Sample records for oils heavy gas

  1. Utah Heavy Oil Program

    SciTech Connect (OSTI)

    J. Bauman; S. Burian; M. Deo; E. Eddings; R. Gani; R. Goel; C.K. Huang; M. Hogue; R. Keiter; L. Li; J. Ruple; T. Ring; P. Rose; M. Skliar; P.J. Smith; J.P. Spinti; P. Tiwari; J. Wilkey; K. Uchitel

    2009-10-20T23:59:59.000Z

    The Utah Heavy Oil Program (UHOP) was established in June 2006 to provide multidisciplinary research support to federal and state constituents for addressing the wide-ranging issues surrounding the creation of an industry for unconventional oil production in the United States. Additionally, UHOP was to serve as an on-going source of unbiased information to the nation surrounding technical, economic, legal and environmental aspects of developing heavy oil, oil sands, and oil shale resources. UHOP fulGilled its role by completing three tasks. First, in response to the Energy Policy Act of 2005 Section 369(p), UHOP published an update report to the 1987 technical and economic assessment of domestic heavy oil resources that was prepared by the Interstate Oil and Gas Compact Commission. The UHOP report, entitled 'A Technical, Economic, and Legal Assessment of North American Heavy Oil, Oil Sands, and Oil Shale Resources' was published in electronic and hard copy form in October 2007. Second, UHOP developed of a comprehensive, publicly accessible online repository of unconventional oil resources in North America based on the DSpace software platform. An interactive map was also developed as a source of geospatial information and as a means to interact with the repository from a geospatial setting. All documents uploaded to the repository are fully searchable by author, title, and keywords. Third, UHOP sponsored Give research projects related to unconventional fuels development. Two projects looked at issues associated with oil shale production, including oil shale pyrolysis kinetics, resource heterogeneity, and reservoir simulation. One project evaluated in situ production from Utah oil sands. Another project focused on water availability and produced water treatments. The last project considered commercial oil shale leasing from a policy, environmental, and economic perspective.

  2. Bioconversion of Heavy oil.

    E-Print Network [OSTI]

    Steinbakk, Sandra

    2011-01-01T23:59:59.000Z

    ??70 % of world?s oil reservoirs consist of heavy oil, and as the supply of conventional oil decreases, researchers are searching for new technologies to… (more)

  3. Petrophysical Properties of Unconventional Low-Mobility Reservoirs (Shale Gas and Heavy Oil) by Using Newly Developed Adaptive Testing Approach

    E-Print Network [OSTI]

    Torres-Verdín, Carlos

    SPE 159172 Petrophysical Properties of Unconventional Low-Mobility Reservoirs (Shale Gas and Heavy Oil) by Using Newly Developed Adaptive Testing Approach Hamid Hadibeik, The University of Texas the dynamics of water- and oil- base mud-filtrate invasion that produce wellbore supercharging were developed

  4. Heavy oil production from Alaska

    SciTech Connect (OSTI)

    Mahmood, S.M.; Olsen, D.K. [NIPER/BDM-Oklahoma, Inc., Bartlesville, OK (United States); Thomas, C.P. [Idaho National Engineering Lab., Idaho Falls, ID (United States)

    1995-12-31T23:59:59.000Z

    North Slope of Alaska has an estimated 40 billion barrels of heavy oil and bitumen in the shallow formations of West Sak and Ugnu. Recovering this resource economically is a technical challenge for two reasons: (1) the geophysical environment is unique, and (2) the expected recovery is a low percentage of the oil in place. The optimum advanced recovery process is still undetermined. Thermal methods would be applicable if the risks of thawing the permafrost can be minimized and the enormous heat losses reduced. Use of enriched natural gas is a probable recovery process for West Sak. Nearby Prudhoe Bay field is using its huge natural gas resources for pressure maintenance and enriched gas improved oil recovery (IOR). Use of carbon dioxide is unlikely because of dynamic miscibility problems. Major concerns for any IOR include close well spacing and its impact on the environment, asphaltene precipitation, sand production, and fines migration, in addition to other more common production problems. Studies have indicated that recovering West Sak and Lower Ugnu heavy oil is technically feasible, but its development has not been economically viable so far. Remoteness from markets and harsh Arctic climate increase production costs relative to California heavy oil or Central/South American heavy crude delivered to the U.S. Gulf Coast. A positive change in any of the key economic factors could provide the impetus for future development. Cooperation between the federal government, state of Alaska, and industry on taxation, leasing, and permitting, and an aggressive support for development of technology to improve economics is needed for these heavy oil resources to be developed.

  5. Water issues associated with heavy oil production.

    SciTech Connect (OSTI)

    Veil, J. A.; Quinn, J. J.; Environmental Science Division

    2008-11-28T23:59:59.000Z

    Crude oil occurs in many different forms throughout the world. An important characteristic of crude oil that affects the ease with which it can be produced is its density and viscosity. Lighter crude oil typically can be produced more easily and at lower cost than heavier crude oil. Historically, much of the nation's oil supply came from domestic or international light or medium crude oil sources. California's extensive heavy oil production for more than a century is a notable exception. Oil and gas companies are actively looking toward heavier crude oil sources to help meet demands and to take advantage of large heavy oil reserves located in North and South America. Heavy oil includes very viscous oil resources like those found in some fields in California and Venezuela, oil shale, and tar sands (called oil sands in Canada). These are described in more detail in the next chapter. Water is integrally associated with conventional oil production. Produced water is the largest byproduct associated with oil production. The cost of managing large volumes of produced water is an important component of the overall cost of producing oil. Most mature oil fields rely on injected water to maintain formation pressure during production. The processes involved with heavy oil production often require external water supplies for steam generation, washing, and other steps. While some heavy oil processes generate produced water, others generate different types of industrial wastewater. Management and disposition of the wastewater presents challenges and costs for the operators. This report describes water requirements relating to heavy oil production and potential sources for that water. The report also describes how water is used and the resulting water quality impacts associated with heavy oil production.

  6. Unconventional Oil and Gas Resources

    SciTech Connect (OSTI)

    none

    2006-09-15T23:59:59.000Z

    World oil use is projected to grow to 98 million b/d in 2015 and 118 million b/d in 2030. Total world natural gas consumption is projected to rise to 134 Tcf in 2015 and 182 Tcf in 2030. In an era of declining production and increasing demand, economically producing oil and gas from unconventional sources is a key challenge to maintaining global economic growth. Some unconventional hydrocarbon sources are already being developed, including gas shales, tight gas sands, heavy oil, oil sands, and coal bed methane. Roughly 20 years ago, gas production from tight sands, shales, and coals was considered uneconomic. Today, these resources provide 25% of the U.S. gas supply and that number is likely to increase. Venezuela has over 300 billion barrels of unproven extra-heavy oil reserves which would give it the largest reserves of any country in the world. It is currently producing over 550,000 b/d of heavy oil. Unconventional oil is also being produced in Canada from the Athabasca oil sands. 1.6 trillion barrels of oil are locked in the sands of which 175 billion barrels are proven reserves that can be recovered using current technology. Production from 29 companies now operating there exceeds 1 million barrels per day. The report provides an overview of continuous petroleum sources and gives a concise overview of the current status of varying types of unconventional oil and gas resources. Topics covered in the report include: an overview of the history of Oil and Natural Gas; an analysis of the Oil and Natural Gas industries, including current and future production, consumption, and reserves; a detailed description of the different types of unconventional oil and gas resources; an analysis of the key business factors that are driving the increased interest in unconventional resources; an analysis of the barriers that are hindering the development of unconventional resources; profiles of key producing regions; and, profiles of key unconventional oil and gas producers.

  7. Exploiting heavy oil reserves

    E-Print Network [OSTI]

    Levi, Ran

    North Sea investment potential Exploiting heavy oil reserves Beneath the waves in 3D Aberdeen.hamptonassociates.com pRINTED BY nB GroUP Paper sourced from sustainable forests CONTENTS 3/5 does the north Sea still industry partnership drives research into sensor systems 11 Beneath the waves in 3d 12/13 does

  8. Mild hydrocracking of bitumen-derived coker and hydrocracker heavy gas oils; Kinetics, product yields, and product properties

    SciTech Connect (OSTI)

    Yui, S.M.; Sanford, E.C. (Research Dept., Syncrude Canada Ltd., PO Box 5790, Edmonton, Alberta (CA))

    1989-09-01T23:59:59.000Z

    The authors describe bitumen-derived coker and hydrocracker heavy gas oils hydrotreated at 350-400{sup 0}C, 7-11 MPa, 0.7-1.5h/sup -1/ LHSV, and 600 S m/sup 3/ of H/sub 2//m/sup 3/ of feed in a pilot-scale trickle-bed reactor, over presulfided commercial NiMo/Al/sub 2/O/sub 3/ catalysts. The conversion of HGO materials (343+ {sup 0}C) in feed to naphtha (195- {sup 0}C) and LGO (195/343 {sup 0}C) was determined by gas chromatographic simulated distillation. The degree of conversion was analyzed with modified first-order kinetics, which incorporate power terms for LHSV and hydrogen partial pressure. The equations were based on three cracking schemes; parallel, consecutive, and combined parallel-consecutive conversion.

  9. OIL & GAS INSTITUTE Introduction

    E-Print Network [OSTI]

    Mottram, Nigel

    OIL & GAS INSTITUTE CONTENTS Introduction Asset Integrity Underpinning Capabilities 2 4 4 6 8 9 10 COMPETITIVENESS UNIVERSITY of STRATHCLYDE OIL & GAS INSTITUTE OIL & GAS EXPERTISE AND PARTNERSHIPS #12;1 The launch of the Strathclyde Oil & Gas Institute represents an important step forward for the University

  10. Oil and Gas Exploration

    E-Print Network [OSTI]

    Tingley, Joseph V.

    Metals Industrial Minerals Oil and Gas Geothermal Exploration Development Mining Processing Nevada, oil and gas, and geothermal activities and accomplishments in Nevada: production statistics, exploration and development including drilling for petroleum and geothermal resources, discoveries of ore

  11. Gas and Oil (Maryland)

    Broader source: Energy.gov [DOE]

    The Department of the Environment has the authority to enact regulations pertaining to oil and gas production, but it cannot prorate or limit the output of any gas or oil well. A permit from the...

  12. Oil and Gas Supply Module

    Gasoline and Diesel Fuel Update (EIA)

    Onshore Lower 48 Oil and Gas Supply Submodule, Offshore Oil and Gas Supply Submodule, Oil Shale Supply Submodule1, and Alaska Oil and Gas Supply Submodule. A detailed description...

  13. Oil and Gas Supply Module

    Gasoline and Diesel Fuel Update (EIA)

    Onshore Lower 48 Oil and Gas Supply Submodule, Offshore Oil and Gas Supply Submodule, Oil Shale Supply Submodule, and Alaska Oil and Gas Supply Submodule. A detailed description of...

  14. Process for removing heavy metal compounds from heavy crude oil

    DOE Patents [OSTI]

    Cha, Chang Y. (Golden, CO); Boysen, John E. (Laramie, WY); Branthaver, Jan F. (Laramie, WY)

    1991-01-01T23:59:59.000Z

    A process is provided for removing heavy metal compounds from heavy crude oil by mixing the heavy crude oil with tar sand; preheating the mixture to a temperature of about 650.degree. F.; heating said mixture to up to 800.degree. F.; and separating tar sand from the light oils formed during said heating. The heavy metals removed from the heavy oils can be recovered from the spent sand for other uses.

  15. Oil and Gas (Indiana)

    Broader source: Energy.gov [DOE]

    This division of the Indiana Department of Natural Resources provides information on the regulation of oil and gas exploration, wells and well spacings, drilling, plugging and abandonment, and...

  16. Canadian oil market review shows growing influence of heavy oil and bitumen

    SciTech Connect (OSTI)

    Not Available

    1986-09-01T23:59:59.000Z

    Canadian oil demand and consumption, crude oil received at refineries, oil well productivity including shut-in production, and exports and imports are discussed. Both light and heavy oil, natural gas, and bitumen are included in the seasonally-adjusted data presented.

  17. Oil and Gas Production (Missouri)

    Broader source: Energy.gov [DOE]

    A State Oil and Gas Council regulates and oversees oil and gas production in Missouri, and conducts a biennial review of relevant rules and regulations. The waste of oil and gas is prohibited. This...

  18. Oil and Gas Program (Tennessee)

    Broader source: Energy.gov [DOE]

    The Oil and Gas section of the Tennessee Code, found in Title 60, covers all regulations, licenses, permits, and laws related to the production of natural gas. The laws create the Oil and Gas...

  19. Heavy Oil Upgrading from Electron Beam (E-Beam) Irradiation

    E-Print Network [OSTI]

    Yang, Daegil

    2011-02-22T23:59:59.000Z

    -heavy oil, and oil shale. Tremendous amounts of heavy oil resources are available in the world. Fig. 1.1 shows the total world oil reserves, and indicates that heavy oil, extra heavy oil, and bitumen make up about 70% of the world?s total oil resources...

  20. Heavy Oil Consumption Reduction Program (Quebec, Canada)

    Broader source: Energy.gov [DOE]

    This program helps heavy oil consumers move toward sustainable development while improving their competitive position by reducing their consumption. Financial assistance is offered to carry out...

  1. Oil and Gas Conservation (Montana)

    Broader source: Energy.gov [DOE]

    Parts 1 and 2 of this chapter contain a broad range of regulations pertaining to oil and gas conservation, including requirements for the regulation of oil and gas exploration and extraction by the...

  2. SOVENT BASED ENHANCED OIL RECOVERY FOR IN-SITU UPGRADING OF HEAVY OIL SANDS

    SciTech Connect (OSTI)

    Munroe, Norman

    2009-01-30T23:59:59.000Z

    With the depletion of conventional crude oil reserves in the world, heavy oil and bitumen resources have great potential to meet the future demand for petroleum products. However, oil recovery from heavy oil and bitumen reservoirs is much more difficult than that from conventional oil reservoirs. This is mainly because heavy oil or bitumen is partially or completely immobile under reservoir conditions due to its extremely high viscosity, which creates special production challenges. In order to overcome these challenges significant efforts were devoted by Applied Research Center (ARC) at Florida International University and The Center for Energy Economics (CEE) at the University of Texas. A simplified model was developed to assess the density of the upgraded crude depending on the ratio of solvent mass to crude oil mass, temperature, pressure and the properties of the crude oil. The simplified model incorporated the interaction dynamics into a homogeneous, porous heavy oil reservoir to simulate the dispersion and concentration of injected CO2. The model also incorporated the characteristic of a highly varying CO2 density near the critical point. Since the major challenge in heavy oil recovery is its high viscosity, most researchers have focused their investigations on this parameter in the laboratory as well as in the field resulting in disparaging results. This was attributed to oil being a complex poly-disperse blend of light and heavy paraffins, aromatics, resins and asphaltenes, which have diverse behaviors at reservoir temperature and pressures. The situation is exacerbated by a dearth of experimental data on gas diffusion coefficients in heavy oils due to the tedious nature of diffusivity measurements. Ultimately, the viscosity and thus oil recovery is regulated by pressure and its effect on the diffusion coefficient and oil swelling factors. The generation of a new phase within the crude and the differences in mobility between the new crude matrix and the precipitate readily enables removal of asphaltenes. Thus, an upgraded crude low in heavy metal, sulfur and nitrogen is more conducive for further purification.

  3. Oil and Gas Air Heaters

    E-Print Network [OSTI]

    Kou, G.; Wang, H.; Zhou, J.

    2006-01-01T23:59:59.000Z

    , the relation of hot-air temperature, oil or gas consumption and fresh airflow is determined based on energy equilibrium....

  4. Analysis of Heavy Oil Recovery by Thermal EOR in a Meander Belt: From Geological

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Analysis of Heavy Oil Recovery by Thermal EOR in a Meander Belt: From Geological to Reservoir aux périodes cruciales de production. Oil & Gas Science and Technology ­ Rev. IFP Energies nouvelles Défis et nouvelles approches en EOR D o s s i e r #12;Oil & Gas Science and Technology ­ Rev. IFP

  5. Oil and Gas Exploration (Connecticut)

    Broader source: Energy.gov [DOE]

    These regulations apply to activities conducted for the purpose of obtaining geological, geophysical, or geochemical information about oil or gas including seismic activities but excluding...

  6. Definition of heavy oil and natural bitumen

    SciTech Connect (OSTI)

    Meyer, R.F.

    1988-08-01T23:59:59.000Z

    Definition and categorization of heavy oils and natural bitumens are generally based on physical or chemical attributes or on methods of extraction. Ultimately, the hydrocarbon's chemical composition will govern both its physical state and the extraction technique applicable. These oils and bitumens closely resemble the residuum from wholecrude distillation to about 1,000/degree/F; if the residuum constitutes at least 15% of the crude, it is considered to be heavy. In this material is concentrated most of the trace elements, such as sulfur, oxygen, and nitrogen, and metals, such as nickel and vanadium. A widely used definition separates heavy oil from natural bitumen by viscosity, crude oil being less, and bitumen more viscous than 10,000 cp. Heavy crude then falls in the range 10/degree/-20/degree/ API inclusive and extra-heavy oil less than 10/degree/ API. Most natural bitumen is natural asphalt (tar sands, oil sands) and has been defined as rock containing hydrocarbons more viscous than 10,000 cp or else hydrocarbons that may be extracted from mined or quarried rock. Other natural bitumens are solids, such as gilsonite, grahamite, and ozokerite, which are distinguished by streak, fusibility, and solubility. The upper limit for heavy oil may also be set at 18/degree/ API, the approximate limit for recovery by waterflood.

  7. International Oil and Gas Board International Oil and Gas Board...

    Open Energy Info (EERE)

    Oil and Gas Board Address Place Zip Website Abu Dhabi Supreme Petroleum Council Abu Dhabi Supreme Petroleum Council Abu Dhabi http www abudhabi ae egovPoolPortal WAR appmanager...

  8. Thermal processes for heavy oil recovery

    SciTech Connect (OSTI)

    Sarkar, A.K.; Sarathi, P.S.

    1993-11-01T23:59:59.000Z

    This status report summarizes the project BE11B (Thermal Processes for Heavy Oil Recovery) research activities conducted in FY93 and completes milestone 7 of this project. A major portion of project research during FY93 was concentrated on modeling and reservoir studies to determine the applicability of steam injection oil recovery techniques in Texas Gulf Coast heavy oil reservoirs. In addition, an in-depth evaluation of a steamflood predictive model developed by Mobil Exploration and Production Co. (Mobil E&P) was performed. Details of these two studies are presented. A topical report (NIPER-675) assessing the NIPER Thermal EOR Research Program over the past 10 years was also written during this fiscal year and delivered to DOE. Results of the Gulf Coast heavy oil reservoir simulation studies indicated that though these reservoirs can be successfully steamflooded and could recover more than 50% of oil-in-place, steamflooding may not be economical at current heavy oil prices. Assessment of Mobil E&P`s steamflood predictive model capabilities indicate that the model in its present form gives reasonably good predictions of California steam projects, but fails to predict adequately the performance of non-California steam projects.

  9. RESEARCH OIL RECOVERY MECHANISMS IN HEAVY OIL RESERVOIRS

    SciTech Connect (OSTI)

    Anthony R. Kovscek; William E. Brigham

    1999-06-01T23:59:59.000Z

    The United States continues to rely heavily on petroleum fossil fuels as a primary energy source, while domestic reserves dwindle. However, so-called heavy oil (10 to 20{sup o}API) remains an underutilized resource of tremendous potential. Heavy oils are much more viscous than conventional oils. As a result, they are difficult to produce with conventional recovery methods such as pressure depletion and water injection. Thermal recovery is especially important for this class of reservoirs because adding heat, usually via steam injection, generally reduces oil viscosity dramatically. This improves displacement efficiency. The research described here was directed toward improved understanding of thermal and heavy-oil production mechanisms and is categorized into: (1) flow and rock properties; (2) in-situ combustion; (3) additives to improve mobility control; (4) reservoir definition; and (5) support services. The scope of activities extended over a three-year period. Significant work was accomplished in the area of flow properties of steam, water, and oil in consolidated and unconsolidated porous media, transport in fractured porous media, foam generation and flow in homogeneous and heterogeneous porous media, the effects of displacement pattern geometry and mobility ratio on oil recovery, and analytical representation of water influx. Significant results are described.

  10. Oil and Gas Conservation (Nebraska)

    Broader source: Energy.gov [DOE]

    This section establishes the state's interest in encouraging the development, production, and utilization of natural gas and oil resources in a manner which will prevent waste and lead to the...

  11. Liens for Oil and Gas Operations (Nebraska)

    Broader source: Energy.gov [DOE]

    This section contains regulations concerning lien allowances made to operators of oil and gas operations.

  12. Research on Oil Recovery Mechanisms in Heavy Oil Reservoirs

    SciTech Connect (OSTI)

    Louis M. Castanier; William E. Brigham

    1998-03-31T23:59:59.000Z

    The goal of this project is to increase recovery of heavy oils. Towards that goal studies are being conducted in how to assess the influence of temperature and pressure on the absolute and relative permeability to oil and water and on capillary pressure; to evaluate the effect of different reservoir parameters on the in site combustion process; to develop and understand mechanisms of surfactants on for the reduction of gravity override and channeling of steam; and to improve techniques of formation evaluation.

  13. Research on oil recovery mechanisms in heavy oil reservoirs

    SciTech Connect (OSTI)

    Kovscek, Anthony R.; Brigham, William E., Castanier, Louis M.

    2000-03-16T23:59:59.000Z

    The research described here was directed toward improved understanding of thermal and heavy-oil production mechanisms and is categorized into: (1) flow and rock properties, (2) in-situ combustion, (3) additives to improve mobility control, (4) reservoir definition, and (5) support services. The scope of activities extended over a three-year period. Significant work was accomplished in the area of flow properties of steam, water, and oil in consolidated and unconsolidated porous media, transport in fractured porous media, foam generation and flow in homogeneous and heterogeneous porous media, the effects of displacement pattern geometry and mobility ratio on oil recovery, and analytical representation of water influx.

  14. Oil and Gas Outlook

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Gas Outlook For Independent Petroleum Association of America November 13, 2014 | Palm Beach, FL By Adam Sieminski, Administrator U.S. Energy Information Administration Recent...

  15. Feasibility study of heavy oil recovery in the Permian Basin (Texas and New Mexico)

    SciTech Connect (OSTI)

    Olsen, D.K.; Johnson, W.I.

    1993-05-01T23:59:59.000Z

    This report is one of a series of publications assessing the feasibility of increasing domestic heavy oil production. Each report covers select areas of the United States. The Permian Basin of West Texas and Southeastern New Mexico is made up of the Midland, Delaware, Val Verde, and Kerr Basins; the Northwestern, Eastern, and Southern shelves; the Central Basin Platform, and the Sheffield Channel. The present day Permian Basin was one sedimentary basin until uplift and subsidence occurred during Pennsylvanian and early Permian Age to create the configuration of the basins, shelves, and platform of today. The basin has been a major light oil producing area served by an extensive pipeline network connected to refineries designed to process light sweet and limited sour crude oil. Limited resources of heavy oil (10`` to 20`` API gravity) occurs in both carbonate and sandstone reservoirs of Permian and Cretaceous Age. The largest cumulative heavy oil production comes from fluvial sandstones of the Cretaceous Trinity Group. Permian heavy oil is principally paraffinic and thus commands a higher price than asphaltic California heavy oil. Heavy oil in deeper reservoirs has solution gas and low viscosity and thus can be produced by primary and by waterflooding. Because of the nature of the resource, the Permian Basin should not be considered a major heavy oil producing area.

  16. Feasibility study of heavy oil recovery in the Permian Basin (Texas and New Mexico)

    SciTech Connect (OSTI)

    Olsen, D.K.; Johnson, W.I.

    1993-05-01T23:59:59.000Z

    This report is one of a series of publications assessing the feasibility of increasing domestic heavy oil production. Each report covers select areas of the United States. The Permian Basin of West Texas and Southeastern New Mexico is made up of the Midland, Delaware, Val Verde, and Kerr Basins; the Northwestern, Eastern, and Southern shelves; the Central Basin Platform, and the Sheffield Channel. The present day Permian Basin was one sedimentary basin until uplift and subsidence occurred during Pennsylvanian and early Permian Age to create the configuration of the basins, shelves, and platform of today. The basin has been a major light oil producing area served by an extensive pipeline network connected to refineries designed to process light sweet and limited sour crude oil. Limited resources of heavy oil (10'' to 20'' API gravity) occurs in both carbonate and sandstone reservoirs of Permian and Cretaceous Age. The largest cumulative heavy oil production comes from fluvial sandstones of the Cretaceous Trinity Group. Permian heavy oil is principally paraffinic and thus commands a higher price than asphaltic California heavy oil. Heavy oil in deeper reservoirs has solution gas and low viscosity and thus can be produced by primary and by waterflooding. Because of the nature of the resource, the Permian Basin should not be considered a major heavy oil producing area.

  17. Experimental investigation of caustic steam injection for heavy oils

    E-Print Network [OSTI]

    Madhavan, Rajiv

    2010-01-16T23:59:59.000Z

    CHAPTER I INTRODUCTION 1.1 Overview Heavy oil is a part of the unconventional petroleum reserve. Heavy oil does not flow very easily and is classified as heavy because of its high specific gravity. With increasing demand for oil and with depleting... and success of the sodium carbonate and sodium silicate floods respectively. (5) Attainment of very low interfacial tension does not ensure improved oil recovery but a minimum value is necessary for a successful steam alkaline flood. Tiab, Okoye...

  18. Sixty-sixth annual report of the state oil and gas supervisor

    SciTech Connect (OSTI)

    Not Available

    1981-01-01T23:59:59.000Z

    This report contains tabulated oil and gas statistics compiled during 1980 in California. On-shore and off-shore oil production, gas production, reserves, drilling activity, enhanced recovery activity, unconventional heavy oil recovery, geothermal operations and financial data are reported. (DMC)

  19. State of heavy oil production and refining in California

    SciTech Connect (OSTI)

    Olsen, D.K.; Ramzel, E.B. [BDM-Oklahoma, Inc., Bartlesville, OK (United States)

    1995-12-31T23:59:59.000Z

    California is unique in the United States because it has the largest heavy oil (10{degrees} to 20{degrees}API gravity) resource, estimated to be in excess of 40 billion barrels. Of the current 941,543 barrels/day of oil produced in California (14% of the U.S. total), 70% or 625,312 barrels/day is heavy oil. Heavy oil constituted only 20% of California`s oil production in the early 1940s, but development of thermal oil production technology in the 1960s allowed the heavy industry to grow and prosper to the point where by the mid-1980s, heavy oil constituted 70% of the state`s oil production. Similar to the rest of the United States, light oil production in the Los Angeles Basin, Coastal Region, and San Joaquin Valley peaked and then declined at different times throughout the past 30 years. Unlike other states, California developed a heavy oil industry that replaced declining light oil production and increased the states total oil production, despite low heavy oil prices, stringent environmental regulations and long and costly delays in developing known oil resources. California`s deep conversion refineries process the nation`s highest sulfur, lowest API gravity crude to make the cleanest transportation fuels available. More efficient vehicles burning cleaner reformulated fuels have significantly reduced the level of ozone precursors (the main contributor to California`s air pollution) and have improved air quality over the last 20 years. In a state where major oil companies dominate, the infrastructure is highly dependent on the 60% of ANS production being refined in California, and California`s own oil production. When this oil is combined with the small volume of imported crude, a local surplus of marketed oil exists that inhibits exploitation of California`s heavy oil resources. As ANS production declines, or if the export restrictions on ANS sales are lifted, a window of opportunity develops for increased heavy oil production.

  20. Mathematical and Statistical Investigation of Steamflooding in Naturally Fractured Carbonate Heavy Oil Reservoirs.

    E-Print Network [OSTI]

    Shafiei, Ali

    2013-01-01T23:59:59.000Z

    ??A significant amount of Viscous Oil (e.g., heavy oil, extra heavy oil, and bitumen) is trapped in Naturally Fractured Carbonate Reservoirs also known as NFCRs.… (more)

  1. Oil/gas collector/separator for underwater oil leaks

    DOE Patents [OSTI]

    Henning, Carl D. (Livermore, CA)

    1993-01-01T23:59:59.000Z

    An oil/gas collector/separator for recovery of oil leaking, for example, from an offshore or underwater oil well. The separator is floated over the point of the leak and tethered in place so as to receive oil/gas floating, or forced under pressure, toward the water surface from either a broken or leaking oil well casing, line, or sunken ship. The separator is provided with a downwardly extending skirt to contain the oil/gas which floats or is forced upward into a dome wherein the gas is separated from the oil/water, with the gas being flared (burned) at the top of the dome, and the oil is separated from water and pumped to a point of use. Since the density of oil is less than that of water it can be easily separated from any water entering the dome.

  2. Comprehensive study of a heavy fuel oil spill : modeling and analytical approaches to understanding environmental weathering

    E-Print Network [OSTI]

    Lemkau, Karin Lydia

    2012-01-01T23:59:59.000Z

    Driven by increasingly heavy oil reserves and more efficient refining technologies, use of heavy fuel oils for power generation is rising. Unlike other refined products and crude oils, a large portion of these heavy oils ...

  3. Oil, Gas, and Mining Leases (Nebraska)

    Broader source: Energy.gov [DOE]

    This section contains rules on oil, gas, and mining leases, and grants authority to the State of Nebraska and local governments to issue leases for oil and gas mining and exploration on their lands.

  4. Oil and Gas Conservation (South Dakota)

    Broader source: Energy.gov [DOE]

    The Minerals and Mining Program oversees the regulation of oil and gas exploration, recovery, and reclamation activities in South Dakota. Permits are required for drilling of oil or gas wells, and...

  5. Regulation of Oil and Gas Resources (Florida)

    Broader source: Energy.gov [DOE]

    It is the public policy of the state to conserve and control the natural resources of oil and gas, and their products; to prevent waste of oil and gas; to provide for the protection and adjustment...

  6. Interstate Oil and Gas Conservation Compact (Montana)

    Broader source: Energy.gov [DOE]

    This legislation authorizes the State to join the Interstate Compact for the Conservation of Oil and Gas. The Compact is an agreement that has been entered into by 30 oil- and gas-producing states,...

  7. Oil and Gas on Public Lands (Texas)

    Broader source: Energy.gov [DOE]

    The School Land Board may choose to lease lands for the production of oil and natural gas, on the condition that oil and gas resources are leased together and separate from other minerals. Lands...

  8. Interstate Oil and Gas Conservation Compact (Maryland)

    Broader source: Energy.gov [DOE]

    This legislation authorizes the State to join the Interstate Compact for the Conservation of Oil and Gas. The Compact is an agreement that has been entered into by 30 oil- and gas-producing states,...

  9. Virginia Gas and Oil Act (Virginia)

    Broader source: Energy.gov [DOE]

    The Gas and Oil Act addresses the exploration, development, and production of oil and gas resources in the Commonwealth of Virginia. It contains provisions pertaining to wells and well spacing,...

  10. OIL & GAS HISTORY 1 History in California

    E-Print Network [OSTI]

    OIL & GAS HISTORY 1 History in California 4 Superior figures refer to references at the end of the essay. OIL AND GAS PRODUCTION California oil was always a valued commodity. When the Spanish explorers landed in California in the 1500s, they found Indians gathering asphaltum (very thick oil) from natural

  11. Evolution of seismic velocities in heavy oil sand reservoirs during thermal recovery process

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 Evolution of seismic velocities in heavy oil sand reservoirs during thermal recovery process. Larribau 64018 Pau Cedex, France Oil and Gas Science and Technology 2012, 67 (6), 1029-1039, doi:10 pressure and temperature in the rock reservoir, that are most often unconsolidated or weakly consolidated

  12. Division of Oil, Gas, and Mining Permitting

    E-Print Network [OSTI]

    Utah, University of

    " or "Gas" does not include any gaseous or liquid substance processed from coal, oil shale, or tar sands

  13. HEAVY AND THERMAL OIL RECOVERY PRODUCTION MECHANISMS

    SciTech Connect (OSTI)

    Anthony R. Kovscek; Louis M. Castanier

    2002-09-30T23:59:59.000Z

    The Stanford University Petroleum Research Institute (SUPRI-A) conducts a broad spectrum of research intended to help improve the recovery efficiency from difficult to produce reservoirs including heavy oil and fractured low permeability systems. Our scope of work is relevant across near-, mid-, and long-term time frames. The primary functions of the group are to conduct direction-setting research, transfer research results to industry, and educate and train students for careers in industry. Presently, research in SUPRI-A is divided into 5 main project areas. These projects and their goals include: (1) Multiphase flow and rock properties--to develop better understanding of the physics of displacement in porous media through experiment and theory. This category includes work on imbibition, flow in fractured media, and the effect of temperature on relative permeability and capillary pressure. (2) Hot fluid injection--to improve the application of nonconventional wells for enhanced oil recovery and elucidate the mechanisms of steamdrive in low permeability, fractured porous media. (3) Mechanisms of primary heavy oil recovery--to develop a mechanistic understanding of so-called ''foamy oil'' and its associated physical chemistry. (4) In-situ combustion--to evaluate the effect of different reservoir parameters on the insitu combustion process. (5) Reservoir definition--to develop and improve techniques for evaluating formation properties from production information. What follows is a report on activities for the past year. Significant progress was made in all areas.

  14. Heavy oil recovery by in-situ combustion

    SciTech Connect (OSTI)

    Gadelle, C.P.; Burger, J.G.; Bardon, C.; Machedon, V.; Carcoana, A.

    1980-01-01T23:59:59.000Z

    Heavy-oil fields contain considerable reserves which have hardly been exploited to date. One of the techniques well suited for the recovery of these resources is in situ combustion. The research done is illustrated by the laboratory and field results obtained for the Romanian fields of Suplacu de Barcau and Balaria. Production by in situ combustion is in the industrial stage at Suplacu de Barcau, and the combustion project at Balaria is being expanded. The performances of these tests are given in the form of the amounts of air injected and oil produced as well as their ratio (AOR), the amount of gas produced and the composition of this gas. These production data coupled with various measurements (temperature in the production wells, thickness burned, etc.) can be used to follow the process and to control it. Their interpretation also is useful for evaluating sweep efficiency and recovery. 14 references.

  15. Bitumen and heavy oil upgrading in Canada

    SciTech Connect (OSTI)

    Chrones, J.

    1988-06-01T23:59:59.000Z

    A review is presented of the heavy oil upgrading industry in Canada. Up to now it has been based on the processing of bitumen extracted from oil sands mining operations at two sites, to produce a residue-free, low sulfur, synthetic crude. Carbon rejection has been the prime process technology with delayed coking being used by Suncor and FLUID COKING at Syncrude. Alternative processes for recovering greater amounts of synthetic crude are examined. These include a variety of hydrogen addition processes and combinations which produce pipelineable materials requiring further processing in downstream refineries with expanded capabilities. The Newgrade Energy Inc. upgrader, now under construction in Regina, will use fixed-bed, catalytic, atmospheric-residue, hydrogen processing. Two additional products, also based on hydrogenation, will use ebullated bed catalyst systems: the expansion of Syncrude, now underway, is using the LC Fining Process whereas the announced Husky Bi-Provincial upgrader is based on H-Oil.

  16. Bitumen and heavy oil upgrading in Canada

    SciTech Connect (OSTI)

    Chrones, J. (Chrones Engineering Consultants Inc., 111 Lord Seaton Road, Willowdale, Ontario (CA)); Germain, R.R. (Alberta Oil Sands Technology and Research Authority, Edmonton, AB (Canada))

    1989-01-01T23:59:59.000Z

    A review is presented of the heavy oil upgrading industry in Canada. Up to now it has been based on the processing of bitumen extracted from oil sands mining operations at two sites, to produce a residue-free, low sulphur, synthetic crude. Carbon rejection has been the prime process technology with delayed coking being used by Suncor and FLUID COKING at Syncrude. Alternative processes for recovering greater amounts of synthetic crude are examined. These include a variety of hydrogen addition processes and combinations which produce pipelineable materials requiring further processing in downstream refineries with expanded capabilities. The Newgrade Energy Inc. upgrader now under construction in Regina, will use fixed-bed, catalytic, atmospheric-residue, hydrogen processing. Two additional projects, also based on hydrogenation, will use ebullated bed catalyst systems; the expansion of Syncrude, now underway, is using the LC Fining Process whereas the announced Husky Bi-Provincial upgrader is based on H-Oil.

  17. Trends in heavy oil production and refining in California

    SciTech Connect (OSTI)

    Olsen, D.K.; Ramzel, E.B.; Pendergrass, R.A. II

    1992-07-01T23:59:59.000Z

    This report is one of a series of publications assessing the feasibility of increasing domestic heavy oil production and is part of a study being conducted for the US Department of Energy. This report summarizes trends in oil production and refining in Canada. Heavy oil (10{degrees} to 20{degrees} API gravity) production in California has increased from 20% of the state`s total oil production in the early 1940s to 70% in the late 1980s. In each of the three principal petroleum producing districts (Los Angeles Basin, Coastal Basin, and San Joaquin Valley) oil production has peaked then declined at different times throughout the past 30 years. Thermal production of heavy oil has contributed to making California the largest producer of oil by enhanced oil recovery processes in spite of low oil prices for heavy oil and stringent environmental regulation. Opening of Naval Petroleum Reserve No. 1, Elk Hills (CA) field in 1976, brought about a major new source of light oil at a time when light oil production had greatly declined. Although California is a major petroleum-consuming state, in 1989 the state used 13.3 billion gallons of gasoline or 11.5% of US demand but it contributed substantially to the Nation`s energy production and refining capability. California is the recipient and refines most of Alaska`s 1.7 million barrel per day oil production. With California production, Alaskan oil, and imports brought into California for refining, California has an excess of oil and refined products and is a net exporter to other states. The local surplus of oil inhibits exploitation of California heavy oil resources even though the heavy oil resources exist. Transportation, refining, and competition in the market limit full development of California heavy oil resources.

  18. Trends in heavy oil production and refining in California

    SciTech Connect (OSTI)

    Olsen, D.K.; Ramzel, E.B.; Pendergrass, R.A. II.

    1992-07-01T23:59:59.000Z

    This report is one of a series of publications assessing the feasibility of increasing domestic heavy oil production and is part of a study being conducted for the US Department of Energy. This report summarizes trends in oil production and refining in Canada. Heavy oil (10{degrees} to 20{degrees} API gravity) production in California has increased from 20% of the state's total oil production in the early 1940s to 70% in the late 1980s. In each of the three principal petroleum producing districts (Los Angeles Basin, Coastal Basin, and San Joaquin Valley) oil production has peaked then declined at different times throughout the past 30 years. Thermal production of heavy oil has contributed to making California the largest producer of oil by enhanced oil recovery processes in spite of low oil prices for heavy oil and stringent environmental regulation. Opening of Naval Petroleum Reserve No. 1, Elk Hills (CA) field in 1976, brought about a major new source of light oil at a time when light oil production had greatly declined. Although California is a major petroleum-consuming state, in 1989 the state used 13.3 billion gallons of gasoline or 11.5% of US demand but it contributed substantially to the Nation's energy production and refining capability. California is the recipient and refines most of Alaska's 1.7 million barrel per day oil production. With California production, Alaskan oil, and imports brought into California for refining, California has an excess of oil and refined products and is a net exporter to other states. The local surplus of oil inhibits exploitation of California heavy oil resources even though the heavy oil resources exist. Transportation, refining, and competition in the market limit full development of California heavy oil resources.

  19. NETL: Oil & Gas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Regionat Cornell Batteries & FuelTechnologies |T I O NOil & Gas

  20. Oil and Natural Gas Subsector Cybersecurity Capability Maturity...

    Broader source: Energy.gov (indexed) [DOE]

    Oil and Natural Gas Subsector Cybersecurity Capability Maturity Model (February 2014) Oil and Natural Gas Subsector Cybersecurity Capability Maturity Model (February 2014) The Oil...

  1. Advanced Natural Gas Engine Technology for Heavy Duty Vehicles

    Broader source: Energy.gov (indexed) [DOE]

    ALTERNATIVE. EVERY Advanced Natural Gas Engine Advanced Natural Gas Engine Technology for Heavy Duty Vehicles Technology for Heavy Duty Vehicles Dr. Mostafa M Kamel Dr. Mostafa M...

  2. Cracking blends of gas oil and residual oil

    SciTech Connect (OSTI)

    Myers, G.D.

    1988-03-01T23:59:59.000Z

    In a catalytic cracking process unit wherein a gas oil feed is cracked in a cracking zone at an elevated temperature in the presence of a cracking catalyst, the cracking catalyst is regenerated in a regeneration zone by burning coke of the catalyst, and catalyst is circulated between the cracking zone and the regeneration zone. The improvement is described for obtaining a naphtha product of improved octane number comprising introducing sufficient of a nickel and vanadium metals-containing heavy feedstock with the gas oil feed introduced into the cracking zone to deposit nickel and vanadium metals on the catalyst and raise the nickel and metals-content of the catalyst to a level ranging from about 1500 to about 6000 parts per million of the metals expressed as equivalent nickel, based on the weight of the catalyst, and maintaining the nickel and vanadium metals level on the catalyst by withdrawing high nickel and vanadium metals containing catalyst and adding low nickel and vanadium metals-containing catalyst to the regeneration zone.

  3. Measurement of Oil and Gas Emissions from a Marine Seep

    E-Print Network [OSTI]

    Leifer, Ira; Boles, J R; Luyendyk, B P

    2007-01-01T23:59:59.000Z

    2007, Measurement of Oil and Gas Emissions from a Marine2007, Measurement of Oil and Gas Emissions from a MarineTides and the emission of oil and gas from an abandoned oil

  4. Conservation of Oil and Gas (Texas)

    Broader source: Energy.gov [DOE]

    This legislation prohibits the production, storage, or transportation of oil or gas in a manner, in an amount, or under conditions that constitute waste. Actions which may lead to the waste of oil...

  5. Bitumen and heavy-oil resources of the United States

    SciTech Connect (OSTI)

    Crysdale, B.L.; Schenk, C.J.

    1987-05-01T23:59:59.000Z

    Bitumen and heavy-oil deposits represent a significant hydrocarbon resource in the US. Bitumen deposits (10/sup 0/ API) are located in sandstone reservoirs at or near the surface along the margins of sedimentary basins. Heavy oils (10/sup 0/-20/sup 0/ API) are found predominantly in geologically young (Tertiary age and younger) shallow sandstone reservoirs and along the margins of sedimentary basins. Bitumen and heavy oil have high viscosities (10,000 cp for bitumen, 100-10,000 cp for heavy oil) and cannot be recovered by conventional recovery methods. Bitumen deposits have been evaluated in 17 states. The total bitumen resource for the conterminous US is estimated to be 57 billion bbl. Utah contains the largest resource, estimated to be 29 billion bbl, followed by California with 9 billion bbl, Alabama with 6 billion, Texas with 5 billion, and Kentucky with 3 billion. Heavy-oil deposits have been evaluated in 16 states, but most heavy oil is in California, Texas, and Arkansas. Total heavy oil in place for the conterminous US is estimated to be approximately 45 billion bbl; greater than 80% of this amount is in California. The giant Kuparuk deposit on the North Slope of Alaska contains a heavy oil-bitumen resource estimated as high as 40 billion bbl.

  6. Transformation of Resources to Reserves: Next Generation Heavy-Oil Recovery Techniques

    SciTech Connect (OSTI)

    Stanford University; Department of Energy Resources Engineering Green Earth Sciences

    2007-09-30T23:59:59.000Z

    This final report and technical progress report describes work performed from October 1, 2004 through September 30, 2007 for the project 'Transformation of Resources to Reserves: Next Generation Heavy Oil Recovery Techniques', DE-FC26-04NT15526. Critical year 3 activities of this project were not undertaken because of reduced funding to the DOE Oil Program despite timely submission of a continuation package and progress on year 1 and 2 subtasks. A small amount of carried-over funds were used during June-August 2007 to complete some work in the area of foamed-gas mobility control. Completion of Year 3 activities and tasks would have led to a more thorough completion of the project and attainment of project goals. This progress report serves as a summary of activities and accomplishments for years 1 and 2. Experiments, theory development, and numerical modeling were employed to elucidate heavy-oil production mechanisms that provide the technical foundations for producing efficiently the abundant, discovered heavy-oil resources of the U.S. that are not accessible with current technology and recovery techniques. Work fell into two task areas: cold production of heavy oils and thermal recovery. Despite the emerging critical importance of the waterflooding of viscous oil in cold environments, work in this area was never sanctioned under this project. It is envisioned that heavy oil production is impacted by development of an understanding of the reservoir and reservoir fluid conditions leading to so-called foamy oil behavior, i.e, heavy-oil solution gas drive. This understanding should allow primary, cold production of heavy and viscous oils to be optimized. Accordingly, we evaluated the oil-phase chemistry of crude oil samples from Venezuela that give effective production by the heavy-oil solution gas drive mechanism. Laboratory-scale experiments show that recovery correlates with asphaltene contents as well as the so-called acid number (AN) and base number (BN) of the crude oil. A significant number of laboratory-scale tests were made to evaluate the solution gas drive potential of West Sak (AK) viscous oil. The West Sak sample has a low acid number, low asphaltene content, and does not appear foamy under laboratory conditions. Tests show primary recovery of about 22% of the original oil in place under a variety of conditions. The acid number of other Alaskan North Slope samples tests is greater, indicating a greater potential for recovery by heavy-oil solution gas drive. Effective cold production leads to reservoir pressure depletion that eases the implementation of thermal recovery processes. When viewed from a reservoir perspective, thermal recovery is the enhanced recovery method of choice for viscous and heavy oils because of the significant viscosity reduction that accompanies the heating of oil. One significant issue accompanying thermal recovery in cold environments is wellbore heat losses. Initial work on thermal recovery found that a technology base for delivering steam, other hot fluids, and electrical heat through cold subsurface environments, such as permafrost, was in place. No commercially available technologies are available, however. Nevertheless, the enabling technology of superinsulated wells appears to be realized. Thermal subtasks focused on a suite of enhanced recovery options tailored to various reservoir conditions. Generally, electrothermal, conventional steam-based, and thermal gravity drainage enhanced oil recovery techniques appear to be applicable to 'prime' Ugnu reservoir conditions to the extent that reservoir architecture and fluid conditions are modeled faithfully here. The extent of reservoir layering, vertical communication, and subsurface steam distribution are important factors affecting recovery. Distribution of steam throughout reservoir volume is a significant issue facing thermal recovery. Various activities addressed aspects of steam emplacement. Notably, hydraulic fracturing of horizontal steam injection wells and implementation of steam trap control that limits steam entry into hor

  7. Co-processing of heavy oil

    SciTech Connect (OSTI)

    Khan, M.R. [Texaco Research and Development, Beacon, NY (United States)

    1995-12-31T23:59:59.000Z

    In co-processing of petroleum and coal, the petroleum fraction may serve as the {open_quotes}liquefaction solvent,{close_quotes} or hydrogen donor, and the aromatics present in the coal liquid may serve as hydrogen {open_quotes}shuttlers{close_quotes} by efficiently transferring hydrogen moieties to places where they are most deficient. The important advantages of co-processing include the following: (1) upgrading of heavy petroleum in a reaction with coal and (2) conversion of coal to synthetic crudes which could be further upgraded to a premium liquid fuel. Co-processing of coal with petroleum, heavy crudes, and residues through catalytic hydrogenation or solvent extraction have been extensively investigated. The studies were typically conducted in the temperature range of 450{degrees}-500{degrees}C under pressurized hydrogen; catalysts are generally also added for hydroconversion of the feedstocks. However, relatively little has been reported in the literature regarding co-processing of coal with heavy petroleum by simple pyrolysis. In this study, co-processing of heavy oil and coal at relatively middle conditions was conducted without the complicating influences of pressurized hydrogen or catalysts. The resulted demonstrate that there is a synergism during co-processing of petroleum and coal. This synergism enhances both the yield and quality of the liquid products. In general, liquids from co-processing the mixture contain a higher content of alkane/alkene, neutral aromatics, lower content of monophenols, and other oxygen containing compounds as compared to the liquids from coal alone. The liquid from the mixture also contains a higher content of naphthenic carbon and naphthenic rings/molecules than those from coal liquid. This suggests that the product from the mixture can be easily upgraded to a premium quality fuel.

  8. State Oil and Gas Board State Oil and Gas Board Address Place...

    Open Energy Info (EERE)

    Suite Arizona http www azogcc az gov Arkansas Oil and Gas Commission Arkansas Oil and Gas Commission Natural Resources Dr Ste Arkansas http www aogc state ar us JDesignerPro...

  9. Oil and Gas General Provisions (Montana)

    Broader source: Energy.gov [DOE]

    This chapter describes general provisions for the exploration and development of oil and gas resources in Montana. The chapter addresses royalty interests, regulations for the lease of local...

  10. Canada Oil and Gas Operations Act (Canada)

    Broader source: Energy.gov [DOE]

    The purpose of this Act is to promote safety, the protection of the environment, the conservation of oil and gas resources, joint production arrangements, and economically efficient infrastructures.

  11. Oil & Gas Research | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    data and modeling tools needed to predict and quantify potential risks associated with oil and gas resources in shale reservoirs that require hydraulic fracturing or other...

  12. The stimulation of heavy oil reservoirs with electrical resistance heating

    E-Print Network [OSTI]

    Baylor, Blake Allen

    1990-01-01T23:59:59.000Z

    . Equations for r? and P, were written using regression analysis. The calculation procedure is as follows: (1) calculate r?, (2) calculate the skin factor, s??, (3) calculate the heated oil production rate, q, ?, and (4) calculate the downhole power... of various heavy oils at 113 'F Fig. 23 ? Effect of CH, on the viscosity of various heavy oils at 171 'F Fig. 24 - Viscosity/pressure relationship for the recombined field sample Fig. 25 ? Smoothed viscosity/pressure relationship for the recombined...

  13. LLM Oil, Gas and Mining Law Module Information: Oil, Gas and Mining Investment Law I and

    E-Print Network [OSTI]

    Evans, Paul

    LLM Oil, Gas and Mining Law Module Information: Oil, Gas and Mining Investment Law I and Oil, Gas and Mining Investment Law II Overview & Aims: This core module aims to introduce students to the political economy background as well as the international legal framework for transnational foreign investment

  14. Oil and Gas Wells: Regulatory Provisions (Kansas)

    Broader source: Energy.gov [DOE]

    It shall be unlawful for any person, firm or corporation having possession or control of any natural gas well, oil well or coalbed natural gas well, whether as a contractor, owner, lessee, agent or...

  15. Investigation of Multiscale and Multiphase Flow, Transport and Reaction in Heavy Oil Recovery Processes

    SciTech Connect (OSTI)

    Yorstos, Yanis C.

    2002-03-11T23:59:59.000Z

    The emphasis of this work was on investigating the mechanisms and factors that control the recovery of heavy oil with the objective to improve recovery efficiencies. For this purpose the interaction of flow transport and reaction at various scales from the pore network to the field scales were studied. Particular mechanisms to be investigated included the onset of gas flow in foamy oil production and in in-situ steam drive, gravity drainage in steam processes, the development of sustained combustion fronts and the propagation of foams in porous media. Analytical, computational and experimental methods were utilized to advance the state of the art in heavy oil recovery. Successful completion of this research was expected to lead to improvements in the Recovery efficiency of various heavy oil processes.

  16. FY 80 heavy oil program. Second quarterly report, April 1980

    SciTech Connect (OSTI)

    Wayland, J.R.; Fox, R.L.

    1980-06-01T23:59:59.000Z

    The research and development efforts in support of the heavy oil program reservoir access and alternate extraction activities that were initiated last quarter have been continued and expanded. The development of a short course on the utilization of specialized drilling technology to heavy oil sands has been investigated. The steam quality sampler is undergoing laboratory testing. A special report on possible application of sand control methods to heavy oil steam injection tests has been prepared. The first stage of the analysis of R.F. and microwave heating has been completed. The results of a series of laboratory experiments on in situ hydrogenation are presented.

  17. Process for converting heavy oil deposited on coal to distillable oil in a low severity process

    DOE Patents [OSTI]

    Ignasiak, Teresa (417 Heffernan Drive, Edmonton, Alberta, CA); Strausz, Otto (13119 Grand View Drive, Edmonton, Alberta, CA); Ignasiak, Boleslaw (417 heffernan Drive, Edmonton, Alberta, CA); Janiak, Jerzy (17820 - 76 Ave., Edmonton, Alberta, CA); Pawlak, Wanda (3046 - 11465 - 41 Avenue, Edmonton, Alberta, CA); Szymocha, Kazimierz (3125 - 109 Street, Edmonton, Alberta, CA); Turak, Ali A. (Edmonton, CA)

    1994-01-01T23:59:59.000Z

    A process for removing oil from coal fines that have been agglomerated or blended with heavy oil comprises the steps of heating the coal fines to temperatures over 350.degree. C. up to 450.degree. C. in an inert atmosphere, such as steam or nitrogen, to convert some of the heavy oil to lighter, and distilling and collecting the lighter oils. The pressure at which the process is carried out can be from atmospheric to 100 atmospheres. A hydrogen donor can be added to the oil prior to deposition on the coal surface to increase the yield of distillable oil.

  18. Fiscal Policy and Utah's Oil and Gas Industry

    E-Print Network [OSTI]

    Fiscal Policy and Utah's Oil and Gas Industry Michael T. Hogue, Research Analyst Introduction for oil and gas extraction firms. A recent review by the Government Accountability Office indicates features of Utah's oil and gas industry. The Oil and Gas Industry in Utah Reserves and Production Oil

  19. Fact Sheet: Gas Prices and Oil Consumption Would Increase Without...

    Broader source: Energy.gov (indexed) [DOE]

    Gas Prices and Oil Consumption Would Increase Without Biofuels Fact Sheet: Gas Prices and Oil Consumption Would Increase Without Biofuels Secretary of Energy Samuel W. Bodman and...

  20. Interstate Oil and Gas Conservation Compact (Multiple States)

    Broader source: Energy.gov [DOE]

    The Interstate Oil and Gas Compact Commission assists member states efficiently maximize oil and natural gas resources through sound regulatory practices while protecting the nation's health,...

  1. Georgia Oil and Gas Deep Drilling act of 1975 (Georgia)

    Broader source: Energy.gov [DOE]

    Georgia's Oil and Gas and Deep Drilling Act regulates oil and gas drilling activities to provide protection of underground freshwater supplies and certain "environmentally sensitive" areas. The...

  2. Oil and Gas CDT Coupled flow of water and gas

    E-Print Network [OSTI]

    Henderson, Gideon

    Oil and Gas CDT Coupled flow of water and gas during hydraulic fracture in shale The University of Oxford http://www.earth.ox.ac.uk/people/profiles/academic/joec Key Words Shale gas, hydraulic fracture, groundwater contamination, transport in porous media Overview Recovery of natural gas from mudstone (shale

  3. Comprehensive kinetic models for the aquathermolysis of heavy oils

    SciTech Connect (OSTI)

    Belgrave, J.D.M.; Moore, R.G.; Ursenbach, M.G. [Univ. of Calgary, Alberta (Canada)

    1995-02-01T23:59:59.000Z

    Aquathermolysis experiments over the temperature range 360 to 422{degrees}C were performed on core samples taken from three large bitumen and heavy oil deposits found in Alberta: Athabasca, North Bodo, and Frisco Countess. The purpose of this work was to facilitate the development of comprehensive thermal cracking models for predicting gas and liquid phase product distributions under conditions anticipated during thermal recovery. Previous studies have shown by material balance on oxygen that water is implicated in many of the chemical reactions leading to the formation of H{sub 2}S and CO{sub 2}, yet most of the reported thermal cracking studies have not included water. Additionally, experimental investigations in this area have, for the most part, not involved realistic time frames, and as such certain phenomena observed in this work have not been previously reported.

  4. 05663_AlaskaHeavyOil | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Controls On Production and Seismic Monitoring Alaska Heavy Oils Last Reviewed 12202012 DE-NT0005663 Goal The goal of this project is to improve recovery of Alaskan North...

  5. Exploration for heavy crude oil and natural bitumen

    SciTech Connect (OSTI)

    Meyer, R.F. (U.S. Geological Survey (US))

    1987-01-01T23:59:59.000Z

    This book discusses heavy oil and tar sand reserves which are enormous. Focus in on regional resources worldwide; characterization, maturation, and degradation; geological environments and migration; exploration methods; exploration histories; and recovery.

  6. Heavy and Thermal Oil Recovery Production Mechanisms, SUPRI TR-127

    SciTech Connect (OSTI)

    Kovscek, Anthony R.; Brigham, William E.; Castanier, Louis M.

    2001-09-07T23:59:59.000Z

    The program spans a spectrum of topics and is divided into five categories: (i) multiphase flow and rock properties, (ii) hot fluid injection, (iii) primary heavy-oil production, (iv) reservoir definition, and (v) in-situ combustion.

  7. Simple concept predicts viscosity of heavy oil and bitumen

    SciTech Connect (OSTI)

    Puttagunta, V.R.; Miadonye, A.; Singh, B. (Lakehead Univ., Thunder Bay, Ontario (Canada))

    1993-03-01T23:59:59.000Z

    For in situ recovery, a correlation has been developed for predicting the viscosity of bitumen and heavy oil. The correlation requires only a single viscosity measurement. The derived viscosities show an overall average absolute deviation of 4.4% from experimental data for 18 sets of Alberta heavy oil and bitumen containing 175 measurements. The paper describes the equations, their accuracy in determining viscosity, and an example from the Alberta deposits.

  8. Development Practices for Optimized MEOR in Shallow Heavy Oil Reservoirs

    SciTech Connect (OSTI)

    Shari Dunn-Norman

    2006-09-30T23:59:59.000Z

    The goal of this project is to demonstrate an economically viable and sustainable method of producing shallow heavy oil reserves in southwest Missouri and southeast Kansas using a combination of microbial enhanced oil recovery (MEOR) and hydraulic fracturing of vertical wells.

  9. Exploration for heavy crude oil and natural bitumen

    SciTech Connect (OSTI)

    Not Available

    1989-01-01T23:59:59.000Z

    Heavy oil and tar sand reserves are enormous, and this 700-page volume breaks the topic down into six emphasis areas of: regional resources worldwide; characterization, maturation, and degradation; geological environments and migration; exploration methods; exploration histories; and recovery. An appendix presents a guidebook to Santa Maria, Cuyama, Taft-McKettrick, and Edna oil districts, Coast Ranges, California.

  10. Post Production Heavy Oil Operations: A Case for Partial Upgrading

    E-Print Network [OSTI]

    Lokhandwala, Taher

    2012-12-05T23:59:59.000Z

    The transportation of heavy oil is a pressing problem. Various methods have been devised to mitigate the reluctance to flow of these highly dense and viscous oils. This study is focused on evaluating a case for post-production partial upgrading...

  11. Heavy oil reservoirs recoverable by thermal technology. Annual report

    SciTech Connect (OSTI)

    Kujawa, P.

    1981-02-01T23:59:59.000Z

    The purpose of this study was to compile data on reservoirs that contain heavy oil in the 8 to 25/sup 0/ API gravity range, contain at least ten million barrels of oil currently in place, and are non-carbonate in lithology. The reservoirs within these constraints were then analyzed in light of applicable recovery technology, either steam-drive or in situ combustion, and then ranked hierarchically as candidate reservoirs. The study is presented in three volumes. Volume I presents the project background and approach, the screening analysis, ranking criteria, and listing of candidate reservoirs. The economic and environmental aspects of heavy oil recovery are included in appendices to this volume. This study provides an extensive basis for heavy oil development, but should be extended to include carbonate reservoirs and tar sands. It is imperative to look at heavy oil reservoirs and projects on an individual basis; it was discovered that operators, and industrial and government analysts will lump heavy oil reservoirs as poor producers, however, it was found that upon detailed analysis, a large number, so categorized, were producing very well. A study also should be conducted on abandoned reservoirs. To utilize heavy oil, refiners will have to add various unit operations to their processes, such as hydrotreaters and hydrodesulfurizers and will require, in most cases, a lighter blending stock. A big problem in producing heavy oil is that of regulation; specifically, it was found that the regulatory constraints are so fluid and changing that one cannot settle on a favorable recovery and production plan with enough confidence in the regulatory requirements to commit capital to the project.

  12. Canada's heavy oil, bitumen upgrading activity is growing

    SciTech Connect (OSTI)

    Corbett, R.A.

    1989-06-26T23:59:59.000Z

    Heavy oil and bitumen upgrading activity in Canada is surging with the recent start-up of two new upgraders and with plans to build others. These new upgraders make use of modern hydrocracking technology. Articles in this special report on upgrading focus on Canada's oil and bitumen reserves, the promising technologies that upgrade them, and present details of some of the current upgrader projects. This article covers the following areas: Canada's heavy oils; Upgrading expands; Upgrading technologies; Test results; Regional upgraders; High-quality light product.

  13. Volatility in natural gas and oil markets

    E-Print Network [OSTI]

    Pindyck, Robert S.

    2003-01-01T23:59:59.000Z

    Using daily futures price data, I examine the behavior of natural gas and crude oil price volatility since 1990. I test whether there has been a significant trend in volatility, whether there was a short-term increase in ...

  14. Oil and gas journal databook, 1987 edition

    SciTech Connect (OSTI)

    Not Available

    1987-01-01T23:59:59.000Z

    This book is an annual compendium of surveys and special reports reviewed by experts. The 1987 edition opens with a forward by Gene Kinney, co-publisher of the Oil and Gas Journal and includes the OGJ 400 Report, Crude Oil Assays, Worldwide Petrochemical Survey, the Midyear Forecast and Reviews, the Worldwide Gas Processing Report, the Ethylene Report, Sulfur Survey, the International Refining, Catalyst Compilation, Annual Refining Survey, Worldwide Construction Report, Pipeline Economics Report, Worldwide Production and Refining Report, the Morgan Pipeline Cost Index for Oil and Gas, the Nelson Cost Index, the Hughes Rig Count, the Smith Rig Count, the OGJ Production Report, the API Refinery Report, API Crude and Product Stocks, APU Imports of Crude and Products, and the complete Oil and Gas Journal 1986 Index of articles.

  15. Oil, Gas, and Metallic Minerals (Iowa)

    Broader source: Energy.gov [DOE]

    Operators of oil, gas, and metallic mineral exploration and production operations are required to obtain a drilling permit from the Iowa Department of Natural Resources and file specific forms with...

  16. Oil and Natural Gas Subsector Cybersecurity Capability Maturity...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Oil and Natural Gas Subsector Cybersecurity Capability Maturity Model (ONG-C2M2) Oil and Natural Gas Subsector Cybersecurity Capability Maturity Model (ONG-C2M2) Oil and Natural...

  17. College of Law LLM in Oil and Gas Law

    E-Print Network [OSTI]

    Martin, Ralph R.

    College of Law LLM in Oil and Gas Law New LLM in Oil and Gas Law launched to complement our other internationally acclaimed LLM degrees NEW Holman Fenwick Willan is proud to sponsor the LLM Prize in Oil and Gas impressive range of courses on maritime and commercial law, the new LLM in Oil and Gas Law will allow

  18. Evaluation of electromagnetic stimulation of Texas heavy oil reservoirs

    E-Print Network [OSTI]

    Doublet, Louis Edward

    1988-01-01T23:59:59.000Z

    - Iil Z LLI ) I- O LI III ) D- Z 00 + 0 CI z 0 I- U CI 0 K 0. CI D VERTICAL HEAT LOSS tt44 OVERBURDEN FLUID FLOW CONVECTION CONDUCTION P= Pe T=Te VERTICAL HEAT LOSS ~ ELECTROMAGNETIC WAVE Fig. 2 ? Schematic View of EMH Process 12... The ProPerties that affected the heated oil production rate the most were initial oil viscosity, formation ~ility, drainage radius, p~e drop, and ~ture. The heated oil prcduction rate estimation equation was applied to 80 Texas heavy oil ~irs to de...

  19. Scientific Visualization Applications in Oil & Gas Exploration and Production

    E-Print Network [OSTI]

    Lewiner, Thomas (Thomas Lewiner)

    Scientific Visualization Applications in Oil & Gas Exploration and Production SIBGRAPI 2009 #12 Property cross plots #12;Oil and gas production analysis and optimization SIBGRAPI 2009 Structural maps with property distributions Well schematics Production network Gas injection optimization Reservoir slices #12

  20. Evaluation of the economic feasability of heavy oil production processes for West Sak Field.

    E-Print Network [OSTI]

    Wilkey, Jonathan E.

    2012-01-01T23:59:59.000Z

    ??The West Sak heavy oil reservoir on the North Slope of Alaska represents a large potential domestic oil source which has not been fully developed… (more)

  1. Investigation of Multiscale and Multiphase Flow, Transport and Reaction in Heavy Oil Recovery Processes

    SciTech Connect (OSTI)

    Yortsos, Yanis C.

    2001-08-07T23:59:59.000Z

    This project is an investigation of various multi-phase and multiscale transport and reaction processes associated with heavy oil recovery. The thrust areas of the project include the following: Internal drives, vapor-liquid flows, combustion and reaction processes, fluid displacements and the effect of instabilities and heterogeneities and the flow of fluids with yield stress. These find respective applications in foamy oils, the evolution of dissolved gas, internal steam drives, the mechanics of concurrent and countercurrent vapor-liquid flows, associated with thermal methods and steam injection, such as SAGD, the in-situ combustion, the upscaling of displacements in heterogeneous media and the flow of foams, Bingham plastics and heavy oils in porous media and the development of wormholes during cold production.

  2. Investigation of Multiscale and Multiphase Flow, Transport and Reaction in Heavy Oil Recovery Processes

    SciTech Connect (OSTI)

    Yortsos, Y.C.

    2001-05-29T23:59:59.000Z

    This report is an investigation of various multi-phase and multiscale transport and reaction processes associated with heavy oil recovery. The thrust areas of the project include the following: Internal drives, vapor-liquid flows, combustion and reaction processes, fluid displacements and the effect of instabilities and heterogeneities and the flow of fluids with yield stress. These find respective applications in foamy oils, the evolution of dissolved gas, internal steam drives, the mechanics of concurrent and countercurrent vapor-liquid flows, associated with thermal methods and steam injection, such as SAGD, the in-situ combustion, the upscaling of displacements in heterogeneous media and the flow of foams, Bingham plastics and heavy oils in porous media and the development of wormholes during cold production.

  3. Oil shale retorting with steam and produced gas

    SciTech Connect (OSTI)

    Merrill, L.S. Jr.; Wheaton, L.D.

    1991-08-20T23:59:59.000Z

    This patent describes a process for retorting oil shale in a vertical retort. It comprises introducing particles of oil shale into the retort, the particles of oil shale having a minimum size such that the particles are retained on a screen having openings 1/4 inch in size; contacting the particles of oil shale with hot gas to heat the particles of oil shale to a state of pyrolysis, thereby producing retort off-gas; removing the off-gas from the retort; cooling the off-gas; removing oil from the cooled off-gas; separating recycle gas from the off-gas, the recycle gas comprising steam and produced gas, the steam being present in amount, by volume, of at least 50% of the recycle gas so as to increase the yield of sand oil; and heating the recycle gas to form the hot gas.

  4. Assessing the potential and limitations of heavy oil upgrading by electron beam irradiation

    E-Print Network [OSTI]

    Zhussupov, Daniyar

    2007-04-25T23:59:59.000Z

    Radiation technology can economically overcome principal problems of heavy oil processing arising from heavy oil�s unfavorable physical and chemical properties. This technology promises to increase considerably yields of valuable...

  5. Emissions from Heavy-Duty Diesel Engine with EGR using Oil Sands...

    Broader source: Energy.gov (indexed) [DOE]

    Emissions from Heavy-Duty Diesel Engine with EGR using Oil Sands Derived Fuels Emissions from Heavy-Duty Diesel Engine with EGR using Oil Sands Derived Fuels 2003 DEER Conference...

  6. Compositional changes in heavy oil steamflood simulators

    E-Print Network [OSTI]

    Lolley, Christopher Scott

    1995-01-01T23:59:59.000Z

    including distillation, vapor pressure, steam distillation and viscosity measurements, along with a commercial PVT simulator are used to tune equation-of-state (EOS) and viscosity parameters to properly model the PVT properties of the oil. The Peng...

  7. Annotated Bibliography: Fisheries Species and Oil/Gas Platforms Offshore California

    E-Print Network [OSTI]

    MBC Applied Environmental Sciences

    1987-01-01T23:59:59.000Z

    which associate with oil and gas platforms offshoredamaging consequence of oil and gas development. The studycollection was done by oil and gas company personnel who

  8. Plant-wide Control for Better De-oiling of Produced Water in Offshore Oil & Gas

    E-Print Network [OSTI]

    Yang, Zhenyu

    Plant-wide Control for Better De-oiling of Produced Water in Offshore Oil & Gas Production Zhenyu (PWT) in offshore oil & gas production processes. Different from most existing facility- or material offshore and the oil industry expects this share to grow continuously in the future. In last decade, oil

  9. Investigation of Multiscale and Multiphase Flow, Transport and Reaction in Heavy Oil Recovery Processes

    SciTech Connect (OSTI)

    Yortsos, Yanis C.

    2002-10-08T23:59:59.000Z

    In this report, the thrust areas include the following: Internal drives, vapor-liquid flows, combustion and reaction processes, fluid displacements and the effect of instabilities and heterogeneities and the flow of fluids with yield stress. These find respective applications in foamy oils, the evolution of dissolved gas, internal steam drives, the mechanics of concurrent and countercurrent vapor-liquid flows, associated with thermal methods and steam injection, such as SAGD, the in-situ combustion, the upscaling of displacements in heterogeneous media and the flow of foams, Bingham plastics and heavy oils in porous media and the development of wormholes during cold production.

  10. Enhanced Heavy Oil Recovery by Emulsification With Injected Nanoparticles

    E-Print Network [OSTI]

    Martinez Cedillo, Arturo Rey

    2013-11-26T23:59:59.000Z

    emulsifying the immobile heavy oil, and transports it out of the reservoir as a low viscosity fluid. Generating the emulsions in the reservoir was suggested because it offers numerous advantages. The first advantage is low injectivity pressures due to the low...

  11. Weathering and the Fallout Plume of Heavy Oil from Strong Petroleum

    E-Print Network [OSTI]

    Fabrikant, Sara Irina

    , transportation, and use of heavier oils (1). One concern stemming from increased offshore oil activityWeathering and the Fallout Plume of Heavy Oil from Strong Petroleum Seeps Near Coal Oil Point, CA C://pubs.acs.org/est. The Coal Oil Point (COP) seeps offshore Goleta, CA, are estimated to release 20-25 tons of oil daily

  12. System and method for preparing near-surface heavy oil for extraction using microbial degradation

    DOE Patents [OSTI]

    Busche, Frederick D. (Highland Village, TX); Rollins, John B. (Southlake, TX); Noyes, Harold J. (Golden, CO); Bush, James G. (West Richland, WA)

    2011-04-12T23:59:59.000Z

    A system and method for enhancing the recovery of heavy oil in an oil extraction environment by feeding nutrients to a preferred microbial species (bacteria and/or fungi). A method is described that includes the steps of: sampling and identifying microbial species that reside in the oil extraction environment; collecting fluid property data from the oil extraction environment; collecting nutrient data from the oil extraction environment; identifying a preferred microbial species from the oil extraction environment that can transform the heavy oil into a lighter oil; identifying a nutrient from the oil extraction environment that promotes a proliferation of the preferred microbial species; and introducing the nutrient into the oil extraction environment.

  13. DOE/BNL Liquid Natural Gas Heavy Vehicle Program

    SciTech Connect (OSTI)

    James E. Wegrzyn; Wai-Lin Litzke; Michael Gurevich

    1998-08-11T23:59:59.000Z

    As a means of lowering greenhouse gas emissions, increasing economic growth, and reducing the dependency on imported oil, the Department of Energy and Brookhaven National Laboratory (DOE/ BNL) is promoting the substitution of liquefied natural gas (LNG) in heavy-vehicles that are currently being fueled by diesel. Heavy vehicles are defined as Class 7 and 8 trucks (> 118,000 pounds GVVV), and transit buses that have a fuel usage greater than 10,000 gallons per year and driving range of more than 300 miles. The key in making LNG market-competitive with all types of diesel fuels is in improving energy efficiency and reducing costs of LNG technologies through systems integration. This paper integrates together the three LNG technologies of: (1) production from landfills and remote well sites; (2) cryogenic fuel delivery systems; and (3) state-of-the-art storage tank and refueling facilities, with market end-use strategies. The program's goal is to develop these technologies and strategies under a ''green'' and ''clean'' strategy. This ''green'' approach reduces the net contribution of global warming gases by reducing levels of methane and carbon dioxide released by heavy vehicles usage to below recoverable amounts of natural gas from landfills and other natural resources. Clean technology refers to efficient use of energy with low environmental emissions. The objective of the program is to promote fuel competition by having LNG priced between $0.40 - $0.50 per gallon with a combined production, fuel delivery and engine systems efficiency approaching 45%. This can make LNG a viable alternative to diesel.

  14. The Weak Tie Between Natural Gas and Oil Prices

    E-Print Network [OSTI]

    Ramberg, David J.

    Several recent studies establish that crude oil and natural gas prices are cointegrated, so that changes in the price of oil appear to translate into changes in the price of natural gas. Yet at times in the past, and very ...

  15. Heavy-Duty Natural Gas Drayage Truck Replacement Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heavy-Duty Natural Gas Drayage Truck Replacement Program Principal Investigator: Vicki White South Coast Air Quality Management District May 16, 2012 Project ID ARRAVT045 This...

  16. Outlook for U.S. shale oil and gas

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    2035 2040 Associated with oil Coalbed methane Tight gas Shale gas Alaska Non-associated offshore Non-associated onshore Projections History 2012 Adam Sieminski, IAEEAEA January...

  17. Oil and Gas CDT Using noble gas isotopes to develop a mechanistic understanding of shale gas

    E-Print Network [OSTI]

    Henderson, Gideon

    Oil and Gas CDT Using noble gas isotopes to develop a mechanistic understanding of shale gas, desorbtion, tracing, migration Overview The discovery of shale gas in UK Shales demonstrates how important and no doubt will vary from shale to shale. An improved understanding of the controls on gas production from

  18. Oil & Natural Gas Technology

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinan antagonist Journal Article: CrystalFG36-08GO18149Speeding access toSpeedingSpeeding accessa Oil &

  19. 2012 PRELIMINARY REPORT OF CALIFORNIA OIL AND GAS

    E-Print Network [OSTI]

    2012 PRELIMINARY REPORT OF CALIFORNIA OIL AND GAS PRODUCTION STATISTICS Issued April 2013 OF OIL, GAS, AND GEOTHERMAL RESOURCES Figures in this report are estimates based on ten months of production data. Final figures will be published in the 2012 Annual Report of the State Oil and Gas

  20. Detailed Execution Planning for Large Oil and Gas Construction Projects

    E-Print Network [OSTI]

    Calgary, University of

    Detailed Execution Planning for Large Oil and Gas Construction Projects Presented by James Lozon, University of Calgary There is currently 55.8 billion dollars worth of large oil and gas construction projects scheduled or underway in the province of Alberta. Recently, large capital oil and gas projects

  1. Oil and Gas Production Optimization; Lost Potential due to Uncertainty

    E-Print Network [OSTI]

    Johansen, Tor Arne

    Oil and Gas Production Optimization; Lost Potential due to Uncertainty Steinar M. Elgsaeter Olav.ntnu.no) Abstract: The information content in measurements of offshore oil and gas production is often low, and when in the context of offshore oil and gas fields, can be considered the total output of production wells, a mass

  2. 2010 PRELIMINARY REPORT OF CALIFORNIA OIL AND GAS

    E-Print Network [OSTI]

    2010 PRELIMINARY REPORT OF CALIFORNIA OIL AND GAS PRODUCTION STATISTICS Issued August 2011 DIVISION OF OIL, GAS, AND GEOTHERMAL RESOURCES Figures in this report are estimates based on ten months of production data. Final figures will be published in the 2010 Annual Report of the State Oil and Gas

  3. Cefas contract report: -SLEA2 Oil and Gas Fisheries Risk

    E-Print Network [OSTI]

    Cefas contract report: - SLEA2 Oil and Gas Fisheries Risk Assessment Advice Updated Cefas: Oil and Gas Fisheries Risk Assessment Advice Submitted to: Department of Energy and Climate Change Recommendations for Spawning Finfish ­ English & Welsh Blocks Oil and Gas Fisheries Risk Assessment Advice Updated

  4. Feasibility study of heavy oil recovery in the Appalachian, Black Warrior, Illinois, and Michigan basins

    SciTech Connect (OSTI)

    Olsen, D.K.; Rawn-Schatzinger, V.; Ramzel, E.B.

    1992-07-01T23:59:59.000Z

    This report is one of a series of publications assessing the feasibility of increasing domestic heavy oil production. Each report covers select areas of the United States. The Appalachian, Black Warrior, Illinois, and Michigan basins cover most of the depositional basins in the Midwest and Eastern United States. These basins produce sweet, paraffinic light oil and are considered minor heavy oil (10{degrees} to 20{degrees} API gravity or 100 to 100,000 cP viscosity) producers. Heavy oil occurs in both carbonate and sandstone reservoirs of Paleozoic Age along the perimeters of the basins in the same sediments where light oil occurs. The oil is heavy because escape of light ends, water washing of the oil, and biodegradation of the oil have occurred over million of years. The Appalachian, Black Warrior, Illinois, and Michigan basins` heavy oil fields have produced some 450,000 bbl of heavy oil of an estimated 14,000,000 bbl originally in place. The basins have been long-term, major light-oil-producing areas and are served by an extensive pipeline network connected to refineries designed to process light sweet and with few exceptions limited volumes of sour or heavy crude oils. Since the light oil is principally paraffinic, it commands a higher price than the asphaltic heavy crude oils of California. The heavy oil that is refined in the Midwest and Eastern US is imported and refined at select refineries. Imports of crude of all grades accounts for 37 to >95% of the oil refined in these areas. Because of the nature of the resource, the Appalachian, Black Warrior, Illinois and Michigan basins are not expected to become major heavy oil producing areas. The crude oil collection system will continue to degrade as light oil production declines. The demand for crude oil will increase pipeline and tanker transport of imported crude to select large refineries to meet the areas` liquid fuels needs.

  5. Feasibility study of heavy oil recovery in the Appalachian, Black Warrior, Illinois, and Michigan basins

    SciTech Connect (OSTI)

    Olsen, D.K.; Rawn-Schatzinger, V.; Ramzel, E.B.

    1992-07-01T23:59:59.000Z

    This report is one of a series of publications assessing the feasibility of increasing domestic heavy oil production. Each report covers select areas of the United States. The Appalachian, Black Warrior, Illinois, and Michigan basins cover most of the depositional basins in the Midwest and Eastern United States. These basins produce sweet, paraffinic light oil and are considered minor heavy oil (10{degrees} to 20{degrees} API gravity or 100 to 100,000 cP viscosity) producers. Heavy oil occurs in both carbonate and sandstone reservoirs of Paleozoic Age along the perimeters of the basins in the same sediments where light oil occurs. The oil is heavy because escape of light ends, water washing of the oil, and biodegradation of the oil have occurred over million of years. The Appalachian, Black Warrior, Illinois, and Michigan basins' heavy oil fields have produced some 450,000 bbl of heavy oil of an estimated 14,000,000 bbl originally in place. The basins have been long-term, major light-oil-producing areas and are served by an extensive pipeline network connected to refineries designed to process light sweet and with few exceptions limited volumes of sour or heavy crude oils. Since the light oil is principally paraffinic, it commands a higher price than the asphaltic heavy crude oils of California. The heavy oil that is refined in the Midwest and Eastern US is imported and refined at select refineries. Imports of crude of all grades accounts for 37 to >95% of the oil refined in these areas. Because of the nature of the resource, the Appalachian, Black Warrior, Illinois and Michigan basins are not expected to become major heavy oil producing areas. The crude oil collection system will continue to degrade as light oil production declines. The demand for crude oil will increase pipeline and tanker transport of imported crude to select large refineries to meet the areas' liquid fuels needs.

  6. Land Use Greenhouse Gas Emissions from Conventional Oil

    E-Print Network [OSTI]

    Turetsky, Merritt

    emissions of California crude and in situ oil sands production (crude refineryLand Use Greenhouse Gas Emissions from Conventional Oil Production and Oil Sands S O N I A Y E H and Alberta as examples for conventional oil production as well as oil sands production in Alberta

  7. Recovery of heavy crude oil or tar sand oil or bitumen from underground formations

    SciTech Connect (OSTI)

    McKay, A.S.

    1989-07-11T23:59:59.000Z

    This patent describes a method of producing heavy crude oil or tar sand oil or bitumen from an underground formation. The method consists of utilizing or establishing an aqueous fluid communication path within and through the formation between an injection well or conduit and a production well or conduit by introducing into the formation from the injection well or conduit hot water and/or low quality steam at a temperature in the range about 60{sup 0}-130{sup 0}C and at a substantially neutral or alkaline pH to establish or enlarge the aqueous fluid communication path within the formation from the injection well or conduit to the production well or conduit by movement of the introduced hot water or low quality steam through the formation, increasing the temperature of the injected hot water of low quality steam to a temperature in the range about 110{sup 0}-180{sup 0}C while increasing the pH of the injected hot water or low quality steam to a pH of about 10-13 so as to bring about the movement or migration or stripping of the heavy crude oil or tar sand oil or bitumen from the formation substantially into the hot aqueous fluid communication path with the formation and recovering the resulting produced heavy crude oil or tar sand oil or bitumen from the formation as an emulsion containing less than about 30% oil or bitumen from the production well or conduit.

  8. Future oil and gas: Can Iran deliver?

    SciTech Connect (OSTI)

    Takin, M. [Centre for Global Energy Studies, London (United Kingdom)

    1996-11-01T23:59:59.000Z

    Iran`s oil and gas production and exports constitute the country`s main source of foreign exchange earnings. The future level of these earnings will depend on oil prices, global demand for Iranian exports, the country`s productive capability and domestic consumption. The size of Iranian oil reserves suggests that, in principle, present productive capacity could be maintained and expanded. However, the greatest share of production in coming years still will come from fields that already have produced for several decades. In spite of significant remaining reserves, these fields are not nearly as prolific as they were in their early years. The operations required for further development are now more complicated and, in particular, more costly. These fields` size also implies that improving production, and instituting secondary and tertiary recovery methods (such as gas injection), will require mega-scale operations. This article discusses future oil and gas export revenues from the Islamic Republic of Iran, emphasizing the country`s future production and commenting on the effects of proposed US sanctions.

  9. OGEL (Oil, Gas & Energy Law Intelligence): Focussing on recent developments in the area of oil-gas-energy law,

    E-Print Network [OSTI]

    Dixon, Juan

    About OGEL OGEL (Oil, Gas & Energy Law Intelligence): Focussing on recent developments in the area of oil-gas-energy law, regulation, treaties, judicial and arbitral cases, voluntary guidelines, tax and contracting, including the oil-gas- energy geopolitics. For full Terms & Conditions and subscription rates

  10. Oil and Gas CDT Development of a SUNTANS Baroclinic Model for 3D Oil

    E-Print Network [OSTI]

    Henderson, Gideon

    Oil and Gas CDT Development of a SUNTANS Baroclinic Model for 3D Oil Pollution Tracking Heriot) Key Words Oil Spill, HF Radar, Trajectory Forecasting, Hydrodynamic Modelling, Oil Chemistry Overview In an oil spill emergency, an operational system must forecast ocean and weather conditions in addition

  11. Oil and Gas CDT Quantifying the role of groundwater in hydrocarbon systems using noble gas

    E-Print Network [OSTI]

    Henderson, Gideon

    Oil and Gas CDT Quantifying the role of groundwater in hydrocarbon systems using noble gas isotopes by groundwater (or oil) degassing. Other natural gas fields may have been produced in-situ or migrated as a free expert academics from across the CDT and also experienced oil and gas industry professionals

  12. Evaluation of EOR Potential by Gas and Water Flooding in Shale Oil Reservoirs.

    E-Print Network [OSTI]

    Chen, Ke

    2013-01-01T23:59:59.000Z

    ??The demand for oil and natural gas will continue to increase for the foreseeable future; unconventional resources such as tight oil, shale gas, shale oil… (more)

  13. Liquid fuels from co-processing coal with bitumen or heavy oil: A review

    SciTech Connect (OSTI)

    Moschopedis, S.E.; Hepler, L.G.

    1987-01-01T23:59:59.000Z

    Coal, bitumen and heavy oil (and various pitches, resids, etc.) are similar in that they require more substantial treatment than does conventional light oil to yield useful liquid fuels. The authors provide a brief and selective review of technologies for liquefying coal, followed by consideration of co-processing coal with bitumen/heavy oil. Such co-processing may be considered as use of bitumen/heavy oil as a solvent and/or hydrogen donor in liquefaction of coal, or as the use of coal to aid upgrading bitumen/heavy oil.

  14. Induced biochemical interactions in immature and biodegraded heavy crude oils

    SciTech Connect (OSTI)

    Premuzic, E.T.; Lin, M.S.; Bohenek, M.; Joshi-Tope, G.; Shelenkova, L.; Zhou, W.M.

    1998-11-01T23:59:59.000Z

    Studies in which selective chemical markers have been used to explore the mechanisms by which biocatalysts interact with heavy crude oils have shown that the biochemical reactions follow distinct trends. The term biocatalyst refers to a group of extremophilic microorganisms which, under the experimental conditions used, interact with heavy crude oils to (1) cause a redistribution of hydrocarbons, (2) cause chemical changes in oil fractions containing sulfur compounds and lower the sulfur content, (3) decrease organic nitrogen content, and (4) decrease the concentration of trace metals. Current data indicate that the overall effect is due to simultaneous reactions yielding products with relatively higher concentration of saturates and lower concentrations of aromatics and resins. The compositional changes depend on the microbial species and the chemistry of the crudes. Economic analysis of a potential technology based on the available data indicate that such a technology, used in a pre-refinery mode, may be cost efficient and promising. In the present paper, the background of oil biocatalysis and some recent results will be discussed.

  15. INDUCED BIOCHEMICAL INTERACTIONS IN IMMATURE AND BIODEGRADED HEAVY CRUDE OILS

    SciTech Connect (OSTI)

    PREMUZIC,E.T.; LIN,M.S.; BOHENEK,M.; JOSHI-TOPE,G.; SHELENKOVA,L.; ZHOU,W.M.

    1998-10-27T23:59:59.000Z

    Studies in which selective chemical markers have been used to explore the mechanisms by which biocatalysts interact with heavy crude oils have shown that the biochemical reactions follow distinct trends. The term biocatalyst refers to a group of extremophilic microorganisms which, under the experimental conditions used, interact with heavy crude oils to (1) cause a redistribution of hydrocarbons, (2) cause chemical changes in oil fractions containing sulfur compounds and lower the sulfur content, (3) decrease organic nitrogen content, and (4) decrease the concentration of trace metals. Current data indicate that the overall effect is due to simultaneous reactions yielding products with relatively higher concentration of saturates and lower concentrations of aromatics and resins. The compositional changes depend on the microbial species and the chemistry of the crudes. Economic analysis of a potential technology based on the available data indicate that such a technology, used in a pre-refinery mode, may be cost efficient and promising. In the present paper, the background of oil biocatalysis and some recent results will be discussed.

  16. Oil/gas separator for installation at burning wells

    SciTech Connect (OSTI)

    Alonso, C.T.; Bender, D.A.; Bowman, B.R. [and others

    1991-12-31T23:59:59.000Z

    An oil/gas separator is disclosed that can be utilized to return the burning wells in Kuwait to production. Advantageously, a crane is used to install the separator at a safe distance from the well. The gas from the well is burned off at the site, and the oil is immediately pumped into Kuwait`s oil gathering system. Diverters inside the separator prevent the oil jet coming out of the well from reaching the top vents where the gas is burned. The oil falls back down, and is pumped from an annular oil catcher at the bottom of the separator, or from the concrete cellar surrounding the well.

  17. Oil/gas separator for installation at burning wells

    DOE Patents [OSTI]

    Alonso, C.T.; Bender, D.A.; Bowman, B.R.; Burnham, A.K.; Chesnut, D.A.; Comfort, W.J. III; Guymon, L.G.; Henning, C.D.; Pedersen, K.B.; Sefcik, J.A.; Smith, J.A.; Strauch, M.S.

    1993-03-09T23:59:59.000Z

    An oil/gas separator is disclosed that can be utilized to return the burning wells in Kuwait to production. Advantageously, a crane is used to install the separator at a safe distance from the well. The gas from the well is burned off at the site, and the oil is immediately pumped into Kuwait's oil gathering system. Diverters inside the separator prevent the oil jet coming out of the well from reaching the top vents where the gas is burned. The oil falls back down, and is pumped from an annular oil catcher at the bottom of the separator, or from the concrete cellar surrounding the well.

  18. Oil/gas separator for installation at burning wells

    DOE Patents [OSTI]

    Alonso, Carol T. (Orinda, CA); Bender, Donald A. (Dublin, CA); Bowman, Barry R. (Livermore, CA); Burnham, Alan K. (Livermore, CA); Chesnut, Dwayne A. (Pleasanton, CA); Comfort, III, William J. (Livermore, CA); Guymon, Lloyd G. (Livermore, CA); Henning, Carl D. (Livermore, CA); Pedersen, Knud B. (Livermore, CA); Sefcik, Joseph A. (Tracy, CA); Smith, Joseph A. (Livermore, CA); Strauch, Mark S. (Livermore, CA)

    1993-01-01T23:59:59.000Z

    An oil/gas separator is disclosed that can be utilized to return the burning wells in Kuwait to production. Advantageously, a crane is used to install the separator at a safe distance from the well. The gas from the well is burned off at the site, and the oil is immediately pumped into Kuwait's oil gathering system. Diverters inside the separator prevent the oil jet coming out of the well from reaching the top vents where the gas is burned. The oil falls back down, and is pumped from an annular oil catcher at the bottom of the separator, or from the concrete cellar surrounding the well.

  19. Saber's heavy oil cracking refinery project

    SciTech Connect (OSTI)

    Benefield, C.S.; Glasscock, W.L.

    1983-03-01T23:59:59.000Z

    Perhaps more than any other industry, petroleum refining has been subjected to the radical swings in business and political climates of the past several decades. Because of the huge investments and long lead times to construct refining facilities, stable government policies, predictable petroleum prices, secure feedstock supplies and markets, and reliable cost estimates are necessary ingredients to effectively plan new refinery projects. However, over the past ten years the political and economic climates have provided anything but these conditions. Yet, refiners have demonstrated a willingness to undertake risks by continuing to expand and modernize their refineries. The refining business -- just as most businesses -- responds to economic incentives. These incentives, when present, result in new technology and capacity additions. In the 1940's, significant technology advances were commercialized to refine higher-octane motor gasolines. Such processes as continuous catalytic cracking (Houdry Process Corporation), fluid catalytic cracking (Standard Oil Development Company), HF alkylation (UOP and Phillips Petroleum Company), and catalytic reforming (UOP) began to supply a growing gasoline market, generated from the war effort and the ever increasing numbers of automobiles on the road. The post-war economy of the 1950's and 1960's further escalated demand for refined products, products which had to meet higher performance specifications and be produced from a wider range of raw materials. The refining industry met the challenge by introducing hydro-processing technology, such as hydrocracking developed in 1960. But, the era must be characterized by the large crude processing capacity additions, required to meet demand from the rapidly expanding U.S. economy. In 1950, refining capacity was 6.2 million BPD. By 1970, capacity had grown to 11.9 million BPD, an increase of 91%.

  20. Wireless Critical Process Control in oil and gas refinery plants

    E-Print Network [OSTI]

    Savazzi, Stefano

    Wireless Critical Process Control in oil and gas refinery plants Stefano Savazzi1, Sergio Guardiano control in in- dustrial plants and oil/gas refineries. In contrast to wireline communication, wireless of an oil refinery is illustrated in Fig. 1: typical locations of wireless devices used for re- mote control

  1. Linking Oil Prices, Gas Prices, Economy, Transport, and Land Use

    E-Print Network [OSTI]

    Bertini, Robert L.

    Linking Oil Prices, Gas Prices, Economy, Transport, and Land Use A Review of Empirical Findings Hongwei Dong, Ph.D. Candidate John D. Hunt, Professor John Gliebe, Assistant Professor #12;Framework Oil-run Short and Long-run #12;Topics covered by this presentation: Oil price and macro-economy Gas price

  2. Faculty of MANAGEMENT Alberta Oil & Gas Company1

    E-Print Network [OSTI]

    Nakayama, Marvin K.

    Faculty of MANAGEMENT Alberta Oil & Gas Company1 Daphne Jackson, operations manager for Alberta Oil "unitize") which will then be operated by a single organization, maximizing oil production while reducing expense and environmental impacts. Oilfield exploration and development An underground deposit of oil

  3. Feasibility study of heavy oil recovery in the Midcontinent region (Kansas, Missouri, Oklahoma)

    SciTech Connect (OSTI)

    Olsen, D.K.; Johnson, W.I.

    1993-08-01T23:59:59.000Z

    This report is one of a series of publications assessing the feasibility/constraints of increasing domestic heavy oil production. Each report covers a select area of the United States. The Midcontinent (Kansas, Nssouri, Oklahoma) has produced significant oil, but contrary to early reports, the area does not contain the huge volumes of heavy oil that, along with the development of steam and in situ combustion as oil production technologies, sparked the area`s oil boom of the 1960s. Recovery of this heavy oil has proven economically unfeasible for most operators due to the geology of the formations rather than the technology applied to recover the oil. The geology of the southern Midcontinent, as well as results of field projects using thermal enhanced oil recovery (TEOR) methods to produce the heavy oil, was examined based on analysis of data from secondary sources. Analysis of the performance of these projects showed that the technology recovered additional heavy oil above what was produced from primary production from the consolidated, compartmentalized, fluvial dominated deltaic sandstone formations in the Cherokee and Forest City basins. The only projects producing significant economic and environmentally acceptable heavy oil in the Midcontinent are in higher permeability, unconsolidated or friable, thick sands such as those found in south-central Oklahoma. There are domestic heavy oil reservoirs in other sedimentary basins that are in younger formations, are less consolidated, have higher permeability and can be economically produced with current TEOR technology. Heavy oil production from the carbonates of central and wester Kansas has not been adequately tested, but oil production is anticipated to remain low. Significant expansion of Midcontinent heavy oil production is not anticipated because the economics of oil production and processing are not favorable.

  4. An MBendi Profile: World: Oil And Gas Industry -Peak Oil: an Outlook on Crude Oil Depletion -C.J.Campbell -Revised February 2002 Search for

    E-Print Network [OSTI]

    An MBendi Profile: World: Oil And Gas Industry - Peak Oil: an Outlook on Crude Oil Depletion - C - Contact Us - Newsletter Register subscribe to our FREE newsletter World: Oil And Gas Industry - Peak Oil the subsequent decline. q Gas, which is less depleted than oil, will likely peak around 2020. q Capacity limits

  5. DEVELOPMENT PRACTICES FOR OPTIMIZED MEOR IN SHALLOW HEAVY OIL RESERVOIRS

    SciTech Connect (OSTI)

    Shari Dunn-Norman

    2005-06-01T23:59:59.000Z

    The objective of this research project is to demonstrate an economically viable and sustainable method of producing shallow heavy oil reserves in western Missouri and southeastern Kansas, using an integrated approach including surface geochemical surveys, conventional MEOR treatments, horizontal fracturing in vertical wells, electrical resistivity tomography (ERT), and reservoir simulation to optimize the recovery process. The objective also includes transferring the knowledge gained from the project to other local landowners, to demonstrate how they may identify and develop their own heavy oil resources with minimal capital investment. In the twelve to eighteen-month project period, three wells were equipped with ERT arrays. Electrical resistivity tomography (ERT) background measurements were taken in the three ERT equipped wells. Pumping equipment was installed on the two fracture stimulated wells and pumping tests were conducted following the hydraulic fracture treatments. All wells were treated monthly with microbes, by adding a commercially available microbial mixture to wellbore fluids. ERT surveys were taken on a monthly basis, following microbial treatments. Worked performed to date demonstrates that resistivity changes are occurring in the subsurface, with resistivity increasing slightly. Pumping results for the hydraulically fractured wells were disappointing, with only a show of oil recovered and an increase in well shut-in pressure.

  6. Natural Gas-optimized Advanced Heavy-duty Engine

    E-Print Network [OSTI]

    Natural Gas-optimized Advanced Heavy-duty Engine Transportation Research PIER Transportation of natural gas vehicles as a clean alternative is currently limited to smaller engine displacements and spark ignition, which results in lower performance. A large displacement natural gas engine has

  7. Effects of petroleum distillate on viscosity, density and surface tension of intermediate and heavy crude oils

    E-Print Network [OSTI]

    Abdullayev, Azer

    2009-06-02T23:59:59.000Z

    Experimental and analytical studies have been carried out to better understand the effects of additives on viscosity, density and surface tension of intermediate and heavy crude oils. The studies have been conducted for the following oil samples...

  8. Oil and Gas R&D Programs

    SciTech Connect (OSTI)

    NONE

    1997-03-01T23:59:59.000Z

    This publication describes the major components of the research and development programs of the Department of Energy`s Office of Natural Gas and Petroleum Technology. These programs are commonly referred to collectively as the `Oil and Gas Program.` This document provides customers with a single source of information describing the details of the individual technology program components. This document reflects the results of a planning cycle that began in early 1996 with the development of a scenario analysis for the programs, followed by the development of the coordinated strategic plan. The technology program plans, which are the most recent products of the planning cycle, expand on the program descriptions presented in the coordinated strategic plan, and represent an initial effort to coordinate the Oil and Gas Program exploration and production programs and budgets. Each technology program plan includes a `roadmap` that summarizes the progress of the program to the present and indicates its future direction. The roadmaps describe the program drivers, vision, mission, strategies, and measures of success. Both the individual technology program plans and the strategic plan are dynamic and are intended to be updated regularly.

  9. Artificial Geothermal Energy Potential of Steam-flooded Heavy Oil Reservoirs.

    E-Print Network [OSTI]

    Limpasurat, Akkharachai

    2011-01-01T23:59:59.000Z

    ??This study presents an investigation of the concept of harvesting geothermal energy that remains in heavy oil reservoirs after abandonment when steamflooding is no longer… (more)

  10. Oil and gas field code master list, 1993

    SciTech Connect (OSTI)

    Not Available

    1993-12-16T23:59:59.000Z

    This document contains data collected through October 1993 and provides standardized field name spellings and codes for all identified oil and/or gas fields in the United States. Other Federal and State government agencies, as well as industry, use the EIA Oil and Gas Field Code Master List as the standard for field identification. A machine-readable version of the Oil and Gas Field Code Master List is available from the National Technical Information Service.

  11. Establishment of an oil and gas database for increased recovery and characterization of oil and gas carbonate reservoir heterogeneity. [Jurassic Smackover Formation

    SciTech Connect (OSTI)

    Kopaska-Merkel, D.C.; Moore, H.E. Jr.; Mann, S.D.; Hall, D.R.

    1992-06-01T23:59:59.000Z

    This volume contains maps, well logging correlated to porosity and permeability, structural cross section, graph of production history, porosity vs. natural log permeability plot, detailed core log, paragenetic sequence and reservoir characterization sheet of the following fields in southwest Alabama: Appleton oil field; Barnett oil field; Barrytown oil field; Big Escambia Creek gas and condensate field; Blacksher oil field; Broken Leg Creed oil field; Bucatunna Creed oil field; Chappell Hill oil field; Chatom gas and condensate field; Choctaw Ridge oil field; Chunchula gas and condensate field; Cold Creek oil field; Copeland gas and condensate field; Crosbys Creed gas and condensate field; and East Barnett oil field. (AT)

  12. Establishment of an oil and gas database for increased recovery and characterization of oil and gas carbonate reservoir heterogeneity. Appendix 1, Volume 1

    SciTech Connect (OSTI)

    Kopaska-Merkel, D.C.; Moore, H.E. Jr.; Mann, S.D.; Hall, D.R.

    1992-06-01T23:59:59.000Z

    This volume contains maps, well logging correlated to porosity and permeability, structural cross section, graph of production history, porosity vs. natural log permeability plot, detailed core log, paragenetic sequence and reservoir characterization sheet of the following fields in southwest Alabama: Appleton oil field; Barnett oil field; Barrytown oil field; Big Escambia Creek gas and condensate field; Blacksher oil field; Broken Leg Creed oil field; Bucatunna Creed oil field; Chappell Hill oil field; Chatom gas and condensate field; Choctaw Ridge oil field; Chunchula gas and condensate field; Cold Creek oil field; Copeland gas and condensate field; Crosbys Creed gas and condensate field; and East Barnett oil field. (AT)

  13. Oil and Gas Research| GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Regionat CornellInternships, ScholarshipsSpeedingOil & Gas We're

  14. Hydroconversion of heavy oils. [Residue of tar sand bitumen distillation

    SciTech Connect (OSTI)

    Garg, D.

    1986-08-19T23:59:59.000Z

    A method is described for hydroconversion of feedstocks consisting essentially of at least one heavy hydrocarbon oil selected from the group consisting of residue of petroleum oil distillation and the residue of tar sand bitumen distillation to enhance the recovery of 350/sup 0/-650/sup 0/F boiling product fraction. The method comprises treating such feed stock with hydrogen at superatmospheric pressure and in the presence of finely divided active hydrogenation catalyst in consecutive reaction stages. An initial reaction stage is carried out at a temperature in the range of 780/sup 0/-825/sup 0/F, and a subsequent reaction stage is directly carried out after the initial reaction stage at a higher temperature in the range of 800/sup 0/F-860/sup 0/F, the temperature of the subsequent reaction stage being at least 20/sup 0/F higher than that of the initial reaction stage.

  15. U.S. crude oil, natural gas, and natural gas liquids reserves 1997 annual report

    SciTech Connect (OSTI)

    Wood, John H.; Grape, Steven G.; Green, Rhonda S.

    1998-12-01T23:59:59.000Z

    This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1997, as well as production volumes for the US and selected States and State subdivisions for the year 1997. Estimates are presented for the following four categories of natural gas: total gas (wet after lease separation), nonassociated gas and associated-dissolved gas (which are the two major types of wet natural gas), and total dry gas (wet gas adjusted for the removal of liquids at natural gas processing plants). In addition, reserve estimates for two types of natural gas liquids, lease condensate and natural gas plant liquids, are presented. Also included is information on indicated additional crude oil reserves and crude oil, natural gas, and lease condensate reserves in nonproducing reservoirs. A discussion of notable oil and gas exploration and development activities during 1997 is provided. 21 figs., 16 tabs.

  16. California Department of Conservation, Division of Oil, Gas,...

    Open Energy Info (EERE)

    Jump to: navigation, search Name: California Department of Conservation, Division of Oil, Gas, and Geothermal Resources Place: Sacramento, California Coordinates: 38.5815719,...

  17. Chesapeake Bay, Drilling for Oil or Gas Prohibited (Virginia)

    Broader source: Energy.gov [DOE]

    Drilling for oil or gas in the waters or within 500 hundred feet from the shoreline of the Chesapeake Bay or any of its tributaries is prohibited.

  18. Lean Manufacturing in the Oil and Gas Industry .

    E-Print Network [OSTI]

    Sakhardande, Rohan

    2011-01-01T23:59:59.000Z

    ??This research aims to investigate the lean production tools and techniques in the oil and gas industry with a focus on the oilfield services industry.… (more)

  19. Oil and Gas Commission General Rules and Regulations (Arkansas)

    Broader source: Energy.gov [DOE]

    The Oil and Gas Commission General Rules and Regulations are the body of rules and regulations that relate to natural gas production in Arkansas. The statutory law is found Arkansas Code Annotated...

  20. Oil and Gas- Leases to remove or recover (Pennsylvania)

    Broader source: Energy.gov [DOE]

    This act states that a lease or agreement conveying the right to remove or recover oil, natural gas or gas of any other designation from lessor to lessee shall not be valid if such lease does not...

  1. The Geopolitics of Oil, Gas, and Ecology in the Caucasus and Caspian Sea Basin. 1998 Caucasus Conference Report.

    E-Print Network [OSTI]

    Garcelon, Marc; Walker, Edward W.; Patten-Wood, Alexandra; Radovich, Aleksandra

    1998-01-01T23:59:59.000Z

    Energy Agency, Caspian Oil and Gas. Paris: Energy Charterforecasting studies on oil and gas projects in Kazakhstan33 Map of oil and gas

  2. DEVELOPMENT PRACTICES FOR OPTIMIZED MEOR IN SHALLOW HEAVY OIL RESERVOIRS

    SciTech Connect (OSTI)

    Shari Dunn-Norman

    2003-09-05T23:59:59.000Z

    The objective of this research project is to demonstrate an economically viable and sustainable method of producing shallow heavy oil reserves in western Missouri and southeastern Kansas, using an integrated approach including surface geochemical surveys, conventional MEOR treatments, horizontal fracturing in vertical wells, electrical resistivity tomography (ERT), and reservoir simulation to optimize the recovery process. The objective also includes transferring the knowledge gained from the project to other local landowners, to demonstrate how they may identify and develop their own heavy oil resources with minimal capital investment. Tasks completed in the first six-month period include soil sampling, geochemical analysis, construction of ERT arrays, collection of background ERT surveys, and analysis of core samples to develop a geomechanical model for designing the hydraulic fracturing treatment. Five wells were to be drilled in phase I. However, weather and funding delays resulted in drilling shifting to the second phase of the project. Work performed to date demonstrates that surface geochemical methods can be used to differentiate between productive and non-productive areas of the Warner Sand and that ERT can be used to successfully image through the Warner Sand.

  3. US crude oil, natural gas, and natural gas liquids reserves, 1992 annual report

    SciTech Connect (OSTI)

    Not Available

    1993-10-18T23:59:59.000Z

    This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1992, as well as production volumes for the United States, and selected States and State subdivisions for the year 1992. Estimates are presented for the following four categories of natural gas: total gas (wet after lease separation), its two major components (nonassociated and associated-dissolved gas), and total dry gas (wet gas adjusted for the removal of liquids at natural gas processing plants). In addition, two components of natural gas liquids, lease condensate and natural gas plant liquids, have their reserves and production data presented. Also included is information on indicated additional crude oil reserves and crude oil, natural gas, and lease condensate reserves in nonproducing reservoirs. A discussion of notable oil and gas exploration and development activities during 1992 is provided.

  4. Upgrading and enhanced recovery of Jobo heavy oil using hydrogen donor under in-situ combustion

    E-Print Network [OSTI]

    Huseynzade, Samir

    2008-10-10T23:59:59.000Z

    UPGRADING AND ENHANCED RECOVERY OF JOBO HEAVY OIL USING HYDROGEN DONOR UNDER IN-SITU COMBUSTION A... UPGRADING AND ENHANCED RECOVERY OF JOBO HEAVY OIL USING HYDROGEN DONOR UNDER IN-SITU COMBUSTION A Thesis by SAMIR HUSEYNZADE Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements...

  5. IFP --Oil & Gas Science and Technology --(Script : 1er specimen) --1 --Oil & Gas Science and Technology --rev. IFP, Vol. xx (2009), No X, pp. 00-00

    E-Print Network [OSTI]

    Boyer, Edmond

    IFP -- Oil & Gas Science and Technology -- (Script : 1er specimen) -- 1 -- Oil & Gas Science2010 Author manuscript, published in "Oil & Gas Science and Technology - Rev. IFP, 65, 3 (2010) 435-444" DOI : 10.2516/ogst/2010007 #12;IFP -- Oil & Gas Science and Technology -- (Script : 1er specimen) -- 2

  6. Low NOx burner retrofits and enhancements for a 518 MW oil and gas fired boiler

    SciTech Connect (OSTI)

    King, J.J. [Jacksonville Electric Authority, FL (United States); Allen, J.W.; Beal, P.R. [International Combustion Ltd., Derby (United Kingdom). Rolls-Royce Industrial Power Group

    1995-12-31T23:59:59.000Z

    Low NOx oil/gas burners originally supplied to Jacksonville Electric Authority, Northside No. 3 .500 MW unit, were based on a duplex air register design with lobed spray oil atomizers providing additional fuel staging. Although the burners could meet the targeted NOx levels of 0.3 and 0.2 lbs/10{sup 6} BTU on oil and gas respectively. There was insufficient margin on these NOx levels to enable continuous low NOx operation to be achieved. Further burner development was undertaken based on improved aerodynamic control within the burner design to give an approximate 25% improvement in NOx emission reduction thus providing an adequate operating margin. This `RoBTAS` (Round Burner with Tilted Air Supply) burner design based on techniques developed successfully for front wall coal firing applications achieved the required NOx reductions in full scale firing demonstrations on both heavy fuel oil and natural gas firing. The paper describes the development work and the subsequent application of the `RoBTAS` burners to the Northside No. 3 boiler. The burner will also be test fired on Orimulsion fuel and thus the comparison between heavy fuel oil firing and Orimulsion firing under ultra low NOx conditions will be made.

  7. Experimental Study of In-Situ Upgrading for Heavy Oil Using Hydrogen Donors and Catalyst under Steam Injection Condition

    E-Print Network [OSTI]

    Zhang, Zhiyong

    2012-07-16T23:59:59.000Z

    ±1% compared with pre-upgrading mixture. It meant that hydrogen donors and catalyst had strong synergetic effects on heavy oil upgrading. We also found that 300 °C was an effective temperature for heavy oil upgrading with obvious viscosity reduction...

  8. Monitoring Seismic Attenuation Changes Using a 4D Relative Spectrum Method in Athabsca Heavy Oil Reservoir, Canada

    E-Print Network [OSTI]

    Shabelansky, Andrey Hanan

    2012-01-01T23:59:59.000Z

    Heating heavy oil reservoirs is a common method for reducing the high viscosity of heavy oil and thus increasing the recovery factor. Monitoring these changes in the reservoir is essential for delineating the heated region ...

  9. Aspects of Hess' Acquisition of American Oil & Gas

    Reports and Publications (EIA)

    2010-01-01T23:59:59.000Z

    On July 27, 2010, Hess Corporation announced that it had agreed to acquire American Oil & Gas, Inc. in a stock-only transaction worth as much as $488 million (based on Hess' closing price of $53.30/share, anticipated number of newly issued shares, and $30 million credit facility extended to American Oil & Gas prior to closing).

  10. Largest US oil and gas fields, August 1993

    SciTech Connect (OSTI)

    Not Available

    1993-08-06T23:59:59.000Z

    The Largest US Oil and Gas Fields is a technical report and part of an Energy Information Administration (EIA) series presenting distributions of US crude oil and natural gas resources, developed using field-level data collected by EIA`s annual survey of oil and gas proved reserves. The series` objective is to provide useful information beyond that routinely presented in the EIA annual report on crude oil and natural gas reserves. These special reports also will provide oil and gas resource analysts with a fuller understanding of the nature of US crude oil and natural gas occurrence, both at the macro level and with respect to the specific subjects addressed. The series` approach is to integrate EIA`s crude oil and natural gas survey data with related data obtained from other authoritative sources, and then to present illustrations and analyses of interest to a broad spectrum of energy information users ranging from the general public to oil and gas industry personnel.

  11. Risk analysis in oil and gas projects : a case study in the Middle East

    E-Print Network [OSTI]

    Zand, Emad Dolatshahi

    2009-01-01T23:59:59.000Z

    Global demand for energy is rising around the world. Middle East is a major supplier of oil and gas and remains an important region for any future oil and gas developments. Meanwhile, managing oil and gas projects are ...

  12. Recent Economic Trends in Colorado's Oil and Gas Industry Martin Shields, Ph.D.

    E-Print Network [OSTI]

    's Oil and Gas Industry Martin Shields, Ph.D. Regional Economics Institute Trends in Colorado's Oil and Gas Industry Summary Colorado's economy lost issues affecting its prospects in Colorado. Although the oil and gas industry

  13. Well blowout rates in California Oil and Gas District 4--Update and Trends

    E-Print Network [OSTI]

    Benson, Sally M.

    2010-01-01T23:59:59.000Z

    geologic assessment of oil and gas in the San Joaquin BasinRates in California Oil and Gas District 4 – Update andoccurring in California Oil and Gas District 4 during the

  14. Support for Offshore Oil and Gas Drilling among the California Public

    E-Print Network [OSTI]

    Smith, Eric R.A.N.

    2003-01-01T23:59:59.000Z

    005 "Support for Offshore Oil and Gas Drilling Among theSupport for Offshore Oil and Gas Drilling among theSupport for Offshore Oil and Gas Drilling among the

  15. Public Support for Oil and Gas Drilling in California's Forests and Parks

    E-Print Network [OSTI]

    Smith, Eric R.A.N.; Carlisle, Juliet; Michaud, Kristy

    2004-01-01T23:59:59.000Z

    009 "Public Support for Oil and Gas Drilling in California’sPublic Support for Oil and Gas Drilling in California’sPublic Support for Oil and Gas Drilling in California’s

  16. UK Oil and Gas Collaborative Doctoral Training Centre For applications to the University of Aberdeen

    E-Print Network [OSTI]

    Levi, Ran

    UK Oil and Gas Collaborative Doctoral Training Centre For applications. IMPORTANT In section 2 Programme The Oil and Gas projects are all being BOX: PUT Oil and Gas CDT and the name of the project you're interested

  17. Oil and Gas CDT Gas hydrate distribution on tectonically active continental

    E-Print Network [OSTI]

    Henderson, Gideon

    Oil and Gas CDT Gas hydrate distribution on tectonically active continental margins: Impact on gas. Gregory F. Moore, University of Hawaii (USA) http://www.soest.hawaii.edu/moore/ Key Words Gas Hydrates, Faults, Fluid Flow, gas prospectivity Overview Fig. 1. Research on gas hydrates is often undertaken

  18. Visualization of Solution Gas Drive in Viscous Oil, SUPRI TR-126

    SciTech Connect (OSTI)

    George, D.S.; Kovscek, A.R.

    2001-07-23T23:59:59.000Z

    Several experimental studies of solution gas drive are available in this report. Almost all of the studies have used light oil. Solution gas drive behavior, especially in heavy oil reservoirs, is poorly understood. Experiments were performed in which pore-scale solution gas drive phenomena were viewed in water/carbon dioxide and viscous oil/carbon dioxide systems. A new pressure vessel was designed and constructed to house silicon-wafer micromodels that previously operated at low (<3 atm) pressure. The new apparatus is used for the visual studies. Several interesting phenomena were viewed. The repeated nucleation of gas bubbles was observed at a gas-wet site occupied by dirt. Interestingly, the dissolution of a gas bubble into the liquid phase was previously recorded at the same nucleation site. Gas bubbles in both systems grew to span one ore more pore bodies before mobilization. Liquid viscosity affected the ease with which gas bubbles coalesced. More viscous solutions result in slower rates of coalescence. The transport of solid particles on gas-liquid interfaces was also observed.

  19. Underground storage of oil and gas

    SciTech Connect (OSTI)

    Bergman, S.M.

    1984-09-01T23:59:59.000Z

    The environmental and security advantages of underground storage of oil and gas are well documented. In many cases, underground storage methods such as storage in salt domes, abandoned mines, and mined rock caverns have proven to be cost effective when compared to storage in steel tanks constructed for that purpose on the surface. In good rock conditions, underground storage of large quantities of hydrocarbon products is normally less costly--up to 50-70% of the surface alternative. Under fair or weak rock conditions, economic comparisons between surface tanks and underground caverns must be evaluated on a case to case basis. The key to successful underground storage is enactment of a realistic geotechnical approach. In addition to construction cost, storage of petroleum products underground has operational advantages over similar storage above ground. These advantages include lower maintenance costs, less fire hazards, less land requirements, and a more even storage temperature.

  20. Documentation of the Oil and Gas Supply Module (OGSM)

    SciTech Connect (OSTI)

    NONE

    1998-01-01T23:59:59.000Z

    The purpose of this report is to define the objectives of the Oil and Gas Supply Model (OGSM), to describe the model`s basic approach, and to provide detail on how the model works. This report is intended as a reference document for model analysts, users, and the public. Projected production estimates of US crude oil and natural gas are based on supply functions generated endogenously within National Energy Modeling System (NEMS) by the OGSM. OGSM encompasses domestic crude oil and natural gas supply by both conventional and nonconventional recovery techniques. Nonconventional recovery includes enhanced oil recovery (EOR), and unconventional gas recovery (UGR) from tight gas formations, Devonian/Antrim shale and coalbeds. Crude oil and natural gas projections are further disaggregated by geographic region. OGSM projects US domestic oil and gas supply for six Lower 48 onshore regions, three offshore regions, and Alaska. The general methodology relies on forecasted profitability to determine exploratory and developmental drilling levels for each region and fuel type. These projected drilling levels translate into reserve additions, as well as a modification of the production capacity for each region. OGSM also represents foreign trade in natural gas, imports and exports by entry region. Foreign gas trade may occur via either pipeline (Canada or Mexico), or via transport ships as liquefied natural gas (LNG). These import supply functions are critical elements of any market modeling effort.

  1. Oil production from thin oil columns subject to water and gas coning

    E-Print Network [OSTI]

    Chai, Kwok Kit

    1981-01-01T23:59:59.000Z

    OIL PRODUCTION FROM THIN OIL COLUMNS SUBJECT TO MATER AND GAS CONING A Thesis by KMOK KIT CHAI Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE May 1981... Major Subject: Petroleum Engineering OIL PRODUCTION FROM THIN OIL COLUMNS SUBJECT TO WATER AND GAS CONING A Thesis by KWOK KIT CHAI Approved as to style and content by airman of o t ee Member Member Head o Department May 1981 ABSTRACT Oil...

  2. Heavy oil reservoirs recoverable by thermal technology. Annual report

    SciTech Connect (OSTI)

    Kujawa, P.

    1981-02-01T23:59:59.000Z

    This volume contains reservoir, production, and project data for target reservoirs which contain heavy oil in the 8 to 25/sup 0/ API gravity range and are susceptible to recovery by in situ combustion and steam drive. The reservoirs for steam recovery are less than 2500 feet deep to comply with state-of-the-art technology. In cases where one reservoir would be a target for in situ combustion or steam drive, that reservoir is reported in both sections. Data were collectd from three source types: hands-on (A), once-removed (B), and twice-removed (C). In all cases, data were sought depicting and characterizing individual reservoirs as opposed to data covering an entire field with more than one producing interval or reservoir. The data sources are listed at the end of each case. This volume also contains a complete listing of operators and projects, as well as a bibliography of source material.

  3. Heavy oil reservoirs recoverable by thermal technology. Annual report

    SciTech Connect (OSTI)

    Kujawa, P.

    1981-02-01T23:59:59.000Z

    This volume contains reservoir, production, and project data for target reservoirs thermally recoverable by steam drive which are equal to or greater than 2500 feet deep and contain heavy oil in the 8 to 25/sup 0/ API gravity range. Data were collected from three source types: hands-on (A), once-removed (B), and twice-removed (C). In all cases, data were sought depicting and characterizing individual reservoirs as opposed to data covering an entire field with more than one producing interval or reservoir. The data sources are listed at the end of each case. This volume also contains a complete listing of operators and projects, as well as a bibliography of source material.

  4. Development of the Write Process for Pipeline-Ready Heavy Oil

    SciTech Connect (OSTI)

    Lee Brecher; Charles Mones; Frank Guffey

    2009-03-07T23:59:59.000Z

    Work completed under this program advances the goal of demonstrating Western Research Institute's (WRI's) WRITE{trademark} process for upgrading heavy oil at field scale. MEG Energy Corporation (MEG) located in Calgary, Alberta, Canada supported efforts at WRI to develop the WRITE{trademark} process as an oil sands, field-upgrading technology through this Task 51 Jointly Sponsored Research project. The project consisted of 6 tasks: (1) optimization of the distillate recovery unit (DRU), (2) demonstration and design of a continuous coker, (3) conceptual design and cost estimate for a commercial facility, (4) design of a WRITE{trademark} pilot plant, (5) hydrotreating studies, and (6) establish a petroleum analysis laboratory. WRITE{trademark} is a heavy oil and bitumen upgrading process that produces residuum-free, pipeline ready oil from heavy material with undiluted density and viscosity that exceed prevailing pipeline specifications. WRITE{trademark} uses two processing stages to achieve low and high temperature conversion of heavy oil or bitumen. The first stage DRU operates at mild thermal cracking conditions, yielding a light overhead product and a heavy residuum or bottoms material. These bottoms flow to the second stage continuous coker that operates at severe pyrolysis conditions, yielding light pyrolyzate and coke. The combined pyrolyzate and mildly cracked overhead streams form WRITE{trademark}'s synthetic crude oil (SCO) production. The main objectives of this project were to (1) complete testing and analysis at bench scale with the DRU and continuous coker reactors and provide results to MEG for process evaluation and scale-up determinations and (2) complete a technical and economic assessment of WRITE{trademark} technology to determine its viability. The DRU test program was completed and a processing envelope developed. These results were used for process assessment and for scaleup. Tests in the continuous coker were intended to determine the throughput capability of the coker so a scaled design could be developed that maximized feed rate for a given size of reactor. These tests were only partially successful because of equipment problems. A redesigned coker, which addressed the problems, has been build but not operated. A preliminary economic analysis conducted by MEG and an their engineering consultant concluded that the WRITE{trademark} process is a technically feasible method for upgrading bitumen and that it produces SCO that meets pipeline specifications for density. When compared to delayed coking, the industry benchmark for thermal upgrading of bitumen, WRITE{trademark} produced more SCO, less coke, less CO{sub 2} per barrel of bitumen fed, and had lower capital and operating costs. On the other hand, WRITE{trademark}'s lower processing severity yielded crude with higher density and a different product distribution for naphtha, light gas oil and vacuum oil that, taken together, might reduce the value of the SCO. These issues plus the completion of more detailed process evaluation and economics need to be resolved before WRITE{trademark} is deployed as a field-scale pilot.

  5. Analytical solution for Joule-Thomson cooling during CO2 geo-sequestration in depleted oil and gas reservoirs

    E-Print Network [OSTI]

    Mathias, S.A.

    2010-01-01T23:59:59.000Z

    sequestration in depleted oil and gas reservoirs Simon A.1. Introduction Depleted oil and gas reservoirs (DOGRs)

  6. Increasing Heavy Oil Reserves in the Wilmington Oil Field Through Advanced Reservoir Characterization and Thermal Production Technologies, Class III

    SciTech Connect (OSTI)

    City of Long Beach; Tidelands Oil Production Company; University of Southern California; David K. Davies and Associates

    2002-09-30T23:59:59.000Z

    The objective of this project was to increase the recoverable heavy oil reserves within sections of the Wilmington Oil Field, near Long Beach, California through the testing and application of advanced reservoir characterization and thermal production technologies. It was hoped that the successful application of these technologies would result in their implementation throughout the Wilmington Field and, through technology transfer, will be extended to increase the recoverable oil reserves in other slope and basin clastic (SBC) reservoirs.

  7. Assessment of Research Needs for Oil Recovery from Heavy-Oil Sources and Tar Sands (FERWG-IIIA)

    SciTech Connect (OSTI)

    Penner, S.S.

    1982-03-01T23:59:59.000Z

    The Fossil Energy Research Working Group (FERWG), at the request of J.W. Mares (Assistant Secretary for Fossil Energy) and A.W. Trivelpiece (Director, Office of Energy Research), has reviewed and evaluated the U.S. programs on oil recovery from heavy oil sources and tar sands. These studies were performed in order to provide an independent assessment of research areas that affect the prospects for oil recovery from these sources. This report summarizes the findings and research recommendations of FERWG.

  8. Iran seeking help in regaining prerevolution oil and gas flow

    SciTech Connect (OSTI)

    Tippee, B.

    1996-02-19T23:59:59.000Z

    This paper reviews the goals of the Iranian oil and gas industry to rebuild their oil and gas production facilities by using foreign investment. It discusses the historical consequences of war in the region to diminish the production and postpone the recovery of natural gas which is currently flared. It describes the major projects Iran hopes to develop through international partnerships and includes field development, pipeline construction, gas reinjection, gas treatment facilities, and new offshore operation. The paper also reviews the US policy on Iran and its attempt to apply sanctions towards this country.

  9. Preliminary evaluation of a process using plasma reactions to desulfurize heavy oils. Final report

    SciTech Connect (OSTI)

    Grimes, P.W.; Miknis, F.P.

    1997-09-01T23:59:59.000Z

    Western Research Institute (WRI) has conducted exploratory experiments on the use of microwave-induced plasmas to desulfurize heavy oils. Batch mode experiments were conducted in a quartz reactor system using various reactive and nonreactive plasmas. In these experiments a high-sulfur asphalt was exposed to various plasmas, and the degree of conversion to distillate, gas, and solids was recorded. Products from selected experiments were analyzed to determine if the plasma exposure had resulted in a significant reduction in sulfur content. Exploratory experiments were conducted using reactive plasmas generated from hydrogen and methane and nonreactive plasmas generated from nitrogen. The effects of varying exposure duration, sample temperature, and location of the sample with respect to the plasma discharge were investigated. For comparative purposes two experiments were conducted in which the sample was heated under nitrogen with no plasma exposure. Distillates containing approximately 28% less sulfur than the feedstock represented the maximum desulfurization attained in the plasma experiments. It does not appear that plasma reactions using the simple configurations employed in this study represent a viable method for the desulfurization of heavy oils.

  10. The Oil and Natural Gas Knowledge Management Database from NETL

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Knowledge Management Database (KMD) Portal provides four options for searching the documents and data that NETL-managed oil and gas research has produced over the years for DOE’s Office of Fossil Energy. Information includes R&D carried out under both historical and ongoing DOE oil and gas research and development (R&D). The Document Repository, the CD/DVD Library, the Project Summaries from 1990 to the present, and the Oil and Natural Gas Program Reference Shelf provide a wide range of flexibility and coverage.

  11. The Oil and Gas Journal databook, 1986 edition

    SciTech Connect (OSTI)

    Not Available

    1986-01-01T23:59:59.000Z

    This annual contains the following: Foreword by Gene Kinney; OGJ 400; Crude Oil Assays; Worldwide Petrochemical Survey; Midyear Forecast and Review; Worldwide Gas Processing Report; Ethylene Report; Sulfur Survey; International Refining; Catalyst Compilation; Pipeline Economics Report; Worldwide Production and Refining Report; Annual Refining Survey; Morgan Pipeline Cost Index, Oil and Gas; Nelson Cost Index; Hughes Rig Count; Smith Rig Count; OGJ Production Report and the API Refinery Reports. Also featured is the Oil and Gas Journal Index, which lists every article published in the Journal in 1985, referenced by article title or subject.

  12. Analysis of techniques for predicting viscosity of heavy oil and tar sand bitumen

    SciTech Connect (OSTI)

    Khataniar, S.; Patil, S.L.; Kamath, V.A. [Univ. of Alaska, Fairbanks, AK (United States)

    1995-12-31T23:59:59.000Z

    Thermal recovery methods are generally employed for recovering heavy oil and tar sand bitumen. These methods rely on reduction of oil viscosity by application of heat as one of the primary mechanisms of oil recovery. Therefore, design and performance prediction of the thermal recovery methods require adequate prediction of oil viscosity as a function of temperature. In this paper, several commonly used temperature-viscosity correlations are analyzed to evaluate their ability to correctly predict heavy oil and bitumen viscosity as a function of temperature. The analysis showed that Ali and Standing`s correlations gave satisfactory results in most cases when properly applied. Guidelines are provided for their application. None of the correlations, however, performed satisfactorily with very heavy oils at low temperatures.

  13. US crude oil, natural gas, and natural gas liquids reserves 1996 annual report

    SciTech Connect (OSTI)

    NONE

    1997-12-01T23:59:59.000Z

    The EIA annual reserves report series is the only source of comprehensive domestic proved reserves estimates. This publication is used by the Congress, Federal and State agencies, industry, and other interested parties to obtain accurate estimates of the Nation`s proved reserves of crude oil, natural gas, and natural gas liquids. These data are essential to the development, implementation, and evaluation of energy policy and legislation. This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1996, as well as production volumes for the US and selected States and State subdivisions for the year 1996. Estimates are presented for the following four categories of natural gas: total gas (wet after lease separation), nonassociated gas and associated-dissolved gas (which are the two major types of wet natural gas), and total dry gas (wet gas adjusted for the removal of liquids at natural gas processing plants). In addition, reserve estimates for two types of natural gas liquids, lease condensate and natural gas plant liquids, are presented. Also included is information on indicated additional crude oil reserves and crude oil, natural gas, and lease condensate reserves in nonproducing reservoirs. A discussion of notable oil and gas exploration and development activities during 1996 is provided. 21 figs., 16 tabs.

  14. U.S. crude oil, natural gas, and natural gas liquids reserves 1995 annual report

    SciTech Connect (OSTI)

    NONE

    1996-11-01T23:59:59.000Z

    The EIA annual reserves report series is the only source of comprehensive domestic proved reserves estimates. This publication is used by the Congress, Federal and State agencies, industry, and other interested parties to obtain accurate estimates of the Nation`s proved reserves of crude oil, natural gas, and natural gas liquids. These data are essential to the development, implementation, and evaluation of energy policy and legislation. This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1995, as well as production volumes for the US and selected States and State subdivisions for the year 1995. Estimates are presented for the following four categories of natural gas: total gas (wet after lease separation), nonassociated gas and associated-dissolved gas (which are the two major types of wet natural gas), and total dry gas (wet gas adjusted for the removal of liquids at natural gas processing plants). In addition, reserve estimates for two types of natural gas liquids, lease condensate and natural gas plant liquids, are presented. Also included is information on indicated additional crude oil reserves and crude oil, natural gas, and lease condensate reserves in nonproducing reservoirs. A discussion of notable oil and gas exploration and development activities during 1995 is provided. 21 figs., 16 tabs.

  15. Summary: U.S. Crude Oil, Natural Gas, and Natural Gas Liquids...

    Gasoline and Diesel Fuel Update (EIA)

    demonstrate the possibility of an expanding role for domestic natural gas and crude oil in meeting both current and projected U.S. energy demands. Shale gas development in...

  16. Oil and gas developments in North Africa in 1986

    SciTech Connect (OSTI)

    Michel, R.C.

    1987-10-01T23:59:59.000Z

    Licensed oil acreage in the 6 North Africa countries (Algeria, Egypt, Libya, Morocco, Sudan and Tunisia) totaled 1,500,000 km/sup 2/ at the end of 1986, down 290,000 km/sup 2/ from 1985. About 50% of the relinquishments were in Libya. Most oil and gas discoveries were made in Egypt (16 oil and 2 gas). Several oil finds were reported in onshore Libya, and 1 was reported in Algeria in the southeastern Sahara. According to available statistics, development drilling decreased from 1985 levels, except in Tunisia. A 6.3% decline in oil production took place in 1986, falling below the 3 million bbl level (2,912,000 b/d). Only sparse data are released on the gas output in North Africa. 6 figures, 27 tables.

  17. Testing for market integration crude oil, coal, and natural gas

    SciTech Connect (OSTI)

    Bachmeier, L.J.; Griffin, J.M. [Texas A& amp; M Univ, College Station, TX (United States)

    2006-07-01T23:59:59.000Z

    Prompted by the contemporaneous spike in coal, oil, and natural gas prices, this paper evaluates the degree of market integration both within and between crude oil, coal, and natural gas markets. Our approach yields parameters that can be readily tested against a priori conjectures. Using daily price data for five very different crude oils, we conclude that the world oil market is a single, highly integrated economic market. On the other hand, coal prices at five trading locations across the United States are cointegrated, but the degree of market integration is much weaker, particularly between Western and Eastern coals. Finally, we show that crude oil, coal, and natural gas markets are only very weakly integrated. Our results indicate that there is not a primary energy market. Despite current price peaks, it is not useful to think of a primary energy market, except in a very long run context.

  18. Oil and gas: Oilfield class actions

    SciTech Connect (OSTI)

    McArthur, J.B.

    1997-06-01T23:59:59.000Z

    The use of class actions is getting alot of attention in the oilfield. Plaintiffs have filed class actions challenging two of the most rooted industry practices, oil posted prices and deregulated natural gas affiliate deduction and charges. The classes will include tens or hundreds of thousands of plaintiffs and may transform two of the industry`s most settled practices. The emotions surrounding the class action risk obscuring the fact that it is an old and oft-used tool in oilfield litigation. The class action {open_quotes}provides a means by which, where a large group of persons are interested in a matter, one or more may sue or be sued as representatives of the class without needing to join every member of the class.{close_quotes} The procedure avoids waste by combining scattered disputes, even if some injured might sue individually, and it enables plaintiffs who could not afford to sue to be represented anyway. The lawyers draw their fees from any recovery. Almost all oilpatch class actions are brought to resolve a {open_quotes}common question{close_quotes} under Federal Rules of Civil Procedure 23(b)(3) or state counterparts. The rule`s {open_quotes}opt-out{close_quotes} provisions give class actions a tremendous boost because members stay in unless they take steps to get out. This article discusses present and future class actions.

  19. The value of United States oil and gas reserves

    E-Print Network [OSTI]

    Adelman, Morris Albert

    1996-01-01T23:59:59.000Z

    The object of this research is to estimate a time series, starting in 1979, for the value of in-ground oil reserves and natural gas reserves in the United States. Relatively good statistics exist for the physical quantities. ...

  20. Montana Oil and Natural Gas Production Tax Act (Montana)

    Broader source: Energy.gov [DOE]

    The State of Montana imposes a quarterly tax on the gross taxable value of oil and natural gas production. This tax replaces several previous taxes, simplifying fees and rates as well as compliance...

  1. Oil and Gas Exploration, Drilling, Transportation, and Production (South Carolina)

    Broader source: Energy.gov [DOE]

    This legislation prohibits the waste of oil or gas and the pollution of water, air, or land. The Department of Health and Environmental Control is authorized to implement regulations designed to...

  2. Mining and Gas and Oil Production (North Dakota)

    Broader source: Energy.gov [DOE]

    This chapter of the North Dakota Code contains provisions for oil, gas, and coal mining and the development of geothermal resources. This chapter addresses claims to mines, licensing and control of...

  3. Outlook for U.S. shale oil and gas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Argus Americas Crude Summit January 22, 2014 | Houston, TX By Adam Sieminski, EIA Administrator Six key plays account for nearly all recent growth in oil and natural gas production...

  4. The U.S. Oil and Natural Gas Production Outlook

    Gasoline and Diesel Fuel Update (EIA)

    Oil and Natural Gas Production Outlook for PRG Energy Outlook Conference September 22, 2014 by Adam Sieminski, Administrator 0 20 40 60 80 100 120 1980 1985 1990 1995 2000 2005...

  5. Outsourcing Logistics in the Oil and Gas Industry

    E-Print Network [OSTI]

    Herrera, Cristina 1988-

    2012-04-30T23:59:59.000Z

    The supply chain challenges that the Oil and Gas industry faces in material logistics have enlarged in the last few decades owing to an increased hydro-carbon demand. Many reasons justify the challenges, such as exploration activities which have...

  6. Unconventional Oil and Gas Projects Help Reduce Environmental...

    Broader source: Energy.gov (indexed) [DOE]

    As these "conventional" reservoirs become harder to find, however, we are turning to oil and natural gas in shale or other less-permeable geologic formations, which do not...

  7. Assessment of Eagle Ford Shale Oil and Gas Resources

    E-Print Network [OSTI]

    Gong, Xinglai

    2013-07-30T23:59:59.000Z

    , and to assess Eagle Ford shale oil and gas reserves, contingent resources, and prospective resources. I first developed a Bayesian methodology to generate probabilistic decline curves using Markov Chain Monte Carlo (MCMC) that can quantify the reserves...

  8. International Oil and Gas Board International Oil and Gas Board Address

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpInc Place: EdenOverview Of The Data,associationOil and Gas Board

  9. Economic Impact PermianBasin'sOil&GasIndustry

    E-Print Network [OSTI]

    Zhang, Yuanlin

    of Petroleum Evaluation Engineers (SPEE) parameters for evaluating Resource Plays 53 Appendix C: Detailed Play to traditional economic impacts, this report includes a petroleum engineering-based analysis that providesEconomic Impact PermianBasin'sOil&GasIndustry #12;The Economic Impact of the Permian Basin's Oil

  10. UDC 622.276 A NEW APPROACH CALCULATE OIL-GAS RATIO

    E-Print Network [OSTI]

    Fernandez, Thomas

    UDC 622.276 A NEW APPROACH CALCULATE OIL-GAS RATIO FOR GAS CONDENSATE AND VOLATILE OIL RESERVOIRS. In this work, we develop a new approach to calculate oil-gas ratio (Rv) by matching PVT experimental data laboratory analysis of eight gas condensate and five volatile oil fluid samples; selected under a wide range

  11. A study of water driven oil encroachment into gas caps

    E-Print Network [OSTI]

    Ritch, Harlan J

    1958-01-01T23:59:59.000Z

    A STUDY OF WATER DRIVEN OIL ENCROACHMENT INTO GAS CAPS LIBRARY A S I COLLEGE OF TEXAS A Thesis By HARLAN J. RITCH ~ ~ ~ Submitted to the Graduate School oi' the Agricultural and Mechanical College of Texas in partial fulfillment... of the requirements for the degree of MASTER OF SCIENCE May, 1958 Major Subject: Petroleum Engineering A STUDY OF WATER DRIVEN OIL ENCROACHMENT INTO GAS CAPS A Thesis By HARLAN J. RITCH Approved as to style and content by: hairxnan of Coxnxnittee) (Head...

  12. Recovery of oil from fractured reservoirs by gas displacement

    E-Print Network [OSTI]

    Unneberg, Arild

    2012-06-07T23:59:59.000Z

    RECOVERY OF OIL FROM FRACTURED RESERVOIRS BY GAS DISPLACEMENT A Thesis by ARILD UNNE BE RG Submitted to the Graduate College of Texas AlkM University in partial fulfillment of the requirement for the degree of MASTER OF SCIENCE August 1974... Major Subject: Petroleum Engineering RECOVERY OF OIL FROM FRACTURED RESERVOIRS BY GAS DISPLACEMENT A Thesis by ARILD UNNEBERG Approved as, to style and content by: . ( y (Chairman of Cornrnittee) (Head of Depar nt) / (Membe r) (Member) M b...

  13. Artificial Geothermal Energy Potential of Steam-flooded Heavy Oil Reservoirs

    E-Print Network [OSTI]

    Limpasurat, Akkharachai

    2011-10-21T23:59:59.000Z

    This study presents an investigation of the concept of harvesting geothermal energy that remains in heavy oil reservoirs after abandonment when steamflooding is no longer economics. Substantial heat that has accumulated within reservoir rock and its...

  14. Rheological behavior of heavy oil and water mixtures at high pressures and high temperatures

    E-Print Network [OSTI]

    Setiadarma, Agustinus

    2002-01-01T23:59:59.000Z

    were compared to the existing correlations. This effort showed that all correlations' constants have to be tuned to match the experimental results. Our further analysis examined how to apply mixing rules in predicting viscosity of heavy oil and its...

  15. Emissions from Heavy-Duty Diesel Engine with EGR using Oil Sands...

    Broader source: Energy.gov (indexed) [DOE]

    Research Council Canada Ottawa, Ontario, Canada Emissions from Heavy-Duty Diesel Engine with EGR using Oil Sands Derived Fuels W. Stuart Neill 9 th DEER Conference, Newport, Rhode...

  16. Experimental study of Morichal heavy oil recovery using combined steam and propane injection

    E-Print Network [OSTI]

    Goite Marcano, Jose Gregorio

    1999-01-01T23:59:59.000Z

    with steam (for the purpose of increasing steam recovery efficiency) are being evaluated. An experimental study has been performed to investigate the effect of combined steam and propane injection on recovery of heavy oil from the Morichal field, Venezuela...

  17. Phase Behavior, Solid Organic Precipitation, and Mobility Characterization Studies in Support of Enhanced Heavy Oil Recovery on the Alaska North Slope

    SciTech Connect (OSTI)

    Shirish Patil; Abhijit Dandekar; Santanu Khataniar

    2008-12-31T23:59:59.000Z

    The medium-heavy oil (viscous oil) resources in the Alaska North Slope are estimated at 20 to 25 billion barrels. These oils are viscous, flow sluggishly in the formations, and are difficult to recover. Recovery of this viscous oil requires carefully designed enhanced oil recovery processes. Success of these recovery processes is critically dependent on accurate knowledge of the phase behavior and fluid properties, especially viscosity, of these oils under variety of pressure and temperature conditions. This project focused on predicting phase behavior and viscosity of viscous oils using equations of state and semi-empirical correlations. An experimental study was conducted to quantify the phase behavior and physical properties of viscous oils from the Alaska North Slope oil field. The oil samples were compositionally characterized by the simulated distillation technique. Constant composition expansion and differential liberation tests were conducted on viscous oil samples. Experiment results for phase behavior and reservoir fluid properties were used to tune the Peng-Robinson equation of state and predict the phase behavior accurately. A comprehensive literature search was carried out to compile available compositional viscosity models and their modifications, for application to heavy or viscous oils. With the help of meticulously amassed new medium-heavy oil viscosity data from experiments, a comparative study was conducted to evaluate the potential of various models. The widely used corresponding state viscosity model predictions deteriorate when applied to heavy oil systems. Hence, a semi-empirical approach (the Lindeloff model) was adopted for modeling the viscosity behavior. Based on the analysis, appropriate adjustments have been suggested: the major one is the division of the pressure-viscosity profile into three distinct regions. New modifications have improved the overall fit, including the saturated viscosities at low pressures. However, with the limited amount of geographically diverse data, it is not possible to develop a comprehensive predictive model. Based on the comprehensive phase behavior analysis of Alaska North Slope crude oil, a reservoir simulation study was carried out to evaluate the performance of a gas injection enhanced oil recovery technique for the West Sak reservoir. It was found that a definite increase in viscous oil production can be obtained by selecting the proper injectant gas and by optimizing reservoir operating parameters. A comparative analysis is provided, which helps in the decision-making process.

  18. Oil and Gas CDT Structural and depositional controls on shale gas resources in

    E-Print Network [OSTI]

    Henderson, Gideon

    Oil and Gas CDT Structural and depositional controls on shale gas resources in the UK), http://www.bgs.ac.uk/staff/profiles/0688.html · Laura Banfield (BP) Key Words Shale gas, Bowland of structural and depositional controls on shale gas potential in the UK with a synthesis of a series

  19. Heavy Oil Program. Quarterly progress report No. 1, April 1-June 30, 1980

    SciTech Connect (OSTI)

    Wayland, J. R.; Bartel, L. C.; Johnson, D. R.; Fox, R. L.

    1980-12-01T23:59:59.000Z

    Research and development efforts in support of the DOE Heavy Oil RD and D Program in reservoir access were initiated. Preliminary activities in the survey of sand control, drilling, and fracturing techniques in heavy oil formations are described. The continued development of a high temperature packer for use in steam injection applications is presented. A new application of controlled source audio magnetotelluric survey to developing thermal fronts from in situ combustion and steam drive is described.

  20. Documentation of the Oil and Gas Supply Module (OGSM)

    SciTech Connect (OSTI)

    NONE

    1995-10-24T23:59:59.000Z

    The purpose of this report is to define the objectives of the Oil and Gas Supply Model (OGSM), to describe the model`s basic approach, and to provide detail on how the model works. This report is intended as a reference document for model analysts, users, and the public. It is prepared in accordance with the Energy Information Administration`s (EIA) legal obligation to provide adequate documentation in support of its statistical and forecast reports (Public Law 93-275, Section 57(b)(2)). Projected production estimates of U.S. crude oil and natural gas are based on supply functions generated endogenously within National Energy Modeling System (NEMS) by the OGSM. OGSM encompasses domestic crude oil and natural gas supply by both conventional and nonconventional recovery techniques. Nonconventional recovery includes enhanced oil recovery (EOR), and unconventional gas recovery (UGR) from tight gas formations, Devonian shale and coalbeds. Crude oil and natural gas projections are further disaggregated by geographic region. OGSM projects U.S. domestic oil and gas supply for six Lower 48 onshore regions, three offshore regions, and Alaska. The general methodology relies on forecasted drilling expenditures and average drilling costs to determine exploratory and developmental drilling levels for each region and fuel type. These projected drilling levels translate into reserve additions, as well as a modification of the production capacity for each region. OGSM also represents foreign trade in natural gas, imports and exports by entry region. Foreign gas trade may occur via either pipeline (Canada or Mexico), or via transport ships as liquefied natural gas (LNG). These import supply functions are critical elements of any market modeling effort.

  1. Finding new reserves of oil and gas As the world's reserves of oil and gas become exhausted, we urgently need to find new

    E-Print Network [OSTI]

    Anderson, Jim

    Finding new reserves of oil and gas As the world's reserves of oil and gas become exhausted, we urgently need to find new fields to answer our energy needs. Oil companies are keen to use novel techniques) techniques represent arguably the most significant technological advance in the field of oil exploration

  2. Contact angle measurements and wetting behavior of inner surfaces of pipelines exposed to heavy crude oil and water

    E-Print Network [OSTI]

    Loh, Watson

    Elsevier B.V. All rights reserved. Keywords: Heavy oil; Asphaltenes; Naphthenic acids; Wettability; Oil­waterContact angle measurements and wetting behavior of inner surfaces of pipelines exposed to heavy crude oil and water RonaldoG.dosSantos a , Rahoma S. Mohamed a,F , Antonio C. Bannwart b , Watson Loh c

  3. Well blowout rates and consequences in California Oil and Gas District 4 from 1991 to 2005: Implications for geological storage of carbon dioxide

    E-Print Network [OSTI]

    Jordan, Preston D.

    2008-01-01T23:59:59.000Z

    pub/oil/ Data_Catalog/Oil_and_Gas/Oil_?elds/CA_oil?elds.DAT.1993) A history of oil- and gas-well blowouts in California,Health Administration (2007), Oil and gas well drilling and

  4. Simulation studies of steam-propane injection for the Hamaca heavy oil field

    E-Print Network [OSTI]

    Venturini, Gilberto Jose

    2002-01-01T23:59:59.000Z

    Simulation studies were performed to evaluate a novel technology, steam-propane injection, for the heavy Hamaca crude oil. The oil has a gravity of 9.3?API and a viscosity of 25,000 cp at 50?C. Two types of simulation studies were performed: a...

  5. Oil and gas field code master list 1994

    SciTech Connect (OSTI)

    Not Available

    1995-01-01T23:59:59.000Z

    This is the thirteenth annual edition of the Energy Information Administration`s (EIA) Oil and Gas Field Code Master List. It reflects data collected through October 1994 and provides standardized field name spellings and codes for all identified oil and/or gas fields in the United States. The master field name spellings and codes are to be used by respondents when filing the following Department of Energy (DOE) forms: Form EIA-23, {open_quotes}Annual Survey of Domestic Oil and Gas Reserves,{close_quotes} filed by oil and gas well operators (field codes are required from larger operators only); Forms FERC 8 and EIA-191, {open_quotes}Underground Gas Storage Report,{close_quotes} filed by natural gas producers and distributors who operate underground natural gas storage facilities. Other Federal and State government agencies, as well as industry, use the EIA Oil and Gas Field Code Master List as the standard for field identification. A machine-readable version of the Oil and Gas Field Code Master List is available from the National Technical Information Service, 5285 Port Royal Road, Springfield, Virginia 22161, (703) 487-4650. In order for the Master List to be useful, it must be accurate and remain current. To accomplish this, EIA constantly reviews and revises this list. The EIA welcomes all comments, corrections, and additions to the Master List. All such information should be given to the EIA Field Code Coordinator at (214) 953-1858. EIA gratefully acknowledges the assistance provides by numerous State organizations and trade associations in verifying the existence of fields and their official nomenclature.

  6. Numerical simulations of the Macondo well blowout reveal strong control of oil flow by reservoir permeability and exsolution of gas

    E-Print Network [OSTI]

    Oldenburg, C.M.

    2013-01-01T23:59:59.000Z

    for estimates of the oil and gas flow rate from the Macondoteam and carried out oil and gas flow simulations using theoil-gas system. The flow of oil and gas was simulated using

  7. Increasing Heavy Oil Reserves in the Wilmington Oil Field Through Advanced Reservoir Characterization and Thermal Production Technologies, Class III

    SciTech Connect (OSTI)

    City of Long Beach; Tidelands Oil Production Company; University of Southern California; David K. Davies and Associates

    2002-09-30T23:59:59.000Z

    The objective of this project was to increase the recoverable heavy oil reserves within sections of the Wilmington Oil Field, near Long Beach, California through the testing and application of advanced reservoir characterization and thermal production technologies. The successful application of these technologies would result in expanding their implementation throughout the Wilmington Field and, through technology transfer, to other slope and basin clastic (SBC) reservoirs.

  8. UK Oil and Gas Collaborative Doctoral Training Centre (2014 start) Project Title: Environmental assessment of deep-water sponge fields in relation to oil and gas

    E-Print Network [OSTI]

    Henderson, Gideon

    UK Oil and Gas Collaborative Doctoral Training Centre (2014 start) Project Title: Environmental assessment of deep-water sponge fields in relation to oil and gas activity: a west of Shetland case study industry and government identified sponge grounds in areas of interest to the oil and gas sector

  9. Oil and gas basins in the former Soviet Union

    SciTech Connect (OSTI)

    Clayton, J. (Geological Survey, Denver, CO (United States))

    1993-09-01T23:59:59.000Z

    The Pripyat basin is a Late Devonian rift characterized by a typical fault-block structure. Two synrift salt formations separate the Devonian stratigraphic succession into the subsalt, intersalt, and postsalt sections. Oil is produced from carbonate reservoirs of the subsalt and intersalt sections. Traps are controlled by crests of tilted fault blocks. We analyzed 276 shale and carbonate-rock samples and 21 oils to determine oil-source bed relationships in the basin. Maturities of the oils are from very immature, heavy (9[degrees] API), to very mature, light (42[degrees] API). All fields are in a narrow band on the north side of the basin, and only shows of immature, heavy oil have been obtained from the rest of the basin. Three genetic oil types are identified. Oil type A has high pristane/phytane ratios (>1.0), high amounts of C[sub 29] 18[alpha] (H) trisnorneohopane, and [delta]13C of hydrocarbons in the range of -31 to -27%. Oil types B and C contain very high amounts of gammacerane, which suggests that the oils were derived from carbonate-evaporite source facies. Type B oils are isotopically similar to type A, whereas type C oils are isotopically light (about -33%). Organic carbon content is as much as 5%, and kerogen types range from I to IV. Our data indicate that rocks within the intersalt carbonate formation are the source of the type B oils of low maturity. Thermally mature rocks that might be the source for the mature oils have not been found. Such rocks may occur in depressions adjacent to tilted fault blocks. Higher levels of thermal maturity on the north part of the basin in the vicinity of the most mature oils may be related to higher heat flow during and soon after rifting or to a suspected recently formed magmatic body in the crust below the northern zone. Present-day high temperatures in parts of the northern zone may support the latter alternative.

  10. Final report on evaluation of cyclocraft support of oil and gas operations in wetland areas

    SciTech Connect (OSTI)

    Eggington, W.J.; Stevens, P.M.; John, C.J.; Harder, B.J.; Lindstedt, D.M.

    1994-10-01T23:59:59.000Z

    The cyclocraft is a proven hybrid aircraft, capable of VTOL, lifting heavy and bulky loads, highly controllable, having high safety characteristics and low operating costs. Mission Research Corporation (MRC), under Department of Energy sponsorship, is evaluating the potential use of cyclocraft in the transport of drill rigs, mud, pipes and other materials and equipment, in a cost effective and environmentally safe manner, to support oil and gas drilling, production, and transportation operations in wetland areas. Based upon the results of an earlier parametric study, a cyclocraft design, having a payload capacity of 45 tons and designated H.1 Cyclocraft, was selected for further study, including the preparation of a preliminary design and a development plan, and the determination of operating costs. This report contains all of the results derived from the program to evaluate the use of cyclocraft in the support of oil and gas drilling and production operations in wetland areas.

  11. DEVELOPMENT PRACTICES FOR OPTIMIZED MEOR IN SHALLOW HEAVY OIL RESERVOIRS

    SciTech Connect (OSTI)

    Shari Dunn-Norman

    2004-03-01T23:59:59.000Z

    The objective of this research project is to demonstrate an economically viable and sustainable method of producing shallow heavy oil reserves in western Missouri and southeastern Kansas, using an integrated approach including surface geochemical surveys, conventional MEOR treatments, horizontal fracturing in vertical wells, electrical resistivity tomography (ERT), and reservoir simulation to optimize the recovery process. The objective also includes transferring the knowledge gained from the project to other local landowners, to demonstrate how they may identify and develop their own heavy oil resources with little capital investment. The first year period was divided into two phases--Phase I and Phase II. Each phase was 6 months in duration. Tasks completed in first six month period included soil sampling, geochemical analysis, construction of ERT arrays, collection of background ERT surveys, and analysis of core samples to develop a geomechanical model for designing the hydraulic fracturing treatment. Five wells were to be drilled in phase I. However, weather and funding delays resulted in drilling shifting to the second phase of the project. During the second six month period, five vertical wells were drilled through the Bluejacket and Warner Sands. These wells were drilled with air and logged openhole. Drilling locations were selected after reviewing results of background ERT and geochemical surveys. Three ERT wells (2,3,4) were arranged in an equilateral triangle, spaced 70 feet apart and these wells were completed open hole. ERT arrays constructed during Phase I, were installed and background surveys were taken. Two wells (1,5) were drilled, cased, cemented and perforated. These wells were located north and south of the three ERT wells. Each well was stimulated with a linear guar gel and 20/40 mesh Brady sand. Tiltmeters were used with one fracture treatment to verify fracture morphology. Work performed during the first year of this research project demonstrates that surface geochemical methods can be used to differentiate between productive and non-productive areas of the Warner Sand and that ERT can be used to successfully image through the Warner Sand. ERT work also provided a background image for future MEOR treatments. Well logs from the five wells drilled were consistent with previous logs from historical coreholes, and the quality of the formation was found to be as expected. Hydraulic fracturing results demonstrated that fluid leakoff is inadequate for tip screenout (TSO) and that a horizontal fracture was generated. At this point it is not clear if the induced fracture remained in the Warner Sand, or propagated into another formation. MEOR treatments were originally expected to commence during Phase II. Due to weather delays, drilling and stimulation work was not completed until September, 2003. Microbial treatments therefore will commence in October, 2003. Phase III, the first 10 months of the second project year, will focus primarily on repeated cycles of MEOR treatments, ERT measurements and well pumping.

  12. Documentation of the oil and gas supply module (OGSM)

    SciTech Connect (OSTI)

    NONE

    1996-01-01T23:59:59.000Z

    The purpose of this report is to define the objectives of the Oil and Gas Supply Model (OGSK, to describe the model`s basic approach, and to provide detail on how the model works. This report is intended as a reference document for model analysts, users, and the public. It is prepared in accordance with the Energy Information Administration`s (EIA) legal obligation to provide adequate documentation in support of its statistical and forecast reports (Public Law 93-275, Section 57(b)(2). OGSM is a comprehensive framework with which to analyze oil and gas supply potential and related issues. Its primary function is to produce forecast of crude oil, natural gas production, and natural gas imports and exports in response to price data received endogenously (within NEMS) from the Natural Gas Transmission and Distribution Model (NGTDM) and the Petroleum Market Model (PMM). To accomplish this task, OGSM does not provide production forecasts per se, but rather parameteres for short-term domestic oil and gas production functions and natural gas import functions that reside in PMM and NGTDM.

  13. SkyHunter: A Multi-Surface Environment for Supporting Oil and Gas Exploration

    E-Print Network [OSTI]

    Maurer, Frank

    }@ucalgary.ca ABSTRACT The process of oil and gas exploration and its result, the decision to drill for oil in a specific exploration process overlook fundamental user issues such as collaboration, interaction and visualization in the context of a specific domain, oil and gas exploration. The oil and gas exploration process is both complex

  14. Local Frequency Based Estimators for Anomaly Detection in Oil and Gas Applications

    E-Print Network [OSTI]

    Slatton, Clint

    Local Frequency Based Estimators for Anomaly Detection in Oil and Gas Applications Alexander Singh industrial applications such as the smart grid and oil and gas are continuously monitored. The massive to positively impact the bottom line. In the oil and gas industry, modern oil rigs are outfitted with thousands

  15. Study Guide 2012 for Full-Time Students Master of Oil and Gas Engineering

    E-Print Network [OSTI]

    Tobar, Michael

    Study Guide 2012 for Full-Time Students Master of Oil and Gas Engineering Graduate Diploma in Oil Oil & Gas Economics PETR8503 Reservoir Engineering Possible Options (example only) PETR8510 Petroleum freedom to choose units from the available options listed in the Master of Oil and Gas Engineering Table

  16. Study Guide 2010 for Full-Time Students Master of Oil and Gas Engineering

    E-Print Network [OSTI]

    Tobar, Michael

    Study Guide 2010 for Full-Time Students Master of Oil and Gas Engineering Graduate Diploma in Oil Oil & Gas Economics PETR8503 Reservoir Engineering Possible Options (example only) CIVL4130 Offshore freedom to choose units from the available options listed in the Master of Oil and Gas Engineering Table

  17. Hydrotreating Uinta Basin bitumen-derived heavy oils

    SciTech Connect (OSTI)

    Longstaff, D.C.; Balaji, G.V.; Kim, J.W. [Univ. of Utah, Salt Lake City, UT (United States)] [and others

    1995-12-31T23:59:59.000Z

    Heavy oils derived from Uinta Basin bitumens have been hydrotreated under varying conditions. The process variables investigated included total reactor pressure (11.0-16.9 MPa), reactor temperature (616-711 K), feed rate (0.29-1.38 WHSV), and catalyst composition. The extent of heteroatom removal and residuum conversion were determined by the feed molecular weight and catalyst selection. Catalytic activity for heteroatom conversion removal was primarily influenced by metal loading. The heteroatom removal activity of the catalysts studied were ranked HDN catalysts > HDM catalysts > HDN-support. Catalytic activity for residuum conversion was influenced by both metal loading and catalyst surface area. The residuum conversion activity of HDN catalysts were always higher than the activity of HDM catalysts and HDN supports. The residuum conversion activity of HDN-supports surpassed the activity of HDM catalyst at higher temperatures. The conversions achieved with HDN catalysts relative to the HDM catalysts indicated that the low metals contents of the Uinta Basin bitumens obviate the need for hydrodemetallation as an initial upgrading step with these bitumens. The upgrading of Uinta Basin bitumens for integration into refinery feed slates should emphasize molecular weight and boiling range reduction first, followed by hydrotreating of the total liquid product produced in the pyrolysis process. Kinetics of residuum conversion can be modeled by invoking a consecutive-parallel mechanism in which native residuum in the feed is rapidly converted to volatile products and to product residuum. Deep conversion of residuum is only achieved when the more refractory product residuum is converted to volatile products.

  18. Assessing water and environmental impacts of oil and gas projects in Nigeria.

    E-Print Network [OSTI]

    Anifowose, Babatunde A.

    2011-01-01T23:59:59.000Z

    ??Oil and gas development projects are major sources of social and environmental problems particularly in oil-rich developing countries like Nigeria. Yet, data paucity hinders our… (more)

  19. Proper Oil Sampling Intervals and Sample Collection Techniques Gasoline/Diesel/Natural Gas Engines

    E-Print Network [OSTI]

    Proper Oil Sampling Intervals and Sample Collection Techniques Gasoline/Diesel/Natural Gas Engines: · Oil samples can be collected during oil changes. Follow manufacturers recommendations on frequency (hours, mileage, etc) of oil changes. · Capture a sample from the draining oil while the oil is still hot

  20. Royalty break eyed for U. S. deepwater oil, gas

    SciTech Connect (OSTI)

    Not Available

    1992-08-31T23:59:59.000Z

    This paper reports that Sen. Bennett Johnston (D-La.) wants to amend the U.S. omnibus energy bill to waive initial royalties for deepwater production. Johnston recently introduced the bill and is pressing for the bush administration's support. Johnston's bill would defer federal oil and gas royalty on leases in 200 m or more of water until payout of development costs. Producers would pay full royalty if the price of oil topped $34/bbl for 6 months.

  1. Oil and Gas Field Code Master List 1990

    SciTech Connect (OSTI)

    Not Available

    1991-01-04T23:59:59.000Z

    This is the ninth annual edition of the Energy Information Administration's (EIA) Oil and Gas Field Code Master List. It reflects data collected through October 1990 and provides standardized field name spellings and codes for all identified oil and/or gas fields in the United States. There are 54,963 field records in this year's Oil and Gas Field Code Master List (FCML). This amounts to 467 more than in last year's report. As it is maintained by EIA, the Master List includes: Field records for each state and county in which a field resides; field records for each offshore area block in the Gulf of Mexico in which a field resides;field records for each alias field name; fields crossing state boundaries that may be assigned different names by the respective state naming authorities.

  2. Summary of Oil and Natural Gas Development Impacts on Prairie Grouse September 2006

    E-Print Network [OSTI]

    Beck, Jeffrey L.

    Summary of Oil and Natural Gas Development Impacts on Prairie Grouse September 2006 Jeffrey L. Beck Independent Avenue Grand Junction, CO 81505 Please cite as: Beck, J. L. 2006. Summary of oil and natural gas and Natural Gas Development Impacts on Prairie Grouse 2 disturbances such as oil and gas development

  3. U.S. GEOLOGICAL SURVEY ASSESSMENT MODEL FOR UNDISCOVERED CONVENTIONAL OIL, GAS, AND NGL

    E-Print Network [OSTI]

    Laughlin, Robert B.

    AM-i Chapter AM U.S. GEOLOGICAL SURVEY ASSESSMENT MODEL FOR UNDISCOVERED CONVENTIONAL OIL, GAS Survey (USGS) periodically conducts assessments of the oil, gas, and natural-gas liquids (NGL) resources by the USGS in1998 for undiscovered oil, gas, and NGL resources that reside in conventional accumulations

  4. TRANSPORT AND PHASE EQUILIBRIA PROPERITIES FOR STEAM FLOODING OF HEAVY OILS

    SciTech Connect (OSTI)

    Jorge Gabitto; Maria Barrufet

    2002-09-01T23:59:59.000Z

    Hydrocarbon/water and CO{sub 2} systems are frequently found in petroleum recovery processes, petroleum refining, and gasification of coals, lignites and tar sands. Techniques to estimate the phase volume and phase composition are indispensable to design and improve oil recovery processes such as steam, hot water, or CO{sub 2}/steam combinations of flooding techniques typically used for heavy oils. An interdisciplinary research program to quantify transport, PVT, and equilibrium properties of selected oil/CO{sub 2}/water mixtures at pressures up to 10,000 psia and at temperatures up to 500 F has been put in place. The objectives of this research include experimental determination and rigorous modeling and computation of phase equilibrium diagrams, and volumetric properties of hydrocarbon/CO{sub 2}/water mixtures at pressures and temperatures typical of steam injection processes for thermal recovery of heavy oils. Highlighting the importance of phase behavior, researchers ([1], and [2]) insist on obtaining truly representative reservoir fluids samples for experimental analysis. The prevailing sampling techniques used for compositional analysis of the fluids have potential for a large source of error. These techniques bring the sample to atmospheric conditions and collect the liquid and vapor portion of the samples for further analysis. We developed a new experimental technique to determine phase volumes, compositions and equilibrium K-values at reservoir conditions. The new methodology is able to measure phase volume and composition at reservoir like temperatures and pressures. We use a mercury free PVT system in conjunction with a Hewlett Packard gas chromatograph capable of measuring compositions on line at high pressures and temperatures. This is made possible by an essentially negligible disturbance of the temperature and pressure equilibrium during phase volume and composition measurements. In addition, not many samples are withdrawn for compositional analysis because a negligible volume (0.1 {micro}l to 0.5 {micro}l) is sent directly to the gas chromatograph through sampling valves. These amounts are less than 1 x 10{sup -5} % of total volume and do not affect the overall composition or equilibrium of the system. A new method to compute multi-component phase equilibrium diagrams based on an improved version of the Peng-Robinson equation has been developed [3]. This new version of the Peng-Robinson equation uses a new volume translation scheme and new mixing rules to improve the accuracy of the calculations. Calculations involving multicomponent mixtures of CO{sub 2}/water and hydrocarbons have been completed. A scheme to lump multi-component materials such as, oils into a small set of ''pseudo-components'' according to the technique outlined by Whitson [4] has been implemented. This final report presents the results of our experimental and predicted phase behavior diagrams and calculations for mixtures of CO{sub 2}/water and real oils at high pressures and temperatures.

  5. Oil and Gas Research| GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratorySpeeding access1 Technical ConferenceOfficeOfficeOfficialOilOil

  6. Application of oil gas-chromatography in reservoir compartmentalization in a mature Venezuelan oil field

    SciTech Connect (OSTI)

    Munoz, N.G.; Mompart, L. [Maraven, Caracas (Venezuela); Talukdar, S.C.

    1996-08-01T23:59:59.000Z

    Gas chromatographic oil {open_quotes}fingerprinting{close_quotes} was successfully applied in a multidisciplinary production geology project by Maraven, S.A. to define the extent of vertical and lateral continuity of Eocene and Miocene sandstone reservoirs in the highly faulted Bloque I field, Maracaibo Basin, Venezuela. Seventy-five non-biodegraded oils (20{degrees}-37.4{degrees} API) were analyzed with gas chromatography. Fifty were produced from the Eocene Misoa C-4, C-5, C-6 or C-7 horizons, fifteen from the Miocene basal La Rosa and ten from multizone completions. Gas chromatographic and terpane and sterane biomarker data show that all of the oils are genetically related. They were expelled from a type II, Upper Cretaceous marine La Luna source rock at about 0.80-0.90% R{sub o} maturity. Alteration in the reservoir by gas stripping with or without subsequent light hydrocarbons mixing was observed in some oils. Detailed chromatographic comparisons among the oils shown by star plots and cluster analysis utilizing several naphthenic and aromatic peak height ratios, resulted in oil pool groupings. This led to finding previously unknown lateral and vertical reservoir communication and also helped in checking and updating the scaling character of faults. In the commingled oils, percentages of each contributing zone in the mixture were also determined giving Maraven engineers a proven, rapid and inexpensive tool for production allocation and reservoir management The oil pool compartmentalization defined by the geochemical fingerprinting is in very good agreement with the sequence stratigraphic interpretation of the reservoirs and helped evaluate the influence of structure in oil migration and trapping.

  7. INVESTIGATION OF MULTISCALE AND MULTIPHASE FLOW, TRANSPORT AND REACTION IN HEAVY OIL RECOVERY PROCESSES

    SciTech Connect (OSTI)

    Yannis C. Yortsos

    2003-02-01T23:59:59.000Z

    This is final report for contract DE-AC26-99BC15211. The report describes progress made in the various thrust areas of the project, which include internal drives for oil recovery, vapor-liquid flows, combustion and reaction processes and the flow of fluids with yield stress. The report consists mainly of a compilation of various topical reports, technical papers and research reports published produced during the three-year project, which ended on May 6, 2002 and was no-cost extended to January 5, 2003. Advances in multiple processes and at various scales are described. In the area of internal drives, significant research accomplishments were made in the modeling of gas-phase growth driven by mass transfer, as in solution-gas drive, and by heat transfer, as in internal steam drives. In the area of vapor-liquid flows, we studied various aspects of concurrent and countercurrent flows, including stability analyses of vapor-liquid counterflow, and the development of novel methods for the pore-network modeling of the mobilization of trapped phases and liquid-vapor phase changes. In the area of combustion, we developed new methods for the modeling of these processes at the continuum and pore-network scales. These models allow us to understand a number of important aspects of in-situ combustion, including steady-state front propagation, multiple steady-states, effects of heterogeneity and modes of combustion (forward or reverse). Additional aspects of reactive transport in porous media were also studied. Finally, significant advances were made in the flow and displacement of non-Newtonian fluids with Bingham plastic rheology, which is characteristic of various heavy oil processes. Various accomplishments in generic displacements in porous media and corresponding effects of reservoir heterogeneity are also cited.

  8. Canadian offshore oil production solution gas utilization alternatives

    SciTech Connect (OSTI)

    Wagner, J.V.

    1999-07-01T23:59:59.000Z

    Oil and gas development in the Province of Newfoundland and Labrador is in its early stage and the offshore industry emphasis is almost exclusively on oil production. At the Hibernia field, the Gravity Base Structure (GBS) is installed and the first wells are in production. The Terra Nova project, based on a Floating Production Storage Offloading (FPSO) ship shaped concept, is in its engineering and construction stage and first oil is expected by late 2000. Several other projects, such as Husky's White Rose and Chevron's Hebron, have significant potential for future development in the same area. It is highly probably that these projects will employ the FPSO concept. It is also expected that the solution gas disposal issues of such second generation projects will be of more significance in their regulatory approval process and of such second generation projects will be of more significance in their regulatory approval process and the operators may be forced to look for alternatives to gas reinjection. Three gas utilization alternatives for a FPSO concept based project have been considered and evaluated in this paper: liquefied natural gas (LNG), compressed natural gas (CNG), and gas-to-liquids conversion (GTL). The evaluation and the relative ranking of these alternatives is based on a first pass screening type of study which considers the technical and economical merits of each alternative. Publicly available information and in-house data, compiled within Fluor Daniel's various offices, was used to establish the basic parameters.

  9. Characterization of oil and gas reservoir heterogeneity

    SciTech Connect (OSTI)

    Tyler, N.; Barton, M.D.; Bebout, D.G.; Fisher, R.S.; Grigsby, J.D.; Guevara, E.; Holtz, M.; Kerans, C.; Nance, H.S.; Levey, R.A.

    1992-10-01T23:59:59.000Z

    Research described In this report addresses the internal architecture of two specific reservoir types: restricted-platform carbonates and fluvial-deltaic sandstones. Together, these two reservoir types contain more than two-thirds of the unrecovered mobile oil remaining ill Texas. The approach followed in this study was to develop a strong understanding of the styles of heterogeneity of these reservoir types based on a detailed outcrop description and a translation of these findings into optimized recovery strategies in select subsurface analogs. Research targeted Grayburg Formation restricted-platform carbonate outcrops along the Algerita Escarpment and In Stone Canyon In southeastern New Mexico and Ferron deltaic sandstones in central Utah as analogs for the North Foster (Grayburg) and Lake Creek (Wilcox) units, respectively. In both settings, sequence-stratigraphic style profoundly influenced between-well architectural fabric and permeability structure. It is concluded that reservoirs of different depositional origins can therefore be categorized Into a heterogeneity matrix'' based on varying intensity of vertical and lateral heterogeneity. The utility of the matrix is that it allows prediction of the nature and location of remaining mobile oil. Highly stratified reservoirs such as the Grayburg, for example, will contain a large proportion of vertically bypassed oil; thus, an appropriate recovery strategy will be waterflood optimization and profile modification. Laterally heterogeneous reservoirs such as deltaic distributary systems would benefit from targeted infill drilling (possibly with horizontal wells) and improved areal sweep efficiency. Potential for advanced recovery of remaining mobile oil through heterogeneity-based advanced secondary recovery strategies In Texas is projected to be an Incremental 16 Bbbl. In the Lower 48 States this target may be as much as 45 Bbbl at low to moderate oil prices over the near- to mid-term.

  10. Oil and gas developments in North Africa in 1981

    SciTech Connect (OSTI)

    Nicod, M.A.

    1982-11-01T23:59:59.000Z

    In the 6 countries covered by this paper, valid petroleum rights at the end of 1981 amounted to 2,024,414 km/sup 2/ or 7% more than at the end of 1980. As far as the rightholding situation is concerned, the main event was the abandonment by Esso of all its rights in Libya. Information on exploration activity remains scarce, but it is estimated that seismic activity increased by 35%. Large air-magnetometry surveys were carried out in Sudan and Egypt. Exploration drilling activity continued to increase, with 169 wells completed versus 115 in 1980. This effort led to 67 oil and gas discoveries, a success rate of about 40% compared with 35% in 1980. All these discoveries were made in established producing provinces. Highly successful results were obtained in the Gulf of Suez with 1 gas and 19 oil discoveries compared with 4 discoveries in 1980. Good success was also obtained by ONAREP, the new Moroccan state company, with 5 gas discoveries out of 11 wells spudded during the year. Chevron continued to find oil in the interior basins of Sudan, and expects commercial production in 1984 from the Unity field, which has reserves estimated at 400 million bbl of oil. Oil production markedly decreased by about 23%, with an average of 2,820,000 BOPD in 1981. Oil output decreased in all the North African countries except Egypt, where it increased 8%. Utilized natural gas production can be estimated at about 2300 MMCFGD. Sonatrach published official figures for gross gas production in 1981 which amounted to 4420 MMCFGD, of which about 2000 MMCFGD were collected and utilized.

  11. Natural Gas as a Fuel Option for Heavy Vehicles

    SciTech Connect (OSTI)

    James E. Wegrzyn; Wai Lin Litzke; Michael Gurevich

    1999-04-26T23:59:59.000Z

    The U.S. Department of Energy (DOE), Office of Heavy Vehicle Technologies (OHVT) is promoting the use of natural gas as a fuel option in the transportation energy sector through its natural gas vehicle program [1]. The goal of this program is to eliminate the technical and cost barriers associated with displacing imported petroleum. This is achieved by supporting research and development in technologies that reduce manufacturing costs, reduce emissions, and improve vehicle performance and consumer acceptance for natural gas fueled vehicles. In collaboration with Brookhaven National Laboratory, projects are currently being pursued in (1) liquefied natural gas production from unconventional sources, (2) onboard natural gas storage (adsorbent, compressed, and liquefied), (3) natural gas delivery systems for both onboard the vehicle and the refueling station, and (4) regional and enduse strategies. This paper will provide an overview of these projects highlighting their achievements and current status. In addition, it will discuss how the individual technologies developed are being integrated into an overall program strategic plan.

  12. Shale Oil Production Performance from a Stimulated Reservoir Volume

    E-Print Network [OSTI]

    Chaudhary, Anish Singh

    2011-10-21T23:59:59.000Z

    .1 Unconventional resources ................................................................................. 1 1.2 Oil shale and shale oil ....................................................................................... 6 1.3 Production from unconventional..., heavy oil, shale gas and shale oil. On the other hand, conventional reservoirs can be produced at economic flow rates and produce economic volumes of oil and gas without large stimulation treatments or any special recovery process. Conventional...

  13. Natural Gas Gross Withdrawals from Oil Wells

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing ReservoirsYear-Month Week 1 Week 2 Week 3 Week 4

  14. Upstream Financial Review of the Global Oil and Natural Gas Industry

    Reports and Publications (EIA)

    2014-01-01T23:59:59.000Z

    This analysis focuses on financial and operating trends of the oil and natural gas production business segment, often referred to as upstream operations, of 42 global oil and natural gas producing companies

  15. Coarse-scale Modeling of Flow in Gas-injection Processes for Enhanced Oil Recovery

    E-Print Network [OSTI]

    Lambers, James

    Coarse-scale Modeling of Flow in Gas-injection Processes for Enhanced Oil Recovery James V. Lambers of gas-injection processes for enhanced oil recovery may exhibit geometrically complex features

  16. CO2 gas/oil ratio prediction in a multi-component reservoir by combined seismic and electromagnetic imaging

    E-Print Network [OSTI]

    Hoversten, G.M.; Gritto, Roland; Washbourne, John; Daley, Tom

    2002-01-01T23:59:59.000Z

    CO 2 flooding of an oil reservoir are inverted to producein a complex reservoir containing oil, water, hydrocarbonincluding oil, water and gas) and reservoir pressure. The

  17. Comparative Analysis of Conventional Oil and Gas and

    E-Print Network [OSTI]

    Jaramillo, Paulina

    Comparative Analysis of Conventional Oil and Gas and Wind Project Decommissioning Regulations Generation Energy, a non-profit renewable investment firm focusing on extending capital from private School and on the board of the Vermont Energy Investment Corporation, which manages ``Efficiency Vermont

  18. Dual gas and oil dispersions in water: production and stability of foamulsion Anniina Salonen,*a

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Dual gas and oil dispersions in water: production and stability of foamulsion Anniina Salonen of oil droplets and gas bubbles and show that the oil can have two very different roles, either suppressing foaming or stabilising the foam. We have foamed emulsions made from two different oils (rapeseed

  19. National Energy Board Act Part VI (Oil and Gas) Regulations (Canada)

    Broader source: Energy.gov [DOE]

    These regulations from the National Energy Board cover licensing for oil and gas, including the exportation and importation of natural gas. The regulations also cover inspections, reporting...

  20. Process and economic model of in-field heavy oil upgrading using aqueous pyrolysis

    SciTech Connect (OSTI)

    Thorsness, C. B., LLNL

    1997-01-21T23:59:59.000Z

    A process and economic model for aqueous pyrolysis in-field upgrading of heavy oil has been developed. The model has been constructed using the ASPEN PLUS chemical process simulator. The process features cracking of heavy oil at moderate temperatures in the presence of water to increase oil quality and thus the value of the oil. Calculations with the model indicate that for a 464 Mg/day (3,000 bbl/day) process, which increases the oil API gravity of the processed oil from 13.5{degree} to 22.4{degree}, the required value increase of the oil would need to be at least $2.80/Mg{center_dot}{degree}API($0.40/bbl{center_dot}{degree}API) to make the process economically attractive. This level of upgrading has been demonstrated in preliminary experiments with candidate catalysts. For improved catalysts capable of having the coke make and increasing the pyrolysis rate, a required price increase for the oil as low as $1.34/Mg{center_dot}{degree}API ($0.21/bbl{center_dot}{degree}API)has been calculated.

  1. The oil and gas potential of the South Caspian Sea

    SciTech Connect (OSTI)

    Jusufzade, K.B.

    1995-08-01T23:59:59.000Z

    For 150 years, the oil fountains of Baku have fueled the imaginations of oilmen around the world. The phrase {open_quotes}another Baku{close_quotes} often has been used to describe major new discoveries. The production of oil and gas from onshore Azerbaijan and from the shallower waters of the Caspian Sea offers tantalizing evidence for the hydrocarbon yet to be discovered. Today, the Azeri, Guneshli, and Chirag oil fields, with over four billion barrels of recoverable reserves, have refocused the attention of the petroleum industry on Baku. The rapid subsidence of the South Caspian Basin and accumulation of over 20 kilometers of Late Mesozoic and Cenozoic sediments have resulted in that rare combination of conditions ideal for the generation and entrapment of numerous giant oil and gas accumulations. Working with existing geological, geophysical, and geochemical data, SOCAR geologists, geophysicists, and geochemists have identified numerous structural and stratigraphic prospects which have yet to be tested by drilling. In the South Caspian Basin, undrilled prospects remain in relatively shallow water, 200-300 meters. As these shallow-water prospects are exhausted, exploration will shift farther offshore into deeper water, 300-1000 meters. The deepwater region of the South Caspian is unquestionably prospective. Exploration and development of oil and gas fields in water depths in excess of 300 meters will require the joint efforts of international companies and the Azerbaijan petroleum enterprises. In the near future, water depth and drilling depth will not be limiting factors in the exploration of the Caspian Sea. Much work remains to be done; and much oil and gas remain to be found.

  2. I. Canada EIA/ARI World Shale Gas and Shale Oil Resource Assessment I. CANADA SUMMARY

    E-Print Network [OSTI]

    unknown authors

    by this resource study. Figure I-1 illustrates certain of the major shale gas and shale oil basins in

  3. Well blowout rates in California Oil and Gas District 4--Update and Trends

    E-Print Network [OSTI]

    Benson, Sally M.

    2010-01-01T23:59:59.000Z

    Oil and Gas District 4 from 1991 to 2005: implications for geological storage of carbon dioxide, Environmental Geology ,

  4. Fluid clathrate system for continuous removal of heavy noble gases from mixtures of lighter gases

    DOE Patents [OSTI]

    Gross, Kenneth C. (Bolingbrook, IL); Markun, Francis (Joliet, IL); Zawadzki, Mary T. (South Bend, IN)

    1998-01-01T23:59:59.000Z

    An apparatus and method for separation of heavy noble gas in a gas volume. An apparatus and method have been devised which includes a reservoir containing an oil exhibiting a clathrate effect for heavy noble gases with a reservoir input port and the reservoir is designed to enable the input gas volume to bubble through the oil with the heavy noble gas being absorbed by the oil exhibiting a clathrate effect. The gas having reduced amounts of heavy noble gas is output from the oil reservoir, and the oil having absorbed heavy noble gas can be treated by mechanical agitation and/or heating to desorb the heavy noble gas for analysis and/or containment and allow recycling of the oil to the reservoir.

  5. Fluid clathrate system for continuous removal of heavy noble gases from mixtures of lighter gases

    DOE Patents [OSTI]

    Gross, K.C.; Markun, F.; Zawadzki, M.T.

    1998-04-28T23:59:59.000Z

    An apparatus and method are disclosed for separation of heavy noble gas in a gas volume. An apparatus and method have been devised which includes a reservoir containing an oil exhibiting a clathrate effect for heavy noble gases with a reservoir input port and the reservoir is designed to enable the input gas volume to bubble through the oil with the heavy noble gas being absorbed by the oil exhibiting a clathrate effect. The gas having reduced amounts of heavy noble gas is output from the oil reservoir, and the oil having absorbed heavy noble gas can be treated by mechanical agitation and/or heating to desorb the heavy noble gas for analysis and/or containment and allow recycling of the oil to the reservoir. 6 figs.

  6. The future of oil and gas in Northern Alaska

    SciTech Connect (OSTI)

    Bird, K.J.; Cole, F.; Howell, D.G.; Magoon, L.B. [Geological Survey, Menlo Park, CA (United States)

    1995-04-01T23:59:59.000Z

    The North Slope accounts for about 98 percent of Alaska`s total oil production or about 1.6 MMBOPD (million barrels of oil per day). This makes Alaska the number two oil-producing State, contributing about 25% of the Nation`s daily oil production. Cumulative North Slope production at year-end 1993 was 9.9 BBO (billion barrels of oil). Natural gas from the North Slope is not marketable for lack of a gas transportation system. At year-end 1993, North Slope reserves as calculated by the State of Alaska stood at 6.1 BBO and 26.3 TCFG. By 1988, production from Prudhoe Bay and three other oil fields peaked at 2 MMBOPD; since then production has declined to the current rate of 1.6 MMBOPD in spite of six more oil fields coming into production. Undiscovered, economically recoverable oil resources, as of 1987, were estimated at 0-26 BBO (mean probability, 8 BBO) for the onshore region and adjacent State waters by USGS and 0-5 BBO (mean probability, oil fields and all future oil field development is the continued operation of TAPS (Trans-Alaska Pipeline System). Recent studies by the U.S. Department of Energy have assumed a range of minimum throughput rates to to illustrate the effects of a shutdown of TAPS. Using reserve and production rate numbers from existing fields, a TAPS shutdown is predicted for year-end 2014 assuming minimum rates of 200 MBOPD. In both cases, producible oil would be left in the ground: 1,000 MMBO for the 2008 scenario and 500 MMBO for the 2014 scenario. Because the time between field discovery or decision-to-develop and first production is about 10 years, new or discovered fields may need to be brought into production by 1998 to assure continued operation of the pipeline and maximum oil recovery.

  7. Characterization of oil and gas reservoir heterogeneity

    SciTech Connect (OSTI)

    Not Available

    1991-01-01T23:59:59.000Z

    The objective of the cooperative research program is to characterize Alaskan reservoirs in terms of their reserves, physical and chemical properties, geologic configuration and structure, and the development potential. The tasks completed during this period include: (1) geologic reservoir description of Endicott Field; (2) petrographic characterization of core samples taken from selected stratigraphic horizons of the West Sak and Ugnu (Brookian) wells; (3) development of a polydispersed thermodynamic model for predicting asphaltene equilibria and asphaltene precipitation from crude oil-solvent mixtures, and (4) preliminary geologic description of the Milne Point Unit.

  8. Crude Oil and Natural Gas Drilling Activity

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781Title: Telephone:shortOilCompanyexcluding

  9. Oil and Gas field code master list 1995

    SciTech Connect (OSTI)

    NONE

    1995-12-01T23:59:59.000Z

    This is the fourteenth annual edition of the Energy Information Administration`s (EIA) Oil and Gas Field Code Master List. It reflects data collected through October 1995 and provides standardized field name spellings and codes for all identified oil and/or gas fields in the US. The Field Code Index, a listing of all field names and the States in which they occur, ordered by field code, has been removed from this year`s publications to reduce printing and postage costs. Complete copies (including the Field Code Index) will be available on the EIA CD-ROM and the EIA World-Wide Web Site. Future editions of the complete Master List will be available on CD-ROM and other electronic media. There are 57,400 field records in this year`s Oil and Gas Field Code Master List. As it is maintained by EIA, the Master List includes the following: field records for each State and county in which a field resides; field records for each offshore area block in the Gulf of Mexico in which a field resides; field records for each alias field name (see definition of alias below); and fields crossing State boundaries that may be assigned different names by the respective State naming authorities. Taking into consideration the double-counting of fields under such circumstances, EIA identifies 46,312 distinct fields in the US as of October 1995. This count includes fields that no longer produce oil or gas, and 383 fields used in whole or in part for oil or gas Storage. 11 figs., 6 tabs.

  10. OIL and GAS ENGINEERING Page 1 of 2 Pre-and/or Co-Requisites

    E-Print Network [OSTI]

    Calgary, University of

    OIL and GAS ENGINEERING Page 1 of 2 1st Year Pre- and/or Co-Requisites FALL 1 AMAT 217 Calculus 259 Electricity and Magnetism AMAT 217; MATH 211 2nd Year Oil and Gas Engineering: Regular Program Pre 12 ENGG 317 Mechanics of Solids ENGG 202 or 205; AMAT 217 3rd Year Oil and Gas Engineering: Regular

  11. Integrated Reservoir Characterization and Simulation Studies in Stripper Oil and Gas Fields

    E-Print Network [OSTI]

    Wang, Jianwei

    2010-01-14T23:59:59.000Z

    The demand for oil and gas is increasing yearly, whereas proven oil and gas reserves are being depleted. The potential of stripper oil and gas fields to supplement the national energy supply is large. In 2006, stripper wells accounted for 15% and 8...

  12. [Outlook for 1997 in the oil and gas industries of the US

    SciTech Connect (OSTI)

    NONE

    1997-02-01T23:59:59.000Z

    This section contains 7 small articles that deal with the outlook for the following areas: US rotary rigs (Moving back up, finally); US production (Crude decline continues, gas rising); producing oil wells (Oil stays steady); producing gas wells (Well numbers up again); drilling and producing depths (New measured depths records); and US reserves (Gas reserves jump; oil dips slightly).

  13. Wireless sensor networks for off-shore oil and gas installations

    E-Print Network [OSTI]

    Gjessing, Stein

    the production process, to either prevent or detect oil and gas leakage or to enhance the production flow ­ Underwater development and production of oil and gas needs networked sensors and actuators to monitor and communication technology (ICT) enables the oil, gas and energy (OGE) industries to increase productivity

  14. The integrity of oil and gas wells Robert B. Jacksona,b,1

    E-Print Network [OSTI]

    Jackson, Robert B.

    COMMENTARY The integrity of oil and gas wells Robert B. Jacksona,b,1 a Department of Environmental concerns about oil and natural gas extraction these days inevitably turn to hydraulic fracturing, where--nearer the surface--emphasizing risks from spills, wastewater disposal, and the integrity of oil and natural gas

  15. Control structure design for stabilizing unstable gas-lift oil wells

    E-Print Network [OSTI]

    Skogestad, Sigurd

    Control structure design for stabilizing unstable gas-lift oil wells Esmaeil Jahanshahi, Sigurd valve is the recommended solution to prevent casing-heading instability in gas-lifted oil wells. Focus to be effective to stabilize this system. Keywords: Oil production, two-phase flow, gas-lift, controllability, H

  16. New Tracers Identify Hydraulic Fracturing Fluids and Accidental Releases from Oil and Gas Operations

    E-Print Network [OSTI]

    Jackson, Robert B.

    New Tracers Identify Hydraulic Fracturing Fluids and Accidental Releases from Oil and Gas produced waters sampled from conventional oil and gas wells. We posit that boron isotope geochemistry can tool is validated by examining the composition of effluent discharge from an oil and gas brine

  17. Effect of Gas Diffusion on Mobility of Foam for Enhanced Oil Recovery Lars E. Nonnekes1

    E-Print Network [OSTI]

    Cox, Simon

    Effect of Gas Diffusion on Mobility of Foam for Enhanced Oil Recovery Lars E. Nonnekes1 Foam can improve the sweep efficiency of gas injected into oil reservoirs for enhanced oil recovery University William Richard Rossen Email: W.R.Rossen@tudelft.nl Abstract Transport of gas across

  18. Oil and Gas CDT Anomalous compaction and lithification during early burial in

    E-Print Network [OSTI]

    Henderson, Gideon

    Oil and Gas CDT Anomalous compaction and lithification during early burial in sedimentary basins training in a range of skills will mean opportunities for academic, government or Oil and Gas sector (e geoscience for oil and gas). References & Further Reading Neagu, R.C. Cartwright, J., Davies R.J. & Jensen L

  19. Parameter identification in large-scale models for oil and gas production

    E-Print Network [OSTI]

    Van den Hof, Paul

    Parameter identification in large-scale models for oil and gas production Jorn F.M. Van Doren: Models used for model-based (long-term) operations as monitoring, control and optimization of oil and gas information to the identification problem. These options are illustrated with examples taken from oil and gas

  20. The Importance of the Oil & Gas Industry to Northern Colorado and

    E-Print Network [OSTI]

    The Importance of the Oil & Gas Industry to Northern Colorado and the Colorado Economy Dr. Martin Shields Regional Economics Institute Colorado State University #12;Outline · The Geography of Oil and Gas in Colorado · Industry Job Growth · Relevant Issues #12;Colorado's Oil and Gas Basins Source: Colorado

  1. ECONOMIC DEVELOPMENT BENEFITS OF THE OIL AND GAS INDUSTRY IN NEWFOUNDLAND AND LABRADOR

    E-Print Network [OSTI]

    deYoung, Brad

    ECONOMIC DEVELOPMENT BENEFITS OF THE OIL AND GAS INDUSTRY IN NEWFOUNDLAND AND LABRADOR Conference Report - September 2007 & The Oil And Gas Development Partnership #12;ECONOMIC DEVELOPMENT BENEFITS OF THE OIL AND GAS INDUSTRY IN NEWFOUNDLAND AND LABRADOR May 16, 2007 St. John's Conference Report September

  2. OIL and GAS ENGINEERING Page 1 of 3 2009/2010 Curriculum

    E-Print Network [OSTI]

    Calgary, University of

    OIL and GAS ENGINEERING Page 1 of 3 1st Year 2009/2010 Curriculum Pre- and/or Co-Requisites FALL 1 complementary studies courses must be taken prior to graduation. ENOG 2010/2011 Curriculum #12;OIL and GAS ENGINEERING Page 2 of 3 2nd Year Oil and Gas Engineering: Regular Program BLK WK - WINTER ENCH 101 Computing

  3. Synchronous Ultra-Wide Band Wireless Sensors Networks for oil and gas exploration

    E-Print Network [OSTI]

    Savazzi, Stefano

    Synchronous Ultra-Wide Band Wireless Sensors Networks for oil and gas exploration Stefano Savazzi1 of new oil and gas reservoir. Seismic exploration requires a large number (500 ÷ 2000 nodes, MAC and network layer to develop wireless sensors networks tailored for oil (and gas) exploration

  4. Visual Impact Assessment in British Oil and Gas Developments1 Dennis F. Gillespie

    E-Print Network [OSTI]

    Standiford, Richard B.

    Visual Impact Assessment in British Oil and Gas Developments1 2/ Dennis F. Gillespie 3/ Brian D Unit, Department of Geography, University of Aberdeen, Scotland. Abstract: Development of oil and gas these effects into account. Since 1970, the offshore discovery and development of oil and gas resources

  5. Externality Regulation in Oil and Gas Encyclopedia of Energy, Natural Resource, and

    E-Print Network [OSTI]

    Garousi, Vahid

    Externality Regulation in Oil and Gas Chapter 56 Encyclopedia of Energy, Natural Resource Unitization: Compulsory unitization legislation enables a majority of producers on an oil or gas field resource, congestion exter- nality, minimum oil/gas ratio, monopsony power, pipeline transportation, no

  6. Forward osmosis treatment of drilling mud and fracturing wastewater from oil and gas operations

    E-Print Network [OSTI]

    Forward osmosis treatment of drilling mud and fracturing wastewater from oil and gas operations fracturing of wells during oil and gas (O&G) exploration consumes large volumes of fresh water and generates fracturing of oil and gas (O&G) wells are becoming of greater concern in the United States and around

  7. A Multistage Stochastic Programming Approach for the Planning of Offshore Oil or Gas Field Infrastructure

    E-Print Network [OSTI]

    Grossmann, Ignacio E.

    1 A Multistage Stochastic Programming Approach for the Planning of Offshore Oil or Gas Field, Houston, TX 77098 Abstract The planning of offshore oil or gas field infrastructure under uncertainty is addressed in this paper. The main uncertainties considered are in the initial maximum oil or gas flowrate

  8. MEMORIAL UNIVERSITY OF NEWFOUNDLAND Three-year Term Appointment in Process (Oil and Gas) Engineering

    E-Print Network [OSTI]

    George, Glyn

    MEMORIAL UNIVERSITY OF NEWFOUNDLAND Three-year Term Appointment in Process (Oil and Gas with oil and gas specialization at the assistant- or associate professor-level, commencing April 12, 2010 in the area of oil and gas, and process engineering, to supervise graduate students, to participate in other

  9. Oil and Gas CDT Predicting fault permeability at depth: incorporating natural

    E-Print Network [OSTI]

    Henderson, Gideon

    Oil and Gas CDT Predicting fault permeability at depth: incorporating natural permeability controls on fluid flow in oil and gas reservoirs. Fault zones are composed of many deformation elements will receive 20 weeks bespoke, residential training of broad relevance to the oil and gas industry: 10 weeks

  10. GLOBAL OPTIMIZATION OF MULTIPHASE FLOW NETWORKS IN OIL AND GAS PRODUCTION SYSTEMS

    E-Print Network [OSTI]

    Johansen, Tor Arne

    1 GLOBAL OPTIMIZATION OF MULTIPHASE FLOW NETWORKS IN OIL AND GAS PRODUCTION SYSTEMS MSc. Hans in an oil production system is developed. Each well may be manipulated by injecting lift gas and adjusting in the maximum oil flow rate, water flow rate, liquid flow rate, and gas flow rate. The wells may also

  11. Understanding Sectoral Labor Market Dynamics: An Equilibrium Analysis of the Oil and Gas Field Services

    E-Print Network [OSTI]

    Sadoulet, Elisabeth

    Understanding Sectoral Labor Market Dynamics: An Equilibrium Analysis of the Oil and Gas Field examines the response of employment and wages in the US oil and gas ...eld services industry to changes the dynamic response of wages and employment in the U.S. Oil and Gas Field Services (OGFS) industry to changes

  12. A Multimedia Workflow-Based Collaborative Engineering Environment for Oil & Gas Industry

    E-Print Network [OSTI]

    Barbosa, Alberto

    A Multimedia Workflow-Based Collaborative Engineering Environment for Oil & Gas Industry Ismael H the control and execution of large and complex industrial projects in oil and gas industry. The environment governmental oil & gas company. The necessity of collaboration is especially acute in the field of computer

  13. Paper #194973 GEOCHEMICAL CHARACTERIZATION OF THE RESERVOIR HOSTING SHALE-GAS AND OIL in

    E-Print Network [OSTI]

    Paper #194973 GEOCHEMICAL CHARACTERIZATION OF THE RESERVOIR HOSTING SHALE-GAS AND OIL a reservoir for shale-gas and oil. We examined organic-rich black shale, known as Macasty shale, of Upper SHALE-GAS AND OIL in THE SUBSURFACE OF ANTICOSTI ISLAND, CANADA Key Words: Provenance, Anticosti Island

  14. Design of Bulk Railway Terminals for the Shale Oil and Gas Industry C. Tyler Dick1

    E-Print Network [OSTI]

    Barkan, Christopher P.L.

    Page 1 Design of Bulk Railway Terminals for the Shale Oil and Gas Industry C. Tyler Dick1 , P.E., M: Railway transportation is playing a key role in the development of many new shale oil and gas reserves in North America. In the rush to develop new shale oil and gas plays, sites for railway transload terminals

  15. Study of hydrocarbon miscible solvent slug injection process for improved recovery of heavy oil from Schrader Bluff Pool, Milne Point Unit, Alaska. Annual report, January 1, 1994--December 31, 1994

    SciTech Connect (OSTI)

    Sharma, G.D.

    1995-07-01T23:59:59.000Z

    Alaska is the second largest oil producing state in the nation and currently contributes nearly 24% of the nations oil production. It is imperative that Alaskan heavy oil fields be brought into production. Schrader Bluff reservoir, located in the Milne Point Unit, which is part of the heavy oil field known as West Sak is estimated to contain 1.5 billion barrels of (14 to 21 degree API) oil-in-place. The field is currently under production by primary depletion. The eventual implementation of enhanced oil recovery (EOR) techniques will be vital for the recovery of additional oil from this reservoir. The availability of hydrocarbon gases (solvents) on the Alaska North Slope make the hydrocarbon miscible solvent injection process an important consideration for the EOR project in Schrader Bluff reservoir. Since Schrader Bluff oil is heavy and viscous, a water-alternating-gas (WAG) type of process for oil recovery is appropriate since such a process tends to derive synergetic benefits from both water injection (which provides mobility control and improvement in sweep efficiency) and miscible gas injection (which provides improved displacement efficiency). A miscible solvent slug injection process rather than continuous solvent injection is considered appropriate. Slim tube displacement studies, PVT data and asphaltene precipitation studies are needed for Schrader bluff heavy oil to define possible hydrocarbon solvent suitable for miscible solvent slug displacement process. Coreflood experiments are also needed to determine the effect of solvent slug size, WAG ratio and solvent composition on the recovery and solvent breakthrough. A compositional reservoir simulation study will be conducted later to evaluate the complete performance of the hydrocarbon solvent slug process and to assess the feasibility of this process for improving recovery of heavy oil from Schrader Bluff reservoir.

  16. 1980 annual heavy oil/EOR contractor presentations: proceedings

    SciTech Connect (OSTI)

    None

    1980-09-01T23:59:59.000Z

    Twenty-five papers were presented on thermal recovery, chemical flooding, and carbon dioxide methods for enhanced oil recovery. Separate abstracts were prepared for 24 of the papers; the remaining paper was previously abstracted. (DLC)

  17. Oil

    E-Print Network [OSTI]

    unknown authors

    Waste oils offer a tremendous recycling potential. An important, dwindling natural resource of great economic and industrial value, oil products are a cornerstone of our modern industrial society. Petroleum is processed into a wide variety of products: gasoline, fuel oil, diesel oil, synthetic rubber, solvents, pesticides, synthetic fibres, lubricating oil, drugs and many more ' (see Figure 1 1. The boilers of Amercian industries presently consume about 40 % of the used lubricating oils collected. In Ontario, the percentage varies from 20 to 30%. Road oiling is the other major use of collected waste oils. Five to seven million gallons (50-70 % of the waste oil col1ected)is spread on dusty Ontario roads each summer. The practice is both a wasteful use of a dwindling resource and an environmental hazard. The waste oil, with its load of heavy metals, particularly lead, additives including dangerous polynuclear aromatics and PCBs, is carried into the natural environment by runoff and dust to contaminate soils and water courses.2 The largest portion of used oils is never collected, but disappears into sewers, landfill sites and backyards. In Ontario alone, approximately 22 million gallons of potentially recyclable lube oil simply vanish each year. While oil recycling has ad-114 Oil

  18. Simulation of heavy oil reservoir performance using a non-Newtonian flow model

    E-Print Network [OSTI]

    Narahara, Gene Masao

    1983-01-01T23:59:59.000Z

    . This reduction of viscosity as a function of shear rate has a significant effect on rates and other parameters when simulating reservoir performance. The objective of this study is to compare the simulation results of Newtonian and non-Newtonian oils under...)ected to increasing shear rate, the viscosity decreases. This behavior implies that the oil viscosity varies as a function of not only pressure, but also shear rate. This behavior is important when simulating heavy-oil reservoir performance. To simulate the flow...

  19. Industrial Utilization of Coal-Oil Mixtures

    E-Print Network [OSTI]

    Dunn, J. E.; Hawkins, G. T.

    1982-01-01T23:59:59.000Z

    Coal-oil mixtures (COM) are receiving increasing interest as economical alternatives to residual fuel oil and natural gas used in heavy industrial and utility applications. Four basic approaches are currently employed in the manufacture of COM...

  20. Sandia National Laboratories: oil and gas technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1developmentturbine bladelifetime ismobile testnationalnuclear reactoroil and gas

  1. Hot alkaline treatment to stimulate and consolidate the heavy oil Bachaquero-01 sand

    E-Print Network [OSTI]

    Valera Villarroel, Cesar Amabilis

    2005-02-17T23:59:59.000Z

    , PDVSA (Petroleos de Venezuela, S.A.), operates the Lagunillas field. It represents one of the most important heavy oil accumulations in the Bolivar Coast group of fields. Bachaquero-01 reservoir covers 19,540 acres of unconsolidated sand and contains...

  2. Fluid and Rock Property Controls On Production And Seismic Monitoring Alaska Heavy Oils

    SciTech Connect (OSTI)

    Matthew Liberatore; Andy Herring; Manika Prasad; John Dorgan; Mike Batzle

    2012-06-30T23:59:59.000Z

    The goal of this project is to improve recovery of Alaskan North Slope (ANS) heavy oil resources in the Ugnu formation by improving our understanding of the formationâ??s vertical and lateral heterogeneities via core evaluation, evaluating possible recovery processes, and employing geophysical monitoring to assess production and modify production operations.

  3. Utilizing asphaltene pyrolysis to predict pyrolysis kinetics of heavy crude oil and extractable native bitumen

    SciTech Connect (OSTI)

    Reynolds, J.G.

    1992-01-07T23:59:59.000Z

    Selected heavy crude oils and extracted tar sand bitumens were separated into asphaltene and maltene fractions. The whole feeds and fractions were then examined by micropyrolysis at nominal constant heating rates from 1 to 50{degrees}C/min from temperatures of 250 to 650{degrees}C to establish evolution behavior, pyrolysate yields, and kinetics of evolution.

  4. Heavy Oil Database from the National Institute for Petroleum and Energy Research (NIPER)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Heavy Oil Database resulted from work funded by DOE and performed at the National Institute for Petroleum and Energy Research (NIPER). It contains information on more than 500 resevoirs in a Microsoft Excel spreadsheet. The information was collected in 1992 and updated periodically through 2003. Save the zipped file to your PC, then open to access the data.

  5. The Possible Loss of Venezuelan Heavy Crude Oil Imports Underscores the Strategic Importance of the

    E-Print Network [OSTI]

    Texas at Austin, University of

    of the Keystone XL Pipeline By Jorge R. Piñon Recent press reports indicate the possible sale by state crude, making reliance on Canadian heavy crude oil more significant, and the approval of the Keystone XL pipeline even more crucial to U.S. energy security. The pipeline is currently in limbo, waiting on approval

  6. Increasing Heavy Oil Reserves in the Wilmington Oil Field through Advanced Reservoir Characterization and Thermal Production Technologies

    SciTech Connect (OSTI)

    City of Long Beach; David K.Davies and Associates; Tidelands Oil Production Company; University of Southern California

    1999-06-25T23:59:59.000Z

    The objective of this project is to increase the recoverable heavy oil reserves within sections of the Wilmington Oil Field, near Long Beach, California. This is realized through the testing and application of advanced reservoir characterization and thermal production technologies. It is hoped that the successful application of these technologies will result in their implementation throughout the Wilmington Field and through technology transfer, will be extended to increase the recoverable oil reserves in other slope and basin clastic (SBC) reservoirs. The existing steamflood in the Tar zone of Fault Block (FB) II-A has been relatively insufficient because of several producability problems which are common in SBC reservoir; inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil and non-uniform distribution of the remaining oil. This has resulted in poor sweep efficiency, high steam-oil ratios, and early breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves.

  7. INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES

    SciTech Connect (OSTI)

    Scott Hara

    2001-06-27T23:59:59.000Z

    The objective of this project is to increase the recoverable heavy oil reserves within sections of the Wilmington Oil Field, near Long Beach, California through the testing and application of advanced reservoir characterization and thermal production technologies. The successful application of these technologies will result in expanding their implementation throughout the Wilmington Field and, through technology transfer, to other slope and basin clastic (SBC) reservoirs. The existing steamflood in the Tar zone of Fault Block II-A (Tar II-A) has been relatively inefficient because of several producibility problems which are common in SBC reservoirs: inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil and non-uniform distribution of the remaining oil. This has resulted in poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. A suite of advanced reservoir characterization and thermal production technologies are being applied during the project to improve oil recovery and reduce operating costs.

  8. Crude Oil and Natural Gas Drilling Activity

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781 2,328 2,683 2,539PetroleumNatural Gas Usage Form267,273Jun-14

  9. Crude oil and crude oil derivatives transactions by oil and gas producers.

    E-Print Network [OSTI]

    Xu, He

    2007-01-01T23:59:59.000Z

    ??This study attempts to resolve two important issues. First, it investigates the diversification benefit of crude oil for equities. Second, it examines whether or not… (more)

  10. Reservoir oil bubblepoint pressures revisited; solution gasoil ratios and surface gas specific gravities

    E-Print Network [OSTI]

    Valkó, Peter

    Reservoir oil bubblepoint pressures revisited; solution gas­oil ratios and surface gas specific, for bubblepoint pressure and other fluid properties, require use of stock-tank gas rate and specific gravity in estimating stock-tank vent gas rate and quality for compliance purposes. D 2002 Elsevier Science B.V. All

  11. Oil and gas developments in western Canada in 1987

    SciTech Connect (OSTI)

    Portigal, M.H.; Creed, R.M.; Hogg, J.R.; Hewitt, M.D.

    1988-10-01T23:59:59.000Z

    Exploratory drilling in western Canada increased by 21% in 1987 whereas total drilling increased by 32%. The seismic crew count increased 4% to 671 crew-months, and land expenditures increased 166% to $793 million. No major plays broke during 1987 in western Canada. The 2 major plays resulting from 1986 activity - Caroline, Alberta, and Tableland, Saskatchewan - continued to expand in 1987. By year end at Caroline, industry drilled 14 wells, which included 6 Swan Hills gas wells, 3 uphole gas wells, 3 wells standing or suspended, and 2 dry holes. The reserves for this field now are 17 billion m/sup 3/ of sales gas, 32 million m/sup 3/ of condensate, and 20 million MT of sulfur. At Tableland and surrounding areas, industry has drilled 11 oil wells and 16 dry holes. No overall reserve figures have been published for this play. In Alberta, operators had their best exploratory oil success in the Cretaceous Second White Specks and in the Devonian Nisku, Leduc, Gilwood, and Keg River; the best exploratory gas success was in the Cretaceous Viking and Paddy, and Devonian Nisku and Leduc. In British Columbia, gas drilling was successful in the Cretaceous of the Deep Basin, as well as in the Mississippian Kiskatinaw and the Triassic Halfway. In Saskatchewan, both the shallow Cretaceous gas play and the deep Devonian Winnipegosis oil play continued to expand, whereas in Manitoba the main exploration target was the Mississippian carbonates and Bakken Formation. The Northwest Territories, Beaufort Sea, and Arctic Islands had a poor year, with only 4 exploratory wells drilled - all dry holes. 7 figs., 10 tabs.

  12. Oil and gas developments in North Africa in 1985

    SciTech Connect (OSTI)

    Michel, R.C.

    1986-10-01T23:59:59.000Z

    Petroleum rights in the 6 North African countries (Algeria, Egypt, Libya, Morocco, Sudan, and Tunisia) covered in this paper were 1,839,817 km/sup 2/ at the end of 1985, a decrease of 3% from the 1,896,446 km/sup 2/ held at the end of 1984. This decrease mainly is due to significant relinquishments made in Algeria, Egypt, and Tunisia. Morocco, however, had an increase of 18,087 km/sup 2/. Oil discoveries were reported in Algeria (possibly 5), Libya (at least 2), and Egypt (16). Only 1 gas find was made (in Morocco). According to sparse information, development drilling may have decreased markedly during 1985. Oil and condensate production increased by 3.1% to approximately 3,054,000 b/d compared to about 2,963,400 b/d in 1984. No statistics are currently available on gas production in North Africa. 8 figures, 27 tables.

  13. Evaluation of solvent-based in situ processes for upgrading and recovery of heavy oil bitumen

    SciTech Connect (OSTI)

    Duerksen, J.H.; Eloyan, A. [Chevron Petroleum Technology Co., La Habra, CA (United States)

    1995-12-31T23:59:59.000Z

    Solvent-based in situ recovery processes have been proposed as lower cost alternatives to thermal processes for recovery of heavy oil and bitumen. Advantages of solvent based processes are: reduced steam requirements, reduced water treating, and in situ upgrading of the produced oil. Lab results and process calculations show that low-pressure, low-energy solvent-based in situ processes have considerable technical and economic potential for upgrading and recovery of bitumen and heavy oil. In a lab flow test using Athabasca tar sand and propane as solvent, 50 percent of the bitumen was recovered as upgraded oil. Relative to the raw bitumen, API gravity increased by about 10{degrees}API, viscosity was reduced 30-fold, sulfur content was reduced about 50 percent, and metals content was also substantially reduced. Process uncertainties that will have a major impact on economics are: (1) oil production rate, (2) oil recovery, (3) extent of in situ upgrading, and (4) solvent losses. Additional lab development and field testing are required to reduce these process uncertainties and to predict commercial-scale economics.

  14. Accounting for Depletion of Oil and Gas Resources in Malaysia

    SciTech Connect (OSTI)

    Othman, Jamal, E-mail: jortman@ukm.my; Jafari, Yaghoob, E-mail: yaghoob.jafari@gmail.com [Universiti Kebangsaan Malaysia, Faculty of Economics and Management (Malaysia)

    2012-12-15T23:59:59.000Z

    Since oil and gas are non-renewable resources, it is important to identify the extent to which they have been depleted. Such information will contribute to the formulation and evaluation of appropriate sustainable development policies. This paper provides an assessment of the changes in the availability of oil and gas resources in Malaysia by first compiling the physical balance sheet for the period 2000-2007, and then assessing the monetary balance sheets for the said resource by using the Net Present Value method. Our findings show serious reduction in the value of oil reserves from 2001 to 2005, due to changes in crude oil prices, and thereafter the depletion rates decreased. In the context of sustainable development planning, albeit in the weak sustainability sense, it will be important to ascertain if sufficient reinvestments of the estimated resource rents in related or alternative capitals are being attempted by Malaysia. For the study period, the cumulative resource rents were to the tune of RM61 billion. Through a depletion or resource rents policy, the estimated quantum may guide the identification of a reinvestment threshold (after considering needed capital investment for future development of the industry) in light of ensuring the future productive capacity of the economy at the time when the resource is exhausted.

  15. The oil and gas journal databook, 1991 edition

    SciTech Connect (OSTI)

    Not Available

    1991-01-01T23:59:59.000Z

    This book provides the statistical year in review plus selected articles that cover significant events of the past year. In addition, the Data Book features the popular surveys and special reports that quantify industry activity throughout the year. This book contains information on Midyear forecast and review; Worldwide gas processing report; Ethylene report; Sulfur survey; International refining survey; Nelson cost index; Smith rig count; API refinery report; API imports of crude and products; The catalyst compilation; Annual refining survey; Worldwide construction report; Pipeline economics report; Worldwide production and refining report; Morgan pipeline cost index for oil and gas; Hughes rig count; OBJ production report.

  16. A Study of Strategies for Oil and Gas Auctions

    E-Print Network [OSTI]

    Nordt, David Paul

    2010-10-12T23:59:59.000Z

    offshore lease sale bids for single tracts are plotted on probability paper to demonstrate this log-normal distribution behavior. He also provides an example of a tract that did not exhibit the typical behavior. He speculates that nonconforming bids... prices up and make less profit. Lohrenz [1988] documents past performance and projection of future profits from federal oil and gas lease sales are poor. He advises to be wary of reasons that justify high bonuses. Meade studies showed rate...

  17. A Guidance Document for Kentucky's Oil and Gas Operators

    SciTech Connect (OSTI)

    Bender, Rick

    2002-03-18T23:59:59.000Z

    The accompanying report, manual and assimilated data represent the initial preparation for submission of an Application for Primacy under the Class II Underground Injection Control (UIC) program on behalf of the Commonwealth of Kentucky. The purpose of this study was to identify deficiencies in Kentucky law and regulation that would prevent the Kentucky Division of Oil and Gas from receiving approval of primacy of the UIC program, currently under control of the United States Environmental Protection Agency (EPA) in Atlanta, Georgia.

  18. Economy key to 1992 U. S. oil, gas demand

    SciTech Connect (OSTI)

    Beck, R.J.

    1992-01-27T23:59:59.000Z

    This paper provides a forecast US oil and gas markets and industry in 1992. An end to economic recession in the U.S. will boost petroleum demand modestly in 1992 after 2 years of decline. U.S. production will resume its slide after a fractional increase in 1991. Drilling in the U.S. will set a record low. Worldwide, the key questions are economic growth and export volumes from Iraq, Kuwait, and former Soviet republics.

  19. Government chartered banks step up oil and gas lending

    SciTech Connect (OSTI)

    Crow, P.

    1994-10-17T23:59:59.000Z

    International government chartered banks are playing an increasingly prominent role in lending for world oil and gas development projects. The main players are the World Bank's International Finance Corp. (IFC), European Bank for Reconstruction and Development (EBRD), US Export-Import Bank, and Overseas Private Investment Corp. (OPIC). Those institutions and similar ones are the catalysts for a large number of projects in the former Soviet Union (FSU) and in other nations that are seeking to develop oil and gas resources and build processing plants, pipelines, and distribution networks. Banks also are taking a greater degree of interest in the environmental aspects of projects. In country after country, especially in the developing world, barriers to foreign investment in domestic petroleum sectors are falling. Oil and gas law reforms are under way on each continent. The paper discusses the major players, the World Bank grouped, the Romanian example, the Ex-Im Bank, OPIC, the emphasis on FSU, environmental issues, and new sources of capital in developing countries.

  20. NORM Management in the Oil and Gas Industry

    SciTech Connect (OSTI)

    Cowie, Michael; Mously, Khalid; Fageeha, Osama; Nassar, Rafat [Environmental Protection Department, Saudi Aramco Dhahran 31311 (Saudi Arabia)

    2008-08-07T23:59:59.000Z

    It has been established that Naturally Occurring Radioactive Materials (NORM) accumulates at various locations along the oil/gas production process. Components such as wellheads, separation vessels, pumps, and other processing equipment can become NORM contaminated, and NORM can accumulate in sludge and other waste media. Improper handling and disposal of NORM contaminated equipment and waste can create a potential radiation hazard to workers and the environment. Saudi Aramco Environmental Protection Department initiated a program to identify the extent, form and level of NORM contamination associated with the company operations. Once identified the challenge of managing operations which had a NORM hazard was addressed in a manner that gave due consideration to workers and environmental protection as well as operations' efficiency and productivity. The benefits of shared knowledge, practice and experience across the oil and gas industry are seen as key to the establishment of common guidance on NORM management. This paper outlines Saudi Aramco's experience in the development of a NORM management strategy and its goals of establishing common guidance throughout the oil and gas industry.

  1. Produce More Oil Gas via eBusiness Data Sharing

    SciTech Connect (OSTI)

    Paul Jehn; Mike Stettner

    2004-09-30T23:59:59.000Z

    GWPC, DOGGR, and other state agencies propose to build eBusiness applications based on a .NET front-end user interface for the DOE's Energy 100 Award-winning Risk Based Data Management System (RBDMS) data source and XML Web services. This project will slash the costs of regulatory compliance by automating routine regulatory reporting and permit notice review and by making it easier to exchange data with the oil and gas industry--especially small, independent operators. Such operators, who often do not have sophisticated in-house databases, will be able to use a subset of the same RBDMS tools available to the agencies on the desktop to file permit notices and production reports online. Once the data passes automated quality control checks, the application will upload the data into the agency's RBDMS data source. The operators also will have access to state agency datasets to focus exploration efforts and to perform production forecasting, economic evaluations, and risk assessments. With the ability to identify economically feasible oil and gas prospects, including unconventional plays, over the Internet, operators will minimize travel and other costs. Because GWPC will coordinate these data sharing efforts with the Bureau of Land Management (BLM), this project will improve access to public lands and make strides towards reducing the duplicative reporting to which industry is now subject for leases that cross jurisdictions. The resulting regulatory streamlining and improved access to agency data will make more domestic oil and gas available to the American public while continuing to safeguard environmental assets.

  2. A guide for the gas and oil industry

    SciTech Connect (OSTI)

    Not Available

    1994-12-01T23:59:59.000Z

    This guide has been prepared to assist those in the natural gas and oil industry who may not be familiar with how the Federal government, particularly the U.S. Department of Energy (DOE or Department), does business with private sector companies. Basic information is provided on what DOE is trying to do, why it wants to work with the natural gas and oil industry, how it can work with companies, who to contact, and where to inquire for further information. This last item is noteworthy because it is important for users of this guide to be able to access information about subjects that may interest them. Selected other Federal agencies and their activities related to those of DOE`s Office of Fossil Energy (FE or Fossil Energy) also are included in this document as Appendix A. This guide provides an address and/or phone number for every topic covered to prevent any information impasse. If a question is not adequately answered by the guide, please do not hesitate to contact the appropriate person or office. It is hoped that the information provided in this guide will lead to a better understanding of the mission, roles, and procedures of DOE and result in more and better cooperative working relationships between the natural gas and oil industry and DOE. Such relationships will provide a significant benefit to our Nation`s economic, technological, and energy security.

  3. Water in Alberta With Special Focus on the Oil and Gas Industry

    E-Print Network [OSTI]

    Gieg, Lisa

    1 Water in Alberta With Special Focus on the Oil and Gas Industry (Education Paper) Seyyed Ghaderi ................................................................................................................................18 Shale Gas ................................................................................................................................................19 How much water is used in deep shale gas development

  4. Observer Design for Gas Lifted Oil Wells Ole Morten Aamo, Gisle Otto Eikrem, Hardy Siahaan, and Bjarne Foss

    E-Print Network [OSTI]

    Foss, Bjarne A.

    Observer Design for Gas Lifted Oil Wells Ole Morten Aamo, Gisle Otto Eikrem, Hardy Siahaan flow systems is an area of increasing interest for the oil and gas industry. Oil wells with highly related to oil and gas wells exist, and in this study, unstable gas lifted wells will be the area

  5. Numerical simulations of the Macondo well blowout reveal strong control of oil flow by reservoir permeability and exsolution of gas

    E-Print Network [OSTI]

    Oldenburg, C.M.

    2013-01-01T23:59:59.000Z

    simulation of reservoir depletion and oil flow from themodel included the oil reservoir and the well with a toppressures of the deep oil reservoir, to a two-phase oil-gas

  6. Demand growth to continue for oil, resume for gas this year in the U.S.

    SciTech Connect (OSTI)

    Beck, R.J.

    1998-01-26T23:59:59.000Z

    Demand for petroleum products and natural gas in the US will move up again this year, stimulated by economic growth and falling prices. Economic growth, although slower than it was last year, will nevertheless remain strong. Worldwide petroleum supply will rise, suppressing oil prices. Natural gas prices are also expected to fall in response to the decline in oil prices and competitive pressure from other fuels. The paper discusses the economy, total energy consumption, energy sources, oil supply (including imports, stocks, refining, refining margins and prices), oil demand (motor gasoline, jet fuel, distillate fuel, residual fuel oil, and other petroleum products), natural gas demand, and natural gas supply.

  7. THEORY OF THREE-PHASE FLOW APPLIED TO WATER-ALTERNATING-GAS ENHANCED OIL RECOVERY

    E-Print Network [OSTI]

    is the key to this improvement. 1. Introduction In secondary oil recovery, water or gas is injectedTHEORY OF THREE-PHASE FLOW APPLIED TO WATER-ALTERNATING-GAS ENHANCED OIL RECOVERY D. MARCHESIN, we show that this theory can be applied to increase the rate of oil recovery, during certain

  8. Oil and Gas CDT Mesozoic Biosequence Stratigraphy of the Wessex Basin, UK

    E-Print Network [OSTI]

    Henderson, Gideon

    Oil and Gas CDT Mesozoic Biosequence Stratigraphy of the Wessex Basin, UK University of Birmingham expert academics from across the CDT and also experienced oil and gas industry professionals of a CDT cohort, you will receive 20 weeks bespoke, residential training of broad relevance to the oil

  9. www.myresources.com.au OIL & GAS BULLETIN VOL. 15, NO. 11 PAGE 9 Safety first: Oil rigs off the north west shelf will be studied for

    E-Print Network [OSTI]

    www.myresources.com.au OIL & GAS BULLETIN VOL. 15, NO. 11 PAGE 9 NEWS Safety first: Oil rigs off that as times and trends change, tight gas and shale gas is being more and more considered as a potentially prices rise, and a shift from coal to gas energy sources is experienced, tight gas and shale gas is now

  10. Heavy Fuel Oil Prices for Electricity Generation - EIA

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecember 2005 (Thousand9,0, 1997Environment >7,992000 HighlightsHasSHOPPMapsHeavy

  11. Apparatus for operating a gas and oil producing well

    SciTech Connect (OSTI)

    Wynn, S. R.

    1985-07-02T23:59:59.000Z

    Apparatus is disclosed for automatically operating a gas and oil producing well of the plunger lift type, including a comparator for comparing casing and tubing pressures, a device for opening the gas delivery valve when the difference between casing and tubing pressure is less than a selected minimum value, a device for closing the gas discharge valve when casing pressure falls below a selected casing bleed value, an arrival sensor switch for initially closing the fluid discharge valve when the plunger reaches the upper end of the tubing, and a device for reopening the fluid discharge valve at the end of a given downtime period in the event that the level of oil in the tubing produces a pressure difference greater than the given minimum differential value, and the casing pressure is greater than lift pressure. The gas discharge valve is closed if the pressure difference exceeds a selected maximum value, or if the casing pressure falls below a selected casing bleed value. The fluid discharge valve is closed if tubing pressure exceeds a maximum safe value. In the event that the plunger does not reach the upper end of the tubing during a selected uptime period, a lockout indication is presented on a visual display device, and the well is held shut-in until the well differential is forced down to the maximum differential setting of the device. When this occurs, the device will automatically unlock and normal cycling will resume.

  12. Gas miscible displacement enhanced oil recovery: Technology status report

    SciTech Connect (OSTI)

    Not Available

    1986-10-01T23:59:59.000Z

    Gas miscible displacement enhanced oil recovery research is conducted by the US Department of Energy's Morgantown Energy Technology Center to advance the application of miscible carbon dioxide flooding. This research is an integral part of a multidisciplinary effort to improve the technology for producing additional oil from US resources. This report summarizes the problems of the technology and the 1986 results of the ongoing research that was conducted to solve those problems. Poor reservoir volumetric sweep efficiency is the major problem associated with gas flooding and all miscible displacements. This problem results from the channeling and viscous fingering that occur due to the large differences between viscosity or density of the displacing and displaced fluids (i.e., carbon dioxide and oil, respectively). Simple modeling and core flooding studies indicate that, because of differences in fluid viscosities, breakthrough can occur after only 30% of the total pore volume (PV) of the rock has been injected with gas, while field tests have shown breakthrough occurring much earlier. The differences in fluid densities lead to gravity segregation. The lower density carbon dioxide tends to override the residual fluids in the reservoir. This process would be considerably more efficient if a larger area of the reservoir could be contacted by the gas. Current research has focused on the mobility control, computer simulation, and reservoir heterogeneity studies. Three mobility control methods have been investigated: (1) the use of polymers for direct thickening of high-density carbon dioxide, (2) mobile ''foam-like dispersions'' of carbon dioxide and an aqueous surfactant, and (3) in situ deposition of chemical precipitates. 22 refs., 14 figs., 6 tabs.

  13. Combined Total Amount of Oil and Gas Recovered Daily from the...

    Broader source: Energy.gov (indexed) [DOE]

    ODS format Combined Total Amount of Oil and Gas Recovered Daily from the Top Hat and Choke Line oil recovery systems - ODS format Updated through 12:00 AM on July 16, 2010....

  14. Combined Total Amount of Oil and Gas Recovered Daily from the...

    Broader source: Energy.gov (indexed) [DOE]

    XLS Combined Total Amount of Oil and Gas Recovered Daily from the Top Hat and Choke Line oil recovery systems - XLS Updated through 12:00 AM on July 16, 2010. 52Item84Recovery...

  15. Alaska Oil and Gas Exploration, Development, and Permitting Project

    SciTech Connect (OSTI)

    Richard McMahon; Robert Crandall

    2006-03-31T23:59:59.000Z

    This is the final technical report for Project 15446, covering the grant period of October 2002 through March 2006. This project connects three parts of the oil exploration, development, and permitting process to form the foundation for an advanced information technology infrastructure to better support resource development and resource conservation. Alaska has nearly one-quarter of the nation's supply of crude oil, at least five billion barrels of proven reserves. The American Association of Petroleum Geologists report that the 1995 National Assessment identified the North Slope as having 7.4 billion barrels of technically recoverable oil and over 63 trillion cubic feet of natural gas. From these reserves, Alaska produces roughly one-fifth of the nation's daily crude oil production, or approximately one million barrels per day from over 1,800 active wells. The broad goal of this grant is to increase domestic production from Alaska's known producing fields through the implementation of preferred upstream management practices. (PUMP). Internet publication of extensive and detailed geotechnical data is the first task, improving the permitting process is the second task, and building an advanced geographical information system to offer continuing support and public access of the first two goals is the third task. Excellent progress has been made on all three tasks; the technical objectives as defined by the approved grant sub-tasks have been met. The end date for the grant was March 31, 2006.

  16. SOLVENT-BASED ENHANCED OIL RECOVERY PROCESSES TO DEVELOP WEST SAK ALASKA NORTH SLOPE HEAVY OIL RESOURCES

    SciTech Connect (OSTI)

    David O. Ogbe; Tao Zhu

    2004-01-01T23:59:59.000Z

    A one-year research program is conducted to evaluate the feasibility of applying solvent-based enhanced oil recovery processes to develop West Sak and Ugnu heavy oil resources found on the Alaska North Slope (ANS). The project objective is to conduct research to develop technology to produce and market the 300-3000 cp oil in the West Sak and Ugnu sands. During the first phase of the research, background information was collected, and experimental and numerical studies of vapor extraction process (VAPEX) in West Sak and Ugnu are conducted. The experimental study is designed to foster understanding of the processes governing vapor chamber formation and growth, and to optimize oil recovery. A specially designed core-holder and a computed tomography (CT) scanner was used to measure the in-situ distribution of phases. Numerical simulation study of VAPEX was initiated during the first year. The numerical work completed during this period includes setting up a numerical model and using the analog data to simulate lab experiments of the VAPEX process. The goal was to understand the mechanisms governing the VAPEX process. Additional work is recommended to expand the VAPEX numerical study using actual field data obtained from Alaska North Slope.

  17. Asymmetric and nonlinear pass-through of crude oil prices to gasoline and natural gas prices

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Asymmetric and nonlinear pass-through of crude oil prices to gasoline and natural gas prices Ahmed distributed lags (NARDL) mod- el to examine the pass-through of crude oil prices into gasoline and natural gas the possibility to quantify the respective responses of gasoline and natural gas prices to positive and negative

  18. IMPACTS OF OIL AND NATURAL GAS ON PRAIRIE GROUSE: CURRENT KNOWLEDGE AND RESEARCH NEEDS1

    E-Print Network [OSTI]

    Beck, Jeffrey L.

    IMPACTS OF OIL AND NATURAL GAS ON PRAIRIE GROUSE: CURRENT KNOWLEDGE AND RESEARCH NEEDS1 Jeffrey L and natural gas development on grouse populations and habitats. The purpose of this review is to summarize current knowledge on the effects of oil and gas development and production on prairie grouse based

  19. Acoustic and Thermal Characterization of Oil Migration, Gas Hydrates Formation and Silica Diagenesis

    E-Print Network [OSTI]

    Guerin, Gilles

    Acoustic and Thermal Characterization of Oil Migration, Gas Hydrates Formation and Silica Rights Reserved #12;ABSTRACT Acoustic and Thermal Characterization of Oil Migration, Gas Hydrates-A to Opal-CT, the formation of gas hydrates, fluid substitution in hydrocarbon reservoirs, and fluid

  20. Oil and Gas Innovation call June 2014 Reference PI Institution Title Impact

    E-Print Network [OSTI]

    Oil and Gas Innovation call June 2014 Reference PI Institution Title Impact Score Fit score Rank NE oil and gas industries offshore. 7 4 9 NE/M007286/1 Professor Kevin Taylor The University to petrophysical models for shale gas reservoirs based on sensitivity analysis of key variables 7 5 2 NE/M007235

  1. Development of artificial neural networks for steam assisted gravity drainage (SAGD) recovery method in heavy oil reservoirs.

    E-Print Network [OSTI]

    Sengel, Ayhan

    2013-01-01T23:59:59.000Z

    ??As no alternative energy source has been introduced to efficiently replace fossil fuels yet, the demand for oil and gas is still increasing in the… (more)

  2. Modification of reservoir chemical and physical factors in steamfloods to increase heavy oil recovery

    SciTech Connect (OSTI)

    Yortsos, Y.C.

    1992-01-01T23:59:59.000Z

    Thermal methods, and particularly steam injection, are currently recognized as the most promising for the efficient recovery of heavy oil. Despite significant progress, however, important technical issues remain open. Specifically, still inadequate is our knowledge of the complex interaction between porous media and the various fluids of thermal recovery (steam, water, heavy oil, gases, and chemicals). While, the interplay of heat transfer and fluid flow with pore- and macro-scale heterogeneity is largely unexplored. The objectives of this contract are to continue previous work and to carry out new fundamental studies in the following areas of interest to thermal recovery: displacement and flow properties of fluids involving phase change (condensation-evaporation) in porous media; flow properties of mobility control fluids (such as foam); and the effect of reservoir heterogeneity on thermal recovery. The specific projects are motivated by and address the need to improve heavy oil recovery from typical reservoirs as well as less conventional fractured reservoirs producing from vertical or horizontal wells. Accomplishments for this period are presented.

  3. Shale Gas Production Theory and Case Analysis We researched the process of oil recovery and shale gas

    E-Print Network [OSTI]

    Ge, Zigang

    Shale Gas Production Theory and Case Analysis (Siemens) We researched the process of oil recovery and shale gas recovery and compare the difference between conventional and unconventional gas reservoir and recovery technologies. Then we did theoretical analysis on the shale gas production. According

  4. Waste minimization in the oil and gas industries

    SciTech Connect (OSTI)

    Smith, K.P.

    1992-01-01T23:59:59.000Z

    Recent legislative actions place an emphasis on waste minimization as opposed to traditional end-of-pipe waste management. This new philosophy, coupled with increasing waste disposal costs and associated liabilities, sets the stage for investigating waste minimization opportunities in all industries wastes generated by oil and gas exploration and production (E P) and refuting activities are regulated as non-hazardous under the Resource Conservation and Recovery Act (RCRA). Potential reclassification of these wastes as hazardous would make minimization of these waste streams even more desirable. Oil and gas E P activities generate a wide variety of wastes, although the bulk of the wastes (98%) consists of a single waste stream: produced water. Opportunities to minimize E P wastes through point source reduction activities are limited by the extractive nature of the industry. Significant waste minimization is possible, however, through recycling. Recycling activities include underground injection of produced water, use of closed-loop drilling systems, reuse of produced water and drilling fluids in other oilfield activities, use of solid debris as construction fill, use of oily wastes as substitutes for road mix and asphalt, landspreading of produced sand for soil enhancement, and roadspreading of suitable aqueous wastes for dust suppression or deicing. Like the E P wastes, wastes generated by oil and gas treatment and refining activities cannot be reduced substantially at the point source but can be reduced through recycling. For the most part, extensive recycling and reprocessing of many waste streams already occurs at most petroleum refineries. A variety of innovative waste treatment activities have been developed to minimize the toxicity or volume of oily wastes generated by both E P and refining activities. These treatments include bioremediation, oxidation, biooxidation, incineration, and separation. Application of these treatment processes is still limited.

  5. Waste minimization in the oil and gas industries

    SciTech Connect (OSTI)

    Smith, K.P.

    1992-09-01T23:59:59.000Z

    Recent legislative actions place an emphasis on waste minimization as opposed to traditional end-of-pipe waste management. This new philosophy, coupled with increasing waste disposal costs and associated liabilities, sets the stage for investigating waste minimization opportunities in all industries wastes generated by oil and gas exploration and production (E&P) and refuting activities are regulated as non-hazardous under the Resource Conservation and Recovery Act (RCRA). Potential reclassification of these wastes as hazardous would make minimization of these waste streams even more desirable. Oil and gas E&P activities generate a wide variety of wastes, although the bulk of the wastes (98%) consists of a single waste stream: produced water. Opportunities to minimize E&P wastes through point source reduction activities are limited by the extractive nature of the industry. Significant waste minimization is possible, however, through recycling. Recycling activities include underground injection of produced water, use of closed-loop drilling systems, reuse of produced water and drilling fluids in other oilfield activities, use of solid debris as construction fill, use of oily wastes as substitutes for road mix and asphalt, landspreading of produced sand for soil enhancement, and roadspreading of suitable aqueous wastes for dust suppression or deicing. Like the E&P wastes, wastes generated by oil and gas treatment and refining activities cannot be reduced substantially at the point source but can be reduced through recycling. For the most part, extensive recycling and reprocessing of many waste streams already occurs at most petroleum refineries. A variety of innovative waste treatment activities have been developed to minimize the toxicity or volume of oily wastes generated by both E&P and refining activities. These treatments include bioremediation, oxidation, biooxidation, incineration, and separation. Application of these treatment processes is still limited.

  6. OIL and GAS ENGINEERING Page 1 of 3 SEMESTER OFFERED COURSE PRE-REQUISITES listed in this column.

    E-Print Network [OSTI]

    Calgary, University of

    OIL and GAS ENGINEERING Page 1 of 3 1st Year SEMESTER OFFERED COURSE PRE-REQUISITES listed and Magnetism AMAT 217; MATH 211; recommended co-req: AMAT 219 2nd Year Oil and Gas Engineering: Regular Program correct. 2013/2014 Curriculum (Updated June 18, 2013) #12;OIL and GAS ENGINEERING Page 2 of 3 3rd Year Oil

  7. International oil and gas exploration and development activities

    SciTech Connect (OSTI)

    Not Available

    1990-10-29T23:59:59.000Z

    This report is part of an ongoing series of quarterly publications that monitors discoveries of oil and natural gas in foreign countries and provides an analysis of the reserve additions that result. The report is prepared by the Energy Information Administration (EIA) of the US Department of Energy (DOE) under the Foreign Energy Supply Assessment Program (FESAP). It presents a summary of discoveries and reserve additions that result from recent international exploration and development activities. It is intended for use by petroleum industry analysts, various government agencies, and political leaders in the development, implementation, and evaluation of energy plans, policy, and legislation. 25 refs., 8 figs., 4 tabs.

  8. Indiana Natural Gas Withdrawals from Oil Wells (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14 15 0 0 0Year Jan Feb MarYear Jan Feb MarOil

  9. AEO2012 Preliminary Assumptions: Oil and Gas Supply

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import CostsLiquids Reserve3.Revenue3 Oil and Gas Supply Working

  10. AEO2014 Oil and Gas Working Group Meeting Summary

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import CostsLiquids Reserve3.Revenue3 Oil and Gas Supply AEO20149

  11. Indiana DNR Division of Oil and Gas | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpen EnergyBoard"Starting a newIGUSLLCDivision of Oil and Gas

  12. Virginia Division of Oil and Gas | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 South Place: Salt Lake City,Division of Oil and Gas Jump to: navigation,

  13. Category:Federal Oil and Gas Regulations | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarreis aCallahanWind FarmAdd a new Federal Oil and Gas

  14. Arizona Oil and Gas Commission | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCT Biomass FacilityArdica Technologies JumpArizonaOil and Gas

  15. West Virginia Office of Oil and Gas | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 South Place: SaltTroyer & AssociatesWest CentralUkinrek MaarOil and Gas

  16. Form:Oil and Gas Company | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6Theoretical vsFlintFluxInput your datasetOil and Gas

  17. Costs of Crude Oil and Natural Gas Wells Drilled

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecember 2005 (Thousand9, 2015Year109 AppendixCosts of Crude Oil and Natural Gas

  18. Two-stage coprocessing of subbituminous coals and bitumen or heavy oil

    SciTech Connect (OSTI)

    Ignasiak, B.; Ohuchi, T.; Clark, P.; Aitchison, D.; Lee, T.

    1986-09-01T23:59:59.000Z

    Pretreatment of subbituminous coal with an appropriately formulated mix of carbon monoxide and water, in presence of bitumen or heavy oil, results in very fast reactions characterized by a high degree of coal solubilization and deoxygenation. The reaction is catalysed by a mixture of alkali metal carbonates and proceeds readily at 380-400/sup 0/C. The first-stage reaction product appears to be susceptible to further catalytic hydrogenation at 420-460/sup 0/C with gaseous hydrogen yielding 65-70% (on daf feed) of hydrogen-rich distillable oil, composed mainly of naphtha and middle oil. The process flowsheet is presented and the comparative economics of two-stage carbon monoxide/steam-hydrogen and hydrogen-hydrogen coprocessing schemes are discussed.

  19. INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES

    SciTech Connect (OSTI)

    Unknown

    2001-08-08T23:59:59.000Z

    The objective of this project is to increase the recoverable heavy oil reserves within sections of the Wilmington Oil Field, near Long Beach, California, through the testing and application of advanced reservoir characterization and thermal production technologies. The hope is that successful application of these technologies will result in their implementation throughout the Wilmington Field and, through technology transfer, will be extended to increase the recoverable oil reserves in other slope and basin clastic (SBC) reservoirs. The existing steamflood in the Tar zone of Fault Block II-A (Tar II-A) has been relatively inefficient because of several producibility problems which are common in SBC reservoirs: inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil and non-uniform distribution of the remaining oil. This has resulted in poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. A suite of advanced reservoir characterization and thermal production technologies are being applied during the project to improve oil recovery and reduce operating costs, including: (1) Development of three-dimensional (3-D) deterministic and stochastic reservoir simulation models--thermal or otherwise--to aid in reservoir management of the steamflood and post-steamflood phases and subsequent development work. (2) Development of computerized 3-D visualizations of the geologic and reservoir simulation models to aid reservoir surveillance and operations. (3) Perform detailed studies of the geochemical interactions between the steam and the formation rock and fluids. (4) Testing and proposed application of a novel alkaline-steam well completion technique for the containment of the unconsolidated formation sands and control of fluid entry and injection profiles. (5) Installation of a 2100 ft, 14 inch insulated, steam line beneath a harbor channel to supply steam to an island location. (6) Testing and proposed application of thermal recovery technologies to increase oil production and reserves: (a) Performing pilot tests of cyclic steam injection and production on new horizontal wells. (b) Performing pilot tests of hot water-alternating-steam (WAS) drive in the existing steam drive area to improve thermal efficiency. (7) Perform a pilot steamflood with the four horizontal injectors and producers using a pseudo steam-assisted gravity-drainage (SAGD) process. (8) Advanced reservoir management, through computer-aided access to production and geologic data to integrate reservoir characterization, engineering, monitoring and evaluation.

  20. Natural Gas as a Fuel for Heavy Trucks: Issues and Incentives (released in AEO2010)

    Reports and Publications (EIA)

    2010-01-01T23:59:59.000Z

    Environmental and energy security concerns related to petroleum use for transportation fuels, together with recent growth in U.S. proved reserves and technically recoverable natural gas resources, including shale gas, have sparked interest in policy proposals aimed at stimulating increased use of natural gas as a vehicle fuel, particularly for heavy trucks.

  1. Title 20 Alaska Administrative Code Section 25.112 Oil & Gas...

    Open Energy Info (EERE)

    Oil & Gas Well Plugging Requirements Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: Title 20 Alaska Administrative Code...

  2. Title 20 Alaska Administrative Code Section 25.105 Oil & Gas...

    Open Energy Info (EERE)

    Oil & Gas Well Abandonment Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: Title 20 Alaska Administrative Code Section...

  3. FACTORS AFFECTING BONUS BIDS FOR OIL AND GAS LEASES IN THE WILLISTON BASIN .

    E-Print Network [OSTI]

    [No author

    2012-01-01T23:59:59.000Z

    ??Governments receive several revenue streams from companies that hold and operate oil and gas leases on public lands. These revenues vary in their timing and… (more)

  4. Exploration and Development of Oil and Gas on School and Public Lands (Nebraska)

    Broader source: Energy.gov [DOE]

    This statute authorizes the Board of School Lands and Funds to lease school and public lands under its jurisdiction for oil and gas exploration and development purposes.

  5. Rock, Mineral, Coal, Oil, and Gas Resources on State Lands (Montana)

    Broader source: Energy.gov [DOE]

    This chapter authorizes and regulates prospecting permits and mining leases for the exploration and development of rock, mineral, oil, coal, and gas resources on state lands.

  6. Oil and Gas Environmental Review and Approval Processes (New Brunswick, Canada)

    Broader source: Energy.gov [DOE]

    Oil and natural gas companies engaged in exploration, development and production in New Brunswick will be required by the Department of Environment to undergo a Phased Environmental Impact...

  7. An Institutional Analysis of Oil and Gas Sector Development and Environmental Management in the Yukon Territory.

    E-Print Network [OSTI]

    May, Jason C.

    2007-01-01T23:59:59.000Z

    ??This thesis investigates the ways in which oil and gas development priorities and concern for the environment are integrated within strategic planning and management frameworks,… (more)

  8. Measurement of Oil and Gas Emissions from a Marine Seep

    E-Print Network [OSTI]

    Leifer, Ira; Boles, J R; Luyendyk, B P

    2007-01-01T23:59:59.000Z

    with offshore oil production, Geology, 27(11), 1047-1050,Coal Oil Point, California, Marine and Petroleum Geology 22(

  9. Economic assessment of heavy oil and bitumen projects with VEBA COMBI cracking

    SciTech Connect (OSTI)

    Schleiffer, A. [VEBA OEL Technologie and Automatisierung, Gelsenkirchen (Germany)

    1995-12-31T23:59:59.000Z

    As worldwide industrial production expands, total energy consumption will increase steadily in the near future. Although natural gas, often considered as a clean source for energy production, will profit most from this increase, crude oil remains the most important energy source. This paper describes the economics of petroleum and bitumen refining from an investment point of view.

  10. INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES

    SciTech Connect (OSTI)

    Scott Hara

    2004-03-05T23:59:59.000Z

    The overall objective of this project is to increase heavy oil reserves in slope and basin clastic (SBC) reservoirs through the application of advanced reservoir characterization and thermal production technologies. The project involves improving thermal recovery techniques in the Tar Zone of Fault Blocks II-A and V (Tar II-A and Tar V) of the Wilmington Field in Los Angeles County, near Long Beach, California. A primary objective is to transfer technology which can be applied in other heavy oil formations of the Wilmington Field and other SBC reservoirs, including those under waterflood. The thermal recovery operations in the Tar II-A and Tar V have been relatively inefficient because of several producibility problems which are common in SBC reservoirs. Inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil, and nonuniform distribution of remaining oil have all contributed to poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated formation sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. The advanced technologies to be applied include: (1) Develop three-dimensional (3-D) deterministic and stochastic geologic models. (2) Develop 3-D deterministic and stochastic thermal reservoir simulation models to aid in reservoir management and subsequent development work. (3) Develop computerized 3-D visualizations of the geologic and reservoir simulation models to aid in analysis. (4) Perform detailed study on the geochemical interactions between the steam and the formation rock and fluids. (5) Pilot steam injection and production via four new horizontal wells (2 producers and 2 injectors). (6) Hot water alternating steam (WAS) drive pilot in the existing steam drive area to improve thermal efficiency. (7) Installing an 2400 foot insulated, subsurface harbor channel crossing to supply steam to an island location. (8) Test a novel alkaline steam completion technique to control well sanding problems and fluid entry profiles. (9) Advanced reservoir management through computer-aided access to production and geologic data to integrate reservoir characterization, engineering, monitoring, and evaluation.

  11. Oil and gas field code master list 1997

    SciTech Connect (OSTI)

    NONE

    1998-02-01T23:59:59.000Z

    The Oil and Gas Field Code Master List 1997 is the sixteenth annual listing of all identified oil and gas fields in the US. It is updated with field information collected through October 1997. The purpose of this publication is to provide unique, standardized codes for identification of domestic fields. Use of these field codes fosters consistency of field identification by government and industry. As a result of their widespread adoption they have in effect become a national standard. The use of field names and codes listed in this publication is required on survey forms and other reports regarding field-specific data collected by EIA. There are 58,366 field records in this year`s FCML, 437 more than last year. The FCML includes: field records for each State and county in which a field resides; field records for each offshore area block in the Gulf of Mexico in which a field resides; field records for each alias field name (definition of alias is listed); fields crossing State boundaries that may be assigned different names by the respective State naming authorities. This report also contains an Invalid Field Record List of 4 records that have been removed from the FCML since last year`s report. These records were found to be either technically incorrect or to represent field names which were never recognized by State naming authorities.

  12. Model methodology and data description of the Production of Onshore Lower 48 Oil and Gas model

    SciTech Connect (OSTI)

    Not Available

    1988-09-01T23:59:59.000Z

    This report documents the methodology and data used in the Production of Onshore Lower 48 Oil and Gas (PROLOG) model. The model forecasts annual oil and natural gas production on a regional basis. Natural gas is modeled by gas category, generally conforming to categories defined by the Natural Gas Policy Act (NGPA) of 1978, as well as a category representing gas priced by way of a spot market (referred to as ''spot'' gas). A linear program is used to select developmental drilling activities for conventional oil and gas and exploratory drilling activities for deep gas on the basis of their economic merit, subject to constraints on available rotary rigs and constraints based on historical drilling patterns. Using exogenously specified price paths for oil and gas, net present values are computed for fixed amounts of drilling activity for oil and gas development and deep gas exploration in each of six onshore regions. Through maximizing total net present value, the linear program provides forecasts of drilling activities, reserve additions, and production. Oil and shallow gas exploratory drilling activities are forecast on the basis of econometrically derived equations, which are dependent on specified price paths for the two fuels. 10 refs., 3 figs., 10 tabs.

  13. Field studies of leaf gas exchanges in oil palm tree (Elaeis guineensis Jacq.)

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Field studies of leaf gas exchanges in oil palm tree (Elaeis guineensis Jacq.) E. Dufrene B This study is part of a larger research pro- gram on climatic and biological factors affecting oil palm yield (A) in oil palm. Most of them have used young plants under laboratory conditions to study effects

  14. VEBA-Combi-cracking - A technology for upgrading of heavy oils and bitumen

    SciTech Connect (OSTI)

    Doehler, W.; Kretschmar, D.I.K.; Merz, L.; Niemann, K. (VEBA OEL Entwicklungs-Gesellschaft mbH, Gelsenkirchen (West Germany))

    1987-04-01T23:59:59.000Z

    Based on experiences with liquid phase hydrogenation for coal liquefaction according to the Berguis-Pier-Process as well as crude oil residue hydrogenation in the Fifties and Sixties, VEBA OEL in recent years developed the VEBA-LQ-Cracking (VLC) and the VEBA-Combi-Cracking (VCC) Processes. Since 1978, more than 20 different feedstocks have been converted in small scale plants with a capacity of 3-20 kg/h. Together with LURGI GmbH, Frankfurt, the next steps were taken: the design and construction of a 1 t/h Pilot Plant located at the RUHR OEL refinery in Gelsenkirchen. After 18 months of construction, the heavy oil pilot plant was put on stream in May 1983. Since the beginning of 1983, the plant has been funded and owned by LURGI GmbH, VEBA OEL AG and INTEVEP S.A., the research institute of Petroleos de Venezuela, all of whom have participated in the development of the VLC/VCC process. Reported here are the results of the intensive experimental work for the development of the VLC/VCC-processes in a scale covering all aspects relevant for a scale-up, demonstrate the technical maturity of the processes developed by VEBA OEL to convert refinery residues and natural heavy crude oils.

  15. Combustion Assisted Gravity Drainage (CAGD): An In-Situ Combustion Method to Recover Heavy Oil and Bitumen from Geologic Formations using a Horizontal Injector/Producer Pair

    E-Print Network [OSTI]

    Rahnema, Hamid

    2012-11-21T23:59:59.000Z

    Combustion assisted gravity drainage (CAGD) is an integrated horizontal well air injection process for recovery and upgrading of heavy oil and bitumen from tar sands. Short-distance air injection and direct mobilized oil production are the main...

  16. Oil and Gas CDT The scale and geometry of differential compaction on

    E-Print Network [OSTI]

    Henderson, Gideon

    slope basins. Importantly, it can control the geometry of large-scale oil and gas prospects in deepOil and Gas CDT The scale and geometry of differential compaction on continental margins Cardiff will analyse a series of fault families imaged on high-quality 3D seismic data from the North Sea, Brazil

  17. Wireless channel characterization and modeling in oil and gas refinery plants

    E-Print Network [OSTI]

    Savazzi, Stefano

    Wireless channel characterization and modeling in oil and gas refinery plants Stefano Savazzi1 modeling approach is validated by experimental measurements in two oil refinery sites using industry and gas refinery sites are characterized by harsh environments where radio signals are prone to blockage

  18. AGGLOMERATION OF GAS HYDRATE IN A WATER-IN-OIL EMULSION: EXPERIMENTAL AND MODELING STUDIES

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    AGGLOMERATION OF GAS HYDRATE IN A WATER-IN-OIL EMULSION: EXPERIMENTAL AND MODELING STUDIES Ana of gas hydrates in water-in-oil emulsion is investigated at the laboratory pilot scale on a flow loop, rheology, chord length distribution, modeling Corresponding author: Phone: +33 477420286 Fax +33 477429694

  19. Drilling and operating oil, gas, and geothermal wells in an H/sub 2/S environment

    SciTech Connect (OSTI)

    Dosch, M.W.; Hodgson, S.F.

    1981-01-01T23:59:59.000Z

    The following subjects are covered: facts about hydrogen sulfides; drilling and operating oil, gas, and geothermal wells; detection devices and protective equipment; hazard levels and safety procedures; first aid; and H/sub 2/S in California oil, gas, and geothermal fields. (MHR)

  20. Oil & Gas Science and Technology --Rev. IFP Energies nouvelles Copyright 2010 IFPEN Energies nouvelles

    E-Print Network [OSTI]

    Stefanopoulou, Anna

    Oil & Gas Science and Technology -- Rev. IFP Energies nouvelles Copyright © 2010 IFPEN Energies to an effective thermal management system and to maintain safety, perfor- #12;2 Oil & Gas Science and Technology of Michigan, Ann Arbor, Michigan, 48109 - USA 2 U.S. Army Tank Automotive Research, Development

  1. Population enumeration and the effects of oil and gas development on dune-dwelling lizards

    E-Print Network [OSTI]

    Smolensky, Nicole Limunga

    2009-05-15T23:59:59.000Z

    abundances of dune-dwelling lizards among sites that varied in oil and gas development. I conducted distance line transects and compared those density estimates to densities obtained from total removal plots. I quantified the amount of oil and gas development...

  2. DOE, States Seek Closer Collaboration on Oil and Gas Supply and Delivery, Climate Change Mitigation

    Broader source: Energy.gov [DOE]

    An agreement aimed at improving cooperation and collaboration in the areas of oil and natural gas supply, delivery, and climate change mitigation, has been signed by the U.S. Department of Energy and the Interstate Oil and Gas Compact Commission (IOGCC).

  3. Review article Oil and gas wells and their integrity: Implications for shale and

    E-Print Network [OSTI]

    Jackson, Robert B.

    Review article Oil and gas wells and their integrity: Implications for shale and unconventional by Elsevier Ltd. 1. Introduction The rapid expansion of shale gas and shale oil exploration and exploitation xxx Keywords: Shale Fracking Integrity Barrier Integrity Wells a b s t r a c t Data from around

  4. Hydrotreatment of Athabasca bitumen derived gas oil over Ni-Mo, Ni-W, and Co-Mo catalysts

    SciTech Connect (OSTI)

    Diaz-Real, R.A.; Mann, R.S.; Sambi, I.S. (Univ. of Ottawa, Ontario (Canada). Dept. of Chemical Engineering)

    1993-07-01T23:59:59.000Z

    The hydrotreatment of Athabasca bitumen derived heavy gas oil containing 4.08% S and 0.49% N was carried out in a trickle bed reactor over Ni-W, Ni-Mo, and Co-Mo catalysts supported on zeolite-alumina-silica at 623-698 K, LHSV of 1-4, gas flow rate 890 m[sup 3][sub H2]/m[sup 3][sub oil] (5,000 sef/bbl), and pressure of 6.89 MPa. Analyses for viscosity, density, aniline point, ASTM mid boiling point distillation, C/H ratio, and percentage of N and S in the final product were carried out to characterize the product oil. The amounts of N and S removed indicated the hydrodenitrogenation and hydrodesulfurization activity of the catalysts. Results of zeolite-alumina-silica-supported catalysts are compared to those obtained with commercially available Ni-Mo, Ni-W, and Co-Mo on [gamma]-alumina. Ni-Mo supported on zeolite-alumina-silica was most active and could remove as much as 99 % S and 89% N present in the oil at 698 K. The data for HDN and HDS fitted the pseudo first order model. The kinetic model is described in detail.

  5. Increasing heavy oil reserves in the Wilmington Oil Field through advanced reservoir characterization and thermal production technologies. Annual report, March 30, 1995--March 31, 1996

    SciTech Connect (OSTI)

    NONE

    1997-09-01T23:59:59.000Z

    The objective of this project is to increase heavy oil reserves in a portion of the Wilmington Oil Field, near Long Beach, California, by implementing advanced reservoir characterization and thermal production technologies. Based on the knowledge and experience gained with this project, these technologies are intended to be extended to other sections of the Wilmington Oil Field, and, through technology transfer, will be available to increase heavy oil reserves in other slope and basin clastic (SBC) reservoirs. The project involves implementing thermal recovery in the southern half of the Fault Block II-A Tar zone. The existing steamflood in Fault Block II-A has been relatively inefficient due to several producibility problems which are common in SBC reservoirs. Inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil, and nonuniform distribution of remaining oil have all contributed to poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated formation sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. A suite of advanced reservoir characterization and thermal production technologies are being applied during the project to improve oil recovery efficiency and reduce operating costs.

  6. SUPRI heavy oil research program. Annual report, October 1, 1991--September 30, 1992

    SciTech Connect (OSTI)

    Brigham, W.E.; Ramey, H.J. Jr.; Castanier, L.M.

    1993-08-01T23:59:59.000Z

    The goal of the Stanford University Petroleum Research Institute is to conduct research directed toward increasing the recovery of heavy oils. Presently, SUPRI is working in five main directions: (1) flow properties studies to assess the influence of different reservoir conditions (temperature and pressure) on the absolute and relative permeability to oil and water and on capillary pressure; (2) in-situ combustion to evaluate the effect of different reservoir parameters on the in-situ combustion process and to study the kinetics of the reactions; (3) steam with additives to develop and understand the mechanisms of the process using commercially available surfactants for reduction of gravity override and channeling of steam; (4) formation evaluation to develop and improve techniques of formation evaluation such as tracer tests and pressure transient tests; and field support services to provide technical support for design and monitoring of DOE sponsored or industry initiated field projects.

  7. SUPRI Heavy Oil Research Program Twenty-First Annual Report, SUPRI TR-111

    SciTech Connect (OSTI)

    Brigham, William E.; Castanier, Louis; Kovscek, Anthony R.

    1999-08-09T23:59:59.000Z

    The goal of the Stanford University Petroleum Research Institute is to conduct research directed toward increasing the recovery of heavy oils. Present, SUPRI is working in five main directions: (1) Flow Properties Studies - To assess the influence of different reservoir conditions (temperature and pressure) on the absolute and relative permeability to oil and water and on capillary pressure; (2) In-Situ Combustion - To evaluate the effect of different reservoir parameters on the in-situ combustion process. This project includes the study of the kinetics of the reactions; (3) Steam with Additives- To develop and understand the mechanisms of the process using commercially available surfactants for reduction of gravity override and channeling of steam; (4) Formation Evaluation - To develop and improve techniques of formation evaluation such as tracer tests and pressure transient tests; and (5) Field Support Services - To provide technical support for design and monitoring of DOE sponsored or industry initiated field projects.

  8. SUPRI heavy oil research program. Annual report, February 8, 1995--February 7, 1996

    SciTech Connect (OSTI)

    Brigham, W.E.; Castanier, L.M.

    1996-06-01T23:59:59.000Z

    The goal of the Stanford University Petroleum Research Institute (SUPRI) is to conduct research directed toward increasing the recovery of heavy oils. Presently SUPRI is working in five main directions: (1) flow properties studies to assess the influence of different reservoir conditions (temperature and pressure) on the absolute and relative permeability to oil and water and on capillary pressure; (2) in-situ combustion to evaluate the effect of different reservoir parameters on the in-situ combustion process; (3) steam with additives to develop and understand the mechanisms of the process using commercially available surfactants for reduction of gravity override and channeling of steam; (4) formation evaluation to develop and improve techniques of formation evaluation such as tracer tests and pressure transient tests; and (5) field support services to provide technical support for design and monitoring of DOE sponsored or industry initiated field projects. This report consists of abstracts of reports and copies of technical papers presented or published.

  9. Some methods of oil and gas reserve estimation in Azerbaijan

    SciTech Connect (OSTI)

    Abasov, M.T.; Buryakovsky, L.A.; Kondrushkin, Y.M.; Dzhevanshir, R.D.; Bagarov, T.Y. [Azerbaijan Academy of Sciences, Baku (Azerbaijan); Chilingar, G.V. [Univ. of Southern California, Los Angeles, CA (United States). Dept. of Civil and Environmental Engineering

    1997-08-01T23:59:59.000Z

    This article deals with the scientific and practical problems related to estimating oil and gas reserves in terrigenous reservoirs of the Productive Series of middle Pliocene and in Upper Cretaceous volcanic and sedimentary rocks. The deposits in question are spread over onshore Azerbaijan and adjacent offshore areas in the Caspian Sea and are approximately 6.5 km deep. This article presents lithologic, stratigraphic, and petrophysical criteria used for selecting prospects for reserve estimation. Also presented are information on structure of rocks and estimation of their lithologic and physical properties. New methods for the interpretation and application of petrophysical and logging data, as well as statistical estimation of reserves, in complex volcaniclastic reservoir rocks, are also discussed.

  10. Arbitrage free cointegrated models in gas and oil future markets

    E-Print Network [OSTI]

    Benmenzer, Grégory; Jérusalem, Céline

    2007-01-01T23:59:59.000Z

    In this article we present a continuous time model for natural gas and crude oil future prices. Its main feature is the possibility to link both energies in the long term and in the short term. For each energy, the future returns are represented as the sum of volatility functions driven by motions. Under the risk neutral probability, the motions of both energies are correlated Brownian motions while under the historical probability, they are cointegrated by a Vectorial Error Correction Model. Our approach is equivalent to defining the market price of risk. This model is free of arbitrage: thus, it can be used for risk management as well for option pricing issues. Calibration on European market data and numerical simulations illustrate well its behavior.

  11. World oil and gas resources-future production realities

    SciTech Connect (OSTI)

    Masters, C.D.; Root, D.H.; Attanasi, E.D. (U.S. Geological Survey, Reston, VA (US))

    1990-01-01T23:59:59.000Z

    Welcome to uncertainty was the phrase Jack Schanz used to introduce both layman and professionals to the maze of petroleum energy data that must be comprehended to achieve understanding of this critical commodity. Schanz was referring to the variables as he and his colleagues with Resources for the Future saw them in those years soon after the energy-awakening oil embargo of 1973. In some respects, the authors have made progress in removing uncertainty from energy data, but in general, we simply must accept that there are many points of view and many ways for the blindman to describe the elephant. There can be definitive listing of all uncertainties, but for this paper the authors try to underscore those traits of petroleum occurrence and supply that the author's believe bear most heavily on the understanding of production and resource availability. Because oil and gas exist in nature under such variable conditions and because the products themselves are variable in their properties, the authors must first recognize classification divisions of the resource substances, so that the reader might always have a clear perception of just what we are talking about and how it relates to other components of the commodity in question.

  12. Explosion Clad for Upstream Oil and Gas Equipment

    SciTech Connect (OSTI)

    Banker, John G. [Dynamic Materials Corp., 5405 Spine Rd., Boulder, CO 80301 (United States); Massarello, Jack [Global Metallix, Consultant to DMC, 5405 Spine Rd., Boulder, CO 80301 (United States); Pauly, Stephane [DMC., Nobelclad Business Unit, 1 Allee Alfred NOBEL, 66600 Rivesaltes (France)

    2011-01-17T23:59:59.000Z

    Today's upstream oil and gas facilities frequently involve the combination of high pressures, high temperatures, and highly corrosive environments, requiring equipment that is thick wall, corrosion resistant, and cost effective. When significant concentrations of CO{sub 2} and/or H{sub 2}S and/or chlorides are present, corrosion resistant alloys (CRA) can become the material of choice for separator equipment, piping, related components, and line pipe. They can provide reliable resistance to both corrosion and hydrogen embrittlement. For these applications, the more commonly used CRA's are 316L, 317L and duplex stainless steels, alloy 825 and alloy 625, dependent upon the application and the severity of the environment. Titanium is also an exceptional choice from the technical perspective, but is less commonly used except for heat exchangers. Explosion clad offers significant savings by providing a relatively thin corrosion resistant alloy on the surface metallurgically bonded to a thick, lower cost, steel substrate for the pressure containment. Developed and industrialized in the 1960's the explosion cladding technology can be used for cladding the more commonly used nickel based and stainless steel CRA's as well as titanium. It has many years of proven experience as a reliable and highly robust clad manufacturing process. The unique cold welding characteristics of explosion cladding reduce problems of alloy sensitization and dissimilar metal incompatibility. Explosion clad materials have been used extensively in both upstream and downstream oil, gas and petrochemical facilities for well over 40 years. The explosion clad equipment has demonstrated excellent resistance to corrosion, embrittlement and disbonding. Factors critical to insure reliable clad manufacture and equipment design and fabrication are addressed.

  13. Characterization of oil and gas reservoirs and recovery technology deployment on Texas State Lands

    SciTech Connect (OSTI)

    Tyler, R.; Major, R.P.; Holtz, M.H. [Univ. of Texas, Austin, TX (United States)] [and others

    1997-08-01T23:59:59.000Z

    Texas State Lands oil and gas resources are estimated at 1.6 BSTB of remaining mobile oil, 2.1 BSTB, or residual oil, and nearly 10 Tcf of remaining gas. An integrated, detailed geologic and engineering characterization of Texas State Lands has created quantitative descriptions of the oil and gas reservoirs, resulting in delineation of untapped, bypassed compartments and zones of remaining oil and gas. On Texas State Lands, the knowledge gained from such interpretative, quantitative reservoir descriptions has been the basis for designing optimized recovery strategies, including well deepening, recompletions, workovers, targeted infill drilling, injection profile modification, and waterflood optimization. The State of Texas Advanced Resource Recovery program is currently evaluating oil and gas fields along the Gulf Coast (South Copano Bay and Umbrella Point fields) and in the Permian Basin (Keystone East, Ozona, Geraldine Ford and Ford West fields). The program is grounded in advanced reservoir characterization techniques that define the residence of unrecovered oil and gas remaining in select State Land reservoirs. Integral to the program is collaboration with operators in order to deploy advanced reservoir exploitation and management plans. These plans are made on the basis of a thorough understanding of internal reservoir architecture and its controls on remaining oil and gas distribution. Continued accurate, detailed Texas State Lands reservoir description and characterization will ensure deployment of the most current and economically viable recovery technologies and strategies available.

  14. Gas seal for an in situ oil shale retort and method of forming thermal barrier

    DOE Patents [OSTI]

    Burton, III, Robert S. (Mesa, CO)

    1982-01-01T23:59:59.000Z

    A gas seal is provided in an access drift excavated in a subterranean formation containing oil shale. The access drift is adjacent an in situ oil shale retort and is in gas communication with the fragmented permeable mass of formation particles containing oil shale formed in the in situ oil shale retort. The mass of formation particles extends into the access drift, forming a rubble pile of formation particles having a face approximately at the angle of repose of fragmented formation. The gas seal includes a temperature barrier which includes a layer of heat insulating material disposed on the face of the rubble pile of formation particles and additionally includes a gas barrier. The gas barrier is a gas-tight bulkhead installed across the access drift at a location in the access drift spaced apart from the temperature barrier.

  15. Oil and gas seeps, often the result of geological defor-mation of the oil-saturated strata, are a common global

    E-Print Network [OSTI]

    Love, Milton

    1-12 2-1 Oil and gas seeps, often the result of geological defor- mation of the oil, is just one of many seeps found in California. Offshore, seeps are visible on the ocean surface as oil slicks or gas bubbles.As noted by California ResourcesAgency(1971),"Some[seeps]remaindormant for extended

  16. OIL and GAS ENGINEERING Page 1 of 3 SEMESTER OFFERED PRE-REQUISITES are listed in this column.

    E-Print Network [OSTI]

    Calgary, University of

    OIL and GAS ENGINEERING Page 1 of 3 1st Year SEMESTER OFFERED PRE-REQUISITES are listed AMAT 217 and MATH 211; recommended co-req: AMAT 219 2nd Year Oil and Gas Engineering: Regular Program will be deemed correct. 2014/2015 Curriculum (Updated June 13, 2014) #12;OIL and GAS ENGINEERING Page 2 of 3 3rd

  17. OIL and GAS ENGINEERING Page 1 of 2 SEMESTER OFFERED COURSE PRE-and/or CO-REQUISITES

    E-Print Network [OSTI]

    Calgary, University of

    OIL and GAS ENGINEERING Page 1 of 2 1st Year SEMESTER OFFERED COURSE PRE- and/or CO-REQUISITES FALL-req: AMAT 219 2nd Year Oil and Gas Engineering: Regular Program SEMESTER OFFERED COURSE PRE- and/or CO Mechanics of Solids ENGG 202 or 205; AMAT 217 3rd Year Oil and Gas Engineering: Regular Program SEMESTER

  18. Int. J. Oil, Gas and Coal Technology, Vol. 7, No. 2, 2014 115 Copyright 2014 Inderscience Enterprises Ltd.

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    Int. J. Oil, Gas and Coal Technology, Vol. 7, No. 2, 2014 115 Copyright © 2014 Inderscience fields in Saudi Arabia', Int. J. Oil, Gas and Coal Technology, Vol. 7, No. 2, pp.115­131. Biographical economic recovery of oil and gas from a reservoir. The purpose of reservoir management is to control

  19. VolumeExplorer: Roaming Large Volumes to Couple Visualization and Data Processing for Oil and Gas Exploration

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    VolumeExplorer: Roaming Large Volumes to Couple Visualization and Data Processing for Oil and Gas dedicated to oil and gas exploration. Our system combines probe- based volume rendering with data processing Seismic interpretation is an important task in the oil and gas exploration-production (EP) workflow [9, 26

  20. Report Title: Oil and Gas Production and Economic Growth In New Mexico Type of Report: Technical Report

    E-Print Network [OSTI]

    Johnson, Eric E.

    Report Title: Oil and Gas Production and Economic Growth In New Mexico Type of Report: Technical agency thereof. #12;Page | ii Oil and Gas Production and Economic Growth in New Mexico James Peach and C Mexico's marketed value of oil and gas was $19.2 billion (24.0 percent of state GDP). This paper

  1. Poster: Building a test-bed for wireless sensor networking for under-water oil and gas installations

    E-Print Network [OSTI]

    Zhou, Shengli

    . Initially we are building a laboratory in a large water tank. Later we will cooperate with an oil and gasPoster: Building a test-bed for wireless sensor networking for under-water oil and gas@ifi.uio.no 1 Introduction and background When the oil and gas industry moves its production facilities

  2. HumanWildlife Interactions 8(2):284290, Fall 2014 Oil and gas impacts on Wyoming's sage-

    E-Print Network [OSTI]

    Human­Wildlife Interactions 8(2):284­290, Fall 2014 Oil and gas impacts on Wyoming's sage- grouse: Historical impacts from oil and gas development to greater sage-grouse (Centrocercus urophasianus) habitat been extrapolated to estimate future oil and gas impacts in the U. S. Fish and Wildlife Service (2010

  3. Report Title: The Economic Impact of Oil and Gas Extraction in New Mexico Type of Report: Technical Report

    E-Print Network [OSTI]

    Johnson, Eric E.

    Report Title: The Economic Impact of Oil and Gas Extraction in New Mexico Type of Report: Technical of oil and gas extraction in New Mexico are presented in terms of output, value added, employment presented. Historical oil and gas production, reserves, and price data are also presented and discussed. #12

  4. The Expro Engineering Sponsorship Programme Expro International Group is an upstream oil and gas sector service company

    E-Print Network [OSTI]

    Painter, Kevin

    The Expro Engineering Sponsorship Programme Expro International Group is an upstream oil and gas and process flow from high-value oil and gas wells, from exploration and appraisal through to mature field for the development and delivery of innovative technologies to meet the needs of the oil and gas industry globally

  5. Int. J. Oil, Gas and Coal Technology, Vol. 5, No. 1, 2012 1 Copyright 2012 Inderscience Enterprises Ltd.

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    Enterprises Ltd. Top-Down, Intelligent Reservoir Modeling of Oil and Gas Producing Shale Reservoirs; Case.Bromhal@netl.doe.gov Abstract: Producing hydrocarbon (both oil and gas) from Shale plays has attracted much attention in recent modeling approach to history matching, forecasting and analyzing oil and gas production from shale

  6. Gas-assisted gravity drainage (GAGD) process for improved oil recovery

    DOE Patents [OSTI]

    Rao, Dandina N. (Baton Rouge, LA)

    2012-07-10T23:59:59.000Z

    A rapid and inexpensive process for increasing the amount of hydrocarbons (e.g., oil) produced and the rate of production from subterranean hydrocarbon-bearing reservoirs by displacing oil downwards within the oil reservoir and into an oil recovery apparatus is disclosed. The process is referred to as "gas-assisted gravity drainage" and comprises the steps of placing one or more horizontal producer wells near the bottom of a payzone (i.e., rock in which oil and gas are found in exploitable quantities) of a subterranean hydrocarbon-bearing reservoir and injecting a fluid displacer (e.g., CO.sub.2) through one or more vertical wells or horizontal wells. Pre-existing vertical wells may be used to inject the fluid displacer into the reservoir. As the fluid displacer is injected into the top portion of the reservoir, it forms a gas zone, which displaces oil and water downward towards the horizontal producer well(s).

  7. Vapour extraction (VAPEX) process for recovery of heavy oil and bitumen

    SciTech Connect (OSTI)

    Jha, K.N. [CANMET, Ottawa, Ontario (Canada); Butler, R.M. [Univ. of Calgary, Alberta (Canada); Lim, G.B. [Imperial Oil Resources Limited, Calgary, Alberta (Canada)] [and others

    1995-12-31T23:59:59.000Z

    For over 90% of the vast resources of bitumen and heavy oil in Canada, in situ recovery processes have to be developed to produce and utilize them efficiently and economically. Thermal recovery processes using steam, although effective for thick reservoirs with good quality sands, are increasingly proving to be uneconomical, particularly for thin, shaley, or bottom water reservoirs. The inefficiency is caused by large heat losses, high water requirement, extensive surface facilities, and adverse environmental impact. To overcome these problems, a new non-thermal vapour extraction (VAPEX) process has been developed. The process is closely related to the Steam-Assisted Gravity Drainage (SAGD) concept. However, in the VAPEX process the steam chamber is replaced with a chamber containing light hydrocarbon vapours close to its dew point at the reservoir pressure. If the pressure used is close to the saturation pressure of hydrocarbons, deasphalting may occur in the reservoir causing a substantial reduction in viscosity and heavy metal contents. Experiments conducted in a Hele-Shaw cell and in a 2D physical scaled model using Lloydminster, Cold Lake, and Peace River heavy oil/bitumen and ethane, propane, and butane as solvents demonstrated that this process is very promising technically as well as economically. An active aquifer underlying the bitumen zone made the reservoir more valuable because of spreading of the solvent vapour directly underneath the formation which increased the vapour-bitumen contact extensively. The investigation was extended from a dual horizontal continuous injection/production well strategy described above to a single horizontal well cyclic process for the Cold Lake reservoir in a 3D physical scaled model. The tests illustrated that ethane was an effective solvent in producing Cold Lake bitumen and that the cyclic VAPEX process has the potential to be a breakthrough recovery technology.

  8. Oil and gas developments in North Africa in 1984

    SciTech Connect (OSTI)

    Michel, R.C.

    1985-10-01T23:59:59.000Z

    Petroleum rights in the 6 North African countries (Algeria, Egypt, Libya, Morocco, Sudan, and Tunisia) covered in this paper were 1,906,065 km/sup 2/ at the end of 1984. An increase of 4.6% from the 1,821,966 km/sup 2/ in force at the end of 1983. This increase is due to large awards in the Sudan despite significant relinquishments elsewhere. Seismic surveys conducted during 1984 decreased to about 510.5 crew-months onshore and 29.5 crew-months offshore. However, exploration in and off Egypt was higher compared to 1983. Exploratory drilling was lower, with only 125 wells drilled compared to 179 tests completed in 1983. The main decrease was in Egypt and Sudan, but drilling in Libya resulted in 20 more completions. A significant oil discovery was made in the offshore part of the Sirte basin, off southwest Cyrenaica. The success rate in North America ranged from 19% to 50% (Libya). Development drilling increased during 1984, as higher activity appears to have taken place in 3 countries. Oil production, with an estimated daily rate of 2,952,570 bbl, was 2.8% from 1983 (2,871,460 BOPD). In Egypt, 7 fields located in the Gulf of Suez area went on stream during the year. Political unrest, which prevailed in southern Sudan during most of 1984, will likely delay the start-up of production in several fields. No statistics are available on gas production in North African countries. 9 figures, 27 tables.

  9. Oil and gas developments in North Africa in 1984

    SciTech Connect (OSTI)

    Michel, R.Ch.

    1985-10-01T23:59:59.000Z

    Petroleum rights in the 6 North African countries (Algeria, Egypt, Libya, Morocco, Sudan, and Tunisia) covered in this paper were 1,906,065 km/sup 2/ at the end of 1984, an increase of 4.6% from the 1,821,966 km/sup 2/ in force at the end of 1983. This increase is due to large awards in the Sudan despite significant relinquishments elsewhere. Seismic surveys conducted during 1984 decreased to about 510.5 crew-months onshore and 29.5 crew-months offshore. However, exploration in and off Egypt was higher compared to 1983. Exploratory drilling was lower, with only 125 wells drilled compared to 179 tests completed in 1983. The main decrease was in Egypt and Sudan, but drilling in Libya resulted in 20 more completions. A significant oil discovery was made in the offshore part of the Sirte basin, off southwest Cyrenaica. The success rate in North Africa ranged from 19% to 50% (Libya). Development drilling increased during 1984, as higher activity appears to have taken place in 3 countries. Oil production, with an estimated daily rate of 2,952,570 bbl, was up 2.8% from 1983 (2,871,460 BOPD). In Egypt, 7 fields located in the Gulf of Suez area went on stream during the year. Political unrest, which prevailed in southern Sudan during most of 1984, will likely delay the start-up of production in several fields. No statistics are available on gas production in North African countries.

  10. EIA model documentation: Documentation of the Oil and Gas Supply Module (OGSM)

    SciTech Connect (OSTI)

    NONE

    1997-01-01T23:59:59.000Z

    The purpose of this report is to define the objectives of the Oil and Gas Supply Model (OGSM), to describe the model`s basic approach, and to provide detail on how the model works. This report is intended as a reference document for model analysts, users, and the public. Projected production estimates of US crude oil and natural gas are based on supply functions generated endogenously within National Energy Modeling System (NEMS) by the OGSM. OGSM encompasses domestic crude oil and natural gas supply by both conventional and nonconventional recovery techniques. Nonconventional recovery includes enhanced oil recovery (EOR), and unconventional gas recovery (UGR) from tight gas formations, Devonian shale and coalbeds. Crude oil and natural gas projects are further disaggregated by geographic region. OGSM projects US domestic oil and gas supply for six Lower 48 onshore regions, three offshore regions, and Alaska. The general methodology relies on forecasted drilling expenditures and average drilling costs to determine exploratory and developmental drilling levels for each region and fuel type. These projected drilling levels translate into reserve additions, as well as a modification of the production capacity for each region. OGSM also represents foreign trade in natural gas, imports and exports by entry region.

  11. Estimates of future regional heavy oil production at three production rates--background information for assessing effects in the US refining industry

    SciTech Connect (OSTI)

    Olsen, D.K.

    1993-07-01T23:59:59.000Z

    This report is one of a series of publications from a project considering the feasibility of increasing domestic heavy oil (10{degree} to 20{degree} API gravity inclusive) production being conducted for the US Department of Energy. The report includes projections of future heavy oil production at three production levels: 900,000; 500,000; and 300,000 BOPD above the current 1992 heavy oil production level of 750,000 BOPD. These free market scenario projections include time frames and locations. Production projections through a second scenario were developed to examine which heavy oil areas would be developed if significant changes in the US petroleum industry occurred. The production data helps to define the possible constraints (impact) of increased heavy oil production on the US refining industry (the subject of a future report). Constraints include a low oil price and low rate of return. Heavy oil has high production, transportation, and refining cost per barrel as compared to light oil. The resource is known, but the right mix of technology and investment is required to bring about significant expansion of heavy oil production in the US.

  12. Natural Gas Hydrate Particles in Oil-Free Systems with Kinetic Inhibition and Slurry Viscosity Reduction

    E-Print Network [OSTI]

    Firoozabadi, Abbas

    Natural Gas Hydrate Particles in Oil-Free Systems with Kinetic Inhibition and Slurry Viscosity, reduction of slurry viscosity, and corrosion inhibition. INTRODUCTION Water often forms gas hydrates antiagglomeration (AA) in the natural gas hydrate literature. The main limitation to application has been the need

  13. Water alternating enriched gas injection to enhance oil production and recovery from San Francisco Field, Colombia

    E-Print Network [OSTI]

    Rueda Silva, Carlos Fernando

    2012-06-07T23:59:59.000Z

    The main objectives of this study are to determine the most suitable type of gas for a water-alternating-gas (WAG) injection scheme, the WAG cycle time, and gas injection rate to increase oil production rate and recovery from the San Francisco field...

  14. Uinta Basin Oil and Gas Development Air Quality Constraints

    E-Print Network [OSTI]

    Utah, University of

    Production EASTERN UTAH BLM Proposed Leasing for Oil Shale and Tar Sands Development "Indian Country" ­ Regulatory Authority Controlled by the Tribes and EPA Oil Shale Leasing Tar Sands Leasing "Indian Country

  15. Major heavy oil deposits are present in Lower Cretaceous strata of west-central Saskatchewan. The Winter Heavy Oil Pool (approximately 566 044 mmbl) consists of bitumen-rich sands from the AptianAlbian Dina and Cummings members of

    E-Print Network [OSTI]

    -central Saskatchewan. The Winter Heavy Oil Pool (approximately 566 044 mmbl) consists of bitumen-rich sands from dans les strates du Crétacé inférieur du centre-ouest de la Saskatchewan. Le gisement de pétrole lourd of the Winter Pool, west-central Saskatchewan DUSTIN B. BAUER University of Calgary Department of Geoscience

  16. Shale Oil and Gas, Frac Sand, and Watershed

    E-Print Network [OSTI]

    Minnesota, University of

    ;Bakken Oil Shale scope · Light, Sweet crude ­ ideal for automotive fuels and mid-size refineries (Midwest

  17. Measurement of Oil and Gas Emissions from a Marine Seep

    E-Print Network [OSTI]

    Leifer, Ira; Boles, J R; Luyendyk, B P

    2007-01-01T23:59:59.000Z

    the gas flux from shallow gas hydrate deposits: InteractionK.A. , Potential effects of gas hydrate on human welfare,Emerging US gas resources; 4, Hydrates contain vast store of

  18. Trace gas measurements in the Kuwait oil fire smoke plume

    SciTech Connect (OSTI)

    Luke, W.T.; Kok, G.L.; Schillawski, R.D.; Zimmerman, P.R.; Greenberg, J.P.; Kadavanich, M. [National Center for Atmospheric Research, Boulder, CO (United States)

    1992-09-20T23:59:59.000Z

    The authors report trace gas measurements made both inside and outside the Kuwait oil-fire smoke plume during a flight of an instrumented research aircraft on May 30, 1991. Concentrations of SO{sub 2}, CO, and NO{sub x} averaged vertically and horizontally throughout the plume 80 km downwind of Kuwait City were 106, 127, and 9.1 parts per billion by volume (ppbv), respectively, above background concentrations. With the exception of SO{sub 2}, trace gas concentrations were far below typical US urban levels and primary national ambient air quality standards. Ambient ozone was titrated by NO in the dark, dense core of the smoke plume close to the fires, and photochemical ozone production was limited to the diffuse edge of the plume. Photochemical O{sub 3} production was noted throughout the plume at a distance of 160 km downwind of Kuwait City, and averaged 2.3 ppbv per hour during the first 3 hours of transport. Little additional photochemical production was noted at a downwind range of 340 km. The fluxes of sulfur dioxide, carbon monoxide, and reactive nitrogen from the roughly 520 fires still burning on May 30, 1991 are estimated at 1.4 x 10{sup 7} kg SO{sub 2}/d, 6.9 x 10{sup 6} kg CO/d, and 2.7 x 10{sup 5} kg N/d, respectively. Generally low concentrations of CO and NO{sub x} indicate that the combustion was efficient and occurred at low temperatures. Low total nonmethane hydrocarbon concentrations suggest that the volatile components of the petroleum were burned efficiently. 37 refs., 4 figs., 4 tabs.

  19. Oil and gas developments in North Africa in 1983

    SciTech Connect (OSTI)

    Nicod, M.A.

    1984-10-01T23:59:59.000Z

    Petroleum rights in the 6 countries (Algeria, Egypt, Libya, Morocco, Sudan, and Tunisia) covered by this paper amounted to 1,821,966 km/sup 2/ at the end of 1983, an 11% decrease from the 2,044,851 km/sup 2/ at the end of 1982. This decrease is mostly due to relinquishments in Sudan. Onshore seismic activity decreased in all countries except Sudan, where it slightly increased. Marine seismic activity increased by 85%, mostly due to significant efforts in Morocco and Egypt. Exploration drilling activity increased with 179 wildcats completed in 1983 compared to 166 in 1982. The success rate was 44.7% compared to 36% in 1982. No discoveries were made in Morocco. No new hydrocarbon province was discovered in 1983. Development drilling sharply increased in Egypt and remained at about the same levels in the other countries as in 1982. In Sudan, Chevron started in late September the first development drilling operations in Unity field. Oil production, with a daily average of 2,872,000 bbl, was at the same level as in 1982. In Egypt, 7 new fields went on-stream in the Gulf of Suez, 2 in the Western Desert, and 1 in the Eastern Desert. One field was put on-stream in Libya and 4 in Tunisia. Utilized gas production probably remained at the same level as in 1982 (2000 mmcf/day). 9 figures, 28 tables.

  20. INTEGRATION OF HIGH TEMPERATURE GAS REACTORS WITH IN SITU OIL SHALE RETORTING

    SciTech Connect (OSTI)

    Eric P. Robertson; Michael G. McKellar; Lee O. Nelson

    2011-05-01T23:59:59.000Z

    This paper evaluates the integration of a high-temperature gas-cooled reactor (HTGR) to an in situ oil shale retort operation producing 7950 m3/D (50,000 bbl/day). The large amount of heat required to pyrolyze the oil shale and produce oil would typically be provided by combustion of fossil fuels, but can also be delivered by an HTGR. Two cases were considered: a base case which includes no nuclear integration, and an HTGR-integrated case.

  1. Sustainable development through beneficial use of produced water for the oil and gas industry

    E-Print Network [OSTI]

    Siddiqui, Mustafa Ashique

    2002-01-01T23:59:59.000Z

    Management and disposal of produced water is one of the most important problems associated with oil and gas (O&G) production. O&G production operations generate large volumes of brine water along with the petroleum resource. Currently, produced...

  2. New Global Oil & Gas Hub in Oklahoma City | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    GE Selects Oklahoma City Site for New Global Hub of Oil & Gas Technology Innovation Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window)...

  3. Statistical issues in the assessment of undiscovered oil and gas resources

    E-Print Network [OSTI]

    Kaufman, Gordon M.

    1992-01-01T23:59:59.000Z

    Prior to his untimely death, my friend Dave Wood gave me wise counsel about how best to organize a paper describing uses of statistics in oil and gas exploration. A preliminary reconnaissance of the literature alerted me ...

  4. Sustainable development through beneficial use of produced water for the oil and gas industry.

    E-Print Network [OSTI]

    Siddiqui, Mustafa Ashique

    2012-01-01T23:59:59.000Z

    ??Management and disposal of produced water is one of the most important problems associated with oil and gas (O&G) production. O&G production operations generate large… (more)

  5. Environmental benefits of advanced oil and gas exploration and production technology

    SciTech Connect (OSTI)

    None

    1999-10-01T23:59:59.000Z

    THROUGHOUT THE OIL AND GAS LIFE CYCLE, THE INDUSTRY HAS APPLIED AN ARRAY OF ADVANCED TECHNOLOGIES TO IMPROVE EFFICIENCY, PRODUCTIVITY, AND ENVIRONMENTAL PERFORMANCE. THIS REPORT FOCUSES SPECIFICALLY ON ADVANCES IN EXPLORATION AND PRODUCTION (E&P) OPERATIONS.

  6. The relationship between crude oil and natural gas spot prices and its stability over time

    E-Print Network [OSTI]

    Ramberg, David J. (David John)

    2010-01-01T23:59:59.000Z

    The historical basis for a link between crude oil and natural gas prices was examined to determine whether one has existed in the past and exists in the present. Physical bases for a price relationship are examined. An ...

  7. Single-event kinetic modeling of the hydrocracking of hydrogenated vacuum gas oil

    E-Print Network [OSTI]

    Ertas, Alper T.

    2007-04-25T23:59:59.000Z

    The primary objective of the research project was to further develop a computer program modeling the hydrocracking of partially hydrogenated vacuum gas oil (HVGO), and to use the model to compare the theoretical product distribution to experimental...

  8. Oil, Gas, and Minerals, Exploration and Production, Lease of Public Land (Iowa)

    Broader source: Energy.gov [DOE]

    The state, counties and cities and other political subdivisions may lease publicly owned lands for the purpose of oil or gas or metallic minerals exploration and production.  Any such leases shall...

  9. Oil and Gas Commission General Rules and Regulations Continued(Arkansas)

    Broader source: Energy.gov [DOE]

    The General Rules have been adopted by the Oil and Gas Commission in accordance with applicable state law requirements and are General Rules of state-wide application, applying to the conservation...

  10. Oil and Gas Wells: Rules Relating to Spacing, Pooling, and Unitization (Minnesota)

    Broader source: Energy.gov [DOE]

    The Department of Natural Resources is given the authority to create and promulgate regulations related to spacing, pooling, and utilization of oil and gas wells. However, as of September 2012, no...

  11. The Value of Assessing Uncertainty in Oil and Gas Portfolio Optimization

    E-Print Network [OSTI]

    Hdadou, Houda

    2013-07-25T23:59:59.000Z

    It has been shown in the literature that the oil and gas industry deals with a substantial number of biases that impact project evaluation and portfolio performance. Previous studies concluded that properly estimating uncertainties...

  12. Oil and natural gas reserve prices, 1982-2002 : implications for depletion and investment cost

    E-Print Network [OSTI]

    Adelman, Morris Albert

    2003-01-01T23:59:59.000Z

    A time series is estimated of in-ground prices - as distinct from wellhead prices ? of US oil and natural gas reserves for the period 1982-2002, using market purchase and sale transaction information. The prices are a ...

  13. Oil and Gas Recovery Data from the Riser Insertion Tub- ODS

    Broader source: Energy.gov [DOE]

    Oil and Gas Recovery Data from the Riser Insertion Tube from May 17 until the Riser Insertion Tube was disconnected on May 24 in preparation for cutting off the riser.

  14. Oil and Gas Flow Data from the Top Hat and from the Choke Line...

    Broader source: Energy.gov (indexed) [DOE]

    Flow Data from the Top Hat and from the Choke Line - XLS Oil and Gas Flow Data from the Top Hat and from the Choke Line - XLS Updated through 12:00 AM on July 10, 2010...

  15. Oil and Gas Recovery Data from the Riser Insertion Tub- XLS

    Broader source: Energy.gov [DOE]

    Oil and Gas Recovery Data from the Riser Insertion Tube from May 17 until the Riser Insertion Tube was disconnected on May 24 in preparation for cutting off the riser.

  16. Factors Affecting the Relationship between Crude Oil and Natural Gas Prices (released in AEO2010)

    Reports and Publications (EIA)

    2010-01-01T23:59:59.000Z

    Over the 1995-2005 period, crude oil prices and U.S. natural gas prices tended to move together, which supported the conclusion that the markets for the two commodities were connected. Figure 26 illustrates the fairly stable ratio over that period between the price of low-sulfur light crude oil at Cushing, Oklahoma, and the price of natural gas at the Henry Hub on an energy-equivalent basis.

  17. Review of Emerging Resources: U.S. Shale Gas and Shale Oil Plays

    Reports and Publications (EIA)

    2011-01-01T23:59:59.000Z

    To gain a better understanding of the potential U.S. domestic shale gas and shale oil resources, the Energy Information Administration (EIA) commissioned INTEK, Inc. to develop an assessment of onshore lower 48 states technically recoverable shale gas and shale oil resources. This paper briefly describes the scope, methodology, and key results of the report and discusses the key assumptions that underlie the results.

  18. Investigation of the rate sensitivity of pseudo relative permeabilities for gas-oil systems

    E-Print Network [OSTI]

    Smith, Carl Kevin

    1987-01-01T23:59:59.000Z

    INVESTIGATION OF THE RATE SENSITIVITY OF PSEUDO RELATIVE PERMEABILITIES FOR GAS-OIL SYSTEMS A Thesis by CARL KEVIN SMITH Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirements for the degree... of Master of Science May 1987 Major Subject: Petroleum Engineering INVESTIGATION OF THE RATE SENSITIVITY OF PSEUDO RELATIVE PERMEABILITIES FOR GAS-OIL SYSTEMS A Thesis by CARL KEVIN SMITH Approved as to style and content by: R. A, Wattenbarger...

  19. Models, Simulators, and Data-driven Resources for Oil and Natural Gas Research

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    NETL provides a number of analytical tools to assist in conducting oil and natural gas research. Software, developed under various DOE/NETL projects, includes numerical simulators, analytical models, databases, and documentation.[copied from http://www.netl.doe.gov/technologies/oil-gas/Software/Software_main.html] Links lead users to methane hydrates models, preedictive models, simulators, databases, and other software tools or resources.

  20. Optimization of offshore oil and gas field development using mathematical programming

    E-Print Network [OSTI]

    Grimmett, Todd Thatcher

    2012-06-07T23:59:59.000Z

    OPTIMIZATION OF OFFSHORE OIL AND GAS FIELD DEVELOPMENT USING MATHEMATICAL PROGRAMMING A Thesis by TODD THATCHER GRIMMETT Submitted to the Graduate College of Texas A6M University in partial fulfillment of the requirements for the degree... of MASTER OF SCIENCE August 1986 Major Subject: Petroleum Engineering OPTIMIZATION OF OFFSHORE OIL AND GAS FIELD DEVELOPMENT VSING MATHEMATICAL PROGRAMMING A Thesis by TODD THATCHER GRIMMETT Approved as to style and content by: R. A. Startzma...

  1. The performance of a volatile oil reservoir overlain by a gas cap

    E-Print Network [OSTI]

    Ellis, Joseph Ralph, Jr

    1960-01-01T23:59:59.000Z

    THE PERFORMANCE OF A VOLATILE OIL RESERVOIR OVERLAIN BY A GAS CAP A Thesis By J. RALPH ELLIS, JR. Submitted to the Graduate School of the Agricultural and Mechanical College of Texas in partial fulfillment of the requirements for the degree... of MASTER OF SCIENCE August, 1960 Major Subject: PETROLEUM ENGINEERING THE PERFORMANCE OF A VOLATILE OIL RESERVOIR OVERLAIN BY A GAS CAP A Thesis By J. RALPH ELLIS, JR. Approved as to style and content by: hairxnan of Coxnxnittee) (Head...

  2. The effects of production rate and gravitational segregation on gas injection performance of oil reservoirs

    E-Print Network [OSTI]

    Ferguson, Ed Martin

    2012-06-07T23:59:59.000Z

    THE EFFECTS OF PRODUCTION RATE AND GRAVITATIONAL SEGREGATION ON GAS INJECTION PERFORMANCE OF OIL RESERVOIRS A Thesis by ED MARTIN FERGUSON Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirements... for the degree of MASTER OF SCIENCE August 1972 Major Subject: PETROLEUM ENGINEERING THE EFFECTS OF PRODUCTION RATE AND GRAVITATIONAL SEGREGATION ON GAS INJECTION PERFORMANCE OF OIL RESERVOIRS A Thesis by ED MARTIN FERGUSON Approved as. to style...

  3. Effects of fluid properties and initial gas saturation on oil recovery by water flooding

    E-Print Network [OSTI]

    Arnold, Marion Denson

    2012-06-07T23:59:59.000Z

    EFFECTS OF FLUID PROPERTIES AND INITIAL GAS SATURATION ON OIL RECOVERY BY WATER FLOODING A Thesis By MARION D. ARNOLD Submitted to the Graduate School of the Agricultural and Mechanical College of Texas in partial fulfillment... of the requirements for the degree of MASTER OF SCIENCE August, 1959 Major Subject: Petroleum Engineering EFFECTS OF FLUID PROPERTIES AND INITIAL GAS SATURATION ON OIL RECOVERY BY WATER FLOODING A Thesis By MARION D, ARNOLD Approved as to style and content by...

  4. Fluorine Gas Management Guidelines Fluorine is a highly toxic, pale yellow gas about 1.3 times as heavy as air at atmospheric

    E-Print Network [OSTI]

    de Lijser, Peter

    Fluorine Gas Management Guidelines Overview Fluorine is a highly toxic, pale yellow gas about 1.3 times as heavy as air at atmospheric temperature and pressure. Fluorine gas is the most powerful oxidizing agent known, reacting with practically all organic and inorganic substances. Fluorine gas

  5. A Bootstrap Approach to Computing Uncertainty in Inferred Oil and Gas Reserve Estimates

    SciTech Connect (OSTI)

    Attanasi, Emil D. [US Geological Survey MS 956 (United States)], E-mail: attanasi@usgs.gov; Coburn, Timothy C. [Abilene Christian University, Department of Management Science (United States)

    2004-03-15T23:59:59.000Z

    This study develops confidence intervals for estimates of inferred oil and gas reserves based on bootstrap procedures. Inferred reserves are expected additions to proved reserves in previously discovered conventional oil and gas fields. Estimates of inferred reserves accounted for 65% of the total oil and 34% of the total gas assessed in the U.S. Geological Survey's 1995 National Assessment of oil and gas in US onshore and State offshore areas. When the same computational methods used in the 1995 Assessment are applied to more recent data, the 80-year (from 1997 through 2076) inferred reserve estimates for pre-1997 discoveries located in the lower 48 onshore and state offshore areas amounted to a total of 39.7 billion barrels of oil (BBO) and 293 trillion cubic feet (TCF) of gas. The 90% confidence interval about the oil estimate derived from the bootstrap approach is 22.4 BBO to 69.5 BBO. The comparable 90% confidence interval for the inferred gas reserve estimate is 217 TCF to 413 TCF. The 90% confidence interval describes the uncertainty that should be attached to the estimates. It also provides a basis for developing scenarios to explore the implications for energy policy analysis.

  6. Costs and indices for domestic oil and gas field equipment and production operations 1994 through 1997

    SciTech Connect (OSTI)

    NONE

    1998-03-01T23:59:59.000Z

    This report presents estimated costs and cost indices for domestic oil and natural gas field equipment and production operations for 1994, 1995, 1996, and 1997. The costs of all equipment and services are those in effect during June of each year. The sums (aggregates) of the costs for representative leases by region, depth, and production rate were averaged and indexed. This provides a general measure of the increased or decreased costs from year to year for lease equipment and operations. These general measures do not capture changes in industry-wide costs exactly because of annual variations in the ratio of the total number of oil wells to the total number of gas wells. The detail provided in this report is unavailable elsewhere. The body of this report contains summary tables, and the appendices contain detailed tables. Price changes for oil and gas, changes in taxes on oil and gas revenues, and environmental factors (compliance costs and lease availability) have a significant impact on the number and cost of oil and gas wells drilled. These changes also impact the cost of oil and gas equipment and production operations.

  7. Costs and indices for domestic oil and gas field equipment and production operations 1990 through 1993

    SciTech Connect (OSTI)

    Not Available

    1994-07-08T23:59:59.000Z

    This report presents estimated costs and indice for domestic oil and gas field equipment and production operations for 1990, 1991, 1992, and 1993. The costs of all equipment and serives were those in effect during June of each year. The sums (aggregates) of the costs for representative leases by region, depth, and production rate were averaged and indexed. This provides a general measure of the increased or decreased costs from year to year for lease equipment and operations. These general measures do not capture changes in industry-wide costs exactly because of annual variations in the ratio of oil wells to gas wells. The body of the report contains summary tables, and the appendices contain detailed tables. Price changes for oil and gas, changes in taxes on oil and gas revenues, and environmental factors (costs and lease availability) have significant impact on the number and cost of oil and gas wells drilled. These changes also impact the cost of oil and gas production equipment and operations.

  8. Comparison of electrical capacitance tomography and gamma densitometer measurement in viscous oil-gas flows

    SciTech Connect (OSTI)

    Archibong Eso, A.; Zhao, Yabin; Yeung, Hoi [Department of Offshore Process and Energy Systems Engineering, Cranfield University, Cranfield (United Kingdom)

    2014-04-11T23:59:59.000Z

    Multiphase flow is a common occurrence in industries such as nuclear, process, oil and gas, food and chemical. A prior knowledge of its features and characteristics is essential in the design, control and management of such processes due to its complex nature. Electrical Capacitance Tomography (ECT) and Gamma Densitometer (Gamma) are two promising approaches for multiphase visualization and characterization in process industries. In two phase oil and gas flow, ECT and Gamma are used in multiphase flow monitoring techniques due to their inherent simplicity, robustness, and an ability to withstand wide range of operational temperatures and pressures. High viscous oil (viscosity > 100 cP) is of interest because of its huge reserves, technological advances in its production and unlike conventional oil (oil viscosity < 100 cP) and gas flows where ECT and Gamma have been previously used, high viscous oil and gas flows comes with certain associated concerns which include; increased entrainment of gas bubbles dispersed in oil, shorter and more frequent slugs as well as oil film coatings on the walls of flowing conduits. This study aims to determine the suitability of both devices in the visualization and characterization of high-viscous oil and gas flow. Static tests are performed with both devices and liquid holdup measurements are obtained. Dynamic experiments were also conducted in a 1 and 3 inch facility at Cranfield University with a range of nominal viscosities (1000, 3000 and 7500 cP). Plug, slug and wavy annular flow patterns were identified by means of Probability Mass Function and time series analysis of the data acquired from Gamma and ECT devices with high speed camera used to validate the results. Measured Liquid holdups for both devices were also compared.

  9. Performance analysis of compositional and modified black-oil models for rich gas condensate reservoirs with vertical and horizontal wells

    E-Print Network [OSTI]

    Izgec, Bulent

    2004-09-30T23:59:59.000Z

    It has been known that volatile oil and gas condensate reservoirs cannot be modeled accurately with conventional black-oil models. One variation to the black-oil approach is the modified black-oil (MBO) model that allows the use of a simple...

  10. Development and Optimization of Gas-Assisted Gravity Drainage (GAGD) Process for Improved Light Oil Recovery

    SciTech Connect (OSTI)

    Dandina N. Rao; Subhash C. Ayirala; Madhav M. Kulkarni; Wagirin Ruiz Paidin; Thaer N. N. Mahmoud; Daryl S. Sequeira; Amit P. Sharma

    2006-09-30T23:59:59.000Z

    This is the final report describing the evolution of the project ''Development and Optimization of Gas-Assisted Gravity Drainage (GAGD) Process for Improved Light Oil Recovery'' from its conceptual stage in 2002 to the field implementation of the developed technology in 2006. This comprehensive report includes all the experimental research, models developments, analyses of results, salient conclusions and the technology transfer efforts. As planned in the original proposal, the project has been conducted in three separate and concurrent tasks: Task 1 involved a physical model study of the new GAGD process, Task 2 was aimed at further developing the vanishing interfacial tension (VIT) technique for gas-oil miscibility determination, and Task 3 was directed at determining multiphase gas-oil drainage and displacement characteristics in reservoir rocks at realistic pressures and temperatures. The project started with the task of recruiting well-qualified graduate research assistants. After collecting and reviewing the literature on different aspects of the project such gas injection EOR, gravity drainage, miscibility characterization, and gas-oil displacement characteristics in porous media, research plans were developed for the experimental work to be conducted under each of the three tasks. Based on the literature review and dimensional analysis, preliminary criteria were developed for the design of the partially-scaled physical model. Additionally, the need for a separate transparent model for visual observation and verification of the displacement and drainage behavior under gas-assisted gravity drainage was identified. Various materials and methods (ceramic porous material, Stucco, Portland cement, sintered glass beads) were attempted in order to fabricate a satisfactory visual model. In addition to proving the effectiveness of the GAGD process (through measured oil recoveries in the range of 65 to 87% IOIP), the visual models demonstrated three possible multiphase mechanisms at work, namely, Darcy-type displacement until gas breakthrough, gravity drainage after breakthrough and film-drainage in gas-invaded zones throughout the duration of the process. The partially-scaled physical model was used in a series of experiments to study the effects of wettability, gas-oil miscibility, secondary versus tertiary mode gas injection, and the presence of fractures on GAGD oil recovery. In addition to yielding recoveries of up to 80% IOIP, even in the immiscible gas injection mode, the partially-scaled physical model confirmed the positive influence of fractures and oil-wet characteristics in enhancing oil recoveries over those measured in the homogeneous (unfractured) water-wet models. An interesting observation was that a single logarithmic relationship between the oil recovery and the gravity number was obeyed by the physical model, the high-pressure corefloods and the field data.

  11. Oil and Gas Gross Production Tax (North Dakota)

    Broader source: Energy.gov [DOE]

    A gross production tax applies to most gas produced in North Dakota. Gas burned at the well site to power an electrical generator that consumes at least 75 percent of the gas is exempt from...

  12. Laser Oil and Gas Well Drilling Demonstration Videos

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    ANL's Laser Applications Laboratory and collaborators are examining the feasibility of adapting high-power laser technology to drilling for gas and oil. The initial phase is designed to establish a scientific basis for developing a commercial laser drilling system and determine the level of gas industry interest in pursuing future research. Using lasers to bore a hole offers an entirely new approach to mechanical drilling. The novel drilling system would transfer light energy from lasers on the surface, down a borehole by a fiber optic bundle, to a series of lenses that would direct the laser light to the rock face. Researchers believe that state-of-the-art lasers have the potential to penetrate rock many times faster than conventional boring technologies - a huge benefit in reducing the high costs of operating a drill rig. Because the laser head does not contact the rock, there is no need to stop drilling to replace a mechanical bit. Moreover, researchers believe that lasers have the ability to melt the rock in a way that creates a ceramic sheath in the wellbore, eliminating the expense of buying and setting steel well casing. A laser system could also contain a variety of downhole sensors, including visual imaging systems that could communicate with the surface through the fiber optic cabling. Earlier studies have been promising, but there is still much to learn. One of the primary objectives of the new study will be to obtain much more precise measurements of the energy requirements needed to transmit light from surface lasers down a borehole with enough power to bore through rocks as much as 20,000 feet or more below the surface. Another objective will be to determine if sending the laser light in sharp pulses, rather than as a continuous stream, could further increase the rate of rock penetration. A third aspect will be to determine if lasers can be used in the presence of drilling fluids. In most wells, thick fluids called "drilling muds" are injected into the borehole to wash out rock cuttings and keep water and other fluids from the underground formations from seeping into the well. The technical challenge will be to determine whether too much laser energy is expended to clear away the fluid where the drilling is occurring. (Copied with editing from http://www.ne.anl.gov/facilities/lal/laser_drilling.html). The demonstration videos, provided here in QuickTime format, are accompanied by patent documents and PDF reports that, together, provide an overall picture of this fascinating project.

  13. Review of technology for Arctic offshore oil and gas recovery

    SciTech Connect (OSTI)

    Sackinger, W. M.

    1980-08-01T23:59:59.000Z

    The technical background briefing report is the first step in the preparation of a plan for engineering research oriented toward Arctic offshore oil and gas recovery. A five-year leasing schedule for the ice-prone waters of the Arctic offshore is presented, which also shows the projected dates of the lease sale for each area. The estimated peak production rates for these areas are given. There is considerable uncertainty for all these production estimates, since no exploratory drilling has yet taken place. A flow chart is presented which relates the special Arctic factors, such as ice and permafrost, to the normal petroleum production sequence. Some highlights from the chart and from the technical review are: (1) in many Arctic offshore locations the movement of sea ice causes major lateral forces on offshore structures, which are much greater than wave forces; (2) spray ice buildup on structures, ships and aircraft will be considerable, and must be prevented or accommodated with special designs; (3) the time available for summer exploratory drilling, and for deployment of permanent production structures, is limited by the return of the pack ice. This time may be extended by ice-breaking vessels in some cases; (4) during production, icebreaking workboats will service the offshore platforms in most areas throughout the year; (5) transportation of petroleum by icebreaking tankers from offshore tanker loading points is a highly probable situation, except in the Alaskan Beaufort; and (6) Arctic pipelines must contend with permafrost, making instrumentation necessary to detect subtle changes of the pipe before rupture occurs.

  14. UK Oil and Gas Collaborative Doctoral Training Centre (2014 start) Project Title: Evaluating the resilience of deepwater systems to recover from oil spills

    E-Print Network [OSTI]

    Henderson, Gideon

    UK Oil and Gas Collaborative Doctoral Training Centre (2014 start) Project Title: Evaluating the resilience of deepwater systems to recover from oil spills Host institution: Heriot-Watt University Gatliff (BGS), Jeffrey Polton (NOC), Alejandro Gallego and Eileen Bresnan (MSS). Project description: Oil

  15. Natural Gas and Crude Oil Prices in AEO (released in AEO2009)

    Reports and Publications (EIA)

    2009-01-01T23:59:59.000Z

    If oil and natural gas were perfect substitutes in all markets where they are used, market forces would be expected to drive their delivered prices to near equality on an energy-equivalent basis. The price of West Texas Intermediate (WTI) crude oil generally is denominated in terms of barrels, where 1 barrel has an energy content of approximately 5.8 million Btu. The price of natural gas (at the Henry Hub), in contrast, generally is denominated in million Btu. Thus, if the market prices of the two fuels were equal on the basis of their energy contents, the ratio of the crude oil price (the spot price for WTI, or low-sulfur light, crude oil) to the natural gas price (the Henry Hub spot price) would be approximately 6.0. From 1990 through 2007, however, the ratio of natural gas prices to crude oil prices averaged 8.6; and in the Annual Energy Outlook 2009 projections from 2008 through 2030, it averages 7.7 in the low oil price case, 14.6 in the reference case, and 20.2 in the high oil price case.

  16. FUEL CONSUMPTION AND COST SAVINGS OF CLASS 8 HEAVY-DUTY TRUCKS POWERED BY NATURAL GAS

    SciTech Connect (OSTI)

    Gao, Zhiming [ORNL] [ORNL; LaClair, Tim J [ORNL] [ORNL; Daw, C Stuart [ORNL] [ORNL; Smith, David E [ORNL] [ORNL

    2013-01-01T23:59:59.000Z

    We compare the fuel consumption and greenhouse gas emissions of natural gas and diesel heavy-duty (HD) class 8 trucks under consistent simulated drive cycle conditions. Our study included both conventional and hybrid HD trucks operating with either natural gas or diesel engines, and we compare the resulting simulated fuel efficiencies, fuel costs, and payback periods. While trucks powered by natural gas engines have lower fuel economy, their CO2 emissions and costs are lower than comparable diesel trucks. Both diesel and natural gas powered hybrid trucks have significantly improved fuel economy, reasonable cost savings and payback time, and lower CO2 emissions under city driving conditions. However, under freeway-dominant driving conditions, the overall benefits of hybridization are considerably less. Based on payback period alone, non-hybrid natural gas trucks appear to be the most economic option for both urban and freeway driving environments.

  17. Identification, Verification, and Compilation of Produced Water Management Practices for Conventional Oil and Gas Production Operations

    SciTech Connect (OSTI)

    Rachel Henderson

    2007-09-30T23:59:59.000Z

    The project is titled 'Identification, Verification, and Compilation of Produced Water Management Practices for Conventional Oil and Gas Production Operations'. The Interstate Oil and Gas Compact Commission (IOGCC), headquartered in Oklahoma City, Oklahoma, is the principal investigator and the IOGCC has partnered with ALL Consulting, Inc., headquartered in Tulsa, Oklahoma, in this project. State agencies that also have partnered in the project are the Wyoming Oil and Gas Conservation Commission, the Montana Board of Oil and Gas Conservation, the Kansas Oil and Gas Conservation Division, the Oklahoma Oil and Gas Conservation Division and the Alaska Oil and Gas Conservation Commission. The objective is to characterize produced water quality and management practices for the handling, treating, and disposing of produced water from conventional oil and gas operations throughout the industry nationwide. Water produced from these operations varies greatly in quality and quantity and is often the single largest barrier to the economic viability of wells. The lack of data, coupled with renewed emphasis on domestic oil and gas development, has prompted many experts to speculate that the number of wells drilled over the next 20 years will approach 3 million, or near the number of current wells. This level of exploration and development undoubtedly will draw the attention of environmental communities, focusing their concerns on produced water management based on perceived potential impacts to fresh water resources. Therefore, it is imperative that produced water management practices be performed in a manner that best minimizes environmental impacts. This is being accomplished by compiling current best management practices for produced water from conventional oil and gas operations and to develop an analysis tool based on a geographic information system (GIS) to assist in the understanding of watershed-issued permits. That would allow management costs to be kept in line with the specific projects and regions, which increases the productive life of wells and increases the ultimate recoverable reserves in the ground. A case study was conducted in Wyoming to validate the applicability of the GIS analysis tool for watershed evaluations under real world conditions. Results of the partnered research will continue to be shared utilizing proven methods, such as on the IGOCC Web site, preparing hard copies of the results, distribution of documented case studies, and development of reference and handbook components to accompany the interactive internet-based GIS watershed analysis tool. Additionally, there have been several technology transfer seminars and presentations. The goal is to maximize the recovery of our nation's energy reserves and to promote water conservation.

  18. Play analysis and stratigraphic position of Uinta Basin tertiary - age oil and gas fields

    SciTech Connect (OSTI)

    Williams, R.A. (Pennzoil Exploration and Production Co., Houston, TX (United States))

    1993-08-01T23:59:59.000Z

    Tertiary-age sediments in the Uinta basin produce hydrocarbons from five types of plays. These play types were determined by hydrocarbon type, formation, depositional environment, rock type, porosity, permeability, source, and per-well recovery. Each well was reviewed to determine the stratigraphic position and producing characteristics of each producing interval. The five types of plays are as follows: (1) naturally fractured oil reservoirs, (2) low-permeability oil reservoirs, (3) high-permeability of oil reservoirs, (4) low-permeability gas reservoirs, and (5) tight gas sands. Several fields produce from multiple plays, which made it necessary to segregate the hydrocarbon production into several plays. The stratigraphic position of the main producing intervals is shown on a basin-wide cross section, which is color-coded by play type. This 61-well cross section has several wells from each significant Tertiary oil and gas field in the Uinta basin.

  19. UK Oil and Gas Collaborative Doctoral Training Centre (2014 start) Project Title

    E-Print Network [OSTI]

    Henderson, Gideon

    UK Oil and Gas Collaborative Doctoral Training Centre (2014 start) Project Title: Well Test Interpretation in Unconventional (Tight and Shale) Gas Reservoirs Host institution: Heriot-watt University) are carried out in such low permeability formations the results are often inconclusive and/or the estimates

  20. Sunco Oil manufactures three types of gasoline (gas 1, gas 2 and gas 3). Each type is produced by blending three types of crude oil (crude 1, crude 2 and crude 3). The sales price per barrel of gasoline and the purchase price per

    E-Print Network [OSTI]

    Phillips, David

    Sunco Oil manufactures three types of gasoline (gas 1, gas 2 and gas 3). Each type is produced by blending three types of crude oil (crude 1, crude 2 and crude 3). The sales price per barrel of gasoline and the purchase price per barrel of crude oil are given in following table: Gasoline Sale Price per barrel Gas 1

  1. Fuel switch could bring big savings for HECO Liquefied natural gas beats low-sulfur oil in cost and equipment

    E-Print Network [OSTI]

    Fuel switch could bring big savings for HECO Liquefied natural gas beats low-sulfur oil in cost gas instead of continuing to burn low-sulfur fuel oil, a report said. Switching to liquefied natural who switch from gasoline-powered vehicles to ones fueled by compressed natural gas could save as much

  2. 104 Int. J. Oil, Gas and Coal Technology, Vol. 4, No. 2, 2011 Copyright 2011 Inderscience Enterprises Ltd.

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    approach in modelling and simulation of shale gas reservoirs: application to New Albany Shale', Int. J. Oil104 Int. J. Oil, Gas and Coal Technology, Vol. 4, No. 2, 2011 Copyright © 2011 Inderscience Enterprises Ltd. A new practical approach in modelling and simulation of shale gas reservoirs: application

  3. 1 Intevep/2002/papers/FoamyOil-Pt2/nucleation_5-03.doc Modeling Foamy Oil Flow in Porous Media II

    E-Print Network [OSTI]

    Joseph, Daniel D.

    in a depletion experiment in which oil is pulled out of a closed sand pack at a constant rate reservoirs of heavy foamy oil under solution gas drive. All of the background motivation, the arguments1 · Intevep/2002/papers/FoamyOil-Pt2/nucleation_5-03.doc Modeling Foamy Oil Flow in Porous Media II

  4. Turbine fuels from tar-sands bitumen and heavy oil. Volume 2. Phase 3. Process design specifications for a turbine-fuel refinery charging San Ardo heavy crude oil. Final report, 1 June 1985-31 March 1987

    SciTech Connect (OSTI)

    Talbot, A.F.; Swesey, J.R.; Magill, L.G.

    1987-09-01T23:59:59.000Z

    An engineering design was developed for a 50,000-BPSD grass-roots refinery to produce aviation turbine fuel grades JP-4 and JP-8 from San Ardo heavy crude oil. The design was based on the pilot-plant studies described in Phase III - Volume I of this report. The detailed plant design described in this report was used to determine estimated production costs.

  5. International oil and gas exploration and development: 1991

    SciTech Connect (OSTI)

    Not Available

    1993-12-01T23:59:59.000Z

    This report starts where the previous quarterly publication ended. This first publication of a new annual series contains most of the same data as the quarterly report, plus some new material, through 1991. It also presents historical data covering a longer period of time than the previous quarterly report. Country-level data on oil reserves, oil production, active drilling rigs, seismic crews, wells drilled, oil reserve additions, and oil reserve-to-production rations (R/P ratios) are listed for about 85 countries, where available, from 1970 through 1991. World and regional summaries are given in both tabular and graphical form. The most popular table in the previous quarterly report, a listing of new discoveries, continues in this annual report as Appendix A.

  6. Study of hydrocarbon miscible solvent slug injection process for improved recovery of heavy oil from Schrader Bluff Pool, Milne Point Unit, Alaska. Final report

    SciTech Connect (OSTI)

    NONE

    1995-11-01T23:59:59.000Z

    The National Energy Strategy Plan (NES) has called for 900,000 barrels/day production of heavy oil in the mid-1990s to meet our national needs. To achieve this goal, it is important that the Alaskan heavy oil fields be brought to production. Alaska has more than 25 billion barrels of heavy oil deposits. Conoco, and now BP Exploration have been producing from Schrader Bluff Pool, which is part of the super heavy oil field known as West Sak Field. Schrader Bluff reservoir, located in the Milne Point Unit, North Slope of Alaska, is estimated to contain up to 1.5 billion barrels of (14 to 21{degrees}API) oil in place. The field is currently under production by primary depletion; however, the primary recovery will be much smaller than expected. Hence, waterflooding will be implemented earlier than anticipated. The eventual use of enhanced oil recovery (EOR) techniques, such as hydrocarbon miscible solvent slug injection process, is vital for recovery of additional oil from this reservoir. The purpose of this research project was to determine the nature of miscible solvent slug which would be commercially feasible, to evaluate the performance of the hydrocarbon miscible solvent slug process, and to assess the feasibility of this process for improved recovery of heavy oil from Schrader Bluff reservoir. The laboratory experimental work includes: slim tube displacement experiments and coreflood experiments. The components of solvent slug includes only those which are available on the North Slope of Alaska.

  7. Oil and gas resources of the Fergana basin (Uzbekistan, Tadzhikistan, and Kyrgyzstan). Advance summary

    SciTech Connect (OSTI)

    Not Available

    1993-12-07T23:59:59.000Z

    The Energy Information Administration (EIA), in cooperation with the US Geological Survey (USGS), has assessed 13 major petroleum producing regions outside of the United States. This series of assessments has been performed under EIA`s Foreign Energy Supply Assessment Program (FESAP). The basic approach used in these assessments was to combine historical drilling, discovery, and production data with EIA reserve estimates and USGS undiscovered resource estimates. Field-level data for discovered oil were used for these previous assessments. In FESAP, supply projections through depletion were typically formulated for the country or major producing region. Until now, EIA has not prepared an assessment of oil and gas provinces in the former Soviet Union (FSU). Before breakup of the Soviet Union in 1991, the Fergana basin was selected for a trial assessment of its discovered and undiscovered oil and gas. The object was to see if enough data could be collected and estimated to perform reasonable field-level estimates of oil and gas in this basin. If so, then assessments of other basins in the FSU could be considered. The objective was met and assessments of other basins can be considered. Collected data for this assessment cover discoveries through 1987. Compared to most other oil and gas provinces in the FSU, the Fergana basin is relatively small in geographic size, and in number and size of most of its oil and gas fields. However, with recent emphasis given to the central graben as a result of the relatively large Mingbulak field, the basin`s oil and gas potential has significantly increased. At least 7 additional fields to the 53 fields analyzed are known and are assumed to have been discovered after 1987.

  8. Formation resistivity measurements from within a cased well used to quantitatively determine the amount of oil and gas present

    DOE Patents [OSTI]

    Vail, W.B. III

    1997-05-27T23:59:59.000Z

    Methods to quantitatively determine the separate amounts of oil and gas in a geological formation adjacent to a cased well using measurements of formation resistivity are disclosed. The steps include obtaining resistivity measurements from within a cased well of a given formation, obtaining the porosity, obtaining the resistivity of formation water present, computing the combined amounts of oil and gas present using Archie`s Equations, determining the relative amounts of oil and gas present from measurements within a cased well, and then quantitatively determining the separate amounts of oil and gas present in the formation. 7 figs.

  9. Vertical composition gradient effects on original hydrocarbon in place volumes and liquid recovery for volatile oil and gas condensate reservoirs.

    E-Print Network [OSTI]

    Jaramillo Arias, Juan Manuel

    2012-01-01T23:59:59.000Z

    ??Around the world, volatile oil and retrograde gas reservoirs are considered as complex thermodynamic systems and even more when they exhibit vertical composition variations. Those… (more)

  10. Formation resistivity measurements from within a cased well used to quantitatively determine the amount of oil and gas present

    DOE Patents [OSTI]

    Vail, III, William B. (Bothell, WA)

    1997-01-01T23:59:59.000Z

    Methods to quantitatively determine the separate amounts of oil and gas in a geological formation adjacent to a cased well using measurements of formation resistivity are disclosed. The steps include obtaining resistivity measurements from within a cased well of a given formation, obtaining the porosity, obtaining the resistivity of formation water present, computing the combined amounts of oil and gas present using Archie's Equations, determining the relative amounts of oil and gas present from measurements within a cased well, and then quantitatively determining the separate amounts of oil and gas present in the formation.

  11. Study of Oil Degradation in Extended Idle Operation Heavy Duty Vehicles

    E-Print Network [OSTI]

    Kader, Michael Kirk

    2013-01-18T23:59:59.000Z

    Advances in engine oil technology and increased combustion efficiency has resulted in the longer oil intervals in vehicles. Current oil change interval practice only takes into account the mileage a vehicle has driven and does not consider other...

  12. Improvement in oil recovery using cosolvents with CO{sub 2} gas floods

    SciTech Connect (OSTI)

    Raible, C.

    1992-01-01T23:59:59.000Z

    This report presents the results of investigations to improve oil recovery using cosolvents in CO{sub 2} gas floods. Laboratory experiments were conducted to evaluate the application and selection of cosolvents as additives to gas displacement processes. A cosolvent used as a miscible additive changed the properties of the supercritical gas phase. Addition of a cosolvent resulted in increased viscosity and density of the gas mixture, and enhanced extraction of oil compounds into the CO{sub 2} rich phase. Gas phase properties were measured in an equilibrium cell with a capillary viscometer and a high pressure densitometer. A number of requirements must be considered in the application of a cosolvent. Cosolvent miscibility with CO{sub 2}, brine solubility, cosolvent volatility and relative quantity of the cosolvent partitioning into the oil phase were factors that must be considered for the successful application of cosolvents. Coreflood experiments were conducted with selected cosolvents to measure oil recovery efficiency. The results indicate lower molecular weight additives, such as propane, are the most effective cosolvents to increase oil recovery.

  13. Improvement in oil recovery using cosolvents with CO sub 2 gas floods

    SciTech Connect (OSTI)

    Raible, C.

    1992-01-01T23:59:59.000Z

    This report presents the results of investigations to improve oil recovery using cosolvents in CO{sub 2} gas floods. Laboratory experiments were conducted to evaluate the application and selection of cosolvents as additives to gas displacement processes. A cosolvent used as a miscible additive changed the properties of the supercritical gas phase. Addition of a cosolvent resulted in increased viscosity and density of the gas mixture, and enhanced extraction of oil compounds into the CO{sub 2} rich phase. Gas phase properties were measured in an equilibrium cell with a capillary viscometer and a high pressure densitometer. A number of requirements must be considered in the application of a cosolvent. Cosolvent miscibility with CO{sub 2}, brine solubility, cosolvent volatility and relative quantity of the cosolvent partitioning into the oil phase were factors that must be considered for the successful application of cosolvents. Coreflood experiments were conducted with selected cosolvents to measure oil recovery efficiency. The results indicate lower molecular weight additives, such as propane, are the most effective cosolvents to increase oil recovery.

  14. Oil & Natural Gas Technology DOE Award No.: FWP 49462

    E-Print Network [OSTI]

    Boyer, Elizabeth W.

    increasingly looked to other unconventional sources of natural gas, such as coal bed methane, tight gas sands wells drilled into porous hydrocarbon-containing formations. During the past decade, operators have produce enough natural gas from shale formations to make the wells economically viable. Because

  15. Charm diffusion in a pion gas implementing unitarity, chiral and heavy quark symmetries

    SciTech Connect (OSTI)

    Abreu, Luciano M. [Instituto de Fisica, Universidade Federal da Bahia, 40210-340, Salvador, BA (Brazil); Cabrera, Daniel [Departamento de Fisica Teorica II, Universidad Complutense, 28040 Madrid (Spain); Llanes-Estrada, Felipe J., E-mail: fllanes@fis.ucm.es [Departamento de Fisica Teorica I, Universidad Complutense, 28040 Madrid (Spain); Torres-Rincon, Juan M. [Departamento de Fisica Teorica I, Universidad Complutense, 28040 Madrid (Spain)

    2011-10-15T23:59:59.000Z

    We compute the charm drag and diffusion coefficients in a hot pion gas, such as is formed in a heavy ion collision after the system cools sufficiently to transit into the hadron phase. We fully exploit heavy quark effective theory (with both D and D{sup *} mesons as elementary degrees of freedom during the collision) and chiral perturbation theory, and employ standard unitarization to reach higher temperatures. We find that a certain friction and shear diffusion coefficients are almost p{sup 2}-independent at a fixed temperature which simplifies phenomenological analysis. At the higher end of reliability of our calculation, T{approx_equal}150MeV, we report a charm relaxation length {lambda}{sub c}{approx_equal}40fm, in agreement with the model estimate of He, Fries and Rapp. The momentum of a 1 GeV charm quark decreases about 50 MeV per fermi when crossing the hadron phase. - Highlights: > We compute charm drag and diffusion in a pion gas (in heavy ion collisions). > We employ effective theory (both chiral and heavy quark). > We unitarize the perturbative amplitude for realistic cross-sections. > A charm quark with momentum 1 GeV loses 50 MeV per fermi (drag). > The momentum distribution broadens some 100 MeV per fermi (diffusion).

  16. Modeling effects of diffusion and gravity drainage on oil recovery in naturally fractured reservoirs under gas injection

    E-Print Network [OSTI]

    Jamili, Ahmad

    2010-04-22T23:59:59.000Z

    Gas injection in naturally fractured reservoirs maintains the reservoir pressure, and increases oil recovery primarily by gravity drainage and to a lesser extent by mass transfer between the flowing gas in the fracture and the porous matrix...

  17. Wetland mitigation banking for the oil and gas industry: Assessment, conclusions, and recommendations

    SciTech Connect (OSTI)

    Wilkey, P.L.; Sundell, R.C.; Bailey, K.A.; Hayes, D.C.

    1994-01-01T23:59:59.000Z

    Wetland mitigation banks are already in existence in the United States, and the number is increasing. To date, most of these banks have been created and operated for mitigation of impacts arising from highway or commercial development and have not been associated with the oil and gas industry. Argonne National Laboratory evaluated the positive and negative aspects of wetland mitigation banking for the oil and gas industry by examining banks already created for other uses by federal, state, and private entities. Specific issues addressed in this study include (1) the economic, ecological, and technical effectiveness of existing banks; (2) the changing nature of local, state, and federal jurisdiction; and (3) the unique regulatory and jurisdictional problems affecting bank developments associated with the oil and gas industry.

  18. Oil and gas resources of the Fergana Basin (Uzbekistan, Tadzhikistan, and Kyrgyzstan)

    SciTech Connect (OSTI)

    Not Available

    1995-01-01T23:59:59.000Z

    This analysis is part of the Energy Information Administration`s (EIA`s) Foreign Energy Supply Assessment Program (FESAP). This one for the Fergana Basin is an EIA first for republics of the former Soviet Union (FSU). This was a trial study of data availability and methodology, resulting in a reservoir-level assessment of ultimate recovery for both oil and gas. Ultimate recovery, as used here, is the sum of cumulative production and remaining Proved plus Probable reserves as of the end of 1987. Reasonable results were obtained when aggregating reservoir-level values to the basin level, and in determining general but important distributions of across-basin reservoir and fluid parameters. Currently, this report represents the most comprehensive assessment publicly available for oil and gas in the Fergana Basin. This full report provides additional descriptions, discussions and analysis illustrations that are beneficial to those considering oil and gas investments in the Fergana Basin. 57 refs., 22 figs., 6 tabs.

  19. Integration of High Temperature Gas-cooled Reactor Technology with Oil Sands Processes

    SciTech Connect (OSTI)

    L.E. Demick

    2011-10-01T23:59:59.000Z

    This paper summarizes an evaluation of siting an HTGR plant in a remote area supplying steam, electricity and high temperature gas for recovery and upgrading of unconventional crude oil from oil sands. The area selected for this evaluation is the Alberta Canada oil sands. This is a very fertile and active area for bitumen recovery and upgrading with significant quantities piped to refineries in Canada and the U.S Additionally data on the energy consumption and other factors that are required to complete the evaluation of HTGR application is readily available in the public domain. There is also interest by the Alberta oil sands producers (OSP) in identifying alternative energy sources for their operations. It should be noted, however, that the results of this evaluation could be applied to any similar oil sands area.

  20. UK Oil and Gas Collaborative Doctoral Training Centre (2014 start) Project Title: Quantifying the role of groundwater in hydrocarbon systems using noble gas

    E-Print Network [OSTI]

    Henderson, Gideon

    UK Oil and Gas Collaborative Doctoral Training Centre (2014 start) Project Title: Quantifying the role of groundwater in hydrocarbon systems using noble gas isotopes (EARTH-15-CB1) Host institution biodegradation of oil can remove its value ­ but what controls the biodegradation? The deep biosphere plays a key

  1. Work distribution of an expanding gas and transverse energy production in relativistic heavy ion collisions

    E-Print Network [OSTI]

    Bin Zhang; Jay P. Mayfield

    2014-01-19T23:59:59.000Z

    The work distribution of an expanding extreme relativistic gas is shown to be a gamma distribution with a different shape parameter as compared with its non-relativistic counterpart. This implies that the shape of the transverse energy distribution in relativistic heavy ion collisions depends on the particle contents during the evolution of the hot and dense matter. Therefore, transverse energy fluctuations provide additional insights into the Quark-Gluon Plasma produced in these collisions.

  2. Work distribution of an expanding gas and transverse energy production in relativistic heavy ion collisions

    E-Print Network [OSTI]

    Zhang, Bin

    2013-01-01T23:59:59.000Z

    The work distribution of an expanding extreme relativistic gas is shown to be a gamma distribution with a different shape parameter as compared with its non-relativistic counterpart. This implies that the shape of the transverse energy distribution in relativistic heavy ion collisions depends on the particle contents during the evolution of the hot and dense matter. Therefore, transverse energy fluctuations provide additional insights into the Quark-Gluon Plasma produced in these collisions.

  3. Oil and Gas Lease Equipment and Operating Costs 1994 Through 2009

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecember 2005 (Thousand9,0,InformationU.S. Crude Oil3113315,0,482272Oil and GasOil

  4. Federal and Indian oil and gas royalty valuation and management

    SciTech Connect (OSTI)

    Not Available

    1992-01-01T23:59:59.000Z

    This book covers: Royalty management-an M.M.S. overview; Payor/operator/lessee royalty liability; Royalty issues for OCS lessees; Royalty valuation procedures; Gas marketing royalty issues - industry perspective; Gas marketing royalty issues - M.M.S. perspective; Settlements of gas contract disputes Royalty reporting issues; Production reporting issues; Indian royalty issues; Litigation/regulatory updates; Over/under production on federal leases, units, and communitized areas; Audit program; and M.M.S. Reference Handbook.

  5. Summary: U.S. Crude Oil, Natural Gas, and Natural Gas Liquids Proved Reserves

    E-Print Network [OSTI]

    Boyer, Elizabeth W.

    .S. natural gas proved reserves 2 --estimated as "wet" gas which includes natural gas plant liquids Federal Offshore, California, Alaska, and North Dakota) in 2009. Texas had the largest proved reserves to render the gas unmarketable. Natural gas plant liquids may be recovered from volumes of natural gas, wet

  6. Africa: Unrest and restrictive terms limit abundant potential. [Oil and gas exploration and development in Africa

    SciTech Connect (OSTI)

    Not Available

    1993-08-01T23:59:59.000Z

    This paper summarizes the drilling and exploration activity of the oil and gas industries of Egypt, Libya, Tunisia, Algeria, Morocco, Nigeria, Cameroon, Gabon, the Congo, Angola, and South Africa. Information is provided on current and predicted trends in well drilling activities (both onshore and offshore), numbers of new wells, footage information, production statistics and what fields accounted for this production, and planned new exploration activities. The paper also describes the current status of government policies and political problems affecting the oil and gas industry.

  7. Mathematical models of interconnections between composition and properties of oils in the Apsheron oil-and gas-bearing region of Azerbaijan

    SciTech Connect (OSTI)

    Buryakovsky, L.A.; Dzhevanshir, R.D. (Inst. of Deep Oil and Gas Deposits, Azerbaijan Academy of Sciences, 33 Narimanov Prospect, Baku 370143, Azerbaijan (SU))

    1992-01-01T23:59:59.000Z

    This paper reports on the example of oils in the Apsheron oil- and gas-bearing region and Apsheron archipelago located in the western part of the Southern Caspian depression, of which the authors have developed mathematical models of a group hydrocarbon composition; interconnection between oil density and content of asphalt-resin materials, benzine, and ligroin; interconnections between oil density and viscosity and temperature; and interconnections between content of asphalt-resin properties and low-temperature fractions. The models obtained enable us to extrapolate factual data on composition and properties of oils beyond the limits of fixed depths of burial of oil-saturated reservoirs both to a zone of great depths and increased temperatures where hydrocarbons were in a gaseous or oil and gaseous state, and to a zone of near-surface conditions where oils acquire the consistency of asphalts.

  8. Alaska oil and gas: Energy wealth or vanishing opportunity

    SciTech Connect (OSTI)

    Thomas, C.P.; Doughty, T.C.; Faulder, D.D.; Harrison, W.E.; Irving, J.S.; Jamison, H.C.; White, G.J.

    1991-01-01T23:59:59.000Z

    The purpose of the study was to systematically identify and review (a) the known and undiscovered reserves and resources of arctic Alaska, (b) the economic factors controlling development, (c) the risks and environmental considerations involved in development, and (d) the impacts of a temporary shutdown of the Alaska North Slope Oil Delivery System (ANSODS). 119 refs., 45 figs., 41 tabs.

  9. Projections of the impact of expansion of domestic heavy oil production on the U.S. refining industry from 1990 to 2010. Topical report

    SciTech Connect (OSTI)

    Olsen, D.K.; Ramzel, E.B.; Strycker, A.R. [National Institute for Petroleum and Energy Research, Bartlesville, OK (United States). ITT Research Institute] [National Institute for Petroleum and Energy Research, Bartlesville, OK (United States). ITT Research Institute; Guariguata, G.; Salmen, F.G. [Bonner and Moore Management Science, Houston, TX (United States)] [Bonner and Moore Management Science, Houston, TX (United States)

    1994-12-01T23:59:59.000Z

    This report is one of a series of publications assessing the feasibility of increasing domestic heavy oil (10{degrees} to 20{degrees} API gravity) production. This report provides a compendium of the United States refining industry and analyzes the industry by Petroleum Administration for Defense District (PADD) and by ten smaller refining areas. The refining capacity, oil source and oil quality are analyzed, and projections are made for the U.S. refining industry for the years 1990 to 2010. The study used publicly available data as background. A linear program model of the U.S. refining industry was constructed and validated using 1990 U.S. refinery performance. Projections of domestic oil production (decline) and import of crude oil (increases) were balanced to meet anticipated demand to establish a base case for years 1990 through 2010. The impact of additional domestic heavy oil production, (300 MB/D to 900 MB/D, originating in select areas of the U.S.) on the U.S. refining complex was evaluated. This heavy oil could reduce the import rate and the balance of payments by displacing some imported, principally Mid-east, medium crude. The construction cost for refining units to accommodate this additional domestic heavy oil production in both the low and high volume scenarios is about 7 billion dollars for bottoms conversion capacity (delayed coking) with about 50% of the cost attributed to compliance with the Clean Air Act Amendment of 1990.

  10. A Novel 9.4 Tesla FT-ICR Mass Spectrometer with Improved Sensitivity, Mass Resolution, and Mass Range, for Petroleum Heavy Crude Oil Analysis

    E-Print Network [OSTI]

    organic mixtures. However, analysis of petroleum crude oil as well as upcoming biofuels requires continued NHMFL 9.4 T FT- species in petroleum crude oil and its products, extending to "heavy" crudes.4 tesla widebore FT-ICR mass spectrometer. Acknowledgements : Include all grant info; e.g. G.S. Boebinger

  11. Subsurface Hybrid Power Options for Oil & Gas Production at Deep Ocean Sites

    SciTech Connect (OSTI)

    Farmer, J C; Haut, R; Jahn, G; Goldman, J; Colvin, J; Karpinski, A; Dobley, A; Halfinger, J; Nagley, S; Wolf, K; Shapiro, A; Doucette, P; Hansen, P; Oke, A; Compton, D; Cobb, M; Kopps, R; Chitwood, J; Spence, W; Remacle, P; Noel, C; Vicic, J; Dee, R

    2010-02-19T23:59:59.000Z

    An investment in deep-sea (deep-ocean) hybrid power systems may enable certain off-shore oil and gas exploration and production. Advanced deep-ocean drilling and production operations, locally powered, may provide commercial access to oil and gas reserves otherwise inaccessible. Further, subsea generation of electrical power has the potential of featuring a low carbon output resulting in improved environmental conditions. Such technology therefore, enhances the energy security of the United States in a green and environmentally friendly manner. The objective of this study is to evaluate alternatives and recommend equipment to develop into hybrid energy conversion and storage systems for deep ocean operations. Such power systems will be located on the ocean floor and will be used to power offshore oil and gas exploration and production operations. Such power systems will be located on the oceans floor, and will be used to supply oil and gas exploration activities, as well as drilling operations required to harvest petroleum reserves. The following conceptual hybrid systems have been identified as candidates for powering sub-surface oil and gas production operations: (1) PWR = Pressurized-Water Nuclear Reactor + Lead-Acid Battery; (2) FC1 = Line for Surface O{sub 2} + Well Head Gas + Reformer + PEMFC + Lead-Acid & Li-Ion Batteries; (3) FC2 = Stored O2 + Well Head Gas + Reformer + Fuel Cell + Lead-Acid & Li-Ion Batteries; (4) SV1 = Submersible Vehicle + Stored O{sub 2} + Fuel Cell + Lead-Acid & Li-Ion Batteries; (5) SV2 = Submersible Vehicle + Stored O{sub 2} + Engine or Turbine + Lead-Acid & Li-Ion Batteries; (6) SV3 = Submersible Vehicle + Charge at Docking Station + ZEBRA & Li-Ion Batteries; (7) PWR TEG = PWR + Thermoelectric Generator + Lead-Acid Battery; (8) WELL TEG = Thermoelectric Generator + Well Head Waste Heat + Lead-Acid Battery; (9) GRID = Ocean Floor Electrical Grid + Lead-Acid Battery; and (10) DOC = Deep Ocean Current + Lead-Acid Battery.

  12. 2 Int. J. Oil, Gas and Coal Technology, Vol. 2, No. 1, 2009 Copyright 2009 Inderscience Enterprises Ltd.

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    2 Int. J. Oil, Gas and Coal Technology, Vol. 2, No. 1, 2009 Copyright © 2009 Inderscience@yahoo.com Hafez Hafez ADCO-PDD, Abu Dhabi Company for Onshore Oil Operation (ADCO), P.O. Box 270, Abu Dhabi Dhabi Company for Onshore Oil Operation (ADCO), P.O. Box 270, Abu Dhabi, United Arab Emirates Email

  13. Int. J. Oil, Gas and Coal Technology, Vol. 1, Nos. 1/2, 2008 65 Copyright 2008 Inderscience Enterprises Ltd.

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    Int. J. Oil, Gas and Coal Technology, Vol. 1, Nos. 1/2, 2008 65 Copyright © 2008 Inderscience Enterprises Ltd. Building the foundation for Prudhoe Bay oil production optimisation using neural networks E-mail: siskd@Bp.com Abstract: Field data from the Prudhoe Bay oil field in Alaska was used

  14. Characterization of oil and gas reservoir heterogeneity. Final report

    SciTech Connect (OSTI)

    Tyler, N.; Barton, M.D.; Bebout, D.G.; Fisher, R.S.; Grigsby, J.D.; Guevara, E.; Holtz, M.; Kerans, C.; Nance, H.S.; Levey, R.A.

    1992-10-01T23:59:59.000Z

    Research described In this report addresses the internal architecture of two specific reservoir types: restricted-platform carbonates and fluvial-deltaic sandstones. Together, these two reservoir types contain more than two-thirds of the unrecovered mobile oil remaining ill Texas. The approach followed in this study was to develop a strong understanding of the styles of heterogeneity of these reservoir types based on a detailed outcrop description and a translation of these findings into optimized recovery strategies in select subsurface analogs. Research targeted Grayburg Formation restricted-platform carbonate outcrops along the Algerita Escarpment and In Stone Canyon In southeastern New Mexico and Ferron deltaic sandstones in central Utah as analogs for the North Foster (Grayburg) and Lake Creek (Wilcox) units, respectively. In both settings, sequence-stratigraphic style profoundly influenced between-well architectural fabric and permeability structure. It is concluded that reservoirs of different depositional origins can therefore be categorized Into a ``heterogeneity matrix`` based on varying intensity of vertical and lateral heterogeneity. The utility of the matrix is that it allows prediction of the nature and location of remaining mobile oil. Highly stratified reservoirs such as the Grayburg, for example, will contain a large proportion of vertically bypassed oil; thus, an appropriate recovery strategy will be waterflood optimization and profile modification. Laterally heterogeneous reservoirs such as deltaic distributary systems would benefit from targeted infill drilling (possibly with horizontal wells) and improved areal sweep efficiency. Potential for advanced recovery of remaining mobile oil through heterogeneity-based advanced secondary recovery strategies In Texas is projected to be an Incremental 16 Bbbl. In the Lower 48 States this target may be as much as 45 Bbbl at low to moderate oil prices over the near- to mid-term.

  15. Numerical simulations of the Macondo well blowout reveal strong control of oil flow by reservoir permeability and exsolution of gas

    E-Print Network [OSTI]

    Oldenburg, C.M.

    2013-01-01T23:59:59.000Z

    of natural gas in oil) STB Stock Tank Barrel ( one barrel oftank barrel (scf/STB). Gas solubility increases with pressure such that oilgas in oil is given by SGOR which has units of standard cubic feet per stock-tank

  16. Well blowout rates and consequences in California Oil and Gas District 4 from 1991 to 2005: Implications for geological storage of carbon dioxide

    E-Print Network [OSTI]

    Jordan, Preston D.

    2008-01-01T23:59:59.000Z

    and/or changes in the safety culture in the oil and gasand/or changes in safety culture in the oil and gasand/or changes in safety culture in the oil and gas

  17. Effect of connate water on miscible displacement of reservoir oil by flue gas

    E-Print Network [OSTI]

    Maxwell, H. D.

    1960-01-01T23:59:59.000Z

    gas and water injection, have allowed the industry to greatly increase primary oil recovery. But the common weakness of gas and water as pressure maintenance and secondary recovery agents is im- miscibility with the reservoir fluid to be displaced... to using a hydrocarbon slug, Saxon, et al was one of the earliest investigators of carbon dioxide as a possible flooding 14 agent. Gatlin and Slobod reported on laboratory investigations of another possible miscible flooding agent, methyl alcohol. Each...

  18. Management of produced water in oil and gas operations

    E-Print Network [OSTI]

    Patel, Chirag V.

    2005-02-17T23:59:59.000Z

    of oil present in the sample. For example, the calibration factor obtained for samples containing kerosene is different from the calibration factor obtained for samples containing diesel. However according to EPA, if the analyzer is calibrated...) for analysis which reduces the chances of inaccuracy because the larger the amount of sample the higher the chances of good representation of the original sample. 6 In this work TOC-700 was used to analyze kerosene-water emulsions. To match TOC...

  19. New applications for enzymes in oil and gas production

    SciTech Connect (OSTI)

    Harris, R.E.; McKay, I.D. [Cleansorb Ltd., Yateley (United Kingdom)

    1999-04-01T23:59:59.000Z

    Enzymes have been previously used as gel breakers. In these applications, the enzyme removes a chemical which is no longer required, such as biopolymers in filter cakes after drilling or in frac gels after the frac has occurred. Enzymes are now used to produce useful oilfield chemicals in-situ for acidizing, sand consolidation and water shutoff applications. Enzyme-based processes for generating other useful oil-field chemicals, including minerals, gels and resins, are being developed, and these applications are discussed.

  20. Investing in Oil and Natural Gas A Few Key Issues

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs Year in Review W ithWellheadFeet)