliminary economic evaluation indicates that vertical wells outperform horizontal wells. Future work in the project would include: (1) Build multi-well numerical model to reproduce overall reservoir performance rather than individual well performance. Special emphasis will be placed on hydrodynamic connectivity between wells. (2) Collect data from adjacent Hunton reservoirs to validate our understanding of what makes it a productive reservoir. (3) Develop statistical methods to rank various reservoirs in Hunton formation. This will allow us to evaluate other Hunton formations based on old well logs, and determine, apriori, if

Mohan Kelkar

2003-10-01T23:59:59.000Z

294

SOIL SURVEY OF PAYNE COUNTY, OKLAHOMA OSURR Section 5  

E-Print Network [OSTI]

21 76 11 25 61 49 2 11 65 25 74 25 25 25 6125 65 25 40 11 W 26 25 32 W 54 3 11 65 11 74 11 74 SOIL Soil Survey 1.1 National Cooperative Soil Survey 5/7/2007 Page 1 of 3 #12;MAP INFORMATION SOIL SURVEY OF PAYNE COUNTY, OKLAHOMA OSURR Section 5 Source of Map: Natural Resources Conservation Service Web Soil

Ghajar, Afshin J.

295

Echinoderm Faunas from the Bromide Formation (Middle Ordovician) of Oklahoma  

E-Print Network [OSTI]

the University Research Institute, University of Texas at Austin, for the spring semester of 1978, and by the University of Texas Geology Foundation, which paid field expenses during the late summer of 1976 and expenses for several other field trips. Gloria... Sprinkle assisted on several of these field trips. The Oklahoma Geological Survey, under the di- rection of the late Carl C. Branson, supported Fay during field and laboratory work in 1965-1967 and purchased many of the specimens found by Graffham...

1982-01-01T23:59:59.000Z

296

Cenozoic evidence of displacements along the Meers Fault, southwestern Oklahoma  

E-Print Network [OSTI]

area relative to the disposition of counties and county seats in southwestern Oklahoma . . . . . . . . 15 A) Schematic diagram of the Alluvial Fan Site. B) Stratigraphic section of the Holocene sediment exposed at the Alluvial Fan Site . 30..., 566 square kilometers (3, 308 square miles) contains elements of the eastern W1chita Mountains, the Slick Hills, many limestone outliers 1n red bed plains, and some sandstone cuestas near Gotebo. Major cultural elements w1thin the study area...

Kientop, Gregory Allen

1988-01-01T23:59:59.000Z

297

Woodward County, Oklahoma: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperative JumpWilliamsonWoodson County, Kansas: EnergyWoodward County, Oklahoma:

298

City of Kingfisher, Oklahoma (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDITOhio (UtilityHolyrood, Kansas (UtilityKingfisher, Oklahoma (Utility Company)

299

City of Marlow, Oklahoma (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDITOhio (UtilityHolyrood, KansasLampasas,LuverneMaquoketa,Marlow, Oklahoma

300

City of Miami, Oklahoma (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDITOhio (UtilityHolyrood,Martinsville, VirginiaMiami Place: Oklahoma References:

Note: This page contains sample records for the topic "oklahoma nat gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Field trip guide to selected outcrops, Arbuckle Mountains, Oklahoma  

SciTech Connect (OSTI)

The Arbuckle Mountains, named for Brigadier General Matthew Arbuckle, are located in south-central Oklahoma. The formations that comprise the Arbuckle Mountains have been extensively studied for hydrocarbon source rock and reservoir rock characteristics that can be applied to the subsurface in the adjacent Anadarko and Ardmore basins. Numerous reports and guidebooks have been written concerning the Arbuckle Mountains. A few important general publications are provided in the list of selected references. The purpose of this handout is to provide general information on the geology of the Arbuckle Mountains and specific information on the four field trip stops, adapted from the literature. The four stops were at: (1) Sooner Rock and Sand Quarry; (2) Woodford Shale; (3) Hunton Anticline and Hunton Quarry; and (4) Tar Sands of Sulfur Area. As part of this report, two papers are included for more detail: Paleomagnetic dating of basinal fluid migration, base-metal mineralization, and hydrocarbon maturation in the Arbuckle Mountains, Oklahoma and Laminated black shale-bedded chert cyclicity in the Woodford Formation, southern Oklahoma.

NONE

1991-11-17T23:59:59.000Z

302

Selenium in Oklahoma ground water and soil. Quarterly report No. 6  

SciTech Connect (OSTI)

Selenium with a consumption of 2 liters per day (5). The objectives of this study are: (1) to determine the concentrations of Se in Oklahoma ground water and soil samples. (2) to map the geographical distribution of Se species in Oklahoma. (3) to relate groundwater depth, pH and geology with concentration of Se.

Atalay, A.; Vir Maggon, D.

1991-03-30T23:59:59.000Z

303

Fire History in the Cherokee Nation of Oklahoma Michael C. Stambaugh & Richard P. Guyette &  

E-Print Network [OSTI]

Fire History in the Cherokee Nation of Oklahoma Michael C. Stambaugh & Richard P. Guyette & Joseph history in northeastern Oklahoma on lands once occupied by the Cherokee Nation. A fire event chronology American groups includ- ing Cherokee was significantly correlated (r=0.84) with the number of fires per

Stambaugh, Michael C

304

Division of Agricultural Sciences and Natural Resources Oklahoma State University Case Medlin  

E-Print Network [OSTI]

feeding on bull thistle. Muskthistle(Carduusnutans)(Figure2)wasfirstdocumented in Payne County, Oklahoma from the west and is known to exist in several Oklahoma counties, including Roger Mills, Custer, Love) infestations were reported in McClain and Grady counties about 25 years ago. However, those infestations were

Balasundaram, Balabhaskar "Baski"

305

EXPLOITATION AND OPTIMIZATION OF RESERVOIR PERFORMANCE IN HUNTON FORMATION, OKLAHOMA  

SciTech Connect (OSTI)

The main objectives of the proposed study are as follows: (1) To understand and evaluate an unusual primary oil production mechanism which results in decreasing (retrograde) oil cut (ROC) behavior as reservoir pressure declines. (2) To improve calculations of initial oil in place so as to determine the economic feasibility of completing and producing a well. (3) To optimize the location of new wells based on understanding of geological and petrophysical properties heterogeneities. (4) To evaluate various secondary recovery techniques for oil reservoirs producing from fractured formations. (5) To enhance the productivity of producing wells by using new completion techniques. These objectives are important for optimizing field performance from West Carney Field located in Lincoln County, Oklahoma. The field, which was discovered in 1980, produces from Hunton Formation in a shallow-shelf carbonate reservoir. The early development in the field was sporadic. Many of the initial wells were abandoned due to high water production and constraints in surface facilities for disposing excess produced water. The field development began in earnest in 1995 by Altex Resources. They had recognized that production from this field was only possible if large volumes of water can be disposed. Being able to dispose large amounts of water, Altex aggressively drilled several producers. With few exceptions, all these wells exhibited similar characteristics. The initial production indicated trace amount of oil and gas with mostly water as dominant phase. As the reservoir was depleted, the oil cut eventually improved, making the overall production feasible. The decreasing oil cut (ROC) behavior has not been well understood. However, the field has been subjected to intense drilling activity because of prior success of Altex Resources. In this work, we will investigate the primary production mechanism by conducting several core flood experiments. After collecting cores from representative wells, we will study the wettability of the rock and simulate the depletion behavior by mimicking such behavior under controlled lab conditions. The overall project goal would be to validate our hypothesis and to determine the best method to exploit reservoirs exhibiting ROC behavior. To that end, we have completed the Budget Period I and have fulfilled many of the objectives. We have developed a viable model to explain the reservoir mechanism and have been able to develop a correlation between core and log data so that we can extend our analysis to other, yet unexploited, regions. In Budget Period II, we will continue to drill several additional, geologically targeted wells. Depending on the depositional system, these wells can be either vertical or horizontal wells. We will closely examine the secondary recovery techniques to improve the ultimate recovery from this field. In the mean time, we will continue to refine our geological and petrophysical model so that we can extend our approach to other adjacent fields. In the Budget Period III, we will monitor the field performance and revise and refine our models to further optimize the performance.

Mohan Kelkar

2003-01-01T23:59:59.000Z

306

Geologic reservoir characterization of Humphreys sandstone (Pennsylvanian), east Velma field, Oklahoma  

SciTech Connect (OSTI)

East Velma field is located in the Ardmore basin, Stephens County, Oklahoma, on the north flank of a truncated anticline with dips that range from 30/degrees/-60/degrees/. The discovery well of the Humphreys sand unit was drilled in April 1951 and an original oil in place of 32.7 million bbl was calculated. Primary depletion was by solution gas drive with gas reinjection and gravity drainage which was enhanced by the steep structural dip of the field. A waterflood that was initiated in 1983 and a proposed CO/sub 2/ miscible displacement program to further enhance field recovery prompted the need to develop a detailed geologic description of the reservoir. Core studies indicate that the Humphreys sandstone was deposited in a shallow marine, tidally dominated environment. Subfacies include sand-rich tidal flat and tidal channel deposits. The unit is primarily composed of very fine to fine-grained, moderately to well-sorted quartzarenites. Dominant sedimentary structures include bidirectional and unidirectional current ripples, cross-laminations, common slump structures, and zones abundant and scattered burrows.

McGowen, M.K.

1988-02-01T23:59:59.000Z

307

Oklahoma Natural Gas Gross Withdrawals from Gas Wells (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996) inDecadeDecadeFeet) Year Jan Feb Mar Apr May

308

Oklahoma Natural Gas Gross Withdrawals from Gas Wells (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996) inDecadeDecadeFeet) Year Jan Feb Mar Apr MayYear

309

Oklahoma Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996) inDecadeDecadeFeet) Year Jan Feb Mar AprYear

310

Oklahoma Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996) inDecadeDecadeFeet) Year Jan Feb Mar AprYearYear

311

Oklahoma Natural Gas in Underground Storage (Base Gas) (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996) inDecadeDecadeFeet) YearTotalDecadeVented andBase

312

Oklahoma Natural Gas in Underground Storage - Change in Working Gas from  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996) inDecadeDecadeFeet) YearTotalDecadeVentedSame Month

313

Oklahoma Natural Gas in Underground Storage - Change in Working Gas from  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996) inDecadeDecadeFeet) YearTotalDecadeVentedSame

314

Performance of DOE's micellar-polymer project in northwest Oklahoma  

SciTech Connect (OSTI)

DOE's Bartlesville Energy Technology Center has completed a micellar-polymer flood in the Delaware Childers Field in NE Oklahoma. Micellar-polymer flooding uses a combination of low interfacial tension and mobility control in producing reservoir that usually has been successfully waterflood. A test site was selected after consideration of other possible sites reasonably close to BETC. The selected micellar-polymer fluids were injected into a central injection well, displaced through the formation, and produced from four surrounding production wells. Eight water injection wells surrounding the test pattern were used to afford an effective outer boundary for fluid containment. 9 refs.

Thomas, R.D.; Spence, K.L.; Burtch, F.W.; Lorenz, P.B.

1982-01-01T23:59:59.000Z

315

Noble County, Oklahoma: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoading map...(Utility Company) Jump to:City) JumpOpenJV Jump to:Billings, Oklahoma Marland,

316

Logan County, Oklahoma: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey,(Monaster AndLittletown, Arizona:Lockland, Ohio: It isCashion, Oklahoma

317

Craig County, Oklahoma: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:EnergyWisconsin:2003) |Cordova39. It is classified asCowleyCpOklahoma. Its FIPS

318

Oklahoma Tribe to Install Solar Roof | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F SSales LLC OrderEfficiencyOceanOctober0High School OilOklahoma

319

Greer County, Oklahoma: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio:Greer County is a county in Oklahoma. Its FIPS County Code is 055. It

320

Haskell County, Oklahoma: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio:Greer County is8584°,HardyIowaHaskell County is a county in Oklahoma.

Note: This page contains sample records for the topic "oklahoma nat gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Oklahoma Recovery Act State Memo | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergyDepartment ofOil's Impact on Our National Security Oil's ImpactOklahoma

322

Lower Permian algal stromatolites from Kansas and Oklahoma  

E-Print Network [OSTI]

be attributed in part to effects of leaching. TABLE 1—Phosphate Content of Various Well- ington Formation Algae from Kansas and Oklahoma [Data by J. M. LAstmoNs] CALCAREOUS ALGAL SAMPLES PERCENT OF PO4 (by weight) Loc. I, bed 4 0.358 Loc. 1, bed 8 0.218 Loc... or absent. The basic data from 15 slides condensed in Table 3 should give a good idea of the micro- structure. Actually, in most stromatolites pre- viously studied by me, the slides show very little except the laminae. This Wellington collection shows more...

Tasch, P.; Kidson, E.; Johnson, J. Harlan

1969-10-01T23:59:59.000Z

323

Bryan County, Oklahoma: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin: EnergyBoston Areais a village inBrownfieldBrussels, Belgium: EnergyOklahoma.

324

Osage County, Oklahoma: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth'sOklahoma/GeothermalOrange County is aOrmesa I Geothermal Facility JumpOsage

325

Pottawatomie County, Oklahoma: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth'sOklahoma/GeothermalOrangePeru:Job Corp JumpWind Turbine

326

Johnston County, Oklahoma: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429 Throttled (botOpen6 Climate ZoneJerome isJohnson County,County, Oklahoma:

327

Town of Ryan, Oklahoma (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop, IncTipmont RuralMiddletown Place:Information RedRyan, Oklahoma

328

Tri-County Electric Coop, Inc (Oklahoma) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop, IncTipmontInformationKentucky) Jump to:Tri-CountyOklahoma)

329

Cherokee County, Oklahoma: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:Energy Information onChemithon Enterprises IncElec Coop AssnOklahoma. Its

330

City of Blackwell, Oklahoma (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:Energy InformationLake SouthChromaIowa (Utility Place: Oklahoma References:

331

City of Waynoka, Oklahoma (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:Energy NebraskaStanhope, Iowa (UtilityWaseca, MinnesotaWaynoka, Oklahoma

332

Tillman County, Oklahoma: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty LtdSteen,Ltd Jump JumpAl., 1978)Tillman County, Oklahoma: Energy Resources Jump

333

Oklahoma Regions | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 IndustrialIsadoreConnecticut RegionsScienceHampshireWallet CardsOklahoma Regions

334

Empire District Electric Co (Oklahoma) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump37. It is classifiedProject) |Emeryville, California:Emmet,EmmonsOklahoma)

335

Submarine-fan sedimentation, Ouachita Mountains, Arkansas and Oklahoma  

SciTech Connect (OSTI)

More than 10,000 m (32,808 ft) of interbedded sandstones and shales comprise the Upper Mississippian and Lower Pennsylvanian flysch succession (Stanley, Jackfork, Johns Valley, Atoka) in the Ouachita Mountains of Arkansas and Oklahoma. Deposited primarily by turbidity current and hemipelagic processes in bathyal and abyssal water depths, these strata formed major submarine-fan complexes that prograded in a westward direction along the axis of an elongate remnant ocean basin that was associated with the collision and suturing of the North American and African-South American plates. A longitudinal fan system is visualized as the depositional framework for these strata, which were deposited in a setting analogous to the modern Bengal fan of the Indian Ocean. Facies analysis of the Jackfork formation indicates that inner fan deposits are present in the vicinity of Little Rock, Arkansas; middle fan channel and interchannel deposits occur at DeGray Dam and Friendship, Arkansas; and outer fan depositional-lobe deposits are present in southeastern Oklahoma. Boulder-bearing units (olistostromes), many with exotic clasts, were shed laterally into the Ouachita basin. They occur throughout the flysch succession and in all fan environments (i.e., inner, middle, and outer). This relationship may serve as a useful criterion for recognizing analogous longitudinal fan systems in the rock record.

Moiola, R.J.; Shanmugam, G.

1984-09-01T23:59:59.000Z

336

Nat Fisch Wins Europe's AlfvĂ©n Prize | Princeton Plasma Physics Lab  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | NationalJohn F.Demonstrate Promising Anti-icing101210409092Nat

337

Nat Fisch Wins Europe's AlfvĂ©n Prize | Princeton Plasma Physics Lab  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Regionat Cornell Batteries &NST Division Addressing grandNat Fisch

338

Activation cross-sections of deuteron induced reactions on $^{nat}$Sm up to 50 MeV  

E-Print Network [OSTI]

Activation cross-sections for deuteron induced reactions on Sm are presented for the first time for $^{nat}$Sm(d,xn)$^{155,154,152m2,152m1,152g,150m,150g,149,148,147,146}$Eu, $^{nat}$Sm(d,x)$^{153,145}$Sm and $^{nat}$Sm(d,x)$^{151,150,149,145,144,143}$Pm up to 50 MeV. The cross-sections were measured by the stacked-foil irradiation technique and high resolution $\\gamma$-ray spectrometry. The results were compared with results of nuclear reaction codes ALICE-D, EMPIRE-D and TALYS (from TENDL libraries). Integral yields of the products were calculated from the excitation functions.

F. Tárkányi; A. Hermanne; S. Takács; F. Ditrói; J. Csikai; A. V. Ignatyuk

2014-11-26T23:59:59.000Z

339

Cost-Effectiveness of ASHRAE Standard 90.1-2010 for the State of Oklahoma  

SciTech Connect (OSTI)

Moving to the ANSI/ASHRAE/IES Standard 90.1-2010 version from the Base Code (90.1-2007) is cost-effective for all building types and climate zones in the State of Oklahoma.

Hart, Philip R.; Rosenberg, Michael I.; Xie, YuLong; Zhang, Jian; Richman, Eric E.; Elliott, Douglas B.; Loper, Susan A.; Myer, Michael

2013-11-01T23:59:59.000Z

340

Rails-to-trails Conversions in Oklahoma: Politics, Practices and Future.  

E-Print Network [OSTI]

??This study was designed to review the historical issues associated with the State of Oklahoma and the development of a long distance rail-to-trail conversion during… (more)

Cowan, Jerel Lee

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "oklahoma nat gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

The Agricultural Benefits of Salinity Control on the Red River of Texas and Oklahoma  

E-Print Network [OSTI]

Salinity of the waters from the Red River and its major tributaries has virtually eliminated its use for irrigation of agricultural crops in Texas and Oklahoma. A chloride control project has been proposed whereby the source salt waters...

Laughlin, D. H.; Lacewell, R. D.; Moore, D. S.

342

Adjustments Due to a Declining Groundwater Supply: High Plains of Northern Texas and Western Oklahoma  

E-Print Network [OSTI]

The region north of the Canadian River in Texas and including the three western counties of Oklahoma have been rapidly developing the groundwater resource since the mid 1960's. This region, hereafter referred to as the Northern High Plains...

Lacewell, R D.; Jones, L. L.; Osborn, J. E.

343

REGULAR MEETING OF THE FACULTY SENATE The University of Oklahoma (Norman campus)  

E-Print Network [OSTI]

REGULAR MEETING OF THE FACULTY SENATE The University of Oklahoma (Norman campus) May 5, 2014, 3 Baker, Donald R. Social Work 8/16/2013 1988 Brule, William Steve Dance 8/16/2013 2004 Cherry Jr., Andrew

Oklahoma, University of

344

Oklahoma Orchestrates Energy Efficiency Solutions: Weatherization Assistance Close-Up Fact Sheet  

SciTech Connect (OSTI)

Oklahoma demonstrates its commitment to technology and efficiency through the Weatherization Program. Weatherization uses advanced technologies and techniques to reduce energy costs for low-income families by increasing the energy efficiency of their homes.

D& R International

2001-10-10T23:59:59.000Z

345

Variational optimization analysis of the 8 June 1974 severe storms in Oklahoma  

E-Print Network [OSTI]

VARIATIONAL OPTIMIZATION ANALYSIS OF THE 8 Ji3NE 1974 SEVERE STORMS IN OKLAHOMA A THESIS hy CHARLIE A. LILES Suhmitted to the Graduate College of Texas ASM Hniversity pa -tie' fulfillment of the requiremert for the degree of MASTER... OF SCIENCE August 1976 Major Subjeot; Meteorology VARIATIONAL OPTIMIZATION ANALYSIS OF THE 8 JUNE 1974 SEVERE STORMS IN OKLAHOMA A THESIS by CHARLIE A. LILES Approved as to style and content by: (Chairman of Committee) L (Head of Depar ent...

Liles, Charlie A

2012-06-07T23:59:59.000Z

346

A study of the relationship between certain moisture parameters and severe convective storms in central Oklahoma  

E-Print Network [OSTI]

A STUDY OF THE RELATIONSHIP BETWEEN CERTAIN MOISTURE PARAMETERS AND SEVERE CONVECTIVE STORMS IN CENTRAL OKLAHOMA A Thesis by CARVEN ALLEN SCOTT Submitted to the Graduate College of Texas ASM University in partial fulfillment... of the requirement for the degree of MASTER OF SCIENCE May 1977 Major Subject: Meteorology A STUDY OF THE RELATIONSHIP BETWEEN CERTAIN MOISTURE PARAMETERS AND SEVERE CONVECTIVE STORMS IN CENTRAL OKLAHOMA A Thesis by CARVEN ALLEN SCOTT Approved as to style...

Scott, Carven Allen

2012-06-07T23:59:59.000Z

347

Costs and Economies of Size in Texas-Oklahoma Cattle Feedlot Operations.  

E-Print Network [OSTI]

Costs and Economies of Size in I Texas-Oklahoma Cattle Feedlot Operat ions B-1083 May 1969 TEXAS A&M UNIVERSITY Texas Agricultural Experiment Station H. 0. Kunkel, Acting Director, College Station, Texas In Cooperation with the U. S... Depreciation Costs and Classification ! of Feedlot Labor ................................................... 31 . Appendix C: Derivation of Cost Curves .................... )I I Highlights Southern Plains (Texas and Oklahoma) feedlot One of the major...

Dietrich, Raymond A.

1969-01-01T23:59:59.000Z

348

Small Wind Electric Systems: An Oklahoma Consumer's Guide  

SciTech Connect (OSTI)

Small Wind Electric Systems: An Oklahoma Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and economics. Topics include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

Not Available

2007-08-01T23:59:59.000Z

349

Selective gel treatments in the Countyline Unit, Oklahoma  

SciTech Connect (OSTI)

A waterflood optimization work program was conducted in a ``Type`` fault block in the Countyline Unit, Sho-Vel-Tum Field, Oklahoma. Selective gels were used to block random thief zones in the Upper Fusulinia Formation. There were eleven workovers, selective gel treatments in five injection wells, and a shift of water injection to downdip wells. Results show that the program has been successful in increasing production and ultimate recovery with significant improvements in the water injection profiles. in addition, a new gel injection procedure has been discovered while carrying out the project. The procedure involves pulsing the reservoir to increase the amount of gel that can be injected into the matrix (while maintaining the injection pressure below the formation fracture pressure), thereby improving the gel`s blocking capability.

Jasti, J.K.; Zambrano, L.G.

1995-12-31T23:59:59.000Z

350

From Obscurity to Prominence: a Case Study of the First Woman President Hired by a Board of Regents in Oklahoma President Emerita of Southwestern Oklahoma State University Dr. Joe A.  

E-Print Network [OSTI]

??Since the establishment of the public higher education system in the state of Oklahoma in 1890, there have been five women appointed permanently as president… (more)

Maerten, Eva Marie Vasquez

2009-01-01T23:59:59.000Z

351

Study of the Distribution of News Releases Produced by the Oklahoma Food and Agricultural Products Research and Technology Center.  

E-Print Network [OSTI]

??The purpose of this study was to evaluate how Oklahoma newspapers use the Food and Agricultural Products Center news releases. A descriptive analysis approach was… (more)

Jones, Amanda Faith

2005-01-01T23:59:59.000Z

352

History of development and depositional environment and upper Cherokee Prue Sand, Custer and Roger Mills counties, Oklahoma  

SciTech Connect (OSTI)

In western Oklahoma the uppermost sand member of the Cherokee Group, the True sand, was first drilled and found productive in two discoveries, completed in 1980, in west-central Custer County and in central Roger Mills County, Oklahoma. For 1 1/2 to 2 years these two discoveries, some 18 mi (29 km) apart, were thought to be stratigraphic equivalents of two separate sand bodies occurring parallel to the classic northwest-southeast-trending systems of the Anadarko basin. At present, some 40 productive wells will ultimately produce more than 100 bcf of gas and 3 million bbl of condensate from an average depth of 11,500 ft (3500 m). Sand porosities range from 3 to 18% with most producing wells having porosities in the 12 to 15% range. Because Prue sand is slightly overpressured (a pressure gradient of .53 psi/foot), the reserves are generally better than normal-pressured wells at this depth. The sand body is over 40 mi (64 km) in length, 1 to 1.5 mi (1.6 to 2.4 km) wide, and 60 ft (18 m) thick. Study of the core shows the interval to grade from a medium to fine-grained sand, highly laminated and cross-bedded with black shale, to a slightly coarser grained nonstructured interval and back into a highly laminated cross-bedded sandy black shale interval. The interval is topped by a 10 ft (3 m) thick black shale layer that is a predominant bed throughout the whole area. These conclusions have implications that may assist in the exploration of other Pennsylvanian sands in this area.

Baumann, D.K.; Peterson, M.L.; Hunter, L.W.

1983-03-01T23:59:59.000Z

353

Published in the Proc. of the 11th Nat. Conf. on Machines and Mechanisms, Dec. 18-19, IIT Delhi,  

E-Print Network [OSTI]

machine by the name "Carpet Scrapping Machine" that can perform the same job as the human washer scrapping machine is realized which is driven by an electric motor. For easy movement of the machinePublished in the Proc. of the 11th Nat. Conf. on Machines and Mechanisms, Dec. 18-19, IIT Delhi, pp

Saha, Subir Kumar

354

Oklahoma Cooperative Extension Service Division of Agricultural Sciences and Natural Resources Robert M. Kerr Food & Agricultural Products Center  

E-Print Network [OSTI]

FAPC-144 Oklahoma Cooperative Extension Service · Division of Agricultural Sciences and Natural Resources FAPC-165 Robert M. Kerr Food & Agricultural Products Center FOOD TECHNOLOGY FACT SHEET 405-744-6071 · www.fapc.bizAdding Value to Oklahoma f a p c Measurement Equipment for Food Product Development

Balasundaram, Balabhaskar "Baski"

355

Enhanced Oil Recovery with Downhole Vibration Stimulation in Osage County Oklahoma  

SciTech Connect (OSTI)

The objective of this project is to demonstrate the impact of downhole vibration stimulation on oil production rates in a mature waterflood field. Oil & Gas Consultants International, Inc. (OGCI) will manage the project in close cooperation with the Osage Tribe as the tests will be conducted in Osage County, Oklahoma, the mineral estate of the Osage Tribe. The field is owned and operated by Calumet Oil Company. Phillips Petroleum Company will contribute their proprietary vibration core analysis of cores recovered from the pilot test area. To achieve the project objectives, the work has been divided into nine tasks, some are concurrent, while other tasks rely on completion of previous steps. The operator, Calumet Oil Company operates several field in Osage County Oklahoma. The North Burbank Unit will be the site of the test. The team will then determine where within the field to optimally locate the vibration test well. With the location determined, the test well will be drilled, cored, logged and 7-inch production casing run and cemented. In a parallel effort, OGCI will be designing, building, and testing a new version of the downhole vibration tool based on their patented and field proven whirling orbital vibrator. With the field test tool built to run in 7-inch casing. Reliability testing of the downhole tool and surface power source will be conducted in nearby field operated by Calumet Oil Company. After the core is recovered, Phillips Petroleum Company will be conducting laboratory tests utilizing their proprietary sonic core apparatus to determine fluid flow response to a range of vibration frequencies. These results, in turn, will allow final adjustments to the frequency generation mechanisms of the downhole vibration tool. One or more offset wells, near to the vibration test well, will be equipped with downhole geophones and or hydro-phones to determine the strength of signal and if the producing formation has a characteristic resonant frequency response. Surface geophones will also be set out and arranged to pick up the signal generated by the downhole vibration tool. The downhole vibrator will be installed in the test well. Monitoring the production and injection for the pilot test area will continue. As the frequency of the downhole tool is changed, the recording of seismic signals, both on the surface and downhole, will also be conducted. The results of the data collection will be a matrix of varying vibration stimulation conditions corresponding to changes in production fluid rates and seismic responses. The report on the results of the downhole vibration stimulation will be prepared and delivered using several venues. Technical papers will be submitted to the Society of Petroleum Engineers. Workshops are planned to be held for operators in Osage County and surrounding areas. A dedicated technical session on vibration stimulation may be offered at the 2002 SPE/DOE/IOR Conference, bringing together the world's experts in this emerging technology. The final task will be to close out the project.

J. Ford Brett; Robert V. Westermark

2001-03-31T23:59:59.000Z

356

Summary of proceedings: Oklahoma and Texas wind energy forum, April 2-3, 1981  

SciTech Connect (OSTI)

The Wind Energy Forum for Oklahoma and Texas was held at the Amarillo Quality Inn in Amarillo, Texas on April 2-3, 1981. Its purpose was to bring together the diverse groups involved in wind energy development in the Oklahoma and Texas region to explore the future commercial potential and current barriers to achieving this potential. Major topics of discussion included utility interconnection of wind machines and the buy-back rate for excess power, wind system reliability and maintenance concerns, machine performance standards, and state governmental incentives. A short summary of each presentation is included.

Nelson, S.C.; Ball, D.E.

1981-06-01T23:59:59.000Z

357

Rhabdomesid bryozoans of the Wreford Megacyclothem (Wolfcampian, Permian) of Nebraska, Kansas, and Oklahoma  

E-Print Network [OSTI]

in the Wreford of Kansas, I propose that these Oklahoma sand- stones be recognized as a distinct rock type, herein termed a "tan quartzose sandstone," within the Wreford Megacyclothem. Massive to thin-bedded, weathering dark brown, this rock type when fresh... in the Wreford of Kansas, I propose that these Oklahoma sand- stones be recognized as a distinct rock type, herein termed a "tan quartzose sandstone," within the Wreford Megacyclothem. Massive to thin-bedded, weathering dark brown, this rock type when fresh...

Newton, G. B.

1971-10-22T23:59:59.000Z

358

Factors Affecting the Relationship between Crude Oil and Natural Gas Prices (released in AEO2010)  

Reports and Publications (EIA)

Over the 1995-2005 period, crude oil prices and U.S. natural gas prices tended to move together, which supported the conclusion that the markets for the two commodities were connected. Figure 26 illustrates the fairly stable ratio over that period between the price of low-sulfur light crude oil at Cushing, Oklahoma, and the price of natural gas at the Henry Hub on an energy-equivalent basis.

2010-01-01T23:59:59.000Z

359

University of Oklahoma Food Services Policy on Food I. Purpose of policy  

E-Print Network [OSTI]

University of Oklahoma Food Services Policy on Food Allergies I. Purpose of policy The purpose offered to students with food allergies through the Department of Housing and Food Services.1 II. To Whom Services; and (2) Food Service employees. III. Policy Definitions Food Allergens ­ Substances that can

Oklahoma, University of

360

Biogeography, ecoregions, and geomorphology affect fish species composition in streams of eastern Oklahoma, USA  

E-Print Network [OSTI]

Biogeography, ecoregions, and geomorphology affect fish species composition in streams of eastern B.V. 2007 Abstract Stream fish assemblages are structured by biogeographical, physical and stream habitat, influenced fish species composition (presence­absence) in eastern Oklahoma, USA relative

Marston, Richard A.

Note: This page contains sample records for the topic "oklahoma nat gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Division of Agricultural Sciences and Natural Resources Oklahoma State University Michael P. Masser  

E-Print Network [OSTI]

Division of Agricultural Sciences and Natural Resources · Oklahoma State University SRAC-361-fourth to one-third of the total surface area of a pond at one time can minimize the risk of depleting dissolved.Sprayableherbicideformulationscanbeapplied with hand-held or mechanical pressurized sprayers or with a boat bailer. Injecting the chemical near

Balasundaram, Balabhaskar "Baski"

362

Shallow seismic reflection profile of the Meers fault, Comanche County, Oklahoma  

E-Print Network [OSTI]

.J., The Meers fault tectonic activity in south- western Oklahoma, U. S. Nuclear Regulatory Commission, NUREG ICR-4852, 1-25, A1-A25, 1987. McLean, R., and Stearns, D.W., Fault analysis in the Wichita Mountains [Abs. ], AAPG Bull. 67, 511-512, 1983. Miller...

Myers, Paul B.; Miller, Richard D.; Steeples, Don W.

1987-07-01T23:59:59.000Z

363

Division of Agricultural Sciences and Natural Resources Oklahoma State University Frequently Used Forestry  

E-Print Network [OSTI]

Frequently Used Forestry and Natural Resource Terms for Landowners of Oklahoma Champe Green Renewable Resources Extension Specialist Steven Anderson Extension Forestry Specialist Ron Masters Extension Wildlife management zones, and installing waterbars, broad-based dips, etc. See OSU Forestry Extension Report #5, Best

Balasundaram, Balabhaskar "Baski"

364

Impact of Low-Level Jets on the Nocturnal Urban Heat Island Intensity in Oklahoma City  

E-Print Network [OSTI]

the radiation and surface energy balance. As a result, cities are known to affect weather and climateImpact of Low-Level Jets on the Nocturnal Urban Heat Island Intensity in Oklahoma City XIAO-MING HU/Renewable and Sustainable Energy Institute, University of Colorado, Boulder, Colorado FUQING ZHANG Department of Meteorology

Xue, Ming

365

Math 4323: Intro to Abstract Algebra Fall 2014, University of Oklahoma  

E-Print Network [OSTI]

Math 4323: Intro to Abstract Algebra First Exam Fall 2014, University of Oklahoma 09/17/2014 Ralf your work, in a reasonably neat and coherent way, in the space provided. All answers must be justified work will receive no credit; an incorrect answer supported by substantially correct calculations

Schmidt, Ralf

366

Home Processing of Poultry Cooperative Extension Service * Division of Agriculture * Oklahoma State University No. 8400  

E-Print Network [OSTI]

Home Processing of Poultry Cooperative Extension Service * Division of Agriculture * Oklahoma State University No. 8400 Joe G. Berry Extension Poultry Specialist Charles Lester County Extension 4-H Agent. Scalding temperatures should be determined by the type of poultry and the difficulty of picking

Balasundaram, Balabhaskar "Baski"

367

GAS INJECTION/WELL STIMULATION PROJECT  

SciTech Connect (OSTI)

Driver Production proposes to conduct a gas repressurization/well stimulation project on a six well, 80-acre portion of the Dutcher Sand of the East Edna Field, Okmulgee County, Oklahoma. The site has been location of previous successful flue gas injection demonstration but due to changing economic and sales conditions, finds new opportunities to use associated natural gas that is currently being vented to the atmosphere to repressurize the reservoir to produce additional oil. The established infrastructure and known geological conditions should allow quick startup and much lower operating costs than flue gas. Lessons learned from the previous project, the lessons learned form cyclical oil prices and from other operators in the area will be applied. Technology transfer of the lessons learned from both projects could be applied by other small independent operators.

John K. Godwin

2005-12-01T23:59:59.000Z

368

Oil & Gas Tech Center Breaks Ground in Oklahoma | GE Global Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of technical professionals with backgrounds in geosciences, petrophysics, petroleum, chemical, mechanical, and systems engineering. We've hired program leaders who are seasoned...

369

Oklahoma Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996) inDecadeDecade (MillionThousand Cubic Feet)7 5

370

Oklahoma Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996) inDecadeDecade (MillionThousand Cubic Feet)7Cubic

371

Oklahoma Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996) inDecadeDecade (MillionThousandFeet)44 1,043

372

Oklahoma Natural Gas Gross Withdrawals from Oil Wells (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996) inDecadeDecadeFeet) Year Jan Feb Mar Apr

373

Oklahoma Natural Gas Gross Withdrawals from Oil Wells (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996) inDecadeDecadeFeet) Year Jan Feb Mar AprYear Jan

374

Oklahoma Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996) inDecadeDecadeFeet) Year Jan Feband Plant Fuel

375

Oklahoma Natural Gas Price Sold to Electric Power Consumers (Dollars per  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996) inDecadeDecadeFeet) Year Jan (MillionThousand Cubic

376

Oklahoma Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996) inDecadeDecadeFeet) YearTotalDecade Year-0Vehicle

377

Oklahoma Price of Natural Gas Sold to Commercial Consumers (Dollars per  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996) inDecadeDecadeFeet)Decade Year-0 Year-1Thousand

378

Percent of Commercial Natural Gas Deliveries in Oklahoma Represented by the  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996)DecadeYear Jan Feb Mar AprPrice (Percent)

379

Percent of Industrial Natural Gas Deliveries in Oklahoma Represented by the  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996)DecadeYear Jan FebPricePriceby the PricethePrice

380

Percent of Industrial Natural Gas Deliveries in Oklahoma Represented by the  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996)DecadeYear Jan FebPricePriceby the PricethePricePrice

Note: This page contains sample records for the topic "oklahoma nat gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

New Global Oil & Gas Hub in Oklahoma City | GE Global Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions andDataNational Library of1,Department ofNewof NO2: KeyGE Selects

382

Natural Gas Citygate Price in Oklahoma (Dollars per Thousand Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs Year2per6.48 6.18 5.63 4.73 4.88YearFeet) YearYear

383

Oklahoma Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing ReservoirsYear-Month WeekReservesYear Jan

384

Oklahoma Natural Gas Price Sold to Electric Power Consumers (Dollars per  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing ReservoirsYear-Month WeekReservesYear

385

Oklahoma Price of Natural Gas Sold to Commercial Consumers (Dollars per  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing ReservoirsYear-Month WeekReservesYearYear Jan Febper

386

Percent of Commercial Natural Gas Deliveries in Oklahoma Represented by the  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing ReservoirsYear-MonthCoalbedPrice (Percent)PricebyPricePrice

387

Oklahoma Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30 2013 Macroeconomicper Thousand CubicProcessedProved

388

Oklahoma Natural Gas Delivered to Commercial Consumers for the Account of  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30 2013 Macroeconomicper Thousand CubicProcessedProvedFoot) Year Jan

389

Oil & Gas Tech Center Breaks Ground in Oklahoma | GE Global Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - September 2006 The 2002 WholesaleEnergy's 10 Office ofOffshore windResearch Oil10

390

Natural Gas Citygate Price in Oklahoma (Dollars per Thousand Cubic Feet)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet) Year Jan Feb Mar Apr MayYearDecade Year-0 Year-1Decade Year-0

391

Oklahoma Share of Total U.S. Natural Gas Delivered to Consumers  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet) Year JanProduction 4 125Feet)Same Month923,65029

392

Nobloedischia rasnitsyni, a new genus and species of Oedischiidae (Orthoptera) from the Lower Permian Wellington Formation of Oklahoma, USA  

E-Print Network [OSTI]

Nobloedischia rasnitsyni gen. et sp. n. (Oedischiidae) is described from the Lower Permian Wellington Formation of Noble County, Oklahoma. The genus is similar to both Petrelcana (Oedischiidae: Mezenoedischiinae) and Oedischia (Oedischiidae...

Beckemeyer, Roy J.

2011-09-24T23:59:59.000Z

393

Genetic variation in the 16s mitochondrial rDNA gene from Texas and Oklahoma populations of Amblyomma maculatum  

E-Print Network [OSTI]

Single-strand conformation polymorphism was used to detect different haplotypes of the 16S mitochondrial rDNA gene within samples of Gulf Coast ticks, Amblyomma maculatum Koch, collected from Payne County, Oklahoma and Brazos and Refugio Counties...

Lostak, Tracy Karon

2009-05-15T23:59:59.000Z

394

The Impact of Declining Groundwater Supply in the Northern High Plains of Texas and Oklahoma on Expenditures for Community Services  

E-Print Network [OSTI]

Reduced availability of groundwater in the Northern High Plains of Texas and Oklahoma is expected to have repercussions throughout the regional economy due to the reduction in agricultural income. The decline in the economic base is expected to lead...

Williford, G. H.; Beattie, B. R.; Lacewell, R. D.

395

Identification and evaluation of fluvial-dominated deltaic (Class I oil) reservoirs in Oklahoma. Final report, August 1998  

SciTech Connect (OSTI)

The Oklahoma Geological Survey (OGS), the Geo Information Systems department, and the School of Petroleum and Geological Engineering at the University of Oklahoma have engaged in a five-year program to identify and address Oklahoma`s oil recovery opportunities in fluvial-dominated deltaic (FDD) reservoirs. This program included a systematic and comprehensive collection and evaluation of information on all FDD oil reservoirs in Oklahoma and the recovery technologies that have been (or could be) applied to those reservoirs with commercial success. The execution of this project was approached in phases. The first phase began in January, 1993 and consisted of planning, play identification and analysis, data acquisition, database development, and computer systems design. By the middle of 1994, many of these tasks were completed or nearly finished including the identification of all FDD reservoirs in Oklahoma, data collection, and defining play boundaries. By early 1995, a preliminary workshop schedule had been developed for project implementation and technology transfer activities. Later in 1995, the play workshop and publication series was initiated with the Morrow and the Booch plays. Concurrent with the initiation of the workshop series was the opening of a computer user lab that was developed for use by the petroleum industry. Industry response to the facility initially was slow, but after the first year lab usage began to increase and is sustaining. The remaining six play workshops were completed through 1996 and 1997, with the project ending on December 31, 1997.

Banken, M.K.

1998-11-01T23:59:59.000Z

396

An evaluation of known remaining oil resources in the state of Kansas and Oklahoma. Volume 5, Project on Advanced Oil Recovery and the States  

SciTech Connect (OSTI)

The Interstate Oil and Gas Compact Commission (IOGCC) has conducted a series of studies to evaluate the known, remaining oil resource in twenty-three (23) states. The primary objective of the IOGCC`s effort is to examine the potential impact of an aggressive and focused program of research, development, and demonstration (RD&D) and technology transfer on future oil recovery in the United States. As part of a larger effort by the IOGCC, this report focuses on the potential economic benefits of improved oil recovery in the states of Kansas, Illinois and Oklahoma for five other oil producing states and a national report have been separately published by the IOGCC. The analysis presented in this report is based on the databases and models available in the Tertiary Oil Recovery Information System (TORIS). Overall, well abandonments and more stringent environmental regulations could limit economic access to Kansas` known, remaining oil resource. The high risk of near-term abandonment and the significant benefits of future application of improved oil recovery technology, clearly point to a need for more aggressive transfer of currently available technologies to domestic oil producers. Development and application of advanced oil recovery technologies could have even greater benefits to the state and the nation. A collaborative, focused RD&D effort, integrating the resources and expertise of industry, state and local governments, and the Federal government, is clearly warranted. With effective RD&D and a program of aggressive technology transfer to widely disseminate its results, oil production could be maximized. The resulting increase in production rates, employment, operator profits, state and Federal tax revenues, and energy security will benefit both the state of Kansas, Illinois and Oklahoma and the nation as a whole.

Not Available

1994-11-01T23:59:59.000Z

397

Primary and secondary recovery in the Sho-Vel-Tum oilfield, Oklahoma: Topical report  

SciTech Connect (OSTI)

This study was undertaken as part of a comprehensive review of the potential for enhanced oil recovery in Oklahoma. Due to the past production and future potential production from the Sho-Vel-Tum oilfield, the largest producing field in the State of Oklahoma and the eleventh largest in the United States (15), it was subjected to the detailed analyses reported in this document. The original oil in place at Sho-Vel-Tum is estimated in this study to be 3.237 billion barrels of oil. Of this total, 1.235 billion barrels have been produced from the field through 1984 by primary and secondary (waterflood) applications, while reserves are estimated to be an additional 169 million barrels. By subtraction, 1.833 billion barrels still remain as a target for future development, including enhanced oil recovery. 17 refs., 10 figs., 4 tabs.

Johnson, H.R.; Biglarbigi, K.; Schmidt, L.; Ray, R.M.; Kyser, S.C.

1987-10-01T23:59:59.000Z

398

Oklahoma's 3rd congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's HeatMexico:CommunityNorthwestInformationOildale,Gas

399

Oklahoma Wind Energy Center - A | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's HeatMexico:CommunityNorthwestInformationOildale,Gas & Electric CoA

400

Oklahoma Wind Energy Center - B | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's HeatMexico:CommunityNorthwestInformationOildale,Gas & Electric

Note: This page contains sample records for the topic "oklahoma nat gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Oklahoma's 2nd congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's HeatMexico:CommunityNorthwestInformationOildale,Gas &

402

Oklahoma's 4th congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's HeatMexico:CommunityNorthwestInformationOildale,GasInformation

403

The 1991 natural gas vehicle challenge: Developing dedicated natural gas vehicle technology  

SciTech Connect (OSTI)

An engineering research and design competition to develop and demonstrate dedicated natural gas-powered light-duty trucks, the Natural Gas Vehicle (NGV) Challenge, was held June 6--11, 1191, in Oklahoma. Sponsored by the US Department of Energy (DOE), Energy, Mines, and Resources -- Canada (EMR), the Society of Automative Engineers (SAE), and General Motors Corporation (GM), the competition consisted of rigorous vehicle testing of exhaust emissions, fuel economy, performance parameters, and vehicle design. Using Sierra 2500 pickup trucks donated by GM, 24 teams of college and university engineers from the US and Canada participated in the event. A gasoline-powered control testing as a reference vehicle. This paper discusses the results of the event, summarizes the technologies employed, and makes observations on the state of natural gas vehicle technology.

Larsen, R.; Rimkus, W. (Argonne National Lab., IL (United States)); Davies, J. (General Motors of Canada Ltd., Toronto, ON (Canada)); Zammit, M. (AC Rochester, NY (United States)); Patterson, P. (USDOE, Washington, DC (United States))

1992-01-01T23:59:59.000Z

404

The 1991 natural gas vehicle challenge: Developing dedicated natural gas vehicle technology  

SciTech Connect (OSTI)

An engineering research and design competition to develop and demonstrate dedicated natural gas-powered light-duty trucks, the Natural Gas Vehicle (NGV) Challenge, was held June 6--11, 1191, in Oklahoma. Sponsored by the US Department of Energy (DOE), Energy, Mines, and Resources -- Canada (EMR), the Society of Automative Engineers (SAE), and General Motors Corporation (GM), the competition consisted of rigorous vehicle testing of exhaust emissions, fuel economy, performance parameters, and vehicle design. Using Sierra 2500 pickup trucks donated by GM, 24 teams of college and university engineers from the US and Canada participated in the event. A gasoline-powered control testing as a reference vehicle. This paper discusses the results of the event, summarizes the technologies employed, and makes observations on the state of natural gas vehicle technology.

Larsen, R.; Rimkus, W. [Argonne National Lab., IL (United States); Davies, J. [General Motors of Canada Ltd., Toronto, ON (Canada); Zammit, M. [AC Rochester, NY (United States); Patterson, P. [USDOE, Washington, DC (United States)

1992-02-01T23:59:59.000Z

405

iCons 2 Renewable Energy [NatSci 290IH (2) aka i2e] Spring 2013 Syllabus i2e Faculty Guides  

E-Print Network [OSTI]

1 iCons 2 Renewable Energy [NatSci 290IH (2) aka i2e] ­ Spring 2013 Syllabus i2e Faculty Guides Objectives: Students learn to ... in the context of Renewable Energy problems. 1. ... write effectively Trip: Campus Heating and Power (CHP) Thursday Feb 9: Work on Energy Flow Diagram for UMass Amherst

Auerbach, Scott M.

406

Am. MidI. Nat. l:i9:29-3R Bird Flight Characteristics Near Wind Turbines in Minnesota  

E-Print Network [OSTI]

·... Am. MidI. Nat. l:i9:29-3R Bird Flight Characteristics Near Wind Turbines in Minnesota ROBERT C in wind turbine technologies have reduced the cost'! associated with wind power production. and have with wind power development has been bird mortality from collisions with wind turbines (McCrary 1'1 al

407

Identification and evaluation of fluvial-dominated deltaic (Class I oil) reservoirs in Oklahoma. Quarterly technical progress report, July 1--September 30, 1995  

SciTech Connect (OSTI)

The Oklahoma Geological Survey (OGS), the Geo Information Systems department, and the School of Petroleum and Geological Engineering at the University of Oklahoma are engaged in a program to identify and address Oklahoma`s oil recovery opportunities in fluvial-dominated deltaic (FDD) reservoirs. This program includes the systematic and comprehensive collection and evaluation of information on all of Oklahoma`s FDD reservoirs and the recovery technologies that have been (or could be) applied to those reservoirs with commercial success. This data collection and evaluation effort will be the foundation for an aggressive, multifaceted technology transfer program that is designed to support all of Oklahoma`s oil industry, with particular emphasis on smaller companies and independent operators in their attempts to maximize the economic producibility of FDD reservoirs. Specifically, this project will identify all FDD oil reservoirs in the State; group those reservoirs into plays that have similar depositional origins; collect, organize and analyze all available data conduct characterization and simulation studies on selected reservoirs in each play; and implement a technology transfer program targeted to the operators of FDD reservoirs. Activities were focused primarily on technology transfer elements of the project. This included regional play analysis and mapping, geologic field studies, and reservoir modeling for secondary water flood simulations as used in publication folios and workshops. The computer laboratory was fully operational for operator use. Computer systems design and database development activities were ongoing.

Mankin, C.J. [Oklahoma Geological Survey, Norman, OK (United States)] [Oklahoma Geological Survey, Norman, OK (United States); Banken, M.K. [Oklahoma Univ., Norman, OK (United States)] [Oklahoma Univ., Norman, OK (United States)

1995-11-30T23:59:59.000Z

408

EXPLOITATION AND OPTIMIZATION OF RESERVOIR PERFORMANCE IN HUNTON FORMATION, OKLAHOMA  

SciTech Connect (OSTI)

West Carney Field produces from Hunton Formation. All the wells produce oil, water and gas. The main objective of this study is to understand the unique behavior observed in the field. This behavior includes: (1) Decrease in WOR over time; (2) Decrease in GOR at initial stages; (3) High decline rates of oil and gas; and (4) strong hydrodynamic connectivity between wells. This report specifically addresses two issues relevant to our understanding of the West Carney reservoir. By using core and log data as well as fluorescence information, we demonstrate that our hypothesis of how the reservoir is formed is consistent with these observations. Namely, oil migrated in water wet reservoir, over time, oil changed the wettability of some part of the reservoir, oil eventually leaked to upper formations prompting re-introduction of water into reservoir. Because of change in wettability, different pore size distributions responded differently to water influx. This hypothesis is consistent with fluorescence and porosity data, as we explain it in this quarterly report. The second issue deals with how to best calculate connected oil volume in the reservoir. The log data does not necessarily provide us with relevant information regarding oil in place. However, we have developed a new material balance technique to calculate the connected oil volume based on observed pressure and production data. By using the technique to four different fields producing from Hunton formation, we demonstrate that the technique can be successfully applied to calculate the connected oil in place.

Mohan Kelkar

2003-04-01T23:59:59.000Z

409

Oklahoma Energy and Cost Savings for New Single- and Multifamily Homes: 2012 IECC as Compared to the 2009 IRC  

SciTech Connect (OSTI)

The 2012 International Energy Conservation Code (IECC) yields positive benefits for Oklahoma homeowners. Moving to the 2012 IECC from Chapter 11 of the 2009 International Residential Code (IRC) is cost effective over a 30-year life cycle. On average, Oklahoma homeowners will save $5,786 with the 2012 IECC. After accounting for upfront costs and additional costs financed in the mortgage, homeowners should see net positive cash flows (i.e., cumulative savings exceeding cumulative cash outlays) in 1 year for the 2012 IECC. Average annual energy savings are $408 for the 2012 IECC.

Lucas, Robert G.; Taylor, Zachary T.; Mendon, Vrushali V.; Goel, Supriya

2012-06-15T23:59:59.000Z

410

Effects of the declining groundwater supply in the northern high plains of Oklahoma and Texas on community service expenditures  

E-Print Network [OSTI]

EFFECTS OF THE DECLINING GROUNDWATER SUPPLY IN THE NORTHERN HIGH PLAINS OF OKLAHOMA AND TEXAS ON COMMUNITY SERVICE EXPENDITURES A Thesis by GEORGE HERBERT WILLIFORD III II, Submi. tted to the Graduate College of Texas A&M University... in Partial fulfillment of the requirement for the degree of MASTER OF SCIENCE liay 1976 Major Sub j ec t: Ag r1 cu1tura1 Economi cs EFFECTS OF THE DECLINING GROUNDWATER SUPPLY IN THE NORTHERN HIGH PLAINS OF OKLAHOMA AND TEXAS ON COMMUNITY SERVICE...

Williford, George Herbert

2012-06-07T23:59:59.000Z

411

The use and tenure of land in Oklahoma held primarily for its mineral potential  

E-Print Network [OSTI]

and Undeveloped Subsurface Rights on the Agricultural Economy of Oklahoma?. One of the specific objectives of that project, and the part examined here, was to "study the impact of speculative holding of land for oil development on land use and tenure..., Conservation Measures on Rental Farms . * . . 4 7 11. Type of Tenure on Sample Tracts . . . . . 5 5 12* Type and Length of Lease on Sample Tracts . . . 5 8 13* Rental Payment on Sample Tracts . . . . . 6 0 14. Tenant*s Opinion of His Lease on Sample Tract...

Parcher, L. A.

1955-01-01T23:59:59.000Z

412

Enhanced Oil Recovery with Downhole Vibrations Stimulation in Osage County, Oklahoma  

SciTech Connect (OSTI)

This Technical Quarterly Report is for the reporting period July 1, 2001 to September 30, 2001. The report provides details of the work done on the project entitled ''Enhanced Oil Recovery with Downhole Vibration Stimulation in Osage County Oklahoma''. The project is divided into nine separate tasks. Several of the tasks are being worked on simultaneously, while other tasks are dependent on earlier tasks being completed. The vibration stimulation well is permitted as Well 111-W-27, section 8 T26N R6E Osage County Oklahoma. It was spud July 28, 2001 with Goober Drilling Rig No. 3. The well was drilled to 3090-feet cored, logged, cased and cemented. The Rig No.3 moved off August 6, 2001. Phillips Petroleum Co. has begun analyzing the cores recovered from the test well. Standard porosity, permeability and saturation measurements will be conducted. They will then begin the sonic stimulation core tests Calumet Oil Company, the operator of the NBU, has begun to collect both production and injection wells information to establish a baseline for the project in the pilot field test area. Green Country Submersible Pump Company, a subsidiary of Calumet Oil Company, will provide both the surface equipment and downhole tools to allow the Downhole Vibration Tool to be operated by a surface rod rotating system. The 7-inch Downhole Vibration Tool (DHVT) has been built and is ready for initial shallow testing. The shallow testing will be done in a temporarily abandoned well operated by Calumet Oil Co. in the Wynona waterflood unit. The data acquisition doghouse and rod rotating equipment have been placed on location in anticipation of the shallow test in Well No.20-12 Wynona Waterflood Unit. A notice of invention disclosure was submitted to the DOE Chicago Operations Office. DOE Case No.S-98,124 has been assigned to follow the documentation following the invention disclosure. A paper covering the material presented to the Oklahoma Geologic Survey (OGS)/DOE Annual Workshop in Oklahoma City May 8,9 2001 has been submitted for publication to the OGS. A technical paper draft has been submitted for the ASME/ETCE conference (Feb 2002) Production Technology Symposium. A one-day SPE sponsored short course which is planned to cover seismic stimulation efforts around the world, will be offered at the SPE/DOE Thirteenth Symposium on Improved Oil Recovery in Tulsa, OK, April 13-17, 2002. Dan Maloney, Phillips and Bob Westermark, OGCI will be the instructors. In addition, a proposed technical paper has been submitted for this meeting.

J. Ford Brett; Robert V. Westermark

2001-09-30T23:59:59.000Z

413

Identification, Verification, and Compilation of Produced Water Management Practices for Conventional Oil and Gas Production Operations  

SciTech Connect (OSTI)

The project is titled 'Identification, Verification, and Compilation of Produced Water Management Practices for Conventional Oil and Gas Production Operations'. The Interstate Oil and Gas Compact Commission (IOGCC), headquartered in Oklahoma City, Oklahoma, is the principal investigator and the IOGCC has partnered with ALL Consulting, Inc., headquartered in Tulsa, Oklahoma, in this project. State agencies that also have partnered in the project are the Wyoming Oil and Gas Conservation Commission, the Montana Board of Oil and Gas Conservation, the Kansas Oil and Gas Conservation Division, the Oklahoma Oil and Gas Conservation Division and the Alaska Oil and Gas Conservation Commission. The objective is to characterize produced water quality and management practices for the handling, treating, and disposing of produced water from conventional oil and gas operations throughout the industry nationwide. Water produced from these operations varies greatly in quality and quantity and is often the single largest barrier to the economic viability of wells. The lack of data, coupled with renewed emphasis on domestic oil and gas development, has prompted many experts to speculate that the number of wells drilled over the next 20 years will approach 3 million, or near the number of current wells. This level of exploration and development undoubtedly will draw the attention of environmental communities, focusing their concerns on produced water management based on perceived potential impacts to fresh water resources. Therefore, it is imperative that produced water management practices be performed in a manner that best minimizes environmental impacts. This is being accomplished by compiling current best management practices for produced water from conventional oil and gas operations and to develop an analysis tool based on a geographic information system (GIS) to assist in the understanding of watershed-issued permits. That would allow management costs to be kept in line with the specific projects and regions, which increases the productive life of wells and increases the ultimate recoverable reserves in the ground. A case study was conducted in Wyoming to validate the applicability of the GIS analysis tool for watershed evaluations under real world conditions. Results of the partnered research will continue to be shared utilizing proven methods, such as on the IGOCC Web site, preparing hard copies of the results, distribution of documented case studies, and development of reference and handbook components to accompany the interactive internet-based GIS watershed analysis tool. Additionally, there have been several technology transfer seminars and presentations. The goal is to maximize the recovery of our nation's energy reserves and to promote water conservation.

Rachel Henderson

2007-09-30T23:59:59.000Z

414

Seismic expression of Red Fork channels in Major and Kay Counties, Oklahoma  

SciTech Connect (OSTI)

This paper investigates the application of regional seismic to exploration and development Red Fork sands of the Cherokee Group, in Major and Kay Counties, Oklahoma. A computer-aided exploration system (CAEX) was used to justify the subtle seismic expressions with the geological interpretation. Modeling shows that the low-velocity shales are the anomalous rock in the Cherokee package, which is most represented by siltstone and thin sands. Because the Red Fork channel sands were incised into or deposited with laterally time-equivalent siltstones, no strong reflection coefficient is associated with the top of the sands. The objective sands become a seismic anomaly only when they cut into and replace a low-velocity shale. This knowledge allows mapping the channel thickness by interpreting the shale thickness from seismic data. A group shoot line in Major County, Oklahoma, has been tied to the geologic control, and the channel thicknesses have been interpreted assuming a detectable vertical resolution of 10 ft. A personal computer-based geophysical work station is used to construct velocity logs representative of the geology to produce forward-modeled synthetic seismic sections, and to display, in color, the seismic trace attributes. These synthetic sections are used as tools to compare with and interpret the seismic line and to evaluate the interpretative value of lowest cost, lesser quality data versus reprocessing or new data acquisition.

Hanoch, C.A.

1987-08-01T23:59:59.000Z

415

Preliminary statistical analysis and provenance trends in Desmoinesian sandstones from central and eastern Oklahoma  

SciTech Connect (OSTI)

Desmoinesian sandstones from the northeast Oklahoma platform and from the Anadarko and McAlester basins record a complex interaction between mid-Pennsylvanian source-area tectonism and cyclic sedimentation patterns associated with transgressions and regressions. Framework grain summaries for 67 thin sections from sandstones of the Cherokee Group (Bartlesville, Red Fork, Skinner, and Prue) were subjected to multivariate statistical analysis to establish regional compositional trends for provenance analysis. R-mode cluster and correspondence analyses were used to determine the contributing effect (total variance) of key framework grains. Fragments of monocrystalline and polycrystalline quartz, chert, metamorphic rock, and limestone contribute most to the variation in the grain population. Q-mode cluster and correspondence analyses were used to identify three distinct petrofacies. Petrofacies I is rich in monocrystalline quartz (86 to 98%) and contains rare mica and rock fragments. Petrofacies II is also rich in monocrystalline quartz (66 to 86%) and contains as much as 15% metamorphic and sedimentary rock fragments. Petrofacies III is compositionally heterogeneous and contains fragments of polycrystalline and monocrystalline quartz, mica, chert, and metamorphic and sedimentary rocks. Quantitative analyses indicate that Desmoinesian sandstones were derived from complex sedimentary and metamorphic source areas. Petrofacies I sandstones are restricted to the southwestern part of the Anadarko basin and the northeast Oklahoma platform, whereas petrofacies II and III sandstones are distributed throughout the study area. The distribution of petrofacies within the region suggests a model of source-area interaction and cratonic sediment recycling.

Dyman, T.S.

1987-05-01T23:59:59.000Z

416

Variability of wind power near Oklahoma City and implications for siting of wind turbines  

SciTech Connect (OSTI)

Data from five sites near Oklahoma City were examined to assess wind power availability. Wind turbines of identical manufacture were operated at three of the sites, one of which was also equipped with anemometers on a 100-ft tower. Comprehensive anemometric data were available from the other two sites. The study indicates that the average wind speed varies substantially over Oklahoma's rolling plains, which have often been nominally regarded as flat for purposes of wind power generation. Average wind differences may be as much as 5 mph at 20 ft above ground level, and 7 mph at 100 ft above ground level for elevation differences of about 200 ft above mean sea level, even in the absence of substantial features of local terrain. Local altitude above mean sea level seems to be as influential as the shape of local terrain in determining the average wind speed. The wind turbine used at a meteorologically instrumented site in the study produced the power expected from it for the wind regime in which it was situated. The observed variations of local wind imply variations in annual kWh of as much as a factor of four between identical turbines located at similar heights above ground level in shallow valleys and on hilltops or elevated extended flat areas. 17 refs., 39 figs., 11 tabs.

Kessler, E.; Eyster, R.

1987-09-01T23:59:59.000Z

417

Enhanced Oil Recovery with Downhole Vibration Stimulation in Osage County Oklahoma  

SciTech Connect (OSTI)

This Technical Quarterly Report is for the reporting period July 1, 2000 to September 30, 2000. The report provides details of the work done on the project entitled ''Enhanced Oil Recovery with Downhole Vibration Stimulation in Osage County Oklahoma''. The project is divided into nine separate tasks. Since this is the first Quarterly report, much of the work done is of a preliminary nature. Several of the tasks are being worked on simultaneously, while other tasks are dependent on earlier tasks being completed. The selection of the pilot test area has been completed. The drilling of the test well is waiting on rig availability. Phillips has begun sonic core testing of offset cores, waiting on the core from the well to be drilled. Design work is progressing for the tool, which will be built to fit the test well. Installation of monitoring equipment and the downhole vibration tool will occur after the well is drilled. Technical transfer efforts have begun with the submission of an abstract for a technical paper for the Oklahoma City Society of Petroleum Engineers meeting in March 2001.

J. Ford Brett; Robert V. Westermark

2000-09-30T23:59:59.000Z

418

Evaluation of water resources for enhanced oil recovery operations, Cement Field, Caddo and Grady Counties, Oklahoma  

SciTech Connect (OSTI)

This report is based on the results of an investigation of the water resources local to the Cement Oil Field in Caddo and Grady Counties, southwestern, Oklahoma. The intent of the report is to present at least a semi-quantitative estimate of the volume, deliverability, and chemistry of the water potentially available for enhanced oil recovery in one or more Oklahoma oil fields. Subsequent to a review of several oil fields, the Cement Field was chosen for study because of its large size (25,000 acres), its extensive subsurface control (over 1850 wells), and its long history of production (since 1952) from several producing formations, some of which are already undergoing extensive waterflood operations. A preliminary review of the available data for this study suggested a threefold categorization of water resources, since the data for each category are distinctly different in nature, and, to some extent, different in source. The three categories are: surface water, ground water, and subsurface water. Flow, volume, and chemical analyses of each source are estimated.

Preston, D.A.; Harrison, W.E.; Luza, K.V.; Prater, L.; Reddy, R.J.

1982-02-01T23:59:59.000Z

419

Curriculum Vitae Jeffrey F. Kelly 4 May 2013 Oklahoma Biological Survey and Department of Biology Office: 405-325-2440  

E-Print Network [OSTI]

Office: 405-325-2440 University of Oklahoma Cell: 405-301-5604 111 East Chesapeake Street Fax: 405 movements from solar geolocation archival tags with a hidden Markov model using particle filter. Methods and Chemistry. 49 Bridge ES, JF Kelly, RM Gabrielson, RB MacCurdy, and DW Winkler. In Press. Light

Kelly, Jeff

420

Analysis of Best Hydraulic Fracturing Practices in the Golden Trend Fields of Oklahoma Shahab D. Mohaghegh, West Virginia University  

E-Print Network [OSTI]

Analysis of Best Hydraulic Fracturing Practices in the Golden Trend Fields of Oklahoma Shahab D of optimized hydraulic fracturing procedure. Detail stimulation data from more than 230 wells in the Golden of hydraulic fractures. Therefore, it is highly recommended that the clastic and carbonate formations

Mohaghegh, Shahab

Note: This page contains sample records for the topic "oklahoma nat gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Oklahoma Cooperative Extension Service Division of Agricultural Sciences and Natural Resources Are Food Brokers Right for You?  

E-Print Network [OSTI]

Are Food Brokers Right for You? Jim Brooks Business & Marketing Services Manager Introduction: You haveOklahoma Cooperative Extension Service · Division of Agricultural Sciences and Natural Resources and experienced food broker. Food Brokers: Some of the advantages of appointing a food broker are: 1) Knowledge

Balasundaram, Balabhaskar "Baski"

422

Copyright 2004, School of Meteorology, University of Oklahoma. Rev 04/04 Knowledge Expectations for METR 4424  

E-Print Network [OSTI]

the specific topics and order listed here. Pre-requisites: Grade of C or better in METR 3123, METR 3223, School of Meteorology, University of Oklahoma. Rev 04/04 · Understand the utility and limitations of data devices (i.e., radar and satellites). · Understand the utility and limitations of numerical methods used

Droegemeier, Kelvin K.

423

Oklahoma Cooperative Extension Service Division of Agricultural Sciences and Natural Resources Robert M. Kerr Food & Agricultural Products Center  

E-Print Network [OSTI]

. Sterilizing food containers (for example, by irradiation) without cleaning them eliminates biological hazards Resources FAPC-165 Robert M. Kerr Food & Agricultural Products Center FOOD TECHNOLOGY FACT SHEET 405-744-6071 · www.fapc.bizAdding Value to Oklahoma f a p c Timothy J. Bowser Food Processing Engineer Introduction

Balasundaram, Balabhaskar "Baski"

424

Municipal Solid Waste Landfills The following Oklahoma landfills currently accept dead livestock. As each facility has different guidelines and  

E-Print Network [OSTI]

Municipal Solid Waste Landfills The following Oklahoma landfills currently accept dead livestock-581-3468 Garfield City of Enid Landfill 580-249-4917 Garvin Foster Waste Disposal Landfill 405-238-2012 Jackson City-436-1403 Call ahead, may limit qty. Pottawatomie Absolute Waste Solutions 405-598-3893 Call ahead Seminole

Balasundaram, Balabhaskar "Baski"

425

Current ReportOklahoma Cooperative Extension Fact Sheets are also available on our website at: osufacts.okstate.edu  

E-Print Network [OSTI]

-2152 0910 Oklahoma Cooperative Extension Service Calibration Procedure for Canola Planted with an End-Wheel Grain Drill (Volumetric Method) Mark C. Boyles Josh Bushong Canola Extension Specialist Canola Extension and a measuring tape Grain drill preparation: Determine seeding rate. Typical seeding rate for winter canola

Balasundaram, Balabhaskar "Baski"

426

Enhanced Oil Recovery with Downhole Vibration Stimulation in Osage County, Oklahoma  

SciTech Connect (OSTI)

This Technical Quarterly Report is for the reporting period March 31, 2002 to June 30, 2002. The report provides details of the work done on the project entitled ''Enhanced Oil Recovery with Downhole Vibration Stimulation in Osage County Oklahoma''. The project is divided into nine separate tasks. Several of the tasks are being worked on simultaneously, while other tasks are dependent on earlier tasks being completed. The vibration stimulation Well 111-W-27 is located in section 8 T26N R6E of the North Burbank Unit (NBU), Osage County Oklahoma. It was drilled to 3090-feet cored, logged, cased and cemented. The rig moved off August 6, 2001. Phillips Petroleum Co. has performed several core studies on the cores recovered from the test well. Standard porosity, permeability and saturation measurements have been conducted. In addition Phillips has prepared a Core Petrology Report, detailing the lithology, stratigraphy and sedimentology for Well 111-W27, NBU. Phillips has also conducted the sonic stimulation core tests, the final sonic stimulation report has not yet been released. Calumet Oil Company, the operator of the NBU, began collecting both production and injection wells information to establish a baseline for the project in the pilot field test area since May 2001. The original 7-inch Downhole Vibration Tool (DHVT) has been thoroughly tested and it has been concluded that it needs to be redesigned. An engineering firm from Fayetteville AR has been retained to assist in developing a new design for the DHVT. The project participants requested from the DOE, a no-cost extension for the project through December 31, 2002. The no-cost extension amendment to the contract was signed during this reporting period. A technical paper SPE 75254 ''Enhanced Oil Recovery with Downhole Vibration Stimulation, Osage County, Oklahoma'' was presented at the 2002 SPE/DOE Thirteenth Symposium on Improved Oil Recovery, in Tulsa OK, April 17, 2002. A one-day short course was conducted at the SPE/DOE Thirteenth Symposium on Improved Oil Recovery in Tulsa, OK, April 13-14, 2002. Dan Maloney, Phillips and Bob Westermark, OGCI, Brett Davidson and Tim Spanos, Prism Production Technologies, were the instructors. The sixteen attendees also participated in the half-day field trip to the test facility near Tulsa.

J. Ford Brett; Robert V. Westermark

2002-06-30T23:59:59.000Z

427

This paper was prepared for presentation at the SPE/DOE Thirteenth Symposium on Improved Oil Recovery held in Tulsa, Oklahoma, 1317 April 2002.  

E-Print Network [OSTI]

-water displacement and spontaneous countercurrent imbibition are crucial mechanisms of secondary oil recovery Recovery held in Tulsa, Oklahoma, 13­17 April 2002. This paper was selected for presentation by an SPE

Patzek, Tadeusz W.

428

We have only listed Oklahoma Hatcheries as they appear in the National Poultry Improvement Plan. For a listing of hatcheries in your state, contact your state USDA  

E-Print Network [OSTI]

We have only listed Oklahoma Hatcheries as they appear in the National Poultry Improvement Plan-55-040 National Poultry Improvement Plan. A hatchery appearing on this list in no way constitutes endorsement

Balasundaram, Balabhaskar "Baski"

429

Composita subtilita (Brachiopoda) in the Wreford Megacyclothem (Lower Permian) in Nebraska, Kansas, and Oklahoma  

E-Print Network [OSTI]

=477.71 4 I i COWLEY (CY): H 1 H , Winfield 4 -4 Arkansas r City : *14 1 45 1146 , KANSAS! H 49; - 48T- OKLAHOMA 's — KANSAS —7— 7 1 ;_ - eL .77710,-64 qk L A HOM A _ii• KAY (K,A)! - -1 1 ! : I I ) Blackwel 1 - I !, 4 ',- r 41 0 1- -, I...-- - -; + -re- 1 f Li- -t _,. 4. -4 -4 I__I 1_1\\1913,14 1\\ -:t. bpi Li_ _ _ _ _ 4' _41 I. (NO) i I_ ILPiW I'Pawnee ..)1 4 1- (-p..-.‘. -1 — 4- - li2 - I ' [ I, caperiy :0(1)2 AWNE-E v. I ! d 1 (PW) 1 ! .-. ! ii— 7•I-1- —L. ..., --i- . .1—. - 1 FIG...

Lutz-Garihan, A. B.

1976-02-27T23:59:59.000Z

430

Feasibility study of heavy oil recovery in the Midcontinent region (Kansas, Missouri, Oklahoma)  

SciTech Connect (OSTI)

This report is one of a series of publications assessing the feasibility/constraints of increasing domestic heavy oil production. Each report covers a select area of the United States. The Midcontinent (Kansas, Nssouri, Oklahoma) has produced significant oil, but contrary to early reports, the area does not contain the huge volumes of heavy oil that, along with the development of steam and in situ combustion as oil production technologies, sparked the area`s oil boom of the 1960s. Recovery of this heavy oil has proven economically unfeasible for most operators due to the geology of the formations rather than the technology applied to recover the oil. The geology of the southern Midcontinent, as well as results of field projects using thermal enhanced oil recovery (TEOR) methods to produce the heavy oil, was examined based on analysis of data from secondary sources. Analysis of the performance of these projects showed that the technology recovered additional heavy oil above what was produced from primary production from the consolidated, compartmentalized, fluvial dominated deltaic sandstone formations in the Cherokee and Forest City basins. The only projects producing significant economic and environmentally acceptable heavy oil in the Midcontinent are in higher permeability, unconsolidated or friable, thick sands such as those found in south-central Oklahoma. There are domestic heavy oil reservoirs in other sedimentary basins that are in younger formations, are less consolidated, have higher permeability and can be economically produced with current TEOR technology. Heavy oil production from the carbonates of central and wester Kansas has not been adequately tested, but oil production is anticipated to remain low. Significant expansion of Midcontinent heavy oil production is not anticipated because the economics of oil production and processing are not favorable.

Olsen, D.K.; Johnson, W.I.

1993-08-01T23:59:59.000Z

431

A study of the source materials, depositional environments, mechanisms of generation and migration of oils in the Anadarko and Cherokee Basins, Oklahoma. Quarterly technical progress report, September 15, 1989--September 14, 1990  

SciTech Connect (OSTI)

The geochemical characterization of petroleum and source rocks from the Anadarko Basin, Oklahoma, has continued. Major emphasis has seen on geochemistry of the Woodford shale.

Philp, R.P.

1996-01-01T23:59:59.000Z

432

Measurements of delayed neutrons yields and time spectra from 1 GeV protons interacting with thick {sup nat}Pb targets  

SciTech Connect (OSTI)

This paper presents the preliminary results on measured delayed neutron (DN) yields and time spectra from 1 GeV protons interacting with thick {sup nat}Pb targets. In parallel, the MCNPX and PHTTS codes were used to predict the DN precursors and construct the theoretical DN tables. Different model parameters are examined and show significant dependence on the choice of the intra-nuclear cascade and fission-evaporation models used. These data and modeling are of great importance for the new generation spallation neutron sources based on liquid metal technologies where a significant amount of the DN precursor activity can be accumulated in the target fluid. (authors)

Ridikas, D. [CEA Saclay, DSM/DAPNIA, 91191 Gif-sur-Yvette (France); Barzakh, A. [Petersburg Nuclear Physics Inst., Leningrad district, 188350 Gatchina (Russian Federation); Blideanu, V.; David, J. C.; Dore, D. [CEA Saclay, DSM/DAPNIA, 91191 Gif-sur-Yvette (France); Fedorov, D. [Petersburg Nuclear Physics Inst., Leningrad district, 188350 Gatchina (Russian Federation); Ledoux, X. [CEA Bruyeres, DIF/DPTA, 91680 Bruyeres-le-Chatel (France); Moroz, F.; Panteleev, V. [Petersburg Nuclear Physics Inst., Leningrad district, 188350 Gatchina (Russian Federation); Plukis, A.; Plukiene, R. [Inst. of Physics, Savanoriu pr. 231, 02300 Vilnius (Lithuania); Prevost, A. [CEA Saclay, DSM/DAPNIA, 91191 Gif-sur-Yvette (France); Shcherbakov, O.; Vorobyev, A. [Petersburg Nuclear Physics Inst., Leningrad district, 188350 Gatchina (Russian Federation)

2006-07-01T23:59:59.000Z

433

Enhanced Oil Recovery with Downhole Vibration Stimulation in Osage County, Oklahoma  

SciTech Connect (OSTI)

This Technical Quarterly Report is for the reporting period September 30, 2001 to December 31, 2001. The report provides details of the work done on the project entitled ''Enhanced Oil Recovery with Downhole Vibration Stimulation in Osage County Oklahoma''. The project is divided into nine separate tasks. Several of the tasks are being worked on simultaneously, while other tasks are dependent on earlier tasks being completed. The vibration stimulation well was permitted as Well 111-W-27, section 8 T26N R6E Osage County Oklahoma. It was spud July 28, 2001 with Goober Drilling Rig No. 3. The well was drilled to 3090-feet cored, logged, cased and cemented. The Rig No.3 moved off August 6, 2001. Phillips Petroleum Co. has performed standard core analysis on the cores recovered from the test well. Standard porosity, permeability and saturation measurements have been conducted. Phillips has begun the sonic stimulation core tests. Calumet Oil Company, the operator of the NBU, has been to collecting both production and injection wells information to establish a baseline for the project in the pilot field test area since May 2001. The 7-inch Downhole Vibration Tool (DHVT) has been built and has been run in a shallow well for initial power source testing. This testing was done in a temporarily abandoned well, Wynona Waterflood Unit, Well No.20-12 operated by Calumet Oil Co both in October and December 2001. The data acquisition system, and rod rotating equipment performed as designed. However, the DHVT experienced two internal failures during vibration operations. The DHVT has been repaired with modifications to improve its functionality. A proposed technical paper abstract has been accepted by the SPE to be presented at the 2002 SPE/DOE Thirteenth Symposium on Improved Oil Recovery, in Tulsa OK, 13-17 April 2002. A one-day SPE sponsored short course which is planned to cover seismic stimulation efforts around the world, will be offered at the SPE/DOE Thirteenth Symposium on Improved Oil Recovery in Tulsa, OK, April 13-17, 2002. Dan Maloney, Phillips and Bob Westermark, OGCI will be the instructors.

J. Ford Brett; Robert V. Westermark

2001-12-31T23:59:59.000Z

434

Determining sand-body geometries for waterflood reservoirs: Examples from Oklahoma  

SciTech Connect (OSTI)

Waterflood projects require an accurate knowledge of reservoir geometry and well-to-well continuity. However, sandstones with thin, multiple-pay zones can be extremely difficult to correlate with confidence. Two case studies of Pennsylvanian sandstones in Oklahoma illustrate how a model for the depositional history of such reservoirs can be an effective tool for determining reservoir continuity. In contrast, correlation criteria such as similar wireline log signatures and relative sand-body thicknesses are not reliable in many situations. In Southwest Logan field (Beaver County), 5 to 15-ft thick reservoir sands formed as shallow marine sand ridges. Their dimensions were approximated from height-to-width ratios of modern sand ridges. Then the reservoir sands were mapped using wireline logs and core data. Individual reservoir sands were approximately 1-2 km wide and stacked en echelon vertically. Thus, a line-drive waterflood pattern oriented parallel to the axes of the ridges is recommended. Tatums field (Carter County) consists of 5 to 50-ft thick sandstones deposited in various deltaic environments. Distributary channel sands have good continuity downdip, but are narrow and lenticular across depositional strike. Crevasse splay and other bay-fill sands were deposited marginal to the channels and are extremely discontinuous. This depositional model can be used to improve flood patterns for these sands, leading to improved sweep efficiency. In both examples, for effective mapping, the depositional facies models have been used to register reservoir quality and wireline log signatures.

Kreisa, R.D.; Pinero, E. (Mobil Research and Development Corp., Dallas, TX (USA))

1987-02-01T23:59:59.000Z

435

NatPriorLst  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou$0.C. 20545*.MSE Cores" _ ,' ,:.' :r-2 . .

436

A case study of the vertical-motion field and its relation to the subtropical jet stream during an unusual period of wintertime rain in Oklahoma and Texas  

E-Print Network [OSTI]

A CASE STUDY QF THE VERTICAL-MOTION FIELD AND ITS RELATION TO THE SUBTROPICAL JET STREAM DURING AN UNUSUAL PERIOD OF WINTERTIME RAIN IN OKLAHOMA AND TEXAS A Thesis MYRON DEROYCE SMITH Submitted to the Graduate College of Texas A8M University... IN OKLAHOMA AND TEXAS A Thesis by MYRON DEROYCE SMITH Approved as to style and content by: (Chairman of Committee) (Head of Depart ent) (Member) (Member) (Member) (Member) (Member) December 1972 ABSTRACT A Case Study of the Vertical-Motion Field...

Smith, Myron Deroyce

2012-06-07T23:59:59.000Z

437

Aerial gamma ray and magnetic survey: Mississippi and Florida airborne survey, Fort Smith quadrangle, Oklahoma, and Arkansas. Final report  

SciTech Connect (OSTI)

The Fort Smith quadrangle in western Arkansas and eastern Oklahoma overlies thick Paleozoic sediments of the Arkoma Basin. These Paleozoics dominate surface exposure except where covered by Quaternary Alluvial materials. Examination of available literature shows no known uranium deposits (or occurrences) within the quadrangle. Seventy-five groups of uranium samples were defined as anomalies and are discussed briefly. None were considered significant, and most appeared to be of cultural origin. Magnetic data show character that suggest structural and/or lithologic complexity, but imply relatively deep-seated sources.

Not Available

1980-09-01T23:59:59.000Z

438

Criticality Safety Analysis on the Mixed Be, Nat-U, and C (Graphite) Reflectors in 55-Gallon Waste Drums and Their Equivalents for HWM Applications  

SciTech Connect (OSTI)

The objective of this analysis is to develop and establish the technical basis on the criticality safety controls for the storage of mixed beryllium (Be), natural uranium (Nat-U), and carbon (C)/graphite reflectors in 55-gallon waste containers and/or their equivalents in Hazardous Waste Management (HWM) facilities. Based on the criticality safety limits and controls outlined in Section 3.0, the operations involving the use of mixed-reflector drums satisfy the double-contingency principle as required by DOE Order 420.1 and are therefore criticality safe. The mixed-reflector mass limit is 120 grams for each 55-gallon drum or its equivalent. a reflector waiver of 50 grams is allowed for Be, Nat-U, or C/graphite combined. The waived reflectors may be excluded from the reflector mass calculations when determining if a drum is compliant. The mixed-reflector drums are allowed to mix with the typical 55-gallon one-reflector drums with a Pu mass limit of 120 grams. The fissile mass limit for the mixed-reflector container is 65 grams of Pu equivalent each. The corresponding reflector mass limits are 300 grams of Be, and/or 100 kilograms of Nat-U, and/or 110 kilograms of C/graphite for each container. All other unaffected control parameters for the one-reflector containers remain in effect for the mixed-reflector drums. For instance, Superior moderators, such as TrimSol, Superla white mineral oil No. 9, paraffin, and polyethylene, are allowed in unlimited quantities. Hydrogenous materials with a hydrogen density greater than 0.133 gram/cc are not allowed. Also, an isolation separation of no less than 76.2 cm (30-inch) is required between a mixed array and any other array. Waste containers in the action of being transported are exempted from this 76.2-cm (30-inch) separation requirement. All deviations from the CS controls and mass limits listed in Section 3.0 will require individual criticality safety analyses on a case-by-case basis for each of them to confirm their criticality safety prior to their deployment and implementation.

Chou, P

2011-12-14T23:59:59.000Z

439

Climatology of aerosol optical depth in north?central Oklahoma: 1992–2008  

SciTech Connect (OSTI)

Aerosol optical depth (AOD) has been measured at the Atmospheric Radiation Measurement Program central facility near Lamont, Oklahoma, since the fall of 1992. Most of the data presented are from the multifilter rotating shadowband radiometer, a narrow?band, interference?filter Sun radiometer with five aerosol bands in the visible and near infrared; however, AOD measurements have been made simultaneously and routinely at the site by as many as three different types of instruments, including two pointing Sun radiometers. Scatterplots indicate high correlations and small biases consistent with earlier comparisons. The early part of this 16 year record had a disturbed stratosphere with residual Mt. Pinatubo aerosols, followed by the cleanest stratosphere in decades. As such, the last 13 years of the record reflect changes that have occurred predominantly in the troposphere. The field calibration technique is briefly described and compared to Langley calibrations from Mauna Loa Observatory. A modified cloudscreening technique is introduced that increases the number of daily averaged AODs retrieved annually to about 250 days compared with 175 days when a more conservative method was employed in earlier studies. AODs are calculated when the air mass is less than six; that is, when the Sun’s elevation is greater than 9.25°. The more inclusive cloud screen and the use of most of the daylight hours yield a data set that can be used to more faithfully represent the true aerosol climate for this site. The diurnal aerosol cycle is examined month?by?month to assess the effects of an aerosol climatology on the basis of infrequent sampling such as that from satellites.

Michalsky, Joseph J.; Denn, Frederick; Flynn, Connor J.; Hodges, G. B.; Kiedron, Piotr; Koontz, Annette S.; Schlemmer, James; Schwartz, Stephen E.

2010-04-13T23:59:59.000Z

440

Shallow gas in Arkoma basin - Pine Hollow and South Ashland fields  

SciTech Connect (OSTI)

The Pine Hollow and South Ashland fields located in Pittsburg and Coal Counties, Oklahoma, established a combined reserve exceeding 200 bcf of gas. The Hartshorne Sandstone of early Desmoinesian (Pennsylvanian) age is the producing zone at a depth of 4000 ft (1200 m). Gas, probably of biogenic origin, migrated into the reservoir shortly after deposition. Subsequent folding and faulting of the Ashland anticline resulted in repositioning of the gas in a downthrown fault trap. The upthrown anticline portion of the Hartshorne is water-bearing. Moderate well costs and high individual reserves have resulted in excellent economics. Competitive bidding on federal leases has resulted in a high bid exceeding $1 million for one tract in the South Ashland field.

Woncik, J.

1983-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "oklahoma nat gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Cross sections of deuteron induced reactions on $^{nat}$Sm for production of the therapeutic radionuclide $^{145}$Sm and $^{153}$Sm  

E-Print Network [OSTI]

At present, targeted radiotherapy (TR) is acknowledged to have great potential in oncology. A large list of interesting radionuclides is identified, including several radioisotopes of lanthanides, amongst them $^{145}$Sm and $^{153}$Sm. In this work the possibility of their production at a cyclotron was investigated using a deuteron beam and a samarium target. The excitation functions of the $^{nat}$Sm(d,x)$^{145153}$Sm reactions were determined for deuteron energies up to 50 MeV using the stacked-foil technique and high-resolution $\\gamma$-ray spectrometry. The measured cross sections and the contributing reactions were analyzed by comparison with results of the ALICE, EMPIRE and TALYS nuclear reaction codes. A short overview and comparison of possible production routes is given.

F. Tárkányi; A. Hermanne; S. Takács; F. Ditrói; J. Csikai; A. V. Ignatyuk

2014-11-17T23:59:59.000Z

442

This paper has been downloaded from the Building and Environmental Thermal Systems Research Group at Oklahoma State University (www.hvac.okstate.edu)  

E-Print Network [OSTI]

Heat Pumps in Cold Climates Conference, Aylmer, Québec. August 17-18, 2000. #12;Bridge Deck Deicing. Ramamoorthy 2000. Bridge Deck Deicing using Geothermal Heat Pumps. Proceedings of the Fourth International using Geothermal Heat Pumps JEFFREY D. SPITLER, PH.D., P.E., MAHADEVAN RAMAMOORTHY Oklahoma State

443

Advanced Radar Research Center The University of Oklahoma seeks an exceptional, dynamic leader to serve as Director of its Advanced Radar Research Center  

E-Print Network [OSTI]

industry and federal agencies and carries out a vigorous program of teaching, research, and service in the world, housing twelve University of Oklahoma, state, and federal organizations with more than 650 of Electrical and Computer Engineering is housed nearby in the new Devon Energy Hall. The ARRC Director provides

Oklahoma, University of

444

This paper has been downloaded from the Building and Environmental Thermal Systems Research Group at Oklahoma State University (www.hvac.okstate.edu)  

E-Print Network [OSTI]

at Oklahoma State University (www.hvac.okstate.edu) The correct citation for the paper is: Rees, S.J., J cooling loads is of critical concern to designers of HVAC systems. The work reported here has been carried of the HVAC industry worldwide would be improved if common methods of performing key design calculations were

Ghajar, Afshin J.

445

This paper has been downloaded from the Building and Environmental Thermal Systems Research Group at Oklahoma State University (http://www.hvac.okstate.edu).  

E-Print Network [OSTI]

at Oklahoma State University (http://www.hvac.okstate.edu). The correct citation for the paper is: Spitler, J.D. 2007. Research Planning for the HVAC&R Industry. HVAC&R Research 13(5):681- 682. #12;VOLUME 13, NUMBER 5 HVAC&R RESEARCH SEPTEMBER 2007 681 EDITORIAL Research Planning for the HVAC&R Industry Jeffrey D

446

ENHANCED OIL RECOVERY WITH DOWNHOLE VIBRATION STIMULATION IN OSAGE COUNTY OKLAHOMA  

SciTech Connect (OSTI)

This Final Report covers the entire project from July 13, 2000 to June 30, 2003. The report summarizes the details of the work done on the project entitled ''Enhanced Oil Recovery with Downhole Vibration Stimulation in Osage County Oklahoma'' under DOE Contract Number DE-FG26-00BC15191. The project was divided into nine separate tasks. This report is written in an effort to document the lessons learned during the completion of each task. Therefore each task will be discussed as the work evolved for that task throughout the duration of the project. Most of the tasks are being worked on simultaneously, but certain tasks were dependent on earlier tasks being completed. During the three years of project activities, twelve quarterly technical reports were submitted for the project. Many individual topic and task specific reports were included as appendices in the quarterly reports. Ten of these reports have been included as appendices to this final report. Two technical papers, which were written and accepted by the Society of Petroleum Engineers, have also been included as appendices. The three primary goals of the project were to build a downhole vibration tool (DHVT) to be installed in seven inch casing, conduct a field test of vibration stimulation in a mature waterflooded field and evaluate the effects of the vibration on both the produced fluid characteristics and injection well performance. The field test results are as follows: In Phase I of the field test the DHVT performed exceeding well, generating strong clean signals on command and as designed. During this phase Lawrence Berkeley National Laboratory had installed downhole geophones and hydrophones to monitor the signal generated by the downhole vibrator. The signals recorded were strong and clear. Phase II was planned to be ninety-day reservoir stimulation field test. This portion of the field tests was abruptly ended after one week of operations, when the DHVT became stuck in the well during a routine removal activity. The tool cannot operate in this condition and remains in the well. There was no response measured during or afterwards to either the produced fluids from the five production wells or in the injection characteristics of the two injection wells in the pilot test area. Monitoring the pilot area injection and production wells ceased when the field test was terminated March 14, 2003. Thus, a key goal of this project, which was to determine the effects of vibration stimulation on improving oil recovery from a mature waterflood, was not obtained. While there was no improved oil recovery effect measured, there was insufficient vibration stimulation time to expect a change to occur. No conclusion can be drawn about the effectiveness of vibration stimulation in this test.

Robert Westermark; J. Ford Brett

2003-11-01T23:59:59.000Z

447

CENSUS AND STATISTICAL CHARACTERIZATION OF SOIL AND WATER QUALITY AT ABANDONED AND OTHER CENTRALIZED AND COMMERCIAL DRILLING-FLUID DISPOSAL SITES IN LOUISIANA, NEW MEXICO, OKLAHOMA, AND TEXAS  

SciTech Connect (OSTI)

Commercial and centralized drilling-fluid disposal (CCDD) sites receive a portion of spent drilling fluids for disposal from oil and gas exploration and production (E&P) operations. Many older and some abandoned sites may have operated under less stringent regulations than are currently enforced. This study provides a census, compilation, and summary of information on active, inactive, and abandoned CCDD sites in Louisiana, New Mexico, Oklahoma, and Texas, intended as a basis for supporting State-funded assessment and remediation of abandoned sites. Closure of abandoned CCDD sites is within the jurisdiction of State regulatory agencies. Sources of data used in this study on abandoned CCDD sites mainly are permit files at State regulatory agencies. Active and inactive sites were included because data on abandoned sites are sparse. Onsite reserve pits at individual wells for disposal of spent drilling fluid are not part of this study. Of 287 CCDD sites in the four States for which we compiled data, 34 had been abandoned whereas 54 were active and 199 were inactive as of January 2002. Most were disposal-pit facilities; five percent were land treatment facilities. A typical disposal-pit facility has fewer than 3 disposal pits or cells, which have a median size of approximately 2 acres each. Data from well-documented sites may be used to predict some conditions at abandoned sites; older abandoned sites might have outlier concentrations for some metal and organic constituents. Groundwater at a significant number of sites had an average chloride concentration that exceeded nonactionable secondary drinking water standard of 250 mg/L, or a total dissolved solids content of >10,000 mg/L, the limiting definition for underground sources of drinking water source, or both. Background data were lacking, however, so we did not determine whether these concentrations in groundwater reflected site operations. Site remediation has not been found necessary to date for most abandoned CCDD sites; site assessments and remedial feasibility studies are ongoing in each State. Remediation alternatives addressed physical hazards and potential for groundwater transport of dissolved salt and petroleum hydrocarbons that might be leached from wastes. Remediation options included excavation of wastes and contaminated adjacent soils followed by removal to permitted disposal facilities or land farming if sufficient on-site area were available.

Alan R. Dutton; H. Seay Nance

2003-06-01T23:59:59.000Z

448

The U.S. Department of Energy Office of Indian Energy Policy and Programs, Tulsa, Oklahoma, Roundtable Summary  

SciTech Connect (OSTI)

TULSA EXECUTIVE SUMMARY The Tulsa, Oklahoma DOE Tribal Roundtable convened on April 14th, at the Hard Rock Hotel and Casino. The meeting was hosted by the Department of Energy (DOE) Office of Indian Policy and Programs and facilitated by Debra Drecksel, Senior Program Manager, Senior Facilitator, Udall Foundation’s U.S. Institute for Environmental Conflict Resolution (U.S. Institute) and Brian Manwaring, Program Manager, U.S. Institute. They were assisted by Lindsey Sexton, Program Associate, U.S. Institute.  Tribal leaders and representatives from multiple tribal communities attended the roundtable. David Conrad, Director of Tribal and Intergovernmental Affairs, DOE Office of Congressional and Intergovernmental Affairs represented DOE at the meeting.  

none,

2011-04-14T23:59:59.000Z

449

Reinterpretation of depositional processes in a classic flysch sequence (Pennsylvania Jackfork Group), Ouachita Mountains, Arkansas and Oklahoma: Discussion  

SciTech Connect (OSTI)

Shanmugam and Moiola (1995) presented a novel reinterpretation of the Jackfork Group in the DeGray Spillway and Kiamichi Mountain sections, Arkansas and Oklahoma, suggesting that thick-bedded sandstones in these sections, previously interpreted as turbidites, are debris-flow deposits. Careful assessment of this reinterpretation is critical because the Jackfork serves as a classic North American sediment-gravity flow sequence and because the techniques of Shanmugam and Moiola (1995), if applied widely, would lead to reinterpretation, and in my view, misinterpretation, of virtually every sediment-gravity flow sequence in the geologic record. In this discussion, I focus on only three of the many issues raised by Shanmugam and Moiola (1995): (1) their rejection of the concept of high density turbidity currents; (2) their description of the Jackfork Group in DeGray Spillway; and (3) their criteria for distinguishing between turbidites and debris-flow deposits.

Lowe, D.R. [Stanford Univ., CA (United States)

1997-03-01T23:59:59.000Z

450

Reinterpretation of depositional processes in a classic flysch sequence (Pennsylvanian Jackfork Group), Ouachita Mountains, Arkansas and Oklahoma: Discussion  

SciTech Connect (OSTI)

Shanmugam and Moiola (1994a, b, 1995) have generated substantial controversy and reexamination of what was originally thought to be a well-understood stratigraphic interval of deep-water origin in the Carboniferous Jackfork Group of Arkansas and Oklahoma. This reexamination of interpretation is good in that it forces sedimentologists, sequence stratigraphers, and reservoir geologists to reconsider their understanding of deep-water processes and products, usage of scientific terms to communicate interpretations, and the economic consequences of being nearly right or certainly wrong. Examination of Shanmugam and Moiola (1995) prompts brief comments on three issues: (1) the classification of a sedimentary deposit based on the sedimentary process during the final moments of deposition, (2) the use of apparently irrelevant analogs to interpret depositional and postdepositional processes and products, and (3) the regional interpretation of overall depositional environment from very specific and very local observations of sedimentary products.

Coleman, J.L. Jr. [Amoco Worldwide Exploration Business Group, Houston, TX (United States)

1997-03-01T23:59:59.000Z

451

Identification and Evaluation of Fluvial-Dominated Deltaic (Class 1 Oil) Reservoirs in Oklahoma: Yearly technical progress report for January 1-December 31, 1996  

SciTech Connect (OSTI)

The Oklahoma Geological Survey (OGS), the Geo Information Systems department, and the School of Petroleum and Geological Engineering at the University of Oklahoma are engaged in a five-year program to identify and address Oklahoma`s oil recovery opportunities in fluvial-dominated deltaic (FDD) reservoirs. This program includes a systematic and comprehensive collection and evaluation of information on all FDD oil reservoirs in Oklahoma and the recovery technologies that have been (or could be) applied to those reservoirs with commercial success. During 1996, three highly successful FDD workshops involving 6 producing formations (4 plays) were completed: (1) Layton and Osage-Layton April 17 (2) Prue and Skinner June 19 and 26 (3) Cleveland October 17 (4) Peru October 17 (combined with Cleveland play). Each play was presented individually using the adopted protocol of stratigraphic interpretations, a regional overview, and two or more detailed field studies. The project goal was to have one field study from each play selected for waterflood simulation in order to demonstrate enhanced recovery technologies that can be used to recovery secondary oil. In this effort, software utilized for reservoir simulation included Eclipse and Boast 111. In some cases, because of poor production records and inadequate geologic data, field studies completed in some plays were not suitable for modeling. All of the workshops included regional sandstone trend analysis, updated field boundary identification, a detailed bibliography and author reference map, and detailed field studies. Discussion of general FDD depositional concepts was also given. In addition to the main workshop agenda, the workshops provided computer mapping demonstrations and rock cores with lithologic and facies interpretations. In addition to the workshops, other elements of FDD program were improved during 1996. Most significant was the refinement of NRIS MAPS - a user-friendly computer program designed to access NRIS data and interface with mapping software such as Arc View in order to produce various types of information maps. Most commonly used are well base maps for field studies, lease production maps, and regional maps showing well production codes, formation show codes, well spud dates, and well status codes. These regional maps are valuable in identifying areas of by-passed oil production, field trends, and time periods of development for the various FDD plays in Oklahoma. Besides maps, NRIS MAPS provides data in table format which can be used to generate production decline curves and estimates of cumulative hydrocarbon production for leases and fields. Additionally, many computer-related services were provided by support staff concerning technical training, private consultation, computer mapping, and data acquisition.

Banken, M.K.; Andrews, R.

1997-11-17T23:59:59.000Z

452

,"Oklahoma Shale Proved Reserves (Billion Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: EnergyShale Proved Reserves (Billion CubicPrice SoldPriceGas, Wet AfterShaleVolumeGas, Wet AfterShale

453

Forest Carbon Dynamics Associated with Growth and Disturbances in Oklahoma and Texas,  

E-Print Network [OSTI]

associated with growth and major disturbances is important for management of greenhouse gas emissions related-to-nonforest conversion and harvesting, compared to those in the early period of 1992­2001. Most counties located area for the western portions of these states remains an important source of potential error. Keywords

454

Gas sensor  

DOE Patents [OSTI]

A gas sensor is described which incorporates a sensor stack comprising a first film layer of a ferromagnetic material, a spacer layer, and a second film layer of the ferromagnetic material. The first film layer is fabricated so that it exhibits a dependence of its magnetic anisotropy direction on the presence of a gas, That is, the orientation of the easy axis of magnetization will flip from out-of-plane to in-plane when the gas to be detected is present in sufficient concentration. By monitoring the change in resistance of the sensor stack when the orientation of the first layer's magnetization changes, and correlating that change with temperature one can determine both the identity and relative concentration of the detected gas. In one embodiment the stack sensor comprises a top ferromagnetic layer two mono layers thick of cobalt deposited upon a spacer layer of ruthenium, which in turn has a second layer of cobalt disposed on its other side, this second cobalt layer in contact with a programmable heater chip.

Schmid, Andreas K.; Mascaraque, Arantzazu; Santos, Benito; de la Figuera, Juan

2014-09-09T23:59:59.000Z

455

Improvements to laser wakefield accelerated electron beam stability, divergence, and energy spread using three-dimensional printed two-stage gas cell targets  

SciTech Connect (OSTI)

High intensity, short pulse lasers can be used to accelerate electrons to ultra-relativistic energies via laser wakefield acceleration (LWFA) [T. Tajima and J. M. Dawson, Phys. Rev. Lett. 43, 267 (1979)]. Recently, it was shown that separating the injection and acceleration processes into two distinct stages could prove beneficial in obtaining stable, high energy electron beams [Gonsalves et al., Nat. Phys. 7, 862 (2011); Liu et al., Phys. Rev. Lett. 107, 035001 (2011); Pollock et al., Phys. Rev. Lett. 107, 045001 (2011)]. Here, we use a stereolithography based 3D printer to produce two-stage gas targets for LWFA experiments on the HERCULES laser system at the University of Michigan. We demonstrate substantial improvements to the divergence, pointing stability, and energy spread of a laser wakefield accelerated electron beam compared with a single-stage gas cell or gas jet target.

Vargas, M.; Schumaker, W.; He, Z.-H.; Zhao, Z.; Behm, K.; Chvykov, V.; Hou, B.; Krushelnick, K.; Maksimchuk, A.; Yanovsky, V.; Thomas, A. G. R., E-mail: agrt@umich.edu [Center for Ultrafast Optical Science, University of Michigan, Ann Arbor, Michigan 48109 (United States)

2014-04-28T23:59:59.000Z

456

A royalty pain in the gas: What costs may be properly deducted from a gas royalty interest?  

SciTech Connect (OSTI)

It is emphasized that parties contracting for oil and gas leases are always free to allocate the costs of compression, transportation and processing in their agreements, thereby avoiding many potential problems. However, it must be recognized that all too often lease agreements fail to apportion expenses that may be incurred after the discovery of oil or gas. In the likely event that the West Virginia courts are faced with this issue, they would be wise to adopt the implied duty to market theory, thereby, putting the onus on the lessee to either provide up front in the lease for the apportionment of costs after the discovery of the gas, or in those instances where the lease is silent as to who will incur the cost, to place the burden on the lessee to cover those costs. Regarding transportation costs, even in jurisdictions such as Oklahoma, where the lessee is obligated to develop the gas he has found so that it will bring the highest possible market value, the lessee is not required to provide for pipeline facilities beyond the lease premises. Kansas courts have also held that the lessee has a general duty to see that the gas is marketed, but that it is not required to pay the lessor`s share of transportation charges form the well to some distant place. Thus, in West Virginia when a gas lease is silent as what costs a lessee may properly deduct from a lessor`s royalty payment, the lessee should bear the costs under the implied duty to market theory if those costs do not involve enhancing the product or transporting it to some place of sale off the leased premises.

Raynes, R.S. Jr.

1996-10-01T23:59:59.000Z

457

NATURAL GAS MARKET ASSESSMENT  

E-Print Network [OSTI]

CALIFORNIA ENERGY COMMISSION NATURAL GAS MARKET ASSESSMENT PRELIMINARY RESULTS In Support.................................................................................... 6 Chapter 2: Natural Gas Demand.................................................................................................. 10 Chapter 3: Natural Gas Supply

458

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30 2013 Macroeconomic team:6-2015 Illinois NA NA NAIn the1-2015 OklahomaNA

459

Prediction of pressure depletion from wireline and mud logs, Golden Trend field, Garvin County, Oklahoma  

SciTech Connect (OSTI)

The Golden Trend, a giant oil field encompassing several overlapping Pennsylvanian stratigraphic traps on the eastern flank of the Anadarko basin, has undergone a resurgence in the 1980s with deeper drilling for pre-Pennsylvanian targets. Approximately 200 new wells in and near the Antioch Southwest, Panther Creek, and Elmore Northeast waterflood units (T2, 3N, R2, 3W) have encountered evidence of undrained reserves in both established and new pay intervals of Pennsylvanian Hart and Gibson sandstones. Although all porous Hart and Gibson sandstones in the study area were originally oil bearing, evaluation of the state of depletion is necessary for planning future recompletions to these reservoirs. In general, wireline and mud logs over intervals with known production histories exhibit characteristics suggestive of pressure depletion, even in areas of old waterfloods. The most consistent parameters correlating to low reservoir pressure are lost circulation, lack of an increase in penetration rate when drilling porous sandstone, excessive gas effect on neutron-density logs, and low methane and total gas levels on the mud logs. The resistivity invasion profile also reflects lower pressure, but is subtle. The SP curve and gas composition on the mud log do not vary substantially as a function of pressure. Visual sample shows are slightly weaker in depleted sandstones, but are less reliable, owing to dependence on reservoir quality and variations between geologists on oral descriptions of show quality.

Sorenson, R.P.; White, F.W.; Struckel, J.C.

1987-08-01T23:59:59.000Z

460

Georgia Tech Dangerous Gas  

E-Print Network [OSTI]

1 Georgia Tech Dangerous Gas Safety Program March 2011 #12;Georgia Tech Dangerous Gas Safety.......................................................................................................... 5 6. DANGEROUS GAS USAGE REQUIREMENTS................................................. 7 6.1. RESTRICTED PURCHASE/ACQUISITION RULES: ................................................ 7 7. FLAMMABLE GAS

Sherrill, David

Note: This page contains sample records for the topic "oklahoma nat gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

,"Oklahoma Coalbed Methane Proved Reserves (Billion Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: EnergyShale Proved Reserves (Billion CubicPrice SoldPriceGas, Wet AfterShale Proved ReservesCoalbed

462

,"Oklahoma Crude Oil + Lease Condensate Proved Reserves (Million Barrels)"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: EnergyShale Proved Reserves (Billion CubicPrice SoldPriceGas, Wet AfterShale Proved ReservesCoalbed+

463

Silicon Valley Power and Oklahoma Municipal Power Authority Win 2014 Public  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: AlternativeEnvironment,Institutes and ResponseStaffServices Services TheShale GasSign Up forPower

464

Reinterpretation of depositional processes in a classic flysch sequence (Pennsylvania Jackfork Group), Ouachita Mountains, Arkansas and Oklahoma: Discussion  

SciTech Connect (OSTI)

The contribution by Shanmugam and Moiola (1995) on the depositional processes of the Pennsylvanian Jackfork Group (Formation) in Arkansas and Oklahoma highlights a few important processes that are often overlooked. Their work on the fabric of some high-density flow deposits is interesting in light of the debate over the nature of these types of deposits (Lowe, 1982; Hiscott, 1994). However, we disagree with some of the observations and interpretations they use in making their argument for a new depositional model, and submit that (1) turbidity current deposits (turbidites) are a major lithofacies component in the DeGray Spillway cut is not difficult, and (4) because it is not necessary to preserve conventional dogma, a change in nomenclature is more appropriate than a change in depositional models. Finally, their call for application of their debris-flow model to the North Sea, Gulf of Mexico, offshore Nigeria, and elsewhere is disturbing because they would have the petroleum industry relinquish the idea of predictability in deep-water reservoirs.

Bouma, A.H. [Louisiana State Univ., Baton Rouge, LA (United States); DeVries, M.B. [Exxon Company, Houston, TX (United States); Stone, C.G. [Arkansas Geological Commission, Little Rock, AR (United States)

1997-03-01T23:59:59.000Z

465

Western Gas Sands Project. Status report, April-June 1982  

SciTech Connect (OSTI)

The progress during April, May and June 1982, of government-sponsored projects to increase gas production from low permeability gas sands of the Western United States, is summarized in this edition of the WGSP Quarterly Status Report. In an effort to eliminate wellbore storage during the testing of tight reservoirs and substantially reduce time and cost of testing, CER Corporation is investigating downhole shut-off to develop a shut-off tool. During the quarter, the University of Oklahoma completed the two-dimensional lenticular well simulator model and submitted a final report. At Lawrence Livermore National Laboratories, work is complete on the 2-D crack model and work has begun on developing a pseudo 3-D crack model. Preparations have begun at Los Alamos National Laboratory to test the 6-in. permanent magnet pre-prototype tool in the American Petroleum Institute test pit at the University of Houston. At Sandia National Laboratories, an analytical version of the Surface Electrical Potential (SEP) mathematical model has been completed. The data provided by DOE Well Test Facility's drill stem test (DST) of MWX-1 indicated wellbore storage was predominant during the buildup period of the test and essentially masks the pressure transient normally used in the DST analysis. For the Multi-Well Experiment program, cased hole logging, directional surveys and two geophysical surveys were accomplished this quarter. 38 figures.

Not Available

1983-01-01T23:59:59.000Z

466

Measurement and simulation of the cross sections for the production of {sup 148}Gd in thin {sup nat}W and {sup 181}Ta targets irradiated with 0.4- to 2.6-GeV protons  

SciTech Connect (OSTI)

The cross sections for the production of {sup 148}Gd in {sup nat}W and {sup 181}Ta targets irradiated by 0.4-, 0.6-, 0.8-, 1.2-, 1.6-, and 2.6-GeV protons at the ITEP accelerator complex have been measured by direct {alpha} spectrometry without chemical separation. The experimental data have been compared with the data obtained at other laboratories and with the theoretical simulations of the yields on the basis of the BERTINI, ISABEL, CEM03.02, INCL4.2, INCL4.5, CASCADE07, and PHITS codes.

Titarenko, Yu. E., E-mail: Yury.Titarenko@itep.ru; Batyaev, V. F.; Titarenko, A. Yu.; Butko, M. A.; Pavlov, K. V.; Florya, S. N.; Tikhonov, R. S.; Zhivun, V. M. [Institute for Theoretical and Experimental Physics (Russian Federation); Ignatyuk, A. V. [Institute of Physics and Power Engineering (Russian Federation); Mashnik, S. G. [Los Alamos National Laboratory (United States); Leray, S.; Boudard, A. [CEA (France); Cugnon, J.; Mancusi, D. [University of Liege (Belgium); Yariv, Y. [SoreqNRC (Israel); Nishihara, K.; Matsuda, N. [JAEA (Japan); Kumawat, H. [BARC (India); Mank, G. [IAEA (Austria); Gudowski, W. [Royal Institute of Technology (Sweden)

2011-04-15T23:59:59.000Z

467

Fuel gas conditioning process  

DOE Patents [OSTI]

A process for conditioning natural gas containing C.sub.3+ hydrocarbons and/or acid gas, so that it can be used as combustion fuel to run gas-powered equipment, including compressors, in the gas field or the gas processing plant. Compared with prior art processes, the invention creates lesser quantities of low-pressure gas per unit volume of fuel gas produced. Optionally, the process can also produce an NGL product.

Lokhandwala, Kaaeid A. (Union City, CA)

2000-01-01T23:59:59.000Z

468

Pennsylvania's Natural Gas Future  

E-Print Network [OSTI]

1 Pennsylvania's Natural Gas Future Penn State Natural Gas Utilization Workshop Bradley Hall sales to commercial and industrial customers ­ Natural gas, power, oil · Power generation ­ FossilMMBtuEquivalent Wellhead Gas Price, $/MMBtu Monthly US Spot Oil Price, $/MMBtu* U.S. Crude Oil vs. Natural Gas Prices, 2005

Lee, Dongwon

469

Rb-Sr and Sm-Nd isotopic study of the Glen Mountains layered complex: initiation of rifting within the southern Oklahoma aulacogen  

SciTech Connect (OSTI)

Rb-Sr and Sm-Nd isotopic data for rocks and minerals of the Glen Mountains layered complex (GMLC), a midcontinent mafic layered intrusion in the Wichita Mountains of southwestern Oklahoma, constrain the time of initiation of rifting within the southern Oklahoma aulacogen and provide information on the chemistry of the early Paleozoic mantle. Four whole-rock samples define a Rb-Sr isochron corresponding to a maximum crystallization age of 577 +/- 165 Ma and an initial Sr isotopic composition of 0.70359 +/- 2. A three-point Sm-Nd mineral-whole-rock (internal) isochron for an anorthositic gabbro provides a crystallization age of 528 +/- 29 Ma. These data suggest that the GMLC was emplaced into the southern Oklahoma aulacogen during the initial phase of rifting along the southern margin of the North American craton in the early Paleozoic. This Sm-Nd internal isochron age is within analytical uncertainty of U-Pb zircon ages for granites and rhyolites from the Wichita Mountains; therefore, mafic and felsic magmatism may have been contemporaneous within the rift during the early stages of development. Hybrid rocks and composite dikes in the Wichita Mountains provide field evidence for contemporaneous mafic and felsic magmas. Initial Sr and Nd isotopic data suggest that magmas parental to the GMLC were derived from a depleted mantle source. However, Nd isotopic data for the GMLC plot distinctly below data for the depleted mantle source cited by DePaolo and thus suggest that the parental magmas of the GMLC were either contaminated by Proterozoic crust of the southern midcontinent or were derived from a heterogenous mantle source region that had variable initial Nd isotopic compositions.

Lambert, D.D.; Unruh, D.M.; Gilbert, M.C.

1988-01-01T23:59:59.000Z

470

Oklahoma Hazardous Waste Management Act (Oklahoma)  

Broader source: Energy.gov [DOE]

A hazardous waste facility permit from the Department of Environmental Quality is required to store, treat or dispose of hazardous waste materials, or to construct, own or operate any facility...

471

Oklahoma Pollutant Discharge Elimination System Act (Oklahoma)  

Broader source: Energy.gov [DOE]

The Department of Environmental Quality regulates facilities that discharge any pollutant into waters of the state. Permits must be acquired before the discharge of any pollutants into state waters...

472

Accelerate Oklahoma (Oklahoma) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists' ResearchThe Office ofReporting (Connecticut) | Department

473

Gas Storage Act (Illinois)  

Broader source: Energy.gov [DOE]

Any corporation which is engaged in or desires to engage in, the distribution, transportation or storage of natural gas or manufactured gas, which gas, in whole or in part, is intended for ultimate...

474

Gas Utilities (New York)  

Broader source: Energy.gov [DOE]

This chapter regulates natural gas utilities in the State of New York, and describes standards and procedures for gas meters and accessories, gas quality, line and main extensions, transmission and...

475

Industrial Gas Turbines  

Broader source: Energy.gov [DOE]

A gas turbine is a heat engine that uses high-temperature, high-pressure gas as the working fluid. Part of the heat supplied by the gas is converted directly into mechanical work. High-temperature,...

476

Gas Utilities (Maine)  

Broader source: Energy.gov [DOE]

Rules regarding the production, sale, and transfer of manufactured gas will also apply to natural gas. This section regulates natural gas utilities that serve ten or more customers, more than one...

477

Gas Production Tax (Texas)  

Broader source: Energy.gov [DOE]

A tax of 7.5 percent of the market value of natural gas produced in the state of Texas is imposed on every producer of gas.

478

Natural gas dehydration apparatus  

DOE Patents [OSTI]

A process and corresponding apparatus for dehydrating gas, especially natural gas. The process includes an absorption step and a membrane pervaporation step to regenerate the liquid sorbent.

Wijmans, Johannes G; Ng, Alvin; Mairal, Anurag P

2006-11-07T23:59:59.000Z

479

Historical Natural Gas Annual  

U.S. Energy Information Administration (EIA) Indexed Site

8 The Historical Natural Gas Annual contains historical information on supply and disposition of natural gas at the national, regional, and State level as well as prices at...

480

Historical Natural Gas Annual  

U.S. Energy Information Administration (EIA) Indexed Site

6 The Historical Natural Gas Annual contains historical information on supply and disposition of natural gas at the national, regional, and State level as well as prices at...

Note: This page contains sample records for the topic "oklahoma nat gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Historical Natural Gas Annual  

U.S. Energy Information Administration (EIA) Indexed Site

7 The Historical Natural Gas Annual contains historical information on supply and disposition of natural gas at the national, regional, and State level as well as prices at...

482

The Greenness of Cities: Carbon Dioxide Emissions and Urban Development  

E-Print Network [OSTI]

Nashville, TN Greensboro-Wi~o Oklahoma City~K Charlotte-Gas~areas are in Texas and Oklahoma. There is a strong negativeAngeles to about 32 tons in Oklahoma City and Memphis. The

Glaeser, Edward L.; Kahn, Matthew E.

2008-01-01T23:59:59.000Z

483

Superfund Record of Decision (EPA Region 6): Hardage/Criner, McClain County, Oklahoma, November 1986. First remedial action. Final report  

SciTech Connect (OSTI)

The Hardage/Criner site is located in McClain County, Oklahoma, approximately 15 miles southwest of Norman, Oklahoma. The area is agricultural with land on all sides of the site used for grazing cattle. From September 1972 to November 1980, the site was operated by the Royal Hardage Industrial - Hazardous Wasteland and Disposal Facility and was permitted to accept all types of industrial and hazardous wastes except radioactive materials. The types of waste included: oil, recycling wastes, chlorinated solvents, styrene tars, acids, caustics, paint sludges, lead, chromium, cyanide, arsenic, pesticides, inks, PCBs, and large quantities of unknown wastes from injection wells and other facilities including what became the Brio and Bioecology Superfund sites. Originally, two pits were excavated; liquids and sludges from drums and tank trucks were discharged directly into these unlined pits. However, both pits filled to capacity. Wastes from the pits were transferred to temporary ponds and then piled on a sludge mound. A total of 18 to 20 million gallons of waste was disposed at the site.

Not Available

1986-11-14T23:59:59.000Z

484

MENTOR-BASED EFFORT TO ADVANCE IMPLEMENTATION OF PREFERRED MANAGEMENT PRACTICES (PMPS) FOR OIL PRODUCERS IN SOUTH MIDCONTINENT (OKLAHOMA/ARKANSAS) AND WEST COAST (CALIFORNIA) REGIONS  

SciTech Connect (OSTI)

The Petroleum Technology Transfer Council (PTTC) and cooperating Regional Lead Organizations (RLOs) in its South Midcontinent (Oklahoma Geological Survey, Norman, Oklahoma) and West Coast (University of Southern California, Los Angeles, California) regions conducted a ''Mentor-Based Effort to Advance Implementation of Preferred Management Practices (PMPs) For Oil Producers'' (DE-FC26-01BC15272) under an award in Phase I of Department of Energy's (DOE's) PUMP (Preferred Upstream Management Practices) program. The project's objective was to enable producers in California, Oklahoma and Arkansas to increase oil production, moderating or potentially reversing production declines and extending the life of marginal wells in the near term. PTTC identified the primary constraints inhibiting oil production through surveys and PUMPer direct contacts in both regions. The leading common constraint was excess produced water and associated factors. Approaches for addressing this common constraint were tailored for each region. For Oklahoma and Arkansas, the South Midcontinent Region developed a concise manual titled ''Produced Water And Associated Issues'' that led to multiple workshops across the region, plus workshops in several other regions. In California, the West Coast Region leveraged PUMP funding to receive an award from the California Energy Commission for $300,000 to systematically evaluate water control solutions for the California geological environment. Products include still-developing remedial action templates to help producers identify underlying causes of excess water production and screen appropriate solutions. Limited field demonstrations are being implemented to build producer confidence in water control technologies. Minor leverage was also gained by providing technology transfer support to a Global Energy Partners project that demonstrated affordable approaches for reducing power consumption. PTTC leveraged PUMP project results nationally through expanding workshops to other regions, providing coverage in its newsletter, through columns and case studies in trade journals, and through coordinating presentations at association and professional society meetings. Combined, there were more than 800 participants. Applying ''application percentages'' from PTTC's total technology transfer program, more than 250 participants are likely to be applying technologies (39% of industry participants). Polymer gel water-shutoff (WSO) treatments and wellbore management were a focus in the Midcontinent area. A major provider of polymer gel WSO treatments has experienced a significant increase in treatment activity in Oklahoma, some of which can be logically attributed to this project. A provider of polylined tubing, a product related to wellbore management, has noted a 280% increase in their independent customer base and opening of a new market due to their involvement in PUMP-spinoff technology transfer. Detailed case studies on polymer gel WSO treatments and wellbore management, along with more global analyses, demonstrate the economic value of these technologies to producers. Among the many information sources that producers consider when applying technology, PTTC knows it is an important source in these technology areas.

Donald F. Duttlinger; E. Lance Cole

2004-12-01T23:59:59.000Z

485

The University of Oklahoma New Employee Personal Data Form (0 / /201 ) For initial hires, the PDF form must accompany the PAF. This document is not an application for employment. The University of  

E-Print Network [OSTI]

The University of Oklahoma New Employee Personal Data Form (0 / /201 ) For initial hires, the PDF or for dismissal. Signature: Date: #12;New Employee Personal Data Form - Education Section (06/15/2010) NOTE.S.C. § 552a(b), including updates and exceptions. Please provide all the data requested. Complete side two

Oklahoma, University of

486

Compressed gas manifold  

DOE Patents [OSTI]

A compressed gas storage cell interconnecting manifold including a thermally activated pressure relief device, a manual safety shut-off valve, and a port for connecting the compressed gas storage cells to a motor vehicle power source and to a refueling adapter. The manifold is mechanically and pneumatically connected to a compressed gas storage cell by a bolt including a gas passage therein.

Hildebrand, Richard J. (Edgemere, MD); Wozniak, John J. (Columbia, MD)

2001-01-01T23:59:59.000Z

487

OIL & GAS INSTITUTE Introduction  

E-Print Network [OSTI]

OIL & GAS INSTITUTE CONTENTS Introduction Asset Integrity Underpinning Capabilities 2 4 4 6 8 9 10 COMPETITIVENESS UNIVERSITY of STRATHCLYDE OIL & GAS INSTITUTE OIL & GAS EXPERTISE AND PARTNERSHIPS #12;1 The launch of the Strathclyde Oil & Gas Institute represents an important step forward for the University

Mottram, Nigel

488

Noble gas magnetic resonator  

DOE Patents [OSTI]

Precise measurements of a precessional rate of noble gas in a magnetic field is obtained by constraining the time averaged direction of the spins of a stimulating alkali gas to lie in a plane transverse to the magnetic field. In this way, the magnetic field of the alkali gas does not provide a net contribution to the precessional rate of the noble gas.

Walker, Thad Gilbert; Lancor, Brian Robert; Wyllie, Robert

2014-04-15T23:59:59.000Z

489

Transportation and Greenhouse Gas Mitigation  

E-Print Network [OSTI]

fuels (eg diesel, compressed natural gas). Electricity (infossil fuels, such as compressed natural gas and liquefied

Lutsey, Nicholas P.; Sperling, Dan

2008-01-01T23:59:59.000Z

490

Natural gas monthly  

SciTech Connect (OSTI)

The Natural Gas Monthly highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the Natural Gas Monthly features articles designed to assist readers in using and interpreting natural gas information.

NONE

1998-01-01T23:59:59.000Z

491

Laboratory Constraints on the Stability of Petroleum at Elevated Temperatures: Implications for the Origin of Natural Gas  

SciTech Connect (OSTI)

Results of prior DOE supported research conducted at the Woods Hole Oceanographic Institution have demonstrated the participation of sedimentary minerals and water as reactants and catalysts in chemical transformations associated with the degradation of oil and the formation of low molecular weight organic compounds. The occurrence of such processes in natural environments can be difficult to recognize because the composition of organic alteration products may not be substantially different than those produced by thermal cracking. The goals of this study were the development of diagnostic tools based on hydrogen and carbon isotopes that can be used to identify geochemical processes responsible for the formation of thermogenic natural gas. In addition, our activities were expanded to include experimental investigation of CO2 reduction in aqueous systems at elevated temperature and pressures and an assessment of microbial activity in relatively low temperature (<70°C) natural gas reservoirs in southeastern Oklahoma. Specific objectives included: ? A laboratory investigation of geochemical processes that regulate the hydrogen isotope composition of low molecular weight hydrocarbons in natural gas at elevated temperatures and pressures. ? A laboratory investigation of factors that regulate the carbon isotope composition of organic acids in basinal brines. ? A laboratory assessment of the role of methanol during reduction of CO2 to CH4 under hydrothermal conditions. ? Characterization of microbial ecosystems in coproduced fluids from the Potato Hills gas field to assess the role of microbes in the generation of natural gas.

Seewald, Jeffrey, S.

2011-03-14T23:59:59.000Z

492

A Colorado Perspective: The New Energy Economy  

E-Print Network [OSTI]

gas, and recent discoveries of shale gas reserves are rap-of nat- ural gas reserves creates new opportunities forexpanding proven reserves. Natural gas will be an important

Martin, Jim; Brannon, Ginny

2009-01-01T23:59:59.000Z

493

Measurement and simulation of the cross sections for nuclide production in {sup 93}Nb and {sup nat}Ni targets irradiated with 0.04- to 2.6-GeV protons  

SciTech Connect (OSTI)

The cross sections for nuclide production in thin {sup 93}Nb and {sup nat}Ni targets irradiated by 0.04- to 2.6-GeV protons have been measured by direct {gamma} spectrometry using two {gamma} spectrometers with the resolutions of 1.8 and 1.7 keV in the {sup 60}Co 1332-keV {gamma} line. As a result, 1112 yields of radioactive residual nuclei have been obtained. The {sup 27}Al(p, x){sup 22}Na reaction has been used as a monitor reaction. The experimental data have been compared with the MCNPX (BERTINI, ISABEL), CEM03.02, INCL4.2, INCL4.5, PHITS, and CASCADE07 calculations.

Titarenko, Yu. E., E-mail: Yury.Titarenko@itep.ru; Batyaev, V. F.; Titarenko, A. Yu.; Butko, M. A.; Pavlov, K. V.; Florya, S. N.; Tikhonov, R. S.; Zhivun, V. M. [Institute for Theoretical and Experimental Physics (Russian Federation); Ignatyuk, A. V. [Institute of Physics and Power Engineering (Russian Federation); Mashnik, S. G. [Los Alamos National Laboratory (United States); Leray, S.; Boudard, A. [CEA (France); Cugnon, J.; Mancusi, D. [University of Liege (Belgium); Yariv, Y. [SoreqNRC (Israel); Nishihara, K.; Matsuda, N. [JAEA (Japan); Kumawat, H. [BARC (India); Mank, G. [IAEA (Austria); Gudowski, W. [Royal Institute of Technology (Sweden)

2011-04-15T23:59:59.000Z

494

Measurement and simulation of the cross sections for nuclide production in {sup 56}Fe and {sup nat}Cr targets irradiated with 0.04- to 2.6-GeV protons  

SciTech Connect (OSTI)

The cross sections for nuclide production in thin {sup 56}Fe and {sup nat}Cr targets irradiated by 0.04-2.6-GeV protons are measured by direct {gamma} spectrometry using two {gamma} spectrometers with the resolutions of 1.8 and 1.7 keV for the {sup 60}Co 1332-keV {gamma} line. As a result, 649 yields of radioactive residual product nuclei have been obtained. The {sup 27}Al(p, x){sup 22}Na reaction has been used as a monitor reaction. The experimental data are compared with the MCNPX (BERTINI, ISABEL), CEM03.02, INCL4.2, INCL4.5, PHITS, and CASCADE07 calculations.

Titarenko, Yu. E., E-mail: Yury.Titarenko@itep.ru; Batyaev, V. F.; Titarenko, A. Yu.; Butko, M. A.; Pavlov, K. V.; Florya, S. N.; Tikhonov, R. S.; Zhivun, V. M. [Institute for Theoretical and Experimental Physics (Russian Federation); Ignatyuk, A. V. [Institute of Physics and Power Engineering (Russian Federation); Mashnik, S. G. [Los Alamos National Laboratory (United States); Leray, S.; Boudard, A. [CEA (France); Cugnon, J.; Mancusi, D. [University of Liege (Belgium); Yariv, Y. [Soreq NRC (Israel); Nishihara, K.; Matsuda, N. [JAEA (Japan); Kumawat, H. [BARC (India); Mank, G. [IAEA (Austria); Gudowski, W. [Royal Institute of Technology (Sweden)

2011-04-15T23:59:59.000Z

495

Excitation functions of $^{nat}$Pb(d,x)$^{206,205,204,203,202}$Bi, $^{203cum,202m,201cum}$Pb and $^{202cum,201cum}$Tl reactions up to 50 MeV  

E-Print Network [OSTI]

Cross-sections of deuteron induced nuclear reactions on lead were measured up to 50 MeV using the standard stacked foil irradiation technique and high resolution $\\gamma$-ray spectrometry. Experimental cross-sections and derived integral yields are presented for the $^{nat}$Pb(d,x)$^{206,205,204,203,202}$Bi, $^{203cum,202m,201cum}$Pb and $^{202cum,201cum}$Tl reactions. The experimental data were compared with the results from literature and with the data in the TENDL-2013 library (obtained with TALYS code). The cross-section data were analyzed also with the theoretical results calculated by using the ALICE-IPPPE-D and EMPIRE-D codes.

F. Ditrói; F. Tárkányi; S. Takács; A. Hermanne; A. V. Ignatyuk

2014-11-27T23:59:59.000Z

496

Measurement and simulation of the cross sections for nuclide production in {sup nat}W and {sup 181}Ta targets irradiated with 0.04- to 2.6-GeV protons  

SciTech Connect (OSTI)

The cross sections for nuclide production in thin {sup nat}Wand {sup 181}Ta targets irradiated by 0.04-2.6-GeV protons have been measured by direct {gamma} spectrometry using two {gamma} spectrometers with the resolutions of 1.8 and 1.7 keV in the {sup 60}Co 1332-keV {gamma} line. As a result, 1895 yields of radioactive residual product nuclei have been obtained. The {sup 27}Al(p, x){sup 22}Na reaction has been used as a monitor reaction. The experimental data have been compared with the MCNPX (BERTINI, ISABEL), CEM03.02, INCL4.2, INCL4.5, PHITS, and CASCADE07 calculations.

Titarenko, Yu. E., E-mail: Yury.Titarenko@itep.ru; Batyaev, V. F.; Titarenko, A. Yu.; Butko, M. A.; Pavlov, K. V.; Florya, S. N.; Tikhonov, R. S.; Zhivun, V. M. [Institute for Theoretical and Experimental Physics (Russian Federation); Ignatyuk, A. V. [Institute of Physics and Power Engineering (Russian Federation); Mashnik, S. G. [Los Alamos National Laboratory (United States); Leray, S.; Boudard, A. [CEA (France); Cugnon, J.; Mancusi, D. [University of Liege (Belgium); Yariv, Y. [SoreqNRC (Israel); Nishihara, K.; Matsuda, N. [JAEA (Japan); Kumawat, H. [BARC (India); Mank, G. [IAEA (Austria); Gudowski, W. [Royal Institute of Technology (Sweden)

2011-04-15T23:59:59.000Z

497

Cost of Gas Adjustment for Gas Utilities (Maine)  

Broader source: Energy.gov [DOE]

This rule, applicable to gas utilities, establishes rules for calculation of gas cost adjustments, procedures to be followed in establishing gas cost adjustments and refunds, and describes reports...

498

Enhanced membrane gas separations  

SciTech Connect (OSTI)

An improved membrane gas separation process is described comprising: (a) passing a feed gas stream to the non-permeate side of a membrane system adapted for the passage of purge gas on the permeate side thereof, and for the passage of the feed gas stream in a counter current flow pattern relative to the flow of purge gas on the permeate side thereof, said membrane system being capable of selectively permeating a fast permeating component from said feed gas, at a feed gas pressure at or above atmospheric pressure; (b) passing purge gas to the permeate side of the membrane system in counter current flow to the flow of said feed gas stream in order to facilitate carrying away of said fast permeating component from the surface of the membrane and maintaining the driving force for removal of the fast permeating component through the membrane from the feed gas stream, said permeate side of the membrane being maintained at a subatmospheric pressure within the range of from about 0.1 to about 5 psia by vacuum pump means; (c) recovering a product gas stream from the non-permeate side of the membrane; and (d) discharging purge gas and the fast permeating component that has permeated the membrane from the permeate side of the membrane, whereby the vacuum conditions maintained on the permeate side of the membrane by said vacuum pump means enhance the efficiency of the gas separation operation, thereby reducing the overall energy requirements thereof.

Prasad, R.

1993-07-13T23:59:59.000Z

499

Health assessment for Royal Hardage Industrial Hazardous Waste Land Disposal Facility, Criner, Oklahoma, Region 6. CERCLIS No. OKD000400093. Final report  

SciTech Connect (OSTI)

The Royal Hardage Industrial Hazardous Waste Land Disposal Facility (Hardage/Criner) National Priorities List Site is located in Criner, McClain County, Oklahoma. The site is located in an agricultural area. There are volatile organic compounds (VOCs) and several heavy metals present in the groundwater and soil, and VOCs in surface water and sediment. The Record of Decision signed November 1986 selected several remedial actions which included excavation of the primary source material and separation of the wastes for treatment, solids to be disposed of in an on-site landfill that meets Resource Conservation and Recovery Act requirements, organic liquids to be incinerated, and inorganic liquids to be treated by other means as necessary. The site is currently in the remedial-design phase.

Not Available

1988-12-01T23:59:59.000Z

500

Superfund Record of Decision (EPA Region 6): Hardage/Criner Site, McClain County, Oklahoma (First remedial action, amendment), November 1989  

SciTech Connect (OSTI)

The Hardage/Criner site is in an agricultural area near Criner, McClain County, in central Oklahoma. The site is situated in the North Criner Creek drainage basin. From 1972 to 1980 the site was operated under a State permit for the disposal of industrial wastes including paint sludges and solids, ink solvents, tire manufacturing wastes, oils, other solvents, cyanides, and plating wastes sludges. Waste disposal practices have resulted in the contamination of approximately 70 acres of ground water. A 1986 Record of Decision was never implemented due to protracted litigation. The 1989 ROD Amendment provides a comprehensive site remedy addressing both source control and ground water remediation and takes into consideration recently enacted land disposal restrictions. Source control remediation includes installation of liquid extraction wells to pump out free liquids currently pooled in the three waste areas and any liquids released from drums buried in the mounds, followed by offsite treatment.

Not Available

1989-11-22T23:59:59.000Z